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Abstract 

Individual tree inventories promise precision advantages relative to conventional forest inventories 
and those enhanced by a LIDAR area-based technique. Although this promise has yet to be realized 
at scale in Canada, advances continue to bring individual tree inventory technologies closer to 
practical application. This report describes a practical demonstration of the Individual Tree Crown 
(ITC) approach on the Petawawa Research Forest in Ontario. A typical mosaic of multispectral aerial 
images (40 cm/pixel) was used to automatically delineate approximately 10 million ITCs, classify 
these into species and estimate their volumes. To mimic operational situations, the spectral signatures 
were generated from simple training areas produced using information from two previous forest 
inventories, with minor on-screen interpretation. Classification accuracy was ascertained for ten 
common species. Although species classification in this demonstration was generally poor due to 
some species confusion, the conventional forest inventory benchmark is also known to be poor for 
challenging situations. Conventional equations were used to establish volumes for 2 000 trees for 
which species, diameter at breast height (DBH) and height were measured in the field, and simple 
volume relationships were established for each species plotted as a function of height only (V = f (HT)) 
for application to the ITCs for which we only have species and height (i.e., no DBH). Summarizing 
at the stand level while compensating for the fact that some of the ITCs are actually tree clusters 
rather than single trees produced estimates consistent with standard volume assessment of the 
Petawawa Research Forest.

Résumé 

Les inventaires « à l’arbre prêt » nous promettent des précisions supérieures aux inventaires forestiers 
conventionnels et ceux améliorés par une technique surfacielle au LIDAR. Bien que cette promesse soit 
encore à être réalisée à grande échelle au Canada, des progrès continuent de rapprocher l‘inventaire 
« à l’arbre prêt » d’une application pratique. Ce rapport décrit une utilisation pratique de l’inventaire 
« à l’arbre prêt » sur la forêt expérimentale de Petawawa en Ontario. Une mosaïque typique d’images 
aériennes multispectrales (40 cm/pixel) fut analysée pour isoler approximativement 10 millions 
d’arbres, classifier leur espèce, et estimer leur volume. Pour imiter une situation opérationnelle, les 
signatures spectrales furent générées à partir de zones d’entrainement simples produites à partir 
d’information provenant de deux inventaires forestiers antérieurs et, un peu d’interprétation à l’écran. 
L’exactitude de la classification fut établie pour les dix espèces les plus communes. Bien que l’exactitude 
de classification soit généralement faible dû une certaine confusion entre les espèces, l’inventaire 
forestier conventionnel de référence peut aussi être faible lors de situations complexes. Des équations 
conventionnelles furent utilisées pour établir le volume de 2 000 arbres pour lesquels l’espèce, le 
diamètre à hauteur de poitrine (DAP) et la hauteur furent mesuré au sol puis, de simples équations 
reliant le volume à la hauteur (V = f (HT)) furent établies pour chaque espèce pour être utilisées avec 
les ITCs (arbres individuels) pour lesquels nous n’avons que l’espèce et la hauteur (c.à.d., pas de 
DAP). Une compilation par peuplements, tout en compensant pour le fait que certains ITCs sont des 
groupes d’arbres plutôt que des arbres individuels, produisit des estimations de volume comparables 
à ceux de la méthode conventionnelle pour la forêt expérimentale de Petawawa.
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1 Introduction 

The forest industry is being shaped by a digital transformation that 
is creating demands for increasingly high precision forest inventory 
data. Foresters are managing for a multitude of ecosystem goods 
and services while trying to optimize value from every tree harvested. 
High precision data are needed for characterizing wood volumes, 
fibre qualities, wildlife habitat features, harvest residues, carbon, 
fuel characteristics and more. Individual tree based forest inventories 
have the potential to help satisfy demand for high precision data 
and advance sustainable forest management.

The Individual Tree Crown (ITC) approach represents a major shift in 
paradigm, from mapping relatively homogeneous forest stands and 
interpreting their structure and composition, to the semi-automatic 
computer analysis of high spatial resolution (10–100 cm/pixel) 
multispectral aerial or satellite images producing ITC-based forest 
inventories (Gougeon and Leckie, 2003). Such forest inventories have 
the potential to improve predictions of species composition and use 
allometric volume and biomass equations more directly. Individual 
tree census could ultimately make stand-level forest inventory and 
management obsolete. However, current tools and algorithms have 
not fully matured yet, as many of the isolated objects (isols) identified 
by ITC technologies are tree clusters rather than individual trees. Still, 
detailed information at nearly individual tree level offers numerous 
advantages and, application-specific analyses or regroupings can 
be done as needed after the initial ITC analysis (e.g. for wildlife 
management, biodiversity assessment).

Foundational techniques, methods and tools for ITC-based 
information extraction developed by the Canadian Forest Service 
are described in detail by (Gougeon and Leckie, 2003; Gougeon, 
2010). A large-area ITC study by Leckie et al. (2017) using the 
same mosaicked multi-spectral imagery at 40 cm pixel resolution 
covering 228 km2 overcame key issues associated with scaling up 
from small study areas with relatively simple forest structure and 
composition, but Leckie et al.’s solutions were complicated and 
too challenging to implement operationally. This report describes 
a more practical demonstration of the ITC approach for the same 
study area in the Petawawa Research Forest (PRF), Ontario, and 
introduces new advances achieved over the past two decades of 
research and development.

2 Background 

2.1 Development of the ITC Approach
ITC research and development began three decades ago when 
prototype multispectral airborne sensors first became capable of 
acquiring images at close to 1 m pixel resolution and Gougeon and 
Moore (1989) developed a treetop approach based on finding local 
maxima to count trees and identify their species. Although equally 
good at classifying a limited number of hardwood and softwood 
species, counts of hardwood trees were often overestimated due 
to the detection of multiple maxima within their crowns, especially 
as spatial resolutions increased. Treetop techniques became more 

susceptible to the size of the detection window and/or to the a 
priori smoothing of the images. More adaptable versions were 
created to tackle the window size issues (Dralle and Rudemo, 1996; 
Wulder et al., 2000). Another method relied on detecting regions of 
bigger and smaller trees, followed by adaptable smoothing prior to 
treetop detection (Gougeon, 1997). Most of these methods were 
not quite flexible enough to deal with stands with a thorough 
mixing of species.

Concurrent with additional developments and improvements of 
multispectral airborne sensors leading to the availability of sub-meter 
data, Individual Tree Crown (ITC) techniques attempting to detect 
and delineate crown outlines were also developed. Some were 
based on first finding local maxima (i.e., treetops) and then finding 
crown edges spiraling down the crown or by following transects 
in various cardinal directions until an abrupt change was detected 
(Pinz, 1991; Pouliot et al., 2002; Koch et al., 2006;); or starting a 
region-growing segmentation from such a seed point (Uuttera et 
al., 1998; Erikson, 2003; Lamar et al., 2005). Other approaches 
were based on scanning the image looking for significant correlations 
with two-dimensional projections of tree crown models or selected 
instances of tree crown views (Pollock, 1994; Larsen and Rudemo, 
1998). These approaches are very computer intensive since numerous 
models need to be tested/assessed. Moreover, difficulties making 
a final decision on the winning model for a given tree arise with 
a disturbing high frequency. Simpler approaches were based on 
image grey-level inversions and using well known watershed 
algorithms (Hyyppä et al., 2001). Generic object detection and 
analysis packages (Chen et al., 2005) can perform relatively well, 
especially on plantations. In this study, we used the valley following 
approach to crown delineation (Gougeon 1995b) which follows 
valleys of shade that are typically found between trees crowns and 
use the multispectral data within such crown to recognize their 
species (Gougeon 1995a), as described later.

Since the majority of crown delineation techniques rely on only one 
spectral band (or a panchromatic image), they also work well on 
LiDAR-based Digital Canopy Models (DCM) given sufficient point 
densities (Leckie et al., 2003; Evans et al., 2006; Zhen et al., 2016). 
Colour or multispectral information is generally needed for species 
recognition (McCombs et al., 2003), but the two data types may be 
difficult to align properly (Dralle and Rudemo, 1997).Here, we are 
using a LiDAR-based DCM to get individual tree heights for our volume 
calculations and assessing the importance of such misalignment. 
Zhen et al. (2016) provides a review of ITC detection and delineation 
from LiDAR data.

2.2 Forest Volume Assessments
Establishing forest volume at the stand level is traditionally done 
by connecting plot volumes with a stratification of the forest and 
then bringing that information back to the stand level. A modern 
approach uses k–NN to spatialize historical plot volume information 
to management units via photo-interpreted parameters (Bernier et 
al., 2010). Establishing forest volume from medium spatial resolution 
remote sensing (RS) has often followed a similar approach where 
some RS-extracted parameters are used to spatialize plot volume/
biomass information (Beaudoin et al, 2014). However, with the 
increasing availability of aerial LiDAR data providing dense height 
information, different approaches are emerging. 
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In Canada, where coverage of large areas is often compulsory 
for management and even operational needs, area-based LiDAR 
techniques have demonstrated lots of potential. They are able 
to supply substantial quantity of inferred, yet well verified forest 
information, from top height to merchantable wood volume, and 
even assignment of logs by sizes to sawmills, at spatial resolutions 
commensurate (20–30 m) with that of the field plots used as reference 
(Lim et al., 2003; Woods et al., 2011; White et al., 2013). One 
study shows the inferred volume to be within 10% of the scaled 
volume (Woods et al., 2011). Such area-based approaches were 
also shown to be successful with photogrammetric point clouds 
extracted from aerial multispectral images with multiple views 
(Pitt et al., 2014; White et al., 2015), as long as a high-quality 
digital elevation model of the ground was available. It is beyond the 
scope of this paper to address all of the potential benefits of using 
LiDAR in forestry. Wulder provides an overview of the potential role 
of LiDAR for forest management (Wulder et al., 2008).

Most remote sensing studies of volume at the individual tree level 
were carried out by analysing LiDAR data, generally at the plot 
level, and doing crown delineation on the derived DCM. Typically, 
a single maximum height with/without crown area or diameter 
is used to calculate volume (Hyyppä et al., 2001; Popescu et al., 
2003; Maltamo et al., 2006). In Scandinavia, because such equations 
exist, crown areas and heights are often used to first infer diameters 
at breast height (DBH) and then, DBH and height are used in more 
conventional volume equations. Later works often combine LiDAR 
data with multispectral or hyperspectral data for species assessments 
(Popescu et al., 2004; Dalponte and Coomes, 2016); and more 
recently, given higher return densities, the complete distribution of 
pulses within a crown are examined as they can also contribute 
to species recognition (St-Onge et al., 2015; Deng et al., 2016).

2.3 Wider Uses of the ITC Approach
With multispectral satellites capable of 1 m/pixel spatial resolution 
and better since 2000, ITC techniques became easily applicable to 
much wider areas and produced relatively good results (CLC-Camint, 
2002; Gougeon and Leckie, 2006; Gougeon et al., 2018). However, 
most ITC-related studies are still done using fairly simple forest 
settings, address classification of a limited number of species (or 
species groupings) and are focused on small study sites. On the 
other hand, in Canada, provinces are still acquiring wall-to-wall 
aerial imagery (now digital) as part of their forest inventory cycles 
(~7–15 years) which is still analysed by visual image interpretation 
in almost the same way as the photo-interpretation of a few decades 
ago. This digital multispectral data is generally of very good quality 
and at sub-meter resolutions. It is thus amenable to digital analysis at 
the individual tree level but is often prepared for human interpretation 
rather than automated computer analysis. However, access to 
unaltered data is often possible and mosaicking of radiometrically 
corrected and balanced imagery is getting more common (Downey, 
2010).

As mentioned, one large-area (228 km2) ITC study (Leckie et al., 
2017) using mosaicked multi-spectral flight lines tackled scaling 

up from the typical small study areas with relatively simple forest 
structure. However, the procedures used were too complicated 
to implement operationally. Here, we will use the same dataset in a 
simpler way to investigate what can be reasonably achieved quickly, 
check on species composition relative to an existing conventional 
forest inventory and, examine volume assessments at the individual 
tree and stand levels. To our knowledge, this is the first ITC-based 
volume assessment of a large number (8–10 million) of trees.

3 Petawawa Research Forest 
Data Sets 

The study area is the Petawawa Research Forest (PRF) in northeastern 
Ontario, approximately 160 km northwest of Ottawa, Ontario 
(77° 27’ 06” W; 45° 57’ 42” N). The site contains numerous boreal 
and temperate species and is thus a very good location to test 
species recognition. A description of the site is found in (Leckie et 
al., 2017). PRF forest inventories from 2001 (FoInv01, with volume) 
and 2007 (FoInv07, without volume) were available.

The imagery was acquired with a Leica ADS80 airborne sensor 
(Leica Geosystems Ltd. 2016) on September 6, 2009, as part of 
the Ontario Ministry of Natural Resources and Forestry (OMNRF) 
on-going program to obtain digital imagery of the whole province, 
primarily for forest inventory purposes. The sensor head used 
(SH82) has line imagers with four spectral bands (blue, green, red, 
and near-infrared) and a panchromatic band, acquired from two 
different views (backward 16° and nadir). Ground resolution was 
28 cm with a cross path view angle of ± 32°. The two different views 
enable human stereographic viewing and analysis, the production 
of photogrammetric point clouds (PPCs), a corresponding digital 
canopy model and additional multispectral imagery repositioned to 
the DCM. The main product used in this study was the orthorectified 
and radiometrically-corrected (Downey et al. 2010) mosaic of the 
flight lines over the PRF as provided to OMNRF, with a ground 
resolution of 40 cm/pixel. The view angle for the data in the mosaic 
was typically within ± 24° of nadir. Also available was a LiDAR dataset 
acquired August 2012 at approximately 6 pulses/m2 with a field 
of view of ± 20°. A digital elevation model and digital canopy model 
were generated by Leading Edge Geomatics at a 50-cm resolution 
and were resampled to 40 cm/pixel to be more compatible with 
the rest of the dataset.

A set of 545 field-verified relatively pure test areas were used for 
some species recognition assessments by comparing their dominant 
species with that of our ITC classifications. A data base of 10 918 
field-verified reference trees that had also been delineated on the 
imagery was used for our ultimate species recognition tests (Leckie 
et al., 2017). Another independent dataset created mostly for 
volume assessment was used to build and verify volume inference 
equations. It provided 2 000 field trees (within 223 plots) for which 
species, DBH and height were ascertained (some heights were 
inferred, as is often the case in plot assessments). For these 223 
plots, dominant and codominant trees average height and the 
total volume (tvol) within the plot had been estimated.
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4 Methodology 

4.1 Tree Crown Delineation and Species 
Classification
The delineation of individual tree crowns (ITCs) over the 228 km2 
area was accomplished using the NRCan ITC-Suite (Gougeon, 
2010). To concentrate on the forested area, a non-forest mask was 
first created using a threshold (< 2 m) on the digital canopy height 
model generated from the LiDAR data. Then, from a smoothed 
near infra-red (NIR) image, valleys of shade were followed to get 
an initial separation of tree crowns. Subsequently, a rule-based 
program attempts to further separate the isolated objects (isols) 
into individual crowns (Gougeon 1995b). Here, the resulting ITCs, 
which are the same as used in (Leckie et al., 2017), are considered 
well separated 77% of the time. 

Species classification training areas were created using two previous 
forest inventories (2001 and 2007) to identify pure stands for each 
of the study area’s common tree species and outlining these on 
the mosaic image. Some additional image interpretation was used 
to create training areas for species that rarely appeared as single 
species stands. Spectral signatures were generated and compared 
for 10–16 species by automatically extracting the spectral information 
from the isols within these areas. These signatures were based on 
the multispectral values of the pixels on the well-lit parts of each 
tree, amalgamated for each ITC (or isol) and then amalgamated to 
create the species signatures (Gougeon, 1995a). These MEANLIT 
species signatures consist essentially of the average ITC (LIT) mean 
multispectral vectors and the covariance of the ITC means. They 
were subsequently purified by automatically removing outlier ITCs 
that are not within two standard deviations of the signature mean 
and then re-evaluating the signature statistics.

Occasionally, a species requires more than one class to represent 
biological or stature variations. Here for example, we retained a 
class of emergent layer white pine (Pwe) as distinct from other, 
within canopy white pines. Textural and structural signatures were 
explored for species classification but these were found to be 
ineffective. Finally, a simple 10 species (12 classes) ITC classification 
was retained for the further analyses. The classification of each 
ITC was based on a maximum likelihood decision between these 
12 classes with a confidence factor of 0.98, leaving some ITC 
unclassified.

4.2 Species Assessments
ITC classifications can be verified in various ways, such as using 
test areas similarly interpreted as the training areas, using test areas 
assessed in the field, using individual field-verified test trees, or using 
species composition comparisons with existing forest inventories. 
For test areas representing a single species and for individual trees, 
confusion matrices portray the sum of correctly classified items on 
diagonal cells and the confusion with other classes in the off-diagonal 
cells. For test areas with multiple species (and approximated species 
composition) or for existing forest inventory stands, a confusion 
matrix can be created based solely on the similarity (or not) of the 

dominant species within that species composition (Gougeon and 
Leckie, 2011). Both approaches were used here. An additional 
approach was used to quantify more precisely the differences in 
species composition between the forest stands of an existing 
inventory and that created by the classified ITCs within the same 
polygon. The Euclidian distance in a ten dimensional space (ten 
species) was measured for each stand and then divide by two 
because any change in the proportion of one species within a stand 
should have a doubling effect since the proportion of other species 
in that stand has to change by the same amount (i.e., species 
proportions always having to sum to 100%).

4.3 Development of Volume Estimate for Each 
ITC/ISOL
The methodology to assess ITC-based volume is as follow. Firstly, 
conventional equations (Honer et al., 1983) were used to establish 
individual tree volumes for the 2 000 field trees for which species, 
DBH and height are known (some heights were inferred as is often 
the case in plot assessments). Then, each species’ tree volumes 
were plotted as a function of only height in order to establish a 
volume as function of height relationship (V = f (HT)) for application 
to ITCs for which we only know species and height (i.e., no DBH), 
with a correction factor representing the average difference in 
LiDAR-based heights and ground measured heights. 

Typically some (on the order of 20–30%) of the isolated object (isols) 
are known not to represent single trees, but are tree clusters (> 1 
tree per isol) or over-segmented crowns (< 1 tree per isol) (Leckie 
et al., 2016a, b, c). A correction factor based on crown area was 
introduced to produce volume estimates for these isols. If the crown 
area of an isol was a multiple of the average crown area for that 
species, it was assumed to represent more than one tree and its 
volume was adjusted by the same proportion. For example, if an 
isol has twice the average crown area of that species the volume 
assigned to it is doubled. Similarly, if an isol area is a fraction of 
the average crown area of that species then its volume is taken to 
be that fraction. Advantages of this approach are two-fold: (a) no 
need to decide a priori which isols represent a single tree and which 
do not (which is often very difficult (Leckie et al., 2016a, b, c)); 
(b) the same approach is intuitively reasonable for handling clusters 
and over-segmented crowns.

4.4 Volume Assessments
Three types of ITC-related volume assessments were done and 
compared with that of an existing conventional forest inventory 
(FoInv01) on a stand-by-stand basis. The first one relies on the 
output of the polygon content description (ITCPCD) program of the 
ITC Suite. For each species within a polygon, it reports the number 
of ITCs (i.e., isols) detected and their average height. The species 
volume equation (V = f (HT)) can be applied using this average height, 
giving the volume of an average tree of that species. The species- 
related volume for that stand is obtained by multiplying by the 
number of isols of that species. Combining such results for each 
species leads to stand volumes (PCD_Vol). The second type of ITC- 
related volume assessment (ITC-IV) relies on applying the volume 
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distinct spectrally from one another in the NIR channel, with red 
oak (Or) and white birch (Bw) situated in between. Confusion is to 
be expected between these species. Poplar is marginally brightest 
in the NIR, but mostly distinct in the visible bands.

Softwoods are quite distinct from hardwoods in the NIR channel, 
as expected. White pine (Pw), especially the emergent white pine 
(Pwe), are situated in between these two groups. A distinct pattern 
in the other bands distinguishes white Pine from other softwoods 
and from hardwoods. Within the softwoods, there are more clear 
distinctions than within the hardwoods. Although quite similar to 
Jack Pine in the NIR, Black spruce (Sb) should be quite distinct 
mostly due to the visible bands. White spruce (Sw) can be expected 
to have problems separating from jack pine (Pj). Red pine (Pr) appears 
to be quite distinct.

Inbred classification accuracy (i.e., test areas same as training areas) 
is often used to quickly identify possible species signature confusion. 
For example, it was found that the introduction of the last three 
signatures in Table 1 (and of other minority species) created too 
much confusion and was counterproductive. Finally, a simple 10 
species (12 classes) ITC classification was retained (Table 2). Results 
generally confirm the above observations of signatures and overlaps. 
As expected, Mh classifies nicely (80%) with little confusion (< 10%) 
with other species. Soft maple (Ms) (42%) has confusion with all 
the other hardwoods. Red oak (Or) (62%) is only confused with 
Poplar (Po) (16%) and, white birch (Bw) (63%) with Ms (12%). As 
anticipated, Poplar is quite distinct (82%). When combining Pw 
and Pwe, all the softwood accuracies are at greater than 70%, 
except white spruce (Sw) (43%), which has high confusion (29%) 
with Jack Pine (Pj). In this test, the number of unclassified trees 
appears rather high. However, these generally correspond to the 
isols of the training areas that were filtered out as outliers in the 
signature generation process.

5.2 Classification Results
The ITC classification is visually consistent with the forest stand 
polygon outlines (Figure 1) and the species compositions from 
the 2001 forest inventory. More precise ways to quantify species 
composition differences are explored in the next section.

Table 3 presents the ITC classification accuracy for ten species 
relative to field confirmed (but not necessarily single species) test 
areas, thus only the main species within each area were compared. 
Only the test areas with a clearly dominant (by 20%) first species 
were considered (413 of 545 test areas). Since the test areas were 
generally not single species, some of the confusion visible in Table 3 
may not be true confusion. Although the accuracies appear much 
lower than for the inbred classification (Table 2), the patterns are 
similar. Most of the softwoods fare relatively well, except white 
spruce (Sw), and only Mh and Po fare well among the hardwoods.

Table 4 reports the classification accuracy relative to field confirmed 
single trees. Only the trees with relevant species information were 
considered (n = 6 421). More precise species information at ground 
level was sometimes generalized to match our more generic classes. 
For example, Balsam Poplar, Largetooth Aspen and Trembling Aspen 

equations to each individual entity (isol) with its individual height. 
The third type of assessment (ITC-IV Adj. Vol.) is similar, but takes 
into consideration that the entities may be tree clusters rather than 
single trees, as described above.

An important consideration about ITC-based volume assessments 
is how heights are derived and fed to the volume (V = f (HT)) 
equations. Generally, heights acquired from a Digital Canopy Model 
generated from a LiDAR dataset underestimate heights relative 
to field measured heights (Gaveau and Hill, 2003; Hyyppä et al., 
2008). There are two main sources for this underestimation. One 
is that the creation of a DCM invariably has a smoothing effect 
on the data, definitively smoothing the highest return. Second, 
especially in the case of “pointy” conical coniferous tree, the signal 
has to intercept enough vegetation material to be considered a 
viable first return. To a lesser extent, this is also true for hardwoods. 
So a correction factor based on comparing the maximum field 
measured heights from the plots with that from the DCM for the 
same plots (1.05, R2 = 0.96) was introduced before DCM heights 
were used in ITC volume equations.

Another possible consideration relative to the heights used for ITC 
volume estimation is that crowns derived from aerial flight lines have 
their positions and shapes affected by off-nadir view angles (Dralle 
and Rudemo, 1997) while LiDAR-based DCM are less affected due 
to the better positioning of LiDAR data in 3D space. So, when a 
maximum from the DCM is picked up within an aerial based ITC to 
represent its height, it may not be appropriate at large view angles. 
Two tests were carried out to assess the importance of this factor 
on the ITC-based volume assessment. The first one uses the aerial 
data view angles and the DCM heights to reproject the DCM image 
such that the heights values from this new DCM better fall under 
the proper image-based ITC. In effect, the new DCM image looks 
like the corresponding aerial image. In the second test, new ITCs 
were produced from a more recently obtained PPC-based nIR 
image for which proper positioning is achieved by stereo disparity 
autocorrelation. These new ITCs are thus well aligned with the 
DCM from the LiDAR data and the LiDAR heights gathered from 
within should be more appropriate. The heights obtained from 
both methods were compared with that of our standard approach 
to see if this might be of importance in ITC volume assessments.

5 Results 

In this section we examine our ITC classification of the ADS 
mosaicked imagery into the predominant species of the Petawawa 
Research Forest: how well they separate spectrally, how well they 
classify and, how good are the resulting stand species compositions. 
We also examine various aspects of using the ITC classification to 
generate species-based volume information at the stand level.

5.1 Spectral Signature Discrimination
The multispectral signatures of fifteen (15) prevalent species in the 
Petawawa Research Forest are reported in Table 1. Hard maple (Mh) 
(e.g., Sugar Maple) and soft maple (Ms) (e.g., Red Maple) are fairly 
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Table 1. Multispectral signatures mean (standard deviation) of the twelve classes used in the ITC classification and three additional ‘test’-species

Species Number of ITCs NearIR Red Green Blue

Mh 87 193 (8) 73 (19) 110.4 (18.4) 61.6 (4.9)

Ms 135 186 (11) 41 (7) 77.6 (11.2) 59.6 (4.3)

Or 283 181 (8.7) 42 (5.7) 74.4 (8.6) 59.8 (3.1)

Bw 33 188.7 (7.3) 44.8 (5.9) 82.5 (9) 60.4 (3.7)

Po 742 193.3 (5.7) 51 (6) 85 (7.3) 64.3 (2.9)

Pw 137 175.6 (11.6) 49 (8) 84.6 (10.8) 62.8 (4.1)

Pj 1002 146.4 (12.2) 43 (6.5) 70.9 (7.7) 55.9 (2.9)

Pr 263 162.6 (11.3) 39.9 (5.5) 69.2 (7.7) 55.2 (2.8)

Sw 180 143.5 (18.5) 44.2 (9.7) 72.7 (12.3) 58.1 (4.7)

Sb 171 146.0 (15) 58.1 (11.8) 88.8 (12.9) 65.0 (5.3)

Pwe 79 181.9 (10.5) 66.9 (12.6) 99.9 (12.1) 69.2 (5.8)

Dead 96 143.4 (19.4) 87.7 (15) 102.2 (13.1) 76.1 (8)

Black Ash (Ab) 196 177.1 (8.8) 58.2 (10.3) 92.8 (11.5) 60.3 (3.8)

Larch (Lt) 219 170.1 (13.4) 56 (10.6) 91.7 (13.3) 64.7 (5.1)

Balsam Fir (Fb) 137 148.5 (18.6) 40.3 (9.9) 70.5 (11.6) 58.7 (4.9)

Table 2. Inbred ITC classification accuracy (i.e., test areas same as training areas) of 10 tree species (12 classes) as ITC percentages. The ITC classes are on 
the vertical axis, with the unclassified (UN) ITCs percentage reported within each test areas. The number of ITCs involved in each comparison (i.e., each test 
area) are on the bottom line.

Species Mh Ms Or Bw Po Pw Pj Pr Sw Sb Pwe Dead

Mh 80.4 3.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 1.1 0.0

Ms 4.1 41.5 5.8 12.2 0.5 0.7 0.0 0.4 0.0 0.0 2.2 0.0

Or 0.0 13.6 62.0 2.4 6.3 3.4 0.0 2.2 0.0 0.0 0.0 0.0

Bw 3.1 11.9 3.3 63.4 1.8 2.7 0.0 0.0 0.0 0.0 0.0 0.0

Po 0.0 9.7 15.7 2.4 81.8 0.7 0.0 1.1 0.0 0.6 1.1 0.0

Pw 1.0 2.8 0.0 2.4 1.2 66.4 0.0 0.4 8.3 0.0 12.1 0.0

Pj 0.0 0.0 0.0 0.0 0.0 2.7 77.0 3.9 28.5 0.6 5.5 0.0

Pr 0.0 2.8 2.5 0.0 0.9 2.1 8.5 81.4 1.0 0.0 4.4 0.0

Sw 0.0 0.0 0.0 0.0 0.0 1.4 3.7 1.1 43.0 4.6 1.1 0.0

Sb 0.0 0.0 0.0 0.0 0.0 0.7 0.2 0.0 5.2 80.6 0.0 2.6

Pwe 0.0 1.1 0.0 0.0 0.1 8.9 0.9 0.7 2.6 1.1 57.1 0.0

Dead 0.0 0.0 0.0 0.0 0.0 0.7 0.6 1.1 0.5 4.6 2.2 79.5

UN 11.3 13.1 10.7 17.1 7.3 9.6 9.3 7.5 10.9 8.0 13.2 17.9

ITCs 97 176 121 41 762 146 1037 279 193 175 91 117 3235

were combined into a generic Poplar class before comparing with 
our classification. For this comparison, ground reference trees 
(GRED) were manually delineated on the same the imagery and 
classified using the previous ITC generated spectral signatures. 
This was done to focus specifically on classification accuracy and 
avoid any confounding effects from the automated ITC delineation 
technique. To maximize consistency, a LIT mask was created for 
these manually delineated trees and applied during the classification 
process. The classification accuracy of the 6 421 field assessed trees 
into the 10 species was 47.3% on average. The confusion pattern 
does not differ much from the previous assessment with ITCs (Table 

2) and relatively pure test areas (Table 3), except that here we can 
better track the number of unclassified and dead trees, including 
the large number of black spruce classified as dead.

5.3 Species Composition Comparisons
For the 2007 forest inventory (FoInv07) stands for which a species 
composition is assigned, the ITC species composition, with species 
ranked by their crown closure within a stand, was on average 23% 
different, with 19% of the stands within 15% difference, 37% 
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Figure 1. An Individual Tree Crown (ITC) classification with stand boundaries from a previous (2001) conventional forest inventory of a section of the Petawawa 
Research Forest, Ontario, Canada, overlaid on a colour-IR image. Species are: hard maple (Mh) in green, soft maple (Ms) in light green, red oak (Or) in red, 
white birch (Bw) in yellow, poplar (Po) in blue, white pines (Pw, Pwe) in cyan, jack pine (Pj) in white, red pine (Pr) in magenta, white spruce (Sw) in orange, 
black spruce (Sb) in brown, and dead trees in black.

Table 3. ITC Classification accuracy (%) of 10 species relative to field confirmed (but not necessarily single species) test areas: only the main species within 
the areas were compared. The dominant ITC classes are on the vertical axis. The dominant field species are on the horizontal axis. The number of test areas 
involved in each comparison are on the bottom line, for a total of 413 test areas. This led to an average Producers’ accuracy of 48.2%.

Mh Ms Or Bw Po Pw Pj Pr Sw Sb

Mh 58.0 15.6 3.4 11.8 0.8 0.0 0.0 0.0 4.8 0.0

Ms 4.0 21.9 1.7 2.9 3.4 0.0 0.0 0.0 0.0 0.0

Or 0.0 0.0 24.1 0.0 2.5 0.0 0.0 0.0 0.0 0.0

Bw 12.0 18.8 0.0 8.8 0.8 0.0 0.0 0.0 0.0 0.0

Po 4.0 15.6 53.4 44.1 75.6 3.6 4.5 8.0 4.8 0.0

Pw 20.0 18.8 10.3 2.9 10.9 89.3 13.6 24.0 19.0 8.3

Pj 0.0 0.0 0.0 0.0 0.0 0.0 59.1 20.0 4.8 4.2

Pr 2.0 9.4 6.9 29.4 5.9 0.0 4.5 48.0 0.0 0.0

Sw 0.0 0.0 0.0 0.0 0.0 0.0 18.2 0.0 9.5 0.0

Sb 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 57.1 87.5

Total 50 32 58 34 119 28 22 25 21 24 413
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Table 4. Classification accuracy (%) of manually delineated tree crowns into 10 species classes (using the previous ITC spectral signatures) relative to their 
field confirmed tree species. The classes are on the vertical axis (Pw and Pwe combined), with the unclassified (UN) and dead percentage reported for each 
situation. The number of field trees involved in each comparison are on the bottom line. This led to an average Producers’ classification accuracy of 47.3%.

 Mh Ms Or Bw Po Pw Pj Pr Sw Sb

Mh 69.7 17.2 0.2 11.1 0.3 4.0 0.0 0.4 0.0 0.0

Ms 2.2 27.6 4.2 6.5 3.1 1.3 0.0 0.0 0.1 0.0

Or 0.0 2.5 22.0 1.9 7.8 0.2 0.6 0.5 0.1 0.0

Bw 9.6 22.7 5.8 5.6 2.9 0.2 0.3 0.0 0.0 0.0

Po 1.3 11.7 60.8 37.3 59.2 0.4 0.0 1.6 0.2 0.0

Pw 11.1 12.9 3.1 10.2 14.4 88.7 8.1 22.0 42.1 0.0

Pj 0.0 0.0 0.0 0.0 0.2 2.0 53.6 17.6 3.3 0.0

Pr 0.6 3.7 2.5 21.0 3.2 0.4 6.9 57.3 1.3 0.0

Sw 0.0 0.6 0.0 0.0 0.2 0.9 29.6 0.5 17.1 0.0

Sb 0.0 0.0 0.0 0.0 0.0 1.1 0.9 0.0 30.9 71.9

Dead 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 26.8

UN 4.5 1.2 1.4 6.5 8.7 0.7 0.0 0.1 2.8 1.3

Total 314 163 554 324 1953 452 334 1279 824 224 6421

within 20% difference, and 65% within a 25% difference (measured 
by our Euclidean distance). Also, the main species (or working 
group species) was exactly the same 43% of the time relative to 
FoInv07. When the main species is the same, its percentage of 
crown closure is within 10% of the working group species presence 
31% of the time, within 20%, 58% of the time and, within 25%, 
67% of the time.

For stands where the main species is judged not to be the same, 
another 5% of stands are within 10% (by crown closure) of 
qualifying as having the same main species and, 8% of the stands 
are within 20% of qualifying. In other words, if we allow ± 10% 
of leeway on the ITC species composition, the working group 
could be judged the same 48% (43% + 5%) of the time; if we allow 
± 20% of leeway then, the working group could be judged the 
same 51% (43% + 8%) of the time. Of course, this is assuming 
that interpreters are correct about main species 100% of the time, 
which is known not to be the case (see discussion section).

5.4 Volume Results

5.4.1 Species volume equations

From a database of 2 000 trees for which we have species, height 
and DBH, standard species-based volume equations (V = f (HT, DBH)), 
Honer et al. 1983) were used to calculate individual tree volumes. 
For each species, these volumes were plotted as a function of height 
alone (e.g., Figures 2 and 2b), leading to relationships of the type 
V = f (HT), that can be applied to the ITCs for which we only have 
species and height. Matching the data better, exponential relationship 
were preferred (Table 5). These inference equations were used to 
calculate individual tree volumes and aggregated them to stand 
volumes in our ITC analyses.

To verify the appropriateness of these equations, they were applied 
to recalculate volume for the field trees they originally came from. 

Table 6 coveys the average volume (and standard deviation) from 
the conventional equations and the same statistics for the inferred 
volumes. In addition, the table gives the average error (in %) and 
the root mean square error (RMSE) of the fitted models for each 
species under consideration. The right hand section of the table 
reports on the slope (and R2) when the volumes inferred from 
height alone are compared with Honer’s conventional volumes. In 
general, plotting all the volumes from the newly generated equations 
(V = f (HT)) versus the volumes generated with the conventional 
equations (V = f (HT, DBH)) led to a linear relationship (R2 = 0.35), 
where the new equations “generally” underestimated volume by 
18% (Figure 3). 

5.4.2 Stand volume comparison

Within the ITC Suite, the standard program for reporting information 
by forest stand (ITCPCD) reports among other things, an ITC (isols) 
count and an average height for each species. Using our species- 
based volume equations (V = f (HT)) on that average height and 
multiplying by the number of ITCs of that species, one can infer the 
volume of each species within a stand and combine them to get a 
stand volume (PCD_Vol). The resulting stand volumes were only 
24% (R2 = 0.60) of the 2001 forest inventory volumes (Figure 4a). 

In our second approach, the individual volume (ITC-IV) of each 
individually detected tree (ITC or isol) was determined from its 
species and its individual height and then, summarize for each 
species and each stand. Using this approach, volume is at 39% 
(R2 = 0.627) of the 2001 forest inventory volume (Figure 4b). Thus, 
doing volume calculations almost tree by tree and using specific 
heights for each of 6.6 million isols appears better than using 
species-related ITC counts and their average heights. However, this 
volume assessment still seriously underestimates relative to the 
conventional forest inventory assessment.

In our third estimation (ITC-IV Adj. Vol.), we took into consideration 
that some detected objects (isols) may represent more than one 
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Table 5. Equations for volume from heights alone (V = f (HT)) were created 
(see examples in Figure 2) from a database of field trees for which we 
have species, heights, and DBHs. This table shows for each species, the 
number of field trees involved, their average volume and the inference 
equation for volume as a function of height only. 

Species
No. of 
trees

Honer’s av. 
vol. (m3)

Inference equations  
V = f (HT)

Balsam Fir 244 0.104 0.0107 × EXP (0.149 × HT)

Black Spruce 44 0.264 0.0061 × EXP (0.193 × HT)

Jack Pine 301 0.339 0.0693 × EXP (0.072 × HT)

Larch 20 0.241 0.0016 × EXP (0.253 × HT)

Red Oak 38 0.350 0.0108 × EXP (0.124 × HT)

Red Pine 564 1.366 0.0113 × EXP (0.162 × HT)

Soft Maple 123 0.201 0.0083 × EXP (0.154 × HT)

Sugar Maple 69 0.366 0.0033 × EXP (0.208 × HT)

Trembling Aspen 53 0.661 0.0098 × EXP (0.161 × HT)

White Birch 44 0.328 0.0125 × EXP (0.146 × HT)

White Pine 339 1.464 0.0182 × EXP (0.140 × HT)

White Spruce 93 0.506 0.0260 × EXP (0.122 × HT)

Figure 2. For field measured trees, individual tree volumes were calculated 
with standard species equations (V = f (HT, DBH)) and then plotted as a 
function of height alone to get equations of the type V = f (HT). Here as 
examples, for 93 white spruce trees (a), this led to the inference equation: 
Volume = 0.026 × Exp (0.12 × height); for 339 white pine trees (b), this led 
to the inference equation: Volume = 0.018 × Exp (0.14 × height). 
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physical tree. We used the “crown area based” adjustment factor 
described above in an attempt to correct this issue. The new stand 
volumes are now assessed on average at 104% (R2 = 0.60) of the 
2001 forest inventory volumes (Figure 4c). 

5.4.3 Possible effects on volume of height measurement 
mispositioning

Two tests were done to assess the effect of position differences 
between a LiDAR generated digital canopy model (DCM) and ITCs 
generated from aerial imagery. In the first test, the trees from the 
digital canopy model were reprojected to look like that of an aerial 
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Table 6. Using the database of field trees for which we have species, heights and DBHs, we assess the errors of the volumes from the newly generated equations 
(V = f (HT)) versus the volumes generated with the conventional equations (Honer’s, V = f (HT, DBH) ) for each species under consideration. The table reports 
the number of field trees involved, volumes (and standard deviations) from both equations, the different in percentage and the RMS error. The right hand 
section reports the slope and R2 when the volumes inferred from height alone are compared with Honer’s volumes.

Species
Number  
of trees

Honer’s average vol. 
(and std. dev.) (m3)

Inferred average vol.  
(and std. dev.) (m3)

Difference 
(%) RMSE (m3) Slope R2

Balsam Fir 244 0.104 (0.067) 0.099 (0.065) –4.41 0.060 0.84 0.4

Black Spruce 44 0.264 (0.149) 0.254 (0.139) –3.80 0.080 0.92 0.65

Jack Pine 301 0.339 (0.166) 0.307 (0.049) –9.47 0.159 0.75

Larch 20 0.241 (0.174) 0.220 (0.116) –7.22 0.113 0.79 0.3

Red Oak 36 0.054 (0.012) 0.053 (0.019) –1.85 0.054 1.03 0.50

Red Pine 564 1.366 (0.924) 1.249 (0.781) –8.57 0.800 0.78 0.16

Soft Maple 119 0.153 (0.106) 0.147 (0.079) –3.92 0.079 0.84 0.31

Sugar Maple 69 0.366 (0.798) 0.417 (1.707) 13.81 1.04 1.79 0.79

Trembling Aspen 53 0.661 (0.548) 0.631 (0.594) –4.60 0.41 0.89 0.53

White Birch 44 0.328 (0.250) 0.298 (0.224) –9.09 0.21 0.78 0.28

White Pine 339 1.464 (1.558) 1.414 (2.512) –3.44 2.25 0.85 0.21

White Spruce 93 0.506 (0.469) 0.496 (0.630) –1.93 0.39 1.01 0.61

Figure 4. ITC-based volumes relative to 2001 conventional forest inventory volumes (FoInv01) for each stand: (a) ITC-based volume is calculated using our 
species-based volume equations (V = f (HT)) applied to an average species height for that stand and multiplied by the number of ITCs (or isols) for that species 
within that stand, as provided by the ITCPCD (ITC-Suite’s Polygon Content Description) program; (b) ITC-based volume is calculated using classified individual 
trees (ITCs or isols) and their corresponding species equations (V = f (HT)) applied to each individual object (ITCs or isols) top height and summarized by stand; 
(c) ITC-based volume is calculated using classified individual tree objects (ITCs or isols) and appropriate species equations (V = f (HT)) and a crown-area-based 
multiplicative factor to calculate more appropriate volumes for tree clusters or crown segments, summarized by stand.
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image (here, for a single flight line) by taking both DCM heights and 
aerial view angles into account (Figures 5 and 6). Visual inspection 
confirmed that the max height positions from this new data set 
were very close to that of the tree top in the real imagery (Figure 
7). Analysis of stand average ITC heights acquired before and after 
such reprojection led to only a 1% difference, indicating that 
misalignment of the DCM with the imagery may not have an 
important effect on volume here, at least at the stand level. Of 
course such tests are only possible on the original flight lines for 
which nadir location and thus off-nadir angles are known (i.e., not 
on a complex mosaic).

In another test, ITCs were delineated on the smoothed near-infrared 
image generated from the PPC dataset which has good co-location 
with the Digital Canopy Model generated from the LiDAR data. 
The heights gathered within these ITCs were compared with the 

heights from our conventional process, both using the same LiDAR 
generated DCM (Figure 8). At the stand level, the average ITC 
heights differed by 2.1% on average. Also, as another point of 
comparison, the heights from these newest ITCs were at 0.88 of 
the forest inventory heights, while the heights gathered from the 
conventional ITCs were at 0.86 of the forest inventory heights, 
underestimating heights only a bit more. Similarly, when these 
two LiDAR-generated heights are compared with field measured 
heights at the plot level, the PPC-ITC heights are 0.821 (R2 = 0.61) 
of the field heights, while the aerial ITC heights are at 0.819 
(R2 = 0.76). Thus, potential position differences between crowns 
(ITCs/ISOLs) extracted from aerial imagery and the LiDAR generated 
DCM does not appear to affect heights significantly (at stand or 
even plot levels) and should not constitute a large source of error 
in our volume estimates.

Figure 5. Digital Canopy Model generated at 40 cm/pixel from the 2012 LiDAR first returns.
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Figure 6. LiDAR-based Digital Canopy Model (from previous figure) reprojected using heights and aerial view angles such that trees have the same look and location 
as on the aerial flight lines and thus presumably, leading to more meaningful pickup of maximum tree height underneath ITCs from the multispectral aerial data.
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Figure 7. Maximum heights from reprojected LiDAR-based Digital Canopy Model (from previous figure) appears to correspond well with the top of trees in 
the aerial image and should lead to more precise height acquisitions.

Figure 8. Maximum heights under our conventional ITCs (isols) relative to maximum heights under the ITCs (isols) from the photogrammetric point clouds 
(PPC) adjusted nIR image, both gathered from the same LiDAR-derived Digital Canopy Model and averaged at the stand level.
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6 Discussion 

6.1 Species Signature Separation
Although useful in a fast turn-around analysis process to see if a 
newly added species is somewhat separable, inbred confusion 
matrices (Table 2) usually convey an overly optimistic view of 
classification accuracy (here ~75%, for 10 species, Pw and Pwe 
combined). They can be viewed as an analysis of potential signature 
separation. It permits the testing of various situations (mature, 
immature, dense, brightly illuminated, etc.) to see if distinct classes 
are needed, as seen here with the use of an “emergent white pine” 
class (Pwe). However, sometimes such additional classes add more 
confusion to the analysis. After several iterations, we restricted 
our analyses to the 12 classes (10 species) seen in Table 2, as they 
appear to offer reasonable spectral separation and constitute most 
of the dominant species of the PRF. Missing from our analyses due 
to poor separability are balsam fir, black ash and yellow birch, 
which cover approximatively 4%, 3%, and 2% of the PRF area, 
respectively.

6.2 Classification Results
In image analysis, assessing classification accuracy is often done 
with the delineation on the screen of relatively pure testing areas, 
generally done using the same process (and at the same time) as 
the delineation of the training areas. If possible, comparing species 
classifications with assessments on the ground is usually considered 
more appropriate. However, assessments using typical small field 
plots can be problematic because of plot boundary issues and crown 
(single or aggregations) assignments to such plot area. Comparing 
with bigger areas on the ground (or stands from an existing forest 
inventory) can alleviate some of these problems, but since they are 
not totally pure test areas, one may be forced to compare whether 
the main species was detected as main species (e.g., Table 3). 

Except for white spruce (9.5%), most softwoods classify relatively 
well, although red pine (48%) had a lot of confusion with both 
white and jack pine. White spruce is mostly classified as black 
spruce, to which it is close spectrally, but black spruce has a tighter 
signature. For the hardwoods, only hard maple and poplar classify 
well. They are both at the high end of the spectrum in nIR (~193), 
but quite distinct from each other in the other bands (see Table 
1). Soft maple, red oak and white birch are all spectrally close to 
one another (within one standard deviation), leading to confusion 
among them. However, trees of these species get mostly classified 
as poplar due to its overlapping but narrower signature.

Our study site has the luxury of a substantial dataset of tree crowns 
manually delineated on the image with their species assessed on 
the ground. Using these could be considered the most appropriate 
way of testing our classification results (Table 4). However, there 
are still a few considerations. Compared to using ITCs, recognizing 
the species of these trees may benefit from the better manual 
crown delineation carried out. On the other hand, we are classifying 
manually delineated tree crowns, but the signatures used for the 
classification were generated from ITCs, which may include a 
different quantity of shaded pixels at their boundaries. The pattern 

of strongly and weakly classified species appear the same as for 
test areas (Table 3), for an average species accuracy of 47.3% for 
ten (10) species. In both cases, the classification of some species 
appears extremely poor.

To put these results in perspective, the more precise analysis of 
the Petawawa Research Forest which used 22 class signatures 
generated from these “manually delineated field verified trees” 
and signature refinements using manual outlier removal, achieved 
59.3% accuracy when summarized for 14 species and 65.8% 
accuracy when summarized for 11 species (Table 10 in Leckie et 
al., 2017). Low classification accuracies were also encountered with 
several species, notably, red oak, white birch, aspen, and one maple 
class. Classification of numerous species, even under the best of 
circumstances, is always challenging. 

The similarity of results in Tables 3 and 4 suggests that looking 
at the main species of simple test areas, relative to using field 
verified individual trees, can provide a good estimation of species 
classification accuracies. However, the use of field verified individual 
trees at the training stage of the classification appear to be 
important for separating more species with a higher degree of 
precision and accuracy (Leckie at al., 2017). On the other hand, 
these improved results were also assisted by the use of additional 
breakdowns of species into several sub-classes (e.g., bright, normal), 
where 22 classes were used to analyse 14 species, involving a 
considerable quantity of work.

Although using field verified individual trees will always be the 
preferred method of assessing an individual tree classification, 
using test areas and concentrating on the main species may be 
sufficient for operational purposes (i.e., similarity of Tables 3 and 4).

6.3 Species Composition Results
The ITC species composition, with ITC species ranked by their crown 
closure within a stand, was found to be 23% different on average 
from that of the 2007 forest inventory, with 65% of the stands 
within 25% overall difference. Also, the main species was the 
same 43% of the time and if we allow a 20% leeway in possibly 
considering the 2nd species as main, the main species could be 
judged the same 51% of the time. This level of accuracy is similar 
to photo-interpreted inventory accuracy. 

In Ontario, a study validating species composition (Pinto et al., 
2007) reported a match of the order of 55% relative to field data 
gathered for 136 stands. Thompson et al. (2007) reported that 
species composition were considered “incorrect” 64% of the time, 
with 30% of stands misclassified even at the broader level of 
softwood, hardwood or mixedwood. Common boreal species 
like jack pine, black spruce, and trembling aspen were incorrectly 
recognized half of the time. An audit in British Columbia reveals that 
“at best” a leading mature species is assess correctly 84% of the 
time, at worst 32%, with a median result of 51% (Gilbert, 1998). 
An assessment of the effects of scale in soft-copy interpretation 
reveals that as scale is changed from 1:15 000 to 1:20 000 to 
1:30 000 the probability of correctly identifying the leading species 
decreases from 0.73 to 0.65 to 0.60 (Penner, 2008). In Quebec, 
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even single species stands were said to be difficult to assess. Pure 
stands of black spruce, fir, jack pine, and cedar, were correctly 
identified 76%, 60%, 65%, and 55% of the time, respectively. 
On the hardwood side, pure stands of maple, yellow birch and 
poplar were correctly identified 53%, 40%, and 50% of the time. 
(Commission, 2004). Using a ±20% criterion similar to this study, 
Cloney and Leckie (1995) found species accuracy in New Brunswick 
to be around 67%. 

Another way to put our results into perspective is to look at the 
more precise analysis of the Petawawa Research Forest (Leckie et 
al., 2017) using similar criteria. Using our distance metric, a species 
composition comparison with the 2007 forest inventory leads to 
an average distance of 13%, with 69% of stands within a 15% 
difference and 95% of stands within a 25% difference. This 
suggests that although our results are similar with results achieved 
using conventional interpretation, a more sophisticated ITC analysis 
can get better results. Indirectly, this comparison also gives credence 
to the 2007 forest inventory itself (our reference dataset), as very 
similar species compositions were obtained independently in 
completely different ways.

6.4 Volume Results

6.4.1 Species volume equations

Inferences of volume as a function of height only can frequently 
produce reasonable results. Indeed, for many species, height is 
the dominant factor in their volume equation, with DBH explaining 
a small part of the variance. Generally speaking, this is often the 
case for conically shaped softwood trees, less often the case for 
hardwood trees, and even less often the case for open grown 
trees. As seen in Figure 3, for the 2 000 field trees for which we 
have calculated volume the conventional way, the relationship 
with volume based on height alone has an R2 of 0.51, without 
any outlier removal. With some outlier removal, the relationship 
has an R2 of 0.62. However, the new volume equations still appear 
to underestimate volume by 18%.

On a species by species basis, most coniferous species appear to 
convey between 0.75 to 1.01 of the volume compare to the 
conventional volume equations (slopes in Table 6), with relationship 
that are more or less solid (varying R2). However, some R2 variations 
depend on the presence of outliers, others on a narrow range of 
sample trees. For hardwoods, some relationships appear well 
behaved, for example aspen, white birch and red oak, conveying 
0.89, 0.78, and 1.03 of conventional equation volume, while others, 
sugar maple (1.79), appear to lead to serious departures from the 
estimates produced by the conventional volume equations. For 
most species, the new volume equations tend to underestimate. 
A separate analysis reveals that the volume of some species, like 
red pine and jack pine, may benefit from equations using crown 
areas, with or without heights.

6.4.2 Stand volume comparison

In our first comparison (Figure 4a), we used the average height of 
a given species within a stand to infer the volume of an average 
tree for that species and multiply by the number of ITCs (isols) of 

that species within the stand, then summarized for all species in 
the stand. The resulting volumes were surprising low relative to 
the reference forest inventory volumes. Our volumes are obviously 
based on the dominant and codominant trees visible from the air 
(i.e., not all trees); unclassified trees (~16%) are not considered; 
and, we know that our equations tend to underestimate volume 
by 18%. Even so, we did not expect these volumes to be so low 
(i.e., 0.24 of FoInv01). It appears that simply using average species 
heights within a stand is not very useful. Presumably, because our 
volume relationships (V = f (HT)) are better fitted by exponential 
curves, the volume of tall trees get underestimated when averages 
are used and thus, so does the volume at the stand level.

In our second comparison, individual heights and species were 
used for each of 6.6 million ITCs (isols) to calculate individual tree 
volume and accumulate them within a stand. This led to a slightly 
better assessment of volume at 0.39 of FoInv01 volume (Figure 
4b). However, this is still very low. Presumably, not taking into 
consideration that some isols are tree clusters has an important 
effect on volume assessment at the stand level.

Finally, taking into consideration that some isols are tree clusters 
rather than individual trees and applying a crown-area based 
correction factor to each isol produced stand volumes that are 
1.04 times that of the 2001 forest inventory volumes (Figure 4c). 
This is very close. Possibly, the difference in time (i.e., the tree 
growth) between the 2001 forest inventory (done with even earlier 
photos) and the 2012 LiDAR heights could be responsible for a 4% 
increase in volume. However, it is unlikely to be that simple, especially 
when we know that our volume equations tend to underestimate 
the volume (by ~18% as per Figure 3). One possible reason for such 
ITC-based volume overestimation is that when trees are seen at 
wider view angles, their crown suffers an apparent stretching, and 
thus, a volume correction factor based on crown area (meant to 
compensate for clusters) could overestimate volume. And finally, 
we do not have an estimate of the error for the 2001 conventional 
volume assessment, which could easily be in the 10–20% range, 
nor do we have an estimate for our margin of error.

6.4.3 Possible effects on volume of height measurement 
mispositioning (LiDAR vs aerial images)

As mentioned, DCMs generated from LiDAR points always present 
all trees as seen from above, often as a fairly round object, especially 
in the case of compact coniferous trees. Picking up a max height 
within such an object has a high probability of corresponding to 
the true tree top, and relating well to the real tree height (even for 
hardwood trees). On the other hand, picking a maximum height 
from a DCM image underneath an ITC created from aerial image 
analysis may not correspond to the height of that specific tree for 
large view angles. Here, with flight line overlap, the mosaic is 
mostly made of data spanning ± 24° off-nadir, possibly putting 
the “apparent” tree top position of a 20 m tree off by 8.9 m, at 
the extreme. This may place DCM height acquisition off the target 
tree, as theoretically, it should be pointing more to its base than 
its top. However, since trees seen off-nadir tend to seriously overlap, 
that particular height has a high probability of being associated 
with a neighbourhood tree and is thus, unlikely to return a ground 
or shrub height. The effect should thus be minimal.
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Two tests were carried out to ascertain whether this effect should 
be an important consideration. The tests reported an overall 1–2% 
difference in heights when summarized at the stand levels, a change 
unlikely to have a significant effect on ITC-based volume, specially 
compare to other effects reported here. 

6.4.4 ITC volume – other considerations

When assessing ITC volume at the stand level, an issue when 
using species-specific volume equations is what to do with the 
unclassified ITCs, which can constitute up to 10% of all trees. Here, 
unclassified ITCs represented 8.4% of all detected trees and were 
not considered in our volume assessment. One could use a generic 
volume equations (softwood, hardwood) for these, but Tompalski 
et al. (2014) suggest that using volume equations for the wrong 
species is better than using a generic one. Of course, one could just 
force the ITC classification to classify 100% of the trees, specially 
knowing that misclassified (unclassified) trees will often be classified 
to a fairly similar species. However, one may not want to do a 
different classification just for volume assessments.

A related concern is whether dead trees and snags should be 
considered. Here, dead trees were 3.2% of all classified ITCs. Dead 
trees are sometimes considered when estimating volume at the 
stand level. Here, looking at the imagery and our confusion tables 
(mostly Table 4), it could be that a significant number of dead ITCs 
are misclassified live black spruce. Again, from a volume assessment 
point of view, it may be better not to have a dead tree class at all and 
enforce a 100% classification. However, dead trees are important 
to consider for many inventory applications, such as habitat 
assessments, fuel characterization and biomass or carbon estimation. 

7 Summary and Conclusion 

Individual tree crown based forest inventories aim at improving the 
precision, accuracy, timeliness, completeness and cost-effectiveness 
of forest information at the local and regional levels. Here, we 
presented a simple ITC classification into ten species of a complex 
forest covering 30 × 11 km2 using a mosaic of multispectral aerial 
data at 40 cm/pixel. The ITC species classification was done using 
training areas simply acquired by image interpretation, informed by 
two previous conventional forest inventories. Species accuracies were 
assessed and stand species compositions compared with that of an 
existing forest inventory. Individual tree volume inferences based 
only on height were derived, tested, and applied to the whole area 
using a LiDAR-based digital canopy model. In our better volume 
assessment, a heuristic based on crown area was used to compensate 
for the fact that many of the ITC detected are in fact tree clusters.

The results of our simpler ITC classification were not as good as 
that of the more sophisticated one where signatures had been 

generated from field verified trees, with outliers removed and 
taking special viewing situations (e.g., bright, shaded, etc.) into 
consideration (Leckie et al., 2017). With our simpler, yet more 
operational approach, species spectral signature overlaps made 
it difficult to classify ten species. Nevertheless, the ITC species 
composition was considered only 23% different on average from 
that of the 2007 forest inventory, with 65% of the stands within 
25% overall difference. We have shown that a relatively decent ITC 
classification of a simple mosaic is possible with species composition 
differences with a typical forest inventory that are probably of the 
same order as between two interpreters.

For our volume assessments, we have verified that the mispositioning 
of aerial image tree crown relative to the LiDAR DCM was not 
critical, at least at the forest stand level. This is probably due to the 
mosaic being built mostly from flight line centres, as it should be. 
A reasonable comparison was achieved at the stand level, with ITC 
stand volumes at 1.04 times that of the 2001 forest inventory 
volumes, but only after a heuristic based on crown area was used 
to compensate for the fact that many of the ITC delineated are 
in fact tree clusters. This seems to agree with (Tompalski et al., 
2014) and (Vastaranta et al., 2011) who concluded that among all 
of the factors considered to influence volume prediction accuracy, 
the tree detection rate remains the most important. Research to 
improve crown delineation (Leckie et al., 2016a, b, c) may lead to 
improvements in volume assessments, but there are limits to what 
can be achieved in that regard. Thus, such “crown area based” 
heuristic may still be of use in the future. It should be noted that 
such heuristic could also be applied to individual tree-based biomass 
and carbon assessments. 

For their present forest management inventory cycles, most provinces 
in Canada are acquiring stereo coverage using high spatial resolution 
multispectral aerial sensors, but are still relying mostly on an image 
interpretation process. Given the growing availability of automatic 
stereo disparity height information from such imagery and given 
a precise enough digital terrain model (often based on one previous 
LiDAR data acquisition), precise forest height information can be 
gathered. In addition, photogrammetric point clouds (PPCs) can 
be generated and area-based analyses similar to those done with 
LiDAR data can be run successfully (White et al., 2015; Pitt et 
al., 2014), providing a slew of forestry information at a spatial 
resolution typically commensurate with that of plot sizes (e.g. 
20 × 20 m2). Photogrammetric point clouds can also provide high 
spatial resolution raster datasets where height and multispectral 
information are co-located and properly positioned in 3D space. 
Applying our techniques of semi-automatic computer analysis at 
the individual tree level to these could lead to species and volume 
assessments of “properly positioned trees.” This would result in an 
individual tree forest inventory (i.e., a GIS coverage) where every 
tree crown would consist of a properly positioned polygon with 
attributes such as: species, height, crown area, volume, biomass, 
carbon, etc. providing detailed information closer to what is needed 
by operational inventories. 
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