

Canada

Natural Resources Ressources naturelles Canada

GEOLOGICAL SURVEY OF CANADA OPEN FILE 8824

Multispectral permafrost terrain classification, Rankin Inlet, Nunavut

G.A. Oldenborger, B. Faucher, and A.-M. LeBlanc

2021

GEOLOGICAL SURVEY OF CANADA OPEN FILE 8824

Multispectral permafrost terrain classification, Rankin Inlet, Nunavut

G.A. Oldenborger¹, B. Faucher², and A.-M. LeBlanc¹

¹Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario

²Department of Geography, Environment and Geomatics, University of Ottawa, 60 University Private, Ottawa, Ontario

2021

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2021

Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified.

You are asked to:

- exercise due diligence in ensuring the accuracy of the materials reproduced;
- indicate the complete title of the materials reproduced, and the name of the author organization; and
- indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan.

Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at <u>copyright-droitdauteur@nrcan-rncan.gc.ca</u>.

Permanent link: https://doi.org/10.4095/328869

This publication is available for free download through GEOSCAN (https://geoscan.nrcan.gc.ca/).

Recommended citation

Oldenborger, G.A., Faucher, B., and LeBlanc, A.-M., 2021. Multispectral permafrost terrain classification, Rankin Inlet, Nunavut; Geological Survey of Canada, Open File 8824, 38 p. https://doi.org/10.4095/328869

Publications in this series have not been edited; they are released as submitted by the author.

SUMMARY

This Open File reports on permafrost terrain classification using multispectral WorldView-2 satellite imagery over Rankin Inlet, Nunavut, A suite of images was processed to vield a single corrected multispectral mosaic image for a 1360 km² area inland of the Hamlet of Rankin Inlet where permafrost studies are ongoing. Terrain classes relevant to permafrost conditions and thaw sensitivity were defined using existing on-the-ground knowledge of vegetation, surficial geology, hydrology, ground temperature, and ground ice occurrence for the region. At locations for two separate study sites (15 km² and 7 km²), a number of reference areas were established and classified using visual interpretation of the imagery in combination with ground truth information from the sites. Given the reference classifications, permafrost terrain mapping was performed using maximum likelihood classification of the multispectral data alone (MS), and in conjunction with the derivative measure of texture (T), and the independent variable of topography transformed to topographic position index (TPI). Classification performance was assessed using true positive rate (TPR) and positive predictive value (PPV), along with detailed analysis of the confusion matrix. Classification results were validated by visual examination of the class maps and imagery, and by qualitative comparison to surficial geology. The full MS+T+TPI feature set provides the best overall classification with prediction accuracy for the reference areas of approximately 85% (TPR and PPV) for both study sites. However, significant misclassification persists as indicated by the full confusion matrix. In some cases, misclassification occurs between classes with similar spectral and topographic characteristics, but also similar permafrost conditions, such that misclassification is of limited consequence. In other cases, misclassification occurs between classes with similar spectral and topographic characteristics, but distinct thaw sensitivity, and the potential for misclassification must be carefully considered.

TABLE OF CONTENTS

SUMMARY1
TABLE OF CONTENTS
INTRODUCTION
STUDY AREA
METHODS
RESULTS9
DISCUSSION
CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES14
TABLES
FIGURES
APPENDIX A
APPENDIX B

INTRODUCTION

Permafrost conditions can exhibit heterogeneity and variability over the landscape in response to variations in surficial geology, availability of water, vegetation, and other factors (French and Shur, 2010; O'Neil et al., 2019). Information on permafrost conditions is important for predicting the response of the landscape to warming, and its sustainability as an engineering substrate in terms of thaw subsidence. However, the scarcity of permafrost data may prevent the characterization of permafrost and thermophysical conditions at a regional scale (Smith et al., 2010). Remote sensing data can be used to extend on-the-ground knowledge, provided that a relationship can be established between the remotely sensed data and permafrost conditions. Multispectral satellite images provide a band-limited representation of the spectral reflectance of the land surface that contains information on the constituent materials and land cover (Lillesand et al., 2015). Many of the same factors that influence spectral reflectance, such as material type, vegetation and soil moisture also influence permafrost. As such, there may exist some relationship to be learned between multispectral data and permafrost conditions. This report explores the potential for permafrost terrain mapping via supervised classification of multispectral satellite imagery and supporting data in the vicinity of Rankin Inlet, Nunavut.

Permafrost terrain mapping is analogous to land cover mapping of bio-physical conditions (e.g., Olthof et al., 2009), or remote predictive mapping of surficial geology (e.g., Grunsky et al., 2006; LaRocque et al., 2012; Campbell et al., 2013) or bedrock (e.g., Behnia et al., 2012). Permafrost terrain mapping is distinctive in that the target terrain units for classification are defined in terms of relevance specifically to permafrost conditions, and may not reflect a particular vegetative regime, or surficial material. Rather, permafrost terrain units or classes are defined according to combinations of surficial geology, vegetation, surface water, geomorpholgy, permafrost landforms, and other landscape features that are known to significantly influence or be indicative of ground ice conditions or thaw sensitivity. The permafrost terrain classifications generated from multispectral imagery are intended to be informative for inferring permafrost degradation potential, but are not definitive, and should be considered a complement to other sources of information in permafrost studies.

STUDY AREA

The Hamlet of Rankin Inlet is located on the western coast of Hudson Bay in the Kivalliq Region of Nunavut, Canada (Figure 1). The region was covered by the Laurentide Ice Sheet during the Wisconsin Glaciation (Dyke, 2004). After deglaciation, the postglacial Tyrrell Sea extended inland over the isostatically depressed land surface. Post-glacial isostatic rebound and emergence resulted in the formation of subaerial permafrost that continues to evolve.

The surficial geology consists of glacial, glaciofluvial, marine, alluvial, and organic deposits over bedrock (McMartin, 2002). The glacial deposits are unsorted to poorly sorted tills with a silty sand matrix. The postglacial sea resulted in deposition of marine, nearshore, and beach sediments along with reworking of glacial sediments. In many locations, wave washing resulted in isolation of coarse till components and accumulation of fine silt and sand at lower elevations as nearshore marine deposits. The topography consists of undulating bedrock hills, eskers, moraines, and drumlins with a network of rivers draining the area toward Hudson Bay. Small lakes are abundant and located in depressions related to bedrock basins and glacial landforms. Most of the study area is covered with tundra vegetation typical of the low-arctic region (mosses, herbaceous plants, shrubs, and alpine-arctic plants).

Rankin inlet is within the continuous permafrost zone where 90% to 100% of the land area is underlain by permafrost (Heginbottom et al., 1995) with the potential for low to medium segregated ice abundance (O'Neill et al., 2019). Periglacial landforms such as ice-wedge polygons, mud boils, gelifluction lobes, and active layer detachments are abundant (McMartin, 2002). Mean annual ground temperature at the top of permafrost varies from -9.5 to -5.5° C and active layer thickness ranges from 60 to 160 cm (LeBlanc and Oldenborger, 2021). Surface conditions including surficial geology, soil moisture, drainage and snow cover are identified as major factors contributing to variations in thermophysical conditions. An ice-rich active layer and ice-rich top of permafrost are identified (but not everywhere or exclusively) in alluvial and marine sediments, and in nearshore marine sediments. Presence of a thick active layer and ice-poor top of permafrost in marine and nearshore marine sediments is attributed to high thermal conductivity resulting from soil moisture and/or flooding (LeBlanc and Oldenborger, 2021).

METHODS

Multispectral Satellite Images

WorldView-2 imagery is an optical satellite imagery product commercially available from DigitalGlobe (now Maxar Technologies) consisting of images of spectral reflectance in eight bands. Native ground sample distance (GSD) at nadir is 0.46 m for panchromatic data and 1.85 m for multispectral data with 11-bit digitization. Imagery was acquired over a 40 km × 34 km area inland of Rankin Inlet for the date of July 22, 2017 (Figure 1). Data were acquired from MDA Geospatial Services as 35 tiles of Standard Ortho Ready (Level 2A) 8-bit imagery in three panels at 0.5 m GSD for panchromatic data, and 2 m GSD for four multispectral bands: Blue (450–510 nm), Green (510–580 nm), Red (630–690 nm), and Near Infrared (770–895 nm). The imagery was commercially corrected for radiometric distortion, sensor geometry, and optical distortion to give at-sensor radiance for a vertical image.

Image panels were imported to *PCI Geomatica* and atmospheric corrections were calculated and applied using the *ATCOR Ground Reflectance* module, which also applies a transformation of image radiance to top-of-atmosphere reflectance. Sensor parameters and satellite viewing geometry were acquired from the panel metadata. No clouds were visible in the images, but haze removal was performed with 50% coverage. Aerosol types and conditions were set as *rural* and *subarctic summer* for atmospheric information.

Following atmospheric correction, the image panels were individually orthorectified using the *OrthoEngine* module and the Natural Resource Canada High-Resolution Digital Elevation Model (HDREM) that incorporates data from the ArcticDEM (Morin et al., 2016; http://arcticdem.org). Mapping parameters were set as *optical satellite modelling* and *rational function (extract from image)*, with the final projection being WGS84 UTM 15N at native GSD. Image panels were subsequently assembled into a single mosaic preserving the four spectral bands using the *Mosaic* tool. Mosaic normalization was performed with an adaptive filter at 20%. Colour balancing of the mosaic (global adjustment of the image spectra to minimize differences between overlapping areas) was performed using the bundle method. In a final step, the panchromatic data were used with the *MRAFUSION* algorithm for pansharpening the multispectral data to produce an atmospherically corrected and normalized 1360 km² 4-band mosaic raster of the study area projected with a pansharpened GSD of 0.5 m (Figure 2).

Reference Classification

Within the multispectral mosaic, two separate study sites were selected for which on-the-ground permafrost information has been gathered (RI05, RI08; Figure 2). Permafrost information for these sites includes ground temperatures and ground ice conditions (Oldenborger et al., 2017; LeBlanc and Oldenborger, 2021), surficial geology and landforms (McMartin, 2002), and ground subsidence with associated thaw sensitivity (LeBlanc et al., 2019; Oldenborger et al. 2020). Existing knowledge of permafrost conditions, observations of vegetation, and observations of hydrology were combined with detailed visual interpretation of the imagery to define and classify reference areas with distinct permafrost conditions and/or thaw sensitivity for the study sites. Hung et al. (2020) report that pansharpening does not significantly improve land cover classification accuracy. However, pansharpening is not detrimental to the classification, and it was found to be beneficial for reference classification.

The permafrost terrain reference classification is summarized in Table 1 where the class descriptions detail the types of landforms, vegetation and surficial geology intentionally included within that class. The classes are common to both study sites, although bedrock (Class 12) is not present at Site RI05 (GSC, 2017). The reference classifications account for approximately 3.9% and 6.6% of the areas of the RI05 and RI08 sites, respectively (Figure 3). On-the-ground

photographic examples of a selection of the reference classes are shown in Figure 4. The reference classifications are the result of several iterations of independent interpretation between multiple interpreters, but no further consideration is given to errors associated with the reference classifications, and they are implicitly assumed to have negligible error (e.g., Foody, 2002). The reference classifications were neither targeted to any specific areas, nor distributed by any random sampling scheme, but rather are subjective in distribution (both spatially and proportionally between classes) and represent characteristic examples of the defined classes. The reference classification is imbalanced and may or may not contain sampling bias, which occurs when there is a difference in class distribution between the reference and the population.

Texture

Classifying terrain using the 4-band WorldView-2 mosaic is a form of spectral pattern recognition, in that each pixel is classified based on the properties of that single pixel (e.g., Lillesand et al., 2015). Spectral pattern recognition is subject to spectral overlap, wherein individual classes do not always exhibit unique or separable spectral signatures. To increase the potential separability between permafrost terrain classes beyond that capable from the multispectral data alone, texture can be introduced as an additional image feature. Texture may be defined as the combination of the magnitude and frequency of tonal change in an image, where tone refers to the magnitude of the image variable (Drury, 1993). Arrangements of similar textures result in patterns that can be used in image interpretation and segmentation. Adding texture to the analysis is a way of incorporating spatial information, or information on pixel neighbours, such that the classification involves both spectral and spatial pattern recognition, without the need to define spatially demarcated objects.

Texture can be added as an image feature (or set of features) using a variety of methods ranging from complicated wavelet scattering (Andén and Mallat, 2014), to space-local frequency analysis (Oldenborger et al., 2002), to measures of variability such as standard deviation, range, or gradient (Humeau-Heurtier, 2019). The key element is that texture is a spatial quantity and its realization must involve some neighbourhood of pixels. Edge density is a measure of texture that is easy to implement with linear filters in a GIS environment, and is useful when little is known about orientation of texture (e.g., Williams et al., 1998). Edge detection is applied to the panchromatic image for each site using a 4-pixel derivative search radius and a 9-pixel Gaussian pre-smoothing filter with 4-pixel variance. Neighbourhoods with abundant tonal variation are characterized by the presence of many edges. As such, texture is calculated as edges per area using a moving average window. Using this method, texture is scale dependent and the averaging window size should be chosen to be large enough to capture many of the image objects that define the texture, but small enough that it is contained within areas of similar texture. Trial and error was used to arrive at a

 70×70 m² window that captures textural objects such as mudboils and hummocks, yet falls within individual terrain units.

Residual Elevation

While texture is a derivative feature of the multispectral data, topography provides an independent feature that may improve separability in classification of remote sensing data (e.g., LaRocque et al., 2012). Guisan et al. (1999) introduced the Topographic Position Index (TPI) to represent the residual elevation as a predictor variable for classification of tree and shrub species based on the assertion that topographic position is correlated with ecological variables that influence vegetation. Similarly, topographic position is expected to be correlated with ecological variables that influence permafrost conditions and thaw sensitivity, such as vegetation itself, but also soil moisture and snow depth.

In contrast to absolute elevation, but similar to texture, TPI is dependent on a neighbourhood of pixels and is scale-dependent. Use of TPI can ameliorate elevation bias that might otherwise be associated with the reference classification. Using the HRDEM, TPI was calculated using the difference from the mean of a 1×1 km² moving average window. At this scale, the TPI represents the medium-scale topographic hierarchy of hill tops and valley bottoms for the study area. Window sizes much smaller than 1 km result in TPI distributions that are indicative of breaks in slope. In contrast, larger window sizes result in a regionally levelled measure of topography. Additional trials were performed with Topographic Wetness Index (TWI) as an independent feature, but TWI exhibited micro-scale drainage features that resulted in misclassification.

Classification

The features of the four multispectral bands, texture and TPI for each study site are shown in Figures 5 and 6. Permafrost terrain classification was performed using maximum likelihood classification (MLC) within *PCI Geomatica*. MLC is a form of machine learning that determines the most probable membership of a particular datum (pixel) to one of a set of observed classes given by the reference classification (e.g., Lillesand et al., 2015). In general, the following conditions should hold for application of MLC: 1) the features should exhibit stationary normal distributions, and 2) features should not exhibit strong correlation (e.g., Hogland et al., 2013). He et al., (2015) demonstrate that MLC is relatively robust with respect to deviations from a multivariate normal distribution. For the Rankin Inlet data, nearly all of the reference classes (Table 1) exhibit approximately normal distributions with the exception of deep water (Class 1) that exhibits a slightly bi-modal distribution of multispectral data. Furthermore, although correlation exists between the blue, green, and red bands of the WorldView-2 mosaic, it is not sufficient to render the covariance matrix not positive definite.

MLC was performed separately for each study site in four stages or four different feature sets: 1) initial classification of the multispectral data alone (MS), 2) classification with texture (MS+T), 3) classification with residual elevation (MS+TPI), and 4) classification with texture and residual elevation (MS+T+TPI). For each stage, classification results were assessed using statistical performance indicators and visual inspection of the classification accuracy is measured in terms of the resubstitution error, or classification of the reference areas (e.g., Lillesand et al., 2015). Although this method only measures classification performance in the same areas used to train the model (which are typically good examples of defined classes), it allows all of the reference data to be used for training. Being an over-determined, low-complexity parametric model (with no hyperparameters), MLC is not subject to errors associated with imbalanced data, or with overfitting or memorization of the reference data. It is subject to differences in the data distribution between the reference set and the general population. The resubstitution accuracy is expected to be at least as good, but likely better than generalized accuracy, such that the reported accuracy is an over-estimate of the true classification performance (e.g., Hammond and Verbyla, 1996).

The confusion matrix provides the information for the analysis of statistical classification performance (e.g, Foody, 2002). The diagonal of the confusion matrix provides the True Positive Rate (TPR), or producer's accuracy of classification for each class. However, TPR does not account for occurrence of false positives or class prevalence. Instead, the Positive Predictive Value (PPV), or user's accuracy of classification provides a combined measure of the number of true and false positives mapped. Additionally, the confusion matrix can be weighted by class prevalence over the entire classification to yield population proportional area that better represents the entire mapped region (Stehman and Foody, 2019). In the case of well-predicted but non-prevalent classes, such a transformation typically results in decreased TPR (the PPV does not change). Class-averaged TPR and PPV provide some indication of performance for the entire classification, but may not reflect strongly disparate class-based accuracy.

Furthermore, while class-based TPR and PPV provide measures of performance, understanding the uncertainty associated with the classification requires more detailed examination of the confusion matrix. To summarize the details of the confusion matrix, a "confusion descriptor" is introduced comprised of two parts for each class. The first part of the confusion descriptor indicates what other classes are likely to be predicted or mapped for a class in the reference classification (the producer's view) and the second part of the confusion descriptor indicates what classes in the reference classification are likely to be present when a class is predicted (the user's view). An example confusion descriptor for Class *x* is "sometimes mapped as Class *z*; often confused with Class *y*, rarely confused with Class *z*" where the ratio *r* of false negatives (or false positives) to true positives for Class *x* is used to define the terms *often*: $r \ge 0.5$, *sometimes*: $0.5 > r \ge 0.05$, and *rarely*: $0.05 \ge r > 0.005$. Confusion descriptors are based on population proportional area to

better represent the entire classification as opposed to only the reference set. Similar descriptors are obtained using pixel counts with differences associated with highly variable prevalence, but the same descriptors cannot be obtained from a confusion matrix normalized to proportions relative to the reference class.

RESULTS

Class maps for the four feature sets at each study site are shown in Figures 7 and 8. The predicted area of each class for the different feature sets is illustrated in Figure 9 for both study sites. Classification performance (TPR and PPV) for the different feature sets is summarized in Tables 2 and 3 for study sites RI05 and RI08, respectively. The full confusion matrices for each stage, prevalence, and population proportional area are given in Appendices A and B for study sites RI05 and RI08, respectively.

If only the performance metrics are considered, it is apparent that the MS-only classification is the worst performer for both study sites, with high accuracy for a few classes, but low accuracy for others. The addition of texture and TPI individually both serve to improve classification accuracy for nearly all classes at both study sites. Texture and TPI combined increases accuracy even further and reduces the discrepancy of accuracy between classes. The addition of texture is the most influential on the classification of dry patterned ground (Class 9) and wet vegetation (Class 11), both of which are characterized by particular patterns of tonal variation: mud boils and hummocks, respectively (Table 1). In particular, texture reduces the occurrence of dry patterned ground (Class 9) being incorrectly classified as dry polygonal ground (Class 5) or wet polygonal ground (Class 8) as evidenced by the changes in the confusion matrices (Appendices A and B).

In contrast, TPI exhibits significant influence on classes that occupy particular spots in the topographical hierarchy, such as raised beaches and eskers that dominate the high ground, and polygonal ground which is typically found in low-lying valleys. In particular, TPI reduces the occurrence of beaches (Class 6) being misclassified as wet polygonal ground (Class 8) or wet vegetation (Class 11) which are other dark terrain types, although there are differences in improvement between the study sites (Appendices A and B). TPI also greatly reduces the occurrence of dry polygonal ground (Class 7) being misclassified as till plain (Class 10) which are both green terrain types, but have significantly different permafrost conditions. For both sites, only the MS+T+TPI feature set achieves an average accuracy greater than 85% for both TPR and PPV, although there are still some classes of lower accuracy. While a more rigorous accuracy threshold could be established for a particular end user that might justify acceptance of a different feature set, it is clear that the MS+T+TPI feature set provides the highest classification accuracy.

However, accuracy measures alone do not necessarily indicate the best feature set for classification. Results must also be evaluated in the context of existing knowledge. The maps in Figures 7 and 8 show that when using only multispectral features, the classifications are extremely variable and heterogeneous despite having similar predicted class areas (Figure 9). The spectral closeness and overlap of reference classes result in juxtapositions of mapped classes that are physically unrealistic, such as wet polygonal ground (Class 8) surrounded by raised beach (Class 6) on topographic highs. Both texture and TPI act to consolidate the classifications into more continuous units with more geologically realistic adjacencies. However, this is not without a trade-off. As shown in Figure 9, texture acts to introduce a large amount of dry patterned ground (Class 9) at the expense of till and wet vegetation (Classes 10 and 11) which are expected to be more prevalent (McMartin, 2002). TPI alone is more stable, but can introduce a strong topographic imprint and misclassifications due to topography, such as over-prediction of dry and wet polygonal ground (Classes 7 and 8) particularly along lake shores (Figure 7). TPI can also result in misclassification if the reference classification is not representative of all topographic positions for a particular class. The problems of texture and TPI alone are somewhat ameliorated by their joint application.

Comparison to Surficial Geology

The permafrost terrain classifications can also be evaluated in terms of the surficial geology mapped for the region (GSC, 2017). Although the reference classification is based on permafrost terrain types, there is a correspondence to surficial geology (Table 1) that can be used for validation of the classifications. However, since the correspondence is neither unique nor one-to-one, validation using surficial geology should be considered as qualitative and not conclusive.

The distribution of surficial geology over each permafrost terrain class is shown in Figure 10 for Sites RI05 and RI08 combined using the MS+T+TPI feature set. Areas classified as exposed sand and gravel (Class 3) correspond largely to sand and gravel beach (Mr) and esker (GFc) deposits as expected, but also to undifferentiated till and marine (T.M) sediments that should not yield exposed sand and gravel when eroded. Closer inspection of the mosaic reveals that areas classified as exposed sand and gravel (Class 3), but mapped as T.M, are actually littoral sediments without vegetation. In this case, the classification provides a means of refining geological maps that may be produced using lower resolution information, or by merging and standardization of different data sources.

Areas classified as dry water body and wet vegetation (Classes 4 and 5) correspond in order of prevalence to undifferentiated till and marine (T.M), nearshore marine (Mn), and alluvial (A and A.M) sediments, which is understandable in terms of modern lakes and streams on till plains and valley bottoms. Areas classified as beaches and eskers (Class 6) correspond to sand and gravel beach (Mr) and esker (GFc) deposits as expected, along with till blanket (Tb) which is typically

adjacent. However, at Site RI08, the majority of the area classified as beaches and eskers (Class 6) is mapped as T.M. This does not mean that all existing beaches and eskers are not correctly classified, but that a lot of ground may be incorrectly classified as Class 6. Closer inspection reveals that in areas of potential misclassification, what is mapped as T.M is actually washed till that may include littoral sediments and that has surface vegetation similar to that of more pronounced beaches and eskers.

Areas classified as dry polygonal ground (Class 7) are composed mostly of undifferentiated till and marine (T.M) and nearshore marine (Mn) sediments, whereas areas classified as wet polygonal ground (Class 8) are composed mostly of nearshore marine (Mn) sediments. Areas classified as dry patterned ground, till plain, and wet vegetation (Classes 9–11) all correspond mainly to undifferentiated till and marine (T.M) sediments, although areas of dry patterned ground (Class 9) have a significant component of till blanket (Tb), and areas of wet vegetation (Class 11) have a significant component of nearshore marine (Mn) sediments that tend to occupy topographic lows. Finally, at Site RI08, areas classified as bedrock (Class 12) correspond mostly to undifferentiated bedrock (R), but also to undifferentiated till and marine (T.M) sediments. This may be a result of the dark spectral signatures of these areas, combined with their presence on topographic highs typical of bedrock.

DISCUSSION

The MS+T+TPI feature set is accepted as generating the most reliable permafrost terrain classification in terms of accuracy, visual inspection, and correspondence to surficial geology. Overall accuracy is encouraging, but there is still significant misclassification and confusion across classes as evidenced by the confusion matrices (Appendices A and B). The population proportional TPR, PPV and confusion descriptors are summarized in Tables 4 and 5 for the MS+T+TPI feature set at Sites RI05 and RI08, respectively.

Further improvements in classification accuracy (a reduction in misclassification) may be achieved by grouping classes that exhibit confusion. For example, Classes 5, 7, and 8 exhibit a large amount of inter-class confusion (Table 4), but are all defined as medium to high thaw sensitivity, despite their more nuanced differences (Table 1). Merging these classes results in almost all ground that was classified as Class 5, 7, or 8 being classified as the new merged class, which removes the previous inter-class confusion and improves average TPR and PPV for both sites. Similarly, merging Classes 10 and 11 improves average TPR and PPV (to a lesser degree) and reduces the observed inter-class confusion, but these classes have disparate thaw sensitivities (Table 1), such that important information is lost in the resulting map. In contrast, merging Classes 5 and 11 results in decreased average accuracy for both sites. This is because despite their similarity as wet ground, they exhibit only a small amount of confusion in classification, and much of what was classified as Class 5 gets classified as Class 8 rather than the new merged class. The reduced confusion due to merging is outweighed by a loss in the degrees of freedom for the classification.

In the context of permafrost conditions and thaw sensitivity, some confusion is acceptable between classes with similar characteristics, and some confusion is necessary to maintain separation between classes with disparate characteristics. At the expense of lower average accuracy, all classes are kept separate to retain the higher degree of fidelity. In the case of Classes 5, 7, 8, and 11, some misclassification may occur as detailed in Tables 4 and 5, but it is of limited consequence, and the group accuracy is higher than that of the individual classes. Conversely, Classes 10 and 11 are similar in terms of surficial geology, but have different thaw sensitivity. In this case, keeping these classes separate forces as much distinction as the data allow, but the confusion between these classes is of much greater concern and must be carefully considered. In all cases, the increase in average accuracy obtained by merging classes is not nearly as large as that obtained by introducing texture or TPI to the classification.

CONCLUSION

Permafrost terrain classification was possible using Multispectral WorldView-2 satellite imagery at two study sites inland of the Hamlet of Rankin Inlet, Nunavut, where the reference classification was based on observed permafrost conditions and inferred thaw sensitivity. The 4-band multispectral data alone provide a moderate level of prediction accuracy (62–80% TPR and PPV over both sites). Prediction accuracy is improved significantly by addition of the derivative image feature of texture, and the independent variable of topographic position (85–95% TPR and PPV over both sites). Merging classes demonstrates that certain classes with common permafrost characteristics can be considered together with improved accuracy. Improved accuracy for merged classes gives confidence that the data are not over-fit with too many classes, and that improved fidelity of more classes can be accepted at the expense of lower accuracy.

In general, the expected correspondence between permafrost terrain classification and surficial geology is good, and is improved by addition of texture and TPI, but this is not easily quantified. Unexpected discrepancy between the permafrost terrain classification and surficial geology may be explained by lower-resolution geological maps, or by common vegetation types resulting in spectral overlap, or topographic and/or textural non-uniqueness.

Uncertainty in the classifications is addressed using a confusion descriptor that describes the likelihood of a particular class being misclassified, or incorrectly predicted in the presence of another class. The confusion descriptor is particularly important for classes that may exhibit similar spectral and topographic characteristics, but that are associated with different permafrost conditions and implications for thaw subsidence. Improved accuracy may be achieved using other

classifiers better suited for noisy data or non-Gaussian image variables. Similarly, classifiers suitable for the incorporation of categorical data such as geology may prove useful.

ACKNOWLEDGEMENTS

Part of the Natural Resources Canada Climate Change Geoscience Program. Additional support provided by the Canada-Nunavut Geoscience Office, Canada. Valuable assistance provided by: R. Connelly, Government of Nunavut, Department of Economic Development and Transportation; S. Napier, formerly Nunavut Arctic College; A. Netser, Nunavut Arctic College; D. Beamer, formerly Government of Nunavut, Department of Environment. Interpretation of superficial geology provided by I. McMartin. Field assistance from O. Bellehumeur-Génier and N. Ymana. Internal review by M. Ednie. Topographic Data from Natural Resources Canada (http://open.canada.ca/en/open-maps).

REFERENCES

- Andén J., Mallat S., 2014. Deep Scattering Spectrum. IEEE Transactions on Signal Processing 62, 4114–4128.
- Behnia P., Harris J.R., Rainbird R.H., Williamson M.C., Sheshpari M., 2012. Remote predictive mapping of bedrock geology using image classification of Landsat and SPOT data, western Minto Inlier, Victoria Island, Northwest Territories, Canada. International Journal of Remote Sensing 33, 6876–6903.
- Campbell J.E., Harris J.R., Huntley D.H., McMartin I., Wityk U., Dredge L.A., Eagles S., 2013. Remote Predictive Mapping of Surficial Earth Materials: Wager Bay North Area, Nunavut -NTS 46-E (N), 46-K (SW), 46-L, 46-M (SW), 56-H (N), 56-I and 56-J (S). Geological Survey of Canada, Open File 7118.
- Drury S. A., 1993. Image Interpretation in Geology, 2nd Edition. Chapman and Hall.
- Dyke A.S., 2004. An outline of North American deglaciation with emphasis on central and northern Canada. Developments in Quaternary Science 2, 373–424.
- French H., Shur Y., 2010. The principles of cryostratigraphy. Earth Science Reviews 101, 190–206.
- Foody G.M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment 80, 185–201.
- Grunsky E., Harris J.R., McMartin I., 2006. Predictive mapping of surficial materials, Shultz Lake area (NTS 66A), Nunavut, Canada. Geological Survey of Canada, Open File 5153.
- GSC, 2017. Surficial geology, Rankin Inlet, Nunavut, NTS 55-K/16. Geological Survey of Canada, Canadian Geoscience Map 68.
- Guisan A., Weiss S.B., Weiss A.D., 1999. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology 143, 107–122.
- Hammond T.O., Verbyla D.L., 1996. Optimistic bias in classification accuracy assessment, International Journal of Remote Sensing 17, 1261–1266.
- He, J. Harris J.R., Sawada M., Behnia P., 2015. A comparison of classification algorithms using Landsat-7 and Landsat-8 data for mapping lithology in Canada's Arctic. International Journal of Remote Sensing 36, 2252–2276.
- Heginbottom J.A., Dubreuil M.H., Harker P.T., 1995. Canada, Permafrost. National Atlas of Canada, 5th ed., Plate 2.1, MCR 4177.
- Hogland J., Billor N., Anderson N., 2013. Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing; European Journal of Remote Sensing, 46, 623–640.
- Humeau-Heurtier A., 2019. Texture feature extraction methods: survey. IEEE Access 7, 8975–9000.
- Hung J.K.Y., Treitz P., 2020. Environmental land-cover classification for integrated watershed studies: Cape Bounty, Melville Island, Nunavut. Arctic Science 6, 404–422.

- LeBlanc A.-M., Bellehumeur-Génier O., Oldenborger G.A., Short N., 2020. Lake area and shoreline changes due to climate and permafrost-related drivers, Rankin Inlet area, Nunavut. Canada-Nunavut Geoscience Office, Summary of Activities 2019, 79–92.
- LeBlanc A.-M., Oldenborger G.A., 2021. Ground temperature, active layer thickness and ground ice conditions in the vicinity of Rankin Inlet, Nunavut. Canada-Nunavut Geoscience Office, Summary of Activities 2020, 63–72.
- LeBlanc A.-M., Oldenborger G. A., Short N., 2019. Mapping permafrost and terrain conditions by combining corrected DInSAR seasonal and inter-annual ground displacements, Proceedings of the Canadian Permafrost Conference, 616–624.
- Lillesand T., Kiefer R.W., Chipman J., 2015. Remote Sensing and Image Interpretation, 7th Edition. John Wiley & Sons.
- LaRocque A., Leblon B., Harris J., Jefferson C., Tschirhart V., Shelat Y., 2012. Surficial materials mapping in Nunavut, Canada with multibeam RADARSAT-2 dual-polarization CHH and C-HV, LANDSAT-7 ETM+, and DEM data. Canadian Journal of Remote Sensing 38, 281–305.
- McMartin I., 2002. Surficial geology, Rankin Inlet, Nunavut. Geological Survey of Canada, Open File 4116.
- Morin P., Porter C., Cloutier M., Howat I., Noh M.-J., Willis M., Bates B., Willamson C., Peterman K., 2016. ArcticDEM: A publically available, high resolution elevation model of the Arctic. EGU General Assembly 18, 8396.
- Oldenborger G.A., Bellehumeur-Génier O., Short N., Tremblay T., LeBlanc A.-M., 2017. Ground temperatures and permafrost conditions, Rankin Inlet, southern Nunavut. Canada-Nunavut Geoscience Office, Summary of Activities 2017, 117–128.
- Oldenborger G.A., Schincariol R.A., Mansinha L., 2002. Space-local spectral texture segmentation applied to characterizing the heterogeneity of hydraulic conductivity. Water Resources Research 38, 1154.
- Oldenborger G.A., Short N., LeBlanc A.-M., 2020. Electrical conductivity and ground displacement in permafrost terrain. Journal of Applied Geophysics 181, 104148.
- Olthof I., Latifovic R., Pouliot D., 2009. Development of a circa 2000 land cover map of northern Canada at 30 m resolution from Landsat. Canadian Journal of Remote Sensing 35, 152–165.
- O'Neill H.B., Wolfe S.A., Duchesne C., 2019. New ground ice maps for Canada using a paleogeographic modelling approach, The Cryoshpere 13, 753–773.
- Stehman S.V., Foody G.M., 2019. Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment 231, 111199.
- Williams A.T., Fulton R.J., Thomas M.C., 1998. Sand grain analysis—image processing, textural algorithms and neural nets. Computers & Geosciences 24, 111–118.

TABLES

Class	Name	Thaw Sensitivity	Description
1	Deep water	Nil Shoreline: Low-High ^{1,2}	Large lakes, deep water bodies
2	Shallow water	Nil Shoreline: Low-High ^{1,2}	Small lakes, shallow water bodies, lake terraces
3	Exposed sand and gravel	Low	Freshly eroded or exposed sand and gravel sediments, raised beaches and eskers, trails
4	Dry water body	Med-High	Dried modern ponds, lake beds, and shorelines, bare of vegetation
5	Flooded vegetation	High ³	Modern stream systems and wetlands, herbacious vegetation (grass) with ponded water or seasonal flooding, some peat
6	Beaches and eskers	Low ⁴	Sand and gravel hills with dark vegetation (lichen), raised beaches and glaciofluvial (eskers), disconnected ice-wedge troughs
7	Dry polygonal ground	Med-High	Low-lying dry vegetation (shrub) in polygon centres, marine sediments
8	Wet polygonal ground	Med-High	Low-lying wet herbaceous vegetation (sedge, grass), connected ice- wedge troughs or seasonally flooded areas, marine sediments
9	Dry patterned ground	Low-Med	Dry vegetation (shrub) with mudboils and stone circles, till blanket
10	Till plain	Low	Tundra vegetation (shrub, grass, moss) over extensive till, some mudboils or exposed boulders
11	Wet vegetation	High	Hummocky ground with tussock vegetation and inter-hummock water, undifferentiated till and marine sediments
12	Bedrock	Nil	Outcrop or exposed rock (possibly subcrop or float)

Table 1. Permafrost terrain reference class descriptions and thaw sensitivity.

¹Subject to thermokarst and ²potential lake drainage (LeBlanc et al., 2020) ³Prevelent seasonal frost blisters (LeBlanc and Oldenborger, 2021)

⁴Wedge ice present in disconnected troughs (Oldenborger et al., 2017)

Class	Nama	Μ	IS	MS	5+T	MS+	-TPI	MS+T+TPI		
Class	Name	TPR (%)	PPV (%)	TPR (%)	PPV (%)	TPR (%)	PPV (%)	TPR (%)	PPV (%)	
1	Deep water	93.8	76.7	89.4	100	93.0	99.0	88.7	100	
2	Shallow water	98.1	99.7	99.6	99.5	99.6	99.6	99.8	99.4	
3	Exposed sand and gravel	91.9	96.6	94.6	96.4	96.9	97.5	98.9	98.1	
4	Dry water body	88.8	49.5	96.4	70.3	99.4	73.8	99.5	85.6	
5	Flooded vegetation	57.3	48.5	69.0	77.5	68.0	68.7	76.2	84.4	
6	Beaches and eskers	76.0	65.6	94.2	79.7	90.9	76.0	94.4	81.8	
7	Dry polygonal ground	54.3	23.4	66.1	28.4	82.5	55.2	86.0	59.4	
8	Wet polygonal ground	72.1	27.1	80.8	53.0	84.6	51.3	91.0	67.9	
9	Dry patterned ground	58.8	81.7	81.7	92.6	81.2	91.0	88.3	95.0	
10	Till plain	66.0	74.3	71.7	85.3	75.0	88.0	81.4	92.2	
11	Wet vegetation	39.1	43.9	70.8	61.6	75.3	66.1	87.9	73.3	
12	Bedrock	NA	NA	NA	NA	NA	NA	NA	NA	
	Average:	72.4	62.4	83.1	76.7	86.1	78.8	90.2	85.2	

Table 2. Permafrost terrain classification performance metrics for the different classes and feature sets at study site RI05.

Class	Nama	Μ	IS	MS	5+T	MS+	-TPI	MS+T+TPI		
Class	Ivame	TPR (%)	PPV (%)	TPR (%)	PPV (%)	TPR (%)	PPV (%)	TPR (%)	PPV (%)	
1	Deep water	99.2	99.7	98.8	99.8	99.0	99.8	98.9	99.8	
2	Shallow water	98.6	99.3	99.0	99.0	98.9	99.7	99.0	99.6	
3	Exposed sand and gravel	98.6	99.5	98.8	99.6	98.7	99.5	99.0	99.6	
4	Dry water body	98.2	58.3	98.4	68.0	98.3	64.1	98.6	67.6	
5	Flooded vegetation	67.7	76.9	81.3	85.8	90.7	98.1	95.8	98.9	
6	Beaches and eskers	80.1	66.4	81.3	74.7	85.5	73.5	90.1	79.4	
7	Dry polygonal ground	53.1	7.3	74.8	21.6	83.9	39.4	92.5	54.3	
8	Wet polygonal ground	82.0	47.5	86.3	79.7	90.8	92.0	92.4	93.1	
9	Dry patterned ground	42.4	80.2	85.4	91.5	91.7	97.4	92.8	97.4	
10	Till plain	65.6	66.8	70.8	79.4	93.5	90.1	94.8	91.3	
11	Wet vegetation	83.7	65.4	85.6	76.7	91.3	84.4	94.6	93.4	
12	Bedrock	93.4	65.7	94.1	69.9	93.8	45.3	94.4	48.1	
	Average:	80.2	69.4	87.9	78.8	93.0	81.9	95.2	85.2	

Table 3. Permafrost terrain classification performance metrics for the different classes and feature sets at study site RI08.

Class	Name	TPR (%)	PPV (%)	TPR (%) [*]	Confusion
1	Deep water	88.7	100	55.5	Often mapped as Class 2
2	Shallow water	99.8	99.4	98.8	Rarely mapped as Class 4; rarely confused with Class 1
3	Exposed sand and gravel	98.9	98.1	98.0	Rarely mapped as Class 4 and 6; rarely confused with Class 6
4	Dry water body	99.5	85.6	99.4	Sometimes confused with Class 2, rarely confused with Class 3, 11, and 5
5	Flooded vegetation	76.2	84.4	65.4	Sometimes mapped as Class 7, 8, and 11, rarely mapped as Class 10; sometimes confused with Class 10, rarely confused with Class 11, 8, and 7
6	Beaches and eskers	94.4	81.8	89.9	Sometimes mapped as Class 9; sometimes confused with Class 9
7	Dry polygonal ground	86.0	59.4	92.4	Rarely mapped as Class 5, 11, 10 and 8; sometimes confused with Class 10 and 5; rarely confused with Class 11, 8, and 2
8	Wet polygonal ground	91.0	67.9	87.2	Sometimes mapped as Class 5, rarely mapped as Class 7 and 11; sometimes confused with Class 5, rarely confused with Class 7 and 11
9	Dry patterned ground	88.3	95.0	92.1	Rarely mapped as Class 6 and 10; rarely confused with Class 10 and 6
10	Till plain	81.4	92.2	78.1	Sometimes mapped as Class 11 and 7, rarely mapped as Class 9 and 5; rarely confused with Class 9, 11, and 5
11	Wet vegetation	87.9	73.3	91.8	Sometimes mapped as Class 10, rarely mapped as Class 5, 7, and 9; sometimes confused with Class 10, rarely confused with Class 5, 7, and 2
12	Bedrock	NA	NA	NA	NA
	Average:	90.2	85.2	86.2	

Table 4. Summary of permafrost terrain classification performance metrics and confusion descriptors for the MS+T+TPI feature set at Site RI05.

*Based on prevalence-weighted population proportional area

Class	Name	TPR (%)	PPV (%)	$\frac{\text{TPR}}{(\%)^*}$	Confusion
1	Deep water	98.9	99.8	90.3	Sometimes mapped as Class 12, rarely mapped as Class 2
2	Shallow water	99.0	99.6	97.0	Rarely mapped as Class 4 and 8
3	Exposed sand and gravel	99.0	99.6	96.7	Rarely mapped as Class 6
4	Dry water body	98.6	67.6	95.2	Rarely mapped as Class 6 and 7; sometimes confused with Class 2, rarely confused with Class 3
5	Flooded vegetation	95.8	98.9	76.9	Sometimes mapped as Class 7, rarely mapped as Class 6 and 11; rarely confused with Class 8
6	Beaches and eskers	90.1	79.4	97.5	Rarely mapped as Class 12 and 9; sometimes confused with Class 9 and 10; rarely confused with Class 5 and 12
7	Dry polygonal ground	92.5	54.3	98.8	Rarely mapped as Class 11; sometimes confused with Class 8, 5 and 11; rarely confused with Class 10
8	Wet polygonal ground	92.4	93.1	69.6	Sometimes mapped as Class 7, rarely mapped as Class 11 and 5; rarely confused with Class 2, 11, and 5
9	Dry patterned ground	92.8	97.4	72.4	Sometimes mapped as Class 6 and 10, rarely mapped as Class 12; rarely confused with Class 10 and 6
10	Till plain	94.8	91.3	94.8	Rarely mapped as Class 6 and 9; sometimes confused with Class 10, rarely confused with Class 11
11	Wet vegetation	94.6	93.4	88.4	Sometimes mapped as Class 7, rarely mapped as Class 10 and 8; rarely confused with Class 5, 8, and 10
12	Bedrock	94.4	48.1	83.8	Sometimes mapped as Class 6; often confused with Class 1, sometimes confused with Class 6 and 9
	Average:	95.2	85.2	88.5	

Table 5. Summary of permafrost terrain classification performance metrics and confusion descriptors for the MS+T+TPI feature set at Site RI08.

*Based on prevalence-weighted population proportional area

FIGURES

Figure 1. a) Location of Rankin Inlet, Nunavut and permafrost distribution in the Hudson Bay region of northern Canada (Heginbottom et al., 1995).

Figure 2. Luminosity-preserved greyscale composite of the orthorectified and corrected multispectral WorldView-2 mosaic, and locations of study sites RI05 (15 km²) and RI08 (7 km²). Markers within the study areas indicate borehole and ground temperature measurement locations.

Figure 3. Reference classifications for sites RI05 (top) and RI08 (bottom) shown in true colour composite. The linear feature across the northeast portion of RI05 results from a gap in the panchromatic data from which the pansharpened image is derived.

Photo of esker (Class 6) and exposed sand and gravel (Class 3) by A.M. LeBlanc. NRCan photo 2021-007

Photo of dry patterned ground (Class 9) by A.M. LeBlanc. NRCan photo 2021-012

Photo of flooded vegetation (Class 5) by A.M. LeBlanc. NRCan photo 2021-009

Photo of till plain (Class 10) by A.M. LeBlanc. NRCan photo 2021-008

Photo of beach (Class 6) by A.M. LeBlanc. NRCan photo 2021-011

Photo of dry and wet polygonal ground (Classes 7 and 8) by A.M. LeBlanc. NRCan photo 2021-010

Photo of wet vegetation (Class 11) by A.M. LeBlanc. NRCan photo 2021-013

Photo of bedrock (Class 12) by A.M. LeBlanc. NRCan photo 2021-014

Figure 4. Example on-the-ground photographs for a selection of reference classes.

Figure 5. Feature set for site RI05. The linear feature across the northeast portion of the texture map results from a gap in the panchromatic data from which texture is derived.

×10⁶ Blue ×10⁶ Green 250 250 6.973 6.973 200 200 6.9725 6.9725 (E) 6.972-Duiu 6.9715-N (μ) 6.972-builting 6.9715-N 150 150 100 100 6.971 6.971 50 50 6.9705 6.9705 0 1 5.415 Easting (m) 5.405 5.41 5.425 5.42 5.405 5.41 5.415 5.42 5.425 $imes 10^5$ Easting (m) $imes 10^5$ ×10⁶ Red Near Infrared $\times 10^{6}$ 250 250 6.973 6.973 200 200 6.9725-6.9725 (m) 6.972 builton 6.9715 (ш) 6.972 buiutin 6.9715 N 150 150 100 100 6.971 6.971 50 50 6.9705 6.9705 0 0 5.415 5.42 1 5.415 Easting (m) 5.405 5.41 5.425 . 5.405 . 5.41 . 5.42 5.425 Easting (m) $imes 10^5$ $imes 10^5$ ×10⁶ Texture ×10⁶ TPI 250 120 6.973 6.973 100 200 6.9725 6.9725 80 60 (μ) 6.972 bii 6.9715 N (Ξ) 6.972 Builting 6.9715 N 150 40 20 100 0 6.971 6.971 50 -20 6.9705 6.9705 -40 0 1 5.415 Easting (m) 5.405 . 5.41 5.42 5.425 5.405 5.415 5.42 5.41 5.425 $imes 10^5$ Easting (m) $imes 10^5$

Figure 6. Feature set for site RI08.

Figure 7. Site RI05 permafrost terrain classifications for the four different feature sets.

Figure 8. Site RI08 permafrost terrasin classifications for the four different feature sets.

Figure 9. Predicted class areas over study sites RI05 and RI08 for the four different feature sets.

Figure 10. Distribution of surficial geology for each permafrost terrain class at sites RI05 and RI08 combined for the M+T+TPI feature set. Surficial geology from GSC (2017).

APPENDIX A

Study Site RI05 MS

INIS

Confusion N	latrix (% F	Reference	Class)																
						Pred	icted							Reference	Prevalence	Predicted	Prevalence	Predicted	
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	Pixels	% Reference	Pixels	% Map	Area (ha)	
1	93.81	6.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		100.0	53691	2.26	475377	0.77	11.88	
2	1.49	98.06	0.00	0.28	0.00	0.16	0.00	0.00	0.00	0.00	0.01		100.0	1029707	43.33	9954240	16.18	248.86	
3	0.00	0.00	91.86	7.10	0.00	0.26	0.76	0.00	0.00	0.02	0.00		100.0	38365	1.61	338156	0.55	8.45	
4	0.00	0.00	10.66	88.84	0.01	0.07	0.37	0.00	0.00	0.00	0.06		100.0	10135	0.43	953422	1.55	23.84	
5	0.00	0.00	0.00	0.05	57.26	0.47	3.55	13.57	6.57	6.07	12.47		100.0	127920	5.38	8334293	13.55	208.36	
6	0.00	0.00	0.09	1.82	0.25	75.95	0.71	5.29	3.04	7.62	5.22		100.0	163466	6.88	4516154	7.34	112.90	
7	0.00	0.00	0.00	0.00	6.84	0.44	54.30	2.87	10.15	17.38	8.03		100.0	34220	1.44	4876559	7.93	121.91	
8	0.00	0.00	0.00	0.00	9.22	3.82	0.58	72.05	3.66	1.87	8.79		100.0	41618	1.75	4748402	7.72	118.71	
9	0.00	0.00	0.00	0.10	6.54	9.82	10.08	5.32	58.76	8.65	0.73		100.0	395619	16.65	10426384	16.95	260.66	
10	0.00	0.00	0.00	0.00	6.74	3.12	3.81	1.66	8.93	66.03	9.71		100.0	346229	14.57	12568514	20.43	314.21	
11	0.00	0.00	0.00	0.12	16.20	8.36	1.20	19.80	2.13	13.12	39.07		100.0	135278	5.69	4317422	7.02	107.94	
12													0.0	0	0.00	0	0.00	0.00	
SUM:	95.30	104.25	102.61	98.31	103.06	102.47	75.36	120.56	93.24	120.76	84.09	0.00		2376248	100	61508923	100	1538	
NC:	11													% Map					
Avg TPR:	0.724													3.86					
Acc:	0.785																		
Confusion	latrix (Div.	olo*)	*Cubicat t	o round off	f orror acc	oninted wit	h o algulatir	na nivolo fr	com % rofo	ropoo oloc	o with 2 d	ocimal play							
Confusion N	latrix (Pix	els*)	*Subject to	o round-of	f error ass	ociated wit	h calculati	ng pixels fi	rom % refe	rence clas	s with 2 de	ecimal plac	ces						
Confusion N	latrix (Pix	els*) 2	*Subject to	o round-ofi 4	f error ass	ociated wit Pred 6	h calculatii icted 7	ng pixels fi 8	rom % refe 9	rence clas	s with 2 de	ecimal plac	support	N	TP	FN	TPR	PPV	FNR
Confusion N Reference	latrix (Pixo 1 50368	els*) 2 3323	*Subject to 3	o round-ofi 4 0	f error ass 5 0	ociated wit Pred 6	h calculatii icted 7 0	ng pixels fi 8 0	rom % refe 9 0	rence clas	s with 2 de 11 0	ecimal plac 12 0	Support	N 2322554	TP 50368	FN 3323	TPR 0.938	PPV 0.767	FNR 0.062
Confusion M Reference 1 2	latrix (Pix 1 50368 15343	els*) 2 3323 1009731	*Subject to 3 0 0	o round-off 4 0 2883	f error ass 5 0 0	ociated wit Pred 6 0 1648	h calculatii icted 7 0 0	ng pixels fi 8 0 0	rom % refe 9 0 0	rence clas 10 0 0	s with 2 de 11 0 103	ecimal plac 12 0 0	ces Support 53691 1029707	N 2322554 1346538	TP 50368 1009731	FN 3323 19976	TPR 0.938 0.981	PPV 0.767 0.997	FNR 0.062 0.019
Confusion M Reference 1 2 3	1 50368 15343 0	els*) 2 3323 1009731 0	*Subject to 3 0 0 35242	o round-off 4 0 2883 2724	f error ass 0 0 0	ociated wit Pred 6 0 1648 100	h calculatii icted 7 0 0 292	ng pixels fi 8 0 0 0	rom % refe 9 0 0 0	rence clas 10 0 0 8	s with 2 de 11 0 103 0	ecimal plac 12 0 0 0 0	ces Support 53691 1029707 38365	N 2322554 1346538 2337880	TP 50368 1009731 35242	FN 3323 19976 3123	TPR 0.938 0.981 0.919	PPV 0.767 0.997 0.966	FNR 0.062 0.019 0.081
Confusion N Reference 1 2 3 4	1 50368 15343 0 0	els*) 2 3323 1009731 0 0	*Subject to 3 0 35242 1080	o round-off 4 0 2883 2724 9004	f error ass 0 0 0 1	ociated wit Pred 6 0 1648 100 7	h calculatii icted 7 0 292 37	ng pixels fi 8 0 0 0 0	rom % refe 9 0 0 0 0	rence clas 10 0 0 8 0	s with 2 de 11 0 103 0 6	ecimal plac 0 0 0 0 0	Support 53691 1029707 38365 10136	N 2322554 1346538 2337880 2366109	TP 50368 1009731 35242 9004	FN 3323 19976 3123 1132	TPR 0.938 0.981 0.919 0.888	PPV 0.767 0.997 0.966 0.495	FNR 0.062 0.019 0.081 0.112
Confusion N Reference 1 2 3 4 5	latrix (Pix 50368 15343 0 0 0	els*) 2 3323 1009731 0 0 0	*Subject to 3 0 35242 1080 0	o round-off	f error ass 0 0 0 1 73247	ociated wit Pred 6 0 1648 100 7 601	h calculatii icted 7 0 292 37 4541	ng pixels fi 8 0 0 0 0 17359	rom % refe 9 0 0 0 0 8404	rence clas 10 0 0 8 0 7765	s with 2 do 11 0 103 0 6 15952	ecimal plac 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933	N 2322554 1346538 2337880 2366109 2248312	TP 50368 1009731 35242 9004 73247	FN 3323 19976 3123 1132 54686	TPR 0.938 0.981 0.919 0.888 0.573	PPV 0.767 0.997 0.966 0.495 0.485	FNR 0.062 0.019 0.081 0.112 0.427
Confusion N Reference 1 2 3 4 5 5 6	latrix (Pix 50368 15343 0 0 0 0	els*) 2 3323 1009731 0 0 0 0	*Subject to 3 0 35242 1080 0 147	o round-off	f error ass 0 0 0 1 73247 409	ociated wit Pred 6 0 1648 100 7 601 124152	h calculatii icted 7 0 292 37 4541 1161	ng pixels fi 8 0 0 0 17359 8647	rom % refe 9 0 0 0 8404 4969	rence clas 10 0 0 8 0 7765 12456	s with 2 do 11 0 103 0 6 15952 8533	ecimal plac 0 0 0 0 0 0 0 0 0	ces Support 53691 1029707 38365 10136 127933 163450	N 2322554 1346538 2337880 2366109 2248312 2212795	TP 50368 1009731 35242 9004 73247 124152	FN 3323 19976 3123 1132 54686 39297	TPR 0.938 0.981 0.919 0.888 0.573 0.760	PPV 0.767 0.997 0.966 0.495 0.485 0.656	FNR 0.062 0.019 0.081 0.112 0.427 0.240
Confusion N Reference 1 2 3 4 5 6 7	1 50368 15343 0 0 0 0 0 0	els*) 2 3323 1009731 0 0 0 0 0	*Subject to 3 0 35242 1080 0 147 0	o round-off 0 2883 2724 9004 64 2975 0	f error ass 0 0 1 73247 409 2341	ociated wit Pred 6 0 1648 100 7 601 124152 151	h calculatii icted 7 0 292 37 4541 1161 18581	ng pixels fr 8 0 0 0 17359 8647 982	rom % refe 9 0 0 0 8404 4969 3473	rence clas 10 0 0 8 0 7765 12456 5947	rs with 2 de 11 0 103 0 6 15952 8533 2748	ecimal plac 12 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933 163450 34223	N 2322554 1346538 2337880 2366109 2248312 2212795 2342021	TP 50368 1009731 35242 9004 73247 124152 18581	FN 3323 19976 3123 1132 54686 39297 15642	TPR 0.938 0.981 0.919 0.888 0.573 0.760 0.543	PPV 0.767 0.997 0.966 0.495 0.485 0.656 0.234	FNR 0.062 0.019 0.081 0.112 0.427 0.240 0.457
Confusion M Reference 1 2 3 4 5 6 7 8	1 50368 15343 0 0 0 0 0 0 0	els*) 2 3323 1009731 0 0 0 0 0 0 0 0 0 0	*Subject to 3 0 35242 1080 0 147 0 0	o round-off 0 2883 2724 9004 64 2975 0 0 0	f error ass 0 0 1 73247 409 2341 3837	ociated wit Pred 6 0 1648 100 7 601 124152 151 1590	h calculatii icted 7 0 292 37 4541 1161 18581 241	ng pixels fr 8 0 0 0 17359 8647 982 29986	rom % refe 9 0 0 0 8404 4969 3473 1523	rence clas 10 0 0 8 0 7765 12456 5947 778	rs with 2 de 11 0 103 0 6 15952 8533 2748 3658	ecimal plac 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933 163450 34223 41614	N 2322554 1346538 2337880 2366109 2248312 2212795 2342021 2334631	TP 50368 1009731 35242 9004 73247 124152 18581 29986	FN 3323 19976 3123 1132 54686 39297 15642 11628	TPR 0.938 0.981 0.919 0.888 0.573 0.760 0.543 0.721	PPV 0.767 0.997 0.966 0.495 0.485 0.485 0.656 0.234 0.271	FNR 0.062 0.019 0.081 0.112 0.427 0.240 0.457 0.279
Confusion N Reference 1 2 3 4 5 6 7 7 8 9	atrix (Pix 50368 15343 0 0 0 0 0 0 0 0 0 0 0 0	els*) 2 3323 1009731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject to 3 0 35242 1080 0 147 0 0 0 0 0	a round-off 4 0 2883 2724 9004 64 2975 0 0 396	f error ass 0 0 1 73247 409 2341 3837 25873	ociated wit Pred 6 0 1648 100 7 601 124152 151 1590 38850	h calculatii icted 7 0 292 37 4541 1161 18581 241 39878	ng pixels fr 8 0 0 17359 8647 982 29986 21047	rom % refe 9 0 0 0 8404 4969 3473 1523 232466	rence clas 10 0 8 0 7765 12456 5947 778 34221	es with 2 de 11 0 103 0 6 15952 8533 2748 3658 2888	ecimal plac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933 163450 34223 41614 395619	N 2322554 1346538 2337880 2366109 2248312 2212795 2342021 2334631 1980626	TP 50368 1009731 35242 9004 73247 124152 18581 29986 232466	FN 3323 19976 3123 1132 54686 39297 15642 11628 163153	TPR 0.938 0.981 0.919 0.888 0.573 0.760 0.543 0.721 0.588	PPV 0.767 0.997 0.966 0.495 0.485 0.656 0.234 0.271 0.817	FNR 0.062 0.019 0.081 0.112 0.427 0.240 0.457 0.279 0.412
Confusion N Reference 1 2 3 4 5 6 6 7 7 8 9 9 10	latrix (Pix) 50368 15343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 2 3323 1009731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject to 3 0 35242 1080 0 147 0 0 0 0 0 0	o round-off 4 0 2883 2724 9004 64 2975 0 396 0	f error ass 0 0 1 73247 409 2341 3837 25873 23336	ociated wit Pred 6 0 1648 100 7 601 124152 151 1590 38850 10802	h calculatii icted 7 0 292 37 4541 1161 18581 241 39878 13191	ng pixels fi 8 0 0 17359 8647 982 29986 21047 5747	rom % refe 9 0 0 8404 4969 3473 1523 232466 30918	rence clas 10 0 8 0 7765 12456 5947 778 34221 228615	ts with 2 de 11 0 103 0 6 15952 8533 2748 3658 2888 33619	ecimal plac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933 163450 34223 41614 395619 346229	N 2322554 1346538 2337880 2366109 2248312 2212795 2342021 234631 1980626 2030016	TP 50368 1009731 35242 9004 73247 124152 18581 29986 232466 232466 2226615	FN 3323 19976 3123 1132 54686 39297 15642 11628 163153 117614	TPR 0.938 0.961 0.919 0.888 0.573 0.760 0.543 0.721 0.588 0.660	PPV 0.767 0.997 0.966 0.495 0.495 0.485 0.656 0.234 0.271 0.271 0.743	FNR 0.062 0.019 0.081 0.112 0.427 0.240 0.457 0.279 0.412 0.340
Confusion N Reference 1 2 3 4 5 6 7 7 8 9 9 9 10 11	latrix (Pix) 50368 15343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 2 3323 1009731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject to 3 0 35242 1080 0 147 0 0 0 0 0 0 0 0 0 0 0 0 0	o round-off 4 0 2883 2724 9004 64 2975 0 0 396 0 162	f error ass 0 0 1 73247 409 2341 3837 25873 23336 21915	ociated wit Pred 6 0 1648 100 7 601 124152 151 1590 38850 10802 11309	h calculatii icted 7 0 292 37 4541 1161 18581 241 39878 13191 1623	ng pixels fr 8 0 0 0 17359 8647 982 29986 21047 5747 26785	rom % refe 9 0 0 0 8404 4969 3473 1523 232469 30918 2381	rence clas 10 0 0 7765 12456 5947 778 34221 228615 17748	s with 2 de 11 0 103 0 6 15952 8533 2748 3658 2888 33619 52853	ecimal place 12 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933 163450 34223 41614 395619 346229 346229	N 2322554 1346538 2337880 2366109 2248312 2212795 2342021 2334631 1980626 2030016 2240967	TP 50368 1009731 35242 9004 73247 124152 18581 29986 232466 228615 52853	FN 3323 19976 3123 1132 54686 39297 15642 11628 163153 117614 82425	TPR 0.938 0.981 0.919 0.888 0.573 0.760 0.543 0.721 0.588 0.660 0.391	PPV 0.767 0.997 0.966 0.495 0.485 0.656 0.234 0.271 0.271 0.743 0.439	FNR 0.062 0.019 0.081 0.112 0.427 0.240 0.457 0.279 0.412 0.344 0.609
Confusion N Reference 1 2 3 4 5 6 6 7 8 8 9 9 10 11 12	latrix (Pix) 50368 15343 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 2 3323 1009731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject to 3 0 35242 1080 0 147 0 0 0 0 0 0 0 0 0 0 0 0 0	a round-off 4 0 2883 2724 9004 64 2975 0 0 396 0 162 0	f error ass 5 0 0 1 73247 409 2341 3837 25873 23366 21915 0	ociated wit Pred 6 0 1648 100 7 601 124152 151 1590 38850 10802 11309 0	h calculatii icted 7 0 292 37 4541 1161 18581 241 39878 13191 1623 0	ng pixels fi	9 0 0 0 0 8404 4969 3473 1523 232466 30918 2881 0	10 0 8 0 7765 12456 5947 778 34221 228615 17748 0	s with 2 de 11 0 103 0 6 15952 8533 2748 3658 2888 33619 52853 0	ecimal place 12 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933 163450 34223 41614 395619 346229 135278 0	N 2322554 1346538 2336109 2248312 2212795 2342021 2334631 1980626 2030016 2240967 2376245	TP 50368 1009731 35242 9004 73247 124152 18581 29986 232466 232466 232466 232465 55853 0	FN 3323 19976 3123 1132 54686 39297 15642 11628 163153 117614 82425 0	TPR 0.938 0.981 0.919 0.888 0.573 0.760 0.543 0.721 0.588 0.660 0.391	PPV 0.767 0.997 0.966 0.485 0.656 0.234 0.271 0.817 0.743 0.439	FNR 0.062 0.019 0.081 0.112 0.427 0.240 0.457 0.279 0.412 0.340 0.609
Confusion N Reference 1 2 3 4 5 6 7 8 9 9 10 11 11 12 Sum:	latrix (Pix) 50368 15343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 2 3323 1009731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject to 3 0 0 35242 1080 0 147 0 0 0 0 0 0 0 0 36470	a round-off 4 0 2883 2724 9004 64 2975 0 0 396 0 162 0 18208	f error ass 0 0 1 73247 409 2341 3837 25873 2336 21915 0 150959	ociated wit Pred 6 0 1648 100 7 601 124152 151 1590 38850 10802 11309 0 189210	h calculatii icted 7 0 292 37 4541 1161 18581 241 39878 13191 1623 0 79547	ng pixels fi 8 0 0 0 17359 8647 982 29986 21047 5747 26785 0 110553	rom % refe 9 0 0 0 8404 4969 3473 1523 232466 30918 282463 0 0 284636	10 0 8 0 7765 12456 5947 778 34221 228615 17748 0 307539	s with 2 de 11 0 103 0 6 15952 8533 2748 3658 2888 33619 52853 0 120360	ecimal place 12 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933 163450 34223 41614 395619 395619 346229 135278 0 2376245	N 2322554 1346538 2337880 2366109 2248312 2212795 2342021 2334631 1980626 2030016 2240967 2376245	TP 50368 1009731 35242 9004 73247 124152 18581 29986 232466 228615 52853 0	FN 3323 19976 3123 1132 54686 39297 15642 11628 163153 117614 82425 0	TPR 0.938 0.981 0.919 0.888 0.573 0.760 0.543 0.721 0.588 0.660 0.391	PPV 0.767 0.997 0.966 0.495 0.485 0.656 0.234 0.234 0.271 0.817 0.743 0.439	FNR 0.062 0.019 0.081 0.427 0.4427 0.4427 0.442 0.457 0.279 0.412 0.340 0.609
Confusion N Reference 1 2 3 4 5 6 6 7 8 8 9 9 10 10 11 12 2 Sum: FP:	latrix (Pix) 1 50368 15343 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 2 3323 1009731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject to 3 0 0 35242 1080 0 147 0 0 0 0 36470 1228	a round-off 4 0 2883 2724 9004 64 2975 0 0 396 0 162 0 18208 9204	f error ass 0 0 1 73247 409 2341 3837 25873 2336 21915 0 150959 77712	ociated wit Pred 6 0 1648 100 7 601 124152 151 1590 38850 10802 11309 0 189210 65057	h calculatin icted 7 0 292 37 4541 1161 18581 241 18581 241 39878 13191 1623 0 79547 60965	ng pixels fr 8 0 0 17359 8647 982 29986 21047 5747 26785 0 110553 80568	9 0 0 0 8404 4969 3473 1523 232466 30918 28281 0 288636 52170	10 0 0 7765 12456 5947 778 34221 228615 17748 0 307539 78924	s with 2 do 11 0 103 0 6 15952 8533 2748 3658 2888 33619 52853 0 120360 67507	ecimal place 12 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029707 38365 10136 127933 163450 34223 41614 395619 346229 135278 0 2376245	N 2322554 1346538 2337880 2366109 2248312 2212795 2342021 2334631 1980626 2030016 2240967 2376245	TP 50368 1009731 35242 9004 73247 124152 18581 29986 232466 232615 52853 0	FN 3323 19976 3123 1132 54686 39297 15642 11628 163153 117614 82425 0 A vg:	TPR 0.938 0.981 0.919 0.888 0.573 0.760 0.543 0.721 0.588 0.660 0.391	PPV 0.767 0.997 0.966 0.495 0.485 0.656 0.234 0.271 0.817 0.743 0.439	FNR 0.062 0.019 0.081 0.427 0.240 0.427 0.240 0.412 0.340 0.609

N	Negatives	Number of negatives for class
TP	True Positive	Number of pixels correctly predicted as x for class x
FN	False Negative	Number of pixels incorrectly predicted as not x for class x
FP	False Positive	Number of pixels incorrectly predicted as x for not class x
TN	True Negative	Number of pixels correctly predicted as not x for not class x
TPR	True Positive Rate (Producer's Accuracy or Recall)	Number of pixels correctly predicted as not x for not class x
PPV	Positive Predictive Value (User's Accuracy or Precision)	How often the prediction of x is correct (posterior probability of correct prediction)
FNR	False Negative Rate	How often not x is predicted for class x
Acc	Accuracy	How often the classification is correct
F1	F1 Score	Harmonic mean of TPR and PPV

A1. RI05 MS confusion matrix, prevalence, and performance metrics.

F1 0.844 0.989 0.942 0.635 0.525 0.704 0.327 0.394 0.683 0.699 0.414

Study Site RI05 MS+T

Sum:

Confusion	Matrix	(%	Reference	Class)
Comasion	THUR I IA	1,0	Reference	01433)

						Pred	icted							Reference	Prevalence	Predicted	Prevalence	Predicted
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	Pixels	% Reference	Pixels	% Map	Area (ha)
1	89.44	10.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		100.0	53691	2.26	277254	0.45	6.93
2	0.00	99.59	0.03	0.20	0.00	0.01	0.00	0.01	0.12	0.00	0.05		100.0	1029707	43.33	9758891	15.87	243.97
3	0.00	0.00	94.61	4.30	0.00	0.20	0.88	0.00	0.01	0.00	0.00		100.0	38365	1.61	577038	0.94	14.43
4	0.00	0.00	3.31	96.36	0.01	0.00	0.25	0.00	0.00	0.00	0.08		100.0	10135	0.43	572374	0.93	14.31
5	0.00	0.00	0.00	0.04	69.01	0.01	3.91	14.23	0.09	3.99	8.73		100.0	127920	5.38	2672585	4.35	66.81
6	0.00	0.00	0.42	0.00	0.00	94.24	0.00	0.00	5.34	0.00	0.00		100.0	163466	6.88	5208915	8.47	130.22
7	0.00	0.00	0.00	0.00	3.19	0.02	66.15	4.39	3.61	17.64	5.01		100.0	34220	1.44	6781801	11.03	169.55
8	0.00	0.00	0.00	0.00	9.04	0.00	1.21	80.81	0.00	1.82	7.12		100.0	41618	1.75	1683631	2.74	42.09
9	0.00	0.00	0.01	0.00	0.00	9.41	5.18	0.00	81.66	3.03	0.70		100.0	395619	16.65	16071976	26.13	401.80
10	0.00	0.00	0.00	0.00	4.23	0.26	7.79	0.96	3.37	71.67	11.72		100.0	346229	14.57	9455183	15.37	236.38
11	0.00	0.00	0.00	0.27	4.55	0.76	2.70	4.94	2.11	13.88	70.79		100.0	135278	5.69	8449275	13.74	211.23
12													0.0	0	0.00	0	0.00	0.00
Sum:	89.44	110.15	98.38	101.17	90.03	104.91	88.07	105.34	96.31	112.03	104.20	0.00		2376248	100	61508923	100	1538
NC:	11													% Map				
Avg TPR:	0.831													3.86				
Acc:	0.877																	
Confusion M		-1-*)	*Cubinet			a a i a f a al su iti	h a a la cilati				مام 3 مانتين	in						
Confusion W		ers)	Subject	to round-or	II enor ass	Dred	icted	ing pixels i	10111 76 1 816	erence clas	s with z de	ecimai pia	ices					
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Support	N	TP	FN	TPR	PPV
1	48021	5670	õ	0	õ	ō	0	0	õ	0	0	0	53691	2322638	48021	5670	0.894	1 000
2	0	1025485	309	2059	Õ	103	Ő	103	1236	õ	515	Ő	1029810	1346519	1025485	4325	0.996	0.995
3	0	0	36297	1650	0	77	338	0	4	0	0	0	38365	2337964	36297	2068	0.946	0.964
4	0	0	335	9766	1	0	25	0	0	0	8	0	10136	2366193	9766	370	0.964	0.703
5	0	0	0	51	88278	13	5002	18203	115	5104	11167	0	127933	2248396	88278	39655	0.690	0.775
6	0	0	687	0	0	154050	0	0	8729	0	0	0	163466	2212863	154050	9416	0.942	0,797
7	0	0	0	0	1092	7	22637	1502	1235	6036	1714	0	34223	2342105	22637	11587	0.661	0.284
8	0	0	0	0	3762	0	504	33632	0	757	2963	0	41618	2334711	33632	7986	0.808	0.530
9	0	0	40	0	0	37228	20493	0	323062	11987	2769	0	395579	1980749	323062	72517	0.817	0.926
10	0	0	0	0	14645	900	26971	3324	11668	248142	40578	0	346229	2030100	248142	98087	0.717	0.853
11	0	0	0	365	6155	1028	3653	6683	2854	18777	95763	0	135278	2241051	95763	39515	0.708	0.616

Avg:

Acc:

0.831 0.877

0.767

0.169

FP: 2322638 1340849 2336593 2362067 2222740 2173507 2285120 2304896 1954908 TN: 1987438 2181335 2376329

A2. RI05 MS+T confusion matrix, prevalence, and performance metrics.

F1 0.944

0.995 0.955 0.813 0.730 0.863 0.398 0.640 0.868 0.779

0.659

Study Site RI05 MS+TPI

Confusion Matrix (% Reference Class)

						Pred	icted							Reference	Prevalence	Predicted	Prevalence	Predicted	
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	Pixels	% Reference	Pixels	% Map	Area (ha)	
1	93.01	6.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		100.0	53691	2.26	107540	0.17	2.69	
2	0.05	99.63	0.00	0.23	0.00	0.01	0.00	0.01	0.00	0.00	0.06		100.0	1029707	43.33	10339999	16.81	258.50	
3	0.00	0.00	96.89	2.40	0.00	0.70	0.00	0.00	0.01	0.00	0.00		100.0	38365	1.61	592765	0.96	14.82	
4	0.00	0.00	0.06	99.45	0.03	0.00	0.34	0.00	0.00	0.09	0.04		100.0	10135	0.43	800679	1.30	20.02	
5	0.00	0.00	0.00	0.08	68.04	0.00	6.85	14.67	0.01	0.98	9.37		100.0	127920	5.38	5405960	8.79	135.15	
6	0.00	0.00	0.53	0.00	0.00	90.88	0.00	0.00	6.58	2.00	0.00		100.0	163466	6.88	4034262	6.56	100.86	
7	0.00	0.00	0.00	0.00	9.08	0.00	82.51	4.88	0.01	0.56	2.96		100.0	34220	1.44	3786818	6.16	94.67	
8	0.00	0.00	0.00	0.02	7.71	0.00	2.93	84.58	0.12	0.09	4.54		100.0	41618	1.75	3359653	5.46	83.99	
9	0.00	0.00	0.02	0.00	0.93	11.45	0.70	0.10	81.24	5.54	0.04		100.0	395619	16.65	11343808	18.44	283.60	
10	0.00	0.00	0.00	0.00	5.10	0.33	2.62	0.44	5.90	75.04	10.57		100.0	346229	14.57	14776498	24.02	369.41	
11	0.00	0.00	0.00	0.13	8.84	0.00	0.75	8.11	0.41	6.46	75.29		100.0	135278	5.69	6960941	11.32	174.02	
12													0.0	0	0.00	0	0.00	0.00	
Sum:	93.06	106.62	97.50	102.31	99.73	103.37	96.70	112.79	94.28	90.76	102.87	0.00		2376248	100	61508923	100	1538	
NC:	11													% Map					
Avg IPR:	0.861													3.86					
ACC:	0.000																		
Confusion M	atrix (Div	olc*)	*Subject t	o round of	forror acc	ociated wit	h calculati	na nivele fr	rom % rofo	ronco clas	c with 2 d	cimal plac	00						
Confusion M	atrix (Pix	els*)	*Subject t	o round-of	f error ass	ociated wit	h calculati	ng pixels fi	rom % refe	rence clas	s with 2 de	ecimal plac	es						
Confusion M	atrix (Pix Predicted	els*) d 2	*Subject t	o round-of	f error ass	ociated wit	h calculatii 7	ng pixels fi 8	rom % refe 9	rence clas	s with 2 de	ecimal plac	es	N	TP	FN	TPR	PPV	FNR
Confusion M Reference	atrix (Pixe Predicted 1 49938	els*) d 2 3753	*Subject t 3 0	o round-of 4 0	f error ass 5 0	ociated wit 6 0	h calculatii 7 0	ng pixels fr 8 0	rom % refe 9 0	rence clas	s with 2 de 11 0	ecimal plac 12 0	es Support 53691	N 2322500	TP 49938	FN 3753	TPR 0.930	PPV 0 990	FNR 0 070
Confusion M Reference	atrix (Pixe Predicted 1 49938 515	els*) d 3753 1025897	*Subject t 3 0 0	o round-of 4 0 2368	f error ass 5 0 0	ociated wit 6 0 103	h calculatii 7 0 0	ng pixels fr 8 0 103	rom % refe 9 0 0	rence clas 10 0 0	s with 2 de 11 0 618	ecimal plac 12 0 0	es Support 53691 1029604	N 2322500 1346587	TP 49938 1025897	FN 3753 3707	TPR 0.930 0.996	PPV 0.990 0.996	FNR 0.070 0.004
Confusion M Reference 1 2 3	atrix (Pixe Predicted 49938 515 0	els*) d 3753 1025897 0	*Subject t 3 0 0 37172	o round-of 4 0 2368 921	f error ass 5 0 0 0	ociated wit 6 0 103 269	h calculatii 7 0 0 0	ng pixels fr 8 0 103 0	rom % refe 9 0 0 4	rence clas 10 0 0 0	s with 2 de 11 0 618 0	ecimal plac 12 0 0 0	ses Support 53691 1029604 38365	N 2322500 1346587 2337826	TP 49938 1025897 37172	FN 3753 3707 1193	TPR 0.930 0.996 0.969	PPV 0.990 0.996 0.975	FNR 0.070 0.004 0.031
Confusion M Reference 1 2 3 4	atrix (Pixe Predicted 49938 515 0 0	els*) d 3753 1025897 0 0	*Subject t 3 0 0 37172 6	o round-of 4 0 2368 921 10079	f error ass 0 0 0 3	ociated wit 6 0 103 269 0	h calculatii 7 0 0 0 34	ng pixels fi 0 103 0 0	rom % refe 9 0 0 4 0	rence clas 10 0 0 0 9	ss with 2 de 11 0 618 0 4	ecimal plac 12 0 0 0 0 0	ses Support 53691 1029604 38365 10136	N 2322500 1346587 2337826 2366055	TP 49938 1025897 37172 10079	FN 3753 3707 1193 57	TPR 0.930 0.996 0.969 0.994	PPV 0.990 0.996 0.975 0.738	FNR 0.070 0.004 0.031 0.006
Confusion M Reference 1 2 3 4 5	atrix (Pix Predicted 49938 515 0 0 0	els*) d 3753 1025897 0 0 0	*Subject t 3 0 0 37172 6 0	o round-of 4 0 2368 921 10079 102	f error ass 0 0 0 3 87037	ociated wit 6 0 103 269 0 0 0	h calculatii 7 0 0 34 8763	ng pixels fi 8 0 103 0 0 18766	rom % refe 9 0 4 0 13	rence clas 10 0 0 0 9 1254	ss with 2 de 11 0 618 0 4 11986	ecimal plac 12 0 0 0 0 0 0 0 0	es Support 53691 1029604 38365 10136 127920	N 2322500 1346587 2337826 2366055 2248271	TP 49938 1025897 37172 10079 87037	FN 3753 3707 1193 57 40883	TPR 0.930 0.996 0.969 0.994 0.680	PPV 0.990 0.996 0.975 0.738 0.687	FNR 0.070 0.004 0.031 0.006 0.320
Confusion M Reference 1 2 3 4 5 6	atrix (Pix Predicted 49938 515 0 0 0 0 0	els*) d 3753 1025897 0 0 0 0 0	*Subject t 3 0 0 37172 6 0 866	o round-of 4 0 2368 921 10079 102 0	f error ass 0 0 0 3 87037 0	ociated wit 6 0 103 269 0 0 148558	h calculatii 7 0 0 34 8763 0	ng pixels fr 8 0 103 0 0 18766 0	rom % refe 9 0 4 0 13 10756	rence clas 10 0 0 9 1254 3269	ss with 2 de 11 0 618 0 4 11986 0	ecimal plac 0 0 0 0 0 0 0 0 0	Support 53691 1029604 38365 10136 127920 163450	N 2322500 1346587 2337826 2366055 2248271 2212741	TP 49938 1025897 37172 10079 87037 148558	FN 3753 3707 1193 57 40883 14892	TPR 0.930 0.996 0.969 0.994 0.680 0.909	PPV 0.990 0.996 0.975 0.738 0.687 0.760	FNR 0.070 0.004 0.031 0.006 0.320 0.091
Confusion M Reference 1 2 3 4 5 5 6 7	atrix (Pix) Predicted 49938 515 0 0 0 0 0 0	els*) d 3753 1025897 0 0 0 0 0 0 0	*Subject t 3 0 0 37172 6 0 866 0	o round-of 4 0 2368 921 10079 102 0 0	f error ass 5 0 0 0 3 87037 0 3107	ociated wit 6 0 103 269 0 0 148558 0	h calculatii 7 0 0 34 8763 0 28235	ng pixels fr 8 0 103 0 18766 0 1670	rom % refe 9 0 4 0 13 10756 3	rence clas 10 0 0 9 1254 3269 192	ss with 2 de 11 0 618 0 4 11986 0 1013	ecimal plac 0 0 0 0 0 0 0 0 0 0	ses Support 53691 1029604 38365 10136 127920 163450 34220	N 2322500 1346587 2337826 2360055 2248271 2212741 2341971	TP 49938 1025897 37172 10079 87037 148558 28235	FN 3753 3707 1193 57 40883 14892 5985	TPR 0.930 0.996 0.969 0.994 0.680 0.909 0.825	PPV 0.990 0.996 0.975 0.738 0.687 0.760 0.552	FNR 0.070 0.004 0.031 0.006 0.320 0.091 0.175
Confusion M Reference 1 2 3 4 5 6 7 7 8	atrix (Pix) Predicted 49938 515 0 0 0 0 0 0 0 0 0 0 0 0	els*) 3753 1025897 0 0 0 0 0 0 0 0 0	*Subject t 3 0 0 37172 6 0 866 0 0 0	o round-of 4 0 2368 921 10079 102 0 0 8	f error ass 5 0 0 0 3 87037 0 3107 3209	ociated wit 6 0 103 269 0 0 148558 0 0 0	h calculatii 7 0 0 34 8763 0 28235 1219	ng pixels fr 8 0 103 0 18766 0 1670 35201	rom % refe 9 0 4 0 13 10756 3 50	rence clas 10 0 0 9 1254 3269 192 37	s with 2 de 11 0 618 0 4 11986 0 1013 1889	ecimal plac 0 0 0 0 0 0 0 0 0 0 0 0	ses Support 53691 1029604 38365 10136 127920 163450 34220 41614	N 2322500 1346587 2337826 2366055 2248271 2212741 2341971 2334577	TP 49938 1025897 37172 10079 87037 148558 28235 35201	FN 3753 3707 1193 57 40883 14892 5985 6413	TPR 0.930 0.996 0.969 0.994 0.680 0.909 0.825 0.846	PPV 0.990 0.996 0.975 0.738 0.760 0.760 0.552 0.513	FNR 0.070 0.004 0.031 0.006 0.320 0.091 0.175 0.154
Confusion M Reference 1 2 3 4 5 6 6 7 7 8 9	atrix (Pix Predicted 1 49938 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 3753 1025897 0 0 0 0 0 0 0 0 0 0 0	*Subject t 3 0 0 37172 6 0 866 0 0 79	o round-of 4 0 2368 921 10079 102 0 0 8 0	f error ass 5 0 0 3 87037 0 3107 3209 3679	ociated wit 6 0 103 269 0 0 148558 0 0 45298	h calculatii 7 0 0 34 8763 0 28235 1219 2769	ng pixels fr 8 0 103 0 18766 0 1670 35201 396	rom % refe 9 0 4 0 13 10756 3 50 321401	rence clas 10 0 0 9 1254 3269 192 37 21917	s with 2 de 11 0 618 0 4 11986 0 1013 1889 158	ecimal plac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ses Support 53691 1029604 38365 10136 127920 163450 34220 41614 395698	N 2322500 1346587 2337826 2366055 2248271 2212741 2341971 2334577 1980493	TP 49938 1025897 37172 10079 87037 148558 28235 35201 321401	FN 3753 3707 1193 57 40883 14892 5985 6413 74297	TPR 0.930 0.996 0.969 0.994 0.680 0.909 0.825 0.846 0.812	PPV 0.990 0.996 0.975 0.738 0.687 0.760 0.552 0.513 0.910	FNR 0.070 0.004 0.031 0.006 0.320 0.091 0.175 0.154 0.188
Confusion M Reference 1 2 3 4 5 5 5 7 8 9 9 10	atrix (Pix: Predicted 49938 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 1 2 3753 1025897 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject t 3 0 37172 6 0 866 0 0 79 0	o round-of 4 0 2368 921 10079 102 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0	f error ass 5 0 0 0 3 87037 0 3107 3209 3679 17658	ociated wit 6 0 103 269 0 148558 0 0 45298 1143	h calculatii 7 0 0 34 8763 0 28235 1219 2769 9071	ng pixels fi 8 0 103 0 18766 0 18766 0 1670 35201 396 1523	rom % refe 9 0 4 0 13 10756 3 50 321401 20428	rence clas 10 0 0 9 1254 3269 192 37 21917 259810	s with 2 de 11 0 618 0 4 11986 0 1013 1889 158 36596	ecimal plac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ses Support 53691 1029604 38365 10136 127920 163450 34220 41614 395698 346229	N 2322500 1346587 2337826 2366055 2248271 2212741 2341971 2334577 1980493 2029962	TP 49938 1025897 37172 10079 87037 148558 28235 35201 321401 259810	FN 3753 3707 1193 57 40883 14892 5985 6413 74297 86419	TPR 0.930 0.996 0.994 0.680 0.909 0.825 0.846 0.812 0.750	PPV 0.990 0.996 0.975 0.738 0.687 0.760 0.552 0.513 0.910 0.880	FNR 0.070 0.004 0.031 0.006 0.320 0.091 0.175 0.154 0.188 0.250
Confusion M Reference 1 2 3 4 5 6 6 7 7 8 9 9 10 10	atrix (Pix Predicted 49938 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 3753 1025897 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject t 3 0 0 37172 6 0 866 0 79 0 0 0	4 0 2368 921 10079 102 0 0 8 0 0 176	f error ass 5 0 0 0 3 87037 0 3107 3209 3679 17658 11959	6 0 103 269 0 148558 0 148558 0 45298 1143 0	h calculatii 7 0 0 34 8763 0 28235 1219 2769 9071 1015	ng pixels fr 8 0 103 0 18766 0 1670 35201 396 1523 10971	9 0 4 0 13 10756 3 50 321401 20428 555	rence class 10 0 0 9 1254 3269 192 37 21917 259810 8739	ss with 2 de 11 0 618 0 4 11986 0 1013 1889 158 36596 101851	ecimal place 12 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029604 38365 10136 127920 163450 34220 41614 395698 346229 135264	N 2322500 1346587 2337826 2366055 2248271 2212741 2341971 2334577 1980493 2029962 2240927	TP 49938 1025897 37172 10079 87037 148558 28235 35201 321401 259810 101851	FN 3753 3707 1193 57 40883 14892 5985 6413 74297 86419 33414	TPR 0.930 0.996 0.969 0.994 0.680 0.909 0.825 0.846 0.812 0.750 0.753	PPV 0.990 0.996 0.975 0.738 0.687 0.760 0.552 0.513 0.910 0.880 0.661	FNR 0.070 0.004 0.031 0.006 0.320 0.091 0.175 0.154 0.154 0.188 0.250 0.247
Confusion M Reference 1 2 3 4 5 6 7 7 8 9 9 10 11 11 12	atrix (Pix Predicted 1 49938 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 3 3753 1025897 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject t 3 0 0 37172 6 0 866 0 0 79 0 0 0 0 0	a round-of 4 0 2368 9219 10079 102 0 0 8 0 176 0	f error ass 5 0 0 0 3 87037 0 3107 3209 3679 17658 11959 0	ociated wit 6 0 103 269 0 148558 0 0 45298 1143 0 0 0	h calculatii 7 0 0 34 8763 0 28235 1219 2769 9071 1015 0	8 0 103 0 18766 0 1670 35201 396 1523 10971 0	9 0 0 13 10756 3 10756 3 21401 20428 555 0	rence class 10 0 0 9 1254 3269 192 37 21917 259810 8739 0	ss with 2 de 11 0 618 0 11986 0 1013 1889 1589 15596 101851 0	ecimal place 12 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029604 38365 10136 127920 163450 34220 41614 395698 346229 135264 0	N 2322500 1346587 2337826 2366055 2248271 2212741 2341971 234577 1980493 2029962 2240927 2376191	TP 49938 1025897 37172 10079 87037 148558 28235 35201 321401 259810 101851 0	FN 3753 3707 1193 57 40883 14892 5985 6413 74297 86419 33414 0	TPR 0.930 0.996 0.969 0.894 0.680 0.909 0.825 0.846 0.812 0.750 0.753	PPV 0.990 0.996 0.975 0.738 0.687 0.760 0.552 0.513 0.910 0.880 0.661	FNR 0.070 0.004 0.031 0.006 0.320 0.091 0.175 0.154 0.188 0.250 0.247
Confusion M Reference 1 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 Sum:	atrix (Pix Predicted 1 49938 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 3 3753 1025897 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject t 3 0 37172 6 0 866 0 79 0 0 0 38123	a round-of 4 0 2368 921 10079 102 0 0 8 0 0 176 0 13655	f error ass 5 0 0 0 3 87037 0 3107 3209 3679 17658 11959 0 126651	6 0 103 269 0 0 148558 0 0 45298 1143 0 0 195370	h calculatii 7 0 0 34 8763 0 28235 1219 2769 9071 1015 0 51106	8 0 103 0 18766 0 1670 35201 396 1523 10971 0 0 68629	9 0 4 0 13 10756 321401 20428 555 0 353209	rence class 10 0 0 9 1254 3269 192 37 21917 259810 8739 0 295228	ss with 2 da 11 0 618 0 4 11986 0 1013 1889 158 365961 0 1018511 0 154116	ecimal place 12 0 0 0 0 0 0 0 0 0 0 0 0 0	Support 53691 1029604 38365 10136 127920 163450 34220 41614 395698 346229 135264 0 2376191	N 2322500 1346587 2337826 2366055 2248271 2341971 2334577 1980493 2029962 2240927 2376191	TP 49938 1025897 37172 10079 87037 148558 28235 35201 321401 259810 101851 0	FN 3753 3707 1193 57 40883 14892 5985 6413 74297 86419 33414 0	TPR 0.930 0.996 0.994 0.680 0.909 0.825 0.846 0.812 0.750 0.753	PPV 0.990 0.996 0.975 0.738 0.687 0.760 0.552 0.513 0.910 0.880 0.661	FNR 0.070 0.004 0.031 0.006 0.320 0.091 0.155 0.154 0.154 0.188 0.250 0.247
Confusion M Reference 1 2 3 4 5 5 7 8 9 9 10 11 12 Sum: FP:	atrix (Pix. Predicted 1 49938 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	els*) 2 3753 1025897 0 0 0 0 0 0 0 0 0 0 0 0 0	*Subject t 3 0 37172 6 0 866 0 79 0 0 79 0 0 38123 952	a round-of 4 0 2368 921 10079 102 0 0 8 0 0 106 8 0 0 13655 3576	f error ass 0 0 0 3 87037 0 3107 3209 3679 17658 11959 0 126651 39614	6 0 103 269 0 148558 0 148558 0 45298 1143 0 0 195370 46812	r 0 0 34 8763 0 28235 1219 2769 9071 1015 0 51106 22872	8 0 103 0 18766 0 18766 0 1670 35201 396 1523 10971 0 68629 33429	9 0 4 0 13 10756 3 50 321401 20428 555 0 353209 31808	rence class 10 0 0 9 1254 3269 192 37 21917 259810 8739 0 295228 35417	ss with 2 de 11 0 618 0 4 11986 0 1013 1889 158 36596 101851 0 154116 52265	ecimal place 12 0 0 0 0 0 0 0 0 0 0 0 0 0	ses Support 53691 1029604 38365 10136 127920 163450 34220 41614 395698 346229 135264 0 2376191	N 2322500 1346587 2337826 2366055 2248271 2212741 234577 1980493 2029962 2240927 2376191	TP 49938 1025897 37172 10079 87037 148558 28235 35201 321401 259810 101851 0	FN 3753 3707 1193 57 40883 14892 5985 6413 74297 86419 33414 0 A vg:	TPR 0.930 0.996 0.994 0.680 0.909 0.825 0.846 0.812 0.753 0.753	PPV 0.990 0.996 0.975 0.738 0.687 0.760 0.552 0.513 0.910 0.880 0.661	FNR 0.070 0.004 0.031 0.006 0.320 0.091 0.175 0.154 0.154 0.158 0.250 0.247

A3. RI05 MS+TPI confusion matrix, prevalence, and performance metrics.

F1 0.959 0.996 0.972 0.847 0.684 0.662 0.639 0.858 0.810 0.704

Study Site RI05 MS+T+TPI

	Predicted													Reference	Prevalence	Predicted	Prevalence	Predicted
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	Pixels	% Reference	Pixels	% Map	Area (ha)
1	88.65	11.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		100.0	53691	2.26	74474	0.12	1.86
2	0.00	99.77	0.00	0.12	0.00	0.00	0.03	0.01	0.00	0.00	0.07		100.0	1029707	43.33	10119274	16.45	252.98
3	0.00	0.00	98.87	0.48	0.00	0.63	0.00	0.00	0.01	0.00	0.00		100.0	38365	1.61	700490	1.14	17.51
4	0.00	0.00	0.04	99.50	0.03	0.00	0.28	0.00	0.00	0.08	0.08		100.0	10135	0.43	554153	0.90	13.85
5	0.00	0.00	0.00	0.09	76.21	0.00	5.86	12.82	0.00	1.28	3.75		100.0	127920	5.38	2776456	4.51	69.41
6	0.00	0.00	0.39	0.00	0.00	94.42	0.00	0.00	5.19	0.00	0.00		100.0	163466	6.88	4019194	6.53	100.48
7	0.00	0.00	0.00	0.00	7.21	0.00	86.03	2.46	0.00	1.70	2.60		100.0	34220	1.44	3248550	5.28	81.21
8	0.00	0.00	0.00	0.00	6.46	0.00	1.42	90.98	0.00	0.19	0.95		100.0	41618	1.75	1306060	2.12	32.65
9	0.00	0.00	0.02	0.00	0.00	8.55	0.00	0.00	88.30	3.12	0.00		100.0	395619	16.65	15561078	25.30	389.03
10	0.00	0.00	0.00	0.00	2.36	0.04	3.14	0.00	2.57	81.36	10.53		100.0	346229	14.57	13451145	21.87	336.28
11	0.00	0.00	0.00	0.12	3.44	0.02	0.62	0.40	0.75	6.76	87.89		100.0	135278	5.69	9698049	15.77	242.45
12													0.0	0	0.00	0	0.00	0.00
Sum:	88.7	111.1	99.3	100.3	95.7	103.7	97.4	106.7	96.8	94.5	105.9	0.0		2376248	100	61508923	100	1538
NC:	11													% Map				
Avg TPR:	0.902													3.86				
Acc:	0.922																	

Confusion Matrix (Pixels*) *Subject to round-off error associated with calculating pixels from % reference class with 2 decimal places
Predicted

	Fredicted																			
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Support	N	TP	FN	TPR	PPV	FNR	F1
1	47597	6094	0	0	0	0	0	0	0	0	0	0	53691	2322527	47597	6094	0.887	1.000	0.114	0.940
2	0	1027339	0	1236	0	0	309	103	0	0	721	0	1029707	1346511	1027339	2368	0.998	0.994	0.002	0.996
3	0	0	37931	184	0	242	0	0	4	0	0	0	38361	2337857	37931	430	0.989	0.981	0.011	0.985
4	0	0	4	10084	3	0	28	0	0	8	8	0	10136	2366082	10084	52	0.995	0.856	0.005	0.920
5	0	0	0	115	97488	0	7496	16399	0	1637	4797	0	127933	2248286	97488	30445	0.762	0.844	0.238	0.801
6	0	0	638	0	0	154345	0	0	8484	0	0	0	163466	2212752	154345	9121	0.944	0.818	0.056	0.877
7	0	0	0	0	2467	0	29439	842	0	582	890	0	34220	2341998	29439	4781	0.860	0.594	0.140	0.703
8	0	0	0	0	2689	0	591	37864	0	79	395	0	41618	2334600	37864	3754	0.910	0.679	0.090	0.778
9	0	0	79	0	0	33825	0	0	349332	12343	0	0	395579	1980639	349332	46248	0.883	0.950	0.117	0.915
10	0	0	0	0	8171	138	10872	0	8898	281692	36458	0	346229	2029989	281692	64537	0.814	0.922	0.186	0.864
11	0	0	0	162	4654	27	839	541	1015	9145	118896	0	135278	2240940	118896	16382	0.879	0.733	0.121	0.799
12	0	0	0	0	0	0	0	0	0	0	0	0	0	2376218	0	0				
Sum:	47597	1033433	38652	11782	115471	188577	49574	55749	367732	305486	162165	0	2376218							
FP:	0	6094	721	1697	17983	34233	20135	17885	18400	23794	43269	0				Avg:	0.902	0.852	0.098	0.871
TN:	2322527	1340417	2337137	2364385	2230302	2178520	2321864	2316715	1962239	2006195	2197671	2376218				Acc:	0.922			

Confusion Matrix (% Population Area**) **Prevalence-weighted

	1101010	nee neign	lo a												
						Pred	icted								
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	TP	TPR
1	0.121	0.097	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.218	0.121	0.555
2	0.000	16.355	0.000	0.094	0.000	0.000	0.033	0.004	0.000	0.000	0.070		16.556	16.355	0.988
3	0.000	0.000	1.118	0.014	0.000	0.008	0.000	0.000	0.000	0.000	0.000		1.140	1.118	0.980
4	0.000	0.000	0.000	0.771	0.000	0.000	0.003	0.000	0.000	0.001	0.001		0.776	0.771	0.994
5	0.000	0.000	0.000	0.009	3.811	0.000	0.799	0.625	0.000	0.117	0.466		5.827	3.811	0.654
6	0.000	0.000	0.019	0.000	0.000	5.348	0.000	0.000	0.584	0.000	0.000		5.951	5.348	0.899
7	0.000	0.000	0.000	0.000	0.096	0.000	3.136	0.032	0.000	0.042	0.087		3.393	3.136	0.924
8	0.000	0.000	0.000	0.000	0.105	0.000	0.063	1.442	0.000	0.006	0.038		1.654	1.442	0.872
9	0.000	0.000	0.002	0.000	0.000	1.172	0.000	0.000	24.033	0.884	0.000		26.091	24.033	0.921
10	0.000	0.000	0.000	0.000	0.319	0.005	1.158	0.000	0.612	20.165	3.545		25.805	20.165	0.781
11	0.000	0.000	0.000	0.012	0.182	0.001	0.089	0.021	0.070	0.655	11.560		12.590	11.560	0.918
12													0.000	0.000	
Sum:	0.12	16.45	1.14	0.90	4.51	6.53	5.28	2.12	25.30	21.87	15.77	0.00	100.00		
PPV:	1.000	0.994	0.981	0.856	0.844	0.818	0.594	0.679	0.950	0.922	0.733			Avg:	0.862
														Acc:	0.879

A4. RI05 MS+T+TPI confusion matrix, prevalence, and performance metrics including population proportional area.

APPENDIX B

Study Site RI08 MS

IVI S

Confusion N	Confusion Matrix (% Reference Class)																		
						Pred	licted							Reference	Prevalence	Predicted	Prevalence	Predicted	
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	Pixels	% Reference	Pixels	% Map	Area (ha)	
1	99.17	0.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	100.0	699406	34.01	2039427	6.58	50.99	
2	0.22	98.62	0.00	0.83	0.03	0.09	0.00	0.20	0.00	0.00	0.00	0.01	100.0	799733	38.89	6761911	21.83	169.05	
3	0.00	0.00	98.59	0.14	0.00	1.26	0.00	0.00	0.01	0.01	0.00	0.00	100.0	17179	0.84	570684	1.84	14.27	
4	0.00	0.00	0.62	98.24	0.03	0.97	0.01	0.00	0.00	0.00	0.12	0.00	100.0	9851	0.48	468780	1.51	11.72	
5	0.00	0.00	0.00	0.00	67.74	0.15	12.91	8.72	2.33	0.73	7.41	0.00	100.0	113848	5.54	3143785	10.15	78.59	
6	0.00	0.00	0.05	0.87	0.43	80.12	0.51	5.50	3.48	1.57	0.16	7.32	100.0	29545	1.44	1371563	4.43	34.29	
7	0.00	0.00	0.00	0.00	14.19	0.01	53.05	3.40	6.90	17.48	4.97	0.00	100.0	6786	0.33	2615625	8.44	65.39	
8	0.00	0.00	0.00	0.00	6.42	1.78	1.39	81.98	4.11	2.32	2.00	0.00	100.0	50893	2.47	2681126	8.66	67.03	
9	0.00	0.00	0.00	0.00	9.06	4.35	14.49	15.21	42.36	13.27	0.91	0.35	100.0	176061	8.56	3583739	11.57	89.59	
10	0.00	0.00	0.00	0.00	1.64	1.77	3.99	5.34	12.11	65.56	9.58	0.00	100.0	99537	4.84	4912826	15.86	122.82	
11	0.00	0.00	0.00	0.00	2.01	0.18	1.24	1.43	0.16	11.24	83.73	0.00	100.0	47350	2.30	2641528	8.53	66.04	
12	0.00	0.00	0.03	0.00	0.00	5.80	0.03	0.07	0.24	0.41	0.00	93.42	100.0	6139	0.30	185951	0.60	4.65	
Sum:	99.39	99.43	99.29	100.08	101.55	96.48	87.62	121.85	71.70	112.59	108.88	101.12		2056328	100	30976945	100	774	
NC:	12													% Map					
Avg TPR:	0.802													6.64					
Acc:	0.895																		
0		1-*1	*0						0/										
Confusion N	atrix (Pixe	eis)	"Subject i	to round-or	remor ass	ociated wi	in calculau	ng pixeis li	om % reie	srence clas	ss with 2 d	ecimai piac	es						
Peference	1	2	2	4	5	Fred	7	0	0	10	11	12	Support	N	тр	EN	TDD	DDV	END
1	693601	5665	0	0	0	0	0	0	0	0	0	140	699406	1356900	693601	5805	0.992	0.997	0.008
2	1759	788697	õ	6638	240	720	0	1599	ő	ő	0	80	799733	1256573	788697	11036	0.986	0.993	0.014
3	0	0	16937	24	0	216	õ	0	2	2	õ	0	17181	2039125	16937	244	0.986	0.995	0.014
4	õ	õ	61	9678	3	96	1	õ	0	0	12	õ	9850	2046456	9678	172	0.982	0.583	0.018
5	Ő	Ő	0	0	77121	171	14698	9928	2653	831	8436	0	113837	1942469	77121	36716	0.677	0.769	0.323
6	õ	Ő	15	257	127	23671	151	1625	1028	464	47	2163	29548	2026758	23671	5877	0.801	0.664	0 199
7	0	0	0	0	963	1	3600	231	468	1186	337	0	6786	2049520	3600	3186	0.531	0.073	0.470
8	0	0	0	0	3267	906	707	41722	2092	1181	1018	0	50893	2005413	41722	9171	0.820	0.475	0.180
9	0	0	0	0	15951	7659	25511	26779	74579	23363	1602	616	176061	1880245	74579	101482	0.424	0.802	0.576
10	0	0	0	0	1632	1762	3972	5315	12054	65256	9536	0	99527	1956779	65256	34271	0.656	0.668	0.344
11	0	0	0	0	952	85	587	677	76	5322	39646	0	47345	2008960	39646	7699	0.837	0.654	0.163
12	0	0	2	0	0	356	2	4	15	25	0	5735	6139	2050167	5735	404	0.934	0.657	0.066
Sum:	695360	794362	17014	16596	100256	35642	49229	87880	92966	97631	60634	8734	2056306						
FP:	1759	5665	78	6919	23135	11971	45629	46158	18387	32374	20988	2999				Avg:	0.802	0.694	0.198
TN:	1355140	1250907	2039047	2039537	1919334	2014787	2003891	1959254	1861858	1924404	1987972	2047168				Acc:	0.895		
N	Negatives						Number of	f negatives	for class										
TP	True Posit	tive					Number	f pixels co	rrectly pre	dicted as a	for class	x							

	5	5
TP	True Positive	Number of pixels correctly predicted as x for class x
FN	False Negative	Number of pixels incorrectly predicted as not x for class x
FP	False Positive	Number of pixels incorrectly predicted as x for not class x
TN	True Negative	Number of pixels correctly predicted as not x for not class x
TPR	True Positive Rate (Producer's Accuracy or Recall)	How often is x predicted for class x (conditional probability of correct prediction)
PPV	Positive Predictive Value (User's Accuracy, or Precision)	How often the prediction of x is correct (posterior probability of correct prediction)
FNR	False Negative Rate	How often not x is predicted for class x
Acc	Accuracy	How often the classification is correct
F1	F1 Score	Harmonic mean of TPR and PPV

B1. RI08 MS confusion matrix, prevalence, and performance metrics.

F1 0.995 0.990 0.732 0.720 0.726 0.129 0.601 0.554 0.662 0.734 0.771

Study Site RI08 MS+T

Confusion Matrix (% Reference	e Class)
-------------------------------	----------

Prence Pixels 01 1944423 00 0505701				
01 1944423	% Map	Area (ha)		
00 0000704	6.28	48.61		
89 0090701	21.29	164.89		
34 393076	1.27	9.83		
48 626717	2.02	15.67		
3805988	12.29	95.15		
4 2094144	6.76	52.35		
1686165	5.44	42.15		
1242203	4.01	31.06		
6 7363428	23.77	184.09		
3653506	11.79	91.34		
30 1354225	4.37	33.86		
30 217309	0.70	5.43		
0 30976945	100	774		
	TRD	DDV/	END	E4
P FN	TPR	PPV	FNR	F1
P FN 873 8533	TPR 0.988	PPV 0.998	FNR 0.012	F1 0.993
P FN 873 8533 856 7997	TPR 0.988 0.990	PPV 0.998 0.990 0.996	FNR 0.012 0.010 0.012	F1 0.993 0.990
P FN 873 8533 856 7997 80 199 94 157	TPR 0.988 0.990 0.988 0.984	PPV 0.998 0.990 0.996 0.680	FNR 0.012 0.010 0.012 0.016	F1 0.993 0.990 0.992 0.804
P FN 873 8533 356 7997 80 199 94 157 13 21324	TPR 0.988 0.990 0.988 0.984 0.813	PPV 0.998 0.990 0.996 0.680 0.858	FNR 0.012 0.010 0.012 0.016 0.187	F1 0.993 0.990 0.992 0.804 0.835
P FN 873 8533 356 7997 80 199 94 157 13 21324 23 5519	TPR 0.988 0.990 0.988 0.984 0.813 0.813	PPV 0.998 0.990 0.996 0.680 0.858 0.747	FNR 0.012 0.010 0.012 0.016 0.187 0.187	F1 0.993 0.990 0.992 0.804 0.835 0.779
P FN 873 8533 356 7997 80 199 94 157 13 21324 23 5519 78 1708	TPR 0.988 0.990 0.988 0.984 0.813 0.813 0.748	PPV 0.998 0.990 0.996 0.680 0.858 0.747 0.216	FNR 0.012 0.010 0.012 0.016 0.187 0.187 0.252	F1 0.993 0.990 0.992 0.804 0.835 0.779 0.335
P FN 373 8533 356 7997 80 199 94 157 113 21324 23 5519 78 1708 000 6998	TPR 0.988 0.990 0.988 0.984 0.813 0.813 0.813 0.748 0.863	PPV 0.998 0.990 0.680 0.858 0.747 0.216 0.797	FNR 0.012 0.010 0.012 0.016 0.187 0.187 0.252 0.137	F1 0.993 0.990 0.992 0.804 0.835 0.779 0.335 0.828
P FN 873 8533 556 7997 80 199 94 157 13 21324 23 5519 78 1708 800 6998 409 25652	TPR 0.988 0.990 0.988 0.984 0.813 0.813 0.813 0.748 0.863 0.854	PPV 0.998 0.990 0.680 0.858 0.747 0.216 0.797 0.915	FNR 0.012 0.010 0.016 0.187 0.187 0.252 0.137 0.146	F1 0.993 0.990 0.992 0.804 0.835 0.779 0.335 0.828 0.828
P FN 873 8533 566 7997 800 199 94 157 13 21324 23 5519 78 1708 000 6998 409 25652 22 29025	TPR 0.988 0.990 0.988 0.984 0.813 0.813 0.813 0.748 0.863 0.854 0.708	PPV 0.998 0.990 0.880 0.858 0.747 0.216 0.797 0.915 0.794	FNR 0.012 0.010 0.012 0.016 0.187 0.187 0.252 0.137 0.146 0.292	F1 0.993 0.990 0.992 0.804 0.835 0.779 0.335 0.828 0.883 0.883 0.749
P FN 873 8533 566 7997 80 199 94 157 13 21324 23 5519 78 1708 00 6998 409 25652 22 29025 27 6823	TPR 0.988 0.990 0.988 0.984 0.813 0.813 0.748 0.863 0.854 0.856	PPV 0.998 0.990 0.890 0.858 0.747 0.216 0.797 0.915 0.794 0.767	FNR 0.012 0.010 0.012 0.016 0.187 0.252 0.137 0.146 0.292 0.144	F1 0.993 0.990 0.804 0.835 0.779 0.335 0.828 0.883 0.749 0.809
P FN 373 8533 356 7997 80 199 94 157 13 21324 23 5519 78 1708 000 6998 409 25652 22 29025 27 6823 77 362	TPR 0.988 0.990 0.988 0.984 0.813 0.813 0.748 0.863 0.854 0.708 0.856 0.941	PPV 0.998 0.990 0.680 0.858 0.747 0.216 0.797 0.915 0.794 0.797 0.915	FNR 0.012 0.010 0.012 0.016 0.187 0.187 0.252 0.137 0.146 0.292 0.144 0.059	F1 0.993 0.990 0.804 0.835 0.779 0.335 0.828 0.883 0.749 0.809 0.802
P FN 873 8533 556 7997 80 199 94 157 13 21324 23 5519 78 1708 00 6998 019 25652 22 29025 27 6823 77 362	TPR 0.988 0.990 0.988 0.984 0.813 0.813 0.813 0.853 0.854 0.708 0.856 0.941	PPV 0.998 0.990 0.880 0.880 0.747 0.216 0.797 0.915 0.794 0.767 0.699	FNR 0.012 0.010 0.016 0.187 0.252 0.137 0.146 0.292 0.144 0.059	F1 0.993 0.990 0.804 0.835 0.779 0.335 0.828 0.883 0.749 0.809 0.802
P FN 873 8533 556 7997 80 199 94 157 13 21324 23 5519 78 1708 00 6998 409 25652 22 29025 27 6823 77 362	TPR 0.988 0.990 0.988 0.984 0.813 0.813 0.813 0.748 0.863 0.854 0.708 0.856 0.941 0.879	PPV 0.998 0.990 0.880 0.858 0.747 0.216 0.797 0.915 0.794 0.767 0.689 0.788	FNR 0.012 0.010 0.012 0.016 0.187 0.252 0.137 0.146 0.252 0.144 0.059 0.121	F1 0.993 0.990 0.804 0.835 0.779 0.335 0.828 0.883 0.749 0.809 0.802 0.817
18 54 14 33 17 56 34 30 30 0	626717 3805988 2094144 1686165 1242203 7363428 3653506 1354225 217309 30976945	626717 2.02 3805988 12.29 2094144 6.76 1686165 5.44 1242203 4.01 7363428 23.77 3653506 11.79 1354225 4.37 217309 0.70 30976945 100	626717 2.02 15.67 3805988 12.29 95.15 2094144 6.76 52.35 1686165 5.44 42.15 1242203 4.01 31.06 7363428 23.77 184.09 3653506 11.79 91.34 1354225 4.37 33.86 217309 0.70 5.43 30976945 100 774	626717 2.02 15.67 3805988 12.29 95.15 2094144 6.76 52.35 1686165 5.44 42.15 124203 4.01 31.06 7363428 23.77 184.09 3653506 11.79 91.34 1354225 4.37 33.86 217309 0.70 5.43 30976945 100 774

B2. RI08 MS+T confusion matrix, prevalence, and performance metrics.

Study Site RI08 MS+TPI

Confusion Matrix (% Reference Class)																			
						Pred	icted							Reference	Prevalence	Predicted	Prevalence	Predicted	
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	Pixels	% Reference	Pixels	% Map	Area (ha)	
1	99.01	0.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65	100.0	699406	34.01	2088410	6.74	52.21	
2	0.18	98.85	0.00	0.67	0.01	0.00	0.00	0.28	0.00	0.00	0.00	0.01	100.0	799733	38.89	6524148	21.06	163.10	
3	0.00	0.00	98.67	0.24	0.00	1.08	0.00	0.00	0.01	0.00	0.00	0.00	100.0	17179	0.84	700493	2.26	17.51	
4	0.00	0.00	0.65	98.27	0.00	0.88	0.00	0.02	0.00	0.00	0.17	0.00	100.0	9851	0.48	349285	1.13	8.73	
5	0.00	0.00	0.00	0.00	90.70	0.01	3.64	0.67	0.00	0.01	4.97	0.00	100.0	113848	5.54	1367489	4.41	34.19	
6	0.00	0.00	0.05	0.10	0.00	85.54	0.00	0.00	3.38	4.65	0.00	6.27	100.0	29545	1.44	1898537	6.13	47.46	
7	0.00	0.00	0.00	0.00	6.10	0.06	83.85	2.23	0.00	0.97	6.79	0.00	100.0	6786	0.33	4044934	13.06	101.12	
8	0.00	0.00	0.00	0.00	2.68	0.10	4.04	90.80	0.00	0.00	2.37	0.00	100.0	50893	2.47	1359771	4.39	33.99	
9	0.00	0.00	0.00	0.00	0.00	3.56	0.00	0.00	91.69	4.49	0.01	0.26	100.0	176061	8.56	3063086	9.89	76.58	
10	0.00	0.00	0.00	0.00	0.00	2.12	0.38	0.00	3.37	93.50	0.62	0.01	100.0	99537	4.84	6300102	20.34	157.50	
11	0.00	0.00	0.00	0.00	0.27	0.13	4.57	1.86	0.00	1.89	91.28	0.00	100.0	47350	2.30	2837767	9.16	70.94	
12	0.00	0.00	0.03	0.00	0.00	5.36	0.00	0.00	0.42	0.37	0.00	93.81	100.0	6139	0.30	442923	1.43	11.07	
Sum:	99.19	99.19	99.40	99.28	99.76	98.84	96.48	95.86	98.87	105.88	106.21	101.01		2056328	100	30976945	100	774	
NC:	12													% Map					
Avg TPR:	0.930													6.64					
Confusion		815)	Subject t	o rouna-or	enor ass	Pred	licted	ng pixeis i	IUIII 70 Tele	Tence clas	s with 2 u	ecimai pia	Les						
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Support	N	TP	FN	TPR	PPV	F
1	692482	2378	0	0	0	0	0	0	0	0	0	4546	699406	1356930	692482	6924	0.990	0.998	0.
2	1440	790536	0	5358	80	0	0	2239	0	0	0	80	/99/33	1256603	790536	9197	0.989	0.997	0.
3	0	0	16951	41	0	186	0	0	2	0	0	0	1/1/9	2039157	16951	228	0.987	0.995	0.
4	0	0	64	9681	0	87	0	2	0	0	1/	0	9850	2046486	9681	169	0.983	0.641	0.
0	0	0	15	20	103260	25272	4144	/63	000	11	8000	1050	113848	1942488	103260	10588	0.907	0.981	0.
7	0	0	15	30	414	20213	EC00	151	999	1374	461	1852	29042	2020794	20213	4209	0.800	0.735	0.
/	0	0	0	0	414	4 51	2056	46214	0	00	1206	0	50000	2049550	46211	4677	0.039	0.394	0.
0	0	0	0	0	0	6269	2000	40211	161/130	7905	1200	459	176070	1990257	40211	1/6/8	0.908	0.920	0.
10	0	0	0	0	0	2110	378	0	3354	93067	617	10	00537	1056700	93067	6470	0.917	0.901	0.
11	0	0	0	0	128	62	2164	881	0	895	43221	0	47350	2008986	43221	4129	0.933	0.844	0.
12	0	0	2	0	0	329	0	0	26	23	0	5759	6138	2050198	5759	379	0.938	0.453	0.
Sum:	693921	792914	17031	15110	105246	34380	14432	50247	165811	103341	51198	12705	2056336	2000100	0100	515	0.000	0.400	0.
FP:	1440	2378	81	5429	1986	9107	8742	4036	4381	10274	7977	6946	2000000			Ava:	0.930	0.819	0
TN	1355/00	1254225	2039076	2041057	1940502	2017687	2040808	2001/12	1875877	1946525	2001009	2043251				Acc	0.969		0.

B3. RI08 MS+TPI confusion matrix, prevalence, and performance metrics.

F1 0.994 0.993 0.991

0.331 0.776 0.943 0.791 0.536 0.914

0.944 0.917 0.877 0.611 0.857

Study Site RI08 MS+T+TPI

Confusion N	Confusion Matrix (% Reference Class)																		
						Pred	icted							Reference	Prevalence	Predicted	Prevalence	Predicted	
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	Pixels	% Reference	Pixels	% Map	Area (ha)	
1	98.91	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.64	100.0	699406	34.01	1983250	6.40	49.58	
2	0.16	98.98	0.00	0.57	0.01	0.01	0.00	0.26	0.00	0.00	0.00	0.00	100.0	799733	38.89	6553229	21.16	163.83	
3	0.00	0.00	98.97	0.35	0.00	0.61	0.00	0.00	0.05	0.00	0.00	0.02	100.0	17179	0.84	485570	1.57	12.14	
4	0.00	0.00	0.45	98.62	0.00	0.84	0.08	0.00	0.00	0.00	0.01	0.00	100.0	9851	0.48	423843	1.37	10.60	
5	0.00	0.00	0.00	0.00	95.79	0.49	1.85	0.30	0.00	0.00	1.57	0.00	100.0	113848	5.54	1976333	6.38	49.41	
6	0.00	0.00	0.09	0.16	0.00	90.08	0.00	0.00	4.29	0.75	0.00	4.62	100.0	29545	1.44	4648474	15.01	116.21	
7	0.00	0.00	0.00	0.00	2.36	0.04	92.54	2.42	0.00	0.07	2.56	0.00	100.0	6786	0.33	2338214	7.55	58.46	
8	0.00	0.00	0.00	0.00	1.91	0.00	4.42	92.37	0.00	0.00	1.30	0.00	100.0	50893	2.47	1228060	3.96	30.70	
9	0.00	0.00	0.00	0.00	0.00	2.35	0.00	0.00	92.84	4.57	0.01	0.23	100.0	176061	8.56	2841250	9.17	71.03	
10	0.00	0.00	0.00	0.00	0.00	1.60	0.04	0.00	3.04	94.82	0.50	0.00	100.0	99537	4.84	5979578	19.30	149.49	
11	0.00	0.00	0.00	0.00	0.06	0.03	1.86	1.85	0.00	1.63	94.56	0.00	100.0	47350	2.30	2014497	6.50	50.36	
12	0.00	0.00	0.03	0.00	0.00	5.49	0.00	0.00	0.11	0.00	0.00	94.36	100.0	6139	0.30	504647	1.63	12.62	
Sum:	99.07	99.42	99.54	99.70	100.13	101.54	100.79	97.20	100.33	101.84	100.51	99.87		2056328	100	30976945	100	774	
NC:	12													% Map					
Avg IPR:	0.952													6.64					
ACC:	0.976																		
Confusion N	atrix (Div	ole*)	*Cubiect t	a round a	ff orror acco	oninted wit	h colculati	na nivolo f	rom % rofo	ronco clas	owith 2 de	nairmal pla							
Contrasion N			Subject	o rouna-o	11 CH UI ass		icted	ing pixels i		Tence clas	5 WILLIZ UC	scimai pia	005						
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Support	N	TP	FN	TPR	PPV	FNR
1	691782	3077	0	0	0	0	0	0	0	0	0	4476	699336	1356833	691782	7554	0.989	0.998	0.011
2	1280	791576	0	4558	80	80	0	2079	0	0	0	0	799653	1256516	791576	8077	0.990	0.996	0.010
3	0	0	17002	60	0	105	0	0	9	0	0	3	17179	2038990	17002	177	0.990	0.996	0.010
4	0	0	44	9715	0	83	8	0	0	0	1	0	9851	2046318	9715	136	0.986	0.676	0.014
5	0	0	0	0	109055	558	2106	342	0	0	1787	0	113848	1942321	109055	4793	0.958	0.989	0.042
6	0	0	27	47	0	26614	0	0	1267	222	0	1365	29542	2026627	26614	2928	0.901	0.794	0.099
7	0	0	0	0	160	3	6280	164	0	5	174	0	6785	2049384	6280	506	0.925	0.543	0.075
8	0	0	0	0	972	0	2249	47010	0	0	662	0	50893	2005276	47010	3883	0.924	0.931	0.076
9	0	0	0	0	0	4137	0	0	163455	8046	18	405	176061	1880108	163455	12606	0.928	0.974	0.072
10	0	0	0	0	0	1593	40	0	3026	94381	498	0	99537	1956632	94381	5156	0.948	0.913	0.052
11	0	0	0	0	28	14	881	876	0	772	44774	0	47345	2008824	44774	2571	0.946	0.934	0.054
12	0	0	2	0	0	337	0	0	7	0	0	5793	6138	2050031	5793	346	0.944	0.481	0.056
Sum:	693062	794653	17075	14381	110296	33523	11564	50471	167764	103425	47913	12042	2056169						
ED.	1000	2077	72	1666	12/11	6000	E004	2461	4200	0044	2120	0050				A 1/01	0.050	0.050	0.040

TN: 1355553 1253439 2038917 2041652 1941081 2019718 2044100 2001815 1875799 1947588 2005685 2043781

Confusion Matrix (% Population Area**) **Prevalence-weighted

						Pred	icted								
Reference	1	2	3	4	5	6	7	8	9	10	11	12	Sum	TP	TPR
1	6.391	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.606	7.078	6.391	0.903
2	0.012	21.073	0.000	0.434	0.005	0.036	0.000	0.163	0.000	0.000	0.000	0.000	21.723	21.073	0.970
3	0.000	0.000	1.561	0.006	0.000	0.047	0.000	0.000	0.000	0.000	0.000	0.000	1.614	1.561	0.967
4	0.000	0.000	0.004	0.924	0.000	0.037	0.005	0.000	0.000	0.000	0.000	0.000	0.971	0.924	0.952
5	0.000	0.000	0.000	0.000	6.308	0.250	1.375	0.027	0.000	0.000	0.243	0.000	8.202	6.308	0.769
6	0.000	0.000	0.002	0.004	0.000	11.913	0.000	0.000	0.069	0.041	0.000	0.185	12.216	11.913	0.975
7	0.000	0.000	0.000	0.000	0.009	0.001	4.099	0.013	0.000	0.001	0.024	0.000	4.147	4.099	0.988
8	0.000	0.000	0.000	0.000	0.056	0.000	1.468	3.693	0.000	0.000	0.090	0.000	5.307	3.693	0.696
9	0.000	0.000	0.000	0.000	0.000	1.852	0.000	0.000	8.937	1.502	0.002	0.055	12.348	8.937	0.724
10	0.000	0.000	0.000	0.000	0.000	0.713	0.026	0.000	0.165	17.615	0.068	0.000	18.587	17.615	0.948
11	0.000	0.000	0.000	0.000	0.002	0.006	0.575	0.069	0.000	0.144	6.077	0.000	6.873	6.077	0.884
12	0.000	0.000	0.000	0.000	0.000	0.151	0.000	0.000	0.000	0.000	0.000	0.784	0.935	0.784	0.838
SUM:	6.40	21.16	1.57	1.37	6.38	15.01	7.55	3.96	9.17	19.30	6.50	1.63	100.00		
PPV	0.998	0.996	0.996	0.676	0.989	0.794	0.543	0.931	0.974	0.913	0.934	0.481		Avg:	0.885
														Acc:	0.894

B4. RI08 MS+T+TPI confusion matrix, prevalence, and performance metrics including population proportional area.

F1 0.994 0.993 0.993 0.802 0.973 0.844 0.684 0.928 0.951 0.930 0.940 0.637 0.889

Acc: