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Abstract
A complete suite of bulk major- and trace-elements measurements combined with macroscopic/microscopic observations and mineralogy guided by

scanning electron microscope-energy dispersive spectrometry (SEM-EDS) analyses were applied on Nekuashu (2.55 Ga) and Pelland (2.32 Ga)

intrusions in northern Canada, near the Strange Lake rare earth elements (REE) deposit, to evaluate their magmatic evolution and possible relations to

the Mesoproterozoic Strange Lake Peralkaline Complex (SLPC). These Neoarchean to earliest-Paleoproterozoic intrusions, part of the Core Zone in

southeastern Churchill Province, comprise mainly hypersolvus suites, including hornblendite, gabbro, monzogabbro/monzodiorite, monzonite,

syenite/augite-syenite, granodiorite, and mafic diabase/dyke. However, the linkage of the suites and their petrogenesis are poorly understood.

Geochemical evidence suggests a combination of ‘intra-crustal multi-stage differentiation’, mainly controlled by fractional crystallization (to generate

mafic to felsic suites), and ‘accumulation’ (to form hornblendite suite) was involved in the evolution history of this system. Our model proposes that

hornblendite and mafic to felsic intrusive rocks of both intrusions share a similar basaltic parent magma, generated from melting of a hydrous

metasomatized mantle source that triggered an initial REE and incompatible element enrichment that prepared the ground for the subsequent enrichment

in the SLPC.

Geochemical signature of the hornblendite suite is consistent with a cumulate origin and its formation during the early stages of the magma evolution,

however, the remaining suites were mainly controlled by ‘continued fractional crystallization’ processes, producing more evolved suites:

gabbronorite/hornblende-gabbro → monzogabbro/monzodiorite → monzonite → syenite/augite-syenite.

In this proposed model, the hydrous mantle-derived basaltic magma was partly solidified to form the mafic suites (gabbronorite/hornblende-gabbro) by

early-stage plagioclase-pyroxene-amphibole fractionation in the deep crust while settling of the early crystallized hornblende (+pyroxene) led to the

formation of the hornblendite cumulates. The subsequent fractionation of plagioclase, pyroxene, and amphibole from the residual melt produced the more

intermediate suites of monzogabbro/monzodiorite. The evolved magma ascended upward into the shallow crust to form monzonite by K-feldspar

fractionation. The residual melt then intruded at shallower depth to form syenite/augite-syenite with abundant microcline crystals. The granodiorite suite

was probably generated from lower crustal melts associated with the mafic end members. Later mafic diabase/dykes were likely generated by further

partial melting of the same source at depth that were injected into the other suites.
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CANADA’S CRITICAL MINERALS LIST 2021

Monazite (LREE):  (Ce, La, Nd, Th)PO4

Bastnasite: (La, Ce, Y)CO3F

Xenotime: (HREE)Y

Apatite (LREE): Ca5(PO4)3(OH,F,Cl)

REE-bearing Minerals:
Monazite, Bastnasite, Xenotime, 
Zircon, Apatite, Allanite, Titanite, …

REEs

Canada–U.S. Joint Action Plan 



Rare Earth Metals & Our Daily Life

More valuable than gold & oil

REEs are key components in many electronic devices that we use in our daily lives, as 
well as in a variety of industrial applications, clean energy, aerospace, and defence.
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REE Resources in Canada
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Canada is host to a number of
advanced exploration projects and
some of the largest reserves and
resources (measured and indicated)
of these metals. These reserves
and resources are estimated at
over 14 million tonnes in 2021
(NRCan).

Strange Lake Deposit 
(REE, Nb, Zr)

Most Recent Updates in 2021

Natural Resources Canada (2021)

Rare Earth Projects: Potential Future Mines in Canada



STUDY AREA Southeastern Churchill Province: Quebec-Labrador 

Strange Lake Deposit

One of the richest rare-metal
deposits in the world

A peralkaline A-type granite that is
hyper-enriched in

REE, Zr, and Nb

with an indicated resource of 20 Mt
grading 1.44 wt.% REE2O3, of which
~50% are heavy rare-earth oxides (e.g.,
Siegel et al., 2018; Vasyukova and
Williams-Jones, 2020).

Simplified geological map of the Southeastern Churchill Province (SECP) and location of the Core Zone (modified after James
and Dunning, 2000 and Corrigan et al., 2018). NQO = New Quebec Orogen
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Core Zone: Mistinibi-Raude Block 

Simplified geological map of the central part of the Core Zone in the Southeastern Churchill Province (modified after Corrigan et al., 2018).

Neoarchean to Earliest-Paleoproterozoic Intrusions

Zr-Nb-REE Strange Lake (1.24 Ga)

Pelland Intrusion (ca. 2.3 Ga)

Nekuashu Intrusion (ca. 2.55 Ga)

Mesoproterozoic Intrusion
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Nekuashu & Pelland Intrusions (Lithology)

They are composed of granodiorite, syenite, monzonite, monzogabbro/monzodiorite, gabbro, hornblendite, & mafic dykes.
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Monzonite, Micro-Scale Fe-rich Globules 

Fe-rich globule Type I (magnetite, ilmenite, augite, orthopyroxene) 

apatite, zircon, allanite-(Ce) ± sulphides

Irregular to rounded-shaped textures (a few mm to cm)
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Fe-rich globule Type II (magnetite, ilmenite, apatite, REE)

 bastnäsite-(Ce), allanite-(Ce), zircon, titanite ± sulphides

Fe-rich end member (Type I)



Monzonite, Micro-Scale Fe-rich Globules 

Fe-rich globule Type I (magnetite, ilmenite, augite, orthopyroxene) 

apatite, zircon, allanite-(Ce) ± sulphides

Irregular to rounded-shaped textures (a few mm to cm)

12

Fe-rich globule Type II (magnetite, ilmenite, apatite, REE)

 bastnäsite-(Ce), allanite-(Ce), zircon, titanite ± sulphides

Fe-rich end member (Type II)



Micro-Scale Magma Immiscibility 

Schematic diagram modified after Charlier et al. (2011): A model for Sept Iles 
intrusion (Quebec, Canada), one of the largest layered plutonic bodies on Earth. 

(FeO + MgO + CaO + TiO2 + P2O5) 

magnetite +  ilmenite + cpx + opx

apatite + zircon + allanite-(Ce)

Monzonitic
Composition:
55–57 wt. % SiO2

10–11 wt. % FeO
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Magma Immiscibility & Magnetite Bands 

(FeO + TiO2 + CaO + P2O5 + REE) 

magnetite +  ilmenite + apatite

zircon + titanite ± sulphides

REE: [bastnäsite-(Ce) and allanite-(Ce)]

Gabbro, Magnetite Bands (REE Mineralization?) & 
Macro-Scale Magma Immiscibility (?)

Whole rock geochemistry: ∑REE is very high (~ 600 
ppm), similar to REE-mineralized monzonite



Nekuashu & Pelland Intrusions (Geochemistry & Magmatic Evolution)

Hornblendite

gabbronorite/hbl-gabbro→monzogabbro/monzodiorite →monzonite→augite-syenite

‘Intra-crustal multi-stage differentiation’ mainly controlled by fractional crystallization- to generate mafic to 
felsic suites:

‘Accumulation’ to generate hornblendite suite (enriched in Ni, Cr, Sc)

Cr (≤ 1960 ppm) 
Ni (≤ 550 ppm)
Sc (≤ 93 ppm) 
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“Fractional Crystallization” “Accumulation”
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Summary & Concluding Remarks

Injection of later mafic diabase/dykes

Gabbro: Early-stage plagioclase-pyroxene-amphibole fractionation 

Hornblendite: Settling of the early crystallized hornblende (+px) 

Monzodiorite/gabbro: Fractionation of plagioclase, pyroxene & amphibole 
Monzodiorite (plagioclase + hornblende ± pyroxene)
Monzogabbro (plagioclase + pyroxene ± hornblende)  

Monzonite: K-feldspar fractionation

Syenite: Fractionation of microcline crystals

Granodiorite: Lower crustal melts possibly 
associated with the mafic end members

Magmatic Evolution
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Granodiorite: Lower crustal melts possibly 
associated with the mafic end members

Magmatic Evolution

Our model proposes that these suites share a similar basaltic parent magma generated from melting of a hydrous
metasomatized mantle source that triggered an initial REE and incompatible element enrichment for the subsequent
enrichment in the Strange Lake deposit.

Our model proposes that these suites share a similar basaltic parent magma generated from melting of a hydrous
metasomatized mantle source that triggered an initial REE and incompatible element enrichment for the subsequent
enrichment in the Strange Lake deposit.

Our model proposes that these suites share a similar basaltic parent magma generated from melting of a hydrous
metasomatized mantle source that triggered an initial REE and incompatible element enrichment for the subsequent
enrichment in the Strange Lake deposit.
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