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Abstract: The Geo-mapping for Energy and Minerals (GEM) program (2010–2020) provided a unique 
opportunity to advance the current level of understanding of the geological history of the Canadian North. 
In this contribution, based on the Trans-GEM Event Stratigraphy activity, a compilation of Mesozoic– 
Cenozoic stratigraphic data from across the GEM program regions and beyond is presented, with a focus 
on biostratigraphic events, using TimeScale Creator®, a JAVA package that facilitates the compilation 
and comparison of large amounts of stratigraphic data while keeping track of changing absolute ages. The 
‘2020 Canada datapack’, which incorporates some information re-evaluated and refined from an earlier 
datapack, includes schemes using dinoflagellate cysts, spores and pollen, foraminifers and conodonts, and 
a new synthesis of Canadian Arctic Jurassic ammonite and Buchia bivalve biostratigraphy. This datapack 
will continue to be augmented after completion of the GEM program and will become a major tool in 
supporting an understanding of Canada’s sedimentary basins, their resource potential and management.

Résumé : Le programme Géocartographie de l’énergie et des minéraux (GEM), qui s’est dérou-
lé de 2010 à 2020, a offert une occasion unique d’améliorer notre compréhension de l’histoire géolo-
gique du Nord canadien. Dans cette contribution, fondée sur l’activité de stratigraphie événementielle  
trans-GEM, nous présentons une compilation des données stratigraphiques se rapportant aux successions 
du Mésozoïque-Cénozoïque dans les régions du programme GEM, et au-delà de celles-ci, en nous concen-
trant sur les événements biostratigraphiques à l’aide de TimeScale Creator®, un progiciel Java facilitant 
la compilation et la comparaison de grandes quantités de données stratigraphiques, tout en tenant compte 
des changements des âges absolus. Le dossier de données Canada 2020, qui intègre des renseignements 
réévalués et améliorés provenant d’un dossier de données antérieur, comprend des schémas fondés sur les 
kystes de dinoflagellés, les spores et le pollen, les foraminifères et les conodontes, ainsi qu’une nouvelle 
synthèse des données biostratigraphiques sur les ammonites et le bivalve Buchia de l’Arctique canadien 
remontant au Jurassique. Nous prévoyons que le dossier de données continuera de croître une fois le pro-
gramme GEM terminé, et deviendra un outil majeur pour la compréhension des bassins sédimentaires du 
Canada, de leurs ressources potentielles et de la gestion de celles-ci.
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INTRODUCTION

Overview
The Mesozoic–Cenozoic history of what is today Canada 

involved the development of major sedimentary basins, 
including the basins of offshore eastern Canada, devel-
oped on the passive margins of the North Atlantic Ocean 
and Labrador Sea; the Western Interior Basin, a foreland 
basin inboard of the evolving Cordilleran Orogen; and the 
Sverdrup Basin, a successor basin superimposed on previ-
ously deformed lower Paleozoic rocks, which now underlies 
much of the Canadian Arctic Islands. A detailed understand-
ing of the rock units, their correlation, and the resources 
they potentially contain presents an ongoing challenge,  
particularly in remote areas of the vast Canadian North.

Advancing geoscience for sustainable economic develop- 
ment in the Canadian North has been the primary objec-
tive of the Geo-mapping for Energy and Minerals (GEM) 
program since the inception of its first phase in 2010. The 
present contribution involves the use of a new tool that will 
facilitate the study of Canadian sedimentary basins by pro-
viding up-to-date stratigraphic data across the GEM regions 
of interest (Fig. 1), much of which were generated under 
GEM-funded research activities. Most of this stratigraphic 
data can be compiled and consequently visualized using 
the free JAVA package, TimeScale Creator® (TSC; see 
‘TimeScale Creator’ section).

Context
Strictly, stratigraphy is the study of rock layers (strata), 

primarily sedimentary and layered volcanic rocks. In the 
broader sense, it encompasses the history of the Earth as 
reflected in the rock record. Historically, stratigraphy has 
been divided into two related subdisciplines, lithostratigra-
phy and biostratigraphy. Lithostratigraphy is the study of the 
rocks themselves, particularly their succession and relation-
ships to other strata. Lithostratigraphy can provide an initial 
sense of relative ages within a local area or region. As the 
concept of geological, or ‘deep’, time developed, it became 
clear that other methods were needed to extend and consoli-
date the understanding of how sedimentary rocks interrelate 
in space and time on local to global scales. The first major 
step was the inception of biostratigraphy ― the use of fossils 
to determine relative ages of the rocks containing them ― by 
W. Smith (Winchester, 2001) and others in the early to mid-
nineteenth century. Biostratigraphy is based primarily on the 
succession of species through time due to evolution, and it 
continues to make a fundamental contribution to determining 
the ages of Phanerozoic sedimentary rocks. Biostratigraphic 
information can be presented directly as events (such as the 
originations and extinctions of particular species) or indi-
rectly as packages known as biozones (or just zones), in 
which several events or assemblages of fossils are used for 
definition. It was the combination of lithostratigraphic and 

biostratigraphic studies in the nineteenth century that led 
to the formulation of the geological time scale of erathems, 
systems, and stages that is largely still in use today for the 
Phanerozoic. The early time scale was a relative one and 
involved only an extremely limited sense of absolute time, 
with age estimations varying wildly (Gorst, 2001).

A major innovation during the early twentieth century 
was the development of radiometric dating (Lewis, 2000). 
The ability to date selected rocks based on ratios of some 
elements and isotopes provided the ability to calibrate in 
absolute ages the relative geological time scale developed 
through litho- and biostratigraphic means. Radiometric dat-
ing can be used primarily with igneous rocks, but the dating, 
for example, of volcanic ash and lavas within sedimentary 
sequences, and the application of crosscutting relationships 
between igneous rocks and strata, provide critical insights. 
Lithostratigraphy, biostratigraphy, and radiometric dating 
together provide the fundamental basis for the discipline of 
stratigraphy today but continue to be augmented by an array 
of new methodologies such as magnetostratigraphy (correla-
tion using changes in magnetic polarity recorded in rocks), 
sequence stratigraphy, and chemostratigraphy. The array of 
new methodologies developed in the past few decades was 
reviewed in Gradstein et al. (2005, 2012). Application of 
these techniques leads to refinement and minor recalibra-
tion of the geological time scale on an ongoing basis. To 
provide stability to the definitions of chronostratigraphic 
units, specific sections and points are being designated in 
the rock record to mark global chronostratigraphic units or 
(usually) boundaries, the updated status of which can be 
found at http://www.stratigraphy.org/gssp/ (International 
Commission on Stratigraphy, 2019a).

In parallel with modern stratigraphic developments, 
the closely related but separate concepts of chronostratig-
raphy and geochronology have arisen. Chronostratigraphy 
relates to physical rock units in time, whereas geochro-
nology deals with the parallel intervals of time. Erathem, 
system, series, and stage are chronostratigraphic terms, the 
equivalent geochronologic terms being era, period, epoch, 
and age as defined in the International Commission on 
Stratigraphy stratigraphic guide (International Commission 
on Stratigraphy, 2019b). An example of the use of this ter-
minology would be as follows: ‘hadrosaurs are common 
in rocks of the Cretaceous System; they lived during the 
Cretaceous Period.’ The terms ‘lower’ and ‘upper’ are 
chonostratigraphic terms, with ‘early’ and ‘late’ as geo-
chronologic equivalents; the term ‘middle’ is generally 
used in both contexts, in contrast with the use of the term 
‘mid’ by some earlier authors (e.g. Harland et al., 1990) as 
a geochronologic term.

It is beyond the scope of the present work to provide a 
history of the geological time scale. Early developments were 
summarized by Berry (1968) and Harland et al. (1982). The 
development of the first volume of A Geologic Time Scale in 
Harland et al. (1982) was a significant milestone, followed 
by A Geologic Time Scale 1989 (Harland et al., 1990). In 
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recent decades, international chronostratigraphic standards 
have been governed by the International Commission on 
Stratigraphy (ICS; International Commission on Stratigraphy, 
2019c), which produces regular updates to the International 
Chronostratigraphic Chart (ICC; Cohen et al., 2013). The 
ICS governs the names and definitions of chronostratigraphic 
units, as reflected in the ICC. The ICC also cites absolute ages 
for unit boundaries, but these are not formally ‘governed’ in 
any sense by the ICS, and indeed are subject to ongoing revi-
sion. A series of highly influential publications, succeeding the 
Harland et al. publications and based on the ICC, but not for-
mally associated with it, began with the substantive A Geologic 
Time Scale 2004 (Gradstein et al., 2005). This was superseded 
by a two-volume set entitled A Geologic Time Scale 2012 

(Gradstein et al., 2012). A shorter summary update, A Concise 
Geologic Time Scale — 2016, was subsequently published by 
Ogg et al. (2016). The most recent version is The Geologic 
Time Scale 2020 (Gradstein et al., 2020), which is used herein. 
For the purposes of this paper, versions of A Geologic Time 
Scale will be referred to as ‘GTS’, with the appropriate year 
appended (e.g. GTS 2004 refers to A Geologic Time Scale 
2004 by Gradstein et al., 2005). It is this series of publica-
tions that led to the development of TimeScale Creator (see 
‘TimeScale Creator’ section). Absolute-age calibrations in the 
GTS publications (and hence in TimeScale Creator) may vary 
slightly from those in the ICC.

Figure 1. Geo-mapping for Energy and Minerals (GEM) program primary regions of interest, covering most of 
Canada’s North (modified from Natural Resources Canada, 2018).
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Trans-GEM Event Stratigraphy activity
Biostratigraphic data have contributed considerably 

to the present understanding of the geological history of 
Canada’s North (e.g. Dixon, 1999; Harrison et al., 1999a; 
Nøhr-Hansen et al., 2016; Evenchick et al., 2019; Galloway 
et al., 2019). Such data can be presented as part of a biozona-
tion scheme, or as a series of events such as first occurrences 
and last occurrences. Although each approach has its ben-
efits and drawbacks, a combination of both approaches has 
been used to present data herein. Several types of biozones 

are defined in the literature (e.g. range, interval, assemblage, 
and abundance; Fig. 2; North American Commission on 
Stratigraphic Nomenclature, 2005) and the types of zones 
chosen for a particular study are determined by several 
factors, including the type of fossil recovered; the number 
of specimens recovered; the spatial and temporal ranges 
of the species in question; personal and traditional prefer-
ences; and the state of knowledge at the time of study. The 
use of biostratigraphic events is becoming more prevalent 
in some micropaleontological subdisciplines, and first and 

Figure 2. Principal types of (bio)zones used in biostratigraphy: a) taxon-range biozone, 
based on the range of a taxon; b) concurrent-range biozone, based on range of co- 
occurrence of two taxa; c–d) interval biozone, based on an interval between the lowest (c) 
and highest (d) occurrences of taxa; e) lineage biozone, based on successive stages within 
an evolutionary lineage; f) abundance biozone, based on an interval when a specific taxon is 
particularly common; g) assemblage biozone, based on overlapping ranges of multiple taxa. 
Adapted from North American Commission on Stratigraphic Nomenclature (2005).



241

M. Bringué et al.

last occurrences of fossil taxa have been successfully used 
to correlate between regions (e.g. Fensome et al., 2008; 
Galloway et al., 2013; Nøhr-Hansen et al., 2016).

Objectives
Developing an event scheme for the Mesozoic and 

Cenozoic across the Arctic was undertaken in 2017 under 
the auspices of the Trans-GEM Event Stratigraphy activity. 
With the availability of TimeScale Creator, the focus of the 
activity shifted somewhat to developing a new TSC data-
pack to incorporate stratigraphic (primarily biostratigraphic) 
data from the GEM regions; the new datapack will facilitate 
data visualization, comparison, and correlation within and 
between the GEM regions (Fig. 1).

The 2020 Canada datapack has been designed with the 
following objectives:

 • to initiate the compilation of a comprehensive, up-to-
date event-stratigraphy scheme for the Canadian Arctic 
(see Trans-GEM Event Stratigraphy activity section)

 • to revise and update the Mesozoic–Cenozoic portion of 
an earlier, unchecked Canadian datapack (see ‘Review 
and update of the 2010 Canada datapack’ section), which 
includes both litho- and biostratigraphic data

 • to provide data that are dynamically tied to standard chro-
nostratigraphic schemes, such as ammonite zonations and 
international stages, and to organize the data in a format that 
supports future updates to the GTS and reference schemes

 • to allow for the easy visualization and comparison of 
Canadian stratigraphic data (from GEM regions of interest 
and beyond) across geographical areas and fossil groups

 • to make Canadian litho- and biostratigraphic data freely 
available to the public, in line with the Open Government 
Science Initiative ― for example, Canada’s digital char-
ter (Innovation, Science and Economic Development 
Canada, 2019) and data strategy roadmap for the Federal 
Public Service (Privy Council Office, 2019).

Thus, the 2020 Canada datapack provides free, updated 
stratigraphic information that will remain current, in a for-
mat that fosters easy comparison of stratigraphic records 
across GEM regions of interest and different fossil groups.

TIMESCALE CREATOR
TimeScale Creator (TSC) is a JAVA package operated 

by the Geologic TimeScale Foundation (GTS Foundation) 
based at Purdue University in West Lafayette, Indiana. It 
was developed by some authors of the GTS volumes (J. Ogg, 
F. Gradstein, and G. Ogg) to record general stratigraphic data 
and keep track of ongoing changes to the geological time 

scale. The TSC website (Geologic TimeScale Foundation, 
2019) describes TimeScale Creator as “a free JAVA package 
[that] enables you to explore and create charts of any portion 
of the geologic time scale from an extensive suite of global 
and regional events in Earth History.” The data used to build 
it are founded on the GTS series of publications, but TSC 
is designed to contain limitless amounts of data that can be 
selectively downloaded, and users of the TSC Pro version 
can add their own data. The Geological Survey of Canada 
(GSC) subscribes to TSC Pro, but any user can access and 
visualize the data using the free version of TSC. The GTS 
Foundation provides regular updates that incorporate any 
refinements to the absolute-age calibrations of chronostrati-
graphic units, which are thus reflected in charts generated 
from TSC. These updates, together with the public availabil-
ity of software and data, make TSC the ideal platform to 
store Canadian stratigraphic data.

Using TSC
The TSC website contains tutorials (Geologic TimeScale 

Foundation, 2019b) that help potential users operate the pro-
gram, which can be run online on any browser that supports 
JAVA, or from a personal computer after downloading the 
most recent version from the download page. Upon launch, 
the program automatically loads a default datapack that con-
tains the up-to-date chronostratigraphic scale (currently the 
GTS 2020), a full suite of ‘master’ reference schemes (e.g. 
the chronostratigraphic time scale, the geomagnetic polarity 
scheme) and several other types of data (e.g. paleogeographic 
maps, biozones, bioevents, transgressive–regressive cycles, 
stable isotopic curves). The user can generate customized 
charts by selecting the time interval of interest and selecting 
data ― organized in successive columns ― to be plotted. 
The vertical scale and column width can be expanded to bet-
ter view densely populated intervals, and the order of data 
columns can be changed, allowing the user to place data 
sets of interest next to each other for direct comparison. 
The ‘Global Priority Filtering’ function allows users to gen-
eralize data to avoid overcrowding on charts, especially in 
data-dense areas; however, note that this function may result 
in inaccurate displays of information.

An important feature of TSC is a ‘MouseOver’ option 
that allows background information to be displayed in a 
‘popup’ window. This applies only to the ‘live’ output in 
TSC, as such layers of information are lost upon exporting 
to PDF or printing. Information available in popups ranges 
from details on age calibration to comments from the source 
publication and may include hyperlinks to pictures and other 
web material.

Packages of information (datapacks; Geologic TimeScale 
Foundation, 2019c) can be downloaded from the TSC web-
site. Most are publicly available, including the default TSC 
datapack, which acts as a backbone to the program. Onto 
this, users can add additional datapacks for personal use, or 
for public use via the GTS Foundation.
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The 2010 Canada datapack
Among the datapacks available on the TSC website is 

the ‘Arctic and Central Canada’ datapack, hereafter referred 
to as the ‘2010 Canada datapack’ (Geologic TimeScale 
Foundation, 2019c). Its content is described on the webpage 
as follows:

Scales of the main Arctic-region zonations (35 
columns). Lithostratigraphic columns (ca. 350 
columns) recalibrated from Arctic and Canada 
volumes of the DNAG (1989) compilation, with 
all formations linked to the on-line lexicon of 
the Geological Survey of Canada. Arctic Island 
transect (6 segments) provided by Geol. Surv. 
Canada (2010), with formations linked to the 
lexicon.

This 2010 Canada datapack was compiled by the GTS 
Foundation under contract to the GSC in 2010 and, unlike 
the 2020 Canada datapack, is not restricted to the Mesozoic 
and Cenozoic. Although never proofed or checked due to 
the retirement of key personnel and changes in priorities, 
the compilation represented a far-sighted initiative by then 
Acting Director of GSC-Calgary, G.S. Nowlan. As indicated, 
the data were derived from some fundamental publications 
on Canadian geology and were focused on Arctic Canada 
and the Western Canada Sedimentary Basin (incorporating 
the Mesozoic–Paleogene Western Interior Basin).

Best practices adopted for the 2020 Canada 
datapack

The first step in developing the 2020 Canada datapack was 
to establish best practices for data entry, which is performed in 
Excel for TSC. There are three types of spreadsheets involved: 
1) reference, or ‘master’ sheets (e.g. ‘MasterChronostrat’, 
‘MasterDino’, ‘MasterNanno’, following the GTS 2020), 
provided by the GTS Foundation and mostly based on data in 
the GTS publications that contain reference schemes; 2) data-
entry sheets, in which ages are dynamically tied to reference 
schemes and all relevant information is captured; and 3) out-
put sheets, where the information is recalled from data-entry 
sheets and arranged in a format that TSC will read, from a 
tab-delimited .txt file. Because several individuals and spread-
sheets have been involved with data entry, format consistency 
is paramount to ensure consistent data entry and seamless 
updates in the future.

The development of a datapack involves the compila-
tion of workbooks, each containing master, data, and output 
spreadsheets, from which output files are later combined. 
Typically, each individual performing data entry works on 
their own workbook(s). While the number of workbooks and 
output spreadsheets that form a datapack does not impact the 
end product, experience has shown that fewer is better for a 
more efficient datapack compilation.

When formulas in Excel were being dynamically coded, 
care was taken to tie events or boundaries to the appropriate 
reference scheme. For instance, most Jurassic foraminifer- 
and dinoflagellate-zone boundaries (e.g. Davies, 1983) are 
tied to Subboreal (Hettangian through Callovian) and Boreal 
(Oxfordian–Tithonian) ammonite zones, whereas some 
Cenozoic foraminifer zones are tied to nannofossil zones, 
since they were compared with (and calibrated against) 
Greenland strata (Harrison et al., 1999b). This aspect is case-
specific and depends on what the individual who generated 
the data relied on to assign ages. Biostratigraphic events in 
the Arctic often lack independent control, as the region is 
far removed from classic, well-dated sections and radiomet-
ric dates are sporadic; hence, the events tend to be assigned 
relative ages on the basis of several lines of evidence. As 
elsewhere, events may vary slightly in age between basins. 
Thus, in the absence of clear statements in the source pub-
lications, ages have been tied to chronostratigraphic (stage) 
boundaries. This standardization and optimization of data 
structure will not necessarily be noticeable on the charts, but 
will ensure that future updates to the GTS and changes to 
any reference schemes will seamlessly translate into mean-
ingful and accurate shifts in the absolute ages assigned to 
events or boundaries displayed on the charts.

Finally, for event-data columns, species sharing the same 
first or last occurrences were grouped for optimal readabil-
ity on the charts. Charts depicting ranges of individual taxa 
can also be developed using TSC, but data-entry protocols 
would be different from those used in the present project.

THE 2020 CANADA DATAPACK
The state-of-the-art 2020 Canada datapack incorporates 

new data, as well as some data brought forward from its 2010 
predecessor. The current datapack focuses on Mesozoic– 
Cenozoic biostratigraphy and, where possible, event stra- 
tigraphy. It includes both revised and new stratigraphic data; 
many of the latest data sets were generated from GEM-
funded research activities (e.g. Galloway et al., 2012, 2013, 
2015, 2019; Pugh et al., 2014; Herrle et al., 2015; Hadlari 
et al., 2016; Evenchick et al., 2019). Another substantial 
source of data new to the 2020 version is sourced from the 
ongoing Circum-Arctic lower Paleozoic to Cenozoic paly-
nological events (CAPE) project. The CAPE project was 
initiated by British palynologist J. Bujak and involves GSC 
co-editors and contributors (Bujak et al., 2021). This project 
is an international effort to compile a pan-Arctic event paly-
nostratigraphy for the Devonian to Cenozoic interval, and 
some Mesozoic–Cenozoic parts of the Canadian data set for 
CAPE are included in the 2020 Canada datapack. A com-
plete list of data included in the new datapack is presented 
in Appendix A.
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Review and update of the 2010 Canada 
datapack

The 2010 Canada datapack included both lithostrati-
graphic and biostratigraphic data. The lithostratigraphic 
portion was based entirely on Decade of North American 
Geology charts (Trettin, 1991a, b, c; Stott, 1993a, b, c) 
and one GSC open file (Dewing and Embry, 2007) used to 
generate the ‘Canadian Arctic Island transect suite’. Since 
these lithostratigraphic data still largely represent a current 
understanding, they have been directly incorporated into the 
2020 Canada datapack, with only a few minor corrections. 
Of note is the omission, from the Canadian Arctic Island 
transect suite, of some formal members in the Early Triassic 
Bjorne Formation (Cape Butler, Pell Point, and Cape 
O’Brien members) and their shaly equivalents in the Blind 
Fiord Formation (Confederation Point, Smith Creek, and 
Svartfjeld members), as well as the Cape Lockwood, Hot 
Weather, and Slidre members in the Late Jurassic Awingak 
Formation. These members are only recognized in their 
type localities and are therefore of limited value to regional  
stratigraphy (K. Dewing, pers. comm., 2019).

In contrast to the lithostratigraphic content, some 
biostratigraphic data sets have undergone a more thor-
ough revision since 2010. As the 2020 Canada datapack 
focuses on Mesozoic and Cenozoic strata, Paleozoic bio-
stratigraphic data are not included (although they are still 
available as part of the 2010 datapack). Many columns 
from the 2010 datapack consisted of redundant infor-
mation, often derived from figures in publications that 
incorporated reference schemes (e.g. Tethyan or Subboreal 
ammonite zones); these schemes are already in TSC as part 
of the default or other publicly available datapacks. Such 
duplication has been avoided in the new datapack, and 
‘cleaned-up’ columns of regional data have been tied to 
standard, updated reference schemes provided by the GTS 
Foundation as ‘master’ sheets (e.g. MasterChronostrat, 
MasterNanno). As described above, care was taken to tie 
events or boundaries to the appropriate reference scheme, 
including stage boundaries where necessary.

Additional revisions include a mention in several column 
headers of the geographical location of the data rather than 
the author who compiled them. For instance, ‘Ammonites 
(Harrison)’ now reads ‘Ammonites (Sverdrup Basin)’. 
References have also been updated to acknowledge, where 
possible, the individual(s) who generated the data, not just 
the authors of data compilations. Changes applied to each 
data column from the 2010 Canada datapack are summarized 
in Appendix B, which also specifies the reference schemes 
used to determine ages. Several zonation schemes are pre-
served as ‘legacy’ for their historical value, with boundaries 
now defined with reference to standard schemes (and hence 
updatable) but without reinterpretation. However, where 
available from range charts in the original publications, the 
events used to generate these zonation schemes have been 
plotted and are now available in the 2020 Canada datapack.

Given the importance of ammonite and Buchia (bivalve) 
horizons for biostratigraphy of the northern Canadian 
Jurassic and Cretaceous systems, special attention has been 
given to updating the Arctic Jurassic ammonite biohorizons 
from the Sverdrup Basin and the northern Yukon and adja-
cent northwesternmost Northwest Territories (incorporating 
the Richardson, Ogilvie, Barn, and British mountains; here-
after referred to as the northern Yukon region), the two areas 
for which data are available. A full description of updates 
is provided in the section entitled ‘Jurassic ammonite and 
Buchia bivalve occurrences’.

New data from GEM regions of interest
The 2020 Canada datapack was designed as a tool to eas-

ily compare biostratigraphic data across all GEM regions. 
Although a few Canadian Arctic and Subarctic regions 
were already represented in the 2010 Canada datapack (e.g. 
Yukon, Beaufort–Mackenzie Basin, Sverdrup Basin), some 
GEM regions were missing, including large portions of the 
eastern Arctic, such as the Labrador–Baffin area. The 2020 
Canada datapack now incorporates detailed biostratigraphic 
data (quality-checked by the present authors) from all GEM 
regions of interest (Appendix A), except the Rae region, 
which is devoid of Mesozoic and Cenozoic strata, and the 
Hudson Bay–Ungava region, where Mesozoic–Cenozoic 
biostratigraphic data remain scarce. An effort was made to 
include biostratigraphic schemes based on as many different 
fossil types as possible in each region, including ammonites, 
bivalves, foraminifers, conodonts, and dinoflagellate cysts, as 
well as pollen and spores. Any user who has loaded the 2020 
Canada datapack in TSC can select the columns of interest 
and compare biostratigraphic events (for example based on 
dinoflagellate cysts) across different Arctic regions by tick-
ing the desired data columns and arranging them in the order 
of their preference. For consistency and ease of comparison, 
dinoflagellate-cyst taxonomy has been updated to conform 
to Fensome et al. (2019) for the following sources: Brideaux 
and McIntyre (1975), Fisher and Riley (1980), McIntyre and 
Brideaux (1980), Davies (1983), Poulton et al. (1993a, b), 
McIntyre (1996a, b, c), and Harrison et al. (1999a, b).

Of particular importance to the stratigraphy of northern 
Canada are the new lithostratigraphic and palynostrati-
graphic data sets for the Labrador–Baffin Seaway (Fig. 3); 
these now fill a critical gap in the spatial and temporal cover-
age of Canadian strata in TSC. The data were acquired from 
a suite of offshore wells and combined with data from the 
West Greenland margin, leading to a new biostratigraphic 
framework for this broad and previously understudied region 
(Nøhr-Hansen et al., 2016). Another noteworthy addition to 
the 2020 Canada datapack involves a suite of benthic fora-
minifer biostratigraphic data sets (including both calcareous 
and agglutinated forms) from Upper Jurassic to Cenozoic 
strata of the Beaufort–Mackenzie Basin. The data were 
extracted from five charts from the Geological Atlas of  
the Beaufort–Mackenzie Area (Dixon, 1996; Fowler, 1996; 
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Figure 3. Labrador–Baffin Seaway lithostratigraphy and biostratigraphy (palynological events) produced in TimeScale Creator (Geologic 
TimeScale Foundation, 2019a): a) Cenozoic. Adapted from Dickie et al. (2011) and Nøhr-Hansen et al. (2016).
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Figure 3. (cont.) b) Cretaceous. Adapted from Dickie et al. (2011) and Nøhr-Hansen et al. (2016).
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Hedinger, 1996; McNeil 1996a, b, c), with updated taxonomy 
from McNeil (1997) and minor range modifications by 
D.H. McNeil (pers. comm., 2019). The modified data are 
now available as event schemes in the 2020 Canada datapack 
(e.g. Fig. 4). These foraminifer data sets provide important 
biostratigraphic control and are widely used in this economi-
cally important GEM region. A new lithostratigraphic chart 
of Cretaceous strata across the Sverdrup Basin, Banks Island, 
the Horton–Anderson plains, the Richardson Mountains, and 
the Snake, Peel, Arctic Red, and Hume rivers areas (Fig. 5) 
also provides a valuable reference for ongoing work in the 
Western Arctic and Mackenzie GEM regions, where recent 
studies have provided new insight on the detailed strati-
graphic framework of the Canadian North, particularly in the 
Sverdrup Basin (e.g. Galloway et al., 2012, 2013, 2015; Pugh 
et al., 2014; Herrle et al., 2015; Hadlari et al., 2016).

Other new data
Several data sets deemed relevant to (bio)stratigraphic 

control of age-equivalent strata in the Canadian North are 
included in the 2020 Canada datapack, even though their 
geographical provenance is not directly or primarily located 
within GEM regions of interest. In particular, a data set of 
Late Cretaceous–Paleocene terrestrial palynomorphs across 
the Western Interior Basin, mostly reflecting data from 
localities from the southern parts of Alberta, Saskatchewan, 
Manitoba, and even northern Montana (Braman and Sweet, 
2012), is included because it provides a reference frame-
work for age-equivalent strata in northern Canada that were 
connected by the Western Interior Seaway at the time of 
deposition.

Similarly, a new compilation of Triassic conodont zones 
across Canada is provided (Fig. 6). The data column has been 
compiled using existing conodont zonation schemes from 
the Western Canada Sedimentary Basin in the Cordillera and 
from the Sverdrup Basin in the Arctic. The Triassic conodont 
record of the Cordillera is more complete than that of the 
Arctic and, therefore, it is not possible to recognize all the 
zones presented here in all the GEM regions of interest. The 
Triassic rock record of the western Cordillera is particularly 
fragmentary due to the wide paleogeographic distribution of 
its constituent terranes, and the conodonts from this region 
have not been included in the present datapack; additional 
columns for the terranes will be provided in the future. The 
conodont zones presented in the 2020 Canada datapack are 
a mixture of interval, acme, and assemblage zones, with dif-
ferent types of zones utilized depending on the diversity of 
the faunas and their geographic and temporal distribution 
across a particular time interval. The conodont zonation is 
tied to the ammonoid zonation for the Triassic of western and 
Arctic Canada, as compiled by Tozer (1994) and updated by 
Bucher (2002) and Ji and Bucher (2018). The Triassic con-
odont compilation is based primarily on the work of Orchard 
(1991, 2007, 2014, 2018), Orchard and Tozer (1997), 
Carter and Orchard (2007), Orchard and Zonneveld (2009), 

Golding et al. (2014), and Henderson et al. (2018) for the 
Western Canada Sedimentary Basin; and Henderson and 
Baud (1997), Nakrem et al. (2008), and Orchard (2008) for 
the Sverdrup Basin and correlative Boreal strata in Svalbard. 
The present compilation supersedes a previous conodont 
scheme available in TSC’s default datapack that was based 
on Orchard and Tozer (1997) alone.

Another important source of data included in the 2020 
Canada datapack comes from the ongoing CAPE project, of 
which three of this paper’s authors (J.P. Bujak, R.A. Fensome, 
and G.L. Williams) are co-editors, in collaboration with 
G. Mangerud of the University of Bergen in Norway. Most 
of the ‘Bujak Arctic palynological data’ (Fig. 7; Appendix A) 
were established from wells located offshore in the Canadian 
Arctic and Alaskan waters, and several data columns consist 
of compilations that extend beyond the boundaries of north-
ern Canada. For instance, the column ‘Bujak Arctic climatic 
events’ captures widely recognized variations in the Earth’s 
climate, at least for the Northern Hemisphere.

JURASSIC AMMONITE AND 
BUCHIA BIVALVE OCCURRENCES, 
SVERDRUP BASIN AND NORTHERN 
YUKON REGION

Ammonites have been a fundamental source of bio-
stratigraphic control of Jurassic–Cretaceous strata in the 
Sverdrup Basin and the northern Yukon region, and in 
these regions of Canada faunas of the bivalve Buchia have 
also been of critical value in the Late Jurassic and earliest 
Cretaceous. An overview of this Canadian ammonite and 
Buchia data, much overdue, is provided in Appendix C; the 
update is incorporated into the 2020 Canada datapack.

Ammonite biohorizons and successions
The TSC summary chart of Arctic Canada’s Jurassic 

ammonite biostratigraphy presented in Figure 8 and 
Appendix C contains updates and references to original 
paleontological sources and previous summary compilations 
for regional geology reports (Callomon, 1984; Poulton et al., 
1993a, b; Poulton, 1994, 1997; Poulton in Harrison et al., 
1999a, 2000). It provides current correlations within and 
beyond the Arctic basins and to zones in the international 
standard time scale, introducing revisions required by new 
information on the ages of Boreal Middle Jurassic faunas 
from recent studies in Eurasia, as discussed for each time 
interval in Appendix C. There has been little new collecting 
and no recent descriptive studies or revisions of the Arctic 
faunas within Canada, and no taxonomic revisions are 
introduced here. The areas represented in Figure 8 are the 
Sverdrup Basin and the Brooks–Mackenzie Basin (Balkwill 
et al., 1983) of the northern Yukon region. Some of the 
most significant ammonite taxa from the northern Yukon 
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Figure 4. Beaufort–Mackenzie Basin foraminifer biostratigraphic data (zones and events) produced in TimeScale Creator (Geologic 
TimeScale Foundation, 2019a): a) Cenozoic. Adapted from Fowler (1996), Hedinger (1996), and McNeil (1996a, b, c), with taxonomy 
updated according to McNeil (1997) and revised by D.H. McNeil (pers. comm., 2019).

247



248

GSC Bulletin 609

Figure 4. (cont.) Beaufort–Mackenzie Basin foraminifer biostratigraphic data (zones and events) produced in TimeScale Creator (Geologic 
TimeScale Foundation, 2019a): b) Callovian (Middle Jurassic) to Maastrichtian (Upper Cretaceous). Adapted from Fowler (1996), Hedinger 
(1996), and McNeil (1996a, b, c), with taxonomy updated according to McNeil (1997) and revised by D.H.  McNeil (pers. comm., 2019).
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Figure 5. Cretaceous lithostratigraphic chart for the Sverdrup Basin and western Arctic (modified from Bringué et al., 2018) produced 
in TimeScale Creator (Geologic TimeScale Foundation, 2019a). Question mark (?) denotes uncertainty.
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Figure 6. Triassic ammonoid and conodont zonation of western and northern Canada (Western Canada Sedimentary Basin (WCSB) 
and Sverdrup Basin) produced in TimeScale Creator (Geologic TimeScale Foundation, 2019a). Note that the vertical scale differs 
between left (Upper Triassic) and right columns (Lower and Middle Triassic). Sources appear at the base of the figure.
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Figure 7. Summary chart of Cenozoic geological data showing several data columns produced and/or entered by J.P. Bujak (unpub. 
data, 2020), showing Arctic zones and subzones, Arctic sea-surface temperature (SST), climate events (modified from Abreu and 
Anderson, 1998), Arctic spores and pollen events, and Arctic dinocyst and algal events, and put into the context of different data types 
(including geomagnetic polarity, planktonic foraminifers sub-tropical zone, calcareous nannofossils NN and CN zones, Phanerozoic 
transgressive–regressive (T–R) sequence synthesis, and 18O and 13C composites) available in TimeScale Creator (Geologic TimeScale 
Foundation, 2019a).
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Figure 8. Ammonite and Buchia horizons for the Sverdrup Basin and northern Yukon produced in TimeScale Creator (TSC; Geologic 
TimeScale Foundation, 2019a). Charts include ‘standard’ ammonite zones provided by the Geologic TimeScale Foundation for refer-
ence, as well as other biostratigraphic data (foraminifer zones and dinoflagellate ‘legacy’ zones): a) Upper Jurassic. ‘Legacy’ zones are 
zonation schemes preserved for their historical value.
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Figure 8. (cont.) Ammonite and Buchia horizons for the Sverdrup Basin and northern Yukon produced in TimeScale Creator (TSC; 
Geologic TimeScale Foundation, 2019a). Charts include ‘standard’ ammonite zones provided by the Geologic TimeScale Foundation 
for reference, as well as other biostratigraphic data (foraminifer zones and dinoflagellate ‘legacy’ zones): b) Middle Jurassic. ‘Legacy’ 
zones are zonation schemes preserved for their historical value.
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Figure 8. (cont.) Ammonite and Buchia horizons for the Sverdrup Basin and northern Yukon produced in TimeScale Creator (TSC; 
Geologic TimeScale Foundation, 2019a). Charts include ‘standard’ ammonite zones provided by the Geologic TimeScale Foundation 
for reference, as well as other biostratigraphic data (foraminifer zones and dinoflagellate ‘legacy’ zones): c) Lower Jurassic. Sources 
appear at the base of the figure. ‘Legacy’ zones are zonation schemes preserved for their historical value.
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region were illustrated as northeastern Pacific examples 
in a circum-Pacific compilation of faunas in Westermann 
(1993). The few Jurassic ammonite occurrences in west-
central Yukon that, although north of the Arctic Circle, are 
in a thrust sheet of an imperfectly known and possibly more 
southerly pericratonic tectonic provenance (Frebold et al., 
1967; Poulton and Tempelman-Kluit, 1982) are not dis-
cussed here. These, and other occurrences of Boreal faunas 
in the series of transported terranes farther south along the 
coast of British Columbia, have been included as ‘Arctic’ 
in some previous reports involving Arctic Canadian Jurassic 
fossils (e.g. Callomon, 1984; Rogov, 2019).

Ammonites are the primary tool for dating and correlat-
ing Jurassic strata globally (Callomon, 1995; Gradstein et al., 
2012; Yacobucci, 2015) because of their morphological 
diversity, rapid evolution, common occurrence, and long his-
tory of study (recent reports summarizing evolutionary traits 
relevant to Canadian Arctic ammonites include Neige and 
Rouget, 2015; Schweigert, 2015). However, ammonites are 
sparse in Canadian Jurassic strata from the upper Oxfordian 
upward, and the bivalve Buchia has been important for pro-
viding Late Jurassic and Early Cretaceous age control in 
Arctic Canada. The usefulness of Buchia species derives 
from their wide distribution across the Boreal realm and 
south along the Pacific margin, as far as northern California 
(e.g. Jeletzky, 1984). Nearly all of the published ages based 
on micropaleontological and palynological analyses of 
Jurassic strata have been determined through extrapolation 
from ammonite or Buchia occurrences. Entirely independent 
dating of Arctic Canada micropaleontological or palynologi-
cal assemblages through correlations with faunas elsewhere 
(e.g. European standard sections) is rare or rarely stated; 
and, in any case, those sections are also primarily dated by 
ammonites. Therefore, the revision of the ages of ammonite 
faunas will require updates to the ages of other stratigraphic 
elements (biozones, bioevents, lithostratigraphic units) tied 
to ‘ammonite control’.

The first recording of Jurassic ammonites in Canada was 
by S. Haughton (1857) from material collected in 1853 dur-
ing a Franklin search expedition; these were from Prince 
Patrick Island in Arctic Canada. Jurassic strata were not 
definitively recognized in the Arctic Islands again until the 
site was revisited by E.T. Tozer in 1954 (Poulton, 1994). 
The first reported Jurassic ammonites in the northern Yukon 
region were mistakenly identified as Cretaceous (Meek, 
1859), as was the next discovery (Whiteaves in McConnell, 
1891). These finds probably came from a well-exposed sec-
tion at Salmon Cache Canyon along the Porcupine River, 
a locality studied by Poulton (1987). Primary original data 
sources and revisions for the biostratigraphically most useful 
ammonite faunas are identified in Appendix C; these include 
both detailed taxonomic treatments and the most significant 
identifications in faunal lists.

Many of the Jurassic ammonites available from the 
Canadian Arctic occur as single specimens or are associa-
tions in beds that are separated by long unexposed or poorly 

fossiliferous intervals or were collected without detailed 
stratigraphic context. Their ages have been interpreted by 
comparison with published ammonite sequences elsewhere. 
It is not reasonable to consider such occurrences as zones 
(implying ranges with recognizable tops and bottoms), and it 
is not feasible to develop an event scheme from them. For 
the most part, these occurrences represent fossiliferous ‘bio-
horizons’, for which the probable upper and lower age limits, 
as compared with the most appropriate Boreal or Subboreal 
chronozone scales, are indicated by dashed lines in Figure 8. 
Changes in successive ammonite occurrences reflect evolu-
tion/extinction events within a basin or the replacement over 
time of one major taxonomic group by another due to, for 
example, migration facilitated by new marine connections or 
other competitive factors.

Examples of evolutionary successions within Boreal lin-
eages in particular Arctic basins are the richly fossiliferous 
Middle Jurassic successions of several zones along Porcupine 
River, northern Yukon (Poulton, 1987) and on western Axel 
Heiberg Island (Frebold, 1964b), where a single ammonite 
family (Cardioceratidae) predominates over an extended 
period. This group has been particularly well studied, and 
a series of subjectively recognized distinctive populations 
(‘transients’, corresponding to a modern biological-species 
population with intraspecific variability) has been established 
(Callomon, 1995; Callomon et al., 2015). Some of the mor-
phologically distinct variants in each population have been 
named formally as varieties, subspecies, or species ― the last 
in the sense of morphospecies or paleospecies (see Allmon, 
2013, for a recent discussion of the species concept in pale-
ontology and attempts to marry biological concepts with 
stratigraphic utility). Within a productive biohorizon, the vari-
ants may overlap morphologically, and each of these variants 
has its own, longer, stratigraphic range. The proportion of 
each variant also varies geographically, leading to the erection 
of regional zones in some areas, designated with the name 
of the dominant morphospecies. This is particularly the case 
during some intervals in the latest Jurassic of the Arctic, when 
relatively low sea levels caused isolation of individual basins 
with little faunal interchange between them.

An example of faunal replacement of one ammonite group 
by another involves the replacement of the late Sinemurian 
Echioceras by the late Pliensbachian Amaltheus (the early 
Pliensbachian is not definitively recognized in Arctic Canada); 
the two genera are not closely related, belonging in separate 
superfamilies. Such replacements commonly correspond to 
periods of marine transgression into small or shallow seas, 
which commonly left discontinuous stratigraphic records 
with hiatuses representing episodes of marine regression and 
regional extinction (e.g. Yacobucci, 2015).

The absolute age calibration depicted on the TSC Jurassic 
chart (e.g. Fig. 8) is not tightly controlled. No universally 
accepted, biostratigraphically constrained radiometric dates 
exist between the late Pliensbachian and the Albian (Gradstein 
et al., 2012; Pană et al., 2018). The numerical ages for most of 
the Jurassic and Lower Cretaceous interval boundaries have 
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been interpolated between sparse, precisely dated horizons for 
the GTS 2020 numerical-age model, using a variety of tech-
niques, as explained in Gradstein et al. (2012) and Ogg et al. 
(2016).

Buchia zonation
The Boreal bivalve Buchia is important for dating 

and correlation of the Late Jurassic and Early Cretaceous 
because of its abundance in the many areas where ammo-
nites are rare or absent and because the steps in the sequence 
of morphotype associations have reasonably well-known 
age ranges over large areas (e.g. Jeletzky, 1966, 1984; Rogov 
and Zakharov, 2009). The Buchia zones illustrated for the 
Sverdrup Basin and the northern Yukon region are simpli-
fied from the detailed studies of Jeletzky (1966, 1984). Like 
some of the well-known ammonite groups, most Buchia 
zones comprise associations of several forms that have been 
formally named as species but perhaps represent variants in 
diverse populations of a single biospecies. The succession 
of generally distinctive polymorphic populations is recog-
nizable when enough material is available for study, but 
the dominant morphology (often distinguished as a named 
species) varies somewhat from region to region. Individual 
morphospecies were more long-ranging. Whereas Jeletzky 
(e.g. Jeletzky, 1984, Fig. 9) conceived of several overlapping 
or concurrent range zones, they are illustrated in the data-
pack (see Fig. 8) and described (Appendix C) as successions 
of assemblages or ‘zones’ for which the name gives a sense 
of the dominant morphospecies. This approach facilitates 
plotting of the zones in TSC and enables comparison with 
the more finely subdivided Russian Buchia zonations (e.g. 
Rogov and Zakharov 2009; Zakharov, 2015). The charts 
provided by those authors and Jeletzky (1984) demonstrate 
the considerable degree of regional variation in predominant 
morphospecies across the Boreal realm and their geographi-
cally variable stratigraphic ranges. Rogov and Zakharov 
(2009) viewed the Buchia zones in Eurasia as a mix of zone 
types, some that begin with the first occurrence of the nomi-
nal species and others that are acme zones. Their boundaries 
are somewhat diffuse, partially subjective, and perhaps partly 
diachronous. Although the order of the Buchia zones is con-
sistent across the Arctic, their age limits are imprecise given 
the paucity of ammonite control and the regional variation in 
the dominant Buchia morphospecies. One particularly dis-
tinctive and relatively short-lived early Berriasian species, 
Buchia okensis, has contributed particularly to Canadian 
historical discussions of the interregional correlation of the 
base of the Cretaceous (e.g. Jeletzky, 1984).

Jurassic faunal provincialism
Northern (Boreal) versus southern (Tethyan) latitudi-

nal differentiation has affected marine organisms to varying 
degrees through time. It is particularly extreme during times 
when northern seas were separated from southern ones by 

landmasses or connected only by narrow or shallow epi-
continental seaways. Such was the case during the Jurassic, 
before the supercontinent Pangea broke up sufficiently for the 
opening Atlantic Ocean to provide ready connection between 
the Arctic and Tethys oceans. These paleogeographic effects 
would have exacerbated the impact of reduced solar radiation 
in the north; northern seas and, particularly, small, isolated 
basins would have been colder, to some extent chemically 
distinct, and more influenced by local factors such as inflow 
of fresh water. However, the connections remained sufficient 
at most times, and the Arctic water mass was sufficiently large 
to maintain normal marine salinities and normal, albeit dis-
tinctive, marine faunas (Zakharov et al., 2012). The Jurassic 
faunas of Arctic Canada, Alaska, Siberia, and Svalbard are 
clearly Boreal, but the southern limits of Boreal faunas waxed 
and waned, sometimes extending into the North Atlantic and 
western Europe, down the Pacific coasts, and into the interiors 
of North America and Eurasia.

Boreal Jurassic marine faunas are generally less diverse 
than coeval southern faunas, and carbonate rocks and thick-
shelled organisms are uncommon (Imlay, 1965; Smith and 
Tipper, 1986; Page, 2008). Some latitudinal differentiation 
can be seen in the Early Jurassic, but the isolation of sedi-
mentary basins was especially strong in parts of the Middle 
and Late Jurassic when north–south connections were non-
existent or reduced to shallow epicontinental seaways in the 
North Atlantic, North Pacific, and eastern European regions. 
During extended periods of isolation, independent evolu-
tion within the northern basins resulted in lineages of Boreal 
ammonites that have little or nothing in common with south-
ern faunas (e.g. the Cardioceratidae; Page, 2008; Zakharov 
et al., 2012; Callomon et al., 2015). The Buchia group of 
bivalves was another of the many marine faunal groups that 
also developed within the Arctic (Zakharov et al., 2012).

The term ‘Boreal realm’, or ‘Boreal superrealm’, encom-
passes several Arctic areas with differing regional ammonite 
zonations, reflecting some degree of separation from each 
other, and more broadly includes several ‘Subboreal’ areas, 
also with independent zonations (e.g. Page, 2008). It is not 
always clear in the literature what the terms ‘Boreal’ and 
‘Subboreal’ refer to paleogeographically. Most usefully, 
Ogg et al. (2016, p. 170) and Wimbledon (2017) specified 
distinct Dorset, North Sea, Nordvik, and Russian Platform 
regional zonations using geographic names; but confusingly, 
Ogg et al. (2016, p. 175), following Cope (2008) and others, 
labelled the eastern English zonation as ‘Boreal’. Shurygin 
et al. (2011) decried the common practice of mixing zones 
from different faunal realms into single regional hybrid 
zonations, particularly the insertion of Russian Platform 
zones into the high Arctic zonation. However, this practice 
allows for the presentation of a single scale for a region and, 
when well explained, highlights the intervals with confident 
north–south correlations based on mixed faunas in areas of 
occasional intermixing, perhaps due to higher relative sea 
levels (e.g. Yacobucci, 2015).
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Globally distributed (pandemic or cosmopolitan) and 
East Pacific endemic higher rank taxa characterize Arctic 
Canadian Hettangian and Sinemurian (Early Jurassic) fau-
nas, although with distinct Arctic representatives at the 
family and lower ranks (Page, 2008), whereas more dis-
tinctly northern (Boreal) higher rank taxa begin to appear 
in the Pliensbachian (e.g. Taylor et al., 1984; Page, 2008). 
Correlations between northern and southern faunal provinces 
are particularly problematic for extensive intervals from 
the late Bajocian through to the earliest Cretaceous; a sin-
gle, globally applicable, chronostratigraphic zonal scheme 
does not exist for some of these intervals. The Boreal early 
Bajocian to early Callovian Boreiocephalites–Amoeboceras 
cardioceratid-ammonite succession of Arctic Canada has 
been commonly illustrated as a succession of ‘floating 
boxes’, not tightly connected to the Europe-based standard 
scales (Callomon, 1984). The Canadian ammonites are so 
similar to the rich faunas of East Greenland and elsewhere 
across the Arctic that correlations are confident at most lev-
els (Callomon, 1959, 1984, 1993; Frebold, 1964b; Poulton, 
1987; Callomon et al., 2015). However, regional differences 
in the predominant species in each succession inhibit pre-
cise correlation of some zones (Callomon, 1984). For some 
of the associations in the northern Yukon sequence, Poulton 
(1987) erected a regional zonation for northwestern Canada 
based on named morphospecies that do not exhibit obvious 
morphologic intergradation; this scheme was reproduced by 
Von Hillebrandt et al. (1993).

Recent studies in rare areas of north–south faunal mix-
ing have resulted in new correlations between the Middle 
Jurassic Tethyan and Boreal ammonite faunas. The cor-
relations in this report of Canadian Arctic late Bajocian 
to middle Bathonian ammonites are largely a result of the 
2002 discovery of Arcticoceras harlandi in association with 
Tethyan Oraniceras just above Parkinsonia in the succes-
sion at Saratov on the Russian Platform (Mitta et al., 2014). 
The adjusted correlations of each succeeding fauna to inter-
national zones for this interval are similar to those now 
adopted by workers across Russia (Meledina, 2014; Mitta 
et al., 2014; Gulyaev, 2019) and East Greenland (Kelly  
et al., 2015). The age designations of these intervals in the 
Canadian Middle Jurassic Boreal ammonite succession in 
previous literature are obsolete.

In the 2020 Canada datapack, the Arctic Canada ammo-
nite biohorizons for these intervals have been tied to the 
Subboreal scale of chronozones provided by TSC, which was 
based on the compilation for northwestern European basins 
by the Groupe Français d’Étude du Jurassique (Cariou and 
Hantzpergue, 1997), with minor updates. The latest Jurassic 
Arctic Canadian ammonite and Buchia occurrences have been 
tied to the northern Siberia (‘high Boreal’) zonation provided 
by TSC, which incorporates recent interpretations for the 
Jurassic–Cretaceous boundary interval from Nordvik (Schnabl 
et al., 2015). The standard columns offered in TSC illustrate 
the base of the Cretaceous within the Subboreal (northwestern 

European) Subcraspedites preplicomphalus Zone and within 
the high Boreal (northern Siberia) Craspedites taimyrensis 
Zone, in accordance with the current proposal for the base of 
the Cretaceous (Wimbledon, 2017, Fig. 1).

The proposal to define the base of the Cretaceous in the 
Tethyan realm, currently in development, uses the base of the 
widespread calpionellid Calpionella alpina Zone as a primary 
marker in a ‘sandwich’ with secondary markers, including 
nannofossil and calcareous dinoflagellate-cyst events, ammo-
nites (Delphinella), and magnetic anomalies (Wimbledon, 
2017). Magnetic reversal correlations, and perhaps belemnites 
(Arctoteuthis tehamaensis), recognized in northern Siberia 
may permit correlation of the base of the Cretaceous from the 
Boreal into the Tethyan realm (e.g. Dzyuba, 2010; Schnabl 
et al., 2015). Canadian Arctic successions, without known 
calpionellids and with generally low abundance and a low- 
diversity biota, continue to be correlated confidently only with 
northern Siberia, based on limited occurrences of ammonites 
and Buchia. Geochemical curves, such as 13C anomalies, may 
play an increasingly important role in addressing this issue 
(Galloway et al., 2019).

SUMMARY AND CONCLUSIONS
The new TSC 2020 Canada datapack, which incorporates 

stratigraphic data from the GEM regions of interest, with a 
focus on biostratigraphic-event stratigraphy, is intended to 
facilitate data visualization, comparison, and correlation 
within and between the GEM regions. A major advantage 
of using TSC is that it is periodically revised with updated 
age calibrations of the geological time scale, which are auto-
matically reflected in the absolute ages of events or zone 
boundaries.

The new datapack incorporates new data, as well as some 
data re-evaluated and integrated from its 2010 predecessor. 
The 2020 Canada datapack focuses on Mesozoic–Cenozoic 
litho- and biostratigraphy. It includes revised stratigraphic 
data as well as new inputs, many of which were generated 
from GEM-funded research activities. Given their importance 
in the stratigraphy of Jurassic and Cretaceous strata of north-
ern Canada, a detailed update of the Jurassic ammonite and 
Buchia biostratigraphy for the Sverdrup Basin and northern 
Yukon region is provided. Also included in the datapack are 
new lithostratigraphic and palynostratigraphic data sets for the 
Labrador–Baffin Seaway, filling a critical gap in the spatial 
and temporal coverage of Canadian strata in TSC. Another 
noteworthy addition to the 2020 Canada datapack consists of 
a suite of benthic (calcareous and agglutinated) foraminifer 
biostratigraphic data sets from Upper Jurassic to Cenozoic 
strata of the Beaufort–Mackenzie Basin in the Northwest 
Territories. These data sets provide important biostratigraphic 
control in economically important GEM regions.
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Several other data sets are also included due to their rel-
evance to biostratigraphic control of age-equivalent strata in 
the Canadian North, even though their geographical prov-
enance is not primarily located within GEM regions. In 
particular, Late Cretaceous–Paleocene terrestrial palyno-
morph events across the Western Interior Basin are included 
because they provide a reference framework for age-equiva-
lent strata in the Canadian North that were connected by the 
Western Interior Seaway at the time. Likewise, a new compi-
lation of Triassic conodont zones across Canada is included, 
providing a reference framework for biostratigraphic control 
of Triassic exposures across the country.

New, quality stratigraphic data will continue to be added 
to the datapack as they become available. Future iterations of 
the Canada datapack would ideally fill other critical gaps in 
underrepresented regions and time intervals across Canada, 
as well as include new types of data such as carbon-isotope 
curves and other chemostratigraphic data sets, which are 
currently contributing significantly to the understanding of 
Canadian geology. The 2020 Canada datapack will become a 
major tool in supporting an understanding of Canada’s sedi-
mentary basins, and their resource potential and management, 
in line with the larger vision of the GSC, as exemplified by the 
Canada-3D project (National Geological Surveys Committee, 
2019). The use of TSC consolidates the current understanding 
of the fourth dimension of Canadian geology.
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Appendix A

The following tables list all biostratigraphic (Table A1) and lithostratigraphic (Table A2) data included in the 
2020 Canada datapack.

The data sets ‘Canadian Arctic Islands lithostratigraphy’, ‘Northern Canada lithostratigraphy’, and ‘Central 
Canada lithostratigraphy’ listed in Table A2 are based on regional charts from volumes of the Decade of North 
American Geology published by the Geological Survey of Canada (Trettin, 1991a, b, c; Stott, 1993a, b, c).
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Data set Source Comments

Western/Arctic Canada Triassic Biostrat

WCSB/Sverdrup Basin ammonoid zones

Tozer, 1994; Bucher, 2002; 
Ji and Bucher, 2018; 
Golding and Orchard (this 
report)

Compiled by Golding and Orchard. Ages tied 
to ‘master’ reference schemes (subboreal 
ammonite zones, stages, and substages)

WCSB/Sverdrup Basin conodont zones Golding and Orchard  
(this report)

Compiled by Golding and Orchard. Most ages 
tied to ‘master’ reference schemes (subboreal 
ammonite zones, stages, and substages), and 
other ages tied to the “WCSB/Sverdrup Basin 
ammonoid zones”

Western/Arctic Canada Jurassic Biostrat

Ammonite zones

Ammonites (Sverdrup Basin) Poulton (this report)

Updated by Poulton. Ages now tied to ‘master’ 
reference schemes (subboreal [Hettangian–
Callovian] and boreal [Oxfordian–Tithonian] 
ammonite zones)

Ammonites (northern Yukon region) Poulton (this report)

Updated by Poulton. Ages now tied to ‘master’ 
reference schemes (subboreal [Hettangian–
Callovian] and boreal [Oxfordian–Tithonian] 
ammonite zones)

Bivalve zones

Bivalves (Sverdrup Basin) Harrison et al., 1999a Updated by Poulton. Ages now tied to ‘master’ 
reference schemes (boreal ammonite zones)

Bivalves (northern Yukon region) Poulton et al., 1993a Updated by Poulton. Ages now tied to ‘master’ 
reference schemes (boreal ammonite zones)

Foraminifer zones

Foraminifers (Sverdrup Basin) Harrison et al., 1999a
Ages now tied to ‘master’ reference schemes 
(subboreal [Hettangian–Callovian] and boreal 
[Oxfordian–Tithonian] ammonite zones)

Dinoflagellates

Dinoflagellate zones (Sverdrup Basin, 
legacy) Harrison et al., 1999a

Kept for ‘historical’ value. Source data (Davies, 
1983) now available as events. Ages now tied 
to ‘master’ reference schemes (subboreal 
[Hettangian–Callovian] and boreal  
[Oxfordian–Tithonian] ammonite zones)

Dinoflagellate events (Sverdrup Basin) Davies, 1983
Data (events) entered by Bujak. Ages tied 
to ‘master’ reference schemes (subboreal 
ammonite zones)

Dinoflagellate zones (northern Yukon 
region, legacy) Poulton et al., 1993a

Kept for ‘historical’ value. Ages now tied to 
‘master’ reference schemes (stages). Taxonomy 
updated following Fensome et al. (2019)

Table A1. List of biostratigraphic data included in the 2020 Canada datapack (modified from Geologic TimeScale Foundation, 
2019c).
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Data set Source Comments

Western Arctic Upper Jurassic–Cenozoic Biostrat

Beaufort–Mackenzie Upper Jurassic–Cenozoic foraminifers

Upper Jurassic–Cenozoic foraminifer 
zones

Fowler, 1996; Hedinger, 
1996; McNeil, 1996a, b, c, 
1997; D.H. McNeil (pers. 
comm., 2019)

Revised by D.H. McNeil (pers. comm., 2019). 
Source data (Fowler, Hedinger, and McNeil in 
Dixon, 1996) now available as events. Ages now 
tied to ‘master’ reference schemes (stages)

Cenozoic calcareous benthic foraminifers McNeil, 1996c, 1997

Ages tied to ‘master’ reference schemes 
(series). Events capture overall FOs and LOs; 
users are referred to the original publications for 
variations in abundance

Cenozoic agglutinated benthic foraminifers McNeil, 1996b, 1997

Ages tied to ‘master’ reference schemes 
(series). Events capture overall FOs and LOs; 
users are referred to the original publications for 
variations in abundance

Upper Jurassic and Cretaceous benthic 
foraminifers

Fowler, 1996; Hedinger, 
1996; McNeil, 1996a, 1997

Ages tied to ‘master’ reference schemes 
(stages). Events capture overall FOs and LOs; 
users are referred to the original publications for 
variations in abundance

Beaufort–Mackenzie Cretaceous–Cenozoic dinoflagellates

Dinoflagellate zones (legacy) Harrison et al., 1999b

Kept for ‘historical’ value. Source data (McIntyre 
in Dixon, 1996) now available as events. Ages 
now tied to ‘master’ reference schemes (stages). 
Taxonomy updated following Fensome et al. 
(2019)

Dinoflagellate events McIntyre, 1996a, b, c; 
Fensome et al., 2019

Ages tied to ‘master’ reference schemes  
(series/stage). Taxonomy updated following 
Fensome et al. (2019)

Western Arctic Cretaceous–Cenozoic palynology

N Richardson Mountains dinocyst events 
(Valanginian)

McIntyre and Brideaux, 
1980

Data (events) entered by Bujak. Precise ages 
uncertain. Ages tied to ‘master’ reference 
schemes (stages)

N Richardson Mountains spores events 
(Valanginian)

McIntyre and Brideaux, 
1980

Data (events) entered by Bujak. Precise ages 
uncertain. Ages tied to ‘master’ reference 
schemes (stages)

Horton River dinocyst and acritarch events 
(Aptian–Albian)

Brideaux and McIntyre, 
1975

From exposures along the Horton River 
(Anderson Plains, N.W.T.). Langton Bay and 
Horton River formations. Ages tied to ‘master’ 
reference schemes (stages/substages)

Horton River spores and pollen events 
(Aptian–Albian)

Brideaux and McIntyre, 
1975

From exposures along the Horton River 
(Anderson Plains, N.W.T.). Langton Bay and 
Horton River formations. Ages tied to ‘master’ 
reference schemes (stages/substages)

WIS pollen and spores (Upper  
Cretaceous–Paleocene) Braman and Sweet, 2012 Ages tied to ‘master’ reference schemes  

(series/stages)

Table A1. (cont.)
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Data set Source Comments

Western/Arctic Canada pollen and spores 
zones (Upper Cretaceous–Cenozoic) Harrison et al., 1999b Ages now tied to ‘master’ reference schemes 

(stages)

Eastern Arctic Mesozoic–Cenozoic Biostrat

Jurassic–Cretaceous boundary dinocyst 
events Fisher and Riley, 1980

Data (events) entered by Bujak. Events recorded 
over Arctic and Eastern Canada, Greenland, 
and NW Europe. Ages tied to ‘master’ reference 
schemes (stages/substages and subboreal 
ammonite zones)

Labrador–Baffin Seaway palynoevents Nøhr-Hansen et al., 2016 Ages tied to ‘master’ reference schemes  
(series/stages)

Offshore Arctic Mesozoic–Cenozoic palynology (Bujak data)

Bujak Arctic zones Bujak (unpublished data)

Unpublished data by J.P. Bujak (JPB), 
established mostly from Arctic Canada and 
Alaska offshore well data. Details to be provided 
in CAPE (see text). Ages tied to ‘master’ 
reference schemes (series/stages)

Bujak Arctic subzones Bujak (unpublished data)

Unpublished data by JPB, established mostly 
from Arctic Canada and Alaska offshore well 
data. Details to be provided in CAPE (see text). 
Ages tied to ‘master’ reference schemes  
(series/stages)

Bujak Arctic dinocyst and algal events Bujak (unpublished data)

Unpublished data by JPB, established mostly 
from Arctic Canada and Alaska offshore well 
data. Details to be provided in CAPE (see text). 
Ages tied to ‘master’ reference schemes  
(series/stages). Taxonomy updated following 
Fensome et al. (2019)

Bujak Arctic spores, pollen, and fungi 
events Bujak (unpublished data)

Unpublished data by JPB, established mostly 
from Arctic Canada and Alaska offshore well 
data. Details to be provided in CAPE (see text). 
Ages tied to 1) Bujak Arctic (sub)zones, and  
2) ‘master’ reference schemes (stages and  
subboreal ammonite zones)

Arctic Cenozoic climate (Bujak data)

Bujak Arctic climatic events Bujak (unpublished data)

Unpublished data compiled and entered by JPB. 
Data represent global (Northern Hemisphere) 
events. Ages tied to ‘master’ reference schemes 
(series/stages)

Abreu and Anderson (1998) climate events Abreu and Anderson, 1998 Data (events) entered by JPB. Data represent 
global events. Ages absolute (i.e. not updated)

Bujak Arctic SST Bujak (unpublished data)

Unpublished data by JPB, established mostly 
from Arctic Canada and Alaska offshore well 
data. Details to be provided in CAPE (see 
text). Ages tied to ‘master’ reference schemes 
(stages)

CAPE = Circum-Arctic lower Paleozoic to Cenozoic palynological events project; FO = first occurrence; LO = last occurrence; 
SST = sea-surface temperature; WCSB = Western Canada Sedimentary Basin; WIS = Western Interior Seaway.

Table A1. (cont.)
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Data set Data column Source

New Canadian lithostratigraphic data (GEM-focused)

Sverdrup Basin Mesozoic lithostratigraphy

Mesozoic stratigraphy of the Sverdrup Basin Hadlari et al., 2016 (Fig. 2)

Cretaceous lithostratigraphy of Sverdrup Basin and western Arctic

Ringnes Islands and Axel Heiberg Island Bringué et al., 2018 (Fig. 2.1) 

Banks Island Bringué et al., 2018 (Fig. 2.1) 

Horton–Anderson plains Bringué et al., 2018 (Fig. 2.1) 

Richardson Mountains (northern Aklavik Range) Bringué et al., 2018 (Fig. 2.1) 

Snake, Peel, Arctic Red, and Hume rivers Bringué et al., 2018 (Fig. 2.1) 

Labrador–Baffin Seaway Cretaceous and Cenozoic lithostratigraphy

Labrador margin Dickie et al., 2011; Nøhr-Hansen et al., 
2016 (Fig. 3)

SE Baffin Island Nøhr-Hansen et al., 2016 (Fig. 3)

Bylot Island Nøhr-Hansen et al., 2016 (Fig. 3)

Canadian Arctic Islands transect suite

Ellef Rignes Island strat

Ellef Rignes–Sutherland transect Dewing and Embry, 2007

Sutherland O-23

Sutherland–Helena transect Dewing and Embry, 2007

Helena Island

Helena–E Bathurst transect Dewing and Embry, 2007

Bathurst Island strat

Cornwallis Island transect Dewing and Embry, 2007

Between Cornwallis and Somerset islands

Somerset–Brodeur transect Dewing and Embry, 2007

NW Baffin Island

North Baffin–Melville transect Dewing and Embry, 2007

Canadian Arctic Islands lithostratigraphy

Banks–Baffin islands (south Arctic transect)

Banks–Victoria region

NW Banks Island Trettin, 1991a

Central Banks Island Trettin, 1991a

SE Banks Island Trettin, 1991a

Table A2. List of lithostratigraphic data included in the 2020 Canada datapack (modified from Geologic TimeScale 
Foundation, 2019c). 



271

M. Bringué et al.

Data set Data column Source

Victoria and Stefansson islands Trettin, 1991a

Prince of Wales Island Trettin, 1991a

Lancaster region (south)

W Somerset Island Trettin, 1991a

E Somerset Island Trettin, 1991a

N Baffin Island Trettin, 1991a

Baffin region

Bylot Island Trettin, 1991a

Foxe Plain

Foxe Basin Trettin, 1991a

Devon–southern Ellesmere Island

Lancaster region (Devon Island)

Devon Island Trettin, 1991a

Southern Ellesmere Island

SW Ellesmere Trettin, 1991a

Fram Fiord Trettin, 1991a

W Makinson Inlet Trettin, 1991a

E Makinson Inlet Trettin, 1991a

Bache Peninsula Trettin, 1991a

Melville–N Devon Island

Sverdrup lowland (east)

Prince Patrick Island Trettin, 1991a

Eglinton Island Trettin, 1991a

Parry upland

NW Melville Island Trettin, 1991a

Central Melville Island Trettin, 1991a

NE Melville Island Trettin, 1991a

Cameron Island Trettin, 1991a

W Bathurst Island Trettin, 1991a

Central Bathurst Island Trettin, 1991a

E Bathurst Island Trettin, 1991a

N Cornwallis Island Trettin, 1991a

S Cornwallis Island Trettin, 1991a

Table A2. (cont.)
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Data set Data column Source

E Grinnel Peninsula Trettin, 1991a

Mackenzie–Axel Heiberg

Sverdrup lowland

Mackenzie, Brock, and Borden islands Trettin, 1991a

Lougheed Island Trettin, 1991b

King Christian and Ellef Ringnes islands Trettin, 1991b

Ellef Ringnes Island Trettin, 1991b

Amund Ringnes Island Trettin, 1991b

Cornwall Island Trettin, 1991b

Graham Island (Sverdrup lowland) Trettin, 1991b

Axel Heiberg Island

S Axel Heiberg Island Trettin, 1991b

W-central Axel Heiberg Island Trettin, 1991b

NW Axel Heiberg Island Trettin, 1991b

E Axel Heiberg Island Trettin, 1991b

N Axel Heiberg Island Trettin, 1991b

S Ellesmere–NE Ellesmere

Bjorne Peninsula and south Trettin, 1991b

Svendsen Peninsula (central Ellesmere Island) Trettin, 1991b

Raanes Peninsula Trettin, 1991b

Western Fosheim Peninsula (central Ellesmere Island) Trettin, 1991b

Eastern Fosheim Peninsula Trettin, 1991b

S of Caledonian Bay Trettin, 1991b

Caledonian Bay (central Ellesmere Island) Trettin, 1991b

Copes Bay to Carl Ritter Bay Trettin, 1991b

SW Judge Daly Promontory (central Ellesmere Island) Trettin, 1991b

SE of Ella Bay (central Ellesmere Island) Trettin, 1991b

Head of Ella Bay Trettin, 1991b

St. Patrick Bay (central Ellesmere Island) Trettin, 1991b

N Ellesmere transect

Central Ellesmere Island

Blue Mountains Trettin, 1991b

Western Svartfjeld Peninsula Trettin, 1991b

Table A2. (cont.)
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Data set Data column Source

Van Hauen Pass (central Ellesmere Island) Trettin, 1991b

Head of Hare Fiord (central Ellesmere Island) Trettin, 1991b

Ooblooyah Bay (central Ellesmere Island) Trettin, 1991b

East of mouth of Tanquary Fiord (central Ellesmere Island) Trettin, 1991b

Northern Ellesmere Island (central)

McKinley Bay (central Ellesmere Island) Trettin, 1991c

Head of Tanquary Fiord (central Ellesmere Island) Trettin, 1991c

Henrietta Nesmith Glacier (central Ellesmere Island) Trettin, 1991c

Lake Hazen (central Ellesmere Island) Trettin, 1991c

Northernmost Ellesmere Island

Head of Emma Fiord Trettin, 1991c

Kleybolte Peninsula Trettin, 1991c

S of Phillips Inlet Trettin, 1991c

Head of Yelverton Inlet Trettin, 1991c

Wooton Peninsula to SE of Milne Inlet Trettin, 1991c

M’Clintock Glacier (northern Ellesmere Island) Trettin, 1991c

M’Clintock Inlet Trettin, 1991c

Head of M’Clintock Inlet Trettin, 1991c

Head of Disraeli Fiord (northern Ellesmere Island) Trettin, 1991c

E of Disraeli Fiord to Markham Fiord Trettin, 1991c

Cape Columbia to Cape Nares (northern Ellesmere Island) Trettin, 1991c

NW of Clements Markham River Trettin, 1991c

Crescent Glacier to Clements Markham Inlet (northern Ellesmere 
Island) Trettin, 1991c

Feilden Peninsula, Parry Peninsula, Parker River (northern 
Ellesmere Island) Trettin, 1991c

NW of Piper Pass (northern Ellesmere Island) Trettin, 1991c

Northern Greenland

Kane Basin–Independence Fiord region

Inglefield Land Trettin, 1991c

Washington Land Trettin, 1991c

Petermann Glacier Trettin, 1991c

Western North Greenland (south) Trettin, 1991c

Southern Peary Land–Independence Fiord Trettin, 1991c

Table A2. (cont.)



274

GSC Bulletin 609

Data set Data column Source

Danmark Fiord Trettin, 1991c

N Greenland region

Western North Greenland (north) Trettin, 1991c

Northern Peary Land Trettin, 1991c

Northern Canada lithostratigraphy

Canadian Arctic and Mackenzie area

Romanzoff uplift/Babbage depression (British–Barn mountains 
Old Crow Basin) Stott, 1993a

Yukon Coastal Plain/Rapid depression (Mackenzie Bay) Stott, 1993a

West Richardson Trough/White uplift (White Mountains) Stott, 1993a

East Richardson Trough/White uplift (northern Richardson Mtns.) Stott, 1993a

Mackenzie Delta Stott, 1993a

Campbell uplift (Inuvik) Stott, 1993a

Anderson Basin (Anderson Plain) Stott, 1993a

Brock Inlier (Melville Hills) Stott, 1993a

Coppermine homocline Stott, 1993a

Northern Yukon and Mackenzie fold belt

Northern Yukon fold complex

Kandik Basin (Kandik River) Stott, 1993a

Eagle fold belt (Eagle Plain) Stott, 1993a

Bonnet Plume Basin Stott, 1993a

Eastern Ogilvie Arch (eastern Wernecke Mountains) Stott, 1993a

Yukon Mackenzie fold belt

Frontal Mackenzie Mountains (Snake River) Stott, 1993a

Mackenzie Arch (Arctic Red River) Stott, 1993a

Mackenzie synclinorium (Mountain River) Stott, 1993a

Northern Franklin Mountains (Norman Wells) Stott, 1993a

Keele Arch (Fort Norman) Stott, 1993a

Great Bear Basin (western Great Bear Lake) Stott, 1993a

Central Yukon to Yellowknife

Misty Creek embayment (Twitya River) Stott, 1993a

Sekwi Mountain Stott, 1993a

East Glacier/Lake Nahanni Stott, 1993a

Table A2. (cont.)
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Data set Data column Source

Frontal Mackenzie Mountains (Redstone River) Stott, 1993a

Franklin Mountains (Cap Mountain) Stott, 1993a

Bulmer Lake Arch (Bulmer Lake) Stott, 1993a

Great Bear Plain/Lac la Martre Stott, 1993a

Southern Northwest Territories

Selwyn Basin (Flat River) Stott, 1993a

Southern Mackenzie fold belt (Kotaneelee and Liard ranges) Stott, 1993a

Tathlina Arch (Trout Lake) Stott, 1993a

Hay River platform (Hay River Pine Point) Stott, 1993a

Central Canada lithostratigraphy

Northern British Columbia–Alberta

Northern BC Rocky Mountain fold belt

Gataga high (Gataga River) Stott, 1993b

Roosevelt graben (Mount Churchill) Stott, 1993b

MacDonald platform (Summit Lake) Stott, 1993b

Liard and Scatter rivers Stott, 1993b

Northern BC Interior platform

Zama Lake Stott, 1993b

Middle British Columbia–Alberta

Middle BC Rocky Mountain fold belt

Western Rocky Mountains (Ware map area) Stott, 1993b

Eastern Rocky Mountains (Halfway map area) Stott, 1993b

Peace River Arch/embayment (Pine Pass) Stott, 1993b

Middle BC Interior platform

Peace River plains (Fort St. John) Stott, 1993b

Hay River Basin (Fort McMurray) Stott, 1993b

Middle Alberta–Saskatchewan

Front Range (Narraway River) Stott, 1993b

Swan Hills Stott, 1993b

Cold Lake Stott, 1993b

Cumberland House Stott, 1993b

Table A2. (cont.)
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Data set Data column Source

Lower mid Alberta–Saskatchewan

Lower mid Alberta Rocky Mountain fold belt

Mount Robson syncline (Mount Robson) Stott, 1993b

Eastern Main ranges (Jasper) Stott, 1993b

Western Alberta ridge (Roche Miette) Stott, 1993b

Eastern Alberta foothills (Brûlé) Stott, 1993b

Lower mid Alberta Interior platform

Edmonton Stott, 1993b

Lloydminster Stott, 1993b

Saskatoon Stott, 1993b

Lake Winnipegosis Stott, 1993b

Southern Alberta–Saskatchewan

Southern Alberta Rocky Mountain fold belt

Western Rocky Mountains (Stanford–Hughes ranges) Stott, 1993b

Main Ranges Basin (Kickinghorse River) Stott, 1993b

Main Ranges platform (Spray River/Connor Lake) Stott, 1993b

West Alberta Arch/Front Range (Exshaw) Stott, 1993b

Western Alberta foothills (Turner Valley) Stott, 1993b

Southern Alberta Interior platform

Calgary/Drumheller Stott, 1993b

North Williston Basin (Moose Jaw/Regina) Stott, 1993b

Eastern platform (Lake Manitoba) Stott, 1993b

Far southern Alberta–Manitoba

Far southern Rocky Mountain fold belt

Fernie Basin (Elko/Fernie) Stott, 1993c

Front-Ranges Foothills (Waterton/Pincher Creek) Stott, 1993c

Far southern Interior platform

Sweetgrass Arch (Cypress Hills) Stott, 1993c

West Williston Basin (Maple Creek/Swift Current) Stott, 1993c

Central Williston Basin (Big Muddy/Willow Bunch) Stott, 1993c

East Williston Basin (Brandon) Stott, 1993c

Table A2. (cont.)
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Data set Data column Source

Hudson platform

Bell Arch (Southampton, Coats, and Mansel islands) Stott, 1993c

Northern Hudson Bay Stott, 1993c

Central Hudson Bay Stott, 1993c

Northern Hudson Bay lowland Stott, 1993c

Central Hudson Bay lowland Stott, 1993c

North James Bay lowland Stott, 1993c

Central James Bay lowland Stott, 1993c

South James Bay lowland Stott, 1993c

West St. Lawrence platform/lowlands

Michigan Basin (Windsor/Sarnia) Stott, 1993c

Allegheny Basin (western Lake Erie) Stott, 1993c

Michigan Basin (Manitoulin Island) Stott, 1993c

Algonquin Arch Stott, 1993c

Allegeheny Basin (Niagara Peninsula) Stott, 1993c

Central St. Lawrence platform/lowlands and Laurentian highlands  
        (and outliers within Superior and Grenville provinces)

Lake Timiskaming and Ottawa Valley outliers–Ottawa 
embayment Stott, 1993c

Pembroke–Arnprior outlier, Ottawa, and St. Lawrence River Stott, 1993c

Montréal Stott, 1993c

Saint-Hyacinthe Stott, 1993c

West Lac Saint-Jean, Chicoutimi outlier, Québec Stott, 1993c

Nicolet/Yamaska Stott, 1993c

East St. Lawrence platform/lowlands

N Shore and Mingan Island/Anticosti Island Stott, 1993c

Gulf of St. Lawrence Stott, 1993c

Port au Port Peninsula Stott, 1993c

Southeast Labrador/Strait of Belle Isle Stott, 1993c

Canada Bay Stott, 1993c

Table A2. (cont.)
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Appendix B

Table B1 provides a summary of changes applied to each ‘Arctic Canada Biostrat’ column of the 2010 Canada 
datapack, highlighting some of the quality control applied to data incorporated in the 2020 version of the Canada 
datapack (modified from Geologic TimeScale Foundation, 2019c).
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Appendix C

This appendix provides updated identifications and age 
determinations, as well as references to both original pale-
ontological sources and previous summary compilations, as 
documentation for the summary chart of Arctic Canada’s 
Jurassic ammonite and Buchia biostratigraphy presented in 
Figure 8.

This is not a complete guide, as it does not include all 
instances in the literature where fossil determinations have 
been simply repeated without embellishment and unpub-
lished sources have not been considered. Early discoveries 
of fossils without stratigraphic context, and commonly mis-
identified and misdated, are noted only where use of their 
name has implied significant potential for age determinations.

Ammonites: Early Jurassic

Early Hettangian. Psiloceras sp. and Caloceras cf. john-
stoni (J. de C. Sowerby) were described and illustrated 
by Frebold and Poulton (1977), and Psiloceras(?) sp. was 
described and illustrated by Poulton (1991).

Latest Hettangian or earliest Sinemurian. Badouxia(?) 
and Ectocentrites(?) sp. were described and illustrated by 
Poulton (1991).

Early Sinemurian. Arietitid ammonites were described 
and illustrated as Arietites sensu lato (not re-studied since) 
from Melville and Mackenzie King–Borden islands and 
northern Richardson Mountains by Frebold (1960, 1964a); 
Charmasseiceras sp. and Coroniceras (Primarietites) sp. 
were illustrated from Borden Island by Frebold (1975). 
Coroniceras, Arnioceras(?), and Charmasseiceras were 
listed by Poulton (1994) and Poulton in Harrison et al. 
(1999a, 2000) but not yet illustrated, from the western Arctic 
Islands. Coroniceras (or Arietites?) and Arnioceras cf. dou-
villei (Bayle) were described and illustrated by Poulton 
(1991) from the northern Richardson Mountains.

Late Sinemurian. Oxynoticeras oxynotum (Quenstedt), 
Oxynoticeras sp., Arctoasteroceras jeletzkyi Frebold, and 
Gleviceras(?) sp. were described and illustrated from the 
northern Richardson Mountains by Frebold (1960, 1964a); 
Arctoasteroceras jeletzkyi was subsequently discussed and 
Gleviceras plauchuti Frebold illustrated from Prince Patrick 
Island (Frebold, 1975). Aegasteroceras (Arctoasteroceras) 
jeletzkyi Frebold, Aegasteroceras (Arctoasteroceras) sp., 
Oxynoticeras oxynotum (Quenstedt), Oxynoticeras(?) sp., 
Gleviceras sp., Microderoceras(?), and Paltechioceras(?) 
were described and illustrated, or listed, from the northern 
Richardson Mountains by Poulton (1991).

Echioceras sp., illustrated by Frebold (1960) from the northern 
Richardson Mountains, was designated Echioceras aklavik-
ense, and also described from Melville Island with Echioceras 
arcticum Frebold (1975, both species); Echioceras arcticum 
and Echioceras cf. arcticum were identified from Borden 
Island and northern Yukon, respectively (Frebold, 1975); 
Echioceras aklavikense Frebold, Echioceras(?), includ-
ing Vermiceras, which was identified earlier by Stelck (in 
Jeletzky, 1967), and Arietites by Frebold (1960; noted also 
by Poulton et al., 1982), Paltechioceras (Orthechioceras) cf. 
radiatum (Trueman and Williams), and Paltechioceras(?) sp. 
were described and illustrated, or listed, by Poulton (1991).

Late Pliensbachian. Amaltheus stokesi (J. Sowerby) and 
Amaltheus sp. were described and illustrated from Axel Heiberg 
and Prince Patrick islands by Frebold (1975). Amaltheus sp. 
was listed from the northern Richardson Mountains and north-
ern Yukon by Frebold (1964a); Amaltheus stokesi, A. bifurcus 
Howarth, and A. margaritatusde Montfort(?) were illustrated 
or listed from that area by Poulton (1991). The precise age 
of Pleuroceras(?) described and illustrated by Poulton (1991) 
from a locality in the northern Yukon area that also produced 
Amaltheus from a nearby location is not clear, but perhaps the 
Pleuroceras spinatum Zone is also represented there.

Latest Pliensbachian or earliest Toarcian. Hall and Howarth 
(1983) assigned Protogrammoceras paltum (Buckman) from 
Axel Heiberg Island to the Pleuroceras spinatum Zone, but it 
has been stated in a recent review (Caruthers et al., 2018) to 
occur in both the late Pliensbachian and the early Toarcian in 
North America.

Early Toarcian. Harpoceras aff. exaratum (Young and 
Bird) and mainly finely ribbed Dactylioceras species such as 
Dactylioceras cf. semicelatum (Simpson) were illustrated or 
listed from northern Yukon (Frebold, 1964a, 1975; Frebold 
et al., 1967); Hildaites species were listed from the Arctic 
Islands (Frebold, 1964a, 1975); Harpoceras (or Tiltoniceras?) 
sp., Dactylioceras(?) sp., Paltarpites(?), Grammoceras(?), 
Hildaites(?), Collina(?) aff. simplex Fucini and Ovaticeras cf. 
ovatum (Young and Bird) were described and illustrated, or 
listed, from the northern Yukon–Richardson Mountains area 
by Poulton (1991).

Middle Toarcian. Dactylioceras commune (Simpson), 
Pseudolioceras compactile (Simpson), Peronoceras spinatum 
(Frebold), Peronoceras polare (Frebold), and Peronoceras aff. 
desplacei (d’Orbigny) and Grammoceras? were recognized 
first by Frebold (in Tozer, 1956), and described and illus-
trated from Cornwall, Prince Patrick, and Ellesmere islands 
by Frebold (1958, 1960, 1964a; the Peronoceras species were 
assigned originally to Coeloceras, then to Catacoeloceras). 
Unidentified harpoceratids from Prince Patrick and Borden 
islands, illustrated and compared with Harpoceras exara-
tum (Young and Bird) by Imlay (1955) and Frebold (1960), 
were associated with Dactylioceras commune; several forms 
of Dactylioceras from Prince Patrick Island were compared 
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with various published species, and ‘probable Hildoceras’ 
was identified by Imlay (1955). Frebold (1975) described 
and illustrated Pseudolioceras spitsbergense and other com-
ponents of the widespread Peronoceras–Pseudolioceras 
association from Prince Patrick Island, which he considered 
to be late Toarcian, but which are now considered to be middle 
Toarcian. Dactylioceras commune, a coeloceratid ammonite, 
Pseudolioceras kedonense Repin (?), and Pseudolioceras lec-
tum (Simpson) and Pseudolioceras sp. were described and 
illustrated, or listed, by Poulton (1991) from northern Yukon. 
Peronoceras cf. polare (Frebold) identified by Frebold (1975; 
the record repeated by Poulton et al., 1982) from northern 
Yukon was not relocated in the original collection, which may 
be Middle Jurassic (Poulton, 1991). Zugodactylites cf. brau-
nianus (d’Orbigny) indicating the Zugodactylites braunianus 
Subzone was illustrated from Ellef Ringnes Island by Frebold 
(1975).

Late Toarcian. The record of Grammoceras cf. boreale 
(Whiteaves) from northern Ellesmere Island (Frebold, in 
Nassichuk and Christie, 1969) has been corrected ― it is 
absent there (Frebold, 1975). The identification and age of 
the specimens from Cameron Island illustrated as Pleydellia? 
sp. and as early Bajocian in age (now Aalenian) by Frebold 
(1960) have not been reconsidered, but Pleydellia is known 
elsewhere in the western Arctic Islands (Poulton, 1994, 
Table 1). A significant sequence of ammonites through 
the Toarcian–Aalenian boundary interval is present in col-
lections listed by Poulton (1994) from the western Arctic 
Islands.

Ammonites: Middle Jurassic

It is important to note that the Aalenian stage, basal to the 
Middle Jurassic, was not differentiated in North American 
publications prior to about 1982, before which it constituted 
the early Bajocian, and it was subsequently introduced grad-
ually by different authors. The middle Bajocian referred to 
prior to its adoption is now the early Bajocian. The Callovian 
stage, now the highest in the Middle Jurassic, was previously 
included in the Late Jurassic.

Early Aalenian. Leioceras opalinum (Reinecke) and 
Pseudolioceras mclintocki (Haughton) have been described 
and illustrated from Prince Patrick Island and are now 
known from many other Arctic localities as well (Frebold, 
1958, 1960, 1961, 1964a, 1975). They were first identified as 
Ludwigia (Lioceras) opalina and ‘Harpoceras’ m’clintocki 
or Ludwigia m’clintocki, respectively, and thought to be early 
Bajocian (Frebold in Tozer, 1956). Leioceras cf. opalinum 
(Reinecke), Leioceras sp.(?), Pseudolioceras mclintocki 
(Haughton), and Pseudolioceras spp. were described and 
illustrated from northern Yukon by Poulton (1991).

Late Aalenian. Pseudolioceras mclintocki (Haughton) occurs 
not only in the Leioceras opalinum Zone (Frebold, 1960), 
but also with Erycitoides howelli (White) (Poulton, 1991), 

through much or all of the Aalenian across Arctic Canada. 
Erycitoides cf. howelli was first identified, as Erycites, in 
northern Yukon (Frebold, 1960, 1961, 1964a; Frebold et al., 
1967); Erycitoides is now known in Sverdrup Basin as 
far east as northern Ellesmere Island. Erycitoides howelli, 
Erycitoides kialagvikense (White), Erycitoides spinatus 
Westermann(?), Erycitoides sp., Pseudolioceras mclintocki, 
Pseudolioceras aff. whiteavesi (White), Pseudolioceras spp., 
and Planammatoceras spp. were described and illustrated 
by Poulton (1991) from the northern Yukon and northern 
Richardson Mountains. Ludwigella(?) from Prince Patrick 
Island, figured in Imlay (1955), was considered to be Toarcian 
Pseudolioceras by Poulton (1994).

Early Bajocian. Arkelloceras was first reported by Frebold 
(in Tozer, 1956) as a new but unnamed genus and species, 
and subsequently described and illustrated as three new spe-
cies, widespread across the Canadian Arctic ― Arkelloceras 
mclearni, Arkelloceras tozeri, and Arkelloceras elegans 
(species of Frebold, 1958, 1961, 1964b; Frebold et al., 1967; 
Poulton et al., 1982; Poulton, 1997). The early Bajocian 
(Otoites sauzei or perhaps earliest Stephanoceras humphrie-
sianum Zone) age of Arkelloceras, suggested from small 
specimens in otherwise southerly faunas in western Alberta 
and southern Alaska (Westermann, 1964; Imlay, 1964), 
has been supported in eastern Siberia by Meledina (2014). 
Abbasites? and Ludwigia reported from northern Ellesmere 
Island (Frebold, in Nassichuk and Christie, 1969) have not 
been re-examined.

Boreiocephalites borealis (Spath) and Boreiocephalites 
warreni Frebold were described and illustrated, or listed, 
from the northern Richardson Mountains area (Frebold, 1961, 
1964a). These species were assigned to Cranocephalites; 
Boreiocephalites Meledina is now widely used to accom-
modate the early species of the lineage (Howarth, 2017). 
Poulton et al. (1982) reported Cranocephalites cf. indis-
tinctus Callomon from northern Yukon, and Callomon 
(1984) considered Frebold’s figure of Cranocephalites 
(Freebold, 1958, Pl. 8) to represent the Greenland regional 
Cranocephalites indistinctus Zone on Prince Patrick Island.

Late Bajocian. Cranocephalites vulgaris Frebold was 
identified first as Arctocephalites (Cranocephalites) cf. 
vulgaris var. robusta in Tozer (1956) and described and 
illustrated, or listed, by Frebold (1958, 1961, 1964a) from 
Prince Patrick Island. Those illustrations and the presence of 
Cranocephalites cf. pompeckji (Madsen), Cranocephalites 
aff. vulgaris, and Cranocephalites aff. maculatus in north-
ern Yukon (Poulton et al., 1982) were the basis for the 
recognition of the Greenland regional Cranocephalites pom-
peckji Zone by Callomon (1984). The apparent absence of 
Cranocephalites across the remainder of the Sverdrup Basin 
may indicate a regional hiatus below the McConnell Island 
shale sequence above the Arkelloceras beds.

Arctocephalites elegans Spath and other Arctocephalites spe-
cies were described and illustrated by Frebold (1961, 1964a, 
b) from the richly fossiliferous successions on western Axel 
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Heiberg Island and from poorly localized specimens from  
northern Yukon. Additional ammonite collections by 
A.F. Embry and J.H. Wall were identified by Poulton, and the 
sequences were re-collected by Poulton in 1985. Specimens 
from a well-exposed sequence in northern Yukon were 
described by Poulton (1987), who named regional morpho-
species representing the widespread Boreal Arctocephalites 
arcticus Zone, with its early and generally small Arctocephalites 
species. The lowest, regional Arctocephalites spathi Zone, 
contains morphospecies Arctocephalites spathi Poulton, 
Arctocephalites ellipticus Spath, and possibly Arctocephalites 
aff. sphaericus Spath (Poulton, 1987). Following joint col-
lecting with Poulton at this locality, and based on illustrations 
in the literature and a preview of Poulton (1987), Callomon 
(1984) designated two subdivisions of the Arctocephalites 
arcticus Zone in Arctic Canada (Callomon, 1984, faunas C4 
and C5), noting the similarities and differences of the varia-
tions in their populations with the East Greenland equivalents.

The succeeding regional Arctocephalites porcupinensis 
Zone in northern Yukon conforms with the local ranges 
of Arctocephalites callomoni Frebold and a variant of 
Arctocephalites aff. nudus Spath and is conspicuous by the 
abundance of Arctocephalites porcupinensis Poulton in its 
upper half. This interval, described by Poulton (1987), coin-
cides with fauna C6 in Callomon (1984). The Arctocephalites 
arcticus (Whitfield) morphotype does not appear until high 
in this zone, so the lower, Arctocephalites spathi Zone may  
represent an interval not present in the Arctocephalites 
arcticus Zone elsewhere. Cadoceras crassum Madsen 
and Cadoceras cf. freboldi Spath, illustrated by Frebold 
(1961) from specimens found in talus below the well-
exposed sequence of early Bathonian to early Callovian 
beds in northern Yukon, were considered to be particularly 
rotund Arctocephalites(?) species derived from the upper 
Arctocephalites porcupinensis to lower Arctocephalites 
amundseni regional zones (Poulton, 1987), likely globose 
morphotypes of the more common, possibly highly labile, 
associated Arctocephalites species. The age and affini-
ties of ‘Cadoceras crassum’ and Cadoceras aff. barnstoni 
identified by Frebold (in Jeletzky, 1972) from a stratigraphi-
cally uncontrolled locality elsewhere in northern Yukon are 
unknown (Poulton et al., 1982).

Early Bathonian. As well as containing the higher continuing 
morphospecies that first appear in the underlying beds such as 
Arctocephalites arcticus Spath, the Arctocephalites amundseni 
regional zone is indicated in northern Yukon (Poulton, 1987) by 
larger Arctocephalites species in its lower part ― Arctocephalites 
amundseni Poulton [for Cadoceras(?)] aff. pseudishmae Spath 
(Frebold, 1961) ― which indicate the widespread Boreal 
Arctocephalites greenlandicus Zone. Arctocephalites frami 
Poulton comprises the probably highest local fauna in these 
Arctocephalites greenlandicus Zone equivalents. Callomon 
(1984) indicated that the zone in East Greenland is similarly 
divisible, with three subzones recognized.

Middle Bathonian. Arcticoceras ishmae (Keyserling) from 
northern Yukon and Prince Patrick Island, some identified as 
Arcticoceras kochi Spath by Frebold (1961, 1964a), indicate 
the widespread Boreal Arcticoceras ishmae Zone. Those 
from northern Yukon were further described by Poulton 
(1987). Arcticoceras harlandi Rawson in northern Yukon 
indicates the lower Boreal Arcticoceras harlandi Subzone. 
This widely used terminology is retained in this paper, 
although the species has been considered a junior synonym 
of Arcticoceras excentricum Voronetz (e.g. Gulyaev, 2019). 
The highest subzone may be indicated by ‘Arcticoceras cf. 
crassiplicatum’ reported by Callomon (1984), apparently a 
nomen nudum with no description having been published. 
Several taxa suggest connection with standard sequences in 
Europe ― Oxycerites birkelundi Poulton, Parareineckeia sp., 
Choffatia(?) sp. (Poulton, 1987).

Late Bathonian. Cadoceras barnstoni (Meek), originally 
thought to be Cretaceous (Meek, 1859) but recognized to 
be Jurassic by Frebold (1964b), is closely similar to asso-
ciated Cadoceras variabile Spath in the northern Yukon, 
characterizing the Boreal Cadoceras variabile Zone of East 
Greenland (Callomon, 1984; Poulton, 1987). Other taxa 
from this horizon in northern Yukon that may aid extraba-
sinal correlation include Paracadoceras sp., Kepplerites 
spp. including Kepplerites aff. rosenkrantzi Spath, and 
possibly Oecotraustes(?) sp. (Poulton, 1987). Iniskinites 
yukonensis Frebold and other Iniskinites species (including 
Loucheuxia bartletti Poulton) appear to be endemic north-
ern eurycephalitinids. Cadoceras barnstoni may indicate the 
presence of the regional Boreal Cadoceras variabile Zone 
on Ellef Ringnes Island (Frebold, 1964b; Frebold in Stott, 
1968), but the varieties of ‘Cadoceras barnstoni’ reported 
to be associated with Cadoceras bodylevskyi and Cadoceras 
cf. falsum on Axel Heiberg Island (Frebold, 1964b) are likely  
misidentified early Callovian species.

Cadoceras (Paracadoceras) sp., located stratigraphically 
above Cadoceras barnstoni in the Salmon Cache Canyon 
sequence (Poulton, 1987), was indicated previously to be 
earliest Callovian (Callomon, 1984, fauna C10), but recon-
sideration of the age of overlying Cadoceras, discussed 
below, suggests that this species may be latest Bathonian. 
Some of the early Cadoceras species are commonly although 
inconsistently attributed to Paracadoceras as a genus or 
subgenus of Cadoceras (e.g. Callomon, 1984; Mitta, 2016). 
Uncertainties regarding the stratigraphic level and faunal 
associations of its small, microconch(?) East Pacific type 
specimen (Paracadoceras harveyi Crickmay; see Howarth, 
2017, p. 69) may render its widespread usage questionable, 
but its status is not reconsidered in this paper.

A number of Cadoceras species and varieties have been 
described from Arctic Canada (Frebold, 1961, 1964b; Poulton, 
1987), mainly without stratigraphic context, but those in 
sequences at Salmon Cache Canyon in northern Yukon and in 
the ‘Cadoceras beds’ of western Axel Heiberg Island provide 
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a reliable sequence of two associations in each area. Some of 
the confusion regarding the stratigraphic positions of various 
Arctic Canada Callovian cadoceratids may be due to insuf-
ficiently appreciated variability within their populations and 
to overinterpretation of the biostratigraphic significance of 
individual morphotypes found without stratigraphic context.

Early Callovian. The early Callovian age for the lower 
Cadoceras bed with Cadoceras bodylevskyi (Frebold, 1964b) 
at Vantage Hill is supported most recently by the discovery 
of this species with other earliest Callovian ammonites in 
the successions of Germany and the Russian Platform (Mitta 
et al., 2015; Mitta, 2016). Frebold (see Freebold, 1964b, 
p. 24) had initially compared them with large Cadoceras in 
the Kepplerites tychonis Zone in East Greenland, thought 
by Callomon (1959) to be lower Callovian; and Callomon 
(Callomon 1984, faunas C11, 12) placed them high in the 
early Callovian based on close similarities with the ammo-
nite succession in East Greenland (Callomon 1959, 1993) and 
northwestern Europe. In contrast, Kiselev and Rogov (2007) 
suggested a latest Bathonian age for the ‘bodylevskyi biohori-
zon’ based on the stratigraphic position of two fragments they 
identified as Cadoceras cf. bodylevskyi occurring without 
associated age-diagnostic ammonites, in European Russia.

The ammonites from northern Yukon identified as Cadoceras 
bodylevskyi and dated as earliest Callovian by Poulton (1987; 
see also Callomon, 1984; Von Hillebrandt et al., 1993) have 
been revised in recent European studies, first to Paracadoceras 
poultoni Gulyaev and earliest Callovian (Gulyaev, 2005), 
then to Cadoceras (Paracadoceras) breve Blake, of early, but 
not consistently earliest, Callovian age (Kiselev and Rogov, 
2007). The name Cadoceras bodylevskyi?/brevi used in the 
northern Yukon column of TimeScale Creator acknowledges 
these discussions.

The higher Cadoceras beds with Cadoceras septentrionale 
Frebold on Axel Heiberg Island were thought by Frebold 
(1964a, b) to correlate with the international standard 
Sigaloceras calloviense Zone (late early Callovian at that 
time; now in the lower middle Callovian) in the Greenland 
zonation of Callomon (1959). Callomon (1984) subse-
quently thought it to lie immediately below the international 
standard Proplanulites koenigi Subzone and later ‘somewhat 
arbitrarily’ within it (Callomon, 1993). Cadoceras septen-
trionale has also been identified on Ellef Ringnes Island in 
association with Kepplerites sp. (Frebold in Stott, 1968), but 
both species are not yet described or illustrated. The collec-
tion studied by Frebold (1964b) included morphotypes that 
he identified as Cadoceras septentrionale var. latidorsata, 
indicating variability in the population, but confusing cor-
relations with a locality in northern Yukon based on isolated 
collections that only include the non-typical morphotype, as 
discussed below.

Early and middle Callovian(?). Callomon (1984) consid-
ered the relative sequence of Cadoceras septentrionale and 
stratigraphically uncontrolled but distinctive Cadoceras 
voronetsae Frebold (perhaps including Cadoceras arcticum 

Frebold) to be conjectural, but in TimeScale Creator, 
the order he proposed has been used (Fig. 8). Callomon 
regarded specimens of Cadoceras cf. arcticum from the 
Babbage River area of northern Yukon and from north-
eastern Alaska (Callomon, 1984, fauna D4) to resemble 
late cadoceratids of the Sigaloceras calloviense Standard 
Zone. The possible late middle Callovian age of similarly 
poorly controlled Stenocadoceras canadense (Frebold, 
1964a) follows the comment by Callomon (1984) on the 
evolutionary grade of its ventral ribbing and may be simi-
larly speculative. Callomon illustrated it (Callomon, 1984, 
faunas C14, D5, and Fig. 4), without Cadoceras associ-
ates. However, its associate in the northern Richardson 
Mountains (Aklavik Range; Frebold, 1964a), Cadoceras 
septentrionale var. latidorsata, was reported to occur with 
Cadoceras septentrionale sensu stricto on Axel Heiberg 
Island (Frebold, 1964a).

Late Callovian. The record of late Callovian (Peltoceras 
athleta Standard Zone) Longaeviceras (Poulton, 1997, 
Table 10.1) is incorrect; no definitive late Callovian fossils 
have been reported in northern Yukon or adjacent Northwest 
Territories. However, Longaeviceras is well represented 
elsewhere across the Arctic, including northern Alaska 
(Callomon, 1984).

Ammonites: Late Jurassic to  
earliest Cretaceous

Some recent authors subdivide the Volgian Boreal stage 
into lower, middle (characterized by dorsoplanitid ammo-
nites), and upper substages (e.g. Shurygin et al., 2011), 
whereas Jeletzky (1984) and Ogg et al. (2016, ‘E’ and ‘Lt’ 
on Fig. 12.4) use only lower and upper subdivisions. The 
comments below are limited to providing an interpreta-
tion of the intention of the original authors as required 
and in the context of the correlations between the Boreal, 
Subboreal, and Tethyan columns provided in TimeScale 
Creator. Whereas some authors have referred to middle (or 
middle-) Kimmeridgian, it is standard now to subdivide the 
Kimmeridgian stage into lower and upper.

Early Oxfordian. Cardioceras (Scarburgiceras) aff. 
mirum Arkell was identified by Frebold (1961, 1964a) 
from Axel Heiberg Island, noting that Cardioceras 
(Scarburgiceras) mirum itself occurs in the basal Oxfordian 
Cardioceras (Scarburgiceras) praecordatum Subzone of 
the Quenstedtoceras mariae Zone. Specifically, unidenti-
fied Cardioceras, indicating the lower or middle Oxfordian, 
also occurs in the western Arctic Islands (Tan and Hills, 
1978; Poulton, 1994). Cardioceras appearances at several 
localities across the northern Yukon area, although poorly 
controlled biostratigraphically, suggest a sequence of sev-
eral species similar to various European species of the early 
Oxfordian Quenstedtoceras mariae and Cardioceras corda-
tum zones. They include Cardioceras spp. aff. Cardioceras 
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cordatum and Cardioceras alphacordatum illustrated by 
Frebold et al. (1967), and listed by Callomon (1984) and 
Poulton (1997).

Middle Oxfordian. Two specimens from the Babbage 
River area of northern Yukon, previously figured as early 
Oxfordian, were re-identified as Cardioceras (Malto-
niceras) sp. of middle Oxfordian [upper Cardioceras 
(Subvertebriceras) densiplicatum Zone] age (Callomon, 
1984).

Late Oxfordian to early Kimmeridgian. Amoeboceras, 
generally poorly preserved and usually not specifically 
identified, has been collected at various localities across 
the Canadian Arctic, commonly with the bivalve Buchia 
concentrica (Sowerby) (Frebold, 1961, 1964a; Fricker, 
1963; Frebold et al., 1967). Callomon (Callomon, 1984, 
fauna C18) re-identified a specimen from northern Yukon, 
reported by Poulton (1978) as Cardioceras, as early late 
Oxfordian Amoeboceras (Prionodoceras) cf. or aff. transi-
torium Spath. Small fragments of Amoeboceras figured in 
Frebold et al. (1967, Pl. III) were suggested to be perhaps 
latest Oxfordian [Amoeboceras (Prionodoceras) rozen-
krantzi Zone] by Callomon (1984) but were re-identified as 
Amoeboceras bayi (Birkelund and Callomon) and assigned 
to the Amoeboceras bayi Boreal Subzone of the early 
Kimmeridgian by Rogov (2019).

Early Kimmeridgian. Frebold (1961) noted the similar-
ity of Amoeboceras sp. indet, which he illustrated from 
Mackenzie King Island, to early Kimmeridgian Amoebo-
ceras (Prionodoceras) ravni Spath, and Rogov (2019) 
recognized Amoebites cf. subkitchini (Spath) among 
them. Rasenia aff. orbignyi (Tornquist), identified from 
Mackenzie King Island by H. Frebold (in Tan and Hills, 
1978), was assigned to Rasenia cf. cymodoce (d’Orbigny) 
by Rogov (2019), who attributed both to the Boreal middle 
Kimmeridgian Amoeboceras (Amoebites) kitchini Zone.

Late Kimmeridgian. Amoeboceras spp. resembling sub-
genera Amoebites and Hoplocardioceras reported by  
Frebold (in Balkwill et al., 1977), were re-identified by 
M. Rogov from photographs supplied by Poulton as Hoplo-
cardioceras decipiens (Spath) and Euprionoceras sokolovi 
(Bodylevsky), which indicate the Boreal Aulacostephanus 
eudoxus Zone.

Middle Tithonian/middle Volgian. Dorsoplanitid ammo-
nites, variously reported as Dorsoplanites, Taimyrosphinctes, 
Pavlovia(?), Pavlovia (?Paravirgatites), or Laugeites?, come 
from several localities on Ellesmere and Axel Heiberg 
islands (Frebold, 1961; Jeletzky, 1966, 1984; Callomon, 
1984; Schneider et al., 2018). Dorsoplanites ex gr. panderi 
Michalski and the associated ammonite Pavlovia? were 
figured from northern Ellesmere Island by Frebold (1961); 
the latter was re-interpreted as Pavlovia (?Paravirgatites) 
by Callomon (1984) and as Taimyrosphinctes by Rogov 
(2019). Rogov and Zakharov (2009) had compared some 
of the early reported species with Eurasian Dorsoplanites 
gracilis Spath and Dorsoplanites flavus Spath, as well as 

Laugeites. Schneider et al. (2018) reported the co-occurrence 
of Dorsoplanites maximus Spath and Dorsoplanites sachsi 
Michaelov confirming the presence of the Boreal Dorsoplanites 
maximus Zone on northern Ellesmere Island. Galloway et al. 
(2019) suggested that Jeletzky’s report of specifically uniden-
tified dorsoplanitids (Jeletzky, 1984), with large Buchia 
fischeriana (d’Orbigny), provides a middle Volgian age for a 
recently discovered Arctic regional 13C negative excursion.

Late Volgian. Craspedites (Subcraspedites) cf. sowerbyi Spath 
and Craspedites (Craspedites) aff. subditus (Trautschold) 
were described and illustrated from Rollrock Lake, northern 
Ellesmere Island, by Jeletzky (1984). They were re-assigned by 
Rogov and Zakharov (2009) to Subcraspedites sowerbyi Spath 
and Craspedites cf. thurrelli Casey, respectively. A higher fauna 
in the same section with “Craspedites (Subcraspedites) n. sp. aff. 
praeplicomphalus Swinnerton and Craspedites (Craspedites) 
n. sp. aff. subditus”, described and illustrated by Jeletzky 
(1984), was updated to Subcraspedites cf. preplicomphalus and 
Craspedites cf. thurrelli by Rogov (2019). These faunas were 
interpreted to correspond to the regional Subcraspedites prep-
licomphalus and Craspedites okensis zones of eastern England 
and Siberia, respectively (Jeletzky, 1984; Rogov, 2019).

Latest Volgian–early Berriasian (Cretaceous). Craspedites 
(Taimyroceras) canadensis Jeletzky (1966) from Slidre Fiord, 
northern Ellesmere Island, approximates the Craspedites 
taimyrensis Zone of northern Siberia and the Craspedites 
nodiger Zone of Europe (Jeletzky, 1984; Rogov and Zakharov, 
2009; Rogov, 2019). The current proposal for the base of the 
Cretaceous places it within the Craspedites taimyrensis Zone 
(Wimbledon, 2017).

Early Cretaceous. Arctic Canada species variously reported in 
earlier literature as Tollia (Subcraspedites?) sp., Praetollia anti-
qua Jeletzky, Praetollia fedorovi (Klimova), Pseudocraspedites 
anglicus (Shulgina), and Subcraspedites aff. suprasubditus 
(Bogoslovsky) by Jeletzky (1973, 1984) as latest Tithonian are 
now considered to be Early Cretaceous Borealites, including 
Borealites (Ronkinites).

Buchia zones, Late Jurassic
Buchia concentrica Zone. The stratigraphic range of the 
very distinctive and widespread bivalve Buchia concen-
trica (Sowerby) corresponds in general with that of the 
ammonite Amoeboceras sensu lato (i.e. late Oxfordian 
and early Kimmeridgian), although there are not enough 
sequential multitaxial faunas in Arctic Canada to constrain 
the ages further.

Buchia mosquensis Zone. The range of Buchia mosquensis 
(Buch), encompassing approximately the late Kimmeridgian 
and early Tithonian, is poorly controlled by ammonites in 
Arctic Canada. Jeletzky (1980) summarized the occur-
rences of Buchia mosquensis in the northern Yukon and 
adjacent western Northwest Territories. The upper part in 
Sverdrup Basin (Jeletzky, 1984) contains Buchia russiensis 
(Pavlow) and other morphospecies, indicating its general 
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correspondence with the Buchia russiensis Zone of Russia 
(e.g. Zakharov, 2015). Schneider et al. (2018) identified 
Buchia rugosa (Fischer) from northern Ellesmere Island, 
assigning it to the early Tithonian, and Buchia rugosa has 
been added to the early Volgian Buchia fauna in TSC on the 
basis of this Canadian occurrence. Zakharov (e.g. Rogov and 
Zakharov, 2009) had distinguished an early Volgian Buchia 
rugosa regional zone in northern Siberia, within the wide-
spread and longer ranging Buchia mosquensis Zone. Regional 
variations would seem to contradict the usefulness of the more 
refined morphospecies zones within this interval over wide 
areas.

Buchia fischeriana Zone. Jeletzky (1984) reported large 
Buchia fischeriana (d’Orbigny) sensu lato with dorsoplanitid 
ammonites in the lower part of the range zone of this bivalve 
in the Sverdrup Basin. The lower limit that is illustrated for 
this zone conforms with that of the associated dorsoplanitids; 
the upper limit permits continuity of the species into the next 
higher zone, which contains more typical small representatives 
of Buchia fischeriana (Jeletzky, 1984). In Sverdrup Basin, this 
interval also contains Buchia piochii (Gabb), Buchia russien-
sis, and rare Buchia richardsonensis Jeletzky (Jeletzky, 1984, 
Fig. 10). The zone’s essentially middle Volgian distribution cor-
responds approximately with the former ‘upper lower Volgian’ 

(e.g. Jeletzky, 1966). Jeletzky (1966) suggested that beds 
with Buchia richardsonensis Jeletzky and Buchia russiensis 
(Pavlow) in the northern Richardson Mountains correspond 
with the lower Kachpurites fulgens Zone of the Russian 
Platform and that lower beds characterized by ‘advanced’ 
forms of Buchia aff. fischeriana with Buchia piochii var. mni-
ovnikensis (Pavlow) correspond with the Russian Platform 
Epivirgatites nikitini and Virgatites virgatus zones. Later, in 
Jeletzky (1980), he is less specific, generalizing only intervals 
with Buchia cf. and aff. Buchia piochii and Buchia fischeriana 
below and with Buchia fischeriana above.

Buchia terebratuloides–unschensis zones. Buchia ter-
ebratuloides (Lahusen) has a range zone extending from 
the base of the Subcraspedites–Craspedites beds to the top 
of the Berriasian Praetollia (i.e. Borealites) fedorovi Zone 
(Jeletzky, 1984), which Jeletzky (1966, 1984) considered 
to be latest Volgian or Tithonian. Small typical Buchia 
fischeriana occur in the lower part, with the Subcraspedites–
Craspedites ammonite fauna at its only known locality on 
northern Ellesmere Island, and Buchia unschensis (Pavlow) 
occurs only in the upper upper Volgian, and with lesser geo-
graphic distribution than Buchia terebratuloides (Jeletzky, 
1966, 1984). This upper interval corresponds to the Russian 
Buchia unschensis Zone (e.g. Rogov and Zakharov, 2009).
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