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Abstract: The Geo-mapping for Energy and Minerals (GEM) program (2010-2020) provided a unique
opportunity to advance the current level of understanding of the geological history of the Canadian North.
In this contribution, based on the Trans-GEM Event Stratigraphy activity, a compilation of Mesozoic—
Cenozoic stratigraphic data from across the GEM program regions and beyond is presented, with a focus
on biostratigraphic events, using TimeScale Creator®, a JAVA package that facilitates the compilation
and comparison of large amounts of stratigraphic data while keeping track of changing absolute ages. The
2020 Canada datapack’, which incorporates some information re-evaluated and refined from an earlier
datapack, includes schemes using dinoflagellate cysts, spores and pollen, foraminifers and conodonts, and
a new synthesis of Canadian Arctic Jurassic ammonite and Buchia bivalve biostratigraphy. This datapack
will continue to be augmented after completion of the GEM program and will become a major tool in
supporting an understanding of Canada’s sedimentary basins, their resource potential and management.

Résumé : Le programme Géocartographie de I’énergie et des minéraux (GEM), qui s’est dérou-
1é de 2010 a 2020, a offert une occasion unique d’améliorer notre compréhension de 1’histoire géolo-
gique du Nord canadien. Dans cette contribution, fondée sur I’activité de stratigraphie événementielle
trans-GEM, nous présentons une compilation des données stratigraphiques se rapportant aux successions
du Mésozoique-Cénozoique dans les régions du programme GEM, et au-dela de celles-ci, en nous concen-
trant sur les événements biostratigraphiques a I’aide de TimeScale Creator®, un progiciel Java facilitant
la compilation et la comparaison de grandes quantités de données stratigraphiques, tout en tenant compte
des changements des ages absolus. Le dossier de données Canada 2020, qui intégre des renseignements
réévalués et améliorés provenant d’un dossier de données antérieur, comprend des schémas fondés sur les
kystes de dinoflagellés, les spores et le pollen, les foraminiféres et les conodontes, ainsi qu’une nouvelle
synthése des données biostratigraphiques sur les ammonites et le bivalve Buchia de 1’ Arctique canadien
remontant au Jurassique. Nous prévoyons que le dossier de données continuera de croitre une fois le pro-
gramme GEM terminé, et deviendra un outil majeur pour la compréhension des bassins sédimentaires du
Canada, de leurs ressources potentielles et de la gestion de celles-ci.
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INTRODUCTION

Overview

The Mesozoic—Cenozoic history of what is today Canada
involved the development of major sedimentary basins,
including the basins of offshore eastern Canada, devel-
oped on the passive margins of the North Atlantic Ocean
and Labrador Sea; the Western Interior Basin, a foreland
basin inboard of the evolving Cordilleran Orogen; and the
Sverdrup Basin, a successor basin superimposed on previ-
ously deformed lower Paleozoic rocks, which now underlies
much of the Canadian Arctic Islands. A detailed understand-
ing of the rock units, their correlation, and the resources
they potentially contain presents an ongoing challenge,
particularly in remote areas of the vast Canadian North.

Advancing geoscience for sustainable economic develop-
ment in the Canadian North has been the primary objec-
tive of the Geo-mapping for Energy and Minerals (GEM)
program since the inception of its first phase in 2010. The
present contribution involves the use of a new tool that will
facilitate the study of Canadian sedimentary basins by pro-
viding up-to-date stratigraphic data across the GEM regions
of interest (Fig. 1), much of which were generated under
GEM-funded research activities. Most of this stratigraphic
data can be compiled and consequently visualized using
the free JAVA package, TimeScale Creator® (TSC; see
‘TimeScale Creator’ section).

Context

Strictly, stratigraphy is the study of rock layers (strata),
primarily sedimentary and layered volcanic rocks. In the
broader sense, it encompasses the history of the Earth as
reflected in the rock record. Historically, stratigraphy has
been divided into two related subdisciplines, lithostratigra-
phy and biostratigraphy. Lithostratigraphy is the study of the
rocks themselves, particularly their succession and relation-
ships to other strata. Lithostratigraphy can provide an initial
sense of relative ages within a local area or region. As the
concept of geological, or ‘deep’, time developed, it became
clear that other methods were needed to extend and consoli-
date the understanding of how sedimentary rocks interrelate
in space and time on local to global scales. The first major
step was the inception of biostratigraphy — the use of fossils
to determine relative ages of the rocks containing them — by
W. Smith (Winchester, 2001) and others in the early to mid-
nineteenth century. Biostratigraphy is based primarily on the
succession of species through time due to evolution, and it
continues to make a fundamental contribution to determining
the ages of Phanerozoic sedimentary rocks. Biostratigraphic
information can be presented directly as events (such as the
originations and extinctions of particular species) or indi-
rectly as packages known as biozones (or just zones), in
which several events or assemblages of fossils are used for
definition. It was the combination of lithostratigraphic and
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biostratigraphic studies in the nineteenth century that led
to the formulation of the geological time scale of erathems,
systems, and stages that is largely still in use today for the
Phanerozoic. The early time scale was a relative one and
involved only an extremely limited sense of absolute time,
with age estimations varying wildly (Gorst, 2001).

A major innovation during the early twentieth century
was the development of radiometric dating (Lewis, 2000).
The ability to date selected rocks based on ratios of some
elements and isotopes provided the ability to calibrate in
absolute ages the relative geological time scale developed
through litho- and biostratigraphic means. Radiometric dat-
ing can be used primarily with igneous rocks, but the dating,
for example, of volcanic ash and lavas within sedimentary
sequences, and the application of crosscutting relationships
between igneous rocks and strata, provide critical insights.
Lithostratigraphy, biostratigraphy, and radiometric dating
together provide the fundamental basis for the discipline of
stratigraphy today but continue to be augmented by an array
of new methodologies such as magnetostratigraphy (correla-
tion using changes in magnetic polarity recorded in rocks),
sequence stratigraphy, and chemostratigraphy. The array of
new methodologies developed in the past few decades was
reviewed in Gradstein et al. (2005, 2012). Application of
these techniques leads to refinement and minor recalibra-
tion of the geological time scale on an ongoing basis. To
provide stability to the definitions of chronostratigraphic
units, specific sections and points are being designated in
the rock record to mark global chronostratigraphic units or
(usually) boundaries, the updated status of which can be
found at http://www.stratigraphy.org/gssp/ (International
Commission on Stratigraphy, 2019a).

In parallel with modern stratigraphic developments,
the closely related but separate concepts of chronostratig-
raphy and geochronology have arisen. Chronostratigraphy
relates to physical rock units in time, whereas geochro-
nology deals with the parallel intervals of time. Erathem,
system, series, and stage are chronostratigraphic terms, the
equivalent geochronologic terms being era, period, epoch,
and age as defined in the International Commission on
Stratigraphy stratigraphic guide (International Commission
on Stratigraphy, 2019b). An example of the use of this ter-
minology would be as follows: ‘hadrosaurs are common
in rocks of the Cretaceous System; they lived during the
Cretaceous Period.” The terms ‘lower’ and ‘upper’ are
chonostratigraphic terms, with ‘early’ and ‘late’ as geo-
chronologic equivalents; the term ‘middle’ is generally
used in both contexts, in contrast with the use of the term
‘mid’ by some earlier authors (e.g. Harland et al., 1990) as
a geochronologic term.

It is beyond the scope of the present work to provide a
history of the geological time scale. Early developments were
summarized by Berry (1968) and Harland et al. (1982). The
development of the first volume of 4 Geologic Time Scale in
Harland et al. (1982) was a significant milestone, followed
by A Geologic Time Scale 1989 (Harland et al., 1990). In
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Figure 1. Geo-mapping for Energy and Minerals (GEM) program primary regions of interest, covering most of
Canada’s North (modified from Natural Resources Canada, 2018).

recent decades, international chronostratigraphic standards
have been governed by the International Commission on
Stratigraphy (ICS; International Commission on Stratigraphy,
2019c¢), which produces regular updates to the International
Chronostratigraphic Chart (ICC; Cohen et al., 2013). The
ICS governs the names and definitions of chronostratigraphic
units, as reflected in the ICC. The ICC also cites absolute ages
for unit boundaries, but these are not formally ‘governed’ in
any sense by the ICS, and indeed are subject to ongoing revi-
sion. A series of highly influential publications, succeeding the
Harland et al. publications and based on the ICC, but not for-
mally associated with it, began with the substantive 4 Geologic
Time Scale 2004 (Gradstein et al., 2005). This was superseded
by a two-volume set entitled 4 Geologic Time Scale 2012

(Gradstein et al., 2012). A shorter summary update, 4 Concise
Geologic Time Scale — 2016, was subsequently published by
Ogg et al. (2016). The most recent version is The Geologic
Time Scale 2020 (Gradstein et al., 2020), which is used herein.
For the purposes of this paper, versions of 4 Geologic Time
Scale will be referred to as ‘GTS’, with the appropriate year
appended (e.g. GTS 2004 refers to A Geologic Time Scale
2004 by Gradstein et al., 2005). It is this series of publica-
tions that led to the development of TimeScale Creator (see
‘TimeScale Creator’ section). Absolute-age calibrations in the
GTS publications (and hence in TimeScale Creator) may vary
slightly from those in the ICC.
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Trans-GEM Event Stratigraphy activity

Biostratigraphic data have contributed considerably
to the present understanding of the geological history of
Canada’s North (e.g. Dixon, 1999; Harrison et al., 1999a;
Nehr-Hansen et al., 2016; Evenchick et al., 2019; Galloway
etal., 2019). Such data can be presented as part of a biozona-
tion scheme, or as a series of events such as first occurrences
and last occurrences. Although each approach has its ben-
efits and drawbacks, a combination of both approaches has
been used to present data herein. Several types of biozones

are defined in the literature (e.g. range, interval, assemblage,
and abundance; Fig. 2; North American Commission on
Stratigraphic Nomenclature, 2005) and the types of zones
chosen for a particular study are determined by several
factors, including the type of fossil recovered; the number
of specimens recovered; the spatial and temporal ranges
of the species in question; personal and traditional prefer-
ences; and the state of knowledge at the time of study. The
use of biostratigraphic events is becoming more prevalent
in some micropaleontological subdisciplines, and first and
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Figure 2. Principal types of (bio)zones used in biostratigraphy: a) taxon-range biozone,
based on the range of a taxon; b) concurrent-range biozone, based on range of co-
occurrence of two taxa; c—d) interval biozone, based on an interval between the lowest (c)
and highest (d) occurrences of taxa; e) lineage biozone, based on successive stages within
an evolutionary lineage; f) abundance biozone, based on an interval when a specific taxon is
particularly common; g) assemblage biozone, based on overlapping ranges of multiple taxa.
Adapted from North American Commission on Stratigraphic Nomenclature (2005).
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last occurrences of fossil taxa have been successfully used
to correlate between regions (e.g. Fensome et al., 2008;
Galloway et al., 2013; Nohr-Hansen et al., 2016).

Objectives

Developing an event scheme for the Mesozoic and
Cenozoic across the Arctic was undertaken in 2017 under
the auspices of the Trans-GEM Event Stratigraphy activity.
With the availability of TimeScale Creator, the focus of the
activity shifted somewhat to developing a new TSC data-
pack to incorporate stratigraphic (primarily biostratigraphic)
data from the GEM regions; the new datapack will facilitate
data visualization, comparison, and correlation within and
between the GEM regions (Fig. 1).

The 2020 Canada datapack has been designed with the
following objectives:

* to initiate the compilation of a comprehensive, up-to-
date event-stratigraphy scheme for the Canadian Arctic
(see Trans-GEM Event Stratigraphy activity section)

* to revise and update the Mesozoic—Cenozoic portion of
an earlier, unchecked Canadian datapack (see ‘Review
and update of the 2010 Canada datapack’ section), which
includes both litho- and biostratigraphic data

* to provide data that are dynamically tied to standard chro-
nostratigraphic schemes, such as ammonite zonations and
international stages, and to organize the data in a format that
supports future updates to the GTS and reference schemes

* to allow for the easy visualization and comparison of
Canadian stratigraphic data (from GEM regions of interest
and beyond) across geographical areas and fossil groups

* to make Canadian litho- and biostratigraphic data freely
available to the public, in line with the Open Government
Science Initiative — for example, Canada’s digital char-
ter (Innovation, Science and Economic Development
Canada, 2019) and data strategy roadmap for the Federal
Public Service (Privy Council Office, 2019).

Thus, the 2020 Canada datapack provides free, updated
stratigraphic information that will remain current, in a for-
mat that fosters easy comparison of stratigraphic records
across GEM regions of interest and different fossil groups.

TIMESCALE CREATOR

TimeScale Creator (TSC) is a JAVA package operated
by the Geologic TimeScale Foundation (GTS Foundation)
based at Purdue University in West Lafayette, Indiana. It
was developed by some authors of the GTS volumes (J. Ogg,
F. Gradstein, and G. Ogg) to record general stratigraphic data
and keep track of ongoing changes to the geological time
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scale. The TSC website (Geologic TimeScale Foundation,
2019) describes TimeScale Creator as “a free JAVA package
[that] enables you to explore and create charts of any portion
of the geologic time scale from an extensive suite of global
and regional events in Earth History.” The data used to build
it are founded on the GTS series of publications, but TSC
is designed to contain limitless amounts of data that can be
selectively downloaded, and users of the TSC Pro version
can add their own data. The Geological Survey of Canada
(GSC) subscribes to TSC Pro, but any user can access and
visualize the data using the free version of TSC. The GTS
Foundation provides regular updates that incorporate any
refinements to the absolute-age calibrations of chronostrati-
graphic units, which are thus reflected in charts generated
from TSC. These updates, together with the public availabil-
ity of software and data, make TSC the ideal platform to
store Canadian stratigraphic data.

Using TSC

The TSC website contains tutorials (Geologic TimeScale
Foundation, 2019b) that help potential users operate the pro-
gram, which can be run online on any browser that supports
JAVA, or from a personal computer after downloading the
most recent version from the download page. Upon launch,
the program automatically loads a default datapack that con-
tains the up-to-date chronostratigraphic scale (currently the
GTS 2020), a full suite of ‘master’ reference schemes (e.g.
the chronostratigraphic time scale, the geomagnetic polarity
scheme) and several other types of data (e.g. paleogeographic
maps, biozones, bioevents, transgressive—regressive cycles,
stable isotopic curves). The user can generate customized
charts by selecting the time interval of interest and selecting
data — organized in successive columns — to be plotted.
The vertical scale and column width can be expanded to bet-
ter view densely populated intervals, and the order of data
columns can be changed, allowing the user to place data
sets of interest next to each other for direct comparison.
The ‘Global Priority Filtering’ function allows users to gen-
eralize data to avoid overcrowding on charts, especially in
data-dense areas; however, note that this function may result
in inaccurate displays of information.

An important feature of TSC is a ‘MouseOver’ option
that allows background information to be displayed in a
‘popup’ window. This applies only to the ‘live’ output in
TSC, as such layers of information are lost upon exporting
to PDF or printing. Information available in popups ranges
from details on age calibration to comments from the source
publication and may include hyperlinks to pictures and other
web material.

Packages of information (datapacks; Geologic TimeScale
Foundation, 2019¢) can be downloaded from the TSC web-
site. Most are publicly available, including the default TSC
datapack, which acts as a backbone to the program. Onto
this, users can add additional datapacks for personal use, or
for public use via the GTS Foundation.
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The 2010 Canada datapack

Among the datapacks available on the TSC website is
the ‘Arctic and Central Canada’ datapack, hereafter referred
to as the ‘2010 Canada datapack’ (Geologic TimeScale
Foundation, 2019c¢). Its content is described on the webpage
as follows:

Scales of the main Arctic-region zonations (35
columns). Lithostratigraphic columns (ca. 350
columns) recalibrated from Arctic and Canada
volumes of the DNAG (1989) compilation, with
all formations linked to the on-line lexicon of
the Geological Survey of Canada. Arctic Island
transect (6 segments) provided by Geol. Surv.
Canada (2010), with formations linked to the
lexicon.

This 2010 Canada datapack was compiled by the GTS
Foundation under contract to the GSC in 2010 and, unlike
the 2020 Canada datapack, is not restricted to the Mesozoic
and Cenozoic. Although never proofed or checked due to
the retirement of key personnel and changes in priorities,
the compilation represented a far-sighted initiative by then
Acting Director of GSC-Calgary, G.S. Nowlan. As indicated,
the data were derived from some fundamental publications
on Canadian geology and were focused on Arctic Canada
and the Western Canada Sedimentary Basin (incorporating
the Mesozoic—Paleogene Western Interior Basin).

Best practices adopted for the 2020 Canada
datapack

The first step in developing the 2020 Canada datapack was
to establish best practices for data entry, which is performed in
Excel for TSC. There are three types of spreadsheets involved:
1) reference, or ‘master’ sheets (e.g. ‘MasterChronostrat’,
‘MasterDino’, ‘MasterNanno’, following the GTS 2020),
provided by the GTS Foundation and mostly based on data in
the GTS publications that contain reference schemes; 2) data-
entry sheets, in which ages are dynamically tied to reference
schemes and all relevant information is captured; and 3) out-
put sheets, where the information is recalled from data-entry
sheets and arranged in a format that TSC will read, from a
tab-delimited .txt file. Because several individuals and spread-
sheets have been involved with data entry, format consistency
is paramount to ensure consistent data entry and seamless
updates in the future.

The development of a datapack involves the compila-
tion of workbooks, each containing master, data, and output
spreadsheets, from which output files are later combined.
Typically, each individual performing data entry works on
their own workbook(s). While the number of workbooks and
output spreadsheets that form a datapack does not impact the
end product, experience has shown that fewer is better for a
more efficient datapack compilation.
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When formulas in Excel were being dynamically coded,
care was taken to tie events or boundaries to the appropriate
reference scheme. For instance, most Jurassic foraminifer-
and dinoflagellate-zone boundaries (e.g. Davies, 1983) are
tied to Subboreal (Hettangian through Callovian) and Boreal
(Oxfordian—Tithonian) ammonite zones, whereas some
Cenozoic foraminifer zones are tied to nannofossil zones,
since they were compared with (and calibrated against)
Greenland strata (Harrison et al., 1999b). This aspect is case-
specific and depends on what the individual who generated
the data relied on to assign ages. Biostratigraphic events in
the Arctic often lack independent control, as the region is
far removed from classic, well-dated sections and radiomet-
ric dates are sporadic; hence, the events tend to be assigned
relative ages on the basis of several lines of evidence. As
elsewhere, events may vary slightly in age between basins.
Thus, in the absence of clear statements in the source pub-
lications, ages have been tied to chronostratigraphic (stage)
boundaries. This standardization and optimization of data
structure will not necessarily be noticeable on the charts, but
will ensure that future updates to the GTS and changes to
any reference schemes will seamlessly translate into mean-
ingful and accurate shifts in the absolute ages assigned to
events or boundaries displayed on the charts.

Finally, for event-data columns, species sharing the same
first or last occurrences were grouped for optimal readabil-
ity on the charts. Charts depicting ranges of individual taxa
can also be developed using TSC, but data-entry protocols
would be different from those used in the present project.

THE 2020 CANADA DATAPACK

The state-of-the-art 2020 Canada datapack incorporates
new data, as well as some data brought forward from its 2010
predecessor. The current datapack focuses on Mesozoic—
Cenozoic biostratigraphy and, where possible, event stra-
tigraphy. It includes both revised and new stratigraphic data;
many of the latest data sets were generated from GEM-
funded research activities (e.g. Galloway et al., 2012, 2013,
2015, 2019; Pugh et al., 2014; Herrle et al., 2015; Hadlari
et al., 2016; Evenchick et al., 2019). Another substantial
source of data new to the 2020 version is sourced from the
ongoing Circum-Arctic lower Paleozoic to Cenozoic paly-
nological events (CAPE) project. The CAPE project was
initiated by British palynologist J. Bujak and involves GSC
co-editors and contributors (Bujak et al., 2021). This project
is an international effort to compile a pan-Arctic event paly-
nostratigraphy for the Devonian to Cenozoic interval, and
some Mesozoic—Cenozoic parts of the Canadian data set for
CAPE are included in the 2020 Canada datapack. A com-
plete list of data included in the new datapack is presented
in Appendix A.
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Review and update of the 2010 Canada
datapack

The 2010 Canada datapack included both lithostrati-
graphic and biostratigraphic data. The lithostratigraphic
portion was based entirely on Decade of North American
Geology charts (Trettin, 1991a, b, c; Stott, 1993a, b, c)
and one GSC open file (Dewing and Embry, 2007) used to
generate the ‘Canadian Arctic Island transect suite’. Since
these lithostratigraphic data still largely represent a current
understanding, they have been directly incorporated into the
2020 Canada datapack, with only a few minor corrections.
Of note is the omission, from the Canadian Arctic Island
transect suite, of some formal members in the Early Triassic
Bjorne Formation (Cape Butler, Pell Point, and Cape
O’Brien members) and their shaly equivalents in the Blind
Fiord Formation (Confederation Point, Smith Creek, and
Svartfjeld members), as well as the Cape Lockwood, Hot
Weather, and Slidre members in the Late Jurassic Awingak
Formation. These members are only recognized in their
type localities and are therefore of limited value to regional
stratigraphy (K. Dewing, pers. comm., 2019).

In contrast to the lithostratigraphic content, some
biostratigraphic data sets have undergone a more thor-
ough revision since 2010. As the 2020 Canada datapack
focuses on Mesozoic and Cenozoic strata, Paleozoic bio-
stratigraphic data are not included (although they are still
available as part of the 2010 datapack). Many columns
from the 2010 datapack consisted of redundant infor-
mation, often derived from figures in publications that
incorporated reference schemes (e.g. Tethyan or Subboreal
ammonite zones); these schemes are already in TSC as part
of the default or other publicly available datapacks. Such
duplication has been avoided in the new datapack, and
‘cleaned-up’ columns of regional data have been tied to
standard, updated reference schemes provided by the GTS
Foundation as ‘master’ sheets (e.g. MasterChronostrat,
MasterNanno). As described above, care was taken to tie
events or boundaries to the appropriate reference scheme,
including stage boundaries where necessary.

Additional revisions include a mention in several column
headers of the geographical location of the data rather than
the author who compiled them. For instance, ‘Ammonites
(Harrison)’ now reads ‘Ammonites (Sverdrup Basin)’.
References have also been updated to acknowledge, where
possible, the individual(s) who generated the data, not just
the authors of data compilations. Changes applied to each
data column from the 2010 Canada datapack are summarized
in Appendix B, which also specifies the reference schemes
used to determine ages. Several zonation schemes are pre-
served as ‘legacy’ for their historical value, with boundaries
now defined with reference to standard schemes (and hence
updatable) but without reinterpretation. However, where
available from range charts in the original publications, the
events used to generate these zonation schemes have been
plotted and are now available in the 2020 Canada datapack.

M. Bringué et al.

Given the importance of ammonite and Buchia (bivalve)
horizons for biostratigraphy of the northern Canadian
Jurassic and Cretaceous systems, special attention has been
given to updating the Arctic Jurassic ammonite biohorizons
from the Sverdrup Basin and the northern Yukon and adja-
cent northwesternmost Northwest Territories (incorporating
the Richardson, Ogilvie, Barn, and British mountains; here-
after referred to as the northern Yukon region), the two areas
for which data are available. A full description of updates
is provided in the section entitled ‘Jurassic ammonite and
Buchia bivalve occurrences’.

New data from GEM regions of interest

The 2020 Canada datapack was designed as a tool to eas-
ily compare biostratigraphic data across all GEM regions.
Although a few Canadian Arctic and Subarctic regions
were already represented in the 2010 Canada datapack (e.g.
Yukon, Beaufort—-Mackenzie Basin, Sverdrup Basin), some
GEM regions were missing, including large portions of the
eastern Arctic, such as the Labrador—Baffin area. The 2020
Canada datapack now incorporates detailed biostratigraphic
data (quality-checked by the present authors) from all GEM
regions of interest (Appendix A), except the Rae region,
which is devoid of Mesozoic and Cenozoic strata, and the
Hudson Bay-Ungava region, where Mesozoic—Cenozoic
biostratigraphic data remain scarce. An effort was made to
include biostratigraphic schemes based on as many different
fossil types as possible in each region, including ammonites,
bivalves, foraminifers, conodonts, and dinoflagellate cysts, as
well as pollen and spores. Any user who has loaded the 2020
Canada datapack in TSC can select the columns of interest
and compare biostratigraphic events (for example based on
dinoflagellate cysts) across different Arctic regions by tick-
ing the desired data columns and arranging them in the order
of their preference. For consistency and ease of comparison,
dinoflagellate-cyst taxonomy has been updated to conform
to Fensome et al. (2019) for the following sources: Brideaux
and Mclntyre (1975), Fisher and Riley (1980), Mclntyre and
Brideaux (1980), Davies (1983), Poulton et al. (1993a, b),
Mclntyre (1996a, b, c¢), and Harrison et al. (1999a, b).

Of particular importance to the stratigraphy of northern
Canada are the new lithostratigraphic and palynostrati-
graphic data sets for the Labrador—Baffin Seaway (Fig. 3);
these now fill a critical gap in the spatial and temporal cover-
age of Canadian strata in TSC. The data were acquired from
a suite of offshore wells and combined with data from the
West Greenland margin, leading to a new biostratigraphic
framework for this broad and previously understudied region
(Nehr-Hansen et al., 2016). Another noteworthy addition to
the 2020 Canada datapack involves a suite of benthic fora-
minifer biostratigraphic data sets (including both calcareous
and agglutinated forms) from Upper Jurassic to Cenozoic
strata of the Beaufort-Mackenzie Basin. The data were
extracted from five charts from the Geological Atlas of
the Beaufort—Mackenzie Area (Dixon, 1996; Fowler, 1996;
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Figure 3. Labrador—Baffin Seaway lithostratigraphy and biostratigraphy (palynological events) produced in TimeScale Creator (Geologic
TimeScale Foundation, 2019a): a) Cenozoic. Adapted from Dickie et al. (2011) and Nghr-Hansen et al. (2016).
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Figure 3. (cont.) b) Cretaceous. Adapted from Dickie et al. (2011) and Nghr-Hansen et al. (2016).
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Hedinger, 1996; McNeil 1996a, b, c), with updated taxonomy
from McNeil (1997) and minor range modifications by
D.H. McNeil (pers. comm., 2019). The modified data are
now available as event schemes in the 2020 Canada datapack
(e.g. Fig. 4). These foraminifer data sets provide important
biostratigraphic control and are widely used in this economi-
cally important GEM region. A new lithostratigraphic chart
of Cretaceous strata across the Sverdrup Basin, Banks Island,
the Horton—Anderson plains, the Richardson Mountains, and
the Snake, Peel, Arctic Red, and Hume rivers areas (Fig. 5)
also provides a valuable reference for ongoing work in the
Western Arctic and Mackenzie GEM regions, where recent
studies have provided new insight on the detailed strati-
graphic framework of the Canadian North, particularly in the
Sverdrup Basin (e.g. Galloway et al., 2012, 2013, 2015; Pugh
et al., 2014; Herrle et al., 2015; Hadlari et al., 2016).

Other new data

Several data sets deemed relevant to (bio)stratigraphic
control of age-equivalent strata in the Canadian North are
included in the 2020 Canada datapack, even though their
geographical provenance is not directly or primarily located
within GEM regions of interest. In particular, a data set of
Late Cretaceous—Paleocene terrestrial palynomorphs across
the Western Interior Basin, mostly reflecting data from
localities from the southern parts of Alberta, Saskatchewan,
Manitoba, and even northern Montana (Braman and Sweet,
2012), is included because it provides a reference frame-
work for age-equivalent strata in northern Canada that were
connected by the Western Interior Seaway at the time of
deposition.

Similarly, a new compilation of Triassic conodont zones
across Canada is provided (Fig. 6). The data column has been
compiled using existing conodont zonation schemes from
the Western Canada Sedimentary Basin in the Cordillera and
from the Sverdrup Basin in the Arctic. The Triassic conodont
record of the Cordillera is more complete than that of the
Arctic and, therefore, it is not possible to recognize all the
zones presented here in all the GEM regions of interest. The
Triassic rock record of the western Cordillera is particularly
fragmentary due to the wide paleogeographic distribution of
its constituent terranes, and the conodonts from this region
have not been included in the present datapack; additional
columns for the terranes will be provided in the future. The
conodont zones presented in the 2020 Canada datapack are
a mixture of interval, acme, and assemblage zones, with dif-
ferent types of zones utilized depending on the diversity of
the faunas and their geographic and temporal distribution
across a particular time interval. The conodont zonation is
tied to the ammonoid zonation for the Triassic of western and
Arctic Canada, as compiled by Tozer (1994) and updated by
Bucher (2002) and Ji and Bucher (2018). The Triassic con-
odont compilation is based primarily on the work of Orchard
(1991, 2007, 2014, 2018), Orchard and Tozer (1997),
Carter and Orchard (2007), Orchard and Zonneveld (2009),
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Golding et al. (2014), and Henderson et al. (2018) for the
Western Canada Sedimentary Basin; and Henderson and
Baud (1997), Nakrem et al. (2008), and Orchard (2008) for
the Sverdrup Basin and correlative Boreal strata in Svalbard.
The present compilation supersedes a previous conodont
scheme available in TSC’s default datapack that was based
on Orchard and Tozer (1997) alone.

Another important source of data included in the 2020
Canada datapack comes from the ongoing CAPE project, of
which three of this paper’s authors (J.P. Bujak, R.A. Fensome,
and G.L. Williams) are co-editors, in collaboration with
G. Mangerud of the University of Bergen in Norway. Most
of the ‘Bujak Arctic palynological data’ (Fig. 7; Appendix A)
were established from wells located offshore in the Canadian
Arctic and Alaskan waters, and several data columns consist
of compilations that extend beyond the boundaries of north-
ern Canada. For instance, the column ‘Bujak Arctic climatic
events’ captures widely recognized variations in the Earth’s
climate, at least for the Northern Hemisphere.

JURASSIC AMMONITE AND
BUCHIA BIVALVE OCCURRENCES,
SVERDRUP BASIN AND NORTHERN
YUKON REGION

Ammonites have been a fundamental source of bio-
stratigraphic control of Jurassic—Cretaceous strata in the
Sverdrup Basin and the northern Yukon region, and in
these regions of Canada faunas of the bivalve Buchia have
also been of critical value in the Late Jurassic and earliest
Cretaceous. An overview of this Canadian ammonite and
Buchia data, much overdue, is provided in Appendix C; the
update is incorporated into the 2020 Canada datapack.

Ammonite biohorizons and successions

The TSC summary chart of Arctic Canada’s Jurassic
ammonite biostratigraphy presented in Figure 8 and
Appendix C contains updates and references to original
paleontological sources and previous summary compilations
for regional geology reports (Callomon, 1984; Poulton et al.,
1993a, b; Poulton, 1994, 1997; Poulton in Harrison et al.,
1999a, 2000). It provides current correlations within and
beyond the Arctic basins and to zones in the international
standard time scale, introducing revisions required by new
information on the ages of Boreal Middle Jurassic faunas
from recent studies in Eurasia, as discussed for each time
interval in Appendix C. There has been little new collecting
and no recent descriptive studies or revisions of the Arctic
faunas within Canada, and no taxonomic revisions are
introduced here. The areas represented in Figure § are the
Sverdrup Basin and the Brooks—Mackenzie Basin (Balkwill
et al., 1983) of the northern Yukon region. Some of the
most significant ammonite taxa from the northern Yukon
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a) BEAUFORT-MACKENZIE BASIN FORAMINIFERS
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- —
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- -
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e I I I ————————————.. Guttulina lactea
- | A v—————————
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- Fiacenzien Rl e Islandiella norcrossi, Miliolinella subrotunda
3 N A
_: ————————————————— Buccella frigida, Cribroelphidium bartletti, Epist i I3 vit
= . Cribroelphidium clavatum, Haynesina piseminciavitriea
4 — Pliocene orbiculare, Islandiella helenae, Islandiella
- /slgndlca, Qr{broelph/dlum asqund/, o Cibicidoides circumcarinatus, Cibicidoides
= Zanclean Cribroelphidium excavatum, Cribroelphidium  gjyturnis, Globobulimina sp., Globocassidulina
] ustulatum, Elphidiella cf. E. gorbunovi, subglobosa, Nodosaria soluta, Angulogerina
] Guttulina glacialis, Quinqueloculina seminulum, fluens, Ehrenbergina praepupa, Miliolia
5 = Glandulina ovula, Elphidiella gorbunovi, conversa, Melonis affinis, Miliolinella circularis,
- Cibicides grossus, Cibicides scaldisiensis, Miliolia circumplicata, Pullenia bulloides,
- Epistominella vitrea Sphaeroldina bulloides
5 7 Chilostomellina alta
E Messinian Elphidiella dietrichi, Lagena elongata, Pullenia
— quinqueloba
7 — Cibicidoides sp., Nonion granosum, \|
- Quadrimorphina? sp.
— v~ v
- Christellariopsis sp., Elphidiella nitida?, Glomospira charoides
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= Elphidiella ungeri
- e . . v
— Cibicidoides diuturnis Bathysiphon nodosariaformis
J SE—
9 _: Bolboforma badenensis (algal), Cyclogyra
- ) . involvens, Elphidiella sp., Lagena striata Haplophramoides carinatus, Ammodiscus \
— Tortonian Selboloraivacenensizhalgal) planus, Recurvoides brideauxi
10 _: v——— Spirosigmoilinella compressa, Recurvoides \
= Elphidiella ungeri Valvulineria petrolei torquis
J \ v \
- Sigmoilina sp., Bulimina elongata Bathysiphon pseudoloculus, Insculptarenulla
- subvesicularis, Reophax nodulosus,
11 — Haplophragmoides deformis, Bathysiphon
- cylindrica
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— (= - ) Z— ) —
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- A
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- Cycloforina badenensis, Voorthuyseniella Elphidiella sp.
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14 — . —————————4A Ammodiscus latus, Reticulophragmium
- Miocene mackenzieense
_: Langhian . | S—
15 — J Elphidiella sp. Valvulineria sp. v
- EEE— Reticulophragmium projectus,
—| Ammomarginulina aubertae, Psamminopelta
- sp.
. . \ ol
16 — Ehrenbergina praepupa Alabamina tangentalis
-] A 2
— Cibicidoides sp., Christellariopsis sp., SR E i
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- I N
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- Asterigerina staeschei
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] -
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59 —3 Quadrimorphina? sp. Haplophragmoides sp., Labrospira turbida,
- Cyclammina sp. Textularia sp.
. Ehrenbergina variabilis, Valvulineria sp. Anomalinoides magnus, Cibicidoides '\
23 — A eocaenus, Cibicidoides inflatus, Cibicidoides
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= Chilostomellina alta Nuttallides concentricus, Turrilina alsatica Hormosina excelsa
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- I \ ;
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- . . . . A —
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53 — tagluensis
1 11 1T  [F/-_/—-—F————————————=———" vV
- Portatrochammina aklakensis
54 —
55 3 Portatrochammina aklakensis
3 Portatrochammina aklakensis
56 — E—— v
- Saccammina placenta, Saccammina sp.,
— Bathysiphon sp., Arenoturrispirillina sp.,
. Labrospira turpicula, Reticulophragmium
57 . boreale, Reticulophragmium arctica
_: Thanetian
- y—
58 — Cibicidoides walli
- L A
- Reophax subnodosus, Recurvoides
= -v——— tununukensis, Trochammina sp., Verneuilina
- Pseudonodosaria sp. durus, Verneuilina subtilis, Verneuilina
59 — v————— distentus
E Pseudonodosara sp. Praebulimina corpulenta
— I N
- D
60 — Reticulophragmium boreale v Trochammina sweeti, Trochammina perlevis
- Gyroidina sp. Reticulophragmium arctica, Reophax
—| Selandian subnodosus, Trochammina sp., Verneuilina
- durus, Verneuilina subtilis, Trochammina . . .
] perlevis Reticulophragmium ministicoogense
61 _: Paleocene Cibicidoides walli, Praebulimina corpulenta,
- Gyroidina sp.
— _A
62 —
E Labrospira turpicula, Reticulophragmium
63 — boreale, Recurvoides tununukensis
- A
_: Saccammina placenta, Saccammina sp.,
- Bathysiphon sp., Arenoturrispirillina sp.,
7] Danian Legend Verneuilina distentus, Trochammina sweeti,
64 —pEEE sl e e e e e e = Reticulophragmium ministicoogense v————
. Trochammina inornata, Verneuilinoides
— . Firstoccurrence exvadum
65 — Verneuilinoides exvadum Last occurrence v
Standard chronostratigraphy: For boundary definitions, status, and nomenclature see International Stratigraphic Commission (2019a).
Foraminifer zones: Revised by D.H. McNeil (pers. comm., 2019), using data from Fowler (1996). Hedinger (1996), and McNeil (19964, b, c); updated taxonomy from McNeil (1997); Sr isotope data
from McNeil and Miller (1990), and McNeil et al. (2001).
Cenozoic calcareous benthic foraminifers: Ranges/events from McNeil (1996c), with minor updates by D.H. McNeil (pers. comm., 2019); updated taxonomy from McNeil (1997); Sr isotope data from McNeil et al. (2001).
Cenozoic agglutinated benthic foraminifers: Ranges/events from McNeil (1996b), with minor updates by D.H. McNeil (pers. comm., 2019); updated taxonomy from McNeil (1997).

Figure 4. Beaufort—-Mackenzie Basin foraminifer biostratigraphic data (zones and events) produced in TimeScale Creator (Geologic
TimeScale Foundation, 2019a): a) Cenozoic. Adapted from Fowler (1996), Hedinger (1996), and McNeil (1996a, b, c), with taxonomy
updated according to McNeil (1997) and revised by D.H. McNeil (pers. comm., 2019).
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BEAUFORT-MACKENZIE BASIN FORAMINIFERS

Standard
chronostratigraphy
System | Series | Stage Foraminifer zones Upper Jurassic and Cretaceous benthic foraminifers
Convallina caverna

o
)
.'§ Labrospira faba, Ammobaculoides sp.,
§ _________________ C°""a”’”§ IR, GOV SR Bathysiphon strombotubulare, Saccammina \
g grzybowski, Saccammina placenta,

Haplophragmoides bilobatus

Campanian

Coniacian

Turonian

Trochammina spirocompressa

Trochammina superstes

————————————————— strombotubulare, Saccammina grzybowski,
Gavelinella sp.

Saccammina sp. B, Ammodiscus cretaceus,
Haplophragmoides bilobatus,
Haplophragmoides sp. B, Verneuilinulla
macintyrei, Praebulmina carseyae,
Eoeponidella linki

Ammodiscus thomsi, Gavelinella sp.,
Recurvoides tununukensis, Serovaina orbicella

Saccammina sp. B
A

Haplophragmoides sp. A, Trochammina sp.,
Verneuilinoides sp., Bathysiphon

Glaphyrammina spirocompressa,
Balticammina? neosuperstes

Praebulmina carseyae
A

Eoeponidflla linki

Saccamina grzybowski, Haplophragmoides sp. B,
VerneuilinAulla macintyrei

Glaphyralpmina spirocompressa

Recurvoides tununukensis, Serovaina orbicella
A

Ammodisgus cretaceus

Bathysiphon vitta, Saccammina placenta,
Saccammina sp. B, Haplophragmoides
bilobatus, Ammodiscus thomsi, Balticammina?
neosuperstes

Bathysiphon brosgei, Evolutinella
boundaryensis, Trochammina superstes

Saccammina sp. A, Ammodiscus planus,
Bathysiphon brosgei, Evolutinella
boundaryinsis, Trochammina superstes

Legend

Y\ First occurrence

Last occurrence v—

\ A

v |

Ma

Standard

chronostratigraphy

System | Series

Stage Foraminifer zones

BEAUFORT-MACKENZIE BASIN FORAMINIFERS

Upper Jurassic and Cretaceous benthic foraminifers

Verneuilioides borealis

Quadrimorphina albertensis

Saccammina lathrami, Ammobaculites
fragmentarius, Hippocrepina barksdalei,
Pseudobolivina rayi, Gaudryina nanushukensis,
Gaudryina talleuri, Glomospirella gaultina,
Uvigerinammina manitobensis, Quadrinorphina
albertensis, Haplophragmoides
topagorukensis, Marginulinopsis collinsi,
Serovaina loetterlei, Lenticulina bayrocki,
Saracenaria trollopei, Discorbis norrisi

Cribrostomoides cryptocameratum

Verneuilina caldwelli

Haplophragmoides lobatoloculare,
Cribrostomoides cryptocameratum,
Ammobaculites inelegans, Recurvoides cf. R.
sublustris, Conorboides walli,
Haplophragmoides euryraptum, Verneulina
caldwelli, Lenticulina cf. L. macrodisca,

Ammobaculites validus, Uvigerinammina laxa
| A

Arenobulimina mcneili

Eggerella sp. 2

Ammobaculites mountgoodenoughensis,

Haplophragmoides cf. H. concavus,

Arenobulimina mcneili, Recurvoides sp. 3,

Trochammina sp. 1, Cribrostomoides

infracretaceous, Gaudryina sp. 2, Eggerella
sp. 2, Conorboides sp. 1

| A

Trochammina ex. gr. T. neocomiana,
Marginulinopsis robusta, Glomospira arctica,
Glomospira subarctica, Lenticulina ex. gr. L.
saxonica saxonica, Marginulinopsis
gracilissima, Geinitzinita arctocretacea
arctocretacea, Praebulimina? gravelliniformis,
Ammobaculites retusus, Verneuilina basovi,
Gaudryina parva, Verneuilinoides cuneiformis,
Recurvoides paucus inflatus, Trochammina
gyroidiniformis, Uvigerinammina myrioloculare,
Vi

————————————————— ‘erneuilinoides brauni, Lenticulina ex. gr. L.
\ tatarensis, Reinholdella mcguirensis

Reinholdella mcguirensis

Ammobaculites tholoides

Lenticulina sp. A, Recurvoides obskiensis,
Cribrostomoides concavoides, Ammobaculites
claviforms

Lituotuba gallupi

Dorothia sp.
I N

—
Saccammina lathrami, Ammobaculites
fragmentarius, Hippocrepina barksdalei,
Pseudobolivina rayi, Gaudryina nanushukensis,
Gaudryina talleuri, Glomospirella gaultina,
Uvigerinammina manitobensis,
Quadrimorphina albertensis,
Haplophragmoides topagorukensis,
Marginulinopsis collinsi, Serovaina loetterlei,
Lenticulina bayrocki, Saracenaria trollopei,
Discorbis norrisi

S——
Trochammina ex. gr. T. neocomiana,
Marginulinopsis robusta, Haplophragmoides
lobatoloculare, Cribrostomoides
cryptocameratum, Ammobaculites inelegans,
Recurvoides cf. R. sublustris, Conorboides
walli

Saccammina cf. S lathrami, Glomospirella
arctica, Haplophragmoides euryraptum,
Verneulina caldwelli

S—
Glomospira subarctica, Ammobaculites
mountgoodenoughensis, Lenticulina cf. L.
macrodisca

S—
Labrospira goodenoughensis, Lenticulina ex.
gr. L. saxonica saxonica, Marginulinopsis
gracilissima, Geinitzinita arctocretacea
arctocretacea, Haplophragmoides cf. H.
concavus, Arenobulimina mcneili,
Ammobaculites validus, Uvigerinammina laxa,
Praebulimina? gravelliniformis

vy
Recurvoides sp. 3, Trochammina sp. 1

Lenticulina sp. A, Recurvoides obskiensis, \
Cribrostomoides concavoides, Ammobaculites
retusus, Verneuilina basovi, Gaudryina parva,

Verneuilinoides cuneiformis, Cribrostomoides
infracretaceous, Gaudryina sp. 2, Eggerella
sp. 2, Conorboides sp. 1

i S
Recurvoides ex. gr. R. canningensis,
Gaudryina milleri, Arenobulimina sp.,

Ammobaculites tholoides, Ammobaculites
claviformis, Recurvoides pacus inflatus,

Trochammina gyroidiniformis, Uvigerinammina

myrioloculare, Verneuilinoides brauni,
Lenticulina ex. gr. L. tatarensis, Reinholdella
mcgquirensis

Ammobaculites alaskensis alaskensis,
Lituotuba gallupi

Arenoturrispirillina waltoni, Labrospira freboldi,
Recurvoides canningensis, Trochammina walli,
Trochammina sp. 2

S—
Dorthia sp.

Ma

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

System | Series

Standard

chronostratigraphy

Stage

Foraminifer zones

BEAUFORT-MACKENZIE BASIN FORAMINIFERS

Upper Jurassic and Cretaceous benthic foraminifers

Tithonian

Kimmeridgian

Oxfordian

Callovian

Arenoturrispirilina jeletzkii

Ammobaculites mahadeoi

Trochamminoides leskiwae

Haplophragmoides tryssa

Gaudryina milleri

Arenoturrispirillina jeletzkii

Trochammina postera, Verneuilina anglica,
Arenoturrispirilina intermedia, Saturnella
brookeae, Ammobaculoides mahadeoi

Ammobaculoides mahadeoi

Trochammina postera
I N

Ammobaculites lunaris, Trochammina sp. 1,
Trochammina walli, Arenoturrispirillina Orientalia loucheuxi, Eomarssonella pollocki
intermedia, Ammobaculites lunaris,
Trochammina sp. 1, Orientalia loucheuxi,

Eomarssonella pollocki

Recurvoides decoris, Orientalia norrisi,
Eomarssonella paraconica

Saturnella brookeae
I

Trockamminoides leskiwae
. A

Verneuilina angelica

Trochammina aquilonaris, Ammosphaeroidina?
stelcki

Haplophragmoides tryssa, Verneuillinoides
graciosus

Ammodiscus richardsonensis, Glomospira
tortuosa, Recurvoides sublustris, Recurvoides
triangulus, Ammobaculites alaskensis minor,
Ammobaculites aklavikense, Trochammina
occidentalis, Trochammina omskensis

Trochammina elevata elevata

Trochammina elevata inflata, Trochamina
kosyrevae, Trochammina cf. T. rostovsevi

Trochammina cf. T. rostovsevi

Recurvoides huskyensis

Recurvoides triangulus

Recurvoides sublustris, Ammobaculites
aklavikense, Trochammina kosyrevae,

\ Trochammina cf. T. rostovsevi

Saccammina cf. S lathrami, Ammobaculites
alaskensis alaskensis, Recurvoides
canningensis, Recurvoides decoris,
Trochammina aquilonaris, Haplophragmoides
tryssa, Verneuillinoides graciosus,
Ammodiscus richardsonensis, Glomospira
tortuosa, Ammobaculites alaskensis minor,
Trochammina occidentalis, Trochammina
omskensis, Recurvoides huskyensis

Standard chronostratigraphy:

Foraminifer zones:

Upper Jurassic and Cretaceous
benthic foraminifers:

For boundary definitions, status, and nomenclature see International Stratigraphic Commission (2019a).

Revised by D.H. McNeil (pers. comm., 2019), using data from Fowler (1996), Hedinger (1996), and McNeil
(19964, b, ¢); updated taxonomy from McNeil (1997); Sr isotope data from McNeil and Miller (1990) and

McNeil et al. (2001).

Ranges/events from Fowler (1996), Hedinger (1996), and McNeil (1996a, b, c), with minor updates by D.H.
McNeil (pers. comm., 2019); updated taxonomy from McNeil (1997).

Figure 4. (cont.) Beaufort—-Mackenzie Basin foraminifer biostratigraphic data (zones and events) produced in TimeScale Creator (Geologic
TimeScale Foundation, 2019a): b) Callovian (Middle Jurassic) to Maastrichtian (Upper Cretaceous). Adapted from Fowler (1996), Hedinger
(1996), and McNeil (19963, b, c), with taxonomy updated according to McNeil (1997) and revised by D.H. McNeil (pers. comm., 2019).
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LITHOSTRATIGRAPHY

Standard chronostratigraphy
Ringnes Islands and Axel Heiberg Island Banks Island Horton-Anderson plains Richardson Mountains Snake, Peel, Arctic Red,
Ma System | Series Stage (northern Aklavik Range) and Hume rivers
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Standard chronostratigraphy: For boundary definitions, status, and nomenclature see International Stratigraphic Commission (2019a).

Lithostratigraphy: Modified from Bringué et al. (2018) by J.M. Galloway, M. Bringué, and K. Dewing (pers. comm., 2019).

Figure 5. Cretaceous lithostratigraphic chart for the Sverdrup Basin and western Arctic (modified from Bringué et al., 2018) produced
in TimeScale Creator (Geologic TimeScale Foundation, 2019a). Question mark (?) denotes uncertainty.
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Standard chronostratigraphy

WCSB/Sverdrup Basin

TRIASSIC AMMONOID AND CONODONT ZONATION
OF WESTERN AND NORTHERN CANADA

WCSB/Sverdrup Basin

ammonoid zones conodont zones
System | Series | Stage |Substage
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=
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= | e
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s [ | b
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= | T e -
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I | _______ Epigondolellatozeri _ _______
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O
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(7p)
©
=
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©
(@)
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R e e Acuminatella angusta - Metapolygnathus dylani
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Carnepigondolella spenceri
C __________________________
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c " lee—_-— Y _____
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Standard chronostratigraphy:

WCSB/Sverdrup Basin
ammonoid zones:

WCSB/Sverdrup Basin
conodont zones:

Standard chronostratigraphy

Stage [Substage

WCSB/Sverdrup Basin
ammonoid zones

TRIASSIC AMMONOID AND CONODONT ZONATION
OF WESTERN AND NORTHERN CANADA

WCSB/Sverdrup Basin
conodont zones

Frankites sutherlandi

Meginoceras meginae

Eoprotrachyceras matutinum

Eogymnotoceras deleeni

Spathian

Smithian

Dienerian

Oftoceras boreale

Griesbachian

Quadralella acuminata

Paragondolella foliata

Neogondolella aldae

Neogondolella ex gr. constricta -
Paragondolella ex gr. liebermani

) e e - — —— — —— —— — — e — ——— ——— — ——— —— — — — — — — —

Chiosella timorensis

Neogondolella aff. sweeti -
Novispathodus liebermani

Borinella chowadensis -
Neospathodus pakistanensis

Clarkina taylorae - Hindeodus parvus

For boundary definitions, status, and nomenclature see International Stratigraphic

Commission (2019a).

Compiled by M.L. Golding and M.]. Orchard, using data from Tozer (1994), Bucher (2002),

and Ji and Bucher (2018).

Compiled by M.L. Golding and M.]. Orchard, using data from Orchard (1991, 2007,

2014, 2018), Orchard and Tozer (1997),
Zonneveld (2009), Golding et al. (2014),

Carter and Orchard (2007), Orchard and
Henderson et al. (2018) for the WCSB,

and Henderson and Baud (1997), Nakrem et al. (2008), and Orchard (2008) for the

Sverdrup Basin.

Figure 6. Triassic ammonoid and conodont zonation of western and northern Canada (Western Canada Sedimentary Basin (WCSB)
and Sverdrup Basin) produced in TimeScale Creator (Geologic TimeScale Foundation, 2019a). Note that the vertical scale differs

between left (Upper Triassic) and right columns (Lower and Middle Triassic). Sources appear at the base of the figure.
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DATA PRODUCED AND/OR ENTERED BY BUJAK Phanerozoic sequence synthesis
Geomagnetic Planktonic Calcareous Bujak Arctic Abreu and Major
Standard chronostratigraphy polarity foraminifers nannofossils zones Bujak Anderson Sequences Phanerozoic | Phanerozoic Phanerozoic-Proterozoic
Sub- climate 11998 climate (global or T-R cycles T-R trends Cenozoic-Campanian marine '®0O 13C composite
Ma System Series Stage Subtropical zone |[NN and CN zones| Zones | zones Bujak Arctic SST events events Arctic spores and pollen events Arctic dinocyst and algal events Tethyan) (2nd order) (1st order) composite (per mil PDB) _(per mil PDB) Global reconstructions
. Holocene / Upper ANN21 ] oNpL11 Alnus pollen (4-7 pore), Betula nana (dwarf Algidasphaeridium minutum, Brigantedinium = g QLGM
3 Pleistocene NN20 birch), Deltoidospora spp., Laevigatosporites simplex, Echinidinium karaense, Halodinium -
- Middle spp., Lycopodiumsporites spp., minor, Impagidinium pallidum, Impagidinium -
. "\ Pleistocene C1 CNPL10 Osmundacidites spp., Sphagnum spores sphaericum, Islandinium minutum, -
1 — Pt1 | ———— Lejeunecysta oliva, Operculodiniom [T 77777
- Quaternary _ _ NN19 |~_CNPL9 | T9 centrocarpum, Quinquecuspis concreta,
= Pleistocene Celslenn CNPL8 Artemisia (mugwort), Betula pollen >20 RZ””.ZS"& S"".mph’cal‘l’?ta’ fi’enoge.mgh’?; _QCala2.(MIS52) 3
- CNPL7 microns, Brassicaceae (aka Cruciferae) nephror Ies, ltgmo\;/)ot ’3 psila “s’l pinirertes ... P "
2 — PGi-2 (mustard family), Castanea (chestnut), SRECES; VOISQII CavElin =
3 Gelasian C2 PL6 NN18 | CNPL6 > Chenopodiineae (goosefoot) including —QGe2
- NN17 PC2 PGi-1 Chenopodipollis sp. Aof Norris 1986. |} e =
__ PL5 [Atl.] ———— CNPL5 —> —> Corsinipollenites subcircularis, Larix (larch), v———F - =
= . PPi-2 Picea (spruce), Pinus (pine), Pseudotsuga Bitectatodinium tepikiense, Impagidinium  |————"=
3 — . . ¥/ PL4 [Atl. \ | (Douglas fir), Quercus (oak) , Jjaponicum, Spiniferites membranaceus,
- Flacenzian e PL5 [IF-’ac]] -------- NN16 CNPL4 Teb Taxodiaceae-Cupressaceae-Taxaceae, Spiniferites ramosus | ___ NPia1
i C2A CTUBLA LPac_] ------ .- PC1 PPi-1 Tsugaepollenites viridifluminipites
. Fe o= inE - —> —> v L
- _ . _PL3 __¥NN15 PZi-3 Acer (maple), Abies (fir), Cedrus (cedar), llex Filisphaera filifera, Lingulodinium |- — — — -
4 — Pliocene NN1a f—CENPLS T8 —> (holly), Fabaceae aka Leguminosae (legume, machaerophorum, Spiniferites adnatus, Nza2
- PL2 pea, or bean family), Metasequoia (dawn Spiniferites hexatypicus | ~— = =~
3 Zanclean T8a redwood)
] NN13 [ CNPL2 : PZi-2 ——NZaf
. >
2 = C3 PL1 (Atl.) CNPL1 PW1 PZi-1 Bitectatodinium tepikiense
- NN12 |- —> —> v A vV———
g CNM20 | MMi-2 Chenopodipollis nuktakensis, Ericipites Achomosphaera andalousiensis,
N e (A K [ CNM19  » antecursorioides, sporadic E. Cleistosphaeridium ancyreum, Dapsilidinium —NMe2 —NMe2
6 — M14 compactipolleniatus, Sequoia pastielsii, Evittosphaerula paratabulata, | _ _ _ _ _
E . .. Hystrichosphaeridium parvum,
3 Messinian CNM18 T7c (i) Hystrichosphaeropsis obscura, Impagidinium
- C3A A1 cornutum, Impagidinium patulum,
- NN11a Reticulatosphaera actinocoronata,
7 — CNMA17 MC5 MMi-1 Tectatodinium pellitum
- C3B Y S v —NMe1
— MTi-4 Camarozonosporites sp. A, Carya (hickory),
- S = Castanea (chestnut), Engelhardtia/Alfaroa |\ e =
_: CNM16 (evergreen Juglandaceae), consistent Fagus
8 3 C4 L "NN11 ) (3 (beech), llex (holly), Juglans (walnut),
- Liquidambar (sweetgum), Nyssa (black tupelo,
- CNM15 MTi-3 tupelo, or blackgum), Ostrya/Carpinus
- p — (hop-hornbeam/European or common
9 — NN10 hornbeam), Pterocarya (wingnut), Salix
= | CAA CNM14 - T2 (willow), Tilia (lime), Ulmus (elm) NTor2
= Tortonian T7c (i) >
] ' MTi-1
: ——————————— ’
10 = MA12 NN9 | CNM13
= NN8 | CNM12 | B
i = M CNM11 1
= NN7 MC4 MSi-4
_ —— - ~| B
- — LA - CNM10 Amiculasphaera umbracula, Distatodinium NTor1 NTor1
12 — fusiforme, Nematosphaeropsis lemniscata,
- CNM9 Palaeocystodinium golzowense, Pentadinium | —————~—
— C5A §isia laticinctum
- Neogene Serravallian — M9 NNG6 > —NSer3
13 — chme | | R
= C5AA T7b (ii)
— MSi-2 ———NSer2
= C5AB M8 B e 1 i N Set
= C5A I
14 =3 C M7 Carya (hickory), Castanea (chestnut), NSer1
- Miocene NN5 Engelhardtia/Alfaroa (evergreen
i C5AD MSi-1 Juglandaceae), Juglans (walnut), Liquidambar
- M6 CNM7 —> (sweetgum), Nyssa (black tupelo, tupelo, or
- Langhian MC3 blackgum), Ostrya/Carpinus (hop-hornbeam/
15 — European or common hornbeam), Pterocarya Tub lodini v i
- T7b (i) (wingnut) pollen, Tilia (lime) uberculodinium rossignoliae |- —
= C5B I SE——
E M5 ] Arcticacysta backmannii, Arcticacysta
] Mw2 MLi-1 moraniae, Cordosphaeridium cantharellus,
16 = Distatodinium paradoxum, Heteraulacacysta
- campanula, Hystrichosphaeropsis arctica, ;
- C5C NN4 Roftnestia ovata iEar
- CNM6 *
17 — M4 MBi-3 L _
- —>
- C5D MBi-2 ——NBur4
- , —>
18 — T7a (ii) (5
- Burdigalian
3 J CSE M3 CNM5
. NN3 ——NBur3
19 — MBi-1 |
3 e ' ———NBur2
20 — CNM4 | | [ e Pt
- M2 MC2 MAI-3 Tuberculodinium rossignoliae
— N | | — — = === —> —> - A ) NBur1
a C6A Amiculasphaera umbracula, Arcticacysta
- backmannii, Arcticacysta moraniae,
21 — NN2 Cordosphaeridium cantharellus, Distatodinuom 777777
3 . MAI-2 fusiforme, Evittosphaerula paratabulata,
= CBAA CNM3 Tra (i) —> Filisphaera filifera, Heteraulacacysta ——NAg2——
7 e ania S campanula, Hystrichosphaeridium parvum,
3 q Fagus (beech), llex (holly), Salix (willow), Hystrichosphaeropsis arctica,
22 — M1 MwW1 MAi-1 Ulmus (elm) Hystrichosphaeropsis obscura, Impagidinium
2 CeB CNM2 — — o v _ cornutum, Impagidinium japonicum, — —
— rare Ericipites compactipolleniatus Impagidinium patulum, Nematosphaeropsis
- CNM1 lemniscata, Reticulatosphaera actinocoronata,
- [ NNT | MC1 Rottnestia ovata
23 — | NINT —> —NAq1———NAq1
= ceC
] CNO6 )
24 — 07 TOb (ii) [EEEEE_—— L e e
- cc!|! | |  ke——-- 0Ci-3
= »
25 —3 ki NP25 PaCh3——
- Chattian
= . ow1 ORi-2a
26 — ? common Ericipites compactipolleniatus,
- 06 Quercoidites microhenrici |
= 0Ci-2
5 >
— NP24
21 - C9 O
E Téb (i) ' ———Ch2
o8 — o Qe PaCh1——[——PaCh1 PaCh1——
= 04 !
— Oligocene C10 CNO4 - —
29 — ? ORi-3
4 { > v
- 03 NP23 1 Boisduvalia clavatites, Diervillapollenites
3 C11 echinatus, Gothanipollis sp. of Rouse 1977,
30 _: ______ ® Jusseia sp. of Piel 1971, Parviprojectus sp. A
- of Rouse 1977
3 Rupelian —
31 — CNO3 !
- 02
E Téa ORi-2
__ C12 L [ ] |-
32 = | ’ PaRu2
= Q NP22 CNO2
. c
7 g L -1 | Tl e
33 _: =) O1 Boisduvalia clavatites, Diervillapollenites
- n echinatus, Gothanipollis sp. of Rouse 1977,
— (@) CNO1 ORi-1 Jusseia sp. of Piel 1971, Parviprojectus sp. A
- NP21 oC1 > of Rouse 1977 =
34 — - —* v v PaRu1 PaRuf
= C13 CNE21 Caryapollenites imparalis, Caryapollenites Cordosphaeridium fibrospinosum,
- E16 veripites, Erdtmanipollis procumbentiformis. Glaphyrocysta semitecta, sporadic Lentinia
- LO Datums: Carpinipites spackmaniana, serrata, Phthanoperidinium amoenum, |
] CNE20 Caryapollenites simplex, Faguspollenites Phthanoperidinium comatum, sporadic
35 — EPi-2 grandifolia, llexpollenites margaritus, Polysphaeridium subtile, sporadic Wetzeliella Pr3
7 —> Juglanspollenites nigripites, articulata
. C15 E15 Pterocaryapollenites stellatus, Salixpollenites
_: NP19- CNE19 discoloripites, Tiliaepollenites crassipites,
- Priabonian 20 T5 T5 { Tiliaepollenites vescipites, Ulmipollenites |
36 — C16 undulosus
- p1ay CNE18
37 — E14 (NP18, PaPr2
- L 2 1 e e
E Cc17 | Ec4 EPi-1 PaPr1 PaPr1
41 1 - CNE17 —> —> v v
38 —] Bombacacidites bombacoides, Cleistosphaeridium placacanthum,
- NP17 CNE16 Cicatricosisporites dorogensis, Erdtmanipollis Cordosphaeridium gracile, Deflandrea |
7 procumbentiformis, Momipites annulatus, phosphoritica, Diphyes colligerum, Lentinia
= Momipites coryloides, Nyssapollenites serrata, Phthanoperidinium stockmansii,
] T4c krutzschii sensu Rouse 1977, Pistillipollenites Polysphaeridium subtile, Spiniferites monilis,
39 — E13 ) mcgregorii, Tsugaepollenites alexandriana. Thalassiphora pelagica, Heteraulacacysta PaBart1
E E— Fungi: Pesavis tagluensis, Striadiporites leptalea, Wetzeliella articulata |- — — — _
= Bartonian CNE15 sanctaebarbarae
= C18 EC3 EBi-1
7 —> —> v
40 - E12 EW4 Adnatosphaeridium reticulense,
- Charlesdowniea coleothrypta, Charlesdowniea
- crassiramosa, Heteraulacacysta leptalea,
] Impagidinium californiense, Sophismatia
I e e S tenuivirgula, Stenodinium meckelfeldensis,
3 E11 CNE14 Wetzeliella hampdenensis
3 NP16 ELi-4
- —>
- C19
1T 1  1r °" 1 1 °_-_—______| \
42 —] 0
. CNE13 Pal:u4 Pal:u4
E Efo | L 1 | EEee | e
- T4b )
43 — T4 |
- CNE12 ELi-3
- | _ —>
= T N S Pal:u3
44 _: CNE11 Distatodinium paradoxum, Glaphyrocysta
-] C20 semitecta, Lentinia serrata, Tectatodinium
- pellitum
- Paleogene Lutetian -
45 — Eocene = NP15 # _____
- CNE10
= EC2 ELi-2 o . -
. ) ) Tiliaepollenites crassipites
— A v S
46 —3 Fungi: Ctenosporites wolfei, Pesavis parva, Lentinia wetzelii Pal-u2
- CNE9 Pesavis sp. A of loannides & Mclintyre 1980
—: T4a
- [
47 —
- CNE8
—) v
- C21 NP14 common to abundant Azolla spp. Heteraulacacysta leptalea, Phthanoperidinium Pal:u1
3 Azolla EC1 ELi-1 comatum, Thalassiphora delicata .
48 —J CNE7 - Ere A S S el
- =i R Glaphyrocysta divaricata, Glaphyrocysta
— CNE®6 exuberans, Glaphyrocysta ordinata,
- Polysphaeridium zoharyi
49 —
3 o PaYp10————PaYp10
- C22 NP13 CNES | | E Ll Y
50 — PaYp9—
E E6 ews | | e e
7] [ A /N
51 — Apectodinium homomorphum, Areoligera PaYos
- senonensis, Glaphyrocysta pastielsii | _a_p_ .
E C23 E5 PaYp7—
- NP12 CNE4
92 — Ypresian L O | 1
= T3b PaYp6——
E ) Adnatosphaeridium reticulense,
53 — — — Polysphaeridium subtile, Thalassiphora [T 77777
3 pelagica
— E4 NP1 CNE3 ! Dapsilidinium pastielsii, Deflandrea ——PaYpS—
- EwW2 phosphoritica, Lentinia wetzelii, Lingulodinium
54 — L — > machaerophorum, Palaeocystodinium o Y ]
= consistent Carpinipites spackmaniana, golzowense, Phthanoperidinium stockmansii, Spinidinium ?sagittula PaYp4
= consistent Caryapollenites simplex, consistent Sophismatia crassiramosa, Sophismatia
- Caryapollenites simplex, consistent tenuivirgula, Spiniferites membranaceus, |- ———-
- C24 E3 T3a Faguspollenites grandifolia, consistent Spiniferites monilis, Stenodinium o —
55 — NP10 CNE2 llexpollenites margaritus, consistent meckelfeldensis, Wetzeliella articulata, Apectodinium hyperacanthum, Apectodinium PaYp3 ——
- Juglanspollenites nigripites, consistent Wetzeliella hampdenensis __ parvum, Apectodinium quinquelatum, | E———
= E2 Pterocaryapollenites stellatus, consistent . o Axiodinium augustum, Cerodinium depressum, PaYp1
- /ﬁ\_ Salixpollenites discoloripites Apectodinium homomorphum, Apectodinium Cerodinium pannuceum, Phelodinium \ |
- > E1 ~] CNEA1 PET EW1 | A hyperacanthum, Apectodinium quinquelatum, magnificum
56 — —~ A — ( —> common to abundant Azolla spp. Axiodinium augustum, consistent | S— PaTh6——
- \ M) / 4 Cordosphaeridium gracile Alisocysta circumtabulata, Alisocysta
- T2 —A margarita, Cerodinium speciosum, Eisenackia
- PS5 NP9 | CNP11 T2a Apectodinium homomorphum (acme), crassitabulata, Oligosphaeridium complex |~~~ — — ~ ~
- Apectodinium hyperacanthum (acme)
ol — v ] . PaThS—— PaThS
- Caryapollenites ‘intermedius’, | Qlgespiacndiumeemplex
- NP8 Paraalnipollenites alterniporus,
3 Thanetian T T CNP10 Paraalnipollenites confusus, common PaTh4 ——
58 — Ulmipollenites sp. A. |} e e e —
] C25 T1d 1 I ——
= NP7 PaTh2
- CNP9 Glaphyrocysta divaricata, Glaphyrocysta
= = exuberans, Glaphyrocysta ordinata,
59 — Glaphyrocysta pastielsii
- NP6 CNP8 A E—
— common Cerodinium striatum, PaTh1——
] 9 Palaeocystodinium bulliforme,
60 = Palaeoperidinium pyrophorum PaTh1
. . NP5
— Selandian 11 (5
- C26 CNP7 7 e e N [
7 Apectodinium parvum, Cerodinium
61 — Paleocene depressum, Cerodinium pannuceum, Diphyes
] — — — — colligerum, Phelodinium magnificum,
— P3 T1 Spinidinium ?sagittula
] 1 }1 1 ' == 1  FrF——-—- { = v PaSel1 PaSel1 PaSel1
62 _Z CNP6 Cerodinium diebelii
- NP4 | | . | e e e e
= P2 CNP5 '
63 — C27 PaDa4
3 I R Y= O | N R
3 Danian NP3 b PaDa3
E C28 1 Alisocysta circumtabulata, Alisocysta | __ ___
— CNP3 margarita, Eisenackia crassitabulata
- A
= PaDa2
65 = NP2
- Disphaerogena carposphaeropsis, Deflandrea \ |
— C29 ¥ = \ CNP2 { DW1 galeata, Deflandrea majae
] 2! Co E— . —> , I v |
. L/ PO \| NP1 CNP1 T1a J\ Manumiella druggii, Trithyrodinium evittii PaDa1
Standard chronostratigraphy: For boundary definitions, status, and nomenclature see International Stratigraphic Commission (2019a).
Geomagnetic polarity: As provided by the Geologic TimeScale Foundation; composites for Cenozoic-Late Jurassic C- and M-sequences from Ogg et al. (2016).
Planktonic foraminifers: As provided by the Geologic TimeScale Foundation, using data from Wade et al. (2011). I
Abbreviations
Calcareous nannofossils: As provided by the Geologic TimeScale Foundation, using data from Backman et al. (2012) and Agnini et al. (2014). Neogene: mainly Lourens et al. (2005). Paleogene: from various Ocean Drilling Program studies and Berggren et al. (1995a, b). Reviewed and enhanced by P. Brown (unpub. data, 2011). Atl. Atlantic
. . . . . . . . . CN Coccolith zone - Neogene
Bujak Arctic zones and subzones: J. Bujak (unpub. data, 2020) from the Circum-Arctic lower Paleozoic to Cenozoic palynological event project.
CP Coccolith zone - Paleogene
Bujak Arctic climatic events: J. Bujak (unpub. data, 2020) from the Circum-Arctic lower Paleozoic to Cenozoic palynological event project. LO Last occurrence
Abreu and Anderson 1998 climate events: Abreu and Anderson (1998). NN Calcareous nannofossil zone - Neogene
. . . _ _ _ _ _ _ _ NP Calcareous nannofossil zone - Paleogene
Bujak Arctic spores, pollen, and fungi events: J. Bujak (unpub. data, 2020) from the Circum-Arctic lower Paleozoic to Cenozoic palynological event project.
Pac. Pacific
Bujak Arctic dinocyst and algal events: J. Bujak (unpub. data, 2020) from the Circum-Arctic lower Paleozoic to Cenozoic palynological event project.
PDB Peedee Belemnite
Phanerozoic sequence synthesis: As provided by the Geologic TimeScale Foundation, using data from Hardenbol et al. (1998). SST Sea-surface temperature
T-R Transgressive-regressive

Cenozoic-Campanian marine 30 composite:

Phanerozoic-Proterozoic 3C composite:

Global reconstructions:

As provided by the Geologic TimeScale Foundation, adapted from Cramer et al. (2009); see also Saltzman and Thomas (2012).

As provided by the Geologic TimeScale Foundation, adapted from Cramer et al. (2009); see also Saltzman and Thomas (2012).

As provided by the Geologic TimeScale Foundation; globes from Blakey (2020) based on reconstructions from Scotese (2003).

Figure 7. Summary chart of Cenozoic geological data showing several data columns produced and/or entered by J.P. Bujak (unpub.
data, 2020), showing Arctic zones and subzones, Arctic sea-surface temperature (SST), climate events (modified from Abreu and
Anderson, 1998), Arctic spores and pollen events, and Arctic dinocyst and algal events, and put into the context of different data types
(including geomagnetic polarity, planktonic foraminifers sub-tropical zone, calcareous nannofossils NN and CN zones, Phanerozoic
transgressive—regressive (T-R) sequence synthesis, and ®0 and '*C composites) available in TimeScale Creator (Geologic TimeScale
Foundation, 2019a).
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Standard chronostratigraphy

System | Series

Subboreal
ammonite zones

"STANDARD" AMMONITE ZONES (from TsC)

Russian Platform

Boreal ammonite zones

ARCTIC CANADA JURASSIC BIOSTRATIGRAPHY (this report)

Ammonite zones Bivalve zones Foraminifer zones

High Boreal (Siberia) Ammonites Ammonites Bivalves Bivalves Foraminifers

Upper

immeri

K

Oxfordian

Dinoflagellate zones

Dinoflagellates (Sverdrup
Basin, ‘legacy’)

Dinoflagellates (northern
Yukon region, ‘legacy’)

Paragonyaulacysta
capillosa

Stage (NW Europe) ammonite zones ammonite zones (Sverdrup Basin) (northern Yukon region) (Sverdrup Basin) (northern Yukon region) (Sverdrup Basin)
Subcraspedites lamplughi . .
"""""""" e g Craspedites nodiger Craspedites taimyrensis ey edltes_ (Ta{my roce(as) Craspedites canadensis
: : canadensis/taimyrensis
Subcraspedites preplicomphaus—mMm™m™ M M — ™ FH——FFF""m b U o J/—( """ """ " —"fTT— " T T~ ————————
________________ Craspedites subditus .
| Subcraspedites primitivus  {- — — — — — — — _ ______ Craspedites okensis Subcraspedites spp., o .
| _Paracraspedites oppressus_ _ Kachpurites fulgens Craspedites spp. Arenoturrispirillina jeletzkyi
Titanites anguiformis / - - S
——— E—I_Ib_ _'t_ —k— b_ ————— Praechetaites exoticus
S 8 gl L SR Epivirgatites nikitini =_Epivirgatites variabilis )4~ - — — - —— - —— — —— — — — —_
| _ _Galbanites okusensis _ _ | _ _ _ _ __ __ __ _ _ _ __ Taimyrosphinctes
| _ Glaucolithites glaucolithus _ _ Virgatites virgatus [\ - — excentricus _ _ _/|
Progalbanites albani g g Dorsoplanites maximus
Virgatopavilovia fittoni Dorsoplanites ilovaiskyi
Dorsoplanites maximus,
c D. sachsi, Taimyrosphinctes sp.,
g, R
g Paviovia rotunda Dorsoplanites panderi Pavlovia (?Paravirgatites) sp.
(@] Pavlovia iatriensis
=
" — Pavlovia pallasioides
e e e e
Pectinatites pectinatus llowaiskya pseudoscythica Pectinatites pectinatus
Pectinatites hudlestoni
llowaiskya sokolovi Sphinctoceras subcrassum
Pectinatites wheatleyensis
Pectinatites scitulus ~ |——————————————-1
Pectinatites elegans llowaiskya klimovi Eosphinctoceras magnum
Saturnella rookeae
AuI?co_sZap = us Aulacostephanus
autissioaorensis autissiodorensis
Hoplocardioceras decipiens
Aulacostephanus eudoxus Aulacostephanus eudoxus
Euprionoceras sokolovi
T
a Aulacostephanus mutabilis Aulocostephanus sosvaensis
O

Rasenia cymodoce

Amoeboceras kitchini

Pictonia baylei

Amoeboceras bauhini

Rasenia cf. cymodoce,
Amoebites subkitchini

Ringsteadia pseudocordata

Amoeboceras rosenkranzi

Amoeboceras regulare

Perisphinctes cautisnigrae

Amoeboceras serratum

Amoeboceras glosense

Perisphinctes pumilus

Cardioceras tenuiserratum

Perisphinctes plicatilis

Cardioceras densiplicatum

Cardioceras cordatum

Cardioceras cordatum

Quenstedtoceras mariae

Quenstedtoceras mariae

Ammodiscus thomsi

Cardioceras cf. scarburgense

Standard chronostratigraphy:

Subboreal ammonite zones:

High Boreal (Siberia) ammonite zones:

Ammonites (Sverdrup Basin):

Ammonites (northern Yukon region):

Bivalves (Sverdrup Basin):

Bivalves (northern Yukon region):

Foraminifers (Sverdrup Basin):

Dinoflagellates (Sverdru

p Basin, ‘legacy’):

Dinoflagellates (northern Yukon region, ‘legacy’):

Atopodinium haromense

Meiourogonyaulax pila

Paragonyaulacysta
capillosa

Cribroperidinium? downiei

Gonyaulacysta dualis

Oligosphaeridium
asterigerum

Occisucysta balios

Stephanelytron redcliffense

Stephanelytron
tabulophorum

Stephanelytron redcliffense

Lunatadinium sp.

Paragonyaulacysta?
borealis

Ctenidodinium? thulium

For boundary definitions, status, and nomenclature see International Stratigraphic Commission (2019a).

As provided by the Geologic TimeScale Foundation. Upper Jurassic: R. Enay in Cariou and Hantzpergue (1997), with updates from M. Rogov (unpub. data, 2010, 2011).

As provided by the Geologic TimeScale Foundation, using data from Jenks et al. (2015), modified from Konstantinov and Klet (2009).
Poulton, this paper.

Poulton, this paper.

Poulton, this paper, using data from Harrison et al. (1993a).

Poulton, this paper, using data from Poulton (1993a).

Harrison et al. (1999a), using data from Wall (1983).

E.H. Davies in Harrison et al. (1999a), using data from Davies (1983).

E.H. Davies in Poulton et al. (1993a).
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Figure 8. Ammonite and Buchia horizons for the Sverdrup Basin and northern Yukon produced in TimeScale Creator (TSC; Geologic
TimeScale Foundation, 2019a). Charts include ‘standard’ ammonite zones provided by the Geologic TimeScale Foundation for refer-
ence, as well as other biostratigraphic data (foraminifer zones and dinoflagellate ‘legacy’ zones): a) Upper Jurassic. ‘Legacy’ zones are
zonation schemes preserved for their historical value.
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ARCTIC CANADA JURASSIC BIOSTRATIGRAPHY (this report)
. Subboreal Ammonite zones Foraminifer zones Dinoflagellate zones
Standard chronostratigraphy ammonite zones
Ammonites Ammonites Foraminifers Dinoflagellates (Sverdrup|Dinoflagellates (northern
System | Series Stage (NW Europe) (Sverdrup Basin) (northern Yukon region) (Sverdrup Basin) Basin, ‘legacy’) Yukon region, ‘legacy’)
Ctenidodinium? thulium
Quenstedtoceras lamberti
Stephanelytron
redcliffense
Peltoceras (P.) athleta | = - — ===
Stenocadoceras canadense
c Erymnoceras coronatum
ECBE e
> - .
osmoceras jason
L)
8 Cadoceras voronetsae,
Sigaloceras calloviense C. arcticum
Cadoceras voronetsae,
C. cf. arcticum
Guttulina tatarensis
Proplanulites koenigi ~ F—-———————————————fF " ————————————————1
Paragonyaulacysta
Cadoceras sepg‘entr/onale, Cadoceras septentrionale calloviensis
Kepplerites
Cadoceras bodylevskyi Cadoceras bodylevskyi?
Macrocephalites herveyi
____________________________________ Nannoceratopsis pellucida
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Standard chronostratigraphy:

Subboreal ammonite zones:

with updates from M. Rogov (unpub. data, 2010, 2011).
Ammonites (Sverdrup Basin): Poulton, this paper.
Ammonites (northern Yukon region): Poulton, this paper.
Foraminifers (Sverdrup Basin): Harrison (1999a), using data from Wall (1983).
Dinoflagellates (Sverdrup Basin, ‘legacy’): E.H. Davies in Harrison et al. (1999a), using data from Davies (1983).

Dinoflagellates (northern Yukon region, ‘legacy’): E.H. Davies in Poulton et al. (1993a).

For boundary definitions, status, and nomenclature see International Stratigraphic Commission (2019a).

As provided by the Geologic TimeScale Foundation. Middle Jurassic: C. Mangold in Cariou and Hantzpergue (1997),

Figure 8. (cont.) Ammonite and Buchia horizons for the Sverdrup Basin and northern Yukon produced in TimeScale Creator (TSC;
Geologic TimeScale Foundation, 2019a). Charts include ‘standard’ ammonite zones provided by the Geologic TimeScale Foundation
for reference, as well as other biostratigraphic data (foraminifer zones and dinoflagellate ‘legacy’ zones): b) Middle Jurassic. ‘Legacy’
zones are zonation schemes preserved for their historical value.
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For boundary definitions, status, and nomenclature see International Stratigraphic Commission (2019a).

As provided by the Geologic TimeScale Foundation. Lower Jurassic: J.-L. Dommergues in Cariou and Hantzpergue (1997),
with updates from M. Rogov (unpub. data, 2010, 2011).

Poulton, this paper.

Poulton, this paper.

Harrison et al. (1999a), using data from Wall (1983).

E.H. Davies in Harrison et al. (1999a), using data from Davies (1983).
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Figure 8. (cont.) Ammonite and Buchia horizons for the Sverdrup Basin and northern Yukon produced in TimeScale Creator (TSC;
Geologic TimeScale Foundation, 2019a). Charts include ‘standard’ ammonite zones provided by the Geologic TimeScale Foundation
for reference, as well as other biostratigraphic data (foraminifer zones and dinoflagellate ‘legacy’ zones): ¢) Lower Jurassic. Sources
appear at the base of the figure. ‘Legacy’ zones are zonation schemes preserved for their historical value.
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region were illustrated as northeastern Pacific examples
in a circum-Pacific compilation of faunas in Westermann
(1993). The few Jurassic ammonite occurrences in west-
central Yukon that, although north of the Arctic Circle, are
in a thrust sheet of an imperfectly known and possibly more
southerly pericratonic tectonic provenance (Frebold et al.,
1967; Poulton and Tempelman-Kluit, 1982) are not dis-
cussed here. These, and other occurrences of Boreal faunas
in the series of transported terranes farther south along the
coast of British Columbia, have been included as ‘Arctic’
in some previous reports involving Arctic Canadian Jurassic
fossils (e.g. Callomon, 1984; Rogov, 2019).

Ammonites are the primary tool for dating and correlat-
ing Jurassic strata globally (Callomon, 1995; Gradstein et al.,
2012; Yacobucci, 2015) because of their morphological
diversity, rapid evolution, common occurrence, and long his-
tory of study (recent reports summarizing evolutionary traits
relevant to Canadian Arctic ammonites include Neige and
Rouget, 2015; Schweigert, 2015). However, ammonites are
sparse in Canadian Jurassic strata from the upper Oxfordian
upward, and the bivalve Buchia has been important for pro-
viding Late Jurassic and Early Cretaceous age control in
Arctic Canada. The usefulness of Buchia species derives
from their wide distribution across the Boreal realm and
south along the Pacific margin, as far as northern California
(e.g. Jeletzky, 1984). Nearly all of the published ages based
on micropaleontological and palynological analyses of
Jurassic strata have been determined through extrapolation
from ammonite or Buchia occurrences. Entirely independent
dating of Arctic Canada micropaleontological or palynologi-
cal assemblages through correlations with faunas elsewhere
(e.g. European standard sections) is rare or rarely stated;
and, in any case, those sections are also primarily dated by
ammonites. Therefore, the revision of the ages of ammonite
faunas will require updates to the ages of other stratigraphic
elements (biozones, bioevents, lithostratigraphic units) tied
to ‘ammonite control’.

The first recording of Jurassic ammonites in Canada was
by S. Haughton (1857) from material collected in 1853 dur-
ing a Franklin search expedition; these were from Prince
Patrick Island in Arctic Canada. Jurassic strata were not
definitively recognized in the Arctic Islands again until the
site was revisited by E.T. Tozer in 1954 (Poulton, 1994).
The first reported Jurassic ammonites in the northern Yukon
region were mistakenly identified as Cretaceous (Meek,
1859), as was the next discovery (Whiteaves in McConnell,
1891). These finds probably came from a well-exposed sec-
tion at Salmon Cache Canyon along the Porcupine River,
a locality studied by Poulton (1987). Primary original data
sources and revisions for the biostratigraphically most useful
ammonite faunas are identified in Appendix C; these include
both detailed taxonomic treatments and the most significant
identifications in faunal lists.

Many of the Jurassic ammonites available from the
Canadian Arctic occur as single specimens or are associa-
tions in beds that are separated by long unexposed or poorly
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fossiliferous intervals or were collected without detailed
stratigraphic context. Their ages have been interpreted by
comparison with published ammonite sequences elsewhere.
It is not reasonable to consider such occurrences as zones
(implying ranges with recognizable tops and bottoms), and it
is not feasible to develop an event scheme from them. For
the most part, these occurrences represent fossiliferous ‘bio-
horizons’, for which the probable upper and lower age limits,
as compared with the most appropriate Boreal or Subboreal
chronozone scales, are indicated by dashed lines in Figure 8.
Changes in successive ammonite occurrences reflect evolu-
tion/extinction events within a basin or the replacement over
time of one major taxonomic group by another due to, for
example, migration facilitated by new marine connections or
other competitive factors.

Examples of evolutionary successions within Boreal lin-
eages in particular Arctic basins are the richly fossiliferous
Middle Jurassic successions of several zones along Porcupine
River, northern Yukon (Poulton, 1987) and on western Axel
Heiberg Island (Frebold, 1964b), where a single ammonite
family (Cardioceratidae) predominates over an extended
period. This group has been particularly well studied, and
a series of subjectively recognized distinctive populations
(‘transients’, corresponding to a modern biological-species
population with intraspecific variability) has been established
(Callomon, 1995; Callomon et al., 2015). Some of the mor-
phologically distinct variants in each population have been
named formally as varieties, subspecies, or species — the last
in the sense of morphospecies or paleospecies (see Allmon,
2013, for a recent discussion of the species concept in pale-
ontology and attempts to marry biological concepts with
stratigraphic utility). Within a productive biohorizon, the vari-
ants may overlap morphologically, and each of these variants
has its own, longer, stratigraphic range. The proportion of
each variant also varies geographically, leading to the erection
of regional zones in some areas, designated with the name
of the dominant morphospecies. This is particularly the case
during some intervals in the latest Jurassic of the Arctic, when
relatively low sea levels caused isolation of individual basins
with little faunal interchange between them.

An example of faunal replacement of one ammonite group
by another involves the replacement of the late Sinemurian
Echioceras by the late Pliensbachian Amaltheus (the early
Pliensbachian is not definitively recognized in Arctic Canada);
the two genera are not closely related, belonging in separate
superfamilies. Such replacements commonly correspond to
periods of marine transgression into small or shallow seas,
which commonly left discontinuous stratigraphic records
with hiatuses representing episodes of marine regression and
regional extinction (e.g. Yacobucci, 2015).

The absolute age calibration depicted on the TSC Jurassic
chart (e.g. Fig. 8) is not tightly controlled. No universally
accepted, biostratigraphically constrained radiometric dates
exist between the late Pliensbachian and the Albian (Gradstein
etal., 2012; Pana et al., 2018). The numerical ages for most of
the Jurassic and Lower Cretaceous interval boundaries have
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been interpolated between sparse, precisely dated horizons for
the GTS 2020 numerical-age model, using a variety of tech-
niques, as explained in Gradstein et al. (2012) and Ogg et al.
(2016).

Buchia zonation

The Boreal bivalve Buchia is important for dating
and correlation of the Late Jurassic and Early Cretaceous
because of its abundance in the many areas where ammo-
nites are rare or absent and because the steps in the sequence
of morphotype associations have reasonably well-known
age ranges over large areas (e.g. Jeletzky, 1966, 1984; Rogov
and Zakharov, 2009). The Buchia zones illustrated for the
Sverdrup Basin and the northern Yukon region are simpli-
fied from the detailed studies of Jeletzky (1966, 1984). Like
some of the well-known ammonite groups, most Buchia
zones comprise associations of several forms that have been
formally named as species but perhaps represent variants in
diverse populations of a single biospecies. The succession
of generally distinctive polymorphic populations is recog-
nizable when enough material is available for study, but
the dominant morphology (often distinguished as a named
species) varies somewhat from region to region. Individual
morphospecies were more long-ranging. Whereas Jeletzky
(e.g. Jeletzky, 1984, Fig. 9) conceived of several overlapping
or concurrent range zones, they are illustrated in the data-
pack (see Fig. 8) and described (Appendix C) as successions
of assemblages or ‘zones’ for which the name gives a sense
of the dominant morphospecies. This approach facilitates
plotting of the zones in TSC and enables comparison with
the more finely subdivided Russian Buchia zonations (e.g.
Rogov and Zakharov 2009; Zakharov, 2015). The charts
provided by those authors and Jeletzky (1984) demonstrate
the considerable degree of regional variation in predominant
morphospecies across the Boreal realm and their geographi-
cally variable stratigraphic ranges. Rogov and Zakharov
(2009) viewed the Buchia zones in Eurasia as a mix of zone
types, some that begin with the first occurrence of the nomi-
nal species and others that are acme zones. Their boundaries
are somewhat diffuse, partially subjective, and perhaps partly
diachronous. Although the order of the Buchia zones is con-
sistent across the Arctic, their age limits are imprecise given
the paucity of ammonite control and the regional variation in
the dominant Buchia morphospecies. One particularly dis-
tinctive and relatively short-lived early Berriasian species,
Buchia okensis, has contributed particularly to Canadian
historical discussions of the interregional correlation of the
base of the Cretaceous (e.g. Jeletzky, 1984).

Jurassic faunal provincialism

Northern (Boreal) versus southern (Tethyan) latitudi-
nal differentiation has affected marine organisms to varying
degrees through time. It is particularly extreme during times
when northern seas were separated from southern ones by
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landmasses or connected only by narrow or shallow epi-
continental seaways. Such was the case during the Jurassic,
before the supercontinent Pangea broke up sufficiently for the
opening Atlantic Ocean to provide ready connection between
the Arctic and Tethys oceans. These paleogeographic effects
would have exacerbated the impact of reduced solar radiation
in the north; northern seas and, particularly, small, isolated
basins would have been colder, to some extent chemically
distinct, and more influenced by local factors such as inflow
of fresh water. However, the connections remained sufficient
at most times, and the Arctic water mass was sufficiently large
to maintain normal marine salinities and normal, albeit dis-
tinctive, marine faunas (Zakharov et al., 2012). The Jurassic
faunas of Arctic Canada, Alaska, Siberia, and Svalbard are
clearly Boreal, but the southern limits of Boreal faunas waxed
and waned, sometimes extending into the North Atlantic and
western Europe, down the Pacific coasts, and into the interiors
of North America and Eurasia.

Boreal Jurassic marine faunas are generally less diverse
than coeval southern faunas, and carbonate rocks and thick-
shelled organisms are uncommon (Imlay, 1965; Smith and
Tipper, 1986; Page, 2008). Some latitudinal differentiation
can be seen in the Early Jurassic, but the isolation of sedi-
mentary basins was especially strong in parts of the Middle
and Late Jurassic when north—south connections were non-
existent or reduced to shallow epicontinental seaways in the
North Atlantic, North Pacific, and eastern European regions.
During extended periods of isolation, independent evolu-
tion within the northern basins resulted in lineages of Boreal
ammonites that have little or nothing in common with south-
ern faunas (e.g. the Cardioceratidae; Page, 2008; Zakharov
et al., 2012; Callomon et al., 2015). The Buchia group of
bivalves was another of the many marine faunal groups that
also developed within the Arctic (Zakharov et al., 2012).

The term ‘Boreal realm’, or ‘Boreal superrealm’, encom-
passes several Arctic areas with differing regional ammonite
zonations, reflecting some degree of separation from each
other, and more broadly includes several ‘Subboreal’ areas,
also with independent zonations (e.g. Page, 2008). It is not
always clear in the literature what the terms ‘Boreal’ and
‘Subboreal’ refer to paleogeographically. Most usefully,
Ogg et al. (2016, p. 170) and Wimbledon (2017) specified
distinct Dorset, North Sea, Nordvik, and Russian Platform
regional zonations using geographic names; but confusingly,
Ogg etal. (2016, p. 175), following Cope (2008) and others,
labelled the eastern English zonation as ‘Boreal’. Shurygin
et al. (2011) decried the common practice of mixing zones
from different faunal realms into single regional hybrid
zonations, particularly the insertion of Russian Platform
zones into the high Arctic zonation. However, this practice
allows for the presentation of a single scale for a region and,
when well explained, highlights the intervals with confident
north—south correlations based on mixed faunas in areas of
occasional intermixing, perhaps due to higher relative sea
levels (e.g. Yacobucci, 2015).
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Globally distributed (pandemic or cosmopolitan) and
East Pacific endemic higher rank taxa characterize Arctic
Canadian Hettangian and Sinemurian (Early Jurassic) fau-
nas, although with distinct Arctic representatives at the
family and lower ranks (Page, 2008), whereas more dis-
tinctly northern (Boreal) higher rank taxa begin to appear
in the Pliensbachian (e.g. Taylor et al., 1984; Page, 2008).
Correlations between northern and southern faunal provinces
are particularly problematic for extensive intervals from
the late Bajocian through to the earliest Cretaceous; a sin-
gle, globally applicable, chronostratigraphic zonal scheme
does not exist for some of these intervals. The Boreal early
Bajocian to early Callovian Boreiocephalites—Amoeboceras
cardioceratid-ammonite succession of Arctic Canada has
been commonly illustrated as a succession of ‘floating
boxes’, not tightly connected to the Europe-based standard
scales (Callomon, 1984). The Canadian ammonites are so
similar to the rich faunas of East Greenland and elsewhere
across the Arctic that correlations are confident at most lev-
els (Callomon, 1959, 1984, 1993; Frebold, 1964b; Poulton,
1987; Callomon et al., 2015). However, regional differences
in the predominant species in each succession inhibit pre-
cise correlation of some zones (Callomon, 1984). For some
of the associations in the northern Yukon sequence, Poulton
(1987) erected a regional zonation for northwestern Canada
based on named morphospecies that do not exhibit obvious
morphologic intergradation; this scheme was reproduced by
Von Hillebrandt et al. (1993).

Recent studies in rare areas of north—south faunal mix-
ing have resulted in new correlations between the Middle
Jurassic Tethyan and Boreal ammonite faunas. The cor-
relations in this report of Canadian Arctic late Bajocian
to middle Bathonian ammonites are largely a result of the
2002 discovery of Arcticoceras harlandi in association with
Tethyan Oraniceras just above Parkinsonia in the succes-
sion at Saratov on the Russian Platform (Mitta et al., 2014).
The adjusted correlations of each succeeding fauna to inter-
national zones for this interval are similar to those now
adopted by workers across Russia (Meledina, 2014; Mitta
et al.,, 2014; Gulyaev, 2019) and East Greenland (Kelly
et al., 2015). The age designations of these intervals in the
Canadian Middle Jurassic Boreal ammonite succession in
previous literature are obsolete.

In the 2020 Canada datapack, the Arctic Canada ammo-
nite biohorizons for these intervals have been tied to the
Subboreal scale of chronozones provided by TSC, which was
based on the compilation for northwestern European basins
by the Groupe Frangais d’Etude du Jurassique (Cariou and
Hantzpergue, 1997), with minor updates. The latest Jurassic
Arctic Canadian ammonite and Buchia occurrences have been
tied to the northern Siberia (‘high Boreal”) zonation provided
by TSC, which incorporates recent interpretations for the
Jurassic—Cretaceous boundary interval from Nordvik (Schnabl
et al., 2015). The standard columns offered in TSC illustrate
the base of the Cretaceous within the Subboreal (northwestern
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European) Subcraspedites preplicomphalus Zone and within
the high Boreal (northern Siberia) Craspedites taimyrensis
Zone, in accordance with the current proposal for the base of
the Cretaceous (Wimbledon, 2017, Fig. 1).

The proposal to define the base of the Cretaceous in the
Tethyan realm, currently in development, uses the base of the
widespread calpionellid Calpionella alpina Zone as a primary
marker in a ‘sandwich’ with secondary markers, including
nannofossil and calcareous dinoflagellate-cyst events, ammo-
nites (Delphinella), and magnetic anomalies (Wimbledon,
2017). Magnetic reversal correlations, and perhaps belemnites
(Arctoteuthis tehamaensis), recognized in northern Siberia
may permit correlation of the base of the Cretaceous from the
Boreal into the Tethyan realm (e.g. Dzyuba, 2010; Schnabl
et al., 2015). Canadian Arctic successions, without known
calpionellids and with generally low abundance and a low-
diversity biota, continue to be correlated confidently only with
northern Siberia, based on limited occurrences of ammonites
and Buchia. Geochemical curves, such as *C anomalies, may
play an increasingly important role in addressing this issue
(Galloway et al., 2019).

SUMMARY AND CONCLUSIONS

The new TSC 2020 Canada datapack, which incorporates
stratigraphic data from the GEM regions of interest, with a
focus on biostratigraphic-event stratigraphy, is intended to
facilitate data visualization, comparison, and correlation
within and between the GEM regions. A major advantage
of using TSC is that it is periodically revised with updated
age calibrations of the geological time scale, which are auto-
matically reflected in the absolute ages of events or zone
boundaries.

The new datapack incorporates new data, as well as some
data re-evaluated and integrated from its 2010 predecessor.
The 2020 Canada datapack focuses on Mesozoic—Cenozoic
litho- and biostratigraphy. It includes revised stratigraphic
data as well as new inputs, many of which were generated
from GEM-funded research activities. Given their importance
in the stratigraphy of Jurassic and Cretaceous strata of north-
ern Canada, a detailed update of the Jurassic ammonite and
Buchia biostratigraphy for the Sverdrup Basin and northern
Yukon region is provided. Also included in the datapack are
new lithostratigraphic and palynostratigraphic data sets for the
Labrador—Baffin Seaway, filling a critical gap in the spatial
and temporal coverage of Canadian strata in TSC. Another
noteworthy addition to the 2020 Canada datapack consists of
a suite of benthic (calcareous and agglutinated) foraminifer
biostratigraphic data sets from Upper Jurassic to Cenozoic
strata of the Beaufort-Mackenzie Basin in the Northwest
Territories. These data sets provide important biostratigraphic
control in economically important GEM regions.
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Several other data sets are also included due to their rel-
evance to biostratigraphic control of age-equivalent strata in
the Canadian North, even though their geographical prov-
enance is not primarily located within GEM regions. In
particular, Late Cretaceous—Paleocene terrestrial palyno-
morph events across the Western Interior Basin are included
because they provide a reference framework for age-equiva-
lent strata in the Canadian North that were connected by the
Western Interior Seaway at the time. Likewise, a new compi-
lation of Triassic conodont zones across Canada is included,
providing a reference framework for biostratigraphic control
of Triassic exposures across the country.

New, quality stratigraphic data will continue to be added
to the datapack as they become available. Future iterations of
the Canada datapack would ideally fill other critical gaps in
underrepresented regions and time intervals across Canada,
as well as include new types of data such as carbon-isotope
curves and other chemostratigraphic data sets, which are
currently contributing significantly to the understanding of
Canadian geology. The 2020 Canada datapack will become a
major tool in supporting an understanding of Canada’s sedi-
mentary basins, and their resource potential and management,
in line with the larger vision of the GSC, as exemplified by the
Canada-3D project (National Geological Surveys Committee,
2019). The use of TSC consolidates the current understanding
of the fourth dimension of Canadian geology.
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Appendix A

The following tables list all biostratigraphic (Table A1) and lithostratigraphic (Table A2) data included in the
2020 Canada datapack.

The data sets ‘Canadian Arctic Islands lithostratigraphy’, ‘Northern Canada lithostratigraphy’, and ‘Central
Canada lithostratigraphy’ listed in Table A2 are based on regional charts from volumes of the Decade of North
American Geology published by the Geological Survey of Canada (Trettin, 1991a, b, c; Stott, 1993a, b, c).
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Table A1. List of biostratigraphic data included in the 2020 Canada datapack (modified from Geologic TimeScale Foundation,

2019c).

Data set

Source

Comments

Western/Arctic Canada Triassic Biostrat

WCSB/Sverdrup Basin ammonoid zones

Tozer, 1994; Bucher, 2002;

Ji and Bucher, 2018;

Golding and Orchard (this

report)

Compiled by Golding and Orchard. Ages tied
to ‘master’ reference schemes (subboreal
ammonite zones, stages, and substages)

WCSB/Sverdrup Basin conodont zones

Golding and Orchard
(this report)

Compiled by Golding and Orchard. Most ages
tied to ‘master’ reference schemes (subboreal
ammonite zones, stages, and substages), and
other ages tied to the “WCSB/Sverdrup Basin
ammonoid zones”

Western/Arctic Canada Jurassic Biostrat

Ammonite zones

Ammonites (Sverdrup Basin)

Poulton (this report)

Updated by Poulton. Ages now tied to ‘master’
reference schemes (subboreal [Hettangian—
Callovian] and boreal [Oxfordian—Tithonian]
ammonite zones)

Ammonites (northern Yukon region)

Poulton (this report)

Updated by Poulton. Ages now tied to ‘master’
reference schemes (subboreal [Hettangian—
Callovian] and boreal [Oxfordian—Tithonian]
ammonite zones)

Bivalve zones

Bivalves (Sverdrup Basin)

Harrison et al., 1999a

Updated by Poulton. Ages now tied to ‘master’
reference schemes (boreal ammonite zones)

Bivalves (northern Yukon region)

Poulton et al., 1993a

Updated by Poulton. Ages now tied to ‘master’
reference schemes (boreal ammonite zones)

Foraminifer zones

Foraminifers (Sverdrup Basin)

Harrison et al., 1999a

Ages now tied to ‘master’ reference schemes
(subboreal [Hettangian—Callovian] and boreal
[Oxfordian—Tithonian] ammonite zones)

Dinoflagellates

Dinoflagellate zones (Sverdrup Basin,
legacy)

Harrison et al., 1999a

Kept for ‘historical’ value. Source data (Davies,
1983) now available as events. Ages now tied
to ‘master’ reference schemes (subboreal
[Hettangian—Callovian] and boreal
[Oxfordian—Tithonian] ammonite zones)

Dinoflagellate events (Sverdrup Basin)

Davies, 1983

Data (events) entered by Bujak. Ages tied
to ‘master’ reference schemes (subboreal
ammonite zones)

Dinoflagellate zones (northern Yukon
region, legacy)

Poulton et al., 1993a

Kept for ‘historical’ value. Ages now tied to
‘master’ reference schemes (stages). Taxonomy
updated following Fensome et al. (2019)
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Table A1. (cont.)

Contents

Data set

Source

Comments

Western Arctic Upper Jurassic—-Cenozoic Biostrat

Beaufort—-Mackenzie Upper Jurassic—Cenozoic foraminifers

Upper Jurassic—Cenozoic foraminifer
zones

Fowler, 1996; Hedinger,
1996; McNeil, 19964, b, c,
1997; D.H. McNeil (pers.
comm., 2019)

Revised by D.H. McNeil (pers. comm., 2019).
Source data (Fowler, Hedinger, and McNeil in
Dixon, 1996) now available as events. Ages now
tied to ‘master’ reference schemes (stages)

Cenozoic calcareous benthic foraminifers

McNeil, 1996¢, 1997

Ages tied to ‘master’ reference schemes
(series). Events capture overall FOs and LOs;
users are referred to the original publications for
variations in abundance

Cenozoic agglutinated benthic foraminifers

McNeil, 1996b, 1997

Ages tied to ‘master’ reference schemes
(series). Events capture overall FOs and LOs;
users are referred to the original publications for
variations in abundance

Upper Jurassic and Cretaceous benthic
foraminifers

Fowler, 1996; Hedinger,
1996; McNeil, 1996a, 1997

Ages tied to ‘master’ reference schemes
(stages). Events capture overall FOs and LOs;
users are referred to the original publications for
variations in abundance

Beaufort—-Mackenzie Cretaceous—Cenozoic dinoflagellates

Dinoflagellate zones (legacy)

Harrison et al., 1999b

Kept for ‘historical’ value. Source data (MclIntyre
in Dixon, 1996) now available as events. Ages
now tied to ‘master’ reference schemes (stages).
Taxonomy updated following Fensome et al.
(2019)

Dinoflagellate events

Mclntyre, 19964, b, c;
Fensome et al., 2019

Ages tied to ‘master’ reference schemes
(series/stage). Taxonomy updated following
Fensome et al. (2019)

Western Arctic Cretaceous—Cenozoic palynology

(Valanginian)

N Richardson Mountains dinocyst events

Mclntyre and Brideaux,
1980

Data (events) entered by Bujak. Precise ages
uncertain. Ages tied to ‘master’ reference
schemes (stages)

N Richardson Mountains spores events
(Valanginian)

Mclntyre and Brideaux,
1980

Data (events) entered by Bujak. Precise ages
uncertain. Ages tied to ‘master’ reference
schemes (stages)

(Aptian—Albian)

Horton River dinocyst and acritarch events

Brideaux and Mclntyre,
1975

From exposures along the Horton River
(Anderson Plains, N.W.T.). Langton Bay and
Horton River formations. Ages tied to ‘master’
reference schemes (stages/substages)

Horton River spores and pollen events
(Aptian—Albian)

Brideaux and Mclntyre,
1975

From exposures along the Horton River
(Anderson Plains, N.W.T.). Langton Bay and
Horton River formations. Ages tied to ‘master’
reference schemes (stages/substages)

WIS pollen and spores (Upper
Cretaceous—Paleocene)

Braman and Sweet, 2012

Ages tied to ‘master’ reference schemes
(series/stages)
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Data set

Source

Comments

Western/Arctic Canada pollen and spores
zones (Upper Cretaceous—Cenozoic)

Harrison et al., 1999b

Ages now tied to ‘master’ reference schemes
(stages)

Easter

n Arctic Mesozoic-Cenozoic Biostrat

Jurassic—Cretaceous boundary dinocyst
events

Fisher and Riley, 1980

Data (events) entered by Bujak. Events recorded
over Arctic and Eastern Canada, Greenland,

and NW Europe. Ages tied to ‘master’ reference
schemes (stages/substages and subboreal
ammonite zones)

Labrador—Baffin Seaway palynoevents

Nghr-Hansen et al., 2016

Ages tied to ‘master’ reference schemes
(series/stages)

Offshore Arctic Mesozoic-Cenozoic palynology (Bujak data)

Bujak Arctic zones

Bujak (unpublished data)

Unpublished data by J.P. Bujak (JPB),
established mostly from Arctic Canada and
Alaska offshore well data. Details to be provided
in CAPE (see text). Ages tied to ‘master’
reference schemes (series/stages)

Bujak Arctic subzones

Bujak (unpublished data)

Unpublished data by JPB, established mostly
from Arctic Canada and Alaska offshore well
data. Details to be provided in CAPE (see text).
Ages tied to ‘master’ reference schemes
(series/stages)

Bujak Arctic dinocyst and algal events

Bujak (unpublished data)

Unpublished data by JPB, established mostly
from Arctic Canada and Alaska offshore well
data. Details to be provided in CAPE (see text).
Ages tied to ‘master’ reference schemes
(series/stages). Taxonomy updated following
Fensome et al. (2019)

Bujak Arctic spores, pollen, and fungi
events

Bujak (unpublished data)

Unpublished data by JPB, established mostly
from Arctic Canada and Alaska offshore well
data. Details to be provided in CAPE (see text).
Ages tied to 1) Bujak Arctic (sub)zones, and

2) ‘master’ reference schemes (stages and
subboreal ammonite zones)

Arctic

Cenozoic climate (Bujak data)

Bujak Arctic climatic events

Bujak (unpublished data)

Unpublished data compiled and entered by JPB.
Data represent global (Northern Hemisphere)
events. Ages tied to ‘master’ reference schemes
(series/stages)

Abreu and Anderson (1998) climate events

Abreu and Anderson, 1998

Data (events) entered by JPB. Data represent
global events. Ages absolute (i.e. not updated)

Bujak Arctic SST

Bujak (unpublished data)

Unpublished data by JPB, established mostly
from Arctic Canada and Alaska offshore well
data. Details to be provided in CAPE (see
text). Ages tied to ‘master’ reference schemes
(stages)

CAPE = Circum-Arctic lower Paleozoic to Cenozoic palynological events project; FO = first occurrence; LO = last occurrence;
SST = sea-surface temperature; WCSB = Western Canada Sedimentary Basin; WIS = Western Interior Seaway.
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Table A2. List of lithostratigraphic data included in the 2020 Canada datapack (modified from Geologic TimeScale

Foundation, 2019c).

Data set Data column

Source

New Canadian lithostratigraphic data (GEM-focused)

Sverdrup Basin Mesozoic lithostratigraphy

Mesozoic stratigraphy of the Sverdrup Basin

Hadlari et al., 2016 (Fig. 2)

Cretaceous lithostratigraphy of Sverdrup Basin and western Arctic

Ringnes Islands and Axel Heiberg Island

Bringué et al., 2018 (Fig. 2.1)

Banks Island

Bringué et al., 2018 (Fig. 2.1)

Horton—Anderson plains

Bringué et al., 2018 (Fig. 2.1)

Richardson Mountains (northern Aklavik Range)

Bringué et al., 2018 (Fig. 2.1)

Snake, Peel, Arctic Red, and Hume rivers

Bringué et al., 2018 (Fig. 2.1)

Labrador-Baffin Seaway Cretaceous and Cenozoic lithostratigraphy

Labrador margin

Dickie et al., 2011; Nghr-Hansen et al.,
2016 (Fig. 3)

SE Baffin Island

Nghr-Hansen et al., 2016 (Fig. 3)

Bylot Island

Nghr-Hansen et al., 2016 (Fig. 3)

Canadian Arctic Islands transect suite

Ellef Rignes Island strat

Ellef Rignes—Sutherland transect

Dewing and Embry, 2007

Sutherland O-23

Sutherland—Helena transect

Dewing and Embry, 2007

Helena Island

Helena—-E Bathurst transect

Dewing and Embry, 2007

Bathurst Island strat

Cornwallis Island transect

Dewing and Embry, 2007

Between Cornwallis and Somerset islands

Somerset-Brodeur transect

Dewing and Embry, 2007

NW Baffin Island

North Baffin—Melville transect

Dewing and Embry, 2007

Canadian Arctic Islands lithostratigraphy

Banks—Baffin islands (south Arctic transect)

Banks—Victoria region

NW Banks Island

Trettin, 1991a

Central Banks Island

Trettin, 1991a

SE Banks Island

Trettin, 1991a
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Contents

(cont.)
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Data set

Data column

Source

Victoria and Stefansson islands

Trettin, 1991a

Prince of Wales Island

Trettin, 1991a

Lan

caster region (south)

W Somerset Island

Trettin, 1991a

E Somerset Island

Trettin, 1991a

N Baffin Island

Trettin, 1991a

Baffin region

Bylot Island Trettin, 1991a
Foxe Plain
Foxe Basin Trettin, 1991a

Devon-southern Ellesmere Island

Lan

caster region (Devon Island)

Devon Island

Trettin, 1991a

Southern Ellesmere Island

SW Ellesmere

Trettin, 1991a

Fram Fiord

Trettin, 1991a

W Makinson Inlet

Trettin, 1991a

E Makinson Inlet

Trettin, 1991a

Bache Peninsula

Trettin, 1991a

Melville-N Devon Island

Sverdrup lowland (east)

Prince Patrick Island

Trettin, 1991a

Eglinton Island

Trettin, 1991a

Parry upland

NW Melville Island

Trettin, 1991a

Central Melville Island

Trettin, 1991a

NE Melville Island

Trettin, 1991a

Cameron Island

Trettin, 1991a

W Bathurst Island

Trettin, 1991a

Central Bathurst Island

Trettin, 1991a

E Bathurst Island

Trettin, 1991a

N Cornwallis Island

Trettin, 1991a

S Cornwallis Island

Trettin, 1991a
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Table A2. (cont.)

Data set Data column

Source

E Grinnel Peninsula

Trettin, 1991a

Mackenzie—-Axel Heiberg

Sverdrup lowland

Mackenzie, Brock, and Borden islands

Trettin, 1991a

Lougheed Island

Trettin, 1991b

King Christian and Ellef Ringnes islands

Trettin, 1991b

Ellef Ringnes Island

Trettin, 1991b

Amund Ringnes Island

Trettin, 1991b

Cornwall Island

Trettin, 1991b

Graham Island (Sverdrup lowland)

Trettin, 1991b

Axel Heiberg Island

S Axel Heiberg Island

Trettin, 1991b

W-central Axel Heiberg Island

Trettin, 1991b

NW Axel Heiberg Island

Trettin, 1991b

E Axel Heiberg Island

Trettin, 1991b

N Axel Heiberg Island

Trettin, 1991b

S Ellesmere-NE Ellesmere

Bjorne Peninsula and south

Trettin, 1991b

Svendsen Peninsula (central Ellesmere Island)

Trettin, 1991b

Raanes Peninsula

Trettin, 1991b

Western Fosheim Peninsula (central Ellesmere Island)

Trettin, 1991b

Eastern Fosheim Peninsula

Trettin, 1991b

S of Caledonian Bay

Trettin, 1991b

Caledonian Bay (central Ellesmere Island)

Trettin, 1991b

Copes Bay to Carl Ritter Bay

Trettin, 1991b

SW Judge Daly Promontory (central Ellesmere Island)

Trettin, 1991b

SE of Ella Bay (central Ellesmere Island)

Trettin, 1991b

Head of Ella Bay

Trettin, 1991b

St. Patrick Bay (central Ellesmere Island)

Trettin, 1991b

N Ellesmere transect

Central Ellesmere Island

Blue Mountains

Trettin, 1991b

Western Svartfjeld Peninsula

Trettin, 1991b
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Data set

Data column

Source

Van Hauen Pass (central Ellesmere Island)

Trettin, 1991b

Head of Hare Fiord (central Ellesmere Island)

Trettin, 1991b

Ooblooyah Bay (central Ellesmere Island)

Trettin, 1991b

East of mouth of Tanquary Fiord (central Ellesmere Island)

Trettin, 1991b

Northern Ellesmere Island (central)

McKinley Bay (central Ellesmere Island)

Trettin, 1991¢c

Head of Tanquary Fiord (central Ellesmere Island)

Trettin, 1991¢c

Henrietta Nesmith Glacier (central Ellesmere Island)

Trettin, 1991¢c

Lake Hazen (central Ellesmere Island)

Trettin, 1991¢c

Northernmost Ellesmere Island

Head of Emma Fiord

Trettin, 1991¢c

Kleybolte Peninsula

Trettin, 1991¢c

S of Phillips Inlet

Trettin, 1991¢c

Head of Yelverton Inlet

Trettin, 1991¢c

Wooton Peninsula to SE of Milne Inlet

Trettin, 1991¢c

M’Clintock Glacier (northern Ellesmere Island)

Trettin, 1991¢c

M’Clintock Inlet

Trettin, 1991¢c

Head of M’'Clintock Inlet

Trettin, 1991¢c

Head of Disraeli Fiord (northern Ellesmere Island)

Trettin, 1991¢c

E of Disraeli Fiord to Markham Fiord

Trettin, 1991¢c

Cape Columbia to Cape Nares (northern Ellesmere Island)

Trettin, 1991¢c

NW of Clements Markham River

Trettin, 1991¢c

Crescent Glacier to Clements Markham Inlet (northern Ellesmere
Island)

Trettin, 1991¢c

Feilden Peninsula, Parry Peninsula, Parker River (northern
Ellesmere Island)

Trettin, 1991¢c

NW of Piper Pass (northern Ellesmere Island)

Trettin, 1991¢c

Northern Greenland

Kane Basin—-Independence Fiord region

Inglefield Land

Trettin, 1991¢c

Washington Land

Trettin, 1991¢c

Petermann Glacier

Trettin, 1991¢c

Western North Greenland (south)

Trettin, 1991¢c

Southern Peary Land—Independence Fiord

Trettin, 1991¢c
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Contents

(cont.)

Data set

Data column

Source

Danmark Fiord

Trettin, 1991c

NG

reenland region

Western North Greenland (north)

Trettin, 1991c

Northern Peary Land

Trettin, 1991c

Northern Canada lithostratigraphy

Canadian Arctic and Mackenzie area

Romanzoff uplift/Babbage depression (British—Barn mountains
Old Crow Basin)

Stott, 1993a

Yukon Coastal Plain/Rapid depression (Mackenzie Bay)

Stott, 1993a

West Richardson Trough/White uplift (White Mountains)

Stott, 1993a

East Richardson Trough/White uplift (northern Richardson Mtns.)

Stott, 1993a

Mackenzie Delta

Stott, 1993a

Campbell uplift (Inuvik)

Stott, 1993a

Anderson Basin (Anderson Plain)

Stott, 1993a

Brock Inlier (Melville Hills)

Stott, 1993a

Coppermine homocline

Stott, 1993a

Northern Yukon and Mackenzie fold belt

Northern Yukon fold complex

Kandik Basin (Kandik River)

Stott, 1993a

Eagle fold belt (Eagle Plain)

Stott, 1993a

Bonnet Plume Basin

Stott, 1993a

Eastern Ogilvie Arch (eastern Wernecke Mountains)

Stott, 1993a

Yuk

on Mackenzie fold belt

Frontal Mackenzie Mountains (Snake River)

Stott, 1993a

Mackenzie Arch (Arctic Red River)

Stott, 1993a

Mackenzie synclinorium (Mountain River)

Stott, 1993a

Northern Franklin Mountains (Norman Wells)

Stott, 1993a

Keele Arch (Fort Norman)

Stott, 1993a

Great Bear Basin (western Great Bear Lake)

Stott, 1993a

Central Yukon to Yellowknife

Misty Creek embayment (Twitya River)

Stott, 1993a

Sekwi Mountain

Stott, 1993a

East Glacier/Lake Nahanni

Stott, 1993a
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Data set

Data column

Source

Frontal Mackenzie Mountains (Redstone River)

Stott, 1993a

Franklin Mountains (Cap Mountain)

Stott, 1993a

Bulmer Lake Arch (Bulmer Lake)

Stott, 1993a

Great Bear Plain/Lac la Martre

Stott, 1993a

Southern Northwest Territories

Selwyn Basin (Flat River)

Stott, 1993a

Southern Mackenzie fold belt (Kotaneelee and Liard ranges)

Stott, 1993a

Tathlina Arch (Trout Lake)

Stott, 1993a

Hay River platform (Hay River Pine Point)

Stott, 1993a

Central Canada lithostratigraphy

Northern British Columbia—Alberta

Northern BC Rocky Mountain fold belt

Gataga high (Gataga River)

Stott, 1993b

Roosevelt graben (Mount Churchill)

Stott, 1993b

MacDonald platform (Summit Lake)

Stott, 1993b

Liard and Scatter rivers

Stott, 1993b

Northern BC Interior platform

Zama Lake

Stott, 1993b

Middle British Columbia—Alberta

Mid

dle BC Rocky Mountain fold belt

Western Rocky Mountains (Ware map area)

Stott, 1993b

Eastern Rocky Mountains (Halfway map area)

Stott, 1993b

Peace River Arch/embayment (Pine Pass)

Stott, 1993b

Mid

dle BC Interior platform

Peace River plains (Fort St. John)

Stott, 1993b

Hay River Basin (Fort McMurray)

Stott, 1993b

Middle Alberta—Saskatchewan

Front Range (Narraway River)

Stott, 1993b

Swan Hills

Stott, 1993b

Cold Lake

Stott, 1993b

Cumberland House

Stott, 1993b
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Table A2. (cont.)

Data set

Data column

Source

Lower mid Alberta—Saskatchewan

Lower mid Alberta Rocky Mountain fold belt

Mount Robson syncline (Mount Robson)

Stott, 1993b

Eastern Main ranges (Jasper)

Stott, 1993b

Western Alberta ridge (Roche Miette)

Stott, 1993b

Eastern Alberta foothills (Bralé)

Stott, 1993b

Lower mid Alberta Interior platform

Edmonton

Stott, 1993b

Lloydminster

Stott, 1993b

Saskatoon

Stott, 1993b

Lake Winnipegosis

Stott, 1993b

Southern Alberta—Saskatchewan

Southern Alberta Rocky Mountain fold belt

Western Rocky Mountains (Stanford—Hughes ranges)

Stott, 1993b

Main Ranges Basin (Kickinghorse River)

Stott, 1993b

Main Ranges platform (Spray River/Connor Lake)

Stott, 1993b

West Alberta Arch/Front Range (Exshaw)

Stott, 1993b

Western Alberta foothills (Turner Valley)

Stott, 1993b

Southern Alberta Interior platform

Calgary/Drumheller

Stott, 1993b

North Williston Basin (Moose Jaw/Regina)

Stott, 1993b

Eastern platform (Lake Manitoba)

Stott, 1993b

Far southern Alberta—Manitoba

Far southern Rocky Mountain fold belt

Fernie Basin (Elko/Fernie)

Stott, 1993c

Front-Ranges Foothills (Waterton/Pincher Creek)

Stott, 1993c

Far

southern Interior platform

Sweetgrass Arch (Cypress Hills)

Stott, 1993c

West Williston Basin (Maple Creek/Swift Current)

Stott, 1993c

Central Williston Basin (Big Muddy/Willow Bunch)

Stott, 1993c

East Williston Basin (Brandon)

Stott, 1993c
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Table A2. (cont.)

M. Bringué et al.

Data set

Data column

Source

Hudson platform

Bell Arch (Southampton, Coats, and Mansel islands)

Stott, 1993c

Northern Hudson Bay

Stott, 1993c

Central Hudson Bay

Stott, 1993c

Northern Hudson Bay lowland

Stott, 1993c

Central Hudson Bay lowland

Stott, 1993c

North James Bay lowland

Stott, 1993c

Central James Bay lowland

Stott, 1993c

South James Bay lowland

Stott, 1993c

West St.

Lawrence platform/lowlands

Michigan Basin (Windsor/Sarnia)

Stott, 1993c

Allegheny Basin (western Lake Erie)

Stott, 1993c

Michigan Basin (Manitoulin Island)

Stott, 1993c

Algonquin Arch

Stott, 1993c

Allegeheny Basin (Niagara Peninsula)

Stott, 1993c

Central St. Lawrence platform/lowlands and Laurentian highlands

(and out

liers within Superior and Grenville provinces)

Lake Timiskaming and Ottawa Valley outliers—Ottawa
embayment

Stott, 1993c

Pembroke—Arnprior outlier, Ottawa, and St. Lawrence River

Stott, 1993c

Montréal

Stott, 1993c

Saint-Hyacinthe

Stott, 1993c

West Lac Saint-Jean, Chicoutimi outlier, Québec

Stott, 1993c

Nicolet/Yamaska

Stott, 1993c

East St. Lawrence platform/lowlands

N Shore and Mingan Island/Anticosti Island

Stott, 1993c

Gulf of St. Lawrence

Stott, 1993c

Port au Port Peninsula

Stott, 1993c

Southeast Labrador/Strait of Belle Isle

Stott, 1993c

Canada Bay

Stott, 1993c
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Appendix B

Table B1 provides a summary of changes applied to each ‘Arctic Canada Biostrat’ column of the 2010 Canada
datapack, highlighting some of the quality control applied to data incorporated in the 2020 version of the Canada
datapack (modified from Geologic TimeScale Foundation, 2019c).
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Appendix C

This appendix provides updated identifications and age
determinations, as well as references to both original pale-
ontological sources and previous summary compilations, as
documentation for the summary chart of Arctic Canada’s
Jurassic ammonite and Buchia biostratigraphy presented in
Figure 8.

This is not a complete guide, as it does not include all
instances in the literature where fossil determinations have
been simply repeated without embellishment and unpub-
lished sources have not been considered. Early discoveries
of fossils without stratigraphic context, and commonly mis-
identified and misdated, are noted only where use of their
name has implied significant potential for age determinations.

Ammonites: Early Jurassic

Early Hettangian. Psiloceras sp. and Caloceras cf. john-
stoni (J. de C. Sowerby) were described and illustrated
by Frebold and Poulton (1977), and Psiloceras(?) sp. was
described and illustrated by Poulton (1991).

Latest Hettangian or earliest Sinemurian. Badouxia(?)
and Ectocentrites(?) sp. were described and illustrated by
Poulton (1991).

Early Sinemurian. Arietitid ammonites were described
and illustrated as Arietites sensu lato (not re-studied since)
from Melville and Mackenzie King—Borden islands and
northern Richardson Mountains by Frebold (1960, 1964a);
Charmasseiceras sp. and Coroniceras (Primarietites) sp.
were illustrated from Borden Island by Frebold (1975).
Coroniceras, Arnioceras(?), and Charmasseiceras were
listed by Poulton (1994) and Poulton in Harrison et al.
(1999a, 2000) but not yet illustrated, from the western Arctic
Islands. Coroniceras (or Arietites?) and Arnioceras cf. dou-
villei (Bayle) were described and illustrated by Poulton
(1991) from the northern Richardson Mountains.

Late Sinemurian. Oxynoticeras oxynotum (Quenstedt),
Oxynoticeras sp., Arctoasteroceras jeletzkyi Frebold, and
Gleviceras(?) sp. were described and illustrated from the
northern Richardson Mountains by Frebold (1960, 1964a);
Arctoasteroceras jeletzkyi was subsequently discussed and
Gleviceras plauchuti Frebold illustrated from Prince Patrick
Island (Frebold, 1975). Aegasteroceras (Arctoasteroceras)
jeletzkyi Frebold, Aegasteroceras (Arctoasteroceras) sp.,
Oxynoticeras oxynotum (Quenstedt), Oxynoticeras(?) sp.,
Gleviceras sp., Microderoceras(?), and Paltechioceras(?)
were described and illustrated, or listed, from the northern
Richardson Mountains by Poulton (1991).

M. Bringué et al.

Echioceras sp., illustrated by Frebold (1960) from the northern
Richardson Mountains, was designated Echioceras aklavik-
ense, and also described from Melville Island with Echioceras
arcticum Frebold (1975, both species); Echioceras arcticum
and Echioceras cf. arcticum were identified from Borden
Island and northern Yukon, respectively (Frebold, 1975);
Echioceras aklavikense Frebold, Echioceras(?), includ-
ing Vermiceras, which was identified earlier by Stelck (in
Jeletzky, 1967), and Arietites by Frebold (1960; noted also
by Poulton et al., 1982), Paltechioceras (Orthechioceras) cf.
radiatum (Trueman and Williams), and Paltechioceras(?) sp.
were described and illustrated, or listed, by Poulton (1991).

Late Pliensbachian. Amaltheus stokesi (J. Sowerby) and
Amaltheus sp. were described and illustrated from Axel Heiberg
and Prince Patrick islands by Frebold (1975). Amaltheus sp.
was listed from the northern Richardson Mountains and north-
ern Yukon by Frebold (1964a); Amaltheus stokesi, A. bifurcus
Howarth, and 4. margaritatusde Montfort(?) were illustrated
or listed from that area by Poulton (1991). The precise age
of Pleuroceras(?) described and illustrated by Poulton (1991)
from a locality in the northern Yukon area that also produced
Amaltheus from a nearby location is not clear, but perhaps the
Pleuroceras spinatum Zone is also represented there.

Latest Pliensbachian or earliest Toarcian. Hall and Howarth
(1983) assigned Protogrammoceras paltum (Buckman) from
Axel Heiberg Island to the Pleuroceras spinatum Zone, but it
has been stated in a recent review (Caruthers et al., 2018) to
occur in both the late Pliensbachian and the early Toarcian in
North America.

Early Toarcian. Harpoceras aff. exaratum (Young and
Bird) and mainly finely ribbed Dactylioceras species such as
Dactylioceras cf. semicelatum (Simpson) were illustrated or
listed from northern Yukon (Frebold, 1964a, 1975; Frebold
et al., 1967); Hildaites species were listed from the Arctic
Islands (Frebold, 1964a, 1975); Harpoceras (or Tiltoniceras?)
sp., Dactylioceras(?) sp., Paltarpites(?), Grammoceras(?),
Hildaites(?), Collina(?) aff. simplex Fucini and Ovaticeras cf.
ovatum (Young and Bird) were described and illustrated, or
listed, from the northern Yukon—Richardson Mountains area
by Poulton (1991).

Middle Toarcian. Dactylioceras commune (Simpson),
Pseudolioceras compactile (Simpson), Peronoceras spinatum
(Frebold), Peronoceras polare (Frebold), and Peronoceras aff.
desplacei (d’Orbigny) and Grammoceras? were recognized
first by Frebold (in Tozer, 1956), and described and illus-
trated from Cornwall, Prince Patrick, and Ellesmere islands
by Frebold (1958, 1960, 1964a; the Peronoceras species were
assigned originally to Coeloceras, then to Catacoeloceras).
Unidentified harpoceratids from Prince Patrick and Borden
islands, illustrated and compared with Harpoceras exara-
tum (Young and Bird) by Imlay (1955) and Frebold (1960),
were associated with Dactylioceras commune; several forms
of Dactylioceras from Prince Patrick Island were compared
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with various published species, and ‘probable Hildoceras’
was identified by Imlay (1955). Frebold (1975) described
and illustrated Pseudolioceras spitsbergense and other com-
ponents of the widespread Peronoceras—Pseudolioceras
association from Prince Patrick Island, which he considered
to be late Toarcian, but which are now considered to be middle
Toarcian. Dactylioceras commune, a coeloceratid ammonite,
Pseudolioceras kedonense Repin (?), and Pseudolioceras lec-
tum (Simpson) and Pseudolioceras sp. were described and
illustrated, or listed, by Poulton (1991) from northern Yukon.
Peronoceras cf. polare (Frebold) identified by Frebold (1975;
the record repeated by Poulton et al., 1982) from northern
Yukon was not relocated in the original collection, which may
be Middle Jurassic (Poulton, 1991). Zugodactylites cf. brau-
nianus (d’Orbigny) indicating the Zugodactylites braunianus
Subzone was illustrated from Ellef Ringnes Island by Frebold
(1975).

Late Toarcian. The record of Grammoceras cf. boreale
(Whiteaves) from northern Ellesmere Island (Frebold, in
Nassichuk and Christie, 1969) has been corrected — it is
absent there (Frebold, 1975). The identification and age of
the specimens from Cameron Island illustrated as Pleydellia?
sp. and as early Bajocian in age (now Aalenian) by Frebold
(1960) have not been reconsidered, but Pleydellia is known
elsewhere in the western Arctic Islands (Poulton, 1994,
Table 1). A significant sequence of ammonites through
the Toarcian—Aalenian boundary interval is present in col-
lections listed by Poulton (1994) from the western Arctic
Islands.

Ammonites: Middle Jurassic

It is important to note that the Aalenian stage, basal to the
Middle Jurassic, was not differentiated in North American
publications prior to about 1982, before which it constituted
the early Bajocian, and it was subsequently introduced grad-
ually by different authors. The middle Bajocian referred to
prior to its adoption is now the early Bajocian. The Callovian
stage, now the highest in the Middle Jurassic, was previously
included in the Late Jurassic.

Early Aalenian. Leioceras opalinum (Reinecke) and
Pseudolioceras mclintocki (Haughton) have been described
and illustrated from Prince Patrick Island and are now
known from many other Arctic localities as well (Frebold,
1958, 1960, 1961, 1964a, 1975). They were first identified as
Ludwigia (Lioceras) opalina and ‘Harpoceras’ m’clintocki
or Ludwigia m clintocki, respectively, and thought to be early
Bajocian (Frebold in Tozer, 1956). Leioceras cf. opalinum
(Reinecke), Leioceras sp.(?), Pseudolioceras mclintocki
(Haughton), and Pseudolioceras spp. were described and
illustrated from northern Yukon by Poulton (1991).

LateAalenian. Pseudolioceras mclintocki(Haughton) occurs
not only in the Leioceras opalinum Zone (Frebold, 1960),
but also with Erycitoides howelli (White) (Poulton, 1991),
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through much or all of the Aalenian across Arctic Canada.
Erycitoides cf. howelli was first identified, as Erycites, in
northern Yukon (Frebold, 1960, 1961, 1964a; Frebold et al.,
1967); Erycitoides is now known in Sverdrup Basin as
far east as northern Ellesmere Island. Erycitoides howelli,
Erycitoides kialagvikense (White), Erycitoides spinatus
Westermann(?), Erycitoides sp., Pseudolioceras mclintocki,
Pseudolioceras aff. whiteavesi (White), Pseudolioceras spp.,
and Planammatoceras spp. were described and illustrated
by Poulton (1991) from the northern Yukon and northern
Richardson Mountains. Ludwigella(?) from Prince Patrick
Island, figured in Imlay (1955), was considered to be Toarcian
Pseudolioceras by Poulton (1994).

Early Bajocian. Arkelloceras was first reported by Frebold
(in Tozer, 1956) as a new but unnamed genus and species,
and subsequently described and illustrated as three new spe-
cies, widespread across the Canadian Arctic — Arkelloceras
mclearni, Arkelloceras tozeri, and Arkelloceras elegans
(species of Frebold, 1958, 1961, 1964b; Frebold et al., 1967,
Poulton et al., 1982; Poulton, 1997). The early Bajocian
(Otroites sauzei or perhaps earliest Stephanoceras humphrie-
sianum Zone) age of Arkelloceras, suggested from small
specimens in otherwise southerly faunas in western Alberta
and southern Alaska (Westermann, 1964; Imlay, 1964),
has been supported in eastern Siberia by Meledina (2014).
Abbasites? and Ludwigia reported from northern Ellesmere
Island (Frebold, in Nassichuk and Christie, 1969) have not
been re-examined.

Boreiocephalites borealis (Spath) and Boreiocephalites
warreni Frebold were described and illustrated, or listed,
from the northern Richardson Mountains area (Frebold, 1961,
1964a). These species were assigned to Cranocephalites;
Boreiocephalites Meledina is now widely used to accom-
modate the early species of the linecage (Howarth, 2017).
Poulton et al. (1982) reported Cranocephalites cf. indis-
tinctus Callomon from northern Yukon, and Callomon
(1984) considered Frebold’s figure of Cranocephalites
(Freebold, 1958, Pl. 8) to represent the Greenland regional
Cranocephalites indistinctus Zone on Prince Patrick Island.

Late Bajocian. Cranocephalites vulgaris Frebold was
identified first as Arctocephalites (Cranocephalites) cf.
vulgaris var. robusta in Tozer (1956) and described and
illustrated, or listed, by Frebold (1958, 1961, 1964a) from
Prince Patrick Island. Those illustrations and the presence of
Cranocephalites cf. pompeckji (Madsen), Cranocephalites
aff. vulgaris, and Cranocephalites aff. maculatus in north-
ern Yukon (Poulton et al., 1982) were the basis for the
recognition of the Greenland regional Cranocephalites pom-
peckji Zone by Callomon (1984). The apparent absence of
Cranocephalites across the remainder of the Sverdrup Basin
may indicate a regional hiatus below the McConnell Island
shale sequence above the Arkelloceras beds.

Arctocephalites elegans Spath and other Arctocephalites spe-
cies were described and illustrated by Frebold (1961, 1964a,
b) from the richly fossiliferous successions on western Axel
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Heiberg Island and from poorly localized specimens from
northern Yukon. Additional ammonite collections by
A.F. Embry and J.H. Wall were identified by Poulton, and the
sequences were re-collected by Poulton in 1985. Specimens
from a well-exposed sequence in northern Yukon were
described by Poulton (1987), who named regional morpho-
species representing the widespread Boreal Arctocephalites
arcticus Zone, withits early and generally small Arctocephalites
species. The lowest, regional Arctocephalites spathi Zone,
contains morphospecies Arctocephalites spathi Poulton,
Arctocephalites ellipticus Spath, and possibly Arctocephalites
aff. sphaericus Spath (Poulton, 1987). Following joint col-
lecting with Poulton at this locality, and based on illustrations
in the literature and a preview of Poulton (1987), Callomon
(1984) designated two subdivisions of the Arctocephalites
arcticus Zone in Arctic Canada (Callomon, 1984, faunas C4
and C5), noting the similarities and differences of the varia-
tions in their populations with the East Greenland equivalents.

The succeeding regional Arctocephalites porcupinensis
Zone in northern Yukon conforms with the local ranges
of Arctocephalites callomoni Frebold and a variant of
Arctocephalites aff. nudus Spath and is conspicuous by the
abundance of Arctocephalites porcupinensis Poulton in its
upper half. This interval, described by Poulton (1987), coin-
cides with fauna C6 in Callomon (1984). The Arctocephalites
arcticus (Whitfield) morphotype does not appear until high
in this zone, so the lower, Arctocephalites spathi Zone may
represent an interval not present in the Arctocephalites
arcticus Zone elsewhere. Cadoceras crassum Madsen
and Cadoceras cf. freboldi Spath, illustrated by Frebold
(1961) from specimens found in talus below the well-
exposed sequence of early Bathonian to early Callovian
beds in northern Yukon, were considered to be particularly
rotund Arctocephalites(?) species derived from the upper
Arctocephalites porcupinensis to lower Arctocephalites
amundseni regional zones (Poulton, 1987), likely globose
morphotypes of the more common, possibly highly labile,
associated Arctocephalites species. The age and affini-
ties of ‘Cadoceras crassum’ and Cadoceras aff. barnstoni
identified by Frebold (in Jeletzky, 1972) from a stratigraphi-
cally uncontrolled locality elsewhere in northern Yukon are
unknown (Poulton et al., 1982).

Early Bathonian. As well as containing the higher continuing
morphospecies that first appear in the underlying beds such as
Arctocephalites arcticus Spath, the Arctocephalites amundseni
regional zone is indicated in northern Yukon (Poulton, 1987) by
larger Arctocephalites species inits lower part — Arctocephalites
amundseni Poulton [for Cadoceras(?)] aff. pseudishmae Spath
(Frebold, 1961) — which indicate the widespread Boreal
Arctocephalites greenlandicus Zone. Arctocephalites frami
Poulton comprises the probably highest local fauna in these
Arctocephalites greenlandicus Zone equivalents. Callomon
(1984) indicated that the zone in East Greenland is similarly
divisible, with three subzones recognized.

M. Bringué et al.

Middle Bathonian. Arcticoceras ishmae (Keyserling) from
northern Yukon and Prince Patrick Island, some identified as
Arcticoceras kochi Spath by Frebold (1961, 1964a), indicate
the widespread Boreal Arcticoceras ishmae Zone. Those
from northern Yukon were further described by Poulton
(1987). Arcticoceras harlandi Rawson in northern Yukon
indicates the lower Boreal Arcticoceras harlandi Subzone.
This widely used terminology is retained in this paper,
although the species has been considered a junior synonym
of Arcticoceras excentricum Voronetz (e.g. Gulyaev, 2019).
The highest subzone may be indicated by ‘Arcticoceras cf.
crassiplicatum’ reported by Callomon (1984), apparently a
nomen nudum with no description having been published.
Several taxa suggest connection with standard sequences in
Europe — Oxycerites birkelundi Poulton, Parareineckeia sp.,
Choffatia(?) sp. (Poulton, 1987).

Late Bathonian. Cadoceras barnstoni (Meek), originally
thought to be Cretaceous (Meek, 1859) but recognized to
be Jurassic by Frebold (1964b), is closely similar to asso-
ciated Cadoceras variabile Spath in the northern Yukon,
characterizing the Boreal Cadoceras variabile Zone of East
Greenland (Callomon, 1984; Poulton, 1987). Other taxa
from this horizon in northern Yukon that may aid extraba-
sinal correlation include Paracadoceras sp., Kepplerites
spp. including Kepplerites aff. rosenkrantzi Spath, and
possibly Oecotraustes(?) sp. (Poulton, 1987). Iniskinites
yukonensis Frebold and other Iniskinites species (including
Loucheuxia bartletti Poulton) appear to be endemic north-
ern eurycephalitinids. Cadoceras barnstoni may indicate the
presence of the regional Boreal Cadoceras variabile Zone
on Ellef Ringnes Island (Frebold, 1964b; Frebold in Stott,
1968), but the varieties of ‘Cadoceras barnstoni’ reported
to be associated with Cadoceras bodylevskyi and Cadoceras
cf. falsum on Axel Heiberg Island (Frebold, 1964b) are likely
misidentified early Callovian species.

Cadoceras (Paracadoceras) sp., located stratigraphically
above Cadoceras barnstoni in the Salmon Cache Canyon
sequence (Poulton, 1987), was indicated previously to be
earliest Callovian (Callomon, 1984, fauna C10), but recon-
sideration of the age of overlying Cadoceras, discussed
below, suggests that this species may be latest Bathonian.
Some of the early Cadoceras species are commonly although
inconsistently attributed to Paracadoceras as a genus or
subgenus of Cadoceras (e.g. Callomon, 1984; Mitta, 2016).
Uncertainties regarding the stratigraphic level and faunal
associations of its small, microconch(?) East Pacific type
specimen (Paracadoceras harveyi Crickmay; see Howarth,
2017, p. 69) may render its widespread usage questionable,
but its status is not reconsidered in this paper.

A number of Cadoceras species and varieties have been
described from Arctic Canada (Frebold, 1961, 1964b; Poulton,
1987), mainly without stratigraphic context, but those in
sequences at Salmon Cache Canyon in northern Yukon and in
the ‘Cadoceras beds’ of western Axel Heiberg Island provide
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a reliable sequence of two associations in each area. Some of
the confusion regarding the stratigraphic positions of various
Arctic Canada Callovian cadoceratids may be due to insuf-
ficiently appreciated variability within their populations and
to overinterpretation of the biostratigraphic significance of
individual morphotypes found without stratigraphic context.

Early Callovian. The early Callovian age for the lower
Cadoceras bed with Cadoceras bodylevskyi (Frebold, 1964b)
at Vantage Hill is supported most recently by the discovery
of this species with other earliest Callovian ammonites in
the successions of Germany and the Russian Platform (Mitta
et al., 2015; Mitta, 2016). Frebold (see Freebold, 1964b,
p. 24) had initially compared them with large Cadoceras in
the Kepplerites tychonis Zone in East Greenland, thought
by Callomon (1959) to be lower Callovian; and Callomon
(Callomon 1984, faunas C11, 12) placed them high in the
early Callovian based on close similarities with the ammo-
nite succession in East Greenland (Callomon 1959, 1993) and
northwestern Europe. In contrast, Kiselev and Rogov (2007)
suggested a latest Bathonian age for the ‘bodylevskyi biohori-
zon’ based on the stratigraphic position of two fragments they
identified as Cadoceras cf. bodylevskyi occurring without
associated age-diagnostic ammonites, in European Russia.

The ammonites from northern Yukon identified as Cadoceras
bodylevskyi and dated as earliest Callovian by Poulton (1987,
see also Callomon, 1984; Von Hillebrandt et al., 1993) have
been revised in recent European studies, first to Paracadoceras
poultoni Gulyaev and earliest Callovian (Gulyaev, 2005),
then to Cadoceras (Paracadoceras) breve Blake, of early, but
not consistently earliest, Callovian age (Kiselev and Rogov,
2007). The name Cadoceras bodylevskyi?/brevi used in the
northern Yukon column of TimeScale Creator acknowledges
these discussions.

The higher Cadoceras beds with Cadoceras septentrionale
Frebold on Axel Heiberg Island were thought by Frebold
(1964a, b) to correlate with the international standard
Sigaloceras calloviense Zone (late early Callovian at that
time; now in the lower middle Callovian) in the Greenland
zonation of Callomon (1959). Callomon (1984) subse-
quently thought it to lie immediately below the international
standard Proplanulites koenigi Subzone and later ‘somewhat
arbitrarily’ within it (Callomon, 1993). Cadoceras septen-
trionale has also been identified on Ellef Ringnes Island in
association with Kepplerites sp. (Frebold in Stott, 1968), but
both species are not yet described or illustrated. The collec-
tion studied by Frebold (1964b) included morphotypes that
he identified as Cadoceras septentrionale var. latidorsata,
indicating variability in the population, but confusing cor-
relations with a locality in northern Yukon based on isolated
collections that only include the non-typical morphotype, as
discussed below.

Early and middle Callovian(?). Callomon (1984) consid-
ered the relative sequence of Cadoceras septentrionale and
stratigraphically uncontrolled but distinctive Cadoceras
voronetsae Frebold (perhaps including Cadoceras arcticum
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Frebold) to be conjectural, but in TimeScale Creator,
the order he proposed has been used (Fig. 8). Callomon
regarded specimens of Cadoceras cf. arcticum from the
Babbage River area of northern Yukon and from north-
eastern Alaska (Callomon, 1984, fauna D4) to resemble
late cadoceratids of the Sigaloceras calloviense Standard
Zone. The possible late middle Callovian age of similarly
poorly controlled Stenocadoceras canadense (Frebold,
1964a) follows the comment by Callomon (1984) on the
evolutionary grade of its ventral ribbing and may be simi-
larly speculative. Callomon illustrated it (Callomon, 1984,
faunas C14, D5, and Fig. 4), without Cadoceras associ-
ates. However, its associate in the northern Richardson
Mountains (Aklavik Range; Frebold, 1964a), Cadoceras
septentrionale var. latidorsata, was reported to occur with
Cadoceras septentrionale sensu stricto on Axel Heiberg
Island (Frebold, 1964a).

Late Callovian. The record of late Callovian (Peltoceras
athleta Standard Zone) Longaeviceras (Poulton, 1997,
Table 10.1) is incorrect; no definitive late Callovian fossils
have been reported in northern Yukon or adjacent Northwest
Territories. However, Longaeviceras is well represented
elsewhere across the Arctic, including northern Alaska
(Callomon, 1984).

Ammonites: Late Jurassic to
earliest Cretaceous

Some recent authors subdivide the Volgian Boreal stage
into lower, middle (characterized by dorsoplanitid ammo-
nites), and upper substages (e.g. Shurygin et al., 2011),
whereas Jeletzky (1984) and Ogg et al. (2016, ‘E’ and ‘Lt’
on Fig. 12.4) use only lower and upper subdivisions. The
comments below are limited to providing an interpreta-
tion of the intention of the original authors as required
and in the context of the correlations between the Boreal,
Subboreal, and Tethyan columns provided in TimeScale
Creator. Whereas some authors have referred to middle (or
middle-) Kimmeridgian, it is standard now to subdivide the
Kimmeridgian stage into lower and upper.

Early Oxfordian. Cardioceras (Scarburgiceras) aff.
mirum Arkell was identified by Frebold (1961, 1964a)
from Axel Heiberg Island, noting that Cardioceras
(Scarburgiceras) mirum itself occurs in the basal Oxfordian
Cardioceras (Scarburgiceras) praecordatum Subzone of
the Quenstedtoceras mariae Zone. Specifically, unidenti-
fied Cardioceras, indicating the lower or middle Oxfordian,
also occurs in the western Arctic Islands (Tan and Hills,
1978; Poulton, 1994). Cardioceras appearances at several
localities across the northern Yukon area, although poorly
controlled biostratigraphically, suggest a sequence of sev-
eral species similar to various European species of the early
Oxfordian Quenstedtoceras mariae and Cardioceras corda-
tum zones. They include Cardioceras spp. aff. Cardioceras
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cordatum and Cardioceras alphacordatum illustrated by
Frebold et al. (1967), and listed by Callomon (1984) and
Poulton (1997).

Middle Oxfordian. Two specimens from the Babbage
River area of northern Yukon, previously figured as early
Oxfordian, were re-identified as Cardioceras (Malto-
niceras) sp. of middle Oxfordian [upper Cardioceras
(Subvertebriceras) densiplicatum Zone] age (Callomon,
1984).

Late Oxfordian to early Kimmeridgian. Amoeboceras,
generally poorly preserved and usually not specifically
identified, has been collected at various localities across
the Canadian Arctic, commonly with the bivalve Buchia
concentrica (Sowerby) (Frebold, 1961, 1964a; Fricker,
1963; Frebold et al., 1967). Callomon (Callomon, 1984,
fauna C18) re-identified a specimen from northern Yukon,
reported by Poulton (1978) as Cardioceras, as early late
Oxfordian Amoeboceras (Prionodoceras) cf. or aff. transi-
torium Spath. Small fragments of Admoeboceras figured in
Frebold et al. (1967, Pl. III) were suggested to be perhaps
latest Oxfordian [Amoeboceras (Prionodoceras) rozen-
krantzi Zone] by Callomon (1984) but were re-identified as
Amoeboceras bayi (Birkelund and Callomon) and assigned
to the Amoeboceras bayi Boreal Subzone of the early
Kimmeridgian by Rogov (2019).

Early Kimmeridgian. Frebold (1961) noted the similar-
ity of Amoeboceras sp. indet, which he illustrated from
Mackenzie King Island, to early Kimmeridgian Amoebo-
ceras (Prionodoceras) ravni Spath, and Rogov (2019)
recognized Amoebites cf. subkitchini (Spath) among
them. Rasenia aff. orbignyi (Tornquist), identified from
Mackenzie King Island by H. Frebold (in Tan and Hills,
1978), was assigned to Rasenia cf. cymodoce (d’Orbigny)
by Rogov (2019), who attributed both to the Boreal middle
Kimmeridgian Amoeboceras (Amoebites) kitchini Zone.

Late Kimmeridgian. Amoeboceras spp. resembling sub-
genera Amoebites and Hoplocardioceras reported by
Frebold (in Balkwill et al., 1977), were re-identified by
M. Rogov from photographs supplied by Poulton as Hoplo-
cardioceras decipiens (Spath) and Euprionoceras sokolovi
(Bodylevsky), which indicate the Boreal Aulacostephanus
eudoxus Zone.

Middle Tithonian/middle Volgian. Dorsoplanitid ammo-
nites, variously reported as Dorsoplanites, Taimyrosphinctes,
Pavlovia(?), Pavlovia (?Paravirgatites), or Laugeites?, come
from several localities on Ellesmere and Axel Heiberg
islands (Frebold, 1961; Jeletzky, 1966, 1984; Callomon,
1984; Schneider et al., 2018). Dorsoplanites ex gr. panderi
Michalski and the associated ammonite Paviovia? were
figured from northern Ellesmere Island by Frebold (1961);
the latter was re-interpreted as Pavlovia (?Paravirgatites)
by Callomon (1984) and as Taimyrosphinctes by Rogov
(2019). Rogov and Zakharov (2009) had compared some
of the early reported species with Eurasian Dorsoplanites
gracilis Spath and Dorsoplanites flavus Spath, as well as
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Laugeites. Schneider et al. (2018) reported the co-occurrence
of Dorsoplanites maximus Spath and Dorsoplanites sachsi
Michaelov confirming the presence of the Boreal Dorsoplanites
maximus Zone on northern Ellesmere Island. Galloway et al.
(2019) suggested that Jeletzky’s report of specifically uniden-
tified dorsoplanitids (Jeletzky, 1984), with large Buchia
fischeriana (d’Orbigny), provides a middle Volgian age for a
recently discovered Arctic regional '*C negative excursion.

Late Volgian. Craspedites (Subcraspedites) cf. sowerbyi Spath
and Craspedites (Craspedites) aff. subditus (Trautschold)
were described and illustrated from Rollrock Lake, northern
Ellesmere Island, by Jeletzky (1984). They were re-assigned by
Rogov and Zakharov (2009) to Subcraspedites sowerbyi Spath
and Craspedites cf. thurrelli Casey, respectively. A higher fauna
in the same section with “Craspedites (Subcraspedites) n. sp. aff.
praeplicomphalus Swinnerton and Craspedites (Craspedites)
n. sp. aff. subditus”, described and illustrated by Jeletzky
(1984), was updated to Subcraspedites ct. preplicomphalus and
Craspedites cf. thurrelli by Rogov (2019). These faunas were
interpreted to correspond to the regional Subcraspedites prep-
licomphalus and Craspedites okensis zones of eastern England
and Siberia, respectively (Jeletzky, 1984; Rogov, 2019).

Latest Volgian—early Berriasian (Cretaceous). Craspedites
(Taimyroceras) canadensis Jeletzky (1966) from Slidre Fiord,
northern Ellesmere Island, approximates the Craspedites
taimyrensis Zone of northern Siberia and the Craspedites
nodiger Zone of Europe (Jeletzky, 1984; Rogov and Zakharov,
2009; Rogov, 2019). The current proposal for the base of the
Cretaceous places it within the Craspedites taimyrensis Zone
(Wimbledon, 2017).

Early Cretaceous. Arctic Canada species variously reported in
earlier literature as 7ollia (Subcraspedites?) sp., Praetollia anti-
qua Jeletzky, Praetollia fedorovi (Klimova), Pseudocraspedites
anglicus (Shulgina), and Subcraspedites aff. suprasubditus
(Bogoslovsky) by Jeletzky (1973, 1984) as latest Tithonian are
now considered to be Early Cretaceous Borealites, including
Borealites (Ronkinites).

Buchia zones, Late Jurassic

Buchia concentrica Zone. The stratigraphic range of the
very distinctive and widespread bivalve Buchia concen-
trica (Sowerby) corresponds in general with that of the
ammonite Amoeboceras sensu lato (i.e. late Oxfordian
and early Kimmeridgian), although there are not enough
sequential multitaxial faunas in Arctic Canada to constrain
the ages further.

Buchia mosquensis Zone. The range of Buchia mosquensis
(Buch), encompassing approximately the late Kimmeridgian
and early Tithonian, is poorly controlled by ammonites in
Arctic Canada. Jeletzky (1980) summarized the occur-
rences of Buchia mosquensis in the northern Yukon and
adjacent western Northwest Territories. The upper part in
Sverdrup Basin (Jeletzky, 1984) contains Buchia russiensis
(Pavlow) and other morphospecies, indicating its general
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correspondence with the Buchia russiensis Zone of Russia
(e.g. Zakharov, 2015). Schneider et al. (2018) identified
Buchia rugosa (Fischer) from northern Ellesmere Island,
assigning it to the early Tithonian, and Buchia rugosa has
been added to the early Volgian Buchia fauna in TSC on the
basis of this Canadian occurrence. Zakharov (e.g. Rogov and
Zakharov, 2009) had distinguished an early Volgian Buchia
rugosa regional zone in northern Siberia, within the wide-
spread and longer ranging Buchia mosquensis Zone. Regional
variations would seem to contradict the usefulness of the more
refined morphospecies zones within this interval over wide
areas.

Buchia fischeriana Zone. Jeletzky (1984) reported large
Buchia fischeriana (d’Orbigny) sensu lato with dorsoplanitid
ammonites in the lower part of the range zone of this bivalve
in the Sverdrup Basin. The lower limit that is illustrated for
this zone conforms with that of the associated dorsoplanitids;
the upper limit permits continuity of the species into the next
higher zone, which contains more typical small representatives
of Buchia fischeriana (Jeletzky, 1984). In Sverdrup Basin, this
interval also contains Buchia piochii (Gabb), Buchia russien-
sis, and rare Buchia richardsonensis Jeletzky (Jeletzky, 1984,
Fig. 10). The zone’s essentially middle Volgian distribution cor-
responds approximately with the former ‘upper lower Volgian’
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(e.g. Jeletzky, 1966). Jeletzky (1966) suggested that beds
with Buchia richardsonensis Jeletzky and Buchia russiensis
(Pavlow) in the northern Richardson Mountains correspond
with the lower Kachpurites fulgens Zone of the Russian
Platform and that lower beds characterized by ‘advanced’
forms of Buchia aff. fischeriana with Buchia piochii var. mni-
ovnikensis (Pavlow) correspond with the Russian Platform
Epivirgatites nikitini and Virgatites virgatus zones. Later, in
Jeletzky (1980), he is less specific, generalizing only intervals
with Buchia cf. and aff. Buchia piochii and Buchia fischeriana
below and with Buchia fischeriana above.

Buchia terebratuloides—unschensis zones. Buchia ter-
ebratuloides (Lahusen) has a range zone extending from
the base of the Subcraspedites—Craspedites beds to the top
of the Berriasian Praetollia (i.e. Borealites) fedorovi Zone
(Jeletzky, 1984), which Jeletzky (1966, 1984) considered
to be latest Volgian or Tithonian. Small typical Buchia

fischeriana occur in the lower part, with the Subcraspedites—

Craspedites ammonite fauna at its only known locality on
northern Ellesmere Island, and Buchia unschensis (Pavlow)
occurs only in the upper upper Volgian, and with lesser geo-
graphic distribution than Buchia terebratuloides (Jeletzky,
1966, 1984). This upper interval corresponds to the Russian
Buchia unschensis Zone (e.g. Rogov and Zakharov, 2009).
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