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Abstract: The Geo-mapping for Energy and Minerals program addressed four questions related to 
the lower Paleozoic succession of the Arctic Islands that were identified as key deficiencies in regional 
geological knowledge: 1) geochemical and geological data were not fully digital or available; 2) there 
were gaps in information on petroleum systems; 3) there was no geological map for the northwestern part 
of Victoria Island; and 4) the geological history of the Pearya composite terrane on northern Ellesmere 
Island was unclear. These gaps were addressed by 1) the publication of 17 open files that make geological 
and geochemical data sets publicly available; 2) studies on source rock, thermal maturity, and oil-source  
correlation; 3) the production of a geological map for northwestern Victoria Island; and 4) a series of geo-
logical, geochemical, and geochronological studies that support a geological model in which the south-
eastern structural slice of Pearya was a fragment of ancient North America that rifted and returned, rather 
than a far-travelled continental fragment.

Résumé : Le programme Géocartographie de l’énergie et des minéraux s’est attaqué à quatre questions 
relatives à la succession du Paléozoïque inférieur dans l’archipel Arctique. Ces questions ont été définies 
sur la base des lacunes majeures dans les connaissances géologiques à l’échelle régionale suivantes : 1) les 
données géochimiques et géologiques n’étaient pas entièrement numériques ou disponibles; 2) il y avait 
des lacunes dans l’information sur les systèmes pétroliers; 3) il n’y avait pas de carte géologique pour 
la partie nord-ouest de l’île Victoria; et 4) l’histoire géologique du terrane composite de Pearya dans le 
nord de l’île d’Ellesmere était ambiguë. Ces lacunes ont été comblées à l’aide des éléments suivants : 1) 
la publication de 17 dossiers publics qui ont rendu disponibles dans le domaine public des ensembles de 
données géologiques et géochimiques; 2) la réalisation d’études sur la roche mère, la maturité thermique 
et la corrélation roche mère-pétrole; 3) la production d’une carte géologique du nord-ouest de l’île Vic-
toria; et 4) la réalisation d’une série d’études géologiques, géochimiques et géochronologiques à l’appui 
d’un modèle géologique dans lequel l’écaille structurale sud-est de la Pearya constituait un fragment du 
protocontinent nord-américain qui avait dérivé suite à un rifting avant de rebrousser chemin, plutôt qu’un 
fragment d’un continent lointain.
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INTRODUCTION
The goal of the Geo-mapping for Energy and Minerals 

(GEM) program was to improve geological knowledge in 
areas of northern Canada that have natural resource poten-
tial. The GEM program started in 2008, was renewed in 
2013, and ended in March 2020. Both GEM-1 and GEM-2 
had a project focus on sedimentary basins in the Canadian 
Arctic Islands. This contribution describes advances made 
on lower Paleozoic rocks in the Arctic Islands.

The key deficiencies in geoscience knowledge for lower 
Paleozoic rocks identified in the planning for the GEM-2 
Western Arctic project were 1) the difficulty in accessing 
geochemical and geological data digitally; 2) the gaps in 
information on petroleum systems; 3) the absence of a geo-
logical map of northwestern Victoria Island; and 4) the lack of 
clarity regarding the geological history of the Pearya terrane 
on northern Ellesmere Island. The first of these deficiencies 
was addressed by the release of 17 Geological Survey of 
Canada (GSC) open file publications combining both geologi-
cal and geochemical data; and digital geological maps of the 

Arctic with a unified legend compiled by Harrison and co-
authors (e.g. Harrison et al., 2016). The second shortfall was 
mitigated by field and laboratory studies undertaken in areas 
of resource potential, including studies on the origin of the 
Polaris lead-zinc deposit (Reid et al., 2013a, b), Bent Horn oil 
field (Obermajer et al., 2010; Wendte, 2012), and source-rock 
thermal maturity (Dewing and Obermajer, 2009). Fieldwork 
in 2009–2011 resolved the third issue, resulting in a new geo-
logical map of northwestern Victoria Island (Dewing et al., 
2013, 2015). Finally, radiometric dating techniques were 
applied to archived samples from northern Ellesmere Island 
and other locations in the Arctic Islands to help decipher the 
tectonic history of the Pearya terrane.

HISTORY OF THE FRANKLINIAN 
MARGIN

Lower Paleozoic strata are present across the Canadian 
Arctic Islands, from Banks Island in the southwest to 
Ellesmere Island in the northeast, a distance of about 1700 km 
(Fig. 1, 2). The Franklinian margin of northern Laurentia 

Figure 1. The Canadian Arctic Islands. 
Locations of islands, mineral and oil 
deposits, and study areas mentioned in 
text are shown.
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encompasses all the lower Paleozoic strata in the Canadian 
Arctic Islands and northern Greenland, as well as some parts 
of northern Alaska that were originally situated west of Banks 
and Prince Patrick islands, but were subsequently rifted away 
during the Mesozoic. The Franklinian margin initiated with 
rifting related to the breakup of the Rodinia supercontinent 
in the Neoproterozoic, followed by the development of a 
passive margin from Cambrian to Early Ordovician time. 
The margin changed to an unstable convergent margin in the 
Early Ordovician (Dewing et al., 2019). Intraplate deforma-
tion that created the Boothia fold belt and related uplifts in 
the Canadian Arctic Islands was synchronous with the late 
Silurian to Early Devonian Scandian phase of the Caledonian 
Orogeny in Greenland, whereas later in the Early Devonian, 
extension in the Scandinavian Caledonides was synchronous 
with the re-establishment of a carbonate platform in the cen-
tral Canadian Arctic (Tucker et al., 2004). The Franklinian 
margin transitioned to a foreland basin during Middle to 
Late Devonian time (Embry and Klovan, 1976), culminating 
in the widespread, Late Devonian to earliest Carboniferous 
Ellesmerian Orogeny (Harrison, 1995) as a result of arcs and 
continental block(s) converging and colliding from the north 
(present-day direction).

The Franklinian margin has six main components:

1. Platform and shelf. The platform and shelf component of 
the Franklinian margin comprises carbonate, evaporite, 
and clastic units. South of Lancaster–Melville Sound, these 
units range in age from Cambrian to Early Devonian and 
are 0 to 4 km thick. North of Lancaster–Melville Sound 
(Fig. 1), the units span the Ediacaran to Late Devonian and 
thicken to 12 to 16 km. The shelf to deep-water transition 
during the Cambrian to Late Ordovician is inferred to run 
diagonally (southwest–northeast) across the Arctic Islands 
beneath younger strata of the Sverdrup Basin.

2. Deep-water basin. The deep-water basin preserved north 
of the carbonate platform is divided into the southern, 
shale- and chert-dominated Hazen belt and the north-
ern Clements Markham belt containing shale, chert, and 
volcanic units (Fig. 2, 3; Trettin, 1998). By the Silurian 
(Wenlock), the Hazen and Clements Markham belts 
were dominated by turbidite and submarine fans, pre-
sumably derived from the Caledonian Mountains of east 
Greenland (Surlyk, 1995). The deep-water basin was 

Figure 2. Tectonic elements of the lower 
Paleozoic in the Canadian Arctic Islands. 
The Ordovician shelf margin is inferred 
to be located where upper Paleozoic 
strata of the overlying Sverdrup Basin 
plunge steeply to the north. The approxi-
mate southern limit of the Late Devonian 
Ellesmerian Orogeny is shown in red. 
Note the abrupt change in direction of the 
Ellesmerian deformation front between 
Melville and Banks islands in the western 
Arctic.
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filled with clastic rocks by mid-Silurian (Ludlow) time, 
after which it was dominated by shallow-water mixed 
carbonate-clastic units.

3. Pearya terrane. The Pearya composite terrane is located 
on northernmost Ellesmere Island (Fig. 2; Trettin 1987, 
1998) and consists of a basement dated at ca. 1.0 Ga, 
metasediments of Ediacaran to Ordovician age as well as 
Ordovician and Silurian sediments, and volcanic rocks. 
Three structural domains were described by Trettin 
(1987, 1998), but the contact relationships between the 
domains remain uncertain. The two structural slices on 
the western (outboard) side of Pearya contain basement 
and presumed Neoproterozoic to Cambrian strata. The 
northeastern Pearya (inboard) structural slice has exposed 
Neoproterozoic to Silurian strata, and the basement of this 
domain is not exposed. The timing and mechanism(s) of 
amalgamation of the various components of the Pearya 
terrane remain unclear.

4. Boothia and related fold belts. Four north-trending arches 
developed during the late Silurian to Early Devonian 
(Fig. 2). From west to east, these are the Coppermine 
Arch (Brock Inlier; Cook and Aitken, 1969), Boothia 
uplift (Somerset and Cornwallis islands; Thorsteinsson 
and Uyeno, 1980), Rens Fiord uplift (northern Axel 
Heiberg Island; Trettin 1979), and Inglefield uplift (cen-
tral Ellesmere Island; Smith and Okulitch, 1987). These 
arches are contemporaneous with the uplift in the central 
part of Hudson Bay (Norris, 1993).

5. Ellesmerian clastic wedge and fold belt. A foreland 
basin developed across much of the Canadian Arctic in 
the Middle Devonian (Embry and Klovan, 1976). The 
Middle to Upper Devonian clastic wedge that filled this 
foreland basin is dominated by nonmarine sandstone 
in the northern and eastern areas of the Arctic Islands 
and by slope and delta environment interbedded shale 
and sandstone in the more distal, western parts of the 
islands. The youngest preserved strata are of Famennian 
age (Harrison, 1995), but Embry (1988) reported clasts 
containing Famennian to Tournaisian spores in the basal 

units of the overlying Sverdrup Basin, indicating that 
sedimentation on the Franklinian margin may have  
continued into the earliest Carboniferous.

6. Late Devonian to (?)Carboniferous deformation related to 
the Ellesmerian Orogeny (Thorsteinsson and Tozer, 1970) 
had a southerly principal shortening direction, which 
resulted in east-trending folds. Folds on Prince Patrick and 
Banks islands in the western Canadian Arctic are oriented 
at an angle of approximately 70° to the trend in the central 
islands (Harrison and Brent, 2005), although it is unclear 
if this is caused by a second event or if the orientation of 
folds is controlled by local rheology changes.

7. Rifted parts of the Franklinian margin. Jurassic–
Cretaceous rifting, which resulted in the formation of the 
Arctic Ocean, rotated parts of the Franklinian margin to 
their current locations in Arctic Alaska and Chukotka, 
Russia. The North Slope subterrane of Arctic Alaska 
(Strauss et al., 2013, 2018) was likely located west of 
Banks and Prince Patrick islands in Neoproterozoic to 
Devonian time, as part of the Franklinian margin. The 
arcs and continental blocks that amalgamated with the 
Franklinian margin during collisional events between 
the Late Ordovician and Late Devonian rifted away and 
are now located in either Alaska or northeastern Russia 
(Grantz et al., 1979).

ECONOMIC GEOLOGY
Sixty-eight hydrocarbon exploration wells were drilled 

into the lower Paleozoic succession of the Arctic Islands 
between 1962 and 1987 (Dewing and Embry, 2007). One 
oil discovery was made at Bent Horn on Cameron Island 
in porous Devonian carbonate rocks, which produced about 
2 million barrels (Mayr, 1980; Wendte, 2012). Procter et al. 
(1984) estimated a mean expectation of 1.6 billion barrels 
(BBO) of recoverable oil and 16.1 trillion cubic feet (TCF) 
of recoverable gas from the lower Paleozoic succession in 
the Canadian Arctic Islands. Hannigan et al. (1999) esti-
mated a mean of 4.6 BBO of in-place oil and 11.7 TCF of 

Figure 3. Interbedded carbonate and volcanic 
rocks of the Jaeger Lake assemblage of prob-
able Cambrian age (Hadlari and Madronich, 
2017), Greenstone Lake, northern Axel Heiberg 
Island. This is typical of the style in the Clements 
Markham belt. Photograph by K. Dewing. NRCan 
photo 2021-001
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in-place gas on Bathurst Island alone. Mineral exploration 
between 1960 and 2001 located numerous lead-zinc show-
ings in lower Paleozoic strata, but only the Polaris lead-zinc 
deposit was brought into production, starting in 1982 and 
closing when the ore was exhausted in 2002 (Dewing et al., 
2006; Reid, 2013a, b).

KEY FINDINGS IN THE LOWER 
PALEOZOIC

Question: Are there data that could help 
inform exploration decisions, which are not 
available to the public?
Findings. Numerous geochemical and geological data sets 
were located in project files, as paper records, and in pro-
prietary GSC databases and therefore not readily publicly 
accessible.

Objective. Compile, digitize, and release geological and geo-
chemical data that could be useful for exploration decisions.

Importance. The data in these reports are useful for  
petroleum-system modelling and basin analysis, which 
are important tools in predicting the size and location of  
hydrocarbon resources.

Methods and areas. Paper records from contracts, GSC 
databases, theses supported by the GSC, and other publicly 
available records were compiled, and the data in paper for-
mat were digitized. Wells were given a consistent naming 
convention, and formation tops were published for the wells. 
All samples from the wells were then coded with the forma-
tion at the given depth for ease of comparison. Field samples 
were given GSC catalogue numbers; the location informa-
tion is curated in the GSC Sample Management System 
database.

Main outcomes. Data pertaining to exploration are now 
available for free download. Data were released as 17 
GSC open files (OF), all using a common title starting with 
“Geological and geochemical data from the Canadian Arctic 
Islands” (see Appendix A for all published contributions):

Part I: Stratigraphic tops from Arctic Islands’ oil and gas 
exploration boreholes (OF 5442; Dewing and Embry, 2007).

Part II: Rock-Eval/TOC data (OF 5459; Obermajer et al., 
2007a).

Part III: Organic-matter reflectance data (OF 5476; Dewing 
et al., 2007).

Part IV: Gasoline range and saturate-fraction gas chromato-
grams of oil samples (OF 5483; Obermajer et al., 2007b).

Part V: Saturate-fraction gas chromatograms of organic 
extracts from cuttings and core samples from petroleum 
exploration boreholes (OF 5534; Obermajer et al., 2007c).

Part VI: Saturate-fraction gas chromatograms of organic 
extracts from outcrop and mining core samples (OF 5591; 
Obermajer et al., 2007d).

Part VII: Composition of gas from petroleum exploration 
borehole cuttings (OF 5611; Dewing et al., 2010).

Part VIII: Saturate-fraction gas chromatography–mass spec- 
trometry data for organic extracts (OF 5642; Obermajer  
et al., 2008a).

Part IX: Saturate-fraction gas chromatography–mass spec-
trometry data for hydrocarbon samples (OF 5683; Obermajer 
et al., 2008b).

Part X: Core petrophysical data from petroleum exploration 
boreholes (OF 6669; Hu and Dewing, 2011).

Part XI: Testing and fluid analysis data for the Canadian 
Arctic Islands (OF 6716; Grasby et al., 2011).

Part XII: Descriptions and lithologs of upper Paleozoic core 
(OF 7569; Kabanov and Dewing, 2014).

Part XIII: New bulk geochemical and Rock-Eval data from 
upper Paleozoic cores and preliminary results for basinal 
shales (OF 7848; Kabanov and Dewing, 2015).

Part XIV: Compilation of Rock-Eval/TOC and mineralogi-
cal data from upper Paleozoic strata of the Sverdrup Basin 
(OF 8154; Galloway, 2016).

Part XV: Basal strata of Devonian clastic wedge on Banks 
Island and correlation with mainland Northwest Territories 
(OF 8354; Kabanov, 2018).

Part XVI: Permafrost thickness determination from petroleum 
exploration wells (OF 7306; Hu et al., 2018).

Part XVII: Detrital zircon geochronology and stratigraphic 
interpretations for upper Paleozoic strata of the Sverdrup 
Basin (OF 8473; Galloway, 2018).

Question: What Paleozoic strata are present 
on northwestern Victoria Island?
Findings. Northwestern Victoria Island is underlain by 
Cambrian sandstone and carbonate units and by younger 
Cambrian to Lower Devonian carbonate units.

Objective. Lower Paleozoic strata on northwestern Victoria 
Island had not been divided into formations or mapped. The 
objective was to produce a 1:500 000 scale map of the bed-
rock geology of northwestern Victoria Island (Fig. 1). This 
covers an area of approximately 28 500 km2, which is about 
half the size of Nova Scotia.

Importance. The units exposed on northwestern Victoria 
Island continue in the subsurface underneath Banks Island 
and offshore under the Banks Island Shelf, where they can 
be traced on seismic images. Mapping surface exposures 
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on Victoria Island improves confidence when interpreting off-
shore seismic data. This decreases the uncertainty in predicting 
resource endowment in the area.

Methods and areas. Geological fieldwork in the summers of 
2009–2011 was supported by helicopter from Ulukhaktok 
and two field camps near the head of Minto Inlet. Sites 
were visited by helicopter or during foot traverses (Fig. 4). 
Samples of rock were collected for chemical and microfos-
sil analysis; outcrop sections were measured using a 1.5 m 
Jacob’s staff. Given the huge area covered and the general 
lack of outcrop, much of the mapping was done using air 
photos, satellite images, and aeromagnetic surveys.

Main outcomes. The lower Paleozoic succession was divided 
into eight map units, four of which are new. The distribu-
tion of these units was mapped and released as Geological 
Survey of Canada Canadian Geoscience Map 171 (Dewing 
et al., 2015).

Results and conclusions. In addition to formations being 
defined on northwestern Victoria Island, the ages of three units 
were established using paleontological data. Furthermore, 
two normal fault trends were identified: an apparently older 
northwest-trending set of faults and a closely spaced north-
east-trending set. A meteor impact structure about 28 km 
in diameter was found on the northwestern side of Victoria 
Island (Dewing et al., 2013).

Question: What are the distribution and 
thermal maturity of source rocks in the 
lower Paleozoic of the Arctic Islands?
Findings. The organic-rich Silurian Cape Phillips Formation 
is the source rock for the Bent Horn oil field (Fig. 5; 
Obermajer et al., 2010). Peak maturity for the Cape Phillips 
Formation over most of the Arctic Islands is within the 

temperature range at which gas generation occurs, and maxi- 
mum burial occurred in the Late Devonian. A narrow zone 
along the Ordovician shelf margin remained as a struc-
tural high throughout the Devonian, and the Cape Phillips 
Formation in that area generated oil during burial by strata 
of the Sverdrup Basin in the Cretaceous.

Objective. The objectives were to document and quantify 
potential source-rock units in the lower Paleozoic of the 
Arctic Islands and to estimate time of maximum burial.

Importance. Source-rock richness and thermal maturity are 
key elements of petroleum-system analysis. Data from this 
project were included in resource assessments that con-
tributed to the creation of the Tallurutiup Imanga National 
Marine Conservation Area in Lancaster Sound.

Methods and areas. Analytical results were compiled from 
existing data sets, and new geochemical analyses were per-
formed to fill gaps, especially in the Cape Phillips Formation. 
Methods used to determine hydrocarbon potential/thermal 
maturity included Rock-Eval pyrolysis (Obermajer et al., 
2007a) and reflectance of zooclasts (Dewing et al., 2007). 
Results were interpreted in Dewing and Obermajer (2009), 
in which the geographic distribution of thermal maturity is 
shown, and the timing of maximum burial is estimated from 
one-dimensional burial-history models.

Main outcomes. Over 3400 reflectance values and 1630 
Rock-Eval results were published, along with publications 
on thermal maturity (Dewing and Obermajer, 2009), timing 
of hydrocarbon migration (Wendte, 2012), and source-oil 
correlation at the Bent Horn field (Obermajer et al., 2010).

Results and conclusions. The thick and organic-rich Cape 
Phillips Formation of Late Ordovician to Silurian age is 
the most likely unit to have been an effective source rock 
in the lower Paleozoic; it is the demonstrated source for the 
oil discovery at Bent Horn. Such organic-rich units of Late 

Figure 4. Typical outcrop of Lower Paleozoic plat-
form dolostone exposed on Victoria Island, Northwest 
Territories. Outcrop is discontinuous and near flat lying. 
Photograph by K. Dewing. NRCan photo 2021-002
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Ordovician–early Silurian age are important source rocks in 
many areas of the world, including New York (Utica shale 
formation) and Jordan (Mudawwara Formation), as well 
as the source of several huge discoveries in Saudi Arabia 
(Tayarat, Qalibah formations). In the Canadian Arctic 
Islands, peak maturation is estimated to have occurred in the 
Late Devonian, about 370 million years ago, and analytical 
results show that most of the Cape Phillips Formation was 
in the gas window at that time. Preserving oil or gas for hun-
dreds of millions of years is difficult due to loss by leakage 
and due to degradation by water washing and microbes. This 
limits the chance of a large discovery in the lower Paleozoic 
over much of the Arctic Islands. There is a narrow (~100 km) 
strip under the edge of the Sverdrup Basin running from the 
Sabine Peninsula to Cameron Island, and possibly north of 
Bathurst and Devon islands, where the Ordovician shelf 
edge appeared to remain as a high in the Devonian and was 
subsequently buried in the Triassic through Cretaceous by 
strata of the Sverdrup Basin. In these areas, the Cape Phillips 
did not reach peak maturity until the Mesozoic and, there-
fore, the chance for hydrocarbon preservation in that area is 
higher (Dewing and Obermajer, 2009; Wendte, 2012).

Question: Where was the Pearya terrane 
during the early Paleozoic?
Findings. The southeastern structural slice of the Pearya com-
posite terrane on northern Ellesmere Island was probably 
always close to its current location.

Objective. The geological history of the Pearya terrane on 
northern Ellesmere Island has been controversial, with sev-
eral models proposed for its origin. Some authors theorize 
that the Pearya was transported by tectonic processes from 
a great distance (Trettin, 1987), whereas others prefer a 
pericratonic theory, in which the Pearya was rifted a short 
distance from northern North America and then pushed back 
close to its original location (like modern Madagascar, but 

without the lemurs; Hadlari et al., 2014). The objective of 
this activity was to test different geological models for the 
Pearya to determine the most likely scenario.

Importance. The tectonic/geological history of Pearya helps 
constrain models for the opening of the Arctic Ocean during 
the Mesozoic. The geological history of the Arctic Ocean is 
a major outstanding problem in global plate tectonics and an 
important consideration in Canada’s claims under the United 
Nations Convention on the Law of the Sea.

Methods and areas. Archival samples were used to obtain 
detrital zircon U-Pb ages (Anfinson et al., 2012a, b, 2013; 
Hadlari et al., 2012, 2014; Beranek et al., 2015) for prov-
enance studies. Anfinson et al. (2012a, b, 2013) examined 
detrital zircons from the Devonian clastic wedge across the 
Arctic Islands; Beranek et al. (2015), from the Silurian of 
Ellesmere Island; and Hadlari and co-authors, from Cambrian 
successions around the Laurentian paleocontinent (Hadlari 
et al., 2012), Pearya, and the adjacent deep-water basin 
(Hadlari et al., 2014). Hadlari et al. (2014) looked for link-
ages between the Pearya and the Cambrian and Ordovician 
deep-water basin that might indicate that the Pearya was 
shedding sediment into the deep-water basin prior to the 
Silurian. This would test the far-travelled hypothesis accord-
ing to which the Pearya only came to its current location in 
Silurian or Devonian time. Dewing et al. (2019) followed 
the same approach as Hadlari et al. (2014) but used other 
geological information (e.g. Sm-Nd isotopes, isopachs, 
cross-sections) to test for linkages between the Pearya and 
the Arctic Islands prior to the Silurian.

Main outcomes. A large data set of detrital zircon ages was 
published in seven journal articles.

Results and conclusions. Hadlari et al. (2014) provided evi-
dence from detrital zircons that the Pearya shed sediments 
from the north into the deep-water basin during Cambrian 
time. Dewing et al. (2019) demonstrated that tectonic 
events in the Pearya were synchronous with the timing of 

Figure 5. Pseudo van Krevelen diagram from 
Geological Survey of Canada Open File 5459 
(Obermajer et al., 2007d) showing total organic 
carbon (TOC%) and Rock-Eval hydrogen index 
versus oxygen index for samples from the Cape 
Phillips, Devon Island, and Eids formations in the 
Canadian Arctic. The 17 open file reports on geo-
logical and geochemical data include summary 
diagrams similar to this, as well as spreadsheets 
of the data.
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unconformities on the carbonate shelf and that a major tec-
tonic event (collision?) took place in the latest Ordovician, as 
shown by a major change in sediment source and shelf con-
figuration at that time. These results can only be compared 
to the southeastern structural slice of the Pearya because 
the two northwestern slices do not preserve Cambrian to 
Silurian stratigraphy. Anfinson et al. (2012a) demonstrated 
that detrital zircons that are exotic to Laurentia only arrived 
after the end of the Middle Devonian, ca. 380 Ma.
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