WIND TUNNEL TRIALS TO EXAMINE ANTI-ICING FLUID FLOW-OFF CHARACTERISTICS AND TO SUPPORT THE DEVELOPMENT OF ICE PELLET ALLOWANCE TIMES, WINTERS 2009-10 TO 2012-13

Volume 2

Prepared for Transportation Development Centre

In cooperation with

Civil Aviation Transport Canada

and

The Federal Aviation Administration William J. Hughes Technical Center

Prepared by:

November 2013 Final Version 1.0

WIND TUNNEL TRIALS TO EXAMINE ANTI-ICING FLUID FLOW-OFF CHARACTERISTICS AND TO SUPPORT THE DEVELOPMENT OF ICE PELLET ALLOWANCE TIMES, WINTERS 2009-10 TO 2012-13

Volume 2

By: Marco Ruggi

November 2013 Final Version 1.0 The contents of this report reflect the views of APS Aviation Inc. and not necessarily the official view or opinions of the Transportation Development Centre of Transport Canada.

The Transportation Development Centre does not endorse products or manufacturers. Trade or manufacturers' names appear in this report only because they are essential to its objectives.

DOCUMENT ORIGIN AND APPROVAL RECORD

Prepared by:

Marco Ruggi, Eng., M.B.A.	Date
Project Leader	

Reviewed by:

John D'Avirro, Eng., PBDM Program Manager

Approved by: **

John Detombe Chief Engineer ADGA Group Consultant Inc.

Date

Date

Un sommaire français se trouve avant la table des matières.

This report was first provided to Transport Canada as Final Draft 1.0 in November 2013. It has been published as Final Version 1.0 in October 2020.

**Final Draft 1.0 of this report was signed and provided to Transport Canada in November 2013. A Transport Canada technical and editorial review was subsequently completed and the report was finalized in October 2020; John Detombe was not available to participate in the final review or to sign the current version of the report.

EXECUTIVE SUMMARY

Under contract to the Transportation Development Centre (TDC), with financial support from the Federal Aviation Administration (FAA), APS Aviation Inc. (APS) has undertaken research activities to further advance aircraft ground de/anti-icing technology. APS conducted a series of full-scale tests in the National Research Council Canada (NRC) 3 m x 6 m Open-Circuit Propulsion Icing Wind Tunnel (PIWT) to determine the flow-off characteristics of anti-icing fluid with and without mixed precipitation conditions with ice pellets.

Background and Objective

Prior to the winter of 2006-07, Holdover Time (HOT) guidance material did not exist for ice pellet conditions, however aircraft could still depart during ice pellet conditions following aircraft deicing and a pre-takeoff contamination check. This protocol was feasible for common air carrier aircraft that provided access to emergency exit windows overlooking the leading edge of the aircraft wings; however, it posed a significant problem for cargo aircraft that have limited visibility of the wings from the cabin.

On December 22, 2004, United Parcel Service (UPS) aircraft in Louisville were grounded for several hours due to extended ice pellet conditions. Due to cargo aircraft configuration, pre-takeoff contamination checks by the onboard crew were not possible. Fed-Ex had been faced with similar problems in Memphis. Following this event, in October 2005, the FAA issued two notices restricting takeoffs in ice pellet conditions.

As a result of this costly incident, UPS set out to obtain experimental data to provide guidance and allow operations to continue in ice pellet conditions. During the winter of 2004-05, aerodynamic and endurance time testing were conducted in simulated ice pellet conditions. APS also conducted some preliminary flat plate research [see Transport Canada (TC) report, TP 14718E, *Preliminary Endurance Time Testing in Simulated Ice Pellet Conditions*, (1)]. Based on the preliminary data, an allowance of 20 minutes in light ice pellet conditions was proposed, however no changes to the HOT guidelines were made.

During the following winter of 2006-07, the FAA provided a 25 minute allowance as a preliminary guideline; TC issued a note indicating that no changes would be made to the HOT guidelines. This allowance was based on the previous research conducted during the winter of 2005-06, primarily as a result of Falcon 20 aerodynamic research [see TC report, TP 14716E, *Falcon 20 Trials to Examine Fluid Removed from Aircraft During Takeoff with Ice Pellets* (2)]; these results were presented at the Society of Automotive Engineers (SAE) meeting in Lisbon in May 2006. To address the option

of a pre-takeoff contamination check, the 20 minute targeted allowance was extended to 25 minutes; pre-takeoff contamination checks would no longer apply. This allowance was followed by a list of conditions; one restriction was that operations would be limited to ice pellets alone (no mixed conditions).

Due to the high occurrence of ice pellets combined with freezing rain or snow, the industry requested additional guidance material for operations in mixed ice pellet conditions. Additional endurance time testing and aerodynamic research was conducted in simulated ice pellet conditions during the winter of 2006-07.

During the winter of 2007-08, the TC and FAA provided allowance time guidance material for operations in mixed conditions with ice pellets guideline. These allowance times were based on the research conducted during the winter of 2006-07 [see TC report, TP 14779E, *Development of Allowance Times for Aircraft Deicing Operations During Conditions with Ice Pellets* (3)]. The recommended allowance times were based on aerodynamic research conducted using the PIWT and the NRC Falcon 20 aircraft; these results were presented at the SAE meeting in San Diego in May 2007. These allowance time guidelines were followed by a list of restrictions based on the results obtained through the research conducted, and the lack of data in specific conditions.

During the winter of 2007-08, additional endurance time testing and aerodynamic research was conducted to support and further expand the ice pellet allowance times [see TC report,TP 14871E, *Research for Further Development of Ice Pellet Allowance Times: Aircraft Trials to Examine Anti-Icing Fluid Flow-Off Characteristics Winter 2007-08,* (4)]). Full-scale testing with the NRC Falcon 20 and T-33 aircraft was conducted in mixed conditions with ice pellets and in non-precipitation conditions. Testing was primarily geared towards simulating low rotation speed aircraft. No changes to the allowance times were made as a result of this work as aerodynamic data was not available.

During the winter of 2008-09, testing was conducted in the PIWT using a National Aeronautics and Space Administration (NASA) LS-0417 airfoil to validate and potentially expand the allowance times. As a result of this testing, a reduction to the light ice pellets mixed with moderate snow allowance time was issued for outside air temperature (OAT) above -5°C: the allowance time was reduced from 25 minutes to 10 minutes. The testing conducted also allowed the expansion of the table to include a new 25 minute allowance time for light ice pellets mixed with moderate rain for above -5°C conditions, as well as a new 15 minute allowance time for light ice pellets mixed vith light snow for -5°C to -10°C conditions. A newly updated version of the Type IV allowance time table was developed and adopted for the 2009-10 version of the PIWT during the winter of 2009-10 using a supercritical airfoil to validate the allowance time for use with newer generation aircraft.

A series of tests were designed and carried out during the winter of 2009-10 to validate the current guidance material in ice pellet and mixed conditions for newer generation aircraft with supercritical wing designs. Testing was conducted with and without contamination. Research was conducted to validate and develop allowance times for the following application:

• Type IV Fluid - High Speed Ramp (Allowance times currently exist).

Conclusions and Observations

Type IV High Speed Allowance Times

In comparison to previous tests on other airfoils, fluid flow-off issues with the supercritical wing were observed with propylene glycol (PG) fluids at the lower temperatures. More specifically, lift losses greater than 8 percent on the 2D model were recorded during light ice pellets and moderate ice pellet conditions below -10°C; visual observations supported the lift loss data collected. As a result, rather than restrict the allowance times to ethylene glycol (EG) fluids only, the PG data collected was re-analysed simulating higher rotation speeds. The analysis indicated that the allowance times would be acceptable for rotation speeds of 115 knots or greater (compared to 100 knots or greater). It was recommended that a footnote restricting the use of PG fluids to aircraft with rotation greater than 115 knots during light ice pellets and moderate ice pellet conditions below -10°C be included in the allowance time table for the winter of 2010-11.

In addition, fluid failure issues with the supercritical wing were observed with PG fluids during moderate ice pellets above -5°C. The relatively flat surface of the wing had less fluid flow-off and resulted in an earlier fluid failure for PG fluids. Data collected indicated that an allowance time of 15 minutes would be more appropriate. It was recommended that a footnote reducing the allowance time to 15-minutes for PG fluids during moderate ice pellet conditions above -5°C be included in the allowance time table for the winter of 2010-11.

In general, it was found that the tests conducted in all other conditions generated acceptable lift losses based on the current evaluation criteria: i.e. lift loss less than 5 percent was considered "good", between 5 and 8 percent was considered "ok" (acceptable), whereas tests with lift losses above 8 percent were considered "bad" and required further review. Typically, the EG fluid performed better, especially in the colder temperatures, and generated lower lift losses compared to the PG fluids.

In general, higher lift losses were observed with the supercritical wing compared to previous wings tested. Although initially 5 percent was used as the initial cut-off for

evaluating each test, this was expanded to 8 percent based on the data collected; 8 percent lift loss correlated well with the visual observations recorded. Additional analysis paired with wind tunnel and full-scale aircraft testing is recommended to develop a correlation between the lift losses observed in the wind tunnel and those seen on an operational aircraft with newer generation supercritical wings.

Comparison of Fluid Certification BLDT Results Versus NRC Wind Tunnel Lift Loss Results

The preliminary 2D results from this analysis indicate that 5 percent lift loss may not be appropriate as the lift loss cut-off. When correlating to the fluid certification results, a higher lift loss cut-off may be more appropriate based on the Launch, ABC-S Plus and EG106 data. It is recommended that future testing be done to simulate fluid certification results in the NRC wind tunnel at specific temperatures to substantiate the correlation observed in this preliminary analysis.

Flap Retracted (UP) Versus Flap Extended (DOWN)

In general, the results indicated that a heavily contaminated flap could have adverse effects on aerodynamic performance. On average, the test results showed an average 1.4 percent improvement in lift loss (with a maximum of 3.4 percent) when the flap was up (retracted) during the contamination period. It can be assumed that the flap will fail faster compared to the main wing section by a factor less than 60 percent (likely closer to 50 percent of the main wing section protection time); however, data comparing equal levels of contamination on the main wing section and on the flap is required to provide a proper estimate.

Recommendations

New Type IV High Speed Allowance Time Table

A newly updated version of the Type IV allowance time table has been developed and adopted for the 2009-10 version of the HOT guidelines. This work was presented at the SAE G-12 meeting in Charleston in May 2009.

Future Work

Type IV High Speed Allowance Times

Historical winter weather data has indicated that a significant portion of "light ice pellets mixed with light snow" precipitation occurs below -10°C and "light ice pellets mixed with moderate snow" precipitation occurs below -5 to -10°C where no allowance times currently exist. It is recommended that future research target these conditions in order to allow greater flexibility to operators in conditions of mixed ice pellets and light or moderate snow.

Additional testing is also recommended in light and moderate ice pellets close to the lower end of the -10 to -25°C range (where data is limited) and in moderate ice pellets above -5°C to validate the changes made to the allowance time table for the winter of 2010-11. Testing should also include different fluids to further validate the current allowance times.

Additional Testing and Analysis to Further Investigate Supercritical Wing Lift Losses

Additional analysis paired with wind tunnel and full-scale aircraft testing is recommended to develop a correlation between the lift losses observed in the wind tunnel and those seen on an operational aircraft with newer generation supercritical wings. Full-scale aircraft testing with the NRC Falcon 20 or FAA Technical Centre Global Express could be used to validate the wind tunnel test results. Additional wind tunnel testing is also recommended to investigate the increase in fluid flow-off as a result of higher rotation speeds (100 vs. 115 knots) and to validate the analysis methodology used to extrapolate the lift coefficient data. Comparative testing should also be conducted in the wind tunnel to obtain directly comparable data to the fluid certification boundary layer displacement thickness (BLDT) results. This data could provide insight for developing a correlation between the lift losses observed in the wind tunnel and the fluid certification test.

This page intentionally left blank.

SOMMAIRE

Dans le cadre d'un contrat avec le Centre de développement des transports (CDT) et avec l'appui financier de la Federal Aviation Administration (FAA), APS Aviation Inc. (APS) a entrepris des activités de recherche visant à faire progresser les technologies associées au dégivrage et à l'antigivrage d'aéronefs au sol. APS a mené une série d'essais pleine grandeur dans la soufflerie de givrage à propulsion et à circuit ouvert de 3 m sur 6 m du Conseil national de recherches Canada (CNRC), afin de déterminer les caractéristiques de ruissellement du liquide d'antigivrage avec et sans conditions de précipitations mixtes avec granules de glace.

Contexte et objectif

Avant l'hiver 2006-2007, il n'y avait pas de lignes directrices sur les durées d'efficacité (HOT) dans des conditions de granules de glace, mais les aéronefs pouvaient quand même partir dans des conditions de granules de glace, après un dégivrage et une vérification de contamination avant le décollage. Ce protocole était acceptable pour les aéronefs de transport équipés de fenêtres d'issues de secours au-dessus du bord d'attaque de l'aile de l'aéronef ; cependant, il causait un problème important dans le cas d'aéronefs de transport offrant une visibilité limitée des ailes à partir de la cabine.

Le 22 décembre 2004, les aéronefs de United Parcel Service (UPS) à Louisville ont été interdits de vol pendant plusieurs heures en raison de conditions prolongées de granules de glace. Étant donné la configuration des aéronefs cargos, l'équipage ne pouvait effectuer les inspections de contamination avant le décollage. L'entreprise FedEx a connu des problèmes semblables à Memphis. Après cet incident, la FAA a publié, en octobre 2005, deux avis de restriction de décollage dans des conditions de granules de glace.

En raison de cet incident coûteux, UPS s'est efforcée d'obtenir des données expérimentales afin de définir des lignes directrices et de permettre le maintien des activités dans des conditions de granules de glace. Durant l'hiver 2004-2005, des essais aérodynamiques et de durée d'efficacité ont été menés dans des conditions simulées de granules de glace. APS a également mené quelques essais préliminaires sur plaque plane [voir le rapport de Transports Canada (TC), TP 14718E, *Preliminary Endurance Time Testing in Simulated Ice Pellet Conditions* (1)]. À la lumière des données préliminaires, une marge de tolérance de 20 minutes a été proposée pour les conditions de granules de glace légers ; toutefois, aucun changement n'a été apporté aux lignes directrices sur les durées d'efficacité.

Au cours de l'hiver 2006-2007, la FAA a établi une marge de tolérance de 25 minutes à titre de ligne directrice préliminaire ; TC a publié une note selon laquelle

aucun changement ne serait apporté aux lignes directrices sur les durées d'efficacité. Cette marge s'appuyait sur des études antérieures menées à l'hiver 2005-2006, principalement à la suite de l'essai aérodynamique sur le Falcon 20 [voir le rapport de TC, TP 14716E, *Falcon 20 Trials to Examine Fluid Removed from Aircraft During Take off with Ice Pellets* (2)] ; ces résultats ont été présentés à la réunion de la Society of Automotive Engineers (SAE) à Lisbonne en mai 2006. Afin de prendre en compte l'option d'inspection de contamination avant le décollage, la marge visée de 20 minutes a été prolongée à 25 minutes ; par conséquent, les vérifications de contamination avant le décollage ne s'appliqueraient plus. Cette marge était suivie d'une liste de conditions ; l'une des restrictions s'appliquait aux manœuvres dans des conditions de granules de glace seulement (et non dans des conditions mixtes).

En raison des conditions fréquentes de granules de glace combinées à la pluie verglaçante ou à la neige, l'industrie a demandé des lignes directrices additionnelles pour les opérations dans des conditions mixtes de granules de glace. Au cours de l'hiver 2006-2007, des recherches additionnelles aérodynamiques et sur les durées d'efficacité ont été menées dans des conditions simulées de granules de glace.

Au cours de l'hiver 2007-2008, TC et la FAA ont donné des lignes directrices sur les marges de tolérance pour les opérations dans des conditions mixtes avec granules de glace. Ces marges de tolérance étaient fondées sur la recherche menée au cours de l'hiver 2006-2007 [voir le rapport de TC, TP 14779E, *Development of Allowance Times for Aircraft Deicing Operations During Conditions with Ice Pellets* (3)]. Les marges de tolérance recommandées étaient fondées sur les essais aérodynamiques menés dans la soufflerie de givrage à propulsion et sur l'aéronef Falcon 20 du CNRC ; ces résultats ont été présentés à la réunion de la SAE à San Diego en mai 2007. Les lignes directrices sur les marges de tolérance ont été suivies d'une liste de restrictions fondées sur les résultats de la recherche et le manque de données dans des conditions précises.

Au cours de l'hiver 2007-2008, des essais additionnels de durées d'efficacité et de la recherche aérodynamique ont été menés pour confirmer et compléter les marges de tolérance dans les granules de glace [voir le rapport de TC, TP 14871E, *Research for Further Development of Ice Pellet Allowance Times: Aircraft Trials to Examine Anti-Icing Fluid Flow-off Characteristics Winter 2007-08* (4)]. Des essais pleine grandeur sur les aéronefs Falcon 20 et T-33 du CNRC ont été menés dans des conditions mixtes avec granules de glace et en absence de précipitation. Les essais visaient principalement la simulation d'aéronefs à basse vitesse de rotation. En l'absence de données aérodynamiques, aucun changement aux marges de tolérance n'a été apporté à la suite de ces travaux.

Au cours de l'hiver 2008-2009, des essais ont été réalisés dans la soufflerie de givrage à propulsion à l'aide d'un profil d'aile LS-0417 de la National Aeronautics and Space Administration (NASA) afin de valider et, possiblement, d'élargir les marges

de tolérance. À la suite de ces essais, la marge de tolérance pour les conditions de granules de glace légers avec neige modérée a été réduite pour les températures ambiantes supérieures à -5 °C, passant de 25 minutes à 10 minutes. Les essais ont aussi permis de développer le tableau pour y inclure une nouvelle marge de tolérance de 25 minutes pour les conditions de granules de glace légers avec pluie modérée à des températures supérieures à -5 °C, de même qu'une nouvelle marge de tolérance de 15 minutes pour les conditions de granules de glace légers avec neige légère à des températures de -5 °C à -10 °C. Une nouvelle version actualisée du tableau des marges de tolérance pour les liquides de type IV a été élaborée et adoptée pour la version 2009-2010 des lignes directrices sur les durées d'efficacité. Il a été recommandé de réaliser d'autres essais dans la soufflerie de givrage à propulsion au cours de l'hiver 2009-2010 sur une surface portante supercritique afin de valider la marge de tolérance à utiliser avec les aéronefs de nouvelle génération.

Une série d'essais ont été conçus et réalisés au cours de l'hiver 2009-2010 afin de valider les lignes directrices actuelles dans des conditions mixtes et de granules de glace pour les nouvelles générations d'aéronefs équipés d'ailes supercritiques. Les essais ont été effectués avec et sans contamination. Ils avaient pour but de valider et de développer des marges de tolérance pour les applications suivantes :

• Liquide de type IV – accélération à haute vitesse (des marges de tolérance sont actuellement disponibles).

Conclusions and observations

Marges de tolérance pour les liquides de type IV à haute vitesse

Comparativement aux essais antérieurs réalisés sur d'autres surfaces portantes, des problèmes de ruissellement ont été observés sur l'aile supercritique lors des essais sur les liquides à base de propylène glycol à basse température. Plus précisément, des pertes de portance de plus de 8 pour cent ont été enregistrées sur le modèle bidimensionnel dans des conditions de granules de glace légers et modérés à des températures inférieures à -10 °C ; des observations visuelles ont étayé les données recueillies sur la perte de portance. Par conséquent, plutôt que de restreindre les marges de tolérance des liquides à base d'éthylène glycol seulement, les données sur les liquides à base de propylène glycol ont été analysées de nouveau en simulant des vitesses de rotation plus élevées. L'analyse démontre que les marges de tolérance seraient acceptables à des vitesses de rotation de 115 nœuds ou plus (plutôt qu'à des vitesses de 100 nœuds ou plus). Il a été recommandé d'inclure au tableau des marges de tolérance de l'hiver 2010-2011 une note de bas de page limitant l'utilisation de liquides à base de propylène glycol aux aéronefs dont les vitesses de

rotation sont supérieures à 115 nœuds dans des conditions de granules de glace légers ou modérés à des températures au-dessous de -10 °C.

En outre, des pertes d'efficacité ont été observées sur l'aile supercritique avec les liquides à base de propylène glycol dans des conditions de granules de glace modérés à des températures supérieures à -5 °C. La surface relativement plane de l'aile entravait le ruissellement des liquides à base de propylène glycol, ce qui se soldait par une perte d'efficacité précoce. Les données ont démontré qu'une marge de tolérance de 15 minutes serait plus appropriée. Il a été recommandé d'inclure au tableau des marges de tolérance de l'hiver 2010-2011 une note de bas de page réduisant la marge de tolérance des liquides à base de propylène glycol à 15 minutes dans des conditions de granules de glace modérés à des températures supérieures à -5 °C.

En général, il a été constaté que les essais réalisés dans toute autre condition généraient des pertes de portance acceptables selon les critères d'évaluation actuels, c'est-à-dire qu'une perte de moins de 5 pour cent était considérée comme correcte et une perte de 5 pour cent à 8 pour cent était considérée comme acceptable ; les essais entraînant une perte de portance de plus de 8 pour cent étaient considérés comme « mauvais » et nécessitaient un examen plus poussé. Le liquide à base d'éthylène glycol générait habituellement de meilleurs résultats, surtout à basse température, et entraînait une perte de portance moindre que le liquide à base de propylène glycol.

En général, les pertes de portance observées sur l'aile supercritique étaient plus importantes que celles observées sur les ailes testées auparavant. Au départ, le seuil initial pour évaluer chaque essai était fixé à 5 pour cent ; il a toutefois été augmenté à 8 pour cent à la lumière des données recueillies. Une perte de portance de 8 pour cent concordait bien avec les observations visuelles enregistrées. D'autres analyses combinées avec des essais en soufflerie et sur des aéronefs pleine grandeur devraient être réalisées afin d'établir une corrélation entre les pertes de portance observées dans la soufflerie et celles constatées sur un aéronef en mouvement équipé d'ailes supercritiques de nouvelle génération.

Comparaison des résultats des essais sur l'épaisseur de déplacement de la couche limite pour la certification des liquides et des résultats sur la perte de portance dans la soufflerie du CNRC

Les résultats bidimensionnels préliminaires tirés de cette analyse indiquent qu'une perte de portance de 5 pour cent pourrait ne pas être un seuil approprié. Lorsqu'une corrélation est établie avec les résultats des essais de certification des liquides, il semble qu'un seuil plus élevé conviendrait davantage selon les données sur les liquides Launch, ABC-S Plus et EG106. D'autres essais devraient être réalisés afin de simuler les résultats des essais de certification des liquides dans la soufflerie du CNRC à des températures précises afin d'étayer la corrélation observée dans cette analyse préliminaire.

Volet rentré (relevé) ou déployé (abaissé)

En général, les résultats ont démontré qu'un volet très contaminé pourrait nuire à la performance aérodynamique. Les résultats des essais ont indiqué une amélioration moyenne du taux de perte de portance de 1,4 pour cent (avec un maximum de 3,4 pour cent) lorsque le volet était relevé (rentré) durant la période de contamination. Il est possible de supposer que le volet connaîtra une défaillance plus rapidement que la section principale de l'aile par un facteur inférieur à 60 pour cent (probablement plus près de 50 pour cent par rapport au temps de protection de la section principale de l'aile). Il est toutefois nécessaire de recueillir des données comparant des niveaux égaux de contamination sur la principale section de l'aile et sur le volet afin de fournir une estimation adéquate.

Recommandations

Nouveau tableau des marges de tolérance pour les liquides de type IV à haute vitesse

Une nouvelle version actualisée du tableau des marges de tolérance pour les liquides de type IV a été élaborée et adoptée pour la version 2009-2010 des lignes directrices sur les durées d'efficacité. Ces travaux ont été présentés à la réunion du G-12 de la SAE, à Charleston, en mai 2009.

Travaux à venir

Marges de tolérance pour les liquides de type IV à haute vitesse

Les données météorologiques hivernales historiques ont démontré qu'une partie importante des précipitations sous forme de « granules de glace légers avec neige légère » se produisent à des températures inférieures à -10 °C, tandis que les précipitations sous forme de « granules de glace légers avec neige modérée » se produisent à des températures entre -5 et -10 °C, une plage où aucune marge de tolérance n'est établie. Les futures recherches devraient porter sur ces conditions afin de donner une plus grande flexibilité aux exploitants dans des conditions de granules de glace avec neige légère ou modérée.

Des essais supplémentaires sont aussi recommandés dans des conditions de granules de glace légers et modérés à des températures se rapprochant du seuil inférieur de la plage allant de -10 à -25 °C (où les données sont limitées), de même que dans des conditions de granules de glace modérés à des températures supérieures à -5 °C afin de valider les changements apportés au tableau des marges de tolérance pour l'hiver 2010-2011. Les essais devraient également inclure différents liquides afin de valider les marges de tolérance actuelles.

Essais et analyses supplémentaires afin d'étudier davantage la diminution de portance sur les ailes supercritiques

D'autres analyses combinées avec des essais en soufflerie et sur des aéronefs pleine grandeur devraient être réalisées afin d'établir une corrélation entre les pertes de portance observées dans la soufflerie et celles constatées sur un aéronef en mouvement équipé d'ailes supercritiques de nouvelle génération. Des essais en grandeur réelle sur l'aéronef Falcon 20 du CNRC ou Global Express du centre technique de la FAA pourraient être menés afin de valider les résultats obtenus en soufflerie. D'autres essais devraient aussi être menés en soufflerie afin d'étudier l'augmentation du ruissellement du liquide à des vitesses de rotation plus élevées (100 nœuds par rapport à 115 nœuds) et de valider la méthode d'analyse utilisée pour extrapoler les données sur les coefficients de portance. Des essais comparatifs devraient également être réalisés dans la soufflerie afin d'obtenir des données pouvant être directement comparées aux résultats des essais d'épaisseur de déplacement de la couche limite (EDCL) pour la certification des liquides. Ces données pourraient orienter l'établissement d'une corrélation entre les pertes de portance observées dans la soufflerie et les essais de certification des liquides.

CONTENTS

Page

1.	INTRO	DDUCTION	1
	1.1 1.2 1.3 1.4 1.5 1.6	Background Program Objectives Previous Falcon 20 Full-Scale Testing Previous NRC Wind Tunnel Full-Scale Testing Overview of 2009-10 Testing Report Format	2 3 4 5 6 8
2.	METH	IODOLOGY	9
	2.1 2.2 2.3 2.4 2.5	Wind Tunnel Test Site Test Schedule Wind Tunnel Procedure Test Sequence Wind Tunnel	9 10 11 11 12
		 2.5.1 Generic Supercritical Wing Section	12 13 14 15
	2.6 2.7	Equipment	16 16 16 16 17
	2.8	Simulated Precipitation Related Equipment	17 17 18
	2.9 2.10 2.11	Definition of Precipitation Rates Video and Photo Equipment Additional Photos Taken During Precipitation Phase	19 19 20
	2.12 2.13 2.14	Vaste Fluid Collection Personnel	21 21 21 21
	2.15	2.15.1 Measurement of Test Parameters 2.15.1 Measurement Locations 2.15.2 Fluid Thickness 2.15.3 Wing Skin Temperature	22 22 23 24 25
	2.16 2.17	2.15.4 Fluid Brix Data Forms. General Methodology 2.17.1 Refractometer 2.17.2 Temperature Sensor 2.17.3 Thickness Gauges 2.17.4 Viscometer 2.17.5 Fluids	25 25 26 26 26 32 32 32 34
3.	FULL	SCALE DATA COLLECTED	47
	3.1	Test Log	47
4.	ANAL	YSIS METHODOLOGY	55
	4.1 4.2	Visual Contamination Ratings Lift Coefficient Data	55 56

		4.2.1 Sequence of When Test Parameters Were Recorded	. 56
	4.3	Analysis Summary Worksheets	. 57
	4.4	4.4.1 Methodology Used for 2006 07 vs. 2008 09	. 59 50
		4.4.7 Methodology Used for 2009-10 vs. 2008-09	. 59
-			
5.	ADDI	THUNAL ANALYSIS OF TEST PARAMETERS AND TESTING METHODOLOGIES USED.	. 01
	5.1	Tunnel Measurement Repeatability	. 61
	5.2	Comparison of Experimental vs. Simulated Lift Profile	. 64
	5.3	5.3.1 Methodology	. 65
		5.3.2 General Observations	. 66
		5.3.3 Conclusion	. 69
	5.4	Regression Analysis of Lift Loss vs. Leading Edge Visual Rating at Rotation	. 69
		5.4.1 Methodology	. 69
		5.4.2 General Observations	. 70
		5.4.3 Detailed Analysis of Data Points Selected for Regression	. 72
	5.5	Effect of Wing Surface Slope on Fluid Failure Mechanism	. //
	5.6	Analysis of Associated Test Temperature Used for Development of Allowance	78
	5.7	Analysis of NRC vs. APS Recorded Wing Skin Temperature	. 81
	5.8	Analysis of Wind Tunnel Ramp-Up Time	. 81
	5.9	6° vs. 8° Rotation Lift Coefficient Analysis	. 85
	5.10	Comparison of Fluid Certification BLDT Results vs. NRC Wind Tunnel Lift Loss Results	88
		5.10.1 Detailed Correlation of Lift Loss and BLDT	. 90
	5.11	Extrapolation of Test Results for 110-120 Knots Rotation Speeds	. 92
		E 11 1 Mathadalami	
		5.11.1 Methodology	. 92
6.	LIGH	T ICE PELLET ALLOWANCE TIMES	. 92 . 97
6.	LIGH ⁻ 6.1	TICE PELLET ALLOWANCE TIMES	. 92 . 97 . 97
6.	LIGH 6.1 6.2	TICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected	. 92 . 97 . 97 101
6.	LIGH 6.1 6.2	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data	. 92 . 97 . 97 101 101
6.	LIGH 6.1 6.2	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data	. 92 . 97 . 97 101 101 106
6.	LIGH ⁻ 6.1 6.2	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data	. 92 . 97 101 101 106 108
6.	LIGH ⁻ 6.1 6.2	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos	. 92 . 97 101 101 106 108 111
6.	LIGH [*] 6.1 6.2 6.3 6.4	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1	. 92 . 97 101 101 106 108 111 111
6.	LIGH [•] 6.1 6.2 6.3 6.4	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Lass than 5°C to 10°C	. 92 . 97 101 101 106 108 111 111 111
6.	LIGH [*] 6.1 6.2 6.3 6.4	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C	. 92 . 97 101 101 106 108 111 111 111 112 113
6 . 7 .	LIGH [*] 6.1 6.2 6.3 6.4	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C	. 92 . 97 101 101 106 108 111 111 111 112 113 165
6. 7.	LIGH ^{**} 6.1 6.2 6.3 6.4 MOD	5.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C ERATE ICE PELLET ALLOWANCE TIMES	. 92 . 97 . 97 101 101 106 108 111 111 111 111 112 113 165
6 . 7 .	LIGH [*] 6.1 6.2 6.3 6.4 MOD 7.1 7.2	S.TT.T Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C ERATE ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected	. 92 . 97 101 101 106 108 111 111 111 112 113 165 165
6.	LIGH ⁷ 6.1 6.2 6.3 6.4 MOD 7.1 7.2	S.TT.T Methodology T ICE PELLET ALLOWANCE TIMES Data Collected	. 92 . 97 . 97 101 101 106 108 111 111 111 112 113 165 165 167
6.	LIGH [*] 6.1 6.2 6.3 6.4 MOD 7.1 7.2	S.TT.T Methodology T ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C ERATE ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 7.2.1 Fluid Thickness Data 7.2.2 Skin Temperature Data	. 92 . 97 . 97 101 100 108 111 111 111 112 113 165 165 167 167
6.	LIGH ^{**} 6.1 6.2 6.3 6.4 MOD 7.1 7.2	S.TT.T Methodology T ICE PELLET ALLOWANCE TIMES Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C ERATE ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 7.2.1 Fluid Thickness Data 7.2.2 Skin Temperature Data 7.2.3 Fluid Brix Data	. 92 . 97 101 101 106 108 111 111 111 112 113 165 165 167 167 172
6.	LIGH [*] 6.1 6.2 6.3 6.4 MOD 7.1 7.2	S.TT.T Methodology T ICE PELLET ALLOWANCE TIMES Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C ERATE ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 7.2.1 Fluid Thickness Data 7.2.2 Skin Temperature Data 7.2.3 Fluid Brix Data Photos	. 92 . 97 101 101 106 108 111 111 111 112 113 165 167 167 172 176 178
6.	LIGH [*] 6.1 6.2 6.3 6.4 MOD 7.1 7.2 7.3 7.4	S. T1. F Methodology T ICE PELLET ALLOWANCE TIMES Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C ERATE ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 7.2.1 Fluid Thickness Data 7.2.2 Skin Temperature Data 7.2.3 Fluid Brix Data Photos	. 92 . 97 . 97 101 100 108 111 111 112 113 165 167 167 167 172 176 178
6. 7.	LIGH ^{**} 6.1 6.2 6.3 6.4 MOD 7.1 7.2 7.3 7.4	S.11.1 Methodology T ICE PELLET ALLOWANCE TIMES Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C ERATE ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 7.2.1 Fluid Thickness Data 7.2.2 Skin Temperature Data 7.2.3 Fluid Brix Data Photos Summary of Results 7.2.3 Fluid Brix Data 7.2.4 Not Performed to the performance of the performance	. 92 . 97 . 97 101 100 108 111 111 111 112 113 165 167 167 172 176 178 179
6.	LIGH [*] 6.1 6.2 6.3 6.4 MOD 7.1 7.2 7.3 7.4	S.11.1 Wethodology T ICE PELLET ALLOWANCE TIMES Data Collected 6.2.1 Fluid Thickness Data 6.2.2 Skin Temperature Data 6.2.3 Fluid Brix Data Photos Summary of Results 6.4.1 OAT -5°C and Above 6.4.2 OAT Less than -5°C to -10°C 6.4.3 OAT Less than -10°C ERATE ICE PELLET ALLOWANCE TIMES Overview of Tests Data Collected 7.2.1 Fluid Thickness Data 7.2.2 Skin Temperature Data 7.2.3 Fluid Brix Data Photos Summary of Results 7.4.1 OAT -5°C and Above 7.4.1 OAT -5°C and Above 7.4.2 OAT Less than -10°C	. 92 . 97 . 97 101 100 108 111 111 111 112 113 165 167 167 172 176 178 179 179

8.	LIGH	ICE PE	LLETS MIXED WITH LIGHT FREEZING RAIN ALLOWANCE TIMES	239
	8.1 8.2 8.3	Overvie Data Co 8.2.1 8.2.2 8.2.3 Photos	w of Tests bllected Fluid Thickness Data Skin Temperature Data Fluid Brix Data	239 241 241 244 246 248
	8.4	Summa 8.4.1 8.4.2	ry of Results OAT -5°C and Above OAT Less than -5°C to -10°C	248 248 253
9.	LIGH	ICE PE	LLETS MIXED WITH MODERATE RAIN ALLOWANCE TIMES	279
	9.1 9.2 9.3 9.4	Overvie Data Co 9.2.1 9.2.2 9.2.3 Photos Summa 9.4.1	w of Tests ollected Fluid Thickness Data Skin Temperature Data Fluid Brix Data ry of Results OAT -5°C and Above	279 281 283 283 284 285 285 285 285
10.	LIGH	ICE PE	LLETS MIXED WITH LIGHT SNOW ALLOWANCE TIMES	305
	10.1 10.2 10.3 10.4	Overvie Data Co 10.2.1 10.2.2 10.2.3 Photos Summa 10.4.1 10.4.2 10.4.3	w of Tests pllected	 305 307 307 311 313 316 316 316 316 319 319
11.	LIGH	ICE PE	LLETS MIXED WITH MODERATE SNOW ALLOWANCE TIMES	359
	11.1 11.2 11.3 11.4	Overvie Data Co 11.2.1 11.2.2 11.2.3 Photos Summa 11.4.1 11.4.2 11.4.3	w of Tests ollected Fluid Thickness Data Skin Temperature Data Fluid Brix Data ry of Results OAT -5°C and Above OAT Less than -5°C to -10°C OAT Less than -10°C	359 361 365 367 369 370 370 370 373 373
12.	FLAP	RETRAC	CTED (UP) VS. FLAP EXTENDED (DOWN)	413
	12.1 12.2 12.3	Backgro Overvie Data Co 12.3.1 12.3.2 12.3.3	bund bw of Tests bllected Fluid Thickness Data Skin Temperature Data Fluid Brix Data	413 413 415 415 417 417

	12.4 Photos12.5 Summary of Results12.6 Additional Analysis of Flap Failure	419 420 422
13.	CONCLUSIONS AND OBSERVATIONS	441
	 13.1 Type IV High-Speed Allowance Times 13.2 Lift Coefficient Data vs. Visual Contamination Ratings 13.3 Comparison of Fluid Certification BLDT Results vs. NRC Wind Tunnel Lift Loss 	441 442
	Results13.4 Probability of Ice Pellet Occurrences for Use with Allowance Times13.5 Flap Retracted (UP) vs. Flap Extended (DOWN)	442 442 444
14.	RECOMMENDATIONS	445
	 14.1 Newly Proposed (and Adopted) Type IV High-Speed Allowance Time Table 14.2 Future Research	445 446 446
	14.2.1 Type IV High-Speed Allowance Times	446
REFE	RENCES	449

LIST OF APPENDICES

- A Transportation Development Centre Work Statement Excerpt Aircraft & Anti-Icing Fluid Winter Testing 2009-10
- B Procedure: Wind Tunnel Tests to Examine Fluid Removed from Aircraft During Takeoff with Mixed Ice Pellet Precipitation Conditions
- C Wing Coordinates
- D Lift Coefficient Data Provided by NRC
- E Ice Pellet Allowance Times Summary Sheets
- F Additional Notes and Observations at NRC Wind Tunnel

LIST OF TABLES

Page

Table 1.1: Timeline of Developed Allowance Time Guidance Material	4
Table 1.2: Summary of 2009-10 Wind Tunnel Tests by Objective	7
Table 1.3: Summary of 2009-10 Secondary R&D Objectives	7
Table 2.1: Calendar of Tests	. 10
Table 2.2: Freezing Point vs. Brix of Aqueous Solutions of Kilfrost ABC-S Plus	. 27
Table 2.3: Dilution Chart for Clariant MPIII 2031 ECO	. 28
Table 2.4: Dilution Chart for Octagon Octaflo Type I	. 28
Table 2.5: Dilution Chart for Clariant MPIV Launch	. 29
Table 2.6: Brix to Refractive Index Conversion Chart	. 30
Table 2.7: Film Thickness Conversion Table	. 33
Table 2.8: Test Fluids	. 35
Table 3.1: Wind Tunnel Test Log	. 50
Table 5.1: Summary of Regression Coefficients - Analysis Results	. 67
Table 5.2: Summary of R-Squared Values from Regression Analysis	. 72
Table 5.3: Comparison of Instantaneous vs. 10-Minute Average Air Temperature During Wind Tunnel Tests	. 79
Table 5.4: Comparison of 2006-07 vs. 2009-10 Difference Between Instantaneous and	
10-Minute Average Air Temperature During Wind Tunnel Tests	. 80
Table 5.5: Wing Skin Temperature Comparison – NRC vs. APS	. 82
Table 5.6: Analysis of Wind Tunnel Ramp-Up Time	. 84
Table 5.7: Comparison of Lift Losses Using 6° and 8° CL for Ice Pellet Tests	. 86
Table 5.8: Comparison of Greater than 5% Lift Losses Using 6° and 8° CL for Ice Pellet Tests	. 87
Table 5.9: Comparison of Lift Losses Using 6° and 8° CL for Fluid-Only Tests	. 87
Table 5.10: Description of Different Regression Methods Used for Extrapolation to 110, 115,	
and 120 Knots	. 96
Table 6.1: Summary of 2009-10 Light Ice Pellet Testing	100
Table 6.2: Test #9 Fluid Thickness Data	101
Table 6.3: Test #22 Fluid Thickness Data	101
Table 6.4: Test #28 Fluid Thickness Data	102
Table 6.5: Test #28A Fluid Thickness Data	102
Table 6.6: Test #65 Fluid Thickness Data	102
Table 6.7: Test #66 Fluid Thickness Data	102
Table 6.8: Test #67 Fluid Thickness Data	103
Table 6.9: Test #68 Fluid Thickness Data	103
Table 6.10: Test #69 Fluid Thickness Data	103
Table 6.11: Test #80 Fluid Thickness Data	103
Table 6.12: Test #96 Fluid Thickness Data	104
Table 6.13: Test #1 (Baseline) Fluid Thickness Data	104
Table 6.14: Test #25 (Baseline) Fluid Thickness Data	104
Table 6.15: Test #29 (Baseline) Fluid Thickness Data	104
Table 6.16: Test #64 (Baseline) Fluid Thickness Data	105
Table 6.17: Test #70 (Baseline) Fluid Thickness Data	105
Table 6.18: Test #75 (Baseline) Fluid Thickness Data	105
Table 6.19: Test #100 (Baseline) Fluid Thickness Data	105
Table 6.20: Test #9 Wing Skin Temperature Data	106
Table 6.21: Test #22 Wing Skin Temperature Data	106
Table 6.22: Test #28 Wing Skin Temperature Data	106
Table 6.23: Test #28A Wing Skin Temperature Data	106
Table 6.24: Test #65 Wing Skin Temperature Data	107
Table 6.25: Test #66 Wing Skin Temperature Data Test Test #66 Wing Skin Temperature Data	107
Table 6.26: Test #67 Wing Skin Temperature Data	107

Table 6.27: Test #68 Wing Skin Temperature Data	107
Table 6.28: Test #69 Wing Skin Temperature Data	107
Table 6.29: Test #80 Wing Skin Temperature Data	107
Table 6.30: Test #96 Wing Skin Temperature Data	107
Table 6.31: Test #1 (Baseline) Wing Skin Temperature Data	107
Table 6.32: Test #25 (Baseline) Wing Skin Temperature Data	108
Table 6.33: Test #29 (Baseline) Wing Skin Temperature Data	108
Table 6.34: Test #64 (Baseline) Wing Skin Temperature Data	108
Table 6.35: Test #70 (Baseline) Wing Skin Temperature Data	108
Table 6.36: Test #75 (Baseline) Wing Skin Temperature Data	108
Table 6.37: Test #100 (Baseline) Wing Skin Temperature Data	108
Table 6.38: Test #9 Fluid Brix Data	109
Table 6.39: Test #22 Fluid Brix Data	109
Table 6.40: Test #28 Fluid Brix Data	109
Table 6.41: Test #28A Fluid Brix Data	109
Table 6.42: Test #65 Fluid Brix Data	109
Table 6.43: Test #66 Fluid Brix Data	109
Table 6.44: Test #67 Fluid Brix Data	109
Table 6.45: Test #68 Fluid Brix Data	109
Table 6.46: Test #69 Fluid Brix Data	109
Table 6.47: Test #80 Fluid Brix Data	109
Table 6.48: Test #96 Fluid Brix Data	110
Table 6.49: Test #1 (Baseline) Fluid Brix Data	110
Table 6.50: Test #25 (Baseline) Fluid Brix Data	110
Table 6.51: Test #29 (Baseline) Fluid Brix Data	110
Table 6.52: Test #64 (Baseline) Fluid Brix Data	110
Table 6.53: Test #70 (Baseline) Fluid Brix Data	110
Table 6.54: Test #75 (Baseline) Fluid Brix Data	110
Table 6.55: Test #100 (Baseline) Fluid Brix Data	110
Table 6.56: Light Ice Pellets Allowance Time Tests Winter 2009-10	114
Table 6.57: Summary of Light Ice Pellets Allowance Time Test Results	115
Table 6.58: Details of Increased Rotation Speed Analysis	116
Table 7.1: Summary of 2009-10 Moderate Ice Pellet Testing	166
Table 7.2: Test #10 Fluid Thickness Data	167
Table 7.3: Test #10A Fluid Thickness Data	167
Table 7.4: Test #10B Fluid Thickness Data	168
Table 7.5: Test #21 Fluid Thickness Data	168
Table 7.6: Test #47 Fluid Thickness Data	168
Table 7.7: Test #48 Fluid Thickness Data	168
Table 7.8: Test #49 Fluid Thickness Data	169
Table 7.9: Test #71 Fluid Thickness Data	169
Table 7.10: Test #72 Fluid Thickness Data	169
Table 7.11: Test #73 Fluid Thickness Data	169
Table 7.12: Test #74 Fluid Thickness Data	170
Table 7.13: Test #95 Fluid Thickness Data	170
Table 7.14: Test #1 (Baseline) Fluid Thickness Data	170
Table 7.15: Test #29 (Baseline) Fluid Thickness Data	170
Table 7.16: Test #54 (Baseline) Fluid Thickness Data	171
Table 7.17: Test #55 (Baseline) Fluid Thickness Data	171
Table 7.18: Test #60 (Baseline) Fluid Thickness Data	1 7 1
	171
Table 7.19: Test #64 (Baseline) Fluid Thickness Data	171
Table 7.19: Test #64 (Baseline) Fluid Thickness Data Table 7.20: Test #70 (Baseline) Fluid Thickness Data	171 171 172

Table 7.22: Test #76 (Baseline) Fluid Thickness Data	172
Table 7.23: Test #10 Wing Skin Temperature Data	173
Table 7.24: Test #10A Wing Skin Temperature Data	173
Table 7.25: Test #10B Wing Skin Temperature Data	173
Table 7.26: Test #21 Wing Skin Temperature Data	173
Table 7.27: Test #47 Wing Skin Temperature Data	173
Table 7.28: Test #48 Wing Skin Temperature Data	173
Table 7.29: Test #49 Wing Skin Temperature Data	174
Table 7.30: Test #71 Wing Skin Temperature Data	174
Table 7 31: Test #72 Wing Skin Temperature Data	174
Table 7 32: Test #73 Wing Skin Temperature Data	174
Table 7 33: Test #74 Wing Skin Temperature Data	174
Table 7.34: Test #95 Wing Skin Temperature Data	174
Table 7 35: Test #1 (Baseline) Wing Skin Temperature Data	174
Table 7 36: Test #29 (Baseline) Wing Skin Temperature Data	174
Table 7.37: Test #54 (Baseline) Wing Skin Temperature Data	175
Table 7.37. Test #54 (Daseline) Wing Skin Temperature Data	175
Table 7.30: Test #60 (Baseline) Wing Skin Temperature Data	175
Table 7.39. Test #60 (Baseline) Wing Skin Temperature Data	175
Table 7.40. Test #04 (Baseline) Wing Skin Temperature Data	175
Table 7.41. Test #70 (Daseline) Wing Skin Temperature Data	175
Table 7.42. Test #75 (Baseline) Wing Skin Temperature Data	175
Table 7.43. Test #10 (baseline) Wing Skill Temperature Data	170
Table 7.44: Test #10 Fluid Brix Data	170
Table 7.45: Test #TOA Fluid Bitx Data	170
Table 7.40: Test #108 Fluid Brix Data	170
Table 7.47: Test #21 Fluid Brix Data	170
Table 7.46: Test #47 Fluid Brix Data	170
Table 7.49: Test #46 Fluid Brix Data	170
Table 7.50. Test #49 Fluid Brix Data	177
Table 7.51. Test #71 Fluid Drix Data	177
Table 7.52: Test #72 Fluid Ditk Data	177
Table 7.55. Test #75 Fluid Brix Data	177
Table 7.54. Test #74 Fluid Brix Data	177
Table 7.55: Test #35 Tulu Ditz Data	177
Table 7.50. Test #1 (Dasenine) Fluid Brix Data	177
Table 7.57. Test #23 (Daseline) Fluid Dix Data	177
Table 7.50: Test #54 (Daseline) Fluid Bitx Data	177
Table 7.60: Test #60 (Baseline) Fluid Brix Data	170
Table 7.60: Test #60 (Daseline) Fluid Bix Data	170
Table 7.67: Test #70 (Baseline) Fluid Brix Data	170
Table 7.62: Test #76 (Baseline) Fluid Bix Data	178
Table 7.64: Test #76 (Baseline) Fluid Brix Data	178
Table 7.65: Moderate Ice Pellets Allowance Time Tests Winter 2009-10	182
Table 7.66: Summary of Moderate Ice Pellets Allowance Time Test Results	184
Table 7 67: Details of Increased Rotation Sneed Analysis	185
Table 8.1: Summary of 2009-10 Light Ice Pellet Mixed with Light Freezing Rain Testing	240
Table 8 2: Test #0 Fluid Thickness Data	240
Table 8 3: Test #26 Fluid Thickness Data	241
Table 8 4: Test #26A Fluid Thickness Data	242
Table 8.5: Test #59 Fluid Thickness Data	242
Table 8.6: Test #63 Fluid Thickness Data	242
Table 8.7: Test #98 Fluid Thickness Data	242
	_

Table 8.8: Test #1 (Baseline) Fluid Thickness Data	243
Table 8.9: Test #25 (Baseline) Fluid Thickness Data	243
Table 8.10: Test #55 (Baseline) Fluid Thickness Data	243
Table 8.11: Test #60 (Baseline) Fluid Thickness Data	243
Table 8.12: Test #64 (Baseline) Fluid Thickness Data	244
Table 8.13: Test #100 (Baseline) Fluid Thickness Data	244
Table 8.14: Test #0 Wing Skin Temperature Data	244
Table 8.15: Test #26 Wing Skin Temperature Data	244
Table 8.16: Test #26A Wing Skin Temperature Data	245
Table 8.17: Test #59 Wing Skin Temperature Data	245
Table 8.18: Test #63 Wing Skin Temperature Data	245
Table 8.19: Test #98 Wing Skin Temperature Data	245
Table 8.20: Test #1 (Baseline) Wing Skin Temperature Data	245
Table 8.21: Test #25 (Baseline) Wing Skin Temperature Data	245
Table 8.22: Test #55 (Baseline) Wing Skin Temperature Data	245
Table 8.23: Test #60 (Baseline) Wing Skin Temperature Data	245
Table 8.24: Test #64 (Baseline) Wing Skin Temperature Data	246
Table 8.25: Test #100 (Baseline) Wing Skin Temperature Data	246
Table 8.26: Test #0 Fluid Brix Data	246
Table 8.27: Test #26 Fluid Brix Data	246
Table 8.28: Test #26A Fluid Brix Data	246
Table 8.29: Test #59 Fluid Brix Data	246
Table 8.30: Test #63 Fluid Brix Data	247
Table 8.31: Test #98 Fluid Brix Data	247
Table 8.32: Test #1 (Baseline) Fluid Brix Data	247
Table 8.33: Test #25 (Baseline) Fluid Brix Data	247
Table 8.34: Test #55 (Baseline) Fluid Brix Data	247
Table 8.35: Test #60 (Baseline) Fluid Brix Data	247
Table 8.36: Test #64 (Baseline) Fluid Brix Data	247
Table 8.37: Test #100 (Baseline) Fluid Brix Data	247
Table 8.38: Light Ice Pellets Mixed with Light Freezing Rain, Light or Moderate Freezing	
Drizzle, and Light Rain Allowance Time Tests Winter 2009-10	249
Table 8.39: Summary of Light Ice Pellets Mixed with Light Freezing Rain, Light or Moderate	
Freezing Drizzle, and Light Rain Allowance Time Test Results	250
Table 8.40: Details of Increased Rotation Speed Analysis	251
Table 9.1: Summary of 2009-10 Light Ice Pellets Mixed with Moderate Rain Testing	280
Table 9.2: Test #20 Fluid Thickness Data	281
Table 9.3: Test #44 Fluid Thickness Data	281
Table 9.4: Test #56 Fluid Thickness Data	282
Table 9.5: Test #56A Fluid Thickness Data	282
Table 9.6: Test #53 (Baseline) Fluid Thickness Data	282
Table 9.7: Test #55 (Baseline) Fluid Thickness Data	282
Table 9.8: Test #20 Wing Skin Temperature Data	283
Table 9.9: Test #44 Wing Skin Temperature Data	283
Table 9.10: Test #56 Wing Skin Temperature Data	283
Table 9.11: Test #56A Wing Skin Temperature Data	283
Table 9.12: Test #53 (Baseline) Wing Skin Temperature Data	284
Table 9.13: Test #55 (Baseline) Wing Skin Temperature Data	284
Table 9.14: Test #20 Fluid Brix Data	284
Table 9.15: Test #44 Fluid Brix Data	284
Table 9.16: Test #56 Fluid Brix Data	284
Table 9.17: Test #56A Fluid Brix Data	284
Table 9.18: Test #53 (Baseline) Fluid Brix Data	285

Table 9.19: Test #55 (Baseline) Fluid Brix Data	285
Table 9.20: Light Ice Pellets Mixed with Moderate Rain Allowance Time Tests Winter 2009-10	286
Table 9.21: Summary of Light Ice Pellets Mixed with Moderate Rain Allowance Time Test Results	287
Table 10.1: Summary of 2009-10 Light Ice Pellets Mixed with Light Snow Testing	306
Table 10.2: Test #5 Fluid Thickness Data	307
Table 10.3: Test #11 Fluid Thickness Data	307
Table 10.4: Test #23 Fluid Thickness Data	308
Table 10.5: Test #57 Fluid Thickness Data	308
Table 10.6: Test #57A Fluid Thickness Data	308
Table 10.7: Test #77 Fluid Thickness Data	308
Table 10.8: Test #78 Fluid Thickness Data	309
Table 10.9: Test #79 Fluid Thickness Data	309
Table 10.10: Test #94 Fluid Thickness Data	309
Table 10.11: Test #1 (Baseline) Fluid Thickness Data	309
Table 10.12: Test #4 (Baseline) Fluid Thickness Data	310
Table 10.13: Test #25 (Baseline) Fluid Thickness Data	310
Table 10.14: Test #29 (Baseline) Fluid Thickness Data	310
Table 10.15: Test #64 (Baseline) Fluid Thickness Data	310
Table 10.16: Test #75 (Baseline) Fluid Thickness Data	311
Table 10.17: Test #76 (Baseline) Fluid Thickness Data	311
Table 10.18: Test #5 Wing Skin Temperature Data	311
Table 10.19: Test #23 Wing Skin Temperature Data	311
Table 10.20: Test #11 Wing Skin Temperature Data	312
Table 10.21: Test #57 Wing Skin Temperature Data	312
Table 10.22: Test #57A Wing Skin Temperature Data	312
Table 10.23: Test #77 Wing Skin Temperature Data	
Table 10.24: Test #78 Wing Skin Temperature Data	312
Table 10.25: Test #79 Wing Skin Temperature Data	
Table 10.26: Test #94 Wing Skin Temperature Data	312
Table 10.27: Test #1 (Baseline) Wing Skin Temperature Data	312
Table 10.28: Test #4 (Baseline) Wing Skin Temperature Data	313
Table 10.29: Test #25 (Baseline) Wing Skin Temperature Data	
Table 10.30: Test #29 (Baseline) Wing Skin Temperature Data	
Table 10.31: Test #31 (Baseline) Wing Skin Temperature Data	313
Table 10.32: Test #32 (Baseline) Wing Skin Temperature Data	
Table 10.33: Test #76 (Baseline) Wing Skin Temperature Data	313
Table 10.34: Test #5 Fluid Brix Data	314
Table 10.35: Test #11 Fluid Brix Data	314
Table 10 36: Test #23 Fluid Brix Data	314
Table 10 37: Test #57 Fluid Brix Data	314
Table 10.38: Test #57A Fluid Brix Data	
Table 10.39: Test #77 Fluid Brix Data	
Table 10.40: Test #78 Fluid Brix Data	
Table 10.41: Test #79 Fluid Brix Data	314
Table 10.42: Test #94 Fluid Brix Data	315
Table 10.43: Test #1 (Baseline) Fluid Brix Data	
Table 10.44: Test #4 (Baseline) Fluid Brix Data	315
Table 10.45: Test #25 (Baseline) Fluid Brix Data	
Table 10.46: Test #29 (Baseline) Fluid Brix Data	
Table 10.47: Test #64 (Baseline) Fluid Brix Data	315
Table 10.48: Test #75 (Baseline) Fluid Brix Data	315

Table 10.49: Test #76 (Baseline) Fluid Brix Data	15
Table 10.50: Light Ice Pellets Mixed with Light Snow Allowance Time Tests Winter 2009-10 31	17
Table 10.51: Summary of Light Ice Pellets Mixed with Light Snow Allowance Time Test	
Results	18
Table 10.52: Details of Increased Rotation Speed Analysis	20
Table 11.1: Summary of 2009-10 Light Ice Pellets Mixed with Moderate Snow Testing	60
Table 11.2: Test #13 Fluid Thickness Data	61
Table 11.3: Test #14 Fluid Thickness Data	61
Table 11 4: Test #15 Fluid Thickness Data	62
Table 11 5: Test #16 Fluid Thickness Data	62
Table 11 6: Test #24 Fluid Thickness Data	62
Table 11 7: Test #58 Fluid Thickness Data	62
Table 11 8: Test #81 Fluid Thickness Data	63
Table 11 9: Test #82 Fluid Thickness Data	63
Table 11 10: Test #97 Fluid Thickness Data	63
Table 11 11: Test #17 (Baseline) Fluid Thickness Data	63
Table 11 12: Test #17 (Daseline) Fluid Thickness Data	67 67
Table 11 12: Test #60 (Baseline) Fluid Thickness Data	61 61
Table 11.13. Test #60 (Daseline) Fluid Thickness Data	64 67
Table 11 15: Test #75 (Baseline) Fluid Thickness Data	61 61
Table 11.16: Test #76 (Daseline) Fluid Thickness Data	04 65
Table 11 17: Test #10 (Baseline) Fluid Thickness Data	00 65
Table 11.17. Test #15 Wing Skin Temperature Data	00 65
Table 11.10. Test #14 Wing Skin Temperature Data	00
Table 11.20, Test #15 Wing Skin Temperature Data	50
Table 11.20. Test #10 Wing Skin Temperature Data	00 66
Table 11.21. Test #24 Wing Skin Temperature Data	00 66
Table 11.22. Test #50 Wing Skin Temperature Data	50
Table 11.23. Test #01 Wing Skin Temperature Data	66
Table 11.24. Test #02 Wing Skin Temperature Data	66
Table 11.25. Test #37 Wing Skin Temperature Data	66
Table 11.20. Test #17 (Daseline) Wing Skin Temperature Data	67
Table 11.27. Test #20 (Daseline) Wing Skin Temperature Data	67
Table 11.20: Test #60 (Baseline) Wing Skin Temperature Data	67
Table 11.20: Test #04 (Daseline) Wing Skin Temperature Data	67
Table 11 31: Test #76 (Baseline) Wing Skin Temperature Data	67
Table 11 32: Test #13 Eluid Briv Data	68
Table 11 33: Test #14 Fluid Brix Data	68
Table 11 34: Test #15 Fluid Brix Data	68
Table 11 35: Test #16 Fluid Brix Data	68
Table 11 36: Test #25 Fluid Brix Data	68
Table 11 37: Test #64 Fluid Brix Data	68
Table 11 38: Test #60 Fluid Brix Data	68
Table 11 39: Test #75 Fluid Brix Data	68
Table 11 40: Test #76 Fluid Brix Data	69
Table 11 41: Test #17 (Baseline) Fluid Brix Data	69
Table 11 42: Test #25 (Baseline) Fluid Brix Data	69
Table 11 43: Test #60 (Baseline) Fluid Brix Data	69
Table 11 44: Test #64 (Baseline) Fluid Brix Data	69
Table 11 45: Test #75 (Baseline) Fluid Brix Data	60
Table 11 46: Test #76 (Baseline) Fluid Brix Data	69
Table 11.47: Light Ice Pellets Mixed with Moderate Snow Allowance Time Tests Winter	
2009-10	71
	-

Table 11.48: Summary of Light Ice Pellets Mixed with Moderate Snow Allowance Time Test	070
Table 11.40. Details of Increased Detation Crossed Analysis	372
Table 11.49: Details of Increased Rotation Speed Analysis	3/4
Table 12.1: Summary of 2009-Flap Up Vs. Flap Down Testing	414
Table 12.2: Test #26 Fluid Thickness Data	415
	415
Table 12.4: Test #28 Fluid Thickness Data	416
Table 12.5: Test #28A Fluid Thickness Data	416
Table 12.6: Test #56 Fluid Thickness Data	416
Table 12.7: Test #56A Fluid Thickness Data	416
Table 12.8: Test #57 Fluid Thickness Data	417
Table 12.9: Test #57A Fluid Thickness Data	417
Table 12.10: Test #26 Wing Skin Temperature Data	417
Table 12.11: Test #26A Wing Skin Temperature Data	417
Table 12.12: Test #28 Wing Skin Temperature Data	418
Table 12.13: Test #28A Wing Skin Temperature Data	418
Table 12.14: Test #56 Wing Skin Temperature Data	418
Table 12.15: Test #56A Wing Skin Temperature Data	418
Table 12.16: Test #57 Wing Skin Temperature Data	418
Table 12.17: Test #57A Wing Skin Temperature Data	418
Table 12.18: Test #26 Fluid Brix Data	419
Table 12.19: Test #26A Fluid Brix Data	419
Table 12.20: Test #28 Fluid Brix Data	419
Table 12.21: Test #28A Fluid Brix Data	419
Table 12.22: Test #56 Fluid Brix Data	419
Table 12.23: Test #57 Fluid Brix Data	419
Table 12.24: Test #56A Fluid Brix Data	419
Table 12.25: Test #57A Fluid Brix Data	419
Table 12.26: Lift Loss Comparison for Flap Up vs. Flap Down Tests	420
Table 12.27: Analysis of Visual Failure Time on Flap vs. Main Wing Section	423
Table 14.1: 2010-11 Ice Pellet Allowance Time Table	445

LIST OF FIGURES

Page

Figure	2.1: Schematic of NRC Montreal Road Campus	. 9
Figure	2.2: Typical Wind Tunnel Test Timeline	12
Figure	2.3: Generic "Supercritical" Wing Section	13
Figure	2.4: End Plates Installed on Supercritical Wing Section	14
Figure	2.5: Location of RTDs Installed Inside Supercritical Wing	15
Figure	2.6: Precipitation Rate Breakdown	19
Figure	2.7: Measurement Locations Along Chord of Supercritical Wing Section	23
Figure	2.8: Freezing Point vs. Brix of Aqueous Solutions of Dow EG106	31
Figure	2.9: Thickness Gauges	32
Figure	5.1: Lift Coefficient Repeatability Example for IP	62
Figure	5.2: Lift Coefficient Repeatability Example for Type IV PG Fluid Only	62
Figure	5.3: Lift Coefficient Repeatability Example for Type IV EG Fluid Only	63
Figure	5.4: Dry Wing Lift Coefficient Repeatability Example	63
Figure	5.5: Comparison of Experimental vs. Simulated CL Data	64
Figure	5.6: Dow UCAR EG106 - Regression Analysis of LL vs. LE ROT	70
Figure	5.7: Clariant Launch - Regression Analysis of LL vs. LE ROT	71
Figure	5.8: Kilfrost ABC-S + - Regression Analysis of LL vs. LE ROT	71
Figure	5.9: All Data Points - Regression Analysis of LL vs. LE ROT	72

Figure 5.10: All Data – Grouping of Results Based on General Trend	. 73
Figure 5.11: Group A – LL >8%; LE Rating >1	. 73
Figure 5.12: Group B – LL Between 5% and 8%; LE Rating >1	. 74
Figure 5.13: Group C – LL >8%; LE Rating = 1	. 74
Figure 5.14: Group D – LL Between 5% and 8%; LE Rating = 1	. 75
Figure 5.15: Group E – LL <5%; LE Rating = 1	. 75
Figure 5.16: Group F – LL >15%; LE Rating >4.5	. 76
Figure 5.17: Group G – LL <5%; LE Rating >3	. 76
Figure 5.18: Comparison of Wing Models Used for Ice Pellet Allowance Time Testing	. 77
Figure 5.19: Frequency Distribution of Wind Tunnel Ramp-Up Time	. 83
Figure 5.20: Comparison of Fluid Certification and NRC Results for Launch Fluid	. 89
Figure 5.21: Comparison of Fluid Certification and NRC Results for EG106 Fluid	. 89
Figure 5.22: Comparison of Fluid Certification and NRC Results for ABC-S + Fluid	. 90
Figure 5.23: Detailed Comparison of Fluid Certification and NRC Results for Launch Fluid	. 91
Figure 5.24: Detailed Comparison of Fluid Certification and NRC Results for EG106 Fluid	. 91
Figure 5.25: Detailed Comparison of Fluid Certification and NRC Results for ABC-S+ Fluid	. 92
Figure 5.26: Formula for Calculating Lift Loss at Simulated 110, 115, and 120 Knots Rotation	
Speeds	. 93
Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots	. 94
Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110,	. 94
Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots	. 94 . 95
Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110,	. 94 . 95
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots 	. 94 . 95 . 95
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 	. 94 . 95 . 95 117
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.2: Increased Rotation Speed Extrapolation Results – Test #65 	.94 .95 .95 117 118
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66 	.94 .95 .95 117 118 119
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #65 Figure 6.4: Increased Rotation Speed Extrapolation Results – Test #68 	. 94 . 95 . 95 117 118 119 120
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.2: Increased Rotation Speed Extrapolation Results – Test #65 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66 Figure 6.4: Increased Rotation Speed Extrapolation Results – Test #68 Figure 7.1: Increased Rotation Speed Extrapolation Results – Test #10 	. 94 . 95 117 118 119 120 186
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66 Figure 6.4: Increased Rotation Speed Extrapolation Results – Test #68 Figure 7.1: Increased Rotation Speed Extrapolation Results – Test #10 	. 94 . 95 117 118 119 120 186 187
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.2: Increased Rotation Speed Extrapolation Results – Test #65 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66 Figure 6.4: Increased Rotation Speed Extrapolation Results – Test #68 Figure 7.1: Increased Rotation Speed Extrapolation Results – Test #10 Figure 7.2: Increased Rotation Speed Extrapolation Results – Test #95 Figure 7.3: Increased Rotation Speed Extrapolation Results – Test #72 	. 94 . 95 117 118 119 120 186 187 188
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.2: Increased Rotation Speed Extrapolation Results – Test #65 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66 Figure 6.4: Increased Rotation Speed Extrapolation Results – Test #68 Figure 7.1: Increased Rotation Speed Extrapolation Results – Test #10 Figure 7.2: Increased Rotation Speed Extrapolation Results – Test #95 Figure 7.3: Increased Rotation Speed Extrapolation Results – Test #72 Figure 7.4: Increased Rotation Speed Extrapolation Results – Test #74 	. 94 . 95 117 118 119 120 186 187 188 189
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.2: Increased Rotation Speed Extrapolation Results – Test #65 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66 Figure 6.4: Increased Rotation Speed Extrapolation Results – Test #68 Figure 7.1: Increased Rotation Speed Extrapolation Results – Test #10 Figure 7.2: Increased Rotation Speed Extrapolation Results – Test #95 Figure 7.3: Increased Rotation Speed Extrapolation Results – Test #74 Figure 7.4: Increased Rotation Speed Extrapolation Results – Test #74 Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #74 	. 94 . 95 117 118 119 120 186 187 188 189 252
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.2: Increased Rotation Speed Extrapolation Results – Test #65 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66 Figure 6.4: Increased Rotation Speed Extrapolation Results – Test #68 Figure 7.1: Increased Rotation Speed Extrapolation Results – Test #10 Figure 7.2: Increased Rotation Speed Extrapolation Results – Test #95 Figure 7.3: Increased Rotation Speed Extrapolation Results – Test #72 Figure 7.4: Increased Rotation Speed Extrapolation Results – Test #74 Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #74 Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #63 	. 94 . 95 . 95 117 118 119 120 186 187 188 189 252 254
 Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96 Figure 6.2: Increased Rotation Speed Extrapolation Results – Test #66 Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66 Figure 7.1: Increased Rotation Speed Extrapolation Results – Test #10 Figure 7.2: Increased Rotation Speed Extrapolation Results – Test #95 Figure 7.3: Increased Rotation Speed Extrapolation Results – Test #72 Figure 7.4: Increased Rotation Speed Extrapolation Results – Test #74 Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #63 Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #0 Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #0 	. 94 . 95 . 95 117 118 119 120 186 187 188 189 252 254 321

LIST OF PHOTOS

Page

Photo	2.1: Outside View of NRC Wind Tunnel Facility	37
Photo	2.2: Inside View of NRC Wind Tunnel Test Section	37
Photo	2.3: Supercritical Wing Section Used for Testing	38
Photo	2.4: Grid Markings on Supercritical Wing Section	38
Photo	2.5: Refrigerated Truck Used for Manufacturing Ice Pellets	39
Photo	2.6: Calibrated Sieves Used to Obtain Desired Size Distribution	39
Photo	2.7: Ice Pellet Dispensers Operated by APS Personnel	40
Photo	2.8: Ceiling-Mounted Freezing Rain Sprayer	40
Photo	2.9: Wind Tunnel Setup for Flashes	41
Photo	2.10: Wind Tunnel Setup for Digital Cameras	41
Photo	2.11: Fluid Pour Containers	42
Photo	2.12: 2009-10 Research Team	42
Photo	2.13: Wet Film Thickness Gauges	43
Photo	2.14: Hand-Held Temperature Probe	43

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/TP 15232E (Vol. 2) Final Version 1.0.docx Final Version 1.0, October 20

Photo 2.15: Hand-Held Brixometer (Misco 10431VP)	. 44
Photo 2.16: Brookfield Digital Viscometer Model DV-1 +	. 44
Photo 2.17: Stony Brook PDVdi-120 Falling Ball Viscometer	. 45
Photo 6.1: Test #1 – Start of Test	121
Photo 6.2: Test #1 – Before Rotation	121
Photo 6.3: Test #1 – End of Rotation	122
Photo 6.4: Test #1 – End of Test	122
Photo 6.5: Test #9 – Start of Test	123
Photo 6.6: Test #9 – Before Rotation	123
Photo 6.7: Test #9 – End of Rotation	124
Photo 6.8: Test #9 – End of Test	124
Photo 6.9: Test #25 – Start of Test	125
Photo 6.10: Test #25 – Before Rotation	125
Photo 6.11: Test #25 – End of Rotation	126
Photo 6.12: Test #25 – End of Test	126
Photo 6.13: Test #22 – Start of Test	127
Photo 6.14: Test #22 – Before Rotation	127
Photo 6.15: Test #22 – End of Rotation	128
Photo 6.16: Test #22 – End of Test	128
Photo 6.17: Test #29 – Start of Test	129
Photo 6.18: Test #29 – Before Rotation	129
Photo 6.19: Test #29 – End of Rotation	130
Photo 6.20: Test #29 – End of Test	130
Photo 6.21: Test #28 – Start of Test	131
Photo 6.22: Test #28 – Before Rotation	131
Photo 6.23: Test #28 – End of Rotation	132
Photo 6.24: Test #28 – End of Test	132
Photo 6.25: Test #29 – Start of Test	133
Photo 6.26: Test #29 – Before Rotation	133
Photo 6.27: Test #29 – End of Rotation	134
Photo 6.28: Test #29 – End of Test	134
Photo 6.29: Test #28A – Start of Test	135
Photo 6.30: Test #28A – Before Rotation	135
Photo 6.31: Test #28A – End of Rotation	136
Photo 6.32: Test #28A – End of Test	136
Photo 6.33: Test #64 – Start of Test	137
Photo 6.34: Test #64 – Before Rotation	137
Photo 6.35: Test #64 – End of Rotation	138
Photo 6.36: Test #64 – End of Test	138
Photo 6.37: Test #65 – Start of Test	139
Photo 6.38: Test #65 – Before Rotation	139
Photo 6.39: Test #65 – End of Rotation	140
Photo 6.40: Test #65 – End of Test	140
Photo 6.41: Test #64 – Start of Test	141
Photo 6.42: Test #64 – Before Rotation	141
Photo 6.43: Test #64 – End of Rotation	142
Photo 6.44: Test #64 – End of Test	142
Photo 6.45: Test #66 – Start of Test	143
Photo 6.46: Test #66 – Before Rotation	143
Photo 6.47: Test #66 – End of Rotation	144
Photo 6.48: Test #66 – End of Test	144
Photo 6.49: Test #100 – Start of Test	145
Photo 6.50: Test #100 – Before Rotation	145

Photo 6.51: Test #100 – End of Rotation	146
Photo 6.52: Test #100 - End of Test	146
Photo 6.53: Test #67 – Start of Test	147
Photo 6 54: Test #67 – Before Botation	147
Photo 6 55: Test #67 – End of Botation	148
Photo 6 56: Test #67 – End of Test	148
Photo 6 57: Test $\#70$ – Start of Test	1/0
Photo 6 58: Tost #70 Before Rotation	1/0
Photo 6 50: Test #70 - End of Pototion	140
Photo 6.60. Test #70 - End of Test	150
Photo 6.61. Test $\#70$ - End of Test	150
Photo 6.62: Test #68 – Start of Test	101
Photo 0.02: Test #00 - Before Rotation	101
Photo 6.63: Test $\#68 - End of Rotation$	152
Photo 6.64: Test #68 – End of Test	152
Photo 6.65: Test #70 – Start of Test	153
Photo 6.66: Test #70 – Before Rotation	153
Photo 6.67: Test #70 – End of Rotation	154
Photo 6.68: Test #70 – End of Test	154
Photo 6.69: Test #69 – Start of Test	155
Photo 6.70: Test #69 – Before Rotation	155
Photo 6.71: Test #69 – End of Rotation	156
Photo 6.72: Test #69 – End of Test	156
Photo 6.73: Test #75 – Start of Test	157
Photo 6.74: Test #75 – Before Rotation	157
Photo 6.75: Test #75 – End of Rotation	158
Photo 6.76: Test #75 – End of Test	158
Photo 6.77: Test #80 - Start of Test	159
Photo 6.78: Test #80 – Before Rotation	159
Photo 6.79: Test #80 – End of Rotation	160
Photo 6.80: Test #80 – End of Test	160
Photo 6.81: Test #64 – Start of Test	161
Photo 6 82: Test #64 – Before Botation	161
Photo 6 83: Test #64 – End of Rotation	162
Photo 6 84: Test #64 – End of Test	162
Photo 6 85: Test #06 - Start of Test	162
Photo 6 86: Test #96 - Before Botation	163
Photo 6.87: Tost #06 End of Rotation	164
Photo 6.99: Test #96 - End of Test	164
Photo 7 1, Toot #1 Stort of Toot	104
Photo 7.2. Test #1 - Stall 01 Test	101
Photo 7.2. Test #1 - Before Rolation	100
Photo 7.3: lest #1 - End of Rotation	192
Photo 7.4: lest $\#1 - End of lest$	192
Photo 7.5: lest $\#10 - \text{Start of lest}$	193
Photo 7.6: Test #10 – Before Rotation	193
Photo 7.7: Test #10 – End of Rotation	194
Photo 7.8: lest #10 - End of lest	194
Photo 7.9: Test #1 - Start of Test	195
Photo /.10: Iest #1 – Before Rotation	195
Photo /.11: lest #1 – End of Rotation	196
Photo 7.12: Test #1 – End of Test	196
Photo 7.13: Test #10A – Start of Test	197
Photo 7.14: Test #10A – Before Rotation	197
Photo 7.15: Test #10A – End of Rotation	198

Photo 7.16: Test #10A – End of Test	198
Photo 7.17: Test #1 - Start of Test	199
Photo 7.18: Test #1 – Before Rotation	199
Photo 7.19: Test #1 – End of Rotation	200
Photo 7.20: Test #1 – End of Test	200
Photo 7.21: Test #10B – Start of Test	201
Photo 7.22: Test #10B – Before Rotation	201
Photo 7.23: Test #10B – End of Rotation	202
Photo 7.24: Test #10B – End of Test	202
Photo 7.25: Test #55 – Start of Test	203
Photo 7.26: Test #55 – Before Rotation	203
Photo 7.27: Test #55 – End of Rotation	204
Photo 7.28: Test #55 – End of Test	204
Photo 7.29: Test #21 – Start of Test	205
Photo 7.30: Test #21 – Before Rotation	205
Photo 7 31: Test #21 – End of Rotation	206
Photo 7 32: Test #21 – End of Test	206
Photo 7 33: Test #29 – Start of Test	207
Photo 7 34: Test #29 – Refore Rotation	207
Photo 7 35: Test #29 – End of Rotation	208
Photo 7 36: Test #29 - End of Test	200
Photo 7 37: Test #47 – Start of Test	200
Photo 7 38: Test $#47$ – Refore Rotation	200
Photo 7 39: Test #47 – End of Botation	210
Photo 7.40: Test $\#47$ – End of Test	210
Photo 7.41: Test $\#54$ – Start of Test	210
Photo 7.42: Test $\#54$ – Refore Rotation	211
Photo 7.43: Test #54 – End of Rotation	212
Photo 7 44: Test #54 – End of Test	212
Photo 7 Λ 5: Test #18 – Start of Test	212
Photo 7.46: Test $\#40 = $ Start of Test	213
Photo 7.47: Test $#48 =$ End of Rotation	210
Photo 7.49: Test $\#40 =$ End of Test	214
Photo 7.40: Test #40 – End of Test	214
Photo 7 50: Test $\#60 = \text{Start of Test}$	215
Photo 7.51: Test $\#60 -$ End of Rotation	215
Photo 7.52: Test $\#60$ - End of Test	210
Photo 7.52. Test $#00 - Ehu 01$ Test	210
Photo 7.53. Test #49 - Start Of Test	217
Photo 7.54. Test #49 - Defore Rolation	217
Photo 7.55. Test #49 - End of Test	210
Photo 7.50. Test #49 - Eliu of Test	210
Photo 7.59: Test #75 – Sidil Of Test	210
Photo 7.50. Test #75 - Defore Rotation	213
Photo 7.59. Test #75 - End of Test	220
Photo 7.60: Test #75 - End of Test	220
<pre>FILOLU 7.01. Test #71 = Start 01 Test</pre>	221
FILOLU 7.02. TESL #71 - DELOTE ROLALION	221
<pre>FILOLO /.03: LEST #/I - END OF KOTATION</pre>	222
FIIOLO / .04: I EST #/I - ENG OT I EST	222
$r_{1010} / .001 \text{ lest } \# / 0 - \text{Start of lest}$	223
Photo 7.67. Test #76 End of Potetier	223
FILULU 7.07. Lest $\#70 = EILU UI ROLATION$	224
Photo 1.08: Iest #10 - End of Iest	224

Photo 7.69: Test #72 – Start of Test	225
Photo 7.70: Test #72 – Before Rotation	225
Photo 7.71: Test #72 – End of Rotation	226
Photo 7.72: Test #72 – End of Test	226
Photo 7.73: Test #76 – Start of Test	227
Photo 7.74: Test #76 – Before Rotation	227
Photo 7.75: Test #76 – End of Rotation	228
Photo 7.76: Test #76 – End of Test	228
Photo 7.77: Test #73 – Start of Test	229
Photo 7.78: Test #73 – Before Rotation	229
Photo 7.79: Test #73 – End of Rotation	230
Photo 7.80: Test #73 – End of Test	230
Photo 7.81: Test #70 – Start of Test	231
Photo 7.82: Test #70 – Before Rotation	231
Photo 7.83: Test #70 – End of Rotation	232
Photo 7.84: Test #70 – End of Test	232
Photo 7.85: Test #74 – Start of Test	233
Photo 7.86: Test #74 – Before Rotation	233
Photo 7.87: Test #74 – End of Rotation	234
Photo 7.88: Test #74 – End of Test	234
Photo 7.89: Test #64 – Start of Test	235
Photo 7.90: Test #64 – Before Rotation	235
Photo 7.91: Test #64 – End of Rotation	236
Photo 7.92: Test #64 – End of Test	236
Photo 7.93: Test #95 – Start of Test	237
Photo 7.94: Test #95 – Before Rotation	237
Photo 7.95: Test #95 – End of Rotation	238
Photo 7.96: Test #95 – End of Test	238
Photo 8.1: Test #1 – Start of Test	255
Photo 8.2: Test #0 – Start of Test	255
Photo 8.3: Test #1 – Before Rotation	256
Photo 8.4: Test #0 – Before Rotation	256
Photo 8.5: Test #1 – End of Rotation	257
Photo 8.6: Test #0 – End of Rotation	257
Photo 8.7: Test #1 – End of Test	258
Photo 8.8: Test #0 – End of Test	258
Photo 8.9: Test #55 – Start of Test	259
Photo 8.10: Test #26 - Start of Test	259
Photo 8.11: Test #55 – Before Rotation	260
Photo 8.12: Test #26 – Before Rotation	260
Photo 8.13: Test #55 – End of Rotation	261
Photo 8.14: Test #26 – End of Rotation	261
Photo 8.15: Test #55 – End of Test	262
Photo 8.16: Test #26 – End of Test	262
Photo 8.17: Test #25 – Start of Test	263
Photo 8.18: Test #26A – Start of Test	263
Photo 8.19: Test #25 – Before Rotation	264
Photo 8.20: Test #26A – Before Rotation	264
Photo 8.21: Test #25 – End of Rotation	265
Photo 8.22: Test #26A – End of Rotation	265
Photo 8.23: Test #25 – End of Test	266
Photo 8.24: Test #26A – End of Test	266
Photo 8.25: Test #60 – Start of Test	267

Photo 8.26: Test #59 – Start of Test	267
Photo 8.27: Test #60 – Before Rotation	268
Photo 8.28: Test #59 – Before Rotation	268
Photo 8.29: Test #60 – End of Rotation	269
Photo 8.30: Test #59 – End of Rotation	269
Photo 8.31: Test #60 – End of Test	270
Photo 8.32: Test #59 – End of Test	270
Photo 8.33: Test #64 – Start of Test	271
Photo 8.34: Test #63 – Start of Test	271
Photo 8.35: Test #64 – Before Rotation	272
Photo 8.36: Test #63 – Before Rotation	272
Photo 8.37: Test #64 – End of Rotation	273
Photo 8.38: Test #63 – End of Rotation	273
Photo 8.39: Test #64 – End of Test	274
Photo 8.40: Test #63 – End of Test	274
Photo 8.41: Test #100 – Start of Test	275
Photo 8.42: Test #98 – Start of Test	275
Photo 8.43: Test #100 – Before Rotation	276
Photo 8.44: Test #98 – Before Rotation	276
Photo 8.45: Test #100 – End of Rotation	277
Photo 8.46: Test #98 – End of Rotation	277
Photo 8.47: Test #100 – End of Test	278
Photo 8.48: Test #98 – End of Test	278
Photo 9.1: Test #53 – Start of Test	289
Photo 9.2: Test #20 – Start of Test	289
Photo 9.3: Test #53 – Before Rotation	290
Photo 9.4: Test #20 – Before Rotation	290
Photo 9.5: Test #53 – End of Rotation	291
Photo 9.6: Test #20 – End of Rotation	291
Photo 9.7: Test #53 – End of Test	292
Photo 9.8: Test #20 – End of Test	292
Photo 9.9: Test #55 – Start of Test	293
Photo 9.10: Test #44 – Start of Test	293
Photo 9.11: Test #55 – Before Rotation	294
Photo 9.12: Test #44 – Before Rotation	294
Photo 9.13: Test #55 – End of Rotation	295
Photo 9.14: Test #44 – End of Rotation	295
Photo 9.15: Test #55 – End of Test	296
Photo 9.16: Test #44 – End of Test	296
Photo 9.17: Test #55 – Start of Test	297
Photo 9.18: Test #56 – Start of Test	297
Photo 9.19: Test #55 – Before Rotation	298
Photo 9.20: Test #56 – Before Rotation	298
Photo 9.21: Test #55 – End of Rotation	299
Photo 9.22: Test #56 – End of Rotation	299
Photo 9.23: Test #55 – End of Test	300
Photo 9.24: Test #56 – End of Test	300
Photo 9.25: Test #55 – Start of Test	301
Photo 9.26: Test #56A – Start of Test	301
Photo 9.27: Test #55 – Before Rotation	302
Photo 9.28: Test #56A – Before Rotation	302
Photo 9.29: Test #55 – End of Rotation	303
Photo 9.30: Test #56A – End of Rotation	303

Photo 9.31: Test #55 – End of Test	304
Photo 9.32: Test #56A – End of Test	304
Photo 10.1: Test #4 – Start of Test	323
Photo 10.2: Test #5 – Start of Test	323
Photo 10.3: Test #4 – Before Rotation	324
Photo 10.4: Test #5 – Before Rotation	324
Photo 10.5: Test #4 – End of Rotation	325
Photo 10.6: Test #5 – End of Rotation	325
Photo 10.7: Test #4 – End of Test	326
Photo 10.8: Test #5 – End of Test	326
Photo 10.9: Test #1 – Start of Test	327
Photo 10.10: Test #11 - Start of Test	327
Photo 10.11: Test #1 – Before Rotation	328
Photo 10.12: Test #11 – Before Rotation	328
Photo 10.13: Test #1 – End of Rotation	329
Photo 10.14: Test #11 – End of Rotation	329
Photo 10.15: Test #1 – End of Test	330
Photo 10.16: Test #11 – End of Test	330
Photo 10.17: Test #25 – Start of Test	331
Photo 10.18: Test #23 – Start of Test	331
Photo 10.19: Test #25 – Before Rotation	332
Photo 10.20: Test #23 – Before Rotation	332
Photo 10.21: Test #25 – End of Rotation	333
Photo 10.22: Test #23 – End of Rotation	333
Photo 10 23' Test #25 – End of Test	334
Photo 10 24. Test #23 – End of Test	334
Photo 10 25: Test #29 – Start of Test	335
Photo 10 26: Test #57 – Start of Test	335
Photo 10 27: Test #29 – Before Rotation	336
Photo 10 28: Test #57 – Before Rotation	336
Photo 10 29: Test #29 – End of Rotation	337
Photo 10 30: Test $\#57$ – End of Rotation	337
Photo 10 31: Test #29 – End of Test	338
Photo 10 32: Test $\#57$ – End of Test	338
Photo 10 33: Test #29 - Start of Test	330
Photo 10 34: Test $\#570$ – Start of Test	330
Photo 10.35: Test $\#37A$ – Bafore Botation	340
Photo 10.36: Test $\#57A =$ Before Rotation	340
Photo 10.27: Test #29 End of Rotation	2/1
Photo 10.28: Test #23 - End of Rotation	2/1
Photo 10.30: Test #37A - End of Tost	241
Photo 10.39. Test #29 - Eliu of Test	34Z
Photo 10.40. Test #57A - Eliu of Test	34Z
Photo 10.41. Test #04 - Start of Test	343
Photo 10.42: Test $\#77 - 5$ and 10 Test	343
Photo 10.43: Test #04 - Before Rotation	344
Photo 10.44. Test #77 - Delore Rolation	344 245
Photo 10.40: Lest $\#04 - End of Rotation$	345
Photo 10.40: lest $\#// = End$ of Kotation	345
FILOLO IU.4/: IEST #04 - ENG OT IEST Phase 10.40. Test #77 - End of Test	346
PROTO IU.48: lest $\#// = End \text{ of lest}$	346
FILLIO IU.49: Lest $\#/0 - Start of Test$	34/
FIOLO 10.50: I est #70 - Start of I est	34/
rnoto 10.51: 16st #76 – Betore Kotation	348

Photo 10.52: Test #78 – Before Rotation	348
Photo 10.53: Test #76 – End of Rotation	349
Photo 10.54: Test #78 – End of Rotation	349
Photo 10.55: Test #76 – End of Test	350
Photo 10.56: Test #78 – End of Test	350
Photo 10.57: Test #75 – Start of Test	351
Photo 10.58: Test #79 - Start of Test	351
Photo 10.59: Test #75 – Before Rotation	352
Photo 10.60: Test #79 – Before Rotation	352
Photo 10.61: Test #75 – End of Rotation	353
Photo 10 62: Test #79 – End of Rotation	353
Photo 10.63: Test #75 – End of Test	354
Photo 10.64: Test #79 – End of Test	354
Photo 10 65. Test #1 – Start of Test	355
Photo 10 66: Test #94 – Start of Test	355
Photo 10 67: Test #1 – Before Botation	356
Photo 10 68: Test #94 – Before Botation	356
Photo 10 69: Test #1 – End of Botation	357
Photo 10 70: Test #94 – End of Rotation	357
Photo 10 71: Test #1 - End of Test	358
Photo 10 72: Test #94 - End of Test	358
Photo 11 1: Test $\#17$ – Start of Test	377
Photo 11 2: Test #13 - Start of Test	377
Photo 11 3: Test #17 - End of Rotation	378
Photo 11 4: Tost #12 – End of Hotation	278
Photo 11 5: Tost #17 End of Rotation	370
Photo 11 6: Tost #17 - End of Rotation	270
Photo 11 7: TTost #17 End of Tost	380
Photo 11 8: Tost #12 End of Tost	380
Photo 11 0: Tost #17 Start of Tost	201
Photo 11 10: Tost $\#17 - \text{Start of Tost}$	201
Photo 11 11: Test #17 - Defere Potation	201
Photo 11 12: Test #17 - Defore Potation	302 202
Photo 11 12: Test #17 - End of Potation	302 202
Photo 11 14, Test #17 - End of Pototion	303 202
Photo 11 15: Test #17 - End of Test	303 201
Photo 11 16: Test #17 - End of Test	304 201
Photo 11.10: Test #17 - End of Test	304 20F
Photo 11.17: Test #17 - Start of Test	305
Photo 11.18: lest #15 - Start of lest	385
Photo 11.19: Test #17 - Before Rotation	380
Photo 11.2U: lest #15 - Betore Rotation	380
Photo 11.21: lest #17 - End of Rotation	387
Photo 11.22: lest #15 - End of Rotation	387
Photo 11.23: lest #17 - End of lest	388
PROTO 11.24: 16ST #15 - ENG OT 16ST	388
Photo 11.25: lest #1/ - Start of lest	389
Photo 11.26: lest #16 – Start of lest	389
Photo 11.27: lest #17 – Before Rotation	390
Photo 11.28: Iest #16 – Before Rotation	390
Photo 11.29: lest #17 – End of Rotation	391
Photo 11.30: lest #16 – End of Rotation	391
Photo 11.31: lest #1/ - End of lest	392
Photo 11.32: Test #16 – End of Test	392

Photo 11.33: Test #25 - Start of Test	393		
Photo 11.34: Test #24 – Start of Test	393		
Photo 11.35: Test #25 – Before Rotation	394		
Photo 11.36: Test #24 – Before Rotation	394		
Photo 11.37: Test #25 – End of Rotation	395		
Photo 11.38: Test #24 – End of Rotation	395		
Photo 11 39: Test #25 – End of Test	396		
Photo 11 40: Test $#24$ – End of Test	396		
Photo 11 41: Test #60 - Start of Test	397		
Photo 11 42: Test #58 – Start of Test	397		
Photo 11 43: Test #60 - Before Botation	308		
Photo 11 44: Test #58 - Before Rotation	308		
Photo 11 45: Test #60 - End of Botation	200		
Photo 11 46: Test #68 End of Rotation	200		
Photo 11 47: Test #50 - End of Test	400		
Photo 11.47. Test #60 - End of Test	400		
Photo 11.46: Test #36 - End 01 Test	400		
Photo 11.49: Test #75 - Start of Test	401		
Photo 11.50: lest #81 – Start of lest	401		
Photo 11.51: Test #75 – Before Rotation	402		
Photo 11.52: Test #81 – Before Rotation	402		
Photo 11.53: Test #75 – End of Rotation	403		
Photo 11.54: Test #81 – End of Rotation	403		
Photo 11.55: Test #75 – End of Test	404		
Photo 11.56: Test #81 – End of Test	404		
Photo 11.57: Test #76 – Start of Test	405		
Photo 11.58: Test #82 – Start of Test	405		
Photo 11.59: Test #76 – Before Rotation	406		
Photo 11.60: Test #82 – Before Rotation	406		
Photo 11.61: Test #76 – End of Rotation	407		
Photo 11.62: Test #82 – End of Rotation	407		
Photo 11.63: Test #76 – End of Test	408		
Photo 11.64: Test #82 – End of Test	408		
Photo 11.65: Test #64 – Start of Test	409		
Photo 11.66: Test #97 – Start of Test	409		
Photo 11.67: Test #64 – Before Rotation	410		
Photo 11.68: Test #97 – Before Rotation	410		
Photo 11.69: Test #64 – End of Rotation	411		
Photo 11.70: Test #97 – End of Rotation	411		
Photo 11.71: Test #64 – End of Test	412		
Photo 11.72: Test #97 – End of Test	412		
Photo 12.1: Test #26 - Start of Test	425		
Photo 12.2: Test #26A - Start of Test	425		
Photo 12.3: Test #26 – Before Rotation	426		
Photo 12.4: Test #26A – Before Rotation	426		
Photo 12.5: Test #26 – End of Rotation	427		
Photo 12.6: Test #26A – End of Rotation	427		
Photo 12.7: Test #26 – End of Test	428		
Photo 12.8: Test #26A – End of Test	428		
Photo 12.9: Test #28 – Start of Test	429		
Photo 12.10: Test #28A – Start of Test	429		
Photo 12.11: Test #28 – Before Rotation	430		
Photo 12.12: Test #28A – Before Rotation	430		
Photo 12.13: Test #28 – End of Rotation	431		
12.14:	Test	#28A – End of Rotation	431
--------	--	--	---
12.15:	Test	#28 - End of Test	132
12.16:	Test	#28A – End of Test	132
12.17:	Test	#56 - Start of Test	133
12.18:	Test	#56A – Start of Test	133
12.19:	Test	#56 – Before Rotation	134
12.20:	Test	#56A – Before Rotation	134
12.21:	Test	#56 – End of Rotation	135
12.22:	Test	#56A – End of Rotation	135
12.23:	Test	#56 – End of Test	136
12.24:	Test	#56A – End of Test	136
12.25:	Test	#57 – Start of Test	137
12.26:	Test	#57A – Start of Test	137
12.27:	Test	#57 – Before Rotation	138
12.28:	Test	#57A – Before Rotation	138
12.29:	Test	#57 – End of Rotation	139
12.30:	Test	#57A – End of Rotation	139
12.31:	Test	#57 – End of Test	440
12.32:	Test	#57A - End of Test	140
	12.14: 12.15: 12.16: 12.17: 12.18: 12.19: 12.20: 12.21: 12.22: 12.23: 12.24: 12.24: 12.25: 12.26: 12.27: 12.28: 12.29: 12.30: 12.31: 12.32:	12.14: Test 12.15: Test 12.16: Test 12.17: Test 12.18: Test 12.19: Test 12.20: Test 12.21: Test 12.22: Test 12.23: Test 12.24: Test 12.26: Test 12.26: Test 12.27: Test 12.29: Test 12.30: Test 12.31: Test 12.32: Test	12.14: Test #28A - End of Rotation 4 12.15: Test #28 - End of Test 4 12.16: Test #28A - End of Test 4 12.17: Test #56 - Start of Test 4 12.18: Test #56A - Start of Test 4 12.19: Test #56 - Before Rotation 4 12.20: Test #56 - End of Rotation 4 12.21: Test #56 - End of Rotation 4 12.22: Test #56 - End of Rotation 4 12.22: Test #56 - End of Rotation 4 12.22: Test #56 - End of Test 4 12.22: Test #56 - End of Test 4 12.23: Test #56 - End of Test 4 12.24: Test #56 - End of Test 4 12.25: Test #57 - Start of Test 4 12.26: Test #57A - Start of Test 4 12.27: Test #57 - Before Rotation 4 12.28: Test #57A - Before Rotation 4 12.29: Test #57 - End of Rotation 4 12.30: Test #57A - End of Rotation 4 12.31: Test #57 - End of Test 4 12.32: Test #57A - End of Test 4 12.32: Test #57A - End of Test 4

This page intentionally left blank.

GLOSSARY

APS	APS Aviation Inc.
BLDT	Boundary Layer Displacement Thickness
CFD	Computational Fluid Dynamics
EG	Ethylene Glycol
FAA	Federal Aviation Administration
НОТ	Holdover Time
MSC	Meteorological Service of Canada
NASA	National Aeronautics and Space Administration
NRC	National Research Council Canada
NRCIAR	National Research Council Canada Institute for Aerospace Research
ΟΑΤ	Outside Air Temperature
PG	Propylene Glycol
PIWT	3 m x 6 m Open-Circuit Propulsion Icing Wind Tunnel
RTD	Resistance Temperature Detector
SAE	Society of Automotive Engineers
тС	Transport Canada
TDC	Transportation Development Centre
UPS	United Parcel Service

This page intentionally left blank.

1. INTRODUCTION

Under winter precipitation conditions, aircraft are cleaned with a freezing point depressant fluid and protected against further accumulation by an additional application of such a fluid, possibly thickened to extend the protection time. Aircraft ground deicing had, until recently, never been researched and there is still an incomplete understanding of the hazard and of what can be done to reduce the risks posed by the operation of aircraft in winter precipitation conditions. This "winter operations contaminated aircraft – ground" program of research is aimed at overcoming this lack of knowledge.

Since the early 1990s, the Transportation Development Centre (TDC) of Transport Canada (TC) has managed and conducted de/anti-icing related tests at various sites in Canada; it has also coordinated worldwide testing and evaluation of evolving technologies related to de/anti-icing operations with the co-operation of the United States Federal Aviation Administration (FAA), the National Research Council Canada (NRC), the Meteorological Service of Canada (MSC), several major airlines, and deicing fluid manufacturers. The TDC is continuing its research, development, testing and evaluation program.

Under contract to the TDC, with financial support from the FAA, APS Aviation Inc. (APS) has undertaken research activities to further advance aircraft ground de/anti-icing technology.

As part of a larger research program examining de/anti-icing fluid flow-off during simulated aircraft takeoff, APS conducted a series of full-scale tests in the NRC 3 m x 6 m Open-Circuit Propulsion Icing Wind Tunnel (PIWT) using a supercritical wing model to determine the flow-off characteristics of anti-icing fluid with and without mixed precipitation conditions with ice pellets.

<i>NOTE: The documentation of this project has been divided into five separate volumes:</i>
one summary report, and four detailed reports on each of the respective testing years'
activities. The volumes are as follows:

Volume 1:	Summary Report
Volume 2:	2009-10 Testing Report
Volume 3:	2010-11 Testing Report
Volume 4:	2011-12 Testing Report
Volume 5:	2012-13 Testing Report

This report is Volume 2 of 5.

1.1 Background

Prior to the winter of 2006-07, Holdover Time (HOT) guidance material did not exist for ice pellet conditions; however, aircraft could still depart during ice pellet conditions following aircraft deicing and a pre-takeoff contamination check. This protocol was feasible for common air carrier aircraft that provided access to emergency exit windows overlooking the leading edge of the aircraft wings; however, it posed a significant problem for cargo aircraft that have limited visibility of the wings from the cabin.

On December 22, 2004, United Parcel Service (UPS) aircraft in Louisville were grounded for several hours due to extended ice pellet conditions. Due to cargo aircraft configuration, pre-takeoff contamination checks by the onboard crew were not possible. Fed-Ex had been faced with similar problems in Memphis. Following this event, in October 2005, the FAA issued two notices restricting takeoffs in ice pellet conditions.

As a result of this costly incident, UPS set out to obtain experimental data to provide guidance and allow operations to continue in ice pellet conditions. During the winter of 2004-05, aerodynamic and endurance time testing were conducted in simulated ice pellet conditions. APS also conducted some preliminary flat plate research [see TC report, TP 14718E, *Preliminary Endurance Time Testing in Simulated Ice Pellet Conditions*, (1)]. Based on the preliminary data, an allowance of 20 minutes in light ice pellet conditions was proposed; however, no changes to the HOT Guidelines were made.

During the following winter of 2006-07, the FAA provided a 25-minute allowance as a preliminary guideline; TC issued a note indicating that no changes would be made to the HOT Guidelines. This allowance was based on the previous research conducted during the winter of 2005-06, primarily as a result of the Falcon 20 aerodynamic research [see TC report,TP 14716E, *Falcon 20 Trials to Examine Fluid Removed from Aircraft During Takeoff with Ice Pellets* (2)]; these results were presented at the Society of Automotive Engineers (SAE) meeting in Lisbon in May 2006. To address the option of a pre-takeoff contamination check, the 20-minute targeted allowance was extended to 25 minutes; pre-takeoff contamination checks would no longer apply. This allowance was followed by a list of conditions; one restriction was that operations would be limited to ice pellets alone (no mixed conditions).

Due to the high occurrence of ice pellets combined with freezing rain or snow, the industry requested additional guidance material for operations in mixed ice pellet conditions. Additional endurance time testing and aerodynamic research was conducted in simulated ice pellet conditions during the winter of 2006-07.

During the winter of 2007-08, both TC and the FAA provided allowance time guidance material for operations in mixed conditions with ice pellets. These allowance times were based on the research conducted during the winter of 2006-07 [see TC report,TP 14779E, *Development of Allowance Times for Aircraft Deicing Operations During Conditions with Ice Pellets* (3)]. The recommended allowance times were based on aerodynamic research conducted using the PIWT and the NRC Falcon 20 aircraft; these results were presented at the SAE meeting in San Diego in May 2007. These allowance time guidelines were followed by a list of restrictions based on the results obtained through the research conducted and on the lack of data in specific conditions.

During the winter of 2007-08, additional endurance time testing and aerodynamic research were conducted to support and further expand the ice pellet allowance times [see TC report,TP 14871E, *Research for Further Development of Ice Pellet Allowance Times: Aircraft Trials to Examine Anti-Icing Fluid Flow-Off Characteristics Winter 2007-08,* (4)]. Full-scale testing with the NRC Falcon 20 and T-33 aircraft was conducted in mixed conditions with ice pellets and in non-precipitation conditions. Testing was primarily geared towards simulating low rotation speed aircraft. No changes to the allowance times were made as a result of this work, as aerodynamic data was not available.

During the winter of 2008-09, testing was conducted in the PIWT using a National Aeronautics and Space Administration (NASA) LS-0417 to validate and potentially expand the allowance times [see TC report, TP 14935E, *Research for Further Development of Ice Pellet Allowance Times: Wind Tunnel Trials to Examine Anti-Icing Fluid Flow-Off Characteristics Winter 2008-09* (5)]. As a result of this testing, a reduction to the light ice pellets mixed with moderate snow allowance time was issued for outside air temperature (OAT) above -5°C: the allowance time was reduced from 25 minutes to 10 minutes. The testing conducted also allowed the expansion of the table to include a new 25-minute allowance time for light ice pellets mixed with light snow for -5°C to -10°C conditions. A newly updated version of the Type IV allowance time table was developed and adopted for the 2009-10 version of the PIWT during the winter of 2009-10 using a supercritical airfoil to validate the allowance times for use with newer generation aircraft.

Table 1.1 describes the timeline of the developed allowance time guidance material.

1.2 **Program Objectives**

A test program was developed for the winter of 2009-10 in an attempt to substantiate and possibly expand the current ice pellet allowance times.

A series of tests were designed and carried out during the winter of 2009-10 to validate the current guidance material in ice pellet and mixed conditions for newer generation aircraft with supercritical wing designs. Testing was conducted with and without contamination. Research was conducted to validate and develop allowance times for the following application:

• Type IV Fluid - High-Speed Ramp (Allowance times currently exist).

The work statement for these tests is provided in Appendix A.

Winter Testing	Research Conducted	FAA Allowance Time	TC Allowance Time	Report TP #	Related Winter HOT Guidelines
2004-05	UPS Research APS PMG Research	October 2005 Notices 8000.309 and 8000.313 (no takeoff in IP)	No Changes to Guidelines	Data available through UPS & TP 14718	2005-06
2005-06	APS Falcon 20	20 minutes targeted, 25 minutes reccomended (to include 5 min PTCC)	Note include indicating no changes to guidelines	TP 14716E	2006-07
2006-07	APS Wind Tunnel & Falcon 20	Allowance Time Table 1st Version	Allowance Time Table 1st Version (October 2007)	TP 14779E	2007-08
2007-08	APS Falcon 20	Allowance Time Table 1st Version	Allowance Time Table 1st Version	TP 14871E	2008-09
2008-09	APS Wind Tunnel	Allowance Time Table 2nd Version	Allowance Time Table 2nd Version	TP 14935E	2009-10
2009-10	APS Wind Tunnel	Allowance Time Table 3rd Version	Allowance Time Table 3rd Version	TP 15232E (Vol 2)	2010-11

Table 1.1: Timeline of Developed Allowance Time Guidance Material

1.3 Previous Falcon 20 Full-Scale Testing

Previous trials to examine the elimination of failed SAE Type IV fluids from aircraft wings during takeoff were conducted during the 1997-98 and 1998-99 winter seasons. These trials, based on simulated takeoff tests using the NRC Falcon 20 aircraft, showed that the test approach was a viable one. The Falcon 20 test program conducted during the winters of 2001-02 and 2002-03 addressed the effects of unshed anti-icing fluid on aircraft takeoff performance.

This research is documented in detail in a series of five reports written by APS for TC:

- TP 13316E, Contaminated Aircraft Takeoff Test for the 1997/98 Winter (6);
- TP 13479E, Contaminated Aircraft Takeoff Tests for the 1998-99 Winter (7);
- TP 13666E, Contaminated Aircraft Simulated Takeoff Tests for the 1999-2000 Winter: Preparation and Procedures (8);
- TP 13995E, Aircraft Takeoff Test Program for Winter 2001-02: Testing to Evaluate the Aerodynamic Penalties of Clean or Partially Expended De/Anti-Icing Fluid (9); and
- TP 14147E, Aircraft Takeoff Test Program for Winter 2002-03: Testing to Evaluate the Aerodynamic Penalties of Clean or Partially Expended De/Anti-Icing Fluid (10).

Research was conducted during the winter of 2005-06 using the Falcon 20 aircraft to determine the maximum amount of ice pellet contamination that will flow-off an anti-iced aircraft at takeoff. This research is documented in detail in a report written by APS for TC [see TP 14716E (2)].

During the winter of 2006-07, extensive testing was conducted in mixed ice pellet conditions in the NRC PIWT. The Falcon 20 aircraft was used to validate the results obtained in the NRC PIWT by conducting a limited number of validation tests. This research is documented in detail in a report written by APS for TC [see TP 14779E (3)].

The details of the methodology used for this testing are documented in a report written by APS for TC:

• TP 14778E, Flow of Contaminated Fluid from Aircraft Wings: Feasibility Report (11).

During the winter of 2007-08, the NRC PIWT was not available for testing during the winter months. The Falcon 20 aircraft was used to conduct simulated low rotation speed tests in mixed conditions with ice pellets. Two tests were also conducted with the NRC T-33 aircraft to validate the low rotation speed results obtained with the Falcon 20. This research is documented in detail in a report written by APS for TC [see TP 14871E (4)].

1.4 Previous NRC Wind Tunnel Full-Scale Testing

Previous trials to examine aerodynamic performance effects of de/anti-icing fluids that had been contaminated by varying quantities of freezing precipitation were

conducted over three winter seasons at the NRC PIWT. The airfoil tested was a full-scale NASA LS(1)-0417 section with a Fowler flap deployed at 15 degrees. A spray bar located in the wind tunnel settling chamber produced artificial snow. Takeoff was simulated by accelerating the test section wind speed, and aerodynamic data were obtained while pitching the airfoil to the stall. These trials, based on takeoff simulations, showed that the test approach was a viable one.

This research is documented in detail in a report written in May 1999 by the National Research Council Canada Institute for Aerospace Research (NRCIAR) for TC, TP 13426E, *Air-Flap Performance with De-Anti-Icing Fluids and Freezing Precipitation* (12).

During the winter of 2006-07, extensive testing was conducted in simulated mixed ice pellet conditions in the NRC PIWT using a NACA 23012 wing section. Testing was primarily geared towards expansion of the 25-minute allowance time for ice pellets. Testing included mixed ice pellet conditions as well as preliminary testing in heavy snow conditions. This research is documented in detail in a report written by APS for TC, see TP 14779E (3). The details of the methodology used for this testing are documented in a report written by APS for TC, see TP 14778E (11).

During the winter of 2008-09, aerodynamic research was conducted in the NRC PIWT using a NASA LS(1)-0417 section to investigate fluid flow-off of contaminated fluid following simulated ice pellet and mixed conditions to substantiate and further develop the current ice pellet allowance times. High-speed and low-speed ramp testing were conducted using Type IV fluid, as well as limited testing with Type II and III fluids. This research is documented in detail in a report written by APS for TC, see TP 14935E (5).

1.5 Overview of 2009-10 Testing

Full-scale testing during the winter of 2009-10 was conducted using the NRC PIWT. The primary testing conducted aimed at validating the current allowance times for use with newer generation aircraft with supercritical wing designs.

In addition, some preliminary work was conducted as a lower priority to address current industry concerns. This work has been documented in the TC report, TP 15057E, *Exploratory Wind Tunnel Aerodynamic Research Examination of Contaminated Anti-Icing Fluid Flow-Off Characteristics Winter 2009-10* (13).

Table 1.2 demonstrates the groupings for the global set of tests conducted at the wind tunnel during the winter of 2009-10. Only tests pertaining to ice pellet allowance times (groups 1 to 3) are described in this report. Table 1.3 demonstrates in greater detail the groupings for the secondary R&D objective tests (groups 4 and 5 from Table 1.2).

Table 1.2: Summary of 2009-10 Wind Tunnel Tests by Objective

Table 1.3: Summary of 2009-10 Secondary R&D Objectives

Research & Development Objectives	Run #				
Type III Allowance Times	31, 33, 35, 36, 41, 42, 43				
Effect Double Fluid Quantity	7				
Heavy Snow	37, 38, 39, 40, 83, 84, 85, 86, 87,88, 90, 91, 92				
Surface Roughness	45, 45A, 45B				
Dry Snow with No Fluid	51, 52, 52A, 89				
Anti-Icing Fluid Contaminated with Runway Deicer	50, 93, 104				
65 vs. 80 Knots Rotation	61, 62				
Flap Contamination Examination	6, 6A, 6B, 6C				
Evaluation of Ice Phobic Products	99				
Mixed Light Freezing Rain and Snow	102, 103				
TOTAL R&D RUNS: 40					

1.6 Report Format

The following list provides short descriptions of subsequent sections of this report:

- a) Section 2 describes the methodology used in testing, as well as equipment and personnel requirements necessary to carry out testing;
- b) Section 3 describes data collected during the full-scale testing conducted;
- c) Section 4 describes the analysis methodology used to evaluate the wind tunnel tests conducted;
- d) Section 5 includes details of additional data analysis that was conducted while developing the ice pellet allowance times for the winter of 2010-11;
- e) Section 6 describes the data, results, and observations for testing conducted in Light Ice Pellet conditions;
- f) Section 7 describes the data, results, and observations for testing conducted in Moderate Ice Pellet conditions;
- g) Section 8 describes the data, results, and observations for testing conducted in Light Ice Pellets Mixed with Light Freezing Rain;
- h) Section 9 describes the data, results, and observations for testing conducted in Light Ice Pellets Mixed with Moderate Rain;
- i) Section 10 describes the data, results, and observations for testing conducted in Light Ice Pellets Mixed with Light Snow;
- j) Section 11 describes the data, results, and observations for testing conducted in Light Ice Pellets Mixed with Moderate Snow;
- k) Section 12 describes the data, results, and observations for the comparative testing conducted with flap up and flap down;
- I) Section 13 presents a summary of the conclusions and observations; and
- m) Section 14 lists the recommendations for future testing.

2. METHODOLOGY

This section describes the test methodology and equipment specific to the full-scale aerodynamic tests conducted at the NRC PIWT, as well as general testing methodology and equipment.

2.1 Wind Tunnel Test Site

The 2009-10 PIWT tests were performed at the NRC Aerospace Facilities, Building M-46, at the NRC Montreal Road campus, located in Ottawa, Canada. Figure 2.1 provides a schematic of the NRC Montreal Road campus showing the location of the NRC PIWT. Photo 2.1 shows an outside view of the wind tunnel test facility. Photo 2.2 shows an inside view of the wind tunnel test section. The open-circuit layout, with a fan at entry, permits contaminants associated with the test articles (such as heat or de/anti-icing fluid) to discharge directly, without recirculating or contacting the fan. The fan is normally driven electrically, but high-speed operation can be accommodated by a gas turbine drive system. Due to the requirements of both high-speed and low-speed operations during the testing, the gas turbine was selected to allow for greater flexibility, as it can perform both low- and high-speed operations, whereas the electric drive is limited to low-speed operations.

Figure 2.1: Schematic of NRC Montreal Road Campus

2.2 Test Schedule

Testing was conducted over a period of five weeks starting January 5, 2010, and ending February 3, 2010. Two days were dedicated to setup and calibration prior to the start of the actual testing. Testing was conducted during 20 days over the five-week period; testing days were selected based on weather. Table 2.1 presents the calendar of wind tunnel tests performed in 2009-10. It should be noted that the tests listed comprise all the tests conducted, including the tests not pertaining to the ice pellet allowance time objectives. At the beginning of each test day, a plan was developed that included the list of tests (taken from the global test plan) to be completed based on the weather conditions and testing priorities. This daily plan was discussed, approved, and modified (if necessary) by TC, the FAA, and APS.

Date	Number of Test Runs	Test Numbers
5-Jan-10	Setup	n/a
6-Jan-10	Precip. Calib.	n/a
7-Jan-10	3	0, 1, 2
11-Jan-10	5	3, 4, 5, 6, 6A
12-Jan-10	4	6B, 6C, 7, 8
13-Jan-10	6	9, 10, 10A, 10B, 11, 12
14-Jan-10	8	13, 14, 15, 16, 17, 18, 18A, 19
20-Jan-10	4	20, 21, 22, 23
21-Jan-10	9	24, 25, 26, 26A, 27, 28, 28A, 29, 30
22-Jan-10	9	31, 32, 33, 34, 35, 36, 37, 38, 39
23-Jan-10	9	40, 41, 42, 43, 44, 45, 45A, 45B, 46
24-Jan-10	4	47, 48, 49, 50
27-Jan-10	10	51, 52, 52A, 53, 54, 55, 56, 56A, 57, 57A
28-Jan-10	7	58, 59, 60, 61, 62, 63, 64
29-Jan-10	10	65, 66, 67, 68, 69, 70, 71, 72, 73, 74
30-Jan-10	8	75, 76, 77, 78, 79, 80. 81, 82
31-Jan-10	2	83, 84
1-Feb-10	8	85, 86, 87, 88, 89, 90, 91, 92
2-Feb-10	6	93, 94, 95, 96, 97, 98
3-Feb-10	6	99, 100, 101, 102, 103, 104

Table 2.1: Calendar of Tests

2.3 Wind Tunnel Procedure

To satisfy the program objective, simulated takeoff and climb-out tests were performed with the supercritical wing section, and different parameters, including fluid thickness, wing temperature, and fluid freezing point, were recorded at designated times during the tests. The supercritical wing section was constructed by the NRC specifically to conduct these tests following extensive consultations with an airframe manufacturer to ensure a representative supercritical design.

The procedure for each test was as follows:

- a) The wing section was treated with anti-icing fluid, poured in a one-step operation (no Type I fluid was used during the tests);
- b) Contamination, in the form of simulated ice pellets, freezing rain, and snow, was applied to the wing section. Test parameters were measured at the beginning and end of the exposure to contamination; and
- c) At the end of the contamination period, the tunnel was cleared of all equipment and scaffolding.

The wind tunnel was subsequently operated through a simulated takeoff and climb-out test. The behaviour of the fluid during takeoff and climb-out was recorded with digital high-speed still cameras. In addition, windows overlooking the wing section allowed observers to document the fluid elimination performance in real-time.

The procedure for the wind tunnel trials is included in Appendix B. The procedure includes details regarding the test objectives, test plan, procedure and methodology, and pertinent information and documentation.

2.4 Test Sequence

The length of each test (from start of setup to end of last measurement) varied largely due to the length of exposure to precipitation (if applicable). Time required for setup and teardown as well as preparing and configuring the aircraft stayed relatively the same from test to test. Figure 2.2 demonstrates a sample timeline for a typical wind tunnel test. It should be noted that a precipitation exposure time of 30 minutes was used for demonstration purposes; this time varied for each test depending on the objective.

Figure 2.2: Typical Wind Tunnel Test Timeline

2.5 Wind Tunnel

The experiments were performed in the NRC PIWT. This facility is an open-circuit wind tunnel with a fan at the entry, drawing air from and exhausting to the outdoors; this design is ideal for de/anti-icing tests as it prevents contaminants from recirculating within the tunnel. This design also permits sub-freezing air to be drawn in during the Ottawa winter, thereby providing test section temperatures appropriate to these experiments. The test section is 3 m (10 ft.) wide by 6 m (20 ft.) high by 12 m (40 ft.) long, with a maximum wind speed of 78 knots when using the electrical turbine drive and with a maximum wind speed of 100 knots when using the gas turbine drive. Scaffolding was constructed to allow access to the wing section, which facilitated the application of fluids and the subsequent inspection and cleaning of the airfoil.

2.5.1 Generic Supercritical Wing Section

The wing section used for testing was a generic high-performance commuter airfoil, also referred to as "supercritical." This wing section was constructed by the NRC specifically to conduct these tests following extensive consultations with an airframe manufacturer to ensure a representative supercritical design. The original wing design was representative of an outboard section and did not include a flap; the flap was later added at the request of TC, the FAA, and APS. computational fluid dynamics (CFD) analysis of the modified wing section was conducted by the airframe manufacturer, and it was confirmed that the wing section provided a good representation of a flapped section of an operational supercritical wing. Photo 2.3 shows the wing section used for testing.

2.5.2 Generic "Supercritical" Wing Design Characteristics

A cross sectional view of the supercritical wing section used for testing has been included in Figure 2.3; the dimensions indicated are in metres. Some of the pertinent dimensions of the wing section are:

- a) Chord length not including flap: 1.4 m (4.6 ft.); and
- b) Width: 2.4 m (8 ft.).

Figure 2.3: Generic "Supercritical" Wing Section

An analysis of the wing section model was conducted by the airframe manufacturer to determine the typical rest position of this type of wing section. It was determined that on a typical commuter aircraft, this section of wing would typically be pitched forward by 2° when sitting on the ground. As a result, the NRC ensured the rest position of the wing model was set to -2° for each test.

The wing section was fitted with a hinged flap. The flap position was fixed at 20° and was not intended to be changed during testing. The top surface of the flap wing section had a steeper angle; a flap setting of 20° created close to a 26° slope on the top surface of the flap (with the wing pitched forward by 2°). As testing progressed, the ability to change the flap setting from 0° to 20° was necessary; contrary to a nested flap, which is typically protected during precipitation, a hinged flap is always exposed, and results indicated earlier failures were due to the shallower angle of the hinged flap. Modifications were made by the NRC to allow the flap setting to alternate between 0° and 20° for the fluid application and contamination periods; however, all takeoff simulations were conducted with the flap set to 20°. No moveable devices were available on the wing section. Detailed coordinates for this airfoil are included in Appendix C.

End plates were installed on the wing section to eliminate the "wall effects" from the wind tunnel walls and to provide a better aerodynamic flow-off above the test area. Figure 2.4 demonstrates the end plates installed on the supercritical wing section (note: the wing section is depicted without the top wing skin).

Figure 2.4: End Plates Installed on Supercritical Wing Section

2.5.3 Wind Tunnel Measurement Capabilities

The supercritical wing section was supported on either side by 2-axis weigh scales capable of measuring drag and lift forces generated on the wing section. The lift data collected for each test described in this report has been plotted as a function of time and is included in Appendix D. The wing section was attached to servo-systems capable of pitching the wing section to a static angle or generating dynamic movements. The servo-system was programmed to simulate pitch angles during takeoff and climb-out based on operational aircraft flight profiles.

The wing section was also equipped with eight Resistance Temperature Detectors (RTDs) (installed by NRC personnel) recording the skin temperature on the leading edge (LE), mid chord (MID), trailing edge (TE), and under-wing (UND). RTDs were placed along a chord 0.5 m (1.5 ft.) in pairs to the left and to the right of the wing centreline. The following are the locations of the RTDs:

- RTD LE located approximately 25 cm from the leading edge (as measured along wing skin curvature);
- RTD MID located approximately 70 cm from the leading edge (as measured along wing skin curvature);
- RTD TE located approximately 30 cm from the trailing edge (as measured along wing skin curvature); and
- RTD UND located approximately 45 cm from the leading edge.

Figure 2.5 demonstrates the general location of the RTDs. These RTDs were primarily used to monitor the skin temperature in real-time through the NRC data display system and were recorded by APS personnel as described in Subsection 2.15.3.

Figure 2.5: Location of RTDs Installed Inside Supercritical Wing

The wind tunnel was also equipped with sensors recording the following parameters:

- Air temperature inside the tunnel;
- Outside air temperature;
- Air pressure;
- Wind speed; and
- Relative humidity.

2.5.4 Test Area Grid

Prior to the testing, APS personnel used markers to draw a grid on the wing upper surface (excluding the flap). Each grid cell measured 5.1 cm x 5.1 cm (2 in. x 2 in.) with the cell axis positioned perpendicular and parallel to the leading edge (see Photo 2.4). The grid section was 2.4 m (8 ft.), which covered the entire wing section. The grid markings began approximately 10.1 cm (4 in.) aft of the leading edge stagnation point and continued along the length of the main chord; grid markings were not drawn on the flap section. The grid was used to facilitate observations of the fluid shearing off the wing and the movement of ice pellets during takeoff. Additional notes can be found in Appendix C.

2.6 Equipment

A considerable amount of test equipment was required to perform these tests. Key items are described in the following subsections; a full list of equipment is provided in the test procedure, which is included in Appendix B.

2.7 Simulated Precipitation

2.7.1 Ice Pellets

In a previous analysis of natural ice pellet events, the diameter of ice pellets was measured. It was found that ice pellets generally ranged from 1 mm to 3 mm. During moderate to heavy ice pellet conditions, the diameter of the ice pellets measured up to 5 mm. Based on this observation, ice pellets were produced with diameters ranging from 1.4 mm to 4.0 mm to represent the most common ice pellet sizes observed during natural events.

The ice pellets were manufactured inside a refrigerated truck (see Photo 2.5). Cubes of ice were crushed and passed through calibrated sieves (see Photo 2.6) to obtain the required ice pellet size range. Hand-held motorized dispensers were used to dispense the ice pellets. The ice pellets were applied to the leading and trailing edges of the wing at the same time.

2.7.2 Snow

Snow was produced using the same method for producing ice pellets. The snow used consisted of small ice crystals measuring less than 1.4 mm in diameter. Previous testing conducted by APS investigated the dissolving properties of the simulated snow versus natural snow. The simulated snow was selected as an appropriate substitute for natural snow.

The snow was manufactured inside a refrigerated truck. Cubes of ice were crushed and passed through calibrated sieves to obtain the required snow size range. Hand-held motorized dispensers were used to dispense the snow. The snow was applied to the leading and trailing edges of the wing at the same time.

2.7.3 Freezing Rain/Rain

The same sprayer head and scanner used for HOT testing at the NRC Climatic Engineering Facility was employed for testing. The sprayer system uses compressed air and distilled water to produce freezing rain. The temperature of the water is controlled and is kept just above freezing temperature in order to produce freezing rain. To produce rain, the temperature of the water is raised until the precipitation no longer freezes on the test surfaces.

2.8 Simulated Precipitation Related Equipment

2.8.1 Ice Pellet and Snow Dispenser

Calibration work was performed on the modified ice pellet/snow dispensers during the winter of 2007-08. The purpose of this calibration work was to determine the dispenser's distribution footprint when dispensing both ice pellets and snow. A series of tests were performed in various conditions:

- 1. Ice Pellets, Low Winds (0 km/h to 5 km/h);
- 2. Ice Pellets, Moderate Winds (10 km/h);
- 3. Snow, Low Wind (0 km/h to 5 km/h); and
- 4. Snow, Moderate Wind (10 km/h).

These tests were conducted using 121 collection pans, each measuring 15 cm x 15 cm, over an area 3.4 m x 3.4 m. Pre-measured amounts of IP/Snow were dispersed over this area, and the amount collected by each pan was recorded. A distribution footprint of the dispenser was attained, and efficiency for the dispenser was computed.

Using the results from these calibration tests, it was determined that the most appropriate distribution for the wind tunnel tests would be attained by using four dispensers (two on the leading edge, and two on the trailing edge) and by moving them through a cycle of four positions 0.3 m (1 ft.) apart; this essentially simulated sixteen dispensers positioned 0.3 m (1 ft.) apart along the leading and trailing edge of the wing.

Dispensing was done by placing known quantities of simulated ice pellets or snow into the dispensing bucket and allowing the dispenser to completely empty the contents over a set period of time (usually 1 minute). After the dispensing bucket was emptied, the dispenser was shifted over to the next of four positions per dispenser. The dispensers were re-filled every minute for the duration of the test (see Photo 2.7). The calculated efficiencies were accounted for when weighing the required amounts of ice pellets and snow. Details regarding the distribution pattern can be found in Attachments XI and XII of the wind tunnel procedure found in Appendix B.

Towards the end of the testing period (Test #83 and later), the methodology for dispensing snow was modified. Snow was dispensed manually by sifting snow directly onto the wing using calibrated sieves. This method was found to be more efficient, and it provided a more even application for cases where higher intensity snow precipitation rates were required. Consideration will be given to potentially using this methodology for future testing in 2010-11.

2.8.2 Freezing Rain Sprayer

Simulated freezing rain was generated by the NRC freezing rain sprayer system. The same sprayer head and scanner used for HOT testing at the NRC Climatic Engineering Facility was employed for testing. The sprayer system uses compressed air and distilled water to produce freezing rain. Two hypodermic needles are mounted onto a sprayer head whose movement is controlled by a 2-axis scanner. Approximately 2 seconds are required for the sprayer to disperse across the 2.4 m (8 ft.) width of the wing. The spray pattern is an "S" shape form, and a total of 54 seconds is required to complete a full cycle. Two full cycles are required to completely cover the wing (the second cycle is offset to generate a more even distribution). The freezing rain sprayer is shown in Photo 2.8.

2.9 Definition of Precipitation Rates

When simulating precipitation rates for full-scale and plate testing, the rate limits defined for standard HOT testing were referenced. Figure 2.6 demonstrates the HOT testing rate precipitation breakdown.

HOT testing protocol for ice pellets does not currently exist. As a result, ice pellet precipitation rate limits were based on the freezing rain rate breakdown. The following precipitation rates were used for the full-scale and flat plate testing conducted during the winter of 2009-10:

•	Light Ice Pellets:	13-25 g/dm²/h;
•	Moderate Ice Pellets:	25-75 g/dm²/h;
•	Light Freezing Rain:	13-25 g/dm²/h;
•	Moderate Freezing Drizzle:	5-13 g/dm²/h;
•	Light Rain:	13-25 g/dm²/h;
•	Moderate Rain:	25-75 g/dm²/h;
•	Light Snow:	4-10 g/dm ² /h; and
•	Moderate Snow	10-25 g/dm²/h.

Figure 2.6: Precipitation Rate Breakdown

2.10 Video and Photo Equipment

Two Canon Digital Rebel XT digital still cameras were used to obtain high-speed, high-resolution photographs of the testing. The 8 mega-pixel resolution cameras are

capable of taking up to three pictures per second in continuous shooting mode. Early in the testing, the cameras were fitted with an intervalometer and the frames were set at one per second; this reduced the storage size required for the photos while still providing sufficient detail of the fluid flow-off. The cameras were fitted with 18-55 mm lenses.

To create a consistent and stable setup for the cameras, APS mounted the cameras in the observation window overlooking the wing section. The flashes, operated through radio triggering sensors, were positioned in the opposing observation window; this created a shadow effect that could be used to measure and calculate the magnitude of the fluid waves and protruding contamination. An additional observation window was installed during the winter of 2010-11 directly overlooking the wing; the purpose was to allow observers to get a close look at the wing without interfering with the camera setup. Photos 2.9 and 2.10 demonstrate the camera setup used for the testing period.

The cameras were positioned to obtain a wide-angle view of the leading edge and close-up view of the trailing edge. In comparison to the 2006-07 and 2008-09 camera test setups, the positioning of the cameras was modified slightly due to the end plates installed on the wing and the wing geometry, both of which affected the camera view. During the 2006-07 tests, the cameras' primary focus was on the starboard section of the wing, whereas during the 2008-09 and 2009-10 tests, the primary focus point was on the center section of the wing; this was due to the restricted view points resulting from the changes in the wing setup. The trailing edge lens was also changed from a 105 mm macro lens (2006-07) to a 18-55 mm lens (2008-09 and 2009-10), as the primary focus point had been moved further away from the camera. Additional information regarding the camera setup used can be found in Appendix F.

In addition, a professional photographer used a digital still camera to take pictures of the test setup and all phases of the test from both inside and outside the test section.

2.11 Additional Photos Taken During Precipitation Phase

Early in the testing, the cameras were fitted with an intervalometer to limit the number of frames taken during the high-speed run and to reduce the storage size of the photos. The same intervalometer was used for taking pictures during the precipitation phase. The cameras were set to trigger every minute and, during shorter tests, at shorter intervals as required. These photos proved to be useful for demonstrating the progression of contamination, as well as for reviewing and comparing tests. This protocol should be continued for future testing.

2.12 Type II/III/IV Fluid Application Equipment

The Type II/III/IV fluids were stored outside the wind tunnel and were kept at air temperature. The fluids were poured rather than sprayed so that application would not change the fluid viscosity. This methodology was appropriate, given the relatively small test area of the wing section and the goal of minimizing the amount of fluid flowing off the wing.

Type II/III/IV fluids were generally received in 20 L containers; however, during the 2009-10 testing, some select fluids were received in large 1000 L totes. The fluids were applied to the wing section by using smaller 2 L containers (see Photo 2.11). Approximately 16 L to 20 L of fluid were applied to the wing section for each test; less fluid was required for the less viscous Type II and III fluids. Due to the flat top surface of the supercritical wing, the thickened fluid did not easily settle and flow on the top surface. The wing was therefore tilted forward (by approximately 10 degrees) for 1 minute following the end of fluid application to allow the fluid to spread out evenly over the top surface of the wing.

2.13 Waste Fluid Collection

Using a relatively small test area and applying the fluids by pouring minimized the amount of fluid falling off the wing. APS personnel used a vacuum to collect the fluid that would drip onto the tunnel floor prior to each test. The NRC also fitted the wind tunnel with appropriate drainage tubes to collect spent fluid during the takeoff test runs. At the end of the testing period, the services of Safety-Kleen were employed to safely dispose of the waste glycol fluid.

2.14 Personnel

NRC personnel operated the wind tunnel. Five APS staff members were required to conduct the tests, and four additional persons from Ottawa were hired to manufacture and dispense ice pellets as well as to help with general setup tasks. A professional photographer was retained to record digital images of the test setup and test runs. Representatives from the TDC and the FAA provided direction in testing and participated as observers. Photo 2.12 shows a portion of the 2009-10 research team (due to scheduling, not all participants were available for the photo).

2.15 Measurement of Test Parameters

2.15.1 Measurement Locations

For each test, the fluid thickness, skin temperature, and fluid Brix were measured at eight locations along the center chord. Measurements were taken during four stages of a typical test:

- a) Before fluid application;
- b) After fluid application;
- c) After application of contamination; and
- d) After the simulated takeoff test.

The locations designated for measurement, identified in Figure 2.7, were the following:

- Wing Position 1: Approximately 10 cm up from the leading edge stagnation point;
- Wing Position 2: Approximately 25 cm up from the leading edge stagnation point;
- Wing Position 3: Approximately 40 cm up from the leading edge stagnation point;
- Wing Position 4: Approximately 55 cm up from the leading edge stagnation point;
- Wing Position 5: Approximately 70 cm up from the leading edge stagnation point;
- Wing Position 6: Approximately 30 cm from the trailing edge;
- Wing Position 7: Approximately 15 cm from the trailing edge;
- Wing Position 8: Approximately 2.5 cm from the trailing edge;
- Wing Position 9: Midway up the flap; and
- Underside: Approximately 40 cm up from the leading edge stagnation point.

The wing positions were measured along the curvature of the wing.

Figure 2.7: Measurement Locations Along Chord of Supercritical Wing Section

2.15.2 Fluid Thickness

Fluid thickness was measured using wet film thickness gauges at three stages of a typical test:

- a) After fluid application;
- b) After application of contamination; and
- c) After the simulated takeoff test.

The locations designated for fluid thickness measurements, identified in Figure 2.6, were the following:

- Wing Position 1: Approximately 10 cm up from the leading edge stagnation point;
- Wing Position 2: Approximately 25 cm up from the leading edge stagnation point;
- Wing Position 3: Approximately 40 cm up from the leading edge stagnation point;
- Wing Position 4: Approximately 55 cm up from the leading edge stagnation point;
- Wing Position 5: Approximately 70 cm up from the leading edge stagnation point;
- Wing Position 6: Approximately 30 cm from the trailing edge;
- Wing Position 7: Approximately 15 cm from the trailing edge;
- Wing Position 8: Approximately 2.5 cm from the trailing edge;
- Wing Position 9: Midway up the flap; and

• Underside: Approximately 40 cm up from the leading edge stagnation point.

The wing positions were measured along the curvature of the wing. Photo 2.13 shows the fluid thickness gauges used for the testing.

2.15.3 Wing Skin Temperature

Initially, wing temperatures were measured using a hand-held temperature probe at four stages of a typical test:

- a) Before fluid application;
- b) After fluid application;
- c) After application of contamination; and
- d) After the simulated takeoff test.

The locations designated for skin temperature measurements, identified in Figure 2.6, were the following:

- Wing Position 2: Approximately 25 cm up from the leading edge stagnation point;
- Wing Position 5: Approximately 70 cm up from the leading edge stagnation point; and
- Underside: Approximately 40 cm up from the leading edge stagnation point.

The wing positions were measured along the curvature of the wing. Photo 2.14 shows the skin temperature probe used for the testing.

It should be noted that early on in the testing, the hand-held measurements were compared to the NRC-monitored data from the RTDs located inside the wing (see Subsection 2.5.3). The average of the temperatures recorded by the pairs of RTDs denoted by RTD LE, RTD MID, and RTD UND were comparable to the manual measurements taken by APS using a hand-held temperature probe on positions 2, 5, and Underside, respectively. Therefore, early on, the manual measurements were replaced by the data logged by the NRC (APS recorded an instantaneous average value from the NRC data at the required intervals for analysis purposes). The average instantaneous temperatures indicated by the three pairs of RTDs (located to the left and right of the centreline) were recorded for each of the three locations where APS typically measured skin temperature.

2.15.4 Fluid Brix

Fluid Brix was measured using hand-held refractometers at three stages of a typical test:

- a) After fluid application;
- b) After application of contamination; and
- c) After the simulated takeoff test.

The locations designated for fluid Brix measurements, identified in Figure 2.6, were the following:

- Wing Position 2: Approximately 25 cm up from the leading edge stagnation point; and
- Wing Position 5: Approximately 70 cm up from the leading edge stagnation point.

The wing positions were measured along the curvature of the wing. Photo 2.15 shows the hand-held Brixometer used for the testing.

2.16 Data Forms

Several different forms were used to facilitate the documentation of the various data collected in the wind tunnel tests. These forms include:

- a) General Form;
- b) Wing Temperature, Fluid Thickness and Fluid Brix Form;
- c) Ice Pellet and Snow Dispensing Forms;
- d) Sprayer Calibration Form;
- e) Visual Evaluation Rating Form
- f) Condition of Wing and Plate Form;
- g) Fluid Receipt Form; and
- h) Log of Fluid Sample Bottles.

Copies of these forms are provided in the test procedure, which is included in Appendix B.

2.17 General Methodology

This section describes equipment and general information used for the wind tunnel tests. A considerable amount of test equipment was required to perform these tests. Key items are described in the following subsections; a full list of equipment is provided in the test procedure, which is included in Appendix B.

2.17.1 Refractometer

Fluid freezing points were measured using a hand-held Misco 10431VP refractometer with a Brix scale. The freezing points of the various fluid samples were determined using the conversion curve or table provided to APS by the fluid manufacturer. The following tables contain the fluid freezing points for the various fluids tested and the relevant conversion data:

- Table 2.2 Kilfrost ABC-S Plus;
- Table 2.3 Clariant MPIII 2031 ECO;
- Table 2.4 Octagon Octaflo Type I;
- Table 2.5 Clariant MPIV Launch; and
- Table 2.6 Brix to Refractive Index Conversion Table.

Figure 2.8 illustrates the fluid freezing points for the Dow EG106 fluid.

2.17.2 Temperature Sensor

Wing skin temperature and fluid temperature were measured using a Wahl digital heat-probe thermometer Model 392Vxc. A surface temperature probe was used for wing skin temperature measurements (except in later tests when wing-mounted RTDs were used), and an immersion probe was used for measuring and monitoring fluid temperatures.

Conc. (% Vol)	BRIX (20°C)	RI (20°C)	Freezing Point (20°C)	Conc. (% Vol)	BRIX (20°C)	RI (20°C)	Freezing Point (20°C)	Conc. (% Vol)	BRIX (20°C)	RI (20°C)	Freezing Point (20°C)
20%	8.20	1.345	-3.4	50%	18.90	1.362	-10.6	80%	29.40	1.380	-23.1
21%	8.59	1.345	-3.6	51%	19.26	1.363	-11.1	81%	29.73	1.380	-23.7
22%	8.98	1.346	-3.8	52%	19.62	1.364	-11.6	82%	30.06	1.381	-24.2
23%	9.37	1.346	-4.0	53%	19.98	1.364	-12.0	83%	30.36	1.382	-24.8
24%	9.76	1.347	-4.2	54%	20.34	1.365	-12.4	84%	30.72	1.382	-25.4
25%	10.15	1.348	-4.4	55%	20.70	1.365	-12.8	85%	31.05	1.383	-26.0
26%	10.54	1.348	-4.6	56%	21.06	1.366	-13.1	86%	31.38	1.383	-26.7
27%	10.93	1.349	-4.9	57%	21.42	1.366	-13.4	87%	31.71	1.384	-27.3
28%	11.32	1.349	-5.1	58%	21.78	1.367	-13.8	88%	32.04	1.384	-28.0
29%	11.71	1.350	-5.3	59%	22.14	1.368	-14.1	89%	32.37	1.385	-28.6
30%	12.10	1.351	-5.5	60%	22.50	1.368	-14.5	90%	32.70	1.386	-29.3
31%	12.43	1.351	-5.8	61%	22.85	1.369	-14.9	91%	33.02	1.386	-30.1
32%	12.76	1.352	-6.0	62%	23.20	1.369	-15.2	92%	33.34	1.387	-30.8
33%	13.09	1.352	-6.3	63%	23.55	1.370	-15.7	93%	33.66	1.387	-31.5
34%	13.42	1.353	-6.5	64%	23.90	1.371	-16.0	94%	33.98	1.388	-32.2
35%	13.75	1.354	-6.8	65%	24.25	1.371	-16.4	95%	34.30	1.389	-33.0
36%	14.08	1.354	-7.0	66%	24.60	1.372	-16.8	96%	34.62	1.389	-33.8
37%	14.41	1.355	-7.3	67%	24.95	1.372	-17.2	97%	34.94	1.390	-34.6
38%	14.74	1.355	-7.6	68%	25.30	1.373	-17.6	98%	35.26	1.391	-35.4
39%	15.07	1.356	-7.9	69%	25.65	1.373	-18.0	99%	35.58	1.391	-36.2
40%	15.40	1.356	-8.1	70%	26.00	1.374	-18.4	100%	35.90	1.392	-37.0
41%	15.75	1.357	-8.4	71%	26.34	1.375	-18.9				
42%	16.10	1.358	-8.7	72%	26.68	1.375	-19.3				
43%	16.45	1.358	-9.0	73%	27.02	1.376	-20.0				
44%	16.80	1.359	-9.3	74%	27.36	1.376	-20.7				
45%	17.15	1.359	-9.5	75%	27.70	1.377	-21.4				
46%	17.50	1.360	-9.8	76%	28.04	1.378	-21.7				
47%	17.85	1.361	-10.0	77%	28.38	1.379	-22.0				
48%	18.20	1.361	-10.2	78%	28.72	1.379	-22.3				
49%	18.55	1.362	-10.4	79%	29.06	1.379	-22.6				

Table 2.2: Freezing Point vs. Brix of Aqueous Solutions of Kilfrost ABC-S Plus

DILUTION (v/v) Safewing : Water	BRIX (°) MISCO 10431 VP	FREEZING POINT (°C)
100 : 0	34.3 to 36.0	-31 to -34
95 : 5	33.4	-29
90 : 10	31.8	-26
85 : 15	30.2	-23
80 : 20	28.8	-21
75:25	27.2	-18
70 : 30	25.4	-16
65 : 35	24.0	-14
60 : 40	22.2	-12
55:45	20.4	-11
50 : 50	18.8	-10

Table 2.3: Dilution Chart for Clariant MPIII 2031 ECO

Table 2.4: Dilution Chart for Octagon Octaflo Type I

Dilution (Fluid/Water)	Refractive Index	Brix (°)	Freezing Point (°C)
100/0	1.425	52.25	N/A
65/35	1.398	39.00	-54°C
60/40	1.394	37.00	-40°C
56/44	N/A	34.25	-35°C
55/45	1.389	34.25	-34°C
50/50	1.384	31.5	-28°C
45/55	1.378	28.5	-22°C
42/58	N/A	26.75	-20°C
40/60	1.374	26.00	-19°C
35/65	1.369	23.00	-15°C
32/68	N/A	21.50	-13°C
30/70	1.364	20.00	-11°C
28/72	N/A	18.50	-9°C
25/75	1.358	16.50	-8°C
20/80	1.352	12.75	-6°C
10/90	1.343	6.75	-4°C

Concentration	RI (+20°C)	Freezing Point	Concentration	RI (+20°C)	Freezing Point
(% Volume)	(±0,001)	(°C)	(% Volume)	(±0,001)	(°C)
20%	1,345	-3,0	61%	1,369	-14,5
21%	1,346	-3,3	62%	1,370	-14,9
22%	1,346	-3,5	63%	1,371	-15,5
23%	1,347	-3,7	64%	1,371	-16,0
24%	1,347	-3,9	65%	1,372	-16,5
25%	1,348	-4,1	66%	1,372	-16,9
26%	1,348	-4,4	67%	1,373	-17,4
27%	1,349	-4,7	68%	1,373	-17,8
28%	1,350	-4,8	69%	1,374	-18,3
29%	1,350	-5,0	70%	1,374	-18,7
30%	1,351	-5,5	71%	1,375	-19,0
31%	1,351	-5,7	72%	1,375	-19,4
32%	1,352	-5,9	73%	1,376	-19,8
33%	1,353	-6,1	74%	1,376	-20,3
34%	1,353	-6,4	75%	1,377	-20,8
35%	1,354	-6,6	76%	1,377	-21,0
36%	1,355	-6,8	77%	1,378	-21,5
37%	1,355	-6,9	78%	1,379	-21,9
38%	1,356	-7,0	79%	1,379	-22,2
39%	1,356	-7,3	80%	1,380	-22,6
40%	1,357	-7,5	81%	1,380	-23,0
41%	1,358	-8,0	82%	1,381	-23,5
42%	1,358	-8,5	83%	1,381	-23,9
43%	1,359	-8,9	84%	1,382	-24,3
44%	1,359	-9,2	85%	1,383	-24,8
45%	1,361	-9,5	86%	1,383	-25,4
46%	1,361	-9,7	87%	1,384	-26,0
47%	1,362	-10,0	88%	1,384	-26,5
48%	1,362	-10,2	89%	1,385	-27,2
49%	1,363	-10,4	90%	1,385	-27,7
50%	1,363	-10,7	91%	1,386	-28,4
51%	1,363	-11,0	92%	1,387	-29,2
52%	1,364	-11,2	93%	1,387	-29,8
53%	1,364	-11,5	94%	1,388	-30,6
54%	1,365	-11,8	95%	1,388	-31,4
55%	1,365	-12,3	96%	1,388	-32,2
56%	1,366	-12,5	97%	1,389	-33,5
57%	1,367	-12,8	98%	1,389	-34,2
58%	1,368	-13,3	99%	1,390	-35,0
59%	1,368	-13,7	100%	1,390	-36,0
60%	1,369	-14,0			

Table 2.5: Dilution Chart for Clariant MPIV Launch

	0.0	0.25	0.50	0.75			0.00	0.25	0.50	0.75
0	1.3330	1.3334	1.3337	1.3341		26	1.3741	1.3745	1.3749	1.375
1	1.3344	1.3348	1.3351	1.3355		27	1.3758	1.3763	1.3767	1.377
2	1.3359	1.3363	1.3366	1.3370		28	1.3776	1.3780	1.3785	1.378
3	1.3373	1.3377	1.3381	1.3384		29	1.3794	1.3798	1.3803	1.380
4	1.3388	1.3392	1.3395	1.3399		30	1.3812	1.3816	1.3821	1.382
5	1.3403	1.3407	1.3410	1.3414		31	1.3830	1.3834	1.3839	1.384
6	1.3418	1.3421	1.3425	1.3429		32	1.3848	1.3852	1.3857	1.386
7	1.3433	1.3437	1.3440	1.3444		33	1.3866	1.3871	1.3875	1.388
8	1.3448	1.3452	1.3455	1.3459		34	1.3885	1.3889	1.3894	1.389
9	1.3463	1.3467	1.3471	1.3475		35	1.3903	1.3908	1.3913	1.391
10	1.3478	1.3482	1.3486	1.3490		36	1.3922	1.3927	1.3931	1.393
11	1.3494	1.3498	1.3502	1.3506		37	1.3941	1.3946	1.3950	1.395
12	1.3509	1.3513	1.3517	1.3521		38	1.3960	1.3965	1.3970	1.397
13	1.3525	1.3529	1.3533	1.3537		39	1.3979	1.3984	1.3989	1.399
14	1.3541	1.3545	1.3549	1.3553		40	1.3999	1.4004	1.4008	1.4013
15	1.3557	1.3561	1.3565	1.3569		41	1.4018	1.4023	1,4028	1.403
16	1.3573	1.3577	1.3581	1.3585		42	1.4038	1.4043	1.4048	1.405
17	1.3589	1.3593	1.3597	1.3602		43	1.4058	1.4063	1.4068	1.4073
18	1.3605	1.3610	1.3614	1.3618		44	1.4078	1.4083	1.4088	1.4093
19	1.3622	1.3626	1.3630	1.3634		45	1.4098	1.4103	1.4108	1.4113
20	1.3638	1.3643	1.3647	1.3651		46	1.4118	1.4123	1.4128	1.413
21	1.3655	1.3660	1.3664	1.3668		47	1.4139	1.4144	1.4149	1.4154
22	1.3672	1.3676	1.3680	1.3685		48	1.4159	1.4164	1.4170	1.4175
23	1.3689	1.3693	1.3698	1.3702		49	1.4180	1.4185	1.4190	1.4196
24	1.3706	1.3711	1.3715	1.3719		50	1.4201			
25	1.3723	1.3728	1.3732	1.3736						

Table 2.6: Brix to Refractive Index Conversion Chart

Figure 2.8: Freezing Point vs. Brix of Aqueous Solutions of Dow EG106

2.17.3 Thickness Gauges

Wet film thickness gauges, shown in Figure 2.9 and Photo 2.13, were used to measure fluid film thickness. These gauges were selected because they provide an adequate range of thicknesses (0.1 mm to 10.2 mm) for Type I/II/III/IV fluids. The rectangular gauge shown in Figure 2.9 has a finer scale and was used in some cases when the fluid film was thinner (toward the end of a test). The observer recorded a thickness value (in mils), as read directly from the thickness gauge. The recorded value was the last wetted tooth of the thickness gauge; however, the true thickness lies between the last wetted tooth and the next un-wetted tooth. A thickness conversion table (shown in Table 2.7) was used to convert the recorded thickness values into the corrected thickness values.

Figure 2.9: Thickness Gauges

2.17.4 Viscometer

Viscosity measurements were carried out using a Brookfield viscometer (Model DV-1 +, shown in Photo 2.16) fitted with a recirculating fluid bath and small sample adapter.

On-site measurements were initially done with the Stony Brook PDVdi-120 Falling Ball Viscometer (Photo 2.17) to obtain a preliminary verification of the fluid integrity; falling ball tests are much faster and more convenient to perform compared to tests with the Brookfield viscometer.
RECT	TANGULAR GA	UGE	00	CTAGON GAU	GE		
Reading*	Calculated	Thickness	Reading*	Calculated	Thickness		
(mil)	(mil)	(mm)	(mil)	(mil)	(mm)		
			0.4	0.8	0.0		
1.0	1.5	0.0	1.1	1.3	0.0		
			1.5	1.9	0.0		
2.0	2.5	0.1	2.2	2.4	0.1		
			2.6	2.7	0.1		
3.0	3.5	0.1	2.8	3.2	0.1		
1.0	4 5	0.1	3.6	3.9	0.1		
4.0	4.5	0.1	4.1	4.4	0.1		
5.0	5.5	0.1	4.7	4.9	0.1		
5.0	<u> </u>	0.1	5.1 6.0	5.0	0.1		
0.0	0.4	0.2	6.6	7.0	0.2		
7.0	7.5	0.2	7.3	7.5	0.2		
8.0	8.5	0.2	7.7	7.8	0.2		
9.0	9.5	0.2	7.9	9.0	0.2		
10	11	0.3	10	11	0.3		
11	12	0.3					
12	13	0.3	12	13	0.3		
14	15	0.4	14	15	0.4		
16	18	0.4	16	18	0.4		
18	19	0.5					
20	21	0.5	20	23	0.6		
22	23	0.6	0.5				
24	25	0.6	25	28	0.7		
26	27	0.7					
20	29	0.7	20	22	0.8		
35	38	1.0	35	38	1.0		
40	43	1.0	40	43	1.0		
45	48	1.2	10	10			
50	53	1.3	48	56	1.4		
55	58	1.5					
60	63	1.6					
65	68	1.7	64	80	2.0		
70	75	1.9					
80	88	2.2	80	88	2.2		
			96	100	2.5		
			104	108	2./		
			112	100	2.9		
			107	123	<u>.।</u> २२		
			134	138	3.5		
			142	146	3.7		
			150	154	3.9		
			158	179	4.5		
			200	225	5.7		
			250	275	7.0		
			300	350	8.9		
			400	400	10.2		

Table 2.7: Film Thickness Conversion Table

* Reading of last wetted tooth.

2.17.5 Fluids

Five fluids were used during the wind tunnel tests conducted during the winter of 2009-10. The fluid used for testing was at mid-production viscosity. The viscosity of the fluids received was measured using the Stony Brook PDVdi-120 Falling Ball Viscometer to ensure the fluid was within the fluid manufacturer production specifications and comparable to previous samples received. In previous years, the viscosity was measured using the Brookfield viscometer and the Stony Brook PDVdi-120 Falling Ball Viscometer. Samples received in 2009-10 were only verified using the falling ball method due to similarities in results obtained; no measurements were taken for the Type I fluid tested. The pertinent characteristics of these fluids are given in Table 2.8.

	Falling Ball Results 2008-09 Falling Ball Results 2009-10 Batch # Ball Results 2009-10 Time Batch # Brix Time										
Fluid Name	Batch #	Brix	Temp (°C)	Time (sec.)	Batch #	Brix	Temp (°C)	Time (sec.)			
		33	22.5	49		31.6	22.7	49			
	VK060TGKDR	33	22.5	45		31.6	22.7	46			
DOW UCAR EGIUD	XA 2201 CKIC	32.9	22.7	39	WHUGUIGKDR	31.5	23	50			
	XA2201GKI6	32.9	22.6	39							
Kilfreet ADC C DLUC	K01212009IV	36.5	22.9	25	D/22/12/00	35.8	22.3	25			
KIIIFOST ABC-S PLUS	K01212009IV	36.5	22.9	26	P/22/12/09	35.8	22.3	27			
	C15012009IV	35.1	23.6	30		35.7	22.6	30			
Clariant MP IV Launch	0001000000	35.5	23.7	26	USHA024295	35.7	22.6	31			
	C021920091V	35.5	23.9	27							
	015010000	35.4	24.7	3		35.5	22.9	9			
Clariant MD III 2021	C15012009III	35.4	24.7	3		35.5	22.9	9			
Clariant MP III 2031	0001000000	35.7	23.6	3	USHAU24443			<1			
	C02192009III	35.7	23.7	3				<1			
Octagon Octaflo *		Not Used in 2	008-09		WL-102009	N/A	N/A	N/A			

Table 2.8: Test Fluids

* Note: Brix and viscosity measurments are not taken for Type I fluids in concentrate formulation

This page intentionally left blank.

Photo 2.1: Outside View of NRC Wind Tunnel Facility

Photo 2.2: Inside View of NRC Wind Tunnel Test Section

Photo 2.3: Supercritical Wing Section Used for Testing

Photo 2.4: Grid Markings on Supercritical Wing Section

Photo 2.5: Refrigerated Truck Used for Manufacturing Ice Pellets

Photo 2.6: Calibrated Sieves Used to Obtain Desired Size Distribution

Photo 2.7: Ice Pellet Dispensers Operated by APS Personnel

Photo 2.8: Ceiling-Mounted Freezing Rain Sprayer

Photo 2.9: Wind Tunnel Setup for Flashes

Photo 2.10: Wind Tunnel Setup for Digital Cameras

Photo 2.11: Fluid Pour Containers

Photo 2.12: 2009-10 Research Team

Photo 2.13: Wet Film Thickness Gauges

Photo 2.14: Hand-Held Temperature Probe

Photo 2.15: Hand-Held Brixometer (Misco 10431VP)

Photo 2.16: Brookfield Digital Viscometer Model DV-1+

Photo 2.17: Stony Brook PDVdi-120 Falling Ball Viscometer

This page intentionally left blank.

3. FULL-SCALE DATA COLLECTED

3.1 Test Log

A calendar of the tests conducted during the winter of 2009-10 can be found in Table 2.1. A detailed log of the tests conducted in the NRC PIWT is shown in Table 3.1; only data pertaining to the test objectives described in this report are included (see Table 1.2 for additional details). Table 3.1 provides relevant information for each of the tests, as well as the final values used for the data analysis. Each column contains data specific to one test. The following is a brief description of the column headings for Table 3.1:

Run #:	Exclusive number identifying each test run.
Objective:	Main objective of the test.
Test Condition:	Description of the simulated conditions for the test.
Fluid:	Aircraft anti-icing fluid used during the test.
Rotation Angle:	Maximum angle of rotation obtained during simulated takeoff run; began testing with a max 8° rotation angle and increased to 20° as testing progressed.
Flap Angle:	Positioning of the flap during the precipitation period; either 0° (retracted) or 20° (extended). <i>Note: Flap was always extended at 20° during</i> <i>the takeoff run.</i>
Date:	Date when the test was conducted.
Precipitation End Time:	End time of the application of precipitation, recorded in local time.
Tunnel Start Time:	Start of the simulated takeoff run, recorded in local time.
OAT Before Test (°C):	Outside air temperature recorded just before the start of the simulated takeoff test, measured in degrees Celsius. <i>Note: Not an important parameter as "Tunnel Temp. Before Test" was used as actual test temperature for analysis.</i>

Tunnel Temp. Before Test (°C):	Static tunnel air temperature recorded just before the start of the simulated takeoff test, measured in degrees Celsius. <i>Note: This parameter was used as the actual</i> <i>test temperature for analysis.</i>
Avg. Wing Temp. Before Test (°C):	Average of the wing skin temperature measurements just before the start of the simulated takeoff test, recorded in degrees Celsius.
Precipitation Rate (Type: [g/dm²/h]):	Simulated freezing precipitation rate (or combination of different precipitation rates). "N/A" indicates that no precipitation was applied.
Exposure Time:	Simulated precipitation period, recorded in minutes.

The visual contamination ratings are described below. Visual contamination ratings were typically reported as the average of the three observer ratings and rounded to the nearest decimal. The visual contamination ratings system is further described in Subsection 4.1.

Visual Contamination Rating	
Before Takeoff (LE, TE, Flap):	Visual contamination rating determined before the start of the simulated takeoff:
	1 - Contamination not very visible, fluid still clean.
	 Contamination is visible, but lots of fluid still present.
	3 - Contamination visible, spots of bridging contamination.
	 4 - Contamination visible, lots of dry bridging present.
	5 - Contamination visible, adherence of contamination.
Visual Contamination Rating	
at Rotation (LE, TE, Flap):	Visual contamination rating determined at the time of rotation:
	 Contamination not very visible, fluid still clean.
	2 - Contamination is visible, but lots of fluid

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/TP 15232E (Vol. 2) Final Version 1.0.docx Final Version 1.0, October 20

still present.

	 3 - Contamination visible, spots of bridging contamination. 4 - Contamination visible, lots of dry bridging present. 5 - Contamination visible, adherence of contamination.
Visual Contamination Rating	
After Takeoff (LE, TE, Flap):	Visual contamination rating determined at the end of the test:
	1 - Contamination not very visible, fluid still clean.
	2 - Contamination is visible, but lots of fluid still present.
	3 - Contamination visible, spots of bridging
	 4 - Contamination visible, lots of dry bridging present
	5 - Contamination visible, adherence of contamination.
CL at O° Before Rotation:	Calculated lift coefficient at the 0° wing angle position just prior to the start of the rotation; data provided by the NRC.
CL at 8° During Rotation:	Calculated lift coefficient at the 8° wing rotation angle position; data provided by the NRC.
CL at 4° Following End of Rotation:	Calculated lift coefficient at the 4° wing rotation angle position attained at the end of the rotation cycle; data provided by the NRC.
% Lift Loss:	Percentage lift loss calculated based on the comparison of the 8° rotation lift coefficient during the test run versus the dry wing average lift coefficient (calculated to be 1.7213).

Run #	Objective	Test Condition	Fluid	Rotation Angle	Flap Angle (0°, 20°)	Date	Precip. End Time	Tunnel Start Time	OAT Before Test (°C)	Tunnel Temp. Before Test (°C)	AVG Wing Temp. Before Test (°C)	Precipiation Rate (g/dm²/h)	Exposure Time (min)	Visual Contamination Rating Before Takeoff (LE, TE, Flap)	Visual Contamination Rating at Rotation (LE, TE, Flap)	Visual Contamination Rating After Takeoff (LE, TE, Flap)	CL at - 2° Before Rotation	CL at 6° During Rotation	CL at 8°	CL at 4° Following End of Rotation	% Lift Loss (8° CL vs. Dry CL AVG = 1.7213)
0	IP Validation	IP- / ZR-	ABC-S Plus	8	20	7-Jan-10	11:26	11:37	-6.9	-6.1	-6	IP:25, ZR:25	25	2, 2, 4	1, 1, 3.7	1, 1, 1	0.665	1.423	1.609	1.247	6.52
1	Baseline	Fluid Only	ABC-S Plus	8	20	7-Jan-10	N/A	13:42	-6.6	-5.7	-4.6		-	1, 1, 1	1, 1, 1	1, 1, 1	0.695	1.463	1.635	1.266766	5.01
2	Baseline	Dry Wing	No Fluid	8	20	7-Jan-10	N/A	0.6	-6.5	-4.9	N/A		-	-, -, -	-, -, -	-, -, -	0.75	1.536992	1.698	1.303	1.35
3	Baseline	Dry Wing	No Fluid	14	20	11-Jan-10	N/A	N/A	-7.1	N/A	N/A		-	-, -, -	-, -, -	-, -, -	0.748	1.52	1.732	1.293	-0.62
4	Baseline	Fluid Only	ABC-S Plus	14	20	11-Jan-10	N/A	9:59	-6.4	-6.6	-5.4		-	1, 1, 1	1, 1, 1	1, 1, 1	0.653	1.456	1.652	1.278	4.03
5	IP Validation	IP- / SN-	ABC-S Plus	14	20	11-Jan-10	11:10	11:23	-5.5	-4.8	-6.7	IP:25, SN:10	25	2, 2, 3	1, 1.5, 1.8	1, 1, 1	0.665	1.448	1.658	1.290583	3.68
8	Baseline	Fluid Only	ABC-S Plus	13	20	12-Jan-10	N/A	18:09	-11.8	-8.8	-7.9		-	1, 1, 1	1, 1, 1	1, 1, 1	0.683	1.461	1.668	1.271	3.10
9	IP Validation	IP-	ABC-S Plus	8	20	13-Jan-10	10:21	10:31	-11.1	-7	-8.5	IP:25	50	2, 2, 3	1, 1.8, 1.8	1, 1, 1	0.677	1.462	1.641	1.27	4.67
10	IP Validation	IP Mod	ABC-S Plus	8	20	13-Jan-10	11:36	11:42	-10.6	-7.4	-10.5	IP:75	25	2, 3, 4	1, 2, 2	1, 1, 1	0.632	1.438	1.616	1.271	6.12
11	IP Expansion	IP- / SN-	ABC-S Plus	8	20	13-Jan-10	13:40	13:57	-10.2	-5.9	-8.1	IP:25, SN:10	40	3, 2.3, 4	1, 1.8, 2.5	1, 1, 1	0.684	1.459	1.646	1.274	4.37
10A	IP Validation	IP Mod	ABC-S Plus	8	20	13-Jan-10	15:18	15:26	-10	-5.6	-10.1	IP:75	25	2, 2.8, 2.7	1, 1.8, 2	1, 1, 1	0.736	1.525	1.709	1.288	0.71
12	Baseline	Fluid Only	ABC-S Plus	13	20	13-Jan-10	N/A	16:46	-10.4	-5.9	-5.8		-	1, 1, 1	1, 1, 1	1, 1, 1	0.656	1.454	1.66	1.263	3.56
10B	IP Validation	IP Mod	ABC-S Plus	8	20	13-Jan-10	17:55	18:03	-10.7	-6.2	-11.1	IP:75	25	2.2, 3, 3	1, 2, 2	1, 1, 1.2	0.609	1.405	1.587	1.268	7.80
13	IP Expansion	IP- / SN	ABC-S Plus	8	20	14-Jan-10	7:05	7:14	-9.3	-4.6	-7.9	IP:25, SN:25	20	3, 2, 3.5	1, 1.8, 2.7	1, 1, 1	0.629	1.422	1.617	1.267	6.06
14	IP Expansion	IP- / SN	ABC-S Plus	8	20	14-Jan-10	8:10	8:18	-9.3	-4.4	-8.1	IP:25, SN:25	15	2.2, 2, 2.83	2.8, 1.5, 1.5	1, 1, 1	0.641	1.414	1.626	1.271	5.54
15	IP Validation	IP- / SN	ABC-S Plus	8	20	14-Jan-10	9:19	9:28	-9	-4.3	-5.8	IP:25, SN:25	10	1.8, 2, 2.7	1, 1.3, 1.7	1, 1, 1	0.643	1.433	1.633	1.269	5.13
16	IP Validation	IP- / SN	ABC-S Plus	8	20	14-Jan-10	10:15	10:23	-8.7	-4.2	-4.7	IP:25, SN:25	5	1.4, 1.7, 1.8	1, 1, 1.3	1, 1, 1	0.628	1.414	1.622	1.26	5.77

Table 3.1: Wind Tunnel Test Log

Run #	Objective	Test Condition	Fluid	Rotation Angle	Flap Angle (0°, 20°)	Date	Precip. End Time	Tunnel Start Time	OAT Before Test (°C)	Tunnel Temp. Before Test (°C)	AVG Wing Temp. Before Test (°C)	Precipiation Rate (g/dm²/h)	Exposure Time (min)	Visual Contamination Rating Before Takeoff (LE, TE, Flap)	Visual Contamination Rating at Rotation (LE, TE, Flap)	Visual Contamination Rating After Takeoff (LE, TE, Flap)	CL at - 2° Before Rotation	CL at 6° During Rotation	CL at 8°	CL at 4° Following End of Rotation	% Lift Loss (8° CL vs. Dry CL AVG = 1.7213)
17	Baseline	Fluid Only	ABC-S Plus	8	20	14-Jan-10	N/A	11:11	-8.4	-3.9	-4.4		-	1, 1, 1	1, 1, 1	1, 1, 1	0.653	1.448	1.636	1.262	4.96
18	Baseline	Fluid Only	ABC-S Plus	12	20	14-Jan-10	N/A	12:32	-2	-2.5	-3.5		-	1, 1, 1	1, 1, 1	1, 1, 1	0.659	Data Loss	Data Loss	Data Loss	-
18A	Baseline	Fluid Only	ABC-S Plus	8	20	14-Jan-10	N/A	14:46	-5.7	-1.8	-2.9		-	1, 1, 1	1, 1, 1	1, 1, 1	0.721	1.501	1.692	1.31	1.70
19	Baseline	Fluid Only	ABC-S Plus	8	20	14-Jan-10	N/A	15:13	-5.7	-2.1	N/A		-	1, 1, 1	1, 1, 1	1, 1, 1	0.745	1.536	1.741	1.324	-1.14
20	IP Expansion	IP / R Mod	ABC-S Plus	8	20	20-Jan-10	1:27	1:35	0.3	2.9	1.1	IP:25	40	1 (3.7), 1 (4), 1	1, 1, 1	Did Not Rotate, Did Not Rotate, Did Not Rotate	0.713	Data Loss	Data Loss	Data Loss	-
21	IP Validation	IP Mod	EG106	8	20	20-Jan-10	21:00	21:05	-5.9	-3.6	-10.1	IP:75	25	2, 2.2, 4	1, 1, 1.2	1, 1, 1	0.723	1.515	1.712	1.298	0.54
22	IP Validation	IP-	EG106	8	20	20-Jan-10	22:27	22:32	-6.8	-4.1	-8.5	IP:25	50	1.8, 2, 4	1, 1, 1	1, 1, 1	0.722	1.495	1.707	1.293	0.83
23	IP Expansion	IP- / SN-	EG106	8	20	20-Jan-10	0:11	0:16	-6	-3.2	-9	IP:25, SN:10	40	2.3, 2.2, 4	1, 1.2, 1.5	1, 1, 1	0.717	1.491	1.702	1.294	1.12
24	IP Expansion	IP- / SN	EG106	8	20	21-Jan-10	1:24	1:30	-6.1	-3.7	N/A	IP:25, SN:25	20	2.5, 1.8, 4	1, 1.2, 1	1, 1, 1	0.719	1.517	1.699	1.294	1.30
25	Baseline	Fluid Only	EG106	8	20	21-Jan-10	N/A	2:05	-5.9	-4	-3.4		-	1, 1, 1	1, 1, 1	1, 1, 1	0.715	1.516	1.687	1.284	1.99
26	IP Validation	IP- / ZR-	EG106	8	20	21-Jan-10	3:22	3:28	-5.8	-1.9	-6.2	IP:25, ZR:25	25	2.2, 1.7, 4.7	1, 1, 4	1, 1, 3.5	0.657	1.441	1.639	1.283	4.78
26A	IP Validation	IP- / ZR-	EG106	8	0	21-Jan-10	4:40	4:53	-5.9	-3.3	-6.2	IP:25, ZR:25	25	1.8, 2, 1.9	1, 1, 1	1, 1, 1	0.721	1.499	1.697	1.291	1.41
27	Baseline	Fluid Only	ABC-S Plus	6	20	21-Jan-10	N/A	5:37	-6.2	-3.5	-3.7		-	1, 1, 1	1, 1, 1	1, 1, 1	0.655	1.423	-	1.254	-
28	IP Validation	IP-	Launch	8	20	21-Jan-10	21:34	21:39	-7.1	-4.2	-3.6	IP:25	50	2, 2, 3.7	1, 1.7, 2	1, 1, 1	0.659	1.449	1.648	1.275	4.26
29	Baseline	Fluid Only	Launch	8	20	21-Jan-10	N/A	22:25	-8.5	-4.8	-3.9		-	1, 1, 1	1, 1, 1	1, 1, 1	0.643	1.448	1.636	1.291	4.96
30	Baseline	Fluid Only	Launch	6	20	21-Jan-10	N/A	22:56	-8.8	-6.8	-5.2		-	1, 1, 1	1, 1, 1	1, 1, 1	0.64	1.409	-	1.252	-
28A	IP Validation	IP-	Launch	8	0	21-Jan-10	0:24	0:35	-9.1	-5.5	-7.4	IP:25	50	2, 2, 2.7	1, 1.5, 2	1, 1, 1	0.664	1.467	1.655	1.268	3.85

Table 3.1: Wind Tunnel Test Log (cont'd)

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/TP 15232E (Vol. 2) Final Version 1.0.docx Final Version 1.0, October 20

Run #	Objective	Test Condition	Fluid	Rotation Angle	Flap Angle (0°, 20°)	Date	Precip. End Time	Tunnel Start Time	OAT Before Test (°C)	Tunnel Temp. Before Test (°C)	AVG Wing Temp. Before Test (°C)	Precipiation Rate (g/dm²/h)	Exposure Time (min)	Visual Contamination Rating Before Takeoff (LE, TE, Flap)	Visual Contamination Rating at Rotation (LE, TE, Flap)	Visual Contamination Rating After Takeoff (LE, TE, Flap)	CL at - 2° Before Rotation	CL at 6° During Rotation	CL at 8°	CL at 4° Following End of Rotation	% Lift Loss (8° CL vs. Dry CL AVG = 1.7213)
44	IP Expansion	IP / R Mod	EG106	8	20	23-Jan-10	21:28	21:35	-8	-0.8	-1.2	IP:25, R:75	40	5, 4.5, 5	5, 5, 5	5, 5, 5	0.37	1.079	1.231	0.869	28.48
46	Baseline	Dry Wing	No Fluid	15	20	23-Jan-10	N/A	23:13	-8.6	-3.5	N/A		-	-, -, -	-, -, -	-, -, -	0.718	1.496	1.713	1.276	0.48
47	IP Validation	IP Mod	Launch	8	20	24-Jan-10	0:51	0:57	-8.7	-4.9	-10.1	IP:75	25	3.7, 3.8, 4	1, 1.7, 2.5	1, 1, 1	0.593	1.383	1.58	1.24	8.21
48	IP Validation	IP Mod	Launch	8	20	24-Jan-10	2:32	2:40	-8.7	-2.7	-8.5	IP:75	15	2, 2.8, 4	1, 1.7, 1.8	1, 1, 1	0.644	1.429	1.609	1.243	6.52
49	IP Validation	IP Mod	Launch	8	0	24-Jan-10	3:33	3:50	-8.5	-3.1	-8.8	IP:75	15	2.7, 2.8, 3	1, 1.5, 1.8	1, 1, 1	0.644	1.414	1.606	1.24	6.70
53	Baseline	Snow	Dry - Cold Wing	8	20	27-Jan-10	N/A	4:25	-2.7	-1.9	-0.3	SN:50	Approx. 7	1, 1, 1	1, 1, 1	1, 1, 1	0.648	1.441	1.654	1.275	3.91
54	Baseline	Fluid Only	Launch	8	20	27-Jan-10	N/A	4:57	-3.6	-2.2	-0.8		-	1, 1, 1	1, 1, 1	1, 1, 1	0.69	1.462	1.66	1.282	3.56
55	Baseline	Fluid Only	EG106	8	20	27-Jan-10	N/A	5:34	-4.2	-2.6	-0.9		-	1, 1, 1	1, 1, 1	1, 1, 1	0.704	1.498	1.689	1.282	1.88
56	IP Validation	IP / R Mod	EG106	8	20	27-Jan-10	7:11	7:18	-5.7	-1.1	-4.3	IP:25, R:75	25	1.8, 2, 4.7	1, 1, 5	1, 1, 5	0.701	1.478	1.666	1.259	3.21
56A	IP Expansion	IP / R Mod	EG106	8	0	27-Jan-10	8:22	0.357639	-6.2	-1.4	-2.4	IP:25, R:75	25	1.8, 2.2, 3	1, 1, 4.3	1, 1, 4.3	0.702	1.473	1.663	1.255	3.39
57	IP Expansion	IP- / SN-	Launch	8	20	27-Jan-10	22:28	22:34	-5.5	-3.6	-5.4	IP:25, SN:10	40	2.7, 2.6, 4	1, 1.7, 2.8	1, 1, 1.3	0.625	1.432	1.64	1.262	4.72
57A	IP Expansion	IP- / SN-	Launch	8	0	27-Jan-10	23:48	0:04	-5.4	-4.2	-5.7	IP:25, SM:10	40	2.6, 2.6, 3	1, 1.3, 1.7	1, 1, 1	0.654	1.488	1.671	1.292	2.92
58	IP Expansion	IP- / SN	Launch	8	0	28-Jan-10	1:04	1:14	-5.1	-3.1	-6.8	IP:25, SN:25	20	2.8, 2.6, 3	1, 1.5, 2	1, 1, 1	0.638	1.439	1.638	1.284	4.84
59	IP Validation	IP- / ZR-	Launch	8	0	28-Jan-10	3:52	4:03	-4.7	-3.3	-4.6	IP:25, ZR:25	25	2, 2, 2.2	1, 1.3, 1.5	1, 1, 1	0.667	1.449	1.651	1.271	4.08
60	Baseline	Fluid Only	Launch	8	20	28-Jan-10	N/A	5:04	-4.9	-2.8	-1.9		-	1, 1, 1	1, 1, 1	1, 1, 1	0.665	1.465	1.642	1.273	4.61
63	IP Validation	IP- / ZR-	ABC-S Plus	8	20	28-Jan-10	21:53	22:00	-14.2	-12.3	-10.8	IP:25, ZR:25	10	2.3, 2.3, 3.2	1.2, 2, 2.3	1, 1.2, 1.2	0.584	1.363	1.589	1.263	7.69
64	Baseline	Fluid Only	ABC-S Plus	8	20	28-Jan-10	N/A	22:45	-15	-13.4	-11.3		-	1, 1, 1	1, 1, 1	1, 1, 1	0.629	1.425	1.634	1.275	5.07

Table 3.1: Wind Tunnel Test Log (cont'd)

Run #	Objective	Test Condition	Fluid	Rotation Angle	Flap Angle (0°, 20°)	Date	Precip. End Time	Tunnel Start Time	OAT Before Test (°C)	Tunnel Temp. Before Test (°C)	AVG Wing Temp. Before Test (°C)	Precipiation Rate (g/dm²/h)	Exposure Time (min)	Visual Contamination Rating Before Takeoff (LE, TE, Flap)	Visual Contamination Rating at Rotation (LE, TE, Flap)	Visual Contamination Rating After Takeoff (LE, TE, Flap)	CL at - 2° Before Rotation	CL at 6° During Rotation	CL at 8°	CL at 4° Following End of Rotation	% Lift Loss (8° CL vs. Dry CL AVG = 1.7213)
65	IP Validation	IP-	ABC-S Plus	8	20	29-Jan-10	0:40	0:45	-16.9	-13.7	-13.9	IP:25	30	2.8, 2.8, 4	1.2, 2, 2.2	1, 1.7, 1.7	0.535	1.353	1.563	1.189	9.20
66	IP Validation	IP-	ABC-S Plus	8	20	29-Jan-10	2:29	2:34	-18.3	-13.6	-14.2	IP:25	20	2.2, 2, 3.2	1.2, 2, 2.5	1, 1.3, 1.7	0.557	1.349	1.573	1.253	8.62
67	IP Validation	IP-	EG106	8	20	29-Jan-10	3:58	4:03	-19.3	-12.6	-15	IP:25	30	2.2, 2.2, 3.2	1, 1.5, 1.8	1, 1, 1.2	0.683	1.463	1.683	1.292	2.23
68	IP Validation	IP-	Launch	8	20	29-Jan-10	5:12	5:16	-20.3	-16.6	-16.4	IP:25	30	3, 2.5, 3.7	1.3, 2, 2.2	1, 1.8, 2	0.55	1.331	1.556	1.222	9.60
69	IP Validation	IP-	Launch	8	20	29-Jan-10	6:05	6:09	-20.6	-17.8	-16.6	IP:25	15	2.8, 2.5, 3.5	1.3, 2, 2.7	1, 1, 1.8	0.546	1.331	1.556	1.235	9.60
70	Baseline	Fluid Only	Launch	8	20	29-Jan-10	N/A	6:43	-20.9	-17.9	-15.8		-	1, 1, 1	1, 1, 1	1, 1, 1	0.627	1.396	1.625	1.272	5.59
71	IP Validation	IP Mod	EG106	8	20	29-Jan-10	21:32	21:39	-21.4	-17.7	-17.2	IP:75	10	2.3, 2.3, 2.8	1, 1.3, 1.8	1, 1, 1.2	0.667	1.475	1.671	1.293	2.92
72	IP Validation	IP Mod	ABC-S Plus	8	20	29-Jan-10	22:17	22:22	-21.8	-18	-17.6	IP:75	10	2.8, 2.5, 3.8	1.2, 2, 2.8	1, 1.25, 1.7	0.554	1.338	1.561	1.226	9.31
73	IP Validation	IP Mod	ABC-S Plus	8	20	29-Jan-10	23:05	23:05	-21.9	-18.2	-17.4	IP:75	5	2.2, 2.2, 3.4	1.2, 2, 2.5	Did Not Rotate	0.688	1.45	1.635	1.284	5.01
74	IP Validation	IP Mod	Launch	8	20	29-Jan-10	23:54	0:00	-22.2	-18.5	-17.4	IP:75	5	2.7, 2.3, 3.2	1.5, 2, 2.8	1, 1.5, 1.9	0.556	1.359	1.544	1.218	10.30
75	Baseline	Fluid Only	EG106	8	20	30-Jan-10	N/A	0:40	-22.3	-18.1	-16.9		-	1, 1, 1	1, 1, 1	1, 1, 1	0.655	1.424	1.651	1.274	4.08
76	Baseline	Fluid Only	ABC-S Plus	8	20	30-Jan-10	N/A	1:13	-22.6	-17.9	-17.3		-	1, 1, 1	1, 1, 1	1, 1, 1	0.643	1.41	1.62	1.258	5.89
77	IP Expansion	IP- / SN-	ABC-S Plus	8	20	30-Jan-10	2:08	2:13	-22.4	-14.1	-16.1	IP:25, SN:10	10	2.8, 2.7, 3.7	1.7, 2, 2.8	1, 1.67, 1.5	0.554	1.338	1.551	1.227	9.89
78	IP Expansion	IP- / SN-	ABC-S Plus	8	20	30-Jan-10	2:50	2:56	-22.5	-16	-14.9	IP:25, SN:10	5	2.3, 2.2, 3	1.4, 2, 2.7	1, 1.2, 1.5	0.59	1.381	1.573	1.238	8.62
79	IP Expansion	IP- / SN-	EG106	8	20	30-Jan-10	3:40	3:45	-22.7	-14.8	-15.7	IP:25, SN:10	10	2.2, 2, 2.5	1, 1.5, 2	1, 1, 1	0.668	1.463	1.66	1.274	3.56
80	IP Validation	IP-	EG106	8	20	30-Jan-10	4:55	5:00	-22.9	-17	-18.5	IP:25	30	2.5, 2.2, 3	1, 1.25, 1.7	1, 1, 1	0.677	1.463	1.67	1.285	2.98
81	IP Expansion	IP- / SN	EG106	8	20	30-Jan-10	5:37	5:43	-22.9	-17.3	-17.1	IP:25, SN:25	5	1.8, 2, 2.3	1, 1.5, 2	1, 1, 1	0.666	1.445	1.656	1.284	3.79

Table 3.1: Wind Tunnel Test Log (cont'd)

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/TP 15232E (Vol. 2) Final Version 1.0.docx Final Version 1.0, October 20

Run #	Objective	Test Condition	Fluid	Rotation Angle	Flap Angle (0°, 20°)	Date	Precip. End Time	Tunnel Start Time	OAT Before Test (°C)	Tunnel Temp. Before Test (°C)	AVG Wing Temp. Before Test (°C)	Precipiation Rate (g/dm²/h)	Exposure Time (min)	Visual Contamination Rating Before Takeoff (LE, TE, Flap)	Visual Contamination Rating at Rotation (LE, TE, Flap)	Visual Contamination Rating After Takeoff (LE, TE, Flap)	CL at - 2° Before Rotation	CL at 6° During Rotation	CL at 8°	CL at 4° Following End of Rotation	% Lift Loss (8° CL vs. Dry CL AVG = 1.7213)
82	IP Expansion	IP- / SN	ABC-S Plus	8	20	30-Jan-10	6:27	6:33	-22.9	-15.8	-16	IP:25, SN:25	5	2.5, 2.2, 3.2	1.5, 1.5, 1.8	1.1, 1.7, 1.8	0.568	1.354	1.563	1.228	9.20
94	IP Validation	IP- / SN-	ABC-S Plus	8	20	2-Feb-10	3:54	3:58	-12.9	-6.3	-9.7	IP:25, SN:10	15	2.5, 2, 2.8	1, 1.8, 2	1, 1, 1	0.62	1.42	1.626	1.282	5.54
95	IP Validation	IP Mod	ABC-S Plus	8	20	2-Feb-10	4:28	4:32	-12.9	-8.1	-10.4	IP:75	10	2.2, 2, 2.8	1, 1.7, 2	1, 1, 1	0.579	1.401	1.602	1.281	6.93
96	IP Validation	IP-	ABC-S Plus	8	20	2-Feb-10	5:20	5:23	-13.4	-7.6	-10.7	IP:25	30	2.3, 2, 3	1, 2, 2	1, 1, 1	0.61	1.4	1.608	1.281	6.58
97	IP Expansion	IP- / SN	ABC-S Plus	8	20	2-Feb-10	5:55	6:00	-13.9	-8.3	-10.1	IP:25, SN:25	10	2.9, 2.3, 3	1.3, 1.8, 2.5	1, 1, 1.2	0.59	1.402	1.59	1.469	7.63
98	IP Validation	IP- / ZR-	EG106	8	20	2-Feb-10	6:36	6:41	-14.1	-6.7	-8.4	IP:25, ZR:25	10	2, 2, 2.5	1, 1, 1.3	1, 1, 1	0.705	1.501	1.691	1.299	1.76
100	Baseline	Fluid Only	EG106	8	20	3-Feb-10	N/A	2:37	-11.9	-6.3	-8.2		-	1, 1, 1	1, 1, 1	1, 1, 1	0.698	1.5	1.682	1.296	2.28
101	Baseline	Fluid Only	Launch	8	20	3-Feb-10	N/A	3:01	-11.9	-7.6	-8.4		-	1, 1, 1	1, 1, 1	1, 1, 1	0.629	1.447	1.636	1.274	4.96

Table 3.1: Wind Tunnel Test Log (cont'd)

4. ANALYSIS METHODOLOGY

This section provides an overview of the analysis methodology used to evaluate the wind tunnel tests conducted. Due to the large amount of data collected during each test, a methodology was developed in order to facilitate the analysis process.

4.1 Visual Contamination Ratings

The wind tunnel was equipped with observation windows overlooking the wing section. During each of the tests conducted, visual contamination ratings were determined by three observers: one observer from the FAA and two observers from APS. The level of contamination present on the leading edge and trailing edge of the wing, as well as on the flap, was quantified using a scale of one-to-five with five being the worst case scenario; partial numbers were sometimes assigned when cases were also marginally above or below a specific rating. These observations were taken three times during each test: at the start of the test (just prior to the wind tunnel ramp-up), at the time of rotation, and at the end of the test. The values assigned by the three observers were then averaged and used for comparative analysis. The following is a description of the rating system used:

Visual Contamination Ratings (1 to 5):

- 1) Contamination not very visible, fluid still clean;
- 2) Contamination visible, but lots of fluid still present;
- 3) Contamination visible, spots of bridging contamination;
- 4) Contamination visible, lots of dry bridging present; and
- 5) Contamination visible, adherence of contamination.

It should be noted that the visual contamination ratings were subjective due to the various conditions tested; it was not feasible to develop rating descriptions that were applicable to all conditions. The descriptions were primarily used as an aid for determining the numerical visual contamination rating. Having the same three observers for all the tests provided a level of consistency in the rating system, which allowed for a more accurate comparison system.

The visual contamination ratings were evaluated based on pre-determined criteria; less than or equal to 3 on the leading and trailing edge, less than or equal to 4 on the flap at the start of the test, and equal to 1 on the leading edge at the time of rotation were considered acceptable. Ratings higher than these indicated potential fluid contamination or fluid flow-off issues; these results were supported by the lift coefficient data collected.

4.2 Lift Coefficient Data

The NRC collected various parameters during each of the wind tunnel test runs. The data was collected at a rate of 250 samples per second. Parameters such as lift force, normal force, drag force, wind speed, and pitch angle were collected and used to calculate the lift, normal, and drag coefficients. For the purpose of the tests conducted, the lift coefficient was primarily used as the evaluation criteria when analysing the fluid flow-off performance during the tests. Typically, the lift coefficient varied from 0.6 and 1.7 depending on the wing angle of attack, which ranged from -2° to 8°. The calculated lift coefficient at the 6 and 8 degree rotation angles was typically evaluated against the dry wing average data. Lift losses below 5 percent compared to the dry wing were considered acceptable, and lift losses between 5 percent to 8 percent were considered marginal; additional work is being done to correlate these lift losses to the aerodynamic fluid certification results. The lift coefficient data collected as part of the ice pellet allowance time research has been included in Appendix D.

The lift coefficient is a non-dimensional measure of the lifting efficiency of an airfoil and is not a function of airspeed. As a result, the lift generated during a dry wing scenario for a low-speed and high-speed test run should generate similar lift coefficient profiles. During the fluid tests, variations in airspeed could potentially cause variations in the lift data collected; the fluid shearing is a function of the airspeed, and this would be demonstrated in the data. Therefore, when comparing lift coefficient data under similar conditions, differences as a result of airspeed variations would only be apparent during the fluid cases and not the dry wing cases.

4.2.1 Sequence of When Test Parameters Were Recorded

Figure 4.1 demonstrates the lift coefficient data collected during an example test run. The x-axis shows the time in seconds as of the start of the test; rotation begins at approximately 28 seconds, the wing rotates to a maximum angle of 8 degrees in approximately 3.7 seconds, and then it is rotated back to 4 degrees over a period of approximately 16 seconds. The y-axis indicates the calculated lift coefficient. The visual observations of the condition of the wing were recorded at the start of the test (time = 0), just before the start of rotation (time = 28 sec.), at the end of the rotation (time = 32 sec.), and at the end of the test (time = 60 sec.). The lift coefficient data used to calculate lift losses compared to the baseline test (typically the dry wing case) was measured at the 8° angle of rotation.

Figure 4.1: Example of When Test Parameters Were Recorded

4.3 Analysis Summary Worksheets

Due to the large amount of data to be processed for each of the tests conducted, analysis worksheets were developed and completed for each of the tests to provide a summary regarding the status of each test. Figure 4.2 demonstrates a typical worksheet.

Each worksheet comprised eleven rows: the first three rows indicated the basic test information, such as test objective, fluid, and test number. The next four rows evaluated test parameters, such as the tunnel temperature before the start of the test, rate of precipitation, and exposure time of precipitation, and provided a link to the associated fluid only case. The following three rows then evaluated the primary evaluation data collected during the test, which included visual contamination ratings at the start of the test and time of rotation, calculated lift coefficient at 6 and 8 degree rotation, and the calculated lift loss at 8 degree rotation. Lastly, an overall status summarizing the test was provided in the final row.

Figure 4.2: Typical Worksheet Used for Analysis

The evaluation grades included "very good," "good," "good/review," "fair," and "bad," and they were determined based on whether the criteria satisfied the test objective requirements or not. In the case of the tunnel temperature before the start of the test, Rate, and Exposure Time, these parameters were compared against the target parameters determined from the test plan (i.e., a colder temperature than the target would constitute a more conservative test and was therefore "good," whereas a warmer temperature would be "fair" or "bad"). The visual contamination ratings were evaluated based on pre-determined criteria; less than or equal to 3 on the leading and trailing edge and less than or equal to 4 on the flap at the start of the test were considered "good" or "very good," and equal to 1 on the leading edge at the time of rotation was also considered "good" or "very good." The calculated lift coefficient at the 6 and 8 degree rotation angles was evaluated against the corresponding 5 percent lift loss cut-off (as described in Subsection 5.8). The overall

status provided a summary of the test and indicated whether or not the test objective was met with successful results.

A complete set of the analysis summary sheets for the ice pellet allowance time objectives has been included in Appendix E and separated according to test objectives.

4.4 Comparison of Test Methodologies

4.4.1 Methodology Used for 2006-07 vs. 2008-09

During the 2008-09 testing, lift data collected from the NRC was monitored in real-time and was provided to APS at the end of each test run. This allowed TC, the FAA, and APS personnel to better assess and modify the test plan according to the results obtained. During the 2006-07 testing, data was only made available at the very end of the testing period; therefore, lift data was only used to confirm the visual observations and was not efficiently used as a decision-making tool for planning during the testing.

As a result of the availability of real-time lift data, a more structured approach was employed during the 2008-09 testing that encompassed the critical aspects of the data collected. Marginal tests were more easily identified and were dealt with accordingly following the end of the test (in some cases, marginal tests were re-run or modified in order to be able to satisfy test objectives). As compared to the 2006-07 testing, the analysis was ultimately based on the same type of evaluation criteria (visual and lift data); however, the 2008-09 methodology was a more conservative analysis approach as a result of the real-time data provided by the NRC.

4.4.2 Methodology Used for 2009-10 vs. 2008-09

During the 2009-10 testing, the lift data collected by the NRC was provided to APS at the end of each test run, and as in 2008-09, testing was monitored in real-time. Due to some software upgrades, preliminary analysis was done following each test run during the winter of 2009-10, which provided guidance when modifying the test plan on site. The analysis methodology and criteria used to evaluate each test during the winter of 2009-10 were essentially the same as those used during the winter of 2008-09.

This page intentionally left blank.

5. ADDITIONAL ANALYSIS OF TEST PARAMETERS AND TESTING METHODOLOGIES USED

This section describes the additional analysis performed in order to support and substantiate the analysis methodologies used to evaluate the tests conducted (as described in Section 4).

5.1 **Tunnel Measurement Repeatability**

The testing methodology in the wind tunnel was based on comparative test runs; therefore, it was necessary to evaluate the repeatability of the tests to validate the comparative test methodology. A comparison of similar test runs conducted in the wind tunnel with contaminated and uncontaminated fluid was performed. The lift coefficient data collected by the NRC was superimposed to identify any potential differences in the results obtained. Figure 5.1 demonstrates a comparison of two light ice pellet allowance time tests conducted in comparable conditions. The x-axis shows the time in seconds as of the start of the test; rotation begins at approximately 33 seconds, the wing rotates to a maximum angle of 8 degrees in approximately 16 seconds. The y-axis indicates the calculated lift coefficient. Similar graphs were compiled for uncontaminated fluid only cases. Figures 5.2 and 5.3 demonstrate the comparison of the data collected for Type IV propylene glycol (PG) (two test runs) and Type IV ethylene glycol (EG) fluids (three test runs), respectively.

In all three figures (Figures 5.1 to 5.3), the data demonstrate that there was very little difference in the results obtained during the individual comparative tests. Each set of tests demonstrates a similar aerodynamic improvement as the fluid sheds prior to rotation, and an almost identical lift coefficient profile following the time of rotation. During sets of tests with varying air conditions (i.e., OAT, humidity), differences were observed and are primarily due to the differences in fluid dynamics and the resulting effects on aerodynamic performance. In general, the uncontaminated and the contaminated fluid test runs demonstrated a good repeatability, which adds confidence to the results obtained during the testing.

In addition, a dry wing test run was conducted at the start of each test day to ensure that the recorded baseline dry wing data had not changed; the integrity of the measurement capabilities was monitored by the NRC. Figure 5.4 demonstrates the CL data collected during five dry wing runs conducted with similar test parameters (i.e., rotation speed and max rotation angle). As is demonstrated, all five lift profiles are superimposed with little variation, indicating minimal scatter in the data collected.

Figure 5.1: Lift Coefficient Repeatability Example for IP-

Figure 5.2: Lift Coefficient Repeatability Example for Type IV PG Fluid Only

Figure 5.3: Lift Coefficient Repeatability Example for Type IV EG Fluid Only

Figure 5.4: Dry Wing Lift Coefficient Repeatability Example

5.2 Comparison of Experimental vs. Simulated Lift Profile

Prior to the start of testing, the NRC conducted extensive testing to calibrate the wind tunnel. One task was to compare the actual experimental lift profile curve to the theoretical curve developed analytically by the airframe manufacturer through simulation. Figure 5.5 demonstrates the comparison of the lift coefficient curves obtained by the NRC calibration and by the simulation analysis. The results indicated that the wing performance in the wind tunnel was as expected, and the slope of the curve closely matched the simulation results. Based on the opinions of the aerodynamicists at the NRC and the airframe manufacturer, the discrepancies in the simulated versus actual results are associated with 2D versus 3D effects. It was determined that these differences would not affect the testing results, as the allowance time testing was comparative and based on the delta differences when comparing dry wing versus fluid only versus fluid and contamination lift performances and not based on the absolute value of the lift coefficient.

Figure 5.5: Comparison of Experimental vs. Simulated CL Data

5.3 Regression Analysis of Lift Coefficient Data vs. Visual Contamination Ratings

The following analysis was performed to identify any potential link between the lift coefficient data collected and the visual contamination ratings recorded by the observers. The objective was to determine if a regression equation could be developed and used to estimate lift loss of a typical wind tunnel run using only visual contamination ratings taken during the test.

5.3.1 Methodology

A multi-variable linear regression was performed using the 2009-10 wind tunnel data collected specific to EG106, Launch, and ABC-S+. The data included baseline fluid only cases and fluid and precipitation cases (IP allowance time tests) conducted during high-speed 8° takeoff profiles and included flap up and flap down tests. Some data was eliminated due to irrelevance, primarily R&D type tests that were not representative.

For each case studied, the visual ratings at the start of the test and at the time of rotation, along with the wing area temperature, were regressed against the lift loss calculated based on the CL data collected. The following are the details of the parameters studied:

Y-Output:

• Lift Loss (%) as calculated from the dry wing

X-Input:

- Visual Rating at Start of the Test
 - Leading Edge (LE Start)
 - Trailing Edge (TE Start)
 - Flap (FL Start)
- Visual Rating at the Time of Rotation
 - Leading Edge (LE ROT)
 - Trailing Edge (TE ROT)
 - Flap (FL ROT)
- Tunnel Air Temperature at Start of Tunnel (TAT)

Parameters were sequentially eliminated based on the p-value calculated; parameters with a calculated p-value greater than 0.05 were eliminated, and the regression analysis was re-calculated. Two regression outputs were of particular interest:

- When all remaining parameters had a p-value of less than 0.05; and
- The last remaining parameter of strongest significance to the regression calcualtion.

Two additional studies were performed. The first analysis was with EG106, which included only the visual rating at the start of test and the wing area temperature, the purpose of which was to identify the potential to predict lift loss based on the visual condition of the wing prior to takeoff. The second was conducted with both Launch and ABC-S+ data to identify any potential relationship among PG fluids.

Note: This regression analysis was conducted prior to the final review of the data collected. Following the end of testing, the NRC re-issued the lift loss data, which had been adjusted slightly for various experimental parameters. Although the adjusted data was not used for this analysis, the general trends and conclusions are still valid; the modifications made to the data were generally consistent among all tests.

5.3.2 General Observations

The following sections describe the observations from the analysis conducted. A summary table of these results isincluded in Table 5.1.

5.3.2.1 EG106

The EG106 analysis identified the TE Start, LE ROT, FL ROT, and TAT as the significant parameters in the regression analysis. The R-square value calculated was 0.99, which indicates a strong relationship between visual observations recorded and the lift loss calculated. When all other parameters were eliminated, the LE ROT observation remained the parameter of the strongest significance. The R-square value for this single parameter analysis case was still very good, with a value of 0.96.

The results indicated that the visual observations at the time of rotation, particularly the LE ROT, were of particular importance in the assessment of lift loss.

Observation	EG106	Launch	ABC-S+	EG106 (Start and TAT)	Launch and ABC-S +						
		Multi V	ariable Analys	sis Best Fit							
LE Start				7.05							
TE Start	-1.13	2.16	3.31		1.65						
FL Start		-3.73	-2.22	-2.04	-1.61						
LE ROT	6.80		1.22		1.46						
TE ROT		11.48			1.6						
FL ROT	0.85		2.42		1.92						
TAT	-0.13		-0.17		-0.17						
Intercept	-4.52	-5.36	-1.13	-4.72	-1.44						
R-Square	0.99	0.82	0.83	0.63	0.8						
		Single V	ariable Analy	sis Best Fit							
LE Start				4.83							
TE Start											
FL Start											
LE ROT	6.51										
TE ROT		4.39									
FL ROT			2.05		2.15						
TAT											
Intercept	-3.88	-0.31	3.10	-6.32	2.65						
R-Square	0.96	0.51	0.48	0.53	0.46						
Note: Coefficients denote the variables of most significance to the regression analysis.											

Table 5.1: Summary of Regression Coefficients - Analysis Results

5.3.2.2 EG106 – Using Only Visual Observations at Start and TAT

The EG106 analysis using only visual observations at start and TAT identified the LE Start and FL Start as the significant parameters in the regression analysis. The R-square value calculated was 0.63, which is significantly less when compared to the previous analysis using observations at the start and at the time of rotation. When all other parameters were eliminated, the LE Start observation remained the parameter of the strongest significance. The R-square value for this single parameter analysis case was still low at 0.53.

The results indicated that using only the visual observations at the start of the test does not provide a reliable means of determining the lift losses at the time of rotation.

5.3.2.3 Launch

The Launch analysis identified the TE Start, FL Start, and TE ROT as the significant parameters in the regression analysis. The R-square value calculated was 0.82, which indicates a good relationship between visual observations recorded and the lift loss calculated. When all other parameters were eliminated, the TE ROT observation remained the parameter of the strongest significance. The R-square value for this single parameter analysis case was low, with a value of 0.51.

Similar to EG106, the results indicated that observations at the time of rotation were of particular importance in deriving a regressions correlation. As compared to EG106, the TE ROT visual observation was of most importance as compared to the LE ROT.

5.3.2.4 ABC-S+

The ABC-S + analysis identified the TE Start, FL Start, LE ROT, FL ROT, and TAT as the significant parameters in the regression analysis. The R-square value calculated was 0.83, which indicates a good relationship between visual observations recorded and the lift loss calculated. When all other parameters were eliminated, the FL ROT observation remained the parameter of the strongest significance. The R-square value for this single parameter analysis case was low, with a value of 0.48.

Similar to EG106 and Launch, the results indicated that visual observations at the time of rotation were of particular importance in deriving a regressions correlation. Compared to EG106 and Launch, the FL ROT visual observation was of most importance compared to the LE ROT and TE ROT, respectively.

5.3.2.5 Launch and ABC-S+

An analysis was conducted by grouping both Launch and ABC-S+ to identify if any conclusions could be drawn for PG fluids in general. The Launch/ABC-S+ analysis identified the TE Start, FL Start, LE ROT, TE ROT, FL ROT, and TAT as the significant parameters in the regression analysis. The R-square value calculated was 0.80, which indicates a good relationship between visual observations recorded and the lift loss calculated. When all other parameters were eliminated, the FL ROT observation remained the parameter of the strongest significance. The R-square value for this single parameter analysis case was low, with a value of 0.46.
Results of this analysis were similar to the ABC-S + alone analysis. This is likely a result of the greater number of tests conducted with ABC-S + versus Launch, therefore, the analysis was weighted more towards ABC-S + .

5.3.3 Conclusion

The analysis identified a good correlation between the visual observations recorded during the tests and the lift losses calculated based on the lift coefficient data collected; this is particularity true for visual observations taken at the start of rotation. EG106 generated the best fit correlation, even with a single variable regression. The PG fluids, however, demonstrated more scatter in the results, likely due to the fluid flow-off issues observed at the colder temperatures. Visual observations should continue to be recorded for future wind tunnel testing, as they have proven to be of value as an analysis tool.

5.4 Regression Analysis of Lift Loss vs. Leading Edge Visual Rating at Rotation

Similar to the previous section, a more in-depth and thorough analysis was performed to identify any potential link between the lift coefficient data collected and the visual contamination ratings recorded by the observers: more specifically, the visual rating of the leading edge at the time of rotation. The objective was to determine if a regression equation could be developed and used to estimate lift loss of a typical wind tunnel run using only the leading edge visual contamination rating at the time of rotation.

5.4.1 Methodology

A multi-variable linear regression was performed using the 2009-10 wind tunnel data collected specific to EG106, Launch, and ABC-S+, as well as for all fluids grouped together. For each case studied, the leading edge visual ratings at the time of rotation along with the wing area temperature were regressed against the lift loss calculated based on the CL data collected. The following are the details of the parameters studied:

Y-Output:

• Lift Loss (%) as calculated from the dry wing

X-Input:

• Leading Edge Visual Rating at the Time of Rotation (LE ROT)

• Tunnel Air Temperature at Start of Tunnel (TAT)

The regression analysis was conducted using both the X-Inputs (LE ROT and TAT) as well as using only the Leading Edge Visual Rating at the time of Rotation.

5.4.2 General Observations

The following sections describe the observations from the analysis conducted. Figures 5.6 to 5.9 demonstrate the details of the regression analysis performed. A summary table of the R-squared values obtained from each of the analyses is included in Table 5.2.

Figure 5.6: Dow UCAR EG106 - Regression Analysis of LL vs. LE ROT

Figure 5.7: Clariant Launch - Regression Analysis of LL vs. LE ROT

Figure 5.8: Kilfrost ABC-S + - Regression Analysis of LL vs. LE ROT

Figure 5.9: All Data Points - Regression Analysis of LL vs. LE ROT

Table 5.2: Summary of R-Squared	Values from Regression Analysis
---------------------------------	---------------------------------

R-Squared Values (LE ROT vs. LL Regression)			
EG106	Launch	ABC-S+	All Data
0.96	0.70	0.62	0.59

The results of the analysis indicated that there was a reasonable relationship for each of the fluids when separated. The relationship improves for Launch and ABC-S + when temperature is included in the regression as an additional variable.

5.4.3 Detailed Analysis of Data Points Selected for Regression

To better understand the variance in the results obtained, the data points were separated into seven groupings (groups A to G) based on the general trends derived from the lift loss (LL) and the rating on the leading edge (LE) at the time of rotation (Figure 5.10). These groupings were further analysed, and conclusions were made based on the results. The more detailed groupings are shown in Figures 5.11 to 5.17, and the conclusions made are indicated in each of the respective graphs.

Figure 5.10: All Data – Grouping of Results Based on General Trend

Figure 5.11: Group A – LL >8%; LE Rating >1

Figure 5.12: Group B – LL Between 5% and 8%; LE Rating >1

Figure 5.13: Group C – LL >8%; LE Rating = 1

Figure 5.14: Group D – LL Between 5% and 8%; LE Rating = 1

Figure 5.15: Group E – LL < 5%; LE Rating = 1

Figure 5.16: Group F – LL > 15%; LE Rating > 4.5

Figure 5.17: Group G – LL < 5%; LE Rating > 3

5.5 Effect of Wing Surface Slope on Fluid Failure Mechanism

The geometry of the supercritical wing used during the 2009-10 testing created a relatively flat and level top wing surface aft of the leading edge. The anti-icing fluid sitting on the top of the wing did not readily flow-off due to the shallow angles of the top surface. The result was that often contamination would begin to "bridge" earlier on the top surface of the wing; the fluid and contamination would not easily flow-off the wing. In comparison, a wing with more prominent top curvature, such as the wings used during the 2006-07 and 2008-09 testing (NACA 23012 and NASA LS(1)-0417, respectively) will have more fluid flow-off during exposure to precipitation and will more readily shed some contamination.

Figure 5.18 demonstrates a comparison of the wing models used for the ice pellet allowance time testing. The average slopes of the top surface of each wing model used was calculated based on the highest point on the top of the wing surface and the leading edge stagnation point and trailing edge tip. It is apparent that the supercritical wing model has a much shallower leading and trailing edge, which explains the behaviour of the fluid "sitting" on the top surface on the wing and not easily flowing off.

Figure 5.18: Comparison of Wing Models Used for Ice Pellet Allowance Time Testing

5.6 Analysis of Associated Test Temperature Used for Development of Allowance Times

When testing in the wind tunnel, temperature fluctuations during a test run are inevitable. The presence of personnel, test equipment, lighting, and the opening and closing of the tunnel doors cause the wind tunnel test section to warm up by several degrees. This is especially true during calm wind conditions; typically, during higher wind conditions, the wind blows through the wind tunnel and continually cools the test section. This phenomenon causes some complications when choosing the appropriate air temperature to associate with the test during analysis.

During the winter of 2006-07, the 10-minute average of the air temperature (measured using a probe attached to the tunnel wall well above the wing) prior to the start of the takeoff run was used as the associated test temperature; the average was taken to compensate for large temperature fluctuations. Over the years, procedural improvements and personnel training have drastically decreased the time required for setup and teardown for each test, minimizing the tunnel warming phenomenon experienced. In addition, a new probe was installed onto the wing end plates in 2008-09 located directly above the wing section. When analyzing the 2008-09 data, the instantaneous temperature reading just prior to the start of the test was deemed appropriate and was used for the analysis. The same methodology was used for the winter of 2009-10; therefore, an analysis was conducted to verify any potential differences in using the instantaneous temperature versus using the 10-minute average temperature, both of which were recorded using the probe located above the wing. Table 5.3 shows the 2009-10 results for a representative selection of tests. Table 5.4 compares the differences in instantaneous versus 10-minute average air temperature for the 2006-07 versus 2009-10 testing.

The results from Table 5.3 indicated that during the 2009-10 testing, the differences in the two recorded temperatures were minimal; therefore, using the instantaneous temperature was appropriate and facilitated real-time analysis. The results from Table 5.4 demonstrate that during the 2006-07 testing, there was a larger difference between the instantaneous and 10-minute average air temperatures during the test due to the factors mentioned during the 2006-07 analysis; however, this was no longer necessary following the procedural improvements and relocation of the temperature probe. The conclusion of this analysis indicates that the instantaneous air temperature prior to the start of the takeoff run is both representative and appropriate for use in the data analysis.

est #	Instantaneous Temp. Before Start of Test Run °C (WT 2009-10)*	Temp. 10 min AVG Before Start of Test Run °C (WT 2009-10)**	Temperature Difference °C
0	-6.1	-6.3	-0.2
10	-7.4	-7.3	0.1
10B	-6.2	-6.3	-0.1
15	-4.3	-4.3	0
47	-4.9	-4.6	0.3
56	-1.1	-0.6	0.5
56A	-1.4	-0.1	1.3
57	-3.6	-3.7	-0.1
63	-12.3	-11.9	0.4
65	-13.7	-13.1	0.6
68	-16.6	-16.4	0.2
72	-18.0	-18.3	-0.3
94	-6.3	-6.6	-0.3
95	-8.1	-8.6	-0.5
96	-7.6	-7.8	-0.2
		AVG	0.1
		STD DEV	0.46

Table 5.3: Comparison of Instantaneous vs. 10-Minute Average Air TemperatureDuring Wind Tunnel Tests

Table 5.4: Comparison of 2006-07 vs. 2009-10 Difference Between Instantaneousand 10-Minute Average Air Temperature During Wind Tunnel Tests

Test #	Temp. Difference Between Instantaneous & Temp. During Last 10 Min. of Precip. (WT 2006-07)	Test #	Temp. Difference Between Instantaneous & Temp. 10 Min. Before Start of Test Run (WT 2009-10)
4	1	0	-0.2
5	5	10	0.1
6	0	10B	-0.1
6A	-0.5	15	0
SP1	0.5	47	0.3
SP2	-2	56	0.5
SP3	-1	56A	1.3
SS7	0.5	57	-0.1
7	0	63	0.4
8	-1	65	0.6
9	1	68	0.2
SP4	-1.0	72	-0.3
10	3	94	-0.3
11	-1	95	-0.5
12	3	96	-0.2
AVG	0.5	AVG	0.1
STD DEV	1.9	STD DEV	0.5

5.7 Analysis of NRC vs. APS Recorded Wing Skin Temperature

During the winters of 2006-07 and 2008-09, APS manually recorded skin temperature measurements using a hand-held probe at select locations on the wing along one chord length (typically in the middle). When constructing the supercritical wing model for the winter of 2009-10, APS requested that temperature sensors be installed on the underside of the wing skin. The location of the sensors is shown in Subsection 2.5.3. It was recommended that if the NRC-recorded skin temperature was similar to the measurements taken by APS, the procedure would be changed to eliminate the hand-held measurement and only use the NRC-collected data.

Early in the testing, a preliminary analysis was conducted comparing the hand-held measurements to the NRC-monitored data from the sensors located inside the wing. The data provided from both sources were comparable; therefore, the manual measurements were replaced by the data recorded by the NRC (APS recorded instantaneous data at the required intervals). The average of the two RTDs (located to the left and right of the centreline) was used for each of the four locations where temperature was typically measured.

An analysis was conducted on wing skin temperature data collected by APS and NRC personnel. Seven test runs were selected to compare the differences in temperature measurements. Temperature measurements at three locations, location 2, 5, and Underside (see Subsection 2.14), were compared. The results are presented in Table 5.5. The analysis showed that the NRC temperature data is on average 0.6°C colder than the data collected by APS personnel. It was determined that the NRC wing skin temperature data was appropriate and should be used for future testing during data collection.

5.8 Analysis of Wind Tunnel Ramp-Up Time

The NRC PIWT is an open-circuit wind tunnel with a fan located at the tunnel entry. The fan is driven by a gas turbine, which allows the test section to reach wind speeds of 100 knots. The gas turbine drive is manually operated by NRC personnel and, as a result, acceleration profile and resulting ramp-up time can vary based on operator familiarity and human variances.

To investigate the variability in ramp-up time, the tests conducted as part of the ice pellet allowance time testing were analysed. A total of 66 tests were included, and the time to ramp-up from 40 knots to time of rotation (close to 100 knots) was calculated. The 40 knots was chosen as the lower cut-off speed to reduce variability in the results, as typically the initial ramp-up is slower; these lower speeds do not significantly affect the fluid (very little shear).

After Flield Application 2 4.8. 6.4. 0.0. 0.0. 1 0 -3.1 -6.1 -0.0 -0.1 4 -		Run #	Wing Position	APS Temp (°C)	NRC Temp (°C)	Delta NRC-APS (-ve = NRC Colder)
1 5 5.6 3.6 0.6 4 0 4.1 6.1 6.7 1.7 6 0.3 0.5 0.7 1.7 6 0.4 0.8 0.5 0.7 1.7 6 0.4 0.7 0.7 0.7 0.7 0.7 8 0.4 0.7			2	-4.5	-5.4	-0.9
Image: border in the second	-	1	5	-5	-5.6	-0.6
4 2 3 2 1 1 1 1 1 Betree Faid Application 1 0 3 0<			U	-5.1	-5.1	0
A 0 0.3 0.6 1 5 0 4.2 4.4 0.6 6 3.4 4.4 0.8 9 2 4.1 4.6 0.7 10 5 5.5 0.0 0.0 10 3.1 4.5 0.0 10 3.3 3.2 0.1 0.1 10 6 4.9 0.1 1.1 0.1 10 6 4.9 0.1 1.2 0.1 10 6 4.9 0.1 1.2 0.1 10 6 4.6 7.1 0.1 0.1 10 4.5 6.6 0.1 0.1 0.1 10 4.5 6.6 0.1 0.1 0.1 10 4.5 6.6 0.1 0.1 0.1 10 4.5 6.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		4	2	-5.8	-7	-1.2
Betore Rud Application 2 42 46 0.7 9 0 -5 -5 0 9 0 -3 -5 -0 10 -5 -5 0 0 9 0 -4 -45 0.5 10 -4 -45 0.7 0.4 10 -4 -45 0.7 0.5 10 -4.3 -5.1 -1.2 0.5 11 -2 -4.5 -0.6 0.5 10 -5 -6 -0.5 0.5 11 -2 -4.5 -7 0.8 10 -7.8 -7.8 0.7 0.8 10 -7.8 -5.1 0.7 0.8 10 -4.5 -5.1 0.7 0.7 10 -4.5 -5.1 0.7 0.7 10 -4.5 -5.1 0.7 0.7 10 -7.1 -7.3		4	5	-5.8	-0.5	-1.0
Betors Phick Application 9 0 3.8 4.4 0.8 9 2 4.4 4.5 0.5 10 5.3 5.2 0.1 10 6.8 7.1 4.3 10 4.8 7.1 4.3 10 6.8 7.1 4.3 11 2 4.5 6.1 1.2 10 6.5 6 0.1 1.2 10 6.5 6.8 4.1 0.1 10 4.5 6.8 4.1 0.1 10 4.5 6.8 4.1 0.1 10 4.5 6.8 4.1 0.1 10 4.8 5.1 0.2 0.1 10 4.8 6.1 0.1 0.1 10 4.8 6.1 0.1 0.1 10 4.8 6.1 0.1 0.1 10 4.5 6.1 0.1 0.1 <			2	-4.2	-4.9	-0.7
Before Ruid Application0550Before Ruid Application92440.50106.84.10.7124.84.10.7124.84.10.7124.84.50.1124.64.30.7124.64.30.7124.64.30.7124.64.30.7124.64.30.71024.64.50.11024.64.60.11024.64.60.11024.64.60.11024.64.60.11034.64.60.11124.64.60.11124.64.60.11136.26.10.11156.24.60.11156.44.70.91156.44.70.91156.36.20.11156.36.20.11156.36.20.11156.36.20.11156.36.20.11156.36.20.1127.77.20.2136 <td></td> <td>5</td> <td>5</td> <td>-3.6</td> <td>-4.4</td> <td>-0.8</td>		5	5	-3.6	-4.4	-0.8
Bators Ruid Application 9 6 3.4 4.5 0.5 10 5 4.9 4.3 0.7 10 5 4.9 4.3 0.1 10 5 4.9 4.1 0.1 11 6 3.2 4.8 1.1 0 0.2 4.8 1.1 0.3 11 5 0.8 0.1 0.1 0.1 10A 5 0.4 0.1 0.1 0.1 10A 5 0.4 0.1 0.1 0.1 10 5 0.4 0.1 0.1 0.1 10 5 0.2 0.3 1.1 0.1 0.1 10 0.1 0.2 0.2 0.1			U	-5	-5	0
Before Ruid Application 9 5 3.6 -4.3 -0.7 10			2	-4	-4.5	-0.5
Image: book of the second se	Before Fluid Application	9	5	-3.6	-4.3	-0.7
10 5 40 6.1 1.2 1 0 6.8 -7.1 0.3 11 5 3.2 -4.8 -7.1 10 6.8 -6.3 -0.7 10 6.8 -6 -0.3 10A 2 6.6 -7 -0.3 10A 2 4.6 -6.5 -0.1 1 5 4.9 -3.5 -1 1 5 4.9 -3.5 -1 -0.2 4 2 5.2 -6.9 0.7 -1 4 0 5.8 -6.9 0.7 -1 5 5 4.4 6 -1.6 -1.6 1 0 4.6 -5.5 0.9 -1.6 1 2 4.6 -5.5 0.9 -1.6 1 2 4.6 -5.5 0.9 -1.6 1 2 4.6 -5.9 0.2			2	-4.4	-4.8	-0.4
Atter Fluid Application U 0.8 7.1 0.3 11 5 -3.2 -4.6 -5.3 -0.7 10 -0 -3.2 -4.6 -0.5 -0.6 10A 5 -6.6 -0.6 -0.6 -0.6 10A 5 -6.6 -0.1 -0.8 -0.1 1 5 -4.8 -7.6 -0.8 -0.1 1 5 -4.8 -7.6 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.1		10	5	-4.9	-6.1	-1.2
Atter Fluid Application 2 4.6 5.5 6.6 0.7 10 5.5 6.6 0.5 10A 5 6.6 0.5 10A 5 6.6 0.6 10A 5 6.6 0.6 1 5 4.6 7.7 0.8 1 5 4.6 7.8 0.7 1 5 4.6 5.6 1.1 0 4.6 5.6 1.1 0.2 4 5 5.2 6.8 1.1 1 0 5.8 0.8 1.1 1 1 5 6.4 5.9 0.9 1 1 5 6.4 7.7 0.9 1 1 5 6.4 7.7 0.9 1 1 5 5.2 0.2 0.3 1 1 5 5.7 0.2 0.1 1 1			U	-6.8	-7.1	-0.3
11 5 -3.2 -4.8 -1.6 0 -0.8 -0.5 -6.6 -0.5 10A 5 -6.6 -7.6 -0.8 2 -2.6 -7.6 -0.1 2 -2.6 -7.6 -0.1 2 -2.6 -7.6 0.1 3 -2.6 -2.6 -1 2 -2.2 -2.6 -1 1 5 -4.6 -5.1 -0.2 -1 -2 -5.2 -6.5 -1.1 4 5 -5.2 -6.5 -1.1 -0 -4.2 -5.3 -1.1 -1.6 -0 -4.4 -6 -1.6 -1.6 -0 -4.4 -6 -1.6 -1.6 -1 -0 -7.4 -7.3 -0.2 -1 -1 -1.1 -7.3 -0.2 -1 -1 -1 -1 -1 -1			2	-4.6	-5.3	-0.7
Image: height of the second		11	5	-3.2	-4.8	-1.6
IDA 2 6.2 7.4 0.0 5 6.8 -6.9 0.1 1 5 -4.9 -6.9 0.1 1 5 -4.9 -6.1 0.2 4.9 -6.1 0.2 -0.2 -0.2 4 0 -6.2 -6.9 -0.7 2 -5.2 -6.9 -0.7 -0.6 4 5 -5.2 -6.9 -0.7 4 5 -5.2 -6.9 -1.1 5 5 -4.4 -6 -1.6 9 5 -6.4 -7.3 0.2 10 -5 -7.4 -7.4 0 10 5 -7.4 -7.4 0 11 5 -5.3 -5.2 0.3 11 5 -5.3 -5.2 0.1 11 5 -5.3 -5.2 0.2 11 5 -5.3 -5.2			U	-5.5	-6	-0.5
After Fluid Application U 9.8 -9.8 0.1 1 5 -4.9 -9.5 -1 2 -4.5 -9.5 -0.6 4 5 -5.1 -0.2 -1 -1 -2 -5.2 -5.9 -0.7 -1 -1 -2 -5.2 -6.5 -1.1 -1 -2 -4.2 -5.3 -1.1 -1.3 -1 -2 -4.2 -5.3 -1.1 -1.1 -1 -2 -4.2 -5.3 -1.1 -1.1 -1 -2 -4.4 -6 -1.6 -1.6 -1 -2 -4.4 -6 -1.6 -1.1 -1 -2 -6.9 -0.9 -0.3 -1.1 -10 -5 -7.4 -7.4 -0.5 -1.1 -1 -2 -5 -5.8 -0.3 -1.1 -1 -2 -5 -5.8 -0.3		104	<u> </u>	-6.2	-/	-0.8
After Fluid Application 2 4.5 9.5 -1 1 5 4.9 5.1 0.2 4 5 5.2 5.9 0.7 4 5 5.2 5.9 0.7 4 5 5.2 6.5 1.1 5 6 4.4 6 7 6 5 4.4 6 7.1 6 6 4.4 6 7.1 6 6 4.4 6 7.3 0.9 9 5 6.4 7.3 0.9 0.9 10 2 6.4 7.3 0.9 0.2 10 2 6.4 7.3 0.2 0.2 11 5 5.5 5.8 0.2 0.2 11 5 5.5 5.7 0.2 0.2 10A 5 5.5 7 0.2 0.2 10A 5 7 8.		IUA	5	-0.5	-0.0	-0.1
After Fluid Application 1 5 4.9 -6,1 0.0 4 5 -5,2 -5,9 -0.7 4 5 -5,2 -6,9 -0.7 9 -2 -4,2 -6,3 -1.1 0 -5,8 -6,8 -1.1 0 -4,4 -6 -1.6 0 -4,4 -6 -1.6 0 -4,4 -6 -1.6 0 -4,4 -6 -1.6 0 -4,4 -6 -1.6 0 -4,4 -6 -1.6 0 -4,9 -2.2 -0.3 0 -5 -7.4 -7.4 0.6 0 -7.1 -7.3 -0.2 0.1 10 -5.5 -5.8 0.3 -1 11 -5 -5.2 -0.2 0.2 10 -5 -6.2 -4.7 0.5 10 -7 -3			2	-4.5	-5.5	-1
Here U 4.6 5.1 -0.6 4 5 5.2 5.9 -0.7 4 5 5.2 6.5 -1.3 6 5 -4.2 6.5 -1.3 6 0 -4.2 6.5 -1.1 6 0 -4.2 6.3 -1.1 6 0.1 -4.6 6.5 -0.9 9 5 -6.4 -7.3 -0.3 9 5 -7.4 7.3 -0.3 10 5 -7.4 7.4 0 11 5 -5.3 -5.2 0.1 11 5 -5.3 -5.2 0.1 11 5 -5.2 -0.2 -0.2 10A 5 -5.7 -0.2 -0.2 10A 5 -7 -8.8 -1.8 10A 5 -7 -8.8 -1.8 10A 5 -7 -		1	5	-4.9	-5.1	-0.2
Ater Fluid Application 2 5.2 6.5 1.3 Ater Fluid Application 5 5.2 6.5 1.1 9 5 4.4 6.8 1 9 6 6.5 0.9 0 4.6 5.5 0.9 9 6 6.4 7.3 0.9 10 4.4.6 7.3 0.9 0.9 10 4.6 5.5 0.9 0.9 10 7.4 7.3 0.9 0.9 11 5 5.3 5.2 0.3 11 5 5.5 5.5 0.1 0.1 11 5 5.5 5.5 0.1 0.1 10A 5 5.5 5.5 0.2 0.2 10A 5 5.5 5.5 0.3 0.1 10A 5 7.8 9 0.1 0.2 10A 5 6.8.3 10.1 0.2			U	-4.5	-5.1	-0.6
After Faid Application 4 5 5.2 6.6.5 -1.3 After Faid Application 2 -4.2 -6.3 -1.1 6 0 -4.6 -6.3 -1.1 9 5 -4.4 -6 -1.6 0 -4.6 -7.3 -0.9 9 5 -7.4 -7.3 -0.9 10 5 -7.4 -7.4 0.1 11 5 -5.3 -5.2 -0.3 11 5 -5.3 -5.2 -0.2 11 5 -5.5 -5.7 -0.2 10A 5 -5.2 -0.2 -0.2 10A 5 -5.2 -0.2 -0.2 10A 5 -7.7 -0.2 -0.2 10A 5 -7.7 -0.2 -0.2 10A -7.7 -7.7 -7.7 -0.2 10 -5.2 -0.4.8 -1.4.2 10			2	-5.2	-5.9	-0.7
After Fluid Application 0 0 0 0.0 1.1 9 5 6 4.4.2 6.3.3 1.1 9 2 6 6.5.3 0.0.9 10 4.9 6.5.3 0.0.9 10 5 7.4 6.5.3 0.0.9 10 5 7.4 7.4 0.2 11 5 5.7.4 7.4 0.2 10 5 7.4 7.4 0.2 11 5 5.5.3 5.8 0.3 11 5 5.5.5 5.8 0.3 10A 5 5.5.2 4.7 0.5 10A 5 5.5.2 4.7 0.2 10A 5 5.5 5.8 0.3 10A 5 5.5 5.7 0.2 10A 5 1.1.7 1.1.2 0.2 10A 5 1.0 1.1.2 0.2 10		4	5	-5.2	-6.5	-1.3
After Fluid Application 5 6 -4.4 6 -1.6 9 5 -4.4 -6.5 -0.9 9 5 -6.4 -7.3 -0.9 10 -4.9 -5.2 -0.3 10 5 -7.4 -7.4 0 11 5 -7.4 -7.4 0 11 5 -5.2 0.1 -0.2 11 5 -5.5 -5.2 0.1 11 5 -5.5 -5.2 0.2 10A 5 -5.2 -0.2 0.2 10A 5 -5.2 -0.2 0.2 10A 5 -5.2 -0.2 0.2 10A 5 -5.7 -0.2 0.2 10A 5 -5.7 -0.2 0.2 10A 5 -10 -13.2 -3.2 10A 5 -10 -13.2 -3.2 10 5			2	-5.0	-0.8	-1 1
Atter Fluid Application 0 0		5	5	-4.4	-6	-1.6
After Fluid Application 9 2 -5 -5.9 -0.9 U -4.9 -5.2 -0.3 10 5 -7.4 -7.4 0 10 5 -7.4 -7.4 0.2 10 5 -7.4 -7.4 0.2 11 5 -5.3 -6.2 0.1 11 5 -5.5 -6.6 0.2 0.1 11 5 -5.5 -6.6 0.2 0.2 10A 5 -5.2 -4.7 0.5 0.2 10A 5 -5.2 -4.7 0.2 0.2 10A 5 -7.8 -9 -1.2 0.2 10A 5 -7.7 -8.8 -1.8 0.4 10A 5 -6.7 -0.2 0.2 0.2 10A 5 -10.7 -0.2 0.2 0.2 0.2 0.2 10A -5 -10 -1.1			U	-4.6	-5.5	-0.9
After Fluid Application 9 5 -6.4 -7.3 -0.9 10 -4.9 -6.2 -0.3 -0.2 10 5 -7.4 -7.4 0 10 -7.1 -7.3 -0.2 11 5 -7.4 -7.4 0 11 5 -5.3 -6.8 -1 11 5 -5.5 -6.8 -0.3 10A -5.5 -5.5 -6.7 -0.2 10A 5 -5.5 -5.7 -0.2 10A 5 -5.5 -5.7 -0.2 10A -5 -7 -8.8 -1.12 5 5 -7 -8.8 -1.12 9 5 -8.3 -10.4 -2.1 9 5 -8.3 -10.4 -2.1 11 15 -8 -10.4 -2.1 11 5 -8 -10.3 -2.3 11 <td< td=""><td></td><td></td><td>2</td><td>-5</td><td>-5.9</td><td>-0.9</td></td<>			2	-5	-5.9	-0.9
Afte Precip Application 0 -4.3 -6.9 -6.9 0 10 5 -7.4 -7.4 -7.4 0 11 5 -5.3 -5.2 0.1 11 5 -5.3 -5.2 0.1 10A 5 -5.5 -5.8 0.02 10A 5 -5.5 -5.8 0.1 10A 5 -5.5 -5.8 0.2 10A 5 -5.2 -4.7 0.5 10A 5 -5.7 -0.2 -0.2 10A 5 -7.7 -8.8 -1.18 10 -5.2 -4.8 0.4 -2 9 5 -8.3 -10.4 -2.1 10 -7.7 -0.2 -3.2 -3.2 11 5 -8 -10.3 -2.2 11 5 -8 -10.3 -2.2 10 -7.7 -7.2 0.5 <	After Fluid Application	9	5	-6.4	-7.3	-0.9
Afte Precip Application 10 2 -7.4 -7.4 0 0 0 -7.1 -7.3 0.2 11 5 -6.3 -6.8 0.1 0 -8.5 -6.8 0.1 11 5 -6.3 -6.2 0.1 0 -8.5 -6.8 -0.3 10A 5 -9.2 -4.7 0.5 10A 5 -9.2 -4.7 0.5 0 -5.2 -4.7 0.5 -6.8 0 -5.2 -4.7 0.5 -1.2 0 -5.2 -4.8 0.4 -2.1 10 -5.2 -4.8 0.4 -2.1 9 5 -8.3 -10.4 -2.1 11 5 -8.8 -1.12 -2.1 11 5 -8.8 -1.1 -2.1 11 5 -8.8 -1.1 -2.1 11 5 -			2	-4.9	-5.2	-0.3
Mathematical constraints U -7.1 -7.3 -0.2 11 5 -5.3 -5.2 0.1 11 5 -5.5 -5.2 0.2 10A 5 -5.5 -5.2 0.2 10A 5 -5.2 -0.2 10A 5 -5.2 -0.2 10A 5 -7.7 -6.8 -0.1 10 -5.5 -7.7 -8.8 -1.2 10 -5.2 -4.4 0.4 -2 10 -5.2 -4.8 0.4 -2 10 -5.2 -4.8 0.4 -2 11 -5.2 -4.8 0.4 -2 10 -7.9 -7.7 0.2 -2 -1.1 -1.3 -3.2 10 -5 -10 -1.1.2 -2.2 -2.1 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2		10	5	-7.4	-7.4	0
After Takeoff Run 2 4.8 -5.8 1 11 5 -5.3 -5.2 0.0 10A 5 -5.8 -0.3 0 -5.5 -5.8 -0.2 10A 5 -5.2 -0.2 0 -5.5 -5.2 -0.2 0 -5.5 -5.7 -0.2 0 -5.5 -5.7 -0.2 0 -5.2 -4.7 0.6 0 -5.2 -4.8 -1.12 0 -5.2 -4.8 -0.4 9 5 -8.3 -10.4 -2.1 10 -5.2 -4.8 -0.4 -2.1 10 -5.2 -4.8 -0.4 -2.1 11 -5.2 -4.8 -0.4 -2.1 11 -7 -1.2.5 -0.8 -3.2 11 -7 -7.7 -7.2 0.6 11 -6 -8 -10.3			U	-7.1	-7.3	-0.2
Afte Precip Application 11 5 -5.3 -6.2 0.1 U -5.5 -5.8 -0.3 -0.2 10A 5 -5.2 -4.7 0.5 U -5.5 -5.7 -0.2 U -5.5 -5.7 -0.2 5 -7.8 -9 -1.2 0 -5.2 -4.8 -0.4 10 -5.2 -4.8 -0.4 0 -7.8 -9 -1.2 0 -7.8 -9 -1.2 0 -7.9 -7.7 0.3 1 0 -7.9 -7.7 0.2 0 -7.9 -7.7 0.2 -1.1 10 -5.2 -4.8 -0.1 -1.1 11 5 -8 -10.1 -1.4 11 5 -8 -10.3 -2.3 10A 2 -11 -13.2 -2.2 10A 5 <t< td=""><td></td><td></td><td>2</td><td>-4.8</td><td>-5.8</td><td>-1</td></t<>			2	-4.8	-5.8	-1
Afte Precip Application 0 -6.5 -6.6 -0.3 10A 5 -5 -5.2 -0.2 10A 5 -5.5 -5.7 -0.2 10A 5 -5.5 -5.7 -0.2 10 -1.5 -5.7 -0.2 10 -1.5 -5.7 -0.2 5 -7 -8.8 -1.8 10 -5.2 -4.8 -0.4 9 5 -8.3 -10.4 -2.1 10 -7.7 -0.2 -1.1 -12.5 -0.8 10 5 -10 -7.7 0.2 -1.1 10 5 -10 -7.7 0.2 -1.1 10 5 -10 -13.2 -3.2 -3.1 11 5 -8 -10.3 -2.3 -3.2 10A 5 -10 -12.2 -2.2 -2.3 10A 5 -3.6 -3.6 0 <td></td> <td rowspan="2">11</td> <td>5</td> <td>-5.3</td> <td>-5.2</td> <td>0.1</td>		11	5	-5.3	-5.2	0.1
Afte Precip Application 10A 5 -6,2 -4,7 0,6 0 -5,5 -5,7 -0,2 -0,2 5 5 -7,8 -9 -1,2 6 0 -5,2 -4,8 -0,4 9 -5 -7,8 -9 -1,2 9 5 -8,3 -9,7 -0,3 9 5 -8,3 -10,4 -2,1 0 -7,9 -7,7 0,2 -3,4 10 5 -10 -13,2 -3,2 11 5 -8 -10,3 -2,3 11 5 -8 -10,3 -2,3 10 5 -10 -13,2 -2,2 11 5 -8 -10,3 -2,3 10A 5 -10 -1,2 -2,2 10A 5 -10 -1,2 -2,2 10A 5 -3,2 -3,7 -0,5 10A<			2	-5.5	-5.8	-0.3
M U -5.5 -5.7 -0.2 2 -7.8 -9 -1.2 5 5 -7 -8.8 -1.8 U -5.2 -4.8 0.4 9 5 -8.3 -10.4 9 5 -8.3 -10.4 -2.1 9 5 -8.3 -10.4 -2.1 10 -7.9 -7.7 0.2 -3.8 10 5 -10 -13.2 -3.2 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.2 10A 5 -11 -13.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -11 -13.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -3.6 -3.6 0.5		10A	5	-5.2	-4.7	0.5
Afte Precip Application 2 -7.8 -9 -1.2 9 5 -7 -8.8 -1.8 9 5 -8.3 -0.4 9 5 -8.3 -10.4 -2.1 0 -7.9 -7.7 0.2 10 -7.9 -7.7 0.2 10 5 -10 -13.2 -3.2 11 -12.5 -0.8 -0.1 -1.1 10 -5 -10 -13.2 -3.2 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.3 10A 5 -10 -12.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -10 -12.2 -2.2 10A -3.2 -3.7 -0.5 -0 10A 5 -3.2 -3.7			U	-5.5	-5.7	-0.2
After Takeoff Run 5 -7 -8.8 -1.8 0 -5.2 -4.8 0.4 9 5 -8.3 -10.4 -2.1 9 5 -8.3 -10.4 -2.1 0 -7.9 -7.7 0.2 10 5 -10 -13.2 -3.2 10 9.7 -8.6 1.1 11 5 -8.7 -9.1 -0.4 11 5 -8.7 -9.1 -0.4 11 5 -8 -10.3 -2.3 11 13.2 -2.2 -2.2 -2.2 10A 5 -10 -11.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -10 -12.2 -2.2 10A -3.2 -3.6 0 0 10A -4.3 -4.4 -0.1 <t< td=""><td></td><td></td><td>2</td><td>-7.8</td><td>-9</td><td>-1.2</td></t<>			2	-7.8	-9	-1.2
Afte Precip Application 0 -5.2 -4.8 0.4 9 5 -8.3 -10.4 -2.1 2 -11.7 -12.5 -0.8 10 5 -10 -13.2 -3.2 10 5 -10 -13.2 -3.2 11 5 -8 -10 -13.2 -3.2 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.3 11 5 -10 -12.2 -2.2 10A 5 -3.6 3.6 0 1 5 -3.2 3.7 -0.5 10A 5 -5 0 0 2 -3.6		5	5	-7	-8.8	-1.8
Afte Precip Application 2 -9:4:4 -9:7 -0:3 10 -7.9 -7.7 0.2 10 -5 -10.4 -2.1 10 -5 -10.0 -13.2 -3.2 10 -5 -10 -13.2 -3.2 11 -9.7 -8.6 1.1 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.3 10A 5 -10 -13.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -3.6 -3.6 0 10A 5 -3.2 -7.9 1.3 2 -3.6 -3.6 0 -1.3 4 5 -3.6 -4.4 -0.1 1 5 -3.6 -4.4			0	-5.2	-4.8	0.4
Afte Precip Application 0 -7.9 -7.7 0.2 10 5 -10 -11.7 -12.5 -0.8 10 5 -10 -13.2 -3.2 -3.2 11 5 -8.7 -9.1 -0.4 11 5 -8 -10.3 -2.3 11 5 -8 -10.3 -2.2 10A 5 -10 -13.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -3.2 -3.7 -0.5 10A 5 -3.2 -3.7 -0.5 1 5 -3.2 -3.7 -0.5 4 5 -3.6 -4.4 -0.1 2 -4.2 -4.9 -0.7 -7 5 5 -2.9 -3.6 -0.7		9	5	-9.4	-9.7	-0.3
Afte Precip Application 10 2 -11.7 -12.5 -0.8 10 5 -10 -13.2 -3.2 -3.2 U -9.7 -8.6 1.1 -0.4 11 5 -8 -10.3 -2.3 U -7.7 -9.1 -0.4 11 5 -8 -10.3 -2.3 U -7.7 -7.2 0.5 10A 5 -10 -12.2 -2.2 10A 5 -10 -12.2 -2.2 10A 5 -3.2 -3.7 -0.5 U -9.2 -7.9 1.3 -0.1 1 5 -3.2 -3.7 -0.5 1 5 -3.6 -4.4 -0.8 2 -3 -3.1 -0.1 4 5 -3.6 -4.4 -0.8 1 0 -7.5 -6 -0.7 9 5 -5		Ŭ	Ŭ	-7.9	-7.7	0.2
Afte Precip Application 10 5 -10 -13.2 -3.2 U -9.7 -8.6 1.1 0 -9.7 -8.6 1.1 11 5 -8 -10.3 -2.3 U -7.7 -7.2 0.5 10A 5 -10 -12.2 -2.2 10A 5 -3.6 -3.6 0 10A 5 -3.6 -3.6 0 10A 5 -3.6 -3.6 0 1 5 -3.6 -4.4 -0.1 4 5 -3.6 -4.4 -0.8 1 5 -5 0 0 2 -3.6 -4.4 -0.1 -0.1 1 5 -5.5 -6			2	-11.7	-12.5	-0.8
After Takeoff Run U -9.7 -8.6 1.1 2 -8.7 -9.1 -0.4 11 5 -8 -10.3 -2.3 U -7.7 -7.2 0.5 10A 5 -10 -13.2 -2.2 10A 5 -10 -12.2 -2.2 U -9.2 -7.9 1.3 10A 5 -3.6 -3.6 0 11 5 -3.2 -3.7 -0.5 1 5 -3.2 -3.7 -0.5 4 5 -3.6 -4.4 -0.1 4 5 -3.6 -4.4 -0.8 1 -5 -2.9 -3.6 -0.7 4 2 -3.6 -4.4 -0.8 1 -5 -2.9 -3.6 -0.7 9 5 -5.5 -6 -0.5 10 -7.5 -8.1 -0.6	Afte Precip Application	10	5	-10	-13.2	-3.2
After Takeoff Run 2 -8.7 -9.1 -0.4 11 5 -8 -10.3 -2.3 10A 2 -11 -13.2 -2.2 10A 2 -11 -13.2 -2.2 10A -9.2 -7.9 1.3 10A -9.2 -7.9 1.3 10A -9.2 -7.9 1.3 10A -9.2 -3.6 0 1 5 -3.2 -3.7 -0.5 1 1 -4.3 -4.4 -0.1 4 2 -4.2 -4.9 -0.7 4 10 -5 -5 0 5 -3.6 -4.4 -0.1 5 -3.6 -4.4 -0.1 5 -3.6 -4.4 -0.2 9 5 -5.5 -6 -0.7 11 5 -6.2 -6.9 -0.7 11 5 -6.5			U	-9.7	-8.6	1.1
After Takeoff Run 11 0 -°o -10.3 -2.3 10A 0 -7.7 -7.2 0.5 10A 5 -10 -13.2 -2.2 10A 5 -10 -12.2 -2.2 U -9.2 -7.9 1.3 2 -3.6 -3.6 0 1 5 -3.2 -3.7 -0.5 1 5 -3.6 -0.7 -0.5 4 5 -3.6 -4.4 -0.1 4 5 -3.6 -4.4 -0.8 4 5 -3.6 -4.4 -0.8 1 -5 -5 0 -0.7 4 5 -3.6 -4.4 -0.8 1 -5 -5 0 -0.7 5 5 -2.9 -3.6 -0.7 9 5 -5.5 -6 -0.5 11 2 -6.2 -7 </td <td></td> <td>11</td> <td>2</td> <td>-8.7</td> <td>-9.1</td> <td>-0.4</td>		11	2	-8.7	-9.1	-0.4
After Takeoff Run 2 11 13.2 2.2 10A 5 -10 -12.2 -2.2 U -9.2 -7.9 1.3 U -9.2 -7.9 1.3 U -9.2 -7.9 1.3 U -9.2 -7.9 1.3 U -9.2 -3.6 0 U -4.4 -0.5 U -4.3 -4.4 -0.1 U -4.2 -4.9 -0.7 4 5 -3.6 -4.4 -0.8 U -5 -5 0 U -5 -5 0 U -7.5 -8.1 -0.6 U -7.5 -8.1 -0.6 $10A$ 5 -6.5 -6.6 -0.1 U -7.3 -7.8 -0.5 $10A$ 5 -4.7 <t< td=""><td></td><td></td><td></td><td>-0 -7 7</td><td>-10.3</td><td>-2.3</td></t<>				-0 -7 7	-10.3	-2.3
Math Matrix 5 -10 -12.2 -2.2 U -9.2 -7.9 1.3 2 -3.6 -3.6 0 1 5 -3.2 -3.7 0.5 U -4.3 -4.4 -0.1 4 5 -3.6 -4.4 -0.1 4 5 -3.6 -4.4 -0.5 4 5 -3.6 -4.4 -0.1 4 5 -3.6 -4.4 -0.1 4 5 -3.6 -4.4 -0.1 5 5 -2.9 -3.6 -4.4 -0.8 5 5 -2.9 -3.6 -0.7 -0.1 5 5 -2.9 -3.6 -0.7 -0.2 6.2 -6.2 -6.9 -0.7 -0.2 9 5 -5.5 -6 -0.5 11 5 -6.5 -6.6 -0.1 10A 2 <			2	-11	-13.2	-2.2
Mathematical Matrix U -9.2 -7.9 1.3 1 2 -3.6 -3.6 0 0 -4.3 -4.4 -0.5 1 5 -3.2 -3.7 -0.5 0 -4.3 -4.4 -0.1 2 -4.2 -4.9 -0.7 4 5 -3.6 -4.4 -0.8 4 5 -3.6 -4.4 -0.8 2 -3.6 -4.4 -0.8 -0.7 4 5 -3.6 -4.4 -0.8 5 5 -2.9 -3.6 -0.7 5 5 -2.9 -3.6 -0.7 9 5 -5.5 -6 -0.5 9 5 -5.5 -6.2 -7 0.8 11 5 -6.5 -6.6 -0.1 0 -7.3 -7.8 -0.5 -6.6 10A 5 -4.7 -5.9		10A	5	-10	-12.2	-2.2
After Takeoff Run 2 -3.6 -3.6 0 9 2 -3.2 -3.7 -0.5 0 -4.3 -4.4 -0.1 0 -4.3 -4.4 -0.1 2 -4.2 -4.9 -0.7 4 5 -3.6 -4.4 -0.8 0 -5 -5 0 0 5 5 -2.9 -3.6 -0.7 0 -4 -4.2 -0.2 -0.2 5 5 -2.9 -3.6 -0.7 9 5 -5.5 -6 -0.2 9 5 -5.5 -6 -0.5 11 5 -6.5 -6.6 -0.5 11 5 -6.5 -6.6 -0.1 11 5 -6.5 -6.6 -0.1 10A 5 -4.7 -5.9 -1.2 10A 5 -4.7 -5.9 -1.2 <td></td> <td></td> <td>U</td> <td>-9.2</td> <td>-7.9</td> <td>1.3</td>			U	-9.2	-7.9	1.3
After Takeoff Run 1 5 -3.2 -3.7 -0.5 U -4.3 -4.4 -0.1 4 5 -3.6 -4.9 -0.7 4 5 -3.6 -4.4 -0.8 U -5 -5 0 0 -5 -5 0 5 -2.9 -3.6 -0.7 0 -4 -4.2 -0.2 5 -2.9 -3.6 -0.7 0 -4 -4.2 -0.2 6.2 -6.2 -6.9 -0.7 9 5 -5.5 -6 -0.5 0 -7.5 -8.1 -0.6 0 -7.5 -8.1 -0.6 11 5 -6.5 -6.6 -0.1 0 -7.3 -7.8 -0.5 $10A$ 5 -4.7 -5.9 -1.2 0 -6.7 -7 -0.3			2	-3.6	-3.6	0
After Takeoff Run 0 -4.3 -4.4 -0.1 2 -4.2 -4.9 -0.7 4 5 -3.6 -4.4 -0.8 U -5 -5 0 U -5 -5 0 5 -2.9 -3.1 -0.1 5 -2.9 -3.6 -0.7 U -4 -4.2 -0.2 6.2 -6.2 -6.9 -0.7 9 5 -5.5 -6 -0.5 0 -7.5 -8.1 -0.6 11 5 -6.5 -6.6 -0.1 11 5 -6.5 -6.6 -0.1 11 5 -6.5 -6.6 -0.1 $10A$ 5 -4.7 -5.9 -1.2 $10A$ 5 -4.7 -5.9 -1.2 0 -6.7 -7 -0.3 AVERAGE -0.03 <td></td> <td>1</td> <td>5</td> <td>-3.2</td> <td>-3.7</td> <td>-0.5</td>		1	5	-3.2	-3.7	-0.5
After Takeoff Run 4 5 -3.6 -4.4 -0.8 U -5 -5 0 5 5 -3.6 -4.4 -0.8 U -5 -5 0 0 -5 -5 0 5 5 -2.9 -3.6 -0.7 0 -4 -4.2 -0.2 9 5 -5.5 -6 -0.7 9 5 -5.5 -6 -0.5 11 5 -6.2 -7 -0.8 11 5 -6.5 -6.6 -0.1 11 5 -6.5 -6.6 -0.5 $10A$ 5 -4.7 -5.9 -1.2 $10A$ 5 -4.7 -5.9 -1.2 0 -5.7 -6.7 -7 -0.3 $AVERAGE$ $-0.0.3$ $AVERAGE$ -0.6			2	-4.3 -4.2	-4.4	-0.1
U -5 -5 0 After Takeoff Run 5 2 -3 -3.1 -0.1 5 5 -2.9 -3.6 -0.7 U -4 -4.2 -0.2 9 5 -5.5 -6 -0.7 9 5 -5.5 -6 -0.7 11 5 -5.5 -6 -0.5 11 5 -6.2 -7 -0.8 11 5 -6.5 -6.6 -0.1 11 5 -6.5 -6.6 -0.1 10A 5 -4.7 -5.9 -1.2 10A 5 -4.7 -5.9 -1.2 U -6.7 -7 -0.3 AVERAGE -0.03		4	5	-3.6	-4.4	-0.8
After Takeoff Run 2 -3 -3.1 -0.1 9 5 -2.9 -3.6 -0.7 9 5 -2.9 -3.6 -0.7 9 5 -6.2 -6.9 -0.7 9 5 -5.5 -6 -0.5 11 5 -6.2 -7 -0.8 11 5 -6.5 -6.6 -0.1 10A 7.3 -7.8 -0.5 10A 5 -4.7 -5.9 -1.2 10A 5 -4.7			U	-5	-5	0
After Takeoff Run 5 5 -2.9 -3.6 -0.7 U -4 -4.2 -0.2 9 2 -6.2 -6.9 -0.7 9 5 -5.5 -6 -0.5 U -7.5 -8.1 -0.6 11 5 -6.2 -7 -0.8 11 5 -6.5 -6.6 -0.1 U -7.3 -7.8 -0.6 11 5 -6.5 -6.6 -0.1 U -7.3 -7.8 -0.5 -0.8 10A 5 -4.7 -5.9 -1.2 U -6.7 -7 -0.3 -7 U -6.7 -7 -0.3 -7			2	-3	-3.1	-0.1
After Takeoff Run U -4 -4.2 -0.2 9 2 -6.2 -6.9 -0.7 9 5 -5.5 -6 -0.5 U -7.5 -8.1 -0.6 11 5 -6.2 -7 -0.8 11 5 -6.5 -6.6 -0.1 U -7.3 -7.8 -0.5 10A 5 -4.7 -5.9 -1.2 10A 5 -4.7 -5.9 -1.2 U -6.7 -7 -0.3 AVERAGE -0.3		5	5	-2.9	-3.6	-0.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	After Takeoff Run		U 2	-4	-4.2	-0.2
U -7.5 -8.1 -0.6 11 5 -6.2 -7 -0.8 11 5 -6.5 -6.6 -0.1 U -7.3 -7.8 -0.5 2 -5.8 -5 0.8 10A 5 -4.7 -5.9 -1.2 U -6.7 -7 -0.3 AVERAGE -0.6 -0.1 -0.6		9	5	-5.5	-6	-0.5
2 -6.2 -7 -0.8 11 5 -6.5 -6.6 -0.1 U -7.3 -7.8 -0.5 2 -5.8 -5 0.8 10A 5 -4.7 -5.9 -1.2 U -6.7 -7 -0.3 AVERAGE -0.6 -0.1 -0.1			<u> </u>	-7.5	-8.1	-0.6
11 5 -6.5 -6.6 -0.1 U -7.3 -7.8 -0.5 10A 2 -5.8 -5 0.8 10A 5 -4.7 -5.9 -1.2 U -6.7 -7 -0.3 AVERAGE -0.6 -0.6			2	-6.2	-7	-0.8
U -7.3 -7.8 -0.5 2 -5.8 -5 0.8 10A 5 -4.7 -5.9 -1.2 U -6.7 -7 -0.3 AVERAGE -0.6 -0.6		11	5	-6.5	-6.6	-0.1
10A 2 -0.0 -5 0.0 10A 5 -4.7 -5.9 -1.2 U -6.7 -7 -0.3 AVERAGE -0.6 -0.6			U 2	-7.3	-/.8	-0.5
U -6.7 -7 -0.3 AVERAGE -0.6		10A	5	-4.7	-5.9	-1.2
AVERAGE -0.6			U	-6.7	-7	-0.3
					AVERAGE	-0.6

 Table 5.5: Wing Skin Temperature Comparison – NRC vs. APS

Table 5.6 shows the data used for the analysis as well as the calculated averages and standard deviation. The results indicated that on average the ramp-up time from 40 knots to rotation was 19 ± 5 seconds. The data indicated that the longer ramp-up times typically occurred during the first test runs #0-12 (likely due to operator learning curve), and Run #44 appeared to be an anomaly. The average calculated while omitting these tests was 18 ± 3 seconds; this calculated average is more representative of the testing conducted.

A frequency distribution chart of the data was developed and is shown in Figure 5.19. The chart supports the results previously calculated and shows that 53 percent of the test runs had ramp-up times below 18 seconds. These results should be taken into consideration, especially when analysing tests with fluid and contamination, because abnormally short or long ramp-up times can affect aerodynamic performance due to the resulting fluid shearing effect.

Figure 5.19: Frequency Distribution of Wind Tunnel Ramp-Up Time

Run #	Date	Condition	Temp.	8° Lift Loss	Max Speed at Approx. Rotation	Time from 40 kts to Rotation
0		IP- / ZR-	-6.1	6.5	98	31
1	7-Jan-10	Fluid Only	-5.7	5.0	98	26
2		Dry Wing	-4.9	1.4	99	25
3		Dry Wing	N/A	-0.6	98	28
4	11-Jan-10	Fluid Only	-6.6	4.0	102	19
5		IP- / SN-	-4.8	3.7	101	21
/	12-Jan-10	Fluid Only	-9.7	3.1	101	34
9		IP-	-7	4.7	100	20
10B	13-Jan-10	IP Mod	-6.2	7.8	102	17
11		IP- / SN-	-5.9	4.4	98	28
12		Fluid Only	-5.9	2.4	102	18
13		IP- / SN	-4.6	6.1	102	20
14		IP- / SN	-4.4	5.5	101	22
15	14-Jan-10	IP- / SN	-4.3	5.1	102	20
16		IP- / SN	-4.2	5.8	101	18
17		Fluid Only	-3.9	5.0	101	18
18A		Fluid Only	-1.8	1.7	101	21
21	20- Jan-10	IP-	-3.0	0.8	102	20
22	20 5011 10	IP- / SN-	-3.2	1.1	101	20
24		IP- / SN	-3.7	1.3	102	20
25		Fluid Only	-4	2.0	101	21
26		IP- / ZR-	-1.9	4.8	101	20
26A	21-Jan-10	IP- / ZR-	-3.3	1.4	101	22
28		IP-	-4.2	4.3	100	19
28A		IP-	-5.5	3.9	101	17
29	22 1 10	Fluid Only	-5	5.0	101	17
44	23-Jan-10	IP/ R Mod	-1	28.5	100	30
48	24-Jan-10	IP Mod	-2.7	6.5	98	25
49		IP Mod	-3.1	6.7	101	25
53		Fluid Only	-1.9	3.9	101	17
54		Fluid Only	-2	3.6	101	22
55	27-Jan-10	Fluid Only	-3	1.9	101	17
56		IP / R Mod	-1.1	3.2	102	17
57		IP- / SN-	-3.6	4.7	101	19
57A		IP- / SN-	-4.2	2.9	101	20
59		IP- / 78-	-3.3	4.8	102	17
60	28-Jan-10	Fluid Only	-3	4.6	101	20
63		IP- / ZR-	-12.3	7.7	102	16
64		Fluid Only	-13	5.1	101	16
65		IP-	-13.7	9.2	102	16
66		IP-	-13.6	8.6	102	16
67		IP-	-12.6	2.2	101	16
68	00 1 10	IP-	-16.6	9.6	102	16
69	29-Jan-10	IP-	-17.8	9.6	102	16
70		IP Mod	-17.7	2.9	102	14
72		IP Mod	-18	9.3	103	15
74		IP Mod	-18.5	10.3	102	14
75		Fluid Only	-18	4.1	102	15
76		Fluid Only	-18	5.9	102	16
77		IP- / SN-	-14.1	9.9	102	15
78	30-Jan-10	IP- / SN-	-16	8.6	102	15
/9		IP- / SN-	-14.8	3.6	102	16
8U 81		IP- / SN	-17 3	3.0	101	10
82		IP- / SN	-15.8	9.2	102	15
94		IP- / SN-	-6.3	5.5	101	16
95		IP Mod	-8.1	6.9	102	16
96	2-Feb-10	IP-	-7.6	6.6	101	16
97		IP- / SN	-8.3	7.6	101	16
98		IP- / ZR-	-6.7	1.8	102	15
100	3-Feb-10	Fluid Only	-6	2.3	101	15
				AVG	101	19
				STD DEV	1.0	5
		AVG (Excluding Tests (0-12 & 44)		101	18
		STD DEV (Excluding Test	s u-12 & 44)		0.7	3

Table 5.6: Analysis of Wind Tunnel Ramp-Up Time

5.9 6° vs. 8° Rotation Lift Coefficient Analysis

The simulated wing rotation profile was developed based on discussions with an airframe manufacturer and previous testing. It was concluded that the wing model used for testing would typically experience a -2° angle during acceleration and typically rotate to 6°. The stall angle of this wing section was approximately 10-11°. It was concluded that using 8° as the maximum rotation angle (approximate midpoint between typical angle and stall angle) would provide a more conservative testing scenario; previous testing had indicated that lift losses during comparative testing were increasingly apparent as the rotation angle approached the stall angle.

During the testing, larger lift losses (greater than 5 percent) were observed with the supercritical wing compared to the previous testing conducted in 2006-07 and 2008 09. These larger lift losses were typically experienced with the PG based fluids.

An analysis of the testing conducted with ice pellets as well as fluid only tests was conducted to investigate the impact of using an 8° CL limit for analysis versus a 6° CL limit, which may be less conservative. Table 5.7 shows all the tests conducted with ice pellets, along with the lift losses calculated using the 8° and 6° CL. Table 5.8 shows the same set of tests; however, only the test runs with lift losses greater than 5 percent (calculated using the 8° CL) were included. Table 5.9 shows the fluid only tests conducted along with the lift losses calculated using the 8° and 6° CL limits.

The results indicated that there would be no significant difference in the end result of the analysis when using the 6° CL rather than the 8° CL to calculate the lift loss. The average lift loss for all ice pellet tests (Table 5.7) indicated comparable lift losses using both the 6° and 8° CL. When this data was re-analysed using only tests with greater than 5 percent lift losses (Table 5.8), the results actually indicated that the 6° lift loss analysis was slightly worse by an average 0.6 percent compared to the 8° lift loss analysis. In the fluid only cases (Table 5.9), the average lift loss would be 0.5 percent better using the 6° CL versus the 8° CL; however, again, the differences were not significant.

These results indicate that, in general, using the 6° or 8° rotation CL data to calculate lift loss would on average generate comparable results. It was therefore recommended that the analysis continue to be conducted using the 8° CL limit to calculate the lift losses, as the results have indicated that using either the 6° or 8° CL would not significantly change the conclusions from the testing.

Ice Pellet Cases Only (8° Rotation)			
Condition	Test Run	8° Lift Loss (%)	6° Lift Loss (%)
IP- / ZR-	0	6.5	5.9
IP-	9	4.7	3.3
IP Mod	10	6.1	4.9
IP- / SN-	11	4.4	3.5
IP Mod	10A	0.7	-0.9
IP Mod	10B	7.8	7.1
IP- / SN	13	6.1	5.9
IP- / SN	14	5.5	6.5
IP- / SN	15	5.1	5.2
IP- / SN	16	5.8	6.5
IP Mod	21	0.5	-0.2
IP-	22	0.8	1.1
IP- / SN-	23	1.1	1.4
IP- / SN	24	1.3	-0.3
IP- / ZR-	26	4.8	4.7
IP- / ZR-	26A	1.4	0.9
IP-	28	4.3	4.2
IP-	26A	3.9	3.0
IP / R Mod	44	28.5	28.6
IP Mod	47	8.2	8.5
IP Mod	48	6.5	5.5
IP Mod	49	6.7	6.5
IP / R Mod	56	3.2	2.2
IP / R Mod	56A	3.4	2.6
IP- / SN-	57	4.7	5.3
IP- / SN-	57A	2.9	1.6
IP- / SN	58	4.8	4.8
IP- / ZR-	59	4.1	4.2
IP- / ZR-	63	7.7	9.8
IP-	65	9.2	10.5
IP-	66	8.6	10.8
IP-	67	2.2	3.2
IP-	68	9.6	12.0
IP-	69	9.6	12.0
IP Mod	71	2.9	2.4
IP Mod	72	9.3	11.5
IP Mod	73	5.0	4.1
IP Mod	74	10.3	10.1
IP- / SN-	77	9.9	11.5
IP- / SN-	78	8.6	8.7
IP- / SN-	79	3.6	3.2
IP-	80	3.0	3.2
 IP- / SN	81	3.8	4.4
IP- / SN	82	9.2	10.4
IP- / SN-	94	5.5	6.1
IP Mod	95	6.9	7.3
IP-	95	6.6	7.0
 IP- / SN		7.6	7.3
IP- / 7R-	98	1.8	0.7

Table 5.7: Comparison of Lift Losses Using 6° and 8° CL for Ice Pellet Tests

Condition	Test Run	8° Lift Loss (%)	6° Lift Loss (%)
IP- / ZR-	0	6.5	5.9
IP Mod	10	6.1	4.9
IP Mod	10B	7.8	7.1
IP- / SN	13	6.1	5.9
IP- / SN	14	5.5	6.5
IP- / SN	15	5.1	5.2
IP- / SN	16	5.8	6.5
IP / R Mod	44	28.5	28.6
IP Mod	47	8.2	8.5
IP Mod	48	6.5	5.5
IP Mod	49	6.7	6.5
IP- / ZR-	63	7.7	9.8
IP-	65	9.2	10.5
IP-	66	8.6	10.8
IP-	68	9.6	12.0
IP-	69	9.6	12.0
IP Mod	72	9.3	11.5
IP Mod	73	5.0	4.1
IP Mod	74	10.3	10.1
IP- / SN-	77	9.9	11.5
IP- / SN-	78	8.6	8.7
IP- / SN	82	9.2	10.4
IP- / SN-	94	5.5	6.1
IP Mod	95	6.9	7.3
IP-	95	6.6	7.4
IP- / SN	97	7.6	7.3
	AVEBAGE	8.3	8 9

Table 5.8: Comparison of Greater than 5% Lift Losses Using 6° and 8° CL for IcePellet Tests

Table 5.9: Comparison of Lift Losses Using 6° and 8° CL for Fluid-Only Tests

Fluid Only Cases (8° Rotation)			
Condition	Test Run	8° Lift Loss (%)	6° Lift Loss (%)
Fluid Only	1	5.0	3.2
Fluid Only	17	5.0	4.2
Fluid Only	18A	1.7	0.7
Fluid Only	25	2.0	-0.3
Fluid Only	29	5.0	4.2
Fluid Only	32	5.1	3.6
Fluid Only	34	4.0	3.0
Fluid Only	53	3.9	4.7
Fluid Only	54	3.6	3.3
Fluid Only	55	1.9	0.9
Fluid Only	60	4.6	3.1
Fluid Only	64	5.1	5.7
Fluid Only	70	5.6	7.6
Fluid Only	75	4.1	5.8
Fluid Only	76	5.9	6.7
Fluid Only	100	2.3	0.8
Fluid Only	101	5.0	4.3
	AVERAGE	4.1	3.6

5.10 Comparison of Fluid Certification BLDT Results vs. NRC Wind Tunnel Lift Loss Results

During the 2009-10 wind tunnel testing, larger lift losses were observed compared to the previous testing conducted in 2006-07 and 2008-09; this was especially true for Type IV PG fluids. During the 2009-10 testing, 5 percent lift loss was generally used as the cut-off for the acceptable lift loss for a test; the 5 percent lift loss is linked to the historical development of the fluid certification boundary layer displacement thickness (BLDT) requirements.

During the testing, some fluid only cases were generating lift losses greater than 5 percent. It was recommended that the data from the fluid only cases tested in the NRC wind tunnel be compared to the fluid certification BLDT results; the intent was to develop a correlation between the two tests. The assumption used was that the point at which the fluid fails during the BLDT test is the limit of acceptable lift loss. By superimposing the NRC lift data for fluid only cases, a correlation could be made between the temperature when a fluid fails the BLDT and the lift loss recorded by the NRC when conducting fluid only tests in similar conditions.

Figures 5.20, 5.21, and 5.22 show the fluid certification BLDT and NRC lift loss results for Launch, EG106, and ABC-S + neat fluids; no contamination was used during these tests. The x-axis indicates the test temperature in degrees Celsius, and the y-axis indicates the BLDT results in millimeters and the lift loss of the fluids tested in the NRC wind tunnel in percentage compared to the baseline dry wing. In each case, a linear regression of the data was calculated to facilitate the analysis. On each of the graphs, the BLDT limit has been plotted for reference. In Figures 5.20 and 5.21, the dotted lines demonstrate the correlation between the BLDT failure point and the NRC observed lift loss.

In the case of the Launch fluid, the fluid certification data regression line exceeds the BLDT limit at approximately -27°C. At this temperature, the NRC data regression line indicates approximately 6.6 percent lift loss.

In the case of the EG106 fluid, the fluid certification data regression line exceeds the BLDT limit at approximately -32°C. At this temperature, the NRC data regression line indicates approximately 6.1 percent lift loss.

In the case of the ABC-S + fluid, a correlation could not be calculated, as the fluid certification data was well below the BLDT limit; the regression line only crosses the BLDT limit at approximately -66°C.

Figure 5.20: Comparison of Fluid Certification and NRC Results for Launch Fluid

Figure 5.21: Comparison of Fluid Certification and NRC Results for EG106 Fluid

Figure 5.22: Comparison of Fluid Certification and NRC Results for ABC-S + Fluid

The results from this analysis indicate that 5 percent lift loss may not be appropriate as the lift loss cut-off. When correlating to the fluid certification results, the 7 percent lift loss cut-off may be more appropriate based on the Launch and EG106 data. It is recommended that future testing be done to simulate fluid certification results in the NRC wind tunnel at specific temperatures to substantiate the correlation observed in this preliminary analysis.

5.10.1 Detailed Correlation of Lift Loss and BLDT

Fluid BLDT results may vary based on fluid viscosity. As a result, a more detailed analysis was conducted comparing the NRC lift loss data to the fluid certification data of several different fluid batches of high, low, and mid viscosity. Assumptions were made based on the data available, and a preliminary conclusion was drawn as to the correlation between the BLDT limit and the highest allowable NRC lift loss. Figures 5.23 to 5.25 demonstrate the data used and the conclusions made from the analysis for each specific fluid tested. The results are still preliminary, as additional work is anticipated to be conducted during the winter of 2010-11 to further refine this correlation.

Figure 5.23: Detailed Comparison of Fluid Certification and NRC Results for Launch Fluid

Figure 5.24: Detailed Comparison of Fluid Certification and NRC Results for EG106 Fluid

Figure 5.25: Detailed Comparison of Fluid Certification and NRC Results for ABC-S + Fluid

5.11 Extrapolation of Test Results for 110-120 Knots Rotation Speeds

Due to the limitations of the NRC PIWT, testing could only be conducted with a maximum speed of approximately 100 knots. Typically, jet aircraft rotate at slightly higher speeds nearing 115 to 120 knots or greater. Aerodynamic testing with lower rotation speeds is conservative; however, during the winter of 2009-10, larger than expected lift losses were experienced in several test conditions (as will be described in detail in Sections 6 to 11). These results indicated necessary reductions to the allowance times; therefore, it was recommended that the data be further analysed to investigate whether the results would be appropriate with higher rotation speeds.

5.11.1 Methodology

The objective of this analysis was to determine the increase in CL (and reduction in lift loss) as a result of higher rotation speeds. For each test, time required to accelerate from 60 to 70 knots and 70 to 80 knots was calculated and an average was taken; this was the more linear portion of the acceleration profile and was chosen as being more conservative (resulting in a shorter time for fluid to flow-off) compared to the greater than 80 knots profile, where the acceleration begins to taper

off. Based on this data, the average time needed to ramp an extra 10 knots was found to be approximately 2 seconds; this time would be used to simulate the time to ramp an extra 10 knots (for example, from 100 to 110 or 110 to 120 knots). It was then recommended that the calculations be performed for 110, 115, and 120 knots; therefore, the additional time required to ramp-up was assumed to be the following: $\Delta t1 = 2 \sec (100 \ to \ 110 \ knots)$, $\Delta t2 = 1 \sec (110 \ to \ 115 \ knots)$, and $\Delta t3 = 1 \sec (115 \ to \ 120 \ knots)$.

For each test, the CL profile during ramp-up (90 to 100 knots prior to rotation) was regressed and extrapolated to 110, 115, and 120 knots based on Δ t1, Δ t2, and Δ t3. It should be noted that the last 0.1 seconds of data before rotation was omitted due to the dynamic variability in the results, and adjustments were made if the rotation occurred at less than or greater than 100 knots. The delta increase in CL for Δ t1, Δ t2, and Δ t3 was used to calculate new lift losses at the simulated 110, 115, and 120 knots. Figure 5.26 shows the formula used to calculate the simulated lift losses at 110, 115, and 120 knots; this formula is also used in the example shown in Figure 5.28. Figure 5.27 demonstrates one example of the linear extrapolation methodology to simulate a 110 knot rotation speed.

The extrapolation methodology was applied using various types of regression methods; the best fit curve was difficult to standardize due to the different behaviour patterns of fluid flow-off during ramp-up. Initially, the analysis was conducted using the following regression methods:

- Semi-Log Regression (Log Time);
- Semi-Log Regression (Log CL);
- Log-Log Regression;
- Linear Regression;
- Polynomial Regression; and
- Visual Extrapolation (estimated based on visual trend).

$$LL^{0}/_{0(110,115, or 120 Knots)} = \frac{CL8^{\circ}Dry - [CL8^{\circ}Cont + \Delta CL]}{CL8^{\circ}Dry}$$

Figure 5.26: Formula for Calculating Lift Loss at Simulated 110, 115, and 120 Knots Rotation Speeds

Figure 5.27: Example of Extrapolation Methodology to Simulate Rotation Speed of 110 Knots

Figure 5.28 demonstrates the details of the linear regression extrapolation analysis conducted for Run#65 based on the CL data collected from 90 to 100 knots. Figure 5.29 demonstrates the general trends of all the regression analysis conducted; the calculation method to evaluate the increase in CL was the same regardless of the regression method used. Table 5.10 summarizes the different regression methods used and provides comments regarding the appropriateness of each different method, along with a generalized visualization of the shape of the curve generated.

It was determined that the semi-log regression with log of time as the input was the most appropriate for this type of analysis, as it best described the trend indicating that the CL will improve over time but will begin to level off and will not go to infinity. Semi-log using time as the input seems the most appropriate, theoretically and mathematically, and represents the fluid flow-off physics. It was therefore recommended that the semi-log analysis be used as the basis for the analysis; however, all other regression methods would be calculated for reference purposes. The details of this analysis are included in the "Summary of Results" sections for of the affected ice pellet conditions (Sections 6 to 11).

Figure 5.28: Example of Linear Regression Method Used for Extrapolation of Data to 110, 115, and 120 Knots

Figure 5.29: Example of Different Regression Methods Used for Extrapolation of Data to 110, 115, and 120 Knots

Table 5.10: Description of Different Regression Methods Used for Extrapolation to110, 115, and 120 Knots

Regression Method	Comments	General Shape
Semi-Log Regression (Log Time)	Simulates expected trend (i.e., CL will level off after a certain time)	
Visual Extrapolation	Similar to above, but much more conservative	
Linear Regression	OK in some cases but not conservative (could be considered upper limit)	
Polynomial Regression	Ok in some cases but too conservative in others (not appropriate because trend could force CL to be below CL at 100 knots)	\frown
Semi-Log Regression (Log Cl)	Does not represent data and does not represent physics of fluid flow-off	J
Log-Log Regression	Dependant on previous, so does not represent data and physics of fluid flow-off	J

6. LIGHT ICE PELLET ALLOWANCE TIMES

Aerodynamic testing was conducted to validate and further develop the Type IV high-speed ice pellet allowance times in the NRC wind tunnel. Previous testing in 2006-07 and 2008-09 consisted of wind tunnel tests and Falcon 20 aircraft tests to develop allowance times for mixed conditions with ice pellets. Due to the limitations of the data, some extrapolation of the results was required in order to develop a comprehensive table. It was recommended that testing be conducted at the most critical limits of the allowance times to validate the current guidance material for use with newer generation aircraft operating with supercritical wings. Additional testing was also required to provide guidance material where data was limited or non-existent. The results of this testing have been separated by test condition, and the details can be found in the following sections:

- Section 6: Light Ice Pellets;
- Section 7: Moderate Ice Pellets;
- Section 8: Light Ice Pellets and Light Freezing Rain;
- Section 9: Light Ice Pellets and Moderate Rain;
- Section 10: Light Ice Pellets and Light Snow; and
- Section 11: Light Ice Pellets and Moderate Snow.

This section provides an overview of each test conducted to substantiate and further develop the current high-speed allowance times for Type IV fluids in "Light Ice Pellet" conditions. Testing was conducted in simulated precipitation conditions. The parameters for each test are detailed, and a description of the data collected during each test is provided.

6.1 Overview of Tests

Date:

A summary of the Light Ice Pellet tests conducted in the wind tunnel is shown in Table 6.1. The table provides relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 4.1. The following is a brief description of the column headings for Table 6.1:

Test #:	Exclusive number identifying each test.

Date when the test was conducted.

Fluid	Aircraft deicing fluid specified by product
	name; all fluids were in the "neat" 100/0 dilution.
Associated Baseline Run:	The associated fluid only baseline run based on fluid selection.
Condition:	Simulated precipitation condition.
Precipitation Rate (g/dm²/h):	Simulated freezing precipitation rate (or combination of different precipitation rates). "N/A" indicates that no precipitation was applied.
Precip. Time (min.):	Total time of exposure to simulated precipitation.
Tunnel Temp. at Start of Test (°C):	The tunnel air temperature prior to the start of the simulated takeoff test, measured in degrees Celsius.
Avg. Wing Temp. Before Test (°C):	Average of the wing skin temperature measurements just before the start of the simulated takeoff test, recorded in degrees Celsius.
Flap Angle (°):	Positioning of the flap during the precipitation period; either 0° (retracted) or 20° (extended).
<i>Visual Contamination Rating Before Takeoff (LE, TE, Flap):</i>	 Visual contamination rating determined before the start of the simulated takeoff: 1 - Contamination not very visible, fluid still clean. 2 - Contamination is visible, but lots of fluid still present. 3 - Contamination visible, spots of bridging contamination. 4 - Contamination visible, lots of dry bridging present. 5 - Contamination visible, adherence of contamination.
<i>Visual Contamination Rating at Rotation (LE, TE, Flap):</i>	Visual contamination rating determined at the time of rotation: 1 - Contamination not very visible, fluid still clean.

- 2 Contamination is visible, but lots of fluid still present.
- 3 Contamination visible, spots of bridging contamination.
- 4 Contamination visible, lots of dry bridging present.
- 5 Contamination visible, adherence of contamination.

CL at 8° During Rotation: Calculated lift coefficient at the 8° wing rotation angle position; data provided by the NRC.

% Lift Loss: % Lift Loss calculated based on the comparison of the 8° lift coefficient during the test run versus the dry wing average lift coefficient (calculated to be 1.7213).

Test No.	Date	Fluid	Associated Baseline Test	Condition	Precip. Rate (g/dm²/h)	Precip. Time (min.)	Tunnel Temp. at Start of Test (°C)	AVG Wing Temp. Before Test (°C)	Flap Angle (°)	Visual Cont. Rating Before Takeoff (LE, TE, Flap)	Visual Cont. Rating at Rotation (LE, TE, Flap)	CL at 8° During Rotation	8° Lift Loss (%)
9	13-Jan-10	ABC-S Plus	1	IP-	25	50	-7	-8.5	20	2, 2, 3	1, 1.8, 1.8	1.641	4.7
22	20-Jan-10	EG106	25	IP-	25	50	-4.1	-8.5	20	1.8, 2, 4	1, 1, 1	1.707	0.8
28	21-Jan-10	Launch	29	IP-	25	50	-4.2	-3.6	20	2, 2, 3.7	1, 1.7, 2	1.648	4.3
28A	21-Jan-10	Launch	29	IP-	25	50	-5.5	-7.4	0	2, 2, 2.7	1, 1.5, 2	1.655	3.9
65	29-Jan-10	ABC-S Plus	64	IP-	25	30	-13.7	-13.9	20	2.8, 2.8, 4	1.2, 2, 2.2	1.563	9.2
66	29-Jan-10	ABC-S Plus	64	IP-	25	20	-13.6	-14.2	20	2.2, 2, 3.2	1.2, 2, 2.5	1.573	8.6
67	29-Jan-10	EG106	100	IP-	25	30	-12.6	-15	20	2.2, 2.2, 3.2	1, 1.5, 1.8	1.683	2.2
68	29-Jan-10	Launch	70	IP-	25	30	-16.6	-16.4	20	3, 2.5, 3.7	1.3, 2, 2.2	1.556	9.6
69	29-Jan-10	Launch	70	IP-	25	15	-17.8	-16.6	20	2.8, 2.5, 3.5	1.3, 2, 2.7	1.556	9.6
80	30-Jan-10	EG106	75	IP-	25	30	-17	-18.5	20	2.5, 2.2, 3	1, 1.25, 1.7	1.67	3.0
96	2-Feb-10	ABC-S Plus	64	IP-	25	30	-7.6	-10.7	20	2.3, 2, 3	1, 2, 2	1.608	6.6
1	7-Jan-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-5.7	-4.6	20	1, 1, 1	1, 1, 1	1.635	5.01
25	21-Jan-10	EG106	N/A	Fluid Only	N/A	N/A	-4	-3.4	20	1, 1, 1	1, 1, 1	1.687	1.99
29	21-Jan-10	Launch	N/A	Fluid Only	N/A	N/A	-4.8	-5.2	20	1, 1, 1	1, 1, 1	1.636	4.96
64	28-Jan-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-13.4	-11.3	20	1, 1, 1	1, 1, 1	1.634	5.07
70	29-Jan-10	Launch	N/A	Fluid Only	N/A	N/A	-17.9	-15.8	20	1, 1, 1	1, 1, 1	1.625	5.59
75	30-Jan-10	EG106	N/A	Fluid Only	N/A	N/A	-18.1	-16.9	20	1, 1, 1	1, 1, 1	1.651	4.08
100	3-Feb-10	EG106	N/A	Fluid Only	N/A	N/A	-6.3	-8.2	20	1, 1, 1	1, 1, 1	1.682	2.28

Table 6.1: Summary of 2009-10 Light Ice Pellet Testing

6.2 Data Collected

6.2.1 Fluid Thickness Data

Fluid thickness measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.2. Fluid thickness measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 6.2 to 6.12 show the corrected fluid thickness measurements (in millimetres) collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 6.13 to 6.19 for comparison purposes.

Test 9: ABC-S Plus, IP-, Tunnel OAT -7°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.5	1.8	0.0	
2	2.2	3.7	0.1	
3	3.1	3.9	0.2	
4	4.5	4.5	0.2	
5	5.7	5.7	0.2	
6	5.7	8.9	0.2	
7	4.5	5.7	0.2	
8	3.5	4.5	0.3	
Flap	1.0	0.1	0.2	

Table 6.2: Test #9 Fluid Thickness Data

Table 6.3: Test #22 Fluid Thickness Data

Test 22: EG106, IP-, Tunnel OAT -4.1°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	2.2	1.2	0.0	
2	2.5	1.7	0.0	
3	2.7	2.9	0.1	
4	3.3	4.5	0.1	
5	4.5	5.7	1.0	
6	3.1	7.0	0.1	
7	3.3	7.0	0.1	
8	3.1	4.5	0.1	
Flap	1.0	slush	0.0	

Table 6.4: Test #28 Fluid Thickness Data

Test 28: Launch, IP-, Tunnel OAT -4.2°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.3	2.2	0.0		
2	1.8	3.9	0.1		
3	2.2	4.5	0.1		
4	2.7	4.5	0.2		
5	2.9	4.5	0.3		
6	3.1	5.7	0.2		
7	2.7	4.5	0.2		
8	2.2	4.5	0.2		
Flap	0.7	slush	0.2		

Table 6.6: Test #65 Fluid Thickness Data

Test 65: ABC-S Plus, IP-, Tunnel OAT -13.7°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.6	1.8	0.0	
2	2.2	2.5	0.1	
3	2.2	2.9	0.1	
4	3.1	3.7	0.2	
5	3.1	3.9	0.2	
6	3.3	4.5	0.2	
7	3.1	3.9	0.2	
8	2.7	3.5	0.2	
Flap	0.8	slush	0.1	

Table 6.5: Test #28A Fluid Thickness Data

Test 28A: Launch, IP-, Tunnel OAT -5.5°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.0	slush	0.0	
2	1.6	1.8	0.0	
3	1.8	3.3	0.0	
4	2.2	4.5	0.1	
5	2.2	4.5	0.1	
6	2.2	4.5	0.2	
7	1.8	4.5	0.2	
8	1.5	3.7	0.2	
Flap	2.2	3.5	0.1	

Table 6.7: Test #66 Fluid Thickness Data

Test 66: ABC-S Plus, IP-, Tunnel OAT -13.6°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.1	1.6	0.1	
2	1.8	2.2	0.2	
3	2.5	2.5	0.2	
4	3.1	3.1	0.2	
5	3.1	3.1	0.3	
6	3.1	3.9	0.3	
7	2.9	3.5	0.2	
8	2.7	3.1	0.1	
Flap	0.6	slush	0.2	

Table 6.8: Test #67 Fluid Thickness Data

Test 67: EG106, IP-, Tunnel OAT -12.6°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.8	1.5	0.0	
2	3.1	2.7	0.1	
3	3.5	4.5	0.1	
4	4.5	4.5	0.2	
5	4.5	4.5	0.2	
6	5.7	5.7	0.2	
7	4.5	5.7	0.1	
8	3.7	4.5	0.1	
Flap	0.8	slush	0.1	

Table 6.10: Test #69 Fluid Thickness Data

Test	Test 69: Launch, IP-, Tunnel OAT -17.8°C				
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	0.7	1.6	0.0		
2	1.6	1.6	0.2		
3	1.8	1.7	0.2		
4	2.2	2.2	0.2		
5	2.5	2.7	0.2		
6	2.5	2.5	0.3		
7	2.2	2.7	0.2		
8	1.7	2.7	0.3		
Flap	0.8	slush	0.2		

Table 6.9: Test #68 Fluid Thickness Data

Test 68: Launch, IP-, Tunnel OAT -16.6°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.0	1.2 (slush)	0.1	
2	1.3	1.6 (slush)	0.1	
3	1.6	1.8 (slush)	0.2	
4	1.8	2.2 (slush)	0.2	
5	1.8	2.2 (slush)	0.3	
6	2.2	2.9 (slush)	0.1	
7	2.2	2.5 (slush)	0.1	
8	1.6	2.5 (slush)	0.1	
Flap	0.5	N/A	0.1	

Table 6.11: Test #80 Fluid Thickness Data

Test 80: EG106, IP Tunnel OAT -17.0°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.8	1.8	0.0	
2	2.2	2.9	0.1	
3	2.5	3.3	0.1	
4	3.1	4.5	0.1	
5	3.9	4.5	0.1	
6	4.5	4.5	0.1	
7	4.5	4.5	0.2	
8	3.9	3.9	0.2	
Flap	1.1	slush	0.1	

Test 96: ABC-S Plus, IP-, Tunnel OAT -7.6°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.6	1.8	0.1		
2	2.2	3.1	0.1		
3	2.7	3.7	0.1		
4	3.3	3.9	0.2		
5	3.5	4.5	0.2		
6	3.3	4.5	0.2		
7	3.3	4.5	0.2		
8	2.9	3.5	0.2		
Flap	1.0	N/A	0.2		

Table 6.12: Test #96 Fluid Thickness Data

Table 6.13: Test #1 (Baseline) Fluid Thickness Data

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C					
FLUID THICKNESS (mm)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.8	N/A	0.0		
2	2.5	N/A	0.0		
3	3.3	N/A	0.1		
4	4.5	N/A	0.1		
5	5.7	N/A	0.1		
6	5.7	N/A	0.1		
7	5.7	N/A	0.1		
8	4.5	N/A	0.1		
Flap	1.0	N/A	0.1		

Table 6.14: Test #25 (Baseline) Fluid Thickness Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C					
FLUID THICKNESS (mm)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	2.2	N/A	0.0		
2	3.1	N/A	0.1		
3	3.7	N/A	0.1		
4	4.5	N/A	0.2		
5	4.5	N/A	0.2		
6	4.5	N/A	0.1		
7	4.5	N/A	0.1		
8	3.5	N/A	0.1		
Flap	N/A	N/A	0.1		

Table 6.15: Test #29 (Baseline) Fluid Thickness Data

Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C					
FLUID THICKNESS (mm)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.5	N/A	0.0		
2	2.2	N/A	0.1		
3	2.2	N/A	0.1		
4	3.1	N/A	0.1		
5	3.1	N/A	0.2		
6	3.1	N/A	0.1		
7	2.9	N/A	0.1		
8	2.2	N/A	0.2		
Flap	0.8	N/A	0.2		
Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C					
---	----------------------------	--------------------------	-----	--	
FLUID THICKNESS (mm)					
Wing Position	After Fluid Application	After Takeoff Test			
1	1.2	N/A	0.0		
2	2.2	N/A	0.1		
3	1.7	N/A	0.1		
4	1.8	N/A	0.1		
5	3.1	N/A	0.2		
6	3.1	N/A	0.2		
7	3.1	N/A	0.2		
8	2.7	N/A	0.2		
Flap	0.8	N/A	0.2		

Table 6.16: Test #64 (Baseline) Fluid Thickness Data

Table 6.18: Test #75 (Baseline) Fluid Thickness Data

Test 75: E	Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C				
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Takeoff Test			
1	2.2	N/A	0.1		
2	2.9	N/A	0.2		
3	3.1	N/A	0.2		
4	3.7	N/A	0.1		
5	4.5	N/A	0.1		
6	4.5	N/A	0.1		
7	4.5	N/A	0.1		
8	2.2	N/A	0.2		
Flap	0.2	N/A	0.2		

Table 6.17: Test #70 (Baseline) Fluid Thickness Data

Test 70: L	Test 70: Launch, Fluid-only, Tunnel OAT -17.9°C				
	FLUID THICKNESS (mm)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.1	N/A	0.0		
2	1.5	N/A	0.1		
3	1.8	N/A	0.1		
4	2.2	N/A	0.2		
5	2.2	N/A	0.2		
6	1.6	N/A	0.2		
7	1.8	N/A	0.2		
8	2.2	N/A	0.2		
Flap	0.5	N/A	0.1		

Table 6.19: Test #100 (Baseline) FluidThickness Data

Test 100	Test 100: EG106, Fluid-only, Tunnel OAT -6.3°C				
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Takeoff Test			
1	1.6	N/A	0.0		
2	2.5	N/A	0.0		
3	2.7	N/A	0.1		
4	3.5	N/A	0.1		
5	4.5	N/A	0.1		
6	5.7	N/A	0.1		
7	5.7	N/A	0.2		
8	4.5	N/A	0.3		
Flap	0.8	N/A	0.2		

6.2.2 Skin Temperature Data

Skin temperature measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.3. Skin temperature measurements were recorded at the following intervals:

- Before fluid application;
- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 6.20 to 6.30 demonstrate the wing temperature measurements (in degrees Celsius) recorded during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 6.31 to 6.37 for comparison purposes.

Table 6.20: Test #9 Wing SkinTemperature Data

Test 9: ABC-S Plus, IP-, Tunnel OAT -7°C					
	WING	TEMPERATUR	E (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip. ApplicationAfter Takeoff Test					
T2	-4	-5.0	-9.4	-6.2	
T5 -3.6 -6.4 -8.3 -5.5					
TU	-4.4	-4.9	-7.9	-7.5	

Table 6.22: Test #28 Wing Skin Temperature Data

Test 28: Launch, IP-, Tunnel OAT -4.2°C					
	WING TEMPERATURE (°C)				
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip. ApplicationAfter Takeoff Test					
T2	-1.2	-1.6	-7.3	-5.0	
T5	-0.4	-1.6	-7.6	-4.4	
TU	-1.6	-1.6	-3.9	-5.7	

Table 6.21: Test #22 Wing SkinTemperature Data

Test 22: EG106, IP-, Tunnel OAT -4.1°C					
	WING	TEMPERATUR	E(°C)		
Wing Positio n Applicatio n n n n N N N N N N N N N N N N N N N N					
T2	-4.2	-2.8	-10.4	-4.2	
Т5	-3.6	-2.9	-9.1	-3.4	
TU	-5.0	-4.3	-6.1	-4.5	

Table 6.23: Test #28A Wing SkinTemperature Data

Test 28A: Launch, IP-, Tunnel OAT -5.5°C					
	WING	TEMPERATUR	E(°C)		
Wing Positio n Applicatio n n N N N N N N N N N N N N N N N N N N					
Т2	-3.4	-3.3	-8.5	-7.4	
T5	-2.8	-3.4	-8.3	-7.3	
ΤU	-5.1	-4.6	-5.4	-7.8	

Table 6.24: Test #65 Wing SkinTemperature Data

Т	Test 65: ABC-S Plus, IP-, Tunnel OAT -13.7°C			
	WING	TEMPERATUR	E(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
Т2	-11.3	-9.8	-14.5	-14.2
Т5	-10.9	-9.8	-13.8	-14.0
TU	-12.0	-12.4	-13.5	-14.7

Table 6.26: Test #67 Wing SkinTemperature Data

	Test 67: EG106, IP-, Tunnel OAT -12.6°C				
	WING TEMPERATURE (°C)				
Wing Before After Fluid After After Position Application Application Test					
T2	-14.4	-12.7	-15.6	-16.2	
T5	-14.3	-12.5	-15.0	-15.5	
TU	-15.3	-14.4	-14.4	-16.6	

Table 6.28: Test #69 Wing SkinTemperature Data

Test 69: Launch, IP-, Tunnel OAT -17.8°C					
	WING TEMPERATURE (°C)				
Wing Before After Fluid After After Position Application Application Application Test					
T2	-16.3	-14.2	-16.9	-16.6	
Т5	-16.1	-13.9	-16.3	-16.2	
TU	-17.5	-16.7	-16.7	-17.7	

Table 6.30: Test #96 Wing SkinTemperature Data

Test 96: ABC-S Plus, IP-, Tunnel OAT -7.6°C					
	WIN	g temperatu	RE (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip. ApplicationAfter Takeoff Test					
T2	-9.2	-10.2	-11.9	-11.1	
T5	-8	-10.1	-11.5	-10.8	
TU	-9.6	-9.0	-8.7	-11.3	

Table 6.25: Test #66 Wing Skin Temperature Data

Test 66: ABC-S Plus, IP-, Tunnel OAT -13.6°C				
	WING	TEMPERATUR	RE (°C)	
Wing Positio n	After Precip. Applicatio n	After Takeof f Test		
T2	-13.5	-11.5	-15.0	-15.8
T5	-13.2	-11.1	-13.7	-15.9
TU	-14.1	-13.8	-13.8	-16.3

Table 6.27: Test #68 Wing SkinTemperature Data

-	Test 68: Launch, IP-, Tunnel OAT -16.6°C				
	WING	TEMPERATUR	RE (°C)		
Wing PositioBefore Fluid ApplicatioAfter Fluid Precip.After Precip.After Takeo f Testnnnnn					
T2	-14.3	-13.7	-16.8	-16.3	
Т5	-13.9	-13.4	-16.5	-16.1	
TU	-15.8	-16.1	-16.0	-17.5	

Table 6.29: Test #80 Wing Skin Temperature Data

	Test 80: EG106, IP Tunnel OAT -17.0°C			
	WING	TEMPERATUR	E(°C)	
Wing Positio n Applicatio n n n n N N N N N N N N N N N N N N N N				
T2	-16.1	-17.0	-19.2	-16.5
Τ5	-15.5	-16.8	-18.1	-15.3
TU	-18.5	-18.1	-18.3	-18.0

Table 6.31: Test #1 (Baseline)Wing Skin Temperature Data

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C				
	WING TEMPERATURE (°C)			
Wing Positio n	ng Before Fluid Applicatio n n n		After Precip. Applicatio n	After Takeof f Test
T2	-4.5	-4.5	N/A	-3.6
Т5	-5	-4.9	N/A	-3.2
TU	-5.1	-4.5	N/A	-4.3

Table 6.32: Test #25 (Baseline) WingSkin Temperature Data

Те	Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C			
	WING	TEMPERATUR	E (°C)	
Wing Position	Before Fluid Application	After Precip. Application	After Takeoff Test	
Т2	-3.6	-3.0	N/A	-3.4
Т5	-3.0	-3.1	N/A	-3.2
ΤU	-4.4	-4.2	N/A	-3.9

Table 6.34: Test #64 (Baseline) WingSkin Temperature Data

Test	Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C			
	WING TEMPERATURE (°C)			
Wing Position	Wing Position Before Fluid Application After Fluid Application			After Takeoff Test
T2	-11.8	-10.8	N/A	-12.2
T5	-11.9	-10.8	N/A	-12.1
TU	-12.3	-12.4	N/A	-12.4

Table 6.36: Test #75 (Baseline) WingSkin Temperature Data

Tes	Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C			
	WING	TEMPERATUR	E (°C)	
Wing Position	Wing Before Fluid After Fluid Application Application			
T2	-16.2	-16.5	N/A	-16.4
T5	-15.8	-16.4	N/A	-15.6
TU	-17.9	-17.7	N/A	-18.4

Wing Skin Temperature Data Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C WING TEMPERATURE (°C)

WING TEMPERATURE (°C)					
Wing PositioBefore FluidAfter Fluid ApplicatioAfter Precip. ApplicatioAfter Takeo f Testnnnnn					
T2	-3.0	-3.8	N/A	-6.0	
T5	-2.2	-3.9	N/A	-5.4	
TU	-4.5	-4.1	N/A	-6.6	

Table 6.33: Test #29 (Baseline)

Table 6.35: Test #70 (Baseline) Wing Skin Temperature Data

Test	Test 70: Launch, Fluid-only, Tunnel OAT -17.9°C			
	WING	TEMPERATUR	E(°C)	
Wing PositioBefore FluidAfter Fluid ApplicatioAfter Precip.Aft Take Applicationnnnn				
T2	-16.6	-15.1	N/A	-16.0
Τ5	-16.2	-15.1	N/A	-15.7
TU	-17.7	-17.1	N/A	-17.0

Table 6.37: Test #100 (Baseline) Wing Skin Temperature Data

Test 100: EG106, Fluid-only, Tunnel OAT -6.3°C				
	WING	TEMPERATURE	E(°C)	
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Parent ApplicationAfter Takec ApplicationAfter Takec Test				
Т3	-7.4	-8.7	N/A	-8.7
T5	-7.5	-8.3	N/A	-8.4
TU	-7.4	-7.6	N/A	-9.1

6.2.3 Fluid Brix Data

Fluid Brix measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.4.

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 6.38 to 6.48 show the fluid Brix measurements (in degrees Brix) collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 6.49 to 6.55 for comparison purposes.

Test 9: ABC-S Plus, IP-, Tunnel OAT -7°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	36.50	21.75	23.50	
8	36.25	25.00	27.00	

Table 6.38: Test #9 Fluid Brix Data

Table 6.40: Test #28 Fluid Brix Data

Test 28: Launch, IP-, Tunnel OAT -4.2°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	35.75	15.75	23.00	
8	36.50	14.75	24.00	

Table 6.42: Test #65 Fluid Brix Data

Test 65: ABC-S Plus, IP-, Tunnel OAT -13.7°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.50	29.50	31.50
8	36.50	29.50	30.50

Table 6.44: Test #67 Fluid Brix Data

Test 67: EG106, IP-, Tunnel OAT -12.6°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	32.75	19.50	30.00	
8	32.75	17.75	30.25	

Table 6.46: Test #69 Fluid Brix Data Table 6.47: Test #80 Fluid Brix Data

Test 69: Launch, IP-, Tunnel OAT -17.8°C				
FLUID BRIX (°)				
WingAfter FluidAfter Precip.AfterPositionApplicationApplicationTakeoff Test				
2	37.00	35.50	34.25	
8	37.50	34.50	33.50	

Table 6.39: Test #22 Fluid Brix Data

Test 22: EG106, IP-, Tunnel OAT -4.1°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	32.25	15.75	25.00
8	35.00	15.00	28.25

Table 6.41: Test #28A Fluid Brix Data

Test 28A: Launch, IP-, Tunnel OAT -5.5°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.25	18.50	29.25
8	37.00	19.00	21.00

Table 6.43: Test #66 Fluid Brix Data

Test 66: ABC-S Plus, IP-, Tunnel OAT -13.6°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.25	31.50	32.00
8	37.50	34.25	32.00

Table 6.45: Test #68 Fluid Brix Data

Test 68: Launch, IP-, Tunnel OAT -16.6°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.00	29.50	29.75
8	36.75	26.75	29.25

Test 80: EG106, IP Tunnel OAT -17.0°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	32.75	22.50	28.00
8	32.50	23.00	29.25

Test 96: ABC-S Plus, IP-, Tunnel OAT -7.6°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.50	23.50	30.25
8	37.00	23.50	30.00

Table 6.48: Test #96 Fluid Brix Data

Table 6.50: Test #25 (Baseline) Fluid Brix Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	32.00	N/A	31.50
8	32.25	N/A	32.50

Table 6.52: Test #64 (Baseline) Fluid Brix Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.75	N/A	38.50
8	37.50	N/A	38.00

Table 6.54: Test #75 (Baseline) Fluid Brix Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip Application	After Takeoff Test
2	32.25	N/A	34.00
8	32.25	N/A	34.00

Table 6.49: Test #1 (Baseline) Fluid Brix Data

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	36.5	N/A	39.5	
8	36.5	N/A	38.25	

Table 6.51: Test #29 (Baseline) Fluid Brix Data

Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C					
FLUID BRIX (°)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	36.75	N/A	37.50		
8	37.00	N/A	36.50		

Table 6.53: Test #70 (Baseline) Fluid Brix Data

Test 70: Launch, Fluid-only, Tunnel OAT -17.9°C					
FLUID BRIX (°)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	37.50	N/A	39.25		
8	37.50	N/A	38.25		

Table 6.55: Test #100 (Baseline) Fluid Brix Data

Test 100: EG106, Fluid-only, Tunnel OAT -6.3°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	33.00	N/A	33.75	
8	33.00	N/A	33.00	

6.3 Photos

High-speed digital photographs of each test were taken; wide-angle photos were taken of the leading edge, and close-up photos were taken of the trailing edge. For each test, photo summaries have been compiled comprising four stages:

- Start of test;
- Before Rotation (just before the wing began to pitch);
- End of Rotation (end of the rotation cycle when the wing position is returned to 4 degrees); and
- End of test.

The photos taken during the Light Ice Pellet testing have been presented along with the fluid only (baseline) tests for comparison purposes. In each case, the fluid only photo is presented first, followed by the contaminated fluid photo. Photos 6.1 to 6.88 show the photo summaries of the tests conducted. A complete set of photos will be provided to the TDC in electronic format.

6.4 Summary of Results

6.4.1 OAT -5°C and Above

Four tests were conducted with exposure times of 50 minutes in this cell: Tests #9, #22, #28, and #28A (see Table 6.56). It is important to note that Test #28A was conducted with the flap at 0°. For a summary of the results found in this cell, see Table 6.57.

Test #22 was conducted with EG fluid at a temperature of -4.1°C, demonstrating very good results. The visual contamination ratings were all good. The lift loss at 8° was 0.83 percent, well below the 5 percent criteria. The ramp-up time from 40 knots to rotation for this test run (20 seconds) was close to the average.

Test #9 was conducted with PG fluid and demonstrated good results. This test was conducted at a temperature of -7.0°C, colder than the temperature band in this cell. The visual results were deemed good. The lift loss at 8° was 4.67 percent, below the 5 percent margin of safety criteria. An examination of the time from 40 knots to rotation showed an approximate ramp-up time of 26 seconds. This is above the 19-second average and would have likely provided a higher lift loss should it have rotated at 19 seconds.

Tests #28 and #28A were both conducted with PG fluid. Temperatures were -4.2° C and -5.5° C, respectively. Results from these two tests were very good. Test #28

had positive visual fluid elimination and lift loss results (4.26 percent). Because the visual rating on the flap for Test #28 was close to 4 at the start of the test, the test was repeated (Test #28A) with the flap set at 0° for the contamination period. Although both tests were deemed good, the aerodynamic performance and visual contamination results were better during Test #28A with the flap at 0° (3.85 percent lift loss). The ramp-up time for these two tests was near the 19-second average.

In conclusion, all four tests demonstrated positive results, indicating that the current allowance time of 50 minutes for this cell is acceptable and validated.

6.4.2 OAT Less than -5°C to -10°C

Two tests were conducted with exposure times of 30 minutes in this cell: Test #67 and Test #96. A third test, Test #9, was also used for analysis based on temperature data closer to the target cell OAT (see Table 6.56); exposure time for this run was 50 minutes.

Test #67 was conducted with EG fluid and demonstrated very good results. The temperature during this test run was -12.6°C. The lift coefficient and the visual rating results were deemed good. The 8° lift loss was 2.23 percent, well below the 5 percent safety criteria. The ramp-up time from 40 knots to rotation was 16 seconds in this run, slightly below the 19-second average. Due to the positive results that were displayed, there is a potential to further expand the current allowance time for EG fluids. Table 6.57 provides a summary of the results.

Test #96 was conducted at a temperature of -7.6°C with a PG fluid and demonstrated satisfactory results. Although these results were deemed acceptable, further review is required based on lift loss results (see Table 6.57). The lift loss at 8° was 6.58 percent, which is above the 5 percent margin of safety criteria. An analysis of the lift loss was conducted with speeds greater than 100 knots (see Table 6.58 and Figure 6.1). The semi-log of time results indicate a speed of 110 knots or more is required to achieve a lift loss below 5 percent. It took 16 seconds to reach rotation from a speed of 40 knots. This is below the average, potentially indicating an improvement in lift loss should it have had the extra 3 seconds during ramp-up.

Although Test #9 is found in the light ice pellet OAT -5°C and above cell, it was used to support Test #96 during analysis (see Table 6.57). This test was conducted at a temperature of -7.6°C with PG fluid. Though exposure times were different (Test #9 at 50 minutes), the visual results and a lift loss of 4.67 percent were deemed good, confirming the 30-minute allowance time for PG fluids. An examination of the time from 40 knots to rotation was done for this test, and results show a longer ramp-up time than a typical test run (average time 19 seconds; Test #9, 26 seconds); this may have helped improve flow-off and reduce lift losses.

In conclusion, the current allowance time of 30 minutes for this cell is satisfactory at this time based on the results obtained, but further review is required for PG fluids. For the PG fluids with the newer generation flat wing sections, a rotation speed of 110 knots is required to reduce the measured lift loss to less than 5 percent; this would also be equivalent to the 5 percent lift loss measured with the baseline PG fluid only case.

6.4.3 OAT Less than -10°C

Four tests were conducted in this cell with an exposure time of 30 minutes: Tests #65, #67, #68, and #80 (see Table 6.56). Two other tests, #66 and #69, were also used for analysis, but exposure times were below the allowance time of 30 minutes (Test #66 at 20 minutes and Test #69 at 15 minutes). Table 6.57 contains more details on the results of these two tests.

Test #80 was conducted using EG fluid and demonstrated very good results. The temperature during this test was -17.0°C. The 8° lift loss (2.98 percent) and visual contamination ratings show positive results, confirming the 30-minute allowance time for EG fluids. Test #67 with EG fluid at -12.6°C, which was used for the analysis in the light ice pellet cell with OAT less than -5°C to -10°C, also had positive results.

Test #65, conducted at a temperature of -13.7°C with PG fluid, demonstrated poor results. The visual result on the LE at the time of rotation was 1.2, and the 8° lift loss was 9.20 percent; both results did not satisfy their required criteria, resulting in the need for further review (see Table 6.57). An examination into the ramp-up time for this test shows a time of 16 seconds to reach rotation from a speed of 40 knots. The lift loss and visual ratings could have potentially improved should this run had an extra 3 seconds during ramp-up. When the lift loss analysis of speeds greater than 100 knots was conducted, the semi-log of time results indicate that a speed of approximately 105 knots is required to bring the lift loss to less than 8 percent. A speed of just under 120 knots is required to bring the lift loss to the 5 percent safety margin (see Table 6.58 and Figure 6.2).

Test #66 was conducted using the same PG fluid as Test #65 but with an exposure time of 20 minutes. After close examination of the test parameters and results for Test #66, it is seen that findings were similar to Test #65; there were only slight differences in the visuals at the start of the test run. It could be inferred from this test that the 10-minute difference in exposure of contamination did not have a significant effect on the results (see Table 6.58 and Figure 6.3).

Test #68 was conducted with PG fluid and also demonstrated poor results, requiring further review. The temperature during this test was -16.6°C. Lift loss and visuals

at rotation had unfavourable results (see Table 6.57). The lift loss at 8° for this test was 9.60 percent. As in Test #65, Test #68 had a ramp-up time of 16 seconds. This would provide a possibility of an improvement in the results should an extra 3 seconds have been used during the ramp-up time. When the lift loss analysis of speeds greater than 100 knots was conducted, the semi-log of time results indicate a speed of just under 115 knots is required to bring the lift loss to less than 8 percent. Using the methodology described to extrapolate beyond 100 knots, a speed of 140 knots would be required to bring the lift loss below 5 percent (see Table 6.58 and Figure 6.4). This estimate is provided for reference purposes, however it is not recommended to extrapolate to this extent.

Test #69 was conducted using the same PG fluid as Test #68 but with an exposure time of 15 minutes. After close examination of the test parameters and results for Test #69, it is seen that the findings were essentially the same as Test #68. It could be inferred from this test that the 15-minute difference in exposure to contamination did not have a significant effect on the results (see Table 6.57).

In conclusion, the current allowance time of 30 minutes is acceptable for EG fluids. With PG fluids, a speed of 115 knots or more is required to drive lift losses below 8 percent for the flatter and newer generation airfoils. At this time, the current allowance time of 30 minutes for PG fluids is acceptable with speeds of 115 kts or more, but further research and testing is required.

	OAT -5°C and	OAT Less than	OAT Less than
	Above	-5°C to -10°C	-10°C
	50 minutes	30 minutes	30 minutes
Light Ice Pellets	Test # 9, 22,	Test # 67, 96,	Test # 65, 68,
	28, 28A	(9)	80, (67)

 Table 6.56: Light Ice Pellets Allowance Time Tests Winter 2009-10

	OAT -5°C and Above	OAT Less than -5°C to -10°C	OAT Less than -10°C	
	50 minutes	30 minutes	30 minutes	
	Run 9 (Exposure Time 50 min), -7.0°C ABC-S Plus Visual At Start: GOOD (2, 2, 3) Visuals At Rotation: GOOD (1, 1.8, 1.8) LL At 100 kts: GOOD (4.67%) GOOD At 100 kts Run 22 (Exposure Time 50 min), -4.1°C EG106	Run 67 (Exposure Time 30 min), -12.6°C EG106 Visual At Start: GOOD (2.2, 2.2, 3.2) Visuals At Rotation: GOOD (1, 1.5, 1.8) LL At 100 kts: GOOD (2.23%) GOOD At 100 kts Bun 96 (Exposure Time 30 min),	Run 65 (Exposure Time 30 min), - 13.7°C ABC-S Plus Visual At Start: GOOD (2.8, 2.8, 4) Visuals At Rotation: BAD (1.2, 2, 2.2) LL At 100 kts: BAD (9.20%) LL At 100 kts: BAD (9.20%) LL At 105 kts: OK (7.81 %) LL At 115 kts: OK (5.71%) LL At 120 kts: GOOD (4.71%) GOOD At 120 kts Run 68 (Exposure Time 30 min), - 16.6°C L ALINCH	
	Visual At Start: GOOD (1.8, 2, 4) Visuals At Rotation: GOOD (1, 1, 1) LL At 100 kts: GOOD (0.83%)	-7.6°C ABC-S Plus Visual At Start: GOOD (2.3, 2, 3) Visuals At Rotation: GOOD (1,	Visual At Start: GOOD (3, 2.5, 3.7) Visuals At Rotation: BAD (1.3, 2, 2.2) LL At 100 kts: BAD (9.60%) LL At 115 kts: OK (7.64%) LL At 140 kts: GOOD (4.68%) OK >115 kts	
Light Ice Pellets	GOOD At 100 kts Run 28 (Exposure Time 50 min), -4.2°C LAUNCH Visual At Start: GOOD (2, 2, 3.7) Visuals At Rotation: GOOD (1, 1.7, 2) LL At 100 kts: GOOD (4.26%) GOOD At 100 kts Run 28A (Exposure Time 50 min), -5.5°C *Flap At 0°* LAUNCH Visual At Start: GOOD (2, 2, 2.7) Visuals At Rotation: GOOD (1, 1.5, 2) LL At 100 kts: GOOD (3.85%) GOOD At 100 kts • 50 min GOOD for EG Fluid • 50 min GOOD for PG Fluid	LL At 100 kts: OK (6.58%) LL At 110 kts: GOOD (4.88%) LL At 115 kts: GOOD (4.00%) LL At 120 kts: GOOD (3.15%) GOOD >100 kts	Run 80 (Exposure Time 30 min), - 17.0°C EG106 Visual At Start: GOOD (2.5, 2.2, 3) Visuals At Rotation: GOOD (1, 1.25, 1.7) LL At 100 kts: GOOD (2.98%) GOOD At 100 kts	
		 30 min GOOD for EG Fluid; Could be Higher 30 min OK for PG Fluid; Further Review Required 	Run 66 (Exposure Time 20 min), - 13.6°C ABC-S Plus Visual At Start: GOOD (2.2, 2, 3.2) Visuals At Rotation: BAD (1.2, 2, 2.5) LL At 100 kts: BAD (8.62%) LL At 110 kts: OK (6.71%) LL At 115 kts: OK (5.86%) LL At 120 kts: OK (5.03%) OK > 105 kts Run 69 (Exposure Time 15 min), - 17.8°C LAUNCH Visual At Start: GOOD (2.8, 2.5, 3.5) Visuals At Rotation: BAD (1.3, 2, 2.7) LL At 100 kts: BAD (9.60%) LL At 110 kts: OK (7.59%) LL At 130 kts: GOOD (4.41%) OK > 110 kts	
		ALLOWANCE TIME OF 30 MIN OK, FURTHER REVIEW REQUIRED		
	CONCLUSION: ALLOWANCE TIME OF 50 MIN GOOD		 Higher Rotation Speeds of 115 or More are Needed to Drive LL Below 8% 30 min GOOD for EG Fluid 30 min OK for PG Fluid and Supercritical Wings for Speeds >115 kts 	
			CONCLUSION: ALLOWANCE TIME OF 30 MIN OK FOR > 115 KTS	

Table 6.57: Summary of Light Ice Pellets Allowance Time Test Results

Condition	Test #	Speed (Kts)	Lift Loss at 8 Degrees (%)	Visual (%)	Linear (%)	Semi-Log (Time) (%)	Polynomial (2nd Order) (%)
Light Ice Pellets	96	100	6.58				
		110		5.55	4.52	4.88	6.21
(OAT Less than -5°C to -10°C)		115		5.00	3.47	4.00	6.01
		120		4.36	2.43	3.15	5.95
		100	9.20				
	GE	105		-	7.56	7.81	8.43
	05	115		6.88	5.11	5.71	7.35
		120		6.59	3.89	4.71	7.02
	66	100	8.62				
		110		7.24	6.41	6.71	7.65
		115		6.54	5.41	5.86	7.30
Light Ice Pellets		120		6.19	4.41	5.03	7.07
(OAT Less than -10°C)	68	100	9.60				
		110		8.47	8.05	8.28	9.20
		115		7.89	7.30	7.64	9.03
		140		-	3.52	4.68	9.87
		100	9.60				
	69	110		7.52	7.25	7.59	8.11
		115		7.17	6.26	6.76	7.56
		130		_	3.30	4.41	6.38

Table 6.58: Details of Increased Rotation Speed Analysis

Figure 6.1: Increased Rotation Speed Extrapolation Results – Test #96

Figure 6.2: Increased Rotation Speed Extrapolation Results – Test #65

Figure 6.3: Increased Rotation Speed Extrapolation Results – Test #66

Figure 6.4: Increased Rotation Speed Extrapolation Results – Test #68

Photo 6.1: Test #1 – Start of Test

Photo 6.2: Test #1 – Before Rotation

Photo 6.3: Test #1 – End of Rotation

Photo 6.4: Test #1 – End of Test

Photo 6.5: Test #9 – Start of Test

Photo 6.6: Test #9 – Before Rotation

Photo 6.7: Test #9 - End of Rotation

Photo 6.8: Test #9 – End of Test

Photo 6.9: Test #25 - Start of Test

Photo 6.10: Test #25 – Before Rotation

Photo 6.11: Test #25 – End of Rotation

Photo 6.12: Test #25 – End of Test

Photo 6.14: Test #22 – Before Rotation

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/TP 15232E (Vol. 2) Final Version 1.0.docx Final Version 1.0, October 20

Photo 6.15: Test #22 – End of Rotation

Photo 6.16: Test #22 – End of Test

Photo 6.17: Test #29 - Start of Test

Photo 6.18: Test #29 – Before Rotation

Photo 6.19: Test #29 - End of Rotation

Photo 6.20: Test #29 – End of Test

Photo 6.21: Test #28 – Start of Test

Photo 6.22: Test #28 – Before Rotation

Photo 6.23: Test #28 - End of Rotation

Photo 6.24: Test #28 - End of Test

Photo 6.25: Test #29 – Start of Test

Photo 6.26: Test #29 – Before Rotation

Photo 6.27: Test #29 - End of Rotation

Photo 6.28: Test #29 - End of Test

Photo 6.30: Test #28A – Before Rotation

Photo 6.31: Test #28A - End of Rotation

Photo 6.32: Test #28A – End of Test

Photo 6.33: Test #64 – Start of Test

Photo 6.34: Test #64 – Before Rotation

Photo 6.35: Test #64 – End of Rotation

Photo 6.36: Test #64 - End of Test

Photo 6.37: Test #65 – Start of Test

Photo 6.38: Test #65 – Before Rotation

Photo 6.39: Test #65 - End of Rotation

Photo 6.40: Test #65 – End of Test

Photo 6.41: Test #64 - Start of Test

Photo 6.42: Test #64 – Before Rotation

Photo 6.43: Test #64 - End of Rotation

Photo 6.44: Test #64 – End of Test

Photo 6.45: Test #66 – Start of Test

Photo 6.46: Test #66 – Before Rotation

Photo 6.47: Test #66 - End of Rotation

Photo 6.48: Test #66 – End of Test

Photo 6.49: Test #100 - Start of Test

Photo 6.50: Test #100 – Before Rotation

Photo 6.51: Test #100 - End of Rotation

Photo 6.52: Test #100 – End of Test

Photo 6.54: Test #67 – Before Rotation

Photo 6.55: Test #67 - End of Rotation

Photo 6.56: Test #67 – End of Test

Photo 6.57: Test #70 - Start of Test

Photo 6.58: Test #70 – Before Rotation

Photo 6.59: Test #70 - End of Rotation

Photo 6.60: Test #70 – End of Test

Photo 6.62: Test #68 – Before Rotation

Photo 6.63: Test #68 - End of Rotation

Photo 6.64: Test #68 - End of Test

Photo 6.65: Test #70 - Start of Test

Photo 6.66: Test #70 – Before Rotation

Photo 6.67: Test #70 - End of Rotation

Photo 6.68: Test #70 – End of Test

Photo 6.70: Test #69 – Before Rotation

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/TP 15232E (Vol. 2) Final Version 1.0.docx Final Version 1.0, October 20

Photo 6.71: Test #69 - End of Rotation

Photo 6.72: Test #69 – End of Test

Photo 6.73: Test #75 – Start of Test

Photo 6.74: Test #75 – Before Rotation

Photo 6.76: Test #75 – End of Test

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/TP 15232E (Vol. 2) Final Version 1.0.docx Final Version 1.0, October 20

Photo 6.78: Test #80 – Before Rotation

Photo 6.79: Test #80 - End of Rotation

Photo 6.80: Test #80 – End of Test

Photo 6.81: Test #64 – Start of Test

Photo 6.82: Test #64 – Before Rotation

Photo 6.83: Test #64 - End of Rotation

Photo 6.84: Test #64 – End of Test

Photo 6.85: Test #96 – Start of Test

Photo 6.86: Test #96 – Before Rotation

Photo 6.87: Test #96 - End of Rotation

Photo 6.88: Test #96 - End of Test

7. MODERATE ICE PELLET ALLOWANCE TIMES

Aerodynamic testing was conducted to validate and further develop the Type IV high-speed ice pellet allowance times in the NRC wind tunnel. Previous testing in 2006-07 and 2008-09 consisted of wind tunnel tests and Falcon 20 aircraft tests to develop allowance times for mixed conditions with ice pellets. Due to the limitations of the data, some extrapolation of the results was required in order to develop a comprehensive table. It was recommended that testing be conducted at the most critical limits of the allowance times to validate the current guidance material for use with newer generation aircraft operating with supercritical wings. Additional testing was also required to provide guidance material where data was limited or non-existent. The results of this testing have been separated by test condition, and the details can be found in the following sections:

- Section 6: Light Ice Pellets;
- Section 7: Moderate Ice Pellets;
- Section 8: Light Ice Pellets and Light Freezing Rain;
- Section 9: Light Ice Pellets and Moderate Rain;
- Section 10: Light Ice Pellets and Light Snow; and
- Section 11: Light Ice Pellets and Moderate Snow.

This section provides an overview of each test conducted to substantiate and further develop the current high-speed allowance times for Type IV fluids in Moderate Ice Pellet conditions. Testing was conducted in simulated precipitation conditions. The parameters for each test are detailed, and a description of the data collected during each test is provided.

7.1 Overview of Tests

A summary of the Moderate Ice Pellet tests conducted in the wind tunnel is shown in Table 7.1. The table provides relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 4.1. A brief description of the column headings for Table 7.1 is provided in Subsection 6.1.

Test No.	Date	Fluid	Associated Baseline Test	Condition	Precip. Rate (g/dm²/h)	Precip. Time (min.)	Tunnel Temp at Start of Test (°C)	AVG Wing Temp. Before Test (°C)	Flap Angle (°)	Visual Cont. Rating Before Takeoff (LE, TE, Flap)	Visual Cont. Rating at Rotation (LE, TE, Flap)	CL at 8° During Rotation	8° Lift Loss (%)
10	13-Jan-10	ABC-S Plus	1	IP Mod	75	25	-7.4	-10.5	20	2, 3, 4	1, 2, 2	1.616	6.1
10A	13-Jan-10	ABC-S Plus	1	IP Mod	75	25	-5.6	-10.1	20	2, 2.8, 2.7	1, 1.8, 2	N/A	N/A
10B	13-Jan-10	ABC-S Plus	1	IP Mod	75	25	-6.2	-11.1	20	2.2, 3, 3	1, 2, 2	1.587	7.8
21	20-Jan-10	EG106	55	IP Mod	75	25	-3.6	-10.1	20	2, 2.2, 4	1, 1, 1.2	1.712	0.54
47	24-Jan-10	Launch	29	IP Mod	75	25	-4.9	-10.1	20	3.7, 3.8, 4	1, 1.7, 2.5	1.58	8.21
48	24-Jan-10	Launch	54	IP Mod	75	15	-2.7	-8.5	20	2, 2.8, 4	1, 1.7, 1.8	1.609	6.52
49	24-Jan-10	Launch	60	IP Mod	75	15	-3.1	-8.8	0	2.7, 2.8, 3	1, 1.5, 1.8	1.606	6.7
71	29-Jan-10	EG106	75	IP Mod	75	10	-17.7	-17.2	20	2.3, 2.3, 2.8	1, 1.3, 1.8	1.671	2.92
72	29-Jan-10	ABC-S Plus	76	IP Mod	75	10	-18	-17.6	20	2.8, 2.5, 3.8	1.2, 2, 2.8	1.561	9.31
73	29-Jan-10	ABC-S Plus	76	IP Mod	75	5	-18.2	-17.4	20	2.2, 2.2, 3.4	1.2, 2, 2.5	N/A	N/A
74	29-Jan-10	Launch	70	IP Mod	75	5	-18.5	-17.4	20	2.7, 2.3, 3.2	1.5, 2, 2.8	1.544	10.3
95	2-Feb-10	ABC-S Plus	64	IP Mod	75	10	-8.1	-10.4	20	2.2, 2, 2.8	1, 1.7, 2	1.602	6.93
1	3-Feb-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-5.7	-4.6	20	1, 1, 1	1, 1, 1	1.635	5.01
29	5-Feb-10	Launch	N/A	Fluid Only	N/A	N/A	-4.8	-5.2	20	1, 1, 1	1, 1, 1	1.636	4.96
54	27-Jan-10	Launch	N/A	Fluid Only	N/A	N/A	-2.2	-0.8	20	1, 1, 1	1, 1, 1	1.66	3.56
55	27-Jan-10	EG106	N/A	Fluid Only	N/A	N/A	-2.6	-0.9	20	1, 1, 1	1, 1, 1	1.689	1.88
60	28-Jan-10	Launch	N/A	Fluid Only	N/A	N/A	-2.8	-1.9	20	1, 1, 1	1, 1, 1	1.642	4.61
64	6-Feb-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-13.4	-11.3	20	1, 1, 1	1, 1, 1	1.634	5.07
70	7-Feb-10	Launch	N/A	Fluid Only	N/A	N/A	-17.9	-15.8	20	1, 1, 1	1, 1, 1	1.625	5.59
75	30-Jan-10	EG106	N/A	Fluid Only	N/A	N/A	-18.1	-16.9	20	1, 1, 1	1, 1, 1	1.651	4.08
76	30-Jan-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-17.9	-17.3	20	1, 1, 1	1, 1, 1	1.62	5.89

Table 7.1: Summary of 2009-10 Moderate Ice Pellet Testing

7.2 Data Collected

7.2.1 Fluid Thickness Data

Fluid thickness measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.2. Fluid thickness measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 7.2 to 7.13 show the fluid thickness measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 7.14 to 7.22 for comparison purposes.

Test 10: ABC-S Plus, IP Mod, Tunnel OAT -7.4°C						
	FLUID THIC	KNESS (mm)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test			
1	1.4	2.2	N/A			
2	2.5	3.1	N/A			
3	3.3	3.7	N/A			
4	4.5	3.9	N/A			
5	5.7	5.7	N/A			
6	4.5	7.0	N/A			
7	3.5	4.5	N/A			
8	3.3	4.5	N/A			
Flap	1.0	0.1 (slush)	N/A			

Table 7.2: Test #10 Fluid Thickness Data

Table 7.3: Test #10A Fluid Thickness Data

Test 10A: ABC-S Plus, IP Mod, Tunnel OAT -5.6°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.8	2.5	0.1		
2	2.5	3.1	0.2		
3	3.3	3.9	0.2		
4	4.5	4.5	0.2		
5	5.7	5.7	0.2		
6	4.5	8.9	0.1		
7	5.7	5.7	0.1		
8	4.5	4.5	0.1		
Flap	N/A	slush	0.2		

Table 7.4: Test #10B Fluid ThicknessData

Test 10B: ABC-S Plus, IP Mod, Tunnel OAT -6.2°C						
	FLUID THIC	KNESS (mm)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test			
1	1.4	1.8	N/A			
2	2.5	3.3	N/A			
3	3.1	3.3	N/A			
4	4.5	4.5	N/A			
5	4.5	5.7	N/A			
6	4.5	5.7	N/A			
7	4.5	5.7	N/A			
8	3.3	4.5	N/A			
Flap	N/A	slush	N/A			

Table 7.6: Test #47 Fluid Thickness Data

Test 47: Launch, IP Mod, Tunnel OAT -4.9°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.6	1.6 (slush)	0.0		
2	1.8	1.8 (slush)	0.2		
3	2.2	2.5 (slush)	0.2		
4	2.5	3.3 (slush)	0.3		
5	2.7	4.5 (slush)	0.3		
6	2.7	5.7 (slush)	0.1		
7	2.5	4.5 (slush)	0.2		
8	2.2	4.5 (slush)	0.1		
Flap	0.7	slush	0.1		

Table 7.5: Test #21 Fluid Thickness Data

Test 21: EG106, IP Mod, Tunnel OAT -3.6°C						
	FLUID THIC	KNESS (mm)				
Wing Position	Wing After Fluid After Precip. After Position Application Application Takeoff Te					
1	2.2	1.2	0.0			
2	2.5	1.7	0.0			
3	2.7	2.9	0.0			
4	3.3	4.5	0.1			
5	4.5	5.7	0.1			
6	3.1	5.7	0.0			
7	3.3	5.7	0.0			
8	3.1	4.5	0.0			
Flap	1.0	slush	0.0			

Table 7.7: Test #48 Fluid Thickness Data

Test 48: Launch, IP Mod, Tunnel OAT -2.7°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.5	2.2	0.0		
2	1.8	3.1	0.2		
3	2.2	3.7	0.2		
4	2.7	4.5	0.2		
5	2.9	4.5	0.2		
6	2.9	5.7	0.1		
7	2.7	4.5	0.1		
8	2.2	3.9	0.1		
Flap	0.7	1.3	0.3		

Test 49: Launch, IP Mod, Tunnel OAT -3.1°C							
	FLUID THICKNESS (mm)						
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test				
1	1.8	2.7 (slush)	0.0				
2	2.2	3.3 (slush)	0.1				
3	2.2	3.7 (slush)	0.1				
4	2.9	3.9 (slush)	0.1				
5	2.9	3.9 (slush)	0.1				
6	3.1	3.9 (slush)	0.1				
7	2.9	3.7 (slush)	0.1				
8	2.9	3.7 (slush)	0.3				
Flap	3.3	3.9 (slush)	0.3				

Table 7.8: Test #49 Fluid Thickness Data

Table 7.10: Test #72 Fluid ThicknessData

Test 72: ABC-S Plus, IP Mod, Tunnel OAT - 18.0°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.3	1.3	0.1		
2	1.5	2.2	0.1		
3	2.2	2.2	0.1		
4	2.2	2.5	0.2		
5	2.5	3.1	0.2		
6	2.5	3.5	0.2		
7	2.2	3.3	0.2		
8	1.6	2.7	0.2		
Flap	0.5	slush	N/A		

Table 7.9: Test #71 Fluid Thickness Data

Test 71: EG106, IP Mod, Tunnel OAT -17.7°C						
	FLUID THIC	KNESS (mm)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test			
1	1.7	2.2	0.0			
2	2.2	3.3	0.1			
3	2.9	3.5	0.1			
4	3.7	4.5	0.1			
5	3.1	4.5	0.2			
6	4.5	5.7	0.2			
7	4.5	5.7	0.2			
8	4.5	4.5	0.2			
Flap	1.2	slush	0.1			

Table 7.11: Test #73 Fluid Thickness Data

Test 73: ABC-S Plus, IP Mod, Tunnel OAT - 18.2°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.5	1.5	N/A		
2	1.6	2.2	N/A		
3	2.2	2.2	N/A		
4	2.2	2.7	N/A		
5	2.5	2.9	N/A		
6	2.2	2.5	N/A		
7	1.7	2.5	N/A		
8	1.7	2.5	N/A		
Flap	0.6	N/A	N/A		

Table 7.12: Test #74 Fluid ThicknessData

Test 74: Launch, IP Mod, Tunnel OAT -18.5°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.2	1.7	0.0		
2	1.3	1.8	0.1		
3	1.7	1.8	0.2		
4	1.7	2.2	0.2		
5	2.2	2.5	0.2		
6	1.7	2.2	0.2		
7	1.7	2.2	0.2		
8	1.3	2.2	0.3		
Flap	0.6	slush	0.2		

Table 7.14: Test #1 (Baseline) FluidThickness Data

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C			
	FLUID THIC	KNESS (mm)	
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
1	1.8	N/A	0.0
2	2.5	N/A	0.0
3	3.3	N/A	0.1
4	4.5	N/A	0.1
5	5.7	N/A	0.1
6	5.7	N/A	0.1
7	5.7	N/A	0.1
8	4.5	N/A	0.1
Flap	1.0	N/A	0.1

Table 7.13: Test #95 Fluid Thickness Data

Test 95: ABC-S Plus, IP Mod, Tunnel OAT -8.1°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid After Precip. After Tak Application Application Test				
1	1.8	1.8	0.0		
2	2.2	1.8	0.1		
3	2.9	3.1	0.2		
4	3.3	3.7	0.2		
5	3.5	4.5	0.2		
6	3.5	4.5	0.3		
7	3.3	4.5	0.3		
8	3.1	3.7	0.2		
Flap	1.0	slush	0.2		

Table 7.15: Test #29 (Baseline) Fluid Thickness Data

Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.5	N/A	0.0	
2	2.2	N/A	0.1	
3	2.2	N/A	0.1	
4	3.1	N/A	0.1	
5	3.1	N/A	0.2	
6	3.1	N/A	0.1	
7	2.9	N/A	0.1	
8	2.2	N/A	0.2	
Flap	0.8	N/A	0.2	

Table 7.16: Test #54 (Baseline) Fluid Thickness Data

Test 54: Launch, Fluid-only, Tunnel OAT -2.2°C			
	FLUID THIC	KNESS (mm)	
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
1	1.2	N/A	0.0
2	1.7	N/A	0.1
3	1.8	N/A	0.1
4	2.2	N/A	0.2
5	2.7	N/A	0.1
6	2.7	N/A	0.1
7	2.5	N/A	0.1
8	2.2	N/A	0.1
Flap	0.7	N/A	0.1

Table 7.18: Test #60 (Baseline) Fluid Thickness Data

Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C			
	FLUID THIC	KNESS (mm)	
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
1	1.2	N/A	0.0
2	0.1	N/A	0.1
3	2.2	N/A	0.1
4	2.5	N/A	0.1
5	2.5	N/A	0.2
6	2.7	N/A	0.1
7	2.5	N/A	0.2
8	2.2	N/A	0.2
Flap	0.7	N/A	0.0

Table 7.17: Test #55 (Baseline) Fluid Thickness Data

Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid After Precip. After Application Application Takeoff				
1	2.2	N/A	0.0		
2	2.9	N/A	0.1		
3	3.1	N/A	0.2		
4	3.1	N/A	0.2		
5	2.5	N/A	0.2		
6	4.5	N/A	0.2		
7	4.5	N/A	0.1		
8	4.5	N/A	0.1		
Flap	0.6	N/A	0.1		

Table 7.19: Test #64 (Baseline) Fluid Thickness Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C			
	FLUID THIC	KNESS (mm)	
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
1	1.2	N/A	0.0
2	2.2	N/A	0.1
3	1.7	N/A	0.1
4	1.8	N/A	0.1
5	3.1	N/A	0.2
6	3.1	N/A	0.2
7	3.1	N/A	0.2
8	2.7	N/A	0.2
Flap	0.8	N/A	0.2

Table 7.20: Test #70 (Baseline) Fluid Thickness Data

Test 70: Launch, Fluid-only, Tunnel OAT -17.9°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Fluid After Precip. Application Application Ta			
1	1.1	N/A	0.0		
2	1.5	N/A	0.1		
3	1.8	N/A	0.1		
4	2.2	N/A	0.2		
5	2.2	N/A	0.2		
6	1.6	N/A	0.2		
7	1.8	N/A	0.2		
8	2.2	N/A	0.2		
Flap	0.5	N/A	0.1		

Table 7.21: Test #75 (Baseline) FluidThickness Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C			
	FLUID THIC	KNESS (mm)	
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
1	2.2	N/A	0.1
2	2.9	N/A	0.2
3	3.1	N/A	0.2
4	3.7	N/A	0.1
5	4.5	N/A	0.1
6	4.5	N/A	0.1
7	4.5	N/A	0.1
8	2.2	N/A	0.2
Flap	0.2	N/A	0.2

Table 7.22: Test #76 (Baseline) Fluid Thickness Data

Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid After Precip. After Ta n Application Application Tes			
1	1.3	N/A	0.1	
2	1.6	N/A	0.1	
3	1.8	N/A	0.1	
4	2.2	N/A	0.1	
5	2.2	N/A	0.2	
6	2.2	N/A	0.2	
7	1.8	N/A	0.2	
8	1.6	N/A	0.2	
Flap	0.5	N/A	0.2	

7.2.2 Skin Temperature Data

Skin temperature measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.3. Skin temperature measurements were recorded at the following intervals:

- Before fluid application;
- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 7.23 to 7.34 demonstrate the wing temperature measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 7.35 to 7.43 for comparison purposes.

Tes	Test 10: ABC-S Plus, IP Mod, Tunnel OAT -7.4°C					
	WING TEMPERATURE (°C)					
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test		
Т2	-5.3	-6.9	-11.7	N/A		
Т5	-4.9	-7.4	-10.0	N/A		
TU	-6.8	-7.1	-9.7	N/A		

Table 7.23: Test #10 Wing SkinTemperature Data

Table 7.25: Test #10B Wing SkinTemperature Data

Test 10B: ABC-S Plus, IP Mod, Tunnel OAT -6.2°C						
	WING	TEMPERATUR	E (°C)			
Wing Position	Wing PositionBefore Fluid ApplicationAfter Fluid 					
T2	-5.5	-5.7	-11.6	N/A		
T5	-4.5	-7.5	-10.9	N/A		
TU	-6.0	-5.9	-10.8	N/A		

Table 7.27: Test #47 Wing SkinTemperature Data

Т	Test 47: Launch, IP Mod, Tunnel OAT -4.9°C			
	WING	TEMPERATUR	E (°C)	
Wing Before After Fluid After Orecip. Take Application Application Tes				
T2	-5.6	-6.2	-11.5	-3.8
T5	-5.2	-6.3	-11.1	-3.2
TU	-6.5	-6.4	-7.7	-5.9

Table 7.24: Test #10A Wing Skin Temperature Data

Test	Test 10A: ABC-S Plus, IP Mod, Tunnel OAT -5.6°C				
	WING T	EMPERATURE	(°C)		
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test	
T2	-6.2	-5.0	-11.0	-5.8	
T5	-6.5	-5.2	-10.0	-4.7	
TU	-7.8	-5.5	-9.2	-6.7	

Table 7.26: Test #21 Wing SkinTemperature Data

Test 21: EG106, IP Mod, Tunnel OAT -3.6°C				
	WING T	EMPERATURE	(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	N/A	-1.8	-10.4	-4.2
T5	N/A	-1.8	-9.1	-3.4
TU	N/A	-3.0	-6.1	-4.5

Table 7.28: Test #48 Wing SkinTemperature Data

Test 48: Launch, IP Mod, Tunnel OAT -2.7°C				
	WING T	EMPERATURE	(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-2.5	-3.0	-9.9	-6.4
T5	-1.6	-3.1	-10.3	-5.8
TU	-3.4	-4.1	-5.4	-6.8

Table 7.29: Test #49 Wing SkinTemperature Data

Test 49: Launch, IP Mod, Tunnel OAT -3.1°C				
	WING	TEMPERATUR	E (°C)	
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Taked Test				
Т2	-4.0	-4.5	-10.3	-4.6
Т5	-3.5	-4.6	-10.2	-4.6
TU	-4.9	-4.9	-6.0	-5.5

Table 7.31: Test #72 Wing SkinTemperature Data

Test 72: ABC-S Plus, IP Mod, Tunnel OAT - 18.0°C				
	WING	TEMPERATUR	E(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
Т2	-15.7	-15.1	-18.2	-18.5
Т5	-15.1	-15.4	-17.3	-18.4
TU	-17.4	-17.0	-17.2	-19.5

Table 7.33: Test #74 Wing SkinTemperature Data

Te	Test 74: Launch, IP Mod, Tunnel OAT -18.5°C			
	WING	TEMPERATUR	E(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-16.6	-16.1	-17.9	-17.5
T5	-16.0	-16.3	-16.7	-17.0
TU	-17.9	-17.7	-17.5	-18.9

Table 7.35: Test #1 (Baseline) WingSkin Temperature Data

Tes	Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C			
	WING	TEMPERATUR	E(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-4.5	-4.5	N/A	-3.6
T5	-5	-4.9	N/A	-3.2
TU	-5.1	-4.5	N/A	-4.3

Table 7.30: Test #71 Wing Skin Temperature Data

Test 71: EG106, IP Mod, Tunnel OAT -17.7°C				
	WING 1	EMPERATURE	(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-16.5	-16.0	-18.1	-18.2
Т5	-16.7	-16.4	-17.5	-17.5
TU	-16.7	-16.2	-16.0	-18.6

Table 7.32: Test #73 Wing SkinTemperature Data

Test 73: ABC-S Plus, IP Mod, Tunnel OAT - 18.2°C					
	WING T	EMPERATURE	(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip. ApplicationAfter Takeoff Test					
T2	-15.2	-16.3	-17.8	N/A	
T5	-14.5	-16.7	-17.1	N/A	
TU	-17.1	-17	-17.2	N/A	

Table 7.34: Test #95 Wing Skin Temperature Data

Test	Test 95: ABC-S Plus, IP Mod, Tunnel OAT -8.1°C				
	WING T	EMPERATURE	(°C)		
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test	
T2	-8.5	-9.2	-12.1	-10.4	
Т5	-7.6	-9.1	-11.0	-9.7	
ΤU	-9.3	-8.8	-8.2	-10.8	

Table 7.36: Test #29 (Baseline) Wing Skin Temperature Data

Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C					
	WING TEMPERATURE (°C)				
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test	
T2	-3.0	-3.8	N/A	-6.0	
T5	-2.2	-3.9	N/A	-5.4	
TU	-4.5	-4.1	N/A	-6.6	

Table 7.37: Test #54 (Baseline) WingSkin Temperature Data

Test 54: Launch, Fluid-only, Tunnel OAT -2.2°C					
	WING	TEMPERATUR	E (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test					
T2	-0.2	-0.5	N/A	-2.8	
T5	-0.4	-0.6	N/A	-2.9	
TU	-1.2	-1.2	N/A	-2.7	

Table 7.39: Test #60 (Baseline) WingSkin Temperature Data

Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C						
	WING	TEMPERATUR	E(°C)			
Wing Position	Wing PositionBefore Fluid ApplicationAfter Fluid 					
T2	-3	-1.8	N/A	-3.9		
T5	-2.2	-1.6	N/A	-4.3		
TU	-3.1	-2.4	N/A	-4.4		

Table 7.41: Test #70 (Baseline) WingSkin Temperature Data

Tes	Test 70: Launch, Fluid-only, Tunnel OAT -17.9°C					
	WING TEMPERATURE (°C)					
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Application						
T2	-16.6	-15.1	N/A	-16.0		
T5	-16.2	-15.1	N/A	-15.7		
TU	-17.7	-17.1	N/A	-17.0		

Table 7.38: Test #55 (Baseline) Wing Skin Temperature Data

Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C						
	WING TEMPERATURE (°C)					
Wing Position	Wing PositionBefore Fluid ApplicationAfter Fluid 					
T2	-0.6	-0.5	N/A	-1.6		
Т5	-0.5	-0.6	N/A	-1.5		
TU	-1.4	-1.6	N/A	-2.3		

Table 7.40: Test #64 (Baseline)Wing Skin Temperature Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C					
	WING T	EMPERATURE	(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test					
T2	-11.8	-10.8	N/A	-12.2	
T5	-11.9	-10.8	N/A	-12.1	
TU	-12.3	-12.4	N/A	-12.4	

Table 7.42: Test #75 (Baseline)Wing Skin Temperature Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C						
	WING TEMPERATURE (°C)					
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip.After Takeoff Application						
T2	-16.2	-16.5	N/A	-16.4		
T5	-15.8	-16.4	N/A	-15.6		
TU	-17.9	-17.7	N/A	-18.4		

Table 7.43: Test #76 (Baseline) Wing Skin Temperature Data

	3 - 1				
Test	Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C				
	WING TEMPERATURE (°C)				
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Application					
Т2	-16.4	-17.1	N/A	-16.9	
Т5	-16.2	-17.0	N/A	-16.1	
TU	-18.1	-17.8	N/A	-18.9	

7.2.3 Fluid Brix Data

Fluid Brix measurements were collected by APS personnel at the following intervals. The wing positions used for the wind tunnel tests are described in Subsection 2.15.4.

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 7.44 to 7.55 show the fluid Brix measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 7.56 to 7.64 for comparison purposes.

Table 7.44: Test #10 Fluid Brix Data

Test 10: ABC-S Plus, IP Mod, Tunnel OAT -7.4°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff Application Test Application Test				
2	36.75	24.50	N/A	
8	36.25	25.00	N/A	

Table 7.46: Test #10B Fluid Brix Data

Test 10B: ABC-S Plus, IP Mod, Tunnel OAT -6.2°C						
FLUID BRIX (°)						
Wing Position	Wing After Fluid After After Position Application Application Test					
2	37.00	17.50	N/A			
8	36.50	25.00	N/A			

Table 7.48: Test #47 Fluid Brix Data

Test 47: Launch, IP Mod, Tunnel OAT -4.9°C					
FLUID BRIX (°)					
Wing After Fluid After After Position Application Precip. Takeoff Application Application Test					
2	36.75	21.50	27.50		
8	37.00	21.75	27.50		

Table 7.45: Test #10A Fluid Brix Data

Test 10A: ABC-S Plus, IP Mod, Tunnel OAT -5.6°C					
FLUID BRIX (°)					
Wing After Fluid After After Position Application Application Test					
2	36.50	27.25	25.00		
8	36.50	25.00	24.00		

Table 7.47: Test #21 Fluid Brix Data

Test 21: EG106, IP Mod, Tunnel OAT -3.6°C					
FLUID BRIX (°)					
Wing After Fluid After After Position Application Application Test					
2	31.50	13.75	25.00		
8	32.00	15.25	23.00		

Table 7.49: Test #48 Fluid Brix Data

Test 48: Launch, IP Mod, Tunnel OAT -2.7°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	36.75	25.00	28.50	
8	36.75	22.50	29.00	
Test 49: Launch, IP Mod, Tunnel OAT -3.1°C				
---	-------	-------	-------	--
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	36.50	25.50	34.00	
8	36.50	23.00	31.75	

Table 7.50: Test #49 Fluid Brix Data

Table 7.52: Test #72 Fluid Brix Data

Test 72: ABC-S Plus, IP Mod, Tunnel OAT - 18.0°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.50	35.00	32.50
8	37.50	32.50	32.00

Table 7.54: Test #74 Fluid Brix Data

Test 74: Launch, IP Mod, Tunnel OAT -18.5°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	37.00	37.00	32.75	
8	36.75	36.75	32.50	

Table 7.56: Test #1 (Baseline) Fluid BrixData

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	36.5	N/A	39.5
8	36.5	N/A	38.25

Table 7.58: Test #54 (Baseline) Fluid Brix Data

Test 54: Launch, Fluid-only, Tunnel OAT -2.2°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	36.50	N/A	39.75	
8	36.75	N/A	39.25	

Table 7.51: Test #71 Fluid Brix Data

Test 71: EG106, IP Mod, Tunnel OAT -17.7°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	32.5	26.25	29.5	
8	32.5	25.25	30.25	

Table 7.53: Test #73 Fluid Brix Data

Test 73: ABC-S Plus, IP Mod, Tunnel OAT - 18.2°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.50	36.50	N/A
8	37.00	36.00	N/A

Table 7.55: Test #95 Fluid Brix Data

Test 95: ABC-S Plus, IP Mod, Tunnel OAT -8.1°C				
FLUID BRIX (°)				
Wing Position After Fluid Application After Precip. Application After Takeoff				
2	37.0	36.75	32.00	
8	36.50	28.00	28.50	

Table 7.57: Test #29 (Baseline) Fluid Brix Data

Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Application Test				
2	36.75	N/A	37.50	
8	37.00	N/A	36.50	

Table 7.59: Test #55 (Baseline) Fluid Brix Data

Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	32.35	N/A	34.75
8	33.00	N/A	34.00

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/TP 15232E (Vol. 2) Final Version 1.0.docx Final Version 1.0, October 20

Table 7.60: Test #60 (Baseline) Fluid Brix Data

Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Application Test				
2	37.00	N/A	41.00	
8	36.75	N/A	39.25	

Table 7.62: Test #70 (Baseline) Fluid Brix Data

Test 70: Launch, Fluid-only, Tunnel OAT -17.9°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	37.50	N/A	39.25	
8	37.50	N/A	38.25	

Table 7.61: Test #64 (Baseline) Fluid Brix Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	37.75	N/A	38.50	
8	37.50	N/A	38.00	

Table 7.63: Test #75 (Baseline) Fluid Brix Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	32.25	N/A	34.00	
8	32.25	N/A	34.00	

Table 7.64: Test #76 (Baseline) Fluid Brix Data

Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	37.75	N/A	38.25	
8	37.00	N/A	37.25	

7.3 Photos

High-speed digital photographs of each test were taken; wide-angle photos were taken of the leading edge, and close-up photos were taken of the trailing edge. For each test, photo summaries have been compiled comprising four stages:

- Start of test;
- Before Rotation (just before the wing began to pitch);
- End of Rotation (end of the rotation cycle when the wing position is returned to 4 degrees); and
- End of test.

The photos taken during the Moderate Ice Pellet testing have been presented along with the fluid only (baseline) tests for comparison purposes. In each case, the fluid

only photo is presented first, followed by the contaminated fluid photo. Photos 7.1 to 7.96 show the photo summaries of the tests conducted. A complete set of photos will be provided to the TDC in electronic format.

7.4 Summary of Results

7.4.1 OAT -5°C and Above

Four tests were conducted in this cell with an exposure time of 25 minutes: Tests #10, #10B, #21, and #47 (see Table 7.65). Two other tests, #48 and #49, were also used for analysis, but exposure times were below the allowance time of 30 minutes (at 15 minutes). Table 7.66 contains more details on the results of these two tests.

Test #21 was conducted using EG fluid and demonstrated very good results. The temperature during this test was -3.6°C. The 8° lift loss (0.54 percent) and visual contamination ratings showed positive results, confirming the 25-minute allowance time for EG fluids.

Test #10 was conducted with PG fluid and demonstrated satisfactory results but required further review. The temperature during this test was -7.4°C. Visual contamination results were good, satisfying all criteria. The 8° lift loss was 6.12 percent, above the 5 percent margin of safety (see Table 7.66). An examination into the ramp-up time for this test shows a time of 27 seconds to reach rotation from a speed of 40 knots, which is much greater than the average of 19 seconds. When the lift loss analysis of speeds greater than 100 knots was conducted, the semi-log of time results indicate that a speed of just under 110 knots is required to bring the lift loss to less than 5 percent (see Table 7.67 and Figure 7.1).

Test #10B was conducted using the same PG fluid as Test #10 but had the flap protected from precipitation during the first 15 minutes of contamination (see Table 7.66). The temperature during this test was -6.2°C. As a result of the flap being covered, visual contamination results were better than Test #10. The 8° lift loss during this run was 7.80 percent. A 6° rotation angle would provide a lift loss of 7.06 percent (see Table 5.7); this is an improvement from the 8° lift loss value. A ramp-up time of 17 seconds occurred during this run, below the 19-second average, indicating a possible improvement in lift loss should the extra 2 seconds have been used.

Test #47 was conducted with PG fluid and demonstrated poor results, requiring further evaluation. The temperature during this test was -4.9°C. Lift loss and visuals at the start of the test had unfavourable results (see Table 7.66). The visual ratings

at the start of the test were 3.7, 3.8, and 4 on the LE, TE, and flap, respectively; these were higher than the acceptable criteria. The lift loss at 8° was 8.21 percent, beyond the 5 percent margin of safety criteria. When the lift loss analysis of speeds greater than 100 knots was conducted, the semi-log of time results indicate that a speed of approximately 105 knots is required to bring the lift loss to less than 8 percent. A speed slightly below 120 knots is required to bring the lift loss to 5 percent (see Table 7.67). This test had a 23-second ramp-up time, 4 seconds over the average.

Due to the unfavourable visual results from Test #47, Test #48 was conducted using the same PG fluid with an exposure time of 15 minutes, rather than the current 25-minute allowance time. The temperature was -2.7°C, slightly warmer than Test #47. The visual contamination ratings during this test were satisfactory, meeting all criteria. The lift loss at 8° was 6.52 percent, over the 5 percent safety criteria but below a lift loss of 8 percent. A ramp-up time of 25 seconds from 40 knots to rotation was found in this run, over the 19-second average. Examination of the lift data indicates that a lift loss of 5.48 percent would occur at a 6° rotation (see Table 5.7), an improvement from the lift loss at a 8° rotation.

Test #49 was conducted using the same test parameters as in Test #48 but had the flap set at 0° for the contamination phase due to the flap rating of 4 at the start of Test #48. Close examination of the results from Test #49 shows that the findings were essentially the same as Test #48 (see Table 7.66).

Due to unfavourable visual results on Test #47, a closer comparison of the parameters of the related PG fluid tests was undertaken.

- 1. The fluid used for Test #47 was Launch, and ABC-S Plus was used for Tests #10 and #10B.
- 2. The temperature for Test #47 was -4.9°C, while the temperatures for Tests #10 and #10B were -7.4°C and -6.2°C, respectively; the temperatures were not significantly different. In fact, they were colder in Tests #10 and #10B.
- 3. Close examination of the photos indicates that the visual ratings for all these tests were appropriate.
- 4. No other test parameters were found to have been significantly different.

This seems to indicate that the fluid brand was likely the cause for the poor visual results experienced in Test #47.

In conclusion, the current allowance time of 25 minutes is acceptable for EG fluids. An allowance time of 25 minutes is not acceptable for PG fluids as a result of unsatisfactory visual contamination results present at the start of Test #47. A repeat

of Tests #48 and #49 demonstrated acceptable visual and lift loss results, but for an allowance time of 15 minutes.

Due to the recent tests conducted on the newer generation airfoils, an allowance time of 15 minutes is more appropriate for PG fluids. Because the lift losses in Tests #48 and #49 were still higher than the 5 percent safety criteria, further review is required for PG fluids.

7.4.2 OAT Less than -5°C to -10°C

One test was conducted in this cell with an exposure time of 10 minutes: Test #95. Two other tests, #10 and #71, were also used to support the analysis of this cell of the allowance time table. See Table 7.65 for a summary of the Moderate Ice Pellet runs.

Test #95 was conducted at a temperature of -8.1°C with PG fluid and demonstrated satisfactory results based on the 8° lift loss (6.93 percent) and the good visual contamination ratings (see Table 7.66). This result is above the 5 percent margin of safety criteria. An analysis of the lift loss was conducted with speeds greater than 100 knots (see Table 7.67 and Figure 7.2), and the semi-log of time results indicate a rotation speed of approximately 110 knots is required to achieve a lift loss below 5 percent. The ramp-up time for this test was below the 19-second average, at 16 seconds, indicating a possibility of lift loss improvement should the extra 3 seconds have been used.

Test #10 was used to support Test #95 during analysis (see Table 7.66). This test can be found in the Moderate Ice Pellet cell OAT -5°C and above, but had a temperature close to the current cell's target OAT. PG fluid was used during this test, which was conducted at a temperature of -7.4°C. Although exposure times were different (Test #10 at 25 minutes), the visual contamination ratings demonstrated good results despite the longer precipitation time. The 8° lift loss of 6.12 percent was above the 5 percent safety criteria, resulting in the need for further review, as with Test #95. The semi-log of time results indicate a rotation speed of just under 110 knots is required to achieve a lift loss below 5 percent.

Test #71 was also used to support Test #95 during the analysis (see Table 7.66). This test was conducted with EG fluid at a temperature of -17.7°C. The exposure time was the same, at 10 minutes. Although the temperature was much colder, the visual and lift loss results were very good.

In conclusion, the current allowance time of 10 minutes is acceptable for EG fluids. The allowance for this cell is satisfactory at this time based on the results obtained from PG fluids, but further review is required. For the PG fluids with the newer generation flat wing sections, a rotation speed of 110 knots is required to reduce the measured lift loss to less than 5 percent; this speed would also be equivalent to the 5 percent lift loss measured with the baseline PG fluid only case.

	OAT -5°C and Above	OAT Less than -5°C to -10°C	OAT Less than -10°C
	25 minutes	10 minutes	10 minutes
Moderate Ice Pellets	Test # 10, 10B, 21, 47	Test # 95, (10), (71)	Test # 71, 72

 Table 7.65: Moderate Ice Pellets Allowance Time Tests Winter 2009-10

7.4.3 OAT Less than -10°C

Two tests were conducted in this cell with an exposure time of 10 minutes: Tests #71 and #72 (see Table 7.65). Test #74 was also used for analysis, but the exposure time was below the allowance time of 10 minutes (at 5 minutes). Table 7.66 contains more details on the results of Test #74.

Test #71 was conducted using EG fluid and demonstrated very good results. The temperature during this test was -17.7°C. The 8° lift loss was below the 5 percent safety criteria at 2.98 percent, and the visual contamination ratings showed positive results, confirming the 10-minute allowance time for EG fluids.

Test #72, conducted at a temperature of -18°C with PG fluid, demonstrated unsatisfactory results. The visual result on the LE at the time of rotation was 1.2, and the 8° lift loss was 9.31 percent; both results did not satisfy their required criteria (see Table 7.66). An examination into the ramp-up time for this test shows a time of 15 seconds to reach rotation from a speed of 40 knots. The lift loss and visual ratings could have potentially been reduced should this run have had an extra 4 seconds during ramp-up. When the lift loss analysis of speeds greater than 100 knots was conducted, the semi-log of time results indicate that a speed just above 110 knots is required to bring the lift loss to less than 8 percent. Using the methodology described to extrapolate beyond 100 knots, a speed of 135 knots would be required to bring the lift loss below the 5 percent safety margin (see Table 7.67 and Figure 7.3). This estimate is provided for reference purposes; however, it is not recommended to extrapolate the 100 knots data to the velocity of 135 knots.

Test #74 was conducted with PG fluid and also demonstrated unsatisfactory results, requiring further review. The exposure time for this test was below the allowance time, at 5 minutes. The temperature during this test was -18.4°C. The visual contamination results showed positive results at both the start of the test and at

rotation. The lift loss at 8° was 10.3 percent, well above the 5 percent margin of safety criteria. As with Test #72, Test #74 had a ramp-up time below the average, at approximately 14 seconds. This would provide a possibility of an improvement in the results should an extra 5 seconds have been used during the ramp-up time. When the lift loss analysis of speeds greater than 100 knots was conducted, the semi-log of time results indicate that a speed of just under 110 knots is required to bring the lift loss to less than 8 percent. Using the methodology described to extrapolate beyond 100 knots, a speed of 130 knots would be required to bring the lift loss below 5 percent (see Table 7.67 and Figure 7.4). This estimate is provided for reference purposes; however, it is not recommended to extrapolate to this extent.

In conclusion, the current allowance time of 10 minutes is acceptable for EG fluids. With PG fluids, a speed of 115 knots or more is required to drive lift losses below 8 percent for the flatter and newer generation airfoils. At this time, the current allowance time of 10 minutes for PG fluids is acceptable with speeds of 115 knots or more, but further research and testing is required.

	OAT -5°C and Above	OAT Less than -5°C to -10°C	OAT Less than -10°C	
	25 minutes		10 minutes	
Moderate Ice Pellets	Run 10 (Exposure Time 25 min), -7.4°C ABC-S Plus Visual At Start: GOOD (2, 3, 4) Visuals At Rotation: GOOD (1, 2, 2) LL At 110 kts: GOOD (4.86%) LL At 115 kts: GOOD (4.86%) LL At 115 kts: GOOD (4.86%) LL At 120 kts: GOOD (3.95%) GOOD > 110 kts Run 108 (Exposure Time 25 min), -6.2°C *Flap Covered for First 15 min* ABC-S Plus Visual At Start: GOOD (1, 2, 2) LL At 100 kts: OK (7.80%) OK At 100 kts Run 21 (Exposure Time 25 min), -3.6°C EG106 Visual At Start: GOOD (1, 2, 2) LL At 100 kts: OK (7.80%) OK At 100 kts Run 21 (Exposure Time 25 min), -3.6°C EG106 Visual At Start: GOOD (1, 1, 1, 2) LL At 100 kts: GOOD (1, 1, 1, 1.2) LL At 100 kts: GOOD (0.54%) GOOD At 100 kts Run 47 (Exposure Time 25 min), -4.9°C LAUNCH Visuals At Rotation: GOOD (1, 1.7, 2.5) LL At 100 kts: BAD (3.7, 3.8, 4) Visuals At Rotation: GOOD (1, 1.7, 2.5) LL At 100 kts: GOD (4.71%) OK > 110 kts Run 48 (Exposure Time 15 min), -2.7°C LAUNCH Visual At Start: GOOD (2, 2.8, 4) Visuals At Rotation: GOOD (1, 1.7, 1.8) LL At 100 kts: OK (6.52%) OK > 100 kts Run 49 (Exposure Time 15 min), -3.1°C *Flap At 0** LAUNCH Visuals At Rotation: GOOD (1, 1.5, 1.8) LL At 100 kts: OK (6.70%) OK > 100 kts . 25 min GOOD for EG Fluid . 30 min BAD for PG Fluids Due to Visuals at the Start of Test for Run 47; Allowance Time should be Reduced to 15 min Based on Runs 48 and 49. Further Review Required. CONCLUSION: ALLOWANCEE TIME FROM 25 MIN TO 15 MIN; FURTHER REVIEW REQUIRED	10 minutes Run 95 (Exp. Time 10 min), -8.1°C ABC-S Plus Visual At Start: GOOD (2.2, 2, 2.8) Visuals At Rotation: GOOD (1, 1.7, 2) LL At 100 kts: OK (6.93%) LL At 110 kts: OK (5.15%) LL At 115 kts: GOOD (4.24%) LL At 120 kts: GOOD (3.36%) GOOD At 100 kts • 10 min OK for PG Fluid; Further Review Required CONCLUSION: ALLOWANCE TIME OF 10 MIN OK, FURTHER REVIEW REQUIRED	Run 71 (Exposure Time 10 min), -17.7°C EG106 Visual At Start: GOOD (2.3, 2.3, 2.8) Visuals At Rotation: GOOD (1, 1.3, 1.8) LL At 100 kts: GOOD (2.92%) GOOD At 100 kts Run 72 (Exp. Time 10 min), -18.0°C ABC-S Plus Visual At Start: GOOD (2.8, 2.5, 3.8) Visuals At Rotation: BAD (1.2, 2, 2.8) LL At 100 kts: BAD (9.31%) LL At 100 kts: BAD (9.31%) LL At 110 kts: BAD (8.03%) LL At 110 kts: GOOD (4.36%) OK > 115 kts Run 74 (Exp. Time 5 min), -18.5°C LAUNCH Visual At Start: GOOD (2.7, 2.3, 3.2) Visuals At Rotation: GOOD (1.5, 2, 2.8) LL At 100 kts: BAD (10.30%) LL At 110 kts: OK (7.51%) LL At 110 kts: OK (6.77%) LL At 130 kts: GOOD (4.69%) OK > 110 kts • Higher Rotation Speeds of 115 or More are Needed to Drive LL Below 8% • 10 min GOOD for EG Fluid • 10 min OK for PG Fluid and Supercritical Wings for Speeds > 115 kts CONCLUSION: ALLOWANCE TIME OF 10 MIN OK FOR > 115 KTS	

Table 7.66: Summary of Moderate Ice Pellets Allowance Time Test Results

Condition	Test #	Speed (Kts)	Lift Loss at 8 Degrees (%)	Visual (%)	Linear (%)	Semi-Log (Time) (%)	Polynomial (2nd Order) (%)
	10	100	6.12				
		110		5.12	4.69	4.86	5.48
		115		4.8	4.16	4.4	5.28
Moderate Ice Pellets		120		4.48	3.64	3.95	5.13
(OAT -5°C and Above)		100	8.21				
	47	110		-	6.34	6.74	7.82
		115		-	5.11	5.71	7.35
		120		-	3.89	4.71	7.02
	95	100	6.93				
Moderate Ice Pellets		110		5.95	4.80	5.15	6.31
(OAT Less than -5°C to -10°C)		115		5.51	3.73	4.24	6.02
		120		5.31	2.65	3.36	5.87
	72	100	9.31				
Moderate Ice Pellets (OAT Less than -10°C)		110		8.50	7.83	8.03	9.01
		115		7.92	6.95	7.26	8.83
		135		-	3.40	4.36	9.55
	74	100	10.3				
		110		7.27	7.25	7.51	7.52
		115		6.45	6.37	6.77	6.80
		130		-	3.74	4.69	4.83

 Table 7.67: Details of Increased Rotation Speed Analysis

Figure 7.1: Increased Rotation Speed Extrapolation Results – Test #10

Figure 7.2: Increased Rotation Speed Extrapolation Results – Test #95

Figure 7.3: Increased Rotation Speed Extrapolation Results – Test #72

Figure 7.4: Increased Rotation Speed Extrapolation Results – Test #74

This page intentionally left blank.

Photo 7.1: Test #1 – Start of Test

Photo 7.2: Test #1 – Before Rotation

Photo 7.3: Test #1 - End of Rotation

Photo 7.4: Test #1 – End of Test

Photo 7.5: Test #10 – Start of Test

Photo 7.6: Test #10 – Before Rotation

Photo 7.7: Test #10 - End of Rotation

Photo 7.8: Test #10 – End of Test

Photo 7.9: Test #1 – Start of Test

Photo 7.10: Test #1 – Before Rotation

Photo 7.11: Test #1 - End of Rotation

Photo 7.12: Test #1 – End of Test

Photo 7.13: Test #10A – Start of Test

Photo 7.14: Test #10A – Before Rotation

Photo 7.15: Test #10A – End of Rotation

Photo 7.16: Test #10A – End of Test

Photo 7.17: Test #1 – Start of Test

Photo 7.18: Test #1 – Before Rotation

Photo 7.19: Test #1 - End of Rotation

Photo 7.20: Test #1 - End of Test

Photo 7.21: Test #10B – Start of Test

Photo 7.22: Test #10B – Before Rotation

Photo 7.23: Test #10B - End of Rotation

Photo 7.24: Test #10B – End of Test

Photo 7.25: Test #55 – Start of Test

Photo 7.26: Test #55 – Before Rotation

Photo 7.27: Test #55 - End of Rotation

Photo 7.28: Test #55 – End of Test

Photo 7.29: Test #21 – Start of Test

Photo 7.30: Test #21 – Before Rotation

Photo 7.31: Test #21 - End of Rotation

Photo 7.32: Test #21 – End of Test

Photo 7.33: Test #29 - Start of Test

Photo 7.34: Test #29 – Before Rotation

Photo 7.35: Test #29 - End of Rotation

Photo 7.36: Test #29 - End of Test

Photo 7.37: Test #47 – Start of Test

Photo 7.38: Test #47 – Before Rotation

Photo 7.39: Test #47 - End of Rotation

Photo 7.40: Test #47 – End of Test

Photo 7.41: Test #54 – Start of Test

Photo 7.42: Test #54 – Before Rotation

Photo 7.43: Test #54 – End of Rotation

Photo 7.44: Test #54 – End of Test

Photo 7.45: Test #48 - Start of Test

Photo 7.46: Test #48 – Before Rotation

Photo 7.47: Test #48 - End of Rotation

Photo 7.48: Test #48 – End of Test

Photo 7.49: Test #60 – Start of Test

Photo 7.50: Test #60 – Before Rotation

Photo 7.51: Test #60 – End of Rotation

Photo 7.52: Test #60 - End of Test

Photo 7.53: Test #49 - Start of Test

Photo 7.54: Test #49 – Before Rotation

Photo 7.55: Test #49 - End of Rotation

Photo 7.56: Test #49 – End of Test

Photo 7.57: Test #75 – Start of Test

Photo 7.58: Test #75 – Before Rotation

Photo 7.59: Test #75 - End of Rotation

Photo 7.60: Test #75 – End of Test

Photo 7.61: Test #71 – Start of Test

Photo 7.62: Test #71 – Before Rotation

Photo 7.63: Test #71 – End of Rotation

Photo 7.64: Test #71 – End of Test

Photo 7.65: Test #76 – Start of Test

Photo 7.66: Test #76 – Before Rotation

Photo 7.67: Test #76 - End of Rotation

Photo 7.68: Test #76 - End of Test

Photo 7.70: Test #72 – Before Rotation

Photo 7.71: Test #72 - End of Rotation

Photo 7.72: Test #72 – End of Test

Photo 7.73: Test #76 - Start of Test

Photo 7.74: Test #76 – Before Rotation

Photo 7.75: Test #76 - End of Rotation

Photo 7.76: Test #76 - End of Test

Photo 7.77: Test #73 – Start of Test

Photo 7.78: Test #73 – Before Rotation

Photo 7.79: Test #73 - End of Rotation

Photo 7.80: Test #73 – End of Test

Photo 7.81: Test #70 – Start of Test

Photo 7.82: Test #70 – Before Rotation

Photo 7.83: Test #70 – End of Rotation

Photo 7.84: Test #70 – End of Test

Photo 7.85: Test #74 – Start of Test

Photo 7.86: Test #74 – Before Rotation

Photo 7.87: Test #74 - End of Rotation

Photo 7.88: Test #74 – End of Test

Photo 7.89: Test #64 – Start of Test

Photo 7.90: Test #64 – Before Rotation

Photo 7.91: Test #64 - End of Rotation

Photo 7.92: Test #64 – End of Test

Photo 7.93: Test #95 – Start of Test

Photo 7.94: Test #95 – Before Rotation

Photo 7.95: Test #95 - End of Rotation

Photo 7.96: Test #95 - End of Test

8. LIGHT ICE PELLETS MIXED WITH LIGHT FREEZING RAIN ALLOWANCE TIMES

Aerodynamic testing was conducted to validate and further develop the Type IV high-speed ice pellet allowance times in the NRC wind tunnel. Previous testing in 2006-07 and 2008-09 consisted of wind tunnel tests and Falcon 20 aircraft tests to develop allowance times for mixed conditions with ice pellets. Due to the limitations of the data, some extrapolation of the results was required in order to develop a comprehensive table. It was recommended that testing be conducted at the most critical limits of the allowance times to validate the current guidance material for use with newer generation aircraft operating with supercritical wings. Additional testing was also required to provide guidance material where data was limited or non-existent. The results of this testing have been separated by test condition, and the details can be found in the following sections:

- Section 6: Light Ice Pellets;
- Section 7: Moderate Ice Pellets;
- Section 8: Light Ice Pellets and Light Freezing Rain;
- Section 9: Light Ice Pellets and Moderate Rain;
- Section 10: Light Ice Pellets and Light Snow; and
- Section 11: Light Ice Pellets and Moderate Snow.

This section provides an overview of each test conducted to substantiate and further develop the current high-speed allowance times for Type IV fluids in Light Ice Pellet Mixed with Light Freezing Rain conditions. Testing was conducted in simulated precipitation conditions. The parameters for each test are detailed, and a description of the data collected during each test is provided.

NOTE: Testing was not conducted in Light Ice Pellets Mixed with Light or Moderate Freezing Drizzle or Light Ice Pellets Mixed with Light Rain. These conditions are less severe compared to Light Ice Pellet Mixed with Light Freezing Rain; therefore, the allowance times developed and substantiated for this condition can also apply to in Light Ice Pellets Mixed with Light or Moderate Freezing Drizzle and Light Ice Pellets Mixed with Light Rain.

8.1 Overview of Tests

A summary of the Light Ice Pellet Mixed with Light Freezing Rain tests conducted in the wind tunnel is shown in Table 8.1. The table provides relevant information for each of the tests, as well as the final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 4.1. A brief description of the column headings for Table 8.1 is provided in Subsection 6.1.

Test No.	Date	Fluid	Associated Baseline Test	Condition	Precip. Rate (g/dm²/h)	Precip. Time (min.)	Tunnel Temp. at Start of Test (°C)	AVG Wing Temp. Before Test (°C)	Flap Angle (°)	Visual Cont. Rating Before Takeoff (LE, TE, Flap)	Visual Cont. Rating at Rotation (LE, TE, Flap)	CL at 8° During Rotation	8° Lift Loss (%)
0	7-Jan-10	ABC-S Plus	1	IP-/ZR-	25/25	25	-6.1	-6.1	20	2, 2, 4	1, 1, 3.7	1.609	6.5
26	21-Jan-10	EG106	55	IP-/ZR-	25/25	25	-1.9	-3.1	20	2.2, 1.7, 4.7	1, 1, 4	1.639	4.8
26A	21-Jan-10	EG106	25	IP-/ZR-	25/25	25	-3.3	-2.8	0	1.8, 2, 1.9	1, 1, 1	1.697	1.4
59	28-Jan-10	Launch	60	IP-/ZR-	25/25	25	-3.3	-2.2	0	2, 2, 2.2	1, 1.3, 1.5	1.651	4.1
63	28-Jan-10	ABC-S Plus	64	IP-/ZR-	25/25	10	-12.3	-11.4	20	2.3, 2.3, 3.2	1.2, 2, 2.3	1.589	7.7
98	2-Feb-10	EG106	100	IP-/ZR-	25/25	10	-6.7	-9.5	20	2, 2, 2.5	1, 1, 1.3	1.691	1.8
1	3-Feb-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-5.7	-4.6	20	1, 1, 1	1, 1, 1	1.635	5.01
25	4-Feb-10	EG106	N/A	Fluid Only	N/A	N/A	-4	-3.4	20	1, 1, 1	1, 1, 1	1.687	1.99
55	27-Jan-10	EG106	N/A	Fluid Only	N/A	N/A	-2.6	-0.9	20	1, 1, 1	1, 1, 1	1.689	1.88
60	28-Jan-10	Launch	N/A	Fluid Only	N/A	N/A	-2.8	-1.9	20	1, 1, 1	1, 1, 1	1.642	4.61
64	6-Feb-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-13.4	-11.3	20	1, 1, 1	1, 1, 1	1.634	5.07
100	3-Feb-10	EG106	N/A	Fluid Only	N/A	N/A	-6.3	-8.2	20	1, 1, 1	1, 1, 1	1.682	2.28

Table 8.1: Summary of 2009-10 Light Ice Pellet Mixed with Light Freezing Rain Testing

8.2 Data Collected

8.2.1 Fluid Thickness Data

Fluid thickness measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.2. Fluid thickness measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 8.2 to 8.7 show the fluid thickness measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 8.8 to 8.13 for comparison purposes.

Test 0: ABC-S Plus, IP-/ZR-, Tunnel OAT -6.1°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.8	2.2	0.0		
2	2.5	2.7	0.0		
3	3.3	3.5	0.1		
4	4.5	4.5	0.1		
5	5.7	5.7	0.1		
6	5.7	7.0	0.2		
7	5.7	5.7	0.3		
8	4.5	4.5	0.2		
Flap	1.0	slush	0.2		

Table 8.2: Test #0 Fluid Thickness Data

Table 8.3: Test #26 Fluid Thickness Data

Test 26: EG106, IP-/ZR-, Tunnel OAT -1.9°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.7	0.6	0.0		
2	2.2	1.7	0.0		
3	2.2	2.5	0.1		
4	3.5	3.7	0.1		
5	3.5	3.9	0.1		
6	4.5	5.7	0.0		
7	4.5	4.5	0.0		
8	3.5	3.5	0		
Flap	1.0	slush	0.1		

Table 8.4: Test #26A Fluid Thickness Data

Test 26A: EG106, IP-/ZR-, Tunnel OAT -3.3°C							
	FLUID THICKNESS (mm)						
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test				
1	1.6	1.1	0.0				
2	2.5	1.5	0.0				
3	2.7	3.1	0.0				
4	3.3	3.7	0.0				
5	4.5	4.5	0.0				
6	4.0	4.5	0.0				
7	3.5	4.5	0.0				
8	3.5	2.7	0.0				
Flap	3.3	3.1	0.1				

Table 8.6: Test #63 Fluid Thickness Data

Test 63: ABC-S Plus, IP-/ZR-, Tunnel OAT -12.3°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.5	1.6	0.0	
2	1.8	1.8	0.2	
3	2.2	2.7	0.3	
4	2.9	2.9	0.1	
5	2.9	2.9	0.1	
6	3.3	3.5	0.3	
7	3.1	3.5	0.2	
8	2.9	2.9	0.3	
Flap	0.7	slush	0.2	

Table 8.5: Test #59 Fluid Thickness Data

Test 59: Launch, IP-/ZR-, Tunnel OAT -3.3°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.2	1.7	0.0		
2	1.8	1.8	0.0		
3	2.2	3.5	0.2		
4	2.7	4.5	0.2		
5	2.7	4.5	0.2		
6	2.7	5.7	0.1		
7	2.5	4.5	0.2		
8	2.2	4.5	0.2		
Flap	2.5	4.5	0.1		

Table 8.7: Test #98 Fluid Thickness Data

Test 98: EG106, IP-/ZR-, Tunnel OAT -6.7°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	2.2	1.6	0.0		
2	3.1	2.7	0.1		
3	3.7	3.5	0.1		
4	4.5	4.5	0.1		
5	4.5	4.5	0.1		
6	5.7	5.7	0.2		
7	5.7	5.7	0.2		
8	4.5	3.9	0.3		
Flap	0.8	N/A	0.1		

Table 8.8: Test #1 (Baseline) Fluid Thickness Data

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C							
	FLUID THICKNESS (mm)						
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test				
1	1.8	N/A	0.0				
2	2.5	N/A	0.0				
3	3.3	N/A	0.1				
4	4.5	N/A	0.1				
5	5.7	N/A	0.1				
6	5.7	N/A	0.1				
7	5.7	N/A	0.1				
8	4.5	N/A	0.1				
Flap	1.0	N/A	0.1				

Table 8.10: Test #55 (Baseline) Fluid Thickness Data

Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	2.2	N/A	0.0		
2	2.9	N/A	0.1		
3	3.1	N/A	0.2		
4	3.1	N/A	0.2		
5	2.5	N/A	0.2		
6	4.5	N/A	0.2		
7	4.5	N/A	0.1		
8	4.5	N/A	0.1		
Flap	0.6	N/A	0.1		

Table 8.9: Test #25 (Baseline) Fluid Thickness Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	2.2	N/A	0.0		
2	3.1	N/A	0.1		
3	3.7	N/A	0.1		
4	4.5	N/A	0.2		
5	4.5	N/A	0.2		
6	4.5	N/A	0.1		
7	4.5	N/A	0.1		
8	3.5	N/A	0.1		
Flap	N/A	N/A	0.1		

Table 8.11: Test #60 (Baseline) Fluid Thickness Data

Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.2	N/A	0.0	
2	0.1	N/A	0.1	
3	2.2	N/A	0.1	
4	2.5	N/A	0.1	
5	2.5	N/A	0.2	
6	2.7	N/A	0.1	
7	2.5	N/A	0.2	
8	2.2	N/A	0.2	
Flap	0.7	N/A	0.0	

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.2	N/A	0.0		
2	2.2	N/A	0.1		
3	1.7	N/A	0.1		
4	1.8	N/A	0.1		
5	3.1	N/A	0.2		
6	3.1	N/A	0.2		
7	3.1	N/A	0.2		
8	2.7	N/A	0.2		
Flap	0.8	N/A	0.2		

Table 8.12: Test #64 (Baseline) Fluid Thickness Data

Table 8.13: Test #100 (Baseline) Fluid Thickness Data

Test 10	Test 100: EG106, Fluid-only, Tunnel OAT -6.3°C				
	FLUID THIC	KNESS (mm)			
WingAfter FluidAfter Precip.APositionApplicationApplicationTakes					
1	1.6	N/A	0.0		
2	2.5	N/A	0.0		
3	2.7	N/A	0.1		
4	3.5	N/A	0.1		
5	4.5	N/A	0.1		
6	5.7	N/A	0.1		
7	5.7	N/A	0.2		
8	4.5	N/A	0.3		
Flap	0.8	N/A	0.2		

8.2.2 Skin Temperature Data

Skin temperature measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.3. Skin temperature measurements were recorded at the following intervals:

- Before fluid application;
- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 8.14 to 8.19 show the wing temperature measurements recorded during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 8.20 to 8.25 for comparison purposes.

Table 8.14: Test #0 Wing Skin Temperature Data

Те	Test 0: ABC-S Plus, IP-/ZR-, Tunnel OAT -6.1°C				
	WING	TEMPERATUR	E (°C)		
Wing Position Refore Position After Fluid Application After Fluid Application After Fluid Application After Takeoff Application Test					
T2	-6.0	-5.9	-6.2	-4.8	
T5	-6.2	-6.0	-5.5	-4.5	
TU	-6.1	-6.0	-6.3	-5.5	

Table 8.15: Test #26 Wing Skin Temperature Data

Test 26: EG106, IP-/ZR-, Tunnel OAT -1.9°C				
	WING T	EMPERATURE	(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-2.8	-3.0	-7.6	-3.6
T5	-2.8	-2.9	-6.6	-2.3
TU	-3.8	-3.5	-4.4	-3.5

Table 8.16: Test #26A Wing SkinTemperature Data

Test 26A: EG106, IP-/ZR-, Tunnel OAT -3.3°C					
	WING	TEMPERATUR	E (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip.After Takeoff Application					
Т2	-2.8	-3.3	-7.7	-4.1	
T5	-2.2	-3.2	-6.6	-3.2	
TU	-3.5	-3.5	-4.3	-4.5	

Table 8.18: Test #63 Wing SkinTemperature Data

Test 63: ABC-S Plus, IP-/ZR-, Tunnel OAT -12.3°C				
	WING	TEMPERATUR	E(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
Т2	-11.3	-9.1	-10.8	-11.9
Т5	-11.7	-9.0	-10.3	-11.5
TU	-11.2	-11.2	-11.4	-12.1

Table 8.20: Test #1 (Baseline) WingSkin Temperature Data

Tes	Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C				
	WING	TEMPERATUR	E (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip.After Takeoff Test					
T2	-4.5	-4.5	N/A	-3.6	
Т5	-5	-4.9	N/A	-3.2	
TU	-5.1	-4.5	N/A	-4.3	

Table 8.22: Test #55 (Baseline) WingSkin Temperature Data

Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C				
	WING	TEMPERATUR	E (°C)	
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Application				
T2	-0.6	-0.5	N/A	-1.6
Τ5	-0.5	-0.6	N/A	-1.5
TU	-1.4	-1.6	N/A	-2.3

Table 8.17: Test #59 Wing Skin Temperature Data

Test 59: Launch, IP-/ZR-, Tunnel OAT -3.3°C				
	WING T	EMPERATURE	(°C)	
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Application				
T2	-2.6	-1.9	-5.4	-3.7
T5	-1.7	-2.0	-5.3	-3.0
TU	-2.3	-2.2	-3.0	-3.8

Table 8.19: Test #98 Wing SkinTemperature Data

Τe	Test 98: EG106, IP-/ZR-, Tunnel OAT -6.7°C				
	WING 1	TEMPERATURE	(°C)		
Wing Position Before Fluid Application After Fluid Application After Precip. After Takeoff Miniput Application Application Application Application					
Т3	-9.6	-9.6	-8.4	-11.7	
T5	-9.0	-9.4	-8.1	-11.6	
TU	-9.9	-9.7	-8.6	-11.8	

Table 8.21: Test #25 (Baseline) Wing Skin Temperature Data

Tes	Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C				
	WING T	EMPERATURE	(°C)		
Wing Before After Fluid After After Takeoff Tecip. Application Application Test					
Т2	-3.6	-3.0	N/A	-3.4	
Т5	-3.0	-3.1	N/A	-3.2	
ΤU	-4.4	-4.2	N/A	-3.9	

Table 8.23: Test #60 (Baseline) Wing Skin Temperature Data

Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C				
	WING T	EMPERATURE	(°C)	
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip.After Takeoff Test				
T2	-3	-1.8	N/A	-3.9
Т5	-2.2	-1.6	N/A	-4.3
TU	-3.1	-2.4	N/A	-4.4

Table 8.24: Test #64 (Baseline) WingSkin Temperature Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C				
	WING	TEMPERATUR	E(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip Application	After Takeoff Test
T2	-11.8	-10.8	N/A	-12.2
T5	-11.9	-10.8	N/A	-12.1
TU	-12.3	-12.4	N/A	-12.4

Table 8.25: Test #100 (Baseline)Wing Skin Temperature Data

Test 100: EG106, Fluid-only, Tunnel OAT -6.3°C						
	WING 1	EMPERATURE	(°C)			
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip.After Takeoff Test						
T3 -7.4 -8.7 N/A -8.7						
T5 -7.5 -8.3 N/A -8.4						
TU	-7.4	-7.6	N/A	-9.1		

8.2.3 Fluid Brix Data

Fluid Brix measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.4.

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 8.26 to 8.31 show the fluid Brix measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 8.32 to 8.37 for comparison purposes.

 Table 8.26: Test #0 Fluid Brix Data

Test 0: ABC-S Plus, IP-/ZR-, Tunnel OAT -6.1°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	36.25	22.25	32.00	
8	37.00	25.25	33.25	

 Table 8.28: Test #26A Fluid Brix Data

Test 26A: EG106, IP-/ZR-, Tunnel OAT -3.3°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	31.75	17.50	25.25	
8	32.00	21.50	25.00	

Table 8.27: Test #26 Fluid Brix Data

Test 26: EG106, IP-/ZR-, Tunnel OAT -1.9°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	32.00	20.25	29.50	
8	32.00	14.50	28.00	

Table 8.29: Test #59 Fluid Brix Data

Test 59: Launch, IP-/ZR-, Tunnel OAT -3.3°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Application Test				
2	36.50	14.50	28.00	
8	37.00	15.00	32.00	

Test 63: ABC-S Plus, IP-/ZR-, Tunnel OAT -12.3°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	37.00	31.75	33.00	

37.00

8

Table 8.30: Test #63 Fluid Brix Data

Table 8.32: Test #1 (Baseline) Fluid Brix Data

33.00

34.00

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	36.5	N/A	39.5	
8	36.5	N/A	38.25	

Table 8.34: Test #55 (Baseline) FluidBrix Data

Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	32.35	N/A	34.75	
8	33.00	N/A	34.00	

Table 8.36: Test #64 (Baseline) Fluid Brix Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	37.75	N/A	38.50	
8	37.50	N/A	38.00	

Table 8.31: Test #98 Fluid Brix Data

Test 98: EG106, IP-/ZR-, Tunnel OAT -6.7°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Application Test				
2	32.75	24.50	32.50	
8	32.25	21.75	32.50	

Table 8.33: Test #25 (Baseline) Fluid Brix Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	32.00	N/A	31.50	
8	32.25	N/A	32.50	

Table 8.35: Test #60 (Baseline) Fluid Brix Data

Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	37.00	N/A	41.00	
8	36.75	N/A	39.25	

Table 8.37: Test #100 (Baseline) Fluid Brix Data

Test 100: EG106, Fluid-only, Tunnel OAT -6.3°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	33.00	N/A	33.75
8	33.00	N/A	33.00

8.3 Photos

High-speed digital photographs of each test were taken; wide-angle photos were taken of the leading edge, and close-up photos were taken of the trailing edge. For each test, photo summaries have been compiled comprising four stages:

- Start of test;
- Before Rotation (just before the wing began to pitch);
- End of Rotation (end of the rotation cycle when the wing position is returned to 4 degrees); and
- End of test.

The photos taken during the Light Ice Pellets Mixed with Light Freezing Rain testing have been presented along with the fluid only (baseline) tests for comparison purposes. In each case, the fluid only photo is presented first, followed by the contaminated fluid photo. Photos 8.1 to 8.48 show the photo summaries of the tests conducted. A complete set of photos will be provided to the TDC in electronic format.

8.4 Summary of Results

8.4.1 OAT -5°C and Above

Four tests were conducted in this cell with an exposure time of 25 minutes: Tests #0, #26, #26A, and #59 (see Table 8.38). It is important to note the flap for Tests #26A and #59 was set to 0° during the precipitation period.

Test #26 was conducted with EG fluid and demonstrated good results overall despite a bad visual rating at the start of the test. The temperature during this test was -1.9°C. The lift loss at 8° was deemed good at 4.78 percent, below the 5 percent safety criteria. Visual contamination results on the LE and TE at the start were given good ratings, while ratings on the flap did not pass (rating of 4.7). Due to this visual rating of greater than 4 on the flap, Test #26 was repeated (Test #26A) with the flap set at 0°. The aerodynamic performance and the visual contamination ratings improved with the flap at 0°. All visuals during Test #26A passed the required criteria as well as the 8° lift loss, at 1.41 percent. Results are shown in Table 8.39.

Test #0, conducted with PG fluid at a temperature of -6.1°C, demonstrated satisfactory results. Visual contamination results were good, but further review is required based on the 8° lift loss result, at 6.52 percent (see Table 8.39). This value is above the 5 percent margin of safety criteria. The semi-log of time lift loss analysis
conducted with speeds greater than 100 knots shows a reduction in the lift loss (4.91 percent) when the speed is increased to 140 knots; this is below the 5 percent safety criteria (see Table 8.40 and Figure 8.1). This is provided for reference purposes; however, it is not recommended to extrapolate to this extent. It should also be noted that it took 31 seconds rather than the average of 19 seconds to go from 40 knots to 100 knots, adding some concern to these test results. Also of note is that the fluid only lift loss in this condition is 5 percent. In addition, an examination of the lift data indicates that a lift loss of 5.87 percent would occur at a 6° rotation (see Table 5.7), which is an improvement from the lift loss at an 8° rotation.

Test #59, conducted with PG fluid, demonstrated very good results. The flap was adjusted to 0° for this test run. Visual and lift loss results (4.08 percent) were deemed good. A ramp-up time of 17 seconds occurred from a speed of 40 knots to rotation, slightly below the 19-second average. Table 8.39 provides the detailed results of this test run.

In conclusion, the current allowance time of 25 minutes is acceptable for EG fluids. The 25-minute allowance time for PG fluids is satisfactory at this time based on the results obtained, but further review is required. It is not clear why less favourable results were seen in Test #0; possible explanations may be the flap setting, the temperature, or the PG fluid that was tested (ABC-S Plus for Test #0 vs. Launch for Test #59).

Table 8.38: Light Ice Pellets Mixed with Light Free	eezing Rain, Light or Moderate
Freezing Drizzle, and Light Rain Allowance Ti	ime Tests Winter 2009-10

	OAT -5°C and Above	OAT Less than -5°C to -10°C	OAT Less than -10°C
Light Ice Pellets Mixed with Light or Moderate Freezing Drizzle	25 minutes	10 minutes	
Light Ice Pellets Mixed with Light Freezing Rain	25 minutes Test # 0, 26, 26A, 59	10 minutes Test # 63, 98	Caution: No allowance times currently exist
Light Ice Pellets Mixed with Light Rain	25 minutes		

Table 8.39: Summary of Light Ice Pellets Mixed with Light Freezing Rain, L	ight or Moderate Freezing Drizzle, and
Light Rain Allowance Time Test Result	ts

	OAT -5°C and Above	OAT Less than -5°C to -10°C	OAT Less than -10°C
Light Ice Pellets Mixed with Light Freezing Rain	25 minutes Run 0 (Exp. Time 25 min), -6.1°C ABC-S Plus Visual At Start: GOOD (2, 2, 4) Visuals At Rotation: GOOD (1, 1, 3.7) LL At 100 kts: OK (6.52%) LL At 110 kts: OK (5.75%) LL At 100 kts Run 26 (Exp. Time 25 min), -1.9°C EG106 Visual At Start: BAD (2.2, 1.7, 4.7) Visual At Start: BAD (2.2, 1.7, 4.7) Visual At Start: GOOD (4, 78%) GOOD At 100 kts Run 264 (Exp. Time 25 min), -3.3°C *Flap At 0°* EG106 Visual At Start: GOOD (1, 8, 2, 1.9) Visuals At Rotation: GOOD (1, 1, 1)) LL At 100 kts: GOOD (1.8, 2, 1.9) Visual At Start: GOOD (1.8, 2, 1.9) Visuals At Rotation: GOOD (1, 1, 1)) LL At 100 kts: GOOD (1.1, 1)) LL At 100 kts: GOOD (1, 1.3, 1.5) Kun 59 (Exp. Time 25 min), -3.3°C *Flap At 0°* LAUNCH Visual At Start: GOOD (2, 2, 2.2) Visuals At Rotation: GOOD (1, 1.3, 1.5) LL At 100 kts: GOOD (4.08%) GOOD At 100 kts • 25 min GOOD for EG Fluid • 25 min OK for PG Fluid; Further Review Required	ID CIDING C Run 63 (Exp. Time 10 min), -12.3°C ABC-S Plus Visual At Start: GOOD (2.3, 2.3, 3.2) Visual At Start: GOOD (1.2, 2, 2.3) LL At 100 kts: OK (7.69%) LL At 100 kts: OK (5.78%) LL At 120 kts: OK (5.02%) OK At 100 kts Run 98 (Exp. Time 10 min), -6.7°C CG006 Visual At Start: GOOD (2, 2, 2.5) Visual At Start: GOOD (1, 1, 1.3) LL At 100 kts: GOOD (1.76%) GOOD At 100 kts ID min GOOD for EG Fluid ID min GOOD for EG Fluid ID min OK for PG Fluid; Further Review Required CONCLUSION: ALLOWANCE TIME OF 10 MIN OKAY, FURTHER REVIEW REQUIRED	Caution: No Allowance Time Currently Exists
	CONCLUSION: ALLOWANCE TIME OF 25 MIN OKAY, FURTHER REVIEW REQUIRED		

Condition	Test #	Speed (Kts)	Lift Loss at 8 Degrees (%)	Visual (%)	Linear (%)	Semi-Log (Time) (%)	Polynomial (2nd Order) (%)
		100	6.52				
Light Ice Pellets Mixed with Light Freezing Rain (OAT -5°C and Above)	0	110		5.89	5.61	5.75	6.46
	U	115		5.74	5.39	5.58	6.49
		140		-	4.54	4.91	6.83
		100	7.69				
Light Ice Pellets Mixed with Light Freezing Rain (OAT Less than -5°C and -10°C)		110		6.85	6.24	6.56	7.66
	03	115		6.3	5.32	5.78	7.42
		120		5.89	4.39	5.02	7.3

Table 8.40: Details of Increased Rotation Speed Analysis

Figure 8.1: Increased Rotation Speed Extrapolation Results – Test #0

8.4.2 OAT Less than -5°C to -10°C

Two tests in this cell were conducted with an exposure time of 10 minutes: Test #63 and Test #98 (see Table 8.38).

Test #98, conducted with EG fluid, demonstrated very good results, as shown in Table 8.39. The lift loss at 8° was 1.76 percent, and the visual contamination results were given good ratings.

Test #63, conducted with PG fluid, demonstrated unsatisfactory results, requiring further review. The lift loss result at 8° was 7.69 percent, above the 5 percent margin of safety criteria. The LE visual rating result at rotation (1.2) also proved to exceed the required criteria of 1, as shown in Table 8.39. The lift loss analysis with speeds greater than 100 knots, using semi-log of time, shows a reduction in lift loss as speeds are increased (see Table 8.40 and Figure 8.2); the lift loss at 120 knots is 5.02 percent. It should be noted that the temperature for this test is slightly below the cell limit (-12.3°C vs. -10.0°C), and the ramp-up time from 40 knots to 100 knots is about 3 seconds below the average; these two factors have a tendency to provide less favourable results.

In conclusion, the current allowance time of 10 minutes is acceptable for EG fluids. The results from testing with PG fluid indicate an acceptable allowance time of 10 minutes at this time. Further review is required for PG fluids.

Figure 8.2: Increased Rotation Speed Extrapolation Results – Test #63

Photo 8.1: Test #1 – Start of Test

Photo 8.2: Test #0 – Start of Test

Photo 8.3: Test #1 – Before Rotation

Photo 8.4: Test #0 – Before Rotation

Photo 8.5: Test #1 – End of Rotation

Photo 8.6: Test #0 – End of Rotation

Photo 8.7: Test #1 – End of Test

Photo 8.8: Test #0 – End of Test

Photo 8.9: Test #55 – Start of Test

Photo 8.10: Test #26 – Start of Test

Photo 8.11: Test #55 – Before Rotation

Photo 8.12: Test #26 – Before Rotation

Photo 8.13: Test #55 – End of Rotation

Photo 8.14: Test #26 – End of Rotation

Photo 8.15: Test #55 – End of Test

Photo 8.16: Test #26 – End of Test

Photo 8.17: Test #25 – Start of Test

Photo 8.18: Test #26A – Start of Test

Photo 8.19: Test #25 – Before Rotation

Photo 8.20: Test #26A – Before Rotation

Photo 8.21: Test #25 – End of Rotation

Photo 8.22: Test #26A – End of Rotation

Photo 8.23: Test #25 - End of Test

Photo 8.24: Test #26A – End of Test

Photo 8.25: Test #60 – Start of Test

Photo 8.26: Test #59 – Start of Test

Photo 8.27: Test #60 – Before Rotation

Photo 8.28: Test #59 – Before Rotation

Photo 8.29: Test #60 - End of Rotation

Photo 8.30: Test #59 – End of Rotation

Photo 8.31: Test #60 - End of Test

Photo 8.32: Test #59 – End of Test

Photo 8.33: Test #64 – Start of Test

Photo 8.34: Test #63 – Start of Test

Photo 8.35: Test #64 – Before Rotation

Photo 8.36: Test #63 – Before Rotation

Photo 8.37: Test #64 - End of Rotation

Photo 8.38: Test #63 – End of Rotation

Photo 8.39: Test #64 - End of Test

Photo 8.40: Test #63 – End of Test

Photo 8.41: Test #100 – Start of Test

Photo 8.42: Test #98 – Start of Test

Photo 8.43: Test #100 – Before Rotation

Photo 8.44: Test #98 – Before Rotation

Photo 8.45: Test #100 - End of Rotation

Photo 8.46: Test #98 – End of Rotation

Photo 8.47: Test #100 - End of Test

Photo 8.48: Test #98 – End of Test

9. LIGHT ICE PELLETS MIXED WITH MODERATE RAIN ALLOWANCE TIMES

Aerodynamic testing was conducted to validate and further develop the Type IV high-speed ice pellet allowance times in the NRC wind tunnel. Previous testing in 2006-07 and 2008-09 consisted of wind tunnel tests and Falcon 20 aircraft tests to develop allowance times for mixed conditions with ice pellets. Due to the limitations of the data, some extrapolation of the results was required in order to develop a comprehensive table. It was recommended that testing be conducted at the most critical limits of the allowance times to validate the current guidance material for use with newer generation aircraft operating with supercritical wings. Additional testing was also required to provide guidance material where data was limited or non-existent. The results of this testing have been separated by test condition, and the details can be found in the following sections:

- Section 6: Light Ice Pellets;
- Section 7: Moderate Ice Pellets;
- Section 8: Light Ice Pellets and Light Freezing Rain;
- Section 9: Light Ice Pellets and Moderate Rain;
- Section 10: Light Ice Pellets and Light Snow; and
- Section 11: Light Ice Pellets and Moderate Snow.

This section provides an overview of each test conducted to substantiate and further develop the current high-speed allowance times for Type IV fluids in Light Ice Pellet Mixed with Moderate Rain conditions. Testing was conducted in simulated precipitation conditions. The parameters for each test are detailed, and a description of the data collected during each test is provided.

9.1 Overview of Tests

A summary of the Light Ice Pellet Mixed with Moderate Rain tests conducted in the wind tunnel is shown in Table 9.1. The table provides relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 4.1. A brief description of the column headings for Table 9.1 is provided in Subsection 6.1.

Test No.	Date	Fluid	Associated Baseline Test	Condition	Precip. Rate (g/dm²/h)	Precip. Time (min.)	Tunnel Temp. at Start of Test (°C)	AVG Wing Temp. Before Test (°C)	Flap Angle (°)	Visual Cont. Rating Before Takeoff (LE, TE, Flap)	Visual Cont. Rating at Rotation (LE, TE, Flap)	CL at 8° During Rotation	8° Lift Loss (%)
20	20-Jan-10	ABC-S Plus	53	IP/R Mod	25/75	40	2.9	3.7	20	1,1,1	1,1,1	N/A	N/A
44	23-Jan-10	EG106	55	IP/R Mod	25/75	40	-0.8	-4.8	20	5,4.5,5	5,5,5	1.231	28.48
56	27-Jan-10	EG106	55	IP/R Mod	25/75	25	-1.1	-1.3	20	1.8,2,4.7	1,1,5	1.666	3.21
56A	27-Jan-10	EG106	55	IP/R Mod	25/75	25	-1.4	-3.2	0	1.8,2.2,3	1,1,4.3	1.663	3.39
53	27-Jan-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-1.9	-0.3	20	1, 1, 1	1, 1, 1	1.654	3.91
55	27-Jan-10	EG106	N/A	Fluid Only	N/A	N/A	-2.6	-0.9	20	1, 1, 1	1, 1, 1	1.689	1.88

Table 9.1: Summary of 2009-10 Light Ice Pellets Mixed with Moderate Rain Testing

9.2 Data Collected

9.2.1 Fluid Thickness Data

Fluid thickness measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.2. Fluid thickness measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 9.2 to 9.5 show the fluid thickness measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 9.6 to 9.7 for comparison purposes.

Test 20: ABC-S Plus, IP/R Mod, Tunnel OAT + 2.9°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip, Application	After Takeoff Test	
1	1.5	0.3	N/A	
2	2.2	0.5	N/A	
3	2.7	0.6	N/A	
4	3.1	0.6	N/A	
5	3.1	0.7	N/A	
6	3.1	0.5	N/A	
7	3.3	0.4	N/A	
8	3.3	0.4	N/A	
Flap	1.0	0.1	N/A	

Table 9.2: Test #20 Fluid Thickness Data

Table 9.3: Test #44 Fluid Thickness Data Test 44: EG106, IP/R Mod, Tunnel OAT -0.8°C

Test 44: EG106, IP/R Mod, Tunnel OAT -0.8°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip, Application	After Takeoff Test	
1	1.8	slush	N/A	
2	2.2	slush	N/A	
3	2.5	slush	N/A	
4	3.1	slush	N/A	
5	3.7	slush	N/A	
6	4.5	slush	N/A	
7	4.5	slush	N/A	
8	3.5	slush	N/A	
Flap	1.1	slush	N/A	

Table 9.4: Test #56 Fluid Thickness Data

Test 56: EG106, IP/R Mod, Tunnel OAT -1.1°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip Application	After Takeoff Test		
1	1.8	0.6	0.0		
2	3.1	0.8	0.0		
3	3.3	1.0	0.0		
4	4.5	1.5	0.0		
5	4.5	2.2	0.0		
6	4.5	2.5	0.0		
7	4.5	1.3	0.0		
8	4.5	1.0	0.0		
Flap	0.8	slush	N/A		

Table 9.6: Test #53 (Baseline) Fluid Thickness Data

Test 53: ABC-S Plus, Fluid-only, Tunnel OAT -1.9°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip, Application	After Takeoff Test		
1	1.5	N/A	0.1		
2	2.2	N/A	0.1		
3	2.5	N/A	0.2		
4	3.1	N/A	0.2		
5	3.5	N/A	0.2		
6	3.7	N/A	0.1		
7	3.7	N/A	0.1		
8	3.1	N/A	0.2		
Flap	1.1	N/A	0.2		

Table 9.5: Test #56A Fluid Thickness Data

Test 56A: EG106, IP/R Mod, Tunnel OAT -1.4°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip, Application	After Takeoff Test	
1	1.7	0.4	0.0	
2	2.5	0.8	0.0	
3	3.3	1.0	0.0	
4	4.5	1.1	0.0	
5	4.5	1.8	0.0	
6	3.7	1.3	0.0	
7	4.5	1.0	0.0	
8	2.7	1.0	0.0	
Flap	1.0	0.4	N/A	

Table 9.7: Test #55 (Baseline) Fluid Thickness Data

Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip, Application	After Takeoff Test	
1	2.2	N/A	0.0	
2	2.9	N/A	0.1	
3	3.1	N/A	0.2	
4	3.1	N/A	0.2	
5	2.5	N/A	0.2	
6	4.5	N/A	0.2	
7	4.5	N/A	0.1	
8	4.5	N/A	0.1	
Flap	0.6	N/A	0.1	

9.2.2 Skin Temperature Data

Skin temperature measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.3. Skin temperature measurements were recorded at the following intervals:

- Before fluid application;
- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 9.8 to 9.11 show the wing temperature measurements recorded during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 9.12 to 9.13 for comparison purposes.

Table 9.8: Test #20 Wing SkinTemperature Data

Test 20: ABC-S Plus, IP/R Mod, Tunnel OAT +2.9°C					
	WING TEMPERATURE (°C)				
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip. ApplicationAfter Takeoff Test					
T2	⁻ 2 4.0 -2.5 1.2 N/A				
T5	4.0	-2.1	0.8	N/A	
TU	3.2	-2.8	1.2	N/A	

Table 9.9: Test #44 Wing SkinTemperature Data

Test 44: EG106, IP/R Mod, Tunnel OAT -0.8°C						
	WING TEMPERATURE (°C)					
Wing Position Before Fluid Application After Fluid Application After Precip. After Takeoff Mathematical Structure Application Application Application Test						
T2	T2 -4.8 -6.0 -0.5 -8.2					
Т5	-5.2	-5.2 -5.4 -0.7 N/A				
TU	-4.4	-3.7	-2.4	N/A		

Table 9.10: Test #56 Wing SkinTemperature Data

Test 56: EG106, IP/R Mod, Tunnel OAT -1.1°C					
	WING	TEMPERATUR	E(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Application					
T2	12 -1.2 -1.5 -5.3 -4.3				
T5	-1.3	-1.7	-5.1	-4.0	
TU	-1.5	-2.1	-2.6	-4.4	

Table 9.11: Test #56A Wing Skin Temperature Data

Test 56A: EG106, IP/R Mod, Tunnel OAT -1.4°C						
	WING TEMPERATURE (°C)					
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip. ApplicationAfter Takeoff Test						
T2 -3.4 -1.7 -3.3 -3.4						
Т5	-2.7	-1.6	-3.0	-2.7		
TU	-3.6	-3.1	-0.9	-3.4		

Table 9.12: Test #53 (Baseline) WingSkin Temperature Data

Test	Test 53: ABC-S Plus, Fluid-only, Tunnel OAT -1.9°C					
	WING TEMPERATURE (°C)					
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test						
Т2	-0.2	+0.1	N/A	-1.3		
Т5	-0.1	+0.0	N/A	-1.4		
TU	-0.8	-1.1	N/A	-1.3		

Table 9.13:	Test #55	(Baseline)
Wing Skin	Temperat	ure Data

Tes	Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C					
	WING TEMPERATURE (°C)					
Wing Before After Fluid After After Takeoff Application Application Test						
Т2	-0.6	-0.5	N/A	-1.6		
Т5	-0.5	-0.6	N/A	-1.5		
ΤU	-1.4	-1.6	N/A	-2.3		

9.2.3 Fluid Brix Data

Fluid Brix measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.4. Fluid Brix measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 9.14 to 9.17 show the fluid Brix measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 9.18 to 9.19 for comparison purposes.

 Table 9.14: Test #20 Fluid Brix Data

Test 20: ABC-S Plus, IP/R Mod, Tunnel OAT $+2.9^{\circ}$ C					
FLUID BRIX (°)					
Wing After Fluid After After Position Application Precip. Takeoff					
2	36.25	7.50	N/A		
8	38.00	4.50	N/A		

Table 9.15: Test #44 Fluid Brix Data

Test 44: EG106, IP/R Mod, Tunnel OAT -0.8°C					
FLUID BRIX (°)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	32.50	3.00	N/A		
8	32.00	1.00	N/A		

Table 9.16: Test #56 Fluid Brix Data

Test 56: EG106, IP/R Mod, Tunnel OAT -1.1°C					
FLUID BRIX (°)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	32.00	13.50	31.25		
8	32.50	12.00	30.75		

Table 9.17: Test #56A Fluid Brix Data

Test 56A: EG106, IP/R Mod, Tunnel OAT -1.4°C					
FLUID BRIX (°)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	32.25	12.00	N/A		
8	32.00	10.50	29.00		
Test 53: ABC-S Plus, Fluid-only, Tunnel OAT -1.9°C					
---	-------	-----	-------	--	--
FLUID BRIX (°)					
Wing After Fluid After After Position Application Precip. Takeoff					
2	36.25	N/A	37.75		
8	36.75	N/A	37.75		

Table 9.18: Test #53 (Baseline) Fluid Brix Data

Table 9.19: Test #55 (Baseline) Fluid Brix Data

Test 55: EG106, Fluid-only, Tunnel OAT -2.6°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Application Takeoff				
2	32.35	N/A	34.75	
8	33.00	N/A	34.00	

9.3 Photos

High-speed digital photographs of each test were taken; wide-angle photos were taken of the leading edge, and close-up photos were taken of the trailing edge. For each test, photo summaries have been compiled comprising four stages:

- Start of test;
- Before Rotation (just before the wing began to pitch);
- End of Rotation (end of the rotation cycle when the wing position is returned to 4 degrees); and
- End of test.

The photos taken during the Light Ice Pellets Mixed with Moderate Rain testing have been presented along with the fluid only (baseline) tests for comparison purposes. In each case, the fluid only photo is presented first, followed by the contaminated fluid photo. Photos 9.1 to 9.32 show the photo summaries of the tests conducted. A complete set of photos will be provided to the TDC in electronic format.

9.4 Summary of Results

9.4.1 OAT -5°C and Above

Two tests were conducted in this cell with an exposure time of 25 minutes: Test #56 and Test #56A (see Table 9.20). Two other tests, #20 and #44, were also used during analysis but had an exposure time of 40 minutes, above the current allowance time. Table 9.21 contains more details on the results of these tests.

Test #56, conducted with EG fluid, demonstrated satisfactory results, as shown in Table 9.21. The temperature during this test was -1.1°C. The lift loss at 8° was 3.21 percent, below the 5 percent margin of safety criteria. The visual contamination results were not acceptable due to the ratings on the flap at the start of the test that

did not meet the requirements (rating of 4.7). Due to the visual rating of greater than 4 on the flap, Test #56 was repeated (Test #56A) with the flap set at 0° . The visual contamination ratings improved (rating of 3 on the flap) with the flap at 0° . The 8° lift loss during Test #56A was 3.39 percent, below the 5 percent margin of safety criteria.

Test #44, conducted with EG fluid, had an exposure time greater than the allotted allowance time of 25 minutes, at 40 minutes (see Appendix F). The temperature during this test was -0.8°C. The results from this test were unsatisfactory, not meeting any of the lift loss or visual test requirements. The visual contamination ratings were bad both at the start of the test (5, 4.5, 5) and at rotation (5, 5, 5). The 8° lift loss was 28.5 percent, not meeting the 5 percent margin of safety criteria. A 36-second ramp-up time from 40 knots to 100 knots occurred during this test, well above the 19-second average. Based on the results obtained, 40 minutes is not an acceptable exposure time for this cell.

Test #20 was also conducted with an exposure time of 40 minutes, using PG fluid at a temperature of 2.9°C. This test run was attempted; however, the angle pitched in the opposite direction, so the takeoff was aborted. The results for this test were inconclusive.

In conclusion, the 25-minute allowance time is satisfactory for EG fluids, provided that the flap is set to zero. For PG fluids, the attempted test indicated that the 25-minute allowance can remain as is; however, more data is necessary.

Table 9.20: Light Ice Pellets Mixed with Moderate Rain Allowance Time TestsWinter 2009-10

	OAT -5°C and	OAT Less than	OAT Less than
	Above	-5°C to -10°C	-10°C
Light Ice Pellets Mixed with Moderate Rain	25 minutes	Caution: No al	lowance times
	Test #56, 56A	current	ly exist

	OAT -5°C and Above	OAT Less than -5°C to -10°C	OAT Less than -10°C
Light Ice Pellets Mixed with Moderate Rain	OAT -5°C and Above 25 minutes Run 56 (Exp. Time 25 min), -1.1°C EG106 Visual At Start: BAD (1.8, 2, 4.7) Visuals At Rotation: GOOD (1, 1, 5) LL At 100 kts: GOOD (3.21%) GOOD At 100 kts Run 56A (Exp. Time 25 min), -1.4°C *Flap At 0°* EG106 Visual At Start: GOOD (1.8, 2.2, 3) Visuals At Rotation: GOOD (1, 1, 4.3) LL At 100 kts: GOOD (3.39%) GOOD At 100 kts Run 20 (Exp. Time 40 min), 2.9°C ABC-S Plus Visual At Start: GOOD/BAD (1 (3.7), 1 (4), 1)) Visuals At Rotation: GOOD (1, 1, 1) LL At 100 kts: N/A Run 44 (Exp. Time 40 min), -0.8°C EG106 Visual At Start: BAD (5, 4.5, 5) Visuals At Rotation: BAD (5, 5, 5) LL At 100 kts • 25 min OK for EG Fluid; Results Improved When Flap is Set to 0° • 25 min OK for PG Fluid; More Data Needed	OAT Less than -5°C to -10°C	OAT Less than -10°C
	CONCLUSION: ALLOWANCE TIME OF 25 MIN OK, FURTHER REVIEW REQUIRED		

Table 9.21: Summary of Light Ice Pellets Mixed with Moderate Rain Allowance Time Test Results

This page intentionally left blank.

Photo 9.1: Test #53 – Start of Test

Photo 9.2: Test #20 – Start of Test

Photo 9.3: Test #53 – Before Rotation

Photo 9.4: Test #20 – Before Rotation

Photo 9.5: Test #53 – End of Rotation

Photo 9.6: Test #20 – End of Rotation

No Photo Documentation Available

Photo 9.7: Test #53 – End of Test

Photo 9.9: Test #55 – Start of Test

Photo 9.10: Test #44 – Start of Test

Photo 9.11: Test #55 – Before Rotation

Photo 9.12: Test #44 – Before Rotation

Photo 9.13: Test #55 – End of Rotation

Photo 9.14: Test #44 – End of Rotation

Photo 9.15: Test #55 – End of Test

Photo 9.16: Test #44 – End of Test

Photo 9.17: Test #55 – Start of Test

Photo 9.18: Test #56 – Start of Test

Photo 9.19: Test #55 – Before Rotation

Photo 9.20: Test #56 – Before Rotation

Photo 9.21: Test #55 – End of Rotation

Photo 9.22: Test #56 – End of Rotation

Photo 9.23: Test #55 - End of Test

Photo 9.24: Test #56 – End of Test

Photo 9.25: Test #55 – Start of Test

Photo 9.26: Test #56A – Start of Test

Photo 9.27: Test #55 – Before Rotation

Photo 9.28: Test #56A – Before Rotation

Photo 9.29: Test #55 – End of Rotation

Photo 9.30: Test #56A – End of Rotation

Photo 9.31: Test #55 - End of Test

Photo 9.32: Test #56A – End of Test

10. LIGHT ICE PELLETS MIXED WITH LIGHT SNOW ALLOWANCE TIMES

Aerodynamic testing was conducted to validate and further develop the Type IV high-speed ice pellet allowance times in the NRC wind tunnel. Previous testing in 2006-07 and 2008-09 consisted of wind tunnel tests and Falcon 20 aircraft tests to develop allowance times for mixed conditions with ice pellets. Due to the limitations of the data, some extrapolation of the results was required in order to develop a comprehensive table. It was recommended that testing be conducted at the most critical limits of the allowance times to validate the current guidance material for use with newer generation aircraft operating with supercritical wings. Additional testing was also required to provide guidance material where data was limited or non-existent. The results of this testing have been separated by test condition, and the details can be found in the following sections:

- Section 6: Light Ice Pellets;
- Section 7: Moderate Ice Pellets;
- Section 8: Light Ice Pellets and Light Freezing Rain;
- Section 9: Light Ice Pellets and Moderate Rain;
- Section 10: Light Ice Pellets and Light Snow; and
- Section 11: Light Ice Pellets and Moderate Snow.

This section provides an overview of each test conducted to substantiate and further develop the current high-speed allowance times for Type IV fluids in Light Ice Pellet Mixed with Light Snow conditions. Testing was conducted in simulated precipitation conditions. The parameters for each test are detailed, and a description of the data collected during each test is provided.

10.1 Overview of Tests

A summary of the Light Ice Pellet Mixed with Light Snow tests conducted in the wind tunnel is shown in Table 10.1. The table provides relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 4.1. A brief description of the column headings for Table 10.1 is provided in Subsection 6.1.

Test No.	Date	Fluid	Associated Baseline Test	Condition	Precip. Rate (g/dm²/h)	Precip. Time (min.)	Tunnel Temp. at Start of Test (°C)	AVG Wing Temp. Before Test (°C)	Flap Angle (°)	Visual Cont. Rating Before Takeoff (LE, TE, Flap)	Visual Cont. Rating at Rotation (LE, TE, Flap)	CL at 8° During Rotation	8° Lift Loss (%)
5	11-Jan-10	ABC-S Plus	4	IP/SN-	25/10	25	-4.8	-6.7	20	2,2,3	1,1.5,1.8	1.658	3.68
11	13-Jan-10	ABC-S Plus	1	IP/SN-	25/10	40	-5.9	-8.1	20	3,2.3,4	1,1.8,2.5	1.646	4.37
23	20-Jan-10	EG106	25	IP/SN-	25/10	40	-3.2	-9	20	2.3,2.2,4	1,1.2,1.5	1.702	1.12
57	27-Jan-10	Launch	29	IP/SN-	25/10	40	-3.6	-5.4	20	2.7,2.6,4	1,1.7,2.8	1.64	4.72
57A	27-Jan-10	Launch	29	IP/SN-	25/10	40	-4.2	-5.7	0	2.6,2.6,3	1,1.3,1.7	1.671	2.92
77	30-Jan-10	ABC-S Plus	64	IP/SN-	25/10	10	-14.1	-16.1	20	2.8,2.7,3.7	3.7,1.7,2	1.551	9.89
78	30-Jan-10	ABC-S Plus	76	IP/SN-	25/10	5	-16	-14.9	20	2.3,2.2,3	1.4,2,2.7	1.573	8.62
79	30-Jan-10	EG106	75	IP/SN-	25/10	10	-14.8	-15.7	20	2.2,2,2.5	1,1.5,2	1.66	3.56
94	2-Feb-10	ABC-S Plus	1	IP/SN-	25/10	15	-6.3	-9.7	20	2.5,2,2.8	1,1.8,2	1.626	5.54
1	3-Feb-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-5.7	-4.6	20	1, 1, 1	1, 1, 1	1.635	5.01
4	11-Jan-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-6.6	-5.4	20	1, 1, 1	1, 1, 1	1.652	4.03
25	4-Feb-10	EG106	N/A	Fluid Only	N/A	N/A	-4	-3.4	20	1, 1, 1	1, 1, 1	1.687	1.99
29	5-Feb-10	Launch	N/A	Fluid Only	N/A	N/A	-6.8	-5.2	20	1, 1, 1	1, 1, 1	1.636	4.96
64	6-Feb-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-13.4	-11.3	20	1, 1, 1	1, 1, 1	1.634	5.07
75	30-Jan-10	EG106	N/A	Fluid Only	N/A	N/A	-18.1	-16.9	20	1, 1, 1	1, 1, 1	1.651	4.08
76	30-Jan-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-17.9	-17.3	20	1, 1, 1	1, 1, 1	1.62	5.89

Table 10.1: Summary of 2009-10 Light Ice Pellets Mixed with Light Snow Testing

10.2 Data Collected

10.2.1 Fluid Thickness Data

Fluid thickness measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.2. Fluid thickness measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 10.2 to 10.10 show the fluid thickness measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 10.11 to 10.17 for comparison purposes.

Test 5: ABC-S Plus, IP-/SN-, Tunnel OAT -4.8°C						
	FLUID THIC	KNESS (mm)				
Wing Position	ing After Fluid After Precip. After ion Application Application Takeoff Tex					
1	1.8	2.5	0.0			
2	2.7	3.5	0.0			
3	3.7	3.9	0.1			
4	4.5	4.5	0.3			
5	4.5	5.7	0.2			
6	3.9	5.7	0.2			
7	4.5	5.7	0.2			
8	3.3	4.5	0.2			
Flap	1.0	0.1 (slush)	0.2			

Table 10.2: Test #5 Fluid Thickness Data

Table 10.3: Test #11 Fluid Thickness Data

Test 11: ABC-S Plus, IP-/SN-, Tunnel OAT -5.9°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.3	1.5	0.0	
2	2.5	3.1	0.1	
3	3.1	3.3	0.1	
4	4.5	4.5	0.1	
5	4.5	5.7	0.1	
6	4.5	7	0.1	
7	4.5	5.7	0.1	
8	3.3	5.7	0.1	
Flap	1.0	0.1 (slush)	0.2	

Table 10.4: Test #23 Fluid Thickness Data

Test 23: EG106, IP-/SN-, Tunnel OAT -3.2°C					
	FLUID THIC	KNESS (mm)			
Wing Position	WingAfter FluidAfter Precip.AfPositionApplicationApplicationTakeo				
1	1.8	1.0	0.0		
2	2.2	1.1	0.0		
3	2.9	2.5	0.0		
4	2.9	3.5	0.0		
5	4.5	4.5	0.0		
6	4.5	5.7	0.0		
7	4.5	4.5	0.0		
8	3.3	4.5	0.1		
Flap	1.0	slush	0.1		

Table 10.6: Test #57A Fluid ThicknessData

Test 5	Test 57A: Launch, IP-/SN-, Tunnel OAT -4.2°C				
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.0	2.2	0.0		
2	1.8	3.5	0.1		
3	2.2	4.5	0.1		
4	2.7	4.5	0.1		
5	3.1	4.5	0.2		
6	3.1	5.7	0.1		
7	2.7	4.5	0.2		
8	2.2	4.5	0.2		
Flap	2.2	4.5	0.1		

Table 10.5: Test #57 Fluid Thickness Data

Test 57: Launch, IP-/SN-, Tunnel OAT -3.6°C						
	FLUID THIC	KNESS (mm)				
Wing Position	WingAfter FluidAfter Precip.AfterPositionApplicationApplicationTakeoff					
1	0.7	2.5	0.1			
2	1.8	2.7	0.1			
3	2.2	3.3	0.1			
4	2.5	3.9	0.1			
5	2.7	3.9	0.1			
6	2.7	4.5	0.1			
7	2.5	4.5	0.1			
8	2.2	3.7	0.1			
Flap	0.5	slush	0.2			

Table 10.7: Test #77 Fluid Thickness Data

Test 77: ABC-S Plus, IP-/SN-, Tunnel OAT -14.1°C					
FLUID THICKNESS (mm)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.0	1.3	0.1		
2	1.6	1.6	0.1		
3	1.8	1.8	0.1		
4	2.2	2.2	0.1		
5	2.5	2.2	0.3		
6	2.2	2.7	0.3		
7	1.7	2.2	0.2		
8	1.3	2.2	0.3		
Flap	0.5	slush	0.3		

Table 10.8: Test #78 Fluid Thickness Data

Test 78: ABC-S Plus, IP-/SN-, Tunnel OAT -16.0°C					
FLUID THICKNESS (mm)					
Wing Position	After Fluid Application	After Takeoff Test			
1	1.0	1	0.0		
2	1.6	1.6	0.1		
3	1.8	1.8	0.1		
4	2.2	1.7	0.1		
5	2.2	2.2	0.2		
6	2.2	2.2	0.2		
7	2.2	1.8	0.2		
8	1.7	1.8	0.3		
Flap	1.0	slush	0.2		

Table 10.10: Test #94 Fluid Thickness Data

Test 94: ABC-S Plus, IP-/SN-, Tunnel OAT -6.3°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid After Precip. After Application Application Te				
1	1.7	1.8	0.0		
2	2.2	2.2	0.1		
3	2.7	3.1	0.2		
4	3.1	3.3	0.2		
5	3.3	4.5	0.2		
6	3.1	4.5	0.2		
7	3.3	4.5	0.2		
8	2.9	3.5	0.2		
Flap	1.0	N/A	0.2		

Table 10.9: Test #79 Fluid Thickness Data

Test 79: EG106, IP-/SN-, Tunnel OAT -14.8°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Takeoff Test			
1	1.7	2.2	0.1		
2	2.5	2.5 3.1 0.1			
3	2.7	7 3.7			
4	3.1	4.5	0.1		
5	4.5	4.5	0.1		
6	6 4.5 5.7		0.2		
7	4.5	5.7	0.1		
8	4.5	3.7 0.2			
Flap	1.2	1.2 N/A 0.1			

Table 10.11: Test #1 (Baseline) Fluid Thickness Data

Test 1: /	Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C					
	FLUID THIC	KNESS (mm)				
Wing Position	Wing After Fluid After Precip. Aft Position Application Application Takeof					
1	1.8	N/A	0.0			
2	2.5 N/A 0		0.0			
3	3.3	3.3 N/A				
4	4.5	5 N/A				
5	5.7	N/A	0.1			
6	6 5.7 N/A		0.1			
7	5.7	N/A	0.1			
8	4.5	N/A 0.1				
Flap	1.0	N/A	0.1			

Table 10.12: Test #4 (Baseline) Fluid Thickness Data

Test 4: ABC-S Plus, Fluid-only, Tunnel OAT -6.6°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Takeoff Test			
1	1.6	N/A	0.0		
2	2.2	N/A	0.1		
3	2.9 N/A		0.1		
4	3.9 N/		0.1		
5	3.9 N/A		3.9	N/A	0.1
6	6 4.5		0.2		
7	4.5	N/A	0.1		
8	8 3.3 N/A 0.		0.1		
Flap	Flap N/A N/A 0.1				

Table 10.13: Test #25 (Baseline) Fluid Thickness Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid After Precip. After Application Application Takeoff				
1	2.2	N/A	0.0		
2	3.1	3.1 N/A 0.			
3	3.7	.7 N/A			
4	4.5	N/A	0.2		
5	4.5	N/A	0.2		
6	4.5 N/A		0.1		
7	4.5	N/A	0.1		
8	3.5	N/A 0.1			
Flap	N/A N/A 0.1				

Table 10.14: Test #29 (Baseline) Fluid Thickness Data

Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C			
	FLUID THIC	KNESS (mm)	
Wing Position	After Fluid Application	After Takeoff Test	
1	1.5	N/A	0.0
2	2.2 N/A		0.1
3	2.2 N/A		0.1
4	3.1	N/A	0.1
5	3.1	N/A	0.2
6	6 3.1 N/A		0.1
7	2.9	2.9 N/A	
8	2.2	N/A 0.2	
Flap	p 0.8 N/A 0.2		

Table 10.15: Test #64 (Baseline) Fluid Thickness Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C			
	FLUID THIC	KNESS (mm)	
Wing Position	After Fluid Application	After Takeoff Test	
1	1.2	N/A	0.0
2	2.2	N/A	0.1
3	1.7	N/A	0.1
4	1.8	N/A	0.1
5	3.1	N/A	0.2
6	3.1	N/A	0.2
7	3.1	N/A	0.2
8	2.7	N/A	0.2
Flap	0.8	N/A	0.2

Table	10.16: Test #75 (Baseline) Fluid
	Thickness Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Takeoff Test		
1	2.2	N/A	0.1	
2	2.9	N/A	0.2	
3	3.1 N/A		0.2	
4	3.7	N/A	0.1	
5	4.5	N/A	0.1	
6	6 4.5		0.1	
7	7 4.5		0.1	
8	8 2.2 N/A		0.2	
Flap 0.2 N/A 0.2				

Table 10.17: Test #76 (Baseline) Fluid Thickness Data

Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C						
	FLUID THIC	KNESS (mm)				
Wing Position	After Fluid After Aft on Application Te					
1	1.3	N/A	0.1			
2	2 1.6		0.1			
3	1.8	N/A	0.1			
4	4 2.2		0.1			
5	2.2	N/A	0.2			
6	6 2.2		0.2			
7	1.8	N/A	0.2			
8	1.6	N/A	0.2			
Flap 0.5 N/A 0.2						

10.2.2 Skin Temperature Data

Skin temperature measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.3. Skin temperature measurements were recorded at the following intervals:

- Before fluid application;
- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 10.18 to 10.26 show the wing temperature measurements recorded during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 10.27 to 10.33 for comparison purposes.

Table 10.18: Test #5 Wing Skin
Temperature Data

Test 5: ABC-S Plus, IP-/SN-, Tunnel OAT -4.8°C					
	WING	TEMPERATUR	E (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Application					
T2	-4.2	-4.2	-7.8	-3.0	
T5	-3.6	-4.4	-7.0	-2.9	
TU	-5.0	-4.6	-5.2	-4.0	

Table 10.19: Test #23 Wing Skin **Temperature Data**

Test 23: EG106, IP-/SN-, Tunnel OAT -3.2°C				
	WING	TEMPERATUR	E (°C)	
Wing Position Refore Application After Fluid Application After Fluid Application After Fluid Application After Fluid Application Test				
T2	-3.6	-2.1	-11.5	-4.1
Т5	-3.0	-2.0	-9.4	-3.4
TU	-3.5	-3.4	-6.1	-4.2

Table 10.20: Test #11 Wing SkinTemperature Data

Tes	Test 11: ABC-S Plus, IP-/SN-, Tunnel OAT -5.9°C				
	WING	TEMPERATUR	E(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip.After Takeoff Test					
Т2	-4.6	-4.8	-8.7	-6.2	
Т5	-3.2	-5.3	-8	-6.5	
TU	-5.5	-5.5	-7.7	-7.3	

Table 10.22: Test #57A Wing Skin Temperature Data

Test 57A: Launch, IP-/SN-, Tunnel OAT -4.2°C					
	WING TEMPERATURE (°C)				
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test	
T2	-3.9	-3.0	-7.1	-5.1	
Т5	-3.3	-3.0	-7.2	-4.8	
ΤU	-4.6	-4.3	-2.7	-5.3	

Table 10.24: Test #78 Wing SkinTemperature Data

Test 78: ABC-S Plus, IP-/SN-, Tunnel OAT -16.0°C				
	WING	TEMPERATUR	E (°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-15.2	-17.0	-15.4	-16.0
T5	-14.9	-16.4	-14.5	-15.2
TU	-17.5	-17.4	-14.9	-18.1

Table 10.26: Test #94 Wing Skin Temperature Data

Т	Test 94: ABC-S Plus, IP-/SN-, Tunnel OAT -6.3°C				
	WING	TEMPERATUR	E(°C)		
Wing Position Before Fluid Application After Fluid Application After Precip. Application After Takeoff Test					
Т3	-7.0	-8.7	-11	-10.8	
T5	-6.3	-9.0	-9.8	-11.1	
TU	-7.9	-7.6	-8.2	-11.6	

Table 10.21: Test #57 Wing Skin Temperature Data

Test 57: Launch, IP-/SN-, Tunnel OAT -3.6°C				
	WING T	EMPERATURE	(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-3.4	-2.5	-6.9	-4.6
Т5	-3.3	-2.4	-6.8	-4.2
TU	-3.0	-3.1	-2.6	-4.9

Table 10.23: Test #77 Wing Skin Temperature Data

Test	Test 77: ABC-S Plus, IP-/SN-, Tunnel OAT -14.1°C				
	WING T	EMPERATURE	(°C)		
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test	
T2	-15.0	-16.8	-16.8	N/A	
T5	-14.1	-17.1	-15.6	N/A	
TU	-17.1	-17.3	-16.0	N/A	

Table 10.25: Test #79 Wing Skin Temperature Data

Tes	Test 79: EG106, IP-/SN-, Tunnel OAT -14.8°C				
	WING T	EMPERATURE	(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip. ApplicationAfter Takeoff Test					
Т2	-15.7	-17.6	-16.4	-17.4	
Т5	-15	-17.0	-15.6	-16.6	
TU	-18	-17.4	-15.0	-18.9	

Table 10.27: Test #1 (Baseline) Wing Skin Temperature Data

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C				
	WING T	EMPERATURE	(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-4.5	-4.5	N/A	-3.6
Т5	-5	-4.9	N/A	-3.2
TU	-5.1	-4.5	N/A	-4.3

Table 10.28: Test #4 (Baseline) WingSkin Temperature Data

Test 4: ABC-S Plus, Fluid-only, Tunnel OAT -6.6°C				
	WING	TEMPERATUR	E(°C)	
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip.After Takeoff Test				
T2	-5.8	-5.2	N/A	-4.2
Т5	-5.0	-5.2	N/A	-3.6
TU	-5.8	-5.8	N/A	-5.0

Table 10.30: Test #29 (Baseline) WingSkin Temperature Data

Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C				
	WING	TEMPERATUR	E(°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-3.0	-3.8	N/A	-6.0
Т5	-2.2	-3.9	N/A	-5.4
TU	-4.5	-4.1	N/A	-6.6

Table 10.32: Test #32 (Baseline) WingSkin Temperature Data

Tes	Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C			
	WING	TEMPERATUR	E (°C)	
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test
T2	-16.2	-16.5	N/A	-16.4
T5	-15.8	-16.4	N/A	-15.6
TU	-17.9	-17.7	N/A	-18.4

Table 10.29: Test #25 (Baseline) Wing Skin Temperature Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C					
	WING T	EMPERATURE	(°C)		
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test	
T2	-3.6	-3.0	N/A	-3.4	
Т5	-3.0	-3.1	N/A	-3.2	
TU	-4.4	-4.2	N/A	-3.9	

Table 10.31: Test #31 (Baseline) Wing Skin Temperature Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C					
	WING 1	EMPERATURE	(°C)		
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test	
T2	-11.8	-10.8	N/A	-12.2	
T5	-11.9	-10.8	N/A	-12.1	
TU	-12.3	-12.4	N/A	-12.4	

Table 10.33: Test #76 (Baseline) Wing Skin Temperature Data

Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C					
	WINC	G TEMPERATUR	E (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Application					
T2	-16.4	-17.1	N/A	-16.9	
T5	-16.2	-17.0	N/A	-16.1	
TU	-18.1	-17.8	N/A	-18.9	

10.2.3 Fluid Brix Data

Fluid Brix measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.4. Fluid Brix measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 10.34 to 10.42 show the fluid Brix measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 10.43 to 10.49 for comparison purposes.

Test 5: ABC-S Plus, IP-/SN-, Tunnel OAT -4.8°C					
	FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	37.00	21.50	29.50		
8	36.75	18.00	29.25		

Table 10.34: Test #5 Fluid Brix Data

Table 10.36: Test #23 Fluid Brix Data Table 10.37: Test #57 Fluid Brix Data

Test 23: EG106, IP-/SN-, Tunnel OAT -3.2°C					
	FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	31.50	19.50	26.50		
8	32.00	13.50	26.00		

Table 10.38: Test #57A Fluid Brix Data

Test 57A: Launch, IP-/SN-, Tunnel OAT -4.2°C					
	FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	37.50	13.50	24.25		
8	36.75	7.50	27.50		

Table 10.40: Test #78 Fluid Brix Data Table 10.41: Test #79 Fluid Brix Data

Test 78: ABC-S Plus, IP-/SN-, Tunnel OAT -16.0°C					
	FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	37.50	34.00	34.50		
8	37.25	36.50	33.00		

Table 10.35: Test #11 Fluid Brix Data

Test 11: ABC-S Plus, IP-/SN-, Tunnel OAT -5.9°C					
	FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	37.00	22.25	22.50		
8	36.25	21.50	18.50		

Test 57: Launch, IP-/SN-, Tunnel OAT -3.6°C					
	FLUID BRIX (°)				
Wing After Fluid After After Position Application Application Test					
2	36.25	15.00	26.25		
8	36.75	14.50	26.00		

Table 10.39: Test #77 Fluid Brix Data

Test 77: ABC-S Plus, IP-/SN-, Tunnel OAT -14.1°C					
	FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	38.00	33.00	24.50		
8	37.50	29.50	29.50		

Test 79: EG106, IP-/SN-, Tunnel OAT -14.8°C						
	FLUID BRIX (°)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test			
2	32.50	22.00	32.75			
8	32.00	23.00	31.50			

Table 10.42: Test #94 Fluid Brix Data

Test 94: ABC-S Plus, IP-/SN-, Tunnel OAT -6.3°C					
FLUID BRIX (°)					
Wing Position After Fluid Application After Precip. After Takeoff					
2	36.50	21.50	30.00		
8	36.50	29.00	29.50		

Table 10.44: Test #4 (Baseline) Fluid Brix Data

Test 4: ABC-S Plus, Fluid-only, Tunnel OAT -6.6°C						
FLUID BRIX (°)						
Wing After Fluid After After Position Application Precip. Takeoff						
2	37.00	N/A	34.00			
8 36.75 N/A 36.50						

Table 10.46: Test #29 (Baseline) Fluid Brix Data

Test 29: Fluid-only, Launch, Tunnel OAT -4.8°C					
FLUID BRIX (°)					
Wing After Fluid After After Position Application Precip. Takeoff					
2	36.75	N/A	37.50		
8	37.00	N/A	36.50		

Table 10.48: Test #75 (Baseline) Fluid Brix Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C						
FLUID BRIX (°)						
Wing After Fluid After Position Application Application Test						
2	32.25	N/A	34.00			
8 32.25 N/A 34.00						

Table 10.43: Test #1 (Baseline) Fluid Brix Data

Test 1: ABC-S Plus, Fluid-only, Tunnel OAT -5.7°C					
FLUID BRIX (°)					
Wing After Fluid After Afte Position Application Application Test					
2	36.5	N/A	39.5		
8	36.5	N/A	38.25		

Table 10.45: Test #25 (Baseline) Fluid Brix Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C						
FLUID BRIX (°)						
Wing After Fluid After After Position Application Precip. Takeoff						
2	32.00	N/A	31.50			
8 32.25 N/A 32.50						

Table 10.47: Test #64 (Baseline) Fluid Brix Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C						
FLUID BRIX (°)						
Wing Position	After Fluid After A Application Application T					
2	37.75	N/A	38.50			
8	37.50	N/A	38.00			

Table 10.49: Test #76 (Baseline) Fluid Brix Data

Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C						
FLUID BRIX (°)						
Wing Position After Fluid Application After Precip. Application After Takeoff						
2	37.75	N/A	38.25			
8 37.00 N/A 37.25						

10.3 Photos

High-speed digital photographs of each test were taken; wide-angle photos were taken of the leading edge, and close-up photos were taken of the trailing edge. For each test, photo summaries have been compiled comprising four stages:

- Start of test;
- Before Rotation (just before the wing began to pitch);
- End of Rotation (end of the rotation cycle when the wing position is returned to 4 degrees); and
- End of test.

The photos taken during the Light Ice Pellets Mixed with Light Snow testing have been presented along with the fluid only (baseline) tests for comparison purposes. In each case, the fluid only photo is presented first, followed by the contaminated fluid photo. Photos 10.1 to 10.72 show the photo summaries of the tests conducted. A complete set of photos will be provided to the TDC in electronic format.

10.4 Summary of Results

10.4.1 OAT -5°C and Above

One test was conducted in this cell with an exposure time of 25 minutes: Test #5 (see Table 10.50). In an attempt to expand the current allowance time, four additional tests were conducted with exposure times of 40 minutes, above the current allowance time (see Table 10.51).

Test #5, conducted at a 14° rotation angle using PG fluid, demonstrated very good results (see Table 10.51). The temperature during this test was -4.8°C. Both lift loss (3.68 percent) and visual ratings gave positive results, satisfying all criteria.

Test #23, conducted with EG fluid at a temperature of -3.2°C, demonstrated very good results. Both lift loss (1.12 percent) and visual ratings were deemed positive, satisfying all criteria. The 40-minute exposure time during this test was above the current allowance time of 25 minutes, indicating a potential to increase the allowance time for EG fluids.

Test #11, conducted with PG fluid, also demonstrated very good results. The temperature was at -5.9°C during this test. Lift loss and visual contamination ratings satisfied all required criteria; the lift loss result at 8° was 4.37 percent, below the 5 percent margin of safety criteria. An examination into the ramp-up time for this test shows a time of 28 seconds to reach rotation from a speed of 40 knots, which is much greater than the average of 19 seconds.

Tests #57 and #57A were both conducted with the same PG fluid. Temperatures were -3.6°C and -4.2°C, respectively. Results from these two tests were very good. Test #57 had positive visual ratings and lift loss results (4.72 percent). Because the visual rating on the flap for Test #57 was 4 at the start of the test, the test was repeated (Test #57A) with the flap set at 0° for the contamination phase. Although both tests were deemed good, the aerodynamic performance and visual contamination results were better during Test #57A with the flap at 0° during contamination (2.92 percent lift loss). The ramp-up times for these two tests were near the 19-second average.

In conclusion, the current allowance time of 25 minutes for EG and PG fluids in this cell is satisfactory. The results obtained for both fluids indicate a potential to increase the current allowance time to 40 minutes.

Table 10.50: Light Ice Pellets Mixed with Light Snow Allowance Time Tests Winter2009-10

	OAT -5°C and	OAT Less than	OAT Less than
	Above	-5°C to -10°C	-10°C
Light Ice Pellets Mixed with Light Snow	25 minutes Test # 5	15 minutes Test # 94	

	OAT -5°C and Above	OAT Less than -5°C to -10°C	OAT Less than -10°C	
	25 minutes			
Light Ice Pellets Mixed with Light Snow	Run 11 (Exposure Time 25 min), -4.8°C *14° Rotation Angle* ABC-S Plus Visual At Start: GOOD (2, 2, 3) Visuals At Rotation: GOOD (1, 1.5, 1.8) LL At 100 kts: GOOD (3.68%) GOOD At 100 kts Run 11 (Exposure Time 40 min), -5.9°C	15 minutes Run 94 (Exposure Time 15 min), -6.3°C	Caution: No Allowance Time Currently Exists Run 77 (Exposure Time 10 min), -14.1°C ABC-S Plus	
	ABC-S Plus Visual At Start: GOOD (3, 2.3, 4) Visuals At Rotation: GOOD (1, 1.8, 2.5) LL At 100 kts: GOOD (4.37%) GOOD At 100 kts Run 23 (Exposure Time 40 min), -3.2°C	 ABC-S Plus Visual At Start: GOOD (2.5, 2, 2.8) Visuals At Rotation: GOOD (1, 1.8, 2) LL At 100 kts: OK (5.54%) LL At 105 kts: GOOD (4.24%) LL At 110 kts: GOOD (3.33%) LL At 120 kts: GOOD (1.60%) GOOD At 105 kts No EG Tests Conducted; 15 min to Remain in this Cell 15 min OK for PG Fluid; Further Review Required CONCLUSION: ALLOWANCE TIME OF 15 MIN OK, FURTHER REVIEW REQUIRED	Visual At Start: GOOD (2.8, 2.7, 3.7) Visuals At Rotation: BAD (1.7, 2, 2.8) LL At 100 kts: BAD (9.89%) BAD At 100 kts	
	EG106 Visual At Start: GOOD (2.3, 2.2, 4) Visuals At Rotation: GOOD (1, 1.2, 1.5) LL At 100 kts: GOOD (1, 1.2%) GOOD At 100 kts Run 57 (Exposure Time 40 min), -3.6°C LAUNCH Visual At Start: GOOD (2.7, 2.6, 4) Visuals At Rotation: GOOD (1, 1.7, 2.8) LL At 100 kts: GOOD (4.72%) GOOD At 100 kts Run 57A (Exposure Time 40 min), -4.2°C *Flap At 0°* LAUNCH Visual At Start: GOOD (2.6, 2.6, 3) Visuals At Rotation: GOOD (1, 1.3, 1.7) LL At 100 kts: GOOD (2.92%) GOOD At 100 kts		Run 79 (Exposure Time 10 min), -14.8°C EG106 Visual At Start: GOOD (2.2, 2, 2.5) Visuals At Rotation: GOOD (1, 1.5, 2) LL At 100 kts: GOOD (3.56%) GOOD At 100 kts Run 78 (Exposure Time 5 min), -16.0°C ABC-S Plus Visual At Start: GOOD (2.3, 2.2, 3)	
				Visuals At Rotation: BAD (1.4, 2, 2.7) LL At 100 kts: BAD (8.62%) BAD At 100 kts
			25 min GOOD for EG Fluid 25 min GOOD for PG Fluid; Results Improved when Flap is Set At 0° CONCLUSION: ALLOWANCE TIME	
	OF 25 MIN GOOD, POTENTIAL TO INCREASE TO 40 MINS		CONCLUSION: NO ALLOWANCE TIME CURRENTLY EXISTS; POTENTIAL ALLOWANCE TIME OF 10 MIN FOR EG FLUID	

Table 10.51: Summary of Light Ice Pellets Mixed with Light Snow Allowance Time Test Results

10.4.2 OAT Less than -5°C to -10°C

Only one test was conducted in this cell with an exposure time of 15 minutes: Test #94 (see Table 10.50).

Test #94, conducted with PG fluid, demonstrated satisfactory results based on the 8° lift loss findings (see Table 10.51). The temperature during this test was slightly warm for this cell, at -6.3°C. A lift loss result slightly above the 5 percent margin of safety criteria (at 5.54 percent) occurred, indicating a need for further review. An analysis of the lift loss was conducted for speeds greater than 100 knots for this test run (see Table 10.52 and Figure 10.1), and the semi-log of time results indicate a speed just below 105 knots is needed to reduce lift loss to 5 percent. A ramp-up time of 16 seconds from 40 knots to rotation occurred during this run, below the 19-second average.

In conclusion, the current allowance time of 15 minutes for this cell is satisfactory at this time based on the results obtained. Although the lift loss at 8° was slightly above the 5 percent safety margin, no significant issues arose during the analysis of this cell to indicate a need to change the current allowance time of 15 minutes. No EG tests were conducted in this cell; allowance times are to remain at 15 minutes. Data is needed for EG fluid.

10.4.3 OAT Less than -10°C

Although no allowance time currently exists in this cell, three tests were conducted with exposure times of 10 and 5 minutes: Tests #77 and #79 (10 minutes) and Test #78 (5 minutes). For further details on these tests, refer to Table 10.51 and Appendix F.

Test #79, conducted with EG fluid with an exposure time of 10 minutes, demonstrated good results. The temperature during this test was -14.8°C. The visual contamination results all passed the necessary criteria and proved very positive. The 8° lift loss was 3.56 percent, below the 5 percent margin of safety criteria. A look into the ramp-up time from 40 knots to rotation indicated a time of 16 seconds occurred during this test run, which is 3 seconds below the average.

Test #77, conducted with PG fluid with an exposure time of 10 minutes, demonstrated poor results. The temperature during this test was -14.1°C. Due to the LE rating at rotation that exceeded the criteria (1.7), the visual results were deemed unacceptable. The lift loss result at 8° was also unacceptable at 9.89 percent, beyond the 5 percent safety criteria. An examination into the ramp-up time during this run showed a time of 15 seconds to reach rotation from 40 knots.

This is below the average of 19 seconds, indicating the possibility of improvement in the visual and lift loss results should an extra 4 seconds have been present.

Test #78, conducted with the same PG fluid with an exposure time of 5 minutes, also demonstrated poor results, requiring a need for further review. The temperature during this test was -16.0°C. A rating of 1.4 on the LE at rotation exceeded the required criteria; therefore, the visual results were deemed unacceptable. The lift loss result at 8° was also unacceptable at 8.62 percent. An examination into the ramp-up time during this run showed a time of 15 seconds to reach rotation from 40 knots. This is below the average of 19 seconds, also indicating the possibility of improvement in the visual and lift loss results should an extra 4 seconds have been present.

To conclude, no allowance time currently exists for PG and EG fluids. Based on the results obtained, there is a potential for an allowance time of 10 minutes or more for EG fluid. Results for PG fluid indicate that an allowance time should not be provided.

Condition	Test #	Speed (Kts)	Lift Loss at 8 Degrees (%)	Visual (%)	Linear (%)	Semi-Log (Time) (%)	Polynomial (2nd Order) (%)
		100	5.54				
Light Ice Pellets Mixed with Light Snow (OAT Less than -5°C and -10°C)	04	105		-	4.00	4.24	5.46
	94	110		4.30	2.94	3.33	5.35
		120		3.37	0.83	1.60	5.71

 Table 10.52: Details of Increased Rotation Speed Analysis

Figure 10.1: Increased Rotation Speed Extrapolation Results – Test #94

This page intentionally left blank.

Photo 10.1: Test #4 – Start of Test

Photo 10.2: Test #5 – Start of Test

Photo 10.3: Test #4 – Before Rotation

Photo 10.4: Test #5 – Before Rotation

Photo 10.5: Test #4 – End of Rotation

Photo 10.6: Test #5 – End of Rotation

Photo 10.7: Test #4 - End of Test

Photo 10.8: Test #5 – End of Test

Photo 10.9: Test #1 – Start of Test

Photo 10.10: Test #11 – Start of Test

Photo 10.11: Test #1 – Before Rotation

Photo 10.12: Test #11 – Before Rotation

Photo 10.13: Test #1 – End of Rotation

Photo 10.14: Test #11 – End of Rotation

Photo 10.15: Test #1 – End of Test

Photo 10.16: Test #11 – End of Test

Photo 10.17: Test #25 – Start of Test

Photo 10.18: Test #23 – Start of Test

Photo 10.19: Test #25 - Before Rotation

Photo 10.20: Test #23 – Before Rotation

Photo 10.21: Test #25 - End of Rotation

Photo 10.22: Test #23 – End of Rotation

Photo 10.23: Test #25 – End of Test

Photo 10.24: Test #23 – End of Test

Photo 10.25: Test #29 – Start of Test

Photo 10.26: Test #57 – Start of Test

Photo 10.27: Test #29 – Before Rotation

Photo 10.28: Test #57 – Before Rotation

Photo 10.29: Test #29 - End of Rotation

Photo 10.30: Test #57 – End of Rotation

Photo 10.31: Test #29 – End of Test

Photo 10.32: Test #57 – End of Test

Photo 10.33: Test #29 – Start of Test

Photo 10.34: Test #57A – Start of Test

Photo 10.35: Test #29 - Before Rotation

Photo 10.36: Test #57A – Before Rotation

Photo 10.37: Test #29 - End of Rotation

Photo 10.38: Test #57A – End of Rotation

Photo 10.39: Test #29 – End of Test

Photo 10.40: Test #57A - End of Test

Photo 10.41: Test #64 – Start of Test

Photo 10.42: Test #77 – Start of Test

Photo 10.43: Test #64 – Before Rotation

Photo 10.44: Test #77 – Before Rotation

Photo 10.45: Test #64 – End of Rotation

Photo 10.46: Test #77 – End of Rotation

Photo 10.47: Test #64 – End of Test

Photo 10.48: Test #77 – End of Test

Photo 10.49: Test #76 – Start of Test

Photo 10.50: Test #78 – Start of Test

Photo 10.51: Test #76 – Before Rotation

Photo 10.52: Test #78 – Before Rotation

Photo 10.53: Test #76 - End of Rotation

Photo 10.54: Test #78 – End of Rotation

Photo 10.55: Test #76 – End of Test

Photo 10.56: Test #78 - End of Test

Photo 10.57: Test #75 – Start of Test

Photo 10.58: Test #79 – Start of Test

Photo 10.59: Test #75 - Before Rotation

Photo 10.60: Test #79 – Before Rotation

Photo 10.61: Test #75 - End of Rotation

Photo 10.62: Test #79 – End of Rotation

Photo 10.63: Test #75 – End of Test

Photo 10.64: Test #79 - End of Test

Photo 10.65: Test #1 – Start of Test

Photo 10.66: Test #94 – Start of Test

Photo 10.67: Test #1 – Before Rotation

Photo 10.68: Test #94 – Before Rotation

Photo 10.69: Test #1 – End of Rotation

Photo 10.70: Test #94 – End of Rotation

Photo 10.71: Test #1 – End of Test

Photo 10.72: Test #94 – End of Test

11. LIGHT ICE PELLETS MIXED WITH MODERATE SNOW ALLOWANCE TIMES

Aerodynamic testing was conducted to validate and further develop the Type IV high-speed ice pellet allowance times in the NRC wind tunnel. Previous testing in 2006-07 and 2008-09 consisted of wind tunnel tests and Falcon 20 aircraft tests to develop allowance times for mixed conditions with ice pellets. Due to the limitations of the data, some extrapolation of the results was required in order to develop a comprehensive table. It was recommended that testing be conducted at the most critical limits of the allowance times to validate the current guidance material for use with newer generation aircraft operating with supercritical wings. Additional testing was also required to provide guidance material where data was limited or non-existent. The results of this testing have been separated by test condition, and the details can be found in the following sections:

- Section 6: Light Ice Pellets;
- Section 7: Moderate Ice Pellets;
- Section 8: Light Ice Pellets and Light Freezing Rain;
- Section 9: Light Ice Pellets and Moderate Rain;
- Section 10: Light Ice Pellets and Light Snow; and
- Section 11: Light Ice Pellets and Moderate Snow.

This section provides an overview of each test conducted to substantiate and further develop the current high-speed allowance times for Type IV fluids in Light Ice Pellet Mixed with Moderate Snow conditions. Testing was conducted in simulated precipitation conditions. The parameters for each test are detailed, and a description of the data collected during each test is provided.

11.1 Overview of Tests

A summary of the Light Ice Pellet Mixed with Moderate Snow tests conducted in the wind tunnel is shown in Table 11.1. The table provides relevant information for each of the tests, as well as the final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 4.1. A brief description of the column headings for Table 11.1 is provided in Subsection 6.1.

Test No.	Date	Fluid	Associated Baseline Test	Condition	Precip. Rate (g/dm²/h)	Precip. Time (min.)	Tunnel Temp. at Start of Test (°C)	AVG Wing Temp. Before Test (°C)	Flap Angle (°)	Visual Cont. Rating Before Takeoff (LE, TE, Flap)	Visual Cont. Rating at Rotation (LE, TE, Flap)	CL at 8° During Rotation	8° Lift Loss (%)
13	14-Jan-10	ABC-S Plus	17	IP-/SN	25/25	20	-4.6	-7.9	20	3, 2, 3.5	1, 1.8, 2.7	1.617	6.1
14	14-Jan-10	ABC-S Plus	17	IP-/SN	25/25	15	-4.4	-8.1	20	2.2, 2, 2.8	1, 1.5, 1.5	1.626	5.5
15	14-Jan-10	ABC-S Plus	17	IP-/SN	25/25	10	-4.3	-5.8	20	1.8, 2, 2.7	1, 1.3, 1.7	1.633	5.1
16	14-Jan-10	ABC-S Plus	17	IP-/SN	25/25	5	-4.2	-4.7	20	1.4, 1.7, 1.8	1, 1, 1.3	1.622	5.8
24	21-Jan-10	EG106	25	IP-/SN	25/25	20	-3.7	N/A	20	2.5, 1.8, 4	1, 1.2, 1	1.699	1.3
58	28-Jan-10	LAUNCH	60	IP-/SN	25/25	20	-3.1	-6.8	0	2.8, 2.6, 3	1, 1.5, 2	1.638	4.8
81	30-Jan-10	EG106	75	IP-/SN	25/25	5	-17.3	-17.1	20	1.8, 2, 2.3	1, 1.5, 2	1.656	3.8
82	30-Jan-10	ABC-S Plus	76	IP-/SN	25/25	5	-15.8	-16.0	20	2.5, 2.2, 3.2	1.5, 1.5, 1.8	1.563	9.2
97	2-Feb-10	ABC-S Plus	64	IP-/SN	25/25	10	-8.3	-10.1	20	2.9, 2.3, 3	1.3, 1.8, 2.5	1.590	7.6
17	14-Jan-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-3.9	-4.4	20	1, 1, 1	1, 1, 1	1.636	5.0
25	4-Feb-10	EG106	N/A	Fluid Only	N/A	N/A	-4	-3.4	20	1, 1, 1	1, 1, 1	1.687	1.99
60	28-Jan-10	Launch	N/A	Fluid Only	N/A	N/A	-2.8	-1.9	20	1, 1, 1	1, 1, 1	1.642	4.61
64	6-Feb-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-13.4	-11.3	20	1, 1, 1	1, 1, 1	1.634	5.07
75	30-Jan-10	EG106	N/A	Fluid Only	N/A	N/A	-18.1	-16.9	20	1, 1, 1	1, 1, 1	1.651	4.08
76	30-Jan-10	ABC-S Plus	N/A	Fluid Only	N/A	N/A	-17.9	-17.3	20	1, 1, 1	1, 1, 1	1.62	5.89

Table 11.1: Summary of 2009-10 Light Ice Pellets Mixed with Moderate Snow Testing

11.2 Data Collected

11.2.1 Fluid Thickness Data

Fluid thickness measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.2. Fluid thickness measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 11.2 to 11.10 show the fluid thickness measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 11.11 to 11.16 for comparison purposes.

Test 13: ABC-S Plus, IP-/SN, Tunnel OAT - 4.6°C					
	FLUID THIC	CKNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.7	1.8	0.0		
2	2.2	3.3	0.1		
3	3.3	3.5	0.2		
4	4.5	4.5	0.1		
5	4.5	5.7	0.1		
6	4.5	5.7	0.1		
7	3.3	5.7	0.1		
8	3.3	3.5	0.1		
Flap	1.0	slush	0.2		

Table 11.2: Test #13 Fluid Thickness Data

Table 11.3: Test #14 Fluid Thickness Data

Test 14: ABC-S Plus, IP-/SN, Tunnel OAT -4.4°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.8	1.5	0.0	
2	2.5	2.5	0.1	
3	3.1	3.5	0.3	
4	4.5	4.5	0.2	
5	4.5	5.7	0.2	
6	3.9	5.7	0.2	
7	3.1	4.5	0.2	
8	3.1	3.5	0.2	
Flap	1.1	slush	0.2	

Table 11.4: Test #15 Fluid Thickness Data

Test 15: ABC-S Plus, IP-/SN, Tunnel OAT-4.3°C					
	FLUID THIC	CKNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.6	1.7	0.1		
2	2.2	2.5	0.1		
3	2.9	3.1	0.2		
4	3.3	3.5	0.2		
5	3.5	3.9	0.2		
6	3.9	4.5	0.2		
7	4.5	4.5	0.2		
8	3.3	3.7	0.2		
Flap	1.0	1.7	0.2		

Table 11.5: Test #16 Fluid Thickness Data

Test 16: ABC-S Plus, IP-/SN, Tunnel OAT -4.2°C				
	FLUID THIC	KNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.6	N/A	0.1	
2	2.2	2.7	0.2	
3	2.9	N/A	0.2	
4	3.1	N/A	0.2	
5	3.5	3.7	0.2	
6	3.9	4.5	0.2	
7	4.5	N/A	0.1	
8	3.5	3.5	0.2	
Flap	1.1	N/A	0.2	

Table 11.6: Test #24 Fluid Thickness Data

Tes	Test 24: EG106, IP-/SN, Tunnel OAT -3.7°C				
	FLUID THIC	CKNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.8	0.3	0.0		
2	2.9	3.3	0.0		
3	2.9	3.9	0.0		
4	3.1	4.5	0.0		
5	3.9	4.5	0.1		
6	3.7	4.5	0.0		
7	3.5	4.5	0.0		
8	3.1	3.3	0.0		
Flap	1.2	0.6	0.1		

Table 11.7: Test #58 Fluid Thickness Data

Test 58: Launch, IP-/SN, Tunnel OAT - 3.1°C				
	FLUID THIC	CKNESS (mm)		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
1	1.6	2.2	0.1	
2	2.2	2.7	0.1	
3	2.5	3.3	0.2	
4	2.9	3.5	0.2	
5	3.3	4.5	0.2	
6	3.1	4.5	0.1	
7	3.1	4.5	0.2	
8	2.5	3.7	0.2	
Flap	3.1	5.7	0.2	

Table 11.8: Test #81 Fluid Thickness Data

Test 81: EG106, IP-/SN, Tunnel OAT -17.3°C					
	FLUID THIC	CKNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	2.5	2.2	0.0		
2	3.5	2.9	0.1		
3	3.5	4.5	0.2		
4	4.5	4.5	0.2		
5	4.5	4.5	0.1		
6	4.5	5.7	0.2		
7	4.5	4.5	0.2		
8	3.9	4.5	0.2		
Flap	1.3	slush	0.1		

Table 11.9: Test #82 Fluid Thickness Data

Test 8	Test 82: ABC-S Plus, IP-/SN, Tunnel OAT -15.8°C				
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.5	1.5	0.0		
2	1.7	1.7	0.1		
3	1.8	1.8	0.1		
4	2.2	2.2	0.2		
5	2.2	2.2	0.2		
6	2.2	2.2	0.3		
7	1.7	1.7	0.4		
8	1.6	1.7	0.5		
Flap	0.5	slush	0.2		

Table 11.10: Test #97 Fluid Thickness Data

Test 97: ABC-S Plus, IP-/SN, Tunnel OAT -8.3°C					
	FLUID THIC	(NESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.7	1.7	0.1		
2	2.2	2.2	0.1		
3	3.1	2.9	0.1		
4	3.3	3.7	0.1		
5	3.3	3.9	0.1		
6	3.3	3.9	0.2		
7	3.3	3.9	0.2		
8	2.7	3.1	0.3		
Flap	1.0	N/A	0.2		

Table 11.11: Test #17 (Baseline) Fluid Thickness Data

Test 17: /	Test 17: ABC-S Plus, Fluid-only, Tunnel OAT -3.9°C				
	FLUID THICH	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.5	N/A	0.0		
2	2.2	N/A	0.2		
3	2.7	N/A	0.2		
4	3.3	N/A	0.2		
5	3.5	N/A	0.2		
6	3.9	N/A	0.2		
7	3.9	N/A	0.2		
8	3.5	N/A	0.2		
Flap	1.0	N/A	0.2		

Table 11.12: Test #25 (Baseline) Fluid Thickness Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C					
	FLUID THIC	KNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	2.2	N/A	0.0		
2	3.1	N/A	0.1		
3	3.7	N/A	0.1		
4	4.5	N/A	0.2		
5	4.5	N/A	0.2		
6	4.5	N/A	0.1		
7	4.5	N/A	0.1		
8	3.5	N/A	0.1		
Flap	N/A	N/A	0.1		

Table 11.13: Test #60 (Baseline) Fluid Thickness Data

Test 60	Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C					
	FLUID THIC	KNESS (mm)				
Wing Position	WingAfter FluidAfter Precip.PositionApplicationApplication					
1	1.2	N/A	0.0			
2	0.1	N/A	0.1			
3	2.2	N/A	0.1			
4	2.5	N/A	0.1			
5	2.5	N/A	0.2			
6	2.7	N/A	0.1			
7	2.5	N/A	0.2			
8	2.2	N/A	0.2			
Flap	0.7	N/A	0.0			

Table 11.14: Test #64 (Baseline) Fluid Thickness Data

Test 64: A	Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C				
	FLUID THIC	KNESS (mm)			
Wing Position	Wing After Fluid After Precip. osition Application Application				
1	1.2	N/A	0.0		
2	2.2	N/A	0.1		
3	1.7	N/A	0.1		
4	1.8	N/A	0.1		
5	3.1	N/A	0.2		
6	3.1	N/A	0.2		
7	3.1	N/A	0.2		
8	2.7	N/A	0.2		
Flap	0.8	N/A	0.2		

Table 11.15: Test #75 (Baseline) Fluid Thickness Data

Test 75	Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C				
	FLUID THIC	KNESS (mm)			
Wing Position	Wing After Fluid After Precip. Position Application Application				
1	2.2	N/A	0.1		
2	2.9	N/A	0.2		
3	3.1	N/A	0.2		
4	3.7	N/A	0.1		
5	4.5	N/A	0.1		
6	4.5	N/A	0.1		
7	4.5	N/A	0.1		
8	2.2	N/A	0.2		
Flap	0.2	N/A	0.2		

Test	Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C				
	FLUID THI	CKNESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1.3	N/A	0.1		
2	1.6	N/A	0.1		
3	1.8	N/A	0.1		
4	2.2	N/A	0.1		
5	2.2	N/A	0.2		
6	2.2	N/A	0.2		
7	1.8	N/A	0.2		
8	1.6	N/A	0.2		
Flap	0.5	N/A	0.2		

Table 11.16: Test #76 (Baseline) Fluid Thickness Data

11.2.2 Skin Temperature Data

Skin temperature measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.3. Skin temperature measurements were recorded at the following intervals:

- Before fluid application;
- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 11.17 to 11.25 show the wing temperature measurements recorded during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 11.26 to 11.31 for comparison purposes.

Table	11.17: Test #13 Wing Skin
	Temperature Data

Tes	Test 13: ABC-S Plus, IP-/SN, Tunnel OAT - 4.6°C				
	WING	TEMPERATUR	E(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test					
T2	-5.7	-3.3	-10.2	-5.1	
T5	-5.8	-3.9	-8.7	-4.5	
TU	-3.0	-3.5	-4.8	-5.8	

Table 11.18: Test #14 Wing SkinTemperature Data

Test 14: ABC-S Plus, IP-/SN, Tunnel OAT -4.4°C					
	WING 1	EMPERATURE	(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test					
T2	-4.2	-5.2	-10.9	-3.7	
Т5	-3.7	-5.7	-8.2	-2.8	
TU	-5.0	-5.1	-5.3	-5.0	

Table 11.19: Test #15 Wing Skin Temperature Data

Te	Test 15: ABC-S Plus, IP-/SN, Tunnel OAT-4.3°C				
	WING	TEMPERATUR	E (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test					
Т2	-3.6	-3.9	-7.7	-4.0	
T5	-2.7	-4.1	-5.1	-3.2	
TU	-4.7	-4.7	-4.6	-5.5	

Table 11.21: Test #24 Wing SkinTemperature Data

Т	Test 24: EG106, IP-/SN, Tunnel OAT -3.7°C				
	WING	TEMPERATUR	E (°C)		
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test	
T2	-3.6	N/A	-7.3	-3.4	
T5	-3.4	N/A	-9.7	-2.6	
TU	-4.2	N/A	-5.0	-4.3	

Table 11.23: Test #81 Wing SkinTemperature Data

Т	Test 81: EG106, IP-/SN, Tunnel OAT -17.3°C				
	WING	TEMPERATUR	E(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test					
T2	-16.3	-16.9	-16.8	-19.4	
Т5	-15.2	-16.6	-16.4	-18.9	
TU	-18	-18.4	-18.1	-20.1	

Table 11.25: Test #97 Wing Skin Temperature Data

Т	Test 97: ABC-S Plus, IP-/SN, Tunnel OAT -8.3°C				
	WING	TEMPERATURI	E (°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip. ApplicationAfter Takeoff Test					
T2	-9.2	-9.4	-11.6	-9.9	
T5	-8.3	-9.4	-10.1	-9.0	
TU	-9.9	-9.3	-8.6	-10.5	

Table 11.20: Test #16 Wing Skin Temperature Data

Test 16: ABC-S Plus, IP-/SN, Tunnel OAT -4.2°C					
	WING T	EMPERATURE	(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test					
T2	-3.9	-4.7	-4.5	-3.4	
T5	-3.1	-4.9	-4.6	-3.0	
TU	-5.3	-5.2	-5.1	-4.7	

Table 11.22: Test #58 Wing Skin Temperature Data

Те	Test 58: Launch, IP-/SN, Tunnel OAT - 3.1°C					
	WING TEMPERATURE (°C)					
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Test						
Т2	T2 -4.0		-8.7	-4.8		
T5 -3.5		-3.4	-8.2	-3.9		
ΤU	-4.7	-4.1	-3.5	-2.0		

Table 11.24: Test #82 Wing Skin Temperature Data

Test 82: ABC-S Plus, IP-/SN, Tunnel OAT -15.8°C					
	WING 1	EMPERATURE	(°C)		
Wing PositionBefore Fluid ApplicationAfter Fluid ApplicationAfter Precip.After Takeoff Application					
T2	-16.5	-16.5	-15.8		
T5	-16.0	-17.5	-15.1	-15.2	
TU	-18.4	-18.2	-16.4	-15.9	

Table 11.26: Test #17 (Baseline) Wing Skin Temperature Data

Test 1	Test 17: ABC-S Plus, Fluid-only, Tunnel OAT -3.9°C					
	WING TEMPERATURE (°C)					
Wing Before After Fluid After After Position Application Application Test						
T2	T2 -3.4 -4.0 N/A					
T5 -3.0 -4.5 N/A -3.2						
TU	TU -4.7 -4.7 N/A -4.8					

Table 11.27: Test #25 (Baseline) WingSkin Temperature Data

Te	Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C				
	WING TEMPERATURE (°C)				
Wing Position Before Fluid Application After Fluid Application After Precip. After Takeoff Application					
T2	-3.6	-3.6 -3.0		-3.4	
T5	-3.0	-3.1	N/A	-3.2	
TU -4.4 -4.2 N/A					

Table 11.29: Test #64 (Baseline) WingSkin Temperature Data

Test	Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C				
	WING TEMPERATURE (°C)				
Wing Position Before Fluid Application After Fluid Application After Precip. After Take Application					
T2	-11.8	-10.8	N/A	-12.2	
Т5	-11.9	-10.8	N/A	-12.1	
TU	-12.3	-12.4	N/A	-12.4	

Table 11.28: Test #60 (Baseline) Wing Skin Temperature Data

Tes	Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C					
	WING TEMPERATURE (°C)					
Wing Position Before Fluid Application After Fluid Application After Precip. After Takeoff Test						
Т2	-3	-1.8	N/A	-3.9		
Т5	-2.2	-1.6	N/A	-4.3		
ΤU	TU -3.1 -2.4 N/A -4.4					

Table 11.30: Test #75 (Baseline) Wing Skin Temperature Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C					
	WING TEMPERATURE (°C)				
Wing PositionBefore Fluid ApplicationAfter Fluid After Fluid ApplicationAfter Precip.After Takeoff Test					
T2	-16.2	-16.5	N/A	-16.4	
Т5	T5 -15.8 -16.4			-15.6	
TU	-17.9	-17.7	N/A	-18.4	

Table 11.31: Test #76 (Baseline) Wing Skin Temperature Data

Т	Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C					
	WIN	G TEMPERATURI	E (°C)			
Wing Position	Wing PositionBefore Fluid ApplicationAfter Fluid 					
T2 -16.4 -17.1 N/A -16.9						
T5	-16.2	-17.0	N/A	-16.1		
TU	-18.1	-17.8	N/A	-18.9		

11.2.3 Fluid Brix Data

Fluid Brix measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.4. "Fluid Brix measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 11.32 to 11.40 show the fluid Brix measurements collected during the contaminated fluid tests. The associated baseline fluid only cases are also shown in Tables 11.41 to 11.46 for comparison purposes.

Test 13: ABC-S Plus, IP-/SN, Tunnel OAT - 4.6°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	36.50	18.25	23.25	
8	36.25	18.50	19.00	

Table 11.32: Test #13 Fluid Brix Data

Table 11.33: Test #14 Fluid Brix Data

Test 14: ABC-S Plus, IP-/SN, Tunnel OAT -4.4°C						
FLUID BRIX (°)						
Wing Position	Wing After Fluid After After Position Application Precip. Takeoff					
2	36.75	18.50	21.25			
8	36.75	24.50	24.00			

Table 11.34: Test #15 Fluid Brix Data

Test 15: ABC-S Plus, IP-/SN, Tunnel OAT-4.3°C					
FLUID BRIX (°)					
Wing After Fluid After After Position Application Application Takeoff					
2	36.50	19.50	23.00		
8	36.50	23.50	28.00		

Table 11.35: Test #16 Fluid Brix Data

Test 16: ABC-S Plus, IP-/SN, Tunnel OAT -4.2°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	36.75	27.00	32.25	
8	36.50	34.00	33.75	

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	32.00	N/A	31.50	
8	32.25	N/A	32.50	

Table 11.36: Test #25 Fluid Brix Data Table 11.37: Test #64 Fluid Brix Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Precip. Takeoff				
2	37.75	N/A	38.50	
8	37.50	N/A	38.00	

Table 11.38: Test #60 Fluid Brix Data

Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Application Test				
2	37.00	N/A	41.00	
8	36.75	N/A	39.25	

Table 11.39: Test #75 Fluid Brix Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C				
FLUID BRIX (°)				
Wing After Fluid After After Position Application Application Test				
2	32.25	N/A	34.00	
8	32.25	N/A	34.00	

Table 11.40: Test #76 Fluid Brix Data

Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C				
FLUID BRIX (°)				
Wing Position After Fluid Application After Precip. Application After Takeoff Test				
2	37.75	N/A	38.25	
8	37.00	N/A	37.25	

Table 11.42: Test #25 (Baseline) Fluid Brix Data

Test 25: EG106, Fluid-only, Tunnel OAT -4.0°C				
FLUID BRIX (°)				
Wing After Fluid After Position Application Application Application				
2	32.00	N/A	31.50	
8	32.25	N/A	32.50	

Table 11.44: Test #64 (Baseline) Fluid Brix Data

Test 64: ABC-S Plus, Fluid-only, Tunnel OAT -13.4°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.75	N/A	38.50
8	37.50	N/A	38.00

Table 11.41: Test #17 (Baseline) Fluid Brix Data

Test 17: ABC-S Plus, Fluid-only, Tunnel OAT -3.9°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.00	N/A	35.25
8	36.50	N/A	36.50

Table 11.43: Test #60 (Baseline) Fluid Brix Data

Test 60: Launch, Fluid-only, Tunnel OAT -2.8°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	37.00	N/A	41.00
8	36.75	N/A	39.25

Table 11.45: Test #75 (Baseline) Fluid Brix Data

Test 75: EG106, Fluid-only, Tunnel OAT -18.1°C			
FLUID BRIX (°)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test
2	32.25	N/A	34.00
8	32.25	N/A	34.00

Table 11.46: Test #76 (Baseline) Fluid Brix Data

Test 76: ABC-S Plus, Fluid-only, Tunnel OAT -17.9°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	37.75	N/A	38.25	
8	37.00	N/A	37.25	

11.3 Photos

High-speed digital photographs of each test were taken; wide-angle photos were taken of the leading edge, and close-up photos were taken of the trailing edge. For each test, photo summaries have been compiled comprising four stages:

- Start of test;
- Before Rotation (just before the wing began to pitch);
- End of Rotation (end of the rotation cycle when the wing position is returned to 4 degrees); and
- End of test.

The photos taken during the Light Ice Pellets Mixed with Moderate Snow testing have been presented along with the fluid only (baseline) tests for comparison purposes. In each case, the fluid only photo is presented first, followed by the contaminated fluid photo. Photos 11.1 to 11.72 show the photo summaries of the tests conducted. A complete set of photos will be provided to the TDC in electronic format.

11.4 Summary of Results

11.4.1 OAT -5°C and Above

One test was conducted in this cell with an exposure time of 10 minutes: Test #15 (see Table 11.49). Several other tests were conducted in this condition with varying exposure times: Tests #13, #14, #16, #24, and #58 (see Table 11.48 for details).

Test #15, conducted with PG fluid at the current allowance time, demonstrated satisfactory results. The temperature during this test was -4.3°C. Visual results were deemed good, passing all the required criteria. The 8° lift loss was slightly above the 5 percent safety criteria, at 5.13 percent (see Table 11.47 and Figure 11.1). Based on the lift loss result, further review is required. The ramp-up time during this run showed a time around the average, at 20 seconds.

Test #24 was conducted using EG fluid and demonstrated very good results. This test was conducted with a 20-minute exposure time, above the current allowance time of 10 minutes. The temperature during this test was -3.7°C. Lift loss and visual contamination ratings passed all required criteria, proving positive results. The 8° lift loss was 1.30 percent, below the 5 percent margin of safety criteria.

Test #16, conducted with PG fluid with an exposure time of 5 minutes, demonstrated satisfactory results. The temperature during this test was -4.2°C. The visual results passed all criteria, and the 8° lift loss was 5.77 percent, above the 5 percent safety criteria. The ramp-up time during this run showed a time of around the average, at 18 seconds; this may explain the slightly higher lift loss in Test #16 compared to Test #15.

Test #14, conducted with PG fluid, also demonstrated satisfactory results. The exposure time during this test was 15 minutes. The temperature was -4.4°C. The satisfactory results were based primarily on the 8° lift loss result of 5.54 percent, which is above the required 5 percent safety criteria. The visual results were good, passing all criteria. This test had a ramp-up time of 22 seconds, which is above the average at 19 seconds.

The two remaining tests, #13 and #58, were conducted with an exposure time of 20 minutes using two different PG fluids. The temperatures were -4.6° and -3.1°C, respectively. Test #13 demonstrated satisfactory results with a lift loss of 6.06 percent, which is slightly above the 5 percent margin of safety criteria. The visual ratings during this test were good, satisfying all criteria. Results from this test indicate a need for further review. Test #58 demonstrated very good results compared to Test #13. This test was conducted with the flap set at 0°. Visual and lift loss (4.84 percent) results passed all required criteria.

In conclusion, the current allowance time of 10 minutes for this cell has been validated and accepted at this time. Results from testing with EG fluid indicate a potential to increase the current allowance time to 20 minutes. Several tests with PG fluid were conducted with varying exposure times. Results indicate a potential to also increase the current allowance time to 20 minutes, but further review is needed for PG fluid.

 Table 11.47: Light Ice Pellets Mixed with Moderate Snow Allowance Time Tests

 Winter 2009-10

	OAT -5°C and	OAT Less than	OAT Less than
	Above	-5°C to -10°C	-10°C
Light Ice Pellets Mixed with Moderate	10 minutes	Caution: No al	lowance times
Snow	Test # 15	current	ly exist

	OAT -5°C and Above	OAT Less than -5°C to -10°C	OAT Less than -10°C	
	10 minutes			
Light Ice Pellets Mixed with Moderate Snow	Run 15 (Exposure Time 10 min), -4.3°C ABC-S Plus Visual At Start: GOOD (1.8, 2, 2.7) Visuals At Rotation: GOOD (1, 1.3, 1.7) LL At 100 kts: GOV (5.13%) LL At 105 kts: GOOD (4.89%) LL At 115 kts: GOOD (3.80%) LL At 120 kts: GOOD (3.24%) GOOD At 105 kts Bun 16 (Exposure Time 5 min) -4.2°C	Caution: No Allowance Time Currently Exists Run 97 (Exposure Time 10 min), -8.3°C ABC-S Plus	Caution: No Allowance Time Currently Exists Run 81 (Exposure Time 5 min), -17.3°C EG106	
	ABC-S Plus Visual At Start: GOOD (1.4, 1.7, 1.8) Visuals At Rotation: GOOD (1, 1, 1.3) LL At 100 kts: OK (5.77%) OK At 100 kts Run 14 (Exposure Time 15 min), -4.4°C	Visual At Start: GOOD (2.9, 2.3, 3) Visuals At Rotation: BAD (1.3, 1.8, 2.5) LL At 100 kts: OK (7.63%) BAD At 100 kts	Visual At Start: GOOD (1.8, 2, 2.3) Visuals At Rotation: GOOD (1, 1.5, 2) LL At 100 kts: GOOD (3.79%) GOOD At 100 kts	
	ABC-S Flus Visual At Start: GOOD (2.2, 2, 2.8) Visuals At Rotation: GOOD (1, 1.5, 1.5) LL At 100 kts: OK (5.54%) OK At 100 kts Run 13 (Exposure Time 20 min), -4.6°C ABC-S Plus Visual At Start: GOOD (3, 2, 3.5) Visuals At Rotation: GOOD (1, 1.8, 2.7) LL At 100 kts: OK (6.06%) OK At 100 kts		Run 82 (Exposure Time 5 min), -15.8°C ABC-S Plus Visual At Start: GOOD (2.5, 2.2, 3.2) Visuals At Rotation: BAD (1.5, 1.5, 1.8) LL At 100 kts: BAD (9.20%) BAD At 100 kts	
	Run 24 (Exposure Time 20 min), -3.7°C EG106 Visual At Start: GOOD (2.5, 1.8, 4) Visuals At Rotation: GOOD (1, 1.2, 1) LL At 100 kts: OK (1.30%) GOOD At 100 kts Run 58 (Exposure Time 20 min), -4.3°C *Flap At 0°* LAUNCH Visuals At Rotation: GOOD (1, 1.5, 2) LL At 100 kts: GOOD (4.84%) GOOD At 100 kts	 No EG Tests Conducted; Data Needed. Potential of 5 min Based on Test #81 No Allowance Time PG Fluid Based on Results; Further Review Required 	 5 min GOOD for EG Fluid; Could Potentially Expand No Allowance Time for PG Fluid Based on Results; Further Review Required 	
	10 GOOD for PG Fluid; Potential to Increase to 20 min. Further Review Required CONCLUSION: ALLOWANCE TIME OF 10 MIN OK, FURTHER REVIEW	CONCLUSION: NO ALLOWANCE TIME CURRENTLY EXISTS; POTENTIAL ALLOWANCE TIME OF 5 MIN FOR EG FLUID	CONCLUSION: NO ALLOWANCE TIME CURRENTLY EXISTS; POTENTIAL ALLOWANCE TIME OF 5 MIN FOR EG FLUID	

Table 11.48: Summary of Light Ice Pellets Mixed with Moderate Snow Allowance Time Test Res	ults
--	------

11.4.2 OAT Less than -5°C to -10°C

Although no allowance time currently exists in this cell, Test #97 was conducted with a 10-minute exposure time (see Table 11.48 for details).

Test #97, conducted with PG fluid at a temperature of -8.3°C, demonstrated unsatisfactory results based on lift loss data. The 8° lift loss was 7.63 percent, above the 5 percent safety criteria. The LE visual result at the time of rotation was 1.3, slightly above the required criteria of 1. Based on these findings, further review is required. The ramp-up time from 40 knots to rotation for this test run was under the average, at 16 seconds. Should the ramp-up time have been closer to the 19-second average, visual and lift loss results could have potentially been improved.

In conclusion, no allowance time currently exists in this cell at this time. No EG tests were conducted in this cell, but data from Test #81 conducted in the OAT less than -10°C cell show positive results, indicating a potential for an allowance time of 5 minutes for EG fluid. With PG fluid, it may be possible to provide an allowance time of 5 or 10 minutes; however, further testing and review are required.

11.4.3 OAT Less than -10°C

Although no allowance time currently exists in this cell, two tests were conducted with an exposure time of 5 minutes: Tests #81 and #82 (see Table 11.48 for details).

Test #81, conducted with EG fluid, demonstrated very good results. The temperature during this test was -17.3°C. Visual contamination ratings were positive, satisfying all criteria. The 8° lift loss was 3.79 percent, below the 5 percent margin of safety criteria.

Test #82 was conducted using PG fluid at a temperature of -15.8°C and demonstrated poor results. The LE visual contamination results at the time of rotation did not pass the required rating of 1 (rating of 1.5). The lift loss at 8° was 9.20 percent, above the 5 percent criteria.

At this time, no allowance time currently exists in this cell. For EG fluid, results indicate a potential for an allowance time of 5 minutes, but more data is needed. Based on PG fluid results, no allowance time is suitable at this time; however, further review is required.

Condition	Test #	Speed (Kts)	Lift Loss at 8 Degrees (%)	Visual (%)	Linear (%)	Semi-Log (Time) (%)	Polynomial (2nd Order) (%)
Light Ice Pellets Mixed with Moderate Snow (OAT -5°C and Above)	15	100	5.13				
		105		-	4.88	4.98	5.69
		115		4.53	3.56	3.80	5.66
		120		4.33	2.89	3.24	5.84

Table 11.49: Details of Increased Rotation Speed Analysis

Figure 11.1: Increased Rotation Speed Extrapolation Results – Test #15

This page intentionally left blank.

Photo 11.1: Test #17 – Start of Test

Photo 11.2: Test #13 – Start of Test

Photo 11.3: Test #17 - End of Rotation

Photo 11.4: Test #13 – Before Rotation

Photo 11.5: Test #17 – End of Rotation

Photo 11.6: Test #13 – End of Rotation

Photo 11.7: TTest #17 – End of Test

Photo 11.8: Test #13 – End of Test

Photo 11.9: Test #17 – Start of Test

Photo 11.10: Test #14 – Start of Test

Photo 11.11: Test #17 - Before Rotation

Photo 11.12: Test #14 – Before Rotation

Photo 11.13: Test #17 – End of Rotation

Photo 11.14: Test #14 – End of Rotation

Photo 11.15: Test #17 – End of Test

Photo 11.16: Test #14 – End of Test

Photo 11.17: Test #17 – Start of Test

Photo 11.18: Test #15 – Start of Test

Photo 11.19: Test #17 - Before Rotation

Photo 11.20: Test #15 – Before Rotation

Photo 11.21: Test #17 – End of Rotation

Photo 11.22: Test #15 – End of Rotation

Photo 11.23: Test #17 – End of Test

Photo 11.24: Test #15 – End of Test

Photo 11.25: Test #17 – Start of Test

Photo 11.26: Test #16 – Start of Test

Photo 11.27: Test #17 - Before Rotation

Photo 11.28: Test #16 – Before Rotation

Photo 11.29: Test #17 - End of Rotation

Photo 11.30: Test #16 - End of Rotation

Photo 11.31: Test #17 – End of Test

Photo 11.32: Test #16 – End of Test

Photo 11.33: Test #25 - Start of Test

Photo 11.34: Test #24 – Start of Test

Photo 11.35: Test #25 - Before Rotation

Photo 11.36: Test #24 – Before Rotation

Photo 11.37: Test #25 - End of Rotation

Photo 11.38: Test #24 – End of Rotation

Photo 11.39: Test #25 - End of Test

Photo 11.40: Test #24 – End of Test

Photo 11.41: Test #60 – Start of Test

Photo 11.42: Test #58 – Start of Test

Photo 11.43: Test #60 – Before Rotation

Photo 11.44: Test #58 – Before Rotation

Photo 11.45: Test #60 - End of Rotation

Photo 11.46: Test #58 – End of Rotation

Photo 11.47: Test #60 - End of Test

Photo 11.48: Test #58 – End of Test

Photo 11.49: Test #75 – Start of Test

Photo 11.50: Test #81 – Start of Test

Photo 11.51: Test #75 – Before Rotation

Photo 11.52: Test #81 – Before Rotation

Photo 11.53: Test #75 - End of Rotation

Photo 11.54: Test #81 – End of Rotation

Photo 11.55: Test #75 – End of Test

Photo 11.56: Test #81 – End of Test

Photo 11.57: Test #76 – Start of Test

Photo 11.58: Test #82 – Start of Test

Photo 11.59: Test #76 – Before Rotation

Photo 11.60: Test #82 – Before Rotation

Photo 11.61: Test #76 - End of Rotation

Photo 11.62: Test #82 – End of Rotation

Photo 11.63: Test #76 – End of Test

Photo 11.64: Test #82 - End of Test

Photo 11.65: Test #64 – Start of Test

Photo 11.66: Test #97 – Start of Test

Photo 11.67: Test #64 – Before Rotation

Photo 11.68: Test #97 – Before Rotation

Photo 11.69: Test #64 - End of Rotation

Photo 11.70: Test #97 – End of Rotation

Photo 11.71: Test #64 – End of Test

Photo 11.72: Test #97 – End of Test

12. FLAP RETRACTED (UP) VS. FLAP EXTENDED (DOWN)

This section describes the results from the comparative testing conducted with flap retracted versus flap extended.

12.1 Background

The 2009-10 wing section was fitted with a hinged flap. The flap position was fixed at a 20° setting (actual angle of the top surface of the flap was approximately 10° higher) and was not intended to be changed during testing. As testing progressed, a need to be able to change the flap setting from 0° to 20° was necessary; contrary to a nested flap, which is typically protected during precipitation, a hinged flap is always exposed, and results indicated earlier failures due to the steeper angle of the hinged flap. Early results indicated early failure on the flap (compared to the rest of the wing) and resulted in a severe condition of the flap at the end of the allowance time; when fluid is applied, fluid on the flap flows off faster and results in shorter endurance times. As a result, modifications were made by the NRC (after Run #26) to allow the flap setting to be changed between the two settings of 0° and 20° for the fluid application and contamination periods; however, all takeoff simulations were conducted with the flap set to 20°.

Following the modification, some tests that resulted in severe visual ratings on the flap set at 20° were repeated with the flap set at 0° for the duration of the contamination period; this was primarily done for tests that generated good visual flow-off on the main wing and generated close to 5 percent lift loss.

12.2 Overview of Tests

A summary of the comparative Flap Up (retracted) Versus Flap Down (extended) tests conducted in the wind tunnel is shown in Table 12.1. The table provides relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 4.1. A brief description of the column headings for Table 12.1 is provided in Subsection 6.1.

Test No.	Date	Fluid	Condition	Precip. Rate (g/dm²/h)	Precip. Time (min.)	Tunnel Temp. at Start of Test (°C)	AVG Wing Temp. Before Test (°C)	Flap Angle (°)	Visual Cont. Rating Before Takeoff (LE, TE, Flap)	Visual Cont. Rating at Rotation (LE, TE, Flap)	CL at 8° During Rotation	8° Lift Loss (%)
26	21-Jan-10	EG106	IP- / ZR-	25 / 25	25	-1.9	-6.2	20	2.2/1.7/4.7	1/1/4	1.639	4.78
26A	21-Jan-10	EG106	IP- / ZR-	25 / 25	25	-3.3	-6.2	0	1.8/2/1.9	1/1/1	1.697	1.41
28	21-Jan-10	Launch	IP-	25	50	-4.2	-3.6	20	2/2/3.7	1/1.7/2	1.648	4.26
28A	21-Jan-10	Launch	IP-	25	25	-5.5	-7.4	0	2/2/2.7	1//1.5/2	1.655	3.85
56	27-Jan-10	EG106	IP / R Mod	25 / 75	25	-1.1	-4.3	20	1.8/2/4.7	1/1/5	1.666	3.21
56A	27-Jan-10	EG106	IP / R Mod	25 / 75	25	-1.4	-2.4	0	1.8/2.2/3	1/1/4.3	1.663	3.39
57	27-Jan-10	Launch	IP- / SN-	25 / 10	40	-3.6	-5.4	20	2.7/2.6/4	1/1.7/2.8	1.64	4.72
57A	27-Jan-10	Launch	IP- / SN-	25 / 10	40	-4.2	-5.7	0	2.6/2.6/3	1/1.3/1.7	1.671	2.92

Table 12.1: Summary of 2009-Flap Up vs. Flap Down Testing

12.3 Data Collected

12.3.1 Fluid Thickness Data

Fluid thickness measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.2. Fluid thickness measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 12.2 to 12.9 show the fluid thickness measurements collected during the contaminated fluid tests.

Test 26: EG106, IP-/ZR-, Tunnel OAT -1.9°C					
	FLUID THICK	NESS (mm)	-		
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1 1.7		0.0		
2 2.2		1.7	0.0		
3 2.2		2.5	0.1		
4 3.5		3.7	0.1		
5 3.5		3.9	0.1		
6	4.5	5.7	0.0		
7 4.5		4.5	0.0		
8 3.5		3.5	0		
Flap	1.0	slush	0.1		

Table 12.2: Test #26 Fluid Thickness Data

Table 12.3: Test #26A Fluid Thickness Data

Test 26	Test 26A: EG106, IP-/ZR-, Tunnel OAT -3.3°C					
	FLUID THICK	NESS (mm)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test			
1	1 1.6		0.0			
2 2.5		1.5	0.0			
3	2.7	3.1	0.0			
4	3.3	3.7	0.0			
5	4.5	4.5	0.0			
6 4.0		4.5	0.0			
7 3.5		4.5	0.0			
8 3.5		2.7	0.0			
Flap	3.3	3.1	0.1			

Table 12.4: Test #28 Fluid Thickness Data

Test 28: Launch, IP-, Tunnel OAT -4.2°C						
	FLUID THICK	NESS (mm)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test			
1	1.3	2.2	0.0			
2	1.8	3.9	0.1			
3	2.2	4.5	0.1			
4	2.7	4.5	0.2			
5	2.9	4.5	0.3			
6	3.1	5.7	0.2			
7	2.7	4.5	0.2			
8	2.2	4.5	0.2			
Flap	0.7	slush	0.2			

Table 12.6: Test #56 Fluid Thickness Data

Test 56	Test 56: EG106, IP/R Mod, Tunnel OAT -1.1°C					
	FLUID THICK	NESS (mm)				
Wing Position	After Fluid Application	After Precip Application	After Takeoff Test			
1	1 1.8		0.0			
2	3.1	0.8	0.0			
3	3.3	1.0	0.0			
4	4.5	1.5	0.0			
5	4.5	2.2	0.0			
6	4.5	2.5	0.0			
7 4.5 8 4.5		1.3	0.0			
		1.0	0.0			
Flap	0.8	slush	N/A			

Table 12.5: Test #28A Fluid Thickness Data

Test 28A: Launch, IP-, Tunnel OAT -5.5°C							
	FLUID THICKNESS (mm)						
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test				
1	1.0	slush	0.0				
2	2 1.6		0.0				
3	1.8	3.3	0.0				
4	2.2	4.5	0.1				
5	2.2	4.5	0.1				
6	2.2	4.5	0.2				
7 1.8 8 1.5		4.5	0.2				
		3.7	0.2				
Flap	2.2	3.5	0.1				

Table 12.7: Test #56A Fluid Thickness Data

Test 56A: EG106, IP/R Mod, Tunnel OAT -1.4°C					
	FLUID THICK	NESS (mm)			
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
1	1 1.7		0.0		
2 2.5		0.8	0.0		
3 3.3		1.0	0.0		
4	4 4.5		0.0		
5	4.5	1.8	0.0		
6 3.7		1.3	0.0		
7 4.5		1.0	0.0		
8 2.7		1.0	0.0		
Flap	1.0	0.4	N/A		

Test 57: Launch, IP-/SN-, Tunnel OAT -3.6°C						
FLUID THICKNESS (mm)						
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test			
1	0.7	2.5	0.1			
2	1.8	2.7	0.1			
3	3 2.2		0.1			
4	4 2.5		0.1			
5	5 2.7		0.1			
6	6 2.7		0.1			
7	7 2.5		0.1			
8 2.2		3.7	0.1			
Flap	0.5	slush	0.2			

Table 12.8: Test #57 Fluid Thickness Data

Table 12.9: Test #57A Fluid Thickness Data

Test 57A: Launch, IP-/SN-, Tunnel OAT -4.2°C					
	FLUID THICK	NESS (mm)			
Wing Position	Wing After Fluid After Pre Position Application Applicat				
1	1.0	2.2	0.0		
2	1.8	3.5	0.1		
3	2.2	4.5	0.1		
4	2.7	4.5	0.1		
5	3.1	4.5	0.2		
6 3.1		5.7	0.1		
7 2.7		4.5	0.2		
8 2.2		4.5	0.2		
Flap	2.2	4.5	0.1		

12.3.2 Skin Temperature Data

Skin temperature measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.3. Skin temperature measurements were recorded at the following intervals:

- Before fluid application;
- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 12.10 to 12.17 show the wing temperature measurements recorded during the contaminated fluid tests.

Test 26: EG106, IP-/ZR-, Tunnel OAT -1.9°C							
	WING TEMPERATURE (°C)						
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test			
T2	-2.8	-3.0	-7.6	-3.6			
T5	-2.8	-2.9	-6.6	-2.3			
TU	-3.8	-3.5	-4.4	-3.5			

Table 12.10: Test #26 Wing Skin Temperature Data

Table 12.11: Test #26A Wing Skin Temperature Data

Test 26A: EG106, IP-/ZR-, Tunnel OAT -3.3°C							
	WING TEMPERATURE (°C)						
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test			
Т2	-2.8	-3.3	-7.7	-4.1			
Т5	-2.2	-3.2	-6.6	-3.2			
ΤU	-3.5	-3.5	-4.3	-4.5			

Table 12.12: Test #28 Wing SkinTemperature Data

Test 28: Launch, IP-, Tunnel OAT -4.2°C							
	WING TEMPERATURE (°C)						
Wing PositionBefore FluidAfter FluidAfter FluidAfter TakeoffApplicationApplicationApplicationTest							
Т2	-1.2	-1.6	-7.3	-5.0			
Т5	-0.4	-1.6	-7.6	-4.4			
TU	-1.6	-1.6	-3.9	-5.7			

Table 12.14: Test #56 Wing SkinTemperature Data

Test 56: EG106, IP/R Mod, Tunnel OAT -1.1°C						
	WING TEMPERATURE (°C)					
Wing Position	Before Fluid Application	After Fluid Application	After Precip. Application	After Takeoff Test		
T2	-1.2	-1.5	-5.3	-4.3		
T5	-1.3	-1.7	-5.1	-4.0		
TU	-1.5	-2.1	-2.6	-4.4		

Table 12.16: Test #57 Wing Skin Temperature Data

Test 57: Launch, IP-/SN-, Tunnel OAT -3.6°C						
	WING TEMPERATURE (°C)					
Wing PositionBefore FluidAfter FluidAfter FluidAfter FluidApplicationApplicationApplicationTakeoff Test						
T2	-3.4	-2.5	-6.9	-4.6		
T5	-3.3	-2.4	-6.8	-4.2		
TU	-3.0	-3.1	-2.6	-4.9		

12.3.3 Fluid Brix Data

Fluid Brix measurements were collected by APS personnel. The wing positions used for the wind tunnel tests are described in Subsection 2.15.4. Fluid Brix measurements were recorded at the following intervals:

- After fluid application;
- After application of contamination; and
- After the simulated takeoff test.

Tables 12.18 to 12.25 show the fluid Brix measurements collected during the contaminated fluid tests.

Table 12.13: Test #28A Wing SkinTemperature Data

Test 28A: Launch, IP-, Tunnel OAT -5.5°C					
WING TEMPERATURE (°C)					
Wing PositionBeforeAfterAfterAfterFluidFluidFluidPrecip.TakeoffApplicationApplicationApplicationTest					
T2 -3.4 -3.3 -8.5 -7.4					
T5 -2.8 -3.4 -8.3 -7.3					
ΤU	-5.1	-4.6	-5.4	-7.8	

Table 12.15: Test #56A Wing Skin Temperature Data

Test 56A: EG106, IP/R Mod, Tunnel OAT -1.4°C						
	WING TEMPERATURE (°C)					
Wing PositionBeforeAfterAfterAfterFluidFluidFluidPrecip.TakeoffApplicationApplicationApplicationTest						
T2 -3.4 -1.7 -3.3 -3.5						
T5 -2.7 -1.6 -3.0 -2.7						
TU	-3.6	-3.1	-0.9	-3.4		

Table 12.17: Test #57A Wing Skin Temperature Data

Те	Test 57A: Launch, IP-/SN-, Tunnel OAT -4.2°C					
	WING	TEMPERATU	JRE (°C)			
Wing Position Before Fluid Application After Fluid Application After Precip. Application After Takeoff Test						
T2	-3.9 -3.0 -7.1 -5.1					
T5	-3.3	-3.0	-7.2	-4.8		
TU	-4.6	-4.3	-2.7	-5.3		

Test 26: EG106, IP-/ZR-, Tunnel OAT -1.9°C				
FLUID BRIX (°)				
Wing Position After Fluid Application After Precip Application After Takeoff				
2	32.00	20.25	29.50	
8	32.00	14.50	28.00	

Table 12.18: Test #26 Fluid Brix Data

Table 12.20: Test #28 Fluid Brix Data

Test 28: Launch, IP-, Tunnel OAT -4.2°C					
FLUID BRIX (°)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	35.75	15.75	23.00		
8	36.50	14.75	24.00		

Table 12.22: Test #56 Fluid Brix Data

Test 56: EG106, IP/R Mod, Tunnel OAT -1.1°C					
FLUID BRIX (°)					
Wing Position After Fluid Application After Precip. After Takeoff Test Application Test Application Test					
2	32.00	13.50	31.25		
8	32.50	12.00	30.75		

Table 12.24: Test #56A Fluid Brix Data

Test 56A: EG106, IP/R Mod, Tunnel OAT -1.4°C				
FLUID BRIX (°)				
Wing Position After Fluid Application After Precip. After Takeoff				
2	32.25	12.00	N/A	
8	32.00	10.50	29.00	

Table 12.19: Test #26A Fluid Brix Data

Test 26A: EG106, IP-/ZR-, Tunnel OAT -3.3°C					
FLUID BRIX (°)					
Wing Position After Fluid Application After Precip. Application After Takeoff					
2	31.75	17.50	25.25		
8	32.00	21.50	25.00		

Table 12.21: Test #28A Fluid Brix Data

Test 28A: Launch, IP-, Tunnel OAT -5.5°C				
FLUID BRIX (°)				
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test	
2	37.25	18.50	29.25	
8	37.00	19.00	21.00	

Table 12.23: Test #57 Fluid Brix Data

Test 57: Launch, IP-/SN-, Tunnel OAT -3.6°C					
FLUID BRIX (°)					
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test		
2	36.25	15.00	26.25		
8	36.75	14.50	26.00		

Table 12.25: Test #57A Fluid Brix Data

Test 57A: Launch, IP-/SN-, Tunnel OAT -4.2°C							
FLUID BRIX (°)							
Wing Position	After Fluid Application	After Precip. Application	After Takeoff Test				
2	37.50	13.50	24.25				
8	36.75	7.50	27.50				

12.4 Photos

High-speed digital photographs of each test were taken; wide-angle photos were taken of the leading edge, and close-up photos were taken of the trailing edge. For each test, photo summaries have been compiled comprising four stages:

- Start of test;
- Before Rotation (just before the wing began to pitch);

- End of Rotation (end of the rotation cycle when the wing position is returned to 4 degrees); and
- End of test.

The photos taken during the Flap Retracted Versus Flap Extended testing have been presented. Photos 12.1 to 12.32 show the photo summaries of the tests conducted and are organized for easy comparison. A complete set of photos will be provided to the TDC in electronic format.

12.5 Summary of Results

A summary of the lift losses observed during the comparative tests is demonstrated in Table 12.26. The following are details regarding the comparative tests.

Test #	% LL from Dry (Flap Down)	% LL from Dry (Flap Up)	Delta Difference Flap Down - Flap Up (%)
26 / 26A	4.78	1.41	3.37
28 / 28A	4.26	3.85	0.41
56 / 56A	3.21	3.39	-0.17
57 / 57A	4.72	2.92	1.80
		Average	1.35

Table 12.26: Lift Loss Comparison for Flap Up vs. Flap Down Tests

During the first comparative test set, Test #26 and #26A, testing was conducted with EG106 fluid in mixed light ice pellet and light freezing rain conditions. In both cases, the level of contamination on the main wing section was acceptable and comparable at the start of the test (both leading edge and trailing edge visual ratings were below 3 for both tests). However, the trailing edge visual rating was more severe during Test #26 with the flap down (visual rating of 4.7 on the flap) compared to Test #26A conducted with the flap up (visual rating of 1.9 on the flap). At the time of rotation, the main wing section was clean and comparable for both tests; however, a significant amount of contamination was still present on the flap for Test #26 (contaminated with the flap down) compared to Test #26A (contaminated with the flap down) and recorded a 3.4 percent improvement in lift loss from 4.8 percent to 1.4 percent when compared to the dry wing for Tests #26 and #26A, respectively.

During the second comparative test set, Tests #28 and #28A, testing was conducted with Launch fluid in light ice pellet conditions. In both cases, the level of contamination on the main wing section was acceptable and comparable at the start of the test (both leading edge and trailing edge visual ratings were below 3 for both tests). However, the trailing edge visual rating was more severe during Test #28 with the flap up (visual rating of 3.7 on the flap) compared to Test #28A conducted with the flap down (visual rating of 2.7 on the flap). At the time of rotation, the main wing section was clean and comparable for both tests. In addition, comparable levels of contamination were also present on the flap at the time of rotation for both tests (visual contamination rating of 2). The lift data at the time of rotation supported the visual observations and recorded comparable lift losses. A 0.4 percent improvement in lift loss was recorded from 4.3 percent to 3.9 percent when compared to the dry wing for Tests #28 and #28A, respectively.

During the third comparative test set, Tests #56 and #56A, testing was conducted with EG106 fluid in light ice pellet conditions. In both cases, the level of contamination on the main wing section was acceptable and comparable at the start of the test (both leading edge and trailing edge visual ratings were below 3 for both tests). However, the trailing edge visual rating was more severe during Test #56 with the flap up (visual rating of 4.7 on the flap) compared to Test #56A conducted with the flap down (visual rating of 3 on the flap). At the time of rotation, the main wing section was clean and comparable for both tests. In addition, comparable levels of contamination were present on the flap at the time of rotation for both tests (visual contamination rating of 5 for Test #56 compared to rating of 4.3 for Test #56A). The lift data at the time of rotation supported the visual observations and recorded comparable lift losses. Minimal differences in lift loss were recorded; lift losses were 3.2 percent and 3.4 percent when compared to the dry wing for Tests #56 and #56A, respectively.

During the last comparative test set, Tests #57 and #57A, testing was conducted with Launch fluid in mixed light ice pellet and light snow conditions. In both cases, the level of contamination on the main wing section was acceptable and comparable at the start of the test (both leading edge and trailing edge visual ratings were below 3 for both tests). However, the trailing edge visual rating was more severe during Test #57 with the flap down (visual rating of 4 on the flap) compared to Test #57A conducted with the flap up (visual rating of 3 on the flap). At the time of rotation, the main wing section was clean and comparable for both tests; however, a significant amount of contamination was still present on the flap for Test #57 (contaminated with the flap down) compared to Test #57A (contaminated with the flap down) compared to Test #57A (contaminated with the flap down) and recorded a 1.8 percent improvement in lift loss from 4.7 percent to 2.9 percent when compared to the dry wing for Tests #57 and #57A, respectively.

In general, the results indicated that a heavily contaminated flap could have adverse effects on aerodynamic performance. On average, the test results showed an average 1.4 percent improvement in lift loss (with a maximum of 3.4 percent recorded during Tests #26 and #26A) when the flap was up (retracted) during the contamination period. Currently, there is no set standard specifying when the flap should be extended prior to takeoff. The results of this work have indicated that keeping the flaps retracted for as long as practical before takeoff will help ensure adequate protection time from the fluid applied to the flap section.

12.6 Additional Analysis of Flap Failure

Due to the early failure observed on the flap section, it was recommended that the condition of the wing be monitored and recorded. As a low priority action item, the time at which the flap condition started to show loose bridging contamination (a visual observation rating of 3) was recorded. As a general rule, a visual contamination rating of "3" on the leading edge and trailing edge is considered acceptable, whereas greater than "3" is considered severe.

Ten tests for which data was available were analysed, and the results are demonstrated in Table 12.27. The table includes the test number, test condition, allowance time (which is equivalent to the total exposure time of the test), along with the visual observation ratings for the main wing section at the end of the allowance time, the time at which the flap condition was deemed a "3" according to the visual observation criteria. Based on this data, a ratio was calculated to provide a preliminary indication as to how much earlier failure was occurring on the flap section.

The results indicated that, on average, the flap visual contamination rating was a "3" at approximately 60 percent of the allowance time. It should, however, be noted that most of the tests included had ratings less than "3" on the leading and trailing edge at the end of the allowance time; therefore, the 60 percent ratio is not directly applicable. It can be assumed that the flap will fail faster compared to the main wing section by a factor of less than 60 percent (likely closer to 50 percent of the main wing section protection time); however, data comparing equal levels of contamination on the main wing section and on the flap is required to provide a proper estimate.

		(A)		(B)	
Test #	Condition	Allowance Time (min.)	LE & TE Visual Rating at End of Allowance Time (LE,TE)	Time When Flap Visual Rating Became "3" (min.)	% Ratio (B) / (A)
9	IP-	50	2, 2	25	50%
11	IP-/SN-	40	3, 2.3	25	63%
13	IP-/SN	20	3, 2	19	95%
24	IP-/SN	20	2.5, 1.8	12	60%
26	IP-/ZR-	25	2.2, 1.7	15	60%
28	IP-	50	2, 2	25	50%
56	IP-/R	25	1.8, 2	13	52%
58	IP-/SN	20	2.8, 2.6	10	50%
63	IP-/ZR-	10	2.3, 2.3	4	40%
65	IP-	30	2.8, 2.8	20	67%
				Average	59%

Table 12.27: Analysis of Visual Failure Time on Flap vs. Main Wing Section

This page intentionally left blank.

Photo 12.1: Test #26 – Start of Test

Photo 12.2: Test #26A – Start of Test

Photo 12.3: Test #26 – Before Rotation

Photo 12.4: Test #26A – Before Rotation

Photo 12.5: Test #26 – End of Rotation

Photo 12.6: Test #26A – End of Rotation

Photo 12.7: Test #26 - End of Test

Photo 12.8: Test #26A – End of Test

Photo 12.9: Test #28 – Start of Test

Photo 12.10: Test #28A – Start of Test

Photo 12.11: Test #28 - Before Rotation

Photo 12.12: Test #28A – Before Rotation

Photo 12.13: Test #28 - End of Rotation

Photo 12.14: Test #28A – End of Rotation

Photo 12.15: Test #28 – End of Test

Photo 12.16: Test #28A – End of Test

Photo 12.17: Test #56 – Start of Test

Photo 12.18: Test #56A – Start of Test

Photo 12.19: Test #56 – Before Rotation

Photo 12.20: Test #56A – Before Rotation

Photo 12.21: Test #56 - End of Rotation

Photo 12.22: Test #56A – End of Rotation

Photo 12.23: Test #56 - End of Test

Photo 12.24: Test #56A - End of Test

Photo 12.25: Test #57 – Start of Test

Photo 12.26: Test #57A – Start of Test

Photo 12.27: Test #57 – Before Rotation

Photo 12.28: Test #57A – Before Rotation

Photo 12.29: Test #57 – End of Rotation

Photo 12.30: Test #57A – End of Rotation

Photo 12.31: Test #57 - End of Test

Photo 12.32: Test #57A – End of Test

13. CONCLUSIONS AND OBSERVATIONS

These observations and conclusions were derived from the testing conducted during the winter of 2009-10.

13.1 Type IV High-Speed Allowance Times

In comparison to previous tests on other airfoils, fluid flow-off issues with the supercritical wing were observed with PG fluids at the lower temperatures. More specifically, lift losses greater than 8 percent on the 2D model were recorded during light ice pellet and moderate ice pellet conditions below -10°C; visual observations supported the lift loss data collected. As a result, rather than restrict the allowance times to EG fluids only, the PG data collected was re-analysed simulating higher rotation speeds. The analysis indicated that the allowance times would be acceptable for rotation speeds of 115 knots or greater (compared to 100 knots or greater). It was recommended that a footnote restricting the use of PG fluids to aircraft with rotation greater than 115 knots during light ice pellet and moderate ice pellet conditions below -10°C be included in the allowance time table for the winter of 2010-11.

In addition, fluid failure issues with the supercritical wing were observed with PG fluids during moderate ice pellets above -5°C. The relatively flat surface of the wing had less fluid flow-off and resulted in an earlier fluid failure for PG fluids. Data collected indicated that an allowance time of 15 minutes would be more appropriate. It was recommended that a footnote reducing the allowance time to 15 minutes for PG fluids during moderate ice pellet conditions above -5°C be included in the allowance time table for the winter of 2010-11.

In general, it was found that the tests conducted in all other conditions generated acceptable lift losses based on the current evaluation criteria: i.e., lift loss less than 5 percent was considered "good," between 5 percent and 8 percent was considered "ok" (acceptable), whereas tests with lift losses above 8 percent were considered "bad" and required further review. Typically, the EG fluids performed better, especially in the colder temperatures, and generated lower lift losses as compared to the PG fluids.

In general, higher lift losses were observed with the supercritical wing compared to previous wings tested. Although initially 5 percent was used as the initial cut-off for evaluating each test, this was expanded to 8 percent based on the data collected; 8 percent lift loss correlated well with the visual observations recorded. Additional analysis paired with wind tunnel and full-scale aircraft testing is recommended to

develop a correlation between the lift losses observed in the wind tunnel and those seen on an operational aircraft with newer generation supercritical wings.

13.2 Lift Coefficient Data vs. Visual Contamination Ratings

The preliminary analysis identified a potential correlation between the visual observations recorded during the tests and the lift losses calculated based on the lift coefficient data collected; this is particularly true for visual observations taken for the leading edge at the start of rotation. Visual observations should continue to be recorded for future wind tunnel testing, as they have proven to be of value as an analysis tool.

13.3 Comparison of Fluid Certification BLDT Results vs. NRC Wind Tunnel Lift Loss Results

The preliminary 2D results from this analysis indicate that 5 percent lift loss may not be appropriate as the lift loss cut-off. When correlating to the fluid certification results, a higher lift loss cut-off may be more appropriate based on the Launch, ABC-S Plus, and EG106 data. It is recommended that future testing be done to simulate fluid certification results in the NRC wind tunnel at specific temperatures to substantiate the correlation observed in this preliminary analysis.

13.4 Probability of Ice Pellet Occurrences for Use with Allowance Times

Ice pellet precipitation data was acquired from instruments located at six stations in Quebec, Canada, from the MSC. This data was collected as part of an ongoing study to evaluate the suitability of the current format of the HOT tables [see TC report, TP 15051E, *Winter Weather Impact on Holdover Time Table Format (1995-2010)* (14)]. The results were translated into the likelihood of ice pellet occurrence in each cell of the allowance time table. The outcome is shown in Table 13.1

Values in italics in Table 13.1 indicate conditions where no allowance times currently exist. Based on this limited data, it appears a significant portion of light ice pellets mixed with light snow precipitation occurs below -10°C and light ice pellets mixed with moderate snow precipitation occurs below -5°C to -10°C, where no allowance times currently exist. It is recommended that future research target these conditions in order to allow greater flexibility to operators in conditions of mixed ice pellets with light or moderate snow.

Condition	Possible Rate	OAT -5°C and Above	OAT less than -5°C to -10°C	OAT less than -10°C	Total	
Light Ice Pellets	(0 to 25 g/dm ² /h)	84.9%	11.9%	0%	100%	
Moderate Ice Pellets	(25 to 75 g/dm²/h)	3.2%	0%	0%	100%	
*Light Ice Pellets Mixed with Light or Moderate Freezing Drizzle	(0 to 38 g/dm ² /h)	90,904	10.2%	0%	100%	
*Light Ice Pellets Mixed with Light Freezing Rain	(0 to 50 g/dm ² /h)	09.0%	10.2 %	0 %	100%	
*Light Ice Pellets Mixed with Light Rain	(0 to 50 g/dm ² /h)	98.5% ⁽¹⁾	0%	0%		
*Light Ice Pellets Mixed with Moderate Rain	(25 to 100 g/dm ² /h)	13.8% ⁽²⁾	0%	0%		
*Light Ice Pellets Mixed with Light Snow	(0 to 35 g/dm ² /h)	65.5%	14%(3)	16.6%		
*Light Ice Pellets Mixed with Moderate Snow	(10 to 50 g/dm ² /h)	20.9%(4)	7 <i>.</i> 9%	1.0%		

Table 13.1: Likelihood of Occurrence for Use with Ice Pellet Allowance Times

*Analysis based upon a cumulative rate of both precipitation types and assumes ice pellet intensity does not exceed "light" or 25 g/dm²/h

FOOTNOTES

⁽¹⁾ If the weather report is ice pellets mixed with rain, there is a 98.5% likelihood of light ice pellets mixed with light rain with a possible rate from 0 to 50 g/dm²/h (at OAT -5°C and above).

(2) If the weather report is ice pellets mixed with rain, there is a 13.8% likelihood of light ice pellets mixed with moderate rain with a possible rate from 25 to 100 g/dm²/h (at OAT -5°C and above).

(3) If the weather report is ice pellets mixed with snow, there is a 14% likelihood of light ice pellets mixed with light snow with a possible rate from 0 to 35 g/dm²/h (at OAT -5°C to -10°C).

(4) If the weather report is ice pellets mixed with snow, there is a 20.9% likelihood of light ice pellets mixed with moderate snow with a possible rate from 10 to 50 g/dm²/h (at OAT -5°C and above).

13.5 Flap Retracted (UP) vs. Flap Extended (DOWN)

In general, the results indicated that a heavily contaminated flap could have adverse effects on aerodynamic performance. On average, the test results showed an average 1.4 percent improvement in lift loss (with a maximum of 3.4 percent) when the flap was up (retracted) during the contamination period. It can be assumed that the flap will fail faster compared to the main wing section by a factor of less than 60 percent (likely closer to 50 percent of the main wing section protection time); however, data comparing equal levels of contamination on the main wing section and on the flap is required to provide a proper estimate.

14. RECOMMENDATIONS

The following recommendations were compiled based on the work conducted during the winter of 2009-10.

14.1 Newly Proposed (and Adopted) Type IV High-Speed Allowance Time Table

Based on the 2009-10 wind tunnel test results, a newly updated version of the Type IV allowance time table has been developed, proposed, and adopted for the 2010-11 version of the HOT Guidelines. This work was presented at the SAE G-12 meeting in Berlin in May 2010; a copy of the presentation is included in TC report, TP 15053E, *Aircraft Ground Icing General Research Activities During the 2009-10 Winter* (15). The updated allowance time table is shown in Table 14.1.

	OAT -5°C and above	OAT less than -5°C to -10°C	OAT less than -10°C		
Light Ice Pellets	50 minutes	30 minutes	30 minutes ¹		
Moderate Ice Pellets	25 minutes ²	10 minutes	10 minutes ¹		
Light Ice Pellets Mixed with Light or Moderate Freezing Drizzle	25 minutes	10 minutes			
Light Ice Pellets Mixed with Light Freezing Rain	25 minutes	10 minutes			
Light Ice Pellets Mixed with Light Rain	25 minutes		Caution: No allowance times		
Light Ice Pellets Mixed with Moderate Rain	25 minutes		allowance times currently exist		
Light Ice Pellets Mixed with Light Snow	25 minutes	15 minutes			
Light Ice Pellets Mixed with Moderate Snow	10 minutes				

Table	14 1·	2010-11	Ice	Pellet	Allowance	Time	Table
Iable		2010-11	100	I CHCL	Anowance	IIIIC	Iable

NOTES

- 1 No allowance times exist for propylene glycol (PG) fluids, when used on aircraft with rotation speeds less than 115 knots. (For these aircraft, if the fluid type is not known, assume zero allowance time).
- Allowance time is 15 minutes for propylene glycol (PG) fluids, or when the fluid type is unknown.

14.2 Future Research

14.2.1 Type IV High-Speed Allowance Times

Historical winter weather data has indicated that a significant portion of light ice pellets mixed with light snow precipitation occurs below -10°C and light ice pellets mixed with moderate snow precipitation occurs below -5°C to -10°C where no allowance times currently exist. It is recommended that future research target these conditions in order to allow greater flexibility to operators in conditions of mixed ice pellets with light or moderate snow.

Additional testing is also recommended in light and moderate ice pellet conditions close to the lower end of the -10°C to -25°C range (where data is limited) and in moderate ice pellet conditions above -5°C to validate the changes made to the allowance time table for the winter of 2010-11. Testing should also include different fluids to further validate the current allowance times.

14.2.2 Additional Testing and Analysis to Further Investigate Supercritical Wing Lift Losses

Additional analysis paired with wind tunnel and full-scale aircraft testing is recommended to develop a correlation between the lift losses observed in the wind tunnel and those seen on an operational aircraft with newer generation supercritical wings.

14.2.2.1 Full-Scale Aircraft Testing

Full-scale aircraft testing with the NRC Falcon 20 or FAA Technical Centre Global Express could be used to validate the wind tunnel test results.

14.2.2.2 100 vs. 115 Knots Rotation Speed

Testing is recommended to investigate the increase in fluid flow-off as a result of higher rotation speeds (100 knots vs. 115 knots) and to validate the analysis methodology used to extrapolate the lift coefficient data.

14.2.2.3 Comparative Testing - Fluid Certification BLDT Results vs. NRC Wind Tunnel Lift Loss Results

Comparative testing should be conducted in the wind tunnel to obtain directly comparable data to the fluid certification BLDT results. This data could provide insight for developing a correlation between the lift losses observed in the wind tunnel and the fluid certification test.

14.2.2.4 Investigation of 2D vs. 3D Effects

Discussions with industry members have indicated that potential 2D versus 3D effects may be responsible for some of the increased lift losses observed in the wind tunnel. An analytical study (and potential testing if possible) should be conducted to evaluate and quantify the effect of this phenomenon on the testing protocol.

This page intentionally left blank.

REFERENCES

- 1. Ruggi, M., *Preliminary Endurance Time Testing in Simulated Ice Pellet Conditions,* APS Aviation Inc., Transportation Development Centre, Montreal, January 2006, TP 14718E, 42.
- 2. Balaban, G., *Falcon 20 Trials to Examine Fluid Removed from Aircraft During Takeoff with Ice Pellets,* APS Aviation Inc., Transportation Development Centre, Montreal, December 2006, TP 14716E, XX (to be published).
- 3. Ruggi, M., Development of Allowance Times for Aircraft Deicing Operations During Conditions with Ice Pellets, APS Aviation Inc., Transportation Development Centre, Montreal, January 2008, TP 14779E, XX (to be published).
- Ruggi, M., Research for Further Development of Ice Pellet Allowance Times: Aircraft Trials to Examine Anti-Icing Fluid Flow-Off Characteristics Winter 2007-08, APS Aviation Inc., Transportation Development Centre, Montreal, March 2009, TP 14871E, XX (to be published).
- Ruggi, M., Research for Further Development of Ice Pellet Allowance Times: Wind Tunnel Trials to Examine Anti-Icing Fluid Flow-Off Characteristics Winter 2008-09, APS Aviation Inc., Transportation Development Centre, Montreal, November 2009, TP 14935E, 252.
- Chaput, M., Dawson, P., Hanna, M., Contaminated Aircraft Takeoff Test for the 1997/98 Winter, APS Aviation Inc., Transportation Development Centre, Montreal, December 1998, TP 13316E, 54.
- 7. Dawson, P., Hanna, M., *Contaminated Aircraft Takeoff Tests for the 1998-99 Winter*, APS Aviation Inc., Transportation Development Centre, Montreal, October 1999, TP 13479E, 157.
- Dawson, P., Contaminated Aircraft Simulated Takeoff Tests for the 1999-2000 Winter: Preparation and Procedures, APS Aviation Inc., Transportation Development Centre, Montreal, August 2000, TP 13666E, 18
- Campbell, R., Chaput, M., Aircraft Takeoff Test Program for Winter 2001-02: Testing to Evaluate the Aerodynamic Penalties of Clean or Partially Expended De/Anti-Icing Fluid, APS Aviation Inc., Transportation Development Centre, Montreal, November 2002, TP 13995E, 92.

- Chaput, M., Aircraft Takeoff Test Program for Winter 2002-03: Testing to Evaluate the Aerodynamic Penalties of Clean or Partially Expended De/Anti-Icing Fluid, APS Aviation Inc., Transportation Development Centre, Montreal, November 2003, TP 14147E, 92.
- Balaban, G., *Flow of Contaminated Fluid from Aircraft Wings: Feasibility Report*, APS Aviation Inc., Transportation Development Centre, Montreal, January 2008, TP 14778E, XX (to be published).
- 12. Myron, O., Penna, P., *Air-Flap Performance with De-Anti-Icing Fluids and Freezing Precipitation*, National Research Council Canada, Transportation Development Centre, Ottawa, May 1999, TP 13426E, 14.
- Ruggi, M., Exploratory Wind Tunnel Aerodynamic Research Examination of Contaminated Anti-Icing Fluid Flow-Off Characteristics Winter 2009-10, APS Aviation Inc., Transportation Development Centre, Montreal, August 2011, TP 15057E, XX (to be published).
- 14. Youssef, D., *Winter Weather Impact on Holdover Time Table Format* (1995-2010), APS Aviation Inc., Transportation Development Centre, Montreal, October 2010, TP 15051E, 66.
- APS Aviation Inc., Aircraft Ground Icing General Research Activities During the 2009-10 Winter, APS Aviation Inc., Transportation Development Centre, Montreal, March 2011, TP 15053E, XX (to be published).

APPENDIX A

TRANSPORTATION DEVELOPMENT CENTRE WORK STATEMENTEXCERPT – AIRCRAFT & ANTI-ICING FLUID WINTER TESTING 2009-10

TRANSPORTATION DEVLOPMENT CENTRE WORK STATEMENT EXCERPT – AIRCRAFT & ANTI-ICING FLUID WINTER TESTING 2009-10

5.3 Aircraft Performance Research

5.3.1 Wind Tunnel Testing to Refine Allowance Times

- a) Meet with NRC personnel to arrange for access to the Propulsion Wind Tunnel (PWT) in M46 at the NRC Montreal Road facility in Ottawa;
- b) Participate in the development and construction of a new super-critical airfoil model to be used for testing;
- c) Develop a procedure and test plan with the NRC staff that operates the PWT. It is anticipated that one day of setup will be required, followed by a four week test period. It is anticipated that much of the testing will be conducted during overnight hours;
- d) Perform wind tunnel tests to possibly expand current allowance times published by TC and FAA and to validate the results for super-critical airfoils. Testing will also be conducted to potentially develop an allowance time table for use with Type III fluid;
- e) Perform wind tunnel tests with an ethylene glycol and a propylene glycol anti-icing fluid at low temperatures;
- f) Perform wind tunnel tests to simulate low speed and high speed takeoffs in accordance with the speed and angle of attack profiles provided by TDC and airframe manufacturers. The simulated take-off profile will target the clean wing stall angle as the maximum angle of attack in order to better quantify the observed lift losses. The analysis will evaluate the lift results at an angle approximately halfway between the typical angle of attack at rotation and the stall angle;
- g) During contaminated test runs, a baseline fluid only case will be run immediately before, or after the contaminated test run to provide a direct correlation of the results;
- h) Collect the following data during the tests:
 - i. Type and amount of fluid applied;
 - ii. Type and rate of contamination applied; and
 - iii. Extent of fluid contamination prior to the test run.

- Take a series of high resolution photos of the fluid motion at the leading and trailing edges of the wing at a rate of about 3 frames per second, with lighting adequate to see the fluid waves and ripples of about 1mm in height, even when the wing is at the peak angle of attack;
- j) Document the appearance of fluid on the wing during the simulated takeoff run and climb of the aircraft by analyzing the photographic records; and
- k) Report the findings, and prepare presentation material for the SAE G-12 meetings.

APPENDIX B

PROCEDURE: WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLET PRECIPITATION CONDITIONS

WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLETS

WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLET PRECIPITATION CONDITIONS

1. BACKGROUND

Prior to the winter of 2006-07, Holdover Time (HOT) guidance material did not exist for ice pellet conditions, however aircraft could still depart during ice pellet conditions following aircraft deicing and a pre take off contamination check. This protocol was feasible for common air carrier aircraft that provided access to emergency exit windows overlooking the leading edge of the aircraft wings; however, it posed a significant problem for cargo aircraft that have limited visibility of the wings from the cabin.

On December 22, 2004, United Parcel Service (UPS) aircraft in Louisville were grounded for several hours due to extended ice pellet conditions. Due to cargo aircraft configuration, pre-take off contamination checks by the on-board crew were not possible. FedEx had been faced with similar problems in Memphis. Following this event, in October 2005, the FAA issued two notices restricting take offs in ice pellet conditions.

As a result of this costly incident, UPS set out to obtain experimental data to provide guidance and allow operations to continue in ice pellet conditions. During the winter of 2004-05, aerodynamic and endurance time testing were conducted in simulated ice pellet conditions. APS also conducted some preliminary flat plate research (see TP 14718E). Based on the preliminary data, an allowance of 20 minutes in light ice pellet conditions was proposed, however no changes to the HOT guidelines were made.

During the following winter of 2006-07, the FAA provided a 25 minute allowance as a preliminary guideline; TC issued a note indicating that no changes would be made to the HOT guidelines. This allowance was based on the previous research conducted during the winter of 2005-06, primarily as a result of Falcon 20 aerodynamic research (see TP 14716E); these results were presented at the Society of Automotive Engineers (SAE) meeting in Lisbon in May 2006. To address the option of a pre-take off contamination check, the 20 minute targeted allowance was extended to 25 minutes; pre-take off contamination checks would no longer apply. This allowance was followed by a list of conditions; one restriction was that operations would be limited to ice pellets alone (no mixed conditions).

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc

Page 2 of 49

WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLETS

Due to the high occurrence of ice pellets combined with freezing rain or snow, the industry requested additional guidance material for operations in mixed ice pellet conditions. Additional endurance time testing and aerodynamic research were conducted in simulated ice pellet conditions during the winter of 2006-07.

During the winter of 2007-08, the TC and FAA provided allowance time guidance material for operations in mixed conditions with ice pellets guideline. These allowance times were based on the research conducted during the winter of 2006-07 (see TP 14779E). The recommended allowance times were based on aerodynamic research conducted using the $3 \text{ m} \times 6 \text{ m}$ Open Circuit Propulsion and Icing Wind Tunnel (PIWT) and the NRC Falcon 20 aircraft; these results were presented at the SAE meeting in San Diego in May 2007. These allowance time guidelines were followed by a list of restrictions based on the results obtained through the research conducted, and the lack of data in specific conditions.

During the winter of 2008-09, additional endurance time testing and aerodynamic research was conducted to support and further expand the ice pellet allowance times (see TP 14935E). Full-scale testing with the NRC PIWT was conducted in mixed conditions with ice pellets and in non precipitation conditions. Testing was geared towards validating the current ice pellet allowance times, and potentially expanding the guidance material to include different conditions, fluids, and acceleration profiles. A revised version of the ice pellet allowance times was published for the winter of 2009-10; changes were made to the high speed table allowance times only.

It was recommended that additional testing be conducted in the PIWT during the winter of 2009-10 using a super critical wing test model. The objective of the testing is to validate the current allowance times for aircraft with supercritical airfoils, and to potentially expand the results to include different conditions, fluids, and acceleration profiles.

2. OBJECTIVES

The objective of this testing is to conduct aerodynamic testing with a super critical airfoil to:

- Validate the current allowance times for newer generation aircraft (with super critical wings).
- Expand the current allowance times for the following conditions:
 - IP-/SN- conditions below -10°C;
 - IP-/SN conditions below -5°C;

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc

Page 3 of 49

0

Figure 2.1: Super-Critical Wing Section

3. TEST PLAN

The NRC wind tunnel is an open circuit tunnel. The temperature inside the wind tunnel is dependent on the outside ambient temperature. Prior to testing, the weather should be monitored to ensure proper temperatures for testing.

Representative Type I/II/III/IV propylene and ethylene fluids in Neat form (standard mix for Type I) shall be evaluated against their uncontaminated performance; Attachments I to VI present the generic holdover time guidelines for Type I and III fluids and the fluid-specific holdover time guidelines for the representative Type II and IV fluids that will be tested. The current Ice Pellet Allowance Time table has been included in Attachment VII.

A preliminary test calendar summarizing the test objectives is shown in Table 3.1. The calendar indicates the test objectives and target temperatures. It should be noted that the order in which the tests will be carried out will be depend on weather conditions and TC/FAA directive. A detailed preliminary test matrix is shown in Table 3.2.

NOTE: The numbering of the test runs will be done in a sequential order starting with number 1.

Each test shall be comprised of one fluid at one temperature and one contamination scenario. A test series will be comprised of one fluid at one temperature, using one form of contamination, with varying levels of exposure to the contamination. Baseline fluid-only tests are to be conducted following each contaminated test (or series of sequential tests conducted during similar conditions).

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0.\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 5 of 49

		Table 3.1:	Preliminary Test Cale	endar		
Week	Monday	Tuesday	Wednesday	Thursday	Friday	
1	Setup Unload and Organize Equipment	ZR, S, S++, SP, IP Calibration	<-5℃ Type IV HS Validation Super Critical Validation All Cond.	<-10°C Type IV HS Validation Super Critical Validation All Cond.	-25℃ Type IV HS Validatio Super Critical Validatio All Cond.	
	<u>Possibly done before</u> <u>Holiday Shutdown</u>	Dry Run Test	Priority 1	Priority 1	Priority 1	
2	< -10°C Type IV HS Expansion SN/IP and IP/Mod R Priority 1	-5°C Type III All IP Conditions HEATED, COLD, HS AND LS	-10°C Type III All IP Conditions HEATED, COLD, HS AND LS	-25°C Type III All IP Conditions HEATED, COLD, HS AND LS	<-5°C Heavy Snow S++ Priority 1 <-5°C Frost CSW Spot Deicir Frost	
	Fliolity	Priority 1(HS) and 2(LS)	Priority 1(HS) and 2(LS)	Priority 1(HS) and 2(LS)		
3	<-5℃ Heavy Snow S++	<-5⁰C Heavy Snow S++	<-5°C Super Critical vs. Low Speed Airfoil Dry and with fluid	<-5°C Snow on Unprotected Wing SN		
	Priority 1	Priority 1	Priority 2	Priority 2 Priority 2		
4	<-5°C		< -10°C Type IV Low Speed IP, IP-, IP-/S, IP-/SN- (Not Included)	<-5°C LZR and SN Mod ZR-/SN 67 vs. 80 Knots Fluid Only	<-5°C Surface Roughness ZR/IP/SN Snow Pellets SP vs. SN	
	Priority 3	Priority 3	Priority 3	Priority 3	Priority 3	
5	<-5°C Ice Phobic Coatings IP/ZR/SN Type II Low Speed IP, IP-, IP-/S, IP-/SN- Priority 4	Teardown Dismantle Equipment and Bring back to YUL				

Table 3.2: Proposed Test Plan											
Test Plan #	Objective	Priority	Test Condition	Fluid	IP Rate (g/dm²/h)	SN Rate (g/dm²/h)	ZR Rate (g/dm²/h)	R Rate (g/dm²/h)	Exposure Time	Target OAT (°C)	Ramp (kts)
P1	IP Validation	1	IP-	EG 106	25	-	-	-	50	-5	100
P2	IP Validation	1	IP-	ABC-S Plus	25	-	-	-	50	-5	100
P3	IP Validation	2	IP-	Launch	25	-	-	-	50	-5	100
P4	IP Validation	1	IP Mod	EG 106	75	-	-	-	25	-5	100
P5	IP Validation	1	IP Mod	ABC-S Plus	75	-	-	-	25	-5	100
P6	IP Validation	2	IP Mod	Launch	75	-	-	-	25	-5	100
P7	IP Validation	1	IP-/ZR-	EG 106	25	-	25	-	25	-5	100
P8	IP Validation	1	IP-/ZR-	ABC-S Plus	25	-	25	-	25	-5	100
P9	IP Validation	2	IP-/ZR-	Launch	25	-	25	-	25	-5	100
P10	IP Validation	1	IP-/SN-	EG 106	25	10	-	-	25	-5	100
P11	IP Validation	1	IP-/SN-	ABC-S Plus	25	10	-	-	25	-5	100
P12	IP Validation	2	IP-/SN-	Launch	25	10	-	-	25	-5	100
P13	IP Validation	1	IP- / SN	EG 106	25	25	-	-	10	-5	100
P14	IP Validation	1	IP-/SN	ABC-S Plus	25	25	-	-	10	-5	100
P15	IP Validation	2	IP-/SN	Launch	25	25	-	-	10	-5	100
P16	IP Validation	1	IP-	EG 106	25	-	-		30	-10	100
P17	IP Validation	1	IP-	ABC-S Plus	25	-	-	-	30	-10	100
P18	IP Validation	2	IP-	Launch	25	-	-	-	30	-10	100
P19	IP Validation	1	IP Mod	EG 106	75	-	-	-	10	-10	100
P20	IP Validation	1	IP Mod	ABC-S Plus	75	-	-	-	10	-10	100
P21	IP Validation	2	IP Mod	Launch	75	-	-	-	10	-10	100
P22	IP Validation	1	IP-/ZR-	EG 106	25	-	25	-	10	-10	100
P23	IP Validation	1	IP-/ZR-	ABC-S Plus	25	-	25	-	10	-10	100
P24	IP Validation	2	IP-/ZR-	Launch	25	-	25	-	10	-10	100
P25	IP Validation	1	IP- / SN-	EG 106	25	10	-	-	15	-10	100
P26	IP Validation	1	IP- / SN-	ABC-S Plus	25	10	-	-	15	-10	100
P27	IP Validation	2	IP- / SN-	Launch	25	10	-	-	15	-10	100
P28	IP Validation	1	IP-	EG 106	25	-	-	-	30	-25	100
P29	IP Validation	1	IP-	ABC-S Plus	25	-	-	-	30	-25	100
P30	IP Validation	2	IP-	Launch	25	-	-	-	30	-25	100
P31	IP Validation	1	IP Mod	EG 106	75	-	_	-	10	-25	100
P32	IP Validation	1	IP Mod	ABC-S Plus	75	-	-	-	10	-25	100
P33	IP Validation	2	IP Mod	Launch	75	-	-	-	10	-25	100
P34	IP Expansion	1	IP- / SN-	EG 106	25	10	-	-	40	-5	100
P35	IP Expansion	1	IP- / SN-	ABC-S Plus	25	10	-	-	40	-5	100
P36	IP Expansion	2	IP-/SN-	Launch	25	10	-	-	40	-5	100
P37	IP Expansion	1	IP-/SN	EG 106	25	25	-	-	15-20	-5	100
P38	IP Expansion	1	IP-/SN	ABC-S Plus	25	25	-	-	15-20	-5	100
P39	IP Expansion	2	IP-/SN	Launch	25	25	-	-	15-20	-5	100
P40	IP Expansion	1	IP / R Mod	EG 106	25	-	-	75	40	-5	100
P41	IP Expansion	1	IP / R Mod	ABC-S Plus	25	-	-	75	40	-5	100
P42	IP Expansion	2	IP / R Mod	Launch	25	-	-	75	40	-5	100
P43	IP Expansion	1	IP- / SN-	EG 106	25	10	-	-	18	-10	100

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0, Occ Final Version 1.0, December 09

Page 7 of 49

Table 3.2 (cont'd): Proposed Test Plan											
Test Plan #	Objective	Priority	Test Condition	Fluid	IP Rate (g/dm²/h)	SN Rate (g/dm²/h)	ZR Rate (g/dm²/h)	R Rate (g/dm²/h)	Exposure Time	Target OAT (°C)	Ramp (kts)
P44	IP Expansion	1	IP-/SN-	ABC-S Plus	25	10	-	-	18	-10	100
P45	IP Expansion	2	IP- / SN-	Launch	25	10	-	-	18	-10	100
P46	IP Expansion	1	IP- / SN	EG 106	25	25	-	-	5-10	-10	100
P47	IP Expansion	1	IP-/SN	ABC-S Plus	25	25	-	-	5-10	-10	100
P48	IP Expansion	2	IP-/SN	Launch	25	25	-	-	5-10	-10	100
P49	IP Expansion	1	IP- / SN-	EG 106	25	10	-	-	10	-25	100
P50	IP Expansion	1	IP- / SN-	ABC-S Plus	25	10	-	-	10	-25	100
P51	IP Expansion	2	IP- / SN-	Launch	25	10	-	-	10	-25	100
P52	IP Expansion	1	IP-/SN	EG 106	25	25	-	-	5	-25	100
P53	IP Expansion	1	IP-/SN	ABC-S Plus	25	25	-	-	5	-25	100
P54	IP Expansion	2	IP-/SN	Launch	25	25	-	-	5	-25	100
P55	Type III HS	1	IP-	2031 - Hot	25	-	-	-	10	-5	100
P56	Type III HS	1	IP Mod	2031 - Hot	75	-	-	-	5	-5	100
P57	Type III HS	1	IP-/ZR-	2031 - Hot	25	-	25	-	7	-5	100
P58	Type III HS	1	IP- / SN-	2031 - Hot	25	10	-	-	10	-5	100
P59	Type III HS	1	IP-/SN	2031 - Hot	25	25	-	-	10	-5	100
P60	Type III HS	1	IP-	2031 - Hot	25	-	-	-	10	-10	100
P61	Type III HS	1	IP Mod	2031 - Hot	75	-	-	-	5	-10	100
P62	Type III HS	1	IP-/ZR-	2031 - Hot	25	-	25	-	5	-10	100
P63	Type III HS	1	IP- / SN-	2031 - Hot	25	10	-	-	10	-10	100
P64	Type III HS	1	IP-/SN	2031 - Hot	25	25	-	-	5	-10	100
P65	Type III HS	1	IP-	2031 - Hot	25	-	-	-	10	-25	100
P66	Type III HS	1	IP Mod	2031 - Hot	75	-	-	-	5	-25	100
P67	Type III HS	1	IP-	2031 - Cold	25	-	-	-	10	-5	100
P68	Type III HS	1	IP Mod	2031 - Cold	75	-	-	-	5	-5	100
P69	Type III HS	1	IP-/ZR-	2031 - Cold	25	-	25	-	7	-5	100
P70	Type III HS	1	IP- / SN-	2031 - Cold	25	10	-	-	10	-5	100
P71	Type III HS	1	IP-/SN	2031 - Cold	25	25	-	-	10	-5	100
P72	Type III HS	1	IP-	2031 - Cold	25	-	-	-	10	-10	100
P73	Type III HS	1	IP Mod	2031 - Cold	75	-	-	-	5	-10	100
P74	Type III HS	1	IP-/ZR-	2031 - Cold	25	-	25	-	5	-10	100
P75	Type III HS	1	IP- / SN-	2031 - Cold	25	10	-	-	10	-10	100
P76	Type III HS	1	IP- / SN	2031 - Cold	25	25	-	-	5	-10	100
P77	Type III HS	1	IP-	2031 - Cold	25	-	-	-	10	-25	100
P78	Type III HS	1	IP Mod	2031 - Cold	75	-	-	-	5	-25	100
P79	Type III LS	2	IP-	2031 - Hot	25	-	-	-	10	-5	80
P80	Type III LS	2	IP Mod	2031 - Hot	75	-	-	-	5	-5	80
P81	Type III LS	2	IP-/ZR-	2031 - Hot	25	-	25	-	7	-5	80
P82	Type III LS	2	IP- / SN-	2031 - Hot	25	10	-	-	10	-5	80
P83	Type III LS	2	IP-/SN	2031 - Hot	25	25	-	-	10	-5	80
P84	Type III LS	2	IP-	2031 - Hot	25	-	-	-	10	-10	80
P85	Type III LS	2	IP Mod	2031 - Hot	75	-	-	-	5	-10	80
P86	Type III LS	2	IP-/ZR-	2031 - Hot	25	-	25	-	5	-10	80
P87	Type III LS	2	IP-/SN-	2031 - Hot	25	10	-	-	10	-10	80
P88	Type III LS	2	IP-/SN	2031 - Hot	25	25	-	-	5	-10	80
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_ _		2001 1100			I		5	1 10	

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0,doc Final Version 1.0, December 09

Page 8 of 49
			Ta	ble 3.2 (co	nt'd): Pro	oposed 1	Fest Plar	ı			
Test Plan #	Objective	Priority	Test Condition	Fluid	IP Rate (g/dm²/h)	SN Rate (g/dm²/h)	ZR Rate (g/dm²/h)	R Rate (g/dm²/h)	Exposure Time	Target OAT (°C)	Ramp (kts)
P89	Type III LS	2	IP-	2031 - Hot	25	-	-	-	10	-25	80
P90	Type III LS	2	IP Mod	2031 - Hot	75	-	-	-	5	-25	80
P91	Type III LS	2	IP-	2031 - Cold	25	-	-		10	-5	80
P92	Type III LS	2	IP Mod	2031 - Cold	75	-	-	-	5	-5	80
P93	Type III LS	2	IP-/ZR-	2031 - Cold	25	-	25	-	7	-5	80
P94	Type III LS	2	IP- / SN-	2031 - Cold	25	10	-	-	10	-5	80
P95	Type III LS	2	IP-/SN	2031 - Cold	25	25	-	-	10	-5	80
P96	Type III LS	2	IP-	2031 - Cold	25	-	-	-	10	-10	80
P97	Type III LS	2	IP Mod	2031 - Cold	75	-	-	-	5	-10	80
P98	Type III LS	2	IP-/ZR-	2031 - Cold	25	-	25	-	5	-10	80
P99	Type III LS	2	IP-/SN-	2031 - Cold	25	10	-	-	10	-10	80
P100	Type III LS	2	IP- / SN	2031 - Cold	25	25	-	-	5	-10	80
P101	Type III LS	2	IP-	2031 - Cold	25	-	-		10	-25	80
P102	Type III LS	2	IP Mod	2031 - Cold	75	-	-	-	5	-25	80
P103	Heavy Snow	1	S	ABC-S Plus	-	25	-	-	See HOT	< -5	100
P104	Heavy Snow	1	S++	ABC-S Plus	-	50	-	-	1/2 of HOT	< -5	100
P105	Heavy Snow	1	S++	ABC-S Plus	-	50	-	-	3/4 of HOT	< -5	100
P106	Heavy Snow	1	S	Launch	-	25	-	-	See HOT	< -5	100
P107	Heavy Snow	1	S++	Launch	-	50	-	-	1/2 of HOT	< -5	100
P108	Heavy Snow	1	S++	Launch	-	50	-	-	3/4 of HOT	< -5	100
P109	Heavy Snow	1	S	EG 106	-	25	-	-	See HOT	< -5	100
P110	Heavy Snow	1	S++	EG 106	-	50	-	-	1/2 of HOT	< -5	100
P111	Heavy Snow	1	S++	EG 106	-	50	-	-	3/4 of HOT	< -5	100
P112	Heavy Snow	1	S	2031 - Cold	-	25	-	-	See HOT	< -5	100
P113	Heavy Snow	1	S++	2031 - Cold	-	50	-	-	1/2 of HOT	< -5	100
P114	Heavy Snow	1	S++	2031 - Cold	-	50	-	-	3/4 of HOT	< -5	100
P115	SCrit Airfoil Comp	2	None	Dry		See Details	in Procedure		-	< -5	100
P116	SCrit Airfoil	2	None	Anv		See Details	in Procedure		_	< -5	100
D117	Comp	-	Nono	Day Cold Ming		See Details	in Dracadura			- F	100
P117	SIN W/ INO FIUID	2	None	Dry - Cold Wing		See Details			-	<->	100
P118	SN w/ No Fluid	2	None	Wing		See Details	in Procedure		-	< -5	100
P119	Frost	2	Frost	Any		See Details	in Procedure		until Failure	<-5	100
P120	Frost	2	Frost	Any		See Details	in Procedure		No Fail	<-5	100
P121	Runway Deicier	3	ZR	Safeway +Any		See Details	in Procedure		See HOT	< -5	100
P122	Composite	3	ZR	Octaflo		See Details	in Procedure		See HOT	< -5	100
P123	Composite	3	ZR	Octaflo		See Details	in Procedure		HOT +30%	< -5	100
P124	LS Type IV IP	3	IP-	Type IV		Extra tests in	separate log	1	-	< -5	80
P125	LZR / SN	3	LZR / SN	Type IV	-	25	25	-	See HOT	< -5	100
P126	67 vs 80	3	None	Type IV		See Details	in Procedure		-	< -5	100
P127	Roughness	3	ZR/IP/SN	Dry		See Details	in Procedure		-	< -5	100
P128	Snow Pellets	2	SP and S	Diluted TIV		See Details	in Procedure		See HOT	<-5	100
P129	Ice Phobic	4	ZR	Type IV		See Details	in Procedure		See HOT	< -5	100
P130	Type II IP	4	All	Type IV	Ne	ed T II fluid f	o conduct te	sts	-	< -5	100

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0, Occ Final Version 1.0, December 09

Page 9 of 49

A rating system has been developed and will be filled out by the onsite experts (Attachment XIV). The overall rating will provide insight into the severity of the conditions observed. A test failure (failure to shed the fluid at time of rotation) shall be determined by the on-site experts based on residual contamination. The first test in each series will closely emulate expected holdover time or allowance time. The second test will effectively double or halve the first time depending on whether failure to clear has occurred. The third test will double or halve the previous time or halve the interval to the previous test depending on the failure history. This decision matrix is shown in Figure 3.1 with a beginning exposure time of 60 minutes.

Figure 3.1: Decision Matrix for Each Test Series

4. PRE-TEST SETUP

The following describes the activities to be performed prior to the conduct of any tests:

- Co-ordinate with NRC wind tunnel personnel;
- Co-ordinate with APS photographer;
- Conduct dry photography test of old vs. new camera positioning;
- Document new final camera and flash locations;
- Arrange for hotel accommodations for APS personnel;
- Ensure availability of de/anti-icing fluid (shipped directly to NRC);
- Conduct falling ball tests on received fluids;

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0, doc Final Version 1.0, December 09 Page 10 of 49

- Collect fluid samples for viscosity verification at APS office;
- Arrange personnel travel to Ottawa;
- Ensure proper functioning of ice pellet dispenser equipment;
- Ensure proper functioning of freezing rain sprayer equipment;
- Mark wing data collection locations and draw grid on the wing (refer to Feasibility report for diagrams);
- Prepare and arrange for transport of equipment to Ottawa;
- Co-ordinate fabrication of ice pellets/snow/snow pellets; and
- Arrange for storage of ice pellets/snow/snow pellets.

The task list for setup and testing is included as Attachment VIII.

5. DATA FORMS

The following data forms are required for the January – February 2010 wind tunnel tests:

- Attachment IX General Form;
- Attachment X Wing Temperature, Fluid Thickness and Fluid Brix Form;
- Attachment XI & XII Ice Pellet and Snow Dispensing Forms;
- Attachment XIII- Sprayer Calibration Form;
- Attachment XIV Visual Evaluation Rating Form
- Attachment XV- Condition of Wing and Plate Form; and
- Attachment XVI Fluid Receipt Form (Generic form used by APS; will be used for this project as appropriate);
- Attachment XVII Log of Fluid Sample Bottles.

When and how the data forms will be used is described throughout Section 6.

6. PROCEDURE

The following sections describe the tasks to be performed during each test conducted. It should be noted that some sections (i.e. fluid application and contamination application) will be omitted depending on the objective of the test.

6.1 Initial Test Conditions Survey

- Record ambient conditions of the test (Attachment IX); and
- Record wing temperature (Attachment X).

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 11 of 49

WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLETS 6.2 Fluid Application (Pour) • Hand pour 20L of anti-icing fluid over the test area (fluid can be poured directly out of pales or transferred into smaller 3L jugs); Record fluid application times (Attachment IX); Record fluid application quantities (Attachment IX); Let fluid settle for 5 minutes; Measure fluid thickness at pre-determined locations on the wing ٠ (Attachment X); Record wing temperature (Attachment X). Measure fluid Brix value (Attachment X); and Photograph and videotape the appearance of the fluid on the wing; Note: At the request of TC/FAA, a standard aluminum test plate will be positioned on the wing in order to run a simultaneous endurance time test. 6.3 **Application of Contamination** 6.3.1 Ice Pellet/Snow Dispenser Calibration and Set-Up Calibration work was performed during the winter of 2007-08 on the modified ice pellet/snow dispensers prior to testing with the Falcon 20. The purpose of this calibration work was to attain the dispenser's distribution footprint for both ice pellets and snow. A series of tests were performed in various conditions: 1. Ice Pellets, Low Winds (0 to 5 km/h); 2. Ice Pellets, Moderate Winds (10 km/h); 3. Snow, Low Wind (0 to 5 km/h); and 4. Snow, Moderate Wind (10 km/h). These tests were conducted using 121 collection pans, each measuring

These tests were conducted using 121 collection pans, each measuring 6×6 inches, over an area 11 x 11 feet. Pre-measured amounts of ice pellets/snow were dispersed over this area and the amount collected by each pan was recorded. A distribution footprint of the dispenser was attained and efficiency for the dispenser was computed.

6.3.2 Dispensing Ice Pellets/Snow for Wind Tunnel Tests

Using the results from these calibration tests, a decision was made to use two dispensers on each of the leading and trailing edges of wing; each of the four dispensers are moved to four different positions along each edge during the dispensing process. Attachments XI and XII display the data sheets that will be used during testing in the wind tunnel. These data sheets will provide all the

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 12 of 49

necessary information related to the amount of ice pellets/snow needed, effective rates and dispenser positions.

Note: Dispensing forms should be printed for each run and included along with data forms. Any comments regarding dispensing activities should be documented directly on the dispensing form. Information regarding ice pellet and snow precipitation should also be filled out in the General Form (Attachment IX).

6.3.3 Application of Freezing Rain/Drizzle

- Ensure correct rate of precipitation is being generated by NRC freezing precipitation sprayer (see Attachment XIII);
- Record rate of precipitation dispersed (Attachment IX);
- Record application times (Attachment IX); and
- Photograph and videotape the appearance of the fluid on the wing.

6.4 Prior to Engines-On Wind Tunnel Test

- Measure fluid thickness at the pre-determined locations on the wing (Attachment X);
- Measure fluid Brix value (Attachment X);
- Record wing temperatures (Attachment X);
- Record start time of test (Attachment IX); and
- Fill out visual evaluation rating form (Attachment XIV).

Note: In order to minimize the measurement time post precipitation, temperature should be measured 5 minutes before the end of precipitation, thickness measured 3 minutes before the end of precipitation, and Brix measured when the precipitation ends. Also consider reducing the number of measures that are taken for this phase (i.e. locations 2 and 5 only).

6.5 During Wind Tunnel Test:

- Take still pictures/videotape the behavior of the fluid on the wing during the takeoff run, capturing any movement of fluid/contamination;
- Fill out visual evaluation rating form at the time of rotation (Attachment XIV);and
- Record wind tunnel operation start and stop times.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 13 of 49

WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLETS 6.6 After the Wind Tunnel Test: • Measure fluid thickness at the pre-determined locations on the wing (Attachment X); Measure fluid Brix value (Attachment X); • Record wing temperatures (Attachment X); Observe and record the status of the fluid/contamination (Attachment XV); • Fill out visual evaluation rating form (Attachment XIV); Obtain lift data (excel file) from NRC; and Update APS test log with pertinent information. 6.7 Fluid Sample Collection for Viscosity Testing Two litres of each fluid to be tested are to be collected on the first day of testing. The fluid receipt form (Attachment XVI) should be completed indicating quantity of fluid and date received. Any samples extracted for viscosity purposes should be documented in the log of fluid samples data form (Attachment XVII). A falling ball viscosity test should be performed on site to confirm that fluid viscosity is appropriate before testing. 6.8 At the End of Each Test Session

If required, APS personnel will collect the waste solution. At the end of the testing period, the services of Safety-Kleen (or other glycol recovery service) will be employed to safely dispose of the waste glycol fluid.

6.9 Camera Setup

It is anticipated that the camera setup will be similar to the setup used during the winter of 2008-09. Modifications may be necessary to account for the different airfoil. The flashes will be positioned on the control-room side of the tunnel, and the cameras will be positioned on the opposite side. The final positioning of the cameras and flashes should be documented to identify any deviation from the previous year's setup.

6.10 Demonstration of a Typical Wind Tunnel Test Sequence

Table 6.1 demonstrates a typical Wind Tunnel test sequence of activities, assuming the test starts at 08:00:00. Figure 6.1 demonstrates a typical wind tunnel run timeline.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 14 of 49

TIME	TASK
8:00:00	START OF TEST. ALL EQUIPMENT READY.
8:00:00	- Record test conditions.
8:05:00	- Prepare wing for fluid application (clean wing, etc).
8.15.00	- Measure wing temperature.
8.15.00	- Ensure clean wing for fluid application
8:20:00	- Pour fluid over test area.
8.30.00	- Measure Brix, thickness, wing temperature.
8.30.00	- Photograph test area.
8:35:00	- Apply contamination over test area. (i.e. 30 min)
0.05.00	- Measure Brix, thickness, wing temperature.
3.05.00	- Photograph test area.
9:10:00	- Clear area and start wind tunnel
9:25:00	- Wind tunnel stopped
	- Measure Brix, thickness, wing temperature.
9:35:00	- Photograph test area.
	- Record test observations
9:45:00	END OF TEST

Table 6.1: Typical Wind Tunnel Test

Figure 6.1: Typical Wind Tunnel Run Timeline

6.11 Procedure for Application of Heated Type III Fluid for Wind Tunnel Tests

Testing with Type III fluid will require testing with both fluid at ambient temperature, and heated fluid. A procedure has been developed to describe the heating and application methods for the Type III heated tests and is included in Attachment XVIII.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0, December 09

Page 15 of 49

6.12 Procedures for R&D Activities

It is anticipated that testing will be conducted to support several research and development (R&D) activities. The objectives of these lower priority activities are as follows:

- 1. Super-critical vs. Low Speed Airfoil (Attachment XIX);
- 2. Aerodynamic testing in heavy snow conditions (Attachment XX);
- 3. Low Low Speed vs. Low Speed (Attachment XXI);
- Effect of ice phobic coatings on contaminated airfoil aerodynamic performance (Attachment XXII);
- Reduced Type I endurance times on composite surfaces (Attachment XXIII);
- Surface roughness as a result of adhered contamination (Attachment XXIV);
- Anti-icing fluid exposed to simulated snow pellet conditions (Attachment XXV);
- 8. Light Freezing Rain and Snow (Attachment XXVI);
- 9. Snow on an un-protected wing (Attachment XXVII);
- 10. Degraded Anti-icing Fluid Performance Following Contamination with Runway Deicing Fluid (Attachment XXVIII); and
- 11. Frost CSW Spot Deicing (Attachment XXIX).

As these full-scale R&D activities have in general not been previously attempted, brief summaries of the anticipated procedures have been prepared to provide guidance at the time of testing. These procedures are attached to this document as indicated in parentheses above. The procedures are preliminary and may change based on the results obtained in the wind tunnel.

7. EQUIPMENT

Equipment to be employed is shown in Table 7.1.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 16 of 49

Table 7.1:	Test Ec	uipment Checklist	
EQUIPMENT	STATUS	EQUIPMENT	STATU
General Support Equipment		Ice Pellets Fabrication Equipment	
Large tape measure		Refrigerated Truck	
Fluids (ORDER and SHIP to Ottawa)		Ice pellets Styrofoam containers x20++	
Horse and tap for fluid barrel x 2		Ice bags	
Funnels		Ice bags storage freezer	
Sample bottles for viscosity measurement		Blenders x6 +	
Squeegees		Ice pellets sieves	
Isopropyl		Folding tables	
Gloves, paper towel		Measuring cups	
Extension cords		Wooden Spoons	
Clipboards, pencils, wing markers for sample locations and solvent		Rubber Mats	
Large Clock x1		Extension Cords	L
Printer, printer paper, and ink cartridge			I
Walkie Talkies x8		Freezing Rain Equipment	
Envelopes and labels		NRC Freezing rain sprayer	
Previous 05-06, 06-07, 07-08, and 08-09 F20/WT reports		APS PC equipped with rate station software	
Grid Section + Location docs		White plastic rate pans (100) wooden boards, and rubber suction cup feet	
Large Sharpies for Gird Section		Sartorius Wiegh Scale x1 + NCAR Scale x 1	
Projector for laptop		Black Shelving Unit	
YOW employee contracts		Portable hard drive and memory card reader	
Blow Horns x4			
Camera Equipment			
Digital still cameras x4 (with lenses, chargers, batteries, etc)			
Test Equipment			
Test Procedures, data forms, printer paper			
Electronic copy of the whole wind tunnel procedure folder, incl all forms and working docs (maybe Falcon too).			
Hard Drive			
Test Plate			
Speed tape			
Thickness Gauges			
Temperature Probe x 2 and spare batteries			
Brixometers X3			
Adherence Probes (Oral B) x4 with tips and charger			
Fluid pouring jugs x30 (6 per fluid + extra)			
Ice pellets dispersers x6			
Stands for ice pellets dispensing devices x6			
Ice Pellet control wires and boxes (all)			
Ice pellet box supports for railing x4			
Hot Plate x3 and Large Pots with rubber handles			
Watmans Paper and conversion charts			
Snow Pellet and Snow Large Dispensing Spoon x6			
Long Ruler for marking wing x2			
Small 90° aluminum ruler for wing			
20L containers (DY order from YUL)			
hard water chemicals			
ce Phobic Product (Nusil or PowerNano)			
Poster board (8"x3") for flap section			

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0, December 09 Final Version 1.0, December 09

Page 17 of 49

8. FLUIDS

Mid-viscosity samples of ethylene glycol and propylene glycol fluids will be used in the wind tunnel tests. Although the number off tests conducted will be determined based on the results obtained, the required fluid quantities were estimated and are shown in Table 8.1. Fluid application will be performed by pouring the fluid (rather than spraying) to reduce any shearing to the fluid.

Fluid	Туре	Dilution	Viscosity	Quantity (L)
Octagon Octaflo (PG)	I	Concentrate	N/A	100
Clariant MP III 2031	ш	100/0	Mid	800
DOW UCAR EG 106	IV	100/0	Mid	900
Kilfrost ABC-S +	IV	100/0	Mid	900
Clariant MP IV Launch	IV	100/0	Mid	800

Table 8.1: Fluid Requirements for Wind Tunnel Tests

9. PERSONNEL

Five APS staff members are required for the tests at the NRC wind tunnel. Four additional persons will be required from Ottawa for making and dispensing the ice pellets and snow. One additional person from Ottawa will be required to photograph the testing. Table 9.1 demonstrates the personnel required and their associated tasks.

Fluid and ice pellets applications will be performed by APS/YOW personnel at the NRC wind tunnel. NRC personnel will operate the NRC wind tunnel and operate the freezing rain/drizzle sprayer.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 18 of 49

	Wind Tunnel 08-09 - Tentative
Person	Responsibility
John	Overall Co-ordinator
Marco	Co-ordinator / General
Victoria	IP Manager / Camera Documentation / Fluid Manager
Michelle	Forms & Data Collection Manager / YOW Pers. Manager
Dave	Data Collection /IP Support / Fluid Application
	YOW Personnel
Ben	Photography
Mike	Fluids / IP / Dispensing
Eric	Fluids / IP / Dispensing
YOW 1	Fluids / IP / Dispensing
YOW 2	Fluids / IP / Dispensing

Table 9.1: Personnel List

* Consider Ryan, Mike or Eric for YOW positions

NRC Institute of Aerospace Research

- Eric Perron: (613) 229-2058
- Marc MacMaster: (613) 998-6932

10. SAFETY

- All personnel must be familiar with the Material Safety Data Sheets (MSDS) for fluids;
- Prior to operating the wind tunnel, loose objects should be removed from the vicinity;
- When wind tunnel is operating, ensure that ear plugs are worn if necessary and personnel keep safe distances;
- When working on ladders, ensure equipment is stable;
- Appropriate footwear and clothing for frigid temperatures are to be worn by all personnel;
- Caution should be taken when walking in the test section due to slippery floors, and dripping fluid from the wing section;
- If fluid comes into contact with skin, rinse hands under running water; and
- If fluid comes into contact with eyes, flush with the portable eye wash station.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0, December 09

Page 19 of 49

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B./Appendix B./acocx Final Version 1.0, October 20

······································	101 101010-0		5 NANG 105				100000 - 11		
ransport C	anada Hol	dover Time G	Guidelines				Winter	2009-2	
			т	ABLE 2-Gener	ic				
	T 1 (F 1)	SAE IYPE				ER 2009-2010'	1055		
	THE	RESPONSIBILITY							
Outs	side Air perature	Type II Fluid Concentration	Ap	proximate Hol	dover Times Un (hours:n	der Various Wea ninutes)	ther Conditions		
Degrees Celsius	Degrees Fahrenheit	Neat Fluid/Water (Volume %/Volume %)	Freezing Fog	Snow or Snow Grains ⁶	Freezing Drizzle ⁴	Light Freezing Rain	Rain on Cold Soaked Wing	Other ²	
	2000 12	100/0	0:35 – 1:30	0:20 - 0:45	0:30 - 0:55	0:15 - 0:30	0:05 - 0:40		
-3 and	27 and above	75/25	0:25 - 1:00	0:15 - 0:30	0:20 - 0:45	0:10 - 0:25	0:05 - 0:25	1	
doore	usore	50/50	0:15 - 0:30	0:05 - 0:15	0:05 - 0:15	0:05 - 0:10			
below -3	below 27	100/0	0:20 - 1:05	0:15 - 0:30	0:20 - 0:45 ³	0:10 - 0:20 ³	CAUTIO	N:	
to -14	to 7	75/25	0:25 - 0:50	0:10 - 0:20	0:15 - 0:30 ³	0:05 - 0:15 ³	time guidel	No holdover time guidelines	
to -25 or	to -13 or	100/0	0:15 - 0:35 ⁵	0:15 - 0:30 ⁵			exist		
These holdover These holdover Ensure that the Use light freezir AUTIONS The only acceptime table cell. The time of prr High wind vele Holdover time Fluids used du	times only apply ng rain holdover t lowest operation ng rain holdover t ptable decision-i- otection will be s ocity or jet blast may be reduced uring ground dei	intes, indecise are analy to outside aft positive identifi imes in conditions of making criterion, for shortened in heavy may reduce holdow When aircraft skin icing/anti-icing do n	atures to -10°C (1. fication of freezing (JUT) is respected light snow mixed v r takeoff without : weather condition er time. temperature is lo ot provide in-fligi	A set of the set of th	ng drizzle and light sible. Type I when Type ntamination inspe itation rates, or h e air temperature. on.	freezing rain. Il fluid cannot be u ction, is the shorta Igh moisture conte	sed. er time within the ag	pplicable f	
				Page 10 of 4	6			July	

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B./Appendix B./Appendix D./Appendix D./Ap

Transport	Canada H	oldover Tim	e Guidel	ines					Wint	er 2009-2		
					TABLE 3							
	1223	SAE TYP	PE III FLUI	ID HOLDO	VER GUIDI	ELINES FOR	WINTER 20	009-2010				
0		E RESPONSIBILI	TY FOR THE		ATION OF T	HESE DATA	REMAINS \	WITH THE US	SER			
Tem	perature ³	Type III Fluid Concentration		Approx	kimate Hold	uover rimes (r	ninutes)		Conditions	1		
Degrees	grees Degrees	Degrees	Neat Fluid/Water	Neat Fluid/Water	Freezing	Snow or Snow Grains			Freezing	Light Freezing	Cold	Other ²
Celsius	Fahrenheit	(Volume %/Volume %)	Fog	Very Light ⁴	Light ⁴	Moderate	Drizzle'	Rain	Soaked Wing			
-3 and	27 and	100/0	20 - 40	35	20 - 35	10 - 20	10 - 20	8-10	6-20			
above	above	75/25	15 - 30 10 - 20	25	15-25	8-15	8-15	6-10	2-10	1		
below -3	below 27 to	100/0	20 - 40	30	15 - 30	9-15	10 - 20	8-10	CAU	TION:		
to -10	14	75/25	15 - 30	25	10 - 25	7 – 10	9 – 12	6-9	time g	time guidelines		
below -10	below 14	100/0	20 - 40	30	15 – 30	8 – 15			e	:XISL		
1 lse light fre	ezing rain holdow	er times in condition:	s of light snow	v mixed with	light rain.							
CAUTIONS The only at time table (High wind Holdover ti Fluids used	cceptable decisi sell. welocity or jet bl me may be redu d during ground	on-making criterion ast may reduce hol ced when aircraft s deicing/anti-icing c	i, for takeoff i dover time. kin temperat lo not provid	without a p ure is lowe e in-flight id	re-takeoff co r than outsic cing protect	ontamination de air tempera ion.	inspection, is	s the shorter t	ime within th	e applicable f		

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B.docx Final Version 1.0, October 20

ansport can	nada Hol	dover Time (Guidelines				Winter	2009
			•	TABLE 4-D-E10	06			
	DOW		TYPE IV FL UCAR™		R GUIDELINES	FOR WINTER 20	09-2010 ¹	
Outside	e Air	Type IV Fluid		proximate Hole	dover Times Un	der Various Weat	her Conditions	
Degrees I Celsius Fa	Degrees Fahrenheit	Fluid/Water	Freezing Fog	Snow or Snow	Freezing Drizzle ⁴	Light Freezing Rain	Rain on Cold Soaked Wing	Other ²
-3 and	27 and	100/0	2:05 - 3:10	0:40 – 1:20	1:10 - 2:00	0:50 - 1:15	0:20 - 2:00	
above	above	50/50					CAUTIO	N -
below -3 to -14	below 27 to 7	100/0	1:50 - 3:20	0:30 - 1:05	0:55 - 1:50 ³	0:45 – 1:10 ³	No holdover time guidelines	
below -14 to -25 or LOUT ⁵	below 7 to -13 or LOUT ⁵	100/0	0:30 - 1:05 ⁵	0:15 – 0:30 ⁵			exist	
Heavy snow, snow p These holdover time Use light freezing ra Ensure that the lowe Use light freezing ra UTIONS The only acceptabl time table cell. The time of protect High wind velocity Holdover time may Fluids used during	r pellets, ice p ness only apply rain holdover t west operation rain holdover t ble decision- ction will be- ction will be- y or jet blast y be reduced g ground de	ellets, moderate and 1 to outside air temper times if positive identi lai use temperature (L inmes in conditions of making criterion, fo shortened in heavy may reduce holdow d when aircraft skin icing/anti-icing do n	heavy freezing rais ratures to -10°C (1 fication of freezing .OUT) is respecte- light snow mixed v r takeoff without r takeoff without weather conditio er time. temperature is lo ot provide in-flig	n, and hail. 4 ¹⁵) under freezi drizzle is not post d. Consider use c with light rain. a pre-takeoff co ns, heavy precip wer than outsid ht icing protecti Page 27 of f	ng drizzle and light ssible. (Type I when Type ntamination inspe oitation rates, or h e air temperature on.	freezing rain. a IV fluid cannot be i action, is the shorth igh moisture conte	used. er time within the a ent.	pplicable

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B.docx Final Version 1.0, October 20

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20

	anada Ho	dover Time (Guidelines				Winter	2009
			т	ABLE 4-C-Laur	ich			
	C		PE IV FLUID SAFEWI	HOLDOVER GI	JIDELINES FOR	WINTER 2009-20	010 ¹	
Out	side Air	Type IV Fluid	pe IV Fluid neentration (hours:minutes)					
Degrees Celsius	Degrees Fahrenheit	Neat Fluid/Water (Volume %/Volume %)	Freezing Fog	Snow or Snow Grains ⁶	Freezing Drizzle⁴	Light Freezing Rain	Rain on Cold Soaked Wing	Other
3 and	27 and	100/0	4:00 - 4:00	1:05 - 1:45	1:30 - 2:00	1:00 - 1:40	0:15 - 1:40	
above	above	75/25	3:40 - 4:00	1:00 - 1:45	1:40 - 2:00	0:45 - 1:15	0:10 - 1:45	J
Constantion and the		50/50	1:25 - 2:45	0:25 - 0:45	0:30 - 0:50	0:20 - 0:25		
to -14	to 7	75/25	1:00 - 1:55	0.50 - 1.20 0.45 - 1.25	0.35 - 1.40 $0.25 - 1.10^3$	0.25 - 0.45 $0.25 - 0.45^3$	No holdov	ver
below -14 to -25 or LOUT ⁵	below 7 to -13 or LOUT ⁵	100/0	0:30 - 0:50 ⁵	0:15 - 0:30 ⁵	0.20 - 1.10	0.20 - 0.40	time guidel exist	ines
Heavy snow, sr These holdover Use light freezil Ensure that the USe light freezil UTIONS The only acceptime table cell. The time of pr High wind veld Holdover time Fluids used du	now pellets, ice p times only apping rain holdover lowest operation ng rain holdover ptable decision otection will be bocity or jet blas may be reduce uring ground do	ellets, moderate and times if positive identi al use temperature (I times in conditions of -making criterion, fo shortened in heavy tay reduce holdov d when aircraft skin icing/anti-icing do n	heavy freezing rais ratures to -10°C (1 fication of freezing JUT) is respecte light snow mixed to r takeoff without weather conditio er time. temperature is lo tot provide in-flig	n, and hail. 4*P) under freezi drizzle is not poo d. Consider use o with light rain. a pre-takeoff co ns, heavy precip ower than outsid ht icing protectio	ng drizzle and light ssible. f Type I when Type ntamination inspec bitation rates, or h e air temperature.	freezing rain. • IV fluid cannot be u ection, is the short high moisture conte	ised. er time within the a ent.	pplicable
				Page 25 of 4	46			Jul

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B./Appendix B./Appendix D./Appendix D./Ap

A I I ACHIVIEN I VII – Ice Pellet Allowance I ime Table									
	TABLE 10								
ICE PELLET ALLOWAN	ICE TIMES FOR WI	NTER 2009-2010							
	OAT -5°C and above	OAT less than -5°C to -10°C	OAT less than -10°C						
Light Ice Pellets	50 minutes	30 minutes	30 minutes						
Moderate Ice Pellets	25 minutes	10 minutes	10 minutes						
Light Ice Pellets Mixed with Light or Moderate Freezing Drizzle	25 minutes	10 minutes							
Light Ice Pellets Mixed with Light Freezing Rain	25 minutes	10 minutes							
Light Ice Pellets Mixed with Light Rain	25 minutes		Caution: No allowance time						
Light Ice Pellets Mixed with Moderate Rain	25 minutes		currently exist						
Light Ice Pellets Mixed with Light Snow	25 minutes	15 minutes]						
Light Ice Pellets Mixed with Moderate Snow	10 minutes		-						

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0, December 09

Page 26 of 49

	ATTACHIVIENT VIII - Task List for Set	up anu Ac	ual lests
No.	Task	Person	Status
	Planning and Preparation		
1	Co-ordinate with NRC wind tunnel personnel	MR/JD	
2	Ensure fluid is received and is stored outdoors	MR/JD	
3	Co-ordinate with APS photographer	MR	
4	Arrange for hotel accommodations for APS personnel	MP	
5	Arrange personnel travel to Ottawa;	MP/VZ	
6	Hire YOW personnel	DY/MP	
7	Ensure proper functioning of ice pellet dispenser equipment;	MR/VZ	
8	Ensure proper functioning of freezing rain sprayer equipment;	MR	
9	Prepare and Arrange Office Materials to YOW	MP	
10	Prepare and Arrange Site Equipment to YOW	DY/VZ	
11	Prepare Data forms and procedure	MP	
12	Figure 1 est Log (See JD with it)		
13	Arrange for freezer storage of ice pellete/apow/apow/ pellete		
14	Arrange for neezer storage of ice penets/snow/snow pellets.		
10	Undete IP Pate File		
17	Check with NRC the status of the testing site, tupped atc		1
10	Check weather prior to establishing test dates	MP	
19	Investigate method of lifting 1000L Totes 15-20" of ground (How	DY/MR	1
20	many cement blocks) Purchase new 20 L containers	DY	
	Monday Jan 4		
21	Pack and leave YUL for YOW on Jan 4th	APS	
22	Complete contract for YOW personnel	MP/YOW	
23	Safety Briefing & Training	MR	
24	Unload Truck	APS	
25	Organize all Equipment in Lower Level of Wind Tunnel	DY/YOW	
26	Setup rate station	DY	
27	Setup Projector	MP	
28	Setup printer	MP	
29	Setup IP/SN manufacturing material	VZ	
30	Test and prepare IP dispensing equipment	VZ	
31	Ice and freezer delivery	DY	
32	Organize Fluid Outside (labels and fluid receipt forms)	MP/DY/YOW	
33	Transfer Fluids from 1000 L Totes to 20 L containers.	MP/DY/YOW	
	Tuesday Jan 5		
34	Verify ZR sprayer installation	MR	
35	Train IP making personnel	VZ/YOW	Mike and Eric will train other
36	Conduct dry photography test of old vs. new camera positioning;	BG/MR	Jessie
37	Document new final camera and flash locations	VZ/BG	
38	Conduct falling ball tests on received fluids;	MP/DY	
39 40	Collect fluid samples for viscosity verification at APS office;	MP/DY	
41	Mark wing data collection locations and draw grid on the wing (refer to Feasibility report for diagrams);	VZ/DY	
42	Co-ordinate fabrication of ice pellets/snow/snow pellets	VZ	
43	ZR Calibration	DY/MP	
44	IP/SN Calibration (confirm rates with spot check with rate pan)	DY/VZ	
45	IP manufacturing	YOW's	
46	Dry Run of tests (APS / NRC)	APS/NRC	
	Each Testing Day		
47	Check with NRC the status of the testing site, tunnel etc	MR	
48	Check weather prior to establishing test dates	MR	
49	Prepare equipment and fluid to be used for test	DY	
50	Manufacture ice pellets	VZ/YOW	
51	Arrange for photo doc. of the test	MR	
52	Prepare data forms for test	MP	
53	Conduct tests based on test plan	APS	
54	Modify test plan based on results obtained	WU/JD/MR	
55	Update IP/S Inventory	VZ/YOW	
56	Update Ice Quantity	VZ/YOW	
57	Update Fluid Quantity	MP/DY	
	Undete Test Plan	MD	

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0, doc Draft Version 1.0, December 09

Page 27 of 49

DATE:	FLUID APPLIED: RUN #:
AIR TEMPERATURE (°C) BEFORE TEST:	AIR TEMPERATURE (°C) AFTER TEST:
TUNNEL TEMPERATURE (°C) BEFORE TEST:	TUNNEL TEMPERATURE (°C) AFTER TEST
WIND TUNNEL START TIME:	WIND TUNNEL STOP TIME:
Actual start time:	FLUID APPLICATION
Fluid Brix:	Amount of Fluid (L):
Fluid Temperature (°C) <u>:</u>	Fluid Application Method: POUR
	ICE PELLETS APPLICATION (if applicable)
Actual start time:	Actual End Time:
Rate of Ice Pellets Applied (g/d/m/):	Ice Pellets Size (mm):
FR	REEZING RAIN/DRIZZLE APPLICATION (if applicable)
Actual start time:	Actual End Time:
Rate of Precipitation Applied (g/d͡ /ħ):	Droplet Size (mm):
Total Time:	Needle:
	Flow:
	Pressure
	SNOW APPLICATION (if applicable)
Actual start time:	Actual End Time:
Rate of Snow Applied (g/dî/n):	Snow Size (mm):
Total Time:	
MEASIDEMENTS DV	HANDWRITTEN BY:

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B.docx Final Version 1.0, October 20

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B.Appendix B.Apcendix B.Appendix B.Apcendix B.Apcendi

Sprayer SettingsTrail NoAprox Start TimeTranslation xNozzlesSpeedWater Flow Rate (mL/min/nozzle)Air PressureSoftware SettingPrecipitation Rate (g/dm^2/h)Comments2-Feb-09Full 24Full 335 Scans2x20500 mL/min4550x-axis=24 Scans, 66.24°. y-axis=604-Feb-09Full 24Full 335 Scans2x20250 mL/min4525MVD=1-1.2mm. x-axis=24 Scans, 66.24°. y-axis=60.3°25-Feb-09Full 24Full 335 Scans2x17750 mL/min4575x-axis=24 Scans, 66.24°. y-axis=60.3°1-Mar-09Full 24Full 335 Scans2x20150 mL/min4515x-axis=24 Scans, 66.24°. y-axis=60.3°1-Mar-09Image: ScansSteps2x20150 mL/min4515x-axis=24 Scans, 66.24°. y-axis=60.3°1-Mar-09Image: ScansSteps2x20150 mL/min4515x-axis=24 Scans, 66.24°. y-axis=60.3°Image: ScansSteps2x20Image: ScansImage: ScansImage: ScansImage: ScansImage: ScansImage: ScansImage: Sc
Trail NoStart TimeIntribution xyNozzlesSpeedWater Flow Rate (mL/min/nozzle)Air PressureSoftware SettingRate (g/dm^2/h)Comments2-Feb-09Full 24Full 335 Scans2x20500 mL/min4550x-axis=24 Scans, 66.24°. y-axis=604-Feb-09Full 24Full 335 Scans2x20250 mL/min4525 $MVD=1-1.2mm. x-axis=24 Scans, 66.24^o. y-axis=60.3^o$ 25-Feb-09Full 24Full 335 Scans2x17750 mL/min4575 $x-axis=24 Scans, 66.24^o. y-axis=60.3^o$ 1-Mar-09Full 24Full 335 Scans2x20150 mL/min4515 $x-axis=24 Scans, 66.24^o. y-axis=60.3^o$ 1-Mar-09Full 24Full 24Full 335 Scans2x20150 mL/min4515 $x-axis=24 Scans, 66.24^o. y-axis=60.3^o$ 1-Mar-09Full 24Full 35 Scans1111111-Mar-09IIIII
2-Feb-09 Full 24 Scans Full 335 Steps 2x20 500 mL/min 45 50 x-axis=24 Scans, 66.24°. y-axis=60 4-Feb-09 Full 24 Scans Full 335 Steps 2x20 250 mL/min 45 25 MVD=1-1.2mm. x-axis=24 Scans, 66.24°. y-axis=60.3° 25-Feb-09 Full 24 Scans Full 335 Steps 2x17 750 mL/min 45 75 x-axis=24 Scans, 66.24°. y-axis=60. 1-Mar-09 Full 24 Scans Full 335 Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60. 1-Mar-09 Full 24 Full 335 Scans Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60. 1-Mar-09 Full 24 Full 335 Scans Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60. 1 Image:
4-Feb-09 Full 24 Scans Full 335 Steps 2x20 250 mL/min 45 25 MVD=1-1.2mm. x-axis=24 Scans, 66.2 axis=60.3° 25-Feb-09 Full 24 Scans Full 335 Steps 2x17 750 mL/min 45 75 x-axis=24 Scans, 66.24°. y-axis=60.3° 1-Mar-09 Full 24 Scans Full 335 Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60.3° 1-Mar-09 Full 24 Scans Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60.3° 1-Mar-09 Full 24 Scans Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60.3° 1-Mar-09 Scans Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60.3° 1 Mar-1 Mar-1 Mar-1 Mar-1 Mar-1 Mar-1 Mar-1 Mar-1 1 Mar-1 Mar-1 Mar-1 Mar-1 Mar-1 Mar-1 Mar-1 Mar-1 1 Mar-1
25-Feb-09 Full 24 Scans Full 335 Steps 2x17 750 mL/min 45 75 x-axis=24 Scans, 66.24°. y-axis=60 1-Mar-09 Full 24 Scans Full 335 Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60 1-Mar-09 Scans Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60 1 Image: Steps Image: Steps Image: Steps 10 Image: Steps 10 Image: Steps
1-Mar-09 Full 24 Scans Full 335 Steps 2x20 150 mL/min 45 15 x-axis=24 Scans, 66.24°. y-axis=60 Image: Steps Ima
Image: Section of the system of the syste
Image: Sector of the sector

ΑΤΤΑ	CHMENT XIV -	Visual Evaluation	on Rating Form	
VISU	JAL EVALUATION F	RATING OF COND	ITION OF WING	
Date:			Run Number:	
Rating 1 - Co 2 - Co 3 - Co 4 - Co 5 - Co	is: ntamination not v ntamination is vis ntamination visibl ntamination visibl ntamiantion visibl	ery visible, fluid s ible, but lots of fl e, spots of bridgi e, lots of dry brid e, adherence of	still clean. uid still present ng contamination lging present contamination	
	Befo	re Take-off Run		
	Area	Visual Severity Rating (1-5)		
	Leading Edge			
	Trailing Edge			
		At Rotation		
	Area	Visual Severity Rating (1-5)		
	Leading Edge			
	Trailing Edge			
	Afte	r Take-off Run		
	Area	Visual Severity		
	Leading Edge	Rating (1-5)		
	Trailing Edge			
Additional Observations:				
OBSERVE <u>R:</u>		-		

	ATTACHMENT XVI – Flui	d Receipt Form	
SECTION A - SITE			THER SAMPLE
Receiving Location:		Date of Receiving:	
Manufacturer:	Fluid Name:		Fluid Type:
Date of Production:		Batch #:	
Fluid Dilution:			
Fluid Quantity:	_ x L = L	_ x L = L	x L = L
APS Measured BRIX:			
		o	(DATE)
SECTION B - OFFICE			
Fluid Code Assigned: 100/	/0 75/25	50/50	Type I
Viscosity Information Received: ¹	Vis	cosity Measured: ¹	
WSET Sample Sent to AMIL:	Ws	ET Result Received:	
FFP Curves Received: ²			
¹ Type II/II/IV fluids only			

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix B.docx Final Version 1.0, October 20

Date of Extraction	Fluid and Dilution	Batch #	Sample Source (i.e. Drum)	Falling Ball Fluid Temp (°C)	Falling Ball Time (sec)	Comm

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0, December 09 Final Version 1.0, December 09

Page 36 of 49

WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLETS ATTACHMENT XVIII- Procedure: Application of Heated Type III Fluid for Wind **Tunnel Tests** Heating Type III should be stored indoors at room temperature to minimize heating required; Heat Type III fluid 10L at a time using a hotplate and an aluminum cooking pot with a lid. The hotplate should be set to the "Max" setting. Two pots should be heated simultaneously to prepare the 20L required for each test; Fluid temperature should be monitored every 10 minutes, and the fluid should be stirred frequently; Once a temperature of 70°C is achieved (approx 45 minutes), the two 10L pots of fluid should be transferred to individual warm insulated coolers. Note: Although 60°C is the target application temperature, the fluid will be transferred into the coolers at 70°C to allow for some cooling during transportation to the test section and transfer into the pouring jugs. ***FOR REFERENCE PURPOSES ONLY*** 10L Glycol at Room Temperature - Heating and Cooling Profile 120 110 2°C drop in temp following tranfer from pot to cooler 100 90 80 Cooling Profile [emperature (°C) Heating Profile 70 60 50 40 30 20 10 0 10 20 30 50 90 100 0 40 60 70 80 Time (min) Application NOTE: It is critical that all precipitation dispensing equipment be ready to go prior to fluid application. Application of precipitation should occur immediately after the fluid application is complete to minimize heat loss from the wing. Heated Type III fluid should be transferred from the insulated coolers into hand held 2-3L pour containers; 20 L (see "Application Quantity" section for details) of fluid should be applied evenly to the whole wing section using the typical methodology for applying M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0, December 09

Page 37 of 49

ATTACHMENT XIX - Procedure: Super-Critical vs. Low Speed Airfoil

Background

Previous testing in the wind tunnel was conducted with low speed airfoils. To simulate the newer generation aircraft, a super-critical wing section was designed and constructed for the 2009-10 winter testing. In order to objectively evaluate the tests conducted, the new super-critical wing performance must be compared to the low speed airfoils previously used for testing.

Objective

To investigate the aerodynamic performance of the new super-critical airfoil as compared to the previous low speed airfoils used.

Methodology

- Testing should be conducted in dry wing and fluid only conditions.
- Testing should try to recreate the weather conditions for select baseline dry and fluid only tests conducted in 2008-09 in order to have low speed airfoil comparison data points.
- Characteristics such as lift and stall angle should be compared in both dry and fluid only cases.

Test Plan

Five tests are anticipated: a dry test, and four tests with the representative Type III and Type IV fluids selected for testing.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 39 of 49

ATTACHMENT XX – Procedure: Heavy Snow

Background

As a direct result of the ice pellet research conducted, the use of HOTs for determining the protection time provided by anti-icing fluids was questioned. The focus has turned towards "aerodynamic failure" which can be defined as a significant lift loss resulting from contaminated anti-icing fluid. Heavy snow conditions has been selected for this study for two reasons. First, snow conditions account for the most significant portion of de-icing operations globally. Secondly, there has been a recent industry interest for holdover time for heavy snow conditions. Preliminary aerodynamic testing was conducted during the winter of 2006-07 and 2008-09.

Objective

To investigate the fluid aerodynamic flow-off characteristics of anti-icing fluid contaminated with simulated heavy snow versus moderate snow.

Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical snow condition tests conducted in the wind tunnel.

- For a chosen fluid, conduct a test simulating moderate snow conditions (rate of 25 g/dm²/h) for an exposure time derived from the HOT table based on the tunnel temperature at the time of the test
- Record lift data, visual observations, and manually collected data;
- Conduct two comparative tests simulating heavy snow conditions (rate of 50 g/dm²/h) for the same exposure time used during the moderate snow test;
- · Record lift data, visual observations, and manually collected data;
- Compare the heavy snow results to the moderate snow results. If the heavy snow results are worse, repeat the heavy snow test with a reduced exposure time, if the results are better, repeat the heavy snow test with an increased exposure time.
- Repeat until similar lift data, and visual observations are achieved for both heavy snow and moderate snow; and
- Document the percentage of the moderate snow HOT that is acceptable for heavy snow conditions.

Test Plan

Ten to twelve comparative tests are anticipated.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 40 of 49

ATTACHMENT XXI – Procedure: Low Speed Ramp Testing

Background

The current low speed aerodynamic acceptance test for anti-icing fluids simulates a rotation speed of 67 knots on a flat plate; this takeoff profile was developed based on older generation low speed aircraft. In recent years, the newer generation low speed aircraft have rotation speeds closer to 80 to 85 knots. As all of the low speed testing conducted in the wind tunnel has been performed simulating an 80 knot rotation speed (representing the newer generation aircraft), it was recommended to verify the fluid flow-off properties of anti-icing fluid using the historical 67 knot rotation speed takeoff profile used for the aerodynamic acceptance tests.

Objective

To investigate the fluid flow-off performance during low speed ramp take-off.

Methodology

- Testing should be conducted in fluid only conditions;
- Testing will consist of two comparative tests done sequentially with the same fluid in similar weather conditions:
 - 67 knots rotation;
 - o 80 knots rotation;
- Compare lift data, visual observations, and manually collected data;

Test Plan

Four to six tests are anticipated with two to three different fluids.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 41 of 49

ATTACHMENT XXII – Procedure: Effect of Ice Phobic Coatings on Contaminated Airfoil Aerodynamic Performance

Background

There has been a recent industry interest in the use of ice phobic coatings to protect aircraft critical surfaces. Currently, some non-commercial operators are using ice phobic coatings on the aircraft radome and other aircraft surfaces. It was recommended that testing be conducted to investigate the protective properties of these coatings in precipitation conditions, and to verify the compatibility of these products with glycol de/anti-icing fluids.

Objective

To investigate the aerodynamic flow-off characteristics and lift losses associated with a wing section treated with ice-phobic coatings following contamination, with and without anti-icing fluid.

Methodology

- The wing should be clean and dry before the start of test;
- The wing section should be covered with speed tape. If it is not feasible to cover the entire wing, the first 12-24" of the leading edge should be covered with speed tape;
- The wing should be sectioned in half: un-treated and treated with ice-phobic coating;
- One side should be treated with the ice phobic coating as per the manufacturer specification. The other side should be left untreated;
- The first test should be conducted with no fluid protection during light freezing rain conditions;
- Run wind tunnel and collect data;
- The following test should be conducted with anti-icing fluid protection. The wing should be exposed to simulated light freezing rain at a rate of 25 g/dm²/h and the time of exposure should be chosen based on OAT and fluid specific HOT's;
- Run wind tunnel and collect data;
- The performance of the treated and un-treated sections of the wing should be compared.

Test Plan

Two to four tests are anticipated.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 42 of 49

ATTACHMENT XXIII – Procedure: Reduced Type I HOT's on Composite Surfaces

Background

Previous comparative flat plate testing was conducted using aluminum and composite surfaces. Results indicated that anti-icing fluid endurance times were comparable, however Type I fluids experienced HOT reductions when applied to composite surfaces. The Type I HOT's were approximately 30% shorter on composite surfaces in natural snow conditions. Full-scale data is required to verify the aerodynamic impact of reduced Type I HOT's on composite surfaces.

Objective

To investigate the aerodynamic flow-off characteristics and lift losses associated with reduced Type I HOT's on composite surfaces.

Methodology

- To simulate aluminum wing, apply heated Type I fluid to wing section (heated to 60°C);
- Expose wing section to simulated snow at a rate of 25 g/dm²/h until fluid is failed;
- Run wind tunnel and collect lift loss data;
- To simulate composite wing, apply heated Type I fluid to wing section (heated to 60°C);
- Expose wing section to simulated snow at a rate of 25 g/dm²/h. Time of exposure should be 30% longer than previous test
 - \circ Exposure time = 1.3 * ET of simulated aluminum wing test;
- Run wind tunnel and collect lift loss data;
- Compare results of both tests;

Note: Testing can also be done by simulating both alumunim and composite Type I tests on the same wing section using two separate strips of fluid. If this procedure if preferred, the composite test section should be exposed to precipitation first to ensure that the precipitation is stopped simultaneously for both sections.

Test Plan

Two comparative sets of tests are anticipated.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 43 of 49

ATTACHMENT XXIV – Procedure: Aerodynamic Impact of Wing Surface Roughness

Background

Previous testing in the wind tunnel demonstrated that although contamination was present on the wing section, significant lift losses were not apparent. Lift losses were incurred upon application of anti-icing fluid (when compared to a bare wing) however, the presence of contamination, whether adhered or not, did not generate significant list losses when compared to the uncontaminated fluid. Although the presence of adhered contamination may be hazardous with regards to control surfaces, the impact of the surface roughness on the overall aerodynamic performance of the wing needs to be investigated.

Objective

To investigate wing surface roughness and how it pertains to lift loss.

Methodology

Contamination can be in the form of abrasive sandpaper (similar to what is used by the NRC Flight Laboratory) or frozen precipitation on a bare wing. During the winter of 2008-09, adhered freezing rain, ice pellets, and snow were used to create a rough surface on the wing section.

- Apply abrasive material or contamination to full length of the leading edge of wing section;
- · Run wind tunnel test, collect lift loss data, compare to fluid only results;
- Increase grit of sandpaper level of frozen contamination until appreciable lift losses are observed (greater than 15%); and
- Document type and level of contamination and resulting effects on lift loss.

Test Plan

Three to four tests are anticipated. Testing will proceed according to the following decision matrix.

ATTACHMENT XXV - Procedure: Effect of Snow Pellets on Fluid Flow Off

Background

Previous comparative flat plate testing was conducted in simulated snow pellets and simulated snow. Results indicated that anti-icing fluid endurance times were comparable in both conditions. Additional plate testing will be conducted to support the recommendation to incorporate snow pellets into the snow HOT column. Aerodynamic data is required to verify that both snow and snow pellets have similar fluid flow off characteristics.

Objective

To investigate the fluid aerodynamic flow-off characteristics of anti-icing fluid contaminated with simulated snow pellets versus simulated snow.

Methodology

- Testing should be conducted on two 2 foot wide chords of the wing section (one section will be for snow pellets and the other for snow);
- Manufacture snow pellets (Note: this process is labor intensive and should be planned well ahead of the anticipated test);
- Depending on the OAT, choose a diluted fluid with the shortest HOT;
- Apply two strips of fluid to the wing section;
- Simultaneously dispense simulated snow pellets on one test section and snow on the other test section (ensure equal rate of precipitation and distribution);
- Expose both sections to equal amounts of contamination for equal amounts of time (the expected fluid HOT);
- Run wind tunnel; and
- Compare visual fluid flow-off behavior of both contaminated sections;

Test Plan

Due to the labor intensive process of manufacturing snow pellet, a maximum of two tests are anticipated.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 45 of 49

ATTACHMENT XXVI – Procedure: Light Freezing Rain and Moderate Snow

Background

As the accuracy of meteorological reporting continues to improve, there has been a need to provide improved guidance material during these transitional periods of mixed precipitation. During the winter of 2008-09, guidance material was developed for operations during light snow mixed with light rain conditions. As a result of this work, there was industry interest in guidance material for operations during light freezing rain and moderate snow conditions. The objective of these tests is to collect data to determine if the current HOT guidelines can be expanded to include mixed conditions of light freezing rain and moderate snow conditions.

Objective

To investigate if the current HOT guidelines can be expanded to include mixed conditions of light freezing rain and moderate snow conditions.

Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical snow and light freezing rain tests conducted in the wind tunnel. The light freezing rain and moderate snow endurance times will be compared to the light freezing rain only HOT's.

- For a chosen fluid, conduct a test simulating light freezing rain and moderate snow conditions for an exposure time derived from the HOT table based on light freezing rain conditions.
- Record lift data, visual observations, and manually collected data;
- Conduct a comparative test simulating light freezing rain conditions for the same exposure time used during the light freezing rain and moderate snow test;
- · Record lift data, visual observations, and manually collected data;
- Compare the light freezing rain and moderate snow conditions results to the light freezing rain results. If the light freezing rain and moderate snow results are worse, repeat the test with a reduced exposure time, if the results are better, repeat the test with a increased exposure time.
- Repeat until similar lift data, and visual observations are achieved for both heavy snow and moderate snow; and
- Document the percentage of the moderate snow HOT that is acceptable for heavy snow conditions.

Test Plan

Four to six comparative tests are anticipated.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 46 of 49

ATTACHMENT XXVII – Procedure: Snow on an Un-Protected Wing

Background

In colder northern operations, it is common for aircraft to depart with "loose, dry, un-adhered snow" on present on their wing sections. Although it is assumed most or all of this contamination will be removed at the time of rotation, it is unknown whether a certain level of contamination will reduce aerodynamic performance. Full-scale testing is required to investigate the aerodynamic performance of a wing section contaminated with dry, un-adhered snow.

Objective

To investigate the aerodynamic performance of a wing section contaminated with dry, un-adhered snow.

Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical snow condition tests conducted in the wind tunnel.

- Ensure the wing section and tunnel temperature are well below freezing (-5°C and below);
- Ensure the wing section is clean, dry, and free of any forms of contamination;
- Apply loose, dry snow contamination to the wing section;
- Record lift data, visual observations, and manually collected data;
- Compare the results to baseline fluid only and dry wing test results;

Test Plan

Three to four comparative tests are anticipated.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 47 of 49

ATTACHMENT XXVIII – Procedure: Degraded Anti-icing Fluid Performance Following Contamination with Runway Deicing Fluid

Background

Recent operational reports have indicated a significant degradation effect as a result of cross-contamination of thickened anti-icing fluids with runway deicing fluids. This is especially of concern for landings on a wet runway with reverse thrusters followed by preventative anti-icing applications. Full-scale data is required to verify the aerodynamic impact of degraded anti-icing fluid flow off following contamination.

Objective

To investigate the aerodynamic flow-off characteristics and lift losses associated with degraded anti-icing fluid flow off following contamination.

Methodology

- The wing should be clean and dry before the start of test;
- The wing should be sectioned in half: good side and degraded fluid side;
- The degraded fluid side should be treated with a spray of diluted runway deicer fluid;
- Anti-icing fluid should be applied to the whole wing (both good and degraded fluid side);
- Expose wing section to simulated light freezing rain at a rate of 25 g/dm²/h. Time of exposure should be chosen based on OAT and fluid specific HOT's;
- Run wind tunnel and collect data;
- Repeat test and reduce or increase amount of runway deicer fluid applied;

Test Plan

Four to six tests are anticipated with various Type III and Type IV fluids.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 48 of 49

ATTACHMENT XXIX – Procedure: Type I Deicing and Spot During CSW Frost Conditions

Background

The fundamental difference between both types of frost is how the wing skin temperature is cooled below ambient: radiation cooling versus conduction cooling. During natural active frost, the wing skin temperature will be cooled below ambient temperature as a result of radiation cooling from the cold clear sky. During cold soak wing conditions, however, the wing skin temperature is cooled and maintained at a temperature below ambient as a result of conduction cooling from the cold fluid stored inside the wing; either the aircraft was refueled with cold fuel, or following a flight, the wing and fluid will be cold soaked. Full-scale data is recommended to investigate the aerodynamic effects of CSW frost on a deiced airfoil protected with Type I fluid.

Objective

To investigate the aerodynamic effects of CSW frost on a deiced airfoil protected with Type I fluid.

Methodology

- Dilute Type I fluid to a 0°C buffer with respect to the wing skin temperature (to simulate CSW);
- Apply fluid heated to 60°C to wing section;
- Wait 45 minutes (the Type I HOT in frost) or until fluid fails;
- Run the wind tunnel and collect data; and
- Compare results to baseline uncontaminated Type I tests.

Test Plan

Two to three tests are anticipated; frost contamination tests and one fluid only test.

M:\Projects\PM2169.002 (TC-Deicing 09-10)\Procedures\Wind Tunnel\Final Version 1.0\Wind Tunnel Tests Final Version 1.0.doc Final Version 1.0. December 09

Page 49 of 49

This page intentionally left blank.

APPENDIX C

WING COORDINATES

Main Airfoil (Flap 0º) Coordinates		Main Airfoil (Flap 0º) Coordinates Cont'd		Main Airfoil (Flap 0º) Coordinates Cont'd		Flap Deployed (20°) Coordinates		Main Aft Coordinates	
1 000	0.0011	0.060	0.0240	0.275	0.0540	1 0 1 7	0.0940	0 772	0.0214
0.000	-0.0011	0.009	-0.0240	0.375	0.0540	1.017	-0.0049	0.773	0.0314
0.999	-0.0011	0.005	-0.0235	0.400	0.0530	1.009	-0.0623	0.770	0.0311
0.997	-0.0012	0.000	-0.0220	0.425	0.0531	0.000	-0.0794	0.770	0.0309
0.995	-0.0012	0.055	-0.0221	0.450	0.0524	0.992	-0.0702	0.769	0.0305
0.990	-0.0013	0.049	-0.0213	0.475	0.0515	0.902	-0.0727	0.767	0.0302
0.900	-0.0014	0.043	-0.0205	0.500	0.0300	0.971	-0.0000	0.705	0.0297
0.900	-0.0013	0.037	-0.0195	0.520	0.0493	0.900	-0.06047	0.762	0.0294
0.970	-0.0017	0.002	-0.0103	0.530	0.0469	0.947	-0.0004	0.760	0.0203
0.950	-0.0022	0.020	-0.0161	0.600	0.0454	0.921	-0.0514	0.758	0.0200
0.940	-0.0024	0.016	-0.0148	0.620	0.0441	0.907	-0.0469	0 757	0.0273
0.930	-0.0027	0.012	-0.0132	0.640	0.0427	0.893	-0.0424	0 755	0.0267
0.920	-0.0030	0.009	-0.0116	0.660	0.0413	0.879	-0.0380	0.753	0.0256
0.910	-0.0034	0.006	-0.0098	0.680	0.0398	0.865	-0.0338	0.750	0.0247
0.900	-0.0038	0.004	-0.0080	0.700	0.0382	0.852	-0.0298	0.749	0.0240
0.880	-0.0048	0.002	-0.0061	0.720	0.0364	0.840	-0.0260	0.747	0.0231
0.860	-0.0058	0.001	-0.0043	0.740	0.0346	0.828	-0.0225	0.745	0.0222
0.840	-0.0071	0.000	-0.0027	0.760	0.0327	0.817	-0.0193	0.744	0.0213
0.820	-0.0084	0.000	-0.0012	0.780	0.0307	0.807	-0.0164	0.741	0.0199
0.800	-0.0099	0.000	0.0000	0.800	0.0286	0.798	-0.0137	0.739	0.0188
0.780	-0.0114	0.000	0.0013	0.820	0.0264	0.790	-0.0114	0.738	0.0177
0.760	-0.0129	0.000	0.0029	0.840	0.0241	0.783	-0.0093	0.736	0.0167
0.740	-0.0145	0.001	0.0049	0.860	0.0217	0.777	-0.0075	0.735	0.0158
0.720	-0.0162	0.001	0.0071	0.880	0.0192	0.771	-0.0058	0.733	0.0142
0.700	-0.0179	0.002	0.0096	0.900	0.0166	0.766	-0.0043	0.731	0.0129
0.680	-0.0196	0.004	0.0124	0.910	0.0152	0.762	-0.0023	0.729	0.0117
0.660	-0.0213	0.006	0.0152	0.920	0.0139	0.760	0.0002	0.727	0.0100
0.640	-0.0231	0.010	0.0181	0.930	0.0125	0.758	0.0030	0.725	0.0081
0.620	-0.0248	0.013	0.0210	0.940	0.0110	0.758	0.0058	0.724	0.0066
0.600	-0.0265	0.018	0.0237	0.950	0.0096	0.758	0.0081	0.723	0.0055
0.575	-0.0285	0.023	0.0261	0.960	0.0081	0.759	0.0104	0.721	0.0041
0.550	-0.0303	0.029	0.0282	0.970	0.0065	0.761	0.0126	0.720	0.0032
0.525	-0.0319	0.035	0.0300	0.980	0.0048	0.764	0.0149	0.719	0.0020
0.500	-0.0333	0.041	0.0316	0.985	0.0039	0.767	0.0171	0.718	0.0007
0.475	-0.0345	0.047	0.0331	0.990	0.0030	0.771	0.0192	0.717	-0.0009
0.450	-0.0356	0.053	0.0345	0.995	0.0021	0.776	0.0209	0.716	-0.0023
0.425	-0.0364	0.059	0.0356	0.997	0.0017	0.782	0.0225	0.714	-0.0036
0.400	-0.0370	0.065	0.0366	0.999	0.0013	0.789	0.0238	0.713	-0.0049
0.375	-0.0375	0.070	0.0374	1.000	0.0011	0.796	0.0247	0.712	-0.0058
0.350	-0.0378	0.074	0.0381			0.805	0.0247	0.711	-0.0067
0.325	-0.0379	0.082	0.0393			0.815	0.0234	0.709	-0.0080
0.300	-0.0379	0.090	0.0405			0.025	0.0203	0.706	-0.0090
0.200	-0.0377	0.090	0.0417			0.830	0.0103	0.700	-0.0107
0.200	-0.0373	0.100	0.0429			0.047	0.0103	0.704	-0.0110
0.240	-0.0300	0.117	0.0440			0.039	0.0041	0.703	-0.0120
0.220	-0.0354	0.127	0.0462			0.885	-0.0024	0.701	-0.0100
0.200	-0.0347	0.150	0.0473			0.899	-0.0032	0.698	-0.0140
0.107	-0 0340	0.160	0.0470			0.000	-0.0235	0.696	-0.0159
0.161	-0.0332	0.102	0.0400			0.012	-0.0307	0.695	-0.0164
0.149	-0.0323	0.187	0.0504			0.938	-0.0377	0.693	-0.0169
0.138	-0.0315	0.200	0.0512			0.951	-0,0446	0.692	-0.0174
0.127	-0.0305	0.220	0.0522			0.963	-0.0513	0.690	-0.0179
0.117	-0.0296	0.240	0.0529			0.974	-0.0575	0.688	-0.0183
0.107	-0.0286	0.260	0.0535			0.985	-0.0634	0.687	-0.0186
0.098	-0.0276	0.280	0.0539			0.994	-0.0689	0.684	-0.0191
0.089	-0.0265	0.300	0.0541			1.003	-0.0740	0.681	-0.0195
0.081	-0.0255	0.325	0.0543			1.011	-0.0787		
0.073	-0.0246	0.350	0.0543			1.018	-0.0829		

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix C/Appendix C.docx Final Version 1.0, October 20

APPENDIX D

LIFT COEFFICIENT DATA PROVIDED BY NRC

LIST OF FIGURES

Figure D1: Run #1	7
Figure D2: Run #9	7
Figure D3: Run #25	8
Figure D4: Run #22	8
Figure D5: Run #29	9
Figure D6: Run #28	9
Figure D7: Run #29	10
Figure D8: Run #28A	10
Figure D9: Run #64	11
Figure D10: Run #65	11
Figure D11: Run #64	12
Figure D12: Run #66	12
Figure D13: Run #100	13
Figure D14: Run #67	13
Figure D15: Run #70	14
Figure D16: Run #68	14
Figure D17: Run #70	15
Figure D18: Run #69	15
Figure D19: Run #75	16
Figure D20: Run #80	16
Figure D21: Run #64	17
Figure D22: Run #96	17
Figure D23: Run #1	21
Figure D24: Run #10	21
Figure D25: Run #1	22
Figure D26: Run #10A	22
Figure D27: Run #1	23
Figure D28: Run #10B	23
Figure D20: Nun #105	20
Figure D30: Run #21	24
Figure D31: Run #29	25
Figure D32: Run #47	25
Figure D32: Nun #54	26
Figure D34: Run #48	26
Figure D35: Run #60	20
Figure D36: Run #19	27
Figure D30: Null #49	27 28
Figure D37. Null #75	20
Figure D30. hull #71	20
Figure D39. hull #70	29
Figure D40. hull #72	29
Figure D41: Run #70	30
Figure D42: Run #73	30
Figure D43: Run #70	31
Figure D44: Kun #74	31
Figure D45: Kun #64	32
Figure D46: Kun #95	32
Figure D47: Kun #1	35
Figure D48: Kun #0	35
Figure D49: Kun #55	36
Figure D50: Kun #26	36

Figure D51: Run #25	. 37
Figure D52: Run #26A	. 37
Figure D53: Run #60	. 38
Figure D54: Run #59	. 38
Figure D55: Run #64	. 39
Figure D56: Run #63	. 39
Figure D57: Run #100	. 40
Figure D58: Run #98	. 40
Figure D59: Run #53	. 43
Figure D60: Run #20	. 43
Figure D61: Run #55	. 44
Figure D62: Run #44	. 44
Figure D63: Run #55	. 45
Figure D64: Run #56	. 45
Figure D65: Run #55	. 46
Figure D66: Run #56A	. 46
Figure D67: Run #4	. 49
Figure D68: Run #5	. 49
Figure D69: Run #1	. 50
Figure D70: Run #11	. 50
Figure D71: Run #25	. 51
Figure D72: Run #23	. 51
Figure D73: Run #29	. 52
Figure D74: Run #57	. 52
Figure D75: Run #29	. 53
Figure D76: Run #57A	. 53
Figure D77: Run #64	. 54
Figure D78: Run #77	. 54
Figure D79: Run #76	. 55
Figure D80: Run #78	. 55
Figure D81: Run #75	. 56
Figure D82: Run #79	. 56
Figure D83: Run #1	. 57
Figure D84: Run #94	. 57
Figure D85: Run #17	61
Figure D86: Run #13	. 61
Figure D87: Run #17	62
Figure D88: Run #14	62
Figure D89: Run #17	63
Figure D90: Run #15	63
Figure D91: Run #17	64
Figure D97: Run #16	64
Figure D92: Run #75	65
Figure D95. Null #25	65
Figure D94. hull #24	66
Figure D95. hull #00	. 00
Figure D90. Rull #30	. 00
רוקטו דיקט חווו # / ס	. 07
FIGURE DEO: MUII #01	. 0/
רוקעוד באס העון #70	. 08
Figure D100: KUN #δ2	80.
FIGURE DIVI: RUII #04	. 09
רוט דוט VIU2: Kun #97	. 09
רוסויס: Kun #26	. 73

73
74
74

This page intentionally left blank.

LIGHT ICE PELLETS

Figure D2: Run #9

Figure D4: Run #22

Figure D6: Run #28

Figure D8: Run #28A

Figure D10: Run #65

Figure D12: Run #66

Figure D14: Run #67

Figure D16: Run #68

Figure D18: Run #69

Figure D20: Run #80

Figure D22: Run #96

This page intentionally left blank.

MODERATE ICE PELLETS

Figure D24: Run #10

Figure D26: Run #10A

Figure D28: Run #10B

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D30: Run #21

Figure D32: Run #47

Figure D34: Run #48

Figure D36: Run #49

Figure D38: Run #71

Figure D40: Run #72

Figure D44: Run #74

Figure D46: Run #95

LIGHT ICE PELLETS MIXED WITH LIGHT FREEZING RAIN

Figure D48: Run #0

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D50: Run #26

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D52: Run #26A

Figure D54: Run #59

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D56: Run #63

Figure D58: Run #98

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

LIGHT ICE PELLETS MIXED WITH MODERATE RAIN

Figure D59: Run #53

Figure D60: Run #20

Figure D62: Run #44

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D64: Run #56

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D66: Run #56A

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

LIGHT ICE PELLETS MIXED WITH LIGHT SNOW

Figure D68: Run #5

Figure D70: Run #11

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D76: Run #57A

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D78: Run #77

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D80: Run #78

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.docx Final Version 1.0, October 20

Figure D84: Run #94

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.docx Final Version 1.0, October 20

This page intentionally left blank.

LIGHT ICE PELLETS MIXED WITH MODERATE SNOW

Figure D88: Run #14

Figure D90: Run #15

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D96: Run #58

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.docx Final Version 1.0, October 20

Figure D98: Run #81

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D100: Run #82

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

Figure D102: Run #97

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

This page intentionally left blank.

FLAP RETRACTED (UP) VERSUS FLAP EXTENDED (DOWN)

Figure D108: Run #56A

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix D/Appendix D.Aocx Final Version 1.0, October 20

APPENDIX E

ICE PELLET ALLOWANCE TIMES SUMMARY SHEETS

LIST OF FIGURES

Figure E1: Light Ice Pellets Allowance Table	. 5
Figure E2: Run #9	. 6
Figure E3: Run #22	. 6
Figure E4: Run #28	. 7
Figure E5: Run #28A	. 7
Figure E6: Run #65	. 8
Figure E7: Run #66	. 8
Figure E8: Run #67	. 9
	. 9
Figure E10: Run #69	10
Figure E11: Run #80	10
Figure F12: Run #96	11
Figure E13: Moderate Ice Pellets Allowance Table	15
Figure E14: Run #10	16
Figure E15: Run #10A	16
Figure E16: Pup #10P	17
Figure E10. Rull #100	17
Figure E17: Run #21	17
Figure E18: Run #47	18
Figure E19: Run #48	18
Figure E20: Run #49	19
Figure E21: Run #71	19
Figure E22: Run #72	20
Figure E23: Run #73	20
Figure E24: Run #74	21
Figure E25: Run #95	21
Figure E26: Light Ice Pellets Mixed with Light Freezing Rain Allowance Table	25
Figure E27: Run #0	26
Figure E28: Run #26	26
Figure E29: Run #26A	27
Figure E30: Run #59	27
Figure E31: Run #63	28
Figure E32: Run #93	28
Figure E33: Light Ice Pellets Mixed with Moderate Rain Allowance Table	31
Figure E34: Run #20	32
Figure E35: Run #44	32
Figure E36: Run #56	22
Figure E37: Run #56A	33
Figure E37: Nah #30A	27
Figure E30. Light ice reliets Mixed with Light Show Allowance Table	20
Figure E40: Pup #11	20
Figure E41: Run #22	20
Figure E41. Rull #23	39 20
Figure E42: Run #57	39
Figure E43: Run #57A	40
Figure E44: Run #//	40
Figure E45: Run #78	41
Figure E46: Run #/9	41
Figure E47: Run #94	42
Figure E48: Light Ice Pellets Mixed with Moderate Snow Allowance Table	45
Figure E49: Run #13	46
Figure E50: Run #14	46
Figure E51: Run #15	47
Figure E52: Run #16	47

APS/Library/Projects/PM2265.002 (TC Deicing 12-13)/Reports/Ice Pellet/Volume 2 (2009-10)/Final Version 1.0/Report Components/Appendices/Appendix E/Appendix E.Accx Final Version 1.0, October 20

Figure E	53: I	Run	#24	48
Figure E	54: I	Run	#58	48
Figure E	55: I	Run	#81	49
Figure E	56: I	Run	#82	49
Figure E	57: I	Run	#97	50
Figure E	58: I	Run	#26	53
Figure E	59: I	Run	#26A	53
Figure E	E60: I	Run	#28	54
Figure E	E61: I	Run	#28A	54
Figure E	E62: I	Run	#56	55
Figure E	E63: I	Run	#56A	55
Figure E	E64: I	Run	#57	56
Figure E	E65: I	Run	#57A	56

LIGHT ICE PELLETS

Figure E1: Light Ice Pellets Allowance Table

]
	Objective	IP VALIBATION	
	Fluid	ABC-S+(PG)	
	Test # / Test Plan #	RUN9(P2)	
	OAT	TARGET: -5°C GOOP	
	Rate	1P=25 GOOD	
	Exposure Time	50 MINS GOOD	
	Associated Fluid Only Case	RUN 1 (P8B): 5.01%	
	Visual Contamination	START: 2/2/3 ROT: 1/1.8/1.8 GOOD	····· Not Based on photos ····· Visual at Start should be <=3, Flap<≃4 ····· Visual at Rot LE should be 1
	Lift Coefficient	6°: 1.462 GOOD 8°: 1.641	••••• Compared to Dry Wing (•••• Sea Han 5% kosa acceptible) ••••• 6° C is hould be >=1.44 > 5% •••••• 6° C is chould be >=1.49 > 5% •••••• 6° C is hould be >=1.49 > 8%
ĺ	Lift Loss At 8°	4.67% GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E2: Run #9

Objective	IP VALIDATION	
Fluid	EG106 (EG)	
Test # / Test Plan #	RUN 22 (PI)	
OAT	TARGET: -5° GOOD ACTUAL: -4.1	
Rate	1P=25 GOOD	
Exposure Time	50 MINS GOOD	
Associated Fluid Only Case	RVN 25(E9): 1,99 %	
Visual Contamination	START: 1.8/2/4 ROT: 1/1/1 GOOB	•••••• Not Based on photos ••••• Visual at Start should be <=3, Flap<=4 •••••• Visual at Rot LE should be 1
Lift Coefficient	6°: 1.495 GOOD 8°: 1.707	Compared to Dry Wing (Less than 5% loss accepatible) *********************************
Lift Loss At 8°	0.83% G0015	
OVERALL STATUS (good, bad, or review)	GOOD	
	Objective Fluid Test # / Test Plan # OAT Rate Exposure Time Associated Fluid Only Case Visual Contamination Lift Coefficient Lift Loss At 8* OVERALL STATUS (good, bad, or review)	ObjectiveIP VALIDATIONFluidEGIO(6 (EG)Test # / Test Plan #RUN 22 (PI)OATTARGET: -5° ACTUAL: ~4, IRateIP = 25 GOODExposure Time50 MINS GOODAssociated Fluid Only CaseRVN 25 (E9): 1,99 %Visual ContaminationSTART: 1.8 / 2./4 ROT: 1/1/1 GOOBLift Coefficient6°: 1.495 GOODB°: 1.7070.83% GOODOVERALL STATUS (good, bad, or review)GOOD

Figure E3: Run #22

Objective	IP VALIDATION	
Fluid	LAUNCH (PG)	
Test # / Test Plan #	RUN 28(P3)	
OAT	TARGET: -5°C GOOD ACTUAL: -4.2°C	
Rate	1P=25 GOOD	
Exposure Time	50 MINS GOOD	
Associated Fluid Only Case	RUN 29 (E11): 496%	
Visual Contamination	START: 2/2/37 RDT: 1/17/2 GOOD	**** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6°1.449 GOOD 8°1.648	Compared to Dry Wing (Less than 5% loss acceptable) "" "6" G1 should be ≥ =1.44 "5% "6" G1 should be ≥=1.44 "6" G1 should be ≥=1.49 "6" G1 should be ≥=1.59 "6" S
Lift Loss At 8°	4.26°% GODD	
OVERALL STATUS (good, bad, or review)	GOOD	

Figure E4: Run #28

	Objective	IP VALIDATION	
	Fluid	LAUNCH (PG)	
	Test # / Test Plan #	RUN 28A(P3)	
	OAT	TARGET: -5°C GOOD ACTUAL: -5.5°C	
	Rate	1P=25 GOOD	
ſ	Exposure Time	50 MINS GOOD	
Ĩ	Associated Fluid Only Case	RUN 29(E11): 4.96%	
ĺ	Visual Contamination	START: 2/2/27 ACTUAL: 1/1.5/2 GOOD	Not Based on photos ^{*****} Visual at Start should be <=3, Flap<=4 Visual at Rot LE should be 1
ſ	Lift Coefficient	6°:1.467 GOOD 8°:1.655 GOOD	(Less than 5% loss acceptable)
	Lift Loss At 8°	3.85% GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E5: Run #28A

Objective	IP VALIBATION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN (65(PI7)	
OAT	TARGET: -10°C GOOD ACTUAL: -13.7°C GOOD	
Rate	1P=25 G000	
Exposure Time	30 MINS GOOD	
Associated Fluid Only Case	RUN 104 (E22): 5.07%	
Visual Contamination	START: 2.8/2.8/4 DK/ ROT: 1.2/2/2.2 REVIEW	**** Not Based on photos Visual at Start should be <=3, Flap<=4 /**** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.353 BAD/ 8°: 1.563 REVIEW	(Less than 5% loss accepable) 6° Cl should be >=1.64 5% 6° Cl should be >=1.64 8%
Lift Loss At 8°	9.20% BAD	
OVERALL STATUS (good, bad, or review)	BAD/REVIEW	

Figure E6: Run #65

Objective	IP VALIBATION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN 66(P17A)	
OAT	TARGET: -10°C ACTUAL: -13.6° GOOD	
Rate	1P=25 G0013	
Exposure Time	20 MINS OK	
Associated Fluid Only Case	RUN 64 (E22): 5.07;	lo
Visual Contamination	START: 2.2/2/3.2 ROT: 1.2/2/2.5 OK	**** Nol Based on pholos **** Visual at Start should be <=3, Flap<=4 **** Visual at Rot LE should be 1
Lift Coefficient	16°: 1.349 BAD/ 8°: 1.573 REVIEW	(Less than 5% loss accepatible) (Less than 5% loss accepatible) ***** 6° C1 should be >=1.44 5% ****************************
Lift Loss At 8°	8.62% BAD	
OVERALL STATUS (good, bad, or review)	BADIREVIEW	
	Objective Fluid Fluid Test # / Test Plan # OAT Rate Exposure Time Associated Fluid Only Case Visual Contamination Lift Coefficient Lift Loss At 8° OVERALL STATUS (good, bad, or review)	ObjectiveIP VALIBATIONFluidABC-S+ (PG)Test #/Test Plan #RVN 66 (P17A)OATTARGET: -10°C ACTUAL: -13.6° GDDDRateIP = 2.5 GDDDExposure Time2D MINS OKAssociated Fluid Only CaseRUN 64 (E22): 5.07?Visual ContaminationSTART: 2.2/2/3.2 RDT: 1.2/2/2.5 OKLift Coefficient6°: 1.349 BA:D/ 8°: 1.573 REVIEWLift Loss AI 8°8.62.2% BA:DOVERALL STATUS (good, bad, or review)BA:D / REVIEW

Figure E7: Run #66

Objective	IP VALIDATION	
Fluid	EG106 (EG)	
Test # / Test Plan #	RUN 67(P16)	
OAT	TARGET: -10°C ACTUAL: -12.6°C GOOD	
Rate	1P=25 G00D	
Exposure Time	30 MINS GOOD	
Associated Fluid Only Case	RUN 100(E26):2.28%	J _o
Visual Contamination	START: 2.2.12.2.13.2 ROT: 1/1.5/1.8 9000	**** Not Based on photos **** Visual at Start should be <=3, Flap<=4 **** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.463 GOOD 8°: 1.683 GOOD	(Less than 5% loss accepable)
Lift Loss At 8°	2.23% GOOD	
OVERALL STATUS (good, bad, or review)	GOOD	
	Objective Fluid Test # / Test Plan # OAT Rate Exposure Time Associated Fluid Only Case Visual Contamination Lift Coefficient Lift Loss At 8° OVERALL STATUS (good, bad, or review)	Objective IP VALINATION Fluid EG10b (EG) Test #/Test Plan # RUIN 67 (P110) OAT TARGET: -10°C ACTUAL: -1%.6°C Rate IP = 25 G00D Exposure Time 3D MINS GD0D Associated Fluid Only Case RUIN 100(E26): 2.28° Visual Contamination START: 2.2.12.2/3.2 ROT: 1/1.5/1.8 G00D Lift Coefficient 6°: 1.463 8°: 1.683 Lift Loss At 8' 2.2.3% G00D OVERALL STATUS (good, bad, or review) GD0D

Figure E8: Run #67

	Objective	IP VALIBATION	
	Fluid	LAUNCH (PG)	
Í	Test # / Test Plan #	RUN 68 (P18)	
	OAT	TARGET: -10°C GOOD/ ACTUAL: -16.6°C REVI	EW
	Rate	1P=25 G0012	
	Exposure Time	30 MINS GOOD	
	Associated Fluid Only Case	RVN 70(E23): 5.59%	
ſ	Visual Contamination	START: 3/2.5/3.7 OK/ ROT: 1.3/2/2.2 REVIEW	***** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 **** Visual at Rot LE should be 1
	Lift Coefficient	6°:1.381 BAD/ 8°:1.56 REVIEW	
Ī	Lift Loss At 8°	9.60% BAD	
	OVERALL STATUS (good, bad, or review)	BAB/REVIEW	

Figure E9: Run #68

Objective	IP VALIBATION	
Fluid	LAUNCH (PG)	1
Test # / Test Plan #	RUN 69 (P18A)	1
OAT	TARGET:-10°C ACTUAL:-17.8°C OK	
Rate	1P:25 GOOB	
Exposure Time	15 MINS OK	
Associated Fluid Only Case	RVN 70(E23): 5.59%	
Visual Contamination	START: 2.8/2.5/3.5 ROT: 1.3/2/2.7 OK	**** Not Based on photos **** Visual al Start should be <=3, Flap<=4 **** Visual at Rot LE should be 1
Lift Coefficient	6°:1.331 BAD/ 8°:1.556 REVIEW	""Compared to Dry Wing (Less than 5% loss accepatible) """ 8° Cl should be >=1.44 "" 8° Cl should be >=1.59 \$%
Lift Loss At 8°	9.60% BAD	
OVERALL STATUS (good, bad, or review)	BAD/REVIEW	

Figure E10: Run #69

Objective	IP VALIDATION	
Fluid	EGID6 (EG)	
Test # / Test Plan #	RUN 80(P28)	
OAT	TARGET: -25°C OK	
Rate	1P=25 GOOD	
Exposure Time	30 MINS GOOD	
Associated Fluid Only Case	RUN 75(E24): 4.08%	
Visual Contamination	START: 25/2.2/3 ROT: 1/1.25/1.7 GOOD	www.Not Based on photos www.Visual at Start should be <=3, Flap<≈4 www.Visual at Rot LE should be 1
Lift Coefficient	6°:1.463 GOOD 8°:1.670	"Compared to Dry Wing (Less than 5% loss accepable) """ 6° Ci should be >=1.44 5% """ 6° Ci should be >=1.49 5% """ 6° Ci should be >=1.49 5%
Lift Loss At 8°	2.98% GOOD	
OVERALL STATUS (good, bad, or review)	GOOD	

Figure E11: Run #80

Objective	IP VALIDATION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN 96(P17)	
OAT	TARGIET: -10°C OK ACTUAL: -7.6°C OK	
Rate	1P=25 G0010	
Exposure Time	30 MINS GOOD	
Associated Fluid Only Case	RUN 64 (E22) 5.07%	
Visual Contamination	START: 2.3/2/3 ROT: 1/2/2 GOOD	**** Not Based on photos **** Visual at Start should be <=3, Fiap<=4 **** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.400 GOOD/ 8°: 1.608 REVIEW	(Less than 5% loss accepable) 6°C ishouid be >=1.44 5% 6°C ishouid be >=1.64 8% 8°C ishouid be >=1.59 8%
Lift Loss At 8°	6.58% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E12: Run #96

This page intentionally left blank.

MODERATE ICE PELLETS

Figure E13: Moderate Ice Pellets Allowance Table

	Objective	IP VALIDATION	
	Fluid	ABC-S+(PG)	
	Test # / Test Plan #	RUN 10(P5)	
	OAT	TARGET: -5°C GOOD ACTUAL: -74°C	
	Rate	1P=75 G000	
	Exposure Time	25 MINS GOOD	
ſ	Associated Fluid Only Case	RUN 1 (P8B): 5.01.%	
	Visual Contamination	START: 2/3/4 ROT: 1/2/2 GDDD/	••••• Not Based on photos ••••• Visual at Start should be <=3, Flap<==4 ••••• Visual at Rot LE should be 1
	Lift Coefficient	6°: 1.438 (000) 8°: 1.616 REVIEW	(Less than 5% loss acceptable)
	Lift Loss At 8°	6.12% GODB/ REVIEW	
	OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E14: Run #10

	Objective	IP VALIDATION	
	Fluid	ABC-S+(PG)	
	Test # / Test Plan #	RUNIOA(P5)	
	OAT	TARGET: -5°C GOOD ACTUAL: -5.6°C	
	Rate	1P=75 GOOD	
	Exposure Time	25 MIN GOOD	
	Associated Fluid Only Case	RUN I (P&B):501°,	o
	Visual Contamination	START: 212.8/27 ROT: 1/1.8/2 GOOD	····· Not Based on photos ····· Visual at Start should be <=3, Flap<≔4 ····· Visual at Rot LE should be 1
ĺ	Lift Coefficient	6:1.525 GOOD 8:1.709 GOOD	""" Compared to Dry Wing (Loss than 5% loss accepatble) """ 8° Ci should be >=1.64 """ 8° Ci should be >=1.59 8%
	Lift Loss At 8°	0,71% GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E15: Run #10A

Objective	IP VALIBATION	
Fluid	ABC-St (PG)	
Test # / Test Plan #	RUNIOB(P5)	
OAT	TARGET: -5°C GOOL ACTUAL: -6.2°C	5
Rate	1p=75 GOOD	
Exposure Time	25 MINS GOOD	
Associated Fluid Only Case	RUN 1 (P8B): 5.01%	
Visual Contamination	START: 2.2/3/3 ROT: 1/2/2 GDOD	**** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6°:1.405 BAD 8°: 1.587 BAD	
Lift Loss At 8°	7.80% BAD	
OVERALL STATUS (good, bad, or review)	BAD/REVIEW	
		UNC NETECT Y

Figure E16: Run #10B

Objective	IP VALIBATION	
Fluid	EGID6 (EG)	
Test # / Test Plan #	RUN 21(P4)	
OAT	TARGET: -5°C OK ACTUAL: -3.6°C	
Rate	1P=75 GOOD	
Exposure Time	25 MINS GOOD	
Associated Fluid Only Case	RUN 55 (E20): 1.88%	3
Visual Contamination	START: 2/2.2/4 ROT: 1/1/1.2 GOOD	**** Not Based on photos **** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.515 8°: 1.712 GOOD	
Lift Loss At 8°	0.54% GOOD	
OVERALL STATUS (good, bad, or review)	Goors	

Figure E17: Run #21

	Objective	IP VALIDATION	
	Fluid	LAUNCH (PG)	
	Test # / Test Plan #	RUN 47(P10)	
	OAT	TARGET: -5°C GDOV	>
	Rate	1P=75 G000	
	Exposure Time	25 MINS GOOD	
ĺ	Associated Fluid Only Case	RUN 29 (E11): 4.96%	
	Visual Contamination	START: 3.713.814 ROT: 1/1.7/2.5 BAD	Wisual at Start should be <=3, Flap<=4 Visual at Roi LE should be 1
	Lift Coefficient	6°: 1.383 BAD/ 8°: 1.58 REVIEW	
	Lift Loss At 8°	8.21% BAD/ REVIEW	
	OVERALL STATUS (good, bad, or review)	BAD	

Figure E18: Run #47

Objective	IP VALIBATION	
Fluid	LAUNCH (PG)	
Test # / Test Plan #	RUN 48(P6A)	
OAT	TARGET: -5° GOOD ACTUAL: -2.7°	
Rate	1P=75 G0012	
Exposure Time	15 MINS BAD	
Associated Fluid Only Case	RUN 54(E19): 3.56%	
Visual Contamination	START: 2/2.8/4 ROT: 1/1.7/1.8 GDOLS	Not Based on photos Visual at Start should be <=3, Flap<=4 Visual at Rot LE should be 1
Lift Coefficient	6°:1.429 GOOD/ 8°1.609 REVIEW	(Less than 5% loss accopatible) 8° Cl should be >=1.44 8° Cl should be >=1.44 8° Cl should be >=1.49
Lift Loss At 8°	6.52% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOOB/REVIEW	

Figure E19: Run #48
Objective	IP VALIBATION	
Fluid	LAUNCH	
Test # / Test Plan #	RVN 49 (P6B)	
OAT	TARGET: -5°C GOOD ACTUAL: -3.1°C	
Rate	110=75 GOOD	
Exposure Time	15 MINS BAD	
Associated Fluid Only Case	RVN 60(E21):4619	o
Visual Contamination	START: 2.7/2.8/3 ROT: 1/1.5/1.8 GOOD	***** Not Based on photos **** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6:1.414 GODS/ 8:1.606 REVIEW	
Lift Loss At 8°	6.70% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E20: Run #49

	Objective	IP VALIDATION	
	Fluid	EGIDW (EG)	
	Test # / Test Plan #	RUN 71(P19)	
	OAT	TARGET: -10°C GUOL ACTUAL: -17.7°C	\rangle
	Rate	1P=75 GOOD	
	Exposure Time	10 MINS GOOD	
ſ	Associated Fluid Only Case	RUN 75(E24): 4:08%	
ĺ	Visual Contamination	START: 2.3/2.3/2.8 ROT: 1/1.3/1.8 GODD	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ····· Visual at Rot LE should be 1
	Lift Coefficient	6°: 1.475 GOOD 8°: 1.671	
	Lift Loss At 8°	2.92% GOOD	
	OVERALL STATUS (good, bad, or review)	900B	

Figure E21: Run #71

Objective	IP VALIDATION	
Fluid	ABC-S+ (PG)	
Test # / Test Plan #	RUN 72 (P20)	
OAT	TARGET: -10°C OK ACTUAL: -18°C	
Rate	110=75 GOOD	
Exposure Time	10 MINS GOOD	
Associated Fluid Only Case	RVN 76(E25): 5.89%	
Visual Contamination	START: 2.8/2.5/3.8 ROT: 1.2/2/2.8 OK	**** Not Based on photos **** Visual at Start should be <=3, Flap<=4 **** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.381 BAD 8°: 1.561	Clashould be >=1.44 S S S S S S S S S S S S S
Lift Loss At 8°	9.31% BAD	
OVERALL STATUS (good, bad, or review)	BAD	

Figure E22: Run #72

	Objective	IP VALIBATION	
	Fluid	ABC-S+(PG)	
	Test # / Test Plan #	RUN 73 (P20A)	
	OAT	TARGET: -10°C GOOD ACTUAL: -18.2°C	
	Rate	1P= 75 GOOD	
	Exposure Time	5 MINS BAD	
	Associated Fluid Only Case	RUN 760 (E25): 5.89	°/0
ĺ	Visual Contamination	START: 2.2/2.2/34 ROT: 1.2/2/2.5 OK	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ····· Visual at Rot LE should be 1
ĺ	Lift Coefficient	6.1.45 GODID 8.1.635 GODID	
	Lift Loss At 8*	5:010/0 GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E23: Run #73

	Objective	IP VALIBATION	
	Fluid	LAUNCH (PG)	
	Test # / Test Plan #	RUN 74(P21A)	
	OAT	TARGET: -10°C GUU ACTUAL: -19.5°C	
	Rate	1P=75 G000	
ſ	Exposure Time	5 MINS BAD	
ſ	Associated Fluid Only Case	RVN 70(E23):5.59	10
ſ	Visual Contamination	START: 2.7/2.3/3.2 ROT: 1.5/2/2.8 BAD	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ····· Visual at Rot LE should be 1
	Lift Coefficient	6°:1.359 8°:1.544 BAD	Compared to Dry Wing (c) to sea scaepable) (
ſ	Lift Loss At 8°	10.30°% BAD	
	OVERALL STATUS (good, bad, or review)	BAD	

Figure E24: Run #74

Objective	IP VALIDATION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN 95 (P20)	
OAT	TARGET: -10°C GOO!	D
Rate	1P=75 GOOD	
Exposure Time	10 MINS GOOD	
Associated Fluid Only Case	RUN 64(E22): 5.07%	у 9
Visual Contamination	START: 2.2.12/2.8 ROT: 1/1.7/2 GOOD	**** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.401 GODD/ 8°: 1.602 REVIEW	
Lift Loss At 8°	693% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOODIREVIEW	

Figure E25: Run #95

This page intentionally left blank.

LIGHT ICE PELLETS MIXED WITH LIGHT FREEZING RAIN

Figure E26: Light Ice Pellets Mixed with Light Freezing Rain Allowance Table

Objective	IP VALIDATION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RVIN O(P8)	
OAT	TARGET: -5°C GOUL ACTUAL: -6.1°C)
Rate	10=25 G00A ZR=25	
Exposure Time	25 MINS GOOD	
Associated Fluid Only Case	RUNI (P8B): 5.01%	
Visual Contamination	START: 21214 ROT: 1/1/3.7 GODIS	•••• Not Based on photos ••••• Visual at Start should be <=3, Flap<=4 ••••• Visual at Rot LE should be 1
Lift Coefficient	6°11.423 GOOD/ 8°1609 REVIEW	Clashud be >=1.44 S% Saccoptible Scishould be >=1.44 S% Scishould be >=1.44 S% Scishould be >=1.49 S% Scishould be >=1.59 S%
Lift Loss At 8°	6.52% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E27: Run #0

	Objective	IP VALIDATION	
	Fluid	EG106 (EG)	
	Test # / Test Plan #	RUN 26(P7)	
	OAT	TARGET: -5 GODD/ ACTUAL: -1.9 REVIEW	\checkmark
	Rate	1P=25 GOOD ZR=25 GOOD	
	Exposure Time	25 MINS GOOD	
Í	Associated Fluid Only Case	RVN 55 (E20): 1,88%	
ſ	Visual Contamination	START: 2.2/1.7/47 ROT: 1/1/4 BAD	***** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
	Lift Coefficient	6°:1.441 GOOD 8°:1.639	
ſ	Lift Loss At 8°	4,78% GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E28: Run #26

	Objective	IP VALIBATION	
	Fluid	EG106(EG)	
	Test # / Test Plan #	RUN 264(P7)	
	OAT	TARGET: -5°C GOUL ACTUAL: -3.3°C	D
ĺ	Rate	1P=25 GOOD ZR=25 GOOD	
	Exposure Time	25 MINS GOOD	
ſ	Associated Fluid Only Case	RUN 25(E9): 1.9.9%	
ſ	Visual Contamination	START: 1.8/2/1.9 ROT: 1/1/1 GODIS	**** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 ***** Visual at Rol LE should be 1
	Lift Coefficient	6°:1.499 GOOD 8°:1.697	
	Lift Loss At 8°	1.41 % GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E29: Run #26A

Objective	IP VALIDATION	
Fluid	LAUNCH (PG)	
Test # / Test Plan #	RUN 59(P9)	
OAT	TARGET: -5°C GUUL ACTUAL: -3.3°C	
Rate	1P= 25 ZR= 25 GOOD	
Exposure Time	25 MINS GOOD	
Associated Fluid Only Case	RUN 60(E21): 4.61%	
Visual Contamination	START: 2/2/2.2 ROT: 1/1.3/1.5 GUOD	**** Not Based on photos **** Visuai at Start should be <=3, Flap<=4 ***** Visuai at Rot LE should be 1
Lift Coefficient	6° 1.449 GOOD 8° : 1.651 GOOD	
Lift Loss At 8°	4.08% GODIS	
OVERALL STATUS (good, bad, or review)	GOOD	
11 - 12 10 63 1/2		

Figure E30: Run #59

Objective	IP VALIDATION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RVN 63(P23)	
OAT	TARGET: -10°C GUUD ACTUAL: -12.3°C	
Rate	1P=25 GOOD ZR=25 GOOD	
Exposure Time	IO MINS GOOD	
Associated Fluid Only Case	RUN 64(E22):5.079	6
Visual Contamination	START: 2312313.2 ROT: 1.2/2/23 OK	**** Not Based on photos **** Visual at Start should be <=3, Flap<=4 **** Visual at Rot LE should be 1
Lift Coefficient	6°: 1363 GOOB/ 8°: 1.59 REVIEW	(Less than 5% loss accepatible) (Less than 5% loss accepatible) *********************************
Lift Loss At 8°	7.69% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E31: Run #63

IP VALIDATION	
EG106 (EG)	
RUN 98(P22)	
TARGET: -10°C ACTUAL: -6.7°C GUUD	
1P=25 ZR=25 GOOD	
10 MINS GOOD	
RVIV IDD (E26): 2.28%	
START: 2/2/2.5 RDT: 1/1/1.3 GOOD	4
6°: 1.501 GDDA ("""Compared to Dry Wing ("""Compared to Dry Wing (""" Compared to Dry Wing ("" Compared to Dry Win	
1.76°% GOOD	
n review) GOOD	
	IP VALIDATION EGIO6 (EG) RUN 98 (P22) TARGET: -10°C ACTUAL: -6.7°C IP = 25 GOOD ID MINS GDOD • RUN IDD (E26): 2.28% START: 2.12.12.5 ROT: 1/1/1.3 GOOD 6°: 1.501 B°: 1.691 I.760% GOOD I.760% GOOD

Figure E32: Run #93

LIGHT ICE PELLETS MIXED WITH MODERATE RAIN

Figure E33: Light Ice Pellets Mixed with Moderate Rain Allowance Table

Objective	IP EXPANSION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RVN 20(P41)	
OAT	TARGET: 0°C BAC ACTUAL: +2.9°C	-
Rate	10=25 R=75 GOOD	
Exposure Time	40 MINS GODD	
Associated Fluid Only Case	RUN 53 (E18):391.9	40
Visual Contamination	START: 1/1/1 GOOD ROT: 1/1/1	•••••• Not Based on pholos •••••• Visual at Start should be <=3, Flap<=4 ••••• Visual at Rot LE should be 1
Lift Coefficient	BATA LOSS	(Less than 5% loss accepatible)
Lift Loss At 8°	NATA LOSS	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E34: Run #20

Objective	IP EXPANSION	
Fluid	EG 106 (EG)	
Test # / Test Plan #	RUN 44 (P40)	
OAT	TARGET: O°C GUUL ACTUAL: -0.8°C	
Rate	1P=25 GOOD R=75 GOOD	
Exposure Time	40 MINS GOOD	
Associated Fluid Only Case	RUN 55(E20):1889	0
Visual Contamination	START: 5/4.5/5 ROT: 5/5/5 BAD	**** Not Based on photos **** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.079 8°: 1.231 BAD	
Lift Loss At 8°	28.48% BAN	
OVERALL STATUS (good, bad, or review)	BAB	

Figure E35: Run #44

	Objective	IP VALIDATION/ EXPANSION	
	Fluid	EGID6 (EG)	
	Test # / Test Plan #	RUN 56(PHO14)	
	OAT	TARGET: O°C GOOD ACTUAL: -1.1°C	
ĺ	Rate	1P=25 G0010 R=75 G0010	
	Exposure Time	25 MINS GOOD	
ſ	Associated Fluid Only Case	RUN 55(E20): 1.88%	
	Visual Contamination	START: 1.8/2/4.7 ROT: 1/1/5 BAD	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ····· Visual at Rot LE should be 1
ſ	Lift Coefficient	6°: 1.478 8°: 1.666 GOOD	
	Lift Loss At 8°	3.21% GOOB	
	OVERALL STATUS (good, bad, or review)	GOOB/REVIEW	

Figure E36: Run #56

Objective	IP EXPANSION	
Fluid	EGIDIQ (EG)	
Test # / Test Plan #	RUN 56A(PHOA)	
OAT	TARGET: O°C GODL	2
Rate	1P=25 GOOD R=75 GOOD	
Exposure Time	25 MINS GOOD	
Associated Fluid Only Case	RUN 55(E20):1.889	/ o
Visual Contamination	START: 1.8/2.2/3 ROT: 1/1/4.3 GOOD	•••••• Not Based on photos ••••• Visual at Start should be <=3, Flap<=4 ••••• Visual at Rot LE should be 1
Lift Coefficient	6°: 1.473 GOOD 8°: 1.663 GOOD	Compared to Dry Wing (Less than 5% loss accepatble) ····· 6° Ci should be >=1.64 } ····· 8° Ci should be >=1.64 } ····· 8° Ci should be >=1.40 } ····· 8° Ci should be >=1.40 } ····· 8° Ci should be >=1.59 8%
Lift Loss At 8°	3.39% GOOD	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E37: Run #56A

This page intentionally left blank.

LIGHT ICE PELLETS MIXED WITH LIGHT SNOW

Figure E38: Light Ice Pellets Mixed with Light Snow Allowance Table

Objective	IP VALIDATION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUNS(PII)	
OAT	TARGET: -5°C GODD ACTUAL: -4.8°C	
Rate	10=25 GOOD SN=10	
Exposure Time	25 MINS GOOD	
Associated Fluid Only Case	RUNH(E.4): 4.03%	
Visual Contamination	START: 21213 ROT: 1/1.5/1.8 GOOD	***** Not Based on photos ***** Vrisual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.448 GOOD 8°: 1.658	
Lift Loss At 8°	3.68% GOOD	
OVERALL STATUS (good, bad, or review)	GOOD	
W 1110 100 TIO		

Figure E39: Run #5

Objective	IP EXPANSION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN 11 (P35)	
OAT	TARGET: -5°C GOUD ACTUAL: -5.9°C	
Rate	1P=25 GOOD SN=10	
Exposure Time	40 MINS GOOD	
Associated Fluid Only Case	RUNI(P8B): 5.01%	
Visual Contamination	START: 3/2.3/4 ROT: 1/1.8/2.5 GUUD	***** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6°:1,459 GOOD 8°:1.646 GOOD	Class than 5% loss accepatible Class than 5% loss accepatible Strengthere 5% loss accepa
Lift Loss At 8°	4.37% GOOD	
OVERALL STATUS (good, bad, or review)	GOOD	

Figure E40: Run #11

Objective	IP EXPANSION	
Fluid	EG106 (EG)	
Test # / Test Plan #	RVN 23(P34)	
OAT	TARGET: -5°C GOUL ACTUAL: -32°C	
Rate	1P=25 SN=10 G000	
Exposure Time	40 MINS GODD	
Associated Fluid Only Case	RUN 25(E9): 1,99%	
Visual Contamination	START: 2.3/2.2/4 ROT: 1/1.2/1.5 GUOD	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ····· Visual at Rot LE should be 1
Lift Coefficient	6°: 1.491 GOOD 8°: 1.702	Compared to Dry Wing (Less than 5% loss acceptable) *********************************
Lift Loss At 8°	1.12% GOOD	
OVERALL STATUS (good, bad, or review)	GOOD	
	Objective Fluid Fluid Test # / Test Plan # OAT Rate Exposure Time Associated Fluid Only Case Visual Contamination Lift Coefficient Lift Loss At 8* OVERALL STATUS (good, bad, or review)	ObjectiveIP EXPANSIONFluidEG IDID (EG)Test # / Test Plan #RVIN 23 (P34)OATTARGET: -5°C GOUD ACTUAL: -32°CRateIP = 25 GOODRateIV = 10Exposure Time40 MINS GODDAssociated Fluid Only CaseRUN 25(E9): 1,99%Visual ContaminationSTART: 2.3/2.2/H ROT: 1/1.2/1.5 GOODLift Coefficient6°: 1,491 GOODLift Loss At 8°1,12 % GOODOVERALL STATUS (good, bad, or review)GDDD

Figure E41: Run #23

	Objective	IP EXPANSION	
	Fluid	LAUNCH (PG)	
	Test # / Test Plan #	KVN 57(P36)	
(OAT	TARGET: -5°C GOOD ACTUAL: -3.6°C	
ſ	Rate	1P=25 G000 SN=10	
	Exposure Time	40 MINS GOOD	
	Associated Fluid Only Case	RUN 29(E11): 4,96%	
ĺ	Visual Contamination	START: 27/2.6/4 ROT: 1/1.7/2.8 GUUD	www.Not Based on photos www.visual at Start should be <≃3, Flap<=4 www.visual at Rot LE should be 1
ſ	Lift Coefficient	6°:1.43 GOOD 8°:1.64	
	Lift Loss At 8°	4.72% GOOD	
	OVERALL STATUS (good, bad, or review)	GDDD	

Figure E42: Run #57

Objective	IP EXPANSION	
Fluid	LAUNCH (PG)	
Test # / Test Plan #	RUN 57A(P36)	
OAT	TARGET: -5°C GUUL ACTUAL: -4.2°C	
Rate	1P= 25 GODD SN=10	
Exposure Time	40 MINS GOOD	
Associated Fluid Only Case	RUN 29(E11):4,96%	
Visual Contamination	START: 2.6/2.6/3 ROT: 1/1.3/1.7 GOUD	www.Not Based on photos visual at Start should be <=3, Flap<=4 visual at Rot LE should be 1
Lift Coefficient	6°: 1.49 GOOD 8°: 1.67	Compared to Dry Wing Less than 5% loss accepable) ***** 6° Ci should be >=1.44 5% ****** 6° Ci should be >=1.49 5% ****************************
Lift Loss At 8°	2.92% 8000	
OVERALL STATUS (good, bad, or review)	GUOD	

Figure E43: Run #57A

	Objective	IP EXPANSION	
	Fluid	ABC-S+(PG)	
	Test # / Test Plan #	RUN 77(P50)	
	OAT	TARGET: -25°C ACTUAL: -14.1°C BAC	9
	Rate	10=25 GODD SN=10 GODD	
	Exposure Time	10 MINS GOOD	
	Associated Fluid Only Case	RVN 64 (E22): 5,07%	0
	Visual Contamination	START: 2.8/2.7/3.7 ROT: 1.7/2/2.8 BAD	Wisual at Start should be <=3, Flap<=4 Visual at Rot LE should be 1
	Lift Coefficient	6°: 1.338 BAD/ 8°: 1.551 REVIEW	Ideas that 5% loss accepabile) Ideas that 5% loss accepabile) <td< th=""></td<>
	Lift Loss At 8°	9.89 % BAD	
OVER	ALL STATUS (good, bad, or review)	BAD	

Figure E44: Run #77

Objective	IP EXPANSION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN 78(P50A)	
OAT	TARGET: -25°C ACTUAL: -16°C REVII	ΞW
Rate	10=25 GOOD SN:10	
Exposure Time	5 MINS GODD	
Associated Fluid Only Case	RVN 76(E25):589%	
Visual Contamination	START: 2.3/2.2/3 ROT: 1.4/2.12.7 BAD	Wisual at Start should be <=3, Flap<=4
Lift Coefficient	6:1.381 BAD/ 8:1.573 REVIEW	
Lift Loss At 8°	8.62% BAD/ REVIEW	
OVERALL STATUS (good, bad, or review)	BAD/REVIEW	

Figure E45: Run #78

	Objective	IP EXPANSION	
	Fluid	EGIDb (EG)	
	Test # / Test Plan #	RUN 79(P49)	
	OAT	TARGET: -25°C ACTUAL: -14:8°C	EW
	Rate	10=25 GOOD 8N=10	
	Exposure Time	IO MINS GOOD	
	Associated Fluid Only Case	RUN 75(E24):4.08%	
	Visual Contamination	START: 2.2/2/2.5 ROT: 1/1.5/2 GOOD	Wisual at Start should be <=3, Flap<=4 Visual at Rot LE should be 1
Í	Lift Coefficient	6°: 1.46 GOOD 8°: 1.66	
	Lift Loss At 8°	3.56% GUOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E46: Run #79

Objective	IP VALIDATION	
Fluid	ABC-S+ (PG)	
Test # / Test Plan #	RUN 94 (P26)	
OAT	TARGET: -10°C GUUD ACTUAL: -6.3°C GUUD	
Rate	1P=25 SN=10 900D	
Exposure Time	15 MINS GOOD	
Associated Fluid Only Case	RUNI(P8B): 5.01%	
Visual Contamination	START: 2512128 ROT: 1/1.8/2 GOOD	····· Not Based on photos ····· Visual at Start should be <≃3, Flap<=4 ····· Visual at Rot LE should be 1
Lift Coefficient	6°:1.420 GOOD/ 8°:1.626 REVIEW	
Lift Loss At 8°	5.54% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E47: Run #94

LIGHT ICE PELLETS MIXED WITH MODERATE SNOW

Figure E48: Light Ice Pellets Mixed with Moderate Snow Allowance Table

Objective	IP EXPANSION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN 13 (P38)	
OAT	TARGET: -5°C ACTUAL: -4.6°C GOO	2
Rate	1P=25 GOOD SN:25 GOOD	
Exposure Time	20 MIN GOOD	
Associated Fluid Only Case	RUN 17(E8): 4.969	
Visual Contamination	START: 312/3.5 ROT: 1/1.8/2.7 GUO	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ····· Visual at Rot LE should be 1
Lift Coefficient	6°: 1.422 GOOD, 8°: 1.617 REVIEW	(Less than 5% loss accepatble) (Less than 5% loss accepatble) ""6° CI should be >=1.64 5% ""6° CI should be >=1.69 8%
Lift Loss At 8*	6.06% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E49: Run #13

Objective	IP EXPANSION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN 14(P38)	
OAT	TARGET: -5°C ACTUAL:-4:4°C GOD	D
Rate	1P= 25 GODD SN= 25 GODD	
Exposure Time	15 MIN GOOD	
Associated Fluid Only Case	RUN 17(E8):4.96%	
Visual Contamination	START: 2.2/2/2.8 ROT: 1/1.5/1.5 GODE	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ···· Visual at Rol LE should be 1
Lift Coefficient	6": 1.414 GODD/ 8": 1.633 REVIEW	Clashould be >=1.40 S% Solution Solutio
Lift Loss At 8°	5.54% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOUD/REVIEW	

Figure E50: Run #14

Objective	IP VALIBATION	
Fluid	ABE-S+(PG)	
, Test # / Test Plan #	RUN 15 (P14)	
OAT	TARGET: -5°C GUDI ACTUAL: -4.3°C	þ
Rate	1P= 25 GOOD 5N= 25 GOOD	
Exposure Time	10 MIN GOOD	
Associated Fluid Only Case	RUN 17(E8): 4.969	0
Visual Contamination	START: 1.81212.7 ROT: 1/1.3/1.7 GOOD	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ····· Visual at Rot LE should be 1
Lift Coefficient	6°: 1.433 GOOD/ 8°: 1.633 REVIEW	6 Compared to Dry Wing (Less than 5% loss accepatible) 6° Cl should ba >=1.44 } 5% 6° Cl should ba >=1.40 6° Cl should ba >=1.59 } 8%
Lift Loss At 8°	5.13% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOODIREVIEW	

Figure E51: Run #15

	Objective	IP VALIBATION	
	Fluid	ABC-S+(PG)	
	Test # / Test Plan #	RUN 16(P14)	
	OAT	TARGET: -5°C GODE ACTUAL: -4.2°C	>
	Rate	1P=25 SN=25 GOOD	
	Exposure Time	5 MIN BAD	
	Associated Fluid Only Case	RUN 17 (E8): 4.96%	
	Visual Contamination	START: 1.4/1.7/1.8 ROT: 1/1/1.3 GOOD	**** Not Based on photos Visual at Start should be <=3, Flap<=4 **** Visual at Rot LE should be 1
ĺ	Lift Coefficient	6: 1.414 GOOD/ 8: 1.622 REVIEW	(Less than 5% loss accepatele) 6°C ishouid be >=1.44 6°C ishouid be >=1.44 6°C ishouid be >=1.49 6°C ishouid be >=1.49 6°C ishouid be >=1.49
	Lift Loss At 8°	5.77% GOOD/ REVIEW	/
	OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	

Figure E52: Run #16

	Objective	IP EXPANSION	
	Fluid	EGID6 (EG)	
Í	Test # / Test Plan #	RUN 24 (P37)	
	OAT	TARGET: -5°C GOD	Ø
ſ	Rate	10 = 25 GODD SN = 25 GODD	
	Exposure Time	20 MIN GOOD	
ĺ	Associated Fluid Only Case	RUN 25(E9): 1.99	b∕/₀
ĺ	Visual Contamination	START: 2.5/1.8/4 ROT: 1/1.2/1 GODD	***** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 Visual at Rot LE should be 1
ĺ	Lift Coefficient	6°: 1.517 GODD 8°: 1.699 GODD	Compared to Dry Wing (Less than 5% loss opable) "6" Cl should be >=1.44 } 5% ""6" Cl should be >=1.40 } 5% ""6" Cl should be >=1.59 } 8%
	Lift Loss At 8°	1.30% GOOD	
[OVERALL STATUS (good, bad, or review)	GOOD	

Figure E53: Run #24

	Objective	IP EXPANSION	
ſ	Fluid	LAUNCH (PG)	
	Test # / Test Plan #	RUN 58 (P39)	
	OAT	TARGET: -5°C GUD ACTUAL: -3.1°C GUD	D
	Rate	1P: 25 SN: 25 GOOD	
	Exposure Time	20 MIN GOOD	
	Associated Fluid Only Case	RVN (00(E21):4.619	o
	Visual Contamination	START: 2.8/2.6/3 ROT: 1/1.512 GODD	**** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
	Lift Coefficient	6° 1.439 GOOD 8° 1.638	Compared to Dry Wing (Less than 5% loss accepatible) ***** 6° Ci should be >=1.44 5% ****************************
	Lift Loss At 8°	4.84 % GODD	
	OVERALL STATUS (good, bad, or review)	GODA	

Figure E54: Run #58

	Objective	IP EXPANSION	
	Fluid	EGIDIO (EG)	
	Test # / Test Pian #	RUN 81 (P52)	
	OAT	TARGET: -25°C OK ACTUAL: -17.3°C OK	
	Rate	1P=25 GODD SN=25	
	Exposure Time	5 MIN GOOD	
	Associated Fluid Only Case	RUN 75(E24): 4.08%	o
ĺ	Visual Contamination	START: 1.8/2/2.3 ROT: 1/1.5/2 GODD	**** Not Based on photos **** Visual at Start should be <=3, Flap<=4 **** Visual at Rot LE should be 1
	Lift Coefficient	6°: 1.445 GOOD 8°: 1.656 GOOD	"""Compared to Dry Wing (Less than 5% loss accepatble) """ & Cl should be >=1.44 5% """ & Cl should be >=1.43 5% """ & Cl should be >=1.59 8%
	Lift Loss At 8°	3.79% GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E55: Run #81

	Objective	IP EXPANSION	
	Fluid	ABC-S+(PG)	
	Test # / Test Plan #	RUN 82 (P53)	
	OAT	TARGET: -25°C BAI	2
	Rate	1P= 25 GOOD SN= 25 GOOD	
	Exposure Time	5 MIN GOOD	
ſ	Associated Fluid Only Case	RVN 76(E25): 5.89	10/.
ſ	Visual Contamination	START: 25/2.2/3.2 ROT: 1.5/1.5/1.8 BA	Visual at Start should be <=3, Flap<=4 Visual at Rot LE should be 1
ſ	Lift Coefficient	6°:1354 8°:1563 BAD	
	Lift Loss At 8°	9.20% BAD	
	OVERALL STATUS (good, bad, or review)	BAD/REVIEW	

Figure E56: Run #82

Objective	1 P EX PANSION	
Fluid	ABC-S+(PG)	
Test # / Test Plan #	RUN97(P47)	
OAT	TARGET: -10°C ACTUAL: -8.3°C GOC	Ď
Rate	1P = 25 GOOD SN = 25 GOOD	
Exposure Time	10 MIN GODD	
Associated Fluid Only Case	RUN 64(E22): 5.07	0/o
Visual Contamination	START: 2912313 ROT: 13118/25 134	Wisual at Start should be <=3, Flap<=4 Visual at Start should be 1
Lift Coefficient	6°: 1.402 GOOD/ 8°: 1.59 REVIEW	
Lift Loss At 8°	7.63% GOOD/ REVIEW	
OVERALL STATUS (good, bad, or review)	GOUD/REVIEW	

Figure E57: Run #97

FLAP RETRACTED (UP) VERSON FLAP EXTENDED (DOWN)

	Objective	IPVALIDATION	
	Fluid	EG106 (EG)	
	Test # / Test Plan #	RUN 26(P7)	
	OAT	TARGET: -5 GODD/ ACTUAL: -1.9 REVIEW	\checkmark
	Rate	1P=25 GOOD ZR=25 GOOD	
	Exposure Time	25 MINS GOOD	
ſ	Associated Fluid Only Case	RVN 55 (E20): 1,88%	
ſ	Visual Contamination	START: 2.2/1.7/47 ROT: 1/1/4 BAD	Wisual at Start should be <=3, Flap<=4 Visual at Rot LE should be 1
	Lift Coefficient	6°:1.441 GOOD 8°:1.639	
ſ	Lift Loss At 8°	4.78% GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E58: Run #26

Objective	IP VALIBATION	
Fluid	EG10b(EG)	
Test # / Test Plan #	RUN 264(P7)	
OAT	TARGET: -5°C GOUL ACTUAL: -3.3°C	D
Rate	1P=25 GOOD ZR=25 GOOD	
Exposure Time	25 MINS GOOD	
Associated Fluid Only Case	RUN 25(E9): 1.9.9%	
Visual Contamination	START: 1.8/2/1.9 RUT: 1/1/1 GIUDIS	••••• Not Based on photos ••••• Visual at Start should be <=3, Flap<=4 ••••• Visual at Roi LE should be 1
Lift Coefficient	6°: 1.499 GOOD 8°: 1.697	
Lift Loss At 8°	1.41 % GOOD	
OVERALL STATUS (good, bad, or review)	GOOD	
	Objective Fluid Fluid Test # / Test Plan # OAT Aate Exposure Time Associated Fluid Only Case Visual Contamination Lift Coefficient Lift Loss At 8° OVERALL STATUS (good, bad, or review)	ObjectiveIP VALIBATIONFluidEG106 (EG)Test # / Test Plan #RUIV 264 (P7)TARGET: -5°CGOODACTUAL: -3.3°CIP = 25RateIP = 25Exposure Time25 MINS GDODAssociated Fluid Only CaseRUIN 25(E9): 1.99%Visual ContaminationSTART: 1.8/2/1.9Lift Coefficient6°: 1.1499GOOD8': 1.697Lift Loss AI 8'I.H.I °/°OVERALL STATUS (good, bed, or review)GDOD

Figure E59: Run #26A

	Objective	IP VALIDATION	
	Fluid	LAUNCH (PG)	
	Test # / Test Plan #	RUN 28(P3)	
	OAT	TARGET: -5°C GOOD ACTUAL: -4.2°C	
	Rate	1P=25 GOOD	
	Exposure Time	50 MINS GOOD	
	Associated Fluid Only Case	RUN 29 (E11): 496%	
	Visual Contamination	START: 2/2/37 RDT: 1/17/2 GOOD	**** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 Visual at Rot LE should be 1
	Lift Coefficient	6°1.449 GOOD 8°1.648	Compared to Dry Wing (Less han 5% loss acceptible) """ 6° (1 should be ≥ 1.44 5% """ 6° (1 should be ≥ 1.44 5% """ 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 "" 6° (1 should be ≥ 1.49 ""
ĺ	Lift Loss At 8°	4.26°1° GODD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E60: Run #28

	Objective	IP VALIDATION	
	Fluid	LAUNCH (PG)	
	Test # / Test Plan #	RUN 28A(P3)	
	OAT	TARGET: -5°C GOOD ACTUAL: -5.5°C	
	Rate	1P=25 GOOD	
	Exposure Time	50 MINS GOOD	
	Associated Fluid Only Case	RUN 29(EI I): 4.96%	
ĺ	Visual Contamination	START: 2/2/27 ACTUAL: 1/1.5/2 GOOD	····· Not Based on photos ····· Visual at Start should be <=3, Flap<=4 ····· Visual at Rot LE should be 1
	Lift Coefficient	6°:1.467 GOOD 8°:1.655 GOOD	(Less than 5% loss accepatibe) (Less than 5% loss accepatibe)
ĺ	Lift Loss At 8°	3.85% GOOD	
	OVERALL STATUS (good, bad, or review)	GOOD	

Figure E61: Run #28A
	Objective	IP VALIDATION/ EXPANSION	
	Fluid	EGID6 (EG)	
	Test # / Test Plan #	RUN 56(PH014)	
	OAT	TARGET: O°C GOOD ACTUAL: -1.1°C	
Ĩ	Rate	1P=25 G0010 R=75 G0010	
	Exposure Time	25 MINS GOOD	
ſ	Associated Fluid Only Case	RUN 55(E20): 1.88%	
	Visual Contamination	START: 1.8/2/4.7 ROT: 1/1/5 BAD	**** Not Based on photos **** Visuai at Start should be <=3, Flap<=4 **** Visuai at Rot LE should be 1
	Lift Coefficient	6°:1.478 8°:1.666 GOOD	
	Lift Loss At 8°	3.21% GOOB	
	OVERALL STATUS (good, bad, or review)	GOOB/REVIEW	

Figure E62: Run #56

Objective	IP EXPANSION	
Fluid	EGIDIQ (EG)	
Test # / Test Plan #	RUN 56A(P40A)	
OAT	TARGET: O°C GODE ACTUAL: -1.4°C	2
Rate	1P=25 GOOD R=75 GOOD	
Exposure Time	25 MINS GOOD	
Associated Fluid Only Case	RUN 55(E20):1.88%	/ o
Visual Contamination	START: 1.8/2.2/3 ROT: 1/1/4:3 GOOD	**** Not Based on photos ***** Visual at Start should be <=3, Flap<=4 ***** Visual at Rot LE should be 1
Lift Coefficient	6°: 1.473 GOOD 8°: 1.663	
Lift Loss At 8°	3.39 % GOOD	
OVERALL STATUS (good, bad, or review)	GOOD/REVIEW	
Rate Exposure Time Associated Fluid Only Case Visual Contamination Lift Coefficient Lift Loss At 8° OVERALL STATUS (good, bad, or review)	10=25 GOOD R=75 GOOD 25 MINS GOOD RUN 55(E20):1.889 START: 1.8/2.213 ROT: 1/1/4:3 GOOD 6°: 1.473 GOOD 8°: 1.663 3.39% GOOD GOOD /REVIEW	<pre>**** Not Based on photos **** Visual at Start should be <=0, Flap<=4 **** Visual at Rot LE should be 1 (cless than d'sh toss acceptable) ****** Compared to DYW and the >=1.40 \$5% ***** g* Cl should be >=1.59 \$% **** g* Cl should be >=1.59 }</pre>

Figure E63: Run #56A

	Objective	IP EXPANSION	
	Fluid	LAUNCH (PG)	
	Test # / Test Plan #	KVN 57(P36)	
	OAT	TARGET: -5°C GOOD ACTUAL: -3.6°C	
	Rate	1P=25 G000 SN=10	
	Exposure Time	40 MINS GOOD	
	Associated Fluid Only Case	RUN 29(E11): 4,96%	
	Visual Contamination	START: 27/2.6/4 ROT: 1/1.7/2.8 GUUD	www.Not Based on photos www.Visual at Start should be <=3, Flap<=4 www.Visual at Rot LE should be 1
	Lift Coefficient	6°:1.43 GOOD 8°:1.64	
ſ	Lift Loss At 8°	4.72% GOOD	
	OVERALL STATUS (good, bad, or review)	GDDD	

Figure E64: Run #57

Objective	IP EXPANSION	
Fluid	LAUNCH (PG)	
Test # / Test Plan #	RUN 57A(P36)	
OAT	TARGET: -5°C GUUL ACTUAL: -4.2°C	>
Rate	1P= 25 GODD SN=10	
Exposure Time	40 MINS GOOD	
Associated Fluid Only Case	RUN 29 (E11): 4,96%	
Visual Contamination	START: 2.6/2.6/3 ROT: 1/1.3/17 GOUD	•••• Nol Based on photos ••••• Visual at Start should be <=3, Flap<=4 ••••• Visual at Rol LE should be 1
Lift Coefficient	6°: 1.49 GOOD 8°: 1.67 GOOD	"Compared to Dry Wing (Less than 5% loss acceptible) """ 6° Ci should be >=1.44 5% """ 6° Ci should be >=1.49 5% """ 6° Ci should be >=1.59 5%
Lift Loss At 8°	2.92% 8000	
OVERALL STATUS (good, bad, or review)	GOOD	

Figure E65: Run #57A

APPENDIX F

ADDITIONAL NOTES AND OBSERVATIONS AT NRC WIND TUNNEL

This page intentionally left blank.