TP 15341E



# WIND TUNNEL TRIALS TO SUPPORT FURTHER DEVELOPMENT OF ICE PELLET ALLOWANCE TIMES: WINTER 2015-16



Prepared for the Transportation Development Centre In cooperation with Transport Canada Civil Aviation and the Federal Aviation Administration William J. Hughes Technical Center

Final Version 1.0 December 2016

TP 15341E



# WIND TUNNEL TRIALS TO SUPPORT FURTHER DEVELOPMENT OF ICE PELLET ALLOWANCE TIMES: WINTER 2015-16



Prepared for the Transportation Development Centre In cooperation with Transport Canada Civil Aviation and the Federal Aviation Administration William J. Hughes Technical Center

# Marco Ruggi and Benjamin Bernier

Final Version 1.0 December 2016 The contents of this report reflect the views of APS Aviation Inc. and not necessarily the official view or opinions of the Transportation Development Centre of Transport Canada.

The Transportation Development Centre does not endorse products or manufacturers. Trade or manufacturers' names appear in this report only because they are essential to its objectives.

#### DOCUMENT ORIGIN AND APPROVAL RECORD

Prepared by:

Benjamin Bernier, B.Sc. Project Analyst

And by:

Marco Ruggi, Eng., M.B.A. Project Leader Date

Date

Reviewed and Approved by:

John D'Avirro, Eng., PBDM Director, Aviation Services Date

Un sommaire français se trouve avant la table des matières.

This report was first provided to Transport Canada as Final Draft 1.0 in December 2016. It has been published as Final Version 1.0 in October 2020.

#### PREFACE

Under contract to the Transportation Development Centre of Transport Canada with support from the Federal Aviation Administration, APS Aviation Inc. has undertaken a research program to advance aircraft ground de/anti-icing technology. The primary objectives of the APS Aviation Inc. test program are the following:

- To develop holdover time data for all newly-qualified de/anti-icing fluids and update and maintain the website for the holdover time guidelines;
- To evaluate fluid holdover times for snow at very cold temperatures close to -25°C;
- To conduct heavy snow research to determine the highest usable precipitation rate for which operations are permitted;
- To evaluate the effects of deploying flaps and slats, prior to takeoff, on fluid protection times;
- To conduct exploratory testing to evaluate fluid effectiveness and characterize contamination on high angle vertical surfaces;
- To conduct general and exploratory de/anti-icing research;
- To obtain full-scale operational documentation of anti-icing fluid flow-off, fluid freezing-in-flight, and residual fluid thickness;
- To conduct wind tunnel testing to support the development of the guidance material for operating in conditions mixed with ice pellets;
- To update the regression coefficient report with the newly-qualified de/anti-icing fluids; and
- To update the source documents used by Transport Canada and the Federal Aviation Administration for the maintenance and publication of the holdover time guidance material.

The research activities of the program conducted on behalf of Transport Canada during the winter of 2015-16 are documented in five reports. The titles of the reports are as follows:

- TP 15338E Aircraft Ground De/Anti-Icing Fluid Holdover Time Development Program for the 2015-16 Winter;
- TP 15339E Regression Coefficients and Equations Used to Develop the Winter 2016-17 Aircraft Ground Deicing Holdover Time Tables;
- TP 15340E Aircraft Ground Icing General Research Activities During the 2015-16 Winter;
- TP 15341E Wind Tunnel Trials to Support Further Development of Ice Pellet Allowance Times: Winter 2015-16; and
- TP 15342E Testing of Endurance Times on Extended Flaps and Slats.

This report, TP 15341E has the following objective:

• To conduct research in the 3 m x 6 m Open-Circuit Propulsion Icing Wind Tunnel with a thin high-performance wing section to further support and develop the anti-icing fluid ice pellet allowance times.

This objective was met by conducting a series of full-scale tests using a thin high-performance wing model in the National Research Council Canada Propulsion Icing Wind Tunnel with the cooperation of Transport Canada and the Federal Aviation Administration.

#### PROGRAM ACKNOWLEDGEMENTS

This multi-year research program has been funded by Transport Canada with support from the Federal Aviation Administration, William J. Hughes Technical Center, Atlantic City, NJ. This program could not have been accomplished without the participation of many organizations. APS Aviation Inc. would therefore like to thank the Transportation Development Centre of Transport Canada, the Federal Aviation Administration, National Research Council Canada, and supporting members of the SAE International G-12 Aircraft Ground Deicing Committee.

APS Aviation Inc. would also like to acknowledge the dedication of the research team, whose performance was crucial to the acquisition of hard data. This includes the following people: Yelyzaveta Asnytska, Brandon Auclair, Steven Baker, Stephanie Bendickson, Benjamin Bernier, Chloë Bernier, Trevor Butler, John D'Avirro, Jesse Dybka, Ben Falvo, Benjamin Guthrie, Michael Hawdur, Gabriel Maatouk, Philip Murphy, Matthew Pilling, Dany Posteraro, Marco Ruggi, Gordon Smith, David Youssef, and Nondas Zoitakis.

Special thanks are extended to Antoine Lacroix, Howard Posluns, Yvan Chabot, Warren Underwood and Charles J. Enders, who on behalf of the Transportation Development Centre and the Federal Aviation Administration, have participated, contributed and provided guidance in the preparation of these documents.

#### PROJECT ACKNOWLEDGEMENTS

APS Aviation Inc. would like to acknowledge the team at the National Research Council Canada who operate the Propulsion Icing Wind Tunnel, especially Catherine Clark for engineering support and aerodynamic expertise, and Lucio Del Ciotto for operating the facility. APS Aviation Inc. would also like to acknowledge the fluid manufacturers who have provided samples over the years to support the wind tunnel testing: ABAX Industries, AllClear Systems, Clariant Produkte (Deutschland) GmbH, Cryotech Deicing Technology, Dow Chemical Company, Kilfrost Limited, LNT Solutions, and Newave Aerochemical Co. Ltd.



| 1.    | Transport Canada Publication No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. Project No.                                                                                                                   |                                                                                                           | 3. Recipient's                                                                                         | Catalogue No.                                                                                 |                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|       | TP 15341E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B14W                                                                                                                             |                                                                                                           |                                                                                                        |                                                                                               |                                                                                |
| 4.    | Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           | 5. Publication                                                                                         | Date                                                                                          |                                                                                |
|       | Wind Tunnel Trials to Support Furthe Times: Winter 2015-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r Development of Ice                                                                                                             | e Pellet Allowand                                                                                         | e Decem                                                                                                | ber 2016                                                                                      |                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                           | 6. Performing                                                                                          | Organization Documen                                                                          | nt No.                                                                         |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                           | CM248                                                                                                  | 0.002                                                                                         |                                                                                |
| 7.    | Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                           | 8. Transport C                                                                                         | anada File No.                                                                                |                                                                                |
|       | Marco Ruggi and Benjamin Bernier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |                                                                                                           | 2450-B                                                                                                 | P-14                                                                                          |                                                                                |
| 9.    | Performing Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |                                                                                                           | 10. PWGSC File                                                                                         | e No.                                                                                         |                                                                                |
|       | APS Aviation Inc.<br>6700 Côte-de-Liesse Rd., Suite 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                           | TOR-4-                                                                                                 |                                                                                               |                                                                                |
|       | Montreal, Quebec, H4T 2B5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                           | 11. PWGSC or                                                                                           | Transport Canada Con                                                                          | ntract No.                                                                     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                           |                                                                                                        | 140243/001/T                                                                                  |                                                                                |
| 12.   | Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           | 13. Type of Pub                                                                                        | lication and Period Co                                                                        | vered                                                                          |
|       | Transportation Development Centre<br>Transport Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  |                                                                                                           | Final                                                                                                  |                                                                                               |                                                                                |
|       | 330 Sparks St., 26th Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                           | 14. Project Offic                                                                                      | er                                                                                            |                                                                                |
|       | Ottawa, Ontario, K1A 0N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |                                                                                                           | Antoine                                                                                                | e Lacroix                                                                                     |                                                                                |
| 45    | Our land the Materia for the second state of t |                                                                                                                                  |                                                                                                           |                                                                                                        |                                                                                               |                                                                                |
| 15.   | Supplementary Notes (Funding programs, titles of related put<br>Several research reports for testing of de/anti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  | roducod for provious                                                                                      | winters on bobalf (                                                                                    | of Transport Can                                                                              | ada. Thosa ara                                                                 |
|       | available from the Transportation Developmer<br>matter is outlined in the preface. The work des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt Centre. Several reports                                                                                                       | were produced as p                                                                                        | part of this winter's r                                                                                | esearch program                                                                               | n. Their subject                                                               |
| 16.   | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |                                                                                                           |                                                                                                        |                                                                                               |                                                                                |
|       | As part of a larger research program, APS Aviation Inc. conducted a series of full-scale tests in the National Research Council Canada 3 m x 6 m Open-Circuit Propulsion and Icing Wind Tunnel using a thin high performance wing model to determine the flow-off characteristics of anti-icing fluid with and without mixed precipitation conditions with ice pellets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                           |                                                                                                        |                                                                                               |                                                                                |
|       | A wind tunnel testing program was developed for the winter of 2015-16 with the primary objectives of conducting aerodynamic testing with the airfoil to: substantiate the current Type III ice pellet allowance times with new fluids, to investigate lower rotation speeds (80 knots), and time permitting, application methods (hot vs. cold); substantiate the current Type IV ice pellet allowance times with new fluids, and weather permitting, at temperatures close to the lowest operational use temperature (LOUT); to expand the current Type IV ice pellet allowance times to include more conditions commonly reported by METAR and to further develop the current mixed ice pellet and snow guidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                                           |                                                                                                        | lower rotation<br>llet allowance<br>JT); to expand                                            |                                                                                |
|       | Type III testing conducted during the win<br>market AllClear AeroClear MAX; this is a<br>during the winter of 2015-16 validated to<br>FCY 9311 fluids. Testing was also condu-<br>and more conditions including Moderate<br>Moderate Rain, and Light Ice Pellets mix<br>Canada and the Federal Aviation Administ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | applicable to aircraft w<br>the current Type IV a<br>ucted to support the ex<br>c Ice pellet mixed with<br>ed with Light and Mod | ith rotation speeds<br>llowance times for<br>kpansion of the ex<br>h Moderate Freez<br>erate Snow. In add | s above 100 knots<br>use with the ne<br>isting allowance t<br>ing Drizzle, Mode<br>dition, and through | s. Type IV testi<br>w to market Ll<br>imes to include<br>erate Ice Pellet<br>n consultation v | ng conducted<br>NT E450 and<br>longer times<br>ts mixed with<br>with Transport |
|       | Possible future areas of research may<br>National Aeronautics and Space Adminis<br>times; lift losses at LOUT; allowance time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stration LS-0417 wing                                                                                                            | section to support                                                                                        | development of T                                                                                       | ype III low spe                                                                               | ed allowance                                                                   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                           |                                                                                                        |                                                                                               |                                                                                |
| 17.   | Key Words                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  | 18. Distribution Statem                                                                                   |                                                                                                        |                                                                                               | _                                                                              |
|       | Ice Pellet, Allowance Time, High Speed F<br>Rotation, Type II, Type III, Type IV, Fluid Adhe<br>Wind Tunnel, Propulsion Icing Wind Tunnel, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erence, Fluid Flow-Off,                                                                                                          |                                                                                                           | imber of copi<br>ion Developmer                                                                        |                                                                                               | from the                                                                       |
| 19.   | Security Classification (of this publication)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20. Security Classification (of                                                                                                  | this page)                                                                                                | 21. Declassification                                                                                   |                                                                                               | 23. Price                                                                      |
|       | Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unclassified                                                                                                                     |                                                                                                           | (date)<br>                                                                                             | <sup>Pages</sup><br>xx, 116<br>apps                                                           | —                                                                              |
| CDT/T | DC 79-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                |                                                                                                           |                                                                                                        |                                                                                               | 78*8                                                                           |

| CDT  | /TDC | 79-00 |
|------|------|-------|
| Rev. | 96   |       |



| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nº de la publication de Transports Canada                                                                                                                                                                                                                                                                                                                                                       | 2. Nº de l'étude                                                                                                                                               |                                                                                                                    | <ol> <li>Nº de catalo</li> </ol>                                                                                      | gue du destinataire                                                                       |                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TP 15341E                                                                                                                                                                                                                                                                                                                                                                                       | B14W                                                                                                                                                           |                                                                                                                    |                                                                                                                       |                                                                                           |                                                                                                       |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Titre et sous-titre                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                                    | 5. Date de la p                                                                                                       | ublication                                                                                |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Tunnel Trials to Support Further Development of Ice Pellet Allowance<br>Times: Winter 2015-16                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                    | e Décem                                                                                                               | bre 2016                                                                                  |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                    | 6. Nº de docur                                                                                                        | nent de l'organisme                                                                       | exécutant                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                    | CM248                                                                                                                 | 0.002                                                                                     |                                                                                                       |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auteur(s)                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                    | 8. Nº de dossie                                                                                                       | er - Transports Cana                                                                      | da                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marco Ruggi and Benjamin Bernier                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                    | 2450-B                                                                                                                | P-14                                                                                      |                                                                                                       |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nom et adresse de l'organisme exécutant                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                |                                                                                                                    | 10. Nº de dossie                                                                                                      | er - TPSGC                                                                                |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | APS Aviation Inc.                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                                                    | TOR-4-                                                                                                                | 37170                                                                                     |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6700, Chemin de la Côte-de-Liesse, Bureau 105                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                    | 11. Nº de contra                                                                                                      | at - TPSGC ou Trans                                                                       | sports Canada                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Montréal (Québec) H4T 2B5                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                    | T8156-                                                                                                                | 140243/001                                                                                | /TOR                                                                                                  |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nom et adresse de l'organisme parrain                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                |                                                                                                                    | 13. Genre de pu                                                                                                       | ublication et période                                                                     | visée                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Centre de développement des transp<br>Transports Canada                                                                                                                                                                                                                                                                                                                                         | ports                                                                                                                                                          |                                                                                                                    | Final                                                                                                                 |                                                                                           |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330, rue Sparks, 26ième étage                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                    | 14. Agent de pro                                                                                                      | ojet                                                                                      |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ottawa (Ontario) K1A 0N5                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                                    | Antoine                                                                                                               | e Lacroix                                                                                 |                                                                                                       |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarques additionnelles (programmes de financement, titre                                                                                                                                                                                                                                                                                                                                      | s de publications connexes, etc.)                                                                                                                              |                                                                                                                    |                                                                                                                       |                                                                                           |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plusieurs rapports de recherche sur des essais de t<br>Transports Canada. Ils sont disponibles auprès du<br>recherche de cet hiver. Leur objet apparaît à l'avant-p                                                                                                                                                                                                                             | Centre de développement de                                                                                                                                     | s transports. Plusieurs                                                                                            | rapports ont été rédig                                                                                                | és dans le cadre                                                                          | du programme de                                                                                       |
| 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Résumé                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                    |                                                                                                                       |                                                                                           |                                                                                                       |
| Dans le cadre d'un programme de recherches plus large, APS Aviation Inc. a mené une série d'essais pleine grandeur réalisés dans la s<br>de givrage à propulsion et à circuit ouvert de 3 m sur 6 m du Conseil national de recherches Canada, au moyen d'un modèle d'a<br>performance à profil mince, afin de déterminer les caractéristiques de ruissellement du liquide d'antigivrage avec et sans cond<br>précipitations mixtes comprenant des granules de glace.<br>Un programme d'essais en soufflerie a été élaboré pour l'hiver 2015-2016 avec comme principaux objectifs de réaliser des tests aérodyn<br>au moyen d'une surface portante afin de corroborer les marges de tolérance actuelles concernant les granules de glace avec de n<br>liquides de type III, d'étudier des vitesses de rotation plus basses (80 nœuds) et, selon les contraintes de temps, les méthodes d'ar<br>(liquide chaud ou froid), de corroborer les marges de tolérance actuelles pour les granules de glace avec de nouveaux liquides de type<br>selon les conditions météorologiques, à des températures se rapprochant de la température minimale d'utilisation opérationnelle (LOUT),<br>les marges de tolérance actuelles pour les liquides de type IV dans des conditions de granules de glace de façon à inclure un plus grand<br>de conditions souvent signalées par METAR et à développer davantage les lignes directrices actuelles dans des conditions mixtes de<br>de glace et de neige. |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                | noyen d'un mo                                                                                                      | dèle d'aile haute                                                                                                     |                                                                                           |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                | vec de nouveaux<br>des d'application<br>les de type IV et,<br>(LOUT), d'élargir<br>us grand nombre                 |                                                                                                                       |                                                                                           |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Des essais menés à l'hiver 2015-2016 sur des<br>nouvellement commercialisé AllClear AeroCl<br>100 nœuds. Des essais menés à l'hiver 2015-<br>avec les liquides nouvellement commercialisés<br>de tolérance actuelles de façon à inclure des<br>modérés avec la bruine verglaçante modérée,<br>légère et modérée. En outre, après consultation<br>tolérance pour les granules de glace ont été p | ear MAX ; ces marges s<br>2016 sur des liquides de<br>LNT E450 et FCY 9311. I<br>marges plus longues et<br>les granules de glace mo<br>n avec Transports Canac | s'appliquent aux aér<br>type IV ont permis d<br>Des essais ont aussi<br>un plus grand nom<br>dérés avec la pluie m | onefs dont la vites<br>e valider les marges<br>été réalisés afin d'ét<br>bre de conditions, y<br>nodérée et les granu | se de rotation<br>de tolérance a<br>ayer l'élargisse<br>compris les g<br>les de glace lég | est supérieure à<br>actuelles à utiliser<br>ment des marges<br>ranules de glace<br>jers avec la neige |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | De futures recherches pourraient être menée:<br>liquides, de mettre à l'essai le profil d'aile LS-<br>de tolérance à basse vitesse pour les liquides<br>et d'analyser les données METAR pour déterr                                                                                                                                                                                             | 0417 de la National Aero<br>s de type III, d'étudier les                                                                                                       | nautics and Space A pertes de portance à                                                                           | Administration afin d<br>à la température mir                                                                         | 'appuyer l'élabo<br>nimale d'utilisat                                                     | oration de marges                                                                                     |
| 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mots clés                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                | 18. Diffusion                                                                                                      |                                                                                                                       |                                                                                           |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Granule de glace, marge de tolérance, rotation à<br>à basse vitesse, Type II, Type III, Type IV,<br>écoulement de liquide, soufflerie, soufflerie de<br>aérodynamisme des ailes                                                                                                                                                                                                                 | adhérence de liquide,                                                                                                                                          |                                                                                                                    | le développeme<br>e limité d'exemp                                                                                    |                                                                                           | ports dispose                                                                                         |
| 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Classification de sécurité (de cette publication)                                                                                                                                                                                                                                                                                                                                               | 20. Classification de sécurité                                                                                                                                 | (de cette page)                                                                                                    | 21. Déclassification                                                                                                  | 22. Nombre                                                                                | 23. Prix                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Non classifiée                                                                                                                                                                                                                                                                                                                                                                                  | Non classifiée                                                                                                                                                 |                                                                                                                    | (date)                                                                                                                | <sup>de pages</sup><br>xx, 116                                                            | _                                                                                                     |

| CDT/TDC 79-005 |  |
|----------------|--|
| Rev. 96        |  |

ann.

#### EXECUTIVE SUMMARY

Under contract to the Transportation Development Centre (TDC) of Transport Canada (TC) with support from the Federal Aviation Administration (FAA), APS Aviation Inc. (APS) has undertaken a research program to advance aircraft ground de/anti-icing technology.

As part of a larger research program, APS conducted a series of full-scale tests in the National Research Council Canada (NRC) 3 m x 6 m Open-Circuit Propulsion Icing Wind Tunnel (PIWT) using a supercritical wing model to determine the flow-off characteristics of anti-icing fluid with and without mixed precipitation conditions with ice pellets.

#### Background and Objective

A wind tunnel testing program was developed for the winter of 2015-16 with the primary objectives of conducting aerodynamic testing with a thin high-performance airfoil to:

- Substantiate the current Type III ice pellet allowance times with new fluids, to investigate lower rotation speeds (80 knots), and time permitting, application methods (hot vs. cold);
- Substantiate the current Type IV ice pellet allowance times with new fluids and, and weather permitting, at temperatures close to the lowest operational use temperature (LOUT); and
- Expand the current Type IV ice pellet allowance times to include more conditions commonly reported by METAR and to further develop the current mixed ice pellet and snow guidance.

In addition, baseline dry wing tests were conducted daily and following any system changes to validate the repeatability of the wind tunnel. One heavy contamination test was also conducted.

#### Conclusions

Type III testing conducted during the winter of 2015-16 validated the current Type III allowance times for use with the new to market AllClear AeroClear MAX; this is applicable to aircraft with rotation speeds above 100 knots. Efforts were made to support the development of an *80 knots or greater* rotation speed Type III allowance time table, however the results are still under review, and further testing is likely required.

Type IV testing conducted during the winter of 2015-16 validated the current Type IV allowance times for use with the new to market LNT E450 and FCY 9311 fluids. Testing was also conducted to support the expansion of the existing allowance times to include longer times and more conditions including "Moderate Ice pellet mixed with Moderate Freezing Drizzle," "Moderate Ice Pellets mixed with Moderate Rain," and "Light Ice Pellets mixed with Light and Moderate Snow".

In addition, and through consultation with TC and FAA, modifications to the ice pellet allowance times guidance material were proposed. These proposals were analytically based and developed based on industry requests and operational concerns.

#### Future Research

Possible future areas of research may include:

- Substantiation of ice pellet allowance times with new fluids;
- Testing with the National Aeronautics and Space Administration (NASA) LS-0417 wing section to support development of Type III low speed allowance times;
- Lift losses at LOUT;
- Allowance time expansion; and
- Analysis of METAR data to determine conditions requiring guidance.

#### SOMMAIRE

En vertu d'un contrat avec le Centre de développement des transports (CDT) de Transports Canada (TC), avec l'appui de la Federal Aviation Administration (FAA), APS Aviation Inc. (APS) a entrepris des activités de recherche visant à faire progresser les technologies associées au dégivrage et à l'antigivrage d'aéronefs au sol.

Dans le cadre d'un programme de recherches plus large, APS a mené une série d'essais pleine grandeur réalisés dans la soufflerie de givrage à propulsion et à circuit ouvert de 3 m sur 6 m du Conseil national de recherches Canada (CNRC), au moyen d'un modèle d'aile supercritique, afin de déterminer les caractéristiques de ruissellement du liquide d'antigivrage avec et sans conditions de précipitations mixtes comprenant des granules de glace.

#### Contexte et objectif

Un programme d'essais en soufflerie a été élaboré pour l'hiver 2015-2016 avec comme principaux objectifs de réaliser des tests aérodynamiques au moyen d'une surface portante haute performance à profil mince afin :

- De corroborer les marges de tolérance actuelles concernant les granules de glace avec de nouveaux liquides de type III, d'étudier des vitesses de rotation plus basses (80 nœuds) et, selon les contraintes de temps, les méthodes d'application (liquide chaud ou froid);
- De corroborer les marges de tolérance actuelles pour les granules de glace avec de nouveaux liquides de type IV et, selon les conditions météorologiques, à des températures se rapprochant de la température minimale d'utilisation opérationnelle (LOUT) ; et
- D'élargir les marges de tolérance actuelles pour les liquides de type IV dans des conditions de granules de glace de façon à inclure un plus grand nombre de conditions souvent signalées par METAR et à développer davantage les lignes directrices actuelles dans des conditions mixtes de granules de glace et de neige.

En outre, des essais de référence sur aile sèche ont été réalisés quotidiennement et après chaque changement apporté aux systèmes afin de valider la répétabilité de la soufflerie. Un essai avec forte contamination a aussi été mené.

#### Conclusions

Des essais menés à l'hiver 2015-2016 sur des liquides de type III ont permis de valider les marges de tolérance actuelles à utiliser avec le liquide nouvellement commercialisé AllClear AeroClear MAX ; ces marges s'appliquent aux aéronefs dont la vitesse de rotation est supérieure à 100 nœuds. Des efforts ont été déployés afin d'appuyer l'élaboration d'un tableau de marges de tolérance pour les liquides de type III à des vitesses de rotation de *80 nœuds ou plus* ; toutefois, les résultats sont toujours en cours d'examen et d'autres essais seront probablement requis.

Des essais menés à l'hiver 2015-2016 sur des liquides de type IV ont permis de valider les marges de tolérance actuelles à utiliser avec les liquides nouvellement commercialisés LNT E450 et FCY 9311. Des essais ont aussi été réalisés afin d'étayer l'élargissement des marges de tolérance actuelles de façon à inclure des marges plus longues et un plus grand nombre de conditions, y compris les granules de glace modérés avec la bruine verglaçante modérée, les granules de glace modérés avec la pluie modérée et les granules de glace légers avec la neige légère et modérée.

En outre, après consultation avec TC et la FAA, des modifications aux marges de tolérance pour les granules de glace ont été proposées. Ces propositions ont été basées sur des analyses et développées en tenant compte des demandes et préoccupations opérationnelles du secteur.

#### Recherches à venir

Les domaines de recherches futurs possibles peuvent inclure :

- La corroboration des marges de tolérance pour les granules de glace avec de nouveaux liquides ;
- Les essais avec le profil d'aile LS-0417 de la National Aeronautics and Space Administration (NASA) afin d'appuyer l'élaboration de marges de tolérance à basse vitesse pour les liquides de type III ;
- Les pertes de portance à la LOUT ;
- L'expansion des marges de tolérance ; et
- L'analyse des données METAR pour déterminer les conditions pour lesquelles des lignes directrices sont nécessaires.

| CO | NTEN            | ITS                                                                                | Page |  |  |
|----|-----------------|------------------------------------------------------------------------------------|------|--|--|
| 1. | 1. INTRODUCTION |                                                                                    |      |  |  |
|    | 1.1             | Background                                                                         |      |  |  |
|    | 1.2             | Program Objectives                                                                 |      |  |  |
|    | 1.3             | Previous Ice Pellet Allowance Time Tables                                          |      |  |  |
|    | 1.4             | Report Format                                                                      |      |  |  |
| 2. | METH            | HODOLOGY                                                                           |      |  |  |
|    | 2.1             | Test Schedule                                                                      | 5    |  |  |
|    | 2.1             | 2.1.1 Wind Tunnel Procedure                                                        |      |  |  |
|    |                 | 2.1.2 Test Sequence                                                                |      |  |  |
|    | 2.2             | Methodology for Developing or Expanding New Allowance Times                        |      |  |  |
|    | 2.3             | Methodology for Validating New Fluids for Use with Allowance Times                 |      |  |  |
|    | 2.4             | Procedural Modification for Type III Testing in 2015-16                            |      |  |  |
|    | 2.5             | Wind Tunnel and Airfoil Model Technical Overview                                   |      |  |  |
|    |                 | 2.5.1 Wind Tunnel Test Site                                                        |      |  |  |
|    |                 | 2.5.2 Generic High-Performance "Supercritical" Commuter Airfoil                    | 8    |  |  |
|    |                 | 2.5.3 Test Area Grid                                                               | 10   |  |  |
|    |                 | 2.5.4 Wind Tunnel Measurement Capabilities                                         | 11   |  |  |
|    | 2.6             | Simulated Precipitation                                                            |      |  |  |
|    |                 | 2.6.1 Ice Pellets                                                                  |      |  |  |
|    |                 | 2.6.2 Snow                                                                         | 12   |  |  |
|    |                 | 2.6.3 Freezing Rain/Rain                                                           |      |  |  |
|    |                 | 2.6.4 Definition of Precipitation Rates                                            |      |  |  |
|    | 2.7             | Test Equipment                                                                     |      |  |  |
|    |                 | 2.7.1 Video and Photo Equipment                                                    |      |  |  |
|    |                 | 2.7.2 Refractometer/Brixometer                                                     |      |  |  |
|    |                 | 2.7.3 Wet Film Thickness Gauges                                                    |      |  |  |
|    |                 | 2.7.4 Temperature Sensor                                                           |      |  |  |
|    | 2.8             | Personnel                                                                          |      |  |  |
|    | 2.9             | Data Forms                                                                         |      |  |  |
|    |                 | Data Collection                                                                    |      |  |  |
|    | 2.11            | De/Anti-Icing Fluids                                                               |      |  |  |
|    |                 | 2.11.1 Viscometer                                                                  |      |  |  |
|    |                 | 2.11.2 Type II/III/IV Fluid Application Equipment<br>2.11.3 Waste Fluid Collection |      |  |  |
|    | 2 1 2           | Analysis Methodology                                                               |      |  |  |
|    | 2.12            | 2.12.1 Visual Ratings at the Start of the Test                                     |      |  |  |
|    |                 | 2.12.2 Visual Ratings at Rotation                                                  |      |  |  |
|    |                 | 2.12.3 Eight Degree Lift Loss                                                      |      |  |  |
|    |                 | 2.12.4 Overall Test Status                                                         |      |  |  |
|    |                 | 2.12.5 Dry Wing Calibration                                                        |      |  |  |
| 3. | FULL            | -SCALE DATA COLLECTED                                                              |      |  |  |
|    | 3.1             | Test Log                                                                           |      |  |  |
| 4. | -               | T ICE PELLET ALLOWANCE TIMES                                                       |      |  |  |
|    | 4.1             | Analysis of Data Collected                                                         |      |  |  |
|    | 4.1             | Overall Summary of Results                                                         |      |  |  |
|    | 7.2             | 4.2.1 Type III Testing                                                             |      |  |  |
|    |                 | 4.2.2 Type IV Testing                                                              |      |  |  |
|    |                 |                                                                                    |      |  |  |

| 5.  | MOD          | ERATE ICE PELLET ALLOWANCE TIMES                                                                                                                                                                                                                                                                                                   | 51                         |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|     | 5.1<br>5.2   | Analysis of Data CollectedOverall Summary of Results5.2.1 Type III Testing5.2.2 Type IV Testing                                                                                                                                                                                                                                    | 51<br>51                   |
| 6.  | LIGH         | I ICE PELLETS MIXED WITH LIGHT FREEZING RAIN ALLOWANCE TIMES                                                                                                                                                                                                                                                                       | 57                         |
|     | 6.1<br>6.2   | Analysis of Data CollectedOverall Summary of Results6.2.1 Type III Testing6.2.2 Type IV Testing                                                                                                                                                                                                                                    | 57<br>57                   |
| 7.  | LIGH         | FICE PELLETS MIXED WITH LIGHT RAIN ALLOWANCE TIMES                                                                                                                                                                                                                                                                                 | 65                         |
|     | 7.1<br>7.2   | Analysis of Data CollectedOverall Summary of Results7.2.1 Type III Testing7.2.2 Type IV Testing                                                                                                                                                                                                                                    | 65<br>65                   |
| 8.  | MOD          | ERATE ICE PELLETS MIXED WITH MODERATE RAIN ALLOWANCE TIMES                                                                                                                                                                                                                                                                         | 69                         |
|     | 8.1<br>8.2   | Analysis of Data Collected<br>Overall Summary of Results                                                                                                                                                                                                                                                                           | 69                         |
| 9.  | MOD          | ERATE ICE PELLETS MIXED WITH MODERATE FREEZING DRIZZLE                                                                                                                                                                                                                                                                             | 75                         |
|     | 9.1<br>9.2   | Analysis of Data Collected<br>Overall Summary of Results                                                                                                                                                                                                                                                                           |                            |
| 10. | LIGH         | I ICE PELLETS MIXED WITH LIGHT SNOW ALLOWANCE TIMES                                                                                                                                                                                                                                                                                | 79                         |
|     | 10.2         | Analysis of Data Collected in 2015-16<br>Overall Summary of 2015-16 Results<br>10.2.1 Type III Testing<br>10.2.2 Type IV Testing<br>Expansion of Light Ice Pellet Mixed with Light Snow Allowance Times<br>10.3.1 Light Ice Pellets Mixed with Light Snow Above -5°C<br>10.3.2 Light Ice Pellets Mixed with Light Snow Below -5°C. | 79<br>79<br>79<br>84<br>86 |
| 11. | LIGH         | I ICE PELLETS MIXED WITH MODERATE SNOW ALLOWANCE TIMES                                                                                                                                                                                                                                                                             | 87                         |
|     | 11.2         | Analysis of Data Collected<br>Overall Summary of Results<br>11.2.1 Type III Testing<br>11.2.2 Type IV Testing<br>Expansion of Light Ice Pellet Mixed with Moderate Snow Allowance Times<br>11.3.1 Light Ice Pellets Mixed with Moderate Snow Above -5°C<br>11.3.2 Light Ice Pellets Mixed with Moderate Snow Below -5°C            | 87<br>87<br>91<br>91<br>92 |
| 12. | MOD          | ERATE ICE PELLETS MIXED WITH MODERATE SNOW                                                                                                                                                                                                                                                                                         | 95                         |
|     | 12.1<br>12.2 | Analysis of Data Collected<br>Overall Summary of Results<br>12.2.1 Type IV Testing                                                                                                                                                                                                                                                 | 95                         |
| 13. | ТҮРЕ         | III FLUID LIFT LOSS SCALING FOR LOW-SPEED ROTATION                                                                                                                                                                                                                                                                                 | 99                         |
|     | 13.1         | Background                                                                                                                                                                                                                                                                                                                         | 99                         |

|      | <ul><li>13.2 Summary of Methodology</li><li>13.3 Analysis and Summary of Results</li><li>13.4 Adoption of Analysis for Developing Guidance Material</li></ul>                                                                                                                                                                                                                                                             | 100                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 14.  | GENERAL CHANGES TO ICE PELLET GUIDANCE MATERIAL                                                                                                                                                                                                                                                                                                                                                                           | 103                             |
|      | <ul> <li>14.1 Division of the Below -10°C Temperature Band and Limiting to -22°C</li> <li>14.2 Harmonization of the Ice Pellet Allowance Times Background and Operational Guidance</li> <li>14.3 Update Guidance for Small Hail</li> <li>14.4 Re-Ordering of Rows</li> <li>14.5 Note for Aircraft Rotation Speeds</li> <li>14.6 Reduction in Type III Allowance Time for Light Ice Pellets Mixed with Moderate</li> </ul> | 103<br>103<br>104<br>104        |
|      | Snow Below -5°C to -10°C                                                                                                                                                                                                                                                                                                                                                                                                  | 104                             |
| 15.  | CONCLUSIONS AND OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                              | 105                             |
|      | <ul> <li>15.1 Type III Allowance Times</li></ul>                                                                                                                                                                                                                                                                                                                                                                          | 105<br>105<br>105<br>106<br>106 |
| 16.  | RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                                                                                           | 107                             |
|      | <ul> <li>16.1 Changes to Ice Pellet Allowance Time Guidance</li> <li>16.2 Future Research</li></ul>                                                                                                                                                                                                                                                                                                                       | 113<br>113                      |
|      | 16.2.3 Lift Losses at LOUT                                                                                                                                                                                                                                                                                                                                                                                                | 113                             |
|      | 16.2.4 Allowance Time Expansion<br>16.2.5 Analysis of METAR Data to Determine Conditions Requiring Guidance                                                                                                                                                                                                                                                                                                               |                                 |
| REFE | RENCES                                                                                                                                                                                                                                                                                                                                                                                                                    | 115                             |

#### LIST OF APPENDICES

- A Transportation Development Centre Work Statement Excerpt Aircraft & Anti-Icing Fluid Winter Testing 2015-16
- B Procedure: Wind Tunnel Tests to Examine Fluid Removed from Aircraft During Takeoff with Mixed Ice Pellet Precipitation Conditions
- C Fluid Thickness, Temperature, and Brix Data Forms

This page intentionally left blank.

#### LIST OF TABLES

## Page

| Table 1.1: Summary of 2015-16 Wind Tunnel Tests by Objective         Table 2.1: Calendar of Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2.2: Wind Tunnel Fluid Viscosity Information for 2015-16 Testing         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |
| Table 3.1: Wind Tunnel Test Log 2015-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |
| Table 4.1: Summary of 2015-16 Type III Light Ice Pellet Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |
| Table 4.2: Summary of 2015-16 Type IV Light Ice Pellet Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |
| Table 4.3: Type III Light Ice Pellets Allowance Time Tests Winter 2015-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |
| Table 4.4: Type IV Light Ice Pellets Allowance Time Tests Winter 2015-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |
| Table 4.5: Summary of Type III Light Ice Pellets Allowance Time Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            |
| Table 4.6: Summary of Type IV Light Ice Pellets Allowance Time Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |
| Table 5.1: Summary of 2015-16 Type III Moderate Ice Pellet Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                            |
| Table 5.2: Summary of 2015-16 Type IV Moderate Ice Pellet Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |
| Table 5.3: Type III Moderate Ice Pellets Allowance Time Tests Winter 2015-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            |
| Table 5.4: Type IV Moderate Ice Pellets Allowance Time Tests Winter 2015-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |
| Table 5.5: Summary of Type III Moderate Ice Pellets Allowance Time Tests Winter 2013-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |
| Table 5.6: Summary of Type IV Moderate Ice Pellets Allowance Time Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |
| Table 6.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Freezing Rain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 0                                                                                                                                                        |
| Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99                                                                                                                                                         |
| Table 6.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Freezing Rain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~~                                                                                                                                                         |
| Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                         |
| Table 6.3: Type III Light Ice Pellets Mixed with Light Freezing Rain Allowance Time Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |
| Winter 2015-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                                                                                                                          |
| Table 6.4: Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance Time Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |
| Winter 2015-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                                                                                                                          |
| Table 6.5: Summary of Type III Light Ice Pellets Mixed with Light Freezing Rain Allowance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |
| Limo Loet Roculte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57                                                                                                                                                         |
| Time Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                          |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance         Time Test Results       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                                                                         |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain AllowanceTime Test Results6Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63<br>66                                                                                                                                                   |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain AllowanceTime Test Results6Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing6Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>66                                                                                                                                                   |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain AllowanceTime Test ResultsTable 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain TestingTable 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain TestingTable 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>66<br>66                                                                                                                                             |
| <ul> <li>Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance<br/>Time Test Results</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63<br>66<br>66                                                                                                                                             |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63<br>66<br>66                                                                                                                                             |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter 2015-16       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63<br>66<br>66                                                                                                                                             |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63<br>66<br>66<br>67                                                                                                                                       |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63<br>66<br>66<br>67                                                                                                                                       |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter 2015-16       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>33</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>37</li> <li>38</li> </ul>                                                             |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter 2015-16       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test Results       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test Results       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test Results       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test Results       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test Results       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test Results       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test Results       6                                                                                                                                                                                                                                                                               | <ul> <li>33</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>37</li> <li>38</li> </ul>                                                             |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter 2015-16       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>33</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>37</li> <li>38</li> </ul>                                                             |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Winter 2015-16       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         2015-16       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7                                                                                                                                                                                                                                                                                                                          | <ul> <li>33</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>37</li> <li>37</li> <li>38</li> <li>38</li> <li>38</li> </ul>                         |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7                                                                                                                                                                                                                                                                                                            | 53<br>56<br>56<br>57<br>57<br>58<br>58<br>58                                                                                                               |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Winter 2015-16       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         2015-16       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7                                                                                                                                                                                                                                                                                                                          | 53<br>56<br>56<br>57<br>57<br>58<br>58<br>58                                                                                                               |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7                                                                                                                                                                                                                                                                                                            | 53<br>56<br>56<br>57<br>57<br>58<br>58<br>58                                                                                                               |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance<br>Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Test Results       7                                                                                                                                           | <ul> <li>33</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>37</li> <li>37</li> <li>38</li> <li>38</li> <li>71</li> <li>72</li> </ul>             |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance<br>Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Winter 2015-16       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         2015-16       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7                                                                                                                                                                                                                                                                                                                              | <ul> <li>33</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>37</li> <li>37</li> <li>38</li> <li>38</li> <li>71</li> <li>72</li> </ul>             |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Winter 2015-16.       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         2015-16.       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.6: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 8.3: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 8.3:                                                                                                                                                                       | <ul> <li>53</li> <li>56</li> <li>56</li> <li>57</li> <li>57</li> <li>58</li> <li>58</li> <li>71</li> <li>72</li> <li>73</li> </ul>                         |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance<br>Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Tests       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 9.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 9.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7                                                                                                                                                       | <ul> <li>53</li> <li>56</li> <li>56</li> <li>57</li> <li>57</li> <li>58</li> <li>58</li> <li>71</li> <li>72</li> <li>73</li> </ul>                         |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Winter 2015-16       Winter 2015-16       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         2015-16       C       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 8.3: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7 </td <td><ul> <li>53</li> <li>56</li> <li>56</li> <li>57</li> <li>57</li> <li>57</li> <li>58</li> <li>58</li> <li>71</li> <li>72</li> <li>73</li> <li>76</li> </ul></td> | <ul> <li>53</li> <li>56</li> <li>56</li> <li>57</li> <li>57</li> <li>57</li> <li>58</li> <li>58</li> <li>71</li> <li>72</li> <li>73</li> <li>76</li> </ul> |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Winter 2015-16.       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         2015-16.       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         Table 7.6: Summary of Type IIV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Tests       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Test       7         Table 9.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance Time Test       7                                                                                                                                                               | <ul> <li>53</li> <li>56</li> <li>56</li> <li>57</li> <li>57</li> <li>57</li> <li>58</li> <li>58</li> <li>71</li> <li>72</li> <li>73</li> <li>76</li> </ul> |
| Table 6.6: Summary of Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance       6         Time Test Results       6         Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing       6         Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance Time Tests       6         Winter 2015-16       Winter 2015-16       6         Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Tests Winter       6         2015-16       C       6         Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test       6         Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain       7         Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 8.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7         Table 8.3: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance       7 </td <td>53<br/>56<br/>57<br/>57<br/>57<br/>58<br/>58<br/>71<br/>72<br/>73<br/>76<br/>76</td>                                                                            | 53<br>56<br>57<br>57<br>57<br>58<br>58<br>71<br>72<br>73<br>76<br>76                                                                                       |

| Table 10.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Snow Testing                                                   | 80    |
|------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Table 10.3: Type III Light Ice Pellets Mixed with Light Snow Allowance Time Tests Winter                                                 |       |
| 2015-16                                                                                                                                  | 81    |
| Table 10.4: Type IV Light Ice Pellets Mixed with Light Snow Allowance Time Tests Winter                                                  |       |
| 2015-16                                                                                                                                  | 81    |
| Table 10.5: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Snow Allowance                                                |       |
| Time Test Results                                                                                                                        | 82    |
| Table 10.6: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Snow Allowance                                                 |       |
| Time Test Results                                                                                                                        | 83    |
| Table 10.7: Cumulative Summary of Type IV Light Ice Pellets Mixed with Light Snow                                                        |       |
| Allowance Time Test Results for Target >-5°C from 2009-10 to 2015-16                                                                     | 84    |
| Table 10.8: Cumulative Summary of Type IV Light Ice Pellets Mixed with Light Snow                                                        |       |
| Allowance Time Test Results for Target <-5°C from 2009-10 to 2015-16                                                                     |       |
| Table 11.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Moderate Snow Testin                                                | •     |
| Table 11.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Moderate Snow Testin                                                 | ıg 88 |
| Table 11.3: Type III Light Ice Pellets Mixed with Moderate Snow Allowance Time Tests Winter                                              |       |
|                                                                                                                                          | 89    |
| Table 11.4: Type IV Light Ice Pellets Mixed with Moderate Snow Allowance Time Tests Winter                                               |       |
| 2015-16                                                                                                                                  | 89    |
| Table 11.5: Summary of Type III Light Ice Pellets Mixed with Moderate Snow Allowance Time                                                |       |
| Test Results                                                                                                                             | 90    |
| Table 11.6: Summary of Type IV Light Ice Pellets Mixed with Moderate Snow Allowance Time                                                 |       |
| Test Results                                                                                                                             | 90    |
| Table 11.7: Cumulative Summary of Type IV Light Ice Pellets Mixed with Moderate Snow                                                     |       |
| Allowance Time Test Results for Target >-5°C from 2009-10 to 2015-16                                                                     | 91    |
| Table 11.8: Cumulative Summary of Type IV Light Ice Pellets Mixed with Moderate Snow                                                     |       |
| Allowance Time Test Results for Target <-5°C from 2009-10 to 2015-16                                                                     | 92    |
| Table 12.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Snow                                                     |       |
|                                                                                                                                          | 96    |
| Table 12.2: Type IV Moderate Ice Pellets Mixed with Moderate Snow Allowance Time Tests                                                   | 07    |
| Winter 2015-16                                                                                                                           | 97    |
| Table 12.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Snow Allowance                                                   | 00    |
| Time Test Results                                                                                                                        |       |
| Table 13.1: Summary of BLDT Tests Results         Table 12.2: Operative Results                                                          |       |
| Table 13.2: Correlation Results Using Standard Error of Estimate Method                                                                  |       |
| Table 13.3: Summary of Proposed Lift Loss Limits for Type III Low-Speed Testing at PIWT                                                  |       |
| Table 16.1: 2016-17 TC Type III Ice Pellet Allowance Time Table         Table 16.2: 2016 17 TA Type III Ice Pellet Allowance Time Table  |       |
| Table 16.2: 2016-17 FAA Type III Ice Pellet Allowance Time Table         Table 16.2: 2016 17 FAA Type IV/lac Pellet Allowance Time Table |       |
| Table 16.3: 2016-17 TC Type IV Ice Pellet Allowance Time Table                                                                           |       |
| Table 16.4: 2016-17 FAA Type IV Ice Pellet Allowance Time Table                                                                          | 112   |

#### LIST OF FIGURES

# Figure 2.1: Typical Wind Tunnel Test Timeline7Figure 2.2: Schematic of NRC Montreal Road Campus9Figure 2.3: Generic "Supercritical " Wing Section9Figure 2.4: End Plates Installed on Supercritical Wing Section10Figure 2.5: Location of RTDs Installed Inside Supercritical Wing12Figure 2.6: Precipitation Rate Breakdown14Figure 2.7: Hand-Held Refractometer/Brixometer15Figure 2.8: Wet Film Thickness Gauges15Figure 2.9: Ice Pellet Test Analysis Criteria21

#### APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/TP 15341E Final Version 1.0.docx Final Version 1.0, October 20

#### Page

5

| Figure 13.1: Summary of All Type III Fluid Only Tests with Superimposed BLDT T | est Results 100 |
|--------------------------------------------------------------------------------|-----------------|
| Figure 13.2: Graphical Representation of BLDT Results                          | 102             |

#### LIST OF PHOTOS

## Page

| Photo 2.1: Outside View of NRC Wind Tunnel Facility                   |  |
|-----------------------------------------------------------------------|--|
| Photo 2.2: Inside View of NRC Wind Tunnel Test Section                |  |
| Photo 2.3: Thin High-Performance Wing Section Used for Testing        |  |
| Photo 2.4: Grid Markings on Thin High-Performance Wing Section        |  |
| Photo 2.5: Refrigerated Truck Used for Manufacturing Ice Pellets      |  |
| Photo 2.6: Calibrated Sieves Used to Obtain Desired Size Distribution |  |
| Photo 2.7: Ice Pellet Dispensers Operated by APS Personnel            |  |
| Photo 2.8: Ceiling-Mounted Freezing Rain Sprayer                      |  |
| Photo 2.9: Wind Tunnel Setup for Flashes                              |  |
| Photo 2.10: Wind Tunnel Setup for Digital Cameras                     |  |
| Photo 2.11: Fluid Pour Containers                                     |  |
| Photo 2.12: 2015-16 Research Team                                     |  |
| Photo 2.13: Brookfield Digital Viscometer Model DV-1 +                |  |
| Photo 2.14: Stony Brook PDVdi-120 Falling Ball Viscometer             |  |

This page intentionally left blank.

#### GLOSSARY

| APS  | APS Aviation Inc.                                   |
|------|-----------------------------------------------------|
| AWG  | G-12 Aerodynamics Working Group                     |
| BLDT | Boundary Layer Displacement Thickness               |
| EASA | European Aviation Safety Agency                     |
| EG   | Ethylene Glycol                                     |
| FAA  | Federal Aviation Administration                     |
| НОТ  | Holdover Time                                       |
| LOUT | Lowest Operational Use Temperature                  |
| NASA | National Aeronautics and Space Administration       |
| NRC  | National Research Council Canada                    |
| ΟΑΤ  | Outside Air Temperature                             |
| PG   | Propylene Glycol                                    |
| PIWT | 3 m x 6 m Open-Circuit Propulsion Icing Wind Tunnel |
| RTD  | Resistance Temperature Detector                     |
| SAE  | SAE International                                   |
| тс   | Transport Canada                                    |
| TDC  | Transportation Development Centre                   |

This page intentionally left blank.

# 1. INTRODUCTION

Under winter precipitation conditions, aircraft are cleaned with a freezing point depressant fluid and protected against further accumulation by an additional application of such a fluid, possibly thickened to extend the protection time. Aircraft ground deicing had, until recently, never been researched and there is still an incomplete understanding of the hazard and of what can be done to reduce the risks posed by the operation of aircraft in winter precipitation conditions. This "winter operations contaminated aircraft – ground" program of research is aimed at overcoming this lack of knowledge.

Since the early 1990s, the Transportation Development Centre (TDC) of Transport Canada (TC) has managed and conducted de/anti-icing related tests at various sites in Canada; it has also coordinated worldwide testing and evaluation of evolving technologies related to de/anti-icing operations with the co-operation of the United States Federal Aviation Administration (FAA), the National Research Council Canada (NRC), several major airlines, and deicing fluid manufacturers. The TDC is continuing its research, development, testing and evaluation program.

Under contract to the TDC, with financial support from the FAA, APS Aviation Inc. (APS) has undertaken research activities to further advance aircraft ground de/anti-icing technology.

## 1.1 Background

In 2005-06, the inability for operators to release aircraft in ice pellet conditions led TC and the FAA to begin a research campaign to develop allowance times. Developing holdover times (HOTs) was not feasible due to the properties of the ice pellets; they remain embedded in the fluid and take long to dissolve compared to snow, which is immediately absorbed and dissolved. Research was initiated through live aircraft testing with the NRC Falcon 20 in Ottawa, Canada, and later evolved to a more controlled environment with the NRC 3 m x 6 m Open-Circuit Propulsion Icing Wind Tunnel (PIWT), also in Ottawa.

The early testing in 2005-06 with the Falcon 20 primarily used visual observations to evaluate fluid flow-off. During the Falcon 20 work, the wing was anti-iced and exposed to contamination, and aborted takeoff runs allowed researchers onboard to observe and evaluate the fluid flow-off. Testing in 2006-07 began in the PIWT, allowing aerodynamic data to be used for evaluating fluid flow-off performance. The PIWT also allowed for a more controlled environment less susceptible to the elements.

The work continued each year, and the test methods and equipment improved, allowing for real-time data analysis, better repeatability, and overall greater confidence in the results. The work conducted by the FAA and TC was presented by APS to the G-12 Aerodynamics Working Group (AWG) and the HOT Committee yearly since 2006. Additional presentations were also given to the AWG in May 2012 and May 2013 by National Aeronautics and Space Administration (NASA) and the NRC that focused on the extensive calibration and characterization work performed with a generic thin high-performance airfoil. This work also helped increase confidence in how the data was used to help support develop TC/FAA guidance material. A detailed account of the more recent work conducted is included in TC report, TP 15232E, *Wind Tunnel Trials to Examine Anti-Icing Fluid Flow-Off Characteristics and to Support the Development of Ice Pellet Allowance Times, Winters 2009-10 to 2012-13* (1).

The ice pellet allowance time research has helped further develop and improve the PIWT facility. As a result, a new medium is now available for aerodynamic testing of aircraft ground icing fluids with or without contamination in a full-scale format. Several other ground deicing projects have been ongoing as a result of industry requests and are expected to continue. The PIWT has evolved into a multidisciplinary facility; however, it continues to be the primary source for the development and further refinement of the ground deicing ice pellet allowance time guidance material.

Testing was once again focused on the development of ice pellet allowance times for the winter of 2013-14. During the winter of 2014-15, the ice pellet allowance time testing was suspended to allow for a European Aviation Safety Agency (EASA)-led project looking at thickened fluid effects on unpowered elevators; TC and APS were also involved in this research. Ice pellet allowance time testing resumed for the winter of 2015-16, the details of which are described in this report.

## 1.2 **Program Objectives**

A wind tunnel testing program was developed for the winter of 2015-16 with the primary objectives of conducting aerodynamic testing with a thin high-performance airfoil to:

- Substantiate the current Type III ice pellet allowance times with new fluids, to investigate lower rotation speeds (80 knots), and, time permitting, application methods (hot vs. cold);
- Substantiate the current Type IV ice pellet allowance times with new fluids and, weather permitting, at temperatures close to the lowest operational use temperature (LOUT); and

• Expand the current Type IV ice pellet allowance times to include more conditions commonly reported by METAR and to further develop the current mixed ice pellet and snow guidance material.

In addition, baseline dry wing tests were conducted daily as well as following system changes to validate the repeatability of the wind tunnel. One heavy contamination test was also conducted.

The work statement for these tests is provided in Appendix A.

Table 1.1 demonstrates the groupings for the global set of tests conducted at the wind tunnel during the winter of 2015-16. Only tests pertaining to the baseline and ice pellet allowance time testing (Objectives #1, #2, #3, and #4) are described in this report; however, the details of Objective #5 have not been reported on, as this was primarily exploratory.

| Objective # | Objective                                             |     |
|-------------|-------------------------------------------------------|-----|
| 1           | Baseline (Dry Wing)                                   | 24  |
| 2           | Type IV IP AT Validation (New Fluids)                 | 24  |
| 3           | IP AT Expansion (IP/ZD, IP/R, IP/SN, IP-/SN-, IP-/SN) | 28  |
| 4           | Type III IP AT Validation (New Fluid, 80 Knots )      |     |
| 5           | 5 R&D (Heavy Contamination)                           |     |
|             | Total                                                 | 105 |

Table 1.1: Summary of 2015-16 Wind Tunnel Tests by Objective

## **1.3** Previous Ice Pellet Allowance Time Tables

The Type IV allowance time tables have been available since the winter of 2007-08. Each year, the Type IV testing has built upon the latest version of the allowance time table published in the TC and FAA HOT Guidelines.

In the case of Type III fluid, a preliminary table was developed during the winter of 2008-09; however, allowance time tables have only been available and published since the winter of 2014-15 following some more extensive testing. Future testing will build upon the latest version of the allowance time table published in the TC and FAA HOT Guidelines.

## 1.4 Report Format

The wind tunnel work has been conducted since the winter of 2006-07 and has been documented in yearly reports. TP 15232E (1), contains more thorough details regarding the testing methodologies as well as links to previous historical reports. The current report has been prepared in a more abbreviated format. The following list provides short descriptions of subsequent sections of this report:

- a) Section 2 describes the methodology used in testing, as well as equipment and personnel requirements necessary to carry out testing;
- b) Section 3 describes data collected during the full-scale testing conducted;
- c) Sections 4 to 12 describe the testing conducted to further develop the allowance time tables in each respective condition;
- d) Section 13 describes the results from Type III fluid lift loss scaling for low-speed rotation;
- e) Section 14 describes the general changes to ice pellet guidance material;
- f) Section 15 describes the conclusions and observations; and
- g) Section 16 describes the recommendations.

# 2. METHODOLOGY

This section provides a brief description of the test methodology and equipment specific to the full-scale aerodynamic tests conducted at the NRC PIWT.

For more details, TP 15232E (1), contains more thorough details regarding the testing methodologies.

## 2.1 Test Schedule

Ten days of testing were conducted over a period of two weeks starting January 18, 2016, and ending January 29, 2016. Setup and teardown time was kept to a minimum and was done during the first two hours on the first day of testing and during the last two hours on the last day of testing. Testing days were selected based on weather. Table 2.1 presents the calendar of wind tunnel tests performed. It should be noted that the tests listed comprise all the tests conducted, which also include the tests pertaining to other objectives not discussed in this report. At the beginning of each test day, a plan was developed that included the list of tests (taken from the global test plan) to be completed based on the weather conditions and testing priorities. This daily plan was discussed, approved, and modified (if necessary) by TC, the FAA, and APS.

| Date<br>(Start date of overnight) | # of Tests Run |
|-----------------------------------|----------------|
| 17 January 2016                   | 1              |
| 18 January 2016                   | 14             |
| 19 January 2016                   | 10             |
| 20 January 2016                   | 12             |
| 21 January 2016                   | 11             |
| 22 January 2016                   | 12             |
| 23 January 2016                   | 0              |
| 24 January 2016                   | 9              |
| 25 January 2016                   | 13             |
| 26 January 2016                   | 0              |
| 27 January 2016                   | 13             |
| 28 January 2016                   | 10             |
| Total                             | 105            |

 Table 2.1: Calendar of Tests

#### 2.1.1 Wind Tunnel Procedure

To satisfy the fluid testing objective, simulated takeoff and climb-out tests were performed with the supercritical wing section. Different parameters including fluid thickness, wing temperature, and fluid freezing point were recorded at designated times during the tests. The supercritical wing section was constructed by the NRC in 2009 specifically to conduct these tests following extensive consultations with an airframe manufacturer to ensure a representative supercritical design.

The procedure for each fluid test was as follows:

- a) The wing section was treated with anti-icing fluid, poured in a one-step operation (no Type I fluid was used during the tests);
- b) When applicable, contamination, in the form of simulated ice pellets, freezing rain, and/or snow, was applied to the wing section. Test parameters were measured at the beginning and end of the exposure to contamination;
- c) At the end of the contamination period, the tunnel was cleared of all equipment and scaffolding;
- d) The wind tunnel was subsequently operated through a simulated takeoff and climb-out test; and
- e) The behaviour of the fluid during takeoff and climb-out was recorded with digital high-speed still cameras. In addition, windows overlooking the wing section allowed observers to document the fluid elimination performance in real-time.

The procedure for the wind tunnel trials is included in Appendix B. The procedure includes details regarding the test objectives, test plan, procedure and methodology, and pertinent information and documentation.

#### 2.1.2 Test Sequence

The length of each test (from start of setup to end of last measurement) varied largely due to the length of exposure to precipitation (if applicable). Time required for setup and teardown as well as preparing and configuring the wing section was relatively the same from test to test. Figure 2.1 demonstrates a sample timeline for a typical wind tunnel test. It should be noted that a precipitation exposure time of 30 minutes was used for illustration purposes; this time varied for each test depending on the objective.

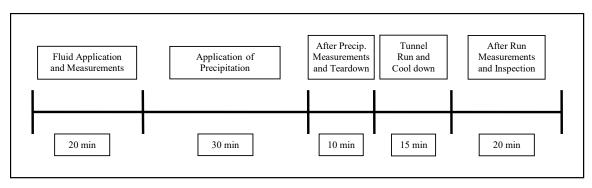



Figure 2.1: Typical Wind Tunnel Test Timeline

#### 2.2 Methodology for Developing or Expanding New Allowance Times

Initial testing to first develop the allowance times is done with representative "grandfather" fluids (fluids with a long history of data). Testing is conducted at different temperatures and rates, and the allowance times are based on the limits where tests fail the acceptance criteria (based on visual ratings and aerodynamic performance). Much "trial and error" is needed to determine where the limits of the allowance times are (i.e., it may require running tests with a grandfather fluid at 15, 20, and 25 minutes to determine that the allowance time should be limited to 20 minutes). Once the target allowance times are determined, they are validated with other fluids; this is done using limited spot checks with multiple fluids.

#### 2.3 Methodology for Validating New Fluids for Use with Allowance Times

Over the years, all new commercially available fluids have been tested. This is typically done within 1-2 years of the fluid being available on the market. At a minimum, testing is conducted in a subset of the conditions; the allowance times are generic, so this process is satisfactory and provides a "first alert" in the event that a fluid may be underperforming, in which case further action would be required.

## 2.4 Procedural Modification for Type III Testing in 2015-16

To serve a dual purpose, the tests run to validate the Type III allowance times for aircraft with rotation speeds greater than 100 knots were also run at 80 knots; it was expected that the Type III fluid would perform very well and pass all criteria even at 80 knots, which it did. The purpose is to eventually use this 80-knots data to support the development of a low-speed Type III allowance time table.

## 2.5 Wind Tunnel and Airfoil Model Technical Overview

The following sections describe the wind tunnel and major components.

#### 2.5.1 Wind Tunnel Test Site

PIWT tests are performed at the NRC Aerospace Facilities, Building M-46, at the NRC Montreal Road campus, located in Ottawa, Canada. Figure 2.2 provides a schematic of the NRC Montreal Road campus showing the location of the NRC PIWT. Photo 2.1 shows an outside view of the wind tunnel test facility. Photo 2.2 shows an inside view of the wind tunnel test section. The open-circuit layout, with a fan at entry, permits contaminants associated with the test articles (such as heat or de/anti-icing fluid) to discharge directly, without recirculating or contacting the fan. The test section is 3 m (10 ft.) wide by 6 m (20 ft.) high by 12 m (40 ft.) long, with a maximum wind speed of 78 knots when using the electrical turbine drive and with a maximum wind speed of just over 115 knots when using the gas turbine drive. The fan is normally driven electrically, but high-speed operation can be accommodated by a gas turbine drive system. Due to the requirements of both high-speed and low-speed operations during the testing, the gas turbine was selected to allow for greater flexibility; the gas turbine drive can perform both low- and high-speed operations, whereas the electric drive is limited to low-speed operations. Scaffolding was constructed to allow access to the wing section, which facilitated the application of fluids and the subsequent inspection and cleaning of the airfoil.

#### 2.5.2 Generic High-Performance "Supercritical" Commuter Airfoil

The wing section used for testing was a generic high-performance commuter airfoil, also referred to as "supercritical." This wing section was constructed by the NRC in 2009 specifically to conduct these tests following extensive consultations with an airframe manufacturer to ensure a representative supercritical design. The original wing design was representative of an outboard section and did not include a flap; the flap was later added at the request of TC, the FAA, and APS. A computational fluid dynamics analysis of the modified wing section was conducted by the airframe manufacturer, and it was confirmed that the wing section provided a good representation of a flapped section of an operational thin high-performance wing. Photo 2.3 shows the wing section used for testing.

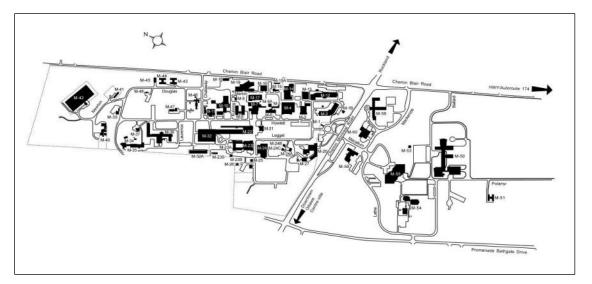



Figure 2.2: Schematic of NRC Montreal Road Campus

A cross sectional view of the supercritical wing section used for testing has been included in Figure 2.3; the dimensions indicated are in meters. Some of the pertinent dimensions of the wing section are:

- a) Chord length not including flap: 1.4 m (4.6 ft.); and
- b) Width: 2.4 m (8 ft.).

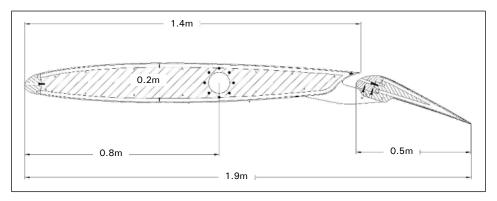



Figure 2.3: Generic "Supercritical " Wing Section

An analysis of the wing section model was conducted by the airframe manufacturer to determine the typical rest position of this type of wing section. It was determined that on a typical commuter aircraft, this section of wing would typically be pitched forward by 2° when sitting on the ground. As a result, the NRC ensured the rest position of the wing model was set to -2° for each test.

The wing section was fitted with a hinged flap. The flap position was fixed at 20° and was not intended to be changed during testing. The top surface of the flap wing section had a steeper angle; a flap setting of 20° created close to a 26° slope on the top surface of the flap (with the wing pitched forward by 2°). As testing progressed, the ability to change the flap setting from 0° to 20° was necessary; contrary to a nested flap, which is typically protected during precipitation, a hinged flap is always exposed, and results indicated earlier failures were due to the shallower angle of the hinged flap. Modifications were made by the NRC to allow the flap setting to alternate between 0° and 20° for the fluid application and contamination periods; however, all takeoff simulations were conducted with the flap set to 20°. No moveable devices were available on the wing section. Detailed coordinates for this airfoil are available.

End plates were installed on the wing section to eliminate the "wall effects" from the wind tunnel walls and to provide a better aerodynamic flow-off above the test area. Figure 2.4 demonstrates the end plates installed on the thin high-performance wing section (note: the wing section is depicted without the top wing skin).

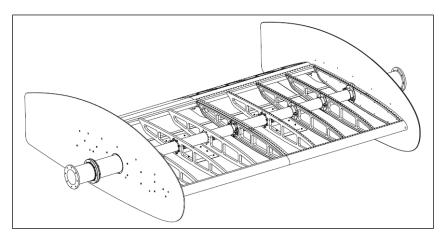



Figure 2.4: End Plates Installed on Supercritical Wing Section

## 2.5.3 Test Area Grid

APS personnel used markers to draw a grid on the wing upper surface (excluding the flap). Each grid cell measured 5.1 cm x 5.1 cm (2 in. x 2 in.) with the cell axis positioned perpendicular and parallel to the leading edge (see Photo 2.4). The grid section was 2.4 m (8 ft.), which covered the entire wing section. The grid markings began approximately 10.1 cm (4 in.) aft of the leading edge stagnation point and continued along the length of the main chord; grid markings were not drawn on the flap section. The grid was used to facilitate observations of the fluid shearing off the wing and the movement of ice pellets during takeoff.

#### 2.5.4 Wind Tunnel Measurement Capabilities

The supercritical wing section was supported on either side by 2-axis weigh scales capable of measuring drag and lift forces generated on the wing section. The wing section was attached to servo-systems capable of pitching the wing section to a static angle or generating dynamic movements. The servo-system was programmed to simulate pitch angles during takeoff and climb-out based on operational aircraft flight profiles.

The wing section was also equipped with eight Resistance Temperature Detectors (RTDs); these were installed by NRC personnel) recording the skin temperature on the leading edge (LE), mid chord (MID), trailing edge (TE), and under-wing (UND). RTDs were placed along a chord 0.5 m (1.5 ft.) in pairs to the left and to the right of the wing centreline. The following are the locations of the RTDs:

- RTD LE located approximately 25 cm from the leading edge (as measured along wing skin curvature);
- RTD MID located approximately 70 cm from the leading edge (as measured along wing skin curvature);
- RTD TE located approximately 30 cm from the trailing edge (as measured along wing skin curvature); and
- RTD UND located approximately 45 cm from the leading edge.

Figure 2.5 demonstrates the general location of the RTDs. These RTDs were primarily used to monitor the skin temperature in real-time through the NRC data display system and were recorded by APS personnel as described in Subsection 2.10.

The wind tunnel was also equipped with sensors recording the following parameters:

- Air temperature inside the tunnel;
- Outside air temperature;
- Air pressure;
- Wind speed; and
- Relative humidity.

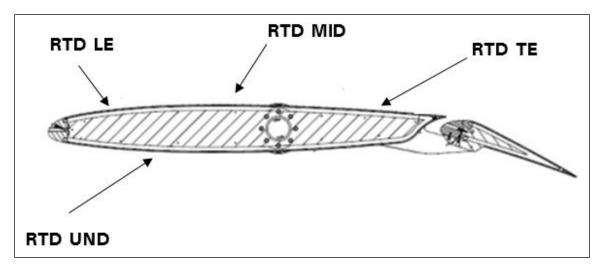



Figure 2.5: Location of RTDs Installed Inside Supercritical Wing

## 2.6 Simulated Precipitation

The following types of precipitation have been simulated for aerodynamic research in the PIWT:

- Ice Pellets;
- Snow;
- Freezing Rain/Rain; and
- Other conditions related to HOTs.

## 2.6.1 Ice Pellets

Simulated ice pellets were produced with diameters ranging from 1.4 mm to 4.0 mm to represent the most common ice pellet sizes observed during natural events. The ice pellets were manufactured inside a refrigerated truck (see Photo 2.5). Cubes of ice were crushed and passed through calibrated sieves (see Photo 2.6) to obtain the required ice pellet size range. Hand-held motorized dispensers were used to dispense the ice pellets. The ice pellets were applied to the leading and trailing edges of the wing at the same time.

## 2.6.2 Snow

Snow was produced using the same method for producing ice pellets. The snow used consisted of small ice crystals measuring less than 1.4 mm in diameter. Previous

testing conducted by APS investigated the dissolving properties of the simulated snow versus natural snow. The simulated snow was selected as an appropriate substitute for natural snow.

The snow was manufactured inside a refrigerated truck. Cubes of ice were crushed and passed through calibrated sieves to obtain the required snow size range. Hand-held motorized dispensers were used to dispense the snow. The snow was applied to the leading and trailing edges of the wing at the same time.

#### 2.6.3 Freezing Rain/Rain

The same sprayer head and scanner used for HOT testing at the NRC Climatic Engineering Facility was employed for testing. The sprayer system uses compressed air and distilled water to produce freezing rain. The temperature of the water is controlled and is kept just above freezing temperature in order to produce freezing rain. To produce rain, the temperature of the water is raised until the precipitation no longer freezes on the test surfaces.

#### 2.6.4 Definition of Precipitation Rates

When simulating precipitation rates for full-scale and plate testing, the rate limits defined for standard HOT testing were referenced. Figure 2.6 demonstrates the HOT testing rate precipitation breakdown.

HOT testing protocol for ice pellets does not currently exist. As a result, ice pellet precipitation rate limits were based upon the freezing rain rate breakdown. The following precipitation rates were used for the full-scale and flat plate testing conducted during the winter of 2008-09:

| • | Light Ice Pellets:         | 13-25 g/dm²/h;                 |
|---|----------------------------|--------------------------------|
| • | Moderate Ice Pellets:      | 25-75 g/dm²/h;                 |
| • | Light Freezing Rain:       | 13-25 g/dm²/h;                 |
| • | Moderate Freezing Drizzle: | 5-13 g/dm²/h;                  |
| • | Light Rain:                | 13-25 g/dm²/h;                 |
| • | Moderate Rain:             | 25-75 g/dm²/h;                 |
| • | Light Snow:                | 4-10 g/dm <sup>2</sup> /h; and |
| • | Moderate Snow              | 10-25 g/dm²/h.                 |

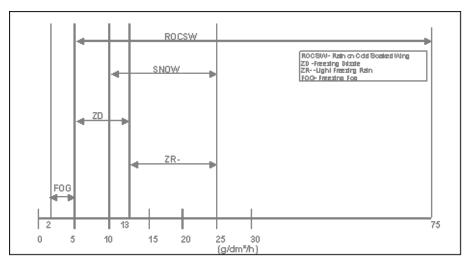



Figure 2.6: Precipitation Rate Breakdown

## 2.7 Test Equipment

A considerable amount of test equipment was used to perform these tests. Key items are described in the following subsections; a full list of equipment is provided in the test procedure, which is included in Appendix B.

#### 2.7.1 Video and Photo Equipment

APS used the observation windows on the sides of the test section to install Canon EOS XTi DSLR cameras and Profoto Compact 600 flashes capable of second-by-second photography with an intervalometer. In addition, GoPro cameras were used for wide-angle filming of fluid flow-off during the test runs. Photos 2.9 and 2.10 demonstrate the camera setup used for the testing period.

#### 2.7.2 Refractometer/Brixometer

Fluid freezing points were measured using a hand-held Misco 10431VP refractometer with a Brix scale (shown in Figure 2.7). The freezing points of the various fluid samples were determined using the conversion curve or table provided to APS by the fluid manufacturer.

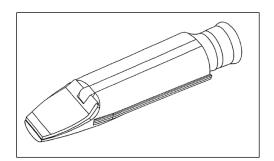



Figure 2.7: Hand-Held Refractometer/Brixometer

## 2.7.3 Wet Film Thickness Gauges

Wet film thickness gauges, shown in Figure 2.8, were used to measure fluid film thickness. These gauges were selected because they provide an adequate range of thicknesses (0.1 mm to 10.2 mm) for Type I/II/III/IV fluids. The rectangular gauge has a finer scale and was used in some cases when the fluid film was thinner (toward the end of a test). The observer recorded a thickness value (in mils), as read directly from the thickness gauge. The recorded value was the last wetted tooth of the thickness gauge; however, the true thickness lies between the last wetted tooth and the next un-wetted tooth. A thickness conversion table was used to convert the recorded thickness values into the corrected thickness values.

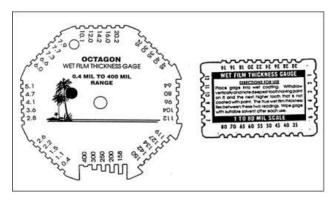



Figure 2.8: Wet Film Thickness Gauges

### 2.7.4 Temperature Sensor

When required, wing skin temperature and fluid temperature were measured using a Wahl digital heat-probe thermometer Model 392Vxc. A surface temperature probe was used for wing skin temperature measurements (however, generally the wing-mounted RTDs were used), and an immersion probe was used for measuring and monitoring fluid temperatures.

# 2.8 Personnel

During the fluid testing and exploratory research testing, four APS staff members were required to conduct the tests, and four additional persons from Ottawa were tasked to manufacture and dispense ice pellets as well as to help with general setup tasks. A professional photographer was retained to record digital images of the test setup and test runs. Representatives from NASA, the TDC, and the FAA provided direction in testing and participated as observers. Photo 2.12 shows a portion of the research team (due to scheduling, not all participants were available for the photo).

# 2.9 Data Forms

Several different forms were used to facilitate the documentation of the various data collected in the wind tunnel tests. These forms include:

- a) General Form;
- b) Wing Temperature, Fluid Thickness and Fluid Brix Form;
- c) Ice Pellet and Snow Dispensing Forms;
- d) Sprayer Calibration Form;
- e) Visual Evaluation Rating Form;
- f) Condition of Wing and Plate Form;
- g) Fluid Receipt Form; and
- h) Log of Fluid Sample Bottles.

Copies of these forms are provided in the test procedure, which is included in Appendix B. Completed wing temperature, fluid thickness, and fluid Brix data forms have been included in Appendix C.

### 2.10 Data Collection

Fluid thickness, fluid Brix, and skin temperature measurements were collected by APS personnel. The measurements were collected before and after fluid application, after the application of contamination, and at the end of the test. The completed data forms have been scanned and included in Appendix C for referencing purposes.

High-speed digital photographs of each test were taken. In addition, videos were also taken during a greater portion of the tests. Due to the large amount of data available,

photos of the individual tests have not been included in this report, but rather the high-resolution photos available in electronic format have been provided to the TDC and can be made available upon request.

# 2.11 De/Anti-Icing Fluids

Ten fluids were used during the wind tunnel tests conducted during the winter of 2015-16. Seven fluids were leftover inventory acquired during the 2012-13, 2013-14, and 2014-15 winter seasons that were verified for viscosity and overall integrity prior to the 2015-16 testing. The viscosity of the fluids received was measured using the Stony Brook PDVdi-120 Falling Ball Viscometer and the Brookfield Digital Viscometer Model DV-1 + to ensure the fluid was within the fluid manufacturer production specifications and comparable to previous samples received. The pertinent characteristics of these fluids are given in Table 2.2.

|                                         |             |                  |            |                         |                           |                                         |                                             | 2012-13 2013-14               |                                  |                                 |                               |                                  | 2014-15                         |                               |                                  | 2015-16                         |                               |                                  |                                 |
|-----------------------------------------|-------------|------------------|------------|-------------------------|---------------------------|-----------------------------------------|---------------------------------------------|-------------------------------|----------------------------------|---------------------------------|-------------------------------|----------------------------------|---------------------------------|-------------------------------|----------------------------------|---------------------------------|-------------------------------|----------------------------------|---------------------------------|
| Sample Name                             | Dilution    | Batch #          | Year Rec'd | Project<br>Rec'd<br>For | Supplier                  | 2015-16<br>Receiving<br>Quantity<br>(L) | Leftover<br>Inventory<br>Pre 2015-16<br>(L) | Measured<br>Viscosity<br>(cP) | Falling<br>Ball<br>Temp.<br>(°C) | Falling<br>Ball Time<br>(mm:ss) |
| Clariant Safewing<br>MP II FLIGHT       | 100/0       | DEG 4145408      | 2014-15    | EASA                    | Clariant                  | 250                                     | 150                                         |                               |                                  |                                 |                               |                                  |                                 | 13,600                        | 22.4                             | 0:26                            |                               | 22.9                             | 0:26                            |
| Dow UCAR™<br>FlightGuard AD-49          | 75/25       | L14-290          | 2014-15    | EASA                    | Dow                       | 300                                     | 136                                         |                               |                                  |                                 |                               |                                  |                                 | 36,000                        | 22.0                             | 0:48                            |                               | 20.2                             | 0:47                            |
| Cryotech Polar Guard<br>Advance         | 50/50       | 12964            | 2014-15    | EASA                    | Cryotech                  | 200                                     | 110                                         |                               |                                  |                                 |                               |                                  |                                 | 5320                          | 22.4                             | 0:03                            |                               |                                  |                                 |
| AllClear Systems LLC Lift-<br>Off E-188 | aprox 60/40 | AEROMAG          | 2014-15    | EASA                    | Aeromag<br>2000<br>Ottawa | 40                                      | 20                                          |                               |                                  |                                 |                               |                                  |                                 | n/a                           | n/a                              | n/a                             |                               | n/a                              | n/a                             |
| Kilfrost ABC-S Plus                     | 100/0       | WT 13-14 ABC-S+  | 2013-14    | TC-WT                   | Kilfrost                  | 400                                     | 352                                         |                               |                                  |                                 | 19,800                        | 21.7                             | 0:37                            |                               |                                  |                                 | 27,100                        | 19.5                             | 0:32                            |
| Dow FlightGuard AD-49                   | 100/0       | WT 12-13 AD-49   | 2012-13    | TC-WT                   | Dow                       | 700                                     | 270                                         | 14,397                        | 21.6                             | 0:19                            | 14,100                        | 20.5                             | 0:21                            |                               |                                  |                                 | 13,200                        | 19.4                             | 0:22                            |
| Cryotech Polar Guard<br>Advance         | 100/0       | WT 13-14 PGA     | 2013-14    | TC-WT                   | Cryotech                  | 400                                     | 270                                         |                               |                                  |                                 | 15,400                        | 20.6                             | 0:25                            |                               |                                  |                                 | 16040                         | 19.5                             | 0:24                            |
| AeroClear Max                           | 100/0       | TAB15-PB1112     | 2015-16    | TC-WT                   | AllClear                  | 400                                     | 40                                          |                               |                                  |                                 |                               |                                  |                                 |                               |                                  |                                 | 13,800                        | 19.7                             | 0:02                            |
| LNT E450                                | 100/0       | WT.15.16.LNTE450 | 2015-16    | TC-WT                   | LNT                       | 200                                     | 0                                           |                               |                                  |                                 |                               |                                  |                                 |                               |                                  |                                 | 47,400                        | 20.5                             | 0:42                            |
| FCY9311                                 | 100/0       | 151113005        | 2015-16    | TC-WT                   | Newave                    | 200                                     | 0                                           |                               |                                  |                                 |                               |                                  |                                 |                               |                                  |                                 | 24500                         | 20.1                             | 0:42                            |

Table 2.2: Wind Tunnel Fluid Viscosity Information for 2015-16 Testing

Note: Viscosity measured using manfucaturer method.

# 2.11.1 Viscometer

Historically, viscosity measurements have been carried out using a Brookfield viscometer (Model DV-1 +, shown in Photo 2.13) fitted with a recirculating fluid bath and small sample adapter. In recent years, on-site measurements are also done with the Stony Brook PDVdi-120 Falling Ball Viscometer (Photo 2.14) to obtain a verification of the fluid integrity. The falling ball tests are much faster and more convenient to perform compared to tests with the Brookfield viscometer; however, they do not provide the absolute value of viscosity but rather a time interval that is compared to historical samples to identify changes in viscosity.

### 2.11.2 Type II/III/IV Fluid Application Equipment

The Type II/III/IV fluids were stored outside the wind tunnel and were kept at air temperature. The fluids were poured rather than sprayed so that application would not change the fluid viscosity. This methodology was appropriate given the relatively small test area of the wing section and the goal of minimizing the amount of fluid flowing off the wing.

Type II, III, and IV fluids are generally received in 20 L containers; however, some fluids are received in large 200 L barrels and larger 1000 L totes. The fluid is applied to the wing section by using smaller 2 L containers (Photo 2.11). Approximately 16 L to 20 L of fluid were applied to the wing section for each test; less fluid was required for the less viscous Type III fluid. Due to the flat top surface of the supercritical wing, the thickened fluid did not easily settle and flow on the top surface. The wing was therefore tilted forward (by approximately 10 degrees) for 1 minute following the end of fluid application to allow for the fluid to spread out evenly over the top surface of the wing.

### 2.11.3 Waste Fluid Collection

Using a relatively small test area and applying the fluids by pouring minimized the amount of fluid falling off the wing. APS personnel used a vacuum to collect the fluid that would drip onto the tunnel floor prior to each test. The NRC also fitted the wind tunnel with appropriate drainage tubes to collect spent fluid during the takeoff test runs. At the end of the testing period, the services of Lacombe Waste Services were employed to safely dispose of the waste glycol fluid.

# 2.12 Analysis Methodology

The following provides a brief description of the analysis methodology. More details on the analysis methodology can be found in TP 15232E (1).

Each ice pellet test was analysed in detail using the following objectives:

a) Test parameters;

- b) Visual ratings at the start of the test;
- c) Visual ratings at rotation;
- d) 8° lift loss; and
- e) Overall test status.

The evaluation grades for each criterion were "good," "review," or "bad." These grades were determined based on whether the criteria satisfied each test objective requirement. Figure 2.9 shows a summary of each test objective and criteria.

Several test parameters were evaluated, such as tunnel temperature before the start of the test, rate of precipitation, and exposure time of precipitation. These parameters were compared against the target parameters described in the test plan. The ramp-up time was also evaluated and compared to the target ramp-up time determined; this became less of an issue after 2011-12 with the use of the automated ramp-up system instead of the previous manual system.

### 2.12.1 Visual Ratings at the Start of the Test

During each of the tests conducted, visual contamination ratings were determined by three observers: one observer from the FAA and two observers from APS. The level of contamination present on the leading edge and trailing edge of the wing, as well as on the flap, was quantified using a scale of one-to-five with five being the worst case scenario; partial numbers were sometimes assigned when cases were also marginally above or below a specific rating.

The visual contamination rating criteria at the start of the test on both the leading and trailing edge must be equal to 3 or less in order to pass. The flap must have a rating of 4 or less. For a review grade to be given, the leading and trailing edge must have a rating between 3 and 3.5, and the flap must have a rating between 4 and 4.5. Any rating greater than 3.5 on the leading and trailing edge is considered a fail, while anything greater than 4.5 on the flap is a fail.

#### 2.12.2 Visual Ratings at Rotation

The visual contamination rating criteria at the time of rotation on the leading edge must be equal to 1 or less in order to pass. For a review grade to be given, the leading edge must have a rating between 1 and 1.5. Any rating on the leading edge greater than 1.5 is considered a fail.

### 2.12.3 Eight Degree Lift Loss

For a pass, the 8° lift loss must be less than 5.4 percent. A review grade was given should the lift loss be between 5.4 percent and 9.2 percent. Any lift loss greater than 9.2 percent is considered a fail.

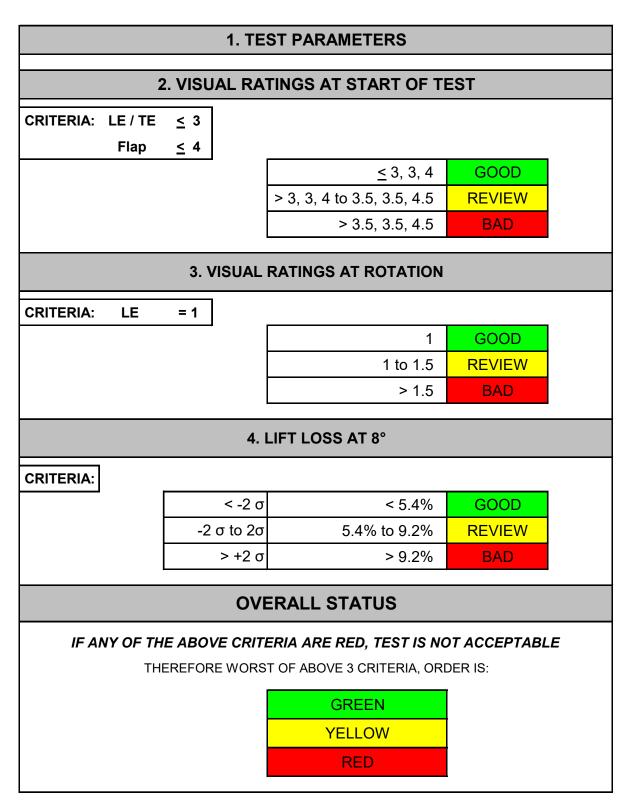



Figure 2.9: Ice Pellet Test Analysis Criteria

### 2.12.4 Overall Test Status

After all objectives were analysed, an overall status was given a "good," "review," or "bad." This provided an overall summary for each test. The overall status was determined by the worst case scenario from any of the test objectives; if any of the criteria were given a "bad" grade, the overall status would be "bad" and the test is considered a fail.

### 2.12.5 Dry Wing Calibration

To ensure the accuracy of the testing results, a dry wing calibration test was conducted at the start of each day. The dry wing test allowed the research team to ensure that the model aerodynamics did not change due to mechanical, communication, or analytical errors. Dry wing tests were also conducted following any mechanical modification to the airfoil (i.e., after applying the ice phobic wing skins). During the winter of 2015-16, the dry wing results demonstrated that the changes in dry wing performance were within the range of experimental error and did not indicate any repeatability issues with the model.



Photo 2.1: Outside View of NRC Wind Tunnel Facility

Photo 2.2: Inside View of NRC Wind Tunnel Test Section





Photo 2.3: Thin High-Performance Wing Section Used for Testing

Photo 2.4: Grid Markings on Thin High-Performance Wing Section

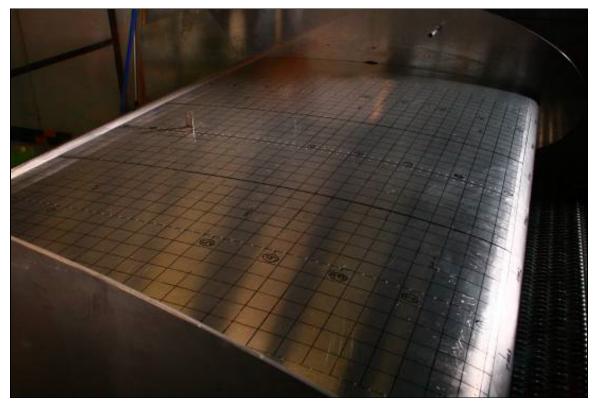





Photo 2.5: Refrigerated Truck Used for Manufacturing Ice Pellets

Photo 2.6: Calibrated Sieves Used to Obtain Desired Size Distribution






Photo 2.7: Ice Pellet Dispensers Operated by APS Personnel

Photo 2.8: Ceiling-Mounted Freezing Rain Sprayer





Photo 2.9: Wind Tunnel Setup for Flashes

Photo 2.10: Wind Tunnel Setup for Digital Cameras

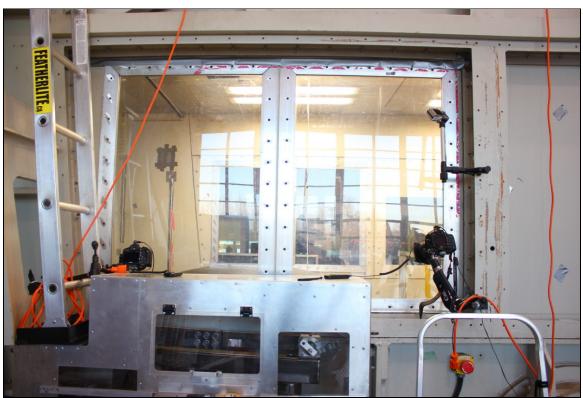





Photo 2.11: Fluid Pour Containers

Photo 2.12: 2015-16 Research Team





Photo 2.13: Brookfield Digital Viscometer Model DV-1+

Photo 2.14: Stony Brook PDVdi-120 Falling Ball Viscometer



This page intentionally left blank.

# 3. FULL-SCALE DATA COLLECTED

## 3.1 Test Log

A calendar of the tests conducted during the winter of 2015-16 can be found in Table 2.1. A detailed log of the tests conducted in the NRC PIWT is shown in Table 3.1. Data pertaining to all test objectives (exploratory research objectives as well) is included in the log. Table 3.1 provides relevant information for each of the tests, as well as final values used for the data analysis. Each column contains data specific to one test. It should be noted that a cumulative log of all tests completed since the ice pellet work started with the thin high-performance wing in 2009-10 has been maintained and used during the testing sessions; this log can be made available upon request. The following is a brief description of the column headings for Table 3.1:

| Test #:                        | Exclusive number identifying each test run.                                                                                                                                                                                                                 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Year:                     | The year in which the test was conducted.                                                                                                                                                                                                                   |
| Objective:                     | Main objective of the test.                                                                                                                                                                                                                                 |
| Test Condition:                | Description of the simulated conditions for the test.                                                                                                                                                                                                       |
| Fluid Name:                    | Aircraft anti-icing fluid used during the test.                                                                                                                                                                                                             |
| Rotation Angle:                | Maximum angle of rotation obtained during<br>simulated takeoff run; began testing with a<br>max 8° rotation angle and increased to 20° as<br>testing progressed.                                                                                            |
| Flap Angle (0°, 20°):          | Positioning of the flap during the precipitation<br>period; either 0° (retracted) or 20° (extended).<br><i>Note: Flap was always extended at 20° during</i><br><i>the takeoff run.</i>                                                                      |
| Date:                          | Date when the test was conducted.                                                                                                                                                                                                                           |
| OAT Before Test (°C):          | Outside air temperature recorded just before<br>the start of the simulated takeoff test,<br>measured in degrees Celsius.<br><i>Note: Not an important parameter as "Tunnel<br/>Temp. Before Test" was used as actual test<br/>temperature for analysis.</i> |
| Tunnel Temp. Before Test (°C): | Static tunnel air temperature recorded just before the start of the simulated takeoff test, measured in degrees Celsius.                                                                                                                                    |

|                                       | <i>Note: This parameter was used as the actual test temperature for analysis.</i>                                                           |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Precipitation Rate (Type: [g/dm²/h]): | Simulated freezing precipitation rate (or combination of different precipitation rates). "N/A" indicates that no precipitation was applied. |
| Exposure Time:                        | Simulated precipitation period, recorded in minutes.                                                                                        |

The visual contamination ratings are described below. Visual contamination ratings were typically reported as the average of the three observer ratings and rounded to the nearest decimal. The visual contamination ratings system is further described in Subsection 4.1.

| Visual Contamination Rating<br>Before Takeoff (LE, TE, Flap):  | Visual contamination rating determined before the start of the simulated takeoff:                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | <ol> <li>Contamination not very visible, fluid still<br/>clean.</li> <li>Contamination is visible, but lots of fluid<br/>still present.</li> <li>Contamination visible, spots of bridging<br/>contamination.</li> <li>Contamination visible, lots of dry bridging<br/>present.</li> <li>Contamination visible, adherence of<br/>contamination.</li> </ol> |
| <i>Visual Contamination Rating at Rotation (LE, TE, Flap):</i> | Visual contamination rating determined at the time of rotation:                                                                                                                                                                                                                                                                                           |
|                                                                | <ol> <li>Contamination not very visible, fluid still<br/>clean.</li> <li>Contamination is visible, but lots of fluid<br/>still present.</li> <li>Contamination visible, spots of bridging<br/>contamination.</li> <li>Contamination visible, lots of dry bridging<br/>present.</li> <li>Contamination visible, adherence of<br/>contamination.</li> </ol> |

| Visual Contamination Rating<br>After Takeoff (LE, TE, Flap): | <ul> <li>Visual contamination rating determined at the end of the test:</li> <li>1 - Contamination not very visible, fluid still clean.</li> <li>2 - Contamination is visible, but lots of fluid still present.</li> <li>3 - Contamination visible, spots of bridging contamination.</li> <li>4 - Contamination visible, lots of dry bridging present.</li> <li>5 - Contamination visible, adherence of</li> </ul> |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Corrected for 3D Effects C∟ at 8°:                           | contamination.<br>Calculated lift coefficient at the 8° wing<br>rotation angle position and corrected for 3D<br>effects; data provided by the NRC.                                                                                                                                                                                                                                                                 |
| Corrected for 3D Effects<br>% Lift Loss on 8° C⊥vs. Dry C⊥:  | Percent lift loss calculated based on the comparison of the 8° lift coefficient during the test run versus the dry wing average lift coefficient.                                                                                                                                                                                                                                                                  |
| Speed (kts):                                                 | Maximum speed obtained during simulated takeoff run, recorded in knots.                                                                                                                                                                                                                                                                                                                                            |

| Test<br># | Test Year | Objective                                  | Test<br>Condition | Fluid<br>Name    | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>C∟ at 8° | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° CL<br>vs. Dry CL | Speed<br>Kts |
|-----------|-----------|--------------------------------------------|-------------------|------------------|-------------------|-------------------------------|-----------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|--------------|
| 1         | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | AD-49<br>(75/25) | 8                 | 20                            | 18-Jan-16 | -7.5                          | -5.5                                      | IP = 25<br>ZR = 25                 | 10                        | -                                                                   | -                                                                | -                                                                  | 1.425                                      | 3.32%                                                                   | 100          |
| 2         | 2015-16   | Baseline                                   | Dry Wing          | none             | 8                 | 20                            | 18-Jan-16 | -14.7                         | -12.4                                     | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | n/a                                        | n/a                                                                     | 100          |
| 3         | 2015-16   | Baseline                                   | Dry Wing          | none             | 22                | 20                            | 18-Jan-16 | -14.7                         | -12.4                                     | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | n/a                                        | n/a                                                                     | 80           |
| 4         | 2015-16   | Baseline                                   | Dry Wing          | none             | 8                 | 20                            | 18-Jan-16 | -15.2                         | -14.3                                     | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | n/a                                        | n/a                                                                     | 100          |
| 5         | 2015-16   | Baseline                                   | Dry Wing          | none             | 22                | 20                            | 18-Jan-16 | -15.2                         | -15.2                                     | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | n/a                                        | n/a                                                                     | 80           |
| 6         | 2015-16   | Baseline                                   | Dry Wing          | none             | 22                | 20                            | 18-Jan-16 | -15.4                         | -14.6                                     | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | n/a                                        | n/a                                                                     | 80           |
| 7         | 2015-16   | Baseline                                   | Dry Wing          | none             | 22                | 20                            | 18-Jan-16 | -15.5                         | -15.4                                     | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.455                                      | 1.29%                                                                   | 80           |
| 8         | 2015-16   | Baseline                                   | Dry Wing          | none             | 8                 | 20                            | 18-Jan-16 | -15.5                         | -15.6                                     | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.474                                      | 0.01%                                                                   | 100          |
| 9         | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP-               | FCY<br>9311      | 8                 | 20                            | 19-Jan-16 | -16.2                         | -15.4                                     | IP = 25                            | 30                        | 2.4, 2.4, 3.8                                                       | 1.1, 1.7, 2.3                                                    | 1, 1.2, 1.3                                                        | 1.325                                      | 10.09%                                                                  | 100          |
| 10        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP-               | LNT<br>E450      | 8                 | 20                            | 19-Jan-16 | -16.8                         | -15.2                                     | IP = 25                            | 30                        | 2.2, 2.2, 2.6                                                       | 1, 1.3, 1.7                                                      | 1, 1, 1.2                                                          | 1.388                                      | 5.82%                                                                   | 100          |
| 11        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP Mod            | LNT<br>E450      | 8                 | 20                            | 19-Jan-16 | -17.1                         | -16.8                                     | IP = 75                            | 10                        | 2, 2.2, 2.6                                                         | 1.1, 1.3, 1.8                                                    | 1, 1, 1.2                                                          | 1.386                                      | 5.97%                                                                   | 100          |

Table 3.1: Wind Tunnel Test Log 2015-16

| Test<br># | Test Year | Objective                                  | Test<br>Condition | Fluid<br>Name  | Rotatio<br>n Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test (°C) | Precipitatio<br>n Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contaminati<br>on Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Correcte<br>d for 3D<br>Effects<br>CL at 8° | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° CL<br>vs. Dry CL | Speed<br>Kts |
|-----------|-----------|--------------------------------------------|-------------------|----------------|--------------------|-------------------------------|-----------|-------------------------------|----------------------------------------|-------------------------------------|---------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|--------------|
| 12        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | Fluid Only        | LNT<br>E450    | 8                  | 20                            | 19-Jan-16 | -17                           | -15.7                                  | -                                   | -                         | -                                                                   | -                                                                 | -                                                                  | 1.379                                       | 6.46%                                                                   | 100          |
| 13        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP Mod            | LNT<br>E450    | 8                  | 20                            | 19-Jan-16 | -17                           | -15.4                                  | IP = 75                             | 10                        | 2.2, 2.2, 2.6                                                       | 1.1, 1.4,<br>2.2                                                  | 1, 1, 1.3                                                          | 1.379                                       | 6.43%                                                                   | 100          |
| 14        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP Mod            | FCY<br>9311    | 8                  | 20                            | 19-Jan-16 | -17.2                         | -15.8                                  | IP = 75                             | 10                        | 2.5, 2.7, 3.8                                                       | 1, 1.7, 2.7                                                       | 1, 1.1, 1.2                                                        | 1.349                                       | 8.45%                                                                   | 115          |
| 15        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | Fluid Only        | FCY<br>9311    | 8                  | 20                            | 19-Jan-16 | -16.7                         | -15.7                                  | -                                   | -                         | -                                                                   | -                                                                 | -                                                                  | 1.379                                       | 6.41%                                                                   | 100          |
| 16        | 2015-16   | Baseline                                   | Dry Wing          | none           | 8                  | 20                            | 19-Jan-16 | n/a                           | -10.7                                  | -                                   | -                         | -                                                                   | -                                                                 | -                                                                  | 1.465                                       | 0.61%                                                                   | 100          |
| 17        | 2015-16   | Baseline                                   | Dry Wing          | none           | 22                 | 20                            | 19-Jan-16 | n/a                           | -11.1                                  | -                                   | -                         | -                                                                   | -                                                                 | -                                                                  | 1.457                                       | 1.12%                                                                   | 80           |
| 18        | 2015-16   | IP<br>Expansion                            | Fluid Only        | ABC-<br>S Plus | 8                  | 20                            | 19-Jan-16 | -11                           | -11.1                                  | -                                   | -                         | -                                                                   | -                                                                 | -                                                                  | 1.388                                       | 5.85%                                                                   | 100          |
| 19        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | FCY<br>9311    | 8                  | 20                            | 19-Jan-16 | -10                           | -8.5                                   | IP = 25<br>ZR = 25                  | 10                        | 2.5, 2.5, 3.5                                                       | 1, 1.5, 1.8                                                       | 1, 1, 1                                                            | 1.382                                       | 6.27%                                                                   | 100          |
| 20        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | LNT<br>E450    | 8                  | 20                            | 20-Jan-16 | -8.9                          | -7.6                                   | IP = 25<br>ZR = 25                  | 10                        | 1.8, 2, 2                                                           | 1, 1.1, 1.5                                                       | 1, 1, 1                                                            | 1.402                                       | 4.90%                                                                   | 100          |
| 21        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP- / SN-         | LNT<br>E450    | 8                  | 20                            | 20-Jan-16 | -9.2                          | -6.6                                   | IP = 25<br>SN = 10                  | 15                        | 1.7, 2, 2.4                                                         | 1, 1.4, 1.7                                                       | 1, 1, 1.2                                                          | 1.395                                       | 5.35%                                                                   | 100          |
| 22        | 2015-16   | Type IV<br>Validation<br>and New<br>Fluids | IP- / SN-         | FCY<br>9311    | 8                  | 20                            | 20-Jan-16 | -9.6                          | -6.5                                   | IP = 25<br>SN = 10                  | 15                        | 2.4, 2.8, 3.5                                                       | 1.1, 1.5,<br>2.1                                                  | 1, 1.1, 1.2                                                        | 1.371                                       | 6.95%                                                                   | 100          |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

| Test<br># | Test Year | Objective                      | Test<br>Conditio<br>n | Fluid<br>Name                  | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test (°C) | Precipitatio<br>n Rate<br>(g/dm²/h) | Exposu<br>re Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Correcte<br>d for 3D<br>Effects<br>C∟ at 8° | Correcte<br>d for 3D<br>Effects<br>% Lift<br>Loss on<br>8° CL vs.<br>Dry CL | Speed<br>Kts |
|-----------|-----------|--------------------------------|-----------------------|--------------------------------|-------------------|-------------------------------|-----------|-------------------------------|----------------------------------------|-------------------------------------|----------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|--------------|
| 23        | 2015-16   | IP<br>Expansion<br>- METAR     | IP / SN               | ABC-S<br>Plus                  | 8                 | 20                            | 20-Jan-16 | -10.2                         | -8.2                                   | IP = 75<br>SN = 25                  | 7                          | 2.3, 2.7, 3.5                                                       | 1.1, 1.7, 2.4                                                    | 1, 1, 1.2                                                          | 1.365                                       | 7.38%                                                                       | 100          |
| 24        | 2015-16   | IP<br>Expansion<br>- METAR     | IP / SN               | ABC-S<br>Plus                  | 8                 | 20                            | 20-Jan-16 | -10.4                         | -7.7                                   | IP = 75<br>SN = 25                  | 10                         | 3, 3, 4                                                             | 1.2, 1.8, 2.5                                                    | 1, 1.1, 1.2                                                        | 1.354                                       | 8.16%                                                                       | 100          |
| 25        | 2015-16   | IP<br>Expansion<br>- METAR     | IP / ZD               | ABC-S<br>Plus                  | 8                 | 20                            | 20-Jan-16 | -10.3                         | -7.2                                   | IP = 75<br>R = 13                   | 10                         | 2.4, 2.5, 3.2                                                       | 1.1, 1.5, 2.1                                                    | 1, 1.1, 1.1                                                        | 1.371                                       | 7.01%                                                                       | 100          |
| 26        | 2015-16   | Baseline                       | Dry<br>Wing           | none                           | 8                 | 20                            | 20-Jan-16 | -8.9                          | -8.0                                   | -                                   | -                          | -                                                                   | -                                                                | -                                                                  | 1.472                                       | 0.10%                                                                       | 100          |
| 27        | 2015-16   | Baseline                       | Dry<br>Wing           | none                           | 22                | 20                            | 20-Jan-16 | -8.9                          | -8.0                                   | -                                   | -                          | -                                                                   | -                                                                | -                                                                  | 1.488                                       | -0.98%                                                                      | 80           |
| 28        | 2015-16   | Type III<br>Allowance<br>Times | IP-                   | AeroCl<br>ear<br>MAX -<br>Cold | 8                 | 20                            | 20-Jan-16 | -9                            | -5.5                                   | IP = 25                             | 10                         | 2.2, 2, 2.4                                                         | 1, 1, 1.5                                                        | 1, 1, 1.1                                                          | 1.434                                       | 2.73%                                                                       | 80           |
| 29        | 2015-16   | Type III<br>Allowance<br>Times | IP Mod                | AeroCl<br>ear<br>MAX -<br>Cold | 8                 | 20                            | 20-Jan-16 | -9                            | -5.3                                   | IP = 75                             | 5                          | 2, 2, 2.7                                                           | 1, 1.2, 1.4                                                      | 1, 1, 1.1                                                          | 1.442                                       | 2.14%                                                                       | 80           |
| 30        | 2015-16   | Type III<br>Allowance<br>Times | IP- / ZR-             | AeroCl<br>ear<br>MAX -<br>Cold | 8                 | 20                            | 21-Jan-16 | -9.7                          | -4.1                                   | IP = 25<br>ZR = 25                  | 5                          | 1.8, 2, 2.1                                                         | 1, 1, 1.2                                                        | 1, 1, 1                                                            | 1.437                                       | 2.52%                                                                       | 80           |
| 31        | 2015-16   | Type III<br>Allowance<br>Times | IP- / SN-             | AeroCl<br>ear<br>MAX -<br>Cold | 8                 | 20                            | 21-Jan-16 | -10.1                         | -5.1                                   | IP = 25<br>SN = 10                  | 10                         | 2, 1.7, 3                                                           | 1, 1.2, 1.7                                                      | 1, 1, 1.5                                                          | 1.446                                       | 1.91%                                                                       | 80           |
| 32        | 2015-16   | Type III<br>Allowance<br>Times | IP- / SN              | AeroCl<br>ear<br>MAX -<br>Cold | 8                 | 20                            | 21-Jan-16 | -10.3                         | -5.4                                   | IP = 25<br>SN = 25                  | 10                         | 2, 2.7, 3.8                                                         | 1, 1.5, 2.5                                                      | 1, 1, 1.4                                                          | 1.434                                       | 2.69%                                                                       | 80           |
| 33        | 2015-16   | Type III<br>Allowance<br>Times | Fluid<br>Only         | AeroCl<br>ear<br>MAX -<br>Cold | 8                 | 20                            | 21-Jan-16 | -10.7                         | -7.2                                   | -                                   | -                          | -                                                                   | -                                                                | -                                                                  | 1.422                                       | 3.52%                                                                       | 80           |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

| Test<br># | Test Year | Objective                                        | Test<br>Condition | Fluid<br>Name                  | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test (°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contaminatio<br>n Rating After<br>Takeoff<br>(LE,TE,Flap) | Correcte<br>d for 3D<br>Effects<br>C∟ at 8° | Correcte<br>d for 3D<br>Effects<br>% Lift<br>Loss on<br>8° C∟ vs.<br>Dry C∟ | Spee<br>dKts |
|-----------|-----------|--------------------------------------------------|-------------------|--------------------------------|-------------------|-------------------------------|-----------|-------------------------------|----------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|--------------|
| 34        | 2015-16   | Type III<br>Allowanc<br>e Times                  | Fluid<br>Only     | AeroCl<br>ear<br>MAX -<br>Cold | 8                 | 20                            | 21-Jan-16 | -11                           | -6.3                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                   | 1.434                                       | 2.72%                                                                       | 100          |
| 35        | 2015-16   | IP<br>Expansio<br>n -<br>METAR                   | IP / ZD           | Polar<br>Guard<br>Advanc<br>e  | 8                 | 20                            | 21-Jan-16 | -11.6                         | -6.9                                   | IP = 75<br>ZR = 13                 | 10                        | 2.7, 2.7, 3.9                                                       | 1, 1.7, 2.5                                                      | 1, 1, 1.2                                                           | 1.337                                       | 9.32%                                                                       | 100          |
| 36        | 2015-16   | IP<br>Expansio<br>n -<br>METAR                   | IP / SN           | Polar<br>Guard<br>Advanc<br>e  | 8                 | 20                            | 21-Jan-16 | -12                           | -7.4                                   | IP = 75<br>SN = 25                 | 10                        | 3, 3, 4                                                             | 1.2, 1.7, 2.6                                                    | 1, 1, 1.4                                                           | 1.311                                       | 11.06%                                                                      | 100          |
| 37        | 2015-16   | IP<br>Expansio<br>n -<br>METAR                   | IP / SN           | Polar<br>Guard<br>Advanc<br>e  | 8                 | 20                            | 21-Jan-16 | -12.6                         | -7.7                                   | IP = 75<br>SN = 25                 | 7                         | 2.8, 2.5, 3.7                                                       | 1.1, 1.4, 2.5                                                    | 1, 1.1, 1.4                                                         | 1.335                                       | 9.42%                                                                       | 100          |
| 38        | 2015-16   | Baseline                                         | Dry Wing          | none                           | 8                 | 20                            | 21-Jan-16 | -6.9                          | -6.8                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                   | 1.470                                       | 0.25%                                                                       | 100          |
| 39        | 2015-16   | Baseline                                         | Dry Wing          | none                           | 22                | 20                            | 21-Jan-16 | -6.9                          | -6.8                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                   | 1.482                                       | -0.58%                                                                      | 80           |
| 40        | 2015-16   | IP<br>Expansio<br>n -<br>METAR                   | IP / SN           | ABC-S<br>Plus                  | 8                 | 20                            | 21-Jan-16 | -6.9                          | -3.5                                   | IP = 75<br>SN = 25                 | 7                         | 2.9, 2.7, 3.4                                                       | 1.1, 1.9, 2.1                                                    | 1, 1, 1.1                                                           | 1.375                                       | 6.70%                                                                       | 100          |
| 41        | 2015-16   | IP<br>Expansio<br>n -<br>METAR                   | IP / SN           | ABC-S<br>Plus                  | 8                 | 20                            | 21-Jan-16 | -7                            | -3.8                                   | IP = 75<br>SN = 25                 | 10                        | 2.8, 2.8, 3.7                                                       | 1.2, 2, 2.3                                                      | 1, 1, 1.1                                                           | 1.364                                       | 7.48%                                                                       | 100          |
| 42        | 2015-16   | IP<br>Expansio<br>n -<br>METAR                   | IP / ZD           | ABC-S<br>Plus                  | 8                 | 20                            | 22-Jan-16 | -7.1                          | -3.1                                   | IP = 75<br>ZR = 13                 | 15                        | 3, 3, 4                                                             | 1.1, 1.7, 2                                                      | 1, 1, 1.1                                                           | 1.385                                       | 6.06%                                                                       | 100          |
| 43        | 2015-16   | IP<br>Expansio<br>n -<br>Current<br>IP and<br>SN | IP- / SN-         | ABC-S<br>Plus                  | 8                 | 20                            | 22-Jan-16 | -7.5                          | -4.3                                   | IP = 25<br>SN = 10                 | 40                        | 2.8, 2.8, 4                                                         | 1.2, 1.7, 1.9                                                    | 1, 1.1, 1.2                                                         | 1.372                                       | 6.91%                                                                       | 100          |
| 44        | 2015-16   | IP<br>Expansio<br>n -<br>Current<br>IP and<br>SN | IP- / SN          | ABC-S<br>Plus                  | 8                 | 20                            | 22-Jan-16 | -7.6                          | -4.4                                   | IP = 25<br>SN = 25                 | 20                        | 3.2, 2.8, 3.8                                                       | 1.3, 2, 2.3                                                      | 1, 1.4, 1.3                                                         | 1.376                                       | 6.66%                                                                       | 100          |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

| Test<br># | Test Year | Objective                                 | Test<br>Condition | Fluid<br>Name             | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date          | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>C∟ at 8° | Corrected<br>for 3D<br>Effects<br>% Lift<br>Loss on<br>8° CL vs.<br>Dry CL | Speed<br>Kts |
|-----------|-----------|-------------------------------------------|-------------------|---------------------------|-------------------|-------------------------------|---------------|-------------------------------|----------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|--------------|
| 45        | 2015-16   | IP<br>Expansion<br>- METAR                | IP / SN           | AD-49                     | 8                 | 20                            | 22-Jan-<br>16 | -7.7                          | -4.4                                   | IP = 75<br>SN = 25                 | 10                        | 2.9, 2.8, 4                                                         | 1.1, 1.7, 2.1                                                    | 1, 1.1, 1.2                                                        | 1.366                                      | 7.34%                                                                      | 100          |
| 46        | 2015-16   | IP<br>Expansion<br>- Current<br>IP and SN | IP- / SN-         | AD-49                     | 8                 | 20                            | 22-Jan-<br>16 | -8.1                          | -4.0                                   | IP = 25<br>SN = 10                 | 40                        | 3.1, 3, 4                                                           | 1.2, 1.8, 2.5                                                    | 1, 1.2, 1.2                                                        | 1.392                                      | 5.56%                                                                      | 100          |
| 47        | 2015-16   | IP<br>Expansion<br>- METAR                | IP / ZD           | AD-49                     | 8                 | 20                            | 22-Jan-<br>16 | -8.5                          | -4.9                                   | IP = 75<br>ZR = 13                 | 15                        | 2.8, 2.7, 3.8                                                       | 1.1, 1.5, 1.9                                                    | 1, 1.1, 1.3                                                        | 1.384                                      | 6.07%                                                                      | 100          |
| 48        | 2015-16   | IP<br>Expansion<br>- Current<br>IP and SN | IP- / SN          | AD-49                     | 8                 | 20                            | 22-Jan-<br>16 | -8.9                          | -4.7                                   | IP = 25<br>SN = 25                 | 20                        | 2.8, 2.7, 3.8                                                       | 1.2, 1.7, 2.8                                                    | 1, 1.1, 1.5                                                        | 1.361                                      | 7.63%                                                                      | 100          |
| 49        | 2015-16   | Baseline                                  | Dry Wing          | none                      | 8                 | 20                            | 22-Jan-<br>16 | -8.6                          | -8.2                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.479                                      | -0.35%                                                                     | 100          |
| 50        | 2015-16   | Baseline                                  | Dry Wing          | none                      | 22                | 20                            | 22-Jan-<br>16 | -8.6                          | -8.2                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.483                                      | -0.60%                                                                     | 80           |
| 51        | 2015-16   | IP<br>Expansion<br>- Current<br>IP and SN | IP- / SN-         | Polar<br>Guard<br>Advance | 8                 | 20                            | 22-Jan-<br>16 | -9.5                          | -5.1                                   | IP = 25<br>SN = 10                 | 40                        | 2.8, 2.8, 4                                                         | 1.1, 1.4, 2.6                                                    | 1, 1, 1.3                                                          | 1.345                                      | 8.73%                                                                      | 100          |
| 52        | 2015-16   | IP<br>Expansion<br>- METAR                | IP / SN           | Polar<br>Guard<br>Advance | 8                 | 20                            | 23-Jan-<br>16 | -10.1                         | -4.9                                   | IP = 75<br>SN = 25                 | 10                        | 2.7, 2.8, 4                                                         | 1.1, 1.4, 2.5                                                    | 1, 1, 1.2                                                          | 1.337                                      | 9.27%                                                                      | 100          |
| 53        | 2015-16   | IP<br>Expansion<br>- METAR                | IP / ZD           | Polar<br>Guard<br>Advance | 8                 | 20                            | 23-Jan-<br>16 | -10.6                         | -4.8                                   | IP = 75<br>ZR = 13                 | 15                        | 2.8, 3, 3.8                                                         | 1, 1.5, 2.3                                                      | 1, 1.2, 1.1                                                        | 1.353                                      | 8.23%                                                                      | 100          |
| 54        | 2015-16   | IP<br>Expansion<br>- Current<br>IP and SN | IP- / SN          | Polar<br>Guard<br>Advance | 8                 | 20                            | 23-Jan-<br>16 | -10.8                         | -5.2                                   | IP = 25<br>SN = 25                 | 20                        | 2.8, 3.1, 3.9                                                       | 1.1, 1.6, 2.6                                                    | 1, 1.1, 1.9                                                        | 1.332                                      | 9.63%                                                                      | 100          |
| 55        | 2015-16   | IP<br>Expansion<br>- Current<br>IP and SN | IP- / SN          | Polar<br>Guard<br>Advance | 8                 | 20                            | 23-Jan-<br>16 | -11.4                         | -6.2                                   | IP = 25<br>SN = 25                 | 15                        | 2.8, 2.9, 3.7                                                       | 1.2, 1.6, 2.4                                                    | 1, 1, 1.4                                                          | 1.343                                      | 8.85%                                                                      | 100          |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

| Test<br># | Test<br>Year | Objective                                  | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>C∟ at 8° | Corrected<br>for 3D<br>Effects<br>% Lift<br>Loss on<br>8° CL vs.<br>Dry CL | Speed<br>Kts |
|-----------|--------------|--------------------------------------------|-------------------|----------------------------|-------------------|-------------------------------|-----------|-------------------------------|----------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|--------------|
| 56        | 2015-16      | Type III<br>Allowance<br>Times             | IP- / SN          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 23-Jan-16 | -12                           | -6.4                                   | IP = 25<br>SN = 25                 | 10                        | 2.3, 2.2, 3.8                                                       | 1, 1.2, 1.6                                                      | 1, 1, 1.1                                                          | 1.434                                      | 2.71%                                                                      | 80           |
| 57        | 2015-16      | Type III<br>Allowance<br>Times             | IP- / SN          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 23-Jan-16 | -12.3                         | -7.5                                   | IP = 25<br>SN = 25                 | 10                        | 2.5, 2.4, 3.6                                                       | 1, 1.2, 1.6                                                      | 1, 1, 1.1                                                          | 1.436                                      | 2.57%                                                                      | 80           |
| 58        | 2015-16      | Type III<br>Allowance<br>Times             | IP- / SN          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 23-Jan-16 | -12.7                         | -7.2                                   | IP = 25<br>SN = 25                 | 10                        | 2.7, 2.7, 3.5                                                       | 1, 1.2, 1.3                                                      | 1, 1, 1.1                                                          | 1.443                                      | 2.12%                                                                      | 100          |
| 59        | 2015-16      | Type III<br>Allowance<br>Times             | IP- / ZR-         | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 23-Jan-16 | -13                           | -6.6                                   | IP = 25<br>ZR = 25                 | 7                         | 1.7, 1.7, 2.5                                                       | 1, 1, 1.4                                                        | 1, 1, 1.1                                                          | 1.433                                      | 2.79%                                                                      | 80           |
| 60        | 2015-16      | Type III<br>Allowance<br>Times             | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 23-Jan-16 | -13.3                         | -9.6                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.388                                      | 5.81%                                                                      | 68           |
| 61        | 2015-16      | Baseline                                   | Dry Wing          | none                       | 8                 | 20                            | 24-Jan-16 | -8.2                          | -1.2                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.465                                      | 0.59%                                                                      | 100          |
| 62        | 2015-16      | Baseline                                   | Dry Wing          | none                       | 22                | 20                            | 24-Jan-16 | -8.2                          | -1.2                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.475                                      | -0.08%                                                                     | 80           |
| 63        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP-               | FCY<br>9311                | 8                 | 20                            | 24-Jan-16 | -7.1                          | -2.6                                   | IP = 25                            | 50                        | 2.7, 2.8, 4                                                         | 1, 1.4, 1.6                                                      | 1, 1.1, 1.2                                                        | 1.423                                      | 3.46%                                                                      | 100          |
| 64        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | FCY<br>9311                | 8                 | 20                            | 25-Jan-16 | -7.6                          | -1.5                                   | IP = 25<br>ZR = 25                 | 25                        | 2.7, 2.8, 4.3                                                       | 1, 1.1, 5                                                        | 1.1, 1.1, 4.7                                                      | 1.350                                      | 8.40%                                                                      | 100          |
| 65        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | ABC-S<br>Plus              | 8                 | 20                            | 25-Jan-16 | -7.5                          | -1.5                                   | IP = 25<br>ZR = 25                 | 25                        | 2.8, 2.8, 5                                                         | 1, 1.3, 5                                                        | 1, 1, 4                                                            | 1.393                                      | 5.51%                                                                      | 100          |
| 66        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | Polar<br>Guard<br>Advance  | 8                 | 20                            | 25-Jan-16 | -7.2                          | -0.6                                   | IP = 25<br>ZR = 25                 | 25                        | 2.6, 2.7, 4.7                                                       | 1, 1.1, 5                                                        | 1, 1, 5                                                            | 1.388                                      | 5.82%                                                                      | 100          |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

| Test<br># | Test<br>Year | Objective                                  | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>C∟ at 8° | Corrected<br>for 3D<br>Effects<br>% Lift<br>Loss on<br>8° CL vs.<br>Dry CL | Speed<br>Kts |
|-----------|--------------|--------------------------------------------|-------------------|----------------------------|-------------------|-------------------------------|-----------|-------------------------------|----------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|--------------|
| 67        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | AD-49                      | 8                 | 20                            | 25-Jan-16 | -7                            | -1.5                                   | IP = 25<br>ZR = 25                 | 25                        | 2.8, 2.8, 5                                                         | 1, 1.3, 5                                                        | 1, 1, 5                                                            | 1.378                                      | 6.49%                                                                      | 100          |
| 68        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | LNT<br>E450                | 8                 | 20                            | 25-Jan-16 | -6.7                          | -1.3                                   | IP = 25<br>ZR = 25                 | 25                        | 2, 2, 2.3                                                           | 1, 1, 1.1                                                        | 1, 1, 1                                                            | 1.428                                      | 3.11%                                                                      | 100          |
| 69        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP Mod            | LNT<br>E450                | 8                 | 20                            | 25-Jan-16 | -6.6                          | -2.0                                   | IP = 75                            | 25                        | 2.3, 2.5, 4                                                         | 1, 1.4, 1.9                                                      | 1, 1, 1                                                            | 1.425                                      | 3.30%                                                                      | 100          |
| 70        | 2015-16      | Baseline                                   | Dry Wing          | none                       | 8                 | 20                            | 25-Jan-16 | -3.3                          | 3.3                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.465                                      | 0.61%                                                                      | 100          |
| 71        | 2015-16      | Baseline                                   | Dry Wing          | none                       | 22                | 20                            | 25-Jan-16 | -3.3                          | 3.3                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.476                                      | -0.14%                                                                     | 80           |
| 72        | 2015-16      | Type III<br>Allowance<br>Times             | IP- / R-          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 25-Jan-16 | -3.5                          | 2.4                                    | IP = 25<br>R = 25                  | 7                         | 1, 1.3, 1.4                                                         | 1, 1, 1.2                                                        | 1, 1, 1.1                                                          | 1.444                                      | 2.02%                                                                      | 80           |
| 73        | 2015-16      | Type III<br>Allowance<br>Times             | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 25-Jan-16 | -3.6                          | 1.5                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.435                                      | 2.65%                                                                      | 80           |
| 74        | 2015-16      | Type III<br>Allowance<br>Times             | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 25-Jan-16 | -3.6                          | 1.1                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.413                                      | 4.12%                                                                      | 68           |
| 75        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / R-          | FCY<br>9311                | 8                 | 20                            | 26-Jan-16 | -3.9                          | 0.0                                    | IP = 25<br>R = 25                  | 25                        | 1.7, 2.3, 3.8                                                       | 1, 1, 2.8                                                        | 1, 1, 2.8                                                          | 1.414                                      | 4.09%                                                                      | 100          |
| 76        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / R-          | LNT<br>E450                | 8                 | 20                            | 26-Jan-16 | -4                            | 0.0                                    | IP = 25<br>R = 25                  | 25                        | 1.3, 1.3, 3.2                                                       | 1, 1.1, 1.1                                                      | 1, 1, 1                                                            | 1.411                                      | 4.28%                                                                      | 100          |
| 77        | 2015-16      | IP<br>Expansion<br>- METAR                 | IP / R            | AD-49                      | 8                 | 20                            | 26-Jan-16 | -4.5                          | -0.7                                   | IP = 75<br>R = 75                  | 25                        | 2.7, 3, 5                                                           | 2.3, 1.2, 5                                                      | 2.3, 1.1, 5                                                        | 1.291                                      | 12.38%                                                                     | 100          |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

| Test<br># | Test<br>Year | Objective                      | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>C⊾ at 8° | Corrected<br>for 3D<br>Effects<br>% Lift<br>Loss on<br>8° CL vs.<br>Dry CL | Speed<br>Kts |
|-----------|--------------|--------------------------------|-------------------|----------------------------|-------------------|-------------------------------|-----------|-------------------------------|----------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|--------------|
| 78        | 2015-16      | IP<br>Expansion<br>- METAR     | IP / R            | AD-49                      | 8                 | 20                            | 26-Jan-16 | -0.43                         | -1.1                                   | IP = 75<br>R = 75                  | 10                        | 2.3, 2.5, 3.8                                                       | 1, 1, 1.8                                                        | 1, 1, 1.2                                                          | 1.429                                      | 3.02%                                                                      | 100          |
| 79        | 2015-16      | IP<br>Expansion<br>- METAR     | IP / R            | AD-49                      | 8                 | 20                            | 26-Jan-16 | -4                            | 0.0                                    | IP = 75<br>R = 75                  | 15                        | 2.7, 2.8, 5                                                         | 1, 1, 5                                                          | 1, 1, 3.3                                                          | 1.359                                      | 7.79%                                                                      | 100          |
| 80        | 2015-16      | IP<br>Expansion<br>- METAR     | IP / R            | FCY<br>9311                | 8                 | 20                            | 26-Jan-16 | -3.8                          | -0.4                                   | IP = 75<br>R = 75                  | 15                        | 2.3, 2.7, 5                                                         | 1, 1.1, 4                                                        | 1, 1, 5                                                            | 1.350                                      | 8.41%                                                                      | 100          |
| 81        | 2015-16      | IP<br>Expansion<br>- METAR     | IP / R            | Polar<br>Guard<br>Advance  | 8                 | 20                            | 26-Jan-16 | -3                            | 0.4                                    | IP = 75<br>R = 75                  | 15                        | 2.7, 2.8, 5                                                         | 1, 1.1, 5                                                        | 1, 1, 5                                                            | 1.397                                      | 5.23%                                                                      | 100          |
| 82        | 2015-16      | IP<br>Expansion<br>- METAR     | IP / R            | ABC-S<br>Plus              | 8                 | 20                            | 26-Jan-16 | -2.6                          | 1.3                                    | IP = 75<br>R = 75                  | 15                        | 2.5, 2.7, 5                                                         | 1, 1.3, 5                                                        | 1, 1, 5                                                            | 1.375                                      | 6.72%                                                                      | 100          |
| 83        | 2015-16      | Baseline                       | Dry Wing          | none                       | 8                 | 20                            | 27-Jan-16 | -7.1                          | -3.4                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.481                                      | -0.49%                                                                     | 100          |
| 84        | 2015-16      | Baseline                       | Dry Wing          | none                       | 22                | 20                            | 27-Jan-16 | -7.1                          | -3.4                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.482                                      | -0.57%                                                                     | 80           |
| 85        | 2015-16      | Type III<br>Allowance<br>Times | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 27-Jan-16 | -7.9                          | -2.5                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.406                                      | 4.62%                                                                      | 68           |
| 86        | 2015-16      | Type III<br>Allowance<br>Times | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 27-Jan-16 | -9.2                          | -4.0                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.427                                      | 3.17%                                                                      | 80           |
| 87        | 2015-16      | Type III<br>Allowance<br>Times | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 22                | 20                            | 27-Jan-16 | -9.6                          | -4.8                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.439                                      | 2.36%                                                                      | 80           |
| 88        | 2015-16      | Type III<br>Allowance<br>Times | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 28-Jan-16 | -9.6                          | -4.7                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.436                                      | 2.55%                                                                      | 100          |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

| Test<br># | Test<br>Year | Objective                                  | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test (°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>C∟ at 8° | Corrected<br>for 3D<br>Effects<br>% Lift<br>Loss on<br>8° C∟ vs.<br>Dry C∟ | Speed<br>Kts |
|-----------|--------------|--------------------------------------------|-------------------|----------------------------|-------------------|-------------------------------|-----------|-------------------------------|----------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|--------------|
| 89        | 2015-16      | Baseline                                   | Dry Wing          | none                       | 22                | 20                            | 28-Jan-16 | -9.1                          | -8.1                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.478                                      | -0.29%                                                                     | 68           |
| 90        | 2015-16      | Type III<br>Allowance<br>Times             | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 22                | 20                            | 28-Jan-16 | -8.7                          | -6.1                                   | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.419                                      | 3.74%                                                                      | 68           |
| 91        | 2015-16      | Type III<br>Allowance<br>Times             | IP- / ZR-         | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 28-Jan-16 | -8.4                          | -2.7                                   | IP = 25<br>ZR = 25                 | 7                         | 1.5, 1.7, 2.3                                                       | 1, 1, 1.1                                                        | 1, 1, 1.1                                                          | 1.436                                      | 2.54%                                                                      | 80           |
| 92        | 2015-16      | IP<br>Expansion<br>- Current<br>IP and SN  | IP- / SN-         | FCY 9311                   | 8                 | 20                            | 28-Jan-16 | -8.5                          | -4.0                                   | IP = 25<br>SN = 10                 | 40                        | 2.9, 2.8, 4                                                         | 1.1, 1.5, 2.3                                                    | 1, 1.3, 1.2                                                        | 1.356                                      | 7.99%                                                                      | 100          |
| 93        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / SN-         | FCY 9311                   | 8                 | 20                            | 28-Jan-16 | -7.6                          | -1.7                                   | IP = 25<br>SN = 10                 | 25                        | 2.5, 2.7, 3.8                                                       | 1, 1.5, 2.2                                                      | 1, 1.1, 1.2                                                        | 1.389                                      | 5.75%                                                                      | 100          |
| 94        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | FCY 9311                   | 8                 | 20                            | 28-Jan-16 | -7.3                          | -2.1                                   | IP = 25<br>ZR = 25                 | 25                        | 2.3, 2.8, 5                                                         | 1, 1.4, 5                                                        | 1, 1, 5                                                            | 1.328                                      | 9.91%                                                                      | 100          |
| 95        | 2015-16      | Type IV<br>Validation<br>and New<br>Fluids | IP- / ZR-         | FCY 9311                   | 8                 | 0                             | 28-Jan-16 | -6.7                          | -1.7                                   | IP = 25<br>ZR = 25                 | 25                        | 2.3, 2.3, 3                                                         | 1, 1.1, 1.2                                                      | 1, 1, 1                                                            | 1.437                                      | 2.52%                                                                      | 100          |
| 96        | 2015-16      | Baseline                                   | Dry Wing          | none                       | 8                 | 20                            | 28-Jan-16 | -1                            | 5.3                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.493                                      | -1.32%                                                                     | 100          |
| 97        | 2015-16      | Baseline                                   | Dry Wing          | none                       | 22                | 20                            | 28-Jan-16 | -1                            | 5.3                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.492                                      | -1.20%                                                                     | 80           |
| 98        | 2015-16      | Type III<br>Allowance<br>Times             | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 28-Jan-16 | -1.1                          | 2.2                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.427                                      | 3.19%                                                                      | 68           |
| 99        | 2015-16      | Type III<br>Allowance<br>Times             | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 22                | 20                            | 28-Jan-16 | -1.1                          | 2.2                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.430                                      | 2.98%                                                                      | 68           |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

| Test<br># | Test<br>Year | Objective                      | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | Date      | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test (°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating After<br>Takeoff<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>C⊾ at 8° | Corrected<br>for 3D<br>Effects<br>% Lift<br>Loss on<br>8° CL vs.<br>Dry CL | Speed<br>Kts |
|-----------|--------------|--------------------------------|-------------------|----------------------------|-------------------|-------------------------------|-----------|-------------------------------|----------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|--------------|
| 100       | 2015-16      | Type III<br>Allowance<br>Times | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 28-Jan-16 | -1.1                          | 1.8                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.447                                      | 1.81%                                                                      | 80           |
| 101       | 2015-16      | Type III<br>Allowance<br>Times | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 22                | 20                            | 28-Jan-16 | -1.2                          | 1.7                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.447                                      | 1.84%                                                                      | 80           |
| 102       | 2015-16      | Type III<br>Allowance<br>Times | Fluid<br>Only     | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 29-Jan-16 | -1.2                          | 1.7                                    | -                                  | -                         | -                                                                   | -                                                                | -                                                                  | 1.456                                      | 1.20%                                                                      | 100          |
| 103       | 2015-16      | Type III<br>Allowance<br>Times | IP Mod            | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 29-Jan-16 | -1.2                          | 2.1                                    | IP = 75                            | 5                         | 1.8, 2, 2.2                                                         | 1, 1, 1.1                                                        | 1, 1, 1                                                            | 1.458                                      | 1.04%                                                                      | 80           |
| 104       | 2015-16      | Type III<br>Allowance<br>Times | IP Mod            | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | 29-Jan-16 | -1.4                          | 2.9                                    | IP = 75                            | 15                        | 2.2, 2.5, 4                                                         | 1, 1, 1.1                                                        | 1, 1, 1                                                            | 1.462                                      | 0.83%                                                                      | 80           |
| 105       | 2015-16      | Heavy<br>Contamination         | IP+/ZR-           | AeroClear<br>MAX -<br>Cold | 22                | 20                            | 29-Jan-16 | -1.1                          | 2.3                                    | IP = 150<br>ZR = 25                | 25                        | 4.3, 4.3, 4.7                                                       | 1, 1, 5                                                          | 1, 1, 1                                                            | 1.156                                      | 21.54%                                                                     | 80           |

Table 3.1: Wind Tunnel Test Log 2015-16 (cont'd)

This page intentionally left blank.

# 4. LIGHT ICE PELLET ALLOWANCE TIMES

A summary of the light ice pellet tests conducted with Type III fluids in the wind tunnel is shown in Table 4.1. A summary of the light ice pellet tests conducted with Type IV fluids in the wind tunnel is shown in Table 4.2. These tables provide relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

# 4.1 Analysis of Data Collected

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 4.3 and Table 4.4 for Types III and IV fluids, respectively. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 4.5 and Table 4.6. In addition, a conclusion regarding the test results has also been included for each condition.

# 4.2 Overall Summary of Results

The following sections provide an overall summary of the results.

# 4.2.1 Type III Testing

The testing results indicated that the current allowance time of 10 minutes was acceptable for the new Type III fluid (AllClear AeroClear MAX) down to -10°C when applied cold (air temperature). The test results also indicate some margin to increase the current allowance time; however, additional testing is required.

# 4.2.2 Type IV Testing

The test results indicated that the current allowance times for Light Ice Pellets are acceptable for the new-to-market FCY 9311 and LNT E450 fluids.

One test (#9) with FCY 9311 was conducted at 100 knots instead of 115 knots, which yielded unacceptable results. Temperatures above -10°C were expected and hence the 100-knot test was performed; however, the actual temperature was lower. Below -10°C, propylene glycol (PG) fluid is only allowed for aircraft with rotation speeds above 115 knots. The test was not re-run due to limited fluid supplies; however, based on the fluid performance at 100 knots compared to other PG Type IV fluids, it was expected that the results would also be acceptable at 115 knots.

| Test # | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|----------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 28     | IP-               | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -9                            | -5.5                                      | IP = 25                            | 10                        | 2.2, 2, 2.4                                                         | 1, 1, 1.5                                                        | 2.73%                                                                   | 80           |

Table 4.1: Summary of 2015-16 Type III Light Ice Pellet Testing

Table 4.2: Summary of 2015-16 Type IV Light Ice Pellet Testing

| Test # | Test<br>Condition | Fluid<br>Name | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 9      | IP-               | FCY<br>9311   | 8                 | 20                            | -16.2                         | -15.4                                     | IP = 25                            | 30                        | 2.4, 2.4, 3.8                                                       | 1.1, 1.7, 2.3                                                    | 10.09%                                                                  | 100          |
| 10     | IP-               | LNT<br>E450   | 8                 | 20                            | -16.8                         | -15.2                                     | IP=25                              | 30                        | 2.2, 2.2, 2.6                                                       | 1, 1.3, 1.7                                                      | 5.82%                                                                   | 100          |
| 63     | IP-               | FCY<br>9311   | 8                 | 20                            | -7.1                          | -2.6                                      | IP=25                              | 50                        | 2.7, 2.8, 4                                                         | 1, 1.4, 1.6                                                      | 3.46%                                                                   | 100          |

| Light Ice Pellets | OAT -5°C and      | OAT Less than           | OAT Less than                                   |
|-------------------|-------------------|-------------------------|-------------------------------------------------|
|                   | Above             | -5°C to -10°C           | -10°C                                           |
| 80 kts            | 10 Minutes<br>N/A | 10 Minutes<br>Test # 28 | No Allowance<br>Times Currently<br>Exist<br>N/A |

#### Table 4.3: Type III Light Ice Pellets Allowance Time Tests Winter 2015-16

#### Table 4.4: Type IV Light Ice Pellets Allowance Time Tests Winter 2015-16

| Light Ice Pellets | OAT -5°C and | OAT Less than | OAT Less than |
|-------------------|--------------|---------------|---------------|
|                   | Above        | -5°C to -10°C | -10°C         |
| 100 kts           | 50 Minutes   | 30 Minutes    | 30 Minutes    |
|                   | Test #63     | N/A           | Tests # 9, 10 |

|       |                            |                                           | C                               | AT Less that           | ın -5°C To -10°C                                                      | C 80 Knot                   | s (10 Minutes)                                                     |                          |                |                        |                   |
|-------|----------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|------------------------|-------------------|
| Run # | Fluid                      | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift<br>Loss<br>Status | Overall<br>Status |
| 28    | AeroClear<br>MAX -<br>Cold | -5.5                                      | IP = 25                         | 10                     | 2.2, 2, 2.4                                                           | Good                        | 1, 1, 1.5                                                          | Good                     | 2.73%          | Good                   | Good              |
|       |                            | C                                         | Conclusion: 10-                 | minute allow           | ance time is goo                                                      | d for cold                  | fluid and could k                                                  | be increased             | d.             |                        |                   |

#### Table 4.5: Summary of Type III Light Ice Pellets Allowance Time Test Results

| Run(hs)# | Fluid       | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |
|----------|-------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|
| 63       | FCY<br>9311 | -2.6                                      | IP = 25                         | 50                     | 2.7, 2.8, 4                                                           | Good                        | 1,1.4, 1.6                                                         | Good                     | 3.46           | Good                | Good              |
|          |             |                                           |                                 | Conclus                | ion: 50 minute a                                                      | llowance                    | time is good.                                                      |                          |                |                     |                   |
|          |             |                                           |                                 | OAT Le                 | ss than -10°C 1                                                       | 00 Knots                    | (30 Minutes)                                                       |                          |                |                     |                   |
| Run(hs)# | Fluid       | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |
| 9*       | FCY<br>9311 | -15.4                                     | IP = 25                         | 30                     | 2.4, 2.4, 3.8                                                         | Good                        | 1.1, 1.7, 2.3                                                      | Review                   | 10.09%         | Bad                 | Bad               |
| 10       | LNT<br>E450 | -15.2                                     | IP = 25                         | 30                     | 2.2, 2.2, 2.6                                                         | Good                        | 1, 1.3, 1.7                                                        | Good                     | 5.82%          | Review              | Review            |

#### Table 4.6: Summary of Type IV Light Ice Pellets Allowance Time Test Results

#### APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/TP 15341E Final Version 1.0.docx Final Version 1.0, October 20

This page intentionally left blank.

### 5. MODERATE ICE PELLET ALLOWANCE TIMES

A summary of the moderate ice pellet tests conducted with Type III and Type IV fluids in the wind tunnel is shown in Table 5.1 and Table 5.2, respectively. The tables provide relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

### 5.1 Analysis of Data Collected

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 5.3 and Table 5.4. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 5.5 and Table 5.6. In addition, a conclusion regarding the test results has also been included for each condition.

### 5.2 Overall Summary of Results

The following sections provide an overall summary of the results.

### 5.2.1 Type III Testing

The testing results indicated that the current allowance time of 5 minutes is acceptable for the new Type III fluid when applied cold at temperatures below  $-5^{\circ}C$  to  $-10^{\circ}C$  (no tests were performed below this temperature). The fluid also yielded acceptable results when exposed to contamination for 15 minutes at temperatures above  $-5^{\circ}C$ , indicating a potential to increase the allowance time with additional data.

### 5.2.2 Type IV Testing

The testing results showed that the current allowance times for Moderate Ice Pellets are valid for both LNT E450 and FCY 9311. The performance was comparable with other ethylene glycol (EG) and PG fluids previously tested.

| Test # | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|----------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 29     | IP Mod            | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -9                            | -5.3                                      | IP = 75                            | 5                         | 2, 2, 2.7                                                           | 1, 1.2, 1.4                                                      | 2.14%                                                                   | 80           |
| 103    | IP Mod            | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -1.2                          | 2.1                                       | IP = 75                            | 5                         | 1.8, 2, 2.2                                                         | 1, 1, 1.1                                                        | 1.04%                                                                   | 80           |
| 104    | IP Mod            | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -1.4                          | 2.9                                       | IP = 75                            | 15                        | 2.2, 2.5, 4                                                         | 1, 1, 1.1                                                        | 0.83%                                                                   | 80           |

Table 5.1: Summary of 2015-16 Type III Moderate Ice Pellet Testing

Table 5.2: Summary of 2015-16 Type IV Moderate Ice Pellet Testing

| Test # | Test<br>Condition | Fluid<br>Name | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 11     | IP Mod            | LNT<br>E450   | 8                 | 20                            | -17.1                         | -16.8                                     | IP = 75                            | 10                        | 2, 2.2, 2.6                                                         | 1.1, 1.3, 1.8                                                    | 5.97%                                                                   | 100          |
| 13     | IP Mod            | LNT<br>E450   | 8                 | 20                            | -17                           | -15.4                                     | IP = 75                            | 10                        | 2.2, 2.2, 2.6                                                       | 1.1, 1.4, 2.2                                                    | 6.43%                                                                   | 100          |
| 14     | IP Mod            | FCY<br>9311   | 8                 | 20                            | -17.2                         | -15.8                                     | IP = 75                            | 10                        | 2.5, 2.7, 3.8                                                       | 1, 1.7, 2.7                                                      | 8.45%                                                                   | 115          |
| 69     | IP Mod            | LNT<br>E450   | 8                 | 20                            | -6.6                          | -2.0                                      | IP = 75                            | 25                        | 2.3, 2.5, 4                                                         | 1, 1.4, 1.9                                                      | 3.30%                                                                   | 100          |

| Moderate Ice Pellets | OAT -5°C and<br>Above    | OAT Less than<br>-5°C to -10°C | OAT Less than<br>-10°C                          |
|----------------------|--------------------------|--------------------------------|-------------------------------------------------|
| 80 kts               | 5 Minutes<br>Test # 103  | 5 Minutes<br>Test # 29         | No Allowance<br>Times Currently<br>Exist<br>N/A |
|                      | 15 Minutes<br>Test # 104 |                                |                                                 |

| Table 5.3: Type III Moderate Ice Pellets Allowance Time Tests Winter 2015-1 | Table 5.3: Type III Moderate | Ice Pellets Allowance | <b>Time Tests Winter</b> | 2015-16 |
|-----------------------------------------------------------------------------|------------------------------|-----------------------|--------------------------|---------|
|-----------------------------------------------------------------------------|------------------------------|-----------------------|--------------------------|---------|

#### Table 5.4: Type IV Moderate Ice Pellets Allowance Time Tests Winter 2015-16

| Moderate Ice Pellets | OAT -5°C and | OAT Less than | OAT Less than           |
|----------------------|--------------|---------------|-------------------------|
|                      | Above        | -5°C to -10°C | -10°C                   |
| 100 kts              | 25 Minutes   | 10 Minutes    | 10 Minutes              |
|                      | Test # 69    | N/A           | Tests # 11, 13          |
| 115 kts              |              |               | 10 Minutes<br>Test # 14 |

|          | OAT -5°C and Above 80 Knots (5 Minutes)                                                                                                                                          |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                        |                   |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|------------------------|-------------------|--|--|--|
| Run(hs)# | Fluid                                                                                                                                                                            | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift<br>Loss<br>Status | Overall<br>Status |  |  |  |
| 103      | AeroClear<br>MAX - Cold                                                                                                                                                          | 2.1                                       | IP = 75                         | 5                      | 1.8, 2, 2.2                                                           | Good                        | 1, 1, 1.1                                                          | Good                     | 1.04%          | Good                   | Good              |  |  |  |
|          | 80 Knots (15 Minutes)                                                                                                                                                            |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                        |                   |  |  |  |
| 104      | 104         AeroClear<br>MAX - Cold         2.9         IP=75         15         2.2, 2.5, 4         Good         1, 1, 1.1         Good         0.83%         Good         Good |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                        |                   |  |  |  |
|          | Conclusion: 5-minute allowance time is good for cold fluid and could be increased.                                                                                               |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                        |                   |  |  |  |

|          | OAT Less than -5°C to-10°C 80 Knots (5 Minutes)             |                                           |                                 |                        |                                                                                             |      |                                                                    |                          |                |                        |                   |  |  |  |
|----------|-------------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|---------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|--------------------------|----------------|------------------------|-------------------|--|--|--|
| Run(hs)# | Fluid                                                       | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination Before<br>Rating Takeoff<br>Before Takeoff Status<br>(LE, TE, Flap) |      | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift<br>Loss<br>Status | Overall<br>Status |  |  |  |
| 29       | AeroClear<br>MAX - Cold                                     | -5.3                                      | IP = 75                         | 5                      | 2, 2, 2.7                                                                                   | Good | 1, 1.2, 1.4                                                        | Good                     | 2.14%          | Good                   | Good              |  |  |  |
|          | Conclusion: 5-minute allowance time is good for cold fluid. |                                           |                                 |                        |                                                                                             |      |                                                                    |                          |                |                        |                   |  |  |  |

APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/TP 15341E Final Version 1.0.docx Final Version 1.0, October 20

|          | OAT -5°C and Above 100 Knots (25 Minutes)     |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |
|----------|-----------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|--|
| Run(hs)# | Fluid                                         | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |  |
| 69       | LNT E450                                      | -2.0                                      | IP = 75                         | 25                     | 2.3, 2.5, 4                                                           | Good                        | 1, 1.4, 1.9                                                        | Good                     | 3.30%          | Good                | Good              |  |  |
|          | Conclusion: 25 minute allowance time is good. |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |

|          | OAT Less than -10°C 100 Knots (10 Minutes)                                                                                                          |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|--|--|
| Run(hs)# | Fluid                                                                                                                                               | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |  |  |
| 11       | LNT E450                                                                                                                                            | -16.8                                     | IP=75                           | 10                     | 2, 2.2, 2.6                                                           | Good                        | 1.1, 1.3, 1.8                                                      | Review                   | 5.97%          | Review              | Review            |  |  |  |
| 13       | LNT E450                                                                                                                                            | -15.4                                     | IP = 75                         | 10                     | 2.2, 2.2, 2.6                                                         | Good                        | 1.1, 1.4, 2.2                                                      | Review                   | 6.43%          | Review              | Review            |  |  |  |
|          |                                                                                                                                                     |                                           |                                 |                        | 115 Knots (10                                                         | Minutes                     | )                                                                  |                          |                |                     |                   |  |  |  |
| 14       | FCY 9311                                                                                                                                            | -15.8                                     | IP = 75                         | 10                     | 2.5, 2.7, 3.8                                                         | Good                        | 1, 1.7, 2.7                                                        | Good                     | 8.45%          | Review              | Review            |  |  |  |
| Conclu   | Conclusion: 10-minute allowance time good for EG fluids with rotation speeds >100 knots and for PG fluids to -16°C with rotation speeds >115 knots. |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |  |

This page intentionally left blank.

### 6. LIGHT ICE PELLETS MIXED WITH LIGHT FREEZING RAIN ALLOWANCE TIMES

A summary of the light ice pellets mixed with light freezing rain tests conducted with Type III and Type IV fluids in the wind tunnel is shown in Table 6.1 and Table 6.2. The tables provide relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

It should be noted that the guidance issued for Light Ice Pellets Mixed with Light Freezing Rain is also applied to Light Ice Pellets Mixed with Light or Moderate Freezing Drizzle.

### 6.1 Analysis of Data Collected

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 6.3 and Table 6.4. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 6.5 and Table 6.6. In addition, a conclusion regarding the test results has also been included for each condition.

### 6.2 Overall Summary of Results

The following sections provide an overall summary of the results.

### 6.2.1 Type III Testing

The testing results indicated that the current Type III allowance times for Light Ice Pellets Mixed with Light Freezing Rain are acceptable for Aeroclear MAX. In -5°C and above condition, the wing area test temperatures were slightly more conservative (below -5°C); however, the results were positive. In the case of the below -5°C to -10°C conditions, the wing area temperature was slightly above the upper limit; however, the results indicated sufficient margins in the visual and aerodynamic performance.

### 6.2.2 Type IV Testing

The testing results indicated that the current Type IV allowance times for Light Ice Pellets Mixed with Light Freezing Rain are acceptable for LNT E450 and FCY 9311.

In the case of the FCY 9311, higher lift losses and poor visual ratings before the start of the tests were experienced due to the significant fluid failure on the extended flap configuration in the -5°C and above condition. Previous wind tunnel research has shown that when the airfoil is configured with the flap set to 0° (retracted) during the exposure to precipitation and then returned to 20° (extended) for takeoff, the results significantly improve; see TP 15232E (1). Some additional tests (#65, 66, 67) were conducted in 2015-16 with historical PG fluids to confirm a performance similar to that of FCY 9311. This issue of early failure on flaps and slats is being investigated separately. The EG-based LNT E450 performed similarly to historical EG fluids and experienced less severe failure patterns compared to the PG fluids. No issues were observed below -5°C to -10°C for either LNT E450 or FCY 9311.

| Test # | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° CL<br>vs. Dry CL | Speed<br>Kts |
|--------|-------------------|----------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 30     | IP- / ZR-         | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -9.7                          | -4.1                                      | IP = 25<br>ZR = 25                 | 5                         | 1.8, 2, 2.1                                                         | 1, 1, 1.2                                                        | 2.52%                                                                   | 80           |
| 59     | IP- / ZR-         | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -13                           | -6.6                                      | IP = 25<br>ZR = 25                 | 7                         | 1.7, 1.7, 2.5                                                       | 1, 1, 1.4                                                        | 2.79%                                                                   | 80           |
| 91     | IP- / ZR-         | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -8.4                          | -2.7                                      | IP = 25<br>ZR = 25                 | 7                         | 1.5, 1.7, 2.3                                                       | 1, 1, 1.1                                                        | 2.54%                                                                   | 80           |

Table 6.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Freezing Rain Testing

| Test # | Test<br>Condition | Fluid<br>Name             | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 19     | IP- / ZR-         | FCY<br>9311               | 8                 | 20                            | -10                           | -8.5                                      | IP = 25<br>ZR = 25                 | 10                        | 2.5, 2.5, 3.5                                                       | 1, 1.5, 1.8                                                      | 6.27%                                                                   | 100          |
| 20     | IP- / ZR-         | LNT<br>E450               | 8                 | 20                            | -8.9                          | -7.6                                      | IP = 25<br>ZR = 25                 | 10                        | 1.8, 2, 2                                                           | 1, 1.1, 1.5                                                      | 4.90%                                                                   | 100          |
| 64     | IP- / ZR-         | FCY<br>9311               | 8                 | 20                            | -7.6                          | -1.5                                      | IP = 25<br>ZR = 25                 | 25                        | 2.7, 2.8, 4.3                                                       | 1, 1.1, 5                                                        | 8.40%                                                                   | 100          |
| 65     | IP- / ZR-         | ABC-S<br>Plus             | 8                 | 20                            | -7.5                          | -1.5                                      | IP = 25<br>ZR = 25                 | 25                        | 2.8, 2.8, 5                                                         | 1, 1.3, 5                                                        | 5.51%                                                                   | 100          |
| 66     | IP- / ZR-         | Polar<br>Guard<br>Advance | 8                 | 20                            | -7.2                          | -0.6                                      | IP = 25<br>ZR = 25                 | 25                        | 2.6, 2.7, 4.7                                                       | 1, 1.1, 5                                                        | 5.82%                                                                   | 100          |
| 67     | IP- / ZR-         | AD-49                     | 8                 | 20                            | -7                            | -1.5                                      | IP = 25<br>ZR = 25                 | 25                        | 2.8, 2.8, 5                                                         | 1, 1.3, 5                                                        | 6.49%                                                                   | 100          |
| 68     | IP- / ZR-         | LNT<br>E450               | 8                 | 20                            | -6.7                          | -1.3                                      | IP = 25<br>ZR = 25                 | 25                        | 2, 2, 2.3                                                           | 1, 1, 1.1                                                        | 3.11%                                                                   | 100          |
| 94     | IP- / ZR-         | FCY<br>9311               | 8                 | 20                            | -7.3                          | -2.1                                      | IP = 25<br>ZR = 25                 | 25                        | 2.3, 2.8, 5                                                         | 1, 1.4, 5                                                        | 9.91%                                                                   | 100          |
| 95     | IP- / ZR-         | FCY<br>9311               | 8                 | 0                             | -6.7                          | -1.7                                      | IP = 25<br>ZR = 25                 | 25                        | 2.3, 2.3, 3                                                         | 1, 1.1, 1.2                                                      | 2.52%                                                                   | 100          |

Table 6.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Freezing Rain Testing

| Table 6.3: Type III Light Ice Pellets Mixed with Light Freezing Rain Allowance Time |
|-------------------------------------------------------------------------------------|
| Tests Winter 2015-16                                                                |

| Light Ice Pellets Mixed with Light Freezing | OAT -5°C and               | OAT Less than          | OAT Less than                                   |
|---------------------------------------------|----------------------------|------------------------|-------------------------------------------------|
| Rain                                        | Above                      | -5°C to -10°C          | -10°C                                           |
| 80 kts                                      | 7 Minutes<br>Test # 59, 91 | 5 Minutes<br>Test # 30 | No Allowance<br>Times Currently<br>Exist<br>N/A |

# Table 6.4: Type IV Light Ice Pellets Mixed with Light Freezing Rain Allowance TimeTests Winter 2015-16

| Light Ice Pellets Mixed with Light Freezing | OAT -5°C and                                           | OAT Less than                | OAT Less than                                   |
|---------------------------------------------|--------------------------------------------------------|------------------------------|-------------------------------------------------|
| Rain                                        | Above                                                  | -5°C to -10°C                | -10°C                                           |
| 100 kts                                     | 25 Minutes<br>Tests # 64, 65,<br>66, 67, 68, 94,<br>95 | 10 Minutes<br>Tests # 19, 20 | No Allowance<br>Times Currently<br>Exist<br>N/A |

|          | OAT -5°C and Above 80 Knots (7 Minutes)                     |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |  |  |
|----------|-------------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|--|--|--|
| Run(hs)# | Fluid                                                       | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |  |  |  |
| 30       | AeroClear<br>MAX - Cold                                     | -4.1                                      | IP = 25<br>ZR = 25              | 5                      | 1.8, 2, 2.1                                                           | Good                        | 1, 1, 1.2                                                          | Good                     | 2.52%          | Good                | Good              |  |  |  |  |
| 91       | AeroClear<br>MAX - Cold                                     | -2.7                                      | IP = 25<br>ZR = 25              | 7                      | 1.5, 1.7, 2.3                                                         | Good                        | 1, 1, 1.1                                                          | Good                     | 2.54%          | Good                | Good              |  |  |  |  |
|          | Conclusion: 7-minute allowance time is good for cold fluid. |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |  |  |

|          | OAT Below -5°C to -10°C 80 Knots (5 Minutes)                |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |  |  |
|----------|-------------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|--|--|--|
| Run(hs)# | Fluid                                                       | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |  |  |  |
| 59       | AeroClear<br>MAX - Cold                                     | -6.6                                      | IP = 25<br>ZR = 25              | 7                      | 1.7, 1.7, 2.5                                                         | Good                        | 1, 1, 1.4                                                          | Good                     | 2.79%          | Good                | Good              |  |  |  |  |
|          | Conclusion: 5-minute allowance time is good for cold fluid. |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |  |  |

| Run(hs)# | Fluid                     | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |
|----------|---------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|
| 64       | FCY 9311                  | -1.5                                      | IP = 25<br>ZR = 25              | 25                     | 2.7, 2.8, 4.3                                                         | Review                      | 1, 1.1, 5                                                          | Good                     | 8.40%          | Review              | Review            |
| 65       | ABC-S<br>Plus             | -1.5                                      | IP = 25<br>ZR = 25              | 25                     | 2.8, 2.8, 5                                                           | Review*                     | 1, 1.3, 5                                                          | Good                     | 5.51%          | Review              | Review*           |
| 66       | Polar<br>Guard<br>Advance | -0.6                                      | IP = 25<br>ZR = 25              | 25                     | 2.6, 2.7, 4.7                                                         | Review*                     | 1, 1.1, 5                                                          | Good                     | 5.82%          | Review              | Review*           |
| 67       | AD-49                     | -1.5                                      | IP = 25<br>ZR = 25              | 25                     | 2.8, 2.8, 5                                                           | Review*                     | 1, 1.3, 5                                                          | Good                     | 6.49%          | Review              | Review*           |
| 68       | LNT E450                  | -1.3                                      | IP = 25<br>ZR = 25              | 25                     | 2, 2, 2.3                                                             | Good                        | 1, 1, 1.1                                                          | Good                     | 3.11%          | Good                | Good              |
| 94       | FCY 9311                  | -2.1                                      | IP = 25<br>ZR = 25              | 25                     | 2.3, 2.8, 5                                                           | Review*                     | 1, 1.4, 5                                                          | Good                     | 9.91%          | Bad                 | Review*           |
| 95       | FCY 9311                  | -1.7                                      | IP = 25<br>ZR = 25              | 25                     | 2.3, 2.3, 3                                                           | Good                        | 1, 1.1, 1.2                                                        | Good                     | 2.52%          | Good                | Good              |

\* Significant fluid failure was present on the flap when in extended configuration during exposure. Although this is considered "bad," previous work has shown that the failure is directly due to the configuration. With flaps in the retracted configuration, fluid performance is significantly improved, and therefore this scenario is acceptable. For this reason, the visual rating and overall rating are given a "Review" status.

Conclusion: 25-minute allowance times is good for new FCY 9311 and LNT E450 fluids. Higher lift losses due to flaps down configuration for PG fluids validated by re-running historical fluids.

|          | OAT Less than -5°C to -10°C 100 Knots (10 Minutes) |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |            |                   |           |             |      |       |        |        |  |  |  |
|----------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|-------------------|-----------|-------------|------|-------|--------|--------|--|--|--|
| Run(hs)# | Fluid                                              | Fluid     Tunnel<br>Temp.<br>Before<br>Test<br>(°C)     Precipitation<br>Rate (g/dm²/h)     Exposure<br>Time (min)     Visual<br>Contamination<br>Rating     Visual<br>Before     Visual<br>Contamination     At     % Lift     Lift Loss     Contamination       Fluid     Before<br>Test<br>(°C)     Rate (g/dm²/h)     Time (min)     Time (min)     Before Takeoff     Status     At     % Lift     Lift Loss     Contamination |                    |            |                   |           |             |      |       |        |        |  |  |  |
| 19       | FCY 9311                                           | -8.5                                                                                                                                                                                                                                                                                                                                                                                                                                | IP = 25<br>ZR = 25 | 10         | 2.5, 2.5, 3.5     | Good      | 1, 1.5, 1.8 | Good | 6.27% | Review | Review |  |  |  |
| 20       | LNT E450                                           | -7.6                                                                                                                                                                                                                                                                                                                                                                                                                                | IP = 25<br>ZR = 25 | 10         | 1.8, 2, 2         | Good      | 1, 1.1, 1.5 | Good | 4.90% | Good   | Good   |  |  |  |
|          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Conclusion | n: 10-minute allo | wance tim | ne is good. |      |       |        |        |  |  |  |

This page intentionally left blank.

### 7. LIGHT ICE PELLETS MIXED WITH LIGHT RAIN ALLOWANCE TIMES

A summary of the light ice pellets mixed with light rain tests conducted with Type III and Type IV fluids in the wind tunnel is shown in Table 7.1 and Table 7.2, respectively. The tables provide relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

### 7.1 Analysis of Data Collected

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 7.3 and Table 7.4. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 7.5 and Table 7.6. In addition, a conclusion regarding the test results has also been included for each condition.

### 7.2 Overall Summary of Results

The following sections provide an overall summary of the results.

### 7.2.1 Type III Testing

The testing results indicated that the current Type III allowance time of 7 minutes for Light Ice Pellets Mixed with Light Rain is valid for AeroClear MAX when applied cold.

### 7.2.2 Type IV Testing

The testing results indicated that the current Type IV allowance time of 25 minutes for Light Ice Pellets Mixed with Light Rain is valid for both new fluids tested (LNT E450 and FCY 9311).

Table 7.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Rain Testing

| Test # | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|----------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 72     | IP- / R-          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -3.5                          | 2.4                                       | IP = 25<br>R = 25                  | 7                         | 1, 1.3, 1.4                                                         | 1, 1, 1.2                                                        | 2.02%                                                                   | 80           |

Table 7.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Rain Testing

| Test # | Test<br>Condition | Fluid<br>Name | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 75     | IP- / R-          | FCY<br>9311   | 8                 | 20                            | -3.9                          | 0.0                                       | IP = 25<br>R = 25                  | 25                        | 1.7, 2.3, 3.8                                                       | 1, 1, 2.8                                                        | 4.09%                                                                   | 100          |
| 76     | IP- / R-          | LNT<br>E450   | 8                 | 20                            | -4                            | 0.0                                       | IP = 25<br>R = 25                  | 25                        | 1.3, 1.3, 3.2                                                       | 1, 1.1, 1.1                                                      | 4.28%                                                                   | 100          |

| Light Ice Pellets Mixed with Light Rain | OAT -5°C and<br>Above<br>(No allowance<br>times below<br>0°C) | OAT Less than<br>-5°C to -10°C                  | OAT Less than<br>-10°C                          |
|-----------------------------------------|---------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| 80 kts                                  | 7 Minutes<br>Test # 72                                        | No Allowance<br>Times Currently<br>Exist<br>N/A | No Allowance<br>Times Currently<br>Exist<br>N/A |

# Table 7.3: Type III Light Ice Pellets Mixed with Light Rain Testing Allowance TimeTests Winter 2015-16

# Table 7.4: Type IV Light Ice Pellets Mixed with Light Rain Allowance Time TestsWinter 2015-16

| Light Ice Pellets Mixed with Light Rain | OAT -5°C and<br>Above<br>(No allowance<br>times below<br>0°C) | OAT Less than<br>-5°C to -10°C                  | OAT Less than<br>-10°C                          |
|-----------------------------------------|---------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| 100 kts                                 | 25 Minutes<br>Tests # 75, 76                                  | No Allowance<br>Times Currently<br>Exist<br>N/A | No Allowance<br>Times Currently<br>Exist<br>N/A |

|          | OAT -5°C and Above 80 Knots (7 Minutes)                  |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |
|----------|----------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|
| Run(hs)# | Fluid                                                    | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |
| 72       | AeroClear<br>MAX -<br>Cold                               | 2.4                                       | IP = 25<br>R = 25               | 7                      | 1, 1.3, 1.4                                                           | Good                        | 1, 1, 1.2                                                          | Good                     | 2.02%          | Good                | Good              |  |
|          | Conclusion: 7-minute allowance time good for cold fluid. |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |

Table 7.5: Summary of Type III Light Ice Pellets Mixed with Light Rain Allowance Time Test Results

Table 7.6: Summary of Type IV Light Ice Pellets Mixed with Light Rain Allowance Time Test Results

|          | OAT -5°C and Above 100 Knots (25 Minutes)     |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |
|----------|-----------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|
| Run(hs)# | Fluid                                         | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |
| 75       | FCY 9311                                      | 0.0                                       | IP = 25<br>R = 25               | 25                     | 1.7, 2.3, 3.8                                                         | Good                        | 1, 1, 2.8                                                          | Good                     | 4.09%          | Good                | Good              |  |
| 76       | LNT E450                                      | 0.0                                       | IP = 25<br>R = 25               | 25                     | 1.3, 1.3, 3.2                                                         | Good                        | 1, 1.1, 1.1                                                        | Good                     | 4.28%          | Good                | Good              |  |
|          | Conclusion: 25-minute allowance time is good. |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |

### 8. MODERATE ICE PELLETS MIXED WITH MODERATE RAIN ALLOWANCE TIMES

A summary of the moderate ice pellets mixed with moderate rain tests conducted with Type IV fluids in the wind tunnel is shown in Table 8.1. The table provides relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

### 8.1 Analysis of Data Collected

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 8.2. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 8.3. In addition, a conclusion regarding the test results has also been included for each condition.

#### 8.2 Overall Summary of Results

The following sections provide an overall summary of the results.

#### 8.2.1 Type IV Testing

Prior to the winter of 2015-16, allowance times did not exist for this condition. Testing aimed at providing guidance to support operations as this was identified as an operationally significant condition based on potential METAR-reported conditions. Testing targeted conditions at or above 0°C, using a range of exposure times in order to determine the appropriate allowance time based on the aerodynamic and visual performance.

The majority of the tests were conducted with 15-minute exposure times, and the results were positive; however, higher lift losses and poor visual ratings at the start of the tests were experienced due to the significant fluid failure on the extended flap configuration. Previous wind tunnel research has shown that when the airfoil is configured with the flap set to 0° (retracted) for the exposure to precipitation and then returned to 20° (extended) for takeoff, the results significantly improve; see TP 15232E (1). This issue of early failure on flaps and slats is being investigated separately, and a final report is expected to be completed for the Winter 2015-16 testing season. One test was conducted at a 10-minute exposure that confirmed the

expected improvement, and an additional test was conducted at a 25-minute exposure that indicated the detrimental effect of the severity of contamination due to longer exposure times. Although the majority of the tests were done with 15-minute exposure times and the results were positive, a 10-minute allowance time is better suited as an interim conservative allowance time. With some additional testing to support the current data, the allowance time should be increased to 15 minutes or potentially 20 minutes.

| Test # | Test<br>Condition | Fluid<br>Name             | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 77     | IP / R            | AD-49                     | 8                 | 20                            | -4.5                          | -0.7                                      | IP = 75<br>R = 75                  | 25                        | 2.7, 3, 5                                                           | 2.3, 1.2, 5                                                      | 12.38%                                                                  | 100          |
| 78     | IP / R            | AD-49                     | 8                 | 20                            | -0.43                         | -1.1                                      | IP = 75<br>R = 75                  | 10                        | 2.3, 2.5, 3.8                                                       | 1, 1, 1.8                                                        | 3.02%                                                                   | 100          |
| 79     | IP / R            | AD-49                     | 8                 | 20                            | -4                            | 0.0                                       | IP = 75<br>R = 75                  | 15                        | 2.7, 2.8, 5                                                         | 1, 1, 5                                                          | 7.79%                                                                   | 100          |
| 80     | IP / R            | FCY<br>9311               | 8                 | 20                            | -3.8                          | -0.4                                      | IP = 75<br>R = 75                  | 15                        | 2.3, 2.7, 5                                                         | 1, 1.1, 4                                                        | 8.41%                                                                   | 100          |
| 81     | IP / R            | Polar<br>Guard<br>Advance | 8                 | 20                            | -3                            | 0.4                                       | IP = 75<br>R = 75                  | 15                        | 2.7, 2.8, 5                                                         | 1, 1.1, 5                                                        | 5.23%                                                                   | 100          |
| 82     | IP / R            | ABC-S<br>Plus             | 8                 | 20                            | -2.6                          | 1.3                                       | IP = 75<br>R = 75                  | 15                        | 2.5, 2.7, 5                                                         | 1, 1.3, 5                                                        | 6.72%                                                                   | 100          |

Table 8.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Rain Testing

| Moderate Ice Pellets Mixed with<br>Moderate Snow | OAT -5°C and<br>Above<br>(No allowance<br>times below<br>0°C)                                                                                    | OAT Less than<br>-5°C to -10°C                  | OAT Less than<br>-10°C                          |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| 100 kts                                          | No Allowance<br>Times Currently<br>Exist<br>N/A<br>10 Minutes<br>Test # 78<br>15 Minutes<br>Tests # 79, 80,<br>81, 82<br>25 Minutes<br>Test # 77 | No Allowance<br>Times Currently<br>Exist<br>N/A | No Allowance<br>Times Currently<br>Exist<br>N/A |

# Table 8.2: Type IV Moderate Ice Pellets Mixed with Moderate Rain Allowance TimeTests Winter 2015-16

| Run(hs)#       | Fluid                     | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |
|----------------|---------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|
| 78             | AD-49                     | -1.1                                      | IP = 75<br>R = 75               | 10                     | 2.3, 2.5, 3.8                                                         | Good                        | 1, 1, 1.8                                                          | Good                     | 3.02%          | Good                | Good              |
|                |                           |                                           |                                 | 1                      | 00 Knots (15                                                          | Minutes                     | ;)                                                                 |                          |                |                     |                   |
| 79             | AD-49                     | 0.0                                       | IP = 75<br>R = 75               | 15                     | 2.7, 2.8, 5                                                           | Review*                     | 1, 1, 5                                                            | Good                     | 7.79%          | Review              | Review            |
| 80             | FCY 9311                  | -0.4                                      | IP = 75<br>R = 75               | 15                     | 2.3, 2.7, 5                                                           | Review*                     | 1, 1.1, 4                                                          | Good                     | 8.41%          | Review              | Review            |
| 81             | Polar<br>Guard<br>Advance | 0.4                                       | IP = 75<br>R = 75               | 15                     | 2.7, 2.8, 5                                                           | Review*                     | 1, 1.1, 5                                                          | Good                     | 5.23%          | Good                | Review            |
| 82             | ABC-S<br>Plus             | 1.3                                       | IP = 75<br>R = 75               | 15                     | 2.5, 2.7, 5                                                           | Review*                     | 1, 1.3, 5                                                          | Good                     | 6.72%          | Review              | Review            |
|                |                           |                                           |                                 | 1                      | 00 Knots (25                                                          | Minutes                     | ;)                                                                 |                          |                |                     |                   |
| 77             | AD-49                     | -0.7                                      | IP = 75<br>R = 75               | 25                     | 2.7, 3, 5                                                             | Bad                         | 2.3, 1.2, 5                                                        | Bad                      | 12.38%         | Bad                 | Bad               |
| failure is dir | ectly due to th           | ne configura                              |                                 | n the retracted        | configuration, fluid                                                  |                             | Ithough this is cons<br>e is significantly imp                     | ,                        |                |                     |                   |

| Table 8.3: Summary of Typ    | e IV Moderate Ice Pellets | Mixed with Moderate Rain | Allowance Time Test Results |
|------------------------------|---------------------------|--------------------------|-----------------------------|
| Table 0.5. Outliniary of Typ |                           |                          | Anowance mine rest nesults  |

This page intentionally left blank.

### 9. MODERATE ICE PELLETS MIXED WITH MODERATE FREEZING DRIZZLE

A summary of the moderate ice pellets mixed with moderate freezing drizzle tests conducted with Type IV fluids in the wind tunnel is shown in Table 9.1. The table provides relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

### 9.1 Analysis of Data Collected

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 9.2. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 9.3. In addition, a conclusion regarding the test results has also been included for each condition of Table 9.3.

### 9.2 Overall Summary of Results

Prior to the winter of 2015-16, allowance times did not exist for this condition; testing aimed at providing guidance to support operations as this was identified as an operationally significant condition based on potential METAR-reported conditions. Testing targeted conditions above -10°C, using a range of exposure times in order to determine the appropriate allowance time based on the aerodynamic and visual performance.

Testing targeted 15 minutes for  $-5^{\circ}$ C and above conditions and 10 minutes for  $-5^{\circ}$ C to  $-10^{\circ}$ C conditions; no allowance times currently exist for these conditions. Acceptable results were obtained with 15-minute exposure times at  $-5^{\circ}$ C and above. At  $-5^{\circ}$ C to  $-10^{\circ}$ C, one test provided results that were slightly above the acceptable aerodynamic limit; however, the fluid used tended to result in higher lift losses, likely due to the viscosity of the sample being in the higher end of the production range. To be conservative, allowance times of 10 minutes and 7 minutes, respectively, would provide some additional safety margins.

No testing was conducted with Type III fluids for this condition as Type III fluid is not thought to be suitable for the relatively heavy precipitation involved.

| Test # | Test<br>Condition | Fluid<br>Name             | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 25     | IP / ZD           | ABC-S<br>Plus             | 8                 | 20                            | -10.3                         | -7.2                                      | IP = 75<br>ZD = 13                 | 10                        | 2.4, 2.5, 3.2                                                       | 1.1, 1.5, 2.1                                                    | 7.01%                                                                   | 100          |
| 35     | IP / ZD           | Polar<br>Guard<br>Advance | 8                 | 20                            | -11.6                         | -6.9                                      | IP = 75<br>ZD = 13                 | 10                        | 2.7, 2.7, 3.9                                                       | 1, 1.7, 2.5                                                      | 9.32%                                                                   | 100          |
| 42     | IP / ZD           | ABC-S<br>Plus             | 8                 | 20                            | -7.1                          | -3.1                                      | IP = 75<br>ZD = 13                 | 15                        | 3, 3, 4                                                             | 1.1, 1.7, 2                                                      | 6.06%                                                                   | 100          |
| 47     | IP / ZD           | AD-49                     | 8                 | 20                            | -8.5                          | -4.9                                      | IP = 75<br>ZD = 13                 | 15                        | 2.8, 2.7, 3.8                                                       | 1.1, 1.5, 1.9                                                    | 6.07%                                                                   | 100          |
| 53     | IP / ZD           | Polar<br>Guard<br>Advance | 8                 | 20                            | -10.6                         | -4.8                                      | IP = 75<br>ZD = 13                 | 15                        | 2.8, 3, 3.8                                                         | 1, 1.5, 2.3                                                      | 8.23%                                                                   | 100          |

Table 9.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Freezing Drizzle Testing

Table 9.2: Type IV Moderate Ice Pellets Mixed with Moderate Freezing Drizzle Allowance Time Tests Winter2015-16

| Moderate Ice Pellets Mixed with Moderate Freezing Drizzle | OAT -5°C and Above                           | OAT Less than<br>-5°C to -10°C               | OAT Less than<br>-10°C                |
|-----------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------|
| 100 kts                                                   | No Allowance Times<br>Currently Exist<br>N/A | No Allowance Times<br>Currently Exist<br>N/A | No Allowance Times<br>Currently Exist |
|                                                           | 15 Minutes<br>Test # 42, 47, 53              | 10 Minutes<br>Tests # 25, 35                 | N/A                                   |

| OAT -5°C and Above 100 Knots (15 Minutes) |                           |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |
|-------------------------------------------|---------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|
| Run(hs)#                                  | Fluid                     | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |
| 42                                        | ABC-S<br>Plus             | -3.1                                      | IP = 75<br>ZD = 13              | 15                     | 3, 3, 4                                                               | Good                        | 1.1, 1.7, 2                                                        | Review                   | 6.06%          | Review              | Review            |  |
| 47                                        | AD-49                     | -4.9                                      | IP = 75<br>ZD = 13              | 15                     | 2.8, 2.7, 3.8                                                         | Good                        | 1.1, 1.5, 1.9                                                      | Review                   | 6.07%          | Review              | Review            |  |
| 53                                        | Polar<br>Guard<br>Advance | -4.8                                      | IP = 75<br>ZD = 13              | 15                     | 2.8, 3, 3.8                                                           | Good                        | 1, 1.5, 2.3                                                        | Good                     | 8.23%          | Review              | Review            |  |

## Table 9.3: Summary of Type IV Moderate Ice Pellets Mixed with Moderate Freezing Drizzle Allowance Time TestResults

Conclusion: Based on the performance at 15 minutes, 10 minutes expected to be acceptable and conservative.

| OAT Less than -5°C to -10°C 100 Knots (10 Minutes) |                           |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |
|----------------------------------------------------|---------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|
| Run(hs)#                                           | Fluid                     | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |
| 25                                                 | ABC-S<br>Plus             | -7.2                                      | IP = 75<br>ZD = 13              | 10                     | 2.4, 2.5, 3.2                                                         | Good                        | 1.1, 1.5, 2.1                                                      | Review                   | 7.01%          | Review              | Review            |
| 35                                                 | Polar<br>Guard<br>Advance | -6.9                                      | IP = 75<br>ZD = 13              | 10                     | 2.7, 2.7, 3.9                                                         | Good                        | 1, 1.7, 2.5                                                        | Good                     | 9.32%          | Bad                 | Bad               |

Conclusion: Based on the performance at 10 minutes, 7 minutes expected to be acceptable and conservative.

This page intentionally left blank.

### 10. LIGHT ICE PELLETS MIXED WITH LIGHT SNOW ALLOWANCE TIMES

A summary of the light ice pellets mixed with light snow tests conducted with Type III and Type IV fluids in the wind tunnel is shown in Table 10.1 and Table 10.2. The tables provide relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

It should be noted that testing in this condition with the objective of increasing the existing allowance times has been ongoing since 2009-10. The cumulative data set is discussed in Subsection 10.3.

### 10.1 Analysis of Data Collected in 2015-16

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 10.3 and Table 10.4. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 10.5 and Table 10.6. In addition, a conclusion regarding the test results has also been included for each condition.

### 10.2 Overall Summary of 2015-16 Results

The following sections provide an overall summary of the results.

### 10.2.1 Type III Testing

The testing results indicated that the current allowance time of 10 minutes is valid for AllClear AeroClear MAX.

### 10.2.2 Type IV Testing

The tests conducted with FCY 9311 and LNT E450 demonstrated that the allowance times are valid for these fluids in both previously existing temperature bands. Additional tests were conducted with FCY 9311 and other fluids previously tested to support increasing and expanding the allowance times. These additional tests were analysed along with other data collected since 2009-10 to support the expansion of the allowance times. The details of the expansion analysis are included in Subsection 10.3.

Table 10.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Light Snow Testing

| Test # | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|----------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 31     | IP- / SN-         | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -10.1                         | -5.1                                      | IP = 25<br>SN = 10                 | 10                        | 2, 1.7, 3                                                           | 1, 1.2, 1.7                                                      | 1.91%                                                                   | 80           |

#### Table 10.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Snow Testing

| Test # | Test<br>Condition | Fluid<br>Name             | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 21     | IP- / SN-         | LNT<br>E450               | 8                 | 20                            | -9.2                          | -6.6                                      | IP = 25<br>SN = 10                 | 15                        | 1.7, 2, 2.4                                                         | 1, 1.4, 1.7                                                      | 5.35%                                                                   | 100          |
| 22     | IP- / SN-         | FCY<br>9311               | 8                 | 20                            | -9.6                          | -6.5                                      | IP = 25<br>SN = 10                 | 15                        | 2.4, 2.8, 3.5                                                       | 1.1, 1.5, 2.1                                                    | 6.95%                                                                   | 100          |
| 43     | IP- / SN-         | ABC-S<br>Plus             | 8                 | 20                            | -7.5                          | -4.3                                      | IP = 25<br>SN = 10                 | 40                        | 2.8, 2.8, 4                                                         | 1.2, 1.7, 1.9                                                    | 6.91%                                                                   | 100          |
| 46     | IP- / SN-         | AD-49                     | 8                 | 20                            | -8.1                          | -4.0                                      | IP=25<br>SN=10                     | 40                        | 3.1, 3, 4                                                           | 1.2, 1.8, 2.5                                                    | 5.56%                                                                   | 100          |
| 51     | IP- / SN-         | Polar<br>Guard<br>Advance | 8                 | 20                            | -9.5                          | -5.1                                      | IP=25<br>SN=10                     | 40                        | 2.8, 2.8, 4                                                         | 1.1, 1.4, 2.6                                                    | 8.73%                                                                   | 100          |
| 92     | IP- / SN-         | FCY<br>9311               | 8                 | 20                            | -8.5                          | -4.0                                      | IP = 25<br>SN = 10                 | 40                        | 2.9, 2.8, 4                                                         | 1.1, 1.5, 2.3                                                    | 7.99%                                                                   | 100          |
| 93     | IP- / SN-         | FCY<br>9311               | 8                 | 20                            | -7.6                          | -1.7                                      | IP = 25<br>SN = 10                 | 25                        | 2.5, 2.7, 3.8                                                       | 1, 1.5, 2.2                                                      | 5.75%                                                                   | 100          |

#### APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/TP 15341E Final Version 1.0.docx Final Version 1.0, October 20

| Table 10.3: Type III Light Ice Pellets Mixed with Light Snow Allowance Time Tests |
|-----------------------------------------------------------------------------------|
| Winter 2015-16                                                                    |

| Light Ice Pellets Mixed with Moderate | OAT -5°C and      | OAT Less than           | OAT Less than                                   |
|---------------------------------------|-------------------|-------------------------|-------------------------------------------------|
| Snow                                  | Above             | -5°C to -10°C           | -10°C                                           |
| 80 Kts                                | 10 Minutes<br>N/A | 10 Minutes<br>Test # 31 | No Allowance<br>Times Currently<br>Exist<br>N/A |

# Table 10.4: Type IV Light Ice Pellets Mixed with Light Snow Allowance Time TestsWinter 2015-16

| Light Ice Pellets Mixed with Moderate<br>Snow | OAT -5°C and<br>Above                  | OAT Less than<br>-5°C to -10°C | OAT Less than<br>-10°C                          |
|-----------------------------------------------|----------------------------------------|--------------------------------|-------------------------------------------------|
| 100 Kts                                       | 25 Minutes<br>Test # 93                | 15 Minutes<br>Tests # 21, 22   | No Allowance<br>Times Currently<br>Exist<br>N/A |
|                                               | 40 Minutes<br>Test # 43, 46,<br>51, 92 |                                |                                                 |

| Table 10.5: Summary of 2015-16 Type III Light Ice Pe | ellets Mixed with Light Snow Allowance Time Test Results |
|------------------------------------------------------|----------------------------------------------------------|
|------------------------------------------------------|----------------------------------------------------------|

|          | OAT Less than -5°C to -10°C 80 Knots (10 Minutes)                                                                                                                                                                                                                                                                                                                                                                              |      |                    |           |                  |          |             |      |      |      |      |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|-----------|------------------|----------|-------------|------|------|------|------|--|--|--|
| Run(hs)# | Run(hs)#FluidTunnel<br>Temp.<br>Before<br>Test<br>(°C)Precipitation<br>Precipitation<br>Rate (g/dm²/h)Exposure<br>Exposure<br>Time (min)Visual<br>Contamination<br>Before<br>Rating<br>Before Takeoff<br>(EL, TE, Flap)Visual<br>Contamination<br>Before<br>Takeoff<br>StatusVisual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap)At<br>Notation<br>Status% Lift<br>Lift LossLift Loss<br>StatusOverall<br>Status |      |                    |           |                  |          |             |      |      |      |      |  |  |  |
| 31       | AeroClear<br>MAX -<br>Cold                                                                                                                                                                                                                                                                                                                                                                                                     | -5.1 | IP = 25<br>SN = 10 | 10        | 2, 1.7, 3        | Good     | 1, 1.2, 1.7 | Good | 1.91 | Good | Good |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                    | Conclusio | n: 10 minutes is | good for | cold fluid. |      |      |      |      |  |  |  |

|          | OAT -5°C and Above 100 Knots (25 Minutes) |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |  |
|----------|-------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|--|--|
| Run(hs)# | Fluid                                     | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |  |  |
| 93       | FCY 9311                                  | -1.7                                      | IP = 25<br>SN = 10              | 25                     | 2.5, 2.7, 3.8                                                         | Good                        | 1, 1.5, 2.2                                                        | Good                     | 5.75           | Review              | Review            |  |  |  |
|          | 100 Knots (40 Minutes)                    |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |  |  |
| 43       | ABC-S<br>Plus                             | -4.3                                      | IP = 25<br>SN = 10              | 40                     | 2.8, 2.8, 4                                                           | Good                        | 1.2, 1.7, 1.9                                                      | Review                   | 6.91%          | Review              | Review            |  |  |  |
| 46       | AD-49                                     | -4.0                                      | IP = 25<br>SN = 10              | 40                     | 3.1, 3, 4                                                             | Review                      | 1.2, 1.8, 2.5                                                      | Review                   | 5.56%          | Review              | Review            |  |  |  |
| 51       | Polar<br>Guard<br>Advance                 | -5.1                                      | IP = 25<br>SN = 10              | 40                     | 2.8, 2.8, 4                                                           | Good                        | 1.1, 1.4, 2.6                                                      | Review                   | 8.73%          | Review              | Review            |  |  |  |
| 92       | FCY 9311                                  | -4.0                                      | IP = 25<br>SN = 10              | 40                     | 2.9, 2.8, 4                                                           | Good                        | 1.1, 1.5, 2.3                                                      | Review                   | 7.99%          | Review              | Review            |  |  |  |

#### Table 10.6: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Light Snow Allowance Time Test Results

Conclusion: Allowance time is valid and can be expanded to 40 minutes; see Subsection 10.3 for additional information.

|          | OAT Less than -5°C to -10°C 100 Knots (15 Minutes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                    |    |               |      |               |                |                     |                   |        |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|----|---------------|------|---------------|----------------|---------------------|-------------------|--------|--|--|--|--|
| Run(hs)# | #     Fluid     Tunnel<br>Temp.<br>Before<br>Test<br>(°C)     Precipitation<br>Rate (g/dm²/h)     Exposure<br>Time (min)     Visual<br>Contamination<br>Rating<br>Time (min)     Visual<br>Contamination<br>Rating<br>Before Takeoff     Visual<br>Contamination<br>Status     At       #     Fluid     Fluid     Fluid     Frecipitation<br>Rate (g/dm²/h)     Exposure<br>Time (min)     Visual<br>Contamination<br>Before Takeoff     Visual<br>Status     At       *     Test<br>(LE, TE, Flap)     TE, Flap)     TE, Flap) |      |                    |    |               |      |               | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |        |  |  |  |  |
| 21       | LNT E450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -6.6 | IP = 25<br>SN = 10 | 15 | 1.7, 2, 2.4   | Good | 1, 1.4, 1.7   | Good           | 5.35%               | Good              | Good   |  |  |  |  |
| 22       | FCY 9311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -6.5 | IP = 25<br>SN = 10 | 15 | 2.4, 2.8, 3.5 | Good | 1.1, 1.5, 2.1 | Review         | 6.95%               | Review            | Review |  |  |  |  |
|          | Conclusion: 15-minute allowance time is good.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                    |    |               |      |               |                |                     |                   |        |  |  |  |  |

### 10.3 Expansion of Light Ice Pellet Mixed with Light Snow Allowance Times

Research has been ongoing since 2009-10 to support the expansion of the Light Ice Pellet Mixed with Light Snow allowance times; therefore, a significant amount of data has been collected. The details of the tests conducted during the winters of 2009-10 to 2014-15 can be found in the wind tunnel testing report for the respective year; only a summary of those tests along with the current year's tests is presented here. The cumulative data sets have been separated into two sets: -5°C and above and below -5°C. Table 10.7 and Table 10.8 show the summarized information for each of the relevant tests.

### Table 10.7: Cumulative Summary of Type IV Light Ice Pellets Mixed with Light Snow Allowance Time Test Results for Target >-5°C from 2009-10 to 2015-16

| Test Year         | Test # | Fluid<br>Name             | Tunnel<br>Temp.<br>Before<br>Test (°C) | Exposure<br>Time<br>(min) | Speed<br>Kts | Lift Loss<br>@8° (%) | Rating<br>Before<br>Takeoff<br>Run LE | Rating<br>Before<br>Takeoff<br>Run TE | Rating<br>Before<br>Takeoff<br>Run Flap | Rating at<br>Rotation<br>LE | Overall<br>Status |
|-------------------|--------|---------------------------|----------------------------------------|---------------------------|--------------|----------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------|-------------------|
| Winter 2015-16    | 93     | FCY 9311                  | -1.7                                   | 25                        | 100          | 5.75%                | 2.5                                   | 2.7                                   | 3.8                                     | 1.0                         | Review            |
| Winter 2009-10    | 5      | ABC-S<br>Plus             | -4.8                                   | 25                        | 100          | 1.83%                | 2                                     | 2                                     | 3                                       | 1                           | Good              |
| Winter 2010-11    | 74     | Max-Flight                | -4.8                                   | 25                        | 100          | 6.75%                | 2.5                                   | 2.3                                   | 3                                       | 1                           | Review            |
| Winter 2012-13    | 171    | AD-49                     | -5.4                                   | 25                        | 100          | 7.54%                | 3                                     | 2.9                                   | 3.8                                     | 1.2                         | Review            |
| Winter 2012-13    | 172    | AD-49<br>(LOWV)           | -5.6                                   | 25                        | 100          | 6.15%                | 2.7                                   | 2.3                                   | 3.5                                     | 1.1                         | Review            |
|                   |        |                           |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter 2009-10    | 23     | EG106                     | -3.2                                   | 40                        | 100          | 1.15%                | 2.3                                   | 2.2                                   | 4                                       | 1                           | Good              |
| Winter 2009-10    | 57     | Launch                    | -3.6                                   | 40                        | 100          | 4.19%                | 2.7                                   | 2.6                                   | 4                                       | 1                           | Good              |
| Winter<br>2015-16 | 92     | FCY 9311                  | -4.0                                   | 40                        | 100          | 7.99%                | 2.9                                   | 2.8                                   | 4.0                                     | 1.1                         | Review            |
| Winter 2015-16    | 46     | AD-49                     | -4.0                                   | 40                        | 100          | 5.56%                | 3.1                                   | 3.0                                   | 4.0                                     | 1.2                         | Review            |
| Winter 2009-10    | 57A    | Launch                    | -4.2                                   | 40                        | 100          | 2.53%                | 2.6                                   | 2.6                                   | 3                                       | 1                           | Good              |
| Winter 2015-16    | 43     | ABC-S<br>Plus             | -4.3                                   | 40                        | 100          | 6.91%                | 2.8                                   | 2.8                                   | 4.0                                     | 1.2                         | Review            |
| Winter<br>2015-16 | 51     | Polar<br>Guard<br>Advance | -5.1                                   | 40                        | 100          | 8.73%                | 2.8                                   | 2.8                                   | 4.0                                     | 1.1                         | Review            |
| Winter 2009-10    | 11     | ABC-S<br>Plus             | -5.9                                   | 40                        | 100          | 4.55%                | 3                                     | 2.3                                   | 4                                       | 1                           | Good              |

# Table 10.8: Cumulative Summary of Type IV Light Ice Pellets Mixed with Light Snow Allowance Time Test Results for Target $<-5^{\circ}$ C from 2009-10 to 2015-16

| Test Year         | Test # | Fluid<br>Name             | Tunnel<br>Temp.<br>Before<br>Test (°C) | Exposure<br>Time<br>(min) | Speed<br>Kts | Lift Loss<br>@8° (%) | Rating<br>Before<br>Takeoff<br>Run LE | Rating<br>Before<br>Takeoff<br>Run TE | Rating<br>Before<br>Takeoff<br>Run Flap | Rating at<br>Rotation<br>LE | Overall<br>Status |
|-------------------|--------|---------------------------|----------------------------------------|---------------------------|--------------|----------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------|-------------------|
| Winter 2012-13    | 115    | Max-Flight                | -9.3                                   | 5                         | 115          | 7.48%                | 2.1                                   | 2                                     | 3                                       | 1.1                         | Review            |
| Winter<br>2012-13 | 114    | Polar<br>Guard<br>Advance | -10                                    | 5                         | 115          | 7.14%                | 2.2                                   | 2.2                                   | 2.8                                     | 1.0                         | Review            |
| Winter 2010-11    | 46     | Launch                    | -13.5                                  | 5                         | 100          | 7.06%                | 1.75                                  | 1.75                                  | 3                                       | 1.25                        | Review            |
| Winter<br>2009-10 | 78     | ABC-S<br>Plus             | -16                                    | 5                         | 100          | 7.48%                | 2.3                                   | 2.2                                   | 3                                       | 1.4                         | Review            |
| Winter<br>2013-14 | 9      | ABC-S<br>Plus             | -7.3                                   | 10                        | 100          | 6.47%                | 2                                     | 2                                     | 2.5                                     | 1                           | Review            |
| Winter 2009-10    | 77     | ABC-S<br>Plus             | -14.1                                  | 10                        | 100          | 8.81%                | 2.8                                   | 2.7                                   | 3.7                                     | 1.7                         | Review            |
| Winter 2009-10    | 79     | EG106                     | -14.8                                  | 10                        | 100          | 3.16%                | 2.2                                   | 2                                     | 2.5                                     | 1                           | Good              |
| Winter 2010-11    | 84     | Launch                    | -17.4                                  | 10                        | 115          | 8.37%                | 3                                     | 2.8                                   | 3.9                                     | 1.2                         | Review            |
| Winter<br>2013-14 | 315    | AD-49                     | -19.4                                  | 10                        | 115          | 7.14%                | 2.9                                   | 2.8                                   | 3.8                                     | 1.2                         | Review            |
| 14/2 /            |        | 4.00.0                    |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter 2009-10    | 94     | ABC-S<br>Plus             | -6.3                                   | 15                        | 100          | 4.60%                | 2.5                                   | 2                                     | 2.8                                     | 1                           | Good              |
| Winter<br>2015-16 | 22     | FCY 9311                  | -6.5                                   | 15                        | 100          | 6.95%                | 2.4                                   | 2.8                                   | 3.5                                     | 1.1                         | Review            |
| Winter<br>2015-16 | 21     | LNT E450                  | -6.6                                   | 15                        | 100          | 5.35%                | 1.7                                   | 2.0                                   | 2.4                                     | 1.0                         | Good              |
| Winter 2010-11    | 56     | AD-49                     | -9.6                                   | 15                        | 100          | 6.78%                | 3                                     | 2.8                                   | 4                                       | 1.5                         | Review            |
| Winter 2010-11    | 58     | Max-Flight                | -11.2                                  | 15                        | 100          | 7.63%                | 2.3                                   | 2.3                                   | 3.2                                     | 1.3                         | Review            |
| Winter 2010-11    | 45     | EG106                     | -12.9                                  | 15                        | 100          | 2.35%                | 2.25                                  | 2                                     | 3                                       | 1                           | Good              |
| Winter<br>2013-14 | 304    | Polar<br>Guard<br>Advance | -14.6                                  | 15                        | 115          | 8.01%                | 2.5                                   | 2.7                                   | 3.8                                     | 1.2                         | Review            |
| Winter 2013-14    | 313    | Max-Flight                | -15.3                                  | 15                        | 115          | 8.54%                | 2.6                                   | 2.5                                   | 3.5                                     | 1.1                         | Review            |
| Winter 2010-11    | 82     | ABC-S<br>Plus             | -16                                    | 15                        | 115          | 8.37%                | 2.8                                   | 2.5                                   | 3.7                                     | 1.3                         | Review            |
| Winter 2013-14    | 310    | EG106                     | -17.4                                  | 15                        | 115          | 2.00%                | 1.7                                   | 1.7                                   | 2.3                                     | 1                           | Good              |
| Winter<br>2013-14 | 312    | Launch                    | -17.4                                  | 15                        | 115          | 9.11%                | 2.8                                   | 2.7                                   | 3.7                                     | 1.1                         | Review            |
| Winter<br>2013-14 | 311    | EG106                     | -18.1                                  | 15                        | 100          | 4.06%                | 1.9                                   | 1.9                                   | 2.3                                     | 1.1                         | Good              |
| Winter<br>2013-14 | 314    | AD-49                     | -19.8                                  | 15                        | 115          | 8.39%                | 3                                     | 2.4                                   | 4                                       | 1.3                         | Review            |
|                   |        | Polar                     |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter<br>2012-13 | 87     | Guard<br>Advance          | -6.6                                   | 25                        | 100          | 6.35%                | 2                                     | 2.2                                   | 2.7                                     | 1.1                         | Review            |
| Winter 2010-11    | 78     | EG106                     | -13.8                                  | 25                        | 100          | 2.67%                | 2.7                                   | 2.2                                   | 4                                       | 1                           | Good              |

#### 10.3.1 Light Ice Pellets Mixed with Light Snow Above -5°C

Table 10.7 demonstrates the data collected. Tests were conducted at both 25-minute exposure times and 40-minute exposure times, all with 100knots rotation speeds; the data is separated by exposure time and sorted by temperature. In all cases tested, the overall results were either "Good" or "Review." In some cases, lift losses were in the higher end of the review range (5.4 percent to 9.2 percent); however, these fluids typically had higher lift losses for the fluid cases alone; fluids may have been at the higher end of the fluid production range. The visual ratings were all within the acceptable range. The data supports increasing the ice pellet allowance times to 40 minutes from the existing 25 minutes for Light Ice Pellets and Light Snow above -5°C.

#### 10.3.2 Light Ice Pellets Mixed with Light Snow Below -5°C

Table 10.8 demonstrates the data collected. Tests were conducted with exposure times ranging from 5 minutes to 25 minutes and with rotation speeds of 100 knots and 115 knots; the data is separated by exposure time and sorted by temperature. The existing allowance time of 15 minutes is limited to temperatures of -10°C, so the intent was to develop allowance times below -10°C. In all cases tested, the overall results were either "Good" or "Review." The data shows a trend for lift losses to increase for PG based fluids as the temperature decreases. The majority of the PG fluid tests were conducted with 115 knots rotation, as previous research has shown that the lift losses at 100 knots may reach or exceed the higher end of the allowable lift loss (9.2 percent); the EG fluid tests were conducted at 100 knots. The majority of the tests conducted below -10°C were with 15-minute exposure time; in addition, this data set includes tests as cold as -19.8°C. Although some limited testing at 25 minutes was conducted with positive results, the data generally supports the expansion of the allowance times to include 15 minutes below -10°C. Future testing can look at expanding the existing allowance time from 15 minutes to possibly 20 or 25 minutes. Due to limited data in the -20°C and below range, and because a limitation of PG fluids already exists for Moderate Ice Pellets below -16°C, a limitation of the condition to -16°C would also be recommended in order to be conservative. No expansion of the -5°C to -10°C range is recommended based on the data collected.

# 11. LIGHT ICE PELLETS MIXED WITH MODERATE SNOW ALLOWANCE TIMES

A summary of the light ice pellets mixed with moderate snow tests conducted with Type III and Type IV fluids in the wind tunnel is shown in Table 11.1 and Table 11.2. The tables provide relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

It should be noted that testing in this condition with the objective of increasing the existing allowance times has been ongoing since 2009-10. The cumulative data set is discussed in Subsection 11.3.

## **11.1 Analysis of Data Collected**

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 11.3 and Table 11.4. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 11.5 and Table 11.6. In addition, a conclusion regarding the test results has also been included for each condition.

## 11.2 Overall Summary of Results

The following sections provide an overall summary of the results.

## 11.2.1 Type III Testing

The testing results indicated that the current allowance time of 10 minutes is valid for AllClear AeroClear MAX. It should be noted that the Type III allowance time for below -5°C to -10°C was published as 10 minutes, though it should have been 5 minutes; this change is expected for winter of 2016-17. Nonetheless, the data collected supports the 10-minute allowance, so 5 minutes will be an acceptable conservative allowance time.

| Test # | Test<br>Condition | Fluid<br>Name              | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|----------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 32     | IP- / SN          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -10.3                         | -5.4                                      | IP = 25<br>SN = 25                 | 10                        | 2, 2.7, 3.8                                                         | 1, 1.5, 2.5                                                      | 2.69%                                                                   | 80           |
| 56     | IP- / SN          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -12                           | -6.4                                      | IP = 25<br>SN = 25                 | 10                        | 2.3, 2.2, 3.8                                                       | 1, 1.2, 1.6                                                      | 2.71%                                                                   | 80           |
| 57     | IP- / SN          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -12.3                         | -7.5                                      | IP = 25<br>SN = 25                 | 10                        | 2.5, 2.4, 3.6                                                       | 1, 1.2, 1.6                                                      | 2.57%                                                                   | 80           |
| 58     | IP- / SN          | AeroClear<br>MAX -<br>Cold | 8                 | 20                            | -12.7                         | -7.2                                      | IP = 25<br>SN = 25                 | 10                        | 2.7, 2.7, 3.5                                                       | 1, 1.2, 1.3                                                      | 2.12%                                                                   | 100          |

Table 11.1: Summary of 2015-16 Type III Light Ice Pellets Mixed with Moderate Snow Testing

Table 11.2: Summary of 2015-16 Type IV Light Ice Pellets Mixed with Moderate Snow Testing

| Test # | Test<br>Condition | Fluid<br>Name             | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 44     | IP- / SN          | ABC-S<br>Plus             | 8                 | 20                            | -7.6                          | -4.4                                      | IP = 25<br>SN = 25                 | 20                        | 3.2, 2.8, 3.8                                                       | 1.3, 2, 2.3                                                      | 6.66%                                                                   | 100          |
| 48     | IP- / SN          | AD-49                     | 8                 | 20                            | -8.9                          | -4.7                                      | IP = 25<br>SN = 25                 | 20                        | 2.8, 2.7, 3.8                                                       | 1.2, 1.7, 2.8                                                    | 7.63%                                                                   | 100          |
| 54     | IP- / SN          | Polar<br>Guard<br>Advance | 8                 | 20                            | -10.8                         | -5.2                                      | IP = 25<br>SN = 25                 | 20                        | 2.8, 3.1, 3.9                                                       | 1.1, 1.6, 2.6                                                    | 9.63%                                                                   | 100          |
| 55     | IP- / SN          | Polar<br>Guard<br>Advance | 8                 | 20                            | -11.4                         | -6.2                                      | IP = 25<br>SN = 25                 | 15                        | 2.8, 2.9, 3.7                                                       | 1.2, 1.6, 2.4                                                    | 8.85%                                                                   | 100          |

APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/TP 15341E Final Version 1.0.docx Final Version 1.0, October 20

| Table 11.3: Type III Light Ice Pellets Mixed with Moderate Snow Allowance Time |
|--------------------------------------------------------------------------------|
| Tests Winter 2015-16                                                           |

| Moderate Ice Pellets Mixed with<br>Moderate Snow | OAT -5°C and<br>Above | OAT Less than<br>-5°C to -10°C      | OAT Less than<br>-10°C                   |
|--------------------------------------------------|-----------------------|-------------------------------------|------------------------------------------|
| 80 kts                                           | 10 minutes            | 10 Minutes<br>Tests # 32, 56,<br>57 | No Allowance<br>Times Currently<br>Exist |
| 100 kts                                          | N/A                   | 10 Minutes<br>Test # 58             | N/A                                      |

# Table 11.4: Type IV Light Ice Pellets Mixed with Moderate Snow Allowance TimeTests Winter 2015-16

| Moderate Ice Pellets Mixed with | OAT -5°C and                                                                       | OAT Less than    | OAT Less than                                   |
|---------------------------------|------------------------------------------------------------------------------------|------------------|-------------------------------------------------|
| Moderate Snow                   | Above                                                                              | -5°C to -10°C    | -10°C                                           |
| 100 kts                         | 10 minutes<br>N/A<br>15 Minutes<br>Test # 55<br>20 Minutes<br>Test # 44, 48,<br>54 | 7 minutes<br>N/A | No Allowance<br>Times Currently<br>Exist<br>N/A |

|          | OAT Less than -5°C to -10°C 80 Knots (10 Minutes) |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                        |                   |  |
|----------|---------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|------------------------|-------------------|--|
| Run(hs)# | Fluid                                             | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift<br>Loss<br>Status | Overall<br>Status |  |
| 32       | AeroClear<br>MAX - Cold                           | -5.4                                      | IP = 25<br>SN = 25              | 10                     | 2, 2.7, 3.8                                                           | Good                        | 1, 1.5, 2.5                                                        | Good                     | 2.69%          | Good                   | Good              |  |
| 56       | AeroClear<br>MAX - Cold                           | -6.4                                      | IP = 25<br>SN = 25              | 10                     | 2.3, 2.2, 3.8                                                         | Good                        | 1, 1.2, 1.6                                                        | Good                     | 2.71%          | Good                   | Good              |  |
| 57       | AeroClear<br>MAX - Cold                           | -7.5                                      | IP = 25<br>SN = 25              | 10                     | 2.5, 2.4, 3.6                                                         | Good                        | 1, 1.2, 1.6                                                        | Good                     | 2.57%          | Good                   | Good              |  |
|          | OAT Less than -5°C to -10°C 100 Kts (10 Minutes)  |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                        |                   |  |
| 58       | AeroClear<br>MAX - Cold                           | -7.2                                      | IP = 25<br>SN = 25              | 10                     | 2.7, 2.7, 3.5                                                         | Good                        | 1, 1.2, 1.3                                                        | Good                     | 2.12           | Good                   | Good              |  |
|          | Conclusion: 10 minutes good for cold fluid.       |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                        |                   |  |

Table 11.5: Summary of Type III Light Ice Pellets Mixed with Moderate Snow Allowance Time Test Results

#### Table 11.6: Summary of Type IV Light Ice Pellets Mixed with Moderate Snow Allowance Time Test Results

|          | OAT -5°C and Above 100 Knots (15 Minutes)                                                                 |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |
|----------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|
| Run(hs)# | Fluid                                                                                                     | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |
| 55       | Polar<br>Guard<br>Advance                                                                                 | -6.2                                      | IP = 25<br>SN = 25              | 15                     | 2.8, 2.9, 3.7                                                         | Good                        | 1.2, 1.6, 2.4                                                      | Review                   | 8.85           | Review              | Review            |  |
|          |                                                                                                           |                                           |                                 | 1                      | 00 Knots (20                                                          | Minutes                     | ;)                                                                 |                          |                |                     |                   |  |
| 44       | ABC-S<br>Plus                                                                                             | -4.4                                      | IP = 25<br>SN = 25              | 20                     | 3.2, 2.8, 3.8                                                         | Review                      | 1.3, 2, 2.3                                                        | Review                   | 6.66%          | Review              | Review            |  |
| 48       | AD-49                                                                                                     | -4.7                                      | IP = 25<br>SN = 25              | 20                     | 2.8, 2.7, 3.8                                                         | Good                        | 1.2, 1.7, 2.8                                                      | Review                   | 7.63%          | Review              | Review            |  |
| 54       | Polar<br>Guard<br>Advance                                                                                 | -5.2                                      | IP = 25<br>SN = 25              | 20                     | 2.8, 3.1, 3.9                                                         | Good                        | 1.1, 1.6, 2.6                                                      | Review                   | 9.63           | Bad                 | Bad               |  |
|          | Conclusion: Allowance time can be expanded to 20 minutes; see Subsection 11.3 for additional information. |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |

## 11.2.2 Type IV Testing

Testing was not conducted with the new FCY 9311 and LNT E450 fluids in this condition; tests were run as a spot check in light ice pellets mixed with light snow, and based on positive results and limited fluid supplies, it was decided that testing in this condition was not necessary. However, additional tests were conducted with fluids previously tested to support increasing and expanding the allowance times. These additional tests were analysed along with other data collected since 2009-10 to support the expansion of the allowance times. The details of the expansion analysis are included in Subsection 11.3.

# 11.3 Expansion of Light Ice Pellet Mixed with Moderate Snow Allowance Times

Research has been ongoing since 2009-10 to support the expansion of the Light Ice Pellet Mixed with Moderate Snow allowance times; therefore, a significant amount of data has been collected since. The details of the tests conducted during the winters of 2009-10 to 2014-15 can be found in the wind tunnel testing report for the respective year; only a summary of those tests is presented here alongside the current year's tests. The cumulative data sets have been separated into two sets: -5°C and above and below -5°C. Table 11.7 and Table 11.8 show the summarized information for each of the relevant tests.

| Test Year         | Test # | Fluid<br>Name             | Tunnel<br>Temp.<br>Before<br>Test (°C) | Exposure<br>Time<br>(min) | Speed<br>Kts | Lift Loss<br>@8° (%) | Rating<br>Before<br>Takeoff<br>Run LE | Rating<br>Before<br>Takeoff<br>Run TE | Rating<br>Before<br>Takeoff<br>Run Flap | Rating at<br>Rotation<br>LE | Overall<br>Status |
|-------------------|--------|---------------------------|----------------------------------------|---------------------------|--------------|----------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------|-------------------|
| Winter<br>2009-10 | 16     | ABC-S<br>Plus             | -4.2                                   | 5                         | 100          | 5.51%                | 1.4                                   | 1.7                                   | 1.8                                     | 1                           | Review            |
|                   |        |                           |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter 2013-14    | 12     | AD-49                     | -3.3                                   | 10                        | 100          | 5.75%                | 2                                     | 2                                     | 3.5                                     | 1                           | Review            |
| Winter 2010-11    | 73     | Max-Flight                | -4.2                                   | 10                        | 100          | 6.47%                | 2.7                                   | 2.3                                   | 3.1                                     | 1                           | Review            |
| Winter 2009-10    | 15     | ABC-S<br>Plus             | -4.3                                   | 10                        | 100          | 4.81%                | 1.8                                   | 2                                     | 2.7                                     | 1                           | Good              |
| Winter 2013-14    | 11     | Launch                    | -5.2                                   | 10                        | 100          | 6.70%                | 2                                     | 1.75                                  | 3.25                                    | 1                           | Review            |
|                   |        |                           |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter 2009-10    | 14     | ABC-S<br>Plus             | -4.4                                   | 15                        | 100          | 5.55%                | 2.2                                   | 2                                     | 2.8                                     | 1                           | Review            |
|                   |        |                           |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter 2009-10    | 58     | Launch                    | -3.1                                   | 20                        | 100          | 4.66%                | 2.8                                   | 2.6                                   | 3                                       | 1                           | Good              |
| Winter 2009-10    | 24     | EG106                     | -3.7                                   | 20                        | 100          | 1.25%                | 2.5                                   | 1.8                                   | 4                                       | 1                           | Good              |
| Winter 2015-16    | 44     | ABC-S<br>Plus             | -4.4                                   | 20                        | 100          | 6.66%                | 3.2                                   | 2.8                                   | 3.8                                     | 1.3                         | Review            |
| Winter 2009-10    | 13     | ABC-S<br>Plus             | -4.6                                   | 20                        | 100          | 6.10%                | 3                                     | 2                                     | 3.5                                     | 1                           | Review            |
| Winter 2015-16    | 48     | AD-49                     | -4.7                                   | 20                        | 100          | 7.63%                | 2.8                                   | 2.7                                   | 3.8                                     | 1.2                         | Review            |
| Winter<br>2015-16 | 54     | Polar<br>Guard<br>Advance | -5.2                                   | 20                        | 100          | 9.63%                | 2.8                                   | 3.1                                   | 3.9                                     | 1.1                         | Bad               |

Table 11.7: Cumulative Summary of Type IV Light Ice Pellets Mixed with Moderate Snow Allowance Time Test Results for Target >-5°C from 2009-10 to 2015-16

| Test Year         | Test # | Fluid<br>Name             | Tunnel<br>Temp.<br>Before<br>Test (°C) | Exposure<br>Time<br>(min) | Speed<br>Kts | Lift Loss<br>@8° (%) | Rating<br>Before<br>Takeoff<br>Run LE | Rating<br>Before<br>Takeoff<br>Run TE | Rating<br>Before<br>Takeoff<br>Run Flap | Rating at<br>Rotation<br>LE | Overall<br>Status |
|-------------------|--------|---------------------------|----------------------------------------|---------------------------|--------------|----------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------|-------------------|
| Winter 2010-11    | 47     | Launch                    | -13.3                                  | 5                         | 100          | 8.20%                | 2.25                                  | 2                                     | 3.5                                     | 1.3                         | Review            |
| Winter 2009-10    | 82     | ABC-S<br>Plus             | -15.8                                  | 5                         | 100          | 8.24%                | 2.5                                   | 2.2                                   | 3.2                                     | 1.5                         | Review            |
| Winter 2009-10    | 81     | EG106                     | -17.3                                  | 5                         | 100          | 3.19%                | 1.8                                   | 2                                     | 2.3                                     | 1                           | Good              |
| Winter 2010-11    | 85     | Launch                    | -17.4                                  | 5                         | 115          | 8.09%                | 2.6                                   | 2.5                                   | 3.5                                     | 1.1                         | Review            |
|                   |        |                           |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter<br>2010-11 | 104    | Launch                    | -7.5                                   | 7                         | 100          | 6.47%                | 2.8                                   | 2.5                                   | 3.1                                     | 1.1                         | Review            |
| Winter 2010-11    | 105    | ABC-S<br>Plus             | -9.3                                   | 7                         | 100          | 8.51%                | 2.3                                   | 2.2                                   | 2.8                                     | 1.1                         | Review            |
| Winter 2010-11    | 106    | AD-49                     | -9.4                                   | 7                         | 100          | 7.24%                | 1.4                                   | 2.2                                   | 3.1                                     | 1.2                         | Review            |
| Winter<br>2012-13 | 118    | Polar<br>Guard<br>Advance | -10.8                                  | 7                         | 100          | 9.32%                | 2.1                                   | 2                                     | 2.6                                     | 1.1                         | Bad               |
| A.C. 1            |        | 400.0                     |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter<br>2013-14 | 10     | ABC-S<br>Plus             | -6.7                                   | 10                        | 100          | 6.38%                | 2                                     | 2                                     | 3                                       | 1                           | Review            |
| Winter 2009-10    | 97     | ABC-S<br>Plus             | -8.3                                   | 10                        | 100          | 5.10%                | 2.9                                   | 2.3                                   | 3                                       | 1.3                         | Good              |
| Winter 2012-13    | 116    | Max-Flight                | -8.7                                   | 10                        | 100          | 7.74%                | 2.3                                   | 2.2                                   | 2.8                                     | 1.2                         | Review            |
| Winter<br>2012-13 | 117    | Polar<br>Guard<br>Advance | -10.3                                  | 10                        | 100          | 9.65%                | 2.2                                   | 2                                     | 3.1                                     | 1.1                         | Bad               |
| Winter 2010-11    | 44     | EG106                     | -13.2                                  | 10                        | 100          | 2.85%                | 2.25                                  | 2                                     | 3.5                                     | 1.15                        | Good              |
| Winter 2010-11    | 83     | ABC-S<br>Plus             | -15.2                                  | 10                        | 115          | 9.77%                | 3                                     | 2.5                                   | 4                                       | 1.4                         | Bad               |
|                   |        |                           |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter 2015-16    | 55     | Polar<br>Guard<br>Advance | -6.2                                   | 15                        | 100          | 8.85%                | 2.8                                   | 2.9                                   | 3.7                                     | 1.2                         | Review            |
| Winter 2010-11    | 79     | EG106                     | -15.1                                  | 15                        | 100          | 3.02%                | 2.8                                   | 2.6                                   | 4                                       | 1.1                         | Good              |
|                   |        |                           |                                        |                           |              |                      |                                       |                                       |                                         |                             |                   |
| Winter<br>2015-16 | 54     | Polar<br>Guard<br>Advance | -5.2                                   | 20                        | 100          | 9.63%                | 2.8                                   | 3.1                                   | 3.9                                     | 1.1                         | Bad               |

# Table 11.8: Cumulative Summary of Type IV Light Ice Pellets Mixed with ModerateSnow Allowance Time Test Results for Target <-5°C from 2009-10 to 2015-16</td>

## 11.3.1 Light Ice Pellets Mixed with Moderate Snow Above -5°C

Table 11.7 demonstrates the data collected. Tests were conducted with exposure times ranging from 5 minutes to 20 minutes, all with rotation speeds of 100 knots; the data is separated by exposure time and sorted by temperature. In all but one of the cases tested, the overall results were either "Good" or "Review." In one test with a PG fluid, the lift losses were higher than the acceptable limit of 9.2 percent; however, this fluid was at the higher end of the fluid production range, and the test was conducted slightly below the -5°C cut-off. The visual ratings were all generally within the acceptable range. The data supports increasing the ice pellet allowance times to 20 minutes from the existing 10 minutes for Light Ice Pellets Mixed with Moderate Snow above -5°C.

#### 11.3.2 Light Ice Pellets Mixed with Moderate Snow Below -5°C

Table 11.8 demonstrates the data collected. Tests were conducted with exposure times ranging from 5 minutes to 20 minutes and with rotation speeds of 100 knots and 115 knots; the data is separated by exposure time and sorted by temperature. The data demonstrated greater lift losses and worsening visual ratings as the temperature decreased and the exposure time increased. The results indicated that the higher 115-knots speeds did not offset the lift losses for the higher exposure times. The results support an allowance time of 5 minutes for below -10°C. Due to limited data in the -20°C and below range, and because a limitation of PG fluids already exists for Moderate Ice Pellets below -16°C, a limitation of the condition to -16°C would also be recommended in order to be conservative. No expansion of the -5°C to -10°C range is recommended based on the data collected.

This page intentionally left blank.

# **12. MODERATE ICE PELLETS MIXED WITH MODERATE SNOW**

A summary of the tests conducted with Type IV fluids in the wind tunnel for moderate ice pellets mixed with moderate snow is shown in Table 12.1. The table provides relevant information for each of the tests, as well as final values used for the data analysis. Each row contains data specific to one test. A more detailed test log of all conditions tested using the wind tunnel is provided in Subsection 3.1.

## 12.1 Analysis of Data Collected

The data collected has been sorted according to test parameters and included in the respective cells of the ice pellet allowance time table format for ease of reference; this is shown in Table 12.2. A more detailed analysis separating the data according to the allowance time cell and rotation speed has been conducted and is shown in Table 12.3. In addition, a conclusion regarding the test results has also been included for each condition.

## 12.2 Overall Summary of Results

The following sections provide an overall summary of the results.

## 12.2.1 Type IV Testing

Allowance times did not exist for this condition; testing aimed at providing guidance to support operations. Testing targeted conditions above -10°C, using a range of exposure times in order to determine the appropriate allowance time based on the aerodynamic and visual performance.

Testing targeted 7 to 10 minutes for -5°C and above conditions and 7 to 10 minutes for -5°C to -10°C conditions; no allowance times currently exist for these conditions. Test results were marginal in both conditions, and slightly worse for the colder temperatures. The test results collected did not support the development of a new allowance times for Moderate Ice Pellets Mixed with Moderate Snow. Future testing with potentially shorter exposure times may provide more positive results.

| Test # | Test<br>Condition | Fluid<br>Name             | Rotation<br>Angle | Flap<br>Angle<br>(0°,<br>20°) | OAT<br>Before<br>Test<br>(°C) | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time<br>(min) | Visual<br>Contamination<br>Rating Before<br>Takeoff<br>(LE,TE,Flap) | Visual<br>Contamination<br>Rating at<br>Rotation<br>(LE,TE,Flap) | Corrected<br>for 3D<br>Effects<br>% Lift Loss<br>on 8° C∟<br>vs. Dry C∟ | Speed<br>Kts |
|--------|-------------------|---------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------------------|------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 23     | IP / SN           | ABC-S<br>Plus             | 8                 | 20                            | -10.2                         | -8.2                                      | IP = 75<br>SN = 25                 | 7                         | 2.3, 2.7, 3.5                                                       | 1.1, 1.7, 2.4                                                    | 7.38%                                                                   | 100          |
| 24     | IP / SN           | ABC-S<br>Plus             | 8                 | 20                            | -10.4                         | -7.7                                      | IP = 75<br>SN = 25                 | 10                        | 3, 3, 4                                                             | 1.2, 1.8, 2.5                                                    | 8.16%                                                                   | 100          |
| 36     | IP / SN           | Polar<br>Guard<br>Advance | 8                 | 20                            | -12                           | -7.4                                      | IP = 75<br>SN = 25                 | 10                        | 3, 3, 4                                                             | 1.2, 1.7, 2.6                                                    | 11.06%                                                                  | 100          |
| 37     | IP / SN           | Polar<br>Guard<br>Advance | 8                 | 20                            | -12.6                         | -7.7                                      | IP = 75<br>SN = 25                 | 7                         | 2.8, 2.5, 3.7                                                       | 1.1, 1.4, 2.5                                                    | 9.42%                                                                   | 100          |
| 40     | IP / SN           | ABC-S<br>Plus             | 8                 | 20                            | -6.9                          | -3.5                                      | IP = 75<br>SN = 25                 | 7                         | 2.9, 2.7, 3.4                                                       | 1.1, 1.9, 2.1                                                    | 6.70%                                                                   | 100          |
| 41     | IP / SN           | ABC-S<br>Plus             | 8                 | 20                            | -7                            | -3.8                                      | IP = 75<br>SN = 25                 | 10                        | 2.8, 2.8, 3.7                                                       | 1.2, 2, 2.3                                                      | 7.48%                                                                   | 100          |
| 45     | IP / SN           | AD-49                     | 8                 | 20                            | -7.7                          | -4.4                                      | IP = 75<br>SN = 25                 | 10                        | 2.9, 2.8, 4                                                         | 1.1, 1.7, 2.1                                                    | 7.34%                                                                   | 100          |
| 52     | IP / SN           | Polar<br>Guard<br>Advance | 8                 | 20                            | -10.1                         | -4.9                                      | IP = 75<br>SN = 25                 | 10                        | 2.7, 2.8, 4                                                         | 1.1, 1.4, 2.5                                                    | 9.27%                                                                   | 100          |

Table 12.1: Summary of 2015-16 Type IV Moderate Ice Pellets Mixed with Moderate Snow Testing

| Moderate Ice Pellets Mixed with<br>Moderate Snow | OAT -5°C and<br>Above                           | OAT Less than<br>-5°C to -10°C                  | OAT Less than<br>-10°C                          |
|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|                                                  | No Allowance<br>Times Currently<br>Exist<br>N/A | No Allowance<br>Times Currently<br>Exist<br>N/A |                                                 |
| 100 kts                                          | 7 Minutes<br>Test # 40                          | 7 Minutes<br>Test # 23, 37                      | No Allowance<br>Times Currently<br>Exist<br>N/A |
|                                                  | 10 Minutes<br>Tests # 41, 45,<br>52             | 10 Minutes<br>Tests # 24, 36                    |                                                 |

# Table 12.2: Type IV Moderate Ice Pellets Mixed with Moderate Snow Allowance Time Tests Winter 2015-16

|                                                                                                   | OAT -5°C and Above 100 Knots (7 Minutes)                                                                             |                                           |                                    |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|--|
| Run(hs)#                                                                                          | Fluid                                                                                                                | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate<br>(g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |  |
| 40                                                                                                | ABC-S<br>Plus                                                                                                        | -3.5                                      | IP = 75<br>SN = 25                 | 7                      | 2.9, 2.7, 3.4                                                         | Good                        | 1.1, 1.9, 2.1                                                      | Review                   | 6.70           | Review              | Review            |  |
|                                                                                                   |                                                                                                                      |                                           |                                    |                        | 100 Knots (10                                                         | Minutes)                    |                                                                    |                          |                |                     |                   |  |
| 41 ABC-S<br>Plus -3.8 IP=75<br>SN=25 10 2.8, 2.8, 3.7 Good 1.2, 2, 2.3 Review 7.48% Review Review |                                                                                                                      |                                           |                                    |                        |                                                                       |                             |                                                                    |                          |                |                     | Review            |  |
| 45                                                                                                | AD-49                                                                                                                | -4.4                                      | IP = 75<br>SN = 25                 | 10                     | 2.9, 2.8, 4                                                           | Good                        | 1.1, 1.7, 2.1                                                      | Review                   | 7.34%          | Review              | Review            |  |
|                                                                                                   | Conclusion: 7 minutes may be possible; however, limited data and marginal results do not support this at the moment. |                                           |                                    |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |  |

|                                                                                                                              |                           |                                           |                                 | -5°C                   | OAT Less<br>to -10°C 100 Ki                                           |                             | inutes)                                                            |                          |                |                     |                   |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------|----------------|---------------------|-------------------|
| Run(hs)#                                                                                                                     | Fluid                     | Tunnel<br>Temp.<br>Before<br>Test<br>(°C) | Precipitation<br>Rate (g/dm²/h) | Exposure<br>Time (min) | Visual<br>Contamination<br>Rating<br>Before Takeoff<br>(LE, TE, Flap) | Before<br>Takeoff<br>Status | Visual<br>Contamination<br>Rating<br>at Rotation (LE,<br>TE, Flap) | At<br>Rotation<br>Status | % Lift<br>Loss | Lift Loss<br>Status | Overall<br>Status |
| 23                                                                                                                           | ABC-S<br>Plus             | -8.2                                      | IP = 75<br>SN = 25              | 7                      | 2.3, 2.7, 3.5                                                         | Good                        | 1, 1, 1.2                                                          | Good                     | 7.38%          | Review              | Review            |
| 37                                                                                                                           | Polar<br>Guard<br>Advance | -7.7                                      | IP = 75<br>SN = 25              | 7                      | 2.8, 2.5, 3.7                                                         | Good                        | 1, 1.1, 1.4                                                        | Good                     | 9.42%          | Bad                 | Bad               |
|                                                                                                                              |                           |                                           |                                 |                        | 100 Knots (10                                                         | Minutes)                    |                                                                    |                          |                |                     |                   |
| 24                                                                                                                           | ABC-S<br>Plus             | -7.7                                      | IP = 75<br>SN = 25              | 10                     | 3, 3, 4                                                               | Good                        | 1.2, 1.8, 2.5                                                      | Review                   | 8.16%          | Review              | Review            |
| 36                                                                                                                           | Polar<br>Guard<br>Advance | -7.4                                      | IP = 75<br>SN = 25              | 10                     | 3, 3, 4                                                               | Good                        | 1.2, 1.7, 2.6                                                      | Review                   | 11.06%         | Bad                 | Bad               |
| 52                                                                                                                           | Polar<br>Guard<br>Advance | -4.9                                      | IP = 75<br>SN = 25              | 10                     | 2.7, 2.8, 4                                                           | Good                        | 1.1, 1.4, 2.5                                                      | Review                   | 9.27%          | Bad                 | Bad               |
| Conclusion: 7 minutes or less may be possible; however, limited data and marginal results do not support this at the moment. |                           |                                           |                                 |                        |                                                                       |                             |                                                                    |                          |                |                     |                   |

# 13. TYPE III FLUID LIFT LOSS SCALING FOR LOW-SPEED ROTATION

A summary of the Type III fluid only tests conducted to support a lift loss scaling for low-speed rotation is described in this section.

## 13.1 Background

As part of the Type IV allowance time testing, a significant amount of work was conducted to better understand the lift losses experienced in the wind tunnel and how they correlate to operational aircraft. The lift losses due to uncontaminated anti-icing fluids measured on the NRC PIWT thin high-performance wing at  $\alpha = 8$  degrees were scaled to the percent reduction in maximum lift of the full-scale B737-200ADV through the use of the aerodynamic acceptance test. This result was used to develop a lift loss criterion to help develop the ice pellet allowance times. This work was also documented in NASA/TM-2012-216014 (also DOT/FAA/TC-12/32) distributed at the Montreal AWG meeting in 2012. This lift loss scaling correlation was deemed valid for aircraft with rotation speeds above 100 knots.

When testing the Type III fluid during the winter of 2015-16, it was recommended by TC/FAA/NASA/APS that a series of fluid only tests be conducted with the Type III fluid at lower speeds in order to develop a specific lift loss scaling correlation for aircraft with rotation speeds greater than 80 knots.

## **13.2 Summary of Methodology**

Similar to the work conducted to develop the Type IV lift loss criteria described in TP 15232E (1), fluid only tests were conducted at the NRC PIWT. Fluid samples were retained and tested at the same conditions according to the aerodynamic acceptance test, also known as the boundary layer displacement thickness (BLDT) test. The BLDT results (ratio of the result versus the failure limit) were used to scale the respective NRC PIWT lift loss result to determine the failure limit for the wind tunnel test. To do so, Type III fluid only tests were conducted at 80 knots using a standard  $\alpha = 8$  degrees sweep; additional stall runs, 68-knot tests, and 100-knots tests were conducted to yield exploratory data but were not considered for the analysis. The retained samples were then tested in accordance with the Low-Speed Ramp Aerodynamic Tests, described in AS 5900, at the same temperature as the 80-knot wind tunnel tests.

## 13.3 Analysis and Summary of Results

Figure 13.1 demonstrates all the fluid only tests conducted with Type III fluid at the NRC PIWT during the winter of 2015-16. The lift loss results are plotted versus the test temperature. Tests were conducted at various speeds, and some tests were run to stall rather than to the standard  $\alpha = 8$  degrees; these are identified in the chart. In addition, the BLDT test results are superimposed over the chart. The BLDT test temperatures were selected to be as close to the standard 80-knot test temperatures as possible, at the BLDT limit of -16°C for the fluid (as determined by the LOUT), and at some additional points in between to be able to generate a smooth curve.

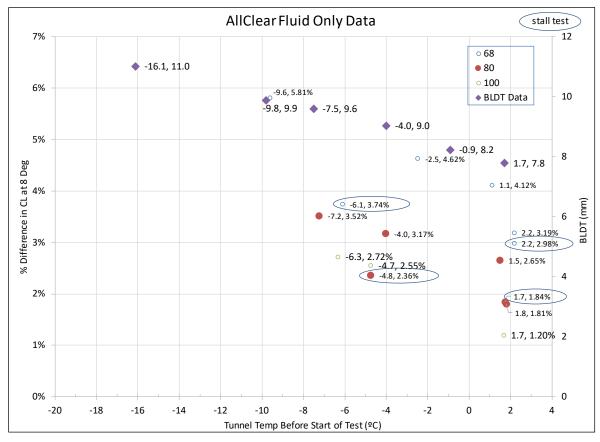



Figure 13.1: Summary of All Type III Fluid Only Tests with Superimposed BLDT Test Results

Table 13.1 provides a summary of the BLDT test conditions and results. The measured BLDT and actual test temperature are included. Figure 13.2 provides a graphical representation of this data. The increase in BLDT versus the test temperature is generally linear. It should be noted that the BLDT crosses the limit of 10.5 mm at approximately -13°C, warmer than the -16°C limit, which may indicate that the viscosity may have been higher than the originally certified sample.

|               | BLDT Test Matrix |               |          |                   |                          |                                |                                                                                    |  |  |
|---------------|------------------|---------------|----------|-------------------|--------------------------|--------------------------------|------------------------------------------------------------------------------------|--|--|
| Data<br>Point | APS<br>Test #    | Fluid Name    | Dilution | Test Temp<br>(C°) | Measured<br>BLDT<br>(mm) | Actual<br>Test<br>Temp<br>(C°) | Comments                                                                           |  |  |
| 1             | 100              | AeroClear MAX | 100/0    | 1.8               | 7.8                      | 1.7                            |                                                                                    |  |  |
| 2             | -                | AeroClear MAX | 100/0    | -1.0              | 8.2                      | -0.9                           | extra point for help<br>extrapolation of BLDT<br>data                              |  |  |
| 3             | 86               | AeroClear MAX | 100/0    | -4.0              | 9.0                      | -4.0                           |                                                                                    |  |  |
| 4             | 33               | AeroClear MAX | 100/0    | -7.2              | 9.6                      | -7.5                           |                                                                                    |  |  |
| 5             | -                | AeroClear MAX | 100/0    | -9.6              | 9.9                      | -9.8                           | extra point for help<br>extrapolation of BLDT<br>data. Also related to Test<br>#60 |  |  |
| 6             | -                | AeroClear MAX | 100/0    | -16.0             | 11.0                     | -16.1                          | BLDT Limit                                                                         |  |  |

Table 13.1: Summary of BLDT Tests Results

The aerodynamic acceptance test for low-speed rotation aircraft described in the SAE International (SAE) AS5900 is built on the premise that a 10.5 mm BLDT correlates to an 8 percent lift loss on a 2D model of a Dash-8 type aircraft. The BLDT results were therefore converted to a percentage lift loss for a 2D model based on a ratio of the measured BLDT versus the 10.5 mm limit. For each wind tunnel test, lift loss was adjusted for rotation speed and ramp-up time. The estimated 2D lift loss was then regressed against the adjusted lift loss measured in the wind tunnel. The regression results were then used to determine the average, and one standard error of estimate was used to determine the upper and lower correlation based on the 8 percent 2D lift loss, as shown in Table 13.2. A summary of the Table 13.2 results is shown in Table 13.3 and is a preliminary interpretation of the lift losses for analysis of the low-speed Type III test.

## 13.4 Adoption of Analysis for Developing Guidance Material

The results have been shared with TC/FAA and with NASA; however, at the moment, there is reluctance to issue guidance changes based on the limited data collected to date. One of the concerns is the use of the thin high-performance wing section (a high-speed wing) for developing this low-speed correlation. It has been recommended that testing be conducted using the existing LS-0417 wing section, as this may be better suited for this type of work. This testing is planned for the winter of 2016-17.

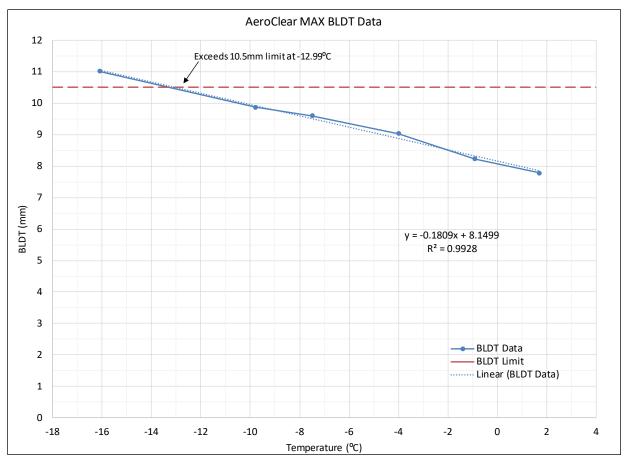



Figure 13.2: Graphical Representation of BLDT Results

| Table 13.2: Correlation Results Using Standard Error of Estimate Method |
|-------------------------------------------------------------------------|
|-------------------------------------------------------------------------|

| _                         | Method                                                     | # pts | Lower | Middle | Higher | Standard Error | X Variable 1 |
|---------------------------|------------------------------------------------------------|-------|-------|--------|--------|----------------|--------------|
| Type III 80 kts 8 deg rot | Using Standard Error of Estimate<br>(based on 8% 2D limit) | 4 pts | 2.7%  | 3.9%   | 5.1%   | 0.01187        | 2.05220      |

#### Table 13.3: Summary of Proposed Lift Loss Limits for Type III Low-Speed Testing at PIWT

| Satisfactory   | <2.7% Lift Loss        |  |  |  |
|----------------|------------------------|--|--|--|
| Review         | 2.7% to 5.1% Lift Loss |  |  |  |
| Not Acceptable | > 5.1% Lift Loss       |  |  |  |

# **14. GENERAL CHANGES TO ICE PELLET GUIDANCE MATERIAL**

This sections describes the analytically based modifications to ice pellet guidance material developed through consultations with TC and the FAA during the winter of 2015-16.

# 14.1 Division of the Below -10°C Temperature Band and Limiting to -22°C

As a result of the two new conditions (Light Ice Pellets Mixed with Light and Moderate Snow) with allowance times in the -10°C to -16°C temperature band, and due to the existing limitation of Moderate Ice Pellets or Small Hail to -16°C, it was recommended by TC and the FAA that the ice pellet allowance time table temperature bands be changed to facilitate referencing. The below -10°C temperature band should be separated to include a new -10°C to -16°C range for ease of referencing.

The lower temperature band was previously "Below -10°C" and fluids could be used down to LOUT. Over the last several years, testing at temperatures close to LOUT has been attempted but not successful because temperatures below -25°C are infrequent in Ottawa. As a result, no ice pellet allowance time data exists below -22°C. TC and the FAA recommended limiting ice pellet allowance times to -22°C until sufficient data is available. This should have little to no impact on operations as ice pellet occurrence is very small at those cold temperatures. The lower temperature band of the Type IV ice pellet allowance time table should be below -16°C to -22°C.

# 14.2 Harmonization of the Ice Pellet Allowance Times Background and Operational Guidance

In an effort to harmonize guidance material issued by both TC and the FAA, the background and operational guidance that precedes the ice pellet allowance time tables was modified. The background and operational guidance was modified to be as identical as possible for both regulators with the exception of regulator-specific terminology and regulations. The harmonized versions will be included in the 2016-17 HOT Guidelines.

## 14.3 Update Guidance for Small Hail

The 2015-16 HOT Guidelines included small hail as part of the ice pellet allowance times; however, this only applied to Light Ice Pellets and Moderate Ice Pellets allowance times with no mixed conditions allowed. For the 2016-17 HOT Guidelines,

allowance times may be used for small hail mixed with other conditions provided allowance times exist as described in the note below:

"If no intensity is reported with small hail, use the "moderate ice pellets or small hail" allowance times. If an intensity is reported with small hail, the ice pellet condition with the equivalent intensity can be used, e.g. if light small hail is reported, the "light ice pellets" allowance times can be used. This also applies in mixed conditions, e.g. if light small hail mixed with light snow is reported, use the "light ice pellets mixed with light snow" allowance times."

## 14.4 Re-Ordering of Rows

To facilitate the referencing of the allowance times, the rows in the Type III and Type IV tables were re-ordered. The new tables will include conditions mixed with light ice pellets first, followed by conditions mixed with moderate ice pellets. The intensity of the secondary precipitation type was also used to order the conditions from light to moderate to heavy. The changes will be included in the 2016-17 HOT Guidelines.

## **14.5** Note for Aircraft Rotation Speeds

In order to better clarify the guidance, and in light of work being conducted to develop low-speed allowance times for Type III fluids, a new note was included in the guidelines to explicitly state that:

*"These allowance times are for use with aircraft with rotation speeds of 100 knots or greater."* 

This was previously only included in the background and operational guidance for the ice pellet allowance times; however, it will now be included directly in the tables themselves to eliminate ambiguity. The changes will be included in the 2016-17 HOT Guidelines.

# 14.6 Reduction in Type III Allowance Time for Light Ice Pellets Mixed with Moderate Snow Below -5°C to -10°C

During a review of the 2015-16 published HOT Guidelines, it was discovered that the Type III allowance time for Light Ice Pellets Mixed with Moderate Snow below -5°C to -10°C was erroneously published as 10 minutes, whereas the correct allowance time should have been 5 minutes. This correction will be included in the 2016-17 HOT Guidelines.

# **15. CONCLUSIONS AND OBSERVATIONS**

These observations and conclusions were derived from the testing conducted during the winter of 2015-16.

### 15.1 Type III Allowance Times

The following sections describe the conclusions and observations for the Type III allowance times.

#### 15.1.1 New Fluid (AllClear AeroClear MAX)

Testing was conducted during the winter of 2015-16 that validated the current Type III allowance times for use with the new-to-market AllClear AeroClear MAX; these results are applicable to aircraft with rotation speeds above 100 knots. Testing was conducted in a subset of the existing allowance time conditions. Current allowance times are generic and conservative, and therefore this method is appropriate and testing in all conditions was not necessary.

To serve a dual purpose, the tests run to validate the Type III allowance times for aircraft with rotation speeds greater than 100 knots were also run at 80 knots; it was expected that the Type III fluid would perform very well and pass all criteria even at 80 knots, which it did. The purpose is to eventually use this 80-knots data to support the development of a low-speed Type III allowance time table.

#### 15.1.2 Low-Speed Testing

Type III fluid only data was collected to support a lift loss scaling analysis for low-speed tests. The results are still under review; however, it has been recommended that testing be conducted with the LS-0417 wing section to validate the results observed before guidance be issued for low-speed operations.

## **15.2 Type IV High-Speed Allowance Times**

The following sections describe the conclusions and observations for the Type IV high-speed allowance times.

#### 15.2.1 New Fluids

Testing was conducted during the winter of 2015-16 that validated the current Type IV allowance times for use with the new-to-market LNT E450 and FCY 9311. Testing was conducted in a subset of the existing allowance time conditions; current allowance times are generic and conservative, and therefore this method is appropriate and testing in all conditions was not necessary.

#### 15.2.2 Expansion of Type IV Allowance Times

Testing was conducted to support the expansion of the existing allowance times to include longer times and more conditions, including Moderate Ice Pellets Mixed with Moderate Freezing Drizzle, Moderate Ice Pellets Mixed with Moderate Rain, and Light Ice Pellets Mixed with Light and Moderate Snow.

#### **15.3 General Changes to the Ice Pellet Allowance Time Tables**

Through consultation TC and the FAA, modifications to the ice pellet allowance time guidance material were proposed. These proposals were analytically based and developed based on industry requests and operational concerns. Changes were proposed for the following:

- Division of the below -10°C temperature band and limiting operations to -22°C;
- Harmonization of the ice pellet allowance time background and operational guidance;
- Update guidance for inclusion of small hail;
- Re-ordering of rows in the allowance time tables;
- Inclusion of an explicit note in the table specifying aircraft with 100knots rotation speeds; and
- Reduction in Type III allowance time for Light Ice Pellets Mixed with Moderate Snow below -5°C to -10°C.

## **16. RECOMMENDATIONS**

The following recommendations were compiled based on the work conducted during the winter of 2015-16 and based on consultations with TC and the FAA.

#### **16.1** Changes to Ice Pellet Allowance Time Guidance

The following changes were made to the **<u>Type III</u>** Ice Pellet Allowance Time guidance material based on the 2015-16 wind tunnel test results:

- The use of Type III allowance times will be allowed for use with AllClear AeroClear MAX;
- A correction to the Light Ice Pellets mixed with Moderate Snow below -5°C to -10°C allowance time (was 10 minutes and will be reduced to 5 minutes);
- Harmonization of the TC and FAA ice pellet allowance time background and operational guidance;
- Updated guidance for small hail;
- Re-ordering of the rows in the allowance time tables; and
- Inclusion of an explicit note in the table specifying aircraft with 100-knots rotation speeds.

The following changes were made to the **<u>Type IV</u>** Ice Pellet Allowance Time guidance material based on the 2015-16 wind tunnel test results:

- New allowance times for Moderate Ice Pellets Mixed with Moderate Freezing Drizzle for -5°C and above and below -5°C to -10°C conditions;
- New allowance times for Moderate Ice Pellets Mixed with Moderate Rain for -5°C and above conditions;
- Increase to allowance times for "Light Ice Pellets Mixed with Light Snow" for -5°C and above conditions;
- Increase to allowance times for Light Ice Pellets Mixed with Moderate Snow for -5°C and above conditions;
- New allowance times for Light Ice Pellets Mixed with Light Snow for -10°C to -16°C conditions;
- New allowance times for Light Ice Pellets Mixed with Moderate Snow for -10°C to -16°C conditions;
- Division of the below -10°C temperature band into below -10°C to -16°C and below -16°C to -22°C;

- Limiting ice pellet operations to -22°C;
- Harmonization of the TC and FAA ice pellet allowance time background and operational guidance;
- Updated guidance for small hail;
- Re-ordering of the rows in the allowance time tables; and
- Inclusion of an explicit note in the table specifying aircraft with 100-knots rotation speeds.

The updated winter 2016-17 Type III allowance time table is shown in Table 16.1 for TC and Table 16.2 for the FAA, and the updated winter 2016-17 Type IV allowance time table is shown in Table 16.3 for TC and Table 16.4 for the FAA. It should be noted that the 90 percent adjusted tables were also published by TC and the FAA for those operations when flaps and slats are deployed prior to de/anti-icing; however, these tables have not been included in this report for brevity.

#### Table 16.1: 2016-17 TC Type III Ice Pellet Allowance Time Table

#### **Transport Canada Holdover Time Guidelines**

Winter 2016-2017

#### TABLE 5

#### SAE TYPE III FLUID ICE PELLET AND SMALL HAIL ALLOWANCE TIMES<sup>1</sup>

This table is for use with SAE Type III undiluted (100/0) fluids applied unheated only

THE RESPONSIBILITY FOR THE APPLICATION OF THESE DATA REMAINS WITH THE USER

|                                                                    | Outside Air Temperature |                   |                          |  |  |  |
|--------------------------------------------------------------------|-------------------------|-------------------|--------------------------|--|--|--|
| Precipitation Type                                                 | -5°C and above          | Below -5 to -10°C | Below -10°C <sup>2</sup> |  |  |  |
| Light Ice Pellets                                                  | 10 minutes              | 10 minutes        |                          |  |  |  |
| Light Ice Pellets Mixed with Light Snow                            | 10 minutes              | 10 minutes        |                          |  |  |  |
| Light Ice Pellets Mixed with Moderate Snow                         | 10 minutes              | 5 minutes         |                          |  |  |  |
| Light Ice Pellets Mixed with Light or Moderate<br>Freezing Drizzle | 7 minutes               | 5 minutes         | Caution:<br>No allowance |  |  |  |
| Light Ice Pellets Mixed with Light Freezing Rain                   | 7 minutes               | 5 minutes         | times currently<br>exist |  |  |  |
| Light Ice Pellets Mixed with Light Rain                            | 7 minutes <sup>3</sup>  |                   |                          |  |  |  |
| Light Ice Pellets Mixed with Moderate Rain                         |                         |                   |                          |  |  |  |
| Moderate Ice Pellets (or Small Hail) <sup>4</sup>                  | 5 minutes               | 5 minutes         |                          |  |  |  |

#### NOTES

- 1 These allowance times are for use with aircraft with rotation speeds of 100 knots or greater.
- 2 Ensure that the lowest operational use temperature (LOUT) is respected.
- 3 No allowance times exist in this condition for temperatures below 0°C; consider use of light ice pellets mixed with light freezing rain.
- If no intensity is reported with small hail, use the "moderate ice pellets or small hail" allowance times. If an intensity is reported with small hail, the ice pellet condition with the equivalent intensity can be used, e.g. if light small hail is reported, the "light ice pellets" allowance times can be used. This also applies in mixed conditions, e.g. if light small hail mixed with light snow is reported, use the "light ice pellets mixed with light snow" allowance times.

#### CAUTIONS

- Fluids used during ground de/anti-icing do not provide in-flight icing protection.
- Allowance time cannot be extended by an inspection of the aircraft critical surfaces.

Takeoff is allowed up to 90 minutes after start of fluid application if the precipitation stops at or before the
allowance time expires and does not restart. The OAT must not decrease during the 90 minutes to use this
guidance in conditions of light ice pellets mixed with either: light or moderate freezing drizzle, light freezing
rain, or light rain.

**Original Issue** 

Page 56 of 107

#### Table 16.2: 2016-17 FAA Type III Ice Pellet Allowance Time Table

#### **FAA Holdover Time Guidelines**

Winter 2016-2017

#### TABLE 5. ICE PELLET AND SMALL HAIL ALLOWANCE TIMES FOR SAE TYPE III FLUIDS<sup>1</sup>

This table is for use with SAE Type III undiluted (100/0) fluids applied unheated only

| Provide the Provide Handler                                        | Outside Air Temperature |                   |                          |  |  |  |
|--------------------------------------------------------------------|-------------------------|-------------------|--------------------------|--|--|--|
| Precipitation Type                                                 | -5°C and above          | Below -5 to -10°C | Below -10°C <sup>2</sup> |  |  |  |
| Light Ice Pellets                                                  | 10 minutes              | 10 minutes        |                          |  |  |  |
| Light Ice Pellets Mixed with Light Snow                            | 10 minutes              | 10 minutes        |                          |  |  |  |
| Light Ice Pellets Mixed with Moderate Snow                         | 10 minutes              | 5 minutes         |                          |  |  |  |
| Light Ice Pellets Mixed with Light or Moderate<br>Freezing Drizzle | 7 minutes               | 5 minutes         | Caution:<br>No allowance |  |  |  |
| Light Ice Pellets Mixed with Light Freezing Rain                   | 7 minutes 5 minutes     |                   | times currently<br>exist |  |  |  |
| Light Ice Pellets Mixed with Light Rain                            | 7 minutes <sup>3</sup>  |                   |                          |  |  |  |
| Light Ice Pellets Mixed with Moderate Rain                         |                         |                   |                          |  |  |  |
| Moderate Ice Pellets (or Small Hail) <sup>4</sup>                  | 5 minutes               | 5 minutes         |                          |  |  |  |

THE RESPONSIBILITY FOR THE APPLICATION OF THESE DATA REMAINS WITH THE USER

#### NOTES

- 1 These allowance times are for use with aircraft with rotation speeds of 100 knots or greater.
- 2 Ensure that the lowest operational use temperature (LOUT) is respected.
- 3 No allowance times exist in this condition for temperatures below 0 °C; consider use of light ice pellets mixed with light freezing rain.
- 4 If no intensity is reported with small hail, use the "moderate ice pellets or small hail" allowance times. If an intensity is reported with small hail, the ice pellet condition with the equivalent intensity can be used, e.g. if light small hail is reported, the "light ice pellets" allowance times can be used. This also applies in mixed conditions, e.g. if light small hail mixed with light snow is reported, use the "light ice pellets mixed with light snow" allowance times.

#### CAUTIONS:

- Fluids used during ground de/anti-icing do not provide in-flight icing protection.
- This table is for departure planning only and should be used in conjunction with pretakeoff check procedures.
- Allowance time cannot be extended by an inspection of the aircraft critical surfaces.
- Takeoff is allowed up to 90 minutes after start of fluid application if the precipitation stops at or before the allowance time expires and does not restart. The OAT must not decrease during the 90 minutes to use this guidance in conditions of light ice pellets mixed with either: light or moderate freezing drizzle, light freezing rain, or light rain.

**Original Issue** 

Page 44 of 95

#### Table 16.3: 2016-17 TC Type IV Ice Pellet Allowance Time Table

#### **Transport Canada Holdover Time Guidelines** Winter 2016-2017 TABLE 6 SAE TYPE IV FLUID ICE PELLET AND SMALL HAIL ALLOWANCE TIMES<sup>1</sup> This table is for use with SAE Type IV undiluted (100/0) fluids only. All Type IV fluids are propylene glycol based with the exception of Clariant Max Flight AVIA, Clariant Safewing EG IV NORTH, Dow EG106 and LNT Solutions E450 which are ethylene glycol based. THE RESPONSIBILITY FOR THE APPLICATION OF THESE DATA REMAINS WITH THE USER **Outside Air Temperature** Precipitation Type -5°C and Below -5 Below -16 Below -10 above to -10°C to -16°C to -22°C<sup>2</sup> Light Ice Pellets 50 minutes 30 minutes 30 minutes<sup>3</sup> 30 minutes<sup>3</sup> Light Ice Pellets Mixed with Light Snow 40 minutes 15 minutes 15 minutes<sup>3</sup> Light Ice Pellets Mixed with Moderate Snow 20 minutes 7 minutes 5 minutes<sup>3</sup> Light Ice Pellets Mixed with Light or Moderate 25 minutes 10 minutes Freezing Drizzle Light Ice Pellets Mixed with Light Freezing Rain 25 minutes 10 minutes Caution: No allowance times currently exist Light Ice Pellets Mixed with Light Rain 25 minutes<sup>4</sup> Light Ice Pellets Mixed with Moderate Rain 25 minutes<sup>5</sup> Moderate Ice Pellets (or Small Hail)6 10 minutes<sup>3</sup> 10 minutes<sup>8</sup> 25 minutes7 10 minutes Moderate Ice Pellets (or Small Hail)<sup>6</sup> Mixed with 10 minutes 7 minutes Caution: Moderate Freezing Drizzle No allowance Moderate Ice Pellets (or Small Hail)<sup>6</sup> Mixed with times currently exist 10 minutes⁵ Moderate Rain NOTES These allowance times are for use with aircraft with rotation speeds of 100 knots or greater. Ensure that the lowest operational use temperature (LOUT) is respected. 3 No allowance times exist for propylene glycol (PG) fluids when used on aircraft with rotation speeds less than 115 knots. (For these aircraft, if the fluid type is not known, assume zero allowance time.) No allowance times exist in this condition for temperatures below 0°C; consider use of light ice pellets mixed with light freezing rain. No allowance times exist in this condition for temperatures below 0°C. If no intensity is reported with small hail, use the "moderate ice pellets or small hail" allowance times. If an intensity is 5 6 reported with small hail, the ice pellet condition with the equivalent intensity can be used, e.g. if light small hail is reported, the "light ice pellets" allowance times can be used. This also applies in mixed conditions, e.g. if light small hail mixed with light snow is reported, use the "light ice pellets mixed with light snow" allowance times Allowance time is 15 minutes for propylene glycol (PG) fluids or when the fluid type is unknown 8 No allowance times exist for propylene glycol (PG) fluids in this condition for temperatures below -16°C. CAUTIONS

- Fluids used during ground de/anti-icing do not provide in-flight icing protection.
- · Allowance time cannot be extended by an inspection of the aircraft critical surfaces.
- Takeoff is allowed up to 90 minutes after start of fluid application if the precipitation stops at or before the
  allowance time expires and does not restart. The OAT must not decrease during the 90 minutes to use this
  guidance in conditions of light ice pellets mixed with either: light or moderate freezing drizzle, light freezing
  rain, light rain, or moderate rain.

Original Issue

Page 57 of 107

#### Table 16.4: 2016-17 FAA Type IV Ice Pellet Allowance Time Table

#### **FAA Holdover Time Guidelines**

#### Winter 2016-2017

#### TABLE 6. ICE PELLET AND SMALL HAIL ALLOWANCE TIMES FOR SAE TYPE IV FLUIDS<sup>1</sup>

This table is for use with SAE Type IV undiluted (100/0) fluids only. All Type IV fluids are propylene glycol based with the exception of Clariant Max Flight AVIA, Clariant Safewing EG IV NORTH, Dow EG106 and LNT E450 which are ethylene glycol based.

|                                                                                           | Outside Air Temperature |                      |                                          |                                    |  |  |
|-------------------------------------------------------------------------------------------|-------------------------|----------------------|------------------------------------------|------------------------------------|--|--|
| Precipitation Type                                                                        | -5°C and<br>above       | Below -5<br>to -10°C | Below -10<br>to -16°C                    | Below -16<br>to -22°C <sup>2</sup> |  |  |
| Light Ice Pellets                                                                         | 50 minutes              | 30 minutes           | 30 minutes <sup>3</sup>                  | 30 minutes <sup>3</sup>            |  |  |
| Light Ice Pellets Mixed with Light Snow                                                   | 40 minutes              | 15 minutes           | 15 minutes <sup>3</sup>                  |                                    |  |  |
| Light Ice Pellets Mixed with Moderate Snow                                                | 20 minutes              | 7 minutes            | 5 minutes <sup>3</sup>                   |                                    |  |  |
| Light Ice Pellets Mixed with Light or Moderate<br>Freezing Drizzle                        | 25 minutes              | 10 minutes           |                                          |                                    |  |  |
| Light Ice Pellets Mixed with Light Freezing Rain                                          | 25 minutes              | 10 minutes           | Caution:<br>No allowance times currently |                                    |  |  |
| Light Ice Pellets Mixed with Light Rain                                                   | 25 minutes⁴             | exist                |                                          |                                    |  |  |
| Light Ice Pellets Mixed with Moderate Rain                                                | 25 minutes⁵             |                      |                                          |                                    |  |  |
| Moderate Ice Pellets (or Small Hail) <sup>6</sup>                                         | 25 minutes <sup>7</sup> | 10 minutes           | 10 minutes <sup>3</sup>                  | 10 minutes <sup>8</sup>            |  |  |
| Moderate Ice Pellets (or Small Hail) <sup>6</sup> Mixed with<br>Moderate Freezing Drizzle | 10 minutes              | 7 minutes            |                                          | tion:                              |  |  |
| Moderate Ice Pellets (or Small Hail) <sup>6</sup> Mixed with<br>Moderate Rain             | 10 minutes <sup>5</sup> |                      |                                          | times currently<br>ist             |  |  |

THE RESPONSIBILITY FOR THE APPLICATION OF THESE DATA REMAINS WITH THE USER

#### NOTES

- 1 These allowance times are for use with aircraft with rotation speeds of 100 knots or greater.
- 2 Ensure that the lowest operational use temperature (LOUT) is respected.
- 3 No allowance times exist for propylene glycol (PG) fluids when used on aircraft with rotation speeds less than 115 knots. (For these aircraft, if the fluid type is not known, assume zero allowance time.)
- 4 No allowance times exist in this condition for temperatures below 0 °C; consider use of light ice pellets mixed with light
- freezing rain. 5 No allowance times exist in this condition for temperatures below 0 °C.
- 6 If no intensity is reported with small hail, use the "moderate ice pellets or small hail" allowance times. If an intensity is reported with small hail, the ice pellet condition with the equivalent intensity can be used, e.g. if light small hail is reported, the "light ice pellets" allowance times can be used. This also applies in mixed conditions, e.g. if light small hail mixed with light snow is reported, use the "light ice pellets mixed with light snow" allowance times.
- 7 Allowance time is 15 minutes for propylene glycol (PG) fluids or when the fluid type is unknown.
- 8 No allowance times exist for propylene glycol (PG) fluids in this condition for temperatures below -16 °C.

#### CAUTIONS:

- Fluids used during ground de/anti-icing do not provide in-flight icing protection.
- This table is for departure planning only and should be used in conjunction with pretakeoff check procedures.
- Allowance time cannot be extended by an inspection of the aircraft critical surfaces.
- Takeoff is allowed up to 90 minutes after start of fluid application if the precipitation stops at or before the allowance time expires and does not restart. The OAT must not decrease during the 90 minutes to use this guidance in conditions of light ice pellets mixed with either: light or moderate freezing drizzle, light freezing rain, light rain, or moderate rain.

**Original Issue** 

Page 45 of 95

## 16.2 Future Research

The following sections describe higher priority areas of possible future wind tunnel testing and research. These areas of future research have been determined based on consultations with TC, the FAA, and NASA and through industry discussions, and as such they may not be directly linked to the research described in this report. These areas of research have been listed below for ease of reference and to maintain continuity in the year-to-year reporting.

#### **16.2.1 Substantiation of Ice Pellet Allowance Times with New Fluids**

Testing should continue to investigate different Type III and IV fluids to further substantiate the ice pellet allowance times. Testing should consider new fluids or fluids previously tested but with limited data.

### 16.2.2 Testing with the NASA LS-0417 Wing Section to Support Development of Type III Low-Speed Allowance Times

The extensive work conducted with the thin high-performance wing section has led to the development of a methodology for evaluating aerodynamic performance based on a lift loss scaling between the model results and the AS5900 aerodynamic acceptance test. It is recommended that the same methodology be used to develop a lift loss correlation for the LS-0417 wing section, which may be better suited for the development of low-speed Type III allowance times. Once a correlation has been developed, the Type III high-speed allowance times should be validated using the LS-0417 wing section and a low-speed ramp. Heated fluid tests should also be considered.

#### 16.2.3 Lift Losses at LOUT

Previous testing has shown that lift losses generally increase significantly at the lower temperatures. Currently no data is available below -22°C, and as a result, TC and the FAA will limit allowance times to -22°C for the winter of 2016-17 until data is available. Additional testing is recommended to obtain data close to the fluid LOUT to determine the aerodynamic effects of ice pellet contamination at these colder temperatures. Testing at these colder temperatures is challenging as these conditions do not occur frequently.

In addition, if resources permit, LNT E450 fluid should be tested at temperatures below -17°C to better understand the performance of this fluid compared to historically tested EG-based Type IV fluids at colder temperatures.

#### 16.2.4 Allowance Time Expansion

Previous testing has shown that the allowance times for Type IV and especially Type III fluids are conservative and have room for expansion. Testing should be conducted to obtain longer times and to include additional conditions for both Type III and Type IV fluids. Fluid-specific allowance times, or at a minimum PG and EG specific allowance times, may help facilitate this process.

#### 16.2.5 Analysis of METAR Data to Determine Conditions Requiring Guidance

A preliminary analysis done in 2015-16 and documented in TC report, TP 15340E, *Aircraft Ground Icing General Research Activities During the 2015 16 Winter* (2), has demonstrated that historical METAR data available online can be used to provide valuable insight into the frequency distribution of precipitation conditions occurring at airports, more specifically conditions related to ground icing and ice pellets or small hail. It is recommended that a thorough and comprehensive analysis of 20+ representative airports be conducted. This data will be useful for guiding effective HOT and ice pellet-related research efforts for the future.

## REFERENCES

- Ruggi, M., Wind Tunnel Trials to Examine Anti-Icing Fluid Flow-Off Characteristics and to Support the Development of Ice Pellet Allowance Times, Winters 2009-10 to 2012-13, APS Aviation Inc., Transportation Development Centre, Montreal, November 2013, TP 15232E, XX (to be published).
- 2. APS Aviation Inc., *Aircraft Ground Icing General Research Activities During the* 2015-16 Winter, APS Aviation Inc., Transportation Development Centre, Montreal, January 2017, TP 15340E, XX (to be published).

This page intentionally left blank.

#### APPENDIX A

#### TRANSPORTATION DEVELOPMENT CENTRE WORK STATEMENT EXCERPT – AIRCRAFT & ANTI-ICING FLUID WINTER TESTING 2015-16

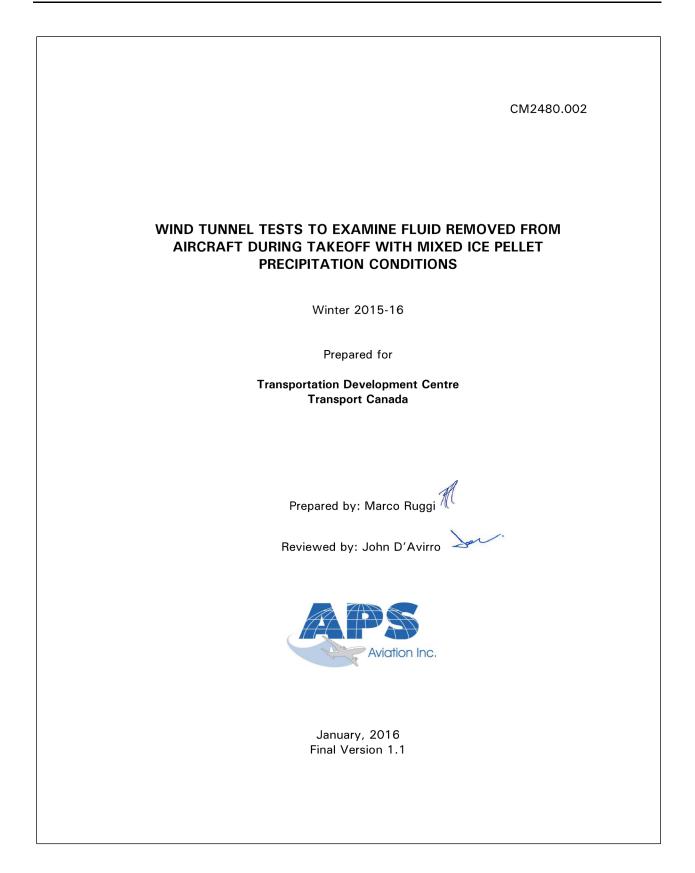
#### TRANSPORTATION DEVLOPMENT CENTRE WORK STATEMENT EXCERPT – AIRCRAFT & ANTI-ICING FLUID WINTER TESTING 2015-16

#### **3.27 Wind Tunnel Testing to Refine Allowance Times**

Note: The NRC facility costs associated with testing at M46 are not included in this task and are dealt with directly with TC through a M.O.U. agreement with NRC;

- a) Coordinate with staff of NRC M-46 for scheduling and to organize any modifications to the wind tunnel, model, or related equipment;
- b) Develop a procedure and test plan with the NRC staff that operates the PIWT. It is anticipated that testing will be conducted over a period of two weeks. It is anticipated that much of the testing will be conducted during overnight hours;

The typical procedure is described as follows, but may be modified to address specific testing objectives. Prior to starting each test event, correlation testing is required to calibrate the TC model and to demonstrate repeatability. Wind tunnel tests will be performed with ethylene glycol and propylene glycol anti-icing fluids at below freezing temperatures. Tests will simulate low speed or high speed takeoffs in accordance with the speed and angle of attack profiles provided by TDC and airframe manufacturers. The simulated take-off profile may target the clean wing stall angle as the maximum angle of attack in order to obtain CLmax data. During contaminated test runs, a baseline fluid only case may be run immediately before, or after the contaminated test run to provide a direct correlation of the results. High resolution photos will be taken of the fluid motion at the leading and trailing edges of the wing at a rate of about 3 frames per second, with lighting adequate to see the fluid waves and ripples of about 1mm in height, even when the wing is at maximum angle of attack. Observers will document the appearance of fluid on the wing during the simulated takeoff run and climb of the aircraft by analyzing the photographic records. The testing team will collect, among other things, the following data during the tests: type and amount of fluid applied, type and rate of contamination applied, and extent of fluid contamination prior to the test run;


- c) Perform wind tunnel tests (3 days) to validate the existing Type III fluid allowance times for use with the newly certified anti-icing fluid;
- d) Perform wind tunnel tests (4 days) to validate the existing Type IV fluid allowance times for use with the newly certified anti-icing fluids, or with fluids for which data is lacking;

- e) Perform wind tunnel tests (3 days) to expand the ice pellet allowance time table format to include additional conditions that may be of operational concern or of high occurrence;
- f) Analyze data; and
- g) Report the findings, and prepare presentation material for the SAE G-12 meeting.

## APPENDIX B

PROCEDURE:

WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLET PRECIPITATION CONDITIONS



# WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLET **PRECIPITATION CONDITIONS**

#### 1. BACKGROUND

In 2005-06, the inability for operators to release aircraft in ice pellet conditions led TC and FAA to begin a research campaign to develop allowance times for these conditions. Developing holdover times was not feasible due to the properties of the ice pellets; they remain embedded in the fluid and take long to dissolve as compared to snow which is immediately absorbed and dissolved. Research was initiated by live aircraft testing with the NRC Falcon 20 in Ottawa Ontario, and later evolved to testing in a more controlled environment with the NRC Propulsion Icing Wind Tunnel also in Ottawa Ontario.

The early testing in 2005-06 with the Falcon 20 primarily used visual observations to evaluate fluid flow off. During the Falcon 20 work the wing was anti-iced, exposed to contamination, and aborted take-off runs were performed allowing researchers on-board to observe and evaluate the fluid flow-off. Testing in 2006-07 began in the propulsion icing wind tunnel (PIWT) allowing aerodynamic data to be used for evaluating fluid flow-off performance. The PIWT also allowed for a more controlled environment less susceptible to the elements.

The work continued each year, and the test methods and equipment improved allowing for real-time data analysis, better repeatability, and overall greater confidence in the results. The work conducted by FAA/TC was presented by APS to G-12 AWG and HOT Committee yearly since 2006. Additional presentations were also given at the AWG in May 2012 and May 2013 by NASA and NRC which focused on the extensive calibration and characterization work performed with a generic thin high performance airfoil. This work also helped increase confidence in how the data was used to help support TC/FAA rule-making. A detailed account of the more recent work conducted is included in the report, TP 15232E, "Wind Tunnel Trials to Examine Anti-Icing Fluid Flow-Off Characteristics and to Support the Development of Ice Pellet Allowance Times, Winter 2009-10 to 2012-13" (1).

Following the extensive calibration and characterization efforts, ice pellet allowance time testing resumed in 2013-14. Testing was expected to continue during the winter of 2014-15, however due to noise abatement issues, the PIWT was unavailable for overnight testing; therefore no ice pellet testing was conducted. Instead, a separate project lead by EASA was conducted in 2014-15

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 2 of 59

during daytime operating hours to evaluate the effects of anti-icing fluid on unpowered elevator forces.

The Ice Pellet Allowance Time research has helped further develop and improve the PIWT facility. As a result, a new medium is now available for aerodynamic testing of aircraft ground icing fluids with or without contamination in a fullscale format. Several other ground deicing projects have been ongoing as a result of industry requests and are expected to continue. The PIWT has evolved into a multidisciplinary facility; however it continues to be the primary source for the development and further refinement of the ground deicing ice pellet allowance time guidance material.

For the Winter 2015-16, the primary focus of testing will be on the ice pellet allowance time validation and development.

#### 2. **OBJECTIVES**

The objective of this testing is to conduct aerodynamic testing with a thin high performance airfoil to:

- Substantiate the current Type IV ice pellet allowance times with new fluids and at temperatures close to the lowest operational use temperature (LOUT);
- Substantiate the current Type III ice pellet allowance times with new fluids, and to investigate lower rotation speeds (80 knots) and application methods (hot vs. cold); and
- Expand the current Type IV ice pellet allowance times to include conditions more commonly reported by METAR and to further develop the current mixed ice pellet and snow guidance;

To satisfy these objectives, a thin high performance wing section (Figure 2.1) will be subjected to a series of tests in the NRC PIWT. The dimensions indicated are in inches. This wing section was constructed by NRC in 2009 specifically for the conduct of these tests following extensive consultations with an airframe manufacturer to ensure a representative thin high performance design.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.doc Final Version 1.1, January 16

Page 3 of 59

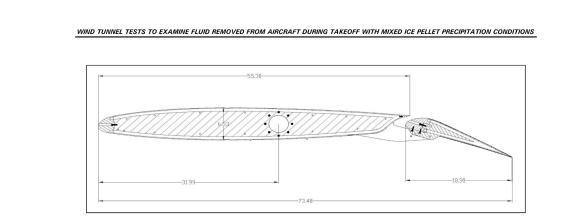



Figure 2.1: Thin High Performance Wing Section

Ten days of testing over a period of three weeks have been scheduled for the conduct of these tests. The available testing days will be from January 18<sup>th</sup> to February 5<sup>th</sup> (see Figure 2.2). Testing will likely be conducted during overnight periods (i.e. 10 pm - 6 am), unless temperatures are suitable for day/evening testing. The weekends will be considered only if deemed necessary. The first day will be dedicated to setup and calibration of the rain sprayer and ice pellet and snow dispensers; time permitting testing will begin as per the test plan. The time required for the setup and calibration will be evenly deducted from the other objectives in order to still meet the ten day testing plan. The precipitation conditions to be calibrated could include the following:

- ZR 25g/dm<sup>2</sup>/h
- R 25g/dm<sup>2</sup>/h
- R 75g/dm<sup>2</sup>/h
- ZD 5g/dm<sup>2</sup>/h
- ZD 13g/dm<sup>2</sup>/h
- SN 10g/dm<sup>2</sup>/h
- SN 25g/dm<sup>2</sup>/h
- IP 25g/dm<sup>2</sup>/h
- IP 75g/dm<sup>2</sup>/h

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         | JANUARY 2016                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                             |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
| Sunday                                                                                                                                                                                                                                               | Monday                                                                                                                                                                                                                                                                       | Tuesday                                                                                                                                                                                                                                 | Wednesday                                                                                                                                                                                       | Thursda y                                                                                                                                                            | Friday<br>1                                                                                                                 | Satur |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                                                                             |       |
|                                                                                                                                                                                                                                                      | 3 4                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                       | 6                                                                                                                                                                                               | 7                                                                                                                                                                    | 8                                                                                                                           |       |
|                                                                                                                                                                                                                                                      | NRC back from holidays                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                                                                             |       |
| 1                                                                                                                                                                                                                                                    | 0 11                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                                      | 13                                                                                                                                                                                              | 14                                                                                                                                                                   | 15                                                                                                                          |       |
| 1                                                                                                                                                                                                                                                    | 7 18                                                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                      | 20                                                                                                                                                                                              | 21                                                                                                                                                                   | Pack up truck in YUL                                                                                                        |       |
|                                                                                                                                                                                                                                                      | TEST DAY 1                                                                                                                                                                                                                                                                   | TEST DAY 2                                                                                                                                                                                                                              | TEST DAY 3                                                                                                                                                                                      | TEST DAY 4                                                                                                                                                           | TEST DAY 5                                                                                                                  |       |
| Leave YUL for YOW                                                                                                                                                                                                                                    | TESTING<br>ACTIVITY<br>TBD                                                                                                                                                                                                                                                   | TESTING<br>ACTIVITY<br>TBD                                                                                                                                                                                                              | TESTING<br>ACTIVITY<br>TBD                                                                                                                                                                      | TESTING<br>ACTIVITY<br>TBD                                                                                                                                           | TESTING<br>ACTIVITY<br>TBD                                                                                                  |       |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                                                                             |       |
| 2                                                                                                                                                                                                                                                    | 4 25<br>TEST DAY 6                                                                                                                                                                                                                                                           | 26<br>TEST DAY 7                                                                                                                                                                                                                        | 27<br>TEST DAY 8                                                                                                                                                                                | 28<br>TEST DAY 9                                                                                                                                                     | 29<br>TEST DAY 10                                                                                                           |       |
|                                                                                                                                                                                                                                                      | TESTING<br>ACTIVITY                                                                                                                                                                                                                                                          | TESTING<br>ACTIVITY                                                                                                                                                                                                                     | TESTING<br>ACTIVITY                                                                                                                                                                             | TESTING<br>ACTIVITY                                                                                                                                                  | TESTING<br>ACTIVITY                                                                                                         |       |
|                                                                                                                                                                                                                                                      | TBD                                                                                                                                                                                                                                                                          | TBD                                                                                                                                                                                                                                     | TBD                                                                                                                                                                                             | TBD                                                                                                                                                                  | TBD                                                                                                                         |       |
| 3                                                                                                                                                                                                                                                    | 1 FEB 1<br>SPARE DAY 11                                                                                                                                                                                                                                                      | 2-Feb<br>SPARE DAY 12                                                                                                                                                                                                                   | FEB 3<br>SPARE DAY 13                                                                                                                                                                           | FEB 4<br>SPARE DAY 14                                                                                                                                                | FEB 5<br>SPARE DAY 15                                                                                                       |       |
|                                                                                                                                                                                                                                                      | TBD                                                                                                                                                                                                                                                                          | TBD                                                                                                                                                                                                                                     | TBD                                                                                                                                                                                             | TBD                                                                                                                                                                  | TBD                                                                                                                         |       |
|                                                                                                                                                                                                                                                      | 160                                                                                                                                                                                                                                                                          | 160                                                                                                                                                                                                                                     | 100                                                                                                                                                                                             |                                                                                                                                                                      | 180                                                                                                                         |       |
| Testing will be conducte<br>Testing team will be JD,                                                                                                                                                                                                 | g, however, weekend may b<br>d during overnight periods (1<br>MR, DY, BB, CB, BG & YC<br>b 1-5) should rescheduling                                                                                                                                                          | 10:00 pm - 6:00 am)<br>DW x 4                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                                                                             |       |
| Anticipate Mon-Fri testin<br>Festing will be conducte<br>Festing team will be JD,                                                                                                                                                                    | d during overnight periods (1<br>MR, DY, BB, CB, BG & YC                                                                                                                                                                                                                     | 10:00 pm - 6:00 am)<br>DW x 4<br>be needed due to tempera                                                                                                                                                                               |                                                                                                                                                                                                 | TIES                                                                                                                                                                 |                                                                                                                             |       |
| Anticipate Mon-Fri testin<br>Testing will be conducte<br>Festing team will be JD,<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION                                                                                                              | d during overnight periods (1<br>MR, DY, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br>TEST DAY 1                                                                                                                                                                        | 10:00 pm - 6:00 am)<br>DW x 4<br>be needed due to tempera<br>TEST DAY 2                                                                                                                                                                 | tures.<br>TING ACTIVII<br>TEST DAY 3                                                                                                                                                            | TEST DAY 4                                                                                                                                                           | TEST DAY 5                                                                                                                  |       |
| hrticipate Mon-Fri testif<br>Festing will be conducte<br>Festing team will be J.D.<br>Spare days available (Fe<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IP/SN Dispensers<br>(Will be done on first                                        | d during overnight periods ()<br>MR, DY, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br>TEST DAY 1<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 1 OF 4)                                                                                                               | 10:00 pm - 6:00 am)<br>WW x 4<br>be needed due to tempera<br>TEST DAY 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 2 0F 4)                                                                                                        | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TUV)<br>(DAY 3 OF 4)                                                                                                   | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 4 OF 4)                                                                                                  | 7EST DAY 5<br>TYPE III IP<br>VALIDATION<br>(DAY 1 OF 3)                                                                     |       |
| hrlicipate Mon-Fri testir<br>Festing will be conducte<br>festing team will be JD,<br>spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IP/SN Dispensers                                                                   | d during overnight periods (1<br>MR, DY, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br>TEST DAY 1<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)                                                                                                                               | 10:00 pm - 6:00 am)<br>DW x 4<br>be needed due to tempera<br>TES<br>TEST DA Y 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)                                                                                                                | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)                                                                                                                   | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)                                                                                                                  | TYPE III IP<br>VALIDATION                                                                                                   |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DY, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br>TEST DAY 1<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 1 OF 4)                                                                                                               | 10:00 pm - 6:00 am)<br>WW x 4<br>be needed due to tempera<br>TEST DAY 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 2 0F 4)                                                                                                        | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TUV)<br>(DAY 3 OF 4)                                                                                                   | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 4 OF 4)                                                                                                  | TYPE III IP<br>VALIDATION<br>(DAY 1 OF 3)                                                                                   |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DV, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br>TEST DAY 1<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 10 F4)<br>above-5 ° C<br>TEST DAY 6<br>TYPE III IP<br>VALIDATION                                                      | 10:00 pn - 6:00 an)<br>Wx 4<br>be needed due to tempera<br>TESS<br>TEST DAY 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 2 0F 4)<br>below-5 to 10 * C<br>TEST DAY 7<br>TYPE III IP<br>VALIDATION                                  | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 30 64)<br>below-10 ° C<br>TEST DAY 8<br>IP EXPANSION<br>(IP/SN AND METAR)                                 | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 40 F4)<br>below-25 · C<br>TEST DAY 9<br>IP EXPANSION<br>(IP/SN AND METAR)                                | TYPE III IP<br>VALIDATION<br>(DAY 10F 3)<br>above -5°C<br>TEST DAY 10<br>IP EXPANSION<br>(IP/SN AND METAR)                  |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DV, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br>TEST DAY 1<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 10 F4)<br>above -5 - C<br>TEST DAY 6<br>TYPE III IP                                                                   | 10:00 pm - 6:00 am)<br>W x 4<br>be needed due to tempera<br>TESS<br>TEST DAY 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 2 0F 4)<br>below-5 to 10 · C<br>TEST DAY 7<br>TYPE III IP                                               | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 30 F4)<br>below -10 - C<br>TEST DAY 8<br>IP EXPANSION                                                     | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 4 OF 4)<br>below-25 * C<br>TEST DAY 9<br>IP EXPANSION                                                    | TYPE III IP<br>VALIDATION<br>(DAY 1 OF 3)<br>above -5°C<br>TEST DAY 10<br>IP EXPANSION                                      |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DV, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br><b>TEST DAY 1</b><br>IP VALIDATION AND<br>NEW FLUIDS (TTV)<br>(DAY 10 F4)<br>above -5 · C<br><b>TEST DAY 6</b><br><b>TYPE III IP</b><br>VALIDATION<br>(DAY 2 0F 3)<br>-5 to -10°C | 10:00 pn - 6:00 an)<br>Wx 4<br>be needed due to tempera<br>TESS<br>TEST DA Y 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 2 0F 4)<br>below-5 to 10 · C<br>TEST DA Y 7<br>TYPE III IP<br>VALIDATION<br>(DAY 1 0F 3)<br>below -10°C | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 30 F4)<br>below -10 - C<br>TEST DAY 8<br>IP EXPANSION<br>(IPISN AND METAR)<br>(DAY 10 F3)<br>above -5°C   | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 40 F4)<br>below-25 · C<br>TEST DAY 9<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 20 F3)                 | TYPE III IP<br>VALIDATION<br>(DAY 1 0F 3)<br>above -5°C<br>TEST DAY 10<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 3 0F 3) |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DV, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br>TEST DAY 1<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 10 F4)<br>above -5 · C<br>TEST DAY 6<br>TYPE III IP<br>VALIDATION<br>(DAY 20 F3)                                      | 10:00 pn - 6:00 an)<br>Wx 4<br>be needed due to tempera<br>TESS<br>TEST DA Y 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 2 0F 4)<br>below-5 to 10 · C<br>TEST DA Y 7<br>TYPE III IP<br>VALIDATION<br>(DAY 1 0F 3)<br>below -10°C | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 30 F4)<br>below -10 - C<br>TEST DAY 8<br>IP EXPANSION<br>(IPISN AND METAR)<br>(DAY 10 F3)<br>above -5°C   | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 40 F4)<br>below-25 · C<br>TEST DAY 9<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 20 F3)                 | TYPE III IP<br>VALIDATION<br>(DAY 1 0F 3)<br>above -5°C<br>TEST DAY 10<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 3 0F 3) |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DV, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br><b>TEST DAY 1</b><br>IP VALIDATION AND<br>NEW FLUIDS (TTV)<br>(DAY 10 F4)<br>above -5 · C<br><b>TEST DAY 6</b><br><b>TYPE III IP</b><br>VALIDATION<br>(DAY 2 0F 3)<br>-5 to -10°C | 10:00 pm - 6:00 am)<br>W x 4<br>be needed due to tempera<br>TESS<br>TEST DAY 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 0F 4)<br>below-5 to 10 · C<br>TEST DAY 7<br>TYPE III IP<br>VALIDATION<br>(DAY 10 F3)<br>below -10°C     | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 30 F4)<br>below -10 - C<br>TEST DAY 8<br>IP EXPANSION<br>(IPISN AND METAR)<br>(DAY 10 F3)<br>above -5°C   | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 40 F4)<br>below-25 ° C<br>TEST DAY 9<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 20 F3)<br>-5 f0 -10° C | TYPE III IP<br>VALIDATION<br>(DAY 1 0F 3)<br>above -5°C<br>TEST DAY 10<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 3 0F 3) |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DV, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br><b>TEST DAY 1</b><br>IP VALIDATION AND<br>NEW FLUIDS (TTV)<br>(DAY 10 F4)<br>above -5 · C<br><b>TEST DAY 6</b><br><b>TYPE III IP</b><br>VALIDATION<br>(DAY 2 0F 3)<br>-5 to -10°C | 10:00 pm - 6:00 am)<br>W x 4<br>be needed due to tempera<br>TESS<br>TEST DAY 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 0F 4)<br>below-5 to 10 · C<br>TEST DAY 7<br>TYPE III IP<br>VALIDATION<br>(DAY 10 F3)<br>below -10°C     | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 30 F 4)<br>Delow -10 - C<br>TEST DAY 8<br>IP EXPANSION<br>(IPISN AND METAR)<br>(DAY 10 F 3)<br>above -5°C | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 40 F4)<br>below-25 ° C<br>TEST DAY 9<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 20 F3)<br>-5 f0 -10° C | TYPE III IP<br>VALIDATION<br>(DAY 1 0F 3)<br>above -5°C<br>TEST DAY 10<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 3 0F 3) |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DV, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br><b>TEST DAY 1</b><br>IP VALIDATION AND<br>NEW FLUIDS (TTV)<br>(DAY 10 F4)<br>above -5 · C<br><b>TEST DAY 6</b><br><b>TYPE III IP</b><br>VALIDATION<br>(DAY 2 0F 3)<br>-5 to -10°C | 10:00 pm - 6:00 am)<br>W x 4<br>be needed due to tempera<br>TESS<br>TEST DAY 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 0F 4)<br>below-5 to 10 · C<br>TEST DAY 7<br>TYPE III IP<br>VALIDATION<br>(DAY 10 F3)<br>below -10°C     | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 30 F 4)<br>Delow -10 - C<br>TEST DAY 8<br>IP EXPANSION<br>(IPISN AND METAR)<br>(DAY 10 F 3)<br>above -5°C | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 40 F4)<br>below-25 ° C<br>TEST DAY 9<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 20 F3)<br>-5 f0 -10° C | TYPE III IP<br>VALIDATION<br>(DAY 1 0F 3)<br>above -5°C<br>TEST DAY 10<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 3 0F 3) |       |
| Inticipate Mon-Fri testin<br>Testing will be d.D.<br>Easting will be d.D.<br>Spare days available (Fo<br>SETUP &<br>CALIBRATION<br>of Rain Sprayer and<br>IPISN Dispensers<br>(Will be dono in first<br>day. Time req'd to be<br>deducted evenlyfrom | d during overnight periods ()<br>MR, DV, BB, CB, BG & YC<br>bb 1-5) should rescheduling<br><b>TEST DAY 1</b><br>IP VALIDATION AND<br>NEW FLUIDS (TTV)<br>(DAY 10 F4)<br>above -5 · C<br><b>TEST DAY 6</b><br><b>TYPE III IP</b><br>VALIDATION<br>(DAY 2 0F 3)<br>-5 to -10°C | 10:00 pm - 6:00 am)<br>W x 4<br>be needed due to tempera<br>TESS<br>TEST DAY 2<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 0F 4)<br>below-5 to 10 · C<br>TEST DAY 7<br>TYPE III IP<br>VALIDATION<br>(DAY 10 F3)<br>below -10°C     | tures.<br>TING ACTIVIT<br>TEST DAY 3<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 30 F 4)<br>Delow -10 - C<br>TEST DAY 8<br>IP EXPANSION<br>(IPISN AND METAR)<br>(DAY 10 F 3)<br>above -5°C | TEST DAY 4<br>IP VALIDATION AND<br>NEW FLUIDS (TIV)<br>(DAY 40 F4)<br>below-25 ° C<br>TEST DAY 9<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 20 F3)<br>-5 f0 -10° C | TYPE III IP<br>VALIDATION<br>(DAY 1 0F 3)<br>above -5°C<br>TEST DAY 10<br>IP EXPANSION<br>(IP/SN AND METAR)<br>(DAY 3 0F 3) |       |

#### 3. **TEST PLAN**

The NRC wind tunnel is an open circuit tunnel. The temperature inside the wind tunnel is dependent on the outside ambient temperature. Prior to testing, the weather should be monitored to ensure proper temperatures for testing.

Representative Type I/III/IV propylene and ethylene fluids in Neat form (standard mix for Type I) shall be evaluated against their uncontaminated performance.

A preliminary list of test objectives is shown in Table 3.1 (only Priority 1 and 2 objectives will be attempted unless indicated otherwise by TC/FAA directive). It should be noted that the order in which the tests will be carried out will be depend on weather conditions and TC/FAA directive. A detailed test matrix (subject to change) is shown in Table 3.2

### NOTE: The numbering of the test runs will be done in a sequential order starting with number 1.

A rating system has been developed for fluid and contamination tests, and will be filled out by the on-site experts when applicable. The overall rating will provide insight into the severity of the conditions observed. A test failure (failure to shed the fluid at time of rotation) shall be determined by the on-site experts based on residual contamination.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 6 of 59

| ltem<br># | Objective                                                    | Priority | Description                                                                                                                                                                             | # of<br>Days |
|-----------|--------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 0         | Setup and Precipitation Calibration                          | 1        | Setup of equipment and calibration of the rain sprayer and the ice<br>pellet and snow dispensers (to be done on the first day of testing)                                               | 0.5-1        |
| 1         | Dry Wing Baseline Repeatability                              | 1        | Baseline test at beginning of each day to ensure repeatability (part of NRC shakedown tests so no days allotted)                                                                        | N/A          |
| 2         | Type IV IP AT Validation<br>(New Fluids and LOUT)            | 1        | Substantiate current times with new fluids and at temperatures<br>close to LOUT                                                                                                         | 4            |
| 3         | Type III IP AT Validation<br>(New Fluids, Speeds, and Temps) | 1        | Substantiate current times with new fluids and to investigate lower rotation speeds (80kts) and application methods (hot vs. cold)                                                      | 3            |
| 4         | IP AT Expansion<br>(IP-/SN and IP-/SN-)                      | 2        | Expand the current Type IV ice pellet allowance times to include<br>conditions more commonly reported by METAR and to further<br>develop the current mixed ice pellet and snow guidance | 3            |
| 5         | Other R&D Activities                                         | 3        | Could be selected from item # 5.1 to 8.16                                                                                                                                               | 0            |
| 5.1       | Type II Fluid IP AT                                          |          | Testing to support the further development of a Type II IP AT table based on the 2008 CHS IP presentation                                                                               | -            |
| 5.2       | Evaluation of an APM Sensor                                  | -        | Testing an airfoil performance monitor (APM) to evaluate potential<br>for use in ground icing operations with and without fluids                                                        | -            |
| 5.3       | Heavy Snow                                                   | -        | Continue Heavy Snow Research comparing lift losses with<br>Light/Moderate Snow vs. Heavy Snow                                                                                           | -            |
| 5.4       | Heavy Contamination<br>(Aero vs. Visual Failure)             | -        | Continue work looking at aerodynamic failure vs. HOT defined<br>failure, and effect of surface roughness on lift degradation                                                            | -            |
| 5.5       | Tunnel Test Section Cooling System<br>Evaluation             | -        | Evaluate effectiveness of new wind tunnel cooling system and<br>potential effects on data results                                                                                       | -            |
| 5.6       | Effect of Viscosity on Fluid<br>Aerodynamics                 | -        | Evaluate effect of viscosity on aero flow-off to better understand<br>year to year differences with same fluid (test high and low visc)                                                 | -            |
| 5.7       | Fluid + Cont @ LOUT                                          | -        | Effect of contamination on fluid performance at LOUT with IP, SN,<br>ZF, Frost etc.                                                                                                     | -            |
| 5.8       | Small Hail                                                   | -        | Develop HOT Guidance for small hail. Requires consult with<br>meteorologist for specific conditions                                                                                     | -            |
| 5.9       | Simulate Frost in Wind Tunnel                                | -        | Attempt to simulate frost conditions in wind tunnel.                                                                                                                                    | -            |
| 5.10      | Flaps/Slats to Support YMX                                   | -        | Conduct flaps failure research to support UPS/SWA trials,<br>comparative fluid/cont. and possibly sandpaper tests                                                                       | -            |
| 5.11      | Mixed HOT Conditions                                         | -        | Develop HOT Guidance for mixed conditions i.e. ZR/SN, R/SN,<br>ZD/SN                                                                                                                    | -            |
| 5.12      | Snow on Un-protected Wing                                    | -        | Continue previous research                                                                                                                                                              | -            |
| 5.13      | 130-150 Knots IP Testing                                     | -        | Conduct IP testing at 130-150 knots or validate feasibility<br>MAY NEED TO MODIFY TUNNEL                                                                                                | -            |
| 5.14      | Windshield Washer Fluid Testing                              | -        | Conduct aero testing to support full testing conducted at Rockliffe<br>Flying Club in Ottawa                                                                                            | -            |
| 5.15      | Effect of Fluid Seepage                                      | -        | Evaluate the effect of fluid seepage on dry wing performance and repeatability                                                                                                          | -            |
| 5.16      | 2nd Wave of Fluid During Rotation                            | -        | Investigate the aero effects of the 2nd wave of fluid created from<br>fluid at the stagnation point which flows over the LE during rotation                                             | -            |
| 5.17      | Other                                                        | -        | Any potential suggestions from industry                                                                                                                                                 |              |

Total # of Days for Priority 1 Tests

\*Note only 10 days of testing are planned. The time required for the setup and calibration will be evenly deducted from the other Priority 1 objectives in order to still meet the ten day testing plan.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

11

Page 7 of 59

| Test Plan<br># | Objective                    | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid                   | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority | COMMENT                           |
|----------------|------------------------------|-----------------------|----------------|--------------------------|-----------------|--------------------|-------------------------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|----------|-----------------------------------|
| P001           | Baseline                     | 1                     | Dry Wing       | 8                        | 100             | any                | none                    | -                    | -                    | -                    | -                   |                           | -       | 1        | @start of day                     |
| P002           | Baseline                     | 1                     | Dry Wing       | 22                       | 80              | any                | none                    | -                    | -                    | -                    |                     | -                         | -       | 1        | @start of day                     |
| P003           | Type III Allowance Times     | 1                     | IP-            | 8                        | 100             | >-5                | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | -                   | 10                        | -       | 1        | Increase time if 80<br>passed     |
| P004           | Type III Allowance Times     | 1                     | IP Mod         | 8                        | 100             | >-5                | AeroClear MAX -<br>Cold | 75                   | -                    | -                    | -                   | 5                         | -       | 1        | Increase time if 80<br>passed     |
| P005           | Type III Allowance Times     | 1                     | IP- / ZR-      | 8                        | 100             | >-5                | AeroClear MAX -<br>Cold | 25                   | -                    | 25                   | -                   | 7                         | -       | 1        | Increase time if 80<br>passed     |
| P006           | Type III Allowance Times     | 1                     | IP- / R-       | 8                        | 100             | >0                 | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | 25                  | 7                         | -       | 1        | Increase time if 80<br>passed     |
| P007           | Type III Allowance Times     | 1                     | IP- / SN-      | 8                        | 100             | >-5                | AeroClear MAX -<br>Cold | 25                   | 10                   | -                    | -                   | 10                        | -       | 1        | Increase time if 80<br>passed     |
| P008           | Type III Allowance Times     | 1                     | IP- / SN       | 8                        | 100             | >-5                | AeroClear MAX -<br>Cold | 25                   | 25                   | -                    | -                   | 10                        | -       | 1        | Increase time if 80<br>passed     |
| P009           | Type III Allowance Times     | 1                     | IP-            | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | -                   | 10                        | -       | 1        | Increase time if 80<br>passed     |
| P010           | Type III Allowance Times     | 1                     | IP Mod         | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Cold | 75                   |                      |                      | -                   | 5                         | -       | 1        | Increase time if 80<br>passed     |
| P011           | Type III Allowance Times     | 1                     | IP- / ZR-      | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Cold | 25                   | -                    | 25                   | -                   | 5                         | -       | 1        | Increase time if 80<br>passed     |
| P012           | Type III Allowance Times     | 1                     | IP- / SN-      | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Cold | 25                   | 10                   | -                    | -                   | 10                        | -       | 1        | Increase time if 80<br>passed     |
| P013           | Type III Allowance Times     | 1                     | IP- / SN       | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Cold | 25                   | 25                   | -                    | -                   | 5                         | -       | 1        | could do 10-min o<br>more (80kts) |
| P014           | Type III Allowance Times     | 1                     | IP-            | 8                        | 100             | -10 to -20         | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | -                   | 10                        | -       | 1        | Increase time if 80<br>passed     |
| P015           | Type III Allowance Times     | 1                     | IP Mod         | 8                        | 100             | -10 to -20         | AeroClear MAX -<br>Cold | 75                   | -                    | -                    | -                   | 5                         | -       | 1        | Increase time if 80<br>passed     |
| P016           | Type III Allowance Times     | 1                     | IP-            | 8                        | 100             | -20 to -30         | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | -                   | 10                        | -       | 1        | Increase time if 80<br>passed     |
| P017           | Type III Allowance Times     | 1                     | IP Mod         | 8                        | 100             | -20 to -30         | AeroClear MAX -<br>Cold | 75                   | -                    | -                    | -                   | 5                         | -       | 1        | Increase time if 80<br>passed     |
| P018           | Type III Allowance Times     | 1                     | Fluid Only     | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Cold | -                    | -                    |                      | -                   |                           | -       | 1        | Baseline Test                     |
| P019           | Type III Allowance Times     | 1                     | Fluid Only     | 8                        | 100             | <-15               | AeroClear MAX -<br>Cold | -                    | -                    | -                    | -                   | -                         | -       | 1        | Baseline Test                     |
| P020           | Type III Allowance Times     | 1                     | IP-            | 8                        | 80              | >-5                | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | -                   | 10                        | -       | 1        |                                   |
| P021           | Type III Allowance Times     | 1                     | IP Mod         | 8                        | 80              | >-5                | AeroClear MAX -<br>Cold | 75                   |                      |                      | -                   | 5                         | -       | 1        |                                   |
| P022           | Type III Allowance Times     | 1                     | IP- / ZR-      | 8                        | 80              | >-5                | AeroClear MAX -<br>Cold | 25                   | -                    | 25                   | -                   | 7                         | -       | 1        |                                   |
| P023           | Type III Allowance Times     | 1                     | IP- / R-       | 8                        | 80              | >0                 | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | 25                  | 7                         | -       | 1        |                                   |
| P024           | Type III Allowance Times     | 1                     | IP- / SN-      | 8                        | 80              | >-5                | AeroClear MAX -<br>Cold | 25                   | 10                   | -                    | -                   | 10                        | -       | 1        |                                   |
| P025           | Type III Allowance Times     | 1                     | IP- / SN       | 8                        | 80              | >-5                | AeroClear MAX -<br>Cold | 25                   | 25                   | -                    | -                   | 10                        | -       | 1        |                                   |
|                | - the in circulating tilling |                       | ii - 7 GN      | <u> </u>                 |                 |                    | Cold                    |                      |                      | <u> </u>             |                     | 10                        |         |          |                                   |

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 8 of 59

APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20

| Test Plan<br># | Objective                | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid                   | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority                                           | COMMENT         |
|----------------|--------------------------|-----------------------|----------------|--------------------------|-----------------|--------------------|-------------------------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|----------------------------------------------------|-----------------|
| P026           | Type III Allowance Times | 1                     | IP-            | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | -                   | 10                        | -       | 1                                                  |                 |
| P027           | Type III Allowance Times | 1                     | IP Mod         | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Cold | 75                   | -                    |                      | -                   | 5                         | -       | 1                                                  |                 |
| P028           | Type III Allowance Times | 1                     | IP- / ZR-      | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Cold | 25                   | -                    | 25                   | -                   | 5                         | -       | 1                                                  |                 |
| P029           | Type III Allowance Times | 1                     | IP- / SN-      | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Cold | 25                   | 10                   | -                    | -                   | 10                        | -       | 1                                                  |                 |
| P030           | Type III Allowance Times | 1                     | IP- / SN       | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Cold | 25                   | 25                   | -                    | -                   | 5                         | -       | 1                                                  | could do 10-mir |
| P031           | Type III Allowance Times | 1                     | IP-            | 8                        | 80              | -10 to -20         | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | -                   | 10                        | -       | 1                                                  |                 |
| P032           | Type III Allowance Times | 1                     | IP Mod         | 8                        | 80              | -10 to -20         | AeroClear MAX -<br>Cold | 75                   | -                    | -                    | -                   | 5                         | -       | 1                                                  |                 |
| P033           | Type III Allowance Times | 1                     | IP-            | 8                        | 80              | -20 to -30         | AeroClear MAX -<br>Cold | 25                   | -                    | -                    | -                   | 10                        | -       | 1                                                  |                 |
| P034           | Type III Allowance Times | 1                     | IP Mod         | 8                        | 80              | -20 to -30         | AeroClear MAX -<br>Cold | 75                   | -                    | -                    | -                   | 5                         | -       | 1                                                  |                 |
| P035           | Type III Allowance Times | 1                     | Fluid Only     | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Cold | -                    | -                    | -                    | -                   | -                         | -       | 1                                                  | Baseline Test   |
| P035           | Type III Allowance Times | 1                     | Fluid Only     | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Cold | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test                                   | P035            |
| P036           | Type III Allowance Times | 1                     | Fluid Only     | 8                        | 80              | <-15               | AeroClear MAX -<br>Cold | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test                                   | P036            |
| P037           | Type III Allowance Times | 1                     | IP-            | 8                        | 100             | >-5                | AeroClear MAX -<br>Hot  | 25                   | -                    | -                    | -                   | 10                        | 2       | Increase<br>time if<br>80kts<br>passed             | P037            |
| P038           | Type III Allowance Times | 1                     | IP Mod         | 8                        | 100             | >-5                | AeroClear MAX -<br>Hot  | 75                   | -                    | -                    | -                   | 5                         | 2       | Increase<br>time if<br>80kts<br>passed             | P038            |
| P039           | Type III Allowance Times | 1                     | IP- / ZR-      | 8                        | 100             | >-5                | AeroClear MAX -<br>Hot  | 25                   | -                    | 25                   | -                   | 7                         | 2       | Increase<br>time if<br>80kts<br>passed             | P039            |
| P040           | Type III Allowance Times | 1                     | IP- / R-       | 8                        | 100             | >0                 | AeroClear MAX -<br>Hot  | 25                   | -                    | -                    | 25                  | 7                         | 2       | Increase<br>time if<br>80kts<br>passed             | P040            |
| P041           | Type III Allowance Times | 1                     | IP- / SN-      | 8                        | 100             | >-5                | AeroClear MAX -<br>Hot  | 25                   | 10                   | -                    | -                   | 10                        | 2       | Increase<br>time if<br>80kts<br>passed             | P041            |
| P042           | Type III Allowance Times | 1                     | IP-/SN         | 8                        | 100             | >-5                | AeroClear MAX -<br>Hot  | 25                   | 25                   | -                    | -                   | 10                        | 2       | Increase<br>time if<br>80kts<br>passed             | P042            |
| P043           | Type III Allowance Times | 1                     | IP-            | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Hot  | 25                   | -                    | -                    | -                   | 10                        | 2       | Increase<br>time if<br>80kts<br>passed             | P043            |
| P044           | Type III Allowance Times | 1                     | IP Mod         | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Hot  | 75                   | -                    | -                    | -                   | 5                         | 2       | time if<br>80kts<br>passed                         | P044            |
| P045           | Type III Allowance Times | 1                     | IP- / ZR-      | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Hot  | 25                   | -                    | 25                   | -                   | 5                         | 2       | Increase<br>time if<br>80kts<br>passed<br>Increase | P045            |
| P046           | Type III Allowance Times | 1                     | IP- / SN-      | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Hot  | 25                   | 10                   | -                    | -                   | 10                        | 2       | time if<br>80kts<br>passed                         | P046            |
| P047           | Type III Allowance Times | 1                     | IP- / SN       | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Hot  | 25                   | 25                   | -                    | -                   | 5                         | 2       | could do<br>10-min or<br>more<br>(80kts)           | P047            |

Page 9 of 59

| Test Plan<br># | Objective                         | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid                  | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority                               | COMMENT |
|----------------|-----------------------------------|-----------------------|----------------|--------------------------|-----------------|--------------------|------------------------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|----------------------------------------|---------|
| P048           | Type III Allowance Times          | 1                     | IP-            | 8                        | 100             | -10 to -20         | AeroClear MAX -<br>Hot | 25                   | -                    | -                    | -                   | 10                        | 2       | Increase<br>time if<br>80kts<br>passed | P048    |
| P049           | Type III Allowance Times          | 1                     | IP Mod         | 8                        | 100             | -10 to -20         | AeroClear MAX -<br>Hot | 75                   | -                    | -                    | -                   | 5                         | 2       | Increase<br>time if<br>80kts<br>passed | P049    |
| P050           | Type III Allowance Times          | 1                     | IP-            | 8                        | 100             | -20 to -30         | AeroClear MAX -<br>Hot | 25                   | -                    | -                    | -                   | 10                        | 2       | Increase<br>time if<br>80kts<br>passed | P050    |
| P051           | Type III Allowance Times          | 1                     | IP Mod         | 8                        | 100             | -20 to -30         | AeroClear MAX -<br>Hot | 75                   | -                    | -                    | -                   | 5                         | 2       | Increase<br>time if<br>80kts<br>passed | P051    |
| P052           | Type III Allowance Times          | 1                     | Fluid Only     | 8                        | 100             | -5 to -10          | AeroClear MAX -<br>Hot | -                    | -                    | -                    | -                   | -                         | 2       | Baseline<br>Test                       | P052    |
| P053           | Type III Allowance Times          | 1                     | Fluid Only     | 8                        | 100             | <-15               | AeroClear MAX -<br>Hot | -                    | -                    | -                    | -                   | -                         | 2       | Baseline<br>Test                       | P053    |
| P054           | Type III Allowance Times          | 1                     | IP-            | 8                        | 80              | >-5                | AeroClear MAX -<br>Hot | 25                   | -                    | -                    | -                   | 10                        | 2       |                                        | P054    |
| P055           | Type III Allowance Times          | 1                     | IP Mod         | 8                        | 80              | >-5                | AeroClear MAX -<br>Hot | 75                   | -                    | -                    | -                   | 5                         | 2       |                                        | P055    |
| P056           | Type III Allowance Times          | 1                     | IP- / ZR-      | 8                        | 80              | >-5                | AeroClear MAX -<br>Hot | 25                   | -                    | 25                   | -                   | 7                         | 2       |                                        | P056    |
| P057           | Type III Allowance Times          | 1                     | IP- / R-       | 8                        | 80              | >0                 | AeroClear MAX -<br>Hot | 25                   | -                    | -                    | 25                  | 7                         | 2       |                                        | P057    |
| P058           | Type III Allowance Times          | 1                     | IP- / SN-      | 8                        | 80              | >-5                | AeroClear MAX -<br>Hot | 25                   | 10                   | -                    |                     | 10                        | 2       |                                        | P058    |
| P059           | Type III Allowance Times          | 1                     | IP- / SN       | 8                        | 80              | >-5                | AeroClear MAX -<br>Hot | 25                   | 25                   | -                    | -                   | 10                        | 2       |                                        | P059    |
| P060           | Type III Allowance Times          | 1                     | IP-            | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Hot | 25                   | -                    | -                    | -                   | 10                        | 2       |                                        | P060    |
| P061           | Type III Allowance Times          | 1                     | IP Mod         | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Hot | 75                   | -                    | -                    | -                   | 5                         | 2       |                                        | P061    |
| P062           | Type III Allowance Times          | 1                     | IP- / ZR-      | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Hot | 25                   | -                    | 25                   | -                   | 5                         | 2       |                                        | P062    |
| P063           | Type III Allowance Times          | 1                     | IP- / SN-      | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Hot | 25                   | 10                   | -                    | -                   | 10                        | 2       |                                        | P063    |
| P064           | Type III Allowance Times          | 1                     | IP- / SN       | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Hot | 25                   | 25                   | -                    | -                   | 5                         | 2       | could do<br>10-min                     | P064    |
| P065           | Type III Allowance Times          | 1                     | IP-            | 8                        | 80              | -10 to -20         | AeroClear MAX -<br>Hot | 25                   | -                    | -                    | -                   | 10                        | 2       |                                        | P065    |
| P066           | Type III Allowance Times          | 1                     | IP Mod         | 8                        | 80              | -10 to -20         | AeroClear MAX -<br>Hot | 75                   | -                    | -                    | -                   | 5                         | 2       |                                        | P066    |
| P067           | Type III Allowance Times          | 1                     | IP-            | 8                        | 80              | -20 to -30         | AeroClear MAX -<br>Hot | 25                   | -                    | -                    |                     | 10                        | 2       |                                        | P067    |
| P068           | Type III Allowance Times          | 1                     | IP Mod         | 8                        | 80              | -20 to -30         | AeroClear MAX -<br>Hot | 75                   | -                    | -                    | -                   | 5                         | 2       |                                        | P068    |
| P069           | Type III Allowance Times          | 1                     | Fluid Only     | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Hot | -                    | -                    | -                    | -                   | -                         | 2       | Baseline<br>Test                       | P069    |
| P070           | Type III Allowance Times          | 1                     | Fluid Only     | 8                        | 80              | <-15               | AeroClear MAX -<br>Hot | -                    |                      | -                    |                     | -                         | 2       | Baseline<br>Test                       | P070    |
| P071           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | >-5                | LNT E450               | 25                   | -                    | -                    | -                   | 50                        | 1       |                                        | P071    |
| P072           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | >-5                | LNT E450               | 75                   | -                    | -                    | -                   | 25                        | 1       |                                        | P072    |
| P073           | Type IV Validation and New Fluids | 1                     | IP- / ZR-      | 8                        | 100             | >-5                | LNT E450               | 25                   | -                    | 25                   | -                   | 25                        | 1       |                                        | P073    |
| P068           | Type III Allowance Times          | 1                     | IP Mod         | 8                        | 80              | -20 to -30         | AeroClear MAX -<br>Hot | 75                   | -                    | -                    | -                   | 5                         | 2       |                                        | P068    |

| Test Plan<br># | Objective                         | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid                  | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority         | COMMENT |
|----------------|-----------------------------------|-----------------------|----------------|--------------------------|-----------------|--------------------|------------------------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|------------------|---------|
| P069           | Type III Allowance Times          | 1                     | Fluid Only     | 8                        | 80              | -5 to -10          | AeroClear MAX -<br>Hot | -                    |                      | -                    | -                   | -                         | 2       | Baseline<br>Test | P069    |
| P070           | Type III Allowance Times          | 1                     | Fluid Only     | 8                        | 80              | <-15               | AeroClear MAX -<br>Hot |                      |                      | -                    |                     | -                         | 2       | Baseline<br>Test | P070    |
| P071           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | >-5                | LNT E450               | 25                   | -                    | -                    | -                   | 50                        | 1       |                  | P071    |
| P072           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | >-5                | LNT E450               | 75                   | -                    | -                    | -                   | 25                        | 1       |                  | P072    |
| P073           | Type IV Validation and New Fluids | 1                     | IP- / ZR-      | 8                        | 100             | >-5                | LNT E450               | 25                   | -                    | 25                   | -                   | 25                        | 1       |                  | P073    |
| P074           | Type IV Validation and New Fluids | 1                     | IP- / R-       | 8                        | 100             | >0                 | LNT E450               | 25                   | -                    | -                    | 25                  | 25                        | 1       |                  | P074    |
| P075           | Type IV Validation and New Fluids | 1                     | IP- / SN-      | 8                        | 100             | >-5                | LNT E450               | 25                   | 10                   | -                    | -                   | 25                        | 1       |                  | P075    |
| P076           | Type IV Validation and New Fluids | 1                     | IP- / SN       | 8                        | 100             | >-5                | LNT E450               | 25                   | 25                   | -                    | -                   | 10                        | 1       |                  | P076    |
| P077           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | -5 to -10          | LNT E450               | 25                   | -                    | -                    | -                   | 30                        | 1       |                  | P077    |
| P078           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | -5 to -10          | LNT E450               | 75                   | -                    | -                    |                     | 10                        | 1       |                  | P078    |
| P079           | Type IV Validation and New Fluids | 1                     | IP- / ZR-      | 8                        | 100             | -5 to -10          | LNT E450               | 25                   | -                    | 25                   | -                   | 10                        | 1       |                  | P079    |
| P080           | Type IV Validation and New Fluids | 1                     | IP- / SN-      | 8                        | 100             | -5 to -10          | LNT E450               | 25                   | 10                   | -                    |                     | 15                        | 1       |                  | P080    |
| P081           | Type IV Validation and New Fluids | 1                     | IP- / SN       | 8                        | 100             | -5 to -10          | LNT E450               | 25                   | 25                   | -                    |                     | 7                         | 1       |                  | P081    |
| P082           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | -10 to -16         | LNT E450               | 25                   | -                    | -                    | -                   | 30                        | 1       |                  | P082    |
| P083           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | -10 to -16         | LNT E450               | 75                   | -                    | -                    | -                   | 10                        | 1       |                  | P083    |
| P084           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | -16 to -25         | LNT E450               | 25                   | -                    | -                    |                     | 30                        | 1       |                  | P084    |
| P085           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | -16 to -25         | LNT E450               | 75                   | -                    | -                    | -                   | 10                        | 1       |                  | P085    |
| P086           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | -5 to -10          | LNT E450               | -                    | -                    | -                    |                     | -                         | 1       | Baseline<br>Test | P086    |
| P087           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | <-15               | LNT E450               | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test | P087    |
| P088           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | >-5                | FCY 9311               | 25                   | -                    | -                    | -                   | 50                        | 1       |                  | P088    |
| P089           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | >-5                | FCY 9311               | 75                   |                      | -                    |                     | 25                        | 1       |                  | P089    |
| P090           | Type IV Validation and New Fluids | 1                     | IP- / ZR-      | 8                        | 100             | >-5                | FCY 9311               | 25                   | -                    | 25                   | -                   | 25                        | 1       |                  | P090    |
| P091           | Type IV Validation and New Fluids | 1                     | IP- / R-       | 8                        | 100             | >0                 | FCY 9311               | 25                   | -                    | -                    | 25                  | 25                        | 1       |                  | P091    |
| P092           | Type IV Validation and New Fluids | 1                     | IP- / SN-      | 8                        | 100             | >-5                | FCY 9311               | 25                   | 10                   | -                    |                     | 25                        | 1       |                  | P092    |
| P093           | Type IV Validation and New Fluids | 1                     | IP- / SN       | 8                        | 100             | >-5                | FCY 9311               | 25                   | 25                   | -                    | -                   | 10                        | 1       |                  | P093    |
| P094           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | -5 to -10          | FCY 9311               | 25                   | -                    | -                    | -                   | 30                        | 1       |                  | P094    |
| P095           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | -5 to -10          | FCY 9311               | 75                   |                      | -                    |                     | 10                        | 1       |                  | P095    |
| P096           | Type IV Validation and New Fluids | 1                     | IP- / ZR-      | 8                        | 100             | -5 to -10          | FCY 9311               | 25                   | -                    | 25                   | -                   | 10                        | 1       |                  | P096    |
| P097           | Type IV Validation and New Fluids | 1                     | IP- / SN-      | 8                        | 100             | -5 to -10          | FCY 9311               | 25                   | 10                   | -                    | -                   | 15                        | 1       |                  | P097    |

| Test Plan<br># | Objective                         | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid                  | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority                      | COMMENT |
|----------------|-----------------------------------|-----------------------|----------------|--------------------------|-----------------|--------------------|------------------------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|-------------------------------|---------|
| P098           | Type IV Validation and New Fluids | 1                     | IP- / SN       | 8                        | 100             | -5 to -10          | FCY 9311               | 25                   | 25                   | -                    | -                   | 7                         | 1       |                               | P098    |
| P099           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | -10 to -16         | FCY 9311               | 25                   | -                    | -                    | -                   | 30                        | 1       |                               | P099    |
| P100           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | -10 to -16         | FCY 9311               | 75                   | -                    | -                    |                     | 10                        | 1       |                               | P100    |
| P101           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 115             | -16 to -25         | FCY 9311               | 25                   | -                    | -                    | -                   | 30                        | 1       | note<br>115 kts               | P101    |
| P102           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 115             | -16 to -25         | FCY 9311               | 75                   | -                    | -                    | -                   | 10                        | 1       | note<br>115 kts               | P102    |
| P103           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | -5 to -10          | FCY 9311               | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test              | P103    |
| P104           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | <-15               | FCY 9311               | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test              | P104    |
| P105           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 100             | <-25               | LNT E450               | 25                   | -                    | -                    | -                   | 30                        | 1       |                               | P105    |
| P106           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 100             | <-25               | LNT E450               | 75                   | -                    | -                    | -                   | 10                        | 1       |                               | P106    |
| P107           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | <-25               | LNT E450               | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test              | P107    |
| P108           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 115             | <-25               | FCY 9311               | 25                   | -                    | -                    | -                   | 30                        | 1       | note<br>115 kts               | P108    |
| P109           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 115             | <-25               | FCY 9311               | 75                   |                      |                      |                     | 10                        | 1       | note<br>115 kts               | P109    |
| P110           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | <-25               | FCY 9311               | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test              | P110    |
| P111           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 115             | <-25               | Launch                 | 25                   | -                    | -                    | -                   | 30                        | 1       | note<br>115 kts               | P111    |
| P112           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 115             | <-25               | Launch                 | 75                   | -                    | -                    | -                   | 10                        | 1       | note<br>115 kts               | P112    |
| P113           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | <-25               | Launch                 | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test              | P113    |
| P114           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 115             | <-25               | AD-49                  | 25                   | -                    | -                    | -                   | 30                        | 1       | note<br>115 kts               | P114    |
| P115           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 115             | <-25               | AD-49                  | 75                   | -                    | -                    | -                   | 10                        | 1       | note<br>115 kts               | P115    |
| P116           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | <-25               | AD-49                  | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test              | P116    |
| P119           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | <-25               | ABC-S Plus             | -                    | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test              | P119    |
| P120           | Type IV Validation and New Fluids | 1                     | IP-            | 8                        | 115             | <-25               | Polar Guard<br>Advance | 25                   | -                    | -                    | -                   | 30                        | 1       | note<br>115 kts               | P120    |
| P121           | Type IV Validation and New Fluids | 1                     | IP Mod         | 8                        | 115             | <-25               | Polar Guard<br>Advance | 75                   | -                    | -                    | -                   | 10                        | 1       | note<br>115 kts               | P121    |
| P122           | Type IV Validation and New Fluids | 1                     | Fluid Only     | 8                        | 100             | <-25               | Polar Guard<br>Advance |                      | -                    | -                    | -                   | -                         | 1       | Baseline<br>Test              | P122    |
| P123           | IP Expansion - METAR              | 2                     | IP / R         | 8                        | 100             | >0                 | LNT E450               | 75                   | -                    | -                    | 75                  | 25                        | 1       | 7-25min<br>(tbd)              | P123    |
| P124           | IP Expansion - METAR              | 2                     | IP / SN        | 8                        | 100             | >-5                | LNT E450               | 75                   | 25                   | -                    | -                   | 20                        | 1       | 10-20<br>min                  | P124    |
| P125           | IP Expansion - METAR              | 2                     | IP / SN        | 8                        | 100             | -5 to -10          | LNT E450               | 75                   | 25                   | -                    | -                   | 10                        | 1       | (tbd)<br>5-10<br>min<br>(tbd) | P125    |

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 12 of 59

| Test Plan<br># | Objective                        | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid    | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority                                 | COMMENT |
|----------------|----------------------------------|-----------------------|----------------|--------------------------|-----------------|--------------------|----------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|------------------------------------------|---------|
| P126           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -10 to -16         | LNT E450 | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10<br>min<br>(tbd)                     | P126    |
| P127           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | <-16               | LNT E450 | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10<br>min<br>(tbd)                     | P127    |
| P128           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | >-5                | LNT E450 | 75                   |                      | 5                    | -                   | 20                        | 1       | 2D13.10-<br>20 min<br>(tbd)              | P128    |
| P129           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | -5 to -10          | LNT E450 | 75                   | -                    | 5                    | -                   | 7                         | 1       | 5-7 min<br>(tbd)                         | P129    |
| P130           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | >-5                | LNT E450 | 25                   | 10                   | -                    | -                   | 40                        | 2       | aim for<br>40-min                        | P130    |
| P131           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | -5 to -10          | LNT E450 | 25                   | 10                   | -                    | -                   | 25                        | 2       | aim for<br>25-min<br>(tbd)               | P131    |
| P132           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | >-5                | LNT E450 | 25                   | 25                   | -                    | -                   | 20                        | 2       | aim for 20<br>min (tbd)                  | P132    |
| P133           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | -5 to -10          | LNT E450 | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)               | P133    |
| P134           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 100             | -10 to -16         | LNT E450 | 25                   | 10                   | -                    | -                   | 15                        | 2       | aim for<br>15-min<br>(tbd)               | P134    |
| P135           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 115             | <-16               | LNT E450 | 25                   | 10                   | -                    | -                   | 15                        | 2       | aim for<br>15-min<br>(tbd)               | P135    |
| P136           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 100             | -10 to -16         | LNT E450 | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)               | P136    |
| P137           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 115             | <-16               | LNT E450 | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>5-10-<br>min<br>(tbd)         | P137    |
| P138           | IP Expansion - METAR             | 2                     | IP/R           | 8                        | 100             | >0                 | FCY 9311 | 75                   | -                    | -                    | 75                  | 25                        | 1       | 7-<br>25min<br>(tbd)                     | P138    |
| P139           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | >-5                | FCY 9311 | 75                   | 25                   | -                    | -                   | 20                        | 1       | 10-20<br>min<br>(tbd)<br>5-10            | P139    |
| P140           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -5 to -10          | FCY 9311 | 75                   | 25                   | -                    | -                   | 10                        | 1       | min<br>(tbd)                             | P140    |
| P141           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -10 to -16         | FCY 9311 | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10<br>min<br>(tbd)                     | P141    |
| P142           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | <-16               | FCY 9311 | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10<br>min<br>(tbd)                     | P142    |
| P143           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | >-5                | FCY 9311 | 75                   |                      | 5                    | -                   | 20                        | 1       | consider<br>ZD13. 10-<br>20 min<br>(tbd) | P143    |
| P144           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | -5 to -10          | FCY 9311 | 75                   |                      | 5                    |                     | 7                         | 1       | 5-7 min<br>(tbd)                         | P144    |
| P145           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | >-5                | FCY 9311 | 25                   | 10                   | -                    | -                   | 40                        | 2       | aim for<br>40-min                        | P145    |
| P146           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | -5 to -10          | FCY 9311 | 25                   | 10                   | -                    | -                   | 25                        | 2       | aim for<br>25-min<br>(tbd)               | P146    |
| P147           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | >-5                | FCY 9311 | 25                   | 25                   | -                    | -                   | 20                        | 2       | aim for<br>20 min<br>(tbd)               | P147    |
| P148           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | -5 to -10          | FCY 9311 | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)<br>aim for    | P148    |
| P149           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 100             | -10 to -16         | FCY 9311 | 25                   | 10                   | -                    | -                   | 15                        | 2       | 15-min<br>(tbd)                          | P149    |

Page 13 of 59

| Test Plan<br># | Objective                        | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid    | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority                         | COMMENT |
|----------------|----------------------------------|-----------------------|----------------|--------------------------|-----------------|--------------------|----------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|----------------------------------|---------|
| P150           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 115             | <-16               | FCY 9311 | 25                   | 10                   | -                    | -                   | 15                        | 2       | aim for<br>15-min<br>(tbd)       | P150    |
| P151           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 100             | -10 to -16         | FCY 9311 | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)       | P151    |
| P152           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 115             | <-16               | FCY 9311 | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>5-10-<br>min<br>(tbd) | P152    |
| P153           | IP Expansion - METAR             | 2                     | IP / R         | 8                        | 100             | >0                 | Launch   | 75                   | -                    | -                    | 75                  | 25                        | 1       | 7-25min<br>(tbd)                 | P153    |
| P154           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | >-5                | Launch   | 75                   | 25                   | -                    | -                   | 20                        | 1       | 10-20<br>min<br>(tbd)            | P154    |
| P155           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -5 to -10          | Launch   | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10<br>min<br>(tbd)             | P155    |
| P156           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -10 to -16         | Launch   | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10<br>min<br>(tbd)             | P156    |
| P157           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | <-16               | Launch   | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10<br>min<br>(tbd)             | P157    |
| P158           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | >-5                | Launch   | 75                   | -                    | 5                    | -                   | 20                        | 1       | ZD13. 10-<br>20 min<br>(tbd)     | P158    |
| P159           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | -5 to -10          | Launch   | 75                   | -                    | 5                    |                     | 7                         | 1       | 5-7 min<br>(tbd)                 | P159    |
| P160           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | >-5                | Launch   | 25                   | 10                   | -                    | -                   | 40                        | 2       | aim for<br>40-min                | P160    |
| P161           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | -5 to -10          | Launch   | 25                   | 10                   | -                    | -                   | 25                        | 2       | aim for<br>25-min<br>(tbd)       | P161    |
| P162           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | >-5                | Launch   | 25                   | 25                   | -                    | -                   | 20                        | 2       | aim for<br>20 min<br>(tbd)       | P162    |
| P163           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | -5 to -10          | Launch   | 25                   | 25                   | -                    |                     | 10                        | 2       | aim for<br>10-min<br>(tbd)       | P163    |
| P164           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 100             | -10 to -16         | Launch   | 25                   | 10                   | -                    | -                   | 15                        | 2       | aim for<br>15-min<br>(tbd)       | P164    |
| P165           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 115             | <-16               | Launch   | 25                   | 10                   | -                    | -                   | 15                        | 2       | aim for<br>15-min<br>(tbd)       | P165    |
| P166           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 100             | -10 to -16         | Launch   | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)       | P166    |
| P167           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 115             | <-16               | Launch   | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for 5-<br>10-min<br>(tbd)    | P167    |
| P168           | IP Expansion                     | 2                     | Fluid Only     | 8                        | 100             | -5 to -10          | Launch   | -                    | -                    | -                    | -                   | -                         | 2       | Baseline<br>Test                 | P168    |
| P169           | IP Expansion                     | 2                     | Fluid Only     | 8                        | 100             | <-15               | Launch   | -                    | -                    | -                    | -                   | -                         | 2       | Baseline<br>Test                 | P169    |
| P170           | IP Expansion - METAR             | 2                     | IP / R         | 8                        | 100             | >0                 | AD-49    | 75                   |                      |                      | 75                  | 25                        | 1       | 7-25min<br>(tbd)                 | P170    |
| P171           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | >-5                | AD-49    | 75                   | 25                   | -                    | -                   | 20                        | 1       | 10-20 min<br>(tbd)               | P171    |
| P172           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -5 to -10          | AD-49    | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10 min<br>(tbd)                | P172    |
| P173           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -10 to -16         | AD-49    | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10<br>min<br>(tbd)             | P173    |
|                |                                  |                       |                |                          |                 |                    |          |                      |                      |                      |                     |                           |         |                                  |         |

Page 14 of 59

APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20

| Test Plan<br># | Objective                        | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid      | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority                                   | COMMENT |
|----------------|----------------------------------|-----------------------|----------------|--------------------------|-----------------|--------------------|------------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|--------------------------------------------|---------|
| P174           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | <-16               | AD-49      | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10 min<br>(tbd)                          | P174    |
| P175           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | >-5                | AD-49      | 75                   | -                    | 5                    | -                   | 20                        | 1       | consider<br>ZD13.<br>10-20<br>min (tbd)    | P175    |
| P176           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | -5 to -10          | AD-49      | 75                   | -                    | 5                    | -                   | 7                         | 1       | 5-7 min<br>(tbd)                           | P176    |
| P177           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | >-5                | AD-49      | 25                   | 10                   | -                    | -                   | 40                        | 2       | aim for<br>40-min                          | P177    |
| P178           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | -5 to -10          | AD-49      | 25                   | 10                   | -                    | -                   | 25                        | 2       | aim for<br>25-min<br>(tbd)                 | P178    |
| P179           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | >-5                | AD-49      | 25                   | 25                   | -                    | -                   | 20                        | 2       | aim for<br>20 min<br>(tbd)                 | P179    |
| P180           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | -5 to -10          | AD-49      | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)                 | P180    |
| P181           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 100             | -10 to -16         | AD-49      | 25                   | 10                   | -                    |                     | 15                        | 2       | aim for<br>15-min<br>(tbd)                 | P181    |
| P182           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 115             | <-16               | AD-49      | 25                   | 10                   | -                    | -                   | 15                        | 2       | aim for<br>15-min<br>(tbd)                 | P182    |
| P183           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 100             | -10 to -16         | AD-49      | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)                 | P183    |
| P184           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 115             | <-16               | AD-49      | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>5-10-<br>min<br>(tbd)           | P184    |
| P185           | IP Expansion                     | 2                     | Fluid Only     | 8                        | 100             | -5 to -10          | AD-49      | -                    | -                    | -                    | -                   | -                         | 2       | Baseline<br>Test                           | P185    |
| P186           | IP Expansion                     | 2                     | Fluid Only     | 8                        | 100             | <-15               | AD-49      | -                    | -                    | -                    | -                   | -                         | 2       | Baseline<br>Test                           | P186    |
| P187           | IP Expansion - METAR             | 2                     | IP / R         | 8                        | 100             | >0                 | ABC-S Plus | 75                   | -                    | -                    | 75                  | 25                        | 1       | 7-25min<br>(tbd)                           | P187    |
| P188           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | >-5                | ABC-S Plus | 75                   | 25                   | -                    | -                   | 20                        | 1       | 10-20<br>min<br>(tbd)                      | P188    |
| P189           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -5 to -10          | ABC-S Plus | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10 min<br>(tbd)                          | P189    |
| P190           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | -10 to -16         | ABC-S Plus | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10 min<br>(tbd)                          | P190    |
| P191           | IP Expansion - METAR             | 2                     | IP / SN        | 8                        | 100             | <-16               | ABC-S Plus | 75                   | 25                   | -                    | -                   | 10                        | 1       | 5-10 min<br>(tbd)                          | P191    |
| P192           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | >-5                | ABC-S Plus | 75                   | -                    | 5                    | -                   | 20                        | 1       | consider<br>ZD13.<br>10-20<br>min<br>(tbd) | P192    |
| P193           | IP Expansion - METAR             | 2                     | IP / ZD        | 8                        | 100             | -5 to -10          | ABC-S Plus | 75                   |                      | 5                    | -                   | 7                         | 1       | 5-7 min<br>(tbd)                           | P193    |
| P194           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | >-5                | ABC-S Plus | 25                   | 10                   | -                    | -                   | 40                        | 2       | aim for<br>40-min                          | P194    |
| P195           | IP Expansion - Current IP and SN | 2                     | IP- / SN-      | 8                        | 100             | -5 to -10          | ABC-S Plus | 25                   | 10                   | -                    | -                   | 25                        | 2       | aim for<br>25-min<br>(tbd)                 | P195    |
| P196           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | >-5                | ABC-S Plus | 25                   | 25                   | -                    | -                   | 20                        | 2       | aim for<br>20 min<br>(tbd)                 | P196    |
| P197           | IP Expansion - Current IP and SN | 2                     | IP- / SN       | 8                        | 100             | -5 to -10          | ABC-S Plus | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)                 | P197    |
| P198           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 100             | -10 to -16         | ABC-S Plus | 25                   | 10                   | -                    | -                   | 15                        | 2       | aim for<br>15-min<br>(tbd)                 | P198    |
| P199           | IP Expansion - New IP and SN     | 2                     | IP- / SN-      | 8                        | 115             | <-16               | ABC-S Plus | 25                   | 10                   | -                    | -                   | 15                        | 2       | aim for<br>15-min<br>(tbd)                 | P199    |
| P200           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 100             | -10 to -16         | ABC-S Plus | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for<br>10-min<br>(tbd)                 | P200    |
| P201           | IP Expansion - New IP and SN     | 2                     | IP- / SN       | 8                        | 115             | <-16               | ABC-S Plus | 25                   | 25                   | -                    | -                   | 10                        | 2       | aim for 5-<br>10-min<br>(tbd)              | P201    |

Page 15 of 59

| Test<br>Plan # | Objective                        | Objective<br>Priority | Test Condition  | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid                  | IP Rate<br>(g/dm <sup>2</sup> /h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority                             | COMMENT |
|----------------|----------------------------------|-----------------------|-----------------|--------------------------|-----------------|--------------------|------------------------|-----------------------------------|----------------------|----------------------|---------------------|---------------------------|---------|--------------------------------------|---------|
| P202           | IP Expansion                     | 2                     | Fluid Only      | 8                        | 100             | -5 to -10          | ABC-S Plus             | -                                 | -                    | -                    | -                   | -                         | 2       | Baseline Test                        | P202    |
| P203           | IP Expansion                     | 2                     | Fluid Only      | 8                        | 100             | <-15               | ABC-S Plus             | -                                 | -                    | -                    | -                   | -                         | 2       | Baseline Test                        | P203    |
| P204           | IP Expansion - METAR             | 2                     | IP / R          | 8                        | 100             | >0                 | Polar Guard<br>Advance | 75                                | -                    | -                    | 75                  | 25                        | 1       | 7-25min (tbd)                        | P204    |
| P205           | IP Expansion - METAR             | 2                     | IP / SN         | 8                        | 100             | >-5                | Polar Guard<br>Advance | 75                                | 25                   | -                    | -                   | 20                        | 1       | 10-20 min<br>(tbd)                   | P205    |
| P206           | IP Expansion - METAR             | 2                     | IP / SN         | 8                        | 100             | -5 to -10          | Polar Guard<br>Advance | 75                                | 25                   | -                    | -                   | 10                        | 1       | 5-10 min (tbd)                       | P206    |
| P207           | IP Expansion - METAR             | 2                     | IP / SN         | 8                        | 100             | -10 to -16         | Polar Guard<br>Advance | 75                                | 25                   | -                    | -                   | 10                        | 1       | 5-10 min (tbd)                       | P207    |
| P208           | IP Expansion - METAR             | 2                     | IP / SN         | 8                        | 100             | <-16               | Polar Guard<br>Advance | 75                                | 25                   | -                    | -                   | 10                        | 1       | 5-10 min (tbd)                       | P208    |
| P209           | IP Expansion - METAR             | 2                     | IP / ZD         | 8                        | 100             | >-5                | Polar Guard<br>Advance | 75                                | -                    | 5                    | -                   | 20                        | 1       | consider ZD13.<br>10-20 min (tbd)    | P209    |
| P210           | IP Expansion - METAR             | 2                     | IP / ZD         | 8                        | 100             | -5 to -10          | Polar Guard<br>Advance | 75                                | -                    | 5                    | -                   | 7                         | 1       | 5-7 min (tbd)                        | P210    |
| P211           | IP Expansion - Current IP and SN | 2                     | IP- / SN-       | 8                        | 100             | >-5                | Polar Guard<br>Advance | 25                                | 10                   | -                    | -                   | 40                        | 2       | aim for 40-<br>min                   | P211    |
| P212           | IP Expansion - Current IP and SN | 2                     | IP- / SN-       | 8                        | 100             | -5 to -10          | Polar Guard<br>Advance | 25                                | 10                   | -                    | -                   | 25                        | 2       | aim for 25-<br>min (tbd)             | P212    |
| P213           | IP Expansion - Current IP and SN | 2                     | IP- / SN        | 8                        | 100             | >-5                | Polar Guard<br>Advance | 25                                | 25                   | -                    | -                   | 20                        | 2       | aim for 20<br>min (tbd)              | P213    |
| P214           | IP Expansion - Current IP and SN | 2                     | IP- / SN        | 8                        | 100             | -5 to -10          | Polar Guard<br>Advance | 25                                | 25                   | -                    | -                   | 10                        | 2       | aim for 10-<br>min (tbd)             | P214    |
| P215           | IP Expansion - New IP and SN     | 2                     | IP- / SN-       | 8                        | 100             | -10 to -16         | Polar Guard<br>Advance | 25                                | 10                   | -                    | -                   | 15                        | 2       | aim for 15-<br>min (tbd)             | P215    |
| P216           | IP Expansion - New IP and SN     | 2                     | IP- / SN-       | 8                        | 115             | <-16               | Polar Guard<br>Advance | 25                                | 10                   | -                    | -                   | 15                        | 2       | aim for 15-<br>min (tbd)             | P216    |
| P217           | IP Expansion - New IP and SN     | 2                     | IP- / SN        | 8                        | 100             | -10 to -16         | Polar Guard<br>Advance | 25                                | 25                   | -                    | -                   | 10                        | 2       | aim for 10-<br>min (tbd)             | P217    |
| P218           | IP Expansion - New IP and SN     | 2                     | IP- / SN        | 8                        | 115             | <-16               | Polar Guard<br>Advance | 25                                | 25                   | -                    | -                   | 10                        | 2       | aim for 5-10-<br>min (tbd)           | P218    |
| P219           | IP Expansion                     | 2                     | Fluid Only      | 8                        | 100             | -5 to -10          | Polar Guard<br>Advance | -                                 | -                    | -                    | -                   | -                         | 2       | Baseline Test                        | P219    |
| P220           | IP Expansion                     | 2                     | Fluid Only      | 8                        | 100             | <-15               | Polar Guard<br>Advance | -                                 | -                    | -                    | -                   | -                         | 2       | Baseline Test                        | P220    |
| P221           | R&D                              | 3                     | IP Typell       | TBD                      | TBD             | TBD                | Flight (EASA) ?        | TBD                               | TBD                  | TBD                  | TBD                 | TBD                       | 3       | Prelim table<br>exists               | P221    |
| P222           | R&D                              | 3                     | APM Unit        | TBD                      | TBD             | TBD                | TBD                    | TBD                               | TBD                  | TBD                  | TBD                 | TBD                       | 3       | Marinvent                            | P222    |
| P223           | R&D                              | 3                     | S+++            | TBD                      | TBD             | TBD                | TBD                    | TBD                               | TBD                  | TBD                  | TBD                 | TBD                       | 3       | Heavy snow                           | P223    |
| P224           | R&D                              | 3                     | Heavy Cont      | TBD                      | TBD             | TBD                | TBD                    | TBD                               | TBD                  | TBD                  | TBD                 | TBD                       | 3       | Heavy<br>contamination               | P224    |
| P225           | R&D                              | 3                     | Cooling Syst    | TBD                      | TBD             | TBD                | TBD                    | TBD                               | TBD                  | TBD                  | TBD                 | TBD                       | 3       | Evaluate<br>NRC cooling<br>system    | P225    |
| P226           | R&D                              | 3                     | Effect of Visc. | TBD                      | TBD             | TBD                | TBD                    | TBD                               | TBD                  | TBD                  | TBD                 | TBD                       | 3       | Effec of<br>viscosity on<br>flow-off | P226    |
| P227           | R&D                              | 3                     | LOUT w/ Cont.   | TBD                      | TBD             | TBD                | TBD                    | TBD                               | TBD                  | TBD                  | TBD                 | TBD                       | 3       | Test w/<br>contamination<br>@ LOUT   | P227    |
| P228           | R&D                              | 3                     | Small Hail      | TBD                      | TBD             | TBD                | TBD                    | TBD                               | TBD                  | TBD                  | TBD                 | TBD                       | 3       |                                      | P228    |

Final Version 1.1, January 16

Page 16 of 59

|                |           |                       |                | Tabl                     | e 3.2           | : Propos           | ed Test F | Plan (c              | ont.)                |                      |                     |                           |         |                                  |         |
|----------------|-----------|-----------------------|----------------|--------------------------|-----------------|--------------------|-----------|----------------------|----------------------|----------------------|---------------------|---------------------------|---------|----------------------------------|---------|
| Test<br>Plan # | Objective | Objective<br>Priority | Test Condition | Rotation<br>Angle<br>(°) | Ramp<br>(s/kts) | Target OAT<br>(°C) | Fluid     | IP Rate<br>(g/dm²/h) | SN Rate<br>(g/dm²/h) | ZR Rate<br>(g/dm²/h) | R Rate<br>(g/dm²/h) | Exposure<br>Time<br>(Min) | Coating | Priority                         | COMMENT |
| P229           | R&D       | 3                     | Frost          | TBD                      | TBD             | TBD                | TBD       | TBD                  | TBD                  | TBD                  | TBD                 | TBD                       | 3       |                                  | P229    |
| P230           | R&D       | 3                     | Flaps/Slats    | TBD                      | TBD             | TBD                | TBD       | TBD                  | TBD                  | TBD                  | TBD                 | TBD                       | 3       |                                  | P230    |
| P231           | R&D       | 3                     | Mixed Cond.    | TBD                      | TBD             | TBD                | TBD       | TBD                  | TBD                  | TBD                  | TBD                 | TBD                       | 3       | mixed<br>conditions              | P231    |
| P232           | R&D       | 3                     | SN on Dry Wing | TBD                      | TBD             | TBD                | TBD       | TBD                  | TBD                  | TBD                  | TBD                 | TBD                       | 3       | snow on a<br>dry wing            | P232    |
| P233           | R&D       | 3                     | IP @ >130kts   | TBD                      | TBD             | TBD                | TBD       | TBD                  | TBD                  | TBD                  | TBD                 | TBD                       | 3       | IP testing<br>a higher<br>speeds | P233    |
| P234           | R&D       | 3                     | WWF Tests      | TBD                      | TBD             | TBD                | TBD       | TBD                  | TBD                  | TBD                  | TBD                 | TBD                       | 3       | windshield<br>washer<br>fluid    | P234    |
| P235           | R&D       | 3                     | Residual Fluid | TBD                      | TBD             | TBD                | TBD       | TBD                  | TBD                  | TBD                  | TBD                 | TBD                       | 3       | sfluid<br>seepage                | P235    |
| P236           | R&D       | 3                     | 2nd Wave       | TBD                      | TBD             | TBD                | TBD       | TBD                  | TBD                  | TBD                  | TBD                 | TBD                       | 3       | 2nd wave<br>of fluid at<br>rot.  | P236    |

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 17 of 59

APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20

# 4. PRE-TESTING SETUP ACTIVITIES

The activities to be performed for planning and preparation, on the first day of testing, and prior to each testing day thereafter, have been detailed in a list included in Attachment 1.

# 5. DATA FORMS

The following data forms are required for the January 2016 wind tunnel tests:

- Attachment 2: General Form;
- Attachment 3: Wing Temperature, Fluid Thickness and Fluid Brix Form;
- Attachment 4: Example Ice Pellet Dispensing Form;
- Attachment 5: Example Snow Dispensing Form;
- Attachment 6: Example Snow Dispensing Form (Manual Method);
- Attachment 7: Visual Evaluation Rating Form;
- Attachment 8: Fluid Receipt Form (Electronic Form); and
- Attachment 9: Log of Fluid Sample Bottles.

When and how the data forms will be used is described throughout Section 6.

# 6. PROCEDURE

The following sections describe the tasks to be performed during each test conducted. It should be noted that some sections (i.e. fluid application and contamination application) will be omitted depending on the objective of the test.

## 6.1 Initial Test Conditions Survey

- Record ambient conditions of the test (Attachment 2); and
- Record wing temperature (Attachment 3).

## 6.2 Fluid Application (Pour)

- Hand pour 20L of anti-icing fluid over the test area (fluid can be poured directly out of pails or transferred into smaller 3L jugs);
- Record fluid application times and quantities (Attachment 2);

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 18 of 59

- Let fluid settle for 5 minutes (as the wing section is relatively flat, last winter it required tilting the wing for 1-minute to enable fluid to be uniform);
- Measure fluid thickness at pre-determined locations on the wing (Attachment 3);
- Record wing temperature (Attachment 3);
- Measure fluid Brix value (Attachment 3);
- · Photograph and videotape the appearance of the fluid on the wing; and
- Begin the time-lapse camera to gather photos of the precipitation application phase.

Note: At the request of TC/FAA, a standard aluminum test plate can be positioned on the wing in order to run a simultaneous endurance time test.

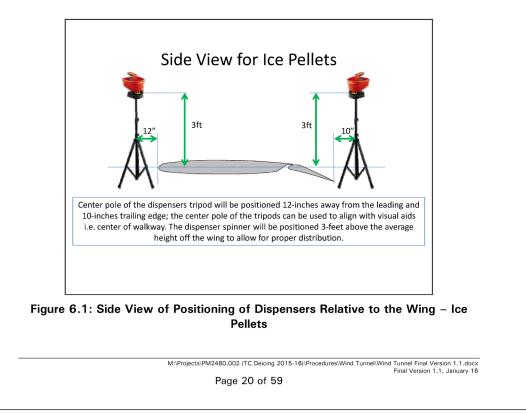
#### 6.3 **Application of Contamination**

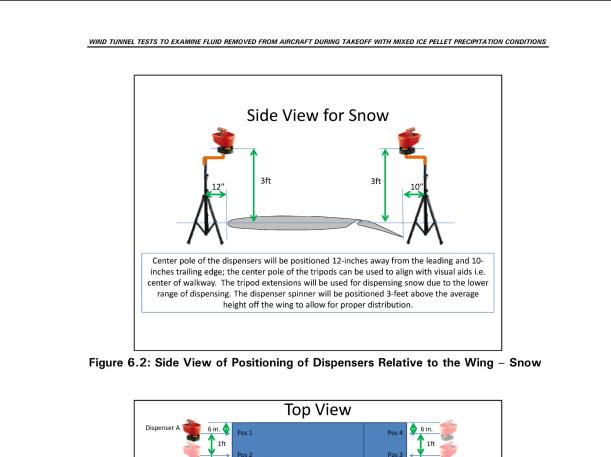
#### 6.3.1 Ice Pellet/Snow Dispenser Calibration and Set-Up

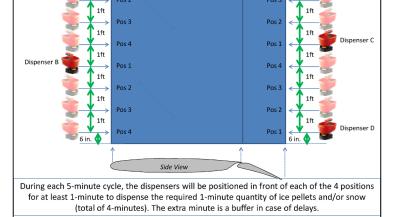
Calibration work was performed during the winter of 2007-08 on the modified ice pellet/snow dispensers prior to testing with the Falcon 20. The purpose of this calibration work was to attain the dispenser's distribution footprint for both ice pellets and snow. A series of tests were performed in various conditions:

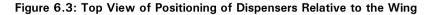
- Ice Pellets, Low Winds (0 to 5 km/h);
- Ice Pellets, Moderate Winds (10 km/h);
- Snow, Low Wind (0 to 5 km/h); and
- Snow, Moderate Wind (10 km/h).

These tests were conducted using 121 collection pans, each measuring 6 x 6 inches, over an area 11 x 11 feet. Pre-measured amounts of ice pellets/snow were dispersed over this area and the amount collected by each pan was recorded. A distribution footprint of the dispenser was attained and efficiency for the dispenser was computed.


M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16


Page 19 of 59


### 6.3.2 Dispensing Ice Pellets/Snow for Wind Tunnel Tests


Using the results from these calibration tests, a decision was made to use two dispensers on each of the leading and trailing edges of wing; each of the four dispensers are moved to four different positions along each edge during the dispensing process. Figure 6.1, Figure 6.3, and Figure 6.3 demonstrate the setup of the dispensers in relation to the wing. Attachment 4 and Attachment 5 display the data sheets that will be used during testing in the wind tunnel. These data sheets will provide all the necessary information related to the amount of ice pellets/snow needed, effective rates and dispenser positions. During the winter of 2009-10, snow was also dispensed manually using sieves. This technique was used when higher rates of precipitation were required (for heavy snow) or when winds in the tunnel made dispensing difficult. The efficiency of this technique was estimated at 90% based on how much of the precipitation actually made it onto the wing and a form to be used for this dispensing process along with dispensing instructions is included in Attachment 6.

Note: Dispensing forms should be filled out and saved for each run and pertinent information shall be included in the general form (Attachment 2). Any comments regarding dispensing activities should be documented directly on the form.









M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 21 of 59

#### 6.3.3 New Ice Pellets/Snow Dispensing Systems for 2014 Onwards

Simulated ice pellets are distributed over a test surface using an ice pellet pitcher. The original ice pellet pitcher (Yardworks) was a modified handheld fertilizer dispenser. The rate of precipitation was controlled with the speed of rotation of the motor, as well as the size of the opening of the dispenser reservoir drop feeder.

In the winter of 2012-13, seed spreaders historically modified and used for applying ice pellets during wind tunnel and flat plate testing, were no longer available as the manufacturer stopped production of the model. A new replacement seed spreader system (Wolf Garten) was found which is similar (but not identical). Some calibration work was required to demonstrate an equivalency in the two systems; testing was conducted at the NRC CEF prior to the wind tunnel testing to verify the distribution of the historical system versus the new replacement system the details of which are included in the TC report TP 15230E Aircraft Ground Icing General Research Activities During the 2012-13 Winter (4).

The data collected demonstrated that the new system is very similar to old system; some small variation was present in distribution within the footprint, but equivalent efficiency on the overall footprint. Based on this it was concluded that for ice pellets, the new system can be used as a direct replacement. For snow, the new system was more efficient, therefore a reduction of 10% should be used for the snow mass requested.

Comparative wind tunnel testing was conducted in the winter of 2013-14 to further validate the equivalency of the systems, the details of which are included in the TC report TP 15274E Exploratory Wind Tunnel Aerodynamic Research. The results indicated that the differences in recorded lift losses were generally very small (less than 1.3%) when comparing back-to-back tests with no bias towards one system or the other. The differences were even smaller when looking at the average of the four comparative sequential tests (Test #330 to #337) which was 0.1%. In addition, the tests were visually evaluated to verify that the distribution of the ice pellets was similar, further supporting the similarity in aerodynamic results between the two dispenser systems.

In general, the wind tunnel results further supported the original distribution equivalency work conducted during the winter of 2012-13 and demonstrated that the new generation dispensers are suitable replacements for the older model dispensers.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 22 of 59

#### 6.4 Prior to Engines-On Wind Tunnel Test

- · Measure fluid thickness at the pre-determined locations on the wing (Attachment 3);
- Measure fluid Brix value (Attachment 3);
- Record wing temperatures (Attachment 3);
- Record start time of test (Attachment 2); and
- Fill out visual evaluation rating form (Attachment 7).

Note: In order to minimize the measurement time post precipitation, temperature should be measured 5-minutes before the end of precipitation, thickness measured 3-minutes before the end of precipitation, and Brix measured when the precipitation ends. Also consideration has been given to reducing the number of measurements that are taken for this phase (i.e. locations 2 and 5 only).

#### 6.5 **During Wind Tunnel Test**

- Take still pictures and video the behavior of the fluid on the wing during the takeoff run, capturing any movement of fluid/contamination;
- · Fill out visual evaluation rating form at the time of rotation (Attachment 7); and
- Record wind tunnel operation start and stop times.

#### 6.6 After the Wind Tunnel Test

- Measure fluid thickness at the pre-determined locations on the wing (Attachment 3);
- Measure fluid Brix value (Attachment 3);
- Record wing temperatures (Attachment 3);
- Observe and record the status of the fluid/contamination (Attachment 3);
- Fill out visual evaluation rating form (Attachment 7);
- Obtain lift data (excel file) from NRC; and
- Update APS test log with pertinent information.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 23 of 59

#### 6.7 Fluid Sample Collection for Viscosity Testing

Two liters of each fluid to be tested are to be collected on the first day of testing. The fluid receipt form (Attachment 8) should be completed indicating quantity of fluid and date received. Any samples extracted for viscosity purposes should be documented in the log of fluid samples data form (Attachment 9). A falling ball viscosity test should be performed on site to confirm that fluid viscosity is appropriate before testing.

#### 6.8 At the End of Each Test Session

If required, APS personnel will collect the waste solution. At the end of the testing period, NRC will organize for a glycol recovery service provider to safely dispose of the waste glycol fluid.

#### 6.9 **Camera Setup**

It is anticipated that the camera setup will be similar to the setup used during the winter of 2013-14. Modifications may be necessary and will be dealt with on-site. The flashes will be positioned on the control-room side of the tunnel, and the cameras will be positioned on the opposite side. The final positioning of the cameras and flashes should be documented to identify any deviation from the previous year's setup.

### 6.10 Demonstration of a Typical Wind Tunnel Test Sequence

Table 6.1 demonstrates a typical Wind Tunnel test sequence of activities, assuming the test starts at 08:00:00. Figure 6.4 demonstrates a typical wind tunnel run timeline.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 24 of 59

| TIME     | TASK                                                                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------|
| 8:30:00  | START OF TEST. ALL EQUIPMENT READY.                                                                                              |
| 8:30:00  | - Record test conditions.                                                                                                        |
| 8:35:00  | - Prepare wing for fluid application (clean wing, etc).                                                                          |
| 8:45:00  | <ul> <li>Measure wing temperature.</li> <li>Ensure clean wing for fluid application</li> </ul>                                   |
| 8:50:00  | - Pour fluid over test area.                                                                                                     |
| 9:00:00  | <ul> <li>Measure Brix, thickness, wing temperature.</li> <li>Photograph test area.</li> </ul>                                    |
| 9:05:00  | - Apply contamination over test area. (i.e. 30 min)                                                                              |
| 9:35:00  | <ul> <li>Measure Brix, thickness, wing temperature.</li> <li>Photograph test area.</li> </ul>                                    |
| 9:40:00  | - Clear area and start wind tunnel                                                                                               |
| 9:55:00  | - Wind tunnel stopped                                                                                                            |
| 10:05:00 | <ul> <li>Measure Brix, thickness, wing temperature.</li> <li>Photograph test area.</li> <li>Record test observations.</li> </ul> |
| 10:35:00 | END OF TEST                                                                                                                      |

| Table  | 6.1: | Typica   | l Wind | Tunnel    | Test |
|--------|------|----------|--------|-----------|------|
| I GOIO | •••• | i y piou |        | I GIIIIOI | 1001 |

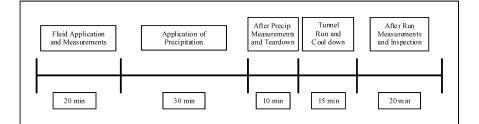



Figure 6.4: Typical Wind Tunnel Run Timeline

M:Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 25 of 59

WIND TUNNEL TESTS TO EXAMINE FLUID REMOVED FROM AIRCRAFT DURING TAKEOFF WITH MIXED ICE PELLET PRECIPITATION CONDITIONS 6.11 Procedures for Primary Testing Objectives There are three primary testing objectives for the winter of 2015-16. Details have been included in the following attachments: • Attachment 10: Procedure - Dry Wing Performance • Attachment 11: Procedure - Type IV Ice Pellet Allowance Time Validation with New Fluids and at Temperatures Close to the LOUT • Attachment 12: Procedure – Type III Ice Pellet Allowance Time Validation with New Fluids, Speed (80 knots) and Application Temperatures (Hot vs. Cold) • Attachment 13: Procedure – Type IV Ice Pellet Allowance Time Expansion (METAR and Mixed IP and Snow Conditions) Procedures for Optional R&D Activities R&D testing is not planned for the winter of 2015-16; however the preliminary

procedures related to some of the testing objectives considered in the past have been included in this procedure for reference. At the discretion of the TC/FAA research officer, limited testing may be considered. Details have been included in the following Attachment 14 to Attachment 29.

#### 7. EQUIPMENT

Equipment to be employed is shown in Table 7.1.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 26 of 59

| EQUIPMENT                                                                                                  | STATUS | EQUIPMENT                                                                                 | STA      |
|------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------|----------|
| General Support and Testing Equipment                                                                      |        | Comoro Equipment                                                                          |          |
| 20L containers x 12                                                                                        | +      | Camera Equipment<br>AA Batteries x 48                                                     | +        |
| Adherence Probes Kit                                                                                       | +      | C2032 Batteries x 10                                                                      |          |
| Barrel Opener (steel)                                                                                      | +      | Digital still cameras x3 (two suitcases)                                                  | -        |
| Black Shelving Unit (or plastic)                                                                           |        | Flashes and tripods (in APS storage)                                                      | +        |
| Blow Horns x 4                                                                                             |        | GoPro Cameras x 3 and related hardware                                                    |          |
| Electrical tape x 5                                                                                        |        |                                                                                           |          |
| Envelopes and labels                                                                                       |        |                                                                                           |          |
| Exacto Knives x 2                                                                                          |        | Ice Pellets Fabrication Equipment                                                         | _        |
| Extension cords (power bars x 6 + reels x 4)                                                               |        | Blenders x 12 in good condition                                                           | —        |
| Falling Ball Viscometer                                                                                    |        | Folding tables (2 large, 1 small)                                                         |          |
| Fluid pouring jugs x 60<br>Fluids (ORDER and SHIP to Ottawa)                                               |        | Ice bags<br>Ice bags storage freezer x 3                                                  | -        |
| Funnels( 1 big + 1 small)                                                                                  | +      | Ice pellets sieves (base, 1.4 mm, 4 mm)                                                   | +        |
| Gloves - black and yellow                                                                                  | +      | Ice pellets Steves (base, 1.4 mm, 4 mm)                                                   | -        |
| •                                                                                                          | +      | Measuring cups (1L and smaller ones for                                                   | +        |
| Gloves - cotton (1 box)                                                                                    |        | dispensing)                                                                               |          |
| Gloves - latex (2 boxes)                                                                                   |        | NCAR Scale x 1                                                                            |          |
| Grid Section + Location docs                                                                               |        | Refrigerated Truck                                                                        |          |
| Hard water chemicals x 3 premixes                                                                          |        | Rubber Mats x all                                                                         |          |
| Horse and tap for fluid barrel x all                                                                       |        | Wooden Spoons                                                                             |          |
| Hot Plate x 3 and Large Pots with rubber handles for                                                       |        |                                                                                           |          |
| Type III                                                                                                   |        |                                                                                           |          |
| Ice pellet box supports for railing x4                                                                     |        | Freezing Rain Equipment                                                                   | +        |
| Ice Pellet control wires and boxes (all for new and old)<br>Ice pellets dispersers x 12 ( 6 new and 6 old) |        | APS PC equipped with rate station software                                                | +        |
| Inclinometer (yellow level) x 2                                                                            | +      | NRC Freezing rain sprayer (NRC will provide)<br>Rubber suction cup feet for wooden boards |          |
| Isopropyl x 24                                                                                             | +      | White plastic rate pans (1 to 8 x 2)                                                      |          |
| Large and small tape measure                                                                               | +      | Wooden boards for rate pans (x8)                                                          | +        |
| Large Sharpies for Grid Section                                                                            |        |                                                                                           | +        |
| Long Ruler for marking wing x 2                                                                            |        |                                                                                           |          |
| Marker for waste x 2                                                                                       |        | Office Equipment                                                                          |          |
| Paper towel x 48                                                                                           |        | Accordion Folder                                                                          |          |
| Protective clothing (all) and personnel clothing                                                           |        | APS Laptops x 6 with mouse and chargers                                                   |          |
| Sample bottles for viscosity measurement x 8                                                               |        | APS tuques x 10                                                                           |          |
| Sartorius Weigh Scale x 1                                                                                  |        | Calculators x 3                                                                           | _        |
| Scrapers x 5                                                                                               |        | Clip boards x 8                                                                           |          |
| Shop Vac<br>Speed tape x 1 small                                                                           |        | Dry eraser markers<br>Envelopes (9x12) x box                                              | <u> </u> |
| Squeegees (5 small + 3 large floor)                                                                        |        | Hard drive with all WT Photos                                                             | +        |
| Stands for ice pellets dispensing devices x 6                                                              | +      | Hard Drive x 2                                                                            | -        |
| Stop Watches x 4                                                                                           | +      | Pencils + sharpies/markers                                                                | +        |
| Temperature probes: immersion x 3                                                                          |        | Projector for laptop                                                                      |          |
| Temperature probes: surface x 3                                                                            |        | Scissors                                                                                  |          |
| Temperature readers x 2 + spare batteries                                                                  |        | Small 90° aluminum ruler for wing                                                         |          |
| Test Plate x 1                                                                                             |        | Test Procedures x 8, data forms, printer paper                                            |          |
| Thermometer for Reefer Truck                                                                               |        | YOW employee contracts                                                                    |          |
| Thickness Gauges ( 5 small, 5 big)                                                                         |        |                                                                                           |          |
| Vise grip (large) + rubber opener for containers                                                           |        |                                                                                           |          |
| Walkie Talkies x 12                                                                                        |        |                                                                                           | <b>_</b> |
| Water (2 x 18L) for hard water                                                                             |        |                                                                                           |          |
| Watmans Paper and conversion charts                                                                        |        |                                                                                           | -        |
| Red Thermoses for Type III Transport                                                                       | +      |                                                                                           | +        |
|                                                                                                            | +      |                                                                                           | +        |
|                                                                                                            |        |                                                                                           |          |

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

# Page 27 of 59

#### FLUIDS 8.

Mid-viscosity samples of ethylene glycol and propylene glycol IV fluid will be used in the wind tunnel tests. Although the number of tests conducted will be determined based on the results obtained, the fluid quantities available are shown in Table 8.1 (quantities to be confirmed once fluid is received). A total of 1840L of 100/0 Type III and Type IV fluid are expected to be available; an additional 440L of other fluids are also available if needed. Fluid application will be performed by pouring the fluid (rather than spraying) to reduce any shearing to the fluid.

| FLUID                   | Туре | DILUTION   | ORDERED<br>(L) | IN STOCK<br>(L) |
|-------------------------|------|------------|----------------|-----------------|
| AeroClear MAX           | Ш    | 100/0      | 400            | -               |
| LNT E450                | IV   | 100/0      | 200            | -               |
| FCY 9311                | IV   | 100/0      | 200            | -               |
| UCAR™ FlightGuard AD-49 | IV   | 100/0      | -              | 270             |
| ABC-S Plus              | IV   | 100/0      | -              | 352             |
| Polar Guard® Advance    | IV   | 100/0      | -              | 270             |
|                         |      |            |                |                 |
| Safewing MP II FLIGHT   | II   | 100/0      | -              | 150             |
| UCAR™ FlightGuard AD-49 | IV   | 75/25      | -              | 136             |
| Polar Guard® Advance    | IV   | 50/50      | -              | 110             |
| Lift-Off E-188          | I    | Brix 26.25 | -              | 20              |

Table 8.1: Fluid Available for Wind Tunnel Tests

3600 L ordered for 2009-10 testing (18 days)

3200 L ordered for 2010-11 testing (15 days)

1800 L ordered for 2011-12 testing (7 of 15 days will be fluid testing)

4200 L ordered for 2012-13 testing (15 days)

1300L ordered for 2013-14 testing (15 days), 1900L previously in stock 1700L available for 2015-16 Testing (10 days)

# 9. PERSONNEL

Five APS staff members are required for the tests at the NRC wind tunnel. Four additional persons (with one back-up) will be required from Ottawa for making and dispensing the ice pellets and snow. One additional person from Ottawa will be required to photograph the testing. Table 9.1 demonstrates the personnel required and their associated tasks.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 28 of 59

Fluid and ice pellets applications will be performed by APS/YOW personnel at the NRC wind tunnel. NRC personnel will operate the NRC wind tunnel and operate the freezing rain/drizzle sprayer (if requested).

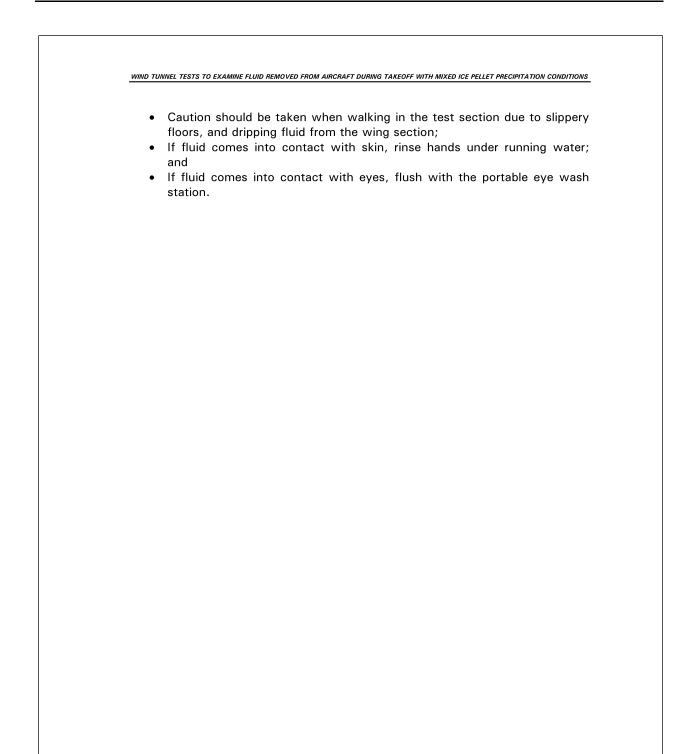
|               | Wind Tunnel 2015-16 - Tentative                                  |
|---------------|------------------------------------------------------------------|
| Person        | Responsibility                                                   |
| John          | Director                                                         |
| Marco         | Lead Engineer and Project Coordinator                            |
| Chloë         | Data documentation (forms, logs, camera setup, etc)              |
| Dave / Ben B* | Data Collection / Fluid Manager (inventory and application) / IP |
| Dave / Dell D | Manager / YOW Pers. Manager                                      |
|               | YOW Personnel                                                    |
| Ben G/Jesse*  | Photography / Camera Documentation                               |
| Steve         | Fluids / IP / Dispensing / General Support                       |
| YOW 1         | Fluids / IP / Dispensing                                         |
| YOW 2         | Fluids / IP / Dispensing                                         |
| YOW 3         | Fluids / IP / Dispensing                                         |
| YOW 4         | Back-up                                                          |

### Table 9.1: Personnel List

\*Present only for an initial portion of the testing unless workloads dictate otherwise.

### NRC Institute of Aerospace Research Contacts

- Lucio Del Ciotto: (613) 913-9720
- Catherine Clark: (613) 998-6932


# **10. SAFETY**

- A safety briefing will be done on the first day of testing;
- Personnel should be familiar with NRC emergency procedures i.e. DO NOT CALL 9-1-1, instead call the NRC Emergency Center as they will contact and direct the necessary services;
- All personnel must be familiar with the Material Safety Data Sheets (MSDS) for fluids;
- · Prior to operating the wind tunnel, loose objects should be removed from the vicinity;
- · When wind tunnel is operating, ensure that ear plugs are worn if necessary and personnel keep safe distances;
- · When working on ladders, ensure equipment is stable;
- CSA approved footwear and appropriate clothing for frigid temperatures are to be worn by all personnel;

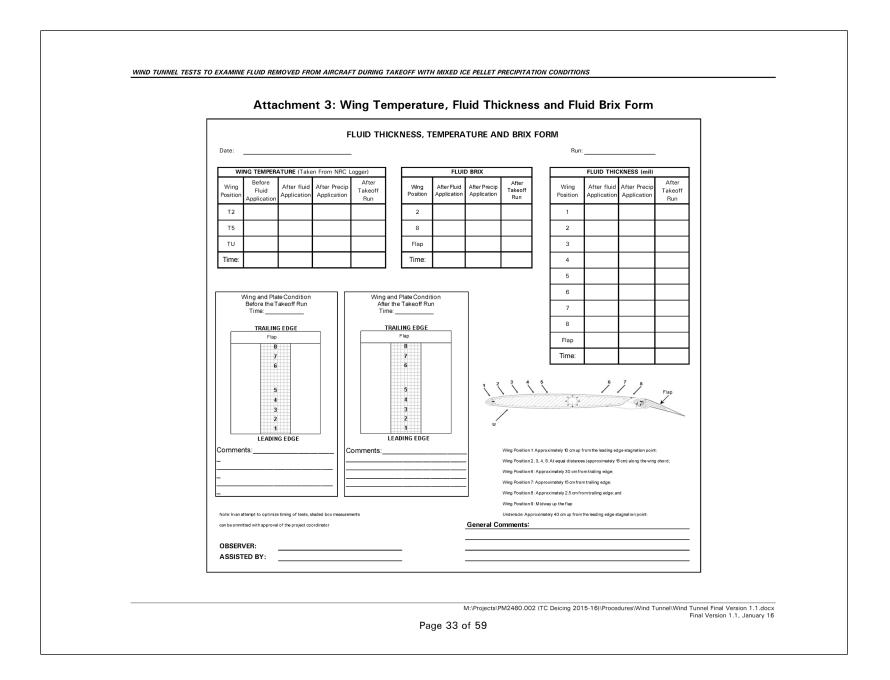
M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Final Version 1.0, October 20

Page 29 of 59



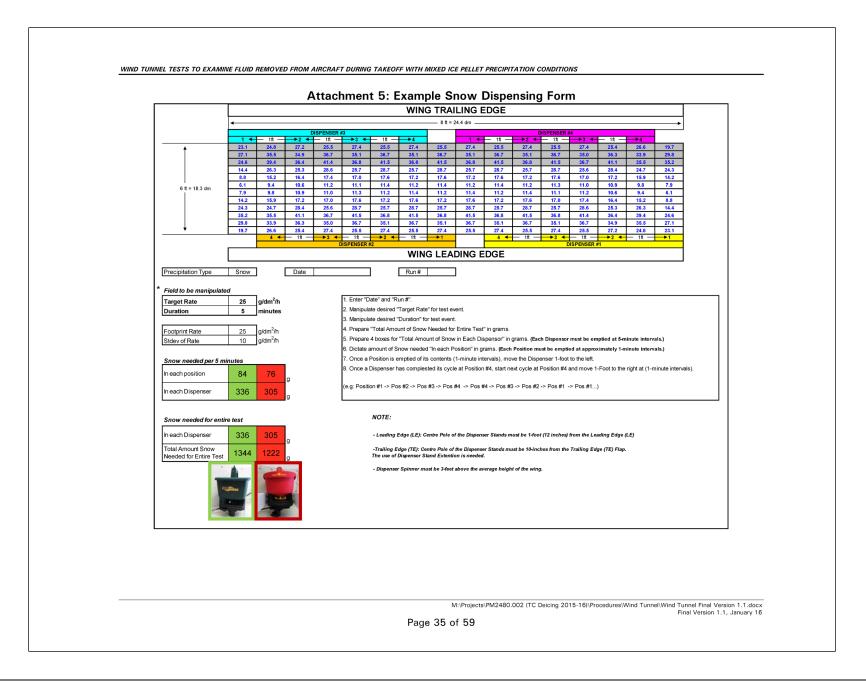
M:Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16


Page 30 of 59

|          | Attachment 1: Task List for Setup and A                                                                             | ctual Tests    |        |
|----------|---------------------------------------------------------------------------------------------------------------------|----------------|--------|
| No.      | Task                                                                                                                | Person         | Status |
|          | Planning and Preparation                                                                                            |                |        |
| 1        | Co-ordinate with NRC wind tunnel personnel                                                                          | MR/JD          |        |
| 2 3      | Ensure fluid is received by NRC and is stored outdoors<br>Check with NRC the status of the testing site, tunnel etc | MR/JD<br>MR    |        |
| 4        | Arrange for hotel accommodations for APS personnel                                                                  | EA             |        |
| 5        | Arrange for Noter accommodations for Arropersonner                                                                  | EA             |        |
| 6        | Arrange for ice and freezer delivery                                                                                | EA             |        |
| 7        | Organize personnel travel to Ottawa;                                                                                | MR             |        |
| 8        | Hire YOW personnel                                                                                                  | DY             |        |
| 9        | Complete contract for YOW personnel                                                                                 | DY             |        |
| 10       | Co-ordinate with APS photographer                                                                                   | MR             |        |
| 11<br>12 | Ensure availability of freezing rain sprayer equipment;<br>Prepare and Arrange Office Materials for YOW             | MR<br>CB       |        |
| 13       | Prepare and Arrange Office Materials for YOW<br>Prepare Data forms and procedure                                    | СВ             |        |
| 14       | Back up hard drives with all TC projects                                                                            | СВ             |        |
| 15       | Prepare Test Log and Merge Historical Logs for Reference                                                            | СВ             |        |
| 16       | Prepare weather forecast spreadsheet                                                                                | СВ             |        |
| 17       | Prepare historical falling ball records spreadsheet                                                                 | СВ             |        |
| 18       | Finalize and complete list of equipment/materials required                                                          | MR             |        |
| 19       | Prepare and Arrange Site Equipment for YOW                                                                          | DY/DY          |        |
| 20       | Ensure proper functioning of ice pellet dispenser equipment;                                                        | MR             |        |
| 21<br>22 | Review IP/ZR/SN dispersal techniques and location<br>Update IP Rate File (if necessary)                             | CB/MR<br>CB/MR |        |
|          | Check weather prior to finalizing test dates and Day vs. Night Shift, Start                                         |                |        |
| 23       | Time                                                                                                                | MR/JD          |        |
| 24       | Arrange for pallets to lift up 1000L totes (if applicable)                                                          | MR             |        |
| 25       | Purchase new 20 L containers (as necessary)                                                                         | DY             |        |
| 26       | Complete purchase list and shopping                                                                                 | CB             |        |
| 27       | Pack and leave YUL for YOW on Monday Jan 7th for AM start on Jan 8th                                                | APS            |        |
| 28       | Monday Jan 18<br>Safety Briefing & Training (APS/YOW)                                                               | MR             |        |
| 29       | Unload Truck and organize equipment in lower, middle, or office area                                                | APS            |        |
| 30       | Verify and Organize Fluid Received (labels and fluid receipt forms)                                                 | DY/SB          |        |
| 31       | Transfer Fluids from 1000 L Totes to 20 L containers                                                                | DY/SB          |        |
| 32       | Collect fluid samples for viscosity at APS office and for Falling Ball                                              | DY/CB          |        |
| 33       | Conduct falling ball verification                                                                                   | DY/CB          |        |
| 34       | Confirm ice and freezer delivery                                                                                    | DY             |        |
| 35       | Setup general office and testing equipment                                                                          | СВ             |        |
| 36<br>37 | Setup Projector Setup Printer                                                                                       | DY<br>DY       |        |
| 38       | Setup Filiter<br>Setup rate station (if necessary)                                                                  | DY             |        |
| 39       | Setup IP/SN manufacturing material in reefer truck                                                                  | DY/SB          |        |
| 40       | Test and prepare IP dispensing equipment                                                                            | DY/SB          |        |
| 41       | Train IP making personnel (ongoing)                                                                                 | SB/YOW         |        |
| 42       | Co-ordinate fabrication of ice pellets/snow                                                                         | DY/SB          |        |
| 43       | IP/SN/ZR Calibration (if necessary)                                                                                 | DY/CB/DY       |        |
| 44       | Start IP manufacturing                                                                                              | SB             |        |
| 45<br>46 | Mark wing (only if requested);<br>Setup Still and Video Cameras same as 2010-11                                     | DY<br>BG/SBD   |        |
| 40       | Verify photo and video angles, resolution, etc, against 2010-11/11-12                                               | BG/SBD/MR      |        |
| 48       | Document new final camera and flash locations                                                                       | CB/BG/SBD      |        |
| 49       | General safety briefing and update on testing                                                                       | APS/NRC/YOW    |        |
| 50       | Dry Run of tests with APS and NRC (if necessary)                                                                    | APS/NRC        |        |
| 51       | Start Testing (Dry wing tests may be possible while setup occurs)<br>Each Testing Day                               | APS/NRC        |        |
| 52       | Check with NRC the status of the testing site, tunnel, weather etc                                                  | MR             |        |
| 53       | Deicide personnel requirements for following day for 24hr notice                                                    | MR/WU          |        |
| 54       | Prepare equipment and fluid to be used for test                                                                     | DY             |        |
| 55       | Manufacture ice pellets                                                                                             | SB/YOW         |        |
| 56<br>57 | Prepare photography equipment<br>Prepare data forms for test                                                        | BG<br>CB       |        |
| 57       | Conduct tests based on test plan                                                                                    | APS            |        |
| 59       | Modify test plan based on results obtained                                                                          | WU/JD/MR       |        |
| 60       | Update ice pellet, snow, raw ice, and fluid Inventory (end of day)                                                  | DY/SB          |        |
| 61       | Update Test Log and Test Plan (ongoing and end of day)                                                              | CB             |        |

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 31 of 59


| Attachment 2: General Form                                           |                                                        |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| GENE                                                                 | RAL FORM (EVERY TEST)                                  |  |  |  |  |
| DATE: FLUID APPLIED:                                                 | RUN # (Plan #):                                        |  |  |  |  |
| AIR TEMPERATURE (°C) BEFORE TEST:                                    | AIR TEMPERATURE (°C) AFTER TEST:                       |  |  |  |  |
| TUNNEL TEMPERATURE (°C) BEFORE TEST:                                 | TUNNEL TEMPERATURE (°C) AFTER TEST:                    |  |  |  |  |
| WIND TUNNEL START TIME:                                              | PROJECTED SPEED (S/KTS):                               |  |  |  |  |
| ROTATION ANGLE:                                                      | EXTRARUN INFO:                                         |  |  |  |  |
| FLAP SETTING (20°, 0°):                                              |                                                        |  |  |  |  |
|                                                                      | Check if additional notes provided on a separate sheet |  |  |  |  |
| F                                                                    | LUID APPLICATION                                       |  |  |  |  |
| Actual start time:                                                   | Actual End Time:                                       |  |  |  |  |
| Fluid Brix                                                           | Amount of Fluid (L):                                   |  |  |  |  |
| Fluid Temperature ( <sup>e</sup> C):                                 | Fluid Application Method: POUR                         |  |  |  |  |
| ICE PELLET                                                           | S APPLICATION (if applicable)                          |  |  |  |  |
| Actual start time:                                                   | Actual End Time:                                       |  |  |  |  |
| Rate of Ice Pellets Applied (g/dm <sup>2</sup> /h):                  | Ice Pellets Size (mm): 1.4 - 4.0 mm                    |  |  |  |  |
| Exposure Time: Total IP Required per Dispenser:                      |                                                        |  |  |  |  |
|                                                                      |                                                        |  |  |  |  |
|                                                                      | RIZZLE APPLICATION (if applicable)                     |  |  |  |  |
| Actual start time:                                                   | Actual End Time:                                       |  |  |  |  |
| Rate of Precipitation Applied (g/dm <sup>2</sup> /h): Exposure Time: | Droplet Size (mm):                                     |  |  |  |  |
|                                                                      | Flow:                                                  |  |  |  |  |
|                                                                      | Pressure                                               |  |  |  |  |
|                                                                      |                                                        |  |  |  |  |
|                                                                      | PPLICATION (if applicable)                             |  |  |  |  |
| Actual start time:                                                   |                                                        |  |  |  |  |
| Rate of Snow Applied (g/dm²/h):           Exposure Time:             |                                                        |  |  |  |  |
| Exposure Time: Total SN Required per Dispenser:                      |                                                        |  |  |  |  |
| · · · ·                                                              |                                                        |  |  |  |  |
| COMMENTS                                                             |                                                        |  |  |  |  |
|                                                                      |                                                        |  |  |  |  |
|                                                                      |                                                        |  |  |  |  |
|                                                                      |                                                        |  |  |  |  |
| MEASUREMENTS BY:                                                     | HANDWRITTEN BY:                                        |  |  |  |  |
|                                                                      |                                                        |  |  |  |  |



### APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20

| 1         1           14.9         20.3           20.3         20.3           19.1         18.8           19.1         18.8           18.4         18.5           18.5         18.5           19.3         19.3           18.6         13.3           Precipitation Type         IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1R     24       18.5     18.2       24.1     25.2       25.4     27.4       23.8     25.6       23.5     27.2       24.1     26.8       24.3     27.4       24.4     27.7       24.4     27.7       24.4     27.7       24.4     27.7       24.4     27.7       24.4     27.7       24.4     27.7       24.4     27.7       24.4     27.8       16.3     11.7       4     18 | 17.4<br>26.4<br>28.7<br>25.6<br>27.9<br>28.7<br>28.4<br>28.7<br>28.6<br>28.3<br>26.9<br>17.2<br>►3 ◀                     | <ul> <li>▶ 3 ◀</li> <li>18.5</li> <li>27.3</li> <li>29.0</li> <li>29.2</li> <li>29.4</li> <li>29.0</li> <li>29.4</li> <li>28.8</li> <li>29.5</li> <li>29.3</li> <li>26.9</li> <li>17.6</li> </ul> | 1ft 17.6<br>26.9<br>29.4<br>29.6<br>28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0<br>27.5<br>18.5 | ► 4<br>18.5<br>27.5<br>29.0<br>29.3<br>29.5<br>29.1<br>29.6<br>28.8<br>29.6<br>29.4<br>26.9               | 8 ft = 2<br>17.6<br>26.9<br>29.4<br>29.6<br>28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0<br>27.5     | 18.5<br>27.5<br>29.0<br>29.3<br>29.5<br>29.1<br>29.6<br>28.8<br>29.6                     |                                                                                               | 2 ◀<br>18.5<br>27.5<br>29.0<br>29.3<br>29.5<br>29.1<br>29.6 | ISPENSER #<br>1ft                                                       | 4<br>17.2<br>26.9<br>28.3<br>28.6<br>28.7<br>28.4          | 1ft<br>17.2<br>25.8<br>27.7<br>27.4<br>26.8 | → 4<br>16.3<br>24.2<br>24.4<br>24.3<br>24.1 | 13.3<br>18.6<br>19.3<br>19.2<br>18.5 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------|
| 6 ft = 18.3 dm<br>6 ft = 18.3 dm<br>18.4<br>18.5<br>19.2<br>19.2<br>19.3<br>18.4<br>18.5<br>19.2<br>19.3<br>18.6<br>13.3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.5         18.2           24.1         26.2           25.4         27.4           23.5         25.6           23.5         27.2           24.0         26.8           24.1         26.8           24.3         27.2           24.1         26.8           24.3         27.4           24.4         27.7           24.2         25.8           16.3         17.2            | 1ft 17.4<br>26.4<br>28.7<br>25.6<br>27.9<br>28.7<br>28.4<br>28.7<br>28.4<br>28.7<br>28.6<br>28.3<br>26.9<br>17.2<br>►3 ◀ | <ul> <li>▶ 3 ◀</li> <li>18.5</li> <li>27.3</li> <li>29.0</li> <li>29.2</li> <li>29.4</li> <li>29.0</li> <li>29.4</li> <li>28.8</li> <li>29.5</li> <li>29.3</li> <li>26.9</li> <li>17.6</li> </ul> | 17.6<br>26.9<br>29.4<br>29.6<br>28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0<br>27.5             | 18.5<br>27.5<br>29.0<br>29.3<br>29.5<br>29.1<br>29.6<br>28.8<br>29.6<br>29.4<br>29.4<br>26.9              | 26.9<br>29.4<br>29.6<br>28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0                                 | 18.5<br>27.5<br>29.0<br>29.3<br>29.5<br>29.1<br>29.6<br>28.8<br>29.6                     | 17.6<br>26.9<br>29.4<br>29.6<br>28.8<br>29.6<br>29.1                                          | ► 2                                                         | - 1ft                                                                   | > 3 <<br>17.2<br>26.9<br>28.3<br>28.6<br>28.7              | 17.2<br>25.8<br>27.7<br>27.4<br>26.8        | 16.3<br>24.2<br>24.4<br>24.3                | 18.6<br>19.3<br>19.2                 |
| 20.3<br>20.3<br>19.1<br>18.8<br>18.4<br>18.5<br>19.2<br>19.3<br>18.6<br>19.3<br>18.6<br>19.3<br>19.3<br>18.6<br>13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.1         26.2           25.4         27.4           23.8         25.6           23.5         27.2           24.0         26.9           23.5         27.2           24.1         26.8           24.3         27.4           24.4         27.7           24.2         25.8           16.3         17.2                                                                    | 26.4<br>28.7<br>25.6<br>27.9<br>28.7<br>28.4<br>28.7<br>28.6<br>28.3<br>26.9<br>17.2<br>→ 3 ←                            | 27.3<br>29.0<br>29.2<br>29.4<br>29.0<br>29.4<br>28.8<br>29.5<br>29.3<br>26.9<br>17.6                                                                                                              | 26.9<br>29.4<br>29.6<br>28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0<br>27.5                     | 27.5<br>29.0<br>29.3<br>29.5<br>29.1<br>29.6<br>28.8<br>29.6<br>29.4<br>26.9                              | 26.9<br>29.4<br>29.6<br>28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0                                 | 27.5<br>29.0<br>29.3<br>29.5<br>29.1<br>29.6<br>28.8<br>29.6                             | 26.9<br>29.4<br>29.6<br>28.8<br>29.6<br>29.6<br>29.1                                          | 27.5<br>29.0<br>29.3<br>29.5<br>29.1                        | 26.9<br>29.3<br>29.5<br>28.8                                            | 26.9<br>28.3<br>28.6<br>28.7                               | 25.8<br>27.7<br>27.4<br>26.8                | 24.2<br>24.4<br>24.3                        | 18.6<br>19.3<br>19.2                 |
| 20.3<br>19.1<br>18.8<br>18.4<br>18.5<br>18.5<br>19.2<br>19.3<br>18.6<br>18.5<br>19.2<br>19.3<br>18.6<br>13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.4         27.4           23.8         25.6           23.5         27.2           24.0         26.9           23.5         27.2           24.1         26.8           24.3         27.4           24.4         27.7           24.2         25.8           16.3         17.2                                                                                                | 28.7         25.6         27.9         28.7         28.7         28.6         28.3         26.9         17.2             | 29.0<br>29.2<br>29.4<br>29.0<br>29.4<br>28.8<br>29.5<br>29.3<br>26.9<br>17.6                                                                                                                      | 29.4<br>29.6<br>28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0<br>27.5                             | 29.0<br>29.3<br>29.5<br>29.1<br>29.6<br>28.8<br>29.6<br>29.4<br>29.4<br>26.9                              | 29.4<br>29.6<br>28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0                                         | 29.0<br>29.3<br>29.5<br>29.1<br>29.6<br>28.8<br>29.6                                     | 29.4<br>29.6<br>28.8<br>29.6<br>29.1                                                          | 29.0<br>29.3<br>29.5<br>29.1                                | 29.3<br>29.5<br>28.8                                                    | 28.3<br>28.6<br>28.7                                       | 27.7<br>27.4<br>26.8                        | 24.4<br>24.3                                | 19.3<br>19.2                         |
| 6 ft = 18.3 dm<br>18.5<br>18.5<br>18.5<br>19.2<br>19.3<br>18.6<br>19.3<br>18.6<br>19.3<br>18.6<br>19.3<br>18.6<br>19.3<br>18.6<br>19.3<br>18.6<br>19.3<br>18.6<br>19.3<br>19.3<br>19.4<br>19.3<br>19.4<br>19.3<br>19.3<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19 | 23.5         27.2           24.0         26.9           23.5         27.2           24.1         26.8           24.3         27.4           24.4         27.7           24.2         25.8           16.3         17.2                                                                                                                                                        | 27.9<br>28.7<br>28.4<br>28.7<br>28.6<br>28.3<br>26.9<br>17.2<br>→ 3 ◄                                                    | 29.4<br>29.0<br>29.4<br>28.8<br>29.5<br>29.3<br>26.9<br>17.6                                                                                                                                      | 28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0<br>27.5                                             | 29.5<br>29.1<br>29.6<br>28.8<br>29.6<br>29.4<br>29.4<br>26.9                                              | 28.8<br>29.6<br>29.1<br>29.5<br>29.3<br>29.0                                                         | 29.5<br>29.1<br>29.6<br>28.8<br>29.6                                                     | 28.8<br>29.6<br>29.1                                                                          | 29.5<br>29.1                                                | 28.8                                                                    | 28.7                                                       | 26.8                                        |                                             |                                      |
| 6 ft = 18.3 dm<br>18.4<br>18.5<br>19.2<br>19.3<br>18.6<br>13.3<br>18.6<br>13.3<br>18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.0         26.9           23.5         27.2           24.1         26.8           24.3         27.4           24.4         27.7           24.2         25.8           16.3         17.2                                                                                                                                                                                    | 28.7<br>28.4<br>28.7<br>28.6<br>28.3<br>26.9<br>17.2<br>→ 3 ←                                                            | 29.0<br>29.4<br>28.8<br>29.5<br>29.3<br>26.9<br>17.6                                                                                                                                              | 29.6<br>29.1<br>29.5<br>29.3<br>29.0<br>27.5                                                     | 29.1<br>29.6<br>28.8<br>29.6<br>29.4<br>26.9                                                              | 29.6<br>29.1<br>29.5<br>29.3<br>29.0                                                                 | 29.1<br>29.6<br>28.8<br>29.6                                                             | 29.6<br>29.1                                                                                  | 29.1                                                        |                                                                         |                                                            |                                             |                                             |                                      |
| 18.5<br>18.5<br>19.2<br>19.3<br>18.6<br>13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.1         26.8           24.3         27.4           24.4         27.7           24.2         25.8           16.3         17.2                                                                                                                                                                                                                                            | 28.7<br>28.6<br>28.3<br>26.9<br>17.2<br>→ 3 ◄                                                                            | 28.8<br>29.5<br>29.3<br>26.9<br>17.6                                                                                                                                                              | 29.5<br>29.3<br>29.0<br>27.5                                                                     | 28.8<br>29.6<br>29.4<br>26.9                                                                              | 29.5<br>29.3<br>29.0                                                                                 | 28.8<br>29.6                                                                             |                                                                                               |                                                             |                                                                         |                                                            | 27.2                                        | 23.5                                        | 18.5                                 |
| 19.3<br>18.6<br>13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.4         27.7           24.2         25.8           16.3         17.2                                                                                                                                                                                                                                                                                                    | 28.3<br>26.9<br>17.2<br>►3 ◄                                                                                             | 29.3<br>26.9<br>17.6                                                                                                                                                                              | 29.0<br>27.5                                                                                     | 29.4<br>26.9                                                                                              | 29.0                                                                                                 |                                                                                          | 29.5                                                                                          | 29.6                                                        | 29.0<br>29.4                                                            | 28.7<br>27.9                                               | 26.9<br>27.2                                | 24.0<br>23.5                                | 18.4<br>18.8                         |
| 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.2 25.8<br>16.3 17.2                                                                                                                                                                                                                                                                                                                                                       | 26.9<br>17.2<br>→ 3 ←                                                                                                    | 26.9<br>17.6                                                                                                                                                                                      | 27.5                                                                                             | 26.9                                                                                                      |                                                                                                      |                                                                                          | 29.3                                                                                          | 29.6                                                        | 29.2                                                                    | 25.6                                                       | 25.6                                        | 23.8                                        | 19.1                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                              | →3 ←                                                                                                                     |                                                                                                                                                                                                   | 40.5                                                                                             |                                                                                                           |                                                                                                      | 29.4<br>26.9                                                                             | 29.0<br>27.5                                                                                  | 29.4<br>26.9                                                | 29.0<br>27.3                                                            | 28.7<br>26.4                                               | 27.4<br>26.2                                | 25.4<br>24.1                                | 20.3<br>20.3                         |
| Precipitation Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          | - 1ft                                                                                                                                                                                             |                                                                                                  | 17.6                                                                                                      | 18.5                                                                                                 | 17.6                                                                                     | 18.5<br>4 <b>4</b>                                                                            | 17.6                                                        | 18.5                                                                    | 17.4                                                       | 18.2<br>►2 <                                | 16.5                                        | 14.9<br>►1                           |
| Precipitation Type IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          | DISPENSER #                                                                                                                                                                                       | #2                                                                                               |                                                                                                           |                                                                                                      |                                                                                          |                                                                                               |                                                             | C                                                                       | ISPENSER #                                                 | 1                                           |                                             |                                      |
| Precipitation Type IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                                                                                                                   |                                                                                                  | WIN                                                                                                       | G LEA                                                                                                | DING E                                                                                   | DGE                                                                                           |                                                             |                                                                         |                                                            |                                             |                                             |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                          |                                                                                                                                                                                                   | ]                                                                                                | Run#                                                                                                      |                                                                                                      |                                                                                          |                                                                                               |                                                             |                                                                         |                                                            |                                             |                                             |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTE:<br>- Leading<br>- Trailing                                                                                                                                                                                                                                                                                                                                             | <ol> <li>4. Prepare</li> <li>5. Prepare</li> <li>6. Dictate</li> <li>7. Once a</li> <li>8. Once a</li> </ol>             |                                                                                                                                                                                                   | nount of IP N<br>or "Total Ar<br>IP needed '<br>e emptied of<br>has comple<br>Pos #2 -> P        | Needed for<br>mount of IP<br>"In each Poo<br>f its conten<br>tested its cy<br>tos #3 -> Po<br>ispenser St | Entire Test<br>in Each Di-<br>sition" in g<br>s (1-minute<br>cle at Posi<br>os #4 -> Po<br>ands must | spenser" ir<br>rams. (Eac<br>e intervals),<br>tion #4, sta<br>os #4 -> Po<br>be 1-foot ( | a grams. (Ea<br>th Position<br>move the E<br>art next cycle<br>tos #3 -> Pos<br>12 inches) to | from the Lo                                                 | emptied at<br>I-foot to the<br>n #4 and m<br>s #1 -> Po:<br>s #1 c> Po: | approxim<br>left.<br>love 1-Foot<br>s #1)<br>e <i>(LE)</i> | ately 1-mir                                 | nute interv                                 | /als.)                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Dispen                                                                                                                                                                                                                                                                                                                                                                     | ser Spinner                                                                                                              | must be 3-                                                                                                                                                                                        | -feet above                                                                                      | the averag                                                                                                | e height of                                                                                          | the wing.                                                                                |                                                                                               |                                                             |                                                                         |                                                            |                                             |                                             |                                      |

### APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20



| Precipitation Type Sifted Snow Date | 6: Example Snow Dispensing Form (Manual Method)                                                                                                   |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Precipitation Type Sifted Snow Date |                                                                                                                                                   |
|                                     | Run #                                                                                                                                             |
| * Field to be manipulated           | I. Enter "Run #".                                                                                                                                 |
|                                     | 2. Manipulate desired "Target Rate" for test event.                                                                                               |
|                                     | 3. Manipulate desired "Duration" for test event.                                                                                                  |
|                                     | 4. Prepare "Total Amount of Snow Needed for Entire Test" in grams.                                                                                |
|                                     | 5. Prepare 4 boxes for "Total Amount of Snow in Each Dispenser" in grams. (Each Dispenser must be emptied at 5-minute intervals.)                 |
|                                     | 6. Dictate amount of Snow needed "In each Position" in grams. (Each Position must be emptied at approximately 1-minute intervals.)                |
|                                     | 7. Once a Position is emptied of its contents (1-minute intervals), move the Dispenser 1-foot to the left.                                        |
| In each position 66                 | 3. Once a Dispensor has completed its cycle at Position #4, start next cycle at Position #4 and move 1-Foot to the right at (1-minute intervals). |
| In each Dispenser 265               | ie.g: Position #1 -> Pos #2 -> Pos #3 -> Pos #4 -> Pos #4 -> Pos #3 -> Pos #2 -> Pos #1 -> Pos #1)                                                |
| Snow needed for entire test         |                                                                                                                                                   |
| In each Diananaar                   |                                                                                                                                                   |
| Total Amount Snow                   |                                                                                                                                                   |
| Needed for Entire Test 1062         |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
| - Since disp                        | pensing is done using a sieve, the percentage of snow loss is reduced. This efficiency is estimated at 90%, as per visual analysis in 2009-10.    |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |
|                                     |                                                                                                                                                   |

| Ratings:       1 - Contamination not very visible, fluid still clean.         2 - Contamination is visible, but lots of fluid still present         3 - Contamination visible, spots of bridging contamination         4 - Contamination visible, lots of dry bridging present         5 - Contamination visible, adherence of contamination         Note: Ratings can include decimals i.e. 1.4 or 3.5         Before Take-off Run         Area         Visual Severity<br>Rating (1-5)         Leading Edge       >3 = Review, >3.5=Bad         7railing Edge       >3 = Review, >3.5=Bad         Flap       >4 = Review, >4.5=Bad         At Rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | Attaon                                                        | ment 7                                                   | . visuai                                                                      | Lvaluati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on Rating Fo                                                                        |              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|--|
| 1 - Contamination not very visible, fluid still clean.         2 - Contamination is visible, but lots of fluid still present         3 - Contamination visible, spots of bridging contamination         4 - Contamination visible, lots of dry bridging present         5 - Contamination visible, adherence of contamination         Note: Ratings can include decimals i.e. 1.4 or 3.5         Before Take-off Run         Area       Visual Severity<br>Rating (1-5)         Leading Edge       >3 = Review, >3.5=Bad         Trailing Edge       >3 = Review, >3.5=Bad         Flap       >3 = Review, >3.5=Bad         Area       Visual Severity<br>Rating (1-5)         Leading Edge       >1 = Review >1.5 = Bad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 - Contamination not very visible, fluid still clean.         2 - Contamination is visible, but lots of fluid still present         3 - Contamination visible, lots of dry bridging contamination         4 - Contamination visible, lots of dry bridging present         5 - Contamination visible, lots of dry bridging present         5 - Contamination visible, lots of dry bridging present         5 - Contamination visible, adherence of contamination         Note: Ratings can include decimals i.e. 1.4 or 3.5         Before Take-off Run         Area         Visual Severity<br>Rating (1-5)         Leading Edge       >3 = Review, >3.5=Bad         Flap       >4 = Review, >4.5=Bad         At Rotation         At Rotation         At Rotation         At Rotation         At Review >1.5 = Bad         Leading Edge         Trailing Edge         Flap         After Take-off Run         After Take-off Run <td col<="" th=""><th></th><th></th><th></th><th>ION RATI</th><th>ing of C</th><th></th><th></th></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <th></th> <th></th> <th></th> <th>ION RATI</th> <th>ing of C</th> <th></th> <th></th> |                                                               |                                                          |                                                                               | ION RATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing of C                                                                            |              |  |
| Area       Visual Severity<br>Rating (1-5)         Leading Edge       >3 = Review, >3.5=Bad         Trailing Edge       >3 = Review, >3.5=Bad         Flap       >4 = Review, >4.5=Bad         Area       Visual Severity<br>Rating (1-5)         Leading Edge       >1= Review >1.5 = Bad         Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Trailing Edge       >1= Review >1.5 = Bad         Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1= Review >1.5 = Bad         Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1= Review >1.5 = Bad         Leading Edge       >1.5 = Bad         Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Area       Visual Severity<br>Rating (1-5)         Leading Edge       >3 = Review, >3.5=Bad         Trailing Edge       >3 = Review, >3.5=Bad         Flap       >4 = Review, >4.5=Bad         Area       Visual Severity<br>Rating (1-5)         Leading Edge       >1= Review >1.5 = Bad         Expected<br>Lift Loss (%<br>5.4 = Revie<br>>9.2 = Bad         Trailing Edge       >1= Review >1.5 = Bad         After Take-off Run         Area       Visual Severity<br>Rating (1-5)         Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       | 1 - Conta<br>2 - Conta<br>3 - Conta<br>4 - Conta<br>5 - Conta | mination<br>mination<br>mination<br>mination<br>mination | is visible, b<br>visible, spo<br>visible, lots<br>visible, adl<br>clude decim | but lots of the solution of the solution of bridges of dry bridges of dry bridges of the solution of the solut | fluid still present<br>ging contaminati<br>dging present<br>contamination<br>or 3.5 |              |  |
| Area       Rating (1-5)         Leading Edge       >3 = Review, >3.5=Bad         Trailing Edge       >3 = Review, >3.5=Bad         Flap       >4 = Review, >4.5=Bad         Area       Visual Severity<br>Rating (1-5)       >4 = Review, >4.5=Bad         Leading Edge       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Trailing Edge       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Flap       >1 = Review >1.5 = Bad       Expected<br>Lift Loss (%<br>5.4 = Review<br>>9.2 = Bad         Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Area       Rating (1-5)         Leading Edge       >3 = Review, >3.5=Bad         Trailing Edge       >3 = Review, >3.5=Bad         Flap       >4 = Review, >4.5=Bad         Area       Visual Severity<br>Rating (1-5)       Particle Partis Particle Particle Par |                                                                                       |                                                               |                                                          | Before Ta                                                                     | ake-off R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | un                                                                                  |              |  |
| Trailing Edge       >3 = Review, >3.5=Bad         Flap       >4 = Review, >4.5=Bad         Area       Visual Severity<br>Rating (1-5)         Leading Edge       >1= Review >1.5 = Bad         Trailing Edge       >1= Review >1.5 = Bad         Flap       >1= Review >1.5 = Bad         Stars       After Take-off Run         After Take-off Run         Leading Edge         Trailing Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trailing Edge       >3 = Review, >3.5=Bad         Flap       >4 = Review, >4.5=Bad         Area       Visual Severity<br>Rating (1-5)         Leading Edge       >1= Review >1.5 = Bad         Trailing Edge       >2= Bad         Flap       >1= Review >1.5 = Bad         After Take-off Run       After Take-off Run         Area       Visual Severity<br>Rating (1-5)         Leading Edge       Trailing Edge         Flap       Image: Severity Rating (1-5)         Leading Edge       Trailing Edge         Flap       Image: Severity Rating (1-5)         Leading Edge       Image: Severity Rating (1-5)         Flap       Image: Severity Rating (1-5)         Severity Rating Edge       Image: Severity Rating (1-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                               |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |              |  |
| Flap       >4 = Review, >4.5=Bad         Area       Visual Severity<br>Rating (1-5)       Expected<br>Lift Loss (?)         Leading Edge       >1= Review >1.5 = Bad       Solution         Trailing Edge       >1= Review >1.5 = Bad       Solution         Flap       >1= Review >1.5 = Bad       Solution         Flap       >1= Review >1.5 = Bad       Solution         Flap       >1= Review >1.5 = Bad       Solution         Area       Visual Severity<br>Rating (1-5)       Solution         Leading Edge       Trailing Edge       Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flap       >4 = Review, >4.5=Bad         Area       Visual Severity<br>Rating (1-5)       Expected<br>Lift Loss (%<br>>5.4 = Review         Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                                               |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                                                 |              |  |
| Area       Visual Severity<br>Rating (1-5)         Leading Edge       >1= Review >1.5 = Bad         Trailing Edge       >2 = Bad         Flap       After Take-off Run         Area       Visual Severity<br>Rating (1-5)         Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Area       Visual Severity<br>Rating (1-5)       Expected<br>Lift Loss (?<br>>5.4 = Review<br>>1.5 = Bad         Trailing Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                               |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |              |  |
| Area       Visual Severity<br>Rating (1-5)         Leading Edge       >1= Review >1.5 = Bad         Trailing Edge       >2 = Bad         Flap       After Take-off Run         Area       Visual Severity<br>Rating (1-5)         Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Area       Visual Severity<br>Rating (1-5)       Expected<br>Lift Loss (%<br>>5.4 = Review<br>>1.5 = Bad         Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                               |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |              |  |
| Area     Rating (1-5)       Leading Edge     >1= Review >1.5 = Bad       Trailing Edge     >1= Review >1.5 = Bad       Flap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Area     Rating (1-5)       Leading Edge     >1= Review >1.5 = Bad       Trailing Edge     >1= Review >1.5 = Bad         Flap         Area     Visual Severity<br>Rating (1-5)       Leading Edge       Trailing Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                               |                                                          |                                                                               | otation<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |              |  |
| Trailing Edge     Image: Control of the second | After Take-off Run       Area     Visual Severity<br>Rating (1-5)       Leading Edge       Trailing Edge       Flap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                     | vrea                                                          |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | Lift Loss (% |  |
| Flap       After Take-off Run       Area     Visual Severity<br>Rating (1-5)       Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flap       After Take-off Run       Visual Severity<br>Rating (1-5)       Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |                                                               |                                                          |                                                                               | >1= Revie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ew >1.5 = Bad                                                                       |              |  |
| After Take-off Run       Area     Visual Severity<br>Rating (1-5)       Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | After Take-off Run         Area       Visual Severity<br>Rating (1-5)         Leading Edge       Iter Take-off Run         Trailing Edge       Iter Take-off Run         Flap       Iter Take-off Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | Edge                                                          |                                                          |                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |              |  |
| AreaVisual Severity<br>Rating (1-5)Leading EdgeTrailing Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AreaVisual Severity<br>Rating (1-5)Leading EdgeTrailing EdgeFlap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Гар                                                                                   |                                                               |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |              |  |
| Area     Rating (1-5)       Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Area     Rating (1-5)       Leading Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                                               |                                                          | After Ta                                                                      | ke-off Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                                                                                   |              |  |
| Trailing Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trailing Edge<br>Flap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | Ar                                                            | ea                                                       |                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |                                                               |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                                               | Edge                                                     |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Additional Observations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       | Flap                                                          |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                                                                   |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                                               |                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OBSERVE                                                                               | R:                                                            |                                                          |                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |              |  |

| Attachment 8: Fluid Receipt Form (Electronic Forn                                                                                                                                                                                                                                                                                                                                                | n)                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| FORM 1<br>GENERAL FORM FOR RECEIVING FLUID                                                                                                                                                                                                                                                                                                                                                       |                    |
| Receiving Location: APS Site Other: Date of Receipt:                                                                                                                                                                                                                                                                                                                                             |                    |
| Manufacturer: Date of Production:                                                                                                                                                                                                                                                                                                                                                                |                    |
| Fluid Name: Batch #:                                                                                                                                                                                                                                                                                                                                                                             |                    |
| Fluid Type: Project Task:                                                                                                                                                                                                                                                                                                                                                                        | •                  |
| Fluid Quantities / Fluid Brix / Falling Ball Info:                                                                                                                                                                                                                                                                                                                                               |                    |
| Fluid Dilution:     Fluid Dilution:       Fluid Quantity:     x       L =     L       Fluid Quantity:     x                                                                                                                                                                                                                                                                                      | x L = L            |
| Fluid Brix:     •     Fluid Brix:     •     Fluid Brix:                                                                                                                                                                                                                                                                                                                                          | <br>               |
| Falling Ball Time: (mm:ss:cs) Falling Ball Time: (mm:ss:cs) Falling Ball Time:                                                                                                                                                                                                                                                                                                                   | :: (mm:ss:cs)      |
| Falling Ball Temp: °C Falling Ball Temp: °C Falling Ball Temp:                                                                                                                                                                                                                                                                                                                                   | °C                 |
| Sample Collection: Sample Distribution:                                                                                                                                                                                                                                                                                                                                                          |                    |
| HOT Fluids:         Extract 3 L 100 and 2 L 75 / 50 / Type I         Viscosity:         1 L 100 / 75 / 50 to third party for vi           Other Fluids:         Extract 2 L 100 / 75 / 50 / Type I         WEST:         1 L 100 / Type I to AMIL for WSET           Office:         1 L 100 / 75 / 50 / Type I to be retained         Office:         1 L 100 / 75 / 50 / Type I to be retained | (HOT samples only) |
| Additional Info/Notes: (additional information included on fluid containers, paperwork received, etc.)                                                                                                                                                                                                                                                                                           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| Received by: Date:                                                                                                                                                                                                                                                                                                                                                                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                    |

#### APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20

| Date of Extraction | Fluid and Dilution | Batch # | Sample<br>Source (i.e.<br>drum) | Falling<br>Fluid<br>(°C) | Ball<br>Temp | Falling Ball Time<br>(sec) | Comments |
|--------------------|--------------------|---------|---------------------------------|--------------------------|--------------|----------------------------|----------|
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            |          |
|                    |                    |         |                                 |                          |              |                            | •        |

#### Attachment 10: Procedure - Dry Wing Performance

# Background

A significant amount of work has been done in conjunction with NASA and NRC in order to calibrate and characterize the wind tunnel and airfoil model during the last two winter seasons. This work has further increased the confidence in the data produced, however ongoing verification is necessary in order to identify potential changes in the system performance.

#### Objective

Verify that clean model aerodynamic data agree with the data acquired in previous years with the same model. Given the various issues with repeatability and angle of attack offsets in the past, this is an important step prior to fluids testing.

# Methodology

- Ensure the wing is clean and dry;
- Conduct a dry wing test using the regular take-off profile;
- Conduct a dry wing test using a take-off profile with rotation to stall;
- Compare lift performance to historical data; and
- Address potential discrepancies accordingly.

#### Test Plan

This testing should be conducted at the start of each testing day.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 40 of 59

# Attachment 11: Procedure - Type IV Ice Pellet Allowance Time Validation with New Fluids and at Temperatures Close to the LOUT

# Background

The Type IV ice pellet allowance times are conservative, generic guidance developed based on data collected using commercially available Type IV fluids. As new fluids are developed and become commercially available, it is important to evaluate these fluids against the current allowance times to ensure the validity of the generic guidance. Systematic "spot-checking" is used in order to identify any potential issues. In addition, testing is recommended with all fluids available to obtain data close to the fluid LOUT to determine the aerodynamic effects of ice pellet contamination at these colder temperatures.

### Objective

To evaluate newly commercialized Type IV fluids against the existing allowance times, and to collect data close to the fluid LOUT.

#### Methodology

- Conduct testing with any new commercially available Type IV fluids in each of the cells of the ice pellet allowance times table;
- Record lift data, visual observations, and manually collected data;
- Adjust testing plan accordingly based on aerodynamic data collected.
- Weather permitting, conduct testing close to the fluid LOUT (-25 to -30°C) with appropriate conditions to address data gaps;

# Test Plan

Four days of testing are planned, however a portion of this testing is temperature critical and requires very low temperatures below -25°C.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 41 of 59

Attachment 12: Procedure - Type III Ice Pellet Allowance Time Validation with New Fluids, Speed (80 knots) and Application Temperatures (Hot vs. Cold)

# Background

Allowance times for Type III fluids have just recently been developed. Similar to the Type IV ice pellet allowance times, the Type III allowance times are also intended to be conservative, generic guidance developed based on data collected using commercially available Type III fluids. As new fluids are developed and become commercially available, it is important to evaluate these fluids against the current allowance times to ensure the validity of the generic guidance. Systematic "spot-checking" is used in order to identify any potential issues. In addition, testing is recommended at lower speeds (80 knots) and with heated fluid applications to address operational needs.

#### Objective

To evaluate newly commercialized Type III fluids against the existing allowance times, and to investigate lower rotation speeds (80 knots) and application methods (hot vs. cold).

# Methodology

- · Conduct testing with any new commercially available Type III fluids in each of the cells of the ice pellet allowance times table;
- Record lift data, visual observations, and manually collected data;
- Adjust testing plan accordingly based on aerodynamic data collected; and
- Consider additional testing with lower rotation speeds and with heated fluid applications.

# Test Plan

Three days of testing are planned.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 42 of 59

# Attachment 13: Procedure –Type IV Ice Pellet Allowance Time Expansion (METAR and Mixed IP and Snow Conditions)

#### Background

In an effort to continually improve the guidance provided, research is being conducted to expand the current Type IV allowance times to include additional conditions, or to potentially increase the existing times in some cells. Testing is recommended to evaluate new cells better suited to METAR reporting formats which do not include mixed precipitation intensities i.e. light ice pellets and moderate snow. Testing is also recommended to expand the existing mixed ice pellet and snow allowance times to have longer times, and potentially new cells.

#### Objective

To conduct testing to support the expansion of the Type IV ice pellet allowance times to include conditions more commonly reported by METAR and to further develop the current mixed ice pellet and snow guidance;

# Methodology

- Conduct testing with multiple Type IV fluids in each of the cells of the targeted new or potentially modified ice pellet allowance times table cells;
- · Record lift data, visual observations, and manually collected data; and
- Adjust testing plan accordingly based on aerodynamic data collected.

#### Test Plan

Three days of testing are planned.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 43 of 59

#### Attachment 14: Procedure - Stall Warning Sensor

# Background

Airfoil performance monitors (APM) are being developed and can be installed on any airfoil on an aircraft, including the tail. An APM is designed to measure the airflow over the wing, which reveals how well the wing is working. As a wing becomes contaminated, the APM should measure the changing or turbulent airflow and resulting lift generated by the wing. The APM is designed to alert the crew if the airflow degrades below a configurable threshold, giving the crew time to correct a potential stall before it happens. It was recommended that testing be conducted with a Canadian developed APM to support the development of the technology and aid in evaluating the potential for use in ground icing operations and to investigate whether or not the use of fluids with the systems would potentially obstruct the pressure ports which are critical to the systems operation.

#### Objective

To provide a testing platform to the manufacturer and allow them to evaluate the ability of the airfoil performance monitor to properly identify stall with and without icing conditions during aircraft ground operations with de/anti-icing fluid applications.

# Methodology

- Conduct dry wing baseline testing with and without the installation to understand any potential aerodynamic influences the sensor may have;
- With the sensor installed, conduct dry wing tests to stall;
- Repeat tests with fluid only to stall;
- Evaluate ability of the APM to measure stall and compare to the stall observed through the aerodynamic data collected; and
- Evaluate the use of the APM unit with fluids.

# Test Plan

Four tests are anticipated.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.dox Final Version 1.1, January 16 Page 44 of 59

APS/Library/Projects/PM2480.002 (TC Deicing 2015-16)/Reports/Ice Pellet/Final Version 1.0/Report Components/Appendices/Appendix B/Appendix B.docx Final Version 1.0, October 20

#### Attachment 15: Procedure - Heavy Snow

# Background

As a direct result of the ice pellet research conducted, the use of HOTs for determining the protection time provided by anti-icing fluids was questioned. The focus has turned towards "aerodynamic failure" which can be defined as a significant lift loss resulting from contaminated anti-icing fluid. Heavy snow conditions have been selected for this study for two reasons. First, snow conditions account for the most significant portion of de-icing operations globally. Secondly, there has been a recent industry interest for holdover time for heavy snow conditions. Preliminary aerodynamic testing was conducted during the winters of 2006-07 and 2008-2011.

### Objective

To investigate the fluid aerodynamic flow-off characteristics of anti-icing fluid contaminated with simulated heavy snow versus moderate snow.

#### Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical snow condition tests conducted in the wind tunnel.

- For a chosen fluid, conduct a test simulating moderate snow conditions (rate of 25 g/dm<sup>2</sup>/h) for an exposure time derived from the HOT table based on the tunnel temperature at the time of the test
- Record lift data, visual observations, and manually collected data;
- Conduct two comparative tests simulating heavy snow conditions (rate of 50 g/dm<sup>2</sup>/h or higher) for the same exposure time used during the moderate snow test.
  - NOTE: previous testing has indicated that using half, to <sup>3</sup>/<sub>4</sub> of the moderate snow HOT generates similar end conditions; whereas using the full moderate HOT for heavy snow conditions generates a more sever fluid failure which behaves worse aerodynamically. ;
- Record lift data, visual observations, and manually collected data;
- Compare the heavy snow results to the moderate snow results. If the heavy snow results are worse, repeat the heavy snow test with a reduced exposure time, if the results are better, repeat the heavy snow test with an increased exposure time;
- Repeat until similar lift data, and visual observations are achieved for both heavy snow and moderate snow; and
- Document the percentage of the moderate snow HOT that is acceptable for heavy snow conditions.

# Test Plan

Two to four comparative tests are anticipated. See previous reports for suggested test plan.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx

Page 45 of 59

#### **Attachment 16: Procedure - Heavy Contamination**

# Background

Previous testing in the wind tunnel demonstrated that although very heavy ice pellet and/or snow contamination was applied to a fluid covered wing section, significant lift losses were not apparent. The initial testing indicated that after a certain level of contamination, the dry loose ice pellets or snow no longer absorb into the fluid and easily fly off during the acceleration. The protection is due to a thin layer of fluid present underneath the contamination that prevents adherence. Questions of which point the lift losses become detrimental have been raised.

# Objective

To continue previous research investigating heavy contamination effects on fluid flow off.

# Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical ice pellet tests conducted in the wind tunnel.

- For a chosen fluid, conduct a test simulating ice pellets, snow, or freezing rain, for an exposure time far exceeding the recommended HOT or allowance time;
- Record lift data, visual observations, and manually collected data;
- Compare aerodynamic performance results to fluid only or fluid and contamination tests at the same temperature.

# Test Plan

One to four tests are anticipated. Previous work should be referenced to identify starting levels of heavy contamination.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 46 of 59

#### Attachment 17: Procedure - Wind Tunnel Test Section Cooling

# Background

Recent wind tunnel research has been limited by the ambient temperature in wind tunnel test section; in sunny conditions, the radiation will raise the temperature in the test section making testing difficult. To mitigate this effect, testing is often conducted overnight, however in some cases, even body heat from people working in the test area (specifically during long precipitation exposure tests) can effect the temperature. A new cooling system has been installed by the NRC to mitigate the effects of the radiation warming as well as from the heat generated by the personnel working in the test section. It was recommended that testing be conducted to evaluate the effects of the new cooling system on the test results.

#### Objective

To evaluate the effect of the cooling system on the aerodynamic test results produced.

#### Methodology

- Conduct a fluid only test without the cooling system. Have personnel standing on scaffolding for 20-minutes following fluid application to generate extra heat prior to running the wind tunnel;
- · Conduct a second comparative fluid only test with the cooling system. Have personnel standing on scaffolding for 20-minutes following fluid application to generate extra heat prior to running the wind tunnel;
- Conduct a third comparative test at a suitable ambient temperature where the expected test area temperature with the cooling system is equal to the test area temperature of the test conducted without the cooling system; and
- Compare aerodynamic performance results.

| Test # | Cooling<br>System Status | OAT ºC | Test Area<br>Temp ⁰C | Lift Loss % |
|--------|--------------------------|--------|----------------------|-------------|
| 1      | Off                      | -18    | -14                  | 6.3         |
| 2      | On                       | -18    | -17                  | 7.5         |
| 3      | On                       | -15*   | -14                  | 5.7         |

### EXAMPLE OF COMPARATIVE DATA TO BE COLLECTED

\* to be selected based on efficiency of cooling system based on test #2

# Test Plan

Three tests at a minimum are expected.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Final Version 1.0, October 20

Page 47 of 59

### Attachment 18: Procedure - Effect of Fluid Viscosity

# Background

Testing was previously conducted to evaluate the aerodynamic effects of fluid viscosity on flow-off. To do so, comparative testing was conducted with both mid-production fluid (used for ice pellet allowance time testing) and with lowest on-wing viscosity fluid (LOWV) (used for holdover time testing). Testing was conducted with the thin high performance airfoil in fluid only conditions. Additional testing was recommended to further substantiate the testing results.

#### Objective

To continue previous research evaluating the effect of fluid viscosity on aerodynamics.

# Methodology

For each comparative test set, a baseline mid-production test should be conducted, and immediately followed by a lowest on-wing viscosity test of the same fluid type. Testing should be done with fluid only and fluid and contamination.

# Test Plan

Two to four tests are anticipated.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 48 of 59

# Attachment 19: Procedure - Fluid and Contamination at LOUT

# Background

Recent changes to the frost HOT guidance material allowing fluids to be used to the LOUT have raised concerns about whether or not this is an appropriate practice. In frost the major concern was the effect of radiation cooling and how it could affect the LOUT, however the concern also includes contamination at LOUT. This issue was also raised from the AWG for the ice pellet testing which allows fluids to be used to LOUT: will the added ice pellet contamination at the LOUT not bust BLDT? It was recommended that some testing be conducted at the fluid LOUT to investigate how contamination can affect the aerodynamic performance of the fluid.

# Objective

To investigate the fluid aerodynamic flow-off characteristics of anti-icing fluid with contamination at the LOUT.

#### Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical ice pellet tests conducted in the wind tunnel.

- For a chosen fluid, conduct a test simulating ice pellets, snow, freezing fog, or frost, for an exposure time derived from the HOT table at the fluid LOUT;
- · Record lift data, visual observations, and manually collected data;
- Conduct a fluid only baseline test at the same temperature (at LOUT); and
- Compare the aerodynamic performance.

# Test Plan

Four or more tests are anticipated at a minimum. If LOUT temperatures for neat fluids are not likely to occur, investigate the possibility of using diluted fluids to obtain a higher LOUT.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 49 of 59

#### Attachment 20: Procedure - Small Hail

#### Background

Reports from primarily Asian operators have indicated that small hail can occur frequently during winter operations. The small hail will generally occur above freezing conditions; however no guidance for operating in the conditions is currently available. Questions have been raised as to whether the ice pellet allowance times can be used due to similarity in precipitation type. Although this concern has only been raised by Asian operators, it can be assumed that similar conditions can be expected by North American operators. WMO defines small hail as snow pellets encapsulated by ice, a precipitation halfway between graupel and hail.

#### Objective

To investigate the fluid aerodynamic flow-off characteristics of anti-icing fluid with contamination with small hail and to compare the results to ice pellets.

# Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical ice pellet tests conducted in the wind tunnel.

- For a chosen fluid, conduct a test simulating small hail for an exposure time derived from the current ice pellet allowance time table as a starting point;
- · Record lift data, visual observations, and manually collected data;
- Conduct a fluid only baseline test at the same temperature; and
- Compare the aerodynamic performance.

## Test Plan

One to four tests are anticipated. A meteorologist should be consulted prior to the conduct to narrow down the exact conditions and temperatures at which small hail will occur, as well as to obtain the desired small hail diameter.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 50 of 59

#### Attachment 21: Procedure - Frost Simulation in the Wind Tunnel

# Background

Frost is an important consideration in aircraft deicing. The irregular and rough frost accretion patterns can result in a significant loss of lift on critical aircraft surfaces. This potential hazard is amplified by the frequent occurrence of frost accretion in winter operations. Frost is an area of research that has yet to be fully explored. Discussions regarding the aerodynamic effects of frost have been raised, and the possibility of doing wind tunnel testing has been considered. It was recommended that initial testing be performed to investigate whether it would be feasible to simulate frost conditions in the PIWT.

#### Objective

To investigate the feasibility of simulating frost conditions in the PIWT.

#### Methodology

This work is exploratory, so no exact procedure exists. It is recommended that the frost generating parameters be explored to try and stimulate frost accretion. This can be done by causing a negative temperature differential between the wing and the ambient air i.e. air is warmer than skin. A more specific methodology may be determined on site following a brain-storm with on-site technicians.

# Test Plan

One or two tests are anticipated.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 51 of 59

#### Attachment 22: Procedure - Flaps/Slats Testing to Support YMX Tests

#### Background

Flaps/slats testing has been conducted with the support of UPS during the winter sof 2011-12 and 2012-13, and is scheduled to continue during the winter of 2013-14. The initial results have indicated that extended configurations can result in earlier fluid failure on the flap and slats as compared to the main section of the wing. It was recommended that testing in the wind tunnel be conducted to evaluate how significant the aerodynamic penalties would be from having failed fluid in these isolated areas.

#### Objective

To investigate the aerodynamic performance degradation associated with failed fluid on flaps and slats.

#### Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical snow condition tests conducted in the wind tunnel.

- · For a chosen fluid, conduct a test simulating moderate snow conditions (rate of 25 g/dm<sup>2</sup>/h) for an exposure time derived from the HOT table based on the tunnel temperature at the time of the test;
- Simulate early fluid failure on the fixed leading edge by applying higher rates of contamination on this area (record additional amounts);
- The flap is a hinged flap, so will be subject to early failure by design;
- Record lift data, visual observations, and manually collected data;
- Conduct a fluid only baseline test at the same temperature;
- Compare the aerodynamic performance; and
- Consideration should be given to conducting Type I tests.

#### Test Plan

Two to four comparative tests are anticipated.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 52 of 59

#### Attachment 23: Procedure - Mixed HOT Conditions

# Background

As the accuracy of meteorological reporting continues to improve, there has been a need to provide improved guidance material during these transitional periods of mixed precipitation. During the winter of 2008-09, guidance material was developed for operations during light snow mixed with light rain conditions. As a result of this work, there was industry interest in guidance material for operations during light freezing rain and moderate snow conditions as well as other mixed conditions. The objective of these tests is to collect data to determine if the current HOT guidelines can be expanded to include other operational mixed conditions which may be of current interest to industry.

#### Objective

To investigate if the current HOT guidelines can be expanded to include mixed conditions i.e. light freezing rain and moderate snow conditions.

#### Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for precipitation tests conducted in the wind tunnel.

- · For a chosen fluid, conduct a test simulating mixed conditions for an exposure time derived from the HOT table based on relative condition;
- Record lift data, visual observations, and manually collected data;
- Conduct a fluid only baseline test at the same temperature;
- Conduct a test with an existing relative HOT condition to evaluate the severity of the condition;
- Compare the aerodynamic performance; or
- If the mixed condition results are severe, repeat the test with a reduced • exposure time, if the results are good, repeat the test with a increased exposure time.

# Test Plan

Two to four comparative tests are anticipated.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 53 of 59

#### Attachment 24: Procedure - Snow on an Un-Protected Wing

# Background

In colder northern operations, it is common for aircraft to depart with "loose, dry, un-adhered snow" present on their wing sections. Although it is assumed most or all of this contamination will be removed at the time of rotation, it is unknown whether a certain level of contamination will reduce aerodynamic performance. Preliminary testing has demonstrated fluid seepage from the airfoil can lead to snow diluting and adhering to the airfoil during rotation; this effect has yet to be substantiated with operational data. During the winter of 2011-12, a video was leaked on the internet of an eastern European aircraft taking off with significant amounts of snow on the wing. As a result, additional wind tunnel testing was conducted during the aircof 2011-12. It was recommended that additional testing investigate the aerodynamic performance of a wing section contaminated with dry, un-adhered snow versus wet or humid snow.

#### Objective

To investigate the aerodynamic performance of a wing section contaminated with dry, un-adhered snow versus wet or humid snow.

# Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical snow condition tests conducted in the wind tunnel.

- Ensure the wing section and tunnel temperature are well below freezing (-5°C and below);
- Ensure the wing section is clean, dry, and free of any forms of contamination;
- Apply loose, dry snow contamination to the wing section;
- Record lift data, visual observations, and manually collected data; and
- Compare the results to baseline fluid only and dry wing test results;

#### Test Plan

One to four comparative tests are anticipated.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 54 of 59

# Attachment 25: Procedure - Feasibility of Ice Pellet Testing at Higher Speeds

# Background

Historically, the ice pellet allowance time testing conducted in the wind tunnel simulated typical aircraft rotation of 100 knots, and more recently some limited work at 115 knots. As a result of some of the higher lift losses observed at colder temperatures with PG fluids applied to a thin high performance airfoil, it was recommended that higher speed testing be conducted to verify if the limitations in the allowance times would need to be applied to commercial aircraft with rotation speeds well above 115 knots. It was recommended that 130-150 knots be targeted, however modifications to the wind tunnel may be required as those higher speeds may increase stress on the wind tunnel engine and other structural systems.

# Objective

To investigate the feasibility of conducting ice pellet testing at higher speeds of 130-150 knots.

# Methodology

This work is exploratory, so no exact procedure exists. A more specific methodology may be determined on site following a brain-storm with on-site technicians. It is expected that a series of tests may be conducted to try and achieve speeds above 115 knots without rotating the wing model.

# Test Plan

One or two tests are anticipated, however more tests may be required based on the results.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 55 of 59

#### Attachment 26: Procedure - Windshield Washer Used as Type I Deicer

#### Background

Based on recent industry reports, it has become apparent that in more remote airports or with general aviation aircraft with smaller operations, aircraft deicing is not being conducted with SAE aircraft ground deicing Type I fluid, but rather with off-the-shelf windshield washer fluid. Although the basic chemistry of the windshield washer fluid may be similar, questions regarding the fluid freeze point, holdover time, aerodynamics, and material compatibility have been raised. It was recommended that some preliminary testing be conducted to investigate fluid flow off in the wind tunnel with and without contamination. Limited test was conducted during the winter of 2011-12. It was recommended that testing should continue if necessary based on operational needs.

#### Objective

To evaluate the holdover time and aerodynamic effects windshield washer fluid when used a substitute for an aircraft ground deicing Type I fluid.

# **Methodology**

- Purchase various formulations of windshield washer fluid with varying freeze points;
- Apply fluid heated to 20°C using a garden sprayer;
- Expose to simulated freezing contamination (snow, freezing rain, or ice pellets). The exposure time is to be determined based on Type I fluid HOT's (45 minutes at a rate of 0.3 g/dm<sup>2</sup>/h);
- Document condition of the wing:
- Run the wind tunnel and collect data; and
- Compare results to baseline uncontaminated windshield washer tests and potentially with standard Type I tests.

# Test Plan

No testing is planned unless indicated otherwise by TC.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 56 of 59

#### Attachment 27: Procedure - Effect of Fluid Seepage on Dry Wing Performance

#### Background

Preliminary observations have indicated that fluid seepage from the airfoil can lead to lift losses and other aerodynamic impacts. This is especially of concern after a long series of fluid tests followed by a baseline dry wing test. It was recommended that testing investigate the aerodynamic impacts of residual fluid seepage on the airfoil performance.

#### Objective

To investigate the aerodynamic impacts of residual fluid seepage on the airfoil performance.

# Methodology

The general methodology to be used during these tests is in accordance with the methodologies used for typical tests conducted in the wind tunnel.

- To be conducted following a long series of fluid and/or contamination tests;
- Ensure the wing section is clean, dry, and free of any forms of contamination;
- · Record lift data, visual observations, and manually collected data;
- Compare results to the first dry wing test of the season;
- Re-clean the wing using a wet-vac or other alternative method to try and remove any residual fluid;
- Record lift data, visual observations, and manually collected data; and
- Compare the results;

# Test Plan

One to three comparative tests are anticipated

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 57 of 59

#### Attachment 28: Procedure - 2nd Wave of Fluid during Rotation

#### Background

Previous wind tunnel testing has shown that during a simulated take-off roll following de/anti-icing, fluid will shear off the wing section; however a small amount of fluid can remain trapped along the leading edge at the stagnation point. This "trapped" fluid begins to flow over the wing only once the wing is rotated; the stagnation point shifts below the leading edge, and the "trapped" fluid begins to shear off as a second wave. Previous testing was simulated in a static model using strips of speed tape and cork tape strategically located on the leading edge of the wing section (along the span where the separation bubble will typically occur). A separate set of dynamic tests simulated the second wave with actual anti-icing fluid; sheared fluid prior to rotation was left only in select areas either below or above the stagnation point and then the flow was observed during a typical rotation. The results showed the stalling characteristics of the wing with fluid (or fluid with contamination) appear to be driven by secondary wave effects near the leading edge; these effects are difficult to interpret on the two-dimensional model relative to a fully threedimensional wing and should not be used in developing allowance times. Additional testing may be useful to better understand this effect.

#### Objective

To investigate the aerodynamic effects of the second wave of fluid flow during rotation.

# Methodology

- Simulate the 2<sup>nd</sup> wave of fluid using strips of tape applied at specific areas at different thicknesses on the wing, or with fluid; and
- Compare the different results.

# Test Plan

One to four tests are anticipated.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 58 of 59

# Attachment 29: Procedure - Effect of Ice Phobic Coating on Aerodynamics With or Without Fluids

# Background

In recent years, there has been significant industry interest in the use of coatings to protect aircraft critical surfaces. These coatings can sometimes designed and marketed as ice phobic coatings, but the behavior and performance of these coatings during ground icing operations has yet to be fully investigated Previous flat plate and wind tunnel work has been conducted since 2009-10 and has helped identify both strengths and weaknesses associated with these technologies. Additional aerodynamic testing was recommended to further develop the evaluation methodology and to investigate new product formulations.

# Objective

To investigate the aerodynamic performance of ice phobic coatings with and without de/anti-icing fluids.

# Methodology

Testing will be conducted using wing skins specifically manufactured to fit onto the existing thin high performance wing section and be secured by bolts. To cover the entire test wing, two individual wing skin halves are required.

Testing will consist of comparative test sets done with different sets of wing skins. The test set will consist of the following:

- Dry wing tests to 8 degrees and to stall to understand effects of coatings and to evaluate the repeatability of the tests;
- Simulated climb-out or cruise runs to evaluate drag and fuel efficiency;
- Fluid only testing with a known fluid;
- · Freezing rain with no fluid test to evaluate how contamination forms on the surface and the aerodynamic effects (beads of ice vs. smooth ice);
- Repeat dry wing tests to investigate fluid seepage issues associated with the wing skins and effect on repeatability;
- Un-install and re-install a wing skin to evaluate the repeatability of the installation process; and
- Compare the results with the coated wing skins to the un-coated wing skins. An additional comparison to the original wing is also useful.

# Test Plan

Four days of testing are planned.

M:\Projects\PM2480.002 (TC Deicing 2015-16)\Procedures\Wind Tunnel\Wind Tunnel Final Version 1.1.docx Final Version 1.1, January 16

Page 59 of 59

This page intentionally left blank.

APPENDIX C

FLUID THICKNESS, TEMPERATURE, AND BRIX DATA FORMS

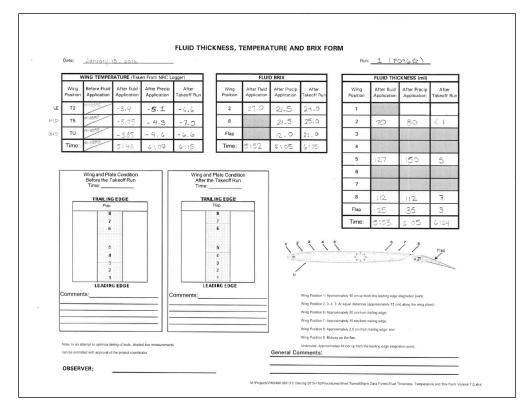
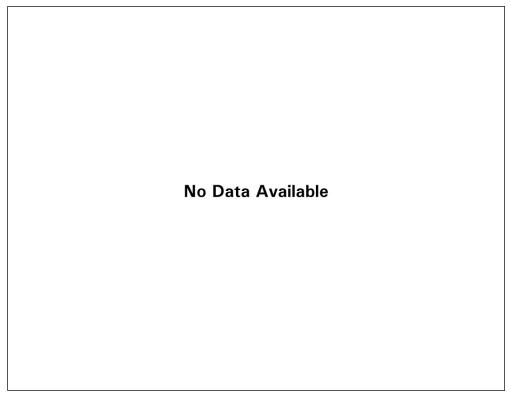




Figure C1: Run # 1



# Figure C2: Run # 2 to Run # 8

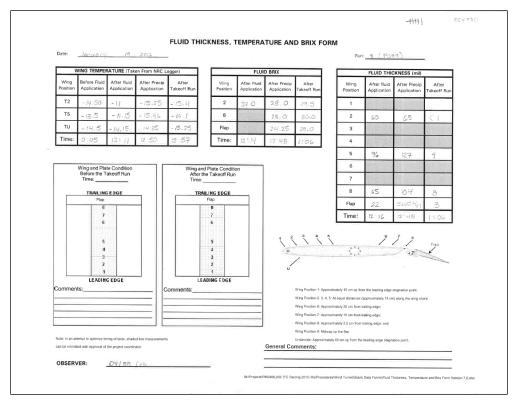
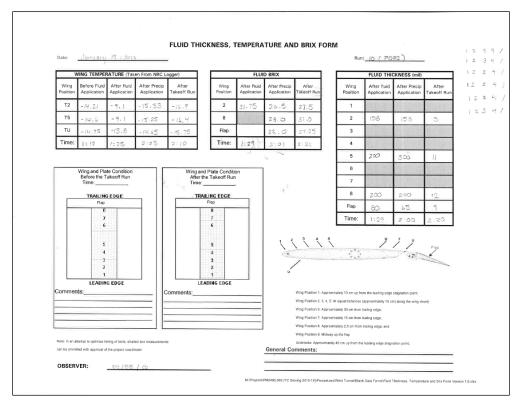
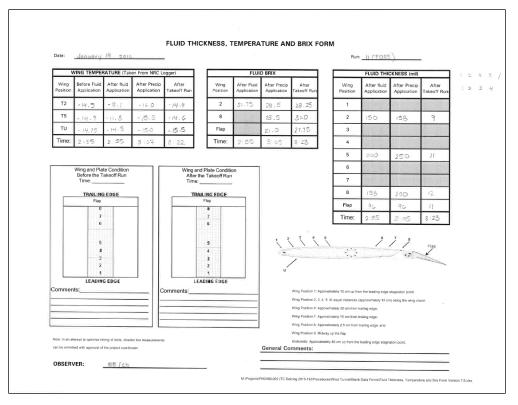
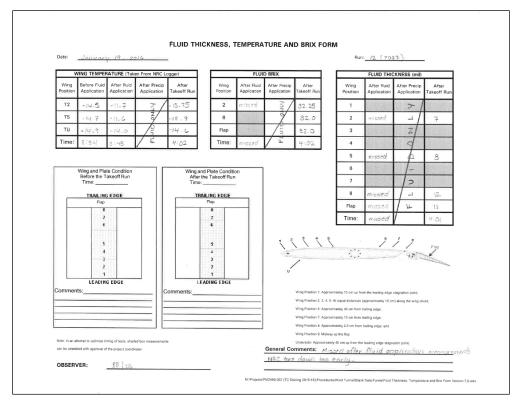
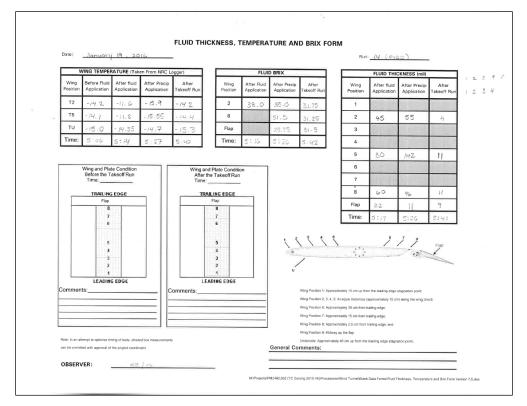




Figure C3: Run # 9



# Figure C4: Run # 10



Figure C5: Run # 11



# Figure C6: Run # 12

| Wing<br>Position<br>T2<br>T5<br>TU | Before Fluid<br>Application     | After fluid<br>Application | After Precip |                |                                      | FLUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D BRIX                      |                                                                                                                                                         |                                                                                                      |                                                                             |                             |                      |
|------------------------------------|---------------------------------|----------------------------|--------------|----------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------|----------------------|
| Position<br>T2<br>T5<br>TU         | Application                     |                            |              | After          | Wing                                 | After Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                           |                                                                                                                                                         |                                                                                                      | 1                                                                           | CKNESS (mil)                |                      |
| т5<br>тu                           | - 14.77                         |                            | Application  | Takeoff Run    | Position                             | Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | After Precip<br>Application | After<br>Takeoff Run                                                                                                                                    | Wing<br>Position                                                                                     | After fluid<br>Application                                                  | After Precip<br>Application | After<br>Takeoff Run |
| τυ                                 |                                 | -12.15                     | -15.65       | -14.4          | 2                                    | 32-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29,25                       | 29.0                                                                                                                                                    | 1                                                                                                    |                                                                             |                             |                      |
|                                    | -14.0                           | - 12.0                     | - 15 . 4     | - 14.55        | 8                                    | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.5                        | 30.75                                                                                                                                                   | 2                                                                                                    | 158                                                                         | 158                         | 5                    |
|                                    | - 14.95                         | - 14.0                     | -14.5        | - 15.4         | Flap                                 | and the second s | 24.75                       | 28.0                                                                                                                                                    | 3                                                                                                    |                                                                             |                             |                      |
| Time:                              | 4 13                            | 4:29                       | 4:41         | 4:50           | Time:                                | 4:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4:39                        | 4.55                                                                                                                                                    | 4                                                                                                    |                                                                             |                             | 11-201-              |
|                                    |                                 |                            |              |                |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                         | 5                                                                                                    | 200                                                                         | 255                         | 10                   |
|                                    | Wing and Pla<br>Before the T    |                            |              | Wing an        | nd Plate Conditi<br>the Takeoff Rur  | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                                                                                                                                         | 6                                                                                                    |                                                                             |                             | 5.17.1               |
|                                    | Time:                           |                            |              | Time           |                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                                                                                                                                         | 7                                                                                                    |                                                                             |                             | 1000                 |
|                                    | TRAILING                        | GEDGE                      | - II         | TR             | Flap                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                         | 8                                                                                                    | 119                                                                         | 156                         | -11                  |
|                                    | 8                               | 10                         | - 11         |                | 8                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                         | Flap                                                                                                 | 80                                                                          | 104                         | 10                   |
|                                    | 7                               |                            |              |                | 7<br>6                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                         | Time:                                                                                                | 4:29                                                                        | 4:38                        | 4:55                 |
| Commer                             | 5<br>4<br>3<br>2<br>1<br>LEADIM | G EDGE                     |              | LI<br>Comments | 5<br>4<br>3<br>2<br>1<br>SADING EDGE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Wing Position 1: Appen<br>Wing Position 2: 3: 4.<br>Wing Position 7: Appen<br>Wing Position 7: Appen<br>Wing Position 8: Appen<br>Wing Position 8: Male | 5: At equal distances (<br>scimately 30 cm irom t<br>scimately 15 cm irom t<br>scimately 2.5 cm from | m the leading edge<br>approximately 15 cr<br>railing edge:<br>railing edge; |                             | Filep<br>oret        |

Figure C7: Run # 13



# Figure C8: Run # 14

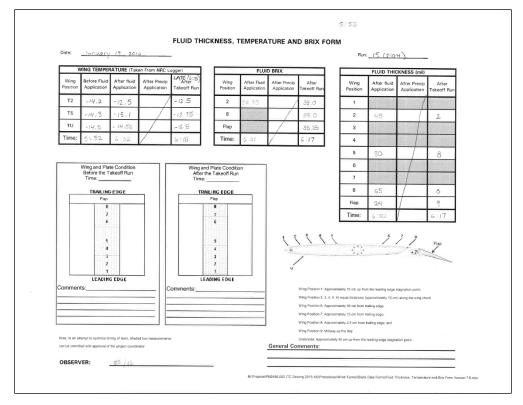



Figure C9: Run # 15

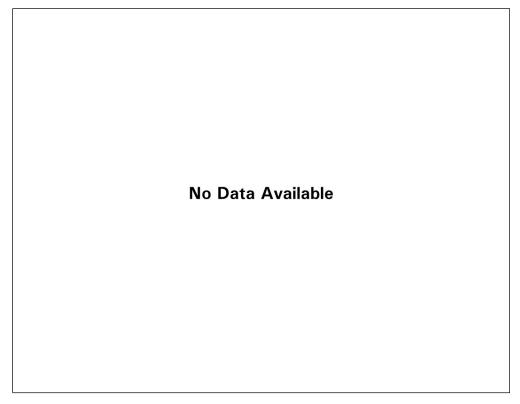



Figure C10: Run # 16 to Run #17

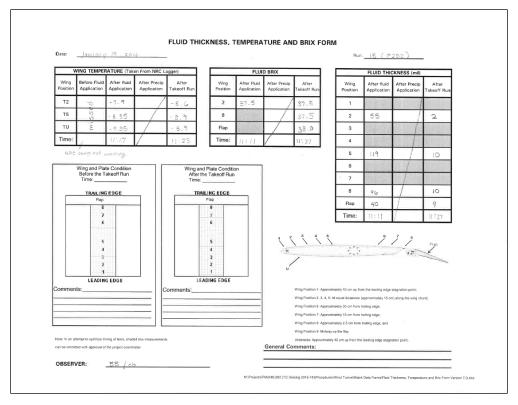
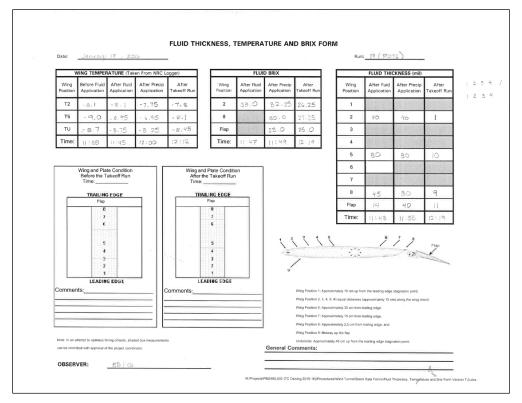
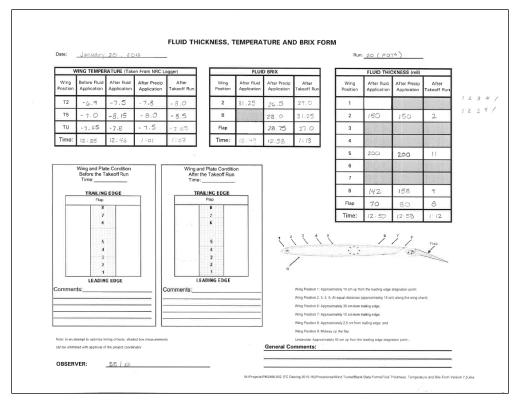
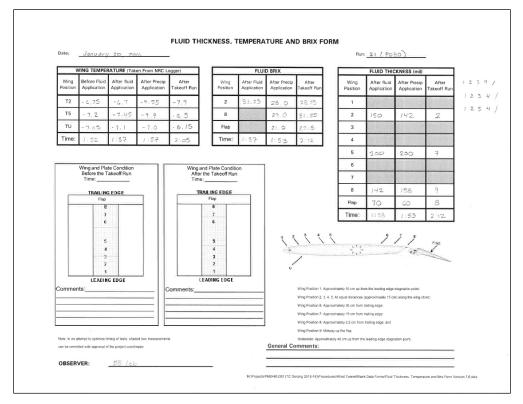
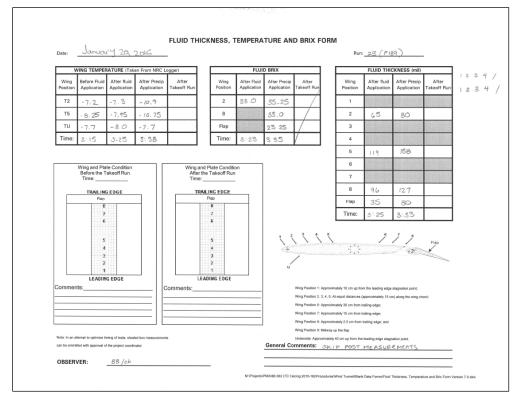




Figure C11: Run # 18



# Figure C12: Run # 19

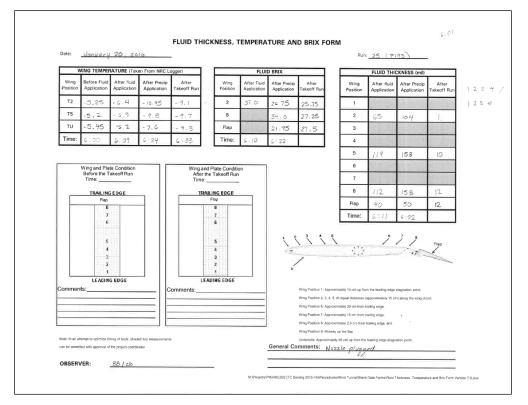





Figure C13: Run # 20

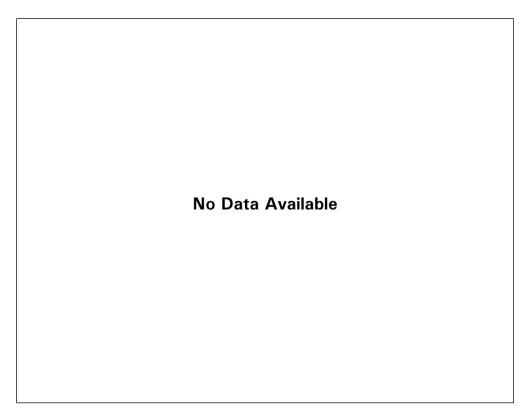


# Figure C14: Run # 21

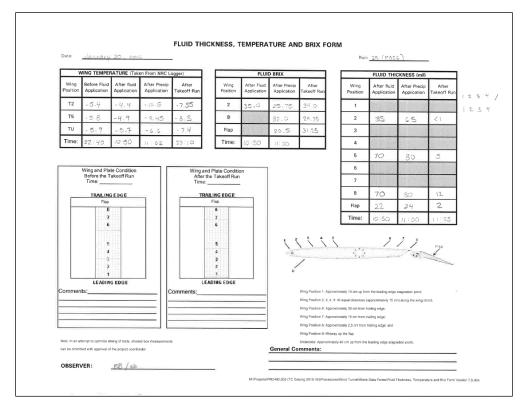
|                  | January                                           | 20 2014                    |                             | -                    |                                     |                            | Run: 22 ( POPT )            |                                                          |                                                |                                                                                   |                                                                            |                             | -                                     |  |
|------------------|---------------------------------------------------|----------------------------|-----------------------------|----------------------|-------------------------------------|----------------------------|-----------------------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|---------------------------------------|--|
|                  | WING TEMPER                                       | RATURE (Tak                | en From NRC L               | ogger)               |                                     | FLUI                       | ID BRIX                     |                                                          |                                                | FLUID THICKNESS (mil)                                                             |                                                                            |                             |                                       |  |
| Wing<br>Position | Before Fluid<br>Application                       | After fluid<br>Application | After Precip<br>Application | After<br>Takeoff Run | Wing<br>Position                    | After Fluid<br>Application | After Precip<br>Application | After<br>Takeoff Run                                     |                                                | Wing<br>Position                                                                  | After fluid<br>Application                                                 | After Precip<br>Application | After<br>Takeoff Run                  |  |
| Т2               | -4.8                                              | -65                        | -9.6                        | - 8.8                | 2                                   | 37.5                       | 26.5                        | 25.0                                                     |                                                | 1                                                                                 | 51.10                                                                      |                             | 6.20                                  |  |
| Т5               | -7.4                                              | -7.4                       | - 9.8                       | -9,6                 | 8                                   | 31 1 T 1                   | 25 25                       | 25.5                                                     | -                                              | 2                                                                                 | 45                                                                         | 65                          | 2                                     |  |
| TU               | -7.2                                              | -7.0                       | - 4.95                      | - 8.6                | Flap                                |                            | 19.0                        | 27.25                                                    |                                                | 3                                                                                 |                                                                            |                             |                                       |  |
| Time             | 2:24                                              | 2:33                       | 2:51                        | 2:57                 | Time:                               | 2:33                       | 2:48                        | 3:06                                                     |                                                | 4                                                                                 |                                                                            | 12                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |
|                  |                                                   |                            |                             |                      |                                     |                            |                             |                                                          |                                                | 5                                                                                 | 80                                                                         | 104                         | 11                                    |  |
|                  | Wing and Plate Condition Wing and Plate Condition |                            |                             |                      |                                     |                            |                             |                                                          |                                                | 6                                                                                 |                                                                            |                             |                                       |  |
|                  | Before the T<br>Time:                             |                            |                             | After ti<br>Time:    | he Takeoff Rur                      | 1                          |                             |                                                          |                                                | 7                                                                                 |                                                                            |                             |                                       |  |
|                  | TRAILING                                          | GEDGE                      | _ 11                        | TRA                  | LING EDGE                           |                            |                             |                                                          |                                                | 8                                                                                 | 55                                                                         | 96                          | 20                                    |  |
|                  | Flap                                              |                            | - 11                        |                      | Flap<br>8                           |                            |                             |                                                          |                                                | Flap                                                                              | 14                                                                         | 40                          | 8                                     |  |
|                  | - 7                                               | 124                        |                             |                      | 7                                   |                            |                             |                                                          |                                                | Time:                                                                             | 2:34                                                                       | 2:48                        | 3:06                                  |  |
| Comme            | 5<br>4<br>3<br>2<br>1<br>LEADIM                   |                            |                             | LE.                  | 5<br>4<br>3<br>2<br>1<br>ADING EDGE |                            | 1 2<br>U                    | Wing Position 2,<br>Wing Position 6:<br>Wing Position 7: | 3, 4, 5: A<br>Approxim<br>Approxim<br>Approxim | t equal distances<br>hately 30 cm from<br>hately 15 cm from<br>hately 2.5 cm from | m the leading edge<br>approximately 15 c<br>railing edge:<br>railing edge: | stagnation point:           | Flap<br>writ:                         |  |


Figure C15: Run # 22




# Figure C16: Run # 23

|                  | WING TEMPER                             | RATURE (Tak                | en From NRC L               | ogger)               |                                     | FLUI                       | UID BRIX FLUID THICKNESS (mil) |                                                                                                                                                            |                                                                                                       |                                                                           |                                          |                      |
|------------------|-----------------------------------------|----------------------------|-----------------------------|----------------------|-------------------------------------|----------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|----------------------|
| Wing<br>Position | Before Fluid<br>Application             | After fluid<br>Application | After Precip<br>Application | After<br>Takeoff Run | Wing<br>Position                    | After Fluid<br>Application | After Precip<br>Application    | After<br>Takeoff Run                                                                                                                                       | Wing<br>Position                                                                                      | After fluid<br>Application                                                | After Precip<br>Application              | After<br>Takeoff Run |
| Т2               | - 8.25                                  | -8.2                       | - 12.6                      | -8.9                 | 2                                   | 37.5                       | 30,25                          | 26.25                                                                                                                                                      | 1                                                                                                     |                                                                           |                                          |                      |
| Т5               | -9.2                                    | -8.75                      | - 11.9                      | - 9,1                | 8                                   |                            | 27.5                           | 27.75                                                                                                                                                      | 2                                                                                                     | 55                                                                        | 142                                      | 1                    |
| τυ               | -8.7                                    | - 6.7                      | - 8,2                       | - 9.4                | Flap                                |                            | 22.0                           | 24.0                                                                                                                                                       | 3                                                                                                     | 01.88                                                                     | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                      |
| Time:            | 3;54                                    | 4:03                       | 4:15                        | 4:26                 | Time:                               | 4:03                       | 4:15                           | 4:30                                                                                                                                                       | 4                                                                                                     | 加利用                                                                       |                                          |                      |
|                  |                                         |                            |                             |                      |                                     |                            |                                |                                                                                                                                                            | 5                                                                                                     | 112                                                                       | 158                                      | 9                    |
|                  | Wing and Pla                            | te Condition               |                             |                      | Plate Conditi                       |                            |                                |                                                                                                                                                            | 6                                                                                                     |                                                                           |                                          |                      |
|                  | Before the T<br>Time:                   | akeomkun                   | ~                           | After th<br>Time:    | ne Takeoff Rur                      | 1<br>-                     |                                |                                                                                                                                                            | 7                                                                                                     | at the state                                                              | 1.1.1.1                                  |                      |
|                  | TRAILING                                | SEDGE                      | _                           | TRA                  | ILING EDGE                          |                            |                                |                                                                                                                                                            | 8                                                                                                     | 80                                                                        | 150                                      | 20                   |
| -                | Flap                                    | 1:11                       | -                           |                      | Flap<br>8                           |                            |                                |                                                                                                                                                            | Flap                                                                                                  | 40                                                                        | 60                                       | 12                   |
|                  | 7                                       | 417                        |                             |                      | 7                                   |                            |                                |                                                                                                                                                            | Time:                                                                                                 | 4:03                                                                      | 4:13                                     | 4:27                 |
| Comme            | 5<br>4<br>3<br>2<br>1<br>LEADIN<br>nts: | G EDGE                     |                             | LE/                  | 5<br>4<br>3<br>7<br>1<br>MDING EDGE |                            |                                | Wing Position 1: Appro<br>Wing Position 2: 3, 4, 5<br>Wing Position 7: Appro<br>Wing Position 7: Appro<br>Wing Position 8: Appro<br>Wing Position 8: Appro | : At equal distances (a<br>simately 30 cm from to<br>simately 15 cm from to<br>simately 2,5 cm from t | n the leading edge<br>opproximately 15 or<br>alling edge;<br>alling edge; |                                          | Plap                 |


Figure C17: Run # 24



# Figure C18: Run # 25



# Figure C19: Run # 26 to Run #27



# Figure C20: Run # 28

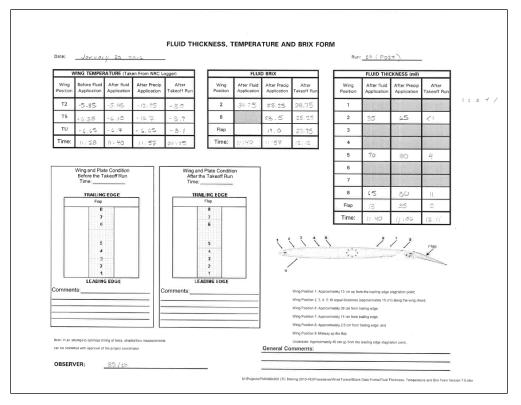
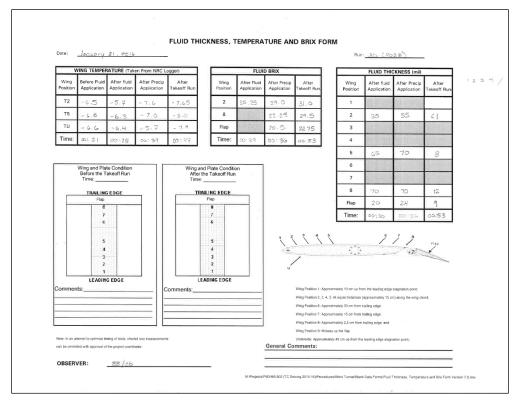




Figure C21: Run # 29



#### Figure C22: Run #30

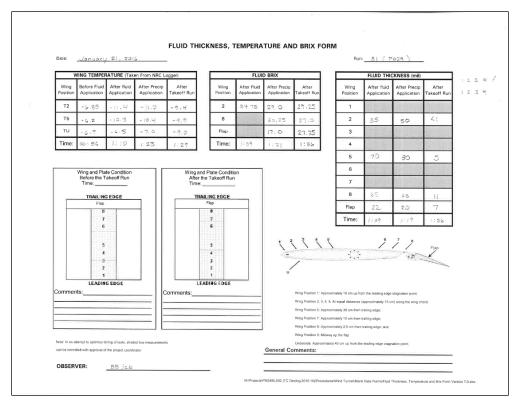
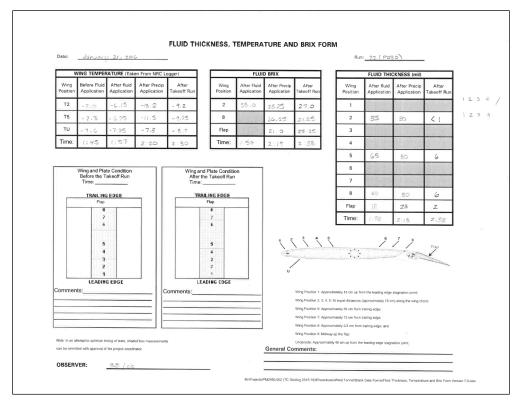




Figure C23: Run # 31



# Figure C24: Run # 32

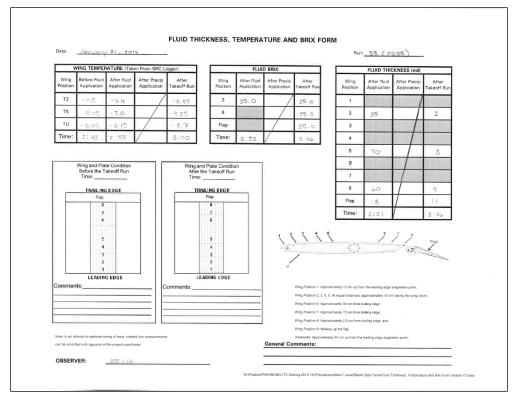
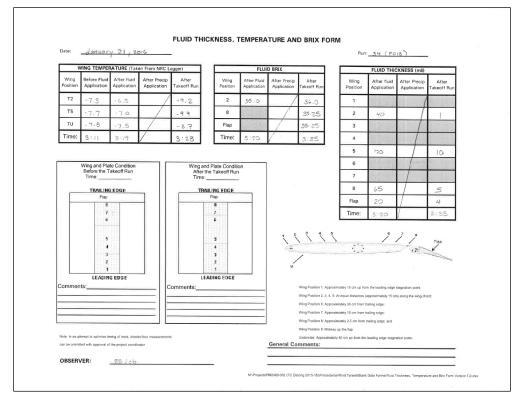




Figure C25: Run # 33



# Figure C26: Run # 34

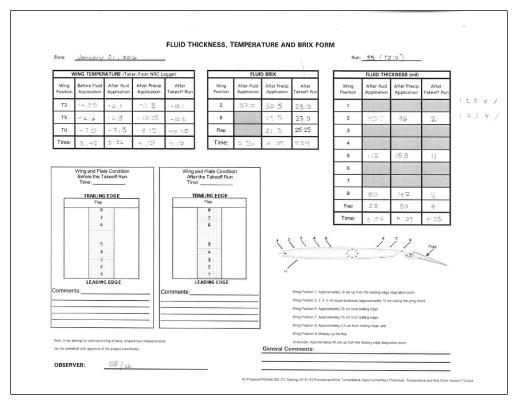
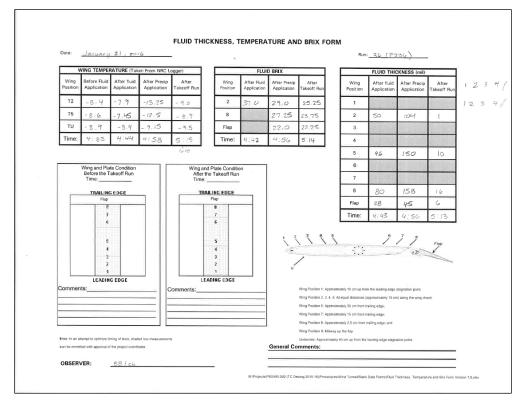




Figure C27: Run # 35



#### Figure C28: Run # 36

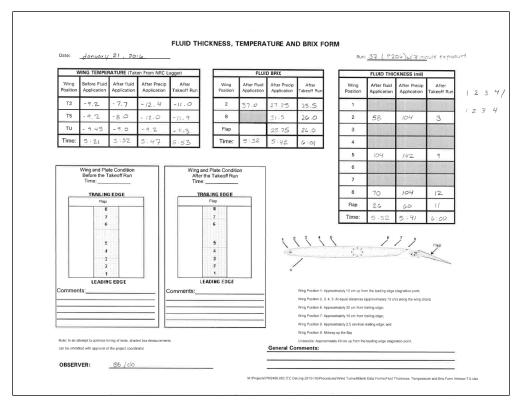
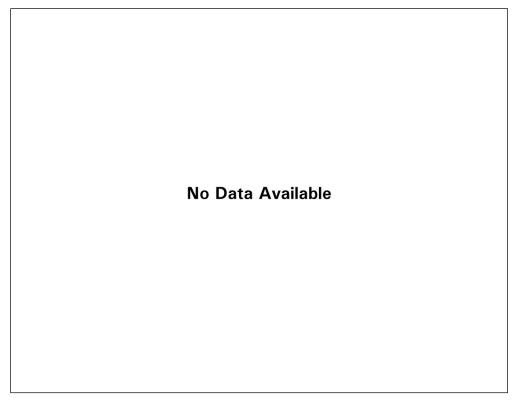




Figure C29: Run # 37



#### Figure C30: Run # 38 to Run #39

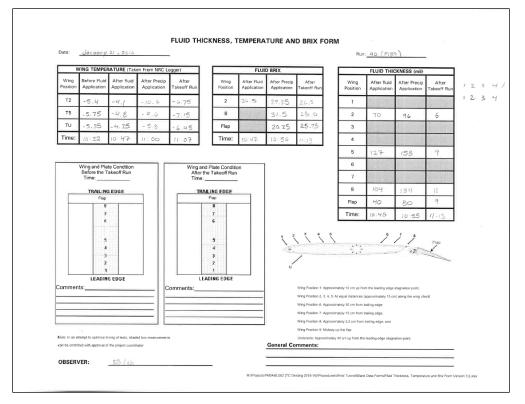
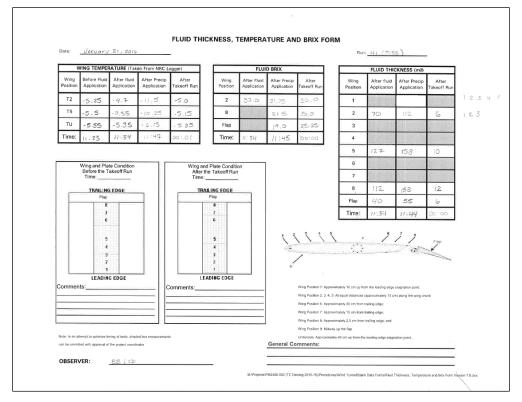




Figure C31: Run # 40



#### Figure C32: Run # 41

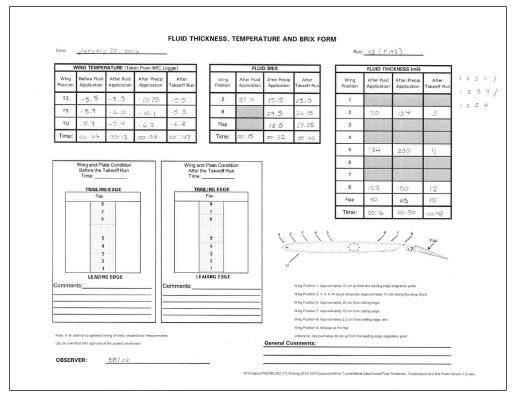
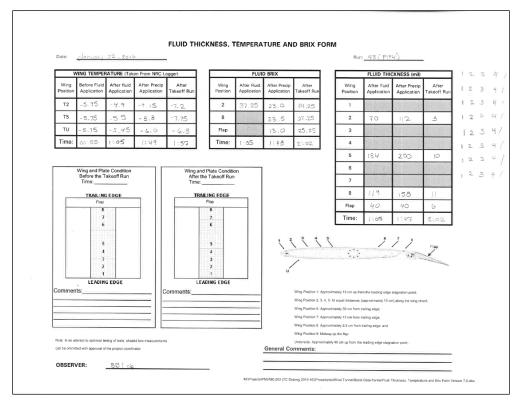




Figure C33: Run # 42



# Figure C34: Run # 43

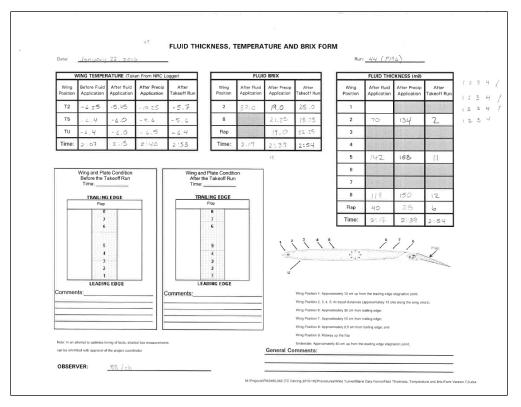
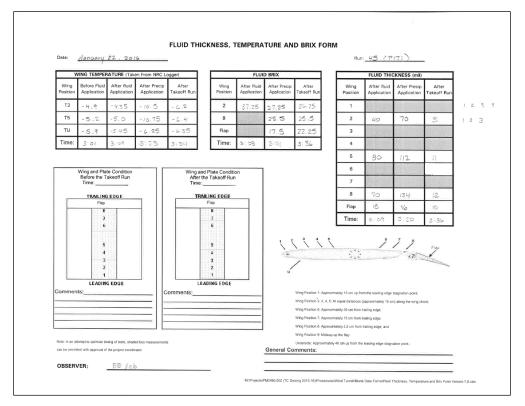




Figure C35: Run # 44



#### Figure C36: Run #45

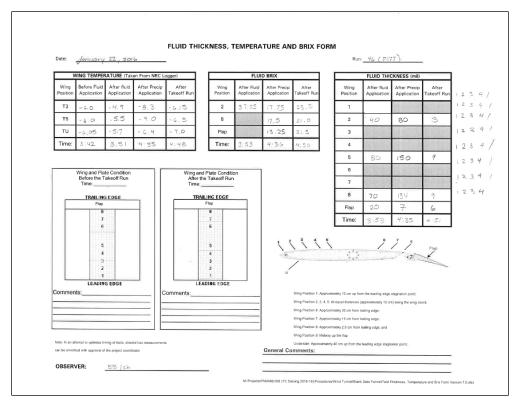
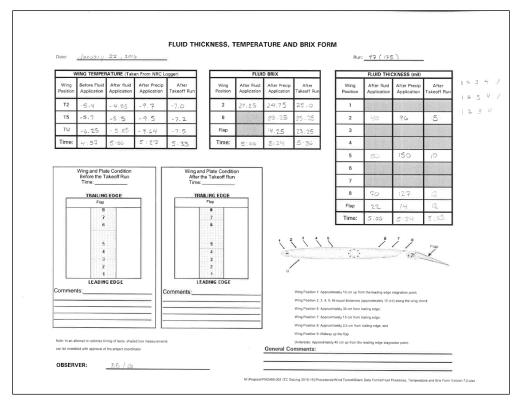




Figure C37: Run # 46



# Figure C38: Run # 47

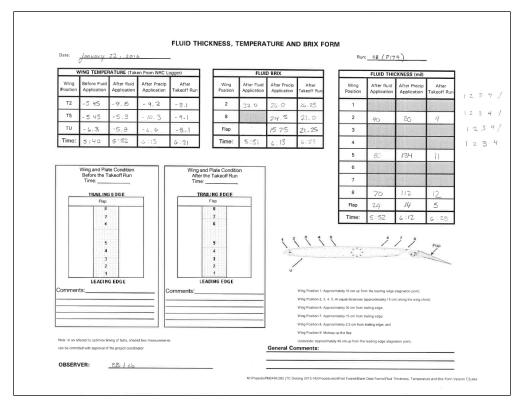
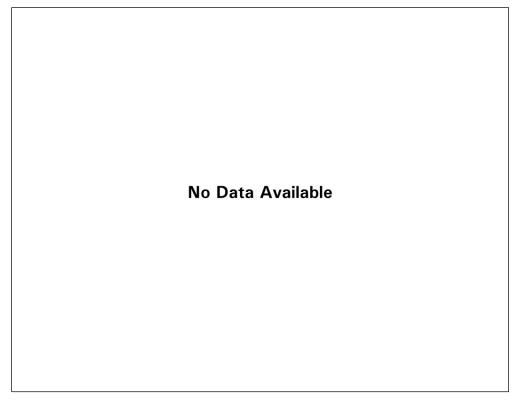




Figure C39: Run # 48



#### Figure C40: Run # 49 to Run #50

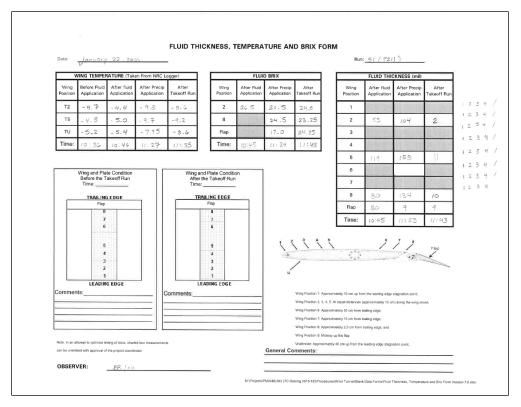
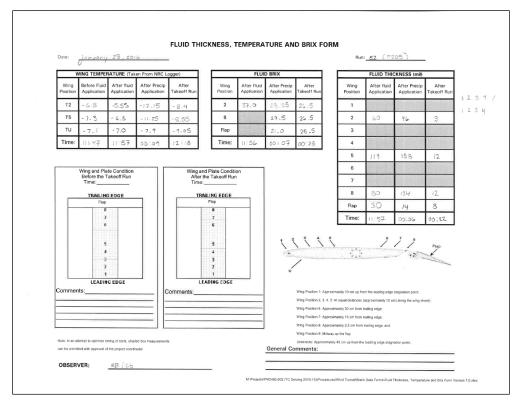




Figure C41: Run # 51



# Figure C42: Run # 52

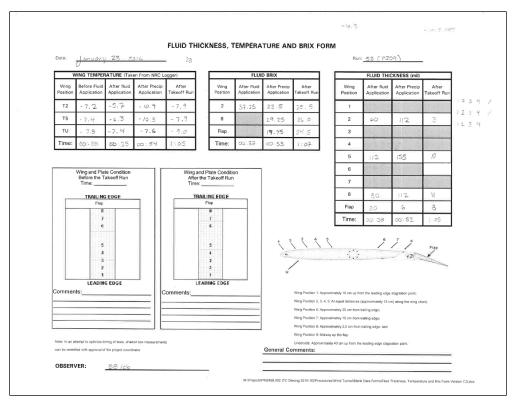
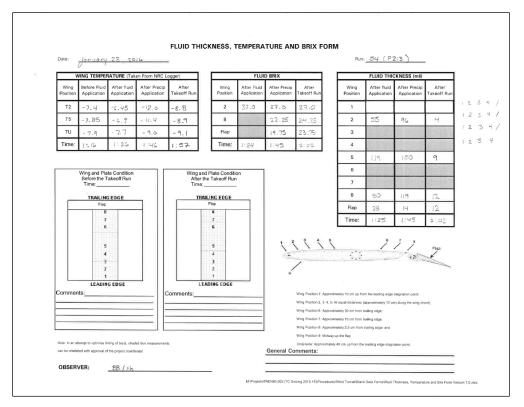




Figure C43: Run # 53



#### Figure C44: Run # 54

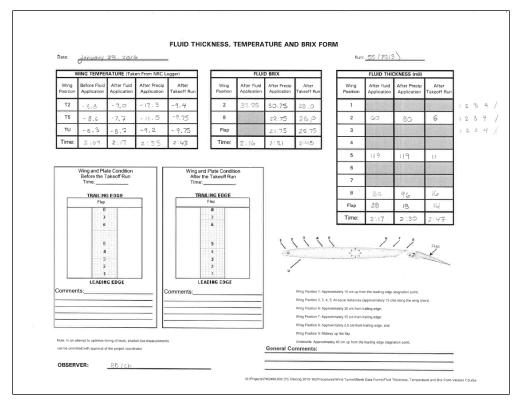
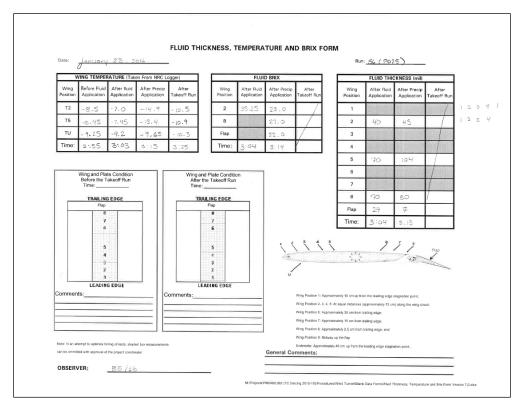




Figure C45: Run # 55



#### Figure C46: Run # 56

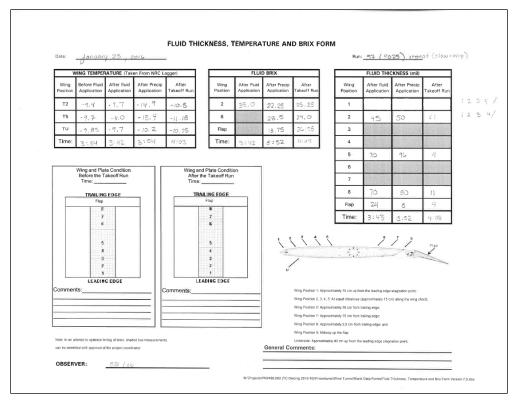
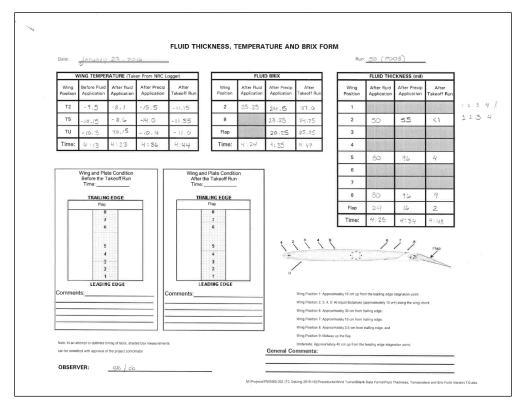
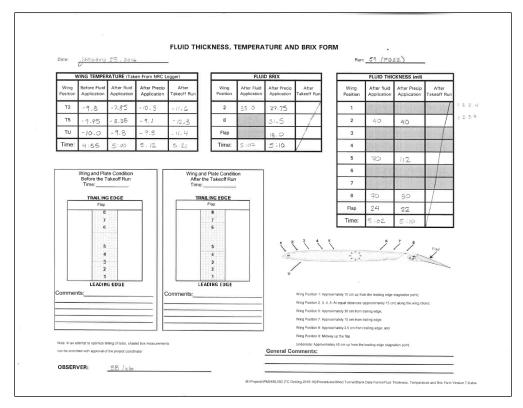
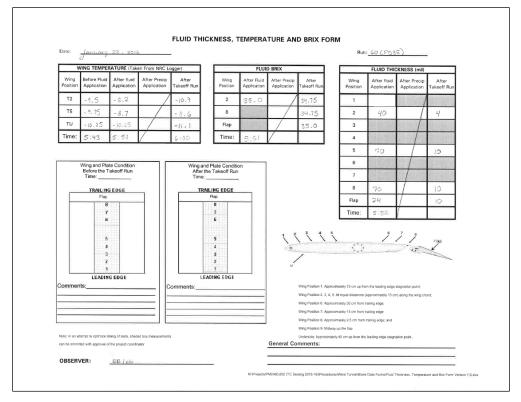
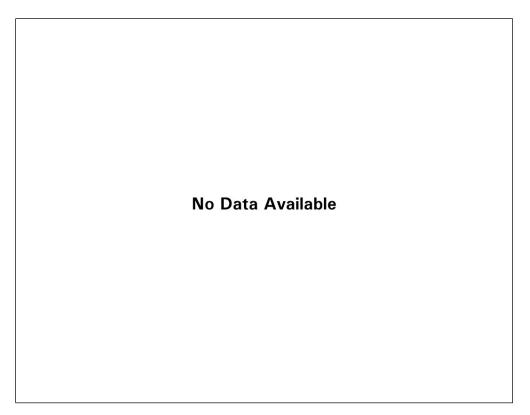
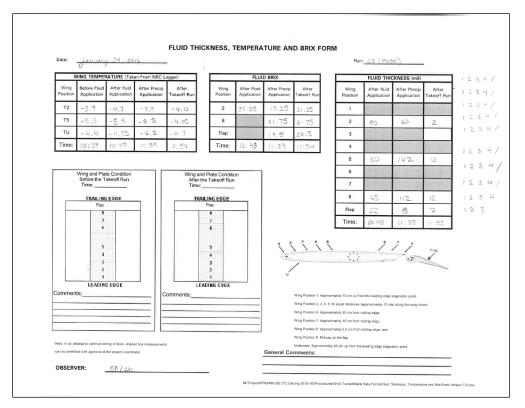




Figure C47: Run # 57



#### Figure C48: Run # 58



Figure C49: Run # 59



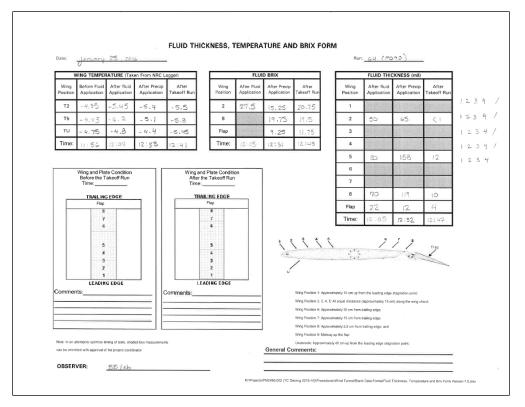
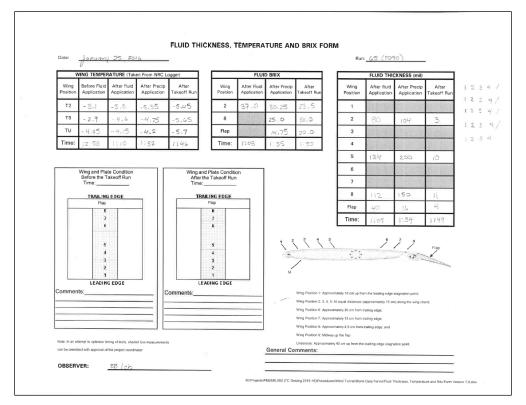
# Figure C50: Run # 60

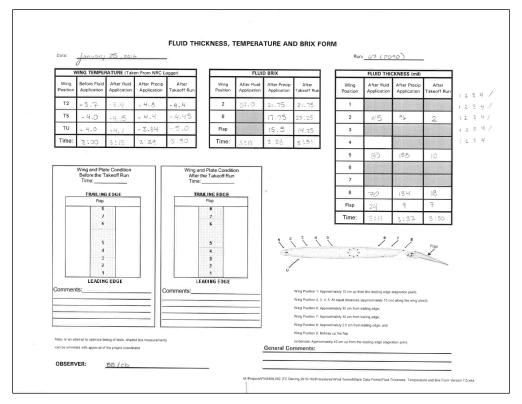


# Figure C51: Run # 61 to Run # 62



# Figure C52: Run # 63



Figure C53: Run # 64



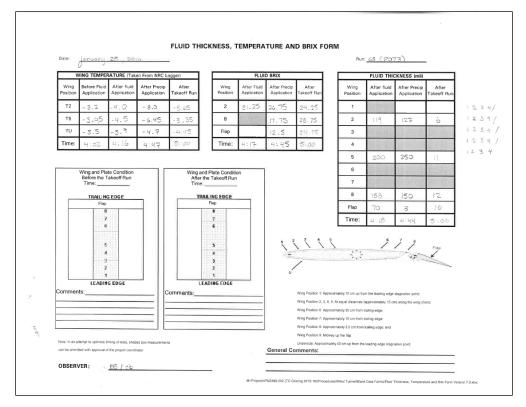
# Figure C54: Run # 65

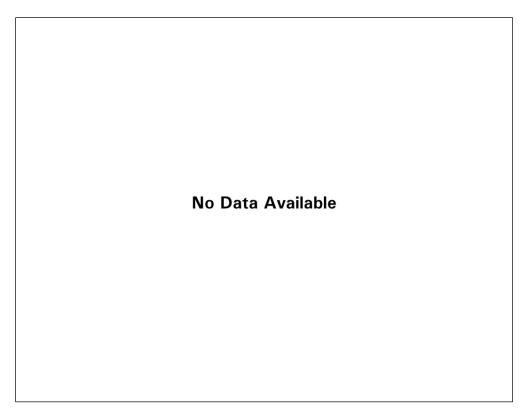
| Date: January 25 201/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                            |                             |                                |                  |                            | Run: 66 ( PO90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |                            |                             |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------------------|--------------------------------|------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|----------------------------|-----------------------------|----------------------|
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WING TEMPER                     | RATURE (Tak                | en From NRC L               | ogger)                         |                  | FLU                        | ID BRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                  | FLUID THI                  | CKNESS (mil)                |                      |
| Wing<br>Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Before Fluid<br>Application     | After fluid<br>Application | After Precip<br>Application | After<br>Takeoff Run           | Wing<br>Position | After Fluid<br>Application | After Precip<br>Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | After<br>Takeoff Run                  | Wing<br>Position | After fluid<br>Application | After Precip<br>Application | After<br>Takeoff Run |
| Т2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 3.5                           | - 4.15                     | -5.55                       | -4.65                          | 2                | 37.75                      | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 241.0                                 | 1                |                            | () ( and )                  | the dist.            |
| Т5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3,05                           | - 4.15                     | -4.9                        | -4.7                           | 8                |                            | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26,0                                  | 2                | 65                         | 112                         | 3                    |
| τυ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .4.2                            | -4.75                      | - 4.1                       | -5.05                          | Flap             |                            | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.5                                  | 3                |                            | A school                    | he set la s          |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:58                            | 2:07                       | 2:37                        | 2:47                           | Time:            | 210G                       | z:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2:49                                  | 4                |                            | 148446                      | E. Martin            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                            |                             |                                |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · | 5                | 112                        | 158                         | 10                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wing and Plate Condition Wing a |                            |                             |                                |                  |                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 6                |                            | The Second Second           | ALL REAL             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Before the Takeoff Run<br>Time: |                            |                             | After the Takeoff Run<br>Time: |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 7                |                            |                             | The                  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                            |                             |                                |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  | 80                         | 142                         | 18                   |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                            |                             |                                |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | Flap             | 30                         | 6                           | 9                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                               | State 1                    |                             |                                | 7                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | Time:            | 2:07                       | 2:35                        | 2:48                 |
| EADING EDGE Comments:      Definition      Contraction      Contracti |                                 |                            |                             | LEADING EDGE                   |                  |                            | Figure Provident 1: Agreesimently 10 cm up from the leading edge atogradion paint:<br>Wing Provident 2: 4.1.5.1.4 key and detances (poportimetry) 15 cm julying the areig store:<br>Wing Provident 2: 4.5.1.4 key and detances (poportimetry) 15 cm julying the areig store:<br>Wing Provident 2: 4.5 cm from their also adje.<br>Wing Provident 8: Agreementary 3: 2.6 cm from their also adje.<br>Wing Provident 8: Agreementary 4: 3.6 cm from their also adje.<br>Wing Provident 8: Agreementary 4: 3.6 cm from their also adje.<br>Wing Provident 8: Agreementary 4: 3.6 cm from their also adje. |                                       |                  |                            |                             |                      |

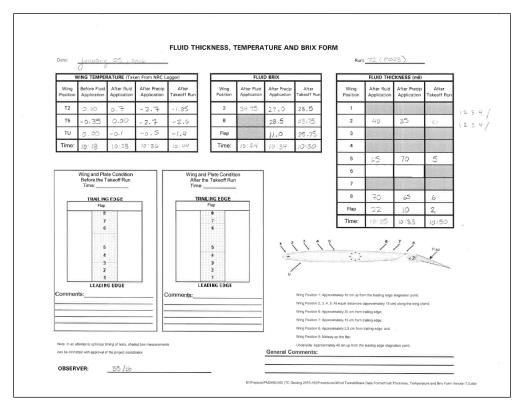
Figure C55: Run # 66



# Figure C56: Run # 67







Figure C57: Run # 68



#### Figure C58: Run # 69



# Figure C59: Run # 70 to Run #71



# Figure C60: Run # 72

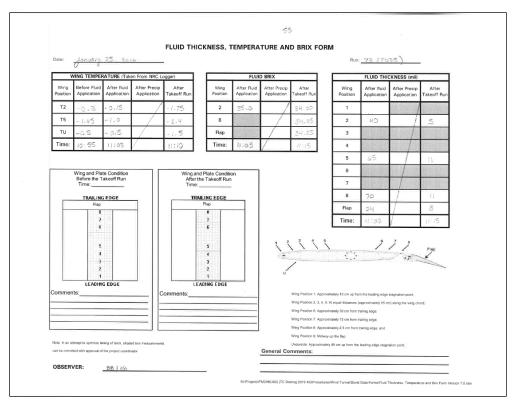



Figure C61: Run # 73



# Figure C62: Run # 74

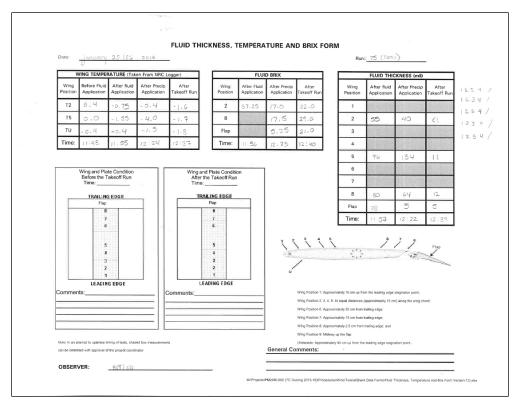
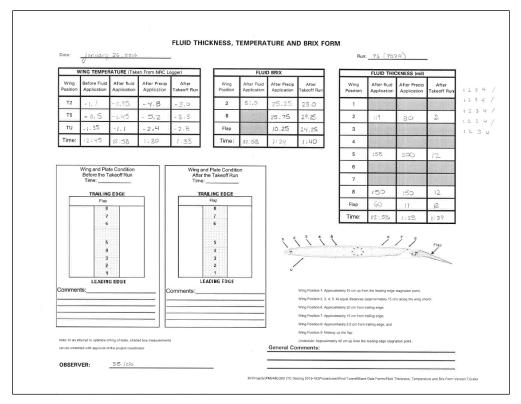




Figure C63: Run # 75



# Figure C64: Run # 76

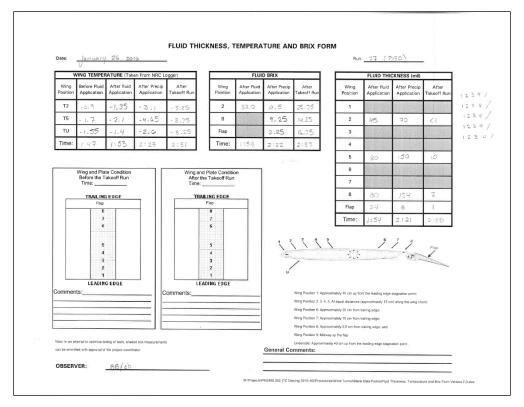
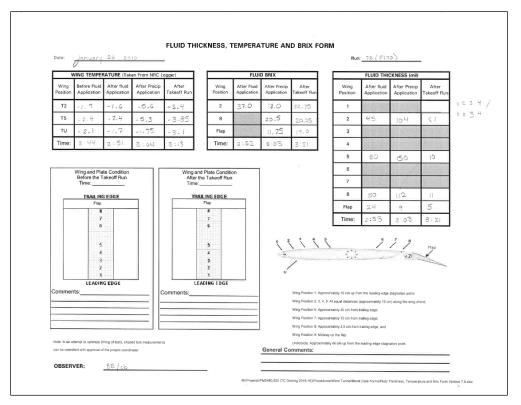
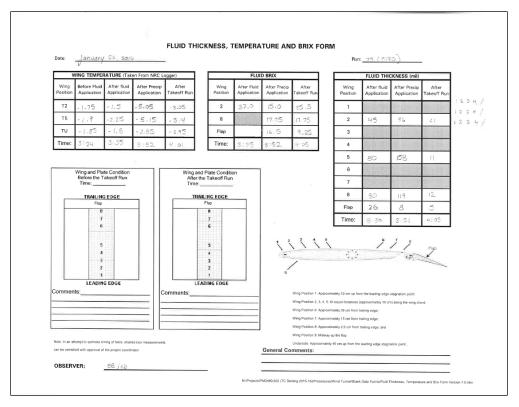
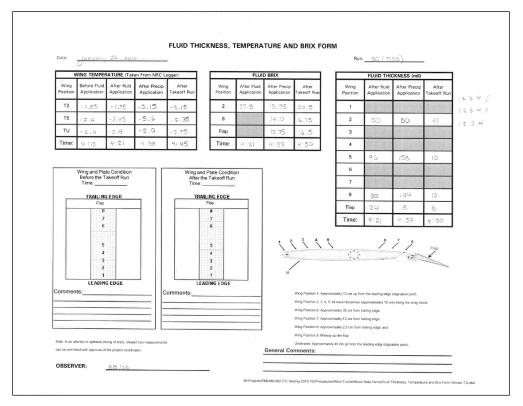
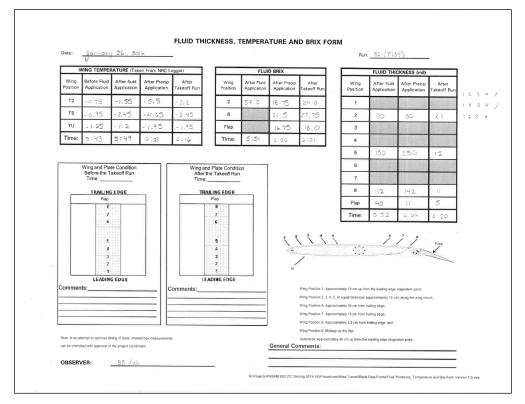




Figure C65: Run # 77

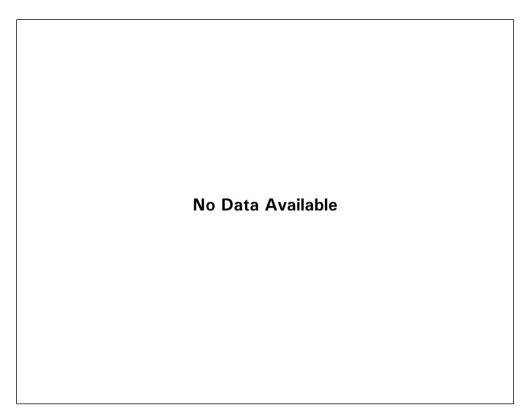


# Figure C66: Run # 78

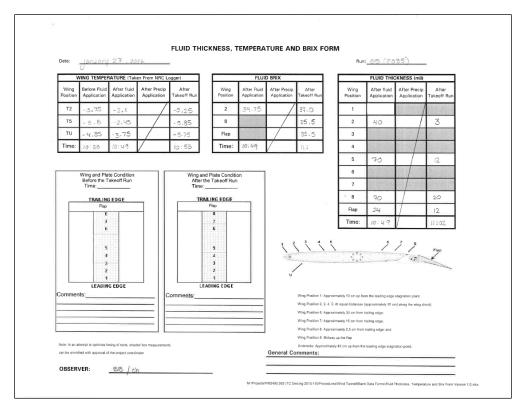





Figure C67: Run # 79




# Figure C68: Run # 80

| Date:            | January                     | 26,201                     | ő                           | 8                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      | Run                                                                                                                                                                                                                                                | 81 ( 120                   | 4)                          |                      |      |  |
|------------------|-----------------------------|----------------------------|-----------------------------|----------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|----------------------|------|--|
| L V              | VING TEMPER                 | RATURE (Tak                | en From NRC L               | ogger)               |                                     | FLUID BRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                      |                                                                                                                                                                                                                                                    | FLUID THICKNESS (mil)      |                             |                      |      |  |
| Wing<br>Position | Before Fluid<br>Application | After fluid<br>Application | After Precip<br>Application | After<br>Takeoff Run | Wing<br>Position                    | After Fluid<br>Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | After Precip<br>Application | After<br>Takeoff Run | Wing<br>Position                                                                                                                                                                                                                                   | After fluid<br>Application | After Precip<br>Application | After<br>Takeoff Run | 123  |  |
| Т2               | .1.5                        | .35                        | - 5.55                      | -2.2                 | 2                                   | 36.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0                        | 27.0 1               | 1                                                                                                                                                                                                                                                  |                            |                             | ST. MAN              | 123  |  |
| Т5               | - 2.25                      | -315                       | -5.1                        | -2,15                | 8                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.25                       | 19.5                 | 2                                                                                                                                                                                                                                                  | 65                         | 104                         | < i                  | 12 . |  |
| τu               | .2.0                        | -2.3                       | -2.5                        | -2.2                 | Flap                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.5                        | 16.75                | 3                                                                                                                                                                                                                                                  |                            |                             | Product of           |      |  |
| Time:            | 4:56                        | lok 5:10                   | 5:21                        | 5:32                 | Time:                               | 5:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5:2)                        | 5:8                  | 4                                                                                                                                                                                                                                                  |                            | Ni de C                     |                      |      |  |
|                  |                             |                            |                             |                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      | 5                                                                                                                                                                                                                                                  | 119                        | 200                         | 11                   |      |  |
|                  | Wing and Pla                | te Condition               |                             | Wingano              | d Plate Conditi                     | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                      | 6                                                                                                                                                                                                                                                  |                            | No. 1 March 199             |                      |      |  |
| Time:            |                             |                            |                             |                      | ne Takeoff Rur                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                      | 7                                                                                                                                                                                                                                                  |                            |                             | Institution of       |      |  |
|                  |                             |                            |                             | TRAILING EDGE        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      | 8                                                                                                                                                                                                                                                  | 96                         | 135                         | 12                   |      |  |
| -                | Flap                        | 1111                       | -                           | 1                    | Flap<br>8                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      | Flap                                                                                                                                                                                                                                               | 35                         | 6                           | 4                    |      |  |
|                  | 7                           |                            |                             |                      | 7                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      | Time:                                                                                                                                                                                                                                              | 5:04                       | 5:20                        | 5186                 |      |  |
|                  |                             |                            |                             |                      | 5<br>4<br>3<br>2<br>1<br>ADING EDGE | Mic EDCE Wing Patients 1 Wing Patients 2 Wing |                             |                      | Provintiately 15 on sign from the leading edge stagnation point.<br>4. 6. Al equal distances (approximately 15 on) along the wing closet,<br>exponentiately 30 on hon tailing edge,<br>growmarks/1. 60 on hom tailing edge, and<br>here is the fea |                            |                             |                      |      |  |


Figure C69: Run # 81



#### Figure C70: Run # 82



# Figure C71: Run # 83 to Run #84



#### Figure C72: Run # 85

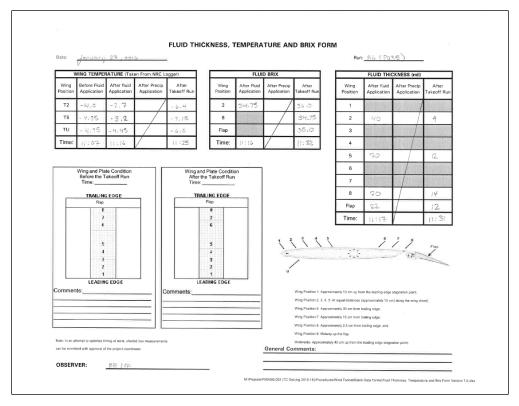
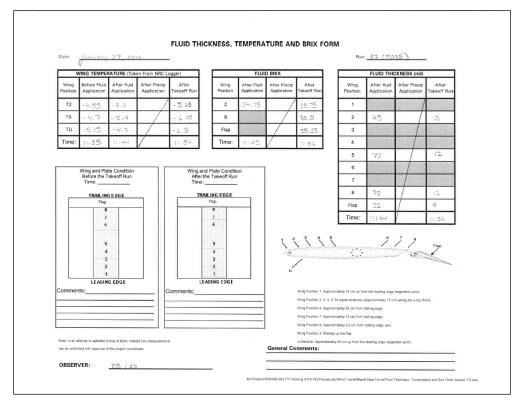




Figure C73: Run # 86



# Figure C74: Run # 87

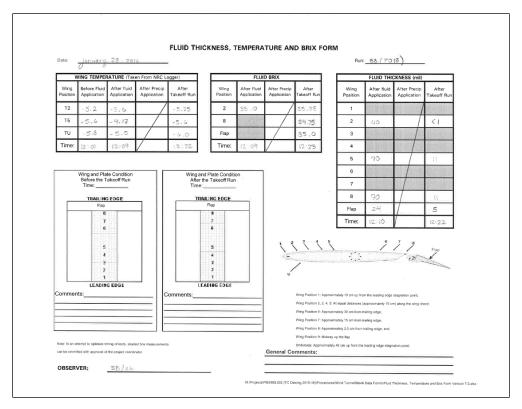
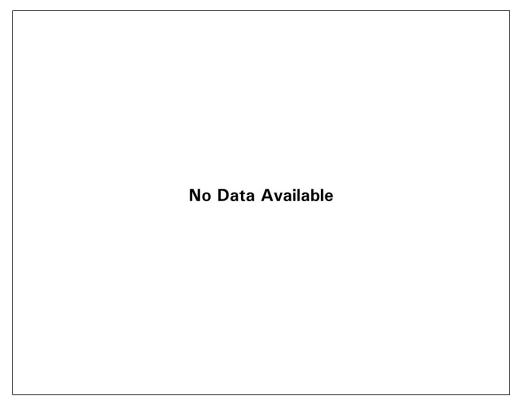




Figure C75: Run # 88



### Figure C76: Run # 89

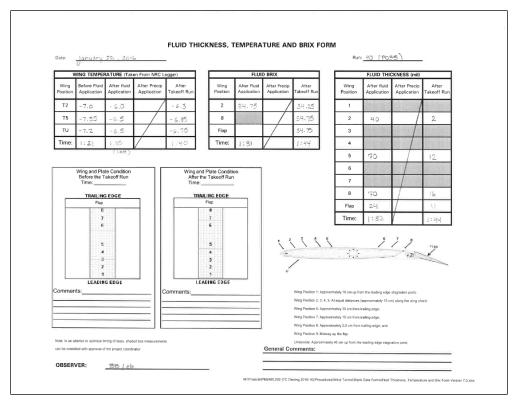
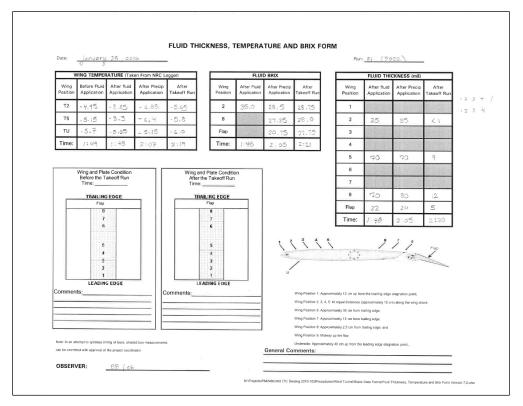




Figure C77: Run # 90



# Figure C78: Run # 91

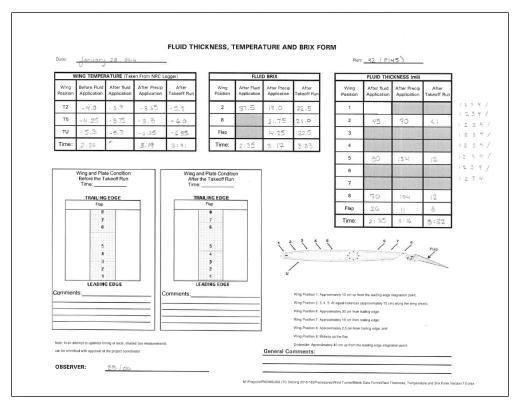
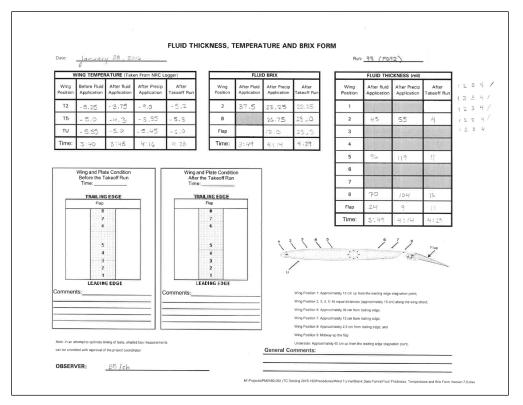
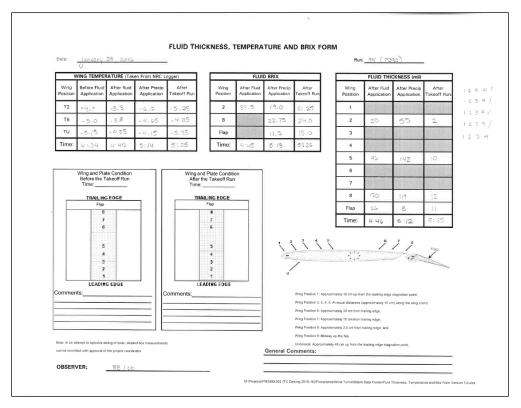
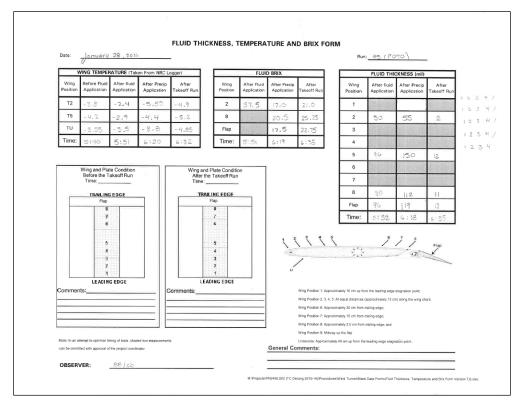
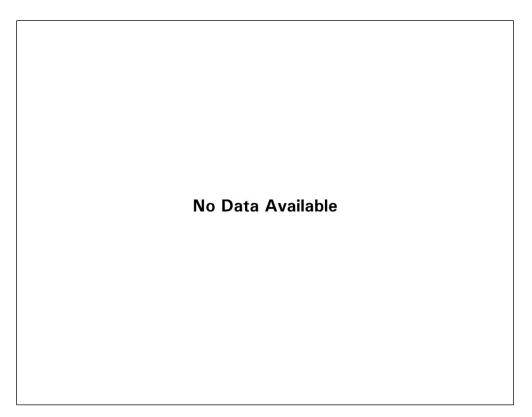
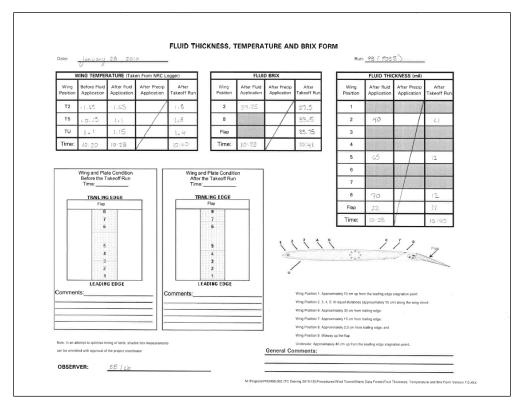




Figure C79: Run # 92



# Figure C80: Run # 93



Figure C81: Run # 94



# Figure C82: Run # 95



# Figure C83: Run # 96 to Run #97



#### Figure C84: Run # 98

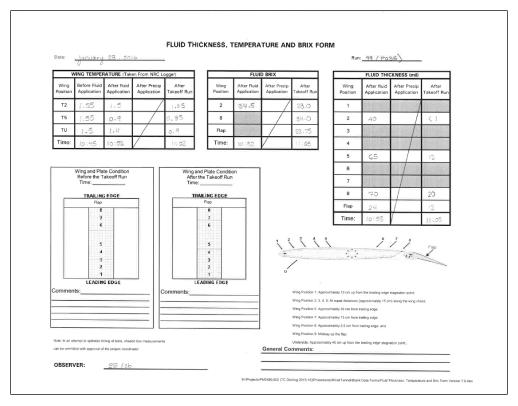
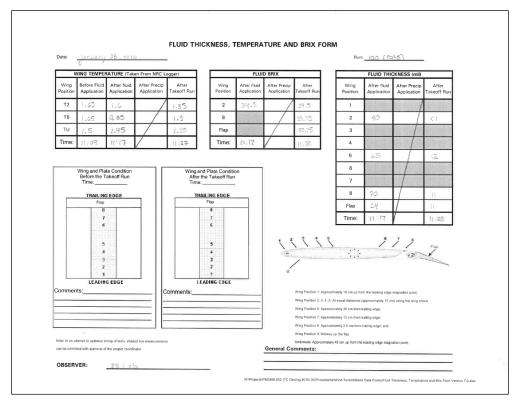




Figure C85: Run # 99



#### Figure C86: Run # 100

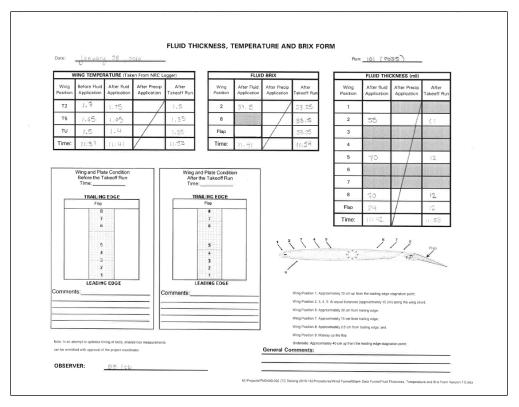
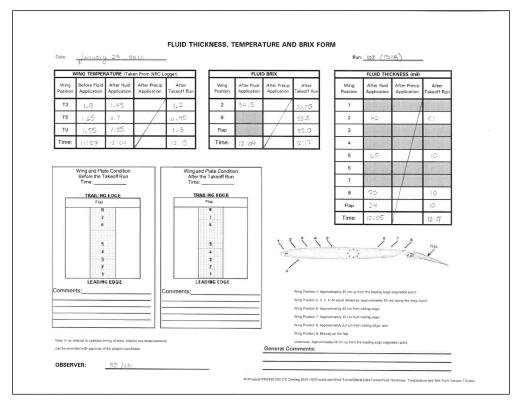




Figure C87: Run # 101



# Figure C88: Run # 102

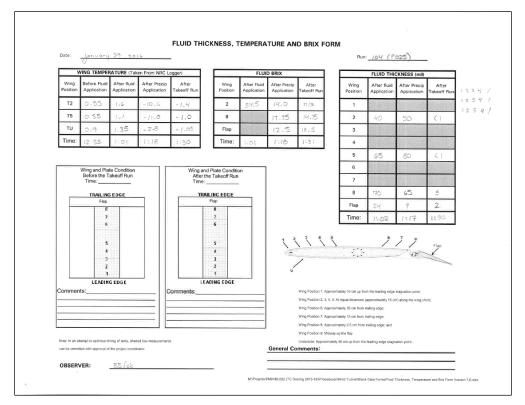




Figure C89: Run # 103



# Figure C90: Run # 104

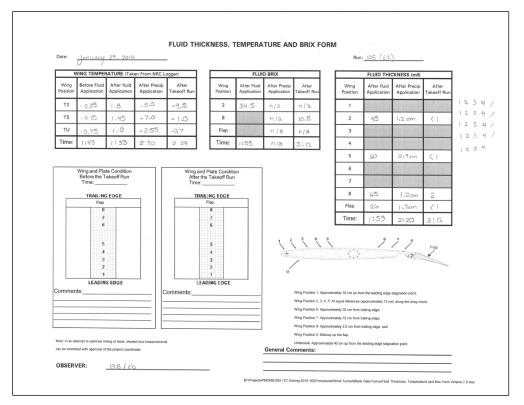



Figure C91: Run # 105