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Abstract 
We build a network formation game of firms with trade flows to study the adoption and usage 
of a new digital currency as an alternative to correspondent banking. We document 
endogenous heterogeneity and inefficiency in adoption outcomes and explain why higher 
usage may correspond to lower adoption. Next, we frame the model as a quadratic 
unconstrained binary optimization (QUBO) problem and apply it to data. Method-wise, QUBO 
presents an extension to the potential function approach and makes broadly defined network 
games applicable and empirically feasible, as we demonstrate with a quantum computer. 
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Résumé 
Nous construisons un jeu de formation de réseaux d’entreprises ayant des flux commerciaux 
pour étudier l’adoption et l’utilisation d’une nouvelle monnaie numérique comme solution de 
rechange à la correspondance bancaire. Nous illustrons l’hétérogénéité et l’inefficacité 
endogènes des résultats de l’adoption de cette nouvelle monnaie, et expliquons pourquoi un 
taux d’utilisation plus élevé peut correspondre à un taux d’adoption plus faible. Puis, nous 
façonnons le modèle comme un problème d’optimisation binaire quadratique sans contrainte 
(QUBO) et l’appliquons aux données. Du point de vue méthodologique, le problème QUBO se 
veut une extension de l’approche basée sur une fonction potentielle. Il rend les jeux de 
formation de réseaux vaguement définis applicables et empiriquement réalisables, comme 
nous le démontrons à l’aide d’un ordinateur quantique. 
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1 Introduction

The recent appeal toward decentralised finance (DeFi) and Central Bank Digital

Currencies (CBDC) raises important questions about the role of decentralised and

strategic payment arrangements in a global financial network. However, modelling

of realistic contracts in networks is subject to several challenges, including lack of

closed-form equilibrium solutions, exponentially growing network complexity, and

limited algorithms for finding equilibria.

This paper develops a network formation game where heterogeneous firms coop-

eratively adopt and use cryptocurrency as an alternative to correspondent banking

and cash.1 This cooperative networks approach embraces the contract nature of

interfirm relationships and the complexity of trade flows between firms. We find

equilibrium adoption and usage decisions using theoretical tools and perform com-

parative statics exercises. Next, we propose a novel approach to solving general

network-formation games as quadratic optimisation problems, which we test on

the payments data using a quantum computer.

Our input to the literature is two-fold. First, we contribute to the literature on

de-centralised markets by introducing contractual payment choices.2 Intuitively,

heterogeneity in preferences of firms (namely their desire for autonomy and trade

arrangements) generate heterogeneity in the adoption and usage of digital cur-

rency. In addition, we show that heterogeneity and underadoption may arise even

across symmetric firms due to the over-the-counter nature of interfirm payment

contracts. Despite multiplicity of equilibria, we are able to characterise the stable

networks up to stochastic dominance relationship to derive comparative statics

results. Among them, we show that banks’ strategic responses to digitisation

of firms cause a non-trivial relationship between crypto adoption and usage. In

particular, lower maintenance costs of cryptocurrency payment methods, such as

1The results apply more generally to other forms of money used as wholesale method of pay-

ment, including stable coins, private interfirm blockchains, and CBDC, under some assumptions.
2So far, the main focus of researchers has been on the digital substitutes to retail payments

and the payment choices of individuals, while minimum attention has been given to interfirm

payments. This is despite wholesale payments being a larger share of global financial flows than

retail payments.
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lighter policy burden, correspond to higher adoption and utilisation. However,

lower transaction costs, such as reduced gas (transaction processing) fees, lower

price volatility, and faster settlement time, may instead decrease adoption, while

increasing the utilisation of digital currencies.3

Our main contribution is methodological. We present the network game as

an unconstrained binary quadratic optimisation (QUBO) problem. The QUBO

method serves as an extension to the potential function method used in game

theory (Rosenthal (1973), Monderer and Shapley (1996)) and applied to networks

(Bramoullé et al. (2014), Anshelevich et al. (2008), Tardos and Wexler (2007)). We

show that more generally in network formation games (Myerson (1977), Jackson

and Wolinsky (1996)), the equilibrium search is identical to solving a single max-

imisation problem, even when a potential function does not exist. This extension

is achieved by expanding the arguments of the QUBO function beyond variables

that constitute strategies.

QUBO representation makes a network problem feasible for quantum program-

ming and other modern technologies. It also addresses two general concerns in the

network literature: numerical complexity and multiplicity of equilibria.4 Networks

with strategic interactions are prone to exponential growth in dimensionality. In

the case of networks with undirected unweighted links, finding a stable network

formed by N players would require searching through 2N(N−1)/2 different network

candidates. This means that an exhaustive equilibrium search for only 17 players

would demand more computational resources than there are atoms in the universe,

which is not feasible on classical computers. Directed networks with weighted links

or multiple layers are an even bigger challenge. While theoretical algorithms may

be available for certain network games executed on classical machines (e.g., conver-

gence in dominant strategies), solving general network models would require either

3The difference between adoption and usage was previously highlighted in retail payments

by Li et al. (2020) and Koulayev et al. (2016) in the context of consumer-merchant-platform

interactions and Alvarez and Lippi (2009) in the context of consumer cash inventory decision.
4Whereas the notion of pairwise stability can be purified to reduce the number of equilibrium

outcomes (Bala and Goyal (2000), Bloch and Jackson (2006), Herings et al. (2009), Chen et al.

(2010)) multiplicity of equilibria often remains present and is considered by many as an essential

representation of reality.
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using small networks, replacing cooperative link formation with an ultimatum rule

(Bala and Goyal (2000)), or foregoing strategic behaviour altogether (such as in

models of random graphs by Erdős et al. (1960) and Barabási and Albert (1999)).5

Quantum computing may help overcome these issues. Mathematically, quan-

tum computers can solve some problems that classical machine cannot solve in

reasonable time (such as prime factorization, Shor (1999)). Moreover, such “quan-

tum advantage” has already been claimed in practice for a few less practical tasks

(Arute et al. (2019); Madsen et al. (2022)). We apply a quantum computer for

quadratic optimisation. Quantum computing uses heuristic algorithms to solve

these types of problems, meaning that showing quantum advantage in this domain

relies on empirical demonstrations.6 Such empirical demonstrations have been

claimed recently using D-Wave quantum annealing devices (King et al. (2024,

2023)). For network formation games, we demonstrate that quantum technol-

ogy handles increasing network complexity asymptotically better than a classical

search, which makes network applications for quantum promising. This is espe-

cially hopeful given how rapidly quantum annealers and quantum-inspired methods

and hardware are improving.

To demonstrate our applications empirically, we calibrate the payments adop-

tion game to the Canadian economy by using both sectoral input-output pro-

duction matrices and interbank payments data. We therefore generate a more

informative representation of unobserved interfirm networks than in recent papers

on production networks (Carvalho and Tahbaz-Salehi (2019)). In particular, merg-

ing two network datasets allows for connected firms to exist within each sector. It

also relates financial flows to production flows and delivers more realistic network

shapes. We use the simulated interfirm trade network to study how adoption of

digital payments may change financial flows in the classical banking system, and

quantify the degree of inefficiency arising from network externalities when adoption

is not coordinated (e.g., by a regulator).

5For extensive reviews of random network formation, see Wasserman et al. (1994) and Newman

(2018); for comparison of such models with the cooperative network models, see Jackson (2010).
6This is analogous to how deep learning was shown to be useful empirically rather than

through mathematical proofs.
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In our model, we assume that each firm trades a continuum of heterogeneous

products with a subset of other firms. Firms prefer some products to be traded

via payment methods that maintain privacy and decentralisation (i.e., digital pay-

ments or possibly cash), while they prefer other products via methods that main-

tain safety of execution and convenience, as guaranteed by bank transfers. We

focus on the payment decisions of firms, which consist of two parts. First, firms

decide whether to adopt the digital method of payment in addition to the pre-

existing bank-facilitated payment services and cash. As a result, the network

of cryptocurrency adoption is formed endogenously. Second, firms decide what

method to use for each type of good they trade. This allows the same firm to use

multiple methods of payments depending on the privacy level of each transaction.

In addition, the model is populated by banks. Banks are influenced by the network

of trade flows but cannot change it. Nevertheless, banks can charge firms’ payment

fees as a response to digitalisation. This modelling approach allows us to capture

four payment market specifics: cooperative payment arrangements, asynchronous

decisions, crowding out of banking, and differences between adoption and usage.

The structure of the paper is as follows: Section 2 relates our work to the

literature; Section 3 outlines the payment adoption model; Section 4 provides

theoretical results; Section 5 presents empirical simulations; Section 6 explains

how our network problem can be reformulated as a quadratic optimisation problem;

Section 7 lays out the basics of quantum computing and uses it for simulations

of the payment game; and Section 8 generalizes quadratic optimisation results to

general network games.

2 Literature review

We contribute to several streams of literature. First, our paper is closely related

to the research on network formation games (see Jackson (2010), Bramoullé et al.

(2016), and Goyal (2009) for introductions). Primarily, we rely on Jackson and

Wolinsky (1996) and Jackson and Watts (2002) for results on pairwise stability

and dynamic formation of networks. In this literature, the question of technol-

ogy adoption is often considered using diffusion models. See, for example, Morris
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(2000), Jackson and Yariv (2007), Leister et al. (2022), and Grabisch et al. (2022).

Our approach is an extension of this work because we allow each firm to make

a cooperative adoption decision with each counterparty, rather than sticking to

a unilateral choice. This leads to a larger number of possible network outcomes

and numerical complexity. Method-wise, our paper is more aligned with the pa-

pers on interfirm networks with bilateral firm contracts. Among them, Goyal and

Joshi (2003) and Goyal and Moraga-Gonzalez (2001) study production synergies

between firms, Belleflamme and Bloch (2004) and Priazhkina and Page (2018)—

market sharing agreements, Furusawa and Konishi (2007) and Goyal and Joshi

(2006)—free trade agreements, Kranton and Minehart (2001) and Manea (2011)—

buyer-seller bargaining, and Gale and Kariv (2007) and Babus (2016)—financial

contracts.

We also contribute to the literature on payment networks. Such papers prolif-

erated after the global financial crisis by focusing on interbank liquidity, although

without explicitly modelling the firms on behalf of which payments are made. At-

tention has been given to key network players (Bech et al. (2010), Garratt and

Zimmerman (2020), Denbee et al. (2021)), efficient clearing mechanism (Eisenberg

and Noe (2001), D’Erasmo et al. (2022)), core-periphery property of the network

structure (Craig and Von Peter (2014), Farboodi (2023)), financial contagion and

systemic risk (Furfine (2003), Allen and Gale (2000), Acemoglu et al. (2012), El-

liott et al. (2014), Elsinger et al. (2013)), recovering incomplete network data

(Anand et al. (2018)), relationships with non-banks (Anderson et al. (2020)), and

patterns in liquidity preferences for specific countries (Iori et al. (2008), Cocco

et al. (2009), Afonso and Shin (2011), Martinez-Jaramillo et al. (2014), Bräuning

and Fecht (2017)).

Following the rise of blockchain technology, only a few descriptive studies

have appeared on cryptocurrency payment networks (Makarov and Schoar (2021)).

However, the adoption of new payment methods has been studied more intensively

in the non-networks payment literature (Kahn and Roberds (2009), Townsend

(2020)). See, for instance, Chiu and Koeppl (2017), Schilling and Uhlig (2019),

and Cong et al. (2021). Among these papers, the work of Fernández-Villaverde

and Sanches (2019) on the competition between privately-issued currencies de-

serves particular attention. The authors embed a one-line network structure into
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a monetary search model; however, they include links defining agent migration

patterns rather than trade contracts.

Finally, we model the method of payment choice of firms similarly to the retail

model of Rochet and Tirole (2006). Also, the reaction of banks to the introduction

of digital money in our paper echoes the literature on central bank digital currency,

the safest version of digital money (Bech and Garratt (2017)). See, for instance,

Keister and Monnet (2022), Andolfatto (2021), and Williamson (2022). In contrast

to the retail CBDC case, we assume that banks respond to the new digital currency

by changing fees for having wholesale payments infrastructure access rather than

deposit services.

We also contribute more broadly to the growing literature on strategic be-

haviours in OTC financial markets with network structures: Gale and Shapley

(1962), Freixas and Parigi (1998), Condorelli et al. (2017), Blume et al. (2009),

Gofman (2017), Malamud and Rostek (2017), and Babus and Kondor (2018), Hen-

dershott et al. (2020), Glode and Opp (2020), Colliard and Demange (2021).

Lastly, we are inspired by the literature on quantum computing, which promises

significant technological advances (Bäumer et al. (2021); Yarkoni et al. (2021)), and

which recently opened up to the field of economics. See Hull et al. (2020) for a

general introduction, McMahon et al. (2022) on the ordering problem in payments,

Skavysh et al. (2023) on Monte Carlo applications, and Fernández-Villaverde and

Hull (2023) on dynamic programming in economics. Most closely to our work,

Orús et al. (2019) make the first steps to simulate contagion of financial networks

as in Elliott et al. (2014) using quantum annealing, although without network

formation.

3 Model of cryptocurrency adoption in networks

3.1 Payment decisions and prices

Consider a set of N firms with established trade relationships captured by matrix

L. If firm i buys goods from firm j, Lij = 1, otherwise Lij = 0. Since our focus is on
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payment choice, we do not model the trade partner choice and take L exogenously.

Given L, each firm trades with ni =
∑

j (Lij + Lji) other firms.7

Firms trade a continuum of heterogeneous goods. For each type of good, the

trading pair can strategically select one method of payment in the set of available

methods. Cash or bank transfers are available as status quo. A third method of

payment, cryptocurrency, is available to firm pairs that first strategically adopt it.

The focus of this paper is a network G with its element Gij describing whether any

two firms, i and j, adopt the new method of payment, Gij = 1, or not, Gij = 0.

Differently from L, G has undirected connections (links), so Gij = Gji. L and G

are related: cryptocurrency can be adopted only if the trade contact is established.

A firm acts either as a seller or a buyer in each transaction. We assume that the

bargaining power is on the buyer’s side, so the surplus of each payment is attributed

to the firm sending it. This firm also decides on the method of payment for each

transaction following the adoption decision.8 Despite the unilateral decision on

how each good is paid for, the decision to adopt or not adopt the new method of

payment requires consent of both counterparties, as shown further.

Following Rochet and Tirole (2006), we assume that, depending on the good,

firms may prefer one method of payment to the other. Specifically, a firm gets

positive utility when paying in cash or cryptocurrency for privacy-sensitive goods.

Otherwise, it gets disutility from paying for such goods via correspondent banking.

We capture both by introducing a random variable, p ∼ U [−p̄π, p̄(1 − π)], for

marginal benefit of trading via bank transfer and not other methods. The fraction

of privacy-sensitive goods is π, while the maximum disutility that firm i gets from

using a bank transfer for a sensitive good is p̄.

Sender i pays fee f per bank transfer, cost d per cash transaction, and cost

7For some of our results, it is sufficient to only specify the number of connections but not

the network. In this case, we assume that (n1, ..., nN ) are selected such that the set of networks

with such degrees is non-empty. For the symmetric case, n1 = ... = nN , it is always possible to

find at least one network, which makes the problem well-defined. To see this, consider all nodes

being ordered and located in a ring. Then make each node a trade partner with ni = n nodes

that follow next in the ring.
8Fixed costs of accessing the banking payment system and cash are sunk and not considered.
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c per cryptocurrency payment. For the cryptocurrency channel to operate, there

is also a maintenance (fixed) cost of c0. We interpret c0 as both the cost of

hardware/software upgrades and training needed for the technology to start func-

tioning, as well as the new regulatory and monitoring costs incurred by firms. For

tractability, we assume that, in the business-to-business (B2B) context, cash is

inferior to the crypto exchange once the channel is adopted.

goods or services

$ $

bank payments 

infrastucture

$ $

cash/crypto/bank transfer

$

seller
receiver/payee

buyer
sender/payor

collecting bank remitting bank

Figure 1: Schematic description of the good and payment transfers.

Establishing the cryptocurrency channel between firms i and j requires mutual

consent.

Given the crypto channel exists, Gij = 1, the probability of firms using bank

transfer, and also the expected demand for it is

Dij(fi, c) = Prob(p− fi ≥ −c) = 1 − π − fi − c

p̄
.

Without the crypto channel, Gij = 0, the expected demand for banking services is

Dij(fi, d) = Prob(p− fi ≥ −d) = 1 − π − fi − d

p̄
.

Banks are treated not as players of the cooperative game but rather as the second-

movers once the network is established. Each firm i uses services of a nearby

monopolistic bank k. Bank i cannot directly influence the network formation, but

can change the marginal fee fi ∈ [0, f̄ ] to firm i for each banking transaction. Each

payment made through bank i produces marginal expense ei for the bank. Bank

i price differentiates among firms by choosing fi to maximise expected return ubi :

ubi(fi) = (fi − e)Di(fi), (1)
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where Di is the expected demand it faces

Di(fi) =
∑
j

Dij(fi, d)(1 −Gij)Lij +Dij(fi, c)GijLij.

To operate with the demand function in a more convenient way, we use notation

for the relative node degree of firm i:

δi =

∑
j GijLij

ni

.

The demand for banking services, Di, is therefore inversely related to the adoption

of cryptocurrency whenever digital payments are less costly than cash:

Di(fi) =
ni

p̄
(p̄(1 − π) − fi + d(1 − δi) + cδi) .

The best response fee of each bank to a given network structure is anticipated by

the firms and equal to:

f ∗
i = argmaxfiu

b
i(fi) =

1

2
(e+ p̄(1 − π) + d(1 − δi) + cδi) . (2)

Intuitively, banks charge lower transaction fees to attract payments from a firm

that establishes more cryptocurrency channels, assuming d > c.

The utility function of each firm is determined as the difference between ex-

pected benefit and costs paid for the good it trades. It also accounts for the fixed

cost c0 for each cryptocurrency channel established.9

ufi (δi, fi) = ni(E[p− fi|p ≥ fi − d](1 − δi) + E[−d|p < fi − d](1 − δi)

+E[p− fi|p ≥ fi − c]δi + E[−c|p < fi − c]δi − c0δi).

3.2 Model interpretation

We can extend the model’s notion of cryptocurrency to stable coins, central bank

digital currencies, and even private payment ledgers based on distributed ledger

9We ignore other net benefits firms receive from trade, assuming they are additive to the

payment costs and good-specific benefit p.
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technologies. Depending on the payment option being considered, the interpreta-

tion of the product-specific payment benefit p will change. The benefits of adopting

a new digital method of payment may include avoiding exchange rate fees between

fiat currencies (e.g., businesses in the emerging markets may adopt stable coins

that are not volatile by design), avoiding costs during the exchange of cryptocur-

rencies (mainly among web3 companies and investors that use the crypto payment

rail for everything from investments to payroll), having a non-destructible record

of transactions on a public/private blockchain, and benefiting from price stabil-

ity. For simplicity, we pick autonomy as the advantage of using digital money for

privacy-sensitive goods.10

The usage of cash in the model also requires explanation, given that few B2B

transactions involve cash. First, we include cash to reflect alternative payment

arrangements, such as bilateral credit netting or postal payments, and as an outside

option to discipline banks.11 In addition, having cash allows for more heterogeneity

of firms. Among others, criminals and tax evaders often use cash because of

its anonymity (Rogoff (2017)), while small merchants normally keep some cash

available for operations and use it to economise on banking fees (Baumol (1952),

Tobin (1956)). Finally, the presence of cash in the model accounts for the cash

paradox observed in many countries—cash being issued (as a ratio to GDP) keeps

increasing despite digitisation, while cash usage in retail transactions continues to

fall.12

10We refer to autonomy benefit as benefit from independence and lack of control from any

middleman, whether that be the government, the financial system, or a company. We choose

autonomy to echo the reasons why cryptocurrencies have been popularised originally (Nakamoto

(2008)). Privacy in a form of undisclosed information, as in Garratt and Van Oordt (2021)

or Kahn et al. (2005), is not a feature of traditional cryptocurrencies, as most transactions on

blockchain can be traced to the users (see Makarov and Schoar (2021) among others for evidence).

However, privacy can be achieved when firms use private payment ledgers, cryptocurrency ex-

changes, Layer 2 platforms, and sophisticated smart contracts, which involve randomness. Our

model can be extended for the privacy feature in addition to autonomy if a bank’s utility function

is adjusted for the additional benefit a bank would receive from payment monitoring (e.g., as in

Parlour et al. (2022)
11This is similar to Lagos and Zhang (2019), which looks at the economy with cash usage

converging to zero but playing an essential role for prices and allocations.
12See Camera (2001), Khiaonarong and Humphrey (2019), and Jiang and Shao (2020).
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3.3 Order of actions, equilibrium notion, and networks ter-

minology

For the order of the game, firms first decide cooperatively on the formation of the

payment network. Next, banks impose payment fees. Finally, firms decide which

method of payment to use for each good. The equilibrium is formally defined as

follows.

Adoption network G and vector of fees f constitute a stable equilibrium if there

are no feasible deviations that make the deviating coalition better-off:

(I) any two trading firms, Lij = 1, with formed cryptocurrency channel Gij = 1

do not have incentives to remove it:

ufi (Gij = 1, G−ij, f
∗
i (Gij = 1, G−ij)) ≥ ufi (Gij = 0, G−ij, f

∗
i (Gij = 0, G−ij))

ufj (Gij = 1, G−ij, f
∗
j (Gij = 1, G−ij)) ≥ ufj (Gij = 0, G−ij, f

∗
j (Gij = 0, G−ij));

(II) any two trading firms, Lij = 1, without formed cryptocurrency channel Gij = 0

do not have incentives to form it because at least one of the firms would be strictly

worse off, meaning one of the two conditions hold:

ufi (Gij = 1, G−ij, f
∗
i (Gij = 1, G−ij)) < ufi (Gij = 0, G−ij, f

∗
i (Gij = 0, G−ij))

ufj (Gij = 1, G−ij, f
∗
j (Gij = 1, G−ij)) < ufj (Gij = 0, G−ij, f

∗
j (Gij = 0, G−ij));

(III) any bank k does not have incentives to change the equilibrium bank fee fk:

f ∗
k (G) = argmaxf ′

k
ubk(G, f ′

k).

For convenience, the game can be reformulated as a standard network formation

game (see Jackson and Wolinsky (1996) and Bloch and Jackson (2006)). For this,

we introduce a new utility function:

ui(G) =

u
f
i (G, f ∗

k (G)), if
∑

j Gij(1 − Lij)(1 − Lji) = 0

−umax, if
∑

j Gij(1 − Lij)(1 − Lji) > 0,
(3)

where extremely low payoff −umax is assigned to the infeasible links.
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Then network G is called pairwise stable if any two firms i and j do not have

incentives to remove the link if they have it, Gij = 1, meaning both conditions

hold true:

ui(Gij = 1, G−ij) ≥ ui(Gij = 0, G−ij) (4)

uj(Gij = 1, G−ij) ≥ uj(Gij = 0, G−ij); (5)

and to form a link if they do not have it, Gij = 0, meaning at least one condition

holds true:

ui(Gij = 1, G−ij) < ui(Gij = 0, G−ij) (6)

uj(Gij = 1, G−ij) < uj(Gij = 0, G−ij). (7)

Pairwise stability is a static equilibrium notion; however, the process of reaching

the pairwise stable equilibrium is often interpreted dynamically. For this, we

introduce additional terminology used in the networks literature.

Consider deviations between any two adjacent networks—networks that differ

by exactly one link. We say there is an improving deviation from G to adjacent

G′ = G + ij, with a link between i and j being present in G′ but not G, if both

i and j benefit from the formation of the new link: conditions (4) and (5) hold

with at least one condition being strict. Similarly, there is an improving deviation

from G to adjacent G′ = G − ij, with a link between i and j being present in G

but not G′, if severing the link makes either of them strictly better off: either (6)

or (7) hold. In both cases, the players that strictly benefit from the deviation are

called the deviating coalition.

Clearly, we only focus on single-player or bilateral deviations at a time, while

multiple pairs can deviate. The presence of externalities in the game and the inabil-

ity of each player to re-negotiate multiple links simultaneously makes it possible

that after one improving deviation, there will be another improving deviation.

As such, we also consider a sequence of improving deviations in-between adja-

cent networks (G(1), ..., G(K)) called an improvement path. An improvement path

(G(1), ..., G(K)) is called an improving cycle if G(1) = G(k).

Then, by definition, network G is pairwise stable if there are no improvement

paths from it to any other network. If such improvement paths exist, there is
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also an improvement path from G to either some pairwise stable network or an

improving cycle of networks (Jackson and Watts (2002)).

Finally, we call pairwise stable network G∗ efficient if it leads to the efficient

allocation of payoffs between the players: G∗ = argmaxG
∑

i ui(G). In general,

not all pairwise stable networks are efficient (Jackson and Wolinsky (1996)).

4 Equilibrium and desired adoption and usage

4.1 Desired adoption and traded goods

In non-corner solutions, each firm settles with the limited usage of cryptocurrency.

Deviation to a high usage would make the correspondent bank offer a sufficient

discount on the payment fee and turn refusing bank services unprofitable. However,

once a trade pair adopt cryptocurrency, the new method of payment will be used

ex-post on all transactions for which it even slightly increases the marginal benefit,

ignoring the sunk cost c0. To guarantee limited usage of cryptocurrency in the

equilibrium, limited adoption should take place initially, which means adoption

with only a fraction of trade partners. We show that each bank i aims for the

desired adoption, δ∗i , defined as the proportion of i’s trade contracts that deliver

zero marginal utility.

Proposition 1. Utility ui(δi) is strictly concave with maximum at δ = δ∗i ,

δ∗i =
1

3
− 1

3

c− e

d− c
+

1

3

3 + πi − 4c0
d− c

p̄i. (8)

See Appendix A for the proof.

When δ∗i n is an integer number, the preference of each firm in network G is

to form another link if the firm’s node degree δi < δ∗i and to remove a link if

δi > δ∗i . When δ∗i n is non-integer, the same statement can be made with regard to

threshold δ̄i =
[δ∗i ni]

ni
, where [δini] is defined as a closest integer number to δ∗i ni.

13

13For simplicity, assume δ∗i is not located exactly in the middle between two natural numbers.

The result follows because the marginal utility of a firm is linear in the network degree δ∗i .
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It is a function of the bank’s profitability, share of privacy-sensitive goods, as

well as fixed and variable costs of payments.

Corollary 1. Ceteris paribus,

• higher proportion πi and higher valuation p̄i of privacy-sensitive goods in-

crease desired adoption of cryptocurrency:
∂δ∗i
∂πi

> 0 and
∂δ∗i
∂p̄i

> 0;

• the preferences ui of firms i with more trade partners ni are more sensitive

to the changes in privacy frequency πi and valuation p̄i:

∆p̄i : ui(g, p̄i, πi) = ui(g + ij, p̄i + ∆p̄i, πi) is decreasing in ni,

∆πi : ui(g, p̄i, πi) = ui(g + ij, p̄i, πi + ∆πi) is decreasing in ni.

The first result confirms the intuitive prediction that privacy needs and adop-

tion are positively related. To understand the last result, notice that the desired

adoption rate δ∗i is independent of the firm’s trade network L. However, L still

defines the maximum number of adopted cases δ∗i ni. For instance, for a firm trad-

ing with ni other firms, the privacy-sensitivity p̄i would need to increase by an

increment of 3
ni

d−c
3+πi−4c0

for the firm to be willing to make one more connection,

which is decreasing in ni.

4.2 Role of costs: Paradox of adoption vs usage

Because cryptocurrency serves as a disciplining device for banks, it can be adopted

even when bank-facilitated payments are more efficient (e < c) and firms do not

value privacy, as shown below.

Corollary 2. Firm i that is insensitive to privacy, p̄i = 0, benefits from adoption

of cryptocurrency if and only if

c ≤ (ni − 3)d+ nie

2ni − 3

As the density of the network increases, the adoption threshold for c converges

to a mid-point between the cost for cash d and bank transfer e.
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Figure 2: Multiplicity of equilibrium networks when δ∗ = 2/3, n = 3, N = 8:

stable network (a) is efficient; stable networks (b) and (c) are not efficient.

The second result is that the effect of marginal cryptocurrency cost on adoption

and usage can be different depending on the magnitude of fixed costs.

Corollary 3. A decrease (increase) in the maintenance costs c0 leads to an in-

crease (decrease) in both desired adoption and usage,
∂δ∗i
∂c0

< 0,
∂Dij(δ

∗
i )

∂c0
< 0.

A decrease (increase) in the marginal cost c increases (decreases) desired adoption

and usage
∂δ∗i
∂c

> 0,
∂Dij(δ

∗
i )

∂c
> 0, only when the fixed cost c0 is below threshold

c0 <
d− e

4p̄i
+

3 + πi
4

; (9)

otherwise, a decrease (increase) in the cryptocurrency payments cost c leads to a

decrease (increase) in the desired adoption of the cryptocurrency and an increase

(decrease) in the desired usage of it:
∂δ∗i
∂c

< 0,
∂Dij(δ

∗
i )

∂c
> 0.

This marginal cost paradox arises from the interaction of direct and indirect

effects of marginal costs. The direct effect of lower cost c is that firms have more

incentives to adopt cryptocurrency due to lower per-unit fees. The indirect effect is

that higher utilisation of cryptocurrency creates more competition for banks, which

forces them to decrease bank fees. In this way, low c discourages firms’ adoption of
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cryptocurrency.14 Fixed cost aside, direct effect always dominates indirect, which

leads to higher crypto usage at lower c. Compared to a high maintenance cost

c0, the direct effect may not be large enough, so less crypto adoption would take

place.

4.3 Efficiency, multiplicity, and underadoption

Firms do not necessarily reach desired adoption rates in equilibrium. Figure 2

depicts three equilibria for ex-ante identical firms, each trading with three other

firms and willing to connect with up to two firms: δ∗i = 2/3 for i = 1, ..., 8. In

equilibrium, heterogeneity arises due to coordination failure in networks, such that

networks (b) and (c) are inefficient because two of the firms do not find reciprocity.15

Apart from transferring privacy-sensitive goods in a costly way, these two firms

also pay higher bank fees because their banks do not reduce monopoly rents. This

example illustrates how inefficiency arises in adoption of cryptocurrency, with only

under- and not overadoption being possible. This result holds more generally and

is typical for many network games:

Proposition 2. If a pairwise stable network exists, the cryptocurrency adoption

rate δi of each firm i is less than or equal to δ̄i.

See Appendix B for the proof.

4.4 Sequential adoption and classical algorithm

This section presents two results: the equilibrium set of the payment game is non-

empty; and all pairwise stable networks can be found by executing an algorithm

in dominated strategies that completes in a reasonable time when applied to small

14As in CBDC literature, digital payments help reduce bank rents: Andolfatto (2021), Chiu

et al. (2023), Garratt and Zhu (2021).
15In contrast, the origin of equilibrium multiplicity in financial networks with cleared obli-

gations takes place due to self-fulfilling chains of defaults (see Eisenberg and Noe (2001) and

Jackson and Pernoud (2020)); in financial network formation games, group stability is required

(Farboodi (2023)).
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networks. In the sections related to quantum computing, we use the classical

algorithm to find all pairwise stable equilibria in various small markets to evaluate

its success in finding the same equilibria.

First, we consider a network formation process as a dynamic one in the fash-

ion of (evolutionary) network formation games (Jackson and Watts (2002)). We

assign probability likelihood F (G(i), G(i+1)) > 0 to each pairwise improving devi-

ation (G(i), G(i+1)) along some improvement path (G(1), ..., G(K)). In other words,

we assign a probability to one link being either formed or removed in favour of the

improving coalition. We assign zero probabilities to the deviations that are not

coalition improving. If network G(i) is pairwise stable, we assign F (G(i), G(i)) = 1.

Then the probability distribution can be chosen to completely define the condi-

tional probability of moving from network G(i) to another network, such that∑
j

F (G(i), G(j)) = 1. (10)

In this manner, deviations can be considered to be sequential actions of firms

to either adopt cryptocurrency or stop using it according to the random process

F . We stick to the dynamic interpretation, as in Jackson and Watts (2002),

because assigning probabilities to deviations is a convenient tool to characterise

the improvement paths in the payment network formation game.

According to our definitions, the probability of reaching network G(K) from

network G(1) along the selected improvement path (G(1), ..., G(K)) is the product

of probabilities

Πk=K
k=1 F (G(i), G(i+1)) > 0 (11)

We fix network G(1) to be the empty network and network G(K) to be one of the

pairwise stable networks. We next construct improvement paths leading to each

stable network G(K) by sequentially removing the links in backward induction.

• First, if network G(K) has degree distribution (δ1, ..., δN), build an improve-

ment path to it from network G(K−1) with degrees (δ1, ..., δi1 − 1
ni1
, ..., δi2 −

1
ni2
, ..., δkN) for arbitrary selected players i1 and i2 connected in G(K). Because

the link is absent in network G(K−1) but feasible, and the current node de-

grees are strictly below δi1 and δi2 (and thus strictly below δ̄i1 and δ̄i2 based

on Proposition 2), two firms benefit from forming a link.
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• Similarly, an improvement path from network G(K−2) to network G(K−1) is

obtained by reducing one more link. Continuing the process of sequentially

removing links, we arrive at the empty network G(1).

This proves that if an equilibrium exists with equilibrium degree distribution

(δ1, ..., δN), there are (
∑

i δini/2)! improvement paths to it from an empty net-

work. Moreover, any network with node degrees element-wise less than or equal

to (δ1, ..., δN) lies on some improvement path from the empty network G(1) to the

pairwise stable network G(K). Lastly, we find all stable networks by starting from

an empty network G(1) and sequentially adding links until there are no deviations

and δi ≤ δ̄i for all i. Because the number of such outcomes is final and non-empty,

the set of equilibrium networks is non-empty.

Proposition 3. The set of pairwise stable networks is non-empty.

Moreover, we can evaluate how fast the algorithm converges. The sequential

adoption algorithm converges to a pairwise stable equilibrium within
∑N

i=1 δ̄ini/2 ≤
N(N−1)/2 steps, which is an upper limit on the number of links that can be added.

Clearly, convergence to efficient pairwise stable networks is longer in this algorithm

in terms of the number of operations.

4.5 Desired vs equilibrium adoption rates

So far, we focus on the desired adoption rate δ∗i of each firm i.16 For any assigned

probabilities (11), we show that the equilibrium adoption rate is stochastically

increasing in the desired adoption rate. This makes our comparative statics results

for δ∗i relevant for the game outcome.17

Proposition 4. For two payment games A and B with equal trade networks LA =

LB, different desired adoption rates δ∗A ≤ δ∗B, and any probability distributions

16The discrete version of it, δ̂i, is, by definition, an increasing function of δ∗i .
17Generally, a different number of equilibrium networks in games A and B is the reason why

the equilibrium adoption rate does not increase in the sense of point-wise stochastic dominance,

and only in first-order stochastic dominance.
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FA(·, ·) and FB(·, ·) defined over the improvement paths of games A and B, reali-

sation of the equilibrium adoption rate δ(δ∗A) is first-order stochastically dominant

over adoption rate δ(δ∗B).

See Appendix C for the proof.

5 Empirical exercise: Canadian firms

To apply our model empirically, we first address the common problem of avail-

ability of interfirm data.18 In the literature, interfirm networks are often analysed

using sectoral input-output matrices (e.g., Acemoglu et al. (2012)). In this study,

we go beyond the “one sector-one firm” assumption by combining Canadian input-

output data with large-value payments data reported by the banks that clear the

interfirm payments.19 In particular, we simulate a network of trade relationships

by assigning each firm two attributes: the economic sector it operates in and the

corresponding bank that processes its payments. First, nodes of trade network L

are created in proportions resembling the size of sectors and bank shares. Each

node in L represents a firm. To create the first link, we randomly match two banks

in the payment system according to the interbank probability matrix. We next

assign probabilistically the link to two industries according to the input-output

matrix (see Figure 3).20 We then repeat the link-creation process until the aver-

age incoming degree of a node matches the exogenous moment. We rely on the

18For example, see supplier-buyer networks derived from Compustat reports in the United

States, where firms are required to report sales to customers that account for 10% or more of

annual sales (see Graham and De Paula (2020), Cohen and Frazzini (2008), and Atalay et al.

(2011)).
19Payments made between firms that are serviced by the same bank are cleared by this bank

internally and thus are not observed in the payment system data. To account for these payments,

we fill in the diagonal of the interbank matrix by assuming that, for each bank, the proportion

of received payments directed to itself is the same as the proportion of all payments directed to

this bank in the financial system. Also, flows of small banks that indirectly participate in the

payment system are absorbed into larger banks’ flows due to data limitations (Chapman et al.

(2011)).
20In simulations, two firms are allowed to have identical sectors and banks and can even be

connected with each other.
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Figure 3: Left figure: observed input-output network for 22 economic sectors of

Canada (source: Statistics Canada). Right figure: large-value payments flows

between all participating banks; non-loops are observed in the Lynx payment

system for 2022Q3 (source: Payments Canada and Bank of Canada), while loops

are the authors’ calculations. In the figure, each node size represents unweighted

network degree and is irrelevant to the size of the bank.

assumption that the average indegree in Canadian interfirm networks is 2.5, which

is in line with Canadian data observations.21 Figure 4 depicts the resulting trade

network.

We next use the results of Deloitte’s Global Blockchain Survey to calibrate the

preferences of firms for payment services.22 In 2018–2021, the survey asked more

than 1,400 senior executives and practitioners in 14 countries and regions about

blockchain, digital assets, and distributed ledger technology. We are interested in

the percentage of firms that identify blockchain as their top priority in the coming

two years. We also focus on firms that identify payments as a blockchain use case.

With the independence assumption, we use the product of the two likelihoods to

find the desired cryptocurrency adoption rate δ∗.

21It also stays within the range of 2–7 links per firm reported in Matous and Todo (2016, 2017)

for Japanese firms, and Welburn et al. (2020) for U.S. firms.
22See Delloite Blockchain Survey Report.
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Figure 4: Simulated network with 30 firms (left: firms only, right: firms and

corresponding banks in the payment system). Colours of firm nodes indicate in-

dustries as in Figure 3. Bank nodes are unlabelled and form a circle representing

a large-value payment system.

Empirically, it is unclear whether there is a trend in the overall costs of using

crypto for payments, given that transaction fees, price volatility, and transaction

time provide conflicting evidence (see Table 1). So, we conduct a counterfactual

analysis of a rather stylised nature, assuming the desired adoption δ∗ of all firms

increases from the 24.8% reported in the last survey to an arbitrary 35% (see

Table 1). If privacy preferences π and p̄, fixed cost c0, and cost advantage of banks

d−e are kept unchanged from the last data observation, according to equation (1),

increase in demand is identical to the change in marginal cost from c = d−λ(d−e)
to c = d− 1.32λ(d− e) for some λ ∈ (0, 1). This means that marginal crypto cost

c becomes 1.32 times further from the cost of using cash d as from the cost of

banking payments e.23 For comparison, if λ = 1, the cost of crypto would become

as cheap as sending a payment through an interbank network (e.g., SWIFT), while

if λ = 0, crypto would be very costly at the margin and identical to transferring

cash.

Finally, we run simulations according to our classical algorithm to find the

equilibrium networks. Based on the counterfactual scenario, firms that are not co-

ordinated on average adopt the new method of payment for only 24% of contracts,

23This result follows from the definition of λ = d−c
d−e , which is identical to d−e−(3+πi−4c0)p̄i

2−3δ∗ .
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desired transaction volatility transaction

adoption δ∗ fee of price (CV) time

% usd % minutes

Observed: 2018 12.9 6.68 0.23 6.39

Observed: 2019 19.6 0.28 0.05 8.23

Observed: 2020 16.5 0.67 0.17 8.95

Observed: 2021 24.8 16.19 0.22 8.12

Scenario: 2022 35.0 – – –

Table 1: Empirical observations about cryptocurrency adoption and costs and

desired adoption rate in the counterfactual scenario.

while they would like to adopt it for 35% of contracts (see Figure 5). The ”price of

anarchy” (Koutsoupias and Papadimitriou (2009)) arises from the discrete nature

of the adoption process, the network externalities, and a mismatch in incentives

of firms in adoption timing.24 The intuition of the last two effects is the most in-

teresting: the responses of banks to the crypto-adoption process limit its progress

among firms. With more adoption, banks are willing to provide discounts to firms

on corresponding banking services. As a result, firms that adopt crypto first will

have a higher likelihood of being matched with other adopters, which leaves late

adopters unfavourable.

The position of firms in the trade network plays an important role for adoption

and usage. Network externalities also mostly impact firms with fewer contracts

(see Figure 6). However, high trading activity does not protect a firm from the

negative impact of network externalities. There is a positive probability that even

firms with 7–8 trade partners may not find any reciprocity of trade partners to

adopt cryptocurrency if they are late making the adoption decision (because the

monopoly rents of banks will be sufficiently reduced by then).

24On average, a firm would like to adopt cryptocurrency as a method of payment with less

than one trading partner out of 2.5 average trading partners:
∑

ni

N δi = 0.875 < 1. This means

that due to the discrete nature of contracts, only 21 out of 30 firms are interested in adopting

cryptocurrency, despite equal δ∗.
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Figure 5: Desired adoption rate δ∗ vs equilibrium adoption rate distribution.

Figure 6: Equilibrium adoption rates.

Finally, cryptocurrency adoption is more likely to take place between well-

connected firms. However, we do not find a similar prediction with regard to the

sector of the firm and the bank that processes the payments. As Figure 7 shows,

the new currency adoption decision is specific to the sector and the firm’s bank.

23



Figure 7: Average equilibrium adoption rate in relation to the centrality of eco-

nomic sector and the bank that processes the payments.

However, simple degree of sector and popularity of the bank are not sufficient

statistics to explain the variation. This highlights the importance of complex

network topology for evaluating the impact on bank balance sheets and payment

system.

6 Network payment game as quadratic optimi-

sation

6.1 Quadratic optimisation on modern technology

In this section, we convert the original game in Section 3—namely its initial net-

work matrix, utility functions, and network formation rules—into a quadratic func-

tion that maps from binary inputs into a single real-valued output. This makes

the payments game feasible for modern technology, such as quantum computing.

Having a unified framework for solving network formation games allows for vari-

ous empirical applications and avoids numerical complexity when placing realistic

behavioural assumptions in these models. In addition, the unique equation for

a network formation game opens up the possibility of structural estimations of

this game without the need to match many node-specific moments or check the
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behavioural choice of every single player, although this is beyond the scope of this

paper.

Several quantum and quantum-inspired devices and algorithms for classical

computers demonstrate potential in solving optimisation problems. A promising

emerging technology in this domain is quantum computing, which has been ex-

plored extensively for such applications (Abbas et al. (2023)), including in finance

and economics (Fernández-Villaverde and Hull (2023); McMahon et al. (2022);

Orus et al. (2019)). For example, quantum annealers—specialized quantum com-

puting devices designed for solving QUBO problems—have garnered significant at-

tention (Yarkoni et al. (2022)). Recent studies highlight the efficiency of quantum

annealers in these contexts. For example, King et al. (2024, 2023) have recently

claimed an advantage to using quantum annealers over other known computing

methods for solving optimisation problems in material science. Moreover, the

push towards using quantum computing for optimisation challenges has spurred

the creation of “quantum-inspired” innovations. These innovations use classical

computing rules but incorporate ideas from quantum computing. This includes

various algorithms such as tensor networks (Mugel et al. (2022)), and various new

computing hardware such as in Kowalsky et al. (2022) or Meirzada et al. (2022).

Although we do not investigate quantum-inspired methods in this paper, these

technologies accept QUBO problems and can be used instead of the quantum an-

nealer to possibly offer computational advantage for some problems, at least in

practice.

6.2 Quadratic representation of the payment network game

For each network matrix of zeros and ones, G, we use its vector representation

g ∈ Vg. Here Vg denotes the space of all possible network configurations, with

dimension |Vg| = 2|Bg |, where Bg = {e1, . . . , e|Bg |} is a canonical basis of Vg, and

|Bg| = N(N − 1)/2 is the total number of links that can be formed between

different pairs of nodes. In the canonical vector, each element corresponds to a

network graph with a single link. Then any network vector g is a linear combination

of arrays in Bg.
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We next show that it is possible to complement g with a few more binary

variables to form an argument vector for which the payment game is specified as

binary quadratic optimisation.

Theorem 5. There exists some number of additional variables, m, and a real-

valued quadratic function

H : x ∈ [0, 1]|Bg |+m → R,

such that network g is pairwise stable if and only if it delivers minimum to quadratic

function H

(g, v) = argminxH(x)

together with some vector v ∈ [0, 1]m.

In our approach, quadratic form is used as an optimiser. This makes the

mathematical problem well behaved and aligns all equilibrium network solutions

on a single quadric hypersurface (such as ellipsoid or parabaloid), which are easy to

handle computationally. This allows us to find all equilibrium networks by solving

a single optimisation problem.

Our approach resembles the potential function technique (Rosenthal (1973),

Monderer and Shapley (1996)) previously applied to network games (Bramoullé

et al. (2014), Tardos and Wexler (2007)). In both methods, the extreme value of the

optimisation function is achieved in the equilibrium network. However, differently

from the potential function, an increase inH does not imply an increase in marginal

utilities, apart from when considered in equilibrium. Also, only a limited number

of network games can be presented as potential games, with our approach being

more general (see Section 8). In particular, when utility functions are quadratic

in strategies, potential function can be considered a special case of H in Theorem

5 given m = 0.

We prove Theorem 5 for our game by explicitly defining x = (xg, xδ, xe, xsg, z1, z2)

and H. This specification is different than the generalized one in Section 8 to il-

lustrate how the specifics of a utility function can be used to compose an efficient

QUBO and improve the speed of funding an equilibrium.
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• xg: the first |Bg| elements of x model network g, which we want to be

pairwise stable: if H(x) = 0, then xg = g is an equilibrium. If xgj = 1 for

some j = 1, ..., |Bg|, link ej exists in the network. If xgj = 0, no such link

exists.

• xδ: the sufficient statistic for the utility function of each player given network

g. In our case, it is equal to the vector of node degrees:

xδ = (xδ1, ..., x
δ
N).

If subvector xδi ∈ {0, 1}n+1 has only the k’th element being 1 and other

elements being 0, it assigns node degree k−1
n

to player i.25

• xe and xsg: vectors that indicate whether each node i is strictly above or at

the desired adoption level xsgi = 1 if and only if δi(x
g) > δ̄i, x

e
i = 1 if and

only if δi(x
g) = δ̄i, and zero otherwise.

• z1 and z2: slack variables that do not carry additional meaning and will be

defined later.

We first model network formation rules. For each edge, assign label left to the

node with the smaller index and label right to the node with the larger index.

Define binary matrices νL and νR, such that νLij = 1, νRkj = 1 if and only if i is the

left and k is the right node of edge ej.

We record the incentives of left and right players to add or remove link ej by

defining a function for the signs of marginal utilities—linear representations of

vectors xsg and xe:

xLaj =
∑
i

(1 − xsgij − xeij)ν
L
ij, xRa

j =
∑
i

(1 − xsgij − xeij)ν
R
ij ,

25In the optimisation problem, vector xδi is not explicitly restricted to have a single 1 element

and thus be a canonical vector. Instead, it can be any of 2n+1 binary combinations. When

defining H(x), we limit values of xδi to be a canonical vector in the equilibrium by incorporating

penalising terms.
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xLrj =
∑
i

xsgij ν
L
ij, xRr

j =
∑
i

xsgij ν
R
ij .

Then we can present network formation rules with the quadratic function of

x, which is positive whenever the network is unstable. This means that two nodes

benefit from adding a link between them, or at least one node benefits from a link

removal:

HNF =
∑
j

(
xLaj xRa

j + xLrj + xRr
j

)
.

Because variables xδ, xsg, and xe are interdependent, we introduce function

HU that is positive whenever the values of these variables are not consistent, and

zero if the consistency is reached.

HU(z1, z2, xe, xsg, xδ) =
∑
i

(
z1i + δ̄inix

e
i + (δ̄ini + 1)xsgi + z2i − ηix

δ
i

)2
+z1i x

e
i + z2i (1 − xsgi ) + xeix

sg
i (12)

When slack variables z1 ∈ R and z2 ∈ R are selected to solve minimisation problem

min
z1i ,z

2
i

HU(z1, z2, xe, xsg, xδ)

subject to constraints

z1i ∈ [0, δ̄ini − 1] (13)

z2i ∈ [0, ni(1 − 2δ̄i)] if δ̄i < 1/2 (14)

and ηi being defined as vector

ηi = [0, 1, ..., ni − 1, ni],

we can easily show that the only way for conditions HU = 0 and ηix
δ
i = δ̄ini to hold

simultaneously is to have z1i = z2i = xsgi = 0 and xei = 1, so consistency between

xe, xsg and xδ is reached. When ηix
δ
i > δ̄ini, then xsgi = 1, xei = 0, and z1i and z2i

are selected to make up the residual z1i + z2i + 1 = ηix
δ
i − δ̄ini.

26 The conditions

26Assuming xei > 0 when ηix
δ
i > δ̄ini leads either to the positive second line of the equation

(12) and thus HU > z1i x
e
i + z2i (1−xsgi )+xeix

sg
i > 0, or the zero second line of the equation (12),

xsgi = z1i = z2i = 0, the positive first line of (12), and thus HU > 0.
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in the second line of (12) are used to enforce when z1i and z2i can be non-zero: the

first term specifies that z1i = 0 when xei = 1; the second term specifies that z2i ̸= 0

only when xsgi = 1; and the third term specifies that only either xsgi or xei can be

ones at any time.27

In conclusion, solving for equilibrium in the network formation game is identical

to minimising H function with respect to variables xg, xδ, xe, xsg, z1, z2

H = HU +HNF

subject to constraints (13)-(14) and single selection constraint,
∑

j x
δ
ij = 1 for each player i.

7 Applications using quantum computing

7.1 Introduction to quantum computing

Quantum computing applies the laws of quantum mechanics to perform compu-

tation. Quantum computing outperforms classical computing in various quantum

algorithms—a situation known as “quantum advantage.” For most of them, the

advantage is proven theoretically (Jordan (2022); Nielsen and Chuang (2010)),

but empirical demonstrations now also exist (Madsen et al. (2022)). Quantum

advantage is expected to materialise further as quantum hardware improves to

become fully fault-tolerant. In the meantime, Noisy Intermediate Scale Quantum

(NISQ) processors are available. NISQ devices allow for early stage use case ex-

ploration and experimentation, and might soon provide quantum advantage for

many computational tasks (Huang et al. (2022), Daley et al. (2022)). We rely on

a NISQ device called the “quantum annealer” for finding equilibrium networks in

the payments game.

In achieving quantum advantage, quantum algorithms most commonly take

advantage of superposition and entanglement. A state of the quantum system is a

27The qubit usage is optimized by allowing for the lower region values z1i to contribute to filling

the upper region when xδi ηi > δ̄i. Then only if xδi > 2δ̄ini are additional qubits required for z2i
to make up the remaining residual.
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superposition of multiple other states if it is a linear combination of these states.

For the simple two-state system called the “qubit” (a quantum analogue of the

classical bit in the classical computer), the most general state can be expressed as

a linear combination of the orthonormal basis states |0⟩ and |1⟩. Mathematically,

the two basis states can be expressed as vectors |0⟩ = [1, 0] and |1⟩ = [0, 1] in

the complex space C2. Therefore, the statement that a qubit in the state |ψ⟩ is a

superposition of states |0⟩ and |1⟩ is simply the statement that

|ψ⟩ = a0|0⟩ + a1|1⟩, a0, a1 ∈ C, |a0|2 + |a1|2 = 1. (15)

This is unlike a classical bit that is always either in the state “0” or “1,” but never

both at the same time.

The notion of superposition is closely linked to the idea of measurement of

a quantum system. While we mentioned that a qubit’s state may be in |0⟩ and

|1⟩ simultaneously, an observer will only record one of the two states, either |0⟩
or |1⟩, when the state is actually measured. The state could be, for instance, an

electron with spin up or spin down, or a superconducting current flowing clockwise

or counter-clockwise. In our case, a state will often indicate whether a network

link is present between two nodes or not.28

For superposition to become useful in computation, we must extend this phe-

nomenon from a single qubit to a collection of qubits. This can be achieved

thanks to quantum entanglement. Two or more quantum systems are entangled

if the properties of the composite quantum system cannot be described by con-

sidering the properties of each subsystem in isolation. Mathematically, a state in

a composite Hilbert space H is entangled whenever it is not a tensor product of

quantum states of Hilbert spaces composing it:

ψ ∈ H1 ⊗H2 is entangled ⇐⇒ ψ ̸= ϕ1 ⊗ ϕ2 for any ϕ1 ∈ H1, ϕ2 ∈ H2. (16)

28How or why the superposition happens is not specified within the mathematics of quantum

mechanics, although a plethora of philosophical explanations are proposed (Friebe et al. (2018);

Jammer (1974)). However, the theory does provide the probability of the state ending up in any

of its possible states. For instance, in (15) the probability of ending up in state |0⟩ is the squared
scalar product between vectors ψ and ⟨0|, namely |a20|, and the probability of ending up in state

|1⟩ is analogously |a1|2. Notice that quantum states are taken to be unit vectors in the first place

so that the total probability is preserved |a0|2 + |a1|2 = 1.
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In practice, this makes it possible to link together qubits such that the whole is

greater than the sum of its parts. For instance, two qubits can be entangled such

that measuring “0” on the first qubit will force the second qubit to be also “0.”29

Because qubits cannot be considered separately, the dimension of the composite

space of N qubits is

dim(H1 ⊗ ...⊗HN) = dim(H1) · ... · dim(HN) = 2N ,

In practice, it means that with N ≥ 300 qubits, the quantum computer can handle

more computational states than the number of atoms in the universe. In contrast,

classical bits of the same size will cover a composite space of size N only.

7.2 Quantum annealing

We use a D-Wave quantum annealer, which is designed to solve quadratic uncon-

strained binary optimisation (QUBO) problems.30 Thus, the challenge of applying

quantum computations to network formation games is in representing such games

in terms of the quadratic function (often referred as Hamiltonian):

H(Q, x) = x′Qx , (17)

where Q is a triangular real-valued matrix and x is an unknown binary vector.31

In this case, solving the game would be equivalent to finding the ground state of

the Hamiltonian H(Q, x∗) and all solutions:

x∗(Q) = argminxH(Q, x).

29This is an instantaneous effect that can happen over arbitrary distances between qubits. See,

for instance, the recent physics experiments of The BIG Bell Test Collaboration (2018) and Li

et al. (2022).
30We report results for D-Wave’s quantum-classical hybrid solver Kerberos, based on the D-

WAVE recommendation for problems with a high degree of connectivity. We obtain similar results

when using hybrid solve LEAR. Currently, both of these hybrid solvers yield better performance

than direct QPU (quantum programming unit) sampling for our applications. However, this may

not be the case in the future as quantum hardware continues to improve.
31In practice, the Hamiltonian also includes another term corresponding to the transverse

magnetic field, which is added to control the temperature of hardware.
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This adiabatic quantum computation takes advantage of the adiabatic theorem

(Born and Fock (1928)). In particular, the system starts in the ground state of

some initial Hamiltonian, H(Q0, x), such that the ground state x∗0 can be easily

and reliably prepared using hardware. Then, if the coefficients of the Hamiltonian

Q0 are deformed into Q adiabatically and slowly enough, the system will end up

in the ground state of H(Q, x∗).32 In this context, quantum annealing is the phys-

ical process of implementing adiabatic quantum computation in real-life devices

(Kadowaki and Nishimori (1998)).

In adiabatic quantum computation, the challenge is to reformulate a given prob-

lem as the Hamiltonian (Albash and Lidar (2018); Farhi et al. (2000)). In addition,

because the current quantum hardware is noisy, the quantum optimiser may mis-

takenly find near-equilibrium x̂, with H(Q, x̂) being close to the ground state

H(Q, x∗). To eliminate the need to post-process the quantum outcomes and dis-

tinguish x∗ from x̂, we also require a specific (zero) ground state Hamiltonian value

for the equilibrium networks, H(Q, x∗) = 0, so that we can discard results with

positive values of H without checking the equilibrium conditions.

7.3 Applications of quantum computing to networks

Full adoption scenario

We begin quantum applications by considering simple cases with only a few mutually-

traded symmetric firms to document that quantum technology can handle well the

exponentially growing complexity of network games. For comparison, we rely on

the classical convergence algorithm in Section 4.4 to supply the equilibrium net-

works in each case.

We first focus on firms with high desired adoption δ∗ > (N−1.5)/(N−1), which

guarantees a unique pairwise stable (fully-connected) network and is therefore ideal

for comparing search outcomes across different market sizes. We find that the

32Adiabatic means that no heat leaves or enters the system. In practice, one usually chooses

the time of deformation to be O(∆2) with ∆ being the energy difference between the ground

state and the second minimum value of H(Q, x). In practice, the probability of ending in the

ground state depends on how slowly Q0 is deformed into Q and on the difference in ∆.
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quantum computer handles well the growing network complexity. For instance, in

the markets with eight firms, the quantum search delivers minimum Hamiltonian

H(Q, x) = 0 in 2% of cases, in comparison to the likelihood of 10−8 if a network is

selected at random. The distribution of the quadratic function H for each network

outcome reveals that despite finding 98% of networks with positive Hamiltonian,

the quantum computer is more likely to find networks with only a few deviations

away from the equilibrium (see Figure 9 for eight firms). For instance, networks

with only one and two improving deviations are sampled about 10% and 28% of the

time. This indicates that the nature of error in quantum search is hardware-based

rather than algorithmic, and is likely to improve when the precision of quantum

machines improve. Moreover, while most quantum search outcomes deliver H > 0,

we should not interpret this fraction as an ultimate error rate. We observe the

Hamiltonian generated by each network and thus can dismiss networks with H > 0

when selecting the output. Despite the quantum likelihood being confusing, it is

still a useful statistic to understand the scaling properties of the quantum method.

In particular, according to Figure 8, when the market size is expanded from 7 to 10

players, the quantum likelihood only slightly deteriorates from 10% to 1%, while

the exhaustive likelihood decreases from the order of 10−6 to tiny 10−13, indicating

exponential growth in the complexity of network problems.

Pairwise matching scenario

We next consider the case with low desired adoption δ∗ = 1/(N − 1), meaning

each firm desires to form one connection. In this setup, the stable networks are

given by the sets of (maximum) matching pairs. Thus, the number of stable states

grows with the number of players in the network. For quantum, this leads to a

sizeable increase in the ground state probability compared to the case of a single

equilibrium network (e.g., 94% vs 1% for 8 firms, as shown in Figure 8), and even

greater advantage relative to a random search. This case is especially promising

for quantum given that finding all pairwise matching problems is unrealistic in the

polynomial time on a classical machine.33

33Finding such pairs is a |#|P-Complete problem for non-planar graphs (Valiant (1979)).
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Case of unique equilibrium with full adoption

Figure 8: Probability of a network being an equilibrium in a uniform sampling vs

observed likelihood of (ground state) equilibrium being found using a D-WAVE

quantum computer.

Non-monotonicity of equilibria search

We report two additional exercises in Table 2 to test scaling properties of quantum

search. First, for five fully-connected symmetric firms, we sequentially increase the

desired adoption rate δ̄ to show that the quantum likelihood is non-monotonic in

the number of equilibria. In the next set of applications in Table 2, we keep δ̄

the same but increase the market size to demonstrate that quantum likelihood is

non-monotone in the size of the network. In addition, there is a non-monotonicity

with respect to the expected efficiency loss (from mis-coordination in networks)

and heterogeneity among firms, which grows non-monotonically with the network

size.34

Data-driven application

We apply quantum algorithm using a D-Wave Quantum Annealer to the empirically-

calibrated problem from Section 6.2. We find a stable network with 3.1% likelihood

34The time to run a single simulation is between 20s for a fully connected network with 4 nodes

to 55s for a fully connected network with 10 nodes.
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Figure 9: Empirical distribution of Hamiltonian value depending on the sampled

network in the full adoption scenario.

Number Adopted contracts Number Equilibrium search

of firms Desired E(eqm) SD(eqm) of eqm Exhaustive Quantum Quantum

N networks likelihood likelihood 95% conf. int.

5 1 0.80 0.40 15 0.015 0.83 (0.74,0.93)

5 2 1.72 0.60 37 0.036 0.89 (0.86,0.93)

5 3 2.74 0.60 35 0.034 0.55 (0.50,0.61)

4 1 1.00 0.00 3 0.047 0.26 (0.14,0.38)

7 2 1.26 0.19 > 250 < 1.2 ×10−4 0.98 (0.97,0.99)

10 3 1.94 0.12 > 500 < 1.4 ×10−11 0.83 (0.78,0.88)

Table 2: Results of equilibrium search on quantum annealer for small fully con-

nected networks.
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and a confidence interval of [0.022, 0.041].35 The found networks are representative

and no bias is observed in which networks are selected. This confirms that quan-

tum computing can be used successfully to generate predictions of similar network

formation games.

8 Quadratic representation of network games

8.1 Decoding utility functions

In general network games, defining the utility function ui(g) of player i requires

defining |Vg| numerical values. Equivalently, we can use sign matrices S+ and S−

of marginal utilities, with element ij indicating whether player i strictly benefits

from adding or removing link ej.
36

s+ij(g) = H(ui(g + ej) − ui(g)), s−ij(g) = H(ui(g − ej) − ui(g)), (18)

where H is the Heaviside function (1 if its argument is positive and 0 otherwise).

Future quantum computers are promised to deal efficiently with high dimen-

sions of |Vg|. Currently, symmetry and sufficient statistics of utility functions can

be used to reduce the computational complexity.

Example 1. Consider the special case where ui is linear in g. The payoff of

player i is a linear product of network vector g and some numerical vector uvi :

ui(g) = ⟨g|uvi ⟩ =

|Bg |∑
i=1

wi⟨ei|uvi ⟩. (19)

Knowing values ⟨ei|uvi ⟩ is sufficient to define the payoffs. Because the number

35Out of 1,400 simulations, 44 networks are found. Based on classical simulations, the number

of stable networks exceeds 48,000.
36The case of indifference is ignored for simplicity, assuming the addition and removal of a

link does not leave deviating players indifferent. For more complicated utility functions, cases

of zero value of ui(g + ej)− ui(g) should be treated separately by introducing another indicator

function for the addition of a link. Introduction of such a function for removal is not necessary

because according to the network formation rules, the deviating coalition must strictly benefit

from a link removal.
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of such values |Bg| grows with the number of nodes N as a quadratic polyno-

mial, the reduction in the computational difficulty is significant compared to the

exponentially growing number of payoff values |Vg|.37

Example 2. Similar logic can be applied if ui is a non-linear function of the

linear sufficient statistic ui = ui(δi(g)):

δi(g) = ⟨g|δvi ⟩ =

|Bg |∑
i=1

wi⟨ei|δvi ⟩.

This again reduces the computational complexity of encoding (18) to |Bg| <
|Vg| numerical values, given a mapping vector between networks and states χ :

(1, ..., |Vg|) → (1, ..., |p|).

Finally, we can reduce complexity in a more general case when we reduce the

values of utilities to only |p| and not |Vg| states, with each state linked to one

or multiple networks. In this case, s−ij(g) and s+ij(g) can be defined as a linear

combination of the canonical vector (bp1, ..., b
p
|p|).

8.2 Assembling argument for optimisation function

To compose a QUBO problem (17) with Hamiltonian H(x), we first define its

argument x as a combination of subvectors: x = (xg, xδ, xd). Each element of x

corresponds to one qubit, which takes value 0 or 1 when measured.

• xg: the first |Bg| elements of x model network g that we want to be pairwise

stable: if H(x) = 0, then xg = g is an equilibrium; if xgj = 1 for some

j = 1, ..., |Bg|, link ej exists in the network, and if xgj = 0, no such link

exists.

• xδ: binary vector of size |p| determining the state of the network.

• xd = (xda, xdr) = (xda1 , ..., x
da
|Bg |, x

dr
1 , ..., x

dr
|Bg |): the last 2|Bg| binary elements

of x record the presence of improving deviations by addition (da) and removal

(dr) of links. Again, restrictions for such a deviation to be feasible in network

g will be imposed as penalising terms in H(x).

37We abuse notation ui(g) when using the same symbol u for the utility function in ui(G) to

not overload the paper with notation.
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8.3 Logical operations and mapping

Before describing the rest of QUBO formulation, it is first useful to review how to

embed common logical operations as quadratic functions.

• Logical operations AND and OR

AND(a1, a2, b) = −2(a1 + a2)b+ a1a2 + b ,

OR(a1, a2, b) = −2(a1 + a2)b+ a1a2 + a1 + a2 + b . (20)

AND applied to arbitrary a1, a2, and b returns 0 if and only if b is the output

of the logical operation “a1 and a2,” and some positive number otherwise:

minbAND(a1, a2, b) = AND(a1, a2, a1 & a2) = 0.

OR returns zero if and only if b is the output of the logical operation “a1 or

a2,” and some positive number otherwise:

minbOR(a1, a2, b) = OR(a1, a2, a1 ∥ a2) = 0.

• Mapping a vector in the canonical basis

Another useful operation is mapping a natural number k to the k-th element

of the given canonical basis a = (a1, ..., a|Va|). A canonical basis vector ak

has only one unit entry at the k-th position, with all other entries being zero.

Define the mapping in a functional form

MAP(k, aj, |Va|) =
[
(⟨aj|z⟩ − k)2 + λ (⟨aj|aj⟩ − 1)2

]
, (21)

where z = (1, 2, . . . , |Va|) is a vector of ordered numbers up to the basis size.

The mapping is implemented as a minimisation, such that the expression

(21) achieves minimum whenever k is mapped to ak:

minajMAP(k, aj, |Va|) = MAP(k, ak, |Va|) = 0.

The first term is used to obtain the canonical basis vector ak and the second

regularisation term enforces ||ak|| = 1; that is, there is only one non-zero

entry in the mapped basis vector. Parameter λ sets the magnitude of the

regularisation term and must be tuned for optimal performance.
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8.4 QUBO function

Finding all networks with number of deviations d∗ is equivalent to finding the

minimum of H(x):

H(x, d∗) = M(xg, xδ) + ENF (xδ, xd) + FEAS(xg, xd) +D(xd, d∗) (22)

• Mapping state and network vectors

The first term of the Hamiltonian maps game state to the corresponding

canonical vector as in (21).

M(xg, xδ) = MAP(⟨xg|χ⟩, xδ, p). (23)

• Network formation rules

For each edge ej in the basis connecting nodes i and k, assign label left to

the node with smaller index i, i < k,, label right to the node with larger node

index k, and define matrix elements νLij = 1 and νRkj = 1.

(xLa, xLr) = (xLa1 , ..., xLa|Bg |, x
Lr
1 , ..., x

Lr
|Bg |),

(xRa, xRr) = (xRa
1 , ..., xRa

|Bg |, x
Rr
1 , ..., xRr

|Bg |),

which record the incentives of “left” and “right” players to form or remove

a link in g if it exists.

By definition of the sign matrices, the new variables are linear in vector xδ

xLaj =
∑
i

s+ij(x
δ)νLij, xLrj =

∑
i

s−ij(x
δ)νLij,

xRa
j =

∑
i

s+ij(x
δ)νRij , xRr

j =
∑
i

s−ij(x
δ)νRij .

Using new notation, implement the network formation rules in terms of the

logical operations (20). This is done by introducing two quadratic penalty

cost terms for addition and removal of each link ej.

ENF (xδ, xd) =
∑
j

AND(xLaj , xRa
j , xdaj ) +

∑
j

OR(xLrj , x
Rr
j , xdrj ). (24)

This term of Hamiltonian forces xda and xdr to be consistent with the

marginal utilities, and thus network xg.
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• Feasibility and existence of deviation

The Hamiltonian should be zero only if no deviations exist. For this, we

introduce a penalty term that tracks whether the link exists (absent) and a

coalition can benefit from removing (forming) the link.

FEAS(xg, xd) =
∑
j

(1 − xgj)x
da
j + xgjx

dr
j . (25)

• Number of deviations

The last term indicates the number of improving deviations of the states of

interest in the network,

D(xd, d∗) =
∑
j

(xdaj + xdrj − d∗)2. (26)

Thus, minimisation of Hamiltonian (22) finds networks with any number of desired

deviations d∗. When number of deviations d∗ is set to zero exogenously, we find

pairwise stable networks. If the game does not have a pairwise stable equilibrium,

we find small improving cycles by setting up d∗ to a given number of deviations

in the optimisation of (22).

To check the existence of pairwise equilibria of any network formation game,

verify whether quadratic equation H((xg, xδ, {0}2|Bg |), 0) = 0 has solutions in bi-

nary xg and xδ.

9 Conclusion

Our paper makes two major contributions. First, we propose a model for new

payment method adoption in firm networks. Our results show that the coopera-

tive bipartite nature of interfirm payment arrangements plays an important role

and may lead to the underadoption of the new payment instrument, as well as

heterogeneity in adoption decisions of ex-ante symmetric firm. The efficiency loss

may be significant in certain trade networks. In the data-driven example, we show

that if the desired adoption by each firm is 35% of all trade contracts, the average

equilibrium adoption is only around 25%. This calls for further investigation of
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what can be done to control the adoption of new forms of money. For instance, a

designer could impact the adoption by changing the property of the new currency

while considering a trade-off between adoption and usage. According to our re-

sults, if the new payment method is made more attractive due to lower cost per

transaction, it may surprisingly decrease the adoption of the new currency, while

increasing the usage of it in equilibrium.

When more realistic assumptions are in place, numerical estimations are nec-

essary for the effect of new payment methods. The quantitative approach may

also be more valued by a data-focused regulator. Historically, the bottleneck in

applying network formation games to data was the complexity of the possible

equilibrium outcomes. We address this problem with our second contribution by

showing how multiple networks’ equilibria can be found efficiently using a single

quadratic optimisation. We think the new methodology is especially valuable in

light of the up-rise of quantum computing, which promises significant speed up

in the nearest future. As an illustration, we execute the payment network on D-

WAVE quantum annealer for the Canadian economy using input-output matrix

and large-value payment system data to evaluate the adoption rate of DLT tech-

nology in cases when the benefit of transactions will increase enough for firms to

get interested. Finally, although our payment model is a network formation game,

we believe that our quadratic optimisation results can be extended to various forms

of cooperative games to simplify equilibrium search and describe their properties.
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Cortiana, G., Dunjko, V., Egger, D.J., Elmegreen, B.G., et al., 2023. Quan-

tum optimization: Potential, challenges, and the path forward. arXiv preprint

arXiv:2312.02279 .

Acemoglu, D., Carvalho, V.M., Ozdaglar, A., Tahbaz-Salehi, A., 2012. The net-

work origins of aggregate fluctuations. Econometrica 80, 1977–2016.

Afonso, G., Shin, H.S., 2011. Precautionary demand and liquidity in payment

systems. Journal of Money, Credit and Banking 43, 589–619.

41



Albash, T., Lidar, D.A., 2018. Adiabatic quantum computation. Reviews

of Modern Physics 90, 015002. URL: https://link.aps.org/doi/10.1103/

RevModPhys.90.015002, doi:10.1103/RevModPhys.90.015002.

Allen, F., Gale, D., 2000. Financial contagion. Journal of Political Economy 108,

1–33.

Alvarez, F., Lippi, F., 2009. Financial innovation and the transactions demand for

cash. Econometrica 77, 363–402.
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Bramoullé, Y., Galeotti, A., Rogers, B.W., 2016. The Oxford handbook of the

economics of networks. Oxford University Press.
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D’Erasmo, P., Erol, S., Ordoñez, G., 2022. Regulating clearing in networks. Avail-

able at SSRN 4273381 .

Eisenberg, L., Noe, T.H., 2001. Systemic risk in financial systems. Management

Science 47, 236–249.

Elliott, M., Golub, B., Jackson, M.O., 2014. Financial networks and contagion.

American Economic Review 104, 3115–53.

Elsinger, H., Lehar, A., Summer, M., 2013. Network models and systemic risk

assessment. Handbook on Systemic Risk 1, 287–305.
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Appendix A Proof of Proposition 1

For convenience, denote the expected privacy loss in both cases as

E+
p (fi − d) = E[p|p ≥ fi − d]

E+
p (fi − c) = E[p|p ≥ fi − c]

and F the cumulative distribution function of p, to get a more intuitive version of

the firm’s payoff:

ufi (δi, fi) = ni(E
+
p (fi − d)(1 − δi) + E+

p (fi − c)δi + E[b] − fi

+(fi − d)Fp(fi − d)(1 − δi) + (fi − c)Fp(fi − c)δi − c0δi)

Then the maximum utility is achieved whenever the first order conditions hold

−E+
p (f − d) + E+

p (f − c)

−(f − d)F (f − d) + (f − c)F (f − c) − c0

−1

2
(d− c)(F (f − d)(1 − δi) + F (f − c)δi − 1) = 0.

from which the statement of the theorem follows. Taking the second derivative

proves strict concavity of the firm’s preferences.
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Appendix B Proof of Proposition 2

If there is a candidate network with overadoption by firm i, δxi > δ∗i and δxi ni −
δ∗i ni > 1, firm i can remove one of the links (i, j) with Gij = 1 without the consent

of j, and increase its payoff, because

∂ui(δi)

∂δi
< 0 for δi ∈ (δ∗i , δ

x
i ).

That means that the only possibility is for equilibrium to be δini < δ∗i ni + 1.

Because δini is by definition a natural number, and δ̄i is selected to maximise

utility, the main result follows.

Appendix C Proof of Proposition 4

First-order stochastic dominance is defined according to the inequality:

Pr(δ(δ∗A) > x) ≤ Pr(δ(δ∗B) > x). (27)

To prove that this inequality holds, define the set of all equilibrium networks in

game A as (G1
A, ..., G

i
A, ...) and the equilibrium adoption rate vectors corresponding

to each network as (δ1A, ..., δ
i
A, ...). Likewise, the set of all equilibrium networks in

game B is defined as (G1
B, ..., G

j
B, ...) and the equilibrium adoption rate vectors are

(δ1B, ..., δ
i
B, ...). All sets are finite but can be of different cardinality.

Then the left-hand size of (27) can be written as

Pr(δ(δ∗A) > x) =
∑
i

I(δAi > x)Pr(δ(δ∗A) = δAi ) (28)

where I(·) is an indicator function.

The right-hand side can be defined in a similar way as a finite sum of proba-

bilities

Pr(δ(δ∗B) > x) =
∑
j

I(δBj > x)Pr(δ(δ∗B) = δBj ). (29)
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In the previous section, we showed that an improvement path leads from at

least one equilibrium network Gi
A in game A to each equilibrium network Gj

B in

game B. In this case, F (Gi
A, G

i
B) > 0. If there is no improvement path for any

two equilibrium networks Gi
A and Gi

B, by definition F (Gi
A, G

i
B) = 0.

Because
∑

i Pr(δ(δ
∗
A) = δAi ) = 1, we can further expand equation (29) using the

law of total probabilities. For this, assume that the process randomly converges

from an empty network to an equilibrium network GB
j in B according to the

convergence algorithm we developed, so only one improvement path is formed. On

this path, there is one and only one network GA
i from the set of equilibria of game

A. Because the probability of reaching network GA
i in this random convergence

algorithm for B is equivalent to the probability of reaching the same network in

the algorithm for A, we get∑
i

∑
j

I(δBj > x)Pr(δ(δ∗B) = δBj |δ(δ∗A) = δAi , F (GA
i , G

B
j ) > 0)Pr(δ(δ∗A) = δAi )

(30)

Comparing (28) and (29), it is clear that the sufficient condition for (27) is

I(δAi > x) ≤
∑
j

I(δBj > x)Pr(δ(δ∗B) = δBj |δ(δ∗A) = δAi , F (GA
i , G

B
j ) > 0). (31)

Indicator I(δAi > x) takes values 0 and 1. If I(δAi > x) = 0, inequality

(31) holds because on the right hand side is a sum of non-negative variables.

If I(δAi > x) = 1, by definition δAi > x. Also, probability Pr(δ(δ∗B) = δBj |δ(δ∗A) =

δAi , F (GA
i , G

B
j ) > 0) is positive only on the improvement paths. Because the adop-

tion rate increases on the improvement path from A equilibrium to B equilibrium

(as the convergence algorithm means sequential addition of links), there is a path

from GA
i to at least one equilibrium network in B, which means the second half of

inequality (31) equals 1. This proves that (31) holds, so (27) holds.
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Appendix D Resource estimation

Regarding computational requirements, the quantum algorithm in Section 8 re-

quires O(N2) qubits.38 In addition, it needs O(N2) classical calculations for cre-

ating sign matrices and the same level of effort for preparing the QUBO coefficient

matrix for a quantum machine. As shown in Figure 10, the number of qubits

needed varies with the number of players and links in the network, compared to

the capacity of the D-WAVE quantum annealer. Our analysis shows that a net-

work game with 40 mutually trading players, which translates to 780 links, can

be managed by a quantum machine. In sparser networks, like the one in Section

2 where each firm trades with only three others, the model only needs to han-

dle 3(N − 1)/2 links, making quantum simulations practical for networks with

more than 500 firms. In the future, we expect quantum applications to expand
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Figure 10: Left: Qubit scaling for the quantum sampling algorithm as a function

of the number of players in the complete network. Right: The number of qubits

on the best available D-Wave quantum annealer over time.

significantly. The rapid growth in qubit capacity, as illustrated in Figure 10, is

a common trend in quantum computing. However, currently the main limitation

in using a quantum annealer is due to the effectiveness of the quantum samplers

rather than the problem size, given the majority of output does not deliver a zero

Hamilton condition and only gets close to the actual solution. Continued progress

38In the optimised quantum algorithm in Section 6.2, the qubit count is capped at 2N2.
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in quantum technologies is expected to ameliorate this problem.
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