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MANAGEMENT PERSPECTIVE 

When a river changes from free-surface flow to ice-covered flow, most of 

the flow characteristics are changed, including the flow depth, velocity and shear 

stress distributions as well as the diffusivity distribution. While some of the 

existing analytical models of ice-covered flows can give reasonable descriptions of 

the velocity and shear stress distributions, the resulting profiles 
‘of. mass and 

momentum diffusivities are entirely erroneous and cannot be applied to mixing 

problems for ice-covered flows.
I 

In this report a turbulence model is used to calculate the flow structure for 

both free-surface and ice-covered conditions. It is shown that, in order to carry 

the same discharge, the flow depth will increase by about 10% to 30% when ice 

cover is present. The model also provides realistic predictions of the eddy 

diffusivity profiles-. The results indicate that the mixing capacity of a stream is 

reduced when it becomes ice-covered and that this reduction in mixing is most 
I 

pronounced if material is released into the flow at the top. 

This model can be used to predict the changes which occur when a river 

becomes ice-covered and can be an aid in planning and management. 

Y. L. Lau, Head
‘ 

Environmental Hydraulics Section 
Hydraulics Division 
September 1980



PERSPECTIVE - GESTION 

Lorsque l'écoulement d'une riviére passe d'u_n écoulement E1 surface 

libre 5 un écoulement recouvert de glace, la piupart des caractéristiques de 

l'écoulement sont modifiées, y compris la profondeur de l'écoulement, la vélocité 

et les répart,itio_ns de i'efiort de cisailiement. de meme que la distribution de la 

difiusivité. Bien que certains des modéles analytiques actuels des écoulement 

recouverts de glace puissent offrir d'assez bonnes descriptions de la vélocité et 

des répartitions de l'effor1t de cisaillement, les profils de diffusivité de la masse 

et de la quantité de mouvement qui en découlent sont entiérement erronés et ne 

peuvent étre appliqués aux problémes mélange pour les écoulements 

recouverts de glace. 

Dans le présent rapport, u_n modéle de turbulence est utilisé pour 

calculer la structure de l'écoulement ‘aia fois dans des conditions d'écoulement 2». 

libre surface et d'écouiement recouvert de glace. On montre que pour 

transporter ie méme débit, la profondeur de l'écoulement augmentera d'environ 

10 p. 100 5 30 p. 100, lorsque la couverture de glace est présente. Le mod‘ele 

fournit aussi des prévisions réalistes sur les profils de diffusion tourbillonnaire. 

Les résuitats indiquent que la capacité ‘de mélange d'un cours d'eau est réduite 

lorsqu'il est recouvert de glace et que cette réduction du mélange est plus 

pronouncée lorsque des matériaux sont déversés dans l'écoulement au sommet. 

Ce modéle peut etre utilisé pour prévoir les changements survenant 

iorsqu'une riviere est recouverte de glace et peut étre utile pour la planification 

et la gestion.‘ 

Y. L. Lau, Chef 
Section de l'hydraulique e_nviron,nemen_tale 
Division de l'hydVraulique 
Septembre 1980



KEYWORDS: channels (waterways), computation, dispersion ‘equivalent, free- 

surface flow, i_c_e-covered flow, jet—type discharge, numerical scheme, tu_rbule_nce 

model. 

ABSTRACT: The distributions of velocity, turbulent eddy and mass diffusivi-H 

ties were computed for three pairs of free-surface and ice—covered flows using 

the k-e turbulence model. The flow rate, the channel slope and the bottom 

roughnessvalues were kept the same for each pair and the flow depths were 

Computed. The resulting‘ flow depths for ice—covered flows were 15 to 30 percent 

higher‘ than the depths for the free-surface flows.
A 

The computed velocity and diffusivity distributions do not follow the 

conventional logarithmic and parabolic distributions for the whole depthlof flow. 

The velocity distribution deviates slightly from the logarithmic profile for the 

top 25 percent of the flow while the diffusivity distribution deviates from 

parabolic distribution through the top half of the flow. These results are in 

general agreement with recent. investigations on velocity distributions and the 

measurement of diffusivity distributions. 

Concentration distributions resulting from the introduction of a neutrally 

buoyant tracer were computed for all the flows and these distributions indicate 

reduced mixing rates in ice—covered flows compared to free-surface flows. 

However, the results from using a jet-type injection gave approximately the 

same concentrations for both cases indicating the effects of jet mixing outweigh 

the difference i_n_the diffusivity. 

iii



MQTS CLEAS: h_(_2henaux (voies -navigables), ,calcul, dispersion équivalente, 

écoulement ‘a surface l-ibre, écoulement recovert de glace, débit du type het, plan 

numérique, modéle de turbulence. 

SOMMAIRE: Les distributions de la vélocité, du tourbillon de turbulence et des 

diffusivités de masse ont été comparées dans le cas de trois paires d'écoulement 

a surface libre ou recouvert de glace en utilisant le modéle de turbulence K— . 

On a gardé pour chaque paire les valeurs du débit de l'écoulement, de la pente du 

chenal et de l'i_rrégularité du fond et on a calculé les profondeurs de 

l'écoulement. Les profondeurs des écoulements recouverts de glace étaient de 15 

a 30 p—. 100 supérieures 5 celles des écoulements 5 surface libre. 

La vélocité ainsi que les distributions de diffusivite calculées ne 

respectent pas les réparitions logarithmiques et paraboliques conventionnelles 

pour la profondeur globale de l'écoulement. La répartition de la vélocié est 

légerement differente du proiil logarithmiquel pour les 25 p. 100 supérieurs de 

lécoulement, alors que la répartition de la diffusivité s'écarte de la répartition 

parabolique dans la moitié supérieure de _l'écoulement. Ces résultats concordent 

en général avec les‘ récentes études sur la répartition de la vélocité et la mesure 

des répartitions de diffusivité. 

Les répartitions de concentration provenant de l-'-introduction d'un 

traceur neutre sur le plan de la flottaison _ont été calculées pour tous les 

écoulements et ces répartitions révélent des taux de mélange réduits dans les 

écoulements recouverts de glace comparés aux écoulements a surface libre. 

Cependant, les résultats dus 5 l'utilisation d'une injection du type jet ont donné 

environ les memes concentrations dans les deux cas, indiquant que les efiets du 

mélange par jet compensent la différence de diffusivite».

iv



EFFECT OF ICE COVER ON STREAM 
FLOWS AND VERTICAL MIXING 

By Y. L. Laul and B. G. Krishnappanz 

INTRODUCTION 

The presence of ‘ice cover in a stream alters the flow characteristics to a 

great extent. The normal flow depth increases due to the increased resistance 

resulting from_ an additional solid boundary and the average flow velocity 

decreases. In addition, both the velocity and shear stress distributions change. 

Therefore, one can expect differences in the momentum and mass transfer 

coefficients between the ice-covered stream flows and the open-water stream, 

flows.
4 

In analyzing the vertical mixing processes in channel flows, it is customary 

to assume that the mass transfer coefficient the vertical direction ('I‘ ) is 

directly proportional to the turbulent kinematic viscosity (vt) which can be 

evaluated from the shear stress distribution 1 (yr) and the velocity distribution u(y) 

using the Boussinesq hypothesis. With this assumption, 1;, can be calculated from . 

the following equation: 

- .t, _ 1- lo. 
Py W? — 

[ £7Ty ) . (1) 

whereo 
4) 

is a proportionality constant and p is the density of the fluid. 

ll-lead, Environmental Hydraul_ics Section, Hydraulics Research Division, National 
Water Research Institute, Canada Centre for Inland Waters, Burlington, Ontario, 
Canada, L7R ILA6. 

2Research Scientist, Environmental Hydraulics Section, Hydraulics "Research Divi_sion, 
National Water Research Institute, Canada Centre for Inland Waters, Burlington, 
Ontario, Canada, L7R 4A6. — 
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For a two-dimensional, fully developed turbulent flow in an open channel 

. ‘- 
. with free surface, for which linear shear stress and logarithmic velocity. 

distributions are often used, Eq. I gives a par_abolic distribution for FY with I‘ 

~~~ 

~~ 

~~~

~

Y 
Xweing maximum at mid-depth and zero at the stream bed and at the free surface. 

I» 

Iivided into two layers, separated by the line of maximum velocity, with linear 

_ 

‘tear stress and logarithmic velocity distributions within each layer (3, 4, l0, l2). 

owever, these distributions lead to parabolic distributions of vt and Ty in each 

yer with a value of zero at the location of maximum velocity as shown in Fig. 
This is obviously incorrect because it implies no momentum or mass transfer 

cross the plane of maximum velocity. To avoid this obvious deficiency, the 

istribution of Ty may be arbitrarily altered as by Shen and Harden (10) who
~ ytdopted the assumption that Ty is constant in the central portion of the flow, as 

5' 

:suggested by Ismail (1). The assumed profile is shown in Fig, 1. 

In addition to the arbitrary modification of the 1"), distribution, Shen and 

Harden had to assume that the depth remains constant when the flow acquires an 
ice cover. This is also not correct because, given the same discharge, the depth 
will increase with the presence of an ice cover. In this paper, an alternate 

L approach has been adopted to overcome the above difficulties. The "k-e" 

turbulence model, described in detail by Launder and Spalding (5), is used to 

calculate the depth, velocity distribution and vt_distribution for two flows with 
the same given discharge, bed slope and bottom roughness. One of these flows 
has a free surface at the top while. the other has an ice cover of a given 

roughness. These results are then used in the two-dimensional mass transport 
equation to simulate the concentration’ distributions due to sources placed at 

different heights in the flow. The results give some indications of the effects of 

I 
ice cover on the flow‘ and on the vertical mixing. 
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In analyzing the flow structure in an ice-covered stream, the flow is usually
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THEORETICAL CONSIDERATIONS 

In k-E model of turbulence, theiturbulence structure is considered to be 

governed by two characteristic parameters, namely, the kinetic energy of 

turbulent motion (k) and its rate of dissipation e. As a result, the turbulent ' 

kinematic viscosity vt can be expressed as: 

2. ~ 

_ k ‘ vt-cu— 
‘ 

(2) 

i_n v/hich cu is an empirical constant. 

Equation 2 permits the evaluation of the vt distribution from the 

distributions of k and E2. The distributions of k and e, in turn, are determined by 

solving the semi-empirical transport equations for k and 2.: along with the 

continuity and momentum equations for the flow field. 

GOVERNING EQUATIONS 

For a two-dimensional channel flow,gthe equations of continuity, momen- 

tum and the transport equations for k and e take the following forms: 

Bu av _ 
-8-)? + -W — O , 

2- 
.

- 

3u 3uv _ A! 

t
. 

-5-+ -37- = ayfi? W) + G—e (5) 

aue 3ve:_ a ‘’t as 5
2 

3x + ay 
- ‘—y)+ClT<- G-C2-Ekh (6) 

3u¢ 6v¢ _ 3 "t 3:» . 

ax * ay 
' 5‘y(5;-~Ty’)"‘4> i 

<7)



The. coordinate system chosen is shown in Fig. 2. x axis is measured along the 

channel bed and y axis is measured perpendicular to x axis in the vertical plane. 

u, v are the velocity components in x and y directions respectively. 5 is the slope 

of the channel bed. 0 ,o€,o¢, cl and c2 are empirical constants. G is the
I 

turbulent energy production due to mean motion given by: 

G: vt [(%)2+2(%‘§)2) (8) 

cp is a scalar quantity such as temperature in the case of heat transfer problem 

and concentration in the case of mass transfer. 5 
‘P 

is the volumetric source rate 

of cp. 

The empirical constants were determined by Launder and Spalding (5) who 

considered a variety of flows such as flows in pipes, channels, mixing layers, jets 

and wakes. The values arrived at by Launder and Spalding are: 

cu = 0.09 

ok = 1.00 

0 - = 1.30 E 
(9) 

cl = 1.43 

C2 = 1.92 

__ 1.00 for mass transfer 
o¢ -

{ 0.50 for heat transfer 

The governing equations listed above are derived with the a_ssuAmpt.ion that 

the flow is predominantly in one direction, namely,_ along x and the turbulent 

transport of u, k, e and q: is negligible in that direction», i.e., the terms 

containing the second order derivatives in x are n_ot_ included in the set of 

equations. This assumption helps to modify the type of the equations, i.e. it 

changes the equations from elliptic type to parobolic type. The parabolic type of 

equation is especially suitable for numerical schemes which solve the equations 
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EITHER FREE SURFACE OR ICE-COVER 

FIGURE 2. -CO‘ ORDINATE SYSTEM



for one station at a time and march forward along x. Such numerical schemes
T 

require less computer memory and are executed at a much faster rate. 

The fully developed distributions of velocity and turbulent ‘kinematic 

viscosity which are required for evaluating the effects of ice cover on the flow 

and mixing characteristics are obtained as asymptotic distributions resulting 

from the solution of the governing equations. The same results could have been 

obtained by solving a set of ordinary differential equations representing the fully 

developed flows. Indeed, for fully developed flows, the variation of flow 

properties along x vanishes and hence‘ the governing equations are simplified as: 

ag§(Vt§7U)--gS 

"t dk _ 
(U: —)7)—e-G (10) 

d "td 2
_ a§<—ay£>=c2—§— -c1§,c, 

The numerical schemes to solve such a system of ordinary differential equations 

might have been simpler in comparison to those required to solve the partial 

differential equations. However, the prediction of concentration distributions, 

still requires the solution of the partial differential equation, i.e. Eq. 7. 

In addition, this approach also enables the investigation, of jet type discharges. 

Therefore, _it was decided to solve the governing equations as expressed by Eqs. 3 

to 6 ratherithan the set given by Eq. 10. 

BOUNDARY conbmons 

Equations 2 to 7 form a closed set of equations with the values of empirical 

constants as given by Eq. 9 and hence can be solved simultaneously for u, v, k, e, 

-7-



Vt and «iv. Boundary conditions for the above parameters have to be specified: 

1) at the channel bed, i.e. at y'=0 for all x. 

2) at the upper boundary, i.e. at y=h for all x. 

3) at the initial cross section, i.e. at x=O for all y (initial profiles). 

Because of the parabolic nature of the governing equations, the bounudaryw 

conditions at the downstream end of the calculation domain need not be 

specified. The boundary conditions adopted for the ‘present calculations are 

similar to those used by Rastogi and Rodi'(7), except for the condition for 8 at 

_ 

the free surface. 

Boundary Conditions at Solid Boundaries. - For the boundary layer type 

of flows considered, the longitudinal velocity component near the channel bed, 

and near the ice cover obeys the universal law of the wall i.e., the velocity 

component u has to satisfy

U V)’ 
V* K ) (11) 

where v* is the shear velocity defined in terms of boundary shear stress Tb and 

the fluid density p as 

v* = /1' /p — (l2) 

K is the Von-Karman constant, equal to 0.42, v is the kinematic viscosity of the 

fluid, E is a roughness parameter which takes a value of 9.0 for hydraulically 
v*Ks
v smooth turbulent flows and (30.l/ ) for rough turbulent flows and yw is the 

distance from the solid boundary of a grid point nearest to the solid boundary.



The symbol, Ks, represents the size of the equivalent sand grain roughness for the 

solid boundary. 

' The vertical velocity component v at the solid boundaries is zero. 

The turbulent kinetic energy k and its dissipation rate 3 near solid 

boundaries are evaluated using the following assumptions: 

1) near the solid boundaries, the production of turbulent kinetic energy 

is equal to the rate of dissipation. 

i.e. G = €- 

2) t_he turbulent shear stress T near the solid boundary is constant and is 

equal to the boundary shear stress. 

i.e. T = Tb
V 

3) the velocity distribution in the vicinity of the solid boundary is given 

by Eq. 11). 

Under these conditions, the kinetic energy of turbulence and its dissipation 

rate near the solid boundaries can be evaluated as: 

vi 
k = —- w /‘c"u 

3 (13) 
Var 

ew = 
K yw 

For heat and/or mass transfer, the flux at the solid boundaries is assumed to be 

ZEFO. 

Boundary Conditions at the Free Surface. - Following’ the approach 

adopted by Rastogi and Rodi (8), the free surface is treated as a symmetry" plane 

for u, k and :1). Accordingly, the y gradients for u, k and cp become zero. For e , 

a condition similar to that at the solid boundary is used to account for the 

-9-



_reduction of the turbulent length scale in the vicinity of the f_ree surface. This 

condition is expressed as:
_ 

(kf /cu)3/2 
5 = ..———— (14) 
f K yf 

where kf. is the turbulent kinetic energy at the free surface calculated using the 

symmetry boundary condition and yf is the distance of the nearest grid point 

from the free surface. The vertical velocity component v at the free surface is 

zero. 

Initial Profiles. - At the starting cross-section i.e. at x=O, the distribu- 

tions of u, v, k, 3 and q) are not knownapriori, certain assumptions have to be 

made in specifying them. The distributions used in the present work are outlined 

below: 

1. Free surface flow case: The velocity component u follows logarith- 

mic distribution in the vicinity of the chan_nel bed; i.e. Eq. 11. In the remaining 

part of the flow region a uniform distribution is assumed. The assumed 

distribution has to satisfy the requirement that it yields the specified flow rate 

per unit width of the channel. The distributions for k and e are assumed to be 

uniform over the whole height of the ‘flow field with values kw and aw evaluated 
from Eq. 13. The vertical velocity component v is assumed to be zero 

everywhere. The profile for :9 is assumed to be uniform over the outfall 

thickness. 

2. Ice-covered flow case: The velocity component u follows logarithmic 

distribution both near the channel bed and near the ice cover. In the central 

region of theuflow, u is assurnedpto be uniform. Here again, the assumed 

distribution has to yield the specified flow rate per unit width of channel. Linear 

profiles for k and e are used with the values kw and aw evaluated both at 
channel bed" and at ice cover using Eq. 13. The vertical velocity component v is 

zero everywhere and uniform profile for :1: is used over the outfall thickness. 

-10-



NUMERICAL SCHEME 

For the present work, the numerical scheme proposed by Patankar and 

Spalding (6) is adopted. For the sake of completeness, some of the salient 

features of the numerical scheme are presented in this paper. The forms of Eqs. 

Li, 5, 6 and 7 are such that one single numerical scheme can be used to solve all 

the equations. Indeed, Eqs. 4, 5 and 6 can be expressed in the form of Eq. 7. As 

an example, Eq. 4 is identical to Eq. 7 when u is equated to <1) and g5 to sq). 

Therefore, in presenting the details of the numerical scheme here, only Eq.- 7 is 

considered. 

In the scheme proposed by Patankar and Spalding the finite difference 

equations of the differential Eq. 7 are arrived at by integrating the differential 

equation term by term over small control volumes. Certain assumptions need to 

be made regarding the variation of 4: along x and y directions. Referring to Fig. 

3a, I is the upstream grid line where the solution for (p is known and 1+1 is the 

downstream grid line located at a distance Ax from the upstream grid line 

where the values of cp are to be determined. J-l, J and 3+1 are the grid points in 

the y direction. 3+1/2 and 3-1/2 are the mid points between 3 and 3+1 and J and 

3-1 respectively. The control volume over which the equation is integrated is 

shown by hash lines. "The variation of <1> in the y direction is a_ssumed to be linear 

between grid points as shown in Fig. 3b. _The variation of cp along x is assumed to 

be stepwise, being uniform and equal to the value corresponding to the 

downstream grid. _The step change occurs right at the upstream grid line. Such 

an assumption of ti: along x gives rise to implicit form of finite difference 

equations. 

When each term of the differential Eq. 7 is integrated over the control 

volume shown in Fig. 3a and substituted back in the equation the following 

relation is obtained: 
- 11 -



-21-" 

.]'+1
I 

<l>j+1 \ 

J‘-I-' II ’ : 

‘v 

‘—'

: 

‘LX333; 

I"" 

5 
—'I 

.9‘ 

|\)h|:?—-I

1 

2
1 .-I 

1

. 

J’-1 I.
_ 

951-1 

I I+1 

FIGURE 3a.CONTROL VOLUME FIGURE 3b. ASSUMED PROFILE FOR 
915 IN y DIRECTION BETWEEN 
GRID POINT



3 
' 

» _
’ 
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{EP3(3¢’1AY“ ¢l,J+1_2X+ “’1,J—1‘fx)*2:"1} (15) 

- U1 3 where P3 = -3-3)-(- 

_ 1 
“J ' L7 (LJ-1/2 ‘L3+1/2) 

L341/2 ‘ V3-1/2 

"n+1/2 ‘ VJ+1/2 

T _ 
2'”:/°q;)J+1/2 

3+1/2 — 
Ay 

T _ 2(Vt/°¢)1‘-1/2 
J-1/2 " Ay 

s and s 
I 

result from the integration of the source term 5 over the control
¢ 

volume and their values depend on the entity which cb represents-. In Eq. 15, all 

the terms except the ones with S1 and cpl represent the values at the downstream 

grid line 1+1. (The subscript (I+l) is omitted for ease of writing. When Eq. l5_is 

written out for all values of J, a series of finite difference equation, results which 

can be expressed as a tri—diagonal matrix equation. There are several standard 

methods to solve such a system of algebraic equations. In the present 

calculations a simple successive-substitution formulae proposed by Patanrkar and 

-Spalding were used. 
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APPLICATION OF THE NUMERICAL SCHEME 

In order to evaluate the effects of ice cover on the flow properties and "the 

vertical mixing characteristics in channel f-lows, it is necessary to solve the 

governing equations for both free surface case and the ice cover case. For’ these 

two flows to be equivalent, it is assumed that both channels carry the same flow 

rate, have the same bottom slope and the same bottom roughness elements. The 

flow depths, of course, will be different. The flow depth in the ice-covered flow 

will be la_rger than that of the free surface flow because of the increased 

resistance due to the ice cover. Since the flow depths are not known a priori, a 

trial anderror method is required. The procedure adopted in the present work is 

illustrated step by step in the following. 

‘ 

CALCULATIONS FOR FREE-SURFACE FLOW 

_S_'c§_p_l The values of flow rate per unit width q and the channel bed 

roughness K5 are assumed to be specified. A value for the flow depth ho is 

selected. (Subscript o is used to denote free-surface flow properties and i is used 

for ice-covered flow properties.)
i 

3:333 Using this flow depth, a numerical grid is laid in the x-y plane as 

shown in Fig. l+a.
‘ 

S_'ce_p_3 An initial velocity profile uo(y) at the starting grid line ( at x=O) is 

assumed as outlined earlier. This profile has to satisfy the condition:

h0 
I U°(y)d>"'= q
0 

-14-
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FIGURE 4a. NUMERICAL GRID FOR FREE SURFACE FLOW -- 

COMPUTATIONS



§t_e‘LtL From the inital profile for uo, the shear velocity v*- is evaluated using 

Eq. 11. 

S_tep2 Knowing v*, the boundary values for k and e are evaluated using liq. 

13 and uniform distributions for k and e are assumed along the first grid line (at 

X =0). 

_St_ep§ Knowing k and e distributions, the distribution for turbulent kine- 

matic viscosity vt is obtained using Eq. 2. 

S_t_ep_Z Knowing Vt and initial profile for u, the momentum equation is solved 
using the numerical scheme and the velocity profile at the downstream station at 

x:Ax is obtained. The value of slope S appearing in the equation is evaluated as 

follows: 

‘’-x- 
V 

(

. 

S = — ‘ ' 16 o gho -

) 

Step 8 Knowing uo at x=O and uo at x=Ax, the continuity _Eq. 3 is solved to 

obtain the vertical velocity component vo. 
Step 9 From the velocity profile at x=Ax, shear velocity v* is computed for 
the grid line at x=Ax and the boundary values for k and e at x: Ax are evaluated. 
Step 10 The equations for k and 5 are then solved to obtain k and 5 profiles 

along the grid line at x=Ax. 

Step 11 Knowing k and e profiles, the vt distribution at x: Ax is computed. 
S'tep_12 The steps 7 to 11 are then repeated several times until a certain 

downstream distance x =X° is- reached where the profiles of u and v no longer 
1: 

change from grid line to grid line, i.e. where the profiles become fully developed. 
At this point, the vertical velocity component is zero and the value of slope So 
computed using Eq. 16 becomes invariant with respect to x. Therefore, for the 

specified flow rate per unit width q and the bed roughness K5, the free surface 

-15-



flow with bed slope So will flow at a uniform depth. of ha. This completes the 

calculations for open water flow. 

CALCULATIONS 1=oR ICE-COVERED 1'-'Lov) 

§t_ep_l The values of flow -rate per unit width of channel and the channel. bed 

roughness for "the flow under ice cover are the same as for the fre_e surface flow 

calculated above. 

The roughness of the ice-cover surface has to be specified. Let it be Ks . 

- t 
The bed roughness for the ice-covered channel is denoted by K5 and its value is

b 
equal to Ks. A value for the flow depth hi is selected. 
Step 2 Using the flow depth hi, a numerical grid is laid in the x-y plane as 

shown in Fig. 4b. 

Step 3 An initial velocity profile’ ui(y) at the starting grid line (at‘x=O) is 

assumed as outlined earlier. The initial velocity profile has to satisfy the 

condition: 

h.
1 

I ui(y) dy 3 q
0 

Step 4 From the initial profile ui(y), the shear velocities at the channel bed 

and at the ice cover, v*b and v*t, were calculated using Eq. 11. 

Step 5: Knowing v*b and v*t, the boundary values for k and e a_re evaluated - 

using Eq. 13 and linear distributions for k and e are assumed along the first grid 

line (at x=0). 

Step6 Knowing k and 5 distributions, the distribution for vt is obtained 

. using Eq. 2. 
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Step 7 Knowing vt and initial profile ui, the momentum equation is solved 

using the numerical scheme and the velocity profile at the downstream station at, 

x: Ax is obtained. The value of the slope S appearing in the equation is evaluated 

358 

v,2e'b+v,2,t ~ 

5. =( ) ._——— (17) 
1 ghi 

Step 8 ‘Knowing ui at x=O and ui at x: Ax, the continuity Eq._ 3 is solved to . 

obtain the vertical velocity component vi. 

Step 9 From the velocity profile at x=Ax, shear velocities v*b and v*t are 
computed for the grid line at x=Ax and the boundary values for k and 5 at x=Ax 

are evaluated. 

Step 10 The equations for k and e are then solved to obtain k and 6 profiles 

along the grid line at 'x=Ax.
. 

Step 11 Knowing k and E profiles, Vt profile at x=Ax is computed. 
Step 12 Steps 7 to 11 are repeated several times until a certain downstream 

distance x=Xi is reached where theprofiles of u and v no longer change from 
1'. 

grid line to grid line, i.e. where the profiles become fully’ developed. At this 

stage, the vertical velocity component V1 is zero and the shear velocities v.*b and 

v*t become invariant with respect to x. Consequently, the slope Si computed 

using Eq. 17 is also invariant with respect to ‘x, For the specified flow r-ate q, 

and ice-cover roughness ks , the ice-covered flow becomes 
b t 

uniform with depthhi for the slope Si. Now, if this slope Si is not the same as 

bed roughness ks 

the slope So of the uniform free surface flow, previously computed, then a 

different value for hi is selected and the calculations in steps from 2 to 12 are 

repeated until Si coincides with SO. The flow depth hi corresponding to this slope 

then yields an equivalent ice-covered flow to the free-surface flow. 
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RESULTS AND DISCUSSIONS’ 

Using the procedure outlined in the last section, fully developed profiles of 

u and vt were obtained for three different flow conditions in both free-surface 

and ice-covered channels. The hydraulic parameters for the three flow" 

conditions are shown schematically in Fig. 5 and are also listed in Table 1. In the 

first flow condition,‘ denoted as run no. 1, value for Ks for both channels was 

taken as 3 mm. The flow rate per unit width was taken as 2230 cmz/sec for both 

channels. The ice cover was considered to act as an hydraulically smooth 

surface. 

In run no. 2, the bed roughness was increased to 5 mm and the ice-cover 
roughness was kept the same as in run no. 1. In run no 3, the bed roughness was 

kept the same as run no. 2 and the ice-cover roughness was increased to 5 mm. 
The resulting flow depths, shear velocities and slopes are listed in Table 1 and. 

are also shown in Fig. 5. As expected, the ice-covered flows required larger flow 

depths to transport the same flow rate with same bed slope. The increase in flow 

depth varied from 15 percent to 31 percent. Calculations have also been made 
for a much deeper flow which resembles closer toanatural flow. In that case, the 

depth increased from 2.7 m to 3.0 m when an ice cover was present, an increase 
of 11.1 percent. ‘The shear velocities at the bed of ice-covered’: flows were 

smaller than those for the free-surface flows. The latter result indicates that if 

the bed of the stream is movable, then the sediment transporting capacity would 

be diminished by the presence of ice cover. Furthermore, the bed forms 

resulting from the movement of sediment would also be different from the free- 
surface flows, which in turn could alter the roughness characteristics. There- 

fore, the presence of ice cover can produce significant changes to the hydraulic 

characteristics of natural stream flows. However, it should be noted that if the 
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TABLE 1. - Hydraulic Parameters for the Simulated Runs 

01 
Run No. ’ Run No. 1 Run No. 2 Run No. 3 

Open Ice- Open Ice- Open Ice 
Flow Properties Water‘ Covered Water Covered Water Covered 

Flow Flow Flow Flow Flow Flow 

(1) (2) (3) (4) (5) (6) (7) 

Flow rate per unit 
. . 2 2230 2230 2225 2226 222!) 2222 

width in cm /s 

Bed roughness 
k in mm. 3 3 5 5 5 5 
S .

b 

Ice—cover roughness hydraulically hydraulically‘ 
ks in mm. N/A smooth ice N/A smooth ice N/A 5 

t 
_ 

cover cover 

ear velocity at 
'

, De bed V* Cm/S 5.25 4.57 5.61 11.92 6.51 5.29
b 

Shear velocity at 
ice cover V, cm/s N/A 3.36 N/A 3.41 N/A 5.29 

‘t 

Slope of Channel 0.0011 0.0011 0.00.12 0.0012 0.0019 0.0019 

Flow depth in Cm 25.75 30.0 
I 

26.0 30.0 22.8 30.0 
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ice-covered flow is divided into an upper and a lower layer, the Darcy friction 

factor associated with the lower layer is actually larger than i_n the free surface’ 

flow, even though the bed shear stress has decreased. This is because the mean 

velocity in the lower layer has decreased by a proportionately larger amount. 

Profiles of u for the three runs are shown in Fig. 6. Solid lines represent’ 

the ice-covered flows and the dotted lines denote the free-surface flows. In all 

three runs,‘ the ice-covered flow velocities are lower than those of the free- 

surface flows. u profiles in ice-covered flows resemble "the ones measured by 

Larsen (3, 1+) with close to zero gradients over substantial portions of the central 

region. Such profiles mean that the division of the flow into two layers, as has 

been done by previous investigators, can be very subjective. The u profiles in 

ice-covered flows are reasonably sensitive to the roughness characteristics of 

both bed surface and ice-cover surface. When the bed_roughness increases in 

comparison to the ice-cover roughness, the position of maximum velocity moves 
closer to the smoother surface. The profile becomes symmetrical when the 

roughness values of bed surface "and ice-cover surface are made equal as in run 
no. 3. 

Free-surface u profiles were replotted in Fig. 7 on semi-log axes to check 

the validity of the logarithmic distribution for u. The profiles are close to being 

linear for about 75 percent of the flow depth for all three runs, but deviate from 

linearity, i.e. logarithmic distribution, for the remaining 25 percent near the free 

surface. This result is in agreement with a recent study by Song and Yang (11) 
who put forward the hypothesis that the flow in a wide open channel consisted of 
three different ‘regions-, namely, the laminar sublayer region, very close to the 

channel bed; an inner turbulent region in the middle and an outer turbulent region 

near the free surface. Based on the experimental work of Vanoni (13) and Sayre 

(8), Song and Yang argued that the logarithmic velocity distribution was 

applicable only to the inner turbulent "region. For the outer turbulent region, 

they proposed a parabolic distribution. 
- — 22 -
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A parabolic velocity distribution in conjunction with a linear distribution 

for shear stress would give rise to a constant turbulent kinematic viscosity when 

the Boussinesq hypothesis is invoked, whereas a logarithmic velocity distribution
I 

gives rise to a parabolic distribution for v as shown earlier. Some experimentst 

carried out to measure the turbulent kinematic viscosity (Jobson (2)) do suggest 

that the Vt distribution deviates from the parabolic distribution, especially near 

the free surface which supports the suggestion that the velocity distribution near 

the free surface indeed is not logarithmic. If it is not logarithmic, then should it 

be parabolic as Song and Yang suggest The answer to this question is not quite 
clear. Indeed, the Vt distributions which are calculated from the k and 

distributions using Eq. 2 (shown in Figs. 8a, 8b and 8c) resemble the distribution 

measured by Jobson and deviate from the parabolic distributions in the upper 

pa_rt of the flow. However, the distributions do not become constant as required 
for the parabolic velocity distribution. 

The Vt distributions for the ice—covered flows shown in Figs. 8a, 8b and 8c 

do not suffer from the drawback of having a zero va_lue inside the flow, as in the 

case when logarithmic‘ velocity and linear shear are assumed for a top’ and a 

bottom layer. In fact, Fig. 8c shows that ‘for the case of identical top and 

bottom roughness V is a maximum at mid-depth. t
. 

A comparison between vt values for ice—covered flows and free-surface 

flows indicates that the values for ice-covered flows are smaller than those for 

the free-surface flows in all three runs. The difference increases as one moves 
away from the bed. The distributions of vt for the ice-covered flows are 

affected by the relative roughness of the boundaries. For example, in runs no. 1 

and 2, the vt distributions are skewed towards the rougher lower boundary 
whereas in run no. 3 for which the roughness values are equal for both boundaries

I 

the distribution becomes symmetrical. In the work ‘of Shen and Harden (10) it 
was assumed that in the central regions of flow the values of vt were constant. 
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The present calculations show that this is approximatley true only when the 

rough_ness values are same for channel bed and ice-cover surface. In cases where
H 

the roughness values are different, Vt values are nowhere near constant even in 

the central regions. 

SHEAR STRESS DISTRIBUTIONS 

Using the calculated profiles of u and vt, the shear stress distributions r(y). 

were calculated as: 

Bu 
T(y) = ov (—) . (18) 

The derivative (3u/ By) was evaluated using a central difference approximation 

as: 

au'_ “J+1 ' “J-1 

The resulting shear-stress distributions were plotted in Fig. 9 for all the runs. 

From Fig. 9 it can be seen that the shear-stress distribution is very close to 

linear for all the runs. Very close to the solid boundaries, the distributions seem 

to deviatefrom the linear profile; this could be due to the approximation 

involved in calculating the derivative of u as in Eq. 19. 

DISTRIBUTION OF A NEUTRALLY BUOYANT TRACER 

After calculating the fully developed distributions of u and vt, calculations 

were performed to obtain concentration distributions of a neutrally buoyant 
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tracer as functions of distance from the injection point by solving Eq. 7 with 

o¢=l. The introduction of the tracer was made in the fully developed region of 
the flows: i.e. at x > X0 and Xi, The sources were of finite width (5 cm) and of 

uniform concentrations. Three different vertical positions for injections were 

considered. They were: 1) surface injection, 2) middle injection and 3)bottom 

injection. The injections were either neut_ral, where the velocity of the tracer 

was the same as the ambient flow velocities at the location of the injection, or 

jet type where the velocity of the tracer was twice that of the ambient flow 

velocity. Neutral injections were considered for all three runs whereas the jet- 

type injection was considered only for run no. 1. 

Figs. 10, 11 and 12 depict the concentration distributions resulting from 

three different source positions for run no. 1 for neutral injection. The 

distributions for run no. 2 and ru_n no. 3 are not shown in this paper to conserve 

space and because those results were similar to the ones shown in Figs. 10 to 12. 

In these figures the concentration values are. normalized with respect to the 

concentration at the injection point. The depth axis is not normalized and the 

actual values are plotted to emphasize the fact that the equivalent depths are 

different for ice-covered flows and free—surface flows. The centre line of the 

middle injection was at a depth of ll cms in both types of flows. 
It can be seen from these figures that the reduction in the maximum 

concentration values is more rapid in the freeifsurface flows than in the ice- 

covered flows, indicating that the presence of an ice cover tends to reduce the 

mixing rate. The difference in the mixing rate is the largest when the injection 
was at the surface‘. position of injection was moved 
the channel bed, the difference in the mixing rate diminishes. 

Figs. 13 and 114 show the velocity and concentration distributions for the 

jet-type injection. Only the middle injection was considered. As can be seen in 
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Fig. 13, the velocity distribution changes along the length of the channel from 

the injection location and" it becomes invariant with x at about 300 cms from the 

injection point. The concentration distributions shown in Fig. 11; indicate that 
in 

the mixing is much faster in the jet-type discharge than in the neutral discharge 

and the difference between the mixing rates between the open—water flow and 

the ice-covered flow was not significant for this case. 

SUMMARY AND CONCLUSIONS 

In this paper, a procedure has been outlined to calculate the fully developed 

two-dimensional flows in channels with and without ice covers using the k-E 

turbulence model proposed by Launder and Spalding (5) and a numerical scheme 

proposed by Patankar and Spaldi_ng (6). Three different fully developed flows 

were calculated using the procedure for open-water and ice-covered flows. In 

each case, the flow rate, the channel slope and the roughness of the channel 

bottom were made to be the same for both open-water flow and ice-covered 

flow, thereby producing a pair of "equivalent flows". The channel-bed roughness 

and the ice-cover roughness values were changed from run to run. 

The computed velocity and diffusivity distributions xdobnot follow the 

conventional logarithmic and parabolic distributions for the whole depth of flow. 

The u distribution deviates slightly from the logarithmic profile for the top 25 

percent of the flow, while the v “distribution deviates fromthet 

parabolic distribution through the top hal-f of the flow. These results tend to 

agree with the results from recent investigations of velocity distribution (15) and 

measurements of the diffusivity distribution (2), thus giving confidence to the 

calculations from the k-2: model.



In all cases, the equivalent ice-covered flows have larger flow depths 

and smaller bed shears than the free-surface flows. The resulting diffusivities
_ 

are smaller than the free-surface flow values. However, the diffusivity does not 

go to zero and the arbitra_ry modification of the diffusivity profile which other 

flow models employ is not required in this model. 

Concentration distributions resulting from the introduction of a neutrally 

buoyant tracer were computed for all the runs and these distributions indicate 

reduced mixing rates in ice-covered flows compared to the open-water flows. 

The difference in mixing rates was larger when the location of injection of the 

tracer was closer to the upper boundary. However, the results from using a jet- 

type injection gave approximately the same concentrations for the ice-covered 

and free-surface flows, which indicate that the effects of jet mixing outweigh 

the difference in the diffusivity. 
5. 
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APPENDIX 11 - NOTATION 

The following symbols are used in this paper: 

c 1, C2, c u 
= empirical constants; 

E = roughness parameter; 

g = acceleration due to gravity; 

G = rate of production of turbulent energy; 

h = flow depth; 

1 = subscript denoting ice-covered flow; 

I = grid location in the longitudinal direction; 

J = grid location in the vertical direction; 

Ks = equivalent sand grain roughness; 

k = kinetic energy of turbulent motion; . o = subscript denoting free surface flow; 
I 

q = per unit width; 

5 = slope of channel bed; ‘ 

s = source term; 
{ 

u = velocity component in the longitudinal direction; 

v = velocity component in the vertical direction; 

v* = shear velocity; 

w = subscript denoting values close to wall regions; 

= longitudinal distance vvhere the flow attains fully developed 

state; 

3: = cartesian co-ordinate in the longitudinal direction; 

y = cartesian co-ordinate in the vertical direction; w I‘ 
. 

= mass transfer coefficient in the y direction;



Ax distance between grid points in the x direction; 

distance between grid points in the y direction; 

rate of dissipation of turbulent energy; 

Von-Karmon constant; 

turbulent eddy viscosity; 

kinematic viscosity of fluid; 

fluid density; 

empirical constants; 

shear stres_s; 

scalar quantity.



CIVIL ENGINEERING ABSTRACT: The flow and mixing characteristics of 

free-surface and ice-covered flows were computed usi_ng the k-e turbulence
I 

model. The results deviate from the conventional distributions; but are in 

general agreement with measurements reported in the literature.
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