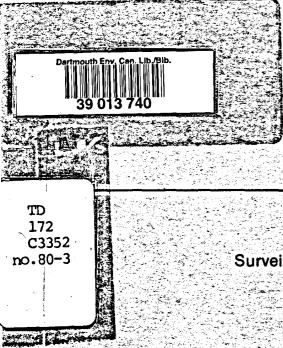
80-EC- EPS - AR - SR3

Environment Canada


Environnement Canada

Environmental Protection Service Service de la Protection de l'environnement

Atlantic Regional Library JUL -3 1981 Environment Canada

CADMIUM IN THE

ATLANTIC PROVINCES

Surveillance Report EPS-5-AR-80-3

Atlantic Region

ENVIRONMENTAL PROTECTION SERVICE REPORT SERIES

Surveillance reports present the results of monitoring programs carried out by the Environmental Protection Service. These reports will usually be published on a regular basis.

Other categories in the EPS series include such groups as Regulations, Codes and Protocols; Policy and Planning; Economic and Technical Appraisal; Technology Development; Briefs and Submissions to Public Inquiries and Environmental Impact and Assessment.

Inquiries pertaining to Environmental Protection Service Reports should be directed to the Environmental Protection Service, Department of Environment, Halifax, Nova Scotia. B3J 1M5.

CADMIUM IN THE ATLANTIC PROVINCES

ses,

5

2

.

ł

1

!

. .

·

١...

1

1

÷.,

- Meuntreit

by

D. J. Baker and R.A.F. Natheson

.

100

Environmental Protection Service Atlantic Region Halifax, Nova Scotia Canada

November, 1980

EPS-5-AR-80-3

ACKNOWLEDGEMENTS

Most of the data in this report were obtained through the cooperation of provincial and federal government departments and services. The authors wish to thank the following individuals and their affiliated agencies:

P. Belliveau, Inland Waters Directorate, Moncton
M. Bewers, Atlantic Oceanographic Laboratory, Dartmouth
J. Choates, Environment New Brunswick, Fredericton
J.K. Day, Environmental Protection Service, Halifax
J. Hayden, Environment New Brunswick, Fredericton
D. Loring, Marine Ecology Laboratory, Dartmouth
K. MacLean, Nova Scotia Agricultural College, Truro
M. MacPhee, Nova Scotia Department of Health, Halifax
D. Murray, Nova Scotia Department of Mines and Energy, Halifax
S. Ray, Fisheries and Environmental Sciences, St. Andrews
K. Tay, Environmental Protection Service, Halifax
J. Uthe, Fisheries and Environmental Sciences, Halifax
P. Yates, Atlantic Oceanographic Laboratory, Dartmouth

Thanks are extended to M.D. Street of Brunswick Mining and Smelting Corporation Limited for allowing our use of Company data reported in the 1978 Ecological Survey.

Drs. C. Duerden, D. MacGregor, V. Zitko and J. Uthe are thanked for their helpful review of this manuscript.

Thanks to Gisele Jacob for preparing the resume.

Special thanks are due Joan Keating for her patient typing of this report.

ł.

- i -

ABSTRACT

Information on cadmium in the Atlantic Provinces is summarized in this report. Available data on levels in water, sediment, soil, biota, air and industrial effluents are included and, when the documented evidence warrants, potential sources and environmental effects are indicated. The data used originated primarily from federal and provincial government files and publications. Overall the regional data base is fairly extensive, although there are some areas in which additional information is urgently required.

RÉSUMÉ

L'information disponsible sur le cadmium dans les provinces de l'Atlantique est résumée dams le présent rapport. Les données en réserve sur le niveau de cadmium présent dans l'eau, les sédiments, le sol, le milieu biotique et les effluents industriels y sont également inclues. Les sources possibles de cadmium ainsi que ses effets sur l'environnement sont aussi indiqués lorsque justifiés par les faits. Les présentes données proviennent principalement de dossiers et de publications fédérales et provinciales. En général, la banque de données régionales est relativement abondante, bien qu'il soit urgent d'obtenir des renseignements additionnels dans certains secteurs.

TABLE OF CONTENTS

ð

ł

I

i I

8

.

		PAGE
ACKNOWLEI	DGEMENTS	i
ABSTRACT		ii
RESUME		111
TABLE OF	CONTENTS	iv
LIST OF	TABLES	vi
LIST OF	FIGURES	xiii
1	INTRODUCTION	1
2	CADMIUM IN THE ENVIRONMENT	2
2.1	Natural Distribution	2
2.2	Industrial Sources and Uses	2
2.3	Cadmium in Air	4
2.4	Cadmium in Aquatic Ecosystems	5
2.4.1	Cadmium in Aquatic Animals	7
2.4.2	Cadmium in Aquatic Plants	9
2.5	Cadmium in Terrestrial Ecosystems	10
2.5.1	Cadmium in Terrestrial Plants	12
2.5.2	Cadmium in Terrestrial Animals	14
2.6	Cadmium in Man	16
2.7	Standards and Guidelines for the	
	Control of Cadmium in the	
	Environment	21
2.7.1	Water Quality	21
2.7.1.1	Fresh Water Quality	21
2.7.1.2	Marine Water Quality	21
2.7.1.3	Drinking Water Quality	23

.

TABLE OF CONTENTS (Cont'd)

۶

.

		PAGE
2.7.2	Air Quality	23
2.7.3	Soil Quality	23
2.7.4	Miscellaneous Guidelines	24
2.7.4.1	Food Quality	24
2.7.4.2	Household Products	24
3	ATLANTIC REGION CADMIUM DATA	24
3.1	Cadmium in Industrial Discharges	24
3.1.1	Potential Major Sources of	
	Cadmium Discharge	24
3.1.1.1	Surrette Battery Company Limited -	
	Springhill, N.S.	24
3.1.1.2	Brunswick Mining and Smelting	
	Corporation Limited, Smelting	
	Division, Belledune, N.B.	37
3.1.2	Industrial Effluent Data	51
3.2	Cadmium in Water	62
3.2.1	Water Quality Data	62
3.2.2	Drinking Water	86
3.2.3	Coastal Water	89
3.3	Cadmium in Sediment	90
3.3.1	Harbour and Channel Sediments	90
3.3.2	Stream Sediments	107
3.3.3	Estuarine Sediments	118
3.3.4	Coastal Sediments	118
3.4	Cadmium in Soils	123
3.5	Cadmium in Aquatic Biota	125
3.5.1	Cadmium in Aquatic Vegetation	125
3.5.2	Cadmium in Aquatic Animals	129
3.6	Cadmium in Air	134
4	SUMMARY	142
5	REFERENCES	145

)

1

۶

i.

τ.,

LIST OF TABLES

TABLE		PAGE
1	QUANTITATIVE ESTIMATES OF SOME CADMIUM AIRBORNE EMISSIONS IN CANADA	6
2	EFFECTS OF CADMIUM ON AQUATIC PLANTS	11
3	EFFECTS OF CADMIUM ON LAND PLANTS	13
4	CADMIUM CONTENT OF CANADIAN FOODS	17
5	CADMIUM CONTENT OF CANADIAN FISH	18
6	CADMIUM INTAKE FROM CANADIAN TOTAL Diet 1969–1971	19
7	GUIDELINES FOR SURFACE WATER QUALITY For various purposes	22
8	SUMMARY OF THE 24-H CADMIUM CONCENTRATIONS (µg/m ³) IN THE AIR SURROUNDING THE SURRETTE BATTERY COMPANY PLANT	27
9	CADMIUM CONCENTRATION IN SOIL AND VEGETATION, SURRETTE BATTERY COMPANY PLANT	28
10	CADMIUM CONCENTRATIONS IN AMBIENT AIR IN THE IMMEDIATE VICINITY OF THE SURRETTE BATTERY COMPANY PLANT	30
11	CADMIUM CONCENTRATIONS IN SOIL AND VEGETATION IN THE VICINITY OF THE SURRETTE BATTERY COMPANY PLANT	31

PAGE TABLE 12A CADMIUM CONCENTRATIONS IN SOIL, GRASS, WASHED GRASS AND WASH WATER IN THE VICINITY OF THE SURRETTE BATTERY COMPANY PLANT IN 1975 33 12B CADMIUM CONCENTRATIONS IN SOIL, GRASS, WASHED GRASS AND WASH WATER IN THE VICINITY OF THE SURRETTE BATTERY COMPANY PLANT IN 1977 34 13 CADMIUM CONCENTRATIONS OF MOSS BAG SAMPLERS, SURRETTE BATTERY COMPANY PLANT 35 CADMIUM CONCENTRATION IN LIQUID WASTE 14 STREAM. SURRETTE BATTERY COMPANY PLANT, 1975 36 15 FINAL EFFLUENT DATA FROM SURRETTE 36 BATTERY COMPANY PLANT 16 CADMIUM CONTENT IN FINAL EFFLUENT, 39 BRUNSWICK MINING AND SMELTING CADMIUM CONTENT IN 1979 SPRING RUNOFF 17 41 WATER, BRUNSWICK MINING AND SMELTING 18 CADMIUM LEVELS IN NATIVE BLUE MUSSELS, Mytilus edulis, AND SURROUNDING SEDIMENT AND WATER SAMPLED ALONG THE NORTH-EASTERN COAST OF NEW BRUNSWICK, JULY-AUGUST, 1979

44

- viii -

LIST OF TABLES (Cont'd)

TABLE

۰.

ł.

i

1

PAGE

19	RANGES AND MEANS OF CADMIUM LEVELS	
	(PPM WET WEIGHT) IN WINTER FLOUNDER,	
	Pseudopleuronectes americanus, COLLECTED	
	IN BELLEDUNE HARBOUR, LAGOON AND AT A	
	DISTANT SITE, 1974-1979	47
20	RANGES AND MEANS OF CADMIUM LEVELS	
•	(PPM WET WEIGHT) IN AMERICAN LOBSTERS,	
	Homarus americanus, COLLECTED IN	
	BELLEDUNE HARBOUR, LAGOON AND AT A	
	DISTANT SITE, 1974-1979	48
21	CADMIUM LEVELS (PPM DRY WEIGHT) IN	
	SEDIMENTS COLLECTED IN BELLEDUNE	
	HARBOUR DURING BEAK CONSULTANTS	
	BENTHIC SURVEY	49
22	CADMIUM CONTENT IN FINAL EFFLUENTS	
	OF NOVA SCOTIA INDUSTRIES	52
23	CADMIUM CONTENT IN FINAL EFFLUENTS	
	OF NEW BRUNSWICK INDUSTRIES	55
24	CADMIUM CONTENT IN THE DRAINAGE WATERS	
	OF NOVA SCOTIA COAL MINING AND	
	BENEFICIATION FACILITIES	59
25	CADMIUM CONTENT IN THE DRAINAGE	
	WATERS OF NEW BRUNSWICK COAL MINING	
	AND BENEFICIATION FACILITIES	61

٠

-

-

| | -

-

ا سے ۔

1

-

I

. 1

1 I

3

TABLE		PAGE
26	CADMIUM WATER QUALITY DATA - NEWFOUNDLAND, 1975-1980	63
27	CADMIUM WATER QUALITY DATA - PRINCE EDWARD ISLAND, 1975-1980	64
28	CADMIUM WATER QUALITY DATA - Nova Scotia, 1975-1980	66
29	CADMIUM WATER QUALITY DATA - New Brunswick, 1975-1980	73
30	CADMIUM IN THE INTERNATIONAL PORTION OF THE SAINT JOHN RIVER BASIN - PERCENTAGE OF OBSERVATIONS EXCEEDING WATER QUALITY OBJECTIVES	87
31	CADMIUM LEVELS (µg/g) IN DREDGED SEDIMENTS FROM NEW BRUNSWICK, JUNE 1977 – JULY 1979	92
32	CADMIUM LEVELS (µg/g) IN DREDGED Sediments from Nova Scotia, June 1977 – July 1979	95
33	CADMIUM LEVELS (µg/g) IN DREDGED SEDIMENTS FROM PRINCE EDWARD ISLAND, JUNE 1977 - JULY 1979	98
34	CADMIUM LEVELS (µg/g) IN DREDGED SEDIMENTS FROM NEWFOUNDLAND, JUNE 1977 - JULY 1979	99

•

.

.

1.1

1

ļ

T

۰.

. | . |

ï

TABLE		PAGE
35	CADMIUM CONCENTRATIONS IN SEDIMENTS FROM FOURTEEN HARBOURS IN NORTH- EASTERN NEW BRUNSWICK (µg/g) DRY WEIGHT)	103
36	DALHOUSIE PUBLIC WHARF - CADMIUM CONCENTRATIONS IN SEDIMENT CORES	109
37	SUMMARY OF NOVA SCOTIA DEPARTMENT OF MINES AND ENERGY SURVEY OF STREAM SEDIMENT FOR CADMIUM CONTENT	117
38	CADMIUM CONCENTRATION IN NORTH- EASTERN NEW BRUNSWICK SEDIMENT SAMPLES, JULY, 1973	119
39	CADMIUM CONTENT OF NORTH SHORE SOILS	124
40	CADMIUM CONTENT OF ANNAPOLIS VALLEY SOILS	124
41	CADMIUM CONCENTRATIONS IN AQUATIC PLANT SAMPLES (µg/g DRY WEIGHT) AND SURROUNDING WATER (mg/1) FROM THE NEPISIGUIT RIVER SYSTEM IN NEW BRUNSWICK	126
42	CADMIUM CONCENTRATION IN WATER (mg/1) AND <u>Equisetum arvense</u> (µg/g DRY TISSUE) COLLECTED IN A BASE-METAL MINING AREA OF NORTHEASTERN NEW BRUNSWICK	127

- X -

TABLE

٠

1

1

1

1

PAGE

43	SEASONAL VARIATION OF CADMIUM	
	CONCENTRATIONS IN WATER (mg/1)	
	AND Equisetum arvense (μ g/g DRY TISSUE)	128
44	CADMIUM CONCENTRATION IN <u>Mytilus</u> edulis	
	IN THE VICINITY OF BELLEDUNE POINT,	
	NEW BRUNSWICK, 1977 (μ g/g WET WEIGHT)	130
45	GEOMETRIC MEAN AND RANGES OF CADMIUM	
	IN LOBSTER DIGESTIVE GLAND AND CLAW	
	MUSCLE AND ROCK CRAB DIGESTIVE GLAND	131
46	GEOMETRIC MEAN CADMIUM CONCENTRATION	
	IN LOBSTER DIGESTIVE GLAND (µg/g Cd/g	
	WET WEIGHT) FROM VARIOUS AREAS IN THE	
	ATLANTIC LOBSTER FISHERY	132
47	AVERAGE CADMIUM CONTENT IN LOBSTER	
	EDIBLE PORTION ASSUMING 98% OF THE	
	CADMIUM IS IN THE DIGESTIVE GLAND AND	
	THE LOBSTER DRESSES AT 30% INCLUDING	
	DIGESTIVE GLAND	133
48	CADMIUM IN SEDIMENTS AND INVERTEBRATES	
	FROM THREE COASTAL AREAS IN NEW BRUNSWICK	135
49	CADMIUM CONCENTRATION IN FINFISH AND	
	SHELLFISH COLLECTED OFF THE WESTERN	
	COAST OF NOVA SCOTIA	136

LIST OF TABLES (Cont'd)
------------------	---------

TABLE	· · · · · · · · · · · · · · · · · · ·	PAGE
50	CADMIUM IN AIR (µg/m ³) AT VARIOUS ATLANTIC REGION LOCATIONS	137
	AILANTIC REGION LOCATIONS	137
51	CADMIUM EMISSIONS BY SECTOR IN THE	
	MARITIMES	.140
52	CADMIUM EMISSIONS BY SECTOR IN	
	NEWFOUNDLAND	141

.

.

.

ī.

I.

1

3

.

.

•

.

LIST OF FIGURES

FIGURE	٢	PAGE
1	· CADMIUM MINES, OCCURRENCES AND	
	REDUCTION PLANTS	3
2	TOPOGRAPHY AROUND SURRETTE	
	BATTERY PLANT	26
3	SAMPLING SITES FOR SPRING	
	RUNOFF WATER SAMPLING AT	
	BRUNSWICK MINING AND SMELTING	40
4	LOCATION OF NATIVE BLUE MUSSEL,	
	<u>Mytilus edulis,</u> SAMPLING STATIONS	
	ALONG THE NORTHEASTERN NEW BRUNSWICK	
	COAST, JULY-AUGUST, 1979	43
5	CADMIUM CONCENTRATION IN NATIVE BLUE	
	MUSSELS, <u>Mytilus</u> <u>edulis</u> , COLLECTED	
	ALONG THE NORTHEASTERN NEW BRUNSWICK	
	COAST IN 1977, 1978 AND 1979	45
6	BEAK CONSULTANTS' SEDIMENT SAMPLING	
	STATIONS NEAR BRUNSWICK MINING AND	
	SMELTING, BELLEDUNE, NEW BRUNSWICK	50
7	COMPUTER PLOTTED MAP INDICATING	
	RELATIVE CADMIUM CONCENTRATION IN	
	DREDGED SEDIMENTS	91
8	SAMPLING LOCATIONS FOR NEW	
	BRUNSWICK HARBOURS SURVEYS	102

ł

ł

- xiv -

LIST OF FIGURES

FIGURE		PAGE
9	SOUNDING TRANSECTS AND CORING LOCATIONS FOR DALHOUSIE PUBLIC	
	WHARF SURVEY	108
10	CADMIUM IN STREAM SEDIMENTS FROM	
	THE CAPE GEORGE AREA	110
11	CADMIUM IN STREAM SEDIMENTS FROM	
•	THE ANTIGONISH AREA	111
12	CADMIUM IN STREAM SEDIMENTS FROM	
	THE NEW GLASGOW AREA	112
13	CADMIUM IN STREAM SEDIMENTS	
	FROM THE MARGAREE AREA	113
14	CADMIUM IN STREAM SEDIMENTS FROM	
	THE WHYCOCOMAGH AREA	114
15	CADMIUM IN STREAM SEDIMENTS FROM	
	THE LAKE AINSLIE AREA	115
16	CADMIUM IN STREAM SEDIMENTS FROM	
	THE WRECK COVE AREA	116
17	SAMPLING SITES IN THE	100
	NEPISIGUIT RIVER	120
18	SAMPLING SITES IN THE MIRAMICHI RIVER	121
19	SAMPLING SITES IN THE	
	RESTIGOUCHE RIVER	122

٩

i i

INTRODUCTION

1

T.

i.

.

÷.,

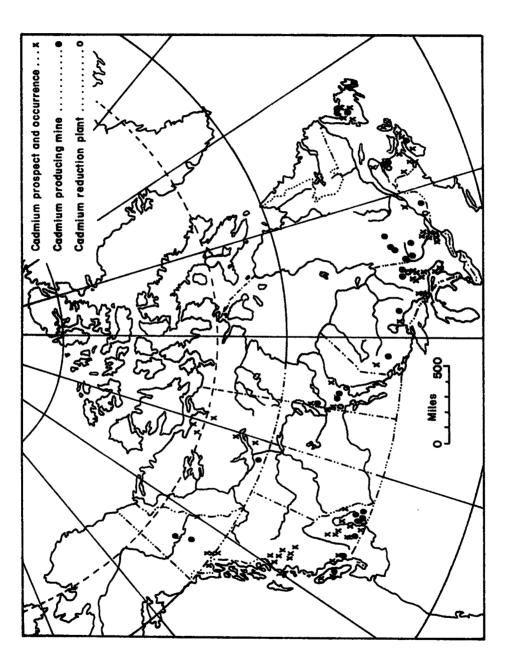
Cadmium is included on the DOE/NHW List of Priority Chemicals. This List focuses on those substances for which regulations are being developed under the Environmental Contaminants Act (ECA) and on those substances about which further information must be obtained to determine whether regulation is necessary. Materials on the List are evaluated on the basis of toxic effects, persistence and quantity and use criteria. Cadmium appears in Category II of the List, indicating that it is being investigated by the federal government to determine the nature and the extent of its danger to human health or the environment and the appropriate means to alleviate that danger.

An assessment of cadmium in the Canadian environment is presently being conducted by the Contaminants Control Branch (Environmental Impact Control Directorate) of the Environmental Protection Service (EPS). The conclusions and recommendations resulting from this review of national data will be instrumental in determining the nature of any future ECA regulatory action on cadmium. EPS Atlantic assisted in this evaluation process by supplying regional information relevant to the environmental assessment process.

During the course of assembling and compiling this data a number of federal and provincial government agencies in the region engaged in either cadmium monitoring or research were contacted and their assistance solicited. Several of these groups expressed an interest in examining the completed cadmium information package. Consequently, this document has been prepared to provide a

- 1 -

comprehensive review of regional cadmium data. Information has been extracted from scientific publications and technical reports and, in some cases, permission has been obtained to include unpublished results. In view of the national assessment presently underway, no attempt has been made to prepare an independent regional evaluation. Opinions and inferences on cadmium sources, levels, and hazards are those of the original authors and are appropriately referenced. While a number of relevant cadmium related research projects have been or are presently being conducted in regional laboratories, the scope of this document has been restricted to an examination of environmental data. Unless otherwise noted cadmium in this document refers to divalent cadmium ion salts and complexes.


2 CADMIUM IN THE ENVIRONMENT

2.1 Natural Distribution

Cadmium is a rare, silvery white metal which occurs naturally in the earth's crust and waterways. The terrestrial abundance of cadmium is in the order of 0.3 μ g/g (Boyle and Jonasson, 1979). Cadmium is found in ores in close association with other metals, particularly zinc, and is generally obtained as a by-product from the refining of zinc concentrates, which normally contain 0.1-0.3% cadmium (Gauvin, 1973). Ores, from which these concentrates are produced, contain 0.001-0.067% cadmium (Lymburner, 1974). Principal Canadian mineral deposits containing cadmium are shown in Figure 1 (Boyle and Jonasson, 1979).

2.2 Industrial Sources and Uses

Every industry involved in either the production or use of cadmium is a potential point source of input to

ł

FIGURE 1 CADMIUM MINES, OCCURRENCES AND REDUCTION PLANTS (Boyle and Jonasson, 1979)

the environment and, as industrial usage increases, so too does the potential pollution of water, soil and air.

Major cadmium emission sources in Canada are from mine drainage, smelter loss, electroplating operations and combustion of fossil fuels. It appears that cadmium pollution problems arise only near emission sources (Abdullah <u>et. al.</u>, 1972; Preston, 1973; Kneep <u>et</u>. al., 1974; Holmes <u>et. al.</u>, 1974 and Lund <u>et. al.</u>, 1976).

Due to its anti-corrosive properties cadmium was first used extensively in the industrial field during, World War II as a plating agent on metal parts of aircraft exposed to salt spray. The overall use of cadmium has expanded at the rate of 5-10% annually in recent years (Morrison, 1979). The manufacture of nickel-cadmium batteries represents the fastest growing application with an estimated consumption increase of 10% for each of the next four years. While electroplating is still its major industrial application (56 of the 75 tons used annually in Canada) (Lymburner, 1974; EPS, 1976), cadmium is now used in a variety of other commercial processes, particularly the manufacture of pigments, PVC stabilizers and metallic alloys. Minor quantities are used in the manufacture of television picture tubes, fungicides, ceramics and motor oil. An extensive list of the uses of elemental cadmium and its compounds has been published (Lymburner, 1974).

2.3 Cadmium in Air

In ambient air reported cadmium values are usually of the order $0.001-0.005 \ \mu g/m^3$ in rural areas, $0.005-0.05 \ \mu g/m^3$ in urban areas, and up to $0.6 \ \mu g/m^3$ near point sources (WHO, 1977). Friberg (1974)

- 4 -

reported a normal background level of less than 0.001 μ g/m³. The concentration of cadmium in air in remote areas not affected by human activity is usually very low reflecting a lack of industrial and municipal wastes; concentrations measured in air over the Atlantic Ocean varied from 0.003-0.062 ng/m³ (ibid).

Metal smelters, especially those utilizing zinc and lead ores, alloy production plants, metal recovery operations and waste incinerators are all major sources of cadmium input to the atmosphere. Cadmium is also a trace contaminant of fossil fuels and is released upon their combustion. Other sources of atmospheric cadmium are rubber manufacture, pigment and battery manufacture, mining operations, die-casting, vinyl plasticizers and stabilizers, brass and bronze foundries and cigarette smoking.

Most of the cadmium of thermal origin emitted to the air is probably in the oxide form (Morrison, 1979) and like most airborne contaminants ultimately reaches natural waterways.

Table 1 lists available quantitative data on airborne emissions of cadmium from various industries or production processes.

2.4 Cadmium in Aquatic Ecosystems

From available data it is estimated that 90% of annual emissions to the hydrosphere are from anthropogenic

- 5 -

TABLE 1	QUANTITATIVE	ESTIMATES OF SOM	ME CADMIUM AIRBO	DRNE
	EMISSIONS IN	CANADA (adapted	from Lymburner	, 1974)*

	ATMOSPHERIC	
INDUSTRY OR PROCESS	EMISSION FACTOR ^a	ESTIMATED EMISSION ^D
plastics production	6	_c
pigment production	15	75 - 150
mining process (wind loss)	0.2	425
metallurgical works ^d	25 - 1300	-
cadmium alloy manufacture	10	135 - 250
nickel-cadmium battery		
manufacture	2	-
fertilizer usage	0.1%	60
motor vehicle emissions		
(from tires and oil)	-	1100

a Pounds per ton of cadmium processed.

b Pounds estimated for the year 1970.

c Estimate not available.

d 45% of cadmium losses to air occur during ore refining processes, e.g. roasting and sintering of zinc concentrates if not treated.

•

^{*} Taken from Morrison, 1979.

sources (Fleisher <u>et</u>. <u>al</u>., 1974; Eaton, 1976) while natural weathering and erosion processes account for the remaining 10% of emissions (Bertine and Goldberg, 1971).

Once in the aquatic environment industrially discharged complexed cadmium adsorbs to both suspended particulate matter (Suzuki <u>et</u>. <u>al</u>., 1979) and bottom sediments, (Friberg <u>et</u>. <u>al</u>., 1979), especially in neutral or alkaline waters (Boyle and Jonasson, 1979) where hydrolysis to the highly insoluble cadmium hydroxide is facilitated. In waters with low pH hydrolysis is retarded and more of the cadmium remains dissolved in the water column. Natural background levels for marine waters and sediments are $\leq 0.1 \ \mu g/l$ (Anon, 1979) and 0.5 mg/kg (Swiss and Henderson, 1976) while levels in freshwater are reported as $\leq 1.0 \ \mu g/l$ (Anon, 1977).

Available information indicates that cadmium is not an essential trace element to aquatic organisms (McKee and Wolf, 1963; Eisler, 1971; Sharma and Shupe, 1977) but rather acts as a cumulative (Thorpe and Lake, 1974) and highly toxic poison.

2.4.1 Cadmium in Aquatic Animals

Dissolved cadmium in freshwater is absorbed primarily through the gills (Williams and Giesy, 1978; Jacobs, 1978) while cadmium uptake from seawater is primarily through the gastrointestinal tract (Eisler, 1974).

In both freshwater and marine species cadmium accumulates mainly in the kidneys, liver and internal organs (Topping, 1973; Freeman and Uthe, 1974;

- 7 -

Sangalang and Freeman, 1979) where it forms strong bonds with protein, especially metallothionein, displacing zinc and interrupting certain of its enzymatic functions. Documented effects on fish and invertebrates include gill damage (Doudoroff and Katz, 1953), behavorial changes (Eaton, 1974; Cearley and Coleman, 1974), altered respiration rate (Schweiger, 1957), vertebral and internal organ damage (Bengtsson <u>et</u>. <u>al</u>., 1975; Gardner and Yevich, 1969; 1970), reproductive impairment (Biesinger and Christensen, 1972; Sangalang and O'Hallaran, 1972; Freeman and Sangalang, 1976) and a variety of biochemical and hormonal responses (Christensen, 1975; Sangalang and O'Hallaran, 1972; 1973) as well as direct mortality.

In laboratory tests the lowest lethal level recorded for a fish is 8-10 μ g Cd/l (7 day LC50) with <u>Salmo gairdneri</u> in hardwater (Tafenelli and Summerfelt, 1975) while the corresponding value for an invertebrate is 5 μ g/l (21 day LC50) with Daphnia in soft water (Biesinger and Christensen, 1972). Concentrations of cadmium as low as 0.2 μ g/l in water and 0.001 mg/kg in sediment have been observed to have detrimental effects on the common brook trout <u>Salvelinus fontinalus</u> (Freeman and Sangalang, 1976) and a level of 0.1 mg/l is potentially harmful to the mummichog, <u>Fundulus heteroclitus</u> and possibly other marine species (Swiss and Henderson, 1979).

The degree of concentration and associated toxic effects are species specific as well as dependent on life stage, the speciation of the metal and the presence of other compounds, metals and organisms. Other important environmental variables affecting uptake and toxicity are salinity, hardness, temperature, pH and dissolved oxygen content of the water.

Investigative studies indicate that species differences in sensitivity to cadmium are greater than for most other common pollutants (EIFAC, 1978). Juvenile life stages tend to be more sensitive than the adult (Eaton, 1974; Reish et. al., 1976). Generally cadmium levels are lower in vertebrate than invertebrate marine species with molluscs and crustaceans exhibiting the greatest accumulation potential (Pringle et. al., 1963). The state of the metal is important in that a complexed or chelated form may be less soluble and hence less toxic than the more readily soluble and available ionic forms (Ray and Coffin, 1977). The combined effect of cadmium and other chemicals may act synergistically to increase or decrease cadmium toxicity (Hutchinson and Czyrska, 1972; Hutchinson, 1973; Eisler and Gardner, 1973). Hardness is usually the single most important variable affecting cadmium toxicity in freshwater and an inverse relationship has been demonstrated (Pickering and Henderson, 1966; McCarty et. al., 1978). Similarly, in salt water systems toxicity decreases with increasing salinity since often uptake decreases (Eisler, 1971). Temperature (Eisler, 1974; Voyer et. al., 1977) and dissolved oxygen (Voyer, 1975; Voyer et. al., 1975) also influence toxicity but the exact relationship is unclear.

2.4.2 Cadmium in Aquatic Plants

Many aquatic plants selectively concentrate cadmium and other trace metals up to many thousands of times the ambient environmental levels. Accumulation factors ranging from 1,000 to 49,000 times ambient levels have been recorded for the pondweed, <u>Najis quadulapensis</u>, and the alga, Cladophora glomerata, respectively (Cearley and Coleman, 1973; Kenney <u>et</u>. <u>al</u>., 1976). Studies on the water hyacinth, <u>Eichornia echlorina crossipes</u> have reported an accumulation of 16.2 μ g/g of cadmium at an aqueous level of 0.002 mg/l. Indeed, its accumulation potential is so great that it has been suggested as a means of clearing polluted waterways of heavy metals.

Cadmium inhibits the biosynthesis of chlorophyll (Fleisher <u>et</u>. <u>al</u>., 1974) leading to reduced growth and development (Hutchinson and Czyrska, 1972, 1975; Cearley and Coleman, 1973; Stanley, 1974). Table 2 summarizes the toxic effects observed in some studies.

Many of the environmental factors which affect uptake rate and toxicity in aquatic animals have a similar influence on plants.

2.5 Cadmium in Terrestrial Ecosystems

Anthropogenic input of cadmium to soils occurs in two general ways: through the deposition of aerosols produced by the combustion of fossil fuels (Berry and Wallace, 1974) or metal smelting (Whitley, 1974; Little and Martin, 1972) and by the application of phosphatic fertilizers (Reuss <u>et</u>. <u>al</u>., 1978; Schroeder and Balassa, 1963; Williams and David, 1973, 1976) or sewage sludge (Mahler <u>et</u>. <u>al</u>., 1978; Bingham <u>et</u>. <u>al</u>., 1975, 1976; Kirkham, 1975; Giordano <u>et</u>. <u>al</u>., 1975; Linnman <u>et</u>. <u>al</u>., 1973) for agricultural purposes.

Natural background levels in uncontaminated plants and soils are ~0.6 μ g/g (Bowen, 1966) and ~0.2 μ g/g (Anon, 1978) while soil values as high as 95 μ g/g (John et. al., 1972) have been reported from heavily polluted areas.

PLANT	LEVEL OF CADMIUM IN WATER ng/1	OBSERVED EFFECT(S)	REFERENCE (S)
Lemma valdiviana (duckweed)	0.01	Inhibition of frond development	Hutchinson and Czyrska, 1972 Hutchinson and Czyrska, 1975
Salvinia natans (fern)	0.01	Severe growth inhibition; chlorosis and necrosis	Hutchinson and Czyrska, 1972 Hutchinson and Czyrska, 1975
Najas guadalupensis (pond weed)	·ŧ	Chlorosis	Cearley and Coleman, 1973
Myriophyllum spicatum (milfoil)	7 .4	50% decrease in root production	Stanley, 1974

TABLE 2 EFFECTS OF CADMIUM ON AQUATIC PLANTS (HUTCHINSON, 1979)

ļ

!

2.5.1 Cadmium in Terrestrial Plants

Cadmium is considered by many scientists to be one of the most toxic heavy metals to plants (Rauser, 1978). Although they have no metabolic requirement for cadmium most plants readily accumulate it from their environment. The absorbed metal can disrupt the normal functioning of plant enzymes causing chlorosis of the leaves and reduced growth (Traynor and Knezek, 1973; Bingham <u>et</u>. <u>al</u>., 1975; McNaughton <u>et</u>. <u>al</u>., 1974; Hutchinson, 1977).

Some plants are more sensitive to cadmium accumulation than others. For instance, spinach, soybean and lettuce showed signs of poisoning when raised in soils with cadmium levels of 4-13 μ g/g while cabbage and tomato tolerated soil levels of up to 170 μ g/g (Bingham <u>et. al.</u>, 1975).

While the extent of cadmium concentration depends on the plant species, other environmental variables such as soil pH, organic content and presence or absence of antagonistic chemicals are also important. A summary of observed effects on some land plants is given in Table 3.

Increasing soil pH (Linmann <u>et</u>. <u>al</u>., 1973; Williams and David, 1973; Bolton, 1975; Pinkerton and Simpson, 1977; Mahler <u>et</u>. <u>al</u>., 1978; Reuss <u>et</u>. <u>al</u>., 1978) and organic matter content (Haghiri, 1974; John <u>et</u>. <u>al</u>., 1972a; John, 1971; Williams and David, 1976) generally decreases cadmium availability. Increasing soil levels of metals antagonistic to cadmium such as copper, zinc and TABLE 3 EFFECTS OF CADMIUM ON LAND PLANTS (HUTCHINSON, 1979)

*

,-Ļ

. .

, 1

÷ :

;

. .

PLANT	CADMIUM SOIL LEVEL µg/m ³	OBSERVED EFFECT(S)	REFERENCE (S)
All plants	112 ^a	Reduced iron content of plant	Traynor and Knezek, 1973
Curleycress Spinach Soybean Lettuce	4-13 ^b	Injury to foliage and decreased growth	Bingham <u>et</u> . <u>al</u> ., 1975
Tomato, cabbage	170 ^b	No signs of toxicity	Bingham <u>et</u> . <u>al</u> ., 1975
Typha latifolia	73 ^C	No signs of toxicity	McNaughton et. al., 1974
Most plants	13-350 ^d	Reduced growth, some failure	Hutchinson, 1977
Tomato, raddish, Lettuce	13-350 ^d	Death in 28 days	Hutchinson, 1977

a Cd added directly to soil.

b Cd added as contaminated sewage sludge.

c Cd from smelter fallout.

Soil Cd levels corresponding to distances of 0.8 and 8.0 km respectively from a lead-zinc smelter in Flin-Flon, Manitoba. σ

selenium, reduce cadmium accumulation (John, 1972a, 1972b; Chaney, 1978); however, the levels required are often so high that these compounds themselves are toxic to the plants (Haghiri, 1974; Lagerwerff, 1971).

In studies undertaken to determine the ultimate fate of cadmium accumulated by plants it was found that, irrespective of soil or plant type, the greatest concentration was in the roots (John, 1972; John <u>et. al.</u>, 1972a; Page <u>et. al.</u>, 1972; Haghiri, 1973; John, 1973; Turner, 1973; Bingham <u>et. al.</u>, 1975, 1976; Mahler <u>et.</u> <u>al.</u>, 1978; Jarvis <u>et. al.</u>, 1976). Accumulation was also observed in leaves and food storage tissue, but to a lesser extent. Other reports indicate that cadmium is highly mobile and is not excluded from edible portions such as fruits or seeds (Hutchinson, 1979).

Some edible plants can concentrate cadmium to levels considered dangerous to human health without obvious signs of damage and consequently they pose a threat to unsuspecting consumers.

2.5.2 Cadmium in Terrestrial Animals

The main sources of cadmium for animals are food and water since industrial exposure is exceptional. In addition, cadmium entry may occur by inhalation and adsorption of cadmium particulates in the air. Once in the body cadmium reacts with many nutrients which may cause altered absorption rates and responses. The main components of the diet that interact with cadmium include zinc (Powell <u>et</u>. <u>al</u>., 1967; Doyle <u>et</u>. <u>al</u>., 1974; Lee and Jones, 1976; Roberts <u>et</u>. <u>al</u>., 1976), copper (Underwood, 1971; Mills and Dagarno, 1972; Neanthery and Miller, 1975; Lee and Jones, 1976), iron (Pond <u>et</u>. <u>al</u>., 1973), mercury and selenium (Parizek <u>et</u>. <u>al</u>., 1973; Lee and Jones, 1976) and calcium and protein (Neanthery and Miller, 1975).

1 1

The clinical symptoms of primary cadmium toxicity in animals are anemia, enlarged joints, scaly skin, liver and kidney damage, reduced growth and a mortality rate which relates directly to the concentration of cadmium fed (Pond and Walker, 1972; Cousins <u>et</u>. <u>al</u>., 1973; Neanthery and Miller, 1975; Pond, 1975; Lynch <u>et</u>. <u>al</u>., 1976). There is also evidence of gonadal, mostly testicular, degeneration following treatments with cadmium (Parizek and Zahor, 1956; Chiquoine and Suntzeff, 1965; Chatterjee and Kar, 1969; Baillargeon et. al., 1971a,b).

Cadmium ions absorbed from the intestine become bound to metallothionein or other transport proteins (Neathery and Miller, 1975) and stored in association with these proteins (Webb, 1975b). Cadmium tends to concentrate primarily in the kidney, liver and internal organs (Miller <u>et</u>. <u>al</u>., 1969; Neanthery and Miller, 1975; Find and Fischer, 1975). Very little cadmium reaches the milk (Mills and Dalgarno, 1972; Cornell and Pullansch, 1973; Doyle <u>et</u>. <u>al</u>., 1974; Neanthery <u>et</u>. <u>al</u>., 1974; Dorn, <u>et</u>. <u>al</u>., 1975) or muscle (Kirkpatrick and Coffin, 1973; Cousins <u>et</u>. <u>al</u>., 1973), the main animal proteins consumed by humans.

- 15 -

Defecation is the predominant route of cadmium excretion. After the occurrence of high cadmium concentrations in the kidney and associated renal damage with proteinuria, there will be elevated cadmium concentrations in urine (Friberg <u>et</u>. <u>al</u>., 1971; Underwood, 1971; Neanthery and Miller, 1975).

2.6 Cadmium in Man

Comprehensive reviews on the source, biological effects and human health aspects of cadmium are available (Friberg <u>et. al.</u>, 1974, 1975; Fleisher <u>et. al.</u>, 1974; Fulkerson and Goeller, 1974; Hiatt and Huff, 1975; Babich and Stotsky, 1976; Webb, 1979).

For man the major source of cadmium intake, excluding occupational exposure, is food and cigarette smoking with water and air providing only minor contributions. Foods containing the highest levels are organ meat, such as liver and kidney, seafood, especially shellfish, and certain cereal grains, such as rice. Cadmium levels of common foods and fish are listed in Tables 4 and 5, while average Canadian daily intake from each source is given in Table 6. Foodstuffs from contaminated areas contain 3-12 times as much cadmium as those from unpolluted areas (Nordberg, 1974).

The FAO/WHO Expert Committee recommends a provisional tolerable daily intake of 250-350 μ g (Friberg, 1977). Cadmium injestion from foods in Canada, averages 305 - 686 μ g/week (Friberg, 1977). In general, levels of cadmium in water are well below the Canadian drinking water standard of 5 μ g/l and consequently this constitutes a minor source of human exposure (Goyer and Cherian,

- 16 -

		CADMIUM CONCEN (mg/kg fresh w	
F00D	NUMBER OF Samples	RANGE	AVERAGE
Milk	248	<0.01 - 0.19	0.02
Flour	183	<0.01 - 0.17	0.04
Eggs	129	<0.01 - 0.12	0.03
Meat, beef	178	<0.01 - 0.13	0.02
Meat, pork	175	<0.01 - 0.08	0.03
Meat, poultry	129	<0.01 - 0.10	0.02
Apples	141	<0.01 - 0.13	0.01
Carrots	130	<0.01 - 0.16	0.03
Tomatoes	205	<0.01 - 0.36	0.02
Cabbages	128	<0.01 - 0.12	0.02
Potatoes	201	<0.01 - 0.12	0.03
Beef kidney	63	0.13 - 2.78	0.60
Beef liver	85	0.04 - 0.82	0.15
Pork kidney	55	0.08 - 1.04	0.26
Pork liver	87	0.01 - 0.80	0.09
Chicken liver	58	0.02 - 0.76	0.06

TABLE 4 CADMIUM CONTENT OF CANADIAN FOODS (FMOI PROJECT, AUGUST 1971-MARCH 1976)^a, *

a Data to be published, Health Protection Branch, Health and Welfare Canada.

* Taken from Sandi, 1979.

FISH	NUMBER OF SAMPLES	RANGE (mg/kg fresh weight)	AVERAGE (mg/kg fresh weight)
GROUNDFISH			
Cod Salt cod Others ^a	189 13 620	0.01 - 0.24 2.06 - 3.16 <0.01 - 0.50	0.11 2.51 0.09
PELAGIC AND ESTUARINE FISH	703	<0.01 - 0.38	0.13
MOLLUSCS AND CRUSTACEANS			
Lobster Mussels and oysters Others ^D	94 81 230	0.01 - 2.45 0.05 -11.30 0.02 - 1.32	0.33 0.56 0.23
MISCELLANEOUS			
Lobster paste Lobster tomalley Fish meals Others ^C	64 12 32 101	0.06 - 5.94 1.35 - 2.47 <0.01 - 1.57 <0.01 - 2.55	3.40 1.83 0.64 0.19
FRESHWATER FISH		•	
Ontario St.Lawrence Quebec Others ^d	90 113 217 37	<0.01 - 0.10 <0.01 - 0.32 <0.01 - 1.32 <0.01 - 0.32	0.01 0.10 0.10 0.01

TABLE 5	CADMIUM CON	NTENT OF	CANADIA	N FISH
•	(FISHERIES	SERVICE	, DOE, 19	974)*

a Flounder, halibut, sole, catfish, plaice, haddock, lingod pollock, tomcod, turbot, red fish, snapper, skate, sable fish and rock fish.

b Clam, shrimp, crab and scallop.

- c Fish livers, fish liver oils and cod tongues.
- d Alberta, Saskatchewan and Northwest Territories.

* Taken from Sandi, 1979.

COMPOSITE	CONSUMPTION µg/day/man	Cd CONCENTRATION range (mg/kg)	Cd INTAKE (µg/day/man)
Milk and dairy products	495	0.01 - 0.03	5 - 15
Meat, fish and poultry	276	0.03 - 0.07	11 - 19
Cereals	190	0.04 - 0.07	8 - 13
Potatoes	191	0.06 - 0.10	12 - 19
Leafy vegetables	46	0.02 - 0.13	1 - 6
Legumes	32	0.04 - 0.05	1 - 2
Root vegetables	49	0.04 - 0.05	2 - 3
Garden fruits	82	0.02 - 0.04	2 - 3
Fruit	193	0.02 - 0.06	4 - 10
Oils and fats	27	0.05 - 0.10	1 - 2
Sugars and adjuncts	142	0.02 - 0.03	2 - 4
Drinks	59	0.02 - 0.03	<u>1 - 2</u>
Total			50 - 98

TABLE 6			FROM	CANADIAN	TOTAL	DIET,
	1969-197	'1ª,*				

1

1

; ;

ł

| | |

1

ł

. . a Data from: Meranger and Smith (1972); Kirkpatrick and Coffin (1974, 1977).

* Taken from Sandi, 1979.

1979). About 6% of dietary cadmium is absorbed by humans (Friberg <u>et</u>. <u>al</u>., 1974). There is an extremely low excretion rate of the absorbed cadmium with only about 0.01% of the total body burden being excreted daily via urine and feces.

Cadmium content of air in unpolluted areas is approximately 0.001 - 0.01 μ g/m³ and may increase to 0.1 - 0.5 μ g/m³ around emitting factories (Friberg <u>et</u>. <u>al.</u>, 1974). Even at the higher levels, inhaled cadmium would amount to only 2 - 10 μ g/day (Goyer and Cherian, 1979). Cigarette smoking may add significantly to inhaled cadmium as each cigarette contains 1 - 2 μ g (Lewis <u>et</u>. <u>al.</u>, 1972). It is estimated that up to 50% of inhaled cadmium may be absorbed by humans (Friberg <u>et</u>. <u>al</u>., 1974).

Cadmium accumulates in the visceral organs, principally the kidneys (Schroader and Balasar, 1961), where once a level of 200 μ g/g is reached, visible renal tubular dysfunction occurs (Friberg <u>et</u>. <u>al</u>., 1975). The average 50 year old United States male has a mean renal cadmium content of 10 - 50 μ g/g (Goyer and Cherian, 1979).

Symptoms of chronic cadmium poisoning, mainly caused by occupational exposure, include kidney and liver damage as well as respiratory tract and musculoskeletal defects. Acute toxicity is accompanied by severe nausea, salivation, vomiting, diarrhea, abdominal pain and pneumonitis.

Both iron and calcium deficiency have been found to increase cadmium absorption (Flanagan <u>et</u>. <u>al</u>., 1978; Larsson and Piscatar, 1971). Cadmium has also been

- 20 -

identified as a caustive factor of Itai-itai disease in Japan (Friberg <u>et</u>. <u>al</u>., 1971) and has been implicated as a mutagen (Shiraishi <u>et</u>. <u>al</u>., 1972; Deknudt <u>et</u>. <u>al</u>., 1975) and carcinogen (Potts, 1965; Kipling and Waterhouse, 1967; Lemen <u>et</u>. <u>al</u>., 1976; IARC, 1976). Several comprehensive reviews pertaining primarily to human health have been prepared (Nilsson, 1970; Flick <u>et</u>. <u>al</u>., 1971; Webb, 1975; Waldbott, 1978).

2.7 <u>Standards and Guidelines for the Control</u> of Cadmium in the Environment

2.7.1 Water Quality

ţ

1

ł

u Lie

1

١

61

2.7.1.1 Fresh Water Quality

Two types of guidelines apply to surface water quality in Canada. One type limits cadmium content of aqueous effluents being discharged directly to waterways (e.g. Canadian federal guidelines for the cadmium concentration of aqueous emissions from metal finishing industries suggest a maximum daily concentration of 1.5 mg/l). The second type of standard relates the cadmium concentration of a given water body to its suitability for a particular end use. Some typical surface water quality guidelines are given in Table 7.

2.7.1.2 Marine Water Quality

In Canada the ocean dumping of contaminated dredge spoils or other materials is regulated by the Ocean Dumping Control Act (1975) which prohibits the disposal of substances which contain in excess of 3 mg/l of cadmium in a liquid waste or of 0.6 μ g/g dry weight in a solid waste.

Year	Cadmium Concentration Referen (ppb) ^a	nce
	A. Protection of Freshwater Aquat	c Life
1000	0.002 of 96-hr TLM^{b}	1094
1968	0.002 01 90 - 10 1000 00000000000000000000000	1094
1972	0.05 of 10-day LC50 ^b	1095
1972	0.4 ^c (<100) ^d	1090
	3 ^c (>100) ^d	1097
1974	$0.4^{2}(<100)^{d}$	1097
	3 ^c (>100) ^d	1002
1976	0.4° (<100) ^d	1093
	12 ^C (<100) ^d	
1977	0.3 ^C (<10) ^d	55,543
	0.4 ^c (<50) ^d	
	0.5 ^c (<100) ^d	
	0.75 ^c (>300) ^d	
1977	0.2	643
1979	0.2	617
	B. Source Water for Public Water	Sunnlies
	B. Source water for Fublic water	5upp1165
1968	10	1094a
1969	10	1098
1970	10	617a
1972	10	1095
1973	10	1096
1974	10	1097
1976	10	1099
	C. Livestock Watering	
1968	10	10 94 b
1972	50	1096a
	D. Irrigation	
1968	5 ^e _	1094c
1,200	50 ^f	
1972	5 ^e	1096ь
1716	50f	
1974	10	1097

TABLE 7	GUIDELINES FOR	SURFACE	WATER	OUALITY	FOR	VARIOUS	PURPOSES*
	MOTOFFICES I ON		1011611	VONEA I I	1 011		

a Except where otherwise indicated.

b For most sensitive test species.

c For salmonid species; other species studied tolerate higher concentrations.

- d Numbers in parentheses indicate water hardness in ppm as calcium carbonate.
- e For continuous use.

f For short-term use on fine textured neutral or alkaline soils.

* Taken from a report being prepared by Dr. Don MacGregor, title unavailable (in press)

2.7.1.3 Drinking Water Quality

The National Health and Welfare "Guidelines for Canadian Drinking Water Quality" (1978), recommend a maximum acceptable concentration of 5 μ g/l for cadmium allowable in drinking water.

2.7.2 Air Quality

÷

Ţ.

į

. -

1.1

There are no North American guidelines or regulations controlling cadmium emissions to ambient air. However, Canadian guidelines pertaining to industrial exposure to cadmium dust and fumes have been promulgated. Jurisdiction for occupational health is divided between federal and provincial agencies. In general the responsible Canadian agencies follow the current Threshold Limit Value (TLV) concentrations specified by the American Conference of Governmental Industrial Hygienists (ACGIH). The current TLV for cadmium in fumes and dust is 0.05 mg/m³ for industrially exposed workers.

2.7.3 Soil Quality

Regulations and/or guidelines for the maximum quantities of cadmium which can be added to soils in the form of sewage sludge are issued under provincial authority. The Ontario sewage sludge application guidelines recommend a maximum cadmium addition to soil of 1.6 kg/hectare over the 25 year period after 1978. Similar guidelines have yet to be issued by any of the Atlantic Provinces.

2.7.4 Miscellaneous Guidelines

2.7.4.1 Food Quality

The FAO/WHO Expert Committee recommends a provisional tolerable daily intake of $250 - 350 \mu g$ (Friberg, 1977). Although there are unofficial guidelines pertaining to cadmium content of various foods, regulatory action has yet to be taken. A guideline which prohibits an appreciable heavy metal content in food packaging material is, however, in effect. The Hazardous Products (Glazed Ceramics) Regulations issued under the Hazardous Products Act limits extractable cadmium from glazed ceramic dishes to 500 ppb.

2.7.4.2 Household Products

The Hazardous Products Act also bans the use of paints which contain in excess of 0.1% cadmium on toys for children three years of age or under.

3 ATLANTIC REGION CADMIUM DATA

3.1 Cadmium in Industrial Discharges

3.1.1 Potential Major Sources of Cadmium Discharge

Two industries in the Atlantic Region are suspected of discharging cadmium in quantities which may pose an environmental hazard. These industries are dealt with separately because of the abundance of survey and monitoring data.

3.1.1.1 <u>Surrette Battery Company Limited - Springhill, N.S.</u> The plant is located on Lisgar Street in Springhill and produces batteries for automotive, marine and industrial usage. It consists of two buildings...the first containing the main battery manufacturing operation

¢

and the second housing the smelter and lead oxidizer. The smelter is operated three or four days every two weeks, as demand requires, with the production of approximately 50,000 pounds of lead each month. Lead plates used in the batteries are manufactured in the plant from lead recovered from old batteries brought to the plant from across Eastern Canada.

11

There are three significant sources of air emissions from the plant: blast furnace off-gases, blast furnace process area ventilation and other process area ventilation.

An initial study (de Koning, 1973) measured the cadmium content in air, soil and vegetation samples taken in the immediate vicinity of the operation (Figure 2). The air sampling network consisted of four monitoring stations while soil samples were taken on two concentric circles centered on the plant, the radius of the inner circle being 250 feet and that of the outer circle approximately 500 feet. Vegetation samples were taken simultaneously with the soil samples.

The maximum and average ambient cadmium levels, as well as the percentage frequency of occurrence, are listed in Table 8. In the United States, the average concentration of cadmium in air particulates is less than $0.011 \ \mu g/m^3$. Compared with this figure the Springhill cadmium results indicate little that is unusual. The cadmium content of the soil samples is listed in Table 9. Normally cadmium is present in soils at concentrations of less than $1 \ \mu g/g$ and the Springhill results appear somewhat high when compared to this. Natural variation among different soil types may account for differences up to 2 ppm but the levels in the area of the battery plant are too high to be explained by this means. Even though a consistent difference between the values for cadmium on

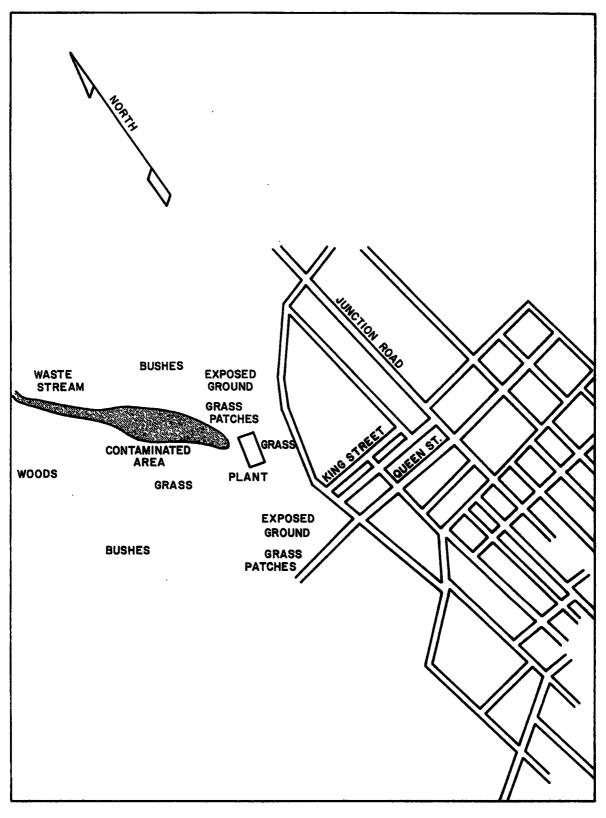


FIGURE 2 TOPOGRAPHY AROUND SURRETTE BATTERY PLANT (Dewis and Lord, 1977)

SUMMARY OF THE 24-HOUR CADMIUM CONCENTRATIONS (μ g/m^3) in the Air surrounding the surrette battery company plant (de koning, 1973)

1

• • •

}

t i

.

. . .

: . .

ſ

1

1 -

F F F

ſ.

١

CURRENCE ^a	0.012	0*040	0.021	0.028	
	0.	.	0.	0.	
CUMULATIVE PERCENTAGE FREQUENCY OF OCCURRENCE ^a 90% 75% 50% 25% 10%	0.010	0.010	0.017	0.005	
ENTAGE FR	0.005	0.003	0.008	0.001	
TIVE PERC	0.003	0.001	0.003	0.000	•
CUMULA 90%	0.000	0.000	0.001	0.000	
AVERAGE Value	0.007	0.016	0.011	0.023	
MAX IMUM Value	0.034	0.093	0.071	0.493	
NO. OF SAMPLES	26	31	37	36	
STATION NUMBER	-	8	m	4	

The percentage of samples having cadmium concentrations greater than or equal to the values stated. æ

	AND VEGETATION,	(de Koning, 1973)
	SOIL	PLANT
	I CONCENTRATIONS IN SOIL AND N	BATTERY COMPANY PLANT
•	CADMIUM	SURRETTE
	TABLE 9	

ļ

6-1-2-

6 A.-

	CADMIUM IN SOIL (uq/q air-dry)	N SOIL r-dry)	CADMIUM I	CADMIUM IN VEGETATION (u g/g oven-dry)
BEARING ^b	250 feet ^a	500 feet ^a	250 feet ^a 500 f	500 feet ^d
ш	8.3	4.6	2.6	2.3
NE	19.3	5.6	4.0	3.0
Z	7.0	5.3	3.8	1.0
M	3.6	15.3	1.5	0.8
3	4.3	4.0	2.0	2.3
SW	5.0	10.6	2.3	1.5
S	3.6	13.6	1.8	1.3
SE	3.6	12.6	1.3	2.1
AVERAGE	6.8	8.9	2.4	1.8

a Distance from the Surrette Battery Company Plant. b With respect to the Surrette Battery Company Plant. the inner and outer ring could not be determined the plant cannot be excluded as a causative factor. The difference between the inner and outer rings is too small, i.e. rings are too close to draw any such conclusion. The vegetation data, listed in the same table, reveal a pattern similar to that observed with the soil but the values themselves are much lower than the corresponding soil concentrations on the same ring. A lower availability of cadmium compounds in the soil resulting in reduced uptake by the plants was postulated to account for this difference. De Koning concluded that the Surrette Battery Company plant was only a minor source of cadmium input to the environment.

In 1974 the Nova Scotia Department of the Environment initiated a study to assess any change in the value of particulate, lead and cadmium concentrations in the vicinity of this industrial operation (Ryan, 1974). Every effort was made to duplicate the air, soil and vegetation sampling procedures utilized in the de Koning study so that results from both surveys would be comparable. Air levels are reported in Table 10 while soil and vegetation results are detailed in Table 11. In addition, samples were taken from two major blueberry areas in the immediate vicinity of the plant and from other locations in the general area to assess any human health concerns. The levels of cadmium in the blueberry samples were below the analytical detection limit.

EPS, Atlantic (Dewis and Lord, 1977) conducted an environmental investigation of the area immediately surrounding the Surrette Battery Company Limited plant. In 1975 and 1977 soil samples were taken along three concentric circles with radii approximating 75 m, 150 m and 300 m. A soil sample was taken at eight points of the compass on each of the three circles. During all surveys

1 .

TABLE 10CADMIUM CONCENTRATIONS IN AMBIENT AIR IN THE
IMMEDIATE VICINITY OF THE SURRETTE BATTERY
COMPANY PLANT (RYAN, 1974)

STATION NUMBER	NUMBER OF Samples	MAXIMUM CADMIUM VALUE µg/m ³	AVERAGE CADMIUM VALUE μ g/m ³
1	22	0.006	0.005
2	23	0.009	0.005
3	23	0.009	0.005
4	20	0.008	0.005

BEARING ^b	CADMIUM (µg/g dr 250 ft. ^a	y weight)	CADMIUM (µg/g dr 250 ft.ª	IN VEGETATION y weight) 500 ft. ^a
N	1.0	N.D. ^C	1.7	1.6
NNE	1.6	N.D.	66.4	3.5
NE	1.4	2.9	10.6	7.7
ENE	7.6	2.1	11.3	3.7
Ε	2.4	3.0	4.8	1.4
E SE	3.2	2.7	2.3	1.2
SE	1.8	2.6	1.9	1.5
SSE	2.1	2.5	2.6	3.1
S	3.4	3.1	1.5	1.5
SSW	2.0	1.4	3.7	1.7
SW	6.6	3.0	2.2	.1.7
WSW	4.1	2.4	9.2	2.8
W	6.6	6.9	4.8	3.8
WN W	1.0	3.4	1.5	1.5
NW	1.5	N.D.	1.0	1.6
NNW	1.6	1.0	2.0	1.3
MAXIMUM	7.6	6.9	66.4	7.7
AVERAGE	3.0	2.3	8.0	2.5

TABLE	11	L CADMIUM CONCENTRATIONS IN SOIL /	AND VEGETATION
		IN THE VICINITY OF THE SURRETTE	BATTERY COMPANY
		PLANT (RYAN, 1974)	

a

Distance from Surrette Battery Company Plant. With respect to the Surrette Battery Company Plant. Not determined. b

С

T.

1

· .

ı

1

(.

ł

Т 1

vegetation samples were taken at the same locations as the soil samples. These were usually Couch Grass (Agropyron repens), although in a few instances a second species, Timothy (Phleum pratense), was sampled instead. Duplicate samples of vegetation were collected and washed with water to simulate a rain storm. The wash water and washed grass were then analyzed separately. Results are reported in Tables 12A and 12B. The cadmium levels obtained from each of the vegetation samples collected in 1975 were all less than the detection limit of the analytical procedure (<2 μ**g/g).** However, cadmium levels were considerably higher in the 1977 study (3.44 to 12.9 μ g/g) with values decreasing as distance from the plant increased. Most of the soil concentrations in the 1975 survey were not exceptionally high compared to the normal level of <1 μ g/g and these small elevations could be a result of natural variations occurring among different soils. Average 1975 soil values indicated a decrease away from the plant. Cadmium levels obtained in the 1977 survey are generally below the background level.

In 1977, samples of sphagnum moss suspended 2 m above the ground at distances of 75 m, 150 m and 300 m from the plant for a two week period were used to assess the degree of airborne contamination in the area. The cadmium levels were approximately three times higher than control values. The values obtained are listed in Table 13.

Both the 1975 and 1977 surveys showed cadmium levels in air and vegetation to be higher than normal but the values were too variable to pinpoint the Surrette Battery plant as the source. Cadmium levels in soil, reported in the 1977 survey, are generally an order of

BEARING		75	METRES		150) METERS	300	METRES
	SOIL	GRASS	WASHED GRASS	WASH- WATER	SOIL	GRASS	SOIL	GRASS
	μ g/g	μ g/g	μ g/g	mg/1	μ g/g	μ g/g	μ g/g	р ур ц
N	3.6	<2.0	<2.0	<1.0	1.7	<2.0	<0.4	<2.0
NE	0.7	<2.0	<2.0	<1.0	1.1	<2.0	<0.4	<2.0
Ε	0.9	<2.0	<2.0	<1.0	0.8	<2.0	<0.4	<2.0
SE	1.4	<2.0	<2.0	<1.0	0.8	<2.0	<0.4	<2.0
S	1.7	<2.0	<2.0	<1.0	0.6	<2.0	<0.8	<2.0
SW	1.2	<2.0	<2.0	<1.0	0.6	<2.0	<0.4	<2.0
W	0.7	<2.0	<2.0	<1.0	0.8	<2.0	<0.4	<2.0
NW	1.7	<2.0	<2.0	<1.0	0.6	<2.0	<0.4	<2.0
VERAGE	1.5	<2.0	<2.0	<1.0	0.9	<2.0	<0.5	<2.0

TABLE 12ACADMIUM CONCENTRATIONS IN SOIL, GRASS, WASHED GRASS
AND WASH WATER IN THE VICINITY OF THE SURRETTE
BATTERY PLANT IN 1975 (DEWIS AND LORD, 1977)

.

Ĩ

ł

. .

1

<u>;</u>

j

1

1

1

.

;

BEARING	-	5 METRES	5		150 METE			METRES	
	SOIL µg/g	WASHED GRASS µg/g	WASH- WATER mg/l	SOIL µg/g	WASHED GRASS µg/g	WASH- WATER mg/1	SOIL μ g/g	WASHED GRASS µg/g	WASHED WATER mg/1
N	<0.010	6.70	0.002	0.080	7.79	0.001	0.200	3.44	0.001
NE	<0.010	4.21	<0.001	0.160) 4.43	0.002	<0.010	4.70	0.001
E	<0.010	10.9	0.002	<0.010	4.57	<0.001	0.230	4.54	0.001
SE	0.370	9.27	0.009	0.150	9.56	0.008	<0.010	5.87	0.001
S	0.160	12.9	0.002	<0.010	8.91	0.005	<0.010	11.7	<0.001
SW	0.70	8.44	0.005	<0.010	8.95	0.005	<0.010	4.92	0.001
W	1.10	6.86	0.002	0.10	9.67	<0.001	0.520	10.2	0.002
NW	0.070	5.97	0.003	0.10	9.62	0.002	<0.010	5.46	0.00
AVERAGE	<0.275	8.16	0.003	<0.07	B 7 .94	0.003	<0.125	6.36	0.00

-

TABLE 12BCADMIUM CONCENTRATIONS IN SOIL, WASHED GRASS
AND WASH WATER IN THE VICINITY OF THE SURRETTE
BATTERY PLANT IN 1977 (DEWIS AND LORD, 1977)

1

BEARING	75 METRES CADMIUM (μg/g)	150 METRES CADMIUM (μg/g)	300 METRES CADMIUM (µg/g)
N	5.44	2.51	2.75
E	3.68	-	6 .83
S	0.25	4.02	1.42
S (duplicate)	-	-	8.25
W	8.97	9.26	4.17
AVERAGE	4.59	5.26	4.68

1

ł

: • | |

TABLE 13	CADMIUM CONCENTRATIONS OF MOSS BAG SAMPLERS,	
	SURRETTE BATTERY COMPANY PLANT (DEWIS AND LORD, 1977)	

STATION	WATER (mg/l)	SEDIMENT (µg/g)
Outlet	<0.001	<0.050
30 meters below		<0.050
300 meters below	0.009	<0.050
East Brook bridge 24 route 233, Springhill to Athol	<0.001	

TABLE 14CADMIUM CONCENTRATION IN THE LIQUID WASTE STREAM,
SURRETTE BATTERY COMPANY PLANT, 1975

TABLE 15FINAL EFFLUENT DATA FROM SURRETTE BATTERY
COMPANY PLANT

,

SAMPLING DATE	CADMIUM (mg/1)
January 4, 1978	0.002
pril 2, 1978	0.005
ay 2, 1978	0.005
July 13, 1979	0.010

.

.

magnitude less than the 1975 survey, and up to two orders less than the de Koning study. For vegetation collected in both the de Koning and Dewis surveys, cadmium concentrations were of similar magnitude.

In 1975, the liquid waste stream and underlying sediment were analyzed for cadmium content and the results are reported in Table 14. The data indicates that the Surrette Battery Company is a minor source of cadmium emissions to the surrounding environment.

The effluent discharge of this industrial operation is monitored on a regular basis by EPS. Table 15 lists the data obtained from this monitoring program.

3.1.1.2 <u>Brunswick Mining and Smelting Corporation</u> Limited, Smelting Division, Belledune, N.B.

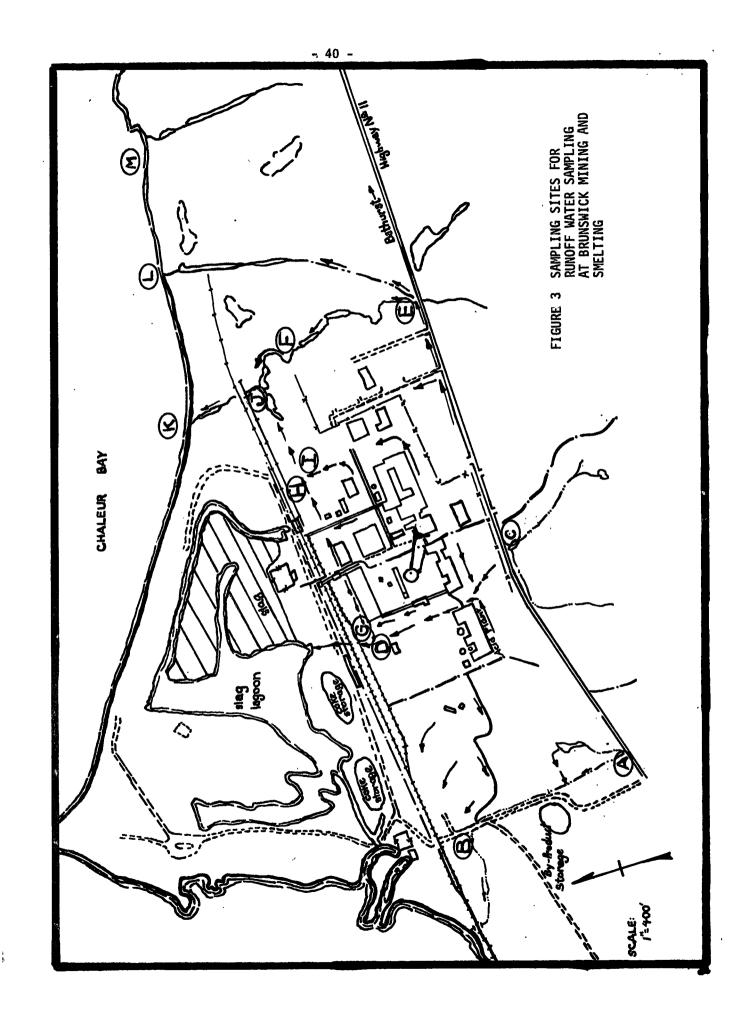
Brunswick Mining and Smelting operates a lead smelter, refinery and sulfuric acid plant at Belledune, New Brunswick bordering on the Baie des Chaleurs approximately 22 miles northwest of the city of Bathurst. In 1971 it was converted from a lead-zinc smelter to a facility treating lead concentrate only. The lead concentrate processed at the smelter comes from either Brunswick Mining and Smelting's No. 12 mine or Noranda's Horne mine in Quebec. The percentages of lead, zinc and cadmium are 38%, 10% and 0.14% respectively for Brunswick's No. 12 concentrates and 38%, 10% and 0.02% for Noranda's Horne concentrates.

The nominal annual capacity of the facility is 60,000 tons of refined lead, 120,000 tons of sulfuric acid, 2.5 million ounces of doré metal, 4,000 tons of

ì

copper metal and 600 tons of cadmium enriched smelter dust. Small amounts of bismuth, bismuth-lead alloys and lead-antimony alloys are also produced. The operations of the plant have been described by Dugdale and Young (1975) and Sergeant and Westlake (1980).

The main sources of cadmium emissions to the environment are air discharges (3,000 kg/year), process water effluent (1,000 kg/year) and surface water runoff (30 kg/year). Other possible sources of cadmium entering the environment are the rotary car dump facility where No. 12 mine concentrates are unloaded and the unloading, in the harbour, of Horne mine concentrates.


Monitoring surveys of plant operations are conducted regularly by EPS, Atlantic, Environment New Brunswick and Brunswick Mining and Smelting. Typical final effluent values obtained from these surveys are listed in Table 16 and range from 0.25-2.0 mg Cd/l. The estimated final effluent volume is 3500 IGPM. In some instances dissolved cadmium values exceed total concentrations; these discrepancies may be due to differing sampling and analytical techniques. Sampling sites and results of a 1979 spring runoff water sampling program conducted by Brunswick Mining and Smelting are given in Figure 3 and Table 17 respectively.

Ecological surveys have been conducted by the Noranda Research Centre for Brunswick Mining and Smelting on an annual basis since 1972. The surveys include biological, chemical and physical investigations pertinent to the assesment of the impact of the lead smelter operations on the marine ecosystem. Annual benthic

- 38 -

TABLE 16	CADMIUM CONTENT IN FINAL EFFLUENT, BRUNSH	VICK
	MINING AND SMELTING.	

DATE	PARAMETER	CADMIUM CONCENTRATION (mg/l)
March 16, 1976	Total cadmium	0.86
August 25, 1977	11 11	0.25
September 26, 1978	18 10	1.6
September 28, 1978	u u .	0.72
September 26, 1978	Dissolved cadmium	0.91
September 28, 1978	U 14	2.0

DATE	WEATHER CONDITIONS	SAMPLING STATIONS	CADMIUM (mg/1)
April 23, 1979	Spring runoff	A	0.0029
			0.0062
		B C	0.0089
		D	0.39
		Ε	0.0016
		F	0.0086
		G	16.
		Ĥ	4.5
		I	0.66
	•	J	0.50
		ĸ	0.86
		L	0.0024
		Μ	-
May 3, 1979	During rain - one	Α	0.0041
-	hour after rain	В	0.35
	began	C	0.20
	-	D	1.9
		E	0.0031
		F	0.010
		G	23.
•		H	3.5
		I	3.1
		J	1.7
		K	0.69
		L	0.0031
		M	0.0028
May 11, 1979	One hour after	Α	0.0025
•	rain stopped	В	0.0030
		C .D	0.0095
•			0.27
		E	0.0020
		F	0.0030
		G	0.86
		H	0.83
		I	0.48
		J	0.76
		K	0.28
		L	0.0043
		M	0.0039

•

.

TABLE 17CADMIUM CONTENT IN 1979 SPRING RUNOFF WATER,
BRUNSWICK MINING AND SMELTING

.

-

1 **•**

1.7

/* -, ,

1.1

,**1**_____;

÷ ۲

r , |

4 .

• •

.

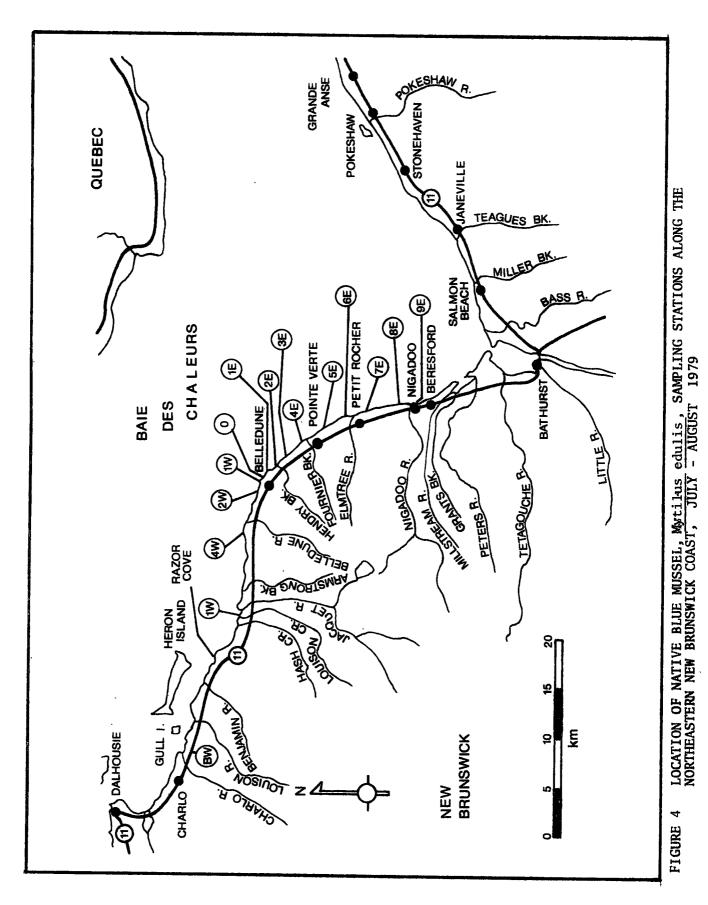
17. 1. j

1 6

ĺ

¥

surveys in the same area have been conducted by Beak Consultants Limited.


The latest Noranda study (Levaque Charron, 1979) utilizes native blue mussels, <u>Mytilus edulis</u>, winter flounder, <u>Pseudopleuronectes americanus</u> and american lobster, <u>Homarus americanus</u> as the main biological specimens. Samples of each species were collected at varying distances from the plant and analyzed for heavy metal content. The heavy metals analyzed included copper, lead, zinc, cadmium, arsenic and mercury.

BLUE MUSSEL STUDY

In addition to cadmium concentration in native blue mussel colonies located along the coast at varying distances from the smelter site, concentrations in surrounding sediment and seawater were also determined. Station locations are shown in Figure 4 and results detailed in Table 18. The data for the mussels indicate that cadmium levels were well above the Canadian Food and Drug Directorate (CFDD) limit of 1 ppm at all stations from the lagoon to station 8E (21 km downstream). Levels at all stations were similar to or higher than previous years. Levels are presented graphically along with 1977 and 1978 results in Figure 5. Cadmium levels in sediments were similar in pattern to those in mussels but there was less correlation between cadmium in water and mussels.

Additional studies on bioaccumulation and detoxification in blue mussels were also performed. The rate of heavy metal accumulation was determined from analysis of mussels relocated from an uncontaminated to a contaminated site. Conversely the rate of detoxification

- 42 -

TABLE 18CADMIUM LEVELS IN NATIVE BLUE MUSSELS, Mytilus edulis AND SURROUNDING SEDIMENT AND WATER SAMPL ALONG THE NORTHEASTERN COAST OF NEW BRUNSWICK, JULY - AUGUST, 1979	ED
--	----

SAMPLE	DISTANCE	NO.OF		CADMIUM	PPM	
LOCATION	FROM PLANT (km)	SPEC IMENS (MUSSELS ONLY)	MUSSELS	SEDIMENT	WAT TOTAL L	ER DISSOLVED
0.11	20	197	0.6	0.9	0.001	<0.001
8W	30	197	0.0	0.5	0.001	
Razor		459	0.5			
Cove	10	459 170	0.8	<0.1	<0.001	<0.001
7 W	19		1.0	<0.1	<0.001	<0.001
4W	6	211		1.01	<0.001	<0.001
2W	1		2.2		10.001	100.001
1W ^a	0.3	80	26 .8a		0.002	0.002
0	0	252	67	15	0.010	0.010
2E	3	263	21.3			
2Ea		375	21.5	23	0.002	0.002
3E	4	199	11.3	40	<0.001	<0.001
3Ea	•	305	16.2 ^a	13		
4E	5	185	11.6			
4Ea	-	100	17.0 ^a	12	<0.001	<0.001
5E	8	294	4.3	3	0.002	0.001
6E	13	114	3.3	0.5	<0.001	<0.001
7E	16	219	2.4	1.7	<0.001	<0.001
8E ^a	21	264	2.0 ^a	0.4	0.001	0.001
9E	27	30	1.6	0.1	<0.001	<0.001
9E ^a		207	1.5 ^a			
Stone-						
haven	?	233	1.6	<0.1	0.001	<0.001

a Offshore samples and values.

.

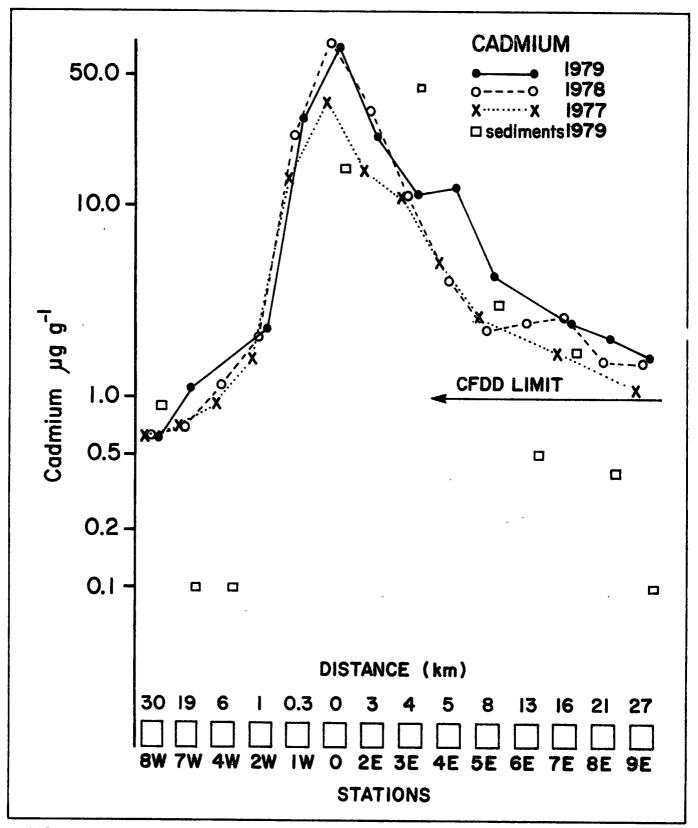


FIGURE 5 CADMIUM CONCENTRATION IN NATIVE BLUE MUSSELS, Mytilus edulis, COLLECTED ALONG THE NORTHEASTERN NEW BRUNSWICK COAST IN 1977, 1978 AND 1979

1

was determined by relocating mussels from a contaminated to an uncontaminated site. Results of the detoxification experiment reveal little change in cadmium levels since their relocation in 1978, indicating that little if any detoxification occurred. The results of the uptake study, by contrast, indicated an accumulation rate of 1-7 ppm in less than sixty days.

WINTER FLOUNDER STUDY

A study was initiated to assess the bioaccumulation of heavy metals in winter flounder, a bottom dwelling, fish eating invertebrate. Results given in Table 19 indicate that all metals were below the 1 ppm CFDD limit and that all levels are similar to previous years. In addition, levels in flounder at all three sites sampled (lagoon, harbour and distant site) were similar.

LOBSTER STUDY

A total of forty-three lobsters from the harbour, lagoon and a distant site were analyzed for cadmium. Telson flesh and tomalleys of all specimens were collected as well as the claw shells of the lagoon and distant site lobsters. Ranges and mean of cadmium levels are given in Table 20. Results show cadmium levels in the flesh of the harbour lobsters were lower than those in the lagoon. However, both harbour and lagoon values were higher than those for distant site lobsters. Some 58% of the levels in the harbour and 100% in the lagoon were higher than the CFDD limit. Results in 1979 were

TABLE 19RANGES AND MEANS OF CADMIUM LEVELS (ppm WET WEIGHT)
IN WINTER FLOUNDER, Pseudopleuronectes americanus,
COLLECTED IN BELLEDUNE HARBOUR, LAGOON AND AT A
DISTANT SITE, 1974-1979

, ^{*} . 1

1 ¥

1

I.

۲' ۱

. |

ł

١

3 | _1

· 1

LOCATION	NO.OF SAMPLES	YEAR	CADMIUM RANGE	MEAN
HARBOUR	4	1974	0.03-<0.10	0.07
	11	1975	<0.10-<0.20	0.10
	12	1976	<0.10-<0.10	<0.10
	9	1977	<0.10- 0.10	<0.10
	20	1979	<0.10- 0.30	0.2
LAGOON	. 1	1974	<0.10	<0.1
	12	1975	0.11- 0.46	0.2
	9	1976	<0.10-<0.10	<0.1
	9	1977	<0.10-<0.10	<0.1
	20	1979	<0.10- 0.5	0.2
DISTANT	-	1974		
SITE	9	1975	<0.10-<0.10	<0.10
	9	1976	<0.10-<0.10	<0.10
	10	1977	<0.03-<0.04	<0.3
	12	1979	<0.01- 0.50	0.1

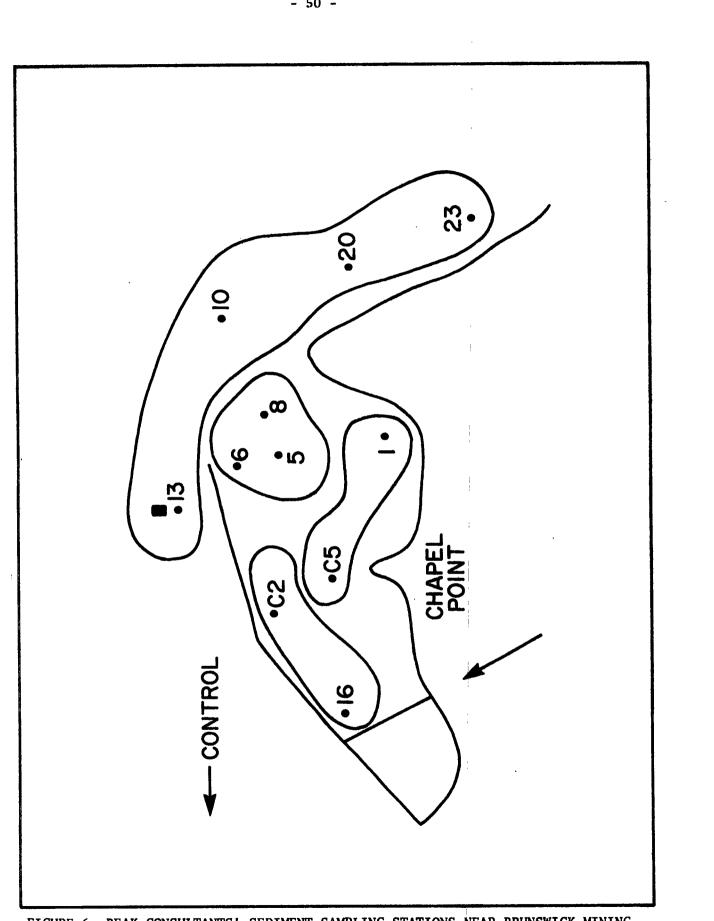
RANGES AND MEANS OF CADMIUM LEVELS (ppm WET WEIGHT) IN AMERICAN LOBSTER, Homarus americanus, COLLECTED IN BELLEDUNE HARBOUR, LAGOON AND AT A DISTANT SITE, 1974-1979 TABLE 20

LOCATION	NO.OF SAMPLES	YEAR	LOBSTER FLE	SH Mean	TOMALLE RANGE	Y MEAN	CLAW SHELL RANGE MEAN
	F ^a T ^b S	с					
HARBOUR	15	1974	0.06	0.06			
	8	1975	0.18-0.86	0.4			
	5	1976	0.22-1.11	0.6			
	30	1977	0.10-3.6	0.46			
	10	1978	0.26-4.08	1.46			
	28 28	1979	0.4 -11.0	2.7	5-342	88.4	
LAGOON	9	1974	0.06-0.23	0.19			
	6	1975	0.16-0.20	0.18			
	3	1976	0.79-1.24	0 .9 6			
	11	1977	0.1 -4.49	1.15			
	-	1978	-	-			
	15 15 10	1979	3.0 -10.0	5.4	18-392	108.0	3-9 5.0
DISTANT	2	1974	0.1 -0.5	0.3			
SITE	8	1975	<0.1	<0.1			
	4	1976	0.08-0.10	0.09			
	8	1977	<0.02-0.13	0.07			
	7	1978	0.21-3.64	0.88			
	222	1979	0.2	0.2	2.0	2.0	2-3 2.5

t

a F = Flesh b T = Tomalley c S = Shell

STATION	CADMIU	M	% WATE	R	% L	. I. O.
	1977	1979	1977	1979	1977	1979
16	80	122	a	58	a	8.9
C-2	25	190	· · · · · · · · · · · · · · · · · · ·	74		12.0
C-5	26	20	'	33		3.5
1	29	22		31		5.1
6	10	6	۲	37		5.5
5	18 ;	35	,	42		5.4
8.	14	13		35		4.9
13	0.6	2		38	· · ·	4.6
10	5	5	. ,	34		3.8
20		<0.1		21		2.2
23		<0.1		24	на в 1	2.1
CONTROL		<0.2		35	· ·	4.3


TABLE 21CADMIUM LEVELS (ppm DRY WEIGHT) IN SEDIMENTS
COLLECTED IN BELLEDUNE HARBOUR DURING BEAK
CONSULTANTS BENTHIC SURVEY

a = Not determined in 1977.

r L

5

.<u>1</u>.,

BEAK CONSULTANTS' SEDIMENT SAMPLING STATIONS NEAR BRUNSWICK MINING FIGURE 6 AND SMELTING, BELLEDUNE, NEW BRUNSWICK.

1

-İ

2

ŀ

i.

higher than previous years in both the harbour and lagoon. Cadmium levels in tomalleys from all three sites were all above the CFDD limit; mean levels in the harbour and lagoon were 45 and 55 times higher than at a distant site. In the claw shell, cadmium was above the CFDD limit for both the lagoon and distant site.

SEDIMENT STUDY

11

2.5

ł

1

Results of cadmium analysis of sediments collected during Beak Consultants benthic survey are given in Table 21. The two stations most contaminated by cadmium were 16 and C-2 (see Figure 6). Site C-2 in 1979 was considered to likely represent an area of concentrate spillage from the wharf.

3.1.2 Industrial Effluent Data

There is no regulation of cadmium in industrial effluents other than the 1.5 mg/l guideline for the metal finishing industry issued under Section 33.2 of the Fisheries Act. EPS, Atlantic monitors cadmium concentration in selected industrial effluents on a regular basis. Tables 22 and 23 list values obtained for final effluents of operations surveyed in Nova Scotia and New Brunswick respectively over the 1976-1979 sampling period. Also included in these two tables is information describing effluent volume and industry type.

INDUSTRIES
SCOTIA
- NOVA
G
EFFLUENTS OF NOVA SCOTIA 1
T IN FINAL
IN
CONTENT
CADMIUM CONTENI
TABLE 22

ł

.

INDUSTRY NAME AND LOCATION	INDUSTRIAL CLASSIFICATION	EFFLUENT S VOLUME (10 ⁶ 1/day)	SAMPLING DATE(S)	NO. OF SAMPLES	CADMIUM CONCENTRATION RANGE (mg/l)	AVERAGE CADMIUM CONCENTRATION (mg/1)
Atlantic Hardchrome and Crankshaft Rebuilders Limited Dartmouth	¥ .	1	Feb ./76-Aug ./79	4	0 .001-0 .02	0.0
Atlantic Industries (N.B.) Limited, Galvanizing Division Amherst	×	.008	Aug.15, 1978	m	<0.01-0.04	- 52 - 80°0
Hermes Electronics Limited Dartmouth	A	.001- .003	June 15, 1978	T	N/A ^a	0 .006
IMP-Aerospace (ElectropTating Operation) Enfield	¥	.0008- .002	June 18, 1979		N/A	0 .85
Zenith Plating (Maritime) Limited Dartmouth	¥		Aug ./76-June/79	4	<0.001-0.001	<0.001
Bowaters Mersey Paper Company Limited Liverpool	U	20.5	May 31, 1977	ω	0.001-0.003	0.002

<u>.</u>....

Cont'd

INDUSTRY NAME AND LOCATION	INDUSTRIAL CLASSIFICATION	EFFLUENT S VOLUME (10 ⁶ 1/day)	SAMPLING DATE(S)	NO. OF SAMPLES	CADMIUM CONCENTRATION RANGE (mg/l)	AVERAGE CADMIUM CONCENTRATION (mg/l)
Canadian Keyes Fibre Hantsport	υ	0.75	Sept ./76-Dec ./77	Q	0 .001-0 .003	0 .002
Minas Basin Pulp and Paper Hantsport	U	60° 6	Sept ./76-Dec ./77	7	0.001-0.003	0 .002
Nova Scotia Forest Industries Point Tupper	U	22.7	Sept ./76-July/77	б	0.001-0.004	- 53 - 200.0
Scott Maritimes Pulp Limited Abercrombie	υ	21.8	July/76-Jan ./78	7	0.001-0.003	0 .002
Crossley Karastan Carpet Mills Limited Truro	D	1.6	March 14, 1978		N/A	0.001
Stanfield's Limited Truro	Q	ł	March 14, 1978	Ч	N/A	0.008
United Elastics Limited Bridgetown	G	ı	Oct. 11, 1978	5	0.070-0.10	080.0

TABLE 22 (Cont'd)

- - '

1

-

- 53 -

Cont'd

l

INDUSTRY NAME AND LOCATION	INDUSTRIAL CLASSIFICATION	EFFLUENT S VOLUME (10 ⁶ 1/day)	SAMPLING DATE(s)	NO. OF SAMPLES	CADMIUM CONCENTRATION RANGE (mg/l)	AVERAGE CADMIUM CONCENTRATION (mg/l)
ACA Co-operative New Minas	ш	0.61	July 19, 1978	r i	N/A	0.001
Hostess Foods Products Limited New Minas	ш	0.18	July 19, 1978	1	N/A	0.001
M.W. Graves Limited Berwick	ω	3.0	July 18, 1978	 1	N/A	- 54 · E00° 0
Gulf Oil Refinery Point Tupper	L.	15	July/77-April/79	ę	0.001-0.006	0 .003
Imperial Oil Limited Dartmouth	L	15	March 28, 1978	2	0.001-0.050	0.030
Michelin Tire Limited Bridgewater	IJ	ъ	Sept ./77-July/78	4	0.001-0.02	0.007
Michelin Tire Limited Granton	5	1.9	Dec ./76-Jan ./77	~	0.001-0.04	0.02

a Not Applicable.

I

TABLE 22 (Cont'd)

1) 1

+

ł

-

INDUSTRIES
IT IN FINAL EFFLUENTS OF NEW BRUNSWICK INDUSTRIES
NEW
Ч
EFFLUENTS
FINAL
N
I CONTENT
CADMIUM
TABLE 23

--'l

i

i i

, , _____

- 29

- --**^3**

· · ·

<u>}</u>,

•

:

- ·

INDUSTRY NAME AND LOCATION	INDUSTRIAL CLASSIFICATION	EFFLUENT S VOLUME (10 ⁶ 1/day)	SAMPLING DATE(S)	NO. OF SAMPLES	CADMIUM CONCENTRATION RANGE (mg/l)	AVERAGE CADMIUM CONCENTRATION (mg/l)
Square D Company of Canada Limited Edmundston	A	0.012	Sept. 15/78	-	N/A ^a	<0.01
Brunswick Mining and Smelting Corporation Limited-Brunswick No.6 Mine - Bathurst	æ	3.0	Dec./77-July/79	े प े	0.001-0.010	- 55 900-0
Brunswick Mining and Smelting Corporation Limited-Brunswick No.12 Mine - Bathurst	æ	13.1	May/78-Jul}y/79	ю	0.001-0.010	0.007
Heathe Steele Mines Newcastle	В	15.4	July/77-0ct./78	Q	0.001-0.010	0.003
Consolidated Durham	в					<0.01
New Brunswick International Pulp and Paper Dalhousie	υ	8. [7	March 30/76	m	0.001	0.001
St. Anne Nackawick Nackawick	U	i	4	I	ı	<0.01

Cont'd

- 55 -

INDUSTRY NAME AND LOCATION	INDUSTRIAL CLASSIFICATION	EFFLUENT S VOLUME (10 ⁶ 1/day)	SAMPLING DATE(s))	NO. OF SAMPLES	CADMIUM CONCENTRATION RANGE (mg/1)	AVERAGE CADMIUM CONCENTRATION (mg/l)
Lyon Industries	Q	I	1	ł	3	0.02
Chippin Brothers Limited Fredericton	ш	·	ı	8	0.01-0.0	0.03
McCain Foods Limited Florenceville	ш	12.3	Feb. 21/78	1	N/A	0.003
McCain Foods Limited Grand Falls	ш	3 .02	Feb. 21/78	1	N/A	0.003
Irving Oil Refinery Saint John	Ŀ	ı	Nov ./76-Mar ./78	۳	all 0.009	600° 0
Belledune Fertilizer Limited Belledune	5	13 . 0	Jan ./76-Sept ./78	す	0.07-1.6	0.50
Canadian Industries Limited Dalhousie	I	.64	Nov. 29/78	-	N/A	0.070

a Not applicable.

TABLE 23 Cont'd

•

- 56 -

Industrial classification is indicated by the following notations:

- A electroplating
- B base metal mining
- C pulp and paper
- D textiles
- E foods

(1, 1)

- F oil refining
- G tire manufacture
- H fertilizer manufacture
- I chemical manufacture

Concentrations reported are for total cadmium unless otherwise indicated. All analytical measurements were conducted by the EPS Atlantic laboratory utilizing atomic absorption spectroscopy. In most instances samples were directly aspirated, but in some cases pre-extraction with methyl iso-butyl ketone was employed.

Perusal of the data indicates that the cadmium content of the majority of effluents is less than 0.1 mg/l. The only industries exceeding this level are IMP-Aerospace, Enfield, Nova Scotia and Belledune Fertilizer, Belledune, New Brunswick.

IMP Aerospace operates an electroplating facility at the Halifax International Airport to assist in aircraft maintenance. Some 800-2400 litres of effluent per day are estimated to be discharged from the plant in a non-continuous manner. Effluent treatment consists of disposal to a dry well on the plant confines. The limited

information on this final effluent suggests a significant cadmium content (0.85 mg/l), probably due to cadmium impurities in the plating metals used.

Belledune Fertilizer Ltd., located adjacent to Brunswick Mining and Smelting Corporation Limited, Smelting Division, uses the sulfuric acid produced at the smelter to convert imported, east coast (Florida) phosphate rock into diammonium phosphate fertilizer. The sulfuric acid is produced at the smelter from sulfur dioxide and surfur trioxide which is released during the sintering process. The SO $_2$ and SO $_3$ may be contaminated with cadmium volatilized during the same process, resulting in a significant cadmium content in the sulfuric acid. This, coupled with the fact that phosphate ores, used in the manufacture of fertilizer, may contain as much as 130 ppm cadmium (Reuss et. al., 1978) may possibly explain the elevated cadmium levels in the effluent. Cadmium levels as high as 1.6 mg/l have been recorded for the discharge water which has a flow rate of approximately 2,000 IGPM. Surface and non-process water runoff may also be significant sources of cadmium released to the environment in the area.

Industries in Prince Edward Island and Newfoundland have not been tabulated as cadmium has not been an analytical parameter in industrial monitoring programs conducted in these provinces.

Tables 24 and 25 incorporate recently published data for operating coal mining and beneficiation facilities in Nova Scotia and New Brunswick (EPS, 1979). The values recorded are for mine water drainage which, in large part, may represent rain water runoff. CADMIUM CONTENT IN THE DRAINAGE WATERS OF NOVA SCOTIA COAL MINING AND BENEFICIATION FACILITIES TABLE 24

•

· · ·

.

ł

, . .

.

'__

•

.

MINE NAME AND LOCATION	EFFLUENT Volume	SAMPLING DATE(S)	NO. OF SAMPLES	CADMIUM CONCENTRATION RANGE (mg/l)	AVERAGE CADMIUM CONCENTRATION (mg/l)
Devco A-1 Colliery Dominion	I	June/77-Aug ./77	ъ	0.02 -0.04	0.03
Devco No. 26 Colliery Glace Bay	ı	June/77-Feb ./78	7	0.007-0.05	0.02
Devco Lingan Coal Colliery Lingan	320 l/min.	June/77-Feb ./78	12	0.003-0.05	0.02
Devco Prince Mine Point Aconi	-135 1/min.	June/77-Feb ./78	10	0.004-0.04	0.02
Devco Princess Coal Wash Plant Sydney Mines	250,000 1 2/week	June/77-Feb ./78	ŋ	0.002-0.05	0 °008
Devco Victoria Junction Coal Wash Plant - Sydney	~1500 1/min.	June/77-Aug ./77	٢	0.004-0.03	0.02
Evans Coal Mine St. Rose	180 1/min. 4 hrs/day	June, 1977	5	0.03 -0.03	0 .03

Cont'd

0
CONT'
24
TABLE

MINE NAME AND LOCATION	EFFLUENT VOLUME	SAMPLING DATE(s)	NO. OF SAMPLES	CADMIUM CONCENTRATION RANGE (mg/l)	AVERAGE CADMIUM CONCENTRATION (mg/1)
Brogan Brothers West Strip Mine Point Aconi	3	June/77-Feb ./78	7	0.002-0.04	0 .020
Brogan Brothers East Strip Mine Point Aconi	ı	I	L	0.001-1.4	0.22
Stellarton Coal Wash Plant Stellarton	I .	June/77-Ju1y/77	~	0.01-0.04	0.03

	N FACILITIES
VT IN THE DRAINAGE WATERS OF	MINING AND BENEFICIATIO
CADMIUM CONTENT IN	NEW BRUNSWICK COAL N
TABLE 25	

ľ

+

ł

1

3.2 Cadmium in Water

3.2.1 Water Quality Data

The computerized National Water Quality Data Bank (NAQUADAT) is a repository of national water quality information including data on the cadmium content of surface and groundwaters in the Atlantic Provinces. This sytem has been functional since 1969 and includes values dating back to 1961. Atlantic regional data has originated, for the most part, from monitoring programs of the Inland Waters Directorate, however, information from water quality surveys conducted by the Environmental Protection Service is also incorporated into this data base.

The results of a NAQUADAT search for cadmium concentrations in water over the 1975-80 period are summarized in Tables 26-29. Although the time frame was limited to five years, this was adequate to ensure representative values for the majority of sampling stations in the Atlantic Provinces. Most of these values (90-95%) are less than the analytical detection limit (0.001 mg/l) and, consequently, only measurements above this value have been tabulated.

On the basis of NAQUADAT information, there is no indication of unduly high cadmium levels in the surveyed waterways.

The Canada-U.S. Committee on the St. John River Basin has prepared a report (Anon, 1979) on water quality conditions in the international section of this waterway and the relationship of those conditions to proposed water quality objectives. These data have been stored on

STATION		NUMBER OF MEASUREMENTS	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION		MEASUREMENTS	CADMIUM CONCENTRATION (mg/1)	NUMBER OF MEASUREMENTS
Ste.Geneviere R. near Forresters Point	00NF02YA001	2	-	-
Torrent R. at Bristol's Pool Point	00NF02YC0001	3	-	-
Harry's R. at Black Duck	00NF02YJ0001	5	-	-
Grand Lake discharge canal	00NF02YK0001	1	-	-
Upper Humber R. near Reidville	00NF02YL0001	2	-	-
Indian Brook near Springdale, Green Bay district	00NF02YM0001	5	-	-
Exploits R. at Grand Falls	00NF02Y00001	5	-	-
Gander R. near Glenwood	00NF02YQ0001	2	-	-
Terra Nova R. at Terra Nova	00NF02YS0001	2	-	-
Isle aux Morts R. at Isle aux Morts	00NF02ZB0001	3	-	-
Garnish R. near Garnish	00NF02ZG0016	1	-	-
Pipers Hole R. at Mothers Brook	00NF02ZH0001	3	-	-
Come By Chance R. near Goobies	00NF02ZH0009	2	-	-
Rocky R. at Hwy 6 bridge at Colinet	00NF02ZK0001	6	-	-
Northeast Pond R. near Portugal Cove	00NF02ZM0002	1	-	-

TABLE 26 CADMIUM WATER QUALITY DATA - NEWFOUNDLAND, 1975-1980 (NAQUADAT, 1980)

1*

, r

- 1

I

÷,

;

ł

STATION DESCRIPTION	CODE	NUMBER OF MEASUREMENTS	VALUES AT OR A DETECTION LIMI	BOVE T (0.001 mg/1)
		PILASURLINENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Mill R. at WSC guage in Bloomfield Park north of St. Anthony	00PE01CA001	8	.001	1
Carruthers Brook (Mill R.) 7.5 km west of St. Anthony at Hwy 143 bridge	00PE01CA0002	6	.001	2
Dunk R. at road bridge 5.5 km east of Central Bedeque, Prince Co.	00PE01CB0001	2	-	-
Dunk R. at Hwy 231 bridge Breadalbane, Prince Co.	00PE01CB0005	5	.002	1
North (Yorke) R. at Hwy 246 bridge Milton Station, Queen's Co.	00PE01CC0002	5	.001	1
West (Eliot) R. from Hwy 13 culvert, Brookvale, Queen's Co.	00PE01CC0036	5	.001	1
West (Eliot) R.at Crosbys Mill about 1 km north of Bonshaw	00PE01CC0037	6	.001	1
Winter R. at bridge behind Union Pumping Station, Queen's Co.	00PE01CC0039	3	.001	2

TABLE 27CADMIUM WATER QUALITY DATA - PRINCE EDWARD ISLAND,
1975-1980 (NAQUADAT, 1980)

Cont'd

TABLE 27 CONT'D

.

: : :

. I

.

1

1

1

STATION DESCRIPTION	CODE	NUMBER OF MEASUREMENTS	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
		PICAJOKLPICN 13	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Morell R. from road bridge 1 km west of Bangor, Kings Co.	00PE01C00003	7	.001	1
Boughton R. from road bridge about 1.5 km north of Bridgetown	00PE01C00018	1	-	-
West branch Morell R. 2 km below Pisquid Pond at Hwy 320 bridge, Kings Co.	00PE01C00022	3	.001	-
Brudenell R.1 km below Hwy 4 bridge at WSC guage, Kings Co.	00PE01CE0001	1	-	-
Marchbanks Pond on the Wilmot R. above Hwy 110 bridge, Wilmot Valley	01PE01CB0001	7	-	-
Montague R. above Hwy 320 bridge, Victoria Cross, Victoria Co.	01PE01CE0001	2	-	-

STATION		NUMBER OF	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Annapolis R. at bridge 650 m south of Hwy 1, Wilmot Station	00N S01DC0001	2	-	-
Annapolis R. at Hwy 10 bridge, Middleton, Annapolis Co.	00NS01DC0028	8	.001	2
Annapolis R. at Paradise from Hwy bridge, Annapolis Co.	00N S01DC0083	3	-	-
Annapolis R. 2 km east of Aylesford at Dalhousie Rd., Kings Co.	00N SO 1DC0084	4	.001	1
Sharpe Brook 3.6 km south of Hwy 1 at Cambridge Station, Lloyds	00N S01DD 0002	4	-	-
Avon R. at Hwy bridge north of Windsor Forks, Hants Co.	00NS01DE0012	3	-	-
Stewiacke R. at Hwy 336 bridge, Eastville, Colchester Co.	00NS01DG0001	3	-	-
Shubenacadie R. at Hwy 2 bridge, Enfield, Hants Co.	00N SO 1 DG 0002	3	.002	1

 TABLE 28
 CADMIUM WATER QUALITY DATA - NOVA SCOTIA, 1975-1980 (NAQUADAT, 1980)

- 66 -

,

1.

í

}

| | |}

÷

1

{

I

}

STATION		NUMBER OF	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Shubenacadie R. 400 m above Nine Mile R., Hants Co.	00NS01DG0008	10	.002	1
Gays R. at bridge below South Gays R., Halifax Co.	00N S01DG0011	9	.001	2
Gays R. 2.1 km below Egmont Lake at road bridge, Halifax Co.	00NS01DG0021	8	.001	1
Cook Brook at	00NS01DG0022	8	.002	1
bridge 600 m above Ervin Brook, Cook Brook, Halifax Co.			.001	1
Fraser Brook at WSC guage, Archibauld, Colchester Co.	00NS01DH0012	3	-	-
Salmon R. at Hwy bridge, Truro, Colchester Co.	00N S01DH0020) 4	-	-
Salmon R. at old Hwy 4 bridge, Kempton, Colchester Co.	00N S01DH0027	3	-	-
East Brook at Maccan R. at Hwy 302 bridge, South- hampton, Cumberland Co.	OONSO1DLOO7	6	.001	· 1

TABLE 28 CONT'D

í

		NUMBER OF	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Kelley R. at Nine Mine Ford Game Sanctuary, Cumberland Co.	00NS01DL0007	2	-	-
Maccan R. at Hwy 2 bridge, Southampton Cumberland Co.	00N S01DL0010	6	.001	1
Wallace R. at Wentworth Centre, Cumberland Co.	00N SO 1 DN 000 1	5	-	-
River Philip at Hwy 204 bridge, Oxford, Cumberland Co.	00N S01DN0002	4	-	-
River Philip at TCH bridge, Oxford, Cumberland Co.	00NS01DN0010	4	-	-
Middle R. at bridge near Hwy 289, Rocklin, Pictou Co.	00NS01DP0001	3	-	-
East R. (west branch) at bridge, Hopewell, Pictou Co.	00NS01DP0008	3	.001	1
Mersey R. at outlet of George Lake, Eel Weir, Queen's Co.	00N S01ED0001	3	-	-
Mersey R. below Mill Falls SW of Maitland Bridge	00NS01ED0005	4	' -	-

Cont'd

.

TABLE 28 CONT'D

1.17

ļ

.

È i

ł

۱

;

1

 $\frac{1}{1}$

1

с • 1 3

1.

STATION DESCRIPTION	CODE	NUMBER OF MEASUREMENTS	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION			CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Mersey R. at upper Hwy bridge, Potanook, Queen's Co.	00NS01ED0020	4	-	-
Medway R. at bridge, Charleston, Queen's Co.	00N SO 1EE0001	9		-
Medway R. at outlet of Eel Lake, Harmony Mills	00N S01EE0003	. 4	-	-
LaHave R. at West Northfield R. on Brown Road	00NS01EE0002	1	-	-
LaHave R. at Hwy 10 bridge, Cookville, Lunenburg Co.	00NS01EF0003	6	.002	1
LaHave R. at Hwy 10 bridge, Meisners, Lunenburg Co.	00NS01EF0013	5	.001	1
North LaHave R. at Hwy bridge, 2.2 km SE Maplewood, Lunenburg Co.	00NS01EF0014	4	.001	1
Gold R. at bridge 300 m east of Hwy 12, New Ross, Lunenburg Co.	00N SO 1E G0005	2	-	-
Gold R. at Hwy 103 bridge, Chester Basin, Lunenburg Co.	00NS01EG0006	2	-	-

- 69 -

Cont'd

27. MAR 212, 1941 - 10

6884 8 1 8 ve.u

TABLE 28 CONT'D

~

٠

÷

1

;

ł

ł

STATION		NUMBER OF	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Sackville R. at Hwy 1 bridge, Bedford, Halifax Co.	OONSO1EJOOO1	3	-	-
Musquodoboit R. at Hwy 7, Musquodoboit Hbr., Halifax Co.	00NS01EK0007	2	-	-
West R. Sheet Hbr. at Hwy 7 bridge, Halifax Co.	00NS01EM0002	3	-	-
Liscomb R. at Hwy 7 bridge, Liscomb Mills, Guysborough Co.	00NS01EN0002	2	-	-
St. Mary's R. at Hwy 7 bridge, Stillwater	00N SO 1E00001	5	-	-
Northeast Margaree R. at bridge, Margaree Valley	00NS01FB0001	9	-	- .
April Brook 250 m above Hwy bridge, Gillisdale	00NS01FB0005	5 6	.001	2
Southwest Margaree R. at bridge above Upper Margaree	00N S01F B0011	L 8	.001	1
Cheticamp R. above Robert Brook at park campground	00N S01F C0004	4 3	-	-

Cont'd

TABLE 28 CONT'D

. -

.

1

. I

-

ţ

1

Τ.,

STATION DESCRIPTION CODE		NUMBER OF	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
		MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Clyburn Brook at Cabot Trail, Ingonish Centre, Victoria Co.	00NS01FD0003	2	-	-
Wreck Cove Brook at Cabot Trail, Wreck Cove, Victoria Co.	00NS01FD0007	4	-	-
Ingonish R. at South Ingonish Hbr., 360 m above Cabot Trail	00N SO 1F D0008	3	.001	1
Indian Brook at Cabot Trail, Indian Brook	00NS01FE0001	4	-	-
Grand R. at bridge at outlet of Loch Lomond	00NS01FH001	4	.002 .003	1 1
Unnamed Stream from Munroe Lake at bridge at northern tip of Lake Uist	00NS01FH0002	8	.001 .002 .003	1 1 1
Salmon R. at Salmon R. bridge, Cape Breton Co.	00NS01FJ0001	3	-	-
Gracie Brook north at road bridge on west edge of Lingan Mine property	00NS01FJ0011	8	.001 .002 .004	1 2 1

Cont'd

TABLE 28 CONT'D

STATION	CODE	NUMBER OF MEASUREMENTS	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION		MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Sydney Mines pond outlet into Lloyd Cove north of Hwy, Sydney Mines	00NS01FJ0012	8	.001 .002 .003 .014	1 3 1 1
Devco Mines Brook to Morrison Pond 40 m north of road on west side of property	00NS01FJ0013	8	.001 .004 .007	2 1 1
Devco Mines Brook 50 m east of road bridge north of McCreadyville	00NS01FJ0014	8	.001 .005	1 1
Falls Lake at bridge 700 m west of Hwy 14, Vaughan, Hants Co.	00N S01DE0001	4	.001	1
Middle R. at dam, Granton, Pictou Co.	01NS01DP0001	3	-	-
Rossignol Lake at Upper Falls Dam (NSPC1), Queens Co.	01NS01ED0032	2	-	-
Enon Lake east side 200 m north of mine effluent drainage pipe	01NS01FH0001	5	.002 .001 .003	1 1 1
LaHave R. estuary at Bridgewater, .6 mile upstream of Hwy 3 bridge about 150 m below Michelin outfall Lunenburg Co.	02NS01EF0002	1	.002	1
Shubenacadie R. in Shubenacadie from old Hwy 2 bridge, Colchester Co.	00N S01DG0001	8	.001	1

.

STATION	CODE	NUMBER OF MEASUREMENTS	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
			CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Saint John R. at Clair, at bridge boundary plaque	00NB01AD0001	33	-	-
Saint John R. at Hwy bridge, Edmundston	00NB01AD0008	2	-	-
St. Francis R. above mouth at picnic site, Madawaska Co.	00NB01AD0013	26	.001 .002	1 3
Madawaska R. 9.7 km NW of St. Jacques at Quebec border	00NB01AD0013	30	.002	1
Madawaska R. at power plant tailrace, Edmundston	00NB01AD0016	18	.001 .002	2 2
Saint John R. from centre of inter- national bridge, St. Leonard	00NB01AF0002	26	.001 .002	2 1
Saint John R. at Brooks bridge near Limestone, Victoria Co.	00NB01AF0005	1	.002	1
Grand R. at Hwy 2 bridge, 26 km north of St. Leonard	00NB01AF0013	9	.001	1
Green R. 4 km above mouth at bridge, Madawaska Co.	00NB01AF0021	23	-	-
Grand R. at TCH bridge 3.3 km NNW St. Leonard, Madawaska Co.	00NB01AF0023	2	.002 .003	1 1

1

i ,

i

TABLE 29 CADMIUM WATER QUALITY DATA - NEW BRUNSWICK, 1975-1980 (NAQUADAT, 1980)

- 74 -

•

TABLE 29 CONT'D

STATION		NUMBER OF	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/])	
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Limestone R. at picnic site at Four Falls, Victoria Co.	00NB01AG003	27	.001 .002	3 1
Aroostock R. at Tinker headpond at AWQ monitor, Victoria Co.	00NB01AG009	9	.001	6
Tobique R. at Hwy 385 bridge, Riley Brook, Victoria Co.	00NB01AH0002	6	-	-
Presque Isle R. at bridge in Tracey Mills, Carleton Co.	00NB01AJ0006	3	-	-
Presque Isle R. 100 m E international border, near intake of AWQ monitor	00NB01AJ0012	22	.001 .003	1 1
Saint John R. at Grafton bridge at Woodstock, Carleton Co.	00NB01AJ0014	5	.001	1
Meduxnekeag R. at Belleville near intake of AWQ monitor, Carleton Co.	00NB01AJ0015	6	-	-
Meduxnekeag R. at bridge above junction with Millstream, Belleville	00NB01AJ0029	28	.001 .002 .003	1 1 1

TABLE 29 CONT'D

]

.

ь • 1

ı

,

1 1

1 1

1

ļ

i

• • • • •

]

÷.

1

*

-

STATION		NUMBER OF	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
North Nashwaaksis Stream at Hwy 620 bridge	00NB01AK0002	2	-	-
North Nashwaaksis Stream at Hwy 620 bridge on Sandwith Farm	00NB01AK0003	2	-	-
Nashwaak R. at bridge in Nashwaak Bridge, York Co.	00NB01AL0006	2	-	-
Nashwaak R. at CPR bridge, Barkers Point, York Co.	00NB01AL0007	2	-	-
Oromocto R. at Hwy 7 bridge, Oromocto, Sunbury Co.	00NB01AM0003	1	-	-
Salmon R. at Hwy 123 bridge, Gaspereau Forks, Queen's Co.	00NB01AN0001	1	-	-
Jemseg R. at old bridge abutment, Jemseg, Queens Co.	00NB01A00003	2	-	-
Saint John R. at Burton Bridge, Maugerville, Sunbury Co.	00NB01A00004	1	-	-
Canaan R. at Hwy 112 bridge, East Canaan, Queen's Co.	00NB01AP0001	2	-	-

Cont'd

ŧ

- _____

TABLE 29 CONT'D

.

.

STATION		NUMBER OF	VALUES AT OR ABOVE DETECTION LIMIT (0.001 mg/1)	
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Kennebecasis R. at Hwy 880 bridge, Apohaqui, King's Co.	00NB01AP0002	1	-	-
Otnabo R. at Hwy 102 bridge, about 5 km N of Queenstown	00NB01AP0021	1	.001	1
Kennebecasis R. at TCH bridge 19.2 km E of Sussex, King's Co.	00NB01AP0030	1	.001	1
Nerepis R. at Hwy bridge, Nerepis, King's Co.	00NB01AP0033	1 .	.001	1
Kennebecasis R. at bridge, Hampton, King's Co.	00NB01AP0034	1	.001	1
Saint John R.at Lower Gagetown from ferry in midstream	00NB01AP0035	2	.001	1
Lepreau R. at Hwy bridge, Lepreau, Charlotte Co.	00NB01AQ0001	5	-	-
Magaguadavic R. at covered bridge at Second Falls	00NB01AQ0002	5	.004	1
Magaguadavic R. at Hwy 3 bridge at Brockway, York Co.	00NB01AQ0031	5	-	- ·
St. Croix R. at international pridge, Milltown	00NB01AR0001	12	.001	1

Cont'd

- dealer

- -

-

٠

•

: .

ſ

•

÷ ,

- **.**

] ; _

, - 1 ,

ŕ ,

{ . ·

a≞ Joa

ь 1

, } ٠

.

•

VALUES AT OR ABOVE STATION		NUMBER OF	DETECTION LIMI	(T (0.001 mg/1)
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
St. Croix R. at International Bridge, York Co.	00NB01AR0002	7	-	-
Grand Lake outlet at Hwy 122 bridge, Forest City, York Co.	OONBO1AROO11	7	-	_
Restigouche R. at Montgomery bridge above confluence with Kedgwick R.	00NB01BA0001	1	-	-
Kedgwick R. at confluence with Restigouche R., Restigouche Co.	00NB01BB0007	1	-	-
Restigouche R. at Hwy bridge below Kedgwick R.	00NB01BC0001	6	-	-
Upsalquitch R. at R.R. bridge, Upsalquitch Station	00NB01BE0001	. 5	.002	1
South Little R. at Theriault Road bridge, Gloucester Co.	00NB01BJ0009) 9	.002 .003 .005 .006 .010	1 2 1 1 1
Little R. about 6.4 km SW of Bathurst at Carrolls Farm	00NB01BJ0010) 11	.001 .002 .003 .004 .005 .006 .008	1 3 1 2 2 1 1
Nigadoo R. 400 m above mine area, NIG-3, Gloucester Co.	00NB01BJ001	29	.001	1

Gloucester Co.

Cont'd

,

.

STATION		NUMBER OF	VALUES AT OR A DETECTION LIMI	
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Nigadoo R. 1.6 km below mine at bridge at Tremblay Settlement	00NB01BJ0013	9	.002	1
Tetagouche R. 500 m below bridge on Tetagouche North Road	00NB01BJ0028	2	-	-
Jacquet R. about 3.2 km above mouth, Durham Centre	00NB01BJ0029	3	-	-
Little R. about 100 m below confluence with South Little River	00NB01BJ0051	8	.001 .002 .003 .004 .006 .007 .011	2 1 1 1 1 1 1.
Elmtree R. 200 m above R.R. bridge, Petit Rocher Nord, Gloucester Co.	00NB01BJ0052	8	.01 .001	1 2
Restigouche R. at Hwy bridge at Matapedia, Restigouche Co.	00NB01BJ0054	4	.002	1
Matapedia R. at Matapedia from bridge, Bonventure Co.	00NB01BJ0055	1	-	-
Restigouche R. at Rafting Ground Brook	00NB01BJ0056	2	-	-

- ---

~

; F

.

•

STATION		NUMBER OF	VALUES AT OR A DETECTION LIMI	BOVE T (0.001 mg/1)
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Knight Brook at confluence with Nepisiguit R.,	00NB01BK0003	8	.002 .005 .006	4 1 1
Gloucester Co.			.010 .012	1 1
Austin Brook at confluence with Nepisiguit R., Gloucester Co.	00NB01BK0006	8	.001 .002 .004 .006 .007 .008	1 1 1 1 2 1
Nepisiguit R. 300 m above confluence with Austin Brook, Bathurst Mines	00NB01BK0007	9	.08 .001 .002	4
Forty Mile Brook at pulp site 800 m above Anaconda Brass Mine property	00NB01BK0012	8	.002	2
Forty Mile Brook just above confluence with Nepisiguit R.	00NB01BK0015	8	.001 .002	3 2
Nepisiguit R. 1.3 km above Forty Mile Brook above Wedge Mine	00NB01BK0017	8	.001 .001	2 1
Nepisiguit R. 4 km below Fortymile Brook at Hwy 430 bridge	00NB01BK 0020	8	.002 .003	1 1
Nepisiguit R. at Hwy 360 bridge near NLU mine, Gloucester Co.	00NB01BK0026	10	.002 .006	1 1

Cont'd

- 80 -

-

•

TABLE 29 CONT'D

STATION		NUMBER OF	VALUES AT OR A DETECTION LIMI	BOVE T (0.001 mg/1)
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Nepisiguit R. at Bathurst at Irving Pier below Hwy 11 bridge	00NB01BK0030	9	.001 .002	2 1
Nepisiguit R. just above confluence of Fortymile Brook	00NB01BK0032	8	.002 .003	3 1
Nepisiguit R. 400 m above confluence of Portage Brook	00NB01BK0035	7	.001 .002	1 1
Nepisiguit R. about 50 km below confluence with Knight Brook	00NB01BK0050	8	.001 .002 .003	2 2 2
Nepisiguit R. at Hwy 11 Bridge, Gloucester Co.	00NB01BK0052	1	-	-
Tabusintac R. at Hwy 8 bridge, Jeanne Manse, Gloucester Co.	00NB01BL0004	3	.002	1
Tabusintac R. at bridge south side of Cain Point, Northumberland Co.	00NB01BL0032	1	-	-
S.W. Miramichi R. at bridge, Bloomfield Ridge, Northumberland Co.	00NB01BM0001	2	-	-
S.W. Miramichi R. 2.4 km above Burnthill Brook at Wardens Camp	00NB01BM0002	2 7	.002 .003	1 1

r (Ng

*

. .

с⁻¹

1.

| -; | -;

1. 1.

1 1

. ;

, **,** , ,

. | |

STATION		NUMBER OF	VALUES AT OR A DETECTION LIMI	
DESCRIPTION	, CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
S.W. Miramichi R., 1 km below Burnthill Brook, York Co.	00NB01BM0003	7	.001 .004	2 1
Cains R. at confluence with SW Miramichi R. at bridge	00NB01BN0001	3	-	-
S.W. Miramichi R. at bridge, Blackville	00NB01B00001	6	.001	2
Renous R. 300 m above confluence of McGraw Brook	00NB01B00001	3	-	-
Renous R. at Hwy 8 bridge, Renous, Northumberland Co.	00NB01B00013	3	-	-
Bartibog R. at Hwy 8 bridge, Batibog, Northumberland Co.	00NB01B00019	3	.001	1
Little S.W. Miramichi R. at bridge, Lyttleton	00NB01BP0001	3	-	-
N.W. Miramichi R. at Redbank, Sunny Corner Bridge	00NB01BQ0001	4	-	-
Little South Tomogonops R. 3 km above Tomogonops R.	00NB01BQ0017	8	.002 .003 .004 .006 .008	3 1 2 1 1

.

-

TABLE 29 CONT'D

STATION		NUMBER OF	VALUES AT OR A DETECTION LIMI	BOVE T (0.001 mg/1)
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Tomogonops R. at confluence with N.W. Miramichi R. 9 miles	00NB01BQ0018	8	.001 .003	1 1
N.W. Miramichi R. just above junction with Tomogonops R.	00NB01BQ0019	8	.001	1
Clearwater Stream at bridge 300 m above Chester Mine property	00NB01BQ0020	9	.001 .002	2 1
Clearwater Stream 800 m below mine, 4 km above south Sevogle R.	00NB01BQ0021	9	.002 .003	1 1
N.W. Miramichi R. at Wayerton Bridge, Northumberland Co.	00NB01BQ0044	11	.001	2
Tomogonops R. (north branch) at water supply dam by Hwy 430	00NB01BQ0045	9	.001 .005	2 1
N.W. Miramichi R. mine water monitoring station at Curventon Fence	00NB01BQ0053	7	.001 .002	6 1
South Sevogle R. at bridge 6 km above junction with Clearwater Stream	00NB01BQ0054	9	.001 .002	2 3
South Sevogle R. above 3 km above confluence with Sheephouse Brook	00NB01BQ0055	9	.001 .003	3 1

Cont'd

- -

.

4

- I

÷.,

.

.

.

STATION		NUMBER OF	VALUES AT OR A DETECTION LIMI	NBOVE T (0.001 mg/1)
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
N.W. Miramichi R. at Hwy 430 bridge, Northumberland Co.	00NB01BQ0056	10	.001	1
Kouchibouquac R. at Hwy 11 at Kouchibouguac, Kent Co.	00NB01BQ0011	3	-	-
Buctouche R. at bridge in Coates Mills, Kent Co.	00NB01B S0018	6	.003	1
Cocagne R. at Hwy 525 bridge, Notre Dame, Kent Co.	00NB01BS0019	4	-	-
Richibucto R. at Hwy 116 bridge Smiths Corner, Kent Co.	00NB01BS0046	5	-	-
Petitcodiac R. at control gates of Moncton- Riverview causeway	00NB01BU0004	3	-	-
Turtle Creek at inlet to Turtle Creek reservoir	00NB01BU0006	3	.001	1
Petitcodiac R. from Hwy 2 bridge, north of Petitcodiac	00NB01BU0031	2	-	-

.

Cont'd

.

STATION	CODE	NUMBER OF MEASUREMENTS	VALUES AT OR A DETECTION LIMI	T (0.001 mg/1)
DESCRIPTION	CODE	MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Point Wolf R. mouth, Fundy National Park, Albert Co.	00NB01BV0015	2	.001	1
Upper Salmon R. at confluence with Kinnie Brook, Albert Co.	00NB01BV0016	2	.001	1
Saint John R. above Grand Falls dam, Madawaska Co.	01NB01AF0005	32	.002 .001	1 4
Aroostock R. at Forebay Bridge, Tinker Dam, Victoria Co.	01NB01AG0001	23	.001	2
Tobique R. 150 m above dam at Narrows, Victoria Co.	01NB01AH0005	3	-	-
Tobique R. at Tobique Narrows Dam, Victoria Co.	01NB01AH0006	6	-	-
Saint John R. at dam, Beechwood, Carleton Co.	01NB01AJ0002	4	-	-
Saint John R. at New Nackawic Bridge, Pokiok, York Co.	01NB01AK0009	9 5	-	-
Saint John R. at Mactaquac Dam, York Co.	01NB01AK0010) 4	-	-

Cont'd

 $\overline{}$

.

ł

i i •

ŧ

ч 2 - —

i.

 $1 \rightarrow 1$

I.

I

STATION DESCRIPTION	CODE	NUMBER OF MEASUREMENTS	VALUES AT OR A DETECTION LIMI	BOVE T (0.001 mg/1)
		MEASUREMENTS	CADMIUM CONCENTRATION (mg/l)	NUMBER OF MEASUREMENTS
Washademoak Lake at Hwy 695 bridge Cambridge-Narrows, Queen's Co.	01NB01AP0010	2	.001	1
East Branch Musquash R. at Penstock intake at East Reservoir	00NB01AQ0022	4	-	-
West Musquash Lake above dam, Saint John Co.	01NB01AQ0023	5	-	-
Woodland Lake near Woodland Junction from Maine Central Railway bridge	01NB01AR0015	2	-	-
Nepisiguit R. at power dam head- pond, Nepisiguit Falls, Gloucester Co.	01NB01BK009	11	.001 .002	4 2

either the NAQUADAT (Canada) or STORET (United States) data base. Cadmium was included in the assessment and was determined to be one of the parameters where objectives were met everywhere in the basin. Table 30 compares recent water quality data with the specific water quality objectives for designated uses of St. John River water. The tabulated values are the number of samples and percent frequencies with which each parameter exceeded its recommended level at each monitoring station. The number of samples is indicated in the upper half of each box in the table while the frequency with which the recommended level is exceeded is in the lower half.

3.2.2 Drinking Water

The present Canadian drinking water standard for cadmium established by Health and Welfare Canada is 0.005 mg/l (Guidelines for Canadian Drinking Water Quality, 1978).

Daily consumption of 2 litres of water containing the maximum acceptable concentration of cadmium would result in ingestion of only about 15% of the FAO/WHO estimated tolerable intake of 0.4-0.5 mg/week.

In Nova Scotia municipal water supplies have been tested for a number of heavy metals including cadmium and the results documented (Nova Scotia Department of Health, 1977). Of the 64 drinking water supplies sampled only 3 had cadmium concentrations exceeding the guideline. The locations and levels were:

- Bridgewater municipal water supply

 Hebb Lake 0.01 mg/l
- 2. Canso municipal water supply
 - Hazel Hill 0.009 mg/l
- 3. Sherbrooke municipal water supply
 - Sherbrooke 0.02 mg/1

TABLE 30 CADMIUM IN THE INTERNATIONAL PORTION OF THE	OF OBSERVATIONS	
IONAL PORTION	- PERCENTAGE	VDJECTIVEC /
THE INTERNAT	RIVER BASIN -	WATED DIALTTV
CADMIUM IN	SAINT JOHN	F XCFFDING
TABLE 30		

1

-

-, |

ł

EXCEEDING WATER QU	QUALITY OBJECTIVES	.VES (ANON, 1979)	(6,	
SAMPLING STATIONS	AESTHETICS AND Recreation	AQUATIC LIFE AND WILDLIFE	AGRICULTURE And Livestock Watering	PUBLIC Water Supply
	CADMIUM (0.01 mg/1)	CADMIUM (0.03 mg/1)	CADMIUM (0.05 mg/1)	CADMIUM (0.01 mg/1)
Saint Francis River	12a 0b	12 0	12 0	
Saint John River at Clair-Fort Kent	68 0	68 1	68 0	68 0
Saint John River above Ruisseau Deux Milles	۱ ی	י ט	۱ کی	ו הז
Madawaska River above Saint Jacques	17 0	17 0	17 0	170 0
Madawaska River at Edmundston	1 1			
Saint John River at Saint Basile	ر م	י ט	ا ى	ا ى
Green River at Highway 2	- ,			,
Saint John River at Saint Leonard	25 0	25 0	25 0	25 0
a Number of samples b Percentage of observations	exceeding	water quality o	objectives	,

Cont'd

SAMPLING STATIONS	AE STHETICS	AQUATIC	AGRICULTURE	PUBLIC
	AND	LIFE AND	And Livestock	WATER
	RECREATION	WILDLIFE	Watering	SUPPLY
	CADMIUM	CADMIUM	CADMIUM	CADMIUM
	(0.01 mg/l)	(0.03 mg/1)	(0.05 mg/l)	(0.01 mg/l)
Saint John River at Hamlin		1 1	1 1	1 1
Saint John River at	47	47	47	47
Grand Falls	0	0	0	0
Aroostook River at Caribou Dam	,	Η,		۰ ۲
Aroostook River at	25	25	25	25
Tinker Dam	0	0	0	0
Aroostook River at	64	64	64	64
Highway 2	0	0	0	0
Limestone River at	55	55	55	55
Four Falls	0	0	0	0
Big Presque Isle Stream at Route 10	۰.	ч,		₽ 1
Big Presque Isle Stream	30	30	30	30
at Border	0	30	0	
Big Presque Isle Stream	102	102	102	102
at Tracey Mills	0	0	0	0
Meduxnekeag River	61	61	61	61
at Belleville	0	0	0	0

TABLE 30 Cont'd

- 88 -

•

- 4

; -

.

,

Newfoundland drinking waters are also monitored for cadmium with few instances of levels exceeding 0.005 mg/l reported.

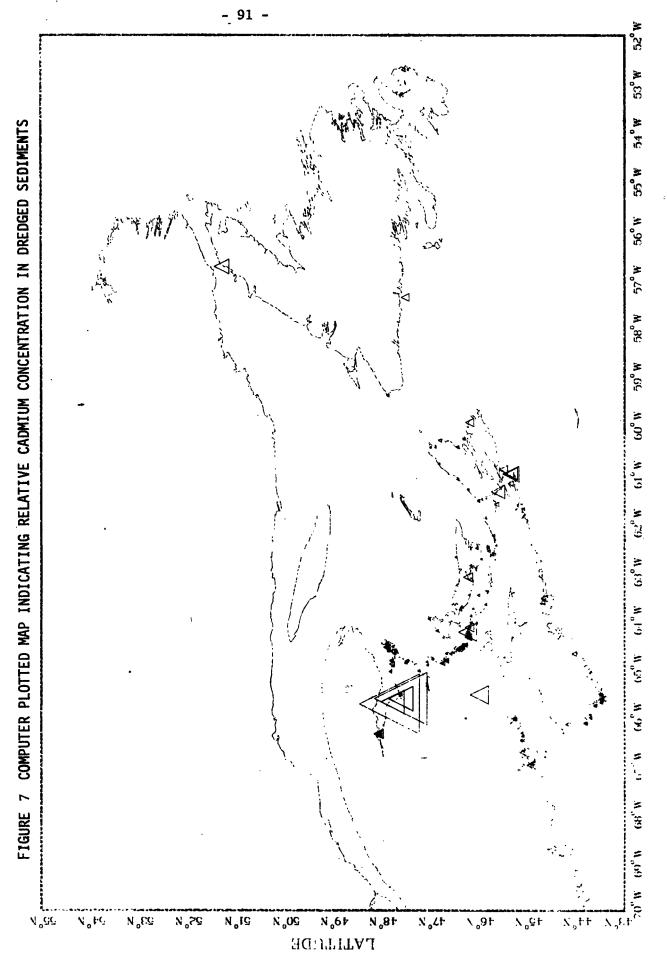
3.2.3 Coastal Waters

There is a paucity of data on cadmium in Eastern Canadian coastal seawater. Two relevant studies (Bewers <u>et</u>. <u>al</u>., 1976; Yeats <u>et</u>. <u>al</u>., 1978) have, however, been conducted by the Atlantic Oceanographic Laboratory, Bedford Institute of Oceanography.

Bewers and co-workers determined the trace metal content of Atlantic Slope water, Central Atlantic water and two water bodies overlying the Scotian Shelf. Cadmium showed some variability among water masses but levels were so low that less than 50% of the samples registered above the detection limit (0.03 μ g/l). The geometric mean concentration for cadmium was calculated to be 0.04 μ g/l.

Yeats <u>et</u>. <u>al</u>. (1978) determined the levels of several heavy metals, including cadmium in eastern Canadian coastal waters. The concentration of trace metals was found to be comparable to other coastal waters of the world with no indication of significant modification by pollution. The distribution of metals in the waters of the Gulf of St. Lawrence and Scotian Shelf was examined. The results suggest that the precision with which trace metal levels, in a given water mass, can presently be measured is inadequate to enable changes in water composition resulting from increased anthropogenic activity to be detected.

Yeats has also reported (Pers. Comm.) that the average cadmium concentration (21 samples) for water from the western end of the Bay of Fundy in the vicinity of Point Lepreau was 0.043 μ g/l in May, 1975.


3.3 Cadmium in Sediment

3.3.1 Harbour and Channel Sediments

The disposal of dredge spoils in offshore waters has been regulated since the enactment of the Ocean Dumping Control Act in 1975. Applications for proposed dredging operations must now be accompanied by analytical documentation describing the extent of contamination of restricted materials. Cadmium content is limited to a maximum of 0.6 μ g/g dry weight in potential spoils. Most dredging in the Atlantic Region is undertaken to improve and maintain harbours and shipping channels, consequently, analytical data provided for the appproval process is a useful source of information on cadmium levels in sediments.

Figure 7 is a computer plotted map originating from this compliance program and provides a visual overview of relative cadmium concentrations in sediment in the Atlantic region. Data used in this mapping exercise is listed, on a provincial basis, in Tables 31-34. Values utilized cover the June, 1977-August, 1979 sampling period. In instances of replicate sampling an average value was determined. Included in these tables are values which have not been incorporated into the diagram; these are specifically indicated. The Environmental Protection Service, Atlantic Regional Laboratory conducted the latter measurements while the other tabulated values were performed by a variety of private laboratories in the Region. In some instances significant differences are observed between data from the same dredge area. This suggests either a lack of reproducibility in sampling and analytical techniques between laboratories or actual variation in the cadmium content of sediments collected from the same site.

- 90 -

LOCATION	NO.OF SAMPLES	CADMIUM CONCEN- TRATION RANGE (µg/g)	AVERAGE CADMIUM LEVEL (µg/g)
Charlotte County			
Beaver Hbr.	1	-	2.10
Fairhaven	1	-	1.05
Maces Bay	1	-	<0.50
Seal Cove	1	-	0.25
Stuarttown	1	-	<0.50
Welshpool	1	-	0.80
Whitehead	4	0.35-0.45	0.40
Glouchester County	-		~ ~ ~
Bathurst	7	0.50-12.00	3.60
Blue Cove	2	0.60-0.90	0.75
Blue Cove	8 ^a	0.30-0.90	0.78
Caraquet	1	-	1.15
Caraquet C.	1	-	0.45
Island River	1	-	0.50
Lameque	3	1.10-2.00	1.55
Little_Shippegan	1 1 3 1 1 2 1 1 1 1	0.45-0.55	0.50
Lower Caraquet	1	-	0.85
Mid Caraquet	1	-	0.55
Miscou	2	0.85-0.85	0.85
Miscou Gulf	1	-	0.45
Miscou Hbr.	1	-	1.50
Miscou Hbr.	1	-	0.70
Petit Rocher	l		5.23
Pidgeon Hill	6	0.25-0.50	0.40
Pidgeon Hill	2ª	1.0 -1.0	1.0 13.70
Pointe Verte	2a 1 2	0.05-0.60	0.55
Shippegan Shippegan	1	0.05-0.00	0.60
Shippegan Gulf	1	-	0.00
Shippegan Gully West	L		0.40
Shippegan, South	1 a	-	1.8
Harbour wharf	1-		1.0
Shippegan, South-	1	-	2.55
west breakwater	1 1	-	0.50
St. Marie Sur Mer	3	0.40-1.10	0.50
Tracadie	3 3a	0.10-0.20	0.17
Tracadie Tracadie Channel	1		0.10
Tracadie Channel Tracadie Hbr.	3	0.05-0.45	0.30
	J	0.00-0.40	
Tracadie Wharf	1ª		0.90

TABLE 31CADMIUM LEVELS IN DREDGED SEDIMENTS FROM
NEW BRUNSWICK, JUNE 1977-JULY 1979

11-22

.

TABLE 31 (Cont'd)

ī

i

-

ł

1

LOCATION	NO. OF SAMPLES	CADMIUM CONCEN- TRATION RANGE (µg/g)	AVERAGE CADMIUM LEVEL (µg/g)
Kent County Caissies Cape Cap. St. Louis Hbr. Chockpish Cocagne Bar Lower St. Lawrence Point Sapien Richibucto Richibucto Cape St. Edouard St. Louis St. Thomas St. Thomas Hbr.	1 1 3 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2	- 0.50-1.20 <0.50 <0.50-1.10 0.35-<0.50 <0.60-0.85	0.40 0.80 <0.50 0.70 <0.50 <0.50 0.75 <0.50 0.40 1.10 0.70 1.0
Northumberland County Escuminac Huckleberry Island Loggieville Lower Neguac Neguac Church Newcastle	4 2 1 1 2 1	0.35-1.40 <0.50 0.60-0.60	0.75 <0.50 0.50 0.60 0.60 4.17
Restigouche County Dalhousie Dalhousie (O-200 m) Dalhousie: Cargo Wharf Ferry Wharf Main Channel Public Wharf New Mills Jacquet River	1 5 2 1 1 2 1 1	0.40-3.3 0.35-0.60 1.95-2.10	0.05 1.42 0.45 2.10 1.35 2.00 0.33 0.25

Cont'd

- 93 -

- --

.

- 94 -

TABLE 31 (Cont'd)

. •

.

Statement of the local division of the local
RAGE MIUM VEL 1g/g)
0.70
0.20
0.50
0.50
0.50
0.50
0.50
0.20
0.70
0.35
0.50
0.35
0.20
0.40
1.75
0.50
0.60
1.00
0.06
0.45
0.40
0.20
1.33
0.75

a Samples collected by DPW and analyzed by EPS.

ļ

LOCATION	NO. OF SAMPLES	CADMIUM CONCEN- TRATION RANGE (µg/g)	AVERAGE CADMIUM LEVEL (µg/g)
Antigonish County Arisaig Ballantynes Cove Barrios Beach Barrios Beach	2 2 1 2 ^a	0.22-0.22 0.30-0.30 0.10-0.20	0.22 0.30 1.00 0.15
Cape Breton County Alder Point Glace Bay Glace Bay Point Aconi	2 4 4 a 1	<0.50 1.90-2.70 0.10-0.60	<0.50 2.20 0.38 0.50
Cumberland County Pugwash	2	0.50-0.50	0.50
Digby County East Sandy Cove East Sandy Cove Meteghan Saulnierville Westport	3 5 a 4 4 2	0.08-0.12 0.10-0.10 <0.60 <0.10-0.80 0.60-0.60	0.10 0.10 <0.60 0.45 0.60
Guysborough County Canso Tickle Canso Wharf Half Island Cove Half Island Cove Little Dover Island Port Bickerton	1 1 1 a 1 2	- - - - <0.60	3.50 2.80 1.20 0.10 0.50 <0.60
Halifax County Bedford Basin Bedford Basin Dartmouth Eastern Passage Fairview Cove Halifax Dockyard Halifax Shipyard Prospect Three Fathom Hbr.	6 6 2 7 11 21 5 2 2	$\begin{array}{c} 0.05-0.90\\ 0.07-0.09\\ 1.50-1.90\\ 0.30-0.90\\ < 0.50-2.00\\ 0.05-0.85\\ 0.45-2.15\\ 0.45-2.15\\ 0.10-0.10 \end{array}$	0.65 0.82 1.70 0.50 0.70 1.50 1.60 0.95 0.10

TABLE 32CADMIUM LEVELS IN DREDGED SEDIMENTS FROM
NOVA SCOTIA, JUNE 1977-JULY 1979

٠

•

- .

ī.

, - .

-

1.5

, 1

٩,

#

Cont'd

.

TABLE 32 (Cont'd)

1

ŀ

LOCATION	NQ. OF SAMPLES	CADMIUM CONCEN- TRATION RANGE (µg/g)	AVERAGE CADMIUM LEVEL (µg/g)
Inverness County			
Cheticamp	1	-	0.10
Inverness	. 3	<0.50	<0.50
Judique Baxter	1		0.30
Little Judique Pond	2	0.30-0.30	0.30
Mabou Hbr.	2 2 1 2 1 2 1 1 ^a	0.10-0.10	0.10
Margaree	1	-	<0.50
Margaree Hbr.	1	-	<0.50
Pleasant Bay	2	0.50-0.50	0.50
Port Hawkesbury	1	-	3.10
Port Hawkesbury		-	0.20
Port Hood Island	2	<0.60	<0.60
Pictou County			
Bailey Brook	1	-	0.65
Cariboo Distant Jaland Fast	1		<0.50
Pictou Island East	2 2	0.60-0.60 0.60-0.60	0.60 0.60
Pictou Island West	L	0.00-0.00	0.00
Queen's County		(0, 0, 0)	(0,00
Liverpool	4	<2.00	<2.00
Richmond County			
Petit de Grat	1		1.90
Shelburne County	c b		<u> </u>
Atwoods Brook	1 ^b	-	0.1
Bear Point	2	1.75-2.00	1.85
Bear Point	2 2a 2b	7.4 -11 0.1 -0.1	9.2 0.1
Bear Point Centerville	1	0.1 =0.1	0.2
Clarks Hbr.	1	-	1.20
Clarks Hbr.	1 ^b	-	0.6
Criple Creek	2	<0.60	<0.60
Doctors Brook	ΔD	<0.1 -0.1	<0.1
Doctors Pit	3 ^D	0.1 -0.9	0.37
Forbes Pit	1 ⁰	-	0.4
Lockeporte	2 6	<0.50	<0.50
Lower Jordan Bay	6	<0.1 -<0.6	<0.35
Lower Woods Hbr.	2 1 b	<0.60	<0.60
Lower Woods Hbr.	10	-	0.5

- re. - mare 30

Cont⁴d

- 96 -

TABLE 32 (Cont'd)

1 🖗

٠

I.

-:

. .

- : : •

-

÷., ۱ _-

|___

1

ì

** | | |

; ---

,

LOCATION	NO.OF SAMPLES	CADMIUM CONCEN- TRATION RANGE (µg/g)	AVERAGE CADMIUM LEVEL (µg/g)
Shelburne County Popes Pit Prospect Point Sable Island Causeway Shag Hbr. Shag Hbr. Shag Hbr. Smithsville Stoney Island West Head West Head	1 ^b 1a 1b 1b 2 2a 1b 3 1 3 2a	- - - - - - - - - - - - - - - - - - -	<0.1 2.3 0.2 0.1 1.15 2.3 0.2 <0.50 <0.50 0.70 0.30
Victoria County Dingwall Little Narrows Little River Neil Hbr. St. Lawrence Bay St. Lawrence Bay	8 1 2 2 4 4	0.40-0.90 - 0.40-0.70 1.30-1.40 0.20-1.40 0.10-0.70	0.60 0.10 0.55 1.35 0.75 0.32
Yarmouth County Dennis Point Little River Hbr. Lower East Pubnico Pinkney's Point Wedge Point Yarmouth Yarmouth Bar Yarmouth, Lobster Rock Wharf	2 4 2 6 3 5 3 3 3	<0.60 0.40-0.70 <0.60 0.05-0.45 <0.05-0.90 <0.02-1.30 0.40-0.70	<0.60 0.55 <0.60 0.23 0.65 0.70 0.60 0.20
Yarmouth Outer Channel	2	<0.60	<0.60

Samples collected by DPW and analyzed by EPS. Samples collected and analyzed by EPS. a b

•

- 97 -

LOCATION	NO.OF SAMPLES	CADMIUM CONCEN- TRATION RANGE (µg/g)	AVERAGE CADMIUM LEVEL (µg/g)
Kings County			
Bay Fortune	3a	0.10-0.10	0.10
Beach Point	2	<0.60	<0.60
Fortune	3	0.05-0.15	0.10
Georgetown	1	-	0.55
Georgetown Hbr.	1 ^a	-	0.10
Launching	2	0.05-0.05	0.05
Mink River	1	-	<0.60
North Lake	3	0.01-0.02	0.01
North Lake	3a 2 3 1 1a 2 1 3 3a 1 3 3 3 3 3	0.10-0.10	0.10
Red Head	1	•	0.40
Savage Hbr.	3	<0.01-0.35	0.35
Savage Hbr.	3a	0.10-0.40	0.24
Prince County			
Alberton	1	-	<0.50
Alberton	3a	0.20-0.40	0.27
Brae Hbr.	6 3 3 a	<0.02	<0.02
Egmont Bay	3	0.20-0.25	0.20
Egmont Bay	3a	0.10-0.30	0.17
Fishing Cove	1 1 3 a 3 2 1 2 2 1	-	<0.40
Howard's Cove	1	-	<0.40
Malpeque	3a	0.10-0.20	0.13
Malpeque Cove	3	0.15-0.30	0.20
Milligan Shore	2	0.05-0.30	0.20
Miminegash	1	-	<0.60
Seacow Pond	2	<0.40-<0.60	<0.50
Summerside	2	<0.60	<0.60
Tignish	1	-	<0.40
West Point	1	_	<0.40
Queen's County	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02
Belle River	3 3a	0.02-0.03	0.10
Belle River	<u>ئ</u> "	0.10-0.10	2.10
Charlottetown	1	-	
Charlottetown	1a	-	0.50 0.30
McAuley W.	1 2 1	-	<0.30
Rustico Hbr.	2	<0.40	<0.40
Vernon Bridge	1	-	<0.50
Victoria	1 5	0.10-0.50	0.30
Wood Islands	5	0.10-0.50	0.30

TABLE 33CADMIUM LEVELS IN DREDGED SEDIMENTS FROM
PRINCE EDWARD ISLAND, JUNE 1977-JULY 1979

,

;

£, '3

a Samples collected by DPW and analyzed by EPS.

ب با مشیده می از منطقه از مطالق با

هدا مرد المعرف المترجي

LOCATION	NO. OF SAMPLES	CADMIUM CONCEN- TRATION RANGE (µg/g)	AVERAGE CADMIUM LEVEL (µg/g)
Bay of Islands Corner Brook Fox Island River	4 2	1.20-2.0 0.60-0.85	1.60 0.70
Bonavista South Saltons Brook Saltons Brook	2 1 a	0.35-0.35	0.35 0.40
Burgeo Bay D'Espoir Ramea Ramea	2 1 a	1.60-1.80	1.70 0.10
Burin Placentia West Little Bay Little Bay	4 1 a	0.40-0.55	0.45 0.10
Grand Bank Fortune Garnish Lawn	4 2 1	0.60-0.60 0.40-0.50 -	0.60 0.45 0.55
Green Bay Rattling Brook Rattling Brook	2 1 a	0.60-0.60	0.60
larbour Main-Belle Isle Long Pond Petty Hbr. Petty Hbr. St. John's	4 4 1 ^a 6	<0.50 0.40-0.65 1.60-3.30	<0.50 0.55 0.10 2.40
.abrador Cartwright Cartwright Forteau	2 1 a 2	0.80-0.90 - 0.20-0.20	0.85 0.10 0.20

TABLE 34CADMIUM LEVELS IN DREDGED SEDIMENTS FROM
NEWFOUNDLAND, JUNE 1977-JULY 1979

| • | :

ور ____

•

|__;

'_| 1_'

1

. 1 1 .

--• 1

Cont'd

TABLE 34 (Cont'd)

TAL BANT - A

LOCATION	NO. OF Samples	CADMIUM CONCEN- TRATION RANGE (µg/g)	AVERAGE CADMIUM LEVEL (µg/g)
St. Barbe			
Flowers Cove Parsons Pond	2 2	2.20-3.40 0.40-0.60	2.80 0.50
St. Georges Codroy	2	1.00-1.20	1.10
Codroy Crabbes River	2 1 a 2	0.20-0.20	0.50
St. Mary's-The Cape		. ·	
Branch Branch	2 2a	0.50-0.80 0.10-0.10	0.65
Trinity South Dildo	2	0.50-0.60	0.55
_			
Fermeuse Fermeuse (Cores)	2ª	0.6 -1.1	0.85
top	3a	2.8 - 5.3	3.8
middle bottom	за за	2.6 -8.6 2.7 -6.6	4.8 4.1
Fermeuse (Grabs)	4 a	0.4 -1.0	0.6

a Samples collected by DPW and analyzed by EPS.

No direct correlation between cadmium concentration in sediment and the extent of industrialization in the surrounding area can be demonstrated on the basis of the tabulated data. There is little or no industrial activity in the immediate vicinity of a number of locations where high cadmium levels are detected. However, in two instances the cause of elevated concentrations is reasonably well established. At Dalhousie, New Brunswick zinc concentrate is temporarily stored at dock-side until loaded for shipment. Lack of a protective enclosure at this storage area and exposure to the elements has resulted in cadmium accumulation in the harbour sediments. Elevated levels in sediments from Pointe Verte and Petit Rocher, Gloucester County, New Brunswick are attributed to the zinc smelter at Belledune, which is situated 8 and 14 km away respectively.

In 1978, Public Works Canada contracted for the collection of sediment cores from 14 northeastern New Brunswick harbours (Figure 8). These samples were analyzed for total cadmium content in order to ascertain both vertical and horizontal distributions of the metal (McLaren Marex, 1979). Previous studies on sediments from these harbours had shown cadmium levels in excess of 0.6 mg/kg.

1 1

Analytical results for the sampling program are presented in Table 35. Sediments in Dupuis Corner, Shippegan Gully, Lameque Channel, Little Shippegan, and Caraquet were within the ODCA limit, in Tracadie and Cote St. Anne at or just above the limit, in Blue Cove,

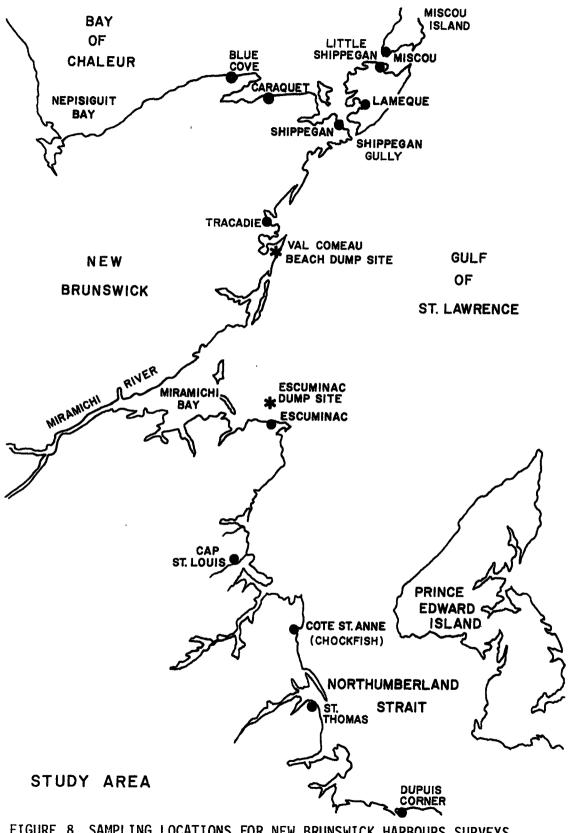


FIGURE 8 SAMPLING LOCATIONS FOR NEW BRUNSWICK HARBOURS SURVEYS (MacLaren Marex, 1975)

CADMIUM CONCENTRATIONS IN SEDIMENTS FROM FOURTEEN TABLE 35

-

HARBOURS IN NORTHEASTERN NEW BRUNSWICK

(DRY WEIGHT)

(DRY WEIGHT)	GHT)					
HARBOUR	CORE	Cadmium	Core	Cadmium	Core	Cadmium
	Top (cm)	(b/br)	Middle (cm)	(b/b n)	Bottom (cm)	(6/6 ^{ri})
Dupuis Corner Outer Bay (8/8/79)	grab	<0.02				
Dupuis Corner Outer Bay (11/8/79)	0-2	0.02	NAª	NA	20-22	0.125
Dupuis Corner Lobster Plt. Outfall	grab	<0.02				
St. Thomas	grab	0.95				
Cote St. Anne #1	0-2	0.049	13-15	<0.02	26-28	<0.02
Cote St. Anne #2	0-2	<0.02	16-18	<0.02	32-34	0.16
Cote St. Anne #3	0-2	1.0	10-12	1.3	23-25	60° 0
Cote St. Anne #4	0-2	0 •06	NA	NA	14-15	0 .02
Cote St. Anne #5	0-2	0.08	NA	NA	15-17	0.02

.

.

- 103 -

Cont'd

1

• • •

σ
Ľ,
S
35
TABLE

i

HARBOUR	CORE Top (cm)	Cadmium (µg/g)	Core Middle (cm)	Cadmium (µg/g)	Core Bottom (cm)	Cadmium (µg/g)
Cap St. Louis #1	0-2	2.1	10-12	1.6	20-21	1.7
Cap St. Louis #4	0-2	2.0	12-13	0.56	24-25	0.77
Cap St. Louis #5	0-2	0.83	10-12	1.1	22-23	0.72
Escuminac (Inner Hbr.) #1	0-2	0.96	10-12	0.71	20-22	1.1
Escuminac (Inner Hbr.) #3	0-2	1.2	25-26	0.32	50-52	0.10
Escuminac (Inner Hbr.) #4	0-2	1.0	15-16	1.9	30-31	1.6
Escuminac (Outer Hbr.) #1	0-2	1.0	17-18	5.1	36-37	5.2
Escuminac (Outer Hbr.) #2	0-2	0.76	14-16	1.2	30-31	1.3
Escuminac (Outer Hbr.) #4	0-2	<0.035	14-16	0.41	29-30	<0.035
Escuminac (Dump Site)	grab	<0.02				
Tracadie Outside of Wharf	0-2	0.49	NA	NA	13-15	0.84
					ŭ	Cont'd

.

- 104 -

.

.

Τ
Ŧ
Con
35
ЯĽЕ
TABL

A....

م ا

-

1

-

, [1

· | -

	CORE	Cadmium	Core	Cadmium	Core	Cadmium
	Top (cm)	(6/6n)	Middle (cm)	(6/6 1)	Bottom (cm)	(b/g/)
Tracadie Inside of Wharf	0-2	0.61	11-13	0.38	22-24	0.07
Tracadie Dump Site (Val Comeau Beach)	grab	<0.02				
Shippegan South Hbr.	grab	0 .65				
Shippegan Gully	grab	<0.02				
Lameque Channel	integrated core 4-5 cm	<0.02				
Lameque Outer Hbr.	0-2	0 .04	18-19	0.18	38-39	<0.02
Lameque Inner Hbr.	white clay material at bottom of cove	0.02 ve				
Lameque (Inner Hbr.)		0.53	(from grab)			
Little Shipp. Ferry	0-2	0.32	N	NA	17-18	<0 .02
					Cont'd	

. **** -

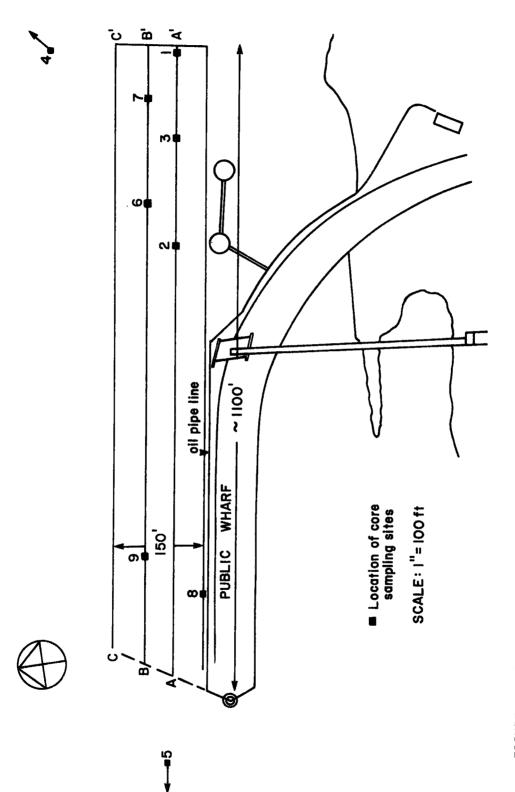
HARBOUR	CORE Ton (cm)	Cadmium (/)	Core Middla (rm)	Cadmium (r/r)	Core Rottom (rm)	Cadmium (/.)
		18 18 1				15 15 11
Miscou Hbr.#1	0-2	1.1	NA	NA	12-14	1.9
Miscou Hbr.#2	0-2	0.45	NA	NA	8-9	0.51
Miscou Hbr.#3	0-2	0.51	NA	NA	7-8	1.4
Caraquet New Hbr.#1	0-2	0 .69	NA	NA	89 .5	<0.01
Caraquet New Hbr.#2	0-2	0.14	NA	NA	11-13	<0.01
Blue Cove #1	0-2	2.7	NA	NA	6-8	0.2
Blue Cove #2	0-2	1.1	13-14	0.19	28-29	0.5
Blue Cove #3	0-2	0.94	10-12	2.2	18-10	1.1

a Not available for analysis.

- 106 -

٢~~

TABLE 35 Cont'd


Shippegan South Harbour, Lameque Inner Harbour, Escuminac, Cap St. Louis and St. Thomas in excess of the limit. The sediments in the latter harbours contained a high concentration of organic matter and a significant percentage of silt and clay; types of material recognized as transporters and "sinks" of a variety of pollutants such as cadmium. In these harbours, sediment dynamics were thought to promote the accumulation of fine-grained, organic-rich sediments leading to an accumulation of cadmium.

Vertical distributions within the cores showed a definite decrease with depth except for Blue Cove and Escuminac where the coring did not penetrate to the lower concentration strata. In most cases, high cadmium concentrations were directly associated with fine-grained sediments.

In order to assess the variability of cadmium contamination of sediments with depth, a core sampling survey was undertaken (Interprovincial Engineering Ltd., 1978) in an area proposed for dredging in the immediate vicinity of the Dalhousie, New Brunswick public wharf. Nine core samples were collected and sectioned at 25 cm intervals. The sampling sites are represented diagramatically in Figure 9 and the cadmium results listed in Table 36.

3.3.2 Stream Sediments

The Nova Scotia Department of Mines and Energy conducts an ongoing monitoring program to define the heavy metal content of stream sediments. Although it is hoped to eventually include the entire province, areas covered to date are located in northern Nova Scotia and Cape Breton. Figures 10-16 are a series of geochemical maps depicting cadmium concentrations in the surveyed streams. Table 37 lists the geographical areas surveyed and the county or counties in which these areas are located, as well as the mean value and concentration range of cadmium.

SOUNDING TRANSECTS AND CORING LOCATIONS FOR DALHOUSIE PUBLIC WHARF SURVEY (International Environmental Consultants, 1978) FIGURE 9

• ,

. 51.10.

CADMIUM CONCENTRATIONS IN	
CADMIUM	
•	
WHARF	
PUBLIC	CORES
DALHOUSIE PUBLIC WHARF	SEDIMENT CORES
TABLE 36	

1

· ·

.

/[____

+ :

1

.

Depth	Core I	Core 3 Core 4	Core 4	mium (µg/g Core 5	Cadmium (µg/g Dry Weight) 4 Core 5 Core 6	t) Core 7	Core 8	Core 9	Core 9 Core 2ª
Top-25 cm	<0.5	2.6	1.5	<0.1	<0 .1	0.8	0.7	<0.1	2.0(top-16 cm)*
25-50	<0.1	3 0	2.7	<0.1	<0.1	9° 0	1.3	1.4	1.5(16-32)
50-75	<0.1	1.2	4 .0	-0.1	<0.1	<0.1	1.6	<0.1	1.7(32-48)
75-100	8° 0	1.4	1.4	<0.1	<0.1	1.0	0.8	<0.1	1.7(48-58)
100-125	0.8	1.7	1 .8	<0.1	<0 . 1	0.8	<0.1	0.7	<0.1(58-68)
125-150	1	2.4	2.4	<0.1	0.5	<0.1	<0.1	<0.1	1 .5(68-78)
150-175	ŧ	1.9	1.2			· <0.1	0.7	<0.1	1.2(78-88)
									2 .0(88-98)
				-					1.9(98-108)

a Core 2 sectioned at different lengths than the other eight cores.

1.3(108-118)

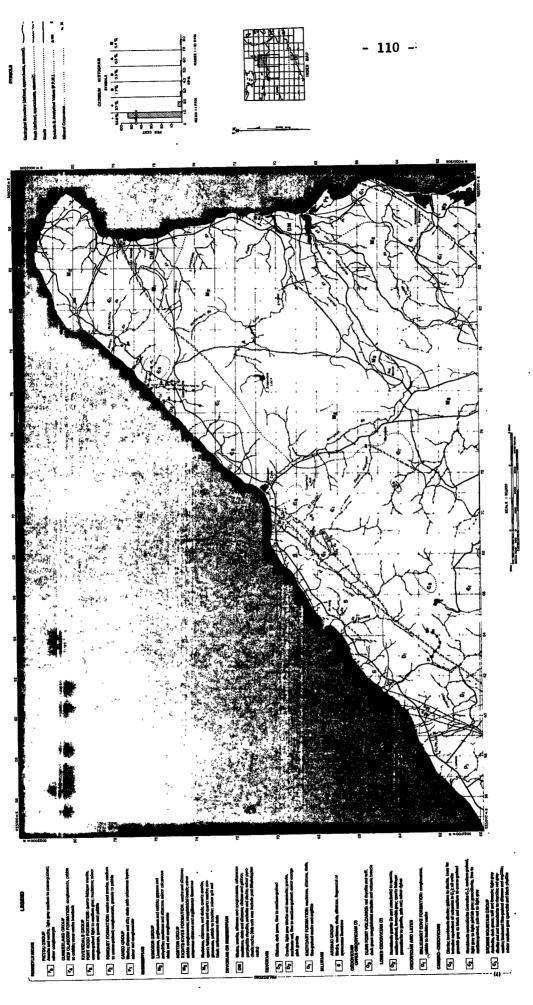
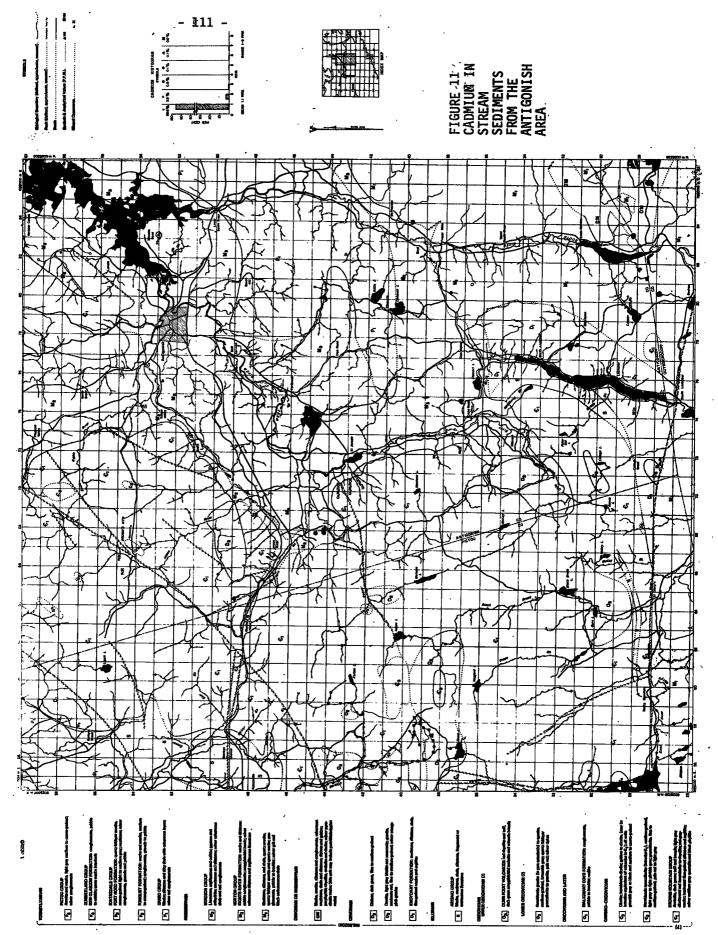
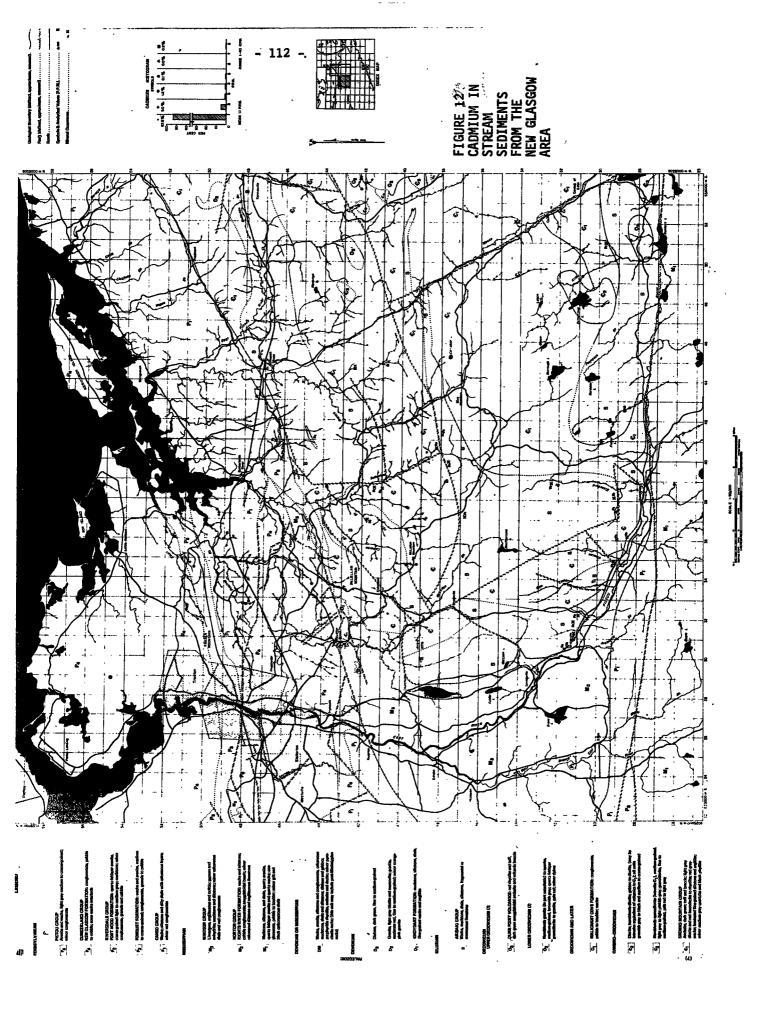
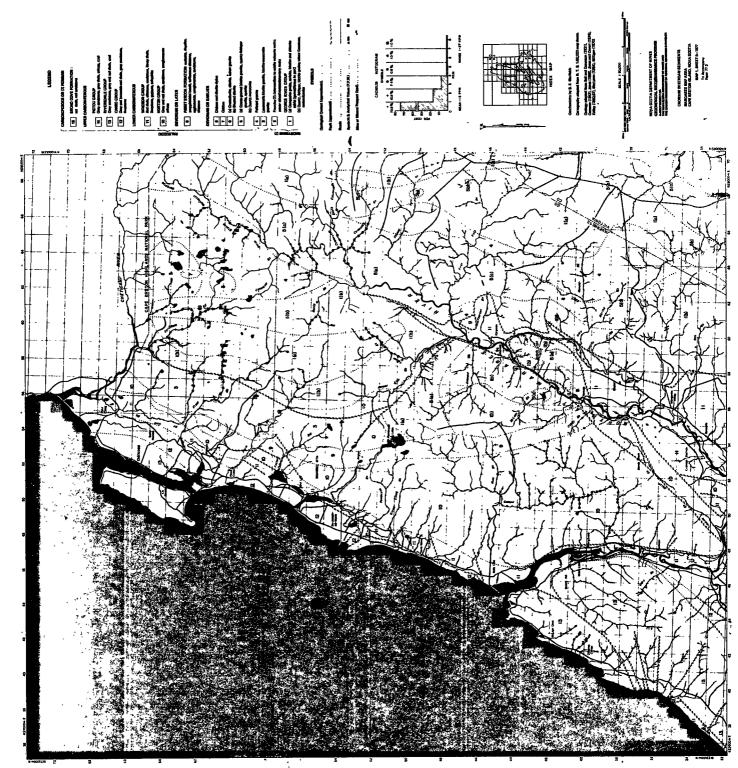
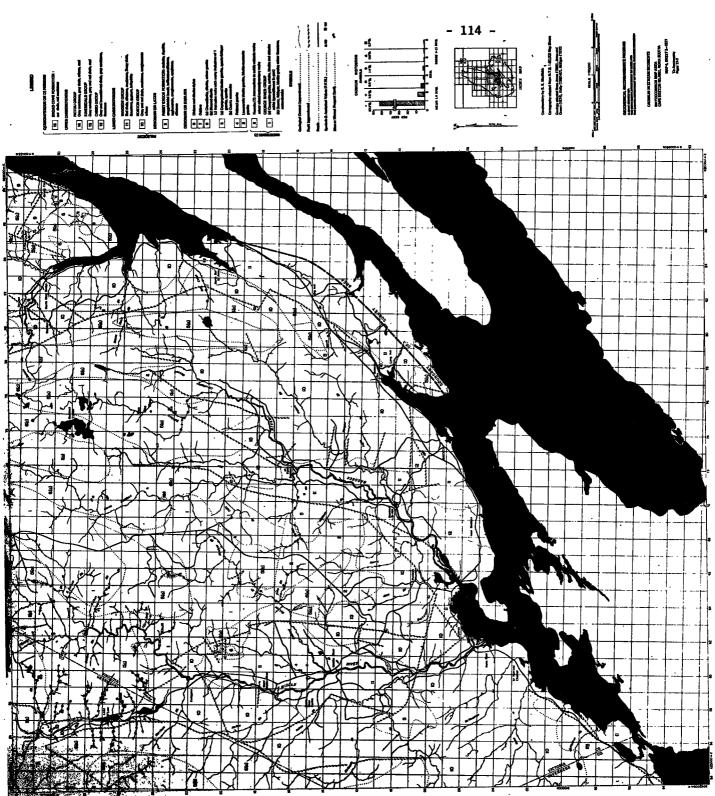
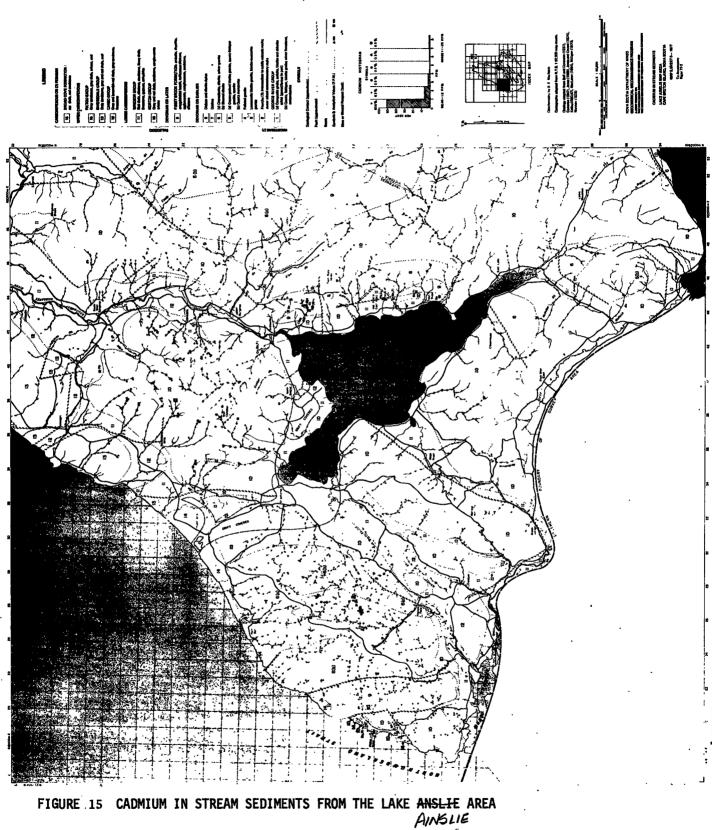
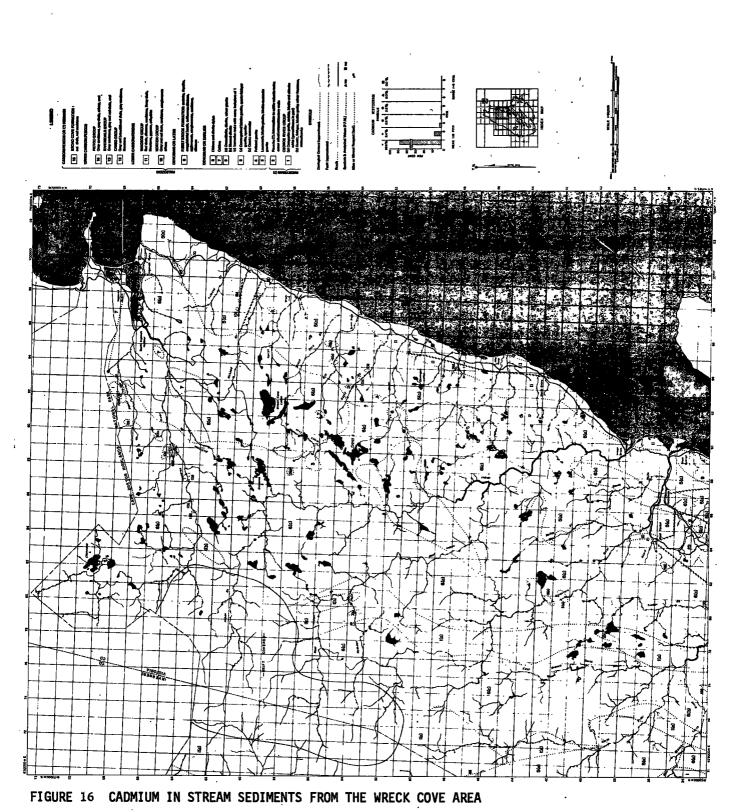




FIGURE 10 CADMIUM IN STREAM SEDIMENTS FROM THE CAPE GEORGE AREA

and the second secon


FIGURE 13 CADMIUM IN STREAM SEDIMENTS FROM THE MARGAREE AREA

- 113 -

> FIGURE 14 Cadmium IN Stream Sediments From The Whycocomagh

•.

- 116 -

<u>!</u>-

MAP AREA	COUNTY OR COUNTIES	CADMIUM CONCENTRATION RANGE (µg/g)	AVERAGE CADMIUM CONCENTRATION (µg/g)
Cape George	Antigonish and Pictou	1-10	1.1
Antigonish	Antigonish, Pictou and Guysborough	1-8	1.1 .
New Glasgow	Pictou	1-40	1.1
Margaree	Cape Breton Island	1-27	1.5
Whycocomagh	Cape Breton Island	1-21	1.4
Lake Ainslie	Cape Breton Island	<1-25	1.2
Wreck Cove	Cape Breton Island	1-5	1.16

TABLE 37 SUMMARY OF NOVA SCOTIA DEPARTMENT OF MINES AND ENERGY SURVEY OF STREAM SEDIMENTS FOR CADMIUM CONTENT

1

.

 $\left| -1 \right|$

•

T.

÷.,

1

3.3.3 Estuarine Sediments

The cadmium content was measured in sediments collected from estuaries of three salmon-bearing rivers in northeastern New Brunswick: The Nepi'siguit, Miramichi and Restigouche (Ray and White, 1977). The water quality of these rivers has deteriorated owing mainly to extensive mining activities in their catchment areas. Cadmium concentrations are listed in Table 38 and sampling locations are illustrated in Figures 17-19. In the Nepisiguit River estuary, the average is 1.51 $\mu g/g$ and all sites excepting Site 10 exceed the 0.6 μ g/g of the ODCA. In fact. two-thirds of the sampling sites have cadmium levels far in excess of the acceptable maximum. In the case of the Miramichi and Restigouche, one site in each river shows a cadmium concentration much in excess of 0.6 μ g/g, however, an insufficient number of sampling sites allow only a qualitative picture to be obtained.

3.3.4 Coastal Sediments

The abundance and distribution of a number of heavy and transition metals, including cadmium, in the Bay of Fundy sediments has recently been investigated (Loring, 1979). Total cadmium concentrations were determined using a flameless atomic absorption technique. The average total cadmium concentration was calculated to be $0.24 \mu g/g dry$ weight. Unlike most of the other metals studied, cadmium levels showed only slight changes with sediment grain size. High cadmium anomalies were found near the dredge disposal site off Saint John Harbour and were assumed to reflect anthropogenic inputs to the local environment.

LOCATION		CADMIUM CONCENTRATIO
RIVER	SITE NO.	(µg/g air dry)
Nepisiguit	1	0.88
	2	0.53
	3	0.95
	4	1.2
	5	0.96
· ·	6	2.0
	7	3.8
	8	2.8
	9	2.6
	10	0.42
	11	0.67
Miramichi	1	0.53
	2	0.51
	3	0.61
	4	0.94
Restigouche	1	0.60
	2	0.56
	3	1.1

TABLE 38CADMIUM CONCENTRATION IN NORTHEASTERN NEWBRUNSWICK SEDIMENT SAMPLES, JULY, 1973

22.11

1 }

•

- <u>8</u> -

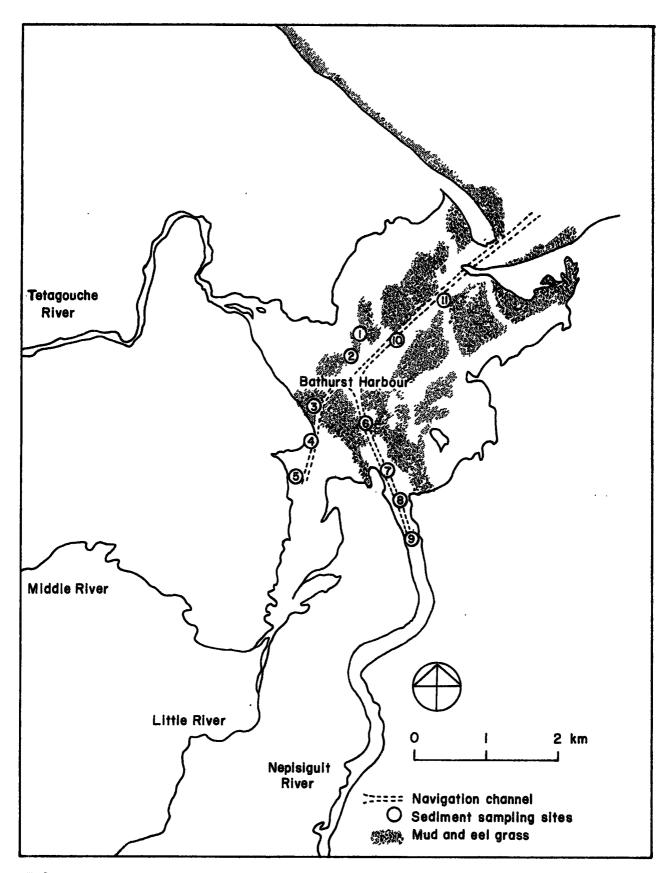


FIGURE 17 SAMPLING SITES IN THE NEPISIGUIT RIVER

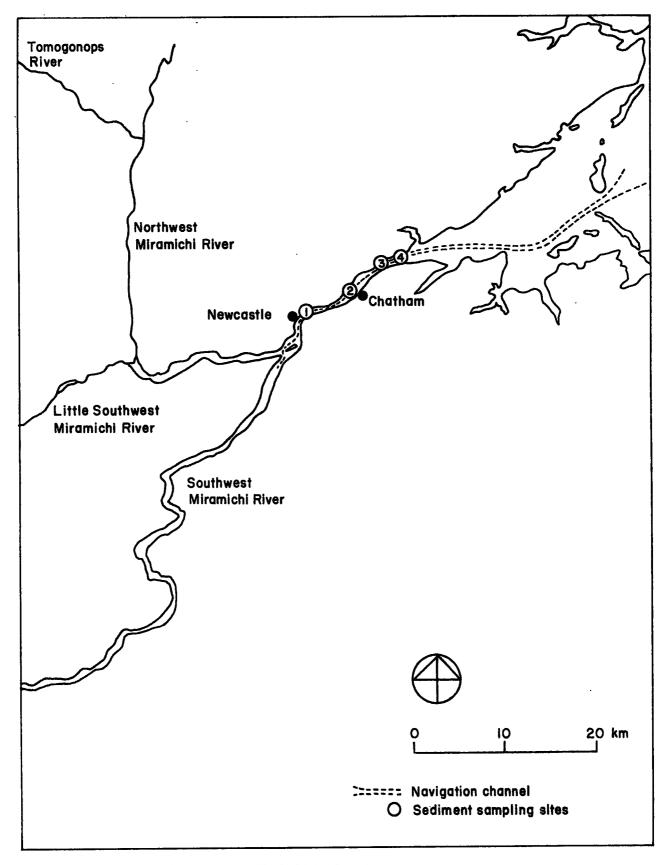


FIGURE 18 SAMPLING SITES IN MIRAMICHI RIVER

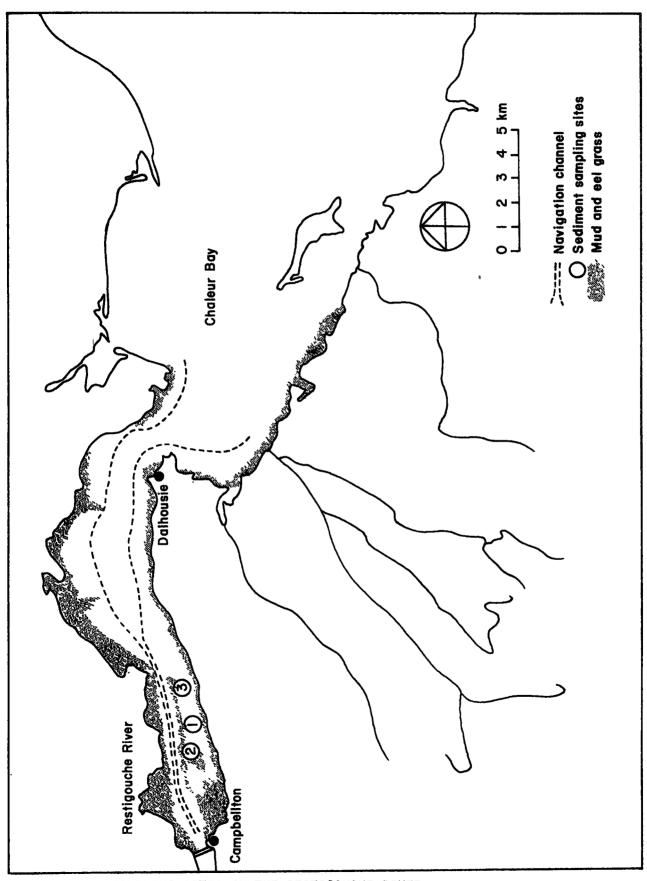


FIGURE 19 SAMPLING SITES IN THE RESTIGOUCHE RIVER

3.4 Cadmium in Soils

The only available source of information on the cadmium content of soils in the Atlantic Region is data from an on-going program of the Nova Scotia Agricultural College (MacLaren and Langille, 1980). Background levels of acid extractable (0.1N HCl) heavy metals in Nova Scotia soils were evaluated and the effects of pH, organic matter and clay content on these levels examined.

Soils were sampled in the agriculturally important North Shore and Annapolis Valley areas of Nova Scotia which include the counties of Cumberland, Colchester, Pictou, Antigonish, Hants, Kings and Annapolis. Samples were taken at the 0-15 cm. and 15-30 cm. depths at each location for a total of 864 samples. Sample sites were mainly sod covered fields representing pasture and unfertilized hay fields.

Natural background cadmium levels were found to be similar in both areas, with a range of $0.012-0.47 \mu g/g$. Higher cadmium levels were found in the upper soil layers probably indicating the effect of atmospheric fallout, biological recycling and use of heavy motorized equipment. Results also indicate that fine textured North Shore soils are not as influenced by variations in organic matter content and pH as are coarse textured Annapolis Valley soils. Clay content has little effect on cadmium content in either area. A comparison of pH, organic matter, clay and cadmium content of the two areas is given in Tables 39 and 40.

PARAMETER	0-15 cm.		15-30 cm.	
	AVERAGE	RANGE	AVERAGE	RANGE
рH	5.28	4.2-7.1	5.23	4.3-7.3
Organic Matter(%)	9.02	0.49-22.67	5.82	0.78-25.36
Clay(%)	20.88	1.0-47.0	20.52	1.0-54.0
Cadmium (µg/g)	0.120	0.012-0.430	0.069	0.012-0.376

TABLE 39 CADMIUM CONTENT OF NORTH SHORE SOILS

·. . . .

1

1

TABLE 40 CADMIUM CONTENT OF ANNAPOLIS VALLEY SOILS

PARAMETER	0-15 cm		15-30	CM
	AVERAGE	RANGE	AVERAGE	RANGE
рH	5.38	3.4-6.6	5.32	3.50-6.40
Organic Matter(%)	7.88	1.88-47.50	4.87	1.53-18.50
Clay(%)	16.86	3.0-43.0	16.15	3.0-50.0
Cadmium (µg/g)	0.099	0.012-0.469	0.065	0.012-0.349

- 125 -

3.5 Cadmium in Aquatic Biota

3.5.1 Cadmium in Aquatic Vegetation

Many aquatic plants are effective concentrators of cadmium. Ray and White (1976) demonstrated that some aquatic plants selectively accumulate specific metals, including cadmium, and can serve as biological monitors. Two vascular plant genera, <u>Potamogeton</u> and <u>Equisetum</u> and a blue alga <u>Oscillatoria</u> proved especially useful for monitoring metal pollution. The authors speculated that cadmium levels had reached an equilibrium value for the plants investigated in the Nepisiguit River system in New Brunswick, an area of base-metal mining. A summary of the cadmium concentration in various plants and the surrounding water is given in Table 41.

Ray and White (1979) also investigated the extent of cadmium accumulation in plant specimens (Equisetum arvense) collected from below the high water line of rivers in a highly metallogenic base-metal mining area of northeastern New Brunswick. Concentrations of cadmium in samples of water and plant tissue are listed in Table 42. The rhizomes and roots had higher metal contents than aerial stems in all cases. There was a definite trend of high cadmium levels in plants from polluted sites. In general, metal concentrations were higher in July, when the plants were growing, than later in the season. Seasonal variations in the cadmium content of E. arvense are given in Table 43. It was concluded that the differences in metal content of the tissues resulted from environmental differences and reflected the integrated metal concentrations in water over a long period.

.

· ---

TABLE 41 CADMIUM CONCENTRATIONS IN AQUATIC PLANT SAMPLES (µg/g DRY WEIGHT) AND SURROUNDING WATER (mg/1) FROM THE NEPISIGUIT RIVER SYSTEM IN NEW BRUNSWICK (RAY AND WHITE, 1976)

SITE	SPECIES/WATER	CADMIUM
1a	Potamogeton richardsonii	
	- Rhizomes and roots	1.32
	- Leaves and above ground stems	0.65
	- Water	<0.0005
2	<u>Equisetum</u> fluviatile	
	- Below ground	5.54
	- Above ground	6.08
	- Water	<0.0005
3	<u>Potamogeton</u> richardsonii	
	- Rhizomes and roots	6.73
	 Leaves and above ground stems 	4.86
	- Water	<0.0005
4	<u>Oscillatoria</u>	0.85
	- Water	0.0050
5	<u>Oscillatoria</u>	0.98
	- Water	0.0005
6	<u>Equisetum</u> fluviatile	
	- Below ground	3.59
	- Above ground	0.92
	- Water	0.0026

a Uncontaminated site - above any mining.

TABLE 42CADMIUM CONCENTRATION IN WATER (mg/1) AND
Equisetum arvense (µg/g DRY TISSUE) COLLECTED
IN A BASE-METAL MINING AREA OF NORTHEASTERN NEW
BRUNSWICK (RAY AND WHITE, 1979)

SAMPLE	SAMPLE TYPE	CADMIUM
NUMBER		
1	Water	<0.0005
	Plant - above ground	0.5
	- underground	3.0
2	Water	<0.0005
	Plant - above ground	2.4
	- underground	7.3
3	Water	<0.0005
	Plant - above ground	0.5
	- underground	, 1.0
4	Water	<0.0005
	Plant - above ground	0.1
	- underground	0.3
5	Water	<0.0005
	Plant - above ground	0.1
	- underground	0.3

् भाकेंड - --

竹;

í

۲ را

.

, í⁻

ľ

l

י י____

{

i

; [.

1

TABLE 43	SEASONAL VARIATION	N OF CADMIUM CONCE	INTRATION IN
	WATER (mg/1) AND H	Equisetum arvense	(µg/g DRY
	TISSUE) (RAY AND I	WHITE, 1979)	

SAMPLE	SAMPLE TYPE	CADMIUM	
NUMBER		JULY	SEPTEMBER
3	Water	<0.0005	<0.0005
	Plant - above ground	0.2	0.5
ł	- underground	2.2	1.0
5	Water	<0.0005	<0.0005
	Plant - above ground	0.1	0.1
	- underground	0.3	0.3

- 128 -

3.5.2 <u>Cadmium in Aquatic Animals</u>

Much of the available data on cadmium in aquatic animals is the result of studies conducted in the northeastern New Brunswick coastal areas adjacent to Belledune and Dalhousie...established areas of cadmium contamination. The two Noranda reports mentioned in Section 3.1.1.2 and the MacLaren Marex study summarized in Section 3.3.1 contain data on cadmium levels in shellfish and finfish collected in these areas. The results of an EPS survey in the vicinity of Belledune Point are listed in Table 44.

Additional data is available in a series of Co-operative Research Papers published under the auspices of the International Council for the Exploration of the Sea (ICES). Chou and Uthe (1978) analyzed the digestive glands of American lobsters, <u>Homarus americanus</u>, collected from the Atlantic coast of Canada for several heavy metals. In addition to lobster digestive gland, lobster claw muscle and rock crab, <u>Cancer irroratus</u>, were assayed. Concentrations of cadmium were not found to be highly inter-correlated with other heavy metal values. The results are presented in Table 45.

Freeman and Uthe (1974) determined cadmium levels in the edible portions of lobsters from selected areas chosen to sample the bulk of the lobster fishery in the four Atlantic provinces. Most of the cadmium was in the digestive gland (used for lobster paste) and area geometric means ranged from 2.82 to 16.73 μ g/g. Muscle levels were less than 1.0 μ g/g cadmium. Calculated cadmium levels in the total edible portion ranged from 0.51 to 2.98 μ g/g. Most of the cadmium was thought to be of geologic origin. Data from this study are summarized in Tables 46 and 47.

- 129 -

TABLE 44	CADMIUM CONCENTRATION IN Mytilus edulis IN THE
	VICINITY OF BELLEDUNE POINT, NEW BRUNSWICK,
	1977 (µg/g WET WEIGHT)

į

SAMPLING LOCATION	RANGE	AVERAGE CADMIUM Concentration
Little Belledune Point	0.9-27.0	9.8
Chapel Point	17.0-29.0	24.6
Belledune Point-South of Bar	3.7- 5.9	5.0
Hendry Brook	6.8-21.0	16.3
Quitard Brook	13.0-14.0	13.5
Pointe Verte	3.1- 5.9	4.5
Petit Rocher	1.2- 7.8	4.5

- 130 -

*.*33

•~ , •**•**

DIGESTIVE GLAND, CLAW MUSCLE AND RUCK CRAB			
DIGESTIVE GLAND (CHOU AND UTHE, 1978)			
SAMPLE AND LOCATION	CADMIUM CONCENTRATION $(\mu g/g$ Wet Weight)		
Halifax(N.S.) Lobster Digestive Gland	8.59		
(N ^a = 17)	(4.64-15.1) ^b		
North Lake(P.E.I.) Lobster Digestive Gland	12.9		
(N = 20)	(5.48-38.9)		
Shediac(N.B.) Lobster Digestive Gland	12.7		
(N = 20)	(4.37-47.4)		
Victoria Beach(N.S.) Lobster Digestive Gla	nd 7.02		
(N = 23)	(3.04-16.2)		
Petit Rocher(N.B.) Lobster Digestive Gland	3.67		
(N = 20)	(1.69-10.07)		
Victoria Beach(N.S.) Rock Crab Digestive Gland (N = 17)	2.02 (0.54-20.6)		

TABLE 45GEOMETRIC MEAN AND RANGES OF CADMIUM IN LOBSTERDIGESTIVE GLAND, CLAW MUSCLE AND ROCK CRABDIGESTIVE GLAND (CHOU AND UTHE 1978)

ſ

ŗ

{

;

a N represents number of samples analyzed.

b Blanket values represent minimum and maximum results.

- 131"-

SAMPLE SITE	Na	CADMIUM LEVEL	RANGE
NEWFOUNDLAND	<u></u>		
Arnold's Cove	50	8.82	2.5-48.9
Britannia	20	12.63	4.8-30.3
Comfort Cove	21	2.82	1.7- 6.9
Lark Harbour	25	10.89	3.8-33.6
Port Aux Basques	27	10.70	4.3-45.0
Bay L'Argent	26	10.83	4.6-20.2
NEW BRUNSWICK			
Gaspé (Quebec)	26	10.53	4.2-46.7
Chaleur Bay	26	4.30	1.8-10.7
Shippegan	26	3.79	1.6-11.3
Neguac	26	4.72	2.5-28.7
Richibucto	26	6.26	3.8-14.4
Tormentine	24	10.90	4.1-22.4
Grand Manan	26	6.93	2.6-31.5
PRINCE EDWARD ISLAN	D		
Tignish	25	14.03	5.5-37.8
French River	26	11.95	2.3-48.2
North Lake	24	16.73	7.2-53.4
NOVA SCOTIA			
Pictou	26	14.36	3.7-79.1
Cheticamp	23	9.14	2.1-36.3
Main-à-Dieu	26	12.58	4.9-47.2
Arichat	25	7.87	3.2-31.7
Tangier	26	6.53	2.4-20.0
Sambro	25	8.03	2.0-18.0
Liverpool	26	5.19	1.3-16.7
Pubnico	20	10.68	5.2-21.4
Digby	26	6.50	2.9-15.4

TABLE 46 GEOMETRIC MEAN CADMIUM CONCENTRATION IN LOBSTER DIGESTIVE GLAND (μ g/g Cd/g WET WEIGHT) FROM VARIOUS AREAS IN THE ATLANTIC LOBSTER FISHERY (FREEMAND AND UTHE, 1974)

a Number sampled.

ASSUMING 98% OF THE CADMIUM IS IN THE DIGESTIVE GLAND AND THE LOBSTER DRESSES AT 30% INCLUDING			
		AN AND UTHE, 1974)	
SAMPLE SITE	TOTAL	AV. DIGESTIVE	AV. CADMIUM/
	AV. WT.(G)	GLAND WEIGHT(G)	EDIBLE PORTION(µg/g)
NEWFOUNDLAND			
Arnold's Cove	[.] 532	32.1	1.81
Britannia	639	33.1	2.23
Comfort Cove	538	28.7	0.51
Lark Harbour	631	28.5	1.67
Port Aux Basques	476	29.5	2.26
Bay L'Argent	559	32.9	2.17
NEW BRUNSWICK			
Gaspé (Quebec)	561	27.3	1.74
Chaleur Bay	436	25.0	0.84
Shippegan	478	25.6	0.69
Neguac	350	21.2	0.97
Richibucto	460	22.2	1.03
Tormentine	561	27.0	1.78
Grand Manan	530	26.8	1.19
PRINCE EDWARD ISLAN			
Tignish	538	27.3	2.42
French River	491	24.5	2.03
North Lake	599	31.4	2 .98
NOVA SCOTIA			
Pictou	482	23.1	2.34
Cheticamp	613	34.4	1.74
Main-â-Dieu	552	30.8	2.39
Arichat	536	21.0	1.30
Tangier	495	24.5	1.10
Sambro	680	30.1	1.21
Liverpool	547	26.5	0.86
Pubnico	475	24.5	1.87
Digby	467	22.3	1.06

--

 TABLE 47
 AVERAGE CADMIUM CONTENT IN LOBSTER EDIBLE PORTION

 ASSUMING 98% OF THE CADMIUM IS IN THE DIGESTIVE

.

5 1

÷.

Ŧ

Ray and co-workers (Ray <u>et</u>. <u>al</u>., 1979) compared the cadmium concentrations of several bottom-dwelling marine invertebrates with levels in sediments from the collection sites for three locations in coastal New Brunswick. The data, for the most part, indicated that the cadmium concentrations within the animals tended to be relatively constant regardless of the metal content of the sediment, at least over the range of concentrations studied. The data is listed in Table 48.

Pearce (1978) compiled heavy metal data for finfish and shellfish from the Northwest Atlantic for use as baseline data by ICNAF. A few of the collection sites were sufficiently close to the western end of the Nova Scotian coast to warrant inclusion in this report. Table 49 lists the fish species mean cadmium concentration and other available information. None of the samples contained mean levels of cadmium exceeding values presently acknowledged to be harmful from a human consumption point of view.

3.6 Cadmium in Air

A special National Air Pollution Surveillance (NAPS) program conducted in the Atlantic Region in April and May of 1975 showed cadmium levels well within the normal ranges reported in Section 2.3. Data from the survey (NAPS, 1975) are presented in Table 50.

TABLE 48	CADMIUM IN SEDIMENTS AND INVERTEBRATES FROM
	THREE COASTAL AREAS IN NEW BRUNSWICK
	(RAY et. al., 1979)

1

- 1

SEDIMENT/INVERTEBRATE	CADMIUM (µg/g WET WEIGHT)
Sediment	0.06 - 6.9
Crangon	0.40 - 1.45
Gammarus	0.6 - 1.85
Mysis	0.15 - 0.25
Polychaete	0.15 - 0.2
Macoma	0.10 - 0.45

ID SHELLFISH Iova scotia	
FINFISH AN Coast of N	
CADMIUM CONCENTRATIONS IN FINFISH AND SHELLFISH Collected off the Western Coast of Nova Scotia	(PEARCE, 1978)
TABLE 49	

FISH SPECIES	DATE OF Collection	YEAR-CLASS Or Length	TYPE OF TISSUE And Number Of Samples	MEAN CADMIUM Concentration (µg/g Wet Wt.)
			muscle	
Cod (<u>Gadus morhua</u>)	ı	t	8	0.056
Atlantic Pollock (<u>Pollachius virens</u>)	1	ı	œ	0.051
White Hake (<u>Urophyeis</u> tenvis)	ı	ı	œ	0.074
Ballyhoo (Hemiramphus brasiliensis)	•	ı	whole fish 24	0.095

- 136 -

TABLE 50 CADMIUM IN AIR (μ g/m³) AT VARIOUS ATLANTIC REGION LOCATIONS

•

•

 \uparrow

T.

۰ ۱

1

•

1

.

PROVINCE AND LOCATION	DATE	CADMIUM
IOVA SCOTIA	****	
Halifax	April 18. 1975	0.003
-N. S. Technical College	April 18, 1975 April 24, 1975 April 30, 1975	0.000
•	April 30, 1975	0.000
· ·	May 6, 1975	0.001
	May 12, 1975	0.001
	May 18, 1975	0.001
	May 24, 1975	0.000
	May 30, 1975	0.003
Halifax	April 18, 1975	0.003
-Dalhousie Univeristy	April 24, 1975	0.003
	April 30, 1975	0.013
	April 24, 1975 April 30, 1975 May 6, 1975	0.000
	May 12, 1975	0.004
	May 18, 1975	0.001
	May 24, 1975	0.000
	May 30, 1975	0.000
Halifax	April 18, 1975	0.000
-Mount Saint Vincent	Anril 24 1975	0.000
University	April 30, 1975	0.000
	April 30, 1975 May 6, 1975 May 12, 1975 May 12, 1975	0.004
	May 12, 1975	0.001
	May 10, 19/5	0.001
	May 24, 1975	0.000
	May 30, 1975	0.000
Dartmouth	April 18, 1975	0.000
- C.F.B. Shearwater	April 24. 1975	0.000
	April 30, 1975	0.000
	May 6, 1975	0.004
	May 12, 1975	-
	May 18, 1975	0.006
	May 24, 1975	0.000
	May 30, 1975	0.000

Cont'd

- 138 -

Ċ

TABLE 50 (CONT'D)

1

I

PROVINCE AND LOCATION	DATE	CADMIUM
NOVA SCOTIA (Cont'd)		
Sydney	April 18, 1975	0.000
	April 24, 1975	0.000
	April 30, 1975	0.000
	May 6, 1975	0.005
	May 12, 1975	0.005
	May 18, 1975	0.008
	May 24, 1975	0.000
	May 30, 1975	0.000
NEW BRUNSWICK		
Fredericton	April 18, 1975	0.000
	April 24, 1975	0.000
	April 30, 1975	0.010
	May 6, 1975	0.003
	May 12, 1975	0.000
	May 18, 1975	0.000
	May 24, 1975	0.000
	May 30, 1975	0.000
Saint John	April 18, 1975	0 000
Sarne Sonn	April 10, 1975 April 24 1075	0.000 0.000
	April 24, 1975 April 30, 1975	0.003
	May 6, 1975	0.007
	May 12, 1975	0.004
	May 18, 1975	0.001
	May 24, 1975	0.000
	May 30, 1975	-
Moncton		0 000
- C.F.B. Shearwater	April 18, 1975	0.000
- VIIIDI SHEAFWALEF	April 24, 1975 April 30, 1975	0.000 0.003
	May 6, 1975	0.003
	May 12, 1975	0.004
	May 18, 1975	0.002
	May 24, 1975	0.000
	May 30, 1975	0.000

تقتله ... م

Cont'd

TABLE 50 (CONT'D)

.

PROVINCE AND LOCATION	DATE	CADMIUM
PRINCE EDWARD ISLAND		
Charlottetown	April 18, 1975	0.000
	April 24, 1975	0.000
	April 30, 1975	0.000
	May 6, 1975	0.007
	May 12, 1975	0.004
	May 18, 1975	0.007
	May 24, 1975	-
	May 30, 1975	-
NEWFOUNDLAND		
St. John's	April 18, 1975	0.003
	April 24, 1975	_
	April 30, 1975	-
	May 6, 1975	0.007
	May 12, 1975	-
	May 18, 1975	-
	May 24, 1975	0.000
	May 30, 1975	0.003

TABLE 51 CADMIUM EMISSIONS BY SECTOR IN THE MARITIME PROVINCES

ł

4

SECTOR	EMMISSION SOURCE	CADMIUM (1bs)
Industry	Primary lead production Primary iron and steel	6,079
	production Iron and steel foundries	1,359 249
Fuel Combustion/ Stationary Sources	Power generation Industrial and	16,210
	commercial Domestic	32,543 1,588
Transportation	Motor vehicles	22
	Rail transport Shipping	108
	Aviation Tire wear	negligible 9
Solid Waste Incineration		393
Pesticide Application		5
TOTAL		58,565

and star in the same

- - -

TABLE 52 CADMIUM EMISSIONS BY SECTOR IN NEWFOUNDLAND

- **+**

1 | , |___

1

•

1

:]

1

/-- , | -

 \overline{i}

SECTOR	EMMISSION SOURCE	CADMIUM (1bs)
Industry	Iron and steel foundries	22
Fuel Combustion/ Stationary Sources	Power generation Industrial and	840
	commercial Domestic	597 314
Transportation	Motor vehicles Rail transport Shipping Aviation Tire wear	6 42 negligible 2
Solid Waste Incineration		-
Pesticide Application		5
TOTAL		1,828

Bi chan

ļ

A national inventory of cadmium sources and emissions in Canada was conducted in 1972. Of the total 560 tons of cadmium emitted to the atmosphere that year only 30.2 tons or 5.4% originated in the Atlantic Region. Tables 51 and 52 give cadmium emissions by sector for the Maritime Provinces and Newfoundland respectively.

4 SUMMARY

Discussion of the environmental hazard posed by cadmium and its ultimate fate in ecosystems has been deferred to the national report being prepared for the DOE/NHW Environmental Contaminants Committee. It will provide information concerning the need for new controls on cadmium and its compounds as provided by the terms of the Environmental Contaminants Act and by other applicable federal legislation.

In the Atlantic Region two instances of localized cadmium contamination have been identified. In the Belledune area of New Brunswick high levels detected in sediments and lobsters from the harbour are attributable to air and water emissions originating from a lead smelter operated by Brunswick Mining and Smelting and augmented by emissions from the adjacent Belledune Fertilizer Ltd. plant. The second "hot-spot" is Dalhousie Harbour where leaching from ore concentrate stored at the public wharf has resulted in cadmium contamination of the Interestingly, the cadmium levels in immediate area. sediments from a number of northeastern New Brunswick harbours (an area which includes Dalhousie and Belledune) are consistently in excess of the average value for other regional harbours. Whether this is a manifestation of discharges from Belledune or a reflection of the

- 142 -

geological composition of the area is undetermined. The only other industry having a significant cadmium content in its liquid waste is IMP Aerospace. The environmental implications of the dry well disposal method used at this operation have not been assessed.

Cadmium concentrations in the waters of lakes and rivers which have been surveyed in the region range within normally accepted background levels. Minor variations are attributed to geological differences. Stream and river sediments in New Brunswick and Nova Scotia have, for the most part, cadmium levels between 1-2 $\mu g/g$ whereas coastal sediments average approximately 0.2 μ g/g. Values for aquatic plants located near base metal mining operations in New Brunswick appear to have abnormally high cadmium levels. These species apparently effect significant bioconcentration since water levels are not particularly elevated. There is considerable data substantiating contamination of aquatic animals, particularly lobsters, in the Belledune area. In a more general context, investigations have indicated considerable cadmium concentration in the digestive glands of lobsters captured in a regional survey; however, the source is suspected to be geological rather than anthropogenic in nature. Limited soil data indicated cadmium concentrations between 0.01 and 0.05 μ g/g.

Cadmium values reported on permit applications for harbour and channel sediments are somewhat erratic and not easily interpretable. Areas of high concentration correlate poorly with the extent of shore based industrial activity. In addition, significantly different values from reasonably proximate locations seem to preclude geological variation as an explanation. The limited data on regional air emissions suggest that the major sources of cadmium input are the lead smelter at Belledune and thermal power generating plants.

Analytical validity has not been discussed in this report; however, it is probable that some of the reported data is unreliable. Cadmium measurement, particularly at levels approaching the limit of detection, is an intricate analytical problem. The harbour and channel sediment data, much of which has originated in private laboratories, is particularly suspect. In the Laboratory Evaluation Program, First Quality Control Round Robin sponsored by RODAC in 1978 cadmium was found to be the most difficult of six analyzed elements to measure correctly and was done incorrectly by 55% (6 of 11) of the participating laboratories.

A paucity of air measurements is probably the most serious regional data gap. While enough evidence is available to suggest thermal power operations are responsible for substantial cadmium discharge, the extent and ultimate fate of such emissions are not well defined. The two identified regional hot-spots warrant continued monitoring so that improvement or deterioration of the situation may be assessed.

Nationally, as well as regionally, a clear understanding of the chronic and long-term effects of cadmium in different environmental matrices is required so that logical compliance and regulatory levels may be established.

REFERENCES

- Abdullah, M. I., Royle, L. G. and Morris, A.W., "Heavy metal concentration in coastal waters". Nature, 235, 158-160 (1972).
- Anonymous, "WHO Environmental health criteria for cadmium". Ambio, <u>6</u>, 287 (1977).
- Anonymous, "Criteria (dose/effect relationships) for cadmium". Pergamon Press for Commission of European Communities. 15, (1978).
- Anonymous, "Water quality data analysis and sampling program for the international waters of the Saint John River Basin". Report to the Water Quality and Sampling Subcommittee to the Canada-United States Committee on Water Quality in the Saint John River Basin (1979).
- Babich, H. and Stotsky, G., "Effects of cadmium on the biota: influence of environmental factors". Adv. Appl. Microbiology, 23, 55-117 (1978).
- Baillargeon, J.M., Lemay, J.P., Holtmann, W.B. and Charette, L.A. "Comparison de diverses méthodes de castration et de stérilization des agneaux". I. Influence de ces methodes sur la croissance, l'efficience alimentaire, le rendment a l' abattage et la rentabilité. Can. J. Anim. Sci., <u>51</u>, 579-589 (1971A).
- Baillargeon, J.M., Lemay, J.P., Holtmann, W.B. and Charette, L.A., "Comparison de diverses méthodes de castration et de stérilization des agneaux" II. Influence sur la carcusse. Can. J. Anim. Sci., 51, 591-599 (1971B).
- Bengtsson, B.E., Carlin, C.H., Larsson, A. and Swanberg, O., "Vertebral damage in minnows (<u>Phoxinus phoxinus</u> L.), exposed to cadmium". Ambio, <u>4</u>, 166-168 (1975).
- Berry, W.L. and Wallace A., "Trace elements in the environment - their role and potential toxicity as related to fossil fuels - a preliminary study". A.E.C. Contract No. AT (04-1) Gen. 12. Available NTIS, U.S. Dept. of Commerce, 5285 Port Royal Road, Springfield, Va. 22151 (1974).

5

- Bertine, K.K. and Goldberg, E.D., "Fossil fuel combustion and the major sedimentary cycle". Science, <u>173</u>, 233-235 (1971).
- Bewers, J.M., Sundly, B. and Yeats, P.A., "The distribution of trace metals in the western North Atlantic off Nova Scotia". Geochem. Cosmochem. Acta., <u>40</u>, 687-696 (1976).
- Biesinger, K.E. and Christensen, G.M., "Effects of various metals on survival, growth, reproduction and metabolism of <u>Daphnia</u> <u>magna</u>". J. Fish. Res. Board Can. 29, 1691-1700 (1972).
- Bingham, F.T., Page, A.L., Mahler, R.J. and Gange, T.J., "Growth and cadmium accumulation of plants grown on a soil treated with a cadmium-enriched sewage sludge". J. Environ. Qual., <u>4</u>, 207-211 (1975).
- Bingham, F.T., Page, A.L., Mahler, R.J. and Gange, T.J., "Yield and cadmium accumulation of forage species in relation to cadmium content of sludge - amended soil". J. Environ. Qual., <u>5</u>, 57-60 (1976).
- Bowen, H.J.M., "Trace elements in biochemistry". Academic Press, New York, 241 (1966).
- Boyle, R.W. and Jonasson, I.R., "Geochemistry of cadmium". In: Effects of cadmium in the Canadian Environment, National Research Council, NRCC No. 16743, 15-22 (1979).
- Cearley, J.C. and Coleman, R.L., "Cadmium toxicity and accumulation in southern naiad". Bull. Environ. Contamin. Toxicol., 9 (2), 100-102 (1973).
- Cearley, J.E. and Coleman, R.L., "Cadmium toxicity and bioconcentration in largemouth bass and bluegill". Bull. Environ. Contamin. Toxicol., <u>11</u>, 146-151 (1974).
- Chaney, R.L. and Hornick, S.B., "Accumulation and effects of cadmium on crops". In: Cadmium 77-Edited proceedings first international cadmium conference, San Francisco, 125-140 (1977).
- Chatterjee, S.N. and Kar, A.B., "Further studies on sterilization of scrub cows with cadmium chloride". Indian Vet. J., 46, 69-73 (1969).

of the state

Chiquoine, A.D. and Suntzeff, V., "Sensitivity of mammals to cadmium necrosis of the testes". J. Reprod. Fertil., 10, 455-457 (1965).

_ _

- lobsters (<u>Homarus americanus</u>) and rock crab (<u>Cancer</u> <u>irroratus</u>) digestive glands". International Council for the Exploration of the Sea, C.M. 1978/E: 15, Copenhagen (1978).
- Christensen, G.M., "Biochemical effects of methyl-mercuric chloride, cadmium chloride and lead nitrate on embryos and alevins of the brook trout, <u>Salvelinus fontinalis</u>". Toxicol. Appl. Pharmcol. 32, 191-197 (1975).
- Cornell, D.G. and Pallansch, M.J., "Cadmium analysis of dried milk by pulse polargraphic techniques". J. Dairy Sci., 56, 1479-1485 (1973).

ł.

- Cousins, R.J., Barber, A.K. and Trout, J.R., "Cadmium toxicity in growing swine". J. Nutr., <u>103</u>, 964-972 (1973).
- Deknudt, G. and Leonard, A., "Cytogenetic investigation of leucocytes of workers from a cadmium plant". Environ. Physiol. Biochem., 5, 319-327 (1975).
- Dewis, S.W. and Lord, D.A., "An environmental investigation of the area immediately surrounding the Surrette Battery Company Limited plant at Springhill, Nova Scotia". Surveillance Report EPS-5-AR-77-15 (1977).
- Dorn, C.R., Pierce, J.O., Chase, G.R. and Phillips, P.E., "Environmental contamination by lead, cadmium, zinc and copper in a new lead-producing area". Environ. Res., 9, 159-172 (1975).
- Doudoroff, P. and Katz, M., "Critical review of the literature on the toxicity of industrial waters and their components to fish. II. The metals as salts". Sewage and Ind. Wastes, 25, 802-829 (1953).
- Doyle, J.J., Pfander, W.H., Grebing, S.E. and Pierce, J.O., "Effect of dietary cadmium on growth, cadmium absorption and cadmium tissue levels in growing lambs". J. Nutr., 104, 160-166 (1974).
- Dugdale, P. and Young, A., "Lead smelting and refining at the smelting division of Brunswick Mining and Smelting Corporation Limited". Paper A75-83, T.M.S.A.I.M.E., New York (1975).
- Eaton, J.G., "Chronic cadmium toxicity to the bluegill (<u>Lepomis macrochinus</u> Rafinesque)". Trans. Am. Fish. Soc. 103, 729-735 (1974).

- Eaton, A., "Marine geochemistry of cadmium". Mar. Chem. 4, 141-154 (1976).
- E.I.F.A.C., "Report on cadmium and freshwater fish". Wat. Res., <u>12</u>, 281 (1978).
- Eisler, R., "Cadmium poisoning in <u>Fundulus heteroclitus</u> (Pisces: Cyprinodontidae) and other marine organisms". J. Fish. Res. Board Can., <u>28</u>, 1225-1234 (1971).
- Eisler, R., "Radiocadmium exchange with seawater by <u>Fundulus heteroclitus</u> (L.) (Pisces: Cyprinodontidae)". J. Fish. Biol., 6, 601-612 (1974).
- Eisler, R. and Gardner, G.R., "Acute toxicology to an estuarine teleost of mixtures of cadmium, copper and zinc salts". J. Fish. Biol., 5, 131-142 (1973).
- E.P.S., "Environmental monitoring of coal mining and beneficiation facilities in Nova Scotia and New Brunswick, Canada". Surveillance Report EPS-5-AR-79-5, Atlantic Region (1979).
- E.P.S., "National inventory of sources and emissions of cadmium (1972)". Internal Report. APCD 76-2, Air Pollution Control Directorate (1976).
- Fisheries Act, "Metal finishing liquid effluent guidelines". Fisheries and Environment Canada, Report EPS-1-WP-77-5 (1977).
- Flanagan, P.R., McLellan, J., Hoist, J., Cherian, M.G., Chamberlain, M.J. and Vallberg, L.S., "Increased dietary cadmium absorption in mice and human subjects with iron deficiency". Gastroenterology, 74 (5, pt. 1), 841 (1978).
- Fleischer, M., Sarofim, A.F., Fassett, D.W., Hammond, P., Shacklette, H.T., Nisbet, I.T.C. and Epstein, S., "Environmental impact of cadmium: a review by the panel on hazardous trace substances". Environ. Health Perspect., 1, 253-323 (1974).
- Flick, D.F., Kraybill, H.F. and Dimitroff, J.M., "Toxic effects of cadmium: a review". Environ. Res., <u>4</u>, 71-85 (1971).

ł

Freeman, H.C. and Sangalang, G.B., "Changes in steroid hormone metabolism as a sensitive method of monitoring pollutants and contaminants". Proc. 3rd Aquatic Toxicity Workshop, Halifax, N.S. Available from Can. Environ. Prot. Serv. Surv. Rep. EPS-5-Ar-77-1 (1976).

Freeman, H.C. and Uthe, J.F., "Geographical distribution of cadmium in lobster digestive gland (hepatopancreas)". International Council for the Exploration of the Sea, C.M. 1974/E: 16 Copenhagen (1974).

- Friberg, L., "The toxicology of cadmium". In: Cadmium 77-edited proceedings first international cadmium conference, San Francisco (1977).
- Friberg, L., Piscator, M. and Nordberg, G., "Cadmium in the environment". CRC Press, Cleveland, Ohio, 166 (1971).
- Friberg, L., Piscator, M., Nordberg, G.F. and Kjellstrom, T., "Cadmium in the environment II". CRC Press, Cleveland, Ohio, 248 (1974).
- Friberg, L., Kjellstrom, T., Nordberg, G.F. and Piscator, M., "Cadmium in the environment III". US EPS document, Environmental Protection Technol. Ser., Washington, D.C. Rep. EPA-650/2-75-049, 212 (1975).
- Fulkerson, W., Goeller, H.E. Gailar, J.S. and Copenhaver, E., "Cadmium , the dissipated element". Oak Ridge National Laboratory, Oak Ridge, Tennesee (1973).
- Gauvin, M., "Lead-1972". Mineral Review No. 23, Department of Energy, Mines and Resources, Ottawa (1973).
- Goyer, R.A. and Cherian, M.G., "Health effects of cadmium". In: Effects of cadmium in the Canadian environment, National Research Council document, NRCC No. 16743, 94-110 (1979).
- Giordano, P.M., Mortvedt, J.J. and Mays, D.A., "Effects of municipal wastes on crop yields and uptake of heavy metals". J. Environ. Qual., 4, 349 (1975).
- Haghiri, F., "Cadmium uptake by plants". J. Environ. Qual., $\underline{2}$ (1), 93-96 (1973).

1 1

k

Ţ

4

- Haghiri, F., "Plant uptake of cadmium as influenced by cation-exchange capacity, organic matter, zinc and soil temperature". J. Environ. Qual., <u>3</u> (2), 180-183 (1974).
- Hardisity, M.W., Huggins, R.J., Kartar, S. and Sainsbury, M., "Ecological implications of heavy metals in fish from the Severn Estuary". Mar. Pollut. Bull., <u>5</u>, 12-15 (1974).
- Health and Welfare Canada, "Guidelines for Canadian Drinking Water Quality". (1978).
- Hiatt, V. and Huff, J.C., "The environmental impact of cadmium: an overview". Intern. J. Environ. Stud., 7, 277-285 (1975).
- Holmes, C.W., Slade, E.A. and McLerran, C.J., "Migration and redistribution of zinc and cadmium in marine and estuarine systems". Environ. Sci. Technol., <u>8</u> 255-259 (1974).
- Hutchinson, T.C., "Comparitive studies of the toxicity of heavy metals to phytoplankton and their synergystic interactions". Water Pollut. Res. Can., 8, 68-90 (1973).
- Hutchinson, T.C., Unpublished data. Dept. of botany, University of Toronto, Toronto, Canada (1977).
- Hutchinson, T.C., "Cadium in aquatic and terrestrial vegetation". In: Effects of cadmium in the Canadian environment, National Research Council document NRCC No. 16743, 47-67 (1979).
- Hutchinson, T.C. and Czyrska, H., "Cadmium and zinc toxicity and synergism to floating aquatic plants". Water Pollut. Res. Can., <u>7</u>, 59-65 (1972).
- Hutchinson, T.C. and Czyrska, H., "Heavy metal toxicity and synergism to floating weeds". Verb. - Int. Ver. Theor. Angew. Limnol., 19 (3), 2102-2111 (1975).
- I.A.R.C., "Cadmium, nickel, some spoxides, miscellaneous industrial chemicals and general considerations on volatile anaesthetics". In: Monograph on the evaluation of carcinogenic list of chemicals to man, Vol. II. International Agency for Research on Cancer. Lyon (1976).

- 's we show with the same 's

- Interprovincial Engineering Ltd., "Report to the Environmental Protection Service on disposal of dredge spoils from the public wharf - Dalhousie, New Brunswick". (1978).
- Jacobs, G., "Absorption and retention of mercury and cadmium from fish-feed by rainbow trout". Z. Tierphys., <u>40</u>, 274 (1978).
- Jarvis, S.C., Jones, L.H.P. and Hopper, M.J., "Cadmium uptake from solution by plants and its transport from roots to shoots". Plant Soil, <u>44</u>, 179 (1976).
- John, M.K., "Influence of soil characteristics on adsorption and desorption of cadmium". Environ. Lett., <u>2</u>, 173 (1971).
- John, M.K., "Effects of lime on soil extraction and on availability of soil applied cadmium to radish and leaf lettuce plants". Sci. Total Environ., <u>1</u>, 303 (1972a).
- John, M.K., "Uptake of soil-applied cadmium and its distribution in radishes". Can. J. Plant Sci., 52, 715 (1972b).
- John, M.K., "Cadmium uptake by eight food crops as influenced by various soil levels of cadmium". Environ. Pollut., 4, 7 (1973).
- John, M.K., Van Laerhoven, C.J. and Chuah, H.H., "Factors affecting plant uptake and phytotoxicity of cadmium added to soils". Environ. Sci. Technol., 6, 555 (1972).
- John, M.K., Chuah, H.H. and Van Laerhoven, C.J., "Cadmium contamination of soil and its uptake by oats". Environ. Sci. Technol., 6, 555-557 (1972a).
- Keeney, W.L., Breck, W.G., Van Loon, G.W. and Page, J.A., "The determination of trace metals in <u>Cladophora</u> <u>glomerata</u> - <u>C. glomerata</u> as a potential biomonitor". Wat. Res., <u>10</u>, 981 (1976).
- Kipling, M.D. and Waterhouse, J.A.H., "Cadmium and prostatic carcinoma (letter)." Lancet, <u>1</u>, 730-731 (1967).
- Kirkham, M.B., "Uptake of cadmium and zinc from sludge by being grown under four different sludge irrigation regimes". J. Environ. Qual., <u>4</u>, 423 (1975).

- Kirkpatrick, D.C. and Coffin, D.E., "Cadmium, lead and mercury content of various cured meats". J. Sci. Food Agric., 24, 1595-1598 (1973).
- Kirkpatrick, D.C. and Coffin, D.E., "The trace metal content of representative Canadian diets in 1970 and 1971". Can. Inst. Food Sci. Technol. J. <u>7</u>, 56-58 (1974).
- Kirkpatrick, D.C. and Coffin, D.E., "The trace metal content of a representative Canadian diet in 1972". Can. J. Pub. Health, 68, 162-164 (1977).
- Kneip, R.J., Re, G. and Hernandez, T., "Cadium in an aquatic ecosystem: distribution and effects". In: Trace substances in environmental health, Edited by D.D. Hemphill, 8, 173-177 (1974).
- Lagerwerff, J.V., "Uptake of cadmium, lead and zinc by radishes from soil and air". Soil Sci., <u>111</u>, 129-133 (1971).
- Larrson, S.E. and Piscator, M., "Effects of cadmium on skeletal tissue in normal and cadmium-deficient rats". Isr. J. Med. Sci., 7, 495-498 (1971).
- Lee, H.J. and Jones, G.B., "Interactions of selenium, cadmium and copper in sheep". Aust. J. Agric. Sci., 27, 447-452 (1976).
- Lemen, R.A., Lee, J.S., Wagoner, J.K. and Blejer, H.P., "Mortality among workers exposed to cadmium". Ann. N.Y. Acad. Sci. 271, 273-279 (1976).
- Levaque-Charron, R.L., "Ecological Survey for Brunswick Mining and Smelting Corporation Limited (Smelting Division), Belledune, New Brunswick". Centre de Recherche Noranda, Pointe Claire, Quebec., Internal. Report No. 373 (1979).
- Linnman, L, Anderson, A., Nilsson, K.O., Lind, B., Kjellstrom, T. and Friberg, L., "Cadmium uptake by wheat from sewage sludge used as a plant nutrient source". Arch. Environ. Health, 27, 45-47 (1973).
- Little, P. and Martin, M.H., "A survey of zinc, lead and cadmium in soil and natural vegetation around a smelter complex". Environ. Pollut., <u>3</u>, 241-254 (1972).

- Loring, D.H., "Baseline levels of transition and heavy metals in the bottom sediments of the Bay of Fundy". Marine Ecology Laboratory, Bedford Institute of Oceanography, Dartmouth, N.S. (1979).
- Lund, J.L., Page, A.L. and Nelson, C.O., "Movement of heavy metals below sewage disposal ponds". J. Environ. Qual., 5, 330-334 (1976).
- Lymburner, D.B., "The production, use and distribution of cadmium in Canada". Environmental Contaminants Control Study No. 2, Report series No. 39. Canada Center for Inland Waters Directorate, Burlington, Ontario, Canada, 71 (1974).
- Lynch, G.P., Smith, D.F., Fisher, M., Pike, T.L. and Weinland, B.T., "Physiological responses of calves to cadmium and lead". J. Anim. Sci., <u>42</u>, 410-421 (1976).
- MacLaren Marex Incorporated, "Report on New Brunswick harbours cadmium study". Marine Scientists and Engineers, Dartmouth, Nova Scotia (1979).

4

- MacLean, K.S. and Langille, W.M., "Extractable heavy metals in Atlantic coast soils". Department of Chemistry, Nova Scotia Agricultural College, Truro, Nova Scotia (1980).
- Mahler, R.J., Bingham, F.T., Page, A.L., "Cadmium enriched sewage sludge application to acid and calcareous soils: Effect on yield and cadmium uptake by lettuce and chard". J. Environ. Qual., 7, 274 (1978).
- McCarty, L.S., Henry, A.C. and Houston, A.H., "Toxicity of cadmium to goldfish, <u>Carassius auratus</u>, in hard and soft water". J. Fish. Res. Bd. Canada, <u>35</u>, 35-42 (1978).
- McKee, J.E. and Wolf, H.W., "Water quality criteria". Second edition. The Resources Agency of California, State Water Quality Control Board, Publication No. 3-A (1963).
- McNaughton, S.J., Folsom, T.C., Lee, T., Park, F., Price, C., Roeder, D., Schmitz, J. and Stockwell, C., "Heavy metal tolerance in Typha latifolia without the evolution of tolerant races". Ecology, <u>55</u>, 1163-1165 (1974).

- Meranger, J.C. and Smith, D.C., "The heavy metal content of a typical Canadian diet". Can. J. Pub. Health, 63, 53-57 (1972).
- Miller, W.J., Blackmon, D.M., Gentry, R.P. and Pate, F.M., "Effect of dietary cadmium on tissue distribution of 109 cadmium following a single oral dose in young goats" J. Dairy Sci., 52, 2029-2035 (1969).
- Mills, C.J. and Dalgarno, A.C., "Copper and zinc status of ewes and lambs receiving increased dietary concentrations of cadmium". Nature, <u>239</u>, 171-173 (1972).
- Morrison, B.H., "Industrial production and uses of cadmium". In: Effects of cadmium in the Canadian environment, National Research Council document, NRCC No. 16743, 33-46 (1979).
- NAPS, National Air Pollution Survey, Environmental Protection Service, Air Pollution Control Directorate, unpublished data (1975).
- National Academy of Sciences and National Academy of Engineering, "Water Quality Criteria-1972. A report of the committee on water quality criteria, environmental studies board". U.S. Gov. Print Off., Washington, D.C., 594 (1972).
- NAQUADAT, Inland Waters Directorate data storage base (1975-1980).
- Neanthery, M.W., Miller, W.J., Gentry, R.P., Stake, P.E. and Blackmon, D.M., "Cadmium-109 and methyl mercury-203 metabolism, tissue distribution and secretion into milk of cows". J. Dairy Sci., <u>57</u>, 1177-1183 (1974).
- Neanthery, M.W. and Miller, W.J., "Metabolism and toxicity of cadmium, mercury and lead in animals: a review". J. Dairy Sci., <u>58</u>, 1767-1781 (1975).
- Nilsson, R., "Aspects of the toxicity of cadmium and its compounds". Ecol. Research Committee Bull. No. 7, Swedish Natural Science Research Council, Sveavagen 166 VIII, S-11346, Stockholm, Sweden (1970).
- Nordberg, G.F., "Health hazards of environmental cadmium pollution". Ambio., <u>3</u>, 55 (1974).

- 154 -

- ----

- Nova Scotia Department of Health, "Chemical quality municipal water supplies province of Nova Scotia". (1977).
- Nova Scotia Department of Mines and Energy, Geochemical maps on cadmium in stream sediments for northern Nova Scotia and Cape Breton. Figures 7-13 (1977-1979).
- Ocean Dumping Control Act, Canada Gazette, Part III, Vol. 1, No. 9, Chapter 55: 1-25 (1975).
- O.E.C.D., "Cadmium in the Environment: Toxicity, economy, control". Organization for Economic Cooperation and Development, Environment Directorate, Paris, 88 (1975).
- Page, A.L., Bingham, F.T. and Nelson, C., "Cadmium absorption and growth of various plant species as influenced by solution cadmium concentrations". J. Environ. Qual., 1, 288 (1972).
- Parizek, J. and Zahor, Z., "Effect of cadmium salts on testicular tissue". Nature, <u>177</u>, 1036-1037 (1956).

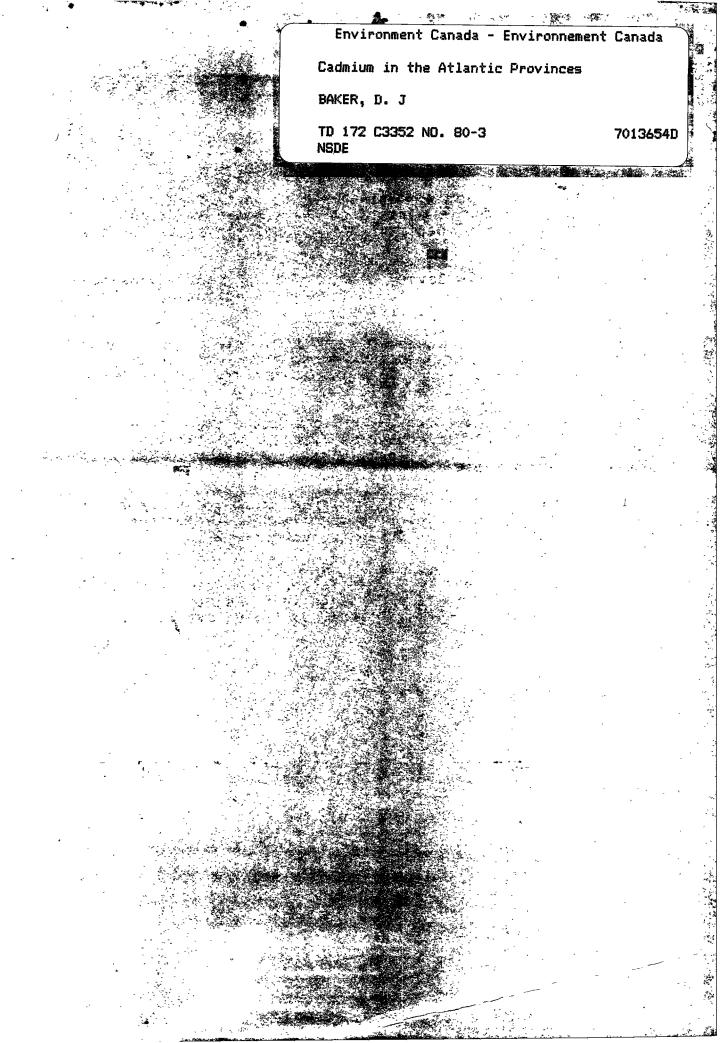
۲

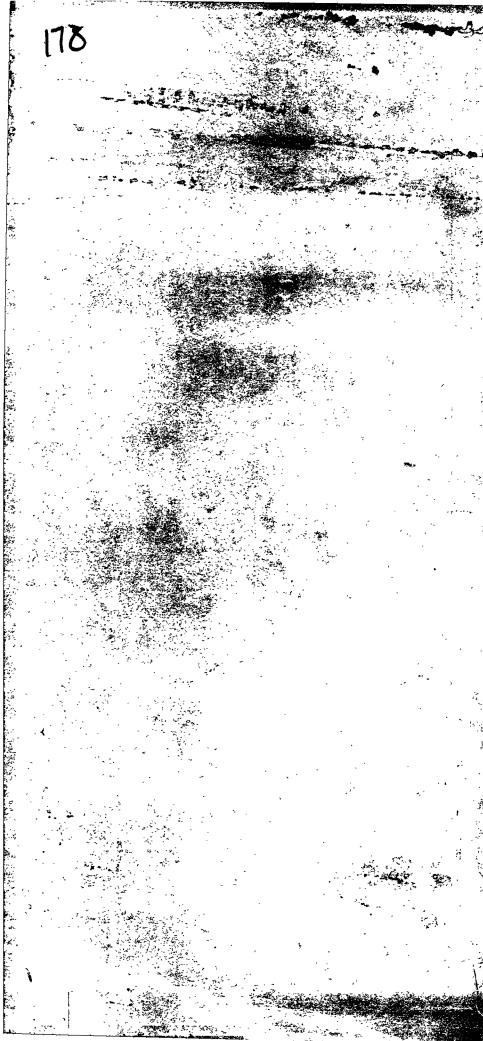
- Parizek, J., Kalouskova, J., Babicky, A. and Pavlik, L., "Interaction of selenium with mercury, cadmium and other toxic metals". In: Trace element metabolism in animals - 2. Edited by W.G. Hoekstra, J.W. Suttie, H.E. Ganther and W. Mertz. University Park Press, Baltimore. pp. 119-131 (1973).
- Pearce, J.B., "Report to the working group on pollution baseline and monitoring studies in the Onslo commission and ICNAF areas on heavy metals in selected finfish and shellfish from the Northwest Atlantick". U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Center, Sandy Hook Laboratory, Highlands, New Jersey (1979).
- Pickering, Q.H. and Henderson, C., "The actue toxicity of some heavy metals to different species of warm water fish". Int. J. Air. Water Pollut., <u>10</u>, 453 (1966).
- Pinkerton, J. and Simpson, J.R., "Root growth and heavy metal uptake by three graminaceous plants in differentially limed layers of an acid mine spoil contaminated soil". Environ. Pollut., <u>14</u>, 159 (1977).

- Pond, W.G., Walker, E.F., Jr. and Kirtland, D., "Cadmium induced anemia in growing pigs: protective effect of oral or parenteral iron". J. Anim. Sci., <u>36</u>, 1122-1124 (1973).
- Pond, W.G., "Mineral inter-relationships in nutrition: practical implications". Cornell Vet., <u>65</u>, 441-456 (1975).
- Pond, W.G. and Walker, E.F., Jr., "Cadmium-induced anemia in growing rats: prevention by oral or parental iron". Nutr. Rep. Int., 5, 365-370 (1972).
- Potts, C.L., "Cadmium proteinuria-the health of battery workers exposed to cadmium oxide dust". Ann. Occup. Hyg., 8, 55 (1965).
- Powell, G.W., Miller, W.J. and Blackmon, D.M., "Effects of dietary EDTA and cadmium on absorption, excretion and retention of orally administered zinc-65 in various tissues of zinc - deficient and normal goats and calves". J. Nutr., 93, 203-212 (1967).
- Preston, A., "Cadmium in the marine environment of the United Kingdom". Mar. Pollut. Bull., <u>4</u>, 105-107 (1973).
- Pringle, B.H., Hissong, D.E., Katz, E.L., and Mulawka, S.T., "Trace metal accumulation by estuarine molluscs". J. Sanit. Eng. Div., 94, 355 (1968).
- Rauser, W.E., "Early effects of phytotoxic burdens of cadmium, cobalt, nickel and zinc in white beans". Can. J. Bot., 56, 1744 (1978).
- Ray, S. and Coffin, J., "Ecological effects of cadmium pollution in the aquatic environment: a review". Fish. Mar. Serv. (Can.), Tech. Rep. No. 734, 18 (1977).
- Ray, S., and White, W., "Selected aquatic plants as indicator species for heavy metal pollution". J. Environ. Sci. Health, A11, 717 (1976).
- Ray, S. and White, W., "Heavy metal pollutionaquatic plants as indicator species". Presented at the 2nd CIS/ACS Joint Conference, Montreal, May 29-June 2, 1977 (1977).
- Ray, S. and White, W., "<u>Equisetum arvense</u> An aquatic vascular plant as a biological monitor for heavy metal pollution". Chemosphere 8 (3), 125-128 (1979).

. •

- Reish, D.J., Martin, J.M., Piltz, F.M. and Word, J.Q., "The effect of heavy metals on laboratory populations of two polychaetes with comparisons to water quality conditions and standards in southern California marine waters". Water Res., 10, 299-302 (1976).
- Reuss, J.O., Dooley, H.L. and Griffis, W., "Uptake of cadmium from phosphate fertilizers by peas, radishes and lettuce". J. Environ. Qual., <u>7</u>, 188 (1978).
- Roberts, K.R., Stake, E., Miller, W.J. and Gentry, R.P., "Effect of dietary cadmium on zinc-65 metabolism in holstein valves". J. Dairy Sci., 56, 647 (1973).
- Ryan, T.D., "Particulate lead and cadmium concentrations in the vicinity of the Surrette Battery Company plant in Springhill, Nova Scotia". A report prepared by the Inspection and Monitoring Division of the Nova Scotia Department of the Environment (1974).


¥


- Sandi, E., "Cadmium in food". In: Effects of Cadmium in the Canadian environment, National Research Council document, NRCC No. 16743, 90-93 (1979).
- Sangalang, G.B. and Freeman, H.C., "Tissue uptake of cadmium in brook trout during chronic sublethal exposure". Arch. Environ. Contam. Toxicol., <u>8</u>, 77-84 (1979).
- Sangalang, G.B. and O'Halloran, M.J., "Cadmium induced testicular injury and alterations of androgen synthesis in brook trout". Nature <u>240</u>, 470-471 (1972).
- Sangalang, G.B. and O'Halloran, M.J., "Adverse effects of cadmium on brook trout testes and on invitra testicular androgen synthesis". Biol. Reprod., 9, 394-403 (1973).
- Schroeder, H.A. and Balassa, J.J., "Abnormal trace metals in man: cadmium". J. Chronic Dis., <u>14</u>, 238-258 (1961).

- Schroeder, H.A. and Balassa, J.J., "Cadmium: uptake by vegetables from super-phosphate in soils". Science 140, 819-820 (1963).
- Schweiger, G., "The toxic action of heavy metal salts on fish and organisms on which fish feed". Arch. Fisch. Wiss., 8, 54-78 (1957).
- Sergeant, D.B. and Westlake, G.F., "Cadmium discharges associated with the industry at Belledune, N.B". (1980).
- Sharma, R.P. and Shupe, J.L., "Lead, cadmium and arsenic residues in animal tissues in relation to their surrounding habitat". Sci. Total Environ., <u>7</u>, 53-62 (1977).
- Shiraishi, Y., Kurahashi, H. and Yosida, T.H., "Chromosomal aberrations in cultured human leucoytes induced by cadmium sulfide". Proc. Jap. Acad., 48, 133 (1972).
- Stanley, R.A., "Toxicity of heavy metals and salts to Eurasian watermilfoil (<u>Myrcophyllum spicatum L.</u>)". Arch. Environ. Contam. Toxicol., <u>2</u>, 331-341 (1974).
- Suzuki, M., Yamada, T., Mujazaki, T. and Kawazoe, K., "Sorption and accumulation of cadmium in the sediment of the Tama River". Water Res., <u>13</u>, 57-63 (1979).
- Swiss, J.J. and Henderson, J., "A review of cadmium concentration with respect to the Ocean Dumping Control Act". For: The Scheduled Substances Working Group of Regional Ocean Dumping Advisory Committee (Atlantic) (1978).
- Tafanelli, R. and Summerfelt, R.C., "Cadmium induced histopathological changes in goldfish". Pages 613-645 in W.E. Ribelin and G. Migaki eds. The pathology of fishes. University of Wisconsin Press, Madison, Wisconsin.
- Thind, G.S. and Fischer, G.M., "Cadmium and zinc distribution in cardiovascular and other tissues of normal and cadmium treated dogs". Exp. Malec. Pathol., <u>22</u>, 326-334 (1975).

- Thorp, V.J. and Lake, P.S., "Toxicity bioassays of cadmium on selected freshwater invertebrates and the interaction of cadmium and zinc on the freshwater shrimp, <u>Paratya</u> tasmaniensis Rick". Aust. J. Mar. Freshwater Res., 25, 97-104 (1974).
- Topping, G., "Heavy metals in shellfish from Scottish waters". Aquaculture 1, 379-384 (1973).
- Traynor, M.F. and Knezek, B.D., "Effects of nickel and cadmium contaminanted soils on the nutrient composition of corn plants". Trace substances in environmental health. Edited by D.D. Hemphill, 7, 83-87 (1973).
- Turner, M.A., "Effect of cadmium treatment on cadmium and zinc uptake by selected vegetable species". J. Environ. Qual., 2 (1), 118-119 (1973).
- Underwood, E.J., "Trace elements in human and animal nutrition". Third edition, Academic Press, New York (1971).
- Voyer, R., "Effect of dissolved oxygen concentration on the acute toxicity of cadmium to the mummichog, <u>Fundulus heteroclitus</u> (L.), at various salinities". Trans. Am. Fish. Soc., 104, 129-134 (1975).
- Voyer, R.A., Yevich, P.P. and Barszez, C.A., "Histological and toxicological responses of the mummichog, <u>Fundulus heteroclitus</u> (L.) to combinations of levels of cadmium and dissolved oxygen in freshwater". Water Res., <u>9</u>, 1069-1074 (1975).
- Voyer, R.A., Wentworth, C.E., Jr., Barry, E.P. and Hennekey, R.J., "Viability of embryos of the winter flounder <u>Pseudopleuronectes</u> <u>americanus</u> exposed to combinations of cadmium and salinity at selected temperatures". Marine Biol., <u>44</u>, 117-124 (1977).
- Waldbatt, G.L., "Health effects of environmental pollutants". C.V. Mosby Co., St. Louis, 2nd Ed., 350 (1978).
- Webb, M., "Cadmium". Br. Med. Bull., <u>31</u>, 246-250 (1975a).
- Webb, M., "The Metallothioneins". Biochem. Sci. Trans., 3, 632-635 (1975b).

- Webb, M. "The Chemistry, Biochemistry and Biology of Cadmium". Elsevier, New York (1979).
- Whittby, L.M., "The ecological consequences of airborne metallic contaminants from the Sudbury smelters". Ph.D. Thesis, Dept. of Botany, University of Toronto (1974).
- Williams, C.M. and David, D.J., "Effect of super phosphate on the cadmium content of soils and plants". Aust. J. Soil Res., 11, 43 (1973).
- Williams, C.M. and David, D.J., "The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants". Soil Sci. 121, 86 (1976).
- Williams, D.R. and Giesy, J.P., "Relative importance of food and water sources to cadmium uptake by <u>Gambusia affinis</u> (Poecileidae)". Environ. Res., 16, 326 (1978).
- World Health Organization, "Environmental health criteria for cadmium". In: Cadmium 77 edited proceedings first international cadmium conference, San Francisco (1977).
- Yeats, P.A., Bewers, J.M. and Walton, A., "Sensitivity of coastal waters to anthropogenic trace metal emissions". Marine Pollut. Bull., <u>9</u>, 264-268 (1978).

