Note Technique NT-103

Cartographie du substrat du tronçon Verchère-Contrecoeur

Olivier Champoux, Patrice Fortin, Bernard Rondeau et Jean Morin

Décembre 2001

ÉQUIPE DE RECHERCHE

Environnement Canada

Service Météorologique du Canada - Hydrologie

Conception et rédaction Olivier Champoux

Patrice Fortin

Jean Morin

Supervision Jean Morin

Soutien technique et cartographie Alexandre Morin

Équipe de terrain Guy Morin: Technicien responsable de l'embarcation

Jean Morin: Coordonnateur de la campagne

Patrice Fortin: Responsable de la cueillette des données

Isabelle Falardeau: Assistante à la cueillette des données

Environnement Canada

Centre Saint-Laurent

Aide pour la cueillette des données et révision Bernard Rondeau

TABLE DES MATIÈRES

1 INTRODUCTION	6
2 ACQUISITION DES DONNÉES DE SUBSTRAT	7
2.1 Localisation de la section à l'étude	7
2.2 Matériel utilisé lors de l'acquisition des données de substrat	8
2.3 Méthodologie d'acquisition des données	
2.3.1 Échantillonnage en eaux peu profondes (0,45m ≤ 1m):	10
2.3.2 Échantillonnage en zones de profondeur moyenne (1m 🗷 10m):	
2.3.3 Échantillonnage en eaux troubles (masses d'eau de l'Outaouais et zone très profondes):	
3 INTERPRÉTATION DES DONNÉES DE SUBSTRAT	12
3.1 Vidéographie sous-marine	13
3.2 Validation des échantillons de terrain	
3.3 Production des zones homogènes	16
4 ANALYSE DES DONNÉES	19
5 REPRÉSENTATION CARTOGRAPHIQUE DES DONNÉES DE SUBSTRAT	21
5.1 Description générale du substrat du tronçon	21
6 CONCLUSION	22
ANNEXES : PLANCHES CARTOGRAPHIQUES	23
ANNEXES : NOTES DE TERRAIN	32
ANNEXES : MINUTAGE DE LA VIDÉOGRAPHIE SOUS-MARINE	39

LISTE DES FIGURES

Figure 1	Localisation de la section d'étude et des transects d'échantillonnage lors de la campagne de terrain de novembre 2000, les points rouges correspondent aux stations d'échantillonnage	7
	aux stations d'echantillorinage	/
Figure 2	Environnement de travail et installation lors de la prise de données	9
Figure 3.	Isosurfaces au 50 cm effectuées à partir du modèle numérique de terrain du SMC	10
Figure 4	Benne collectrice et échantillon de substrat	16
Figure 5	Distribution des zones homogènes de substrat	17
Figure 6	Effet de la topographie sur la distribution du substrat	18

LISTE DES TABLEAUX

Tableau 1. Caractéristiques des classes granulométriques	12
Tableau 2. Valeurs de D50 par classes granulométriques	19

1 Introduction

La caractérisation et l'identification du substrat du fleuve Saint-Laurent représente un défi de taille étant donné l'étendue du territoire à couvrir, la complexité de la géologie quaternaire et la variabilité des caractéristiques hydrauliques du fleuve. Entre Montréal et Sorel, le lit du fleuve est principalement dans un régime d'érosion où les zones de dépôt sont relativement rares. Les caractéristiques granulométrique du fond sont donc directement liées aux strates de dépôts meubles qui composent le sous-sol. Pour ce secteur, les outils de modélisation développés pour prédire les granulométries stables y sont donc de peu d'utiles et les méthodes dites d' « échosondages » se buttent à une complexité des matériaux (mélange d'argile pure et de cailloux) qui nécessiterait une calibration majeure. La caractérisation directe demeure pour l'instant le seul moyen d'obtenir une distribution spatiale fiable.

L'association de la distribution spatiale du substrat et des macrorugosités est une variable essentielle à la modélisation de l'hydrodynamique et des modèles de transport-diffusion (sédimentation et érosion) qui sont actuellement développés. De plus, le type de substrat est une variable importante de la qualité de l'habitat qui entre dans la description de la distribution des espèces benthiques et pélagiques. Dans ce contexte, nous avons mis en place une méthode d'échantillonnage, d'interprétation et d'analyse adaptée aux conditions du fleuve Saint-Laurent. Cette méthode de mesure et d'interpolation a permis d'obtenir une carte représentative du secteur à un coût relativement faible.

Dans cette note technique, nous présentons la méthode de caractérisation du substrat utilisée pour l'échantillonnage sur le terrain et la méthode de production d'une base de données pouvant être intégrée dans des systèmes d'information géographiques. De plus, la carte des substrats est présentée de façon succincte.

2 Acquisition des données de substrat

2.1 Localisation de la section à l'étude

Le secteur à l'étude est situé autour des îles de Verchères. Tous les transects d'échantillonnage ont été réalisés au sud-est des îles à l'exception de deux qui ont été produits au nord-ouest des îles. La figure 1 présente la localisation et la distribution des transects d'échantillonnage.

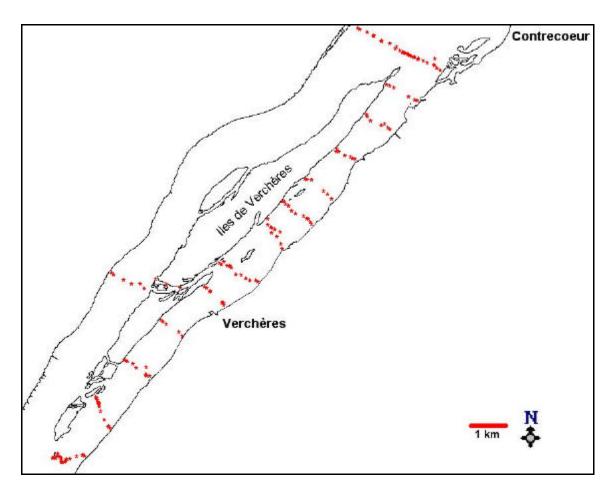


Figure 1 Localisation de la section d'étude et des transects d'échantillonnage lors de la campagne de terrain de novembre 2000, les points rouges correspondent aux stations d'échantillonnage.

2.2 Matériel utilisé lors de l'acquisition des données de substrat

La position des stations d'échantillonnage a été établie grâce à un Système de Positionnement Global (GPS, Novatel) en mode différentiel (dGPS). La technologie de positionnement dGPS correspond à la détermination de corrections différentielles appliquées en temps réel à une station GPS de référence dont les coordonnées sont préalablement connues avec précision. La station de référence calcule elle-même les corrections différentielles à apporter aux pseudo-distances GPS associées à chacun des satellites. Ces corrections différentielles sont appliquées en temps réel puisqu'elles sont transmises par un radiophare marin. En termes de qualité, le dGPS permet d'obtenir une meilleure précision horizontale (<3 m) que le GPS simple (10 m). Dans le cadre de la présente étude, la station différentielle de référence utilisée est celle de Saint-Jean-sur-Richelieu.

Une caméra vidéo submersible couleur (8mm) a été utilisée afin d'enregistrer des séquences sur lesquelles le substrat et les caractéristiques géomorphologiques peuvent être identifiés. Pour la récolte d'échantillon, une benne (Poner) a été utilisée. Enfin, un échosondeur Knudsen 320B a été utilisé pour obtenir des signaux indiquant la profondeur de pénétration dans le substrat et indirectement la nature même de ces substrats.

2.3 Méthodologie d'acquisition des données

La cueillette des données de substrat s'est déroulée durant 5 jours, soit du 20 au 23 novembre ainsi que le 29 novembre 2000. Pour couvrir de façon optimale le secteur à l'étude, nous avons décidé de travailler par transect. Au sud-est des îles de Verchères, 15 transects séparés de 1000m ont été effectués ainsi que deux au nord-est.

Afin de positionner adéquatement nos observations en fonction de la topographie du fond, nous étions équipé d'un ordinateur portatif avec le logiciel MapInfo. Ce dernier étant couplé avec le dGPS à l'aide du module Geotracker, nous pouvions suivre à tout moment notre emplacement. La figure 2 illustre l'environnement de travail à l'intérieur du bateau du SMC-RQ (Le Pêcheur). De plus, une couche d'isosurfaces de profondeur avait été créée préalablement à l'aide du logiciel Modeleur. Le modèle numérique de terrain du SMC bénéficiant d'une grande précision dans ce secteur, cette couche donnait une information fiable concernant la profondeur d'eau avec une précision de 50cm dans la verticale (Figure 3).

L'échantillonnage aux stations était effectué selon une procédure qui variait en fonction de la profondeur, de la clarté de l'eau et de la topographie du fond. Chacun des transects débutait avec l'enregistrement en continu du signal de l'échosondeur Knudsen 320B à basse fréquence (LF) de 50Hz. Le signal numérique était enregistré sur un ordinateur portable. À cette fréquence, la pénétration du signal variait de 20cm à près de 1m dépendamment de la densité du substrat. Cependant, l'interprétation du signal était difficile puisqu'une bonne portion de la réflexion du signal se faisait près de l'interface eau-sédiment, limitant la clarté du signal. Une fréquence plus faible d'environ 10Hz aurait été plus appropriée. Toutes les données ont été conservées sur ruban mais n'ont pas été traitées pour les besoins de l'étude.

Figure 2. Environnement de travail et installation lors de la prise de données

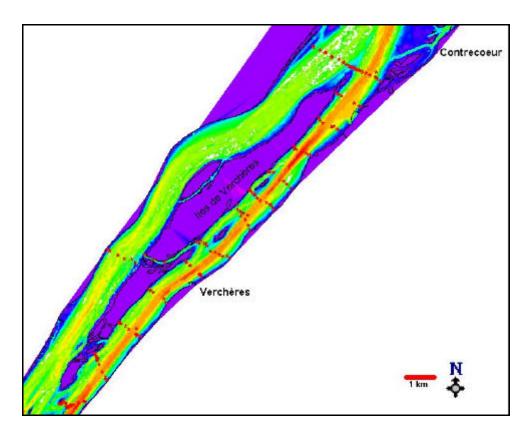


Figure 3. Isosurfaces au 50 cm effectuées à partir du modèle numérique de terrain du SMC.

Étant donné que les traverses débutaient tout près de la rive, les premières observations étaient essentiellement visuelles. La profondeur de l'eau était d'environ 45 cm et l'eau était très claire. Nous regardions autour de l'embarcation et nous notions dans le logiciel MapInfo le type et le substrat présent. La prise de notes se faisait dans le logiciel MapInfo. Parfois, un échantillon était cueilli à l'aide d'une benne et conservé dans un sac de plastique étanche (Ziploc).

2.3.2 Échantillonnage en zones de profondeur moyenne (1m 10m):

Une fois les observations en eau peu profonde notées, nous nous déplacions vers le chenal perpendiculairement à la rive. L'emplacement de l'échantillonnage suivant était déterminé principalement en fonction de la topographie du fond (changement brusque, plateaux, etc). Généralement, 100m séparaient chacune des collectes. Une fois rendu en eaux moyennement profondes, la procédure d'échantillonnage variait quelque peu. La caméra submersible était utilisée pour visionner et enregistrer en temps réel l'état du fond. Lorsque l'analyse était peu

complexe (sable, plaque d'argile, etc) nos observations étaient notés. En cas de situation plus complexe, un échantillon était collecté à l'aide de la benne..

2.3.3 Échantillonnage en eaux troubles (masses d'eau de l'Outaouais et zones très profondes):

Pour ce qui est des points d'échantillonnage en eaux troubles, la caméra vidéo transmettait des images sombres en raison du manque de lumière. La benne était donc utilisée.

3 Interprétation des données de substrat

Une analyse du substrat du tronçon Varennes-Contrecoeur a été produite en utilisant une classification du substrat basée sur une échelle granulométrique. Le substrat a été divisé selon les classes granulométriques suivantes :

Tableau 1. Caractéristiques des classes granulométriques

Classe	Borne supérieure (m)	Borne inférieure (m)
Blocs	4.096	0.256
Galet	0.256	0.064
Cailloux	0.064	0.004
Gravier	0.004	0.002
Sable	0.002	6.19e-05
Limon	6.19e-05	4.0e-06
Argile	4.0e-06	1.0e-10

L'interprétation du substrat a été réalisée à l'aide des proportions de chacune des classes granulométriques présentes. Les proportions ont été définies pour toutes les méthodes d'analyses (échantillons et vidéographie). Par exemple, sur l'image suivante, les proportions définies sont :

Blocs: 0%

Galet: 0%

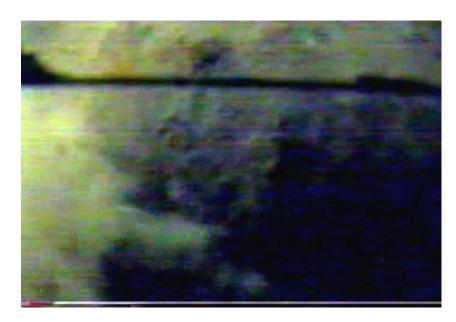
Cailloux: 30%

Gravier: 20%

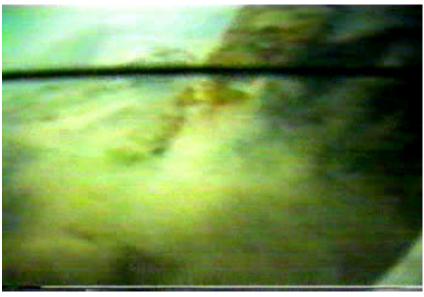
Sable: 0%

Limon: 0%

Argile: 50%



3.1 Vidéographie sous-marine


La vidéographie sous-marine a été utilisée afin d'interpréter le substrat. L'interprétation du substrat est basée entre autres sur les connaissances de la géologie du tronçon, de l'hydrodynamique, du transport de sédiments, sur le comportement des sédiments dans l'eau, sur l'expérience acquise lors des visites de terrain et bien sûr à l'aide des textures et contrastes des images vidéos.

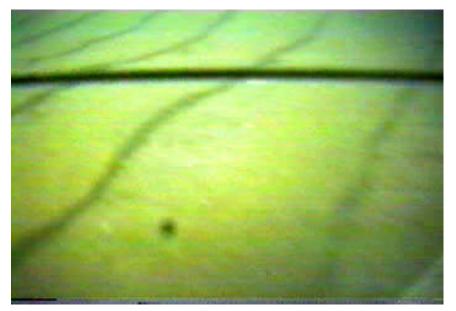
Les images suivantes sont tirées des séquences sous-marines. Sur celles-ci, nous pouvons facilement distinguer la nature des dépôts.

Comportement de l'argile marine après le choc de la caméra. L'argile superficielle est mise en transport et demeure en suspension.

Comportement du sable grossier après le choc de la caméra. Le sable est mis en transport et se dépose rapidement

Argile marine en présence de forts courants. La faible friction de l'argile permet une accélération des vitesses.

Ici, l'argile a été identifiée par la couleur et la texture de même que par la présence de forts courants (identifiés par de la matière végétale en transport au-dessus de l'argile).



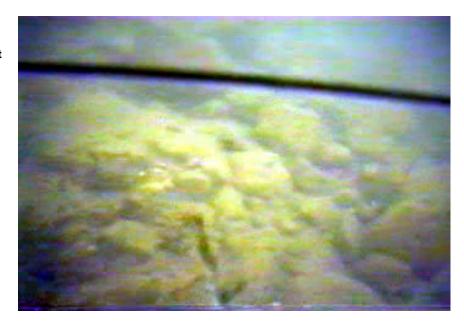
Présence de sable identifié par les

Dunes, forme fluviale caractéristique

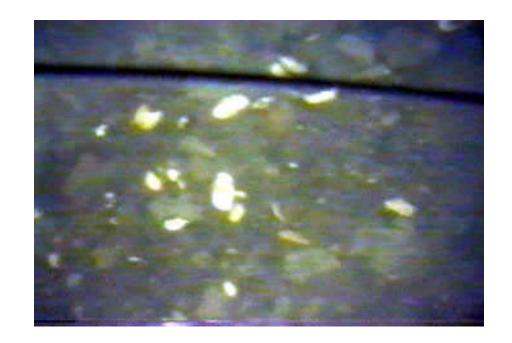
de la classe granulométrique des

sables.

Présence de blocs et de galets.


Ceux-ci ont été identifiés par leur tailles caractéristiques et par leur faible degré d'organisation

(granuloclassement a peu près nul)


Présence d'argile marine.

Dans certains secteurs, l'argile qui s'est détachée en plaques prend des formes ressemblant à des galets lorsque soumises à l'action des courants.

Présence de cailloux et de gravier.

Encore une fois, leur identification
est basée sur leur taille et sur leur
degré de triage et classement.

3.2 Validation des échantillons de terrain

Les échantillons récoltés (Figure 4) ont été examinés afin de valider les observations faites sur le terrain. Les échantillons ont été manipulés de manière à estimer la proportion de chacune des classes granulométriques préalablement identifiées.

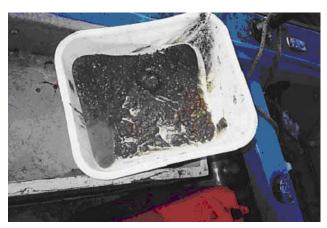


Figure 4. Benne collectrice et échantillon de substrat

3.3 Production des zones homogènes

Lorsque l'interprétation des données a été produite, nous avons identifié des zones homogènes de proportion des classes granulométriques (Figure 5).

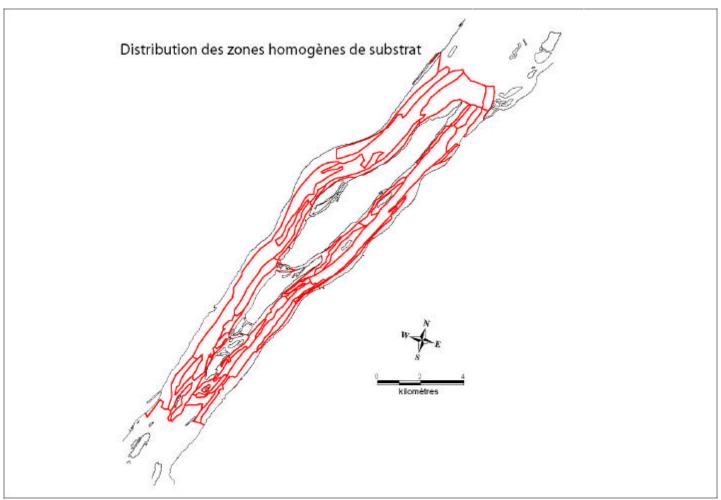
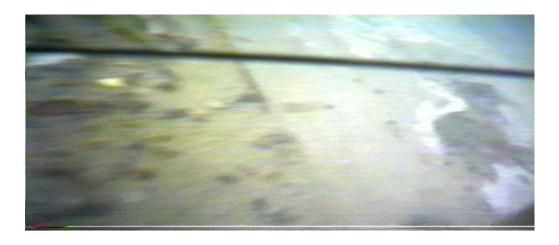



Figure 5. Distribution des zones homogènes de substrat

Cette délimitation est en grande partie soutenue par la topographie du lit du tronçon. En effet, la distribution des sédiments tend à suivre la topographie. Sur l'image suivante, l'effet de la topographie est très net.

Sur la droite, il y a une zone d'argile marine et sur la gauche une zone à dominance de sable. La démarcation entre les deux zones homogènes de substrat est très forte et correspond à une démarcation topographique dans le lit du fleuve tel que le montre la figure 6.

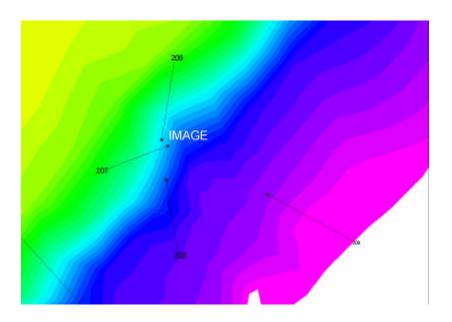


Figure 6 Effet de la topographie sur la distribution du substrat

4 Analyse des données

Après l'interprétation des données, la base de données géoréférencées a été utilisées pour la création de cartes montrant la distribution spatiale des données. Comme la méthode d'interprétation du substrat repose sur la discrimination du substrat en classes granulométriques, la représentation cartographique suit nécessairement la même tendance, c'est-à-dire qu'elle montrer la distribution de chacune des classes de substrat et leur proportions.

Afin de montrer un portrait plus global du substrat du tronçon, nous avons produit un indice de substrat qui tient compte non seulement de la proportion des classes granulométriques dans une zone, mais aussi des diamètres médians des classes de substrat (D_{50}).

Pour chacune des classes granulométriques, le D₅₀ a été estimé en utilisant la relation suivante :

$$D_{50}$$
(classe $_i$)= $\left[\begin{array}{c} (Borne supérieure (m) - Borne inférieure (m)) \\ \end{array}\right] + Borne inférieure$

2

Ainsi, nous avons obtenu pour chacune des classes des valeurs de D₅₀:

Tableau 2. Valeurs de D50 par classes granulométriques

Classes	Équation D ₅₀	Valeur D ₅₀
Bloc	(4.096-0.256)/2+0.256	2.176
Galet	(0.256-0.064)/2+0.064	0.16
Cailloux	(0.064-0.004)/2+0.004	0.034
Gravier	(0.004-0.002)/2+0.002	0.003
Sable	(0.002-0.0000619)/2+0.0000619	0.00103095
Limon	(0.0000619-0.000004)/2+0.000004	0.00003295
Argile	(0.000004-0.0000000001)/2+0.0000000001	2.00005E-06

Pour intégrer la proportion de chacune des classes de substrat à l'intérieur des zones homogènes, nous avons créé un D_{50} composite. Celui-ci tient compte de la proportion des classes et de leurs tailles respectives. L'équation pour produire le D_{50} composite est la suivante :

$$D_{50}$$
comp= ? (classe_i (%)X D_{50} classe_i) / 100

Lors de l'interprétation du substrat, nous avons identifié 50 zones homogènes. Par conséquent, nous avons obtenu 50 diamètres médians (D_{50} composite). Finalement, la dernière étape de la production de l'indice de substrat est l'intégration du D_{50} composite dans une équation de frottement de Manning :

indice ? 1/34.9X ?? $\log D50$? 0.0017

5 Représentation cartographique des données de substrat

L'ensemble des cartes « Substrat » a été réalisé à partir du logiciel *MapInfo*, à l'aide des données contenues dans le fichier «cartoSubstrat2 1.Tab ». L'information nécessaire à la production de chaque carte (Argile, Bloc, Cailloux, Frottement, Galet, Gravier, Limon et Sable) correspond à une colonne qui porte le même nom dans le *browser*. La rive se trouve dans le fichier « rivevec3.Tab » et les Iles dans le fichier « Buffer.Tab ».

5.1 Description générale du substrat du tronçon

Le substrat du tronçon à l'étude est constitué majoritairement par de l'argile marine déposée par la mer de Champlain lors du dernier épisode glaciaire. L'argile marine est particulièrement abondante dans le secteur des Iles de Verchères où elle représente près de la totalité de la composition du substrat. Dans ce secteur, l'argile se retrouve sous plusieurs formes.

Dans le chenal principal, l'argile est très compacte et lisse et offre peu de résistance à l'écoulement. Par contre, dans certains secteurs, l'argile forme des macrorugosités. Celles-ci se présentent sous la forme de grandes ondulations lisses ressemblant à des dunes de sable. Près des îles, l'argile prend une autre forme. En effet, les argiles soumises aux agents érosifs (vagues, cycles gélivaux, etc.) se détachent en plaques et tendent à prendre des formes ressemblant à des galets ou des cailloux, sans pour autant offrir la même résistance à l'écoulement que ces derniers.

Dans le tronçon à l'étude, nous retrouvons également des dépôts associés à des tills glaciaires en érosion. Nous retrouvons des blocs, des galets et des cailloux dans une matrice sableuse. Ce type de substrat se retrouve dans la partie nord-ouest du tronçon et aussi dans le secteur de l'île Marie. Les tills vont offrir une résistance plus grande à l'écoulement que l'argile marine de la portion sud-est du tronçon. De plus, ce type de matériel est plus susceptible d'être mis en transport que l'argile. Par conséquent, il y a dans le secteur nord-ouest développement de macrorugosités qui influence le frottement et le comportement hydrodynamique.

6 Conclusion

Une technique de cartographie du substrat a été développée pour la portion fluviale du fleuve Saint-Laurent. Cette technique est simple, peu coûteuse et efficace. De plus, la caractérisation du substrat ainsi obtenue s'intègre facilement lors de la modélisation de l'hydrodynamique et des autres compartiments de l'écosystème du fleuve Saint-Laurent.

La cartographie du substrat s'appuie sur certains principes de base : les connaissances de la géologie du tronçon, de l'hydrodynamique, du transport de sédiments, sur le comportement des sédiments dans l'eau et sur l'expérience acquise lors des visites de terrain. Ceci assure une fiabilité dans l'interprétation des données et de leur cohérence.

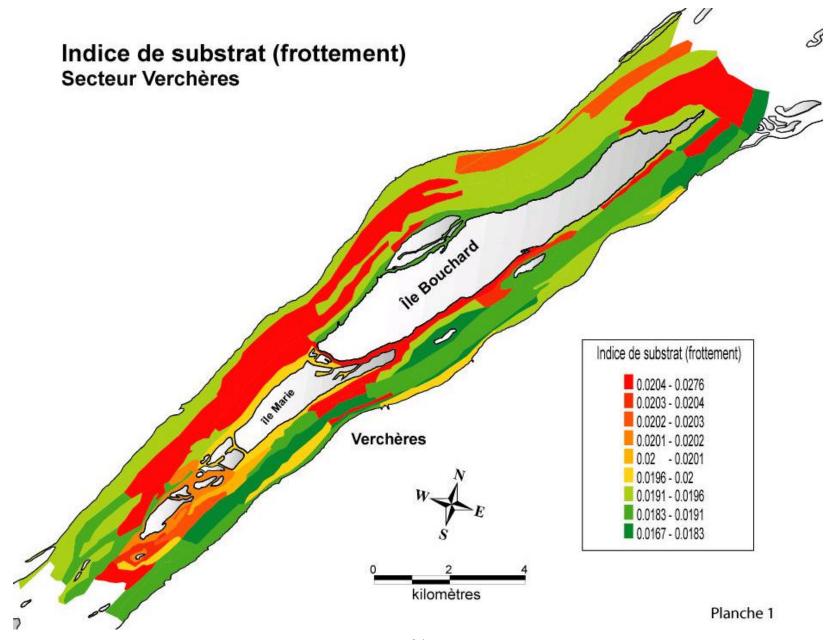
Le substrat du tronçon Verchère-Contrecoeur est constitué majoritairement par l'argile marine déposée par la mer de Champlain. L'argile se retrouve principalement dans le secteur sud-est et dans le chenal de navigation. Nous retrouvons également quelques zones de tills en érosion contenant des matériaux plus grossiers. Enfin, des zones de concentration de sable et de gravier en transport sont présentes localement.

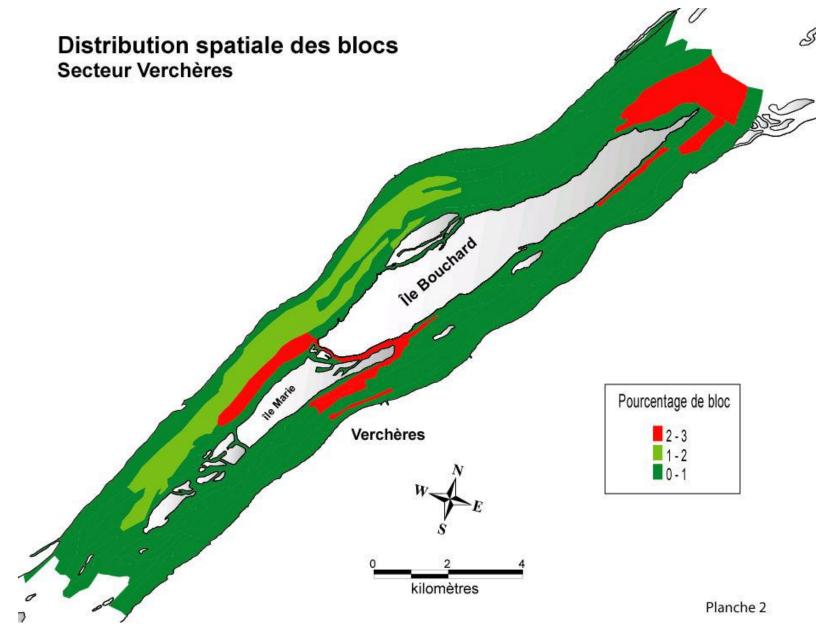
Annexes : Planches cartographiques

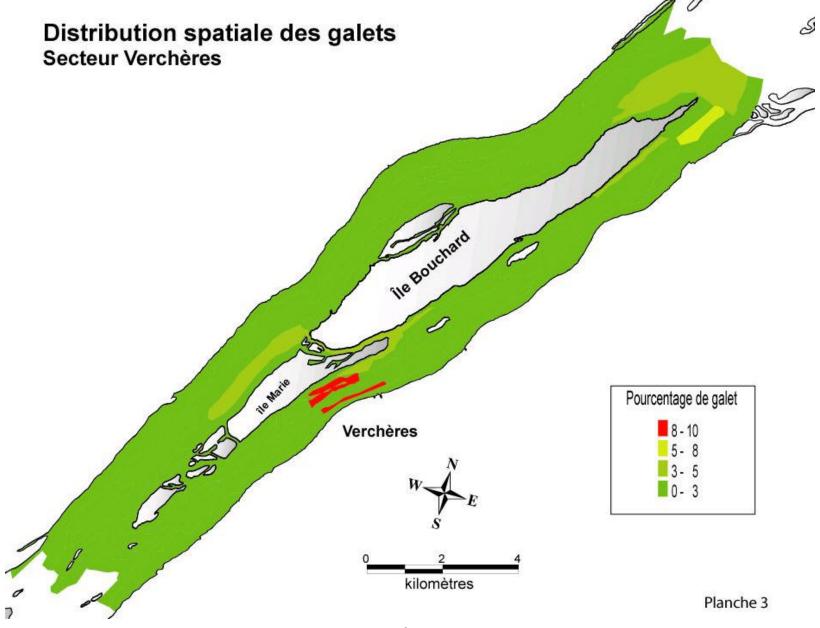
Planche 1 : Indice de substrat (frottement), secteur Verchères

Planche 2 : Distribution spatiale des blocs, secteur Verchères

Planche 3 : Distribution spatiale des galets, secteur Verchères


Planche 4 : Distribution spatiale des cailloux, secteur Verchères


Planche 5 : Distribution spatiale du gravier, secteur Verchères


Planche 6 : Distribution spatiale du sable, secteur Verchères

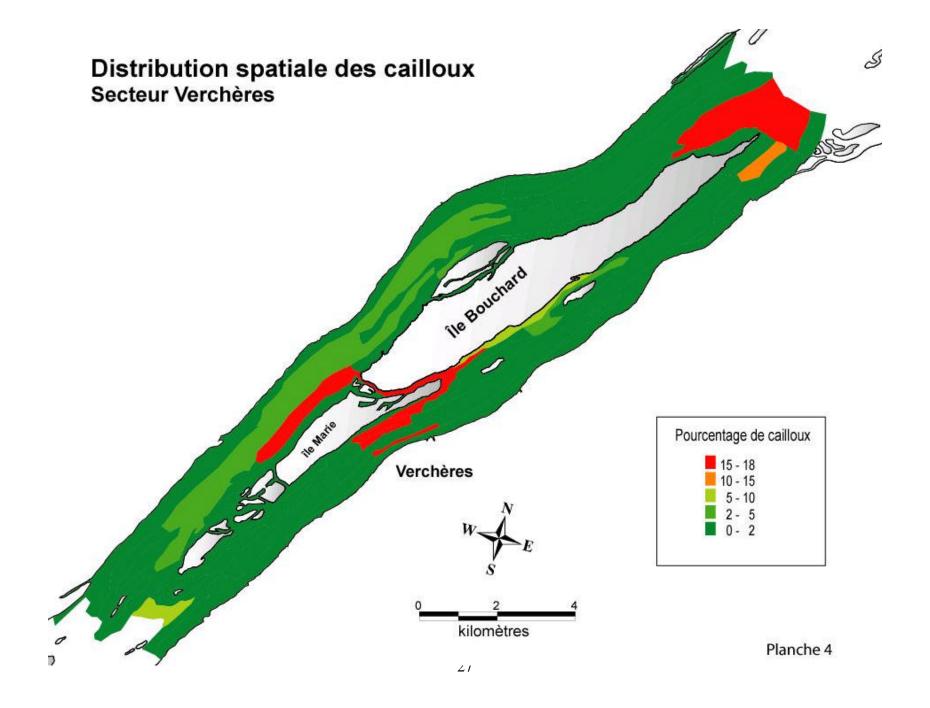
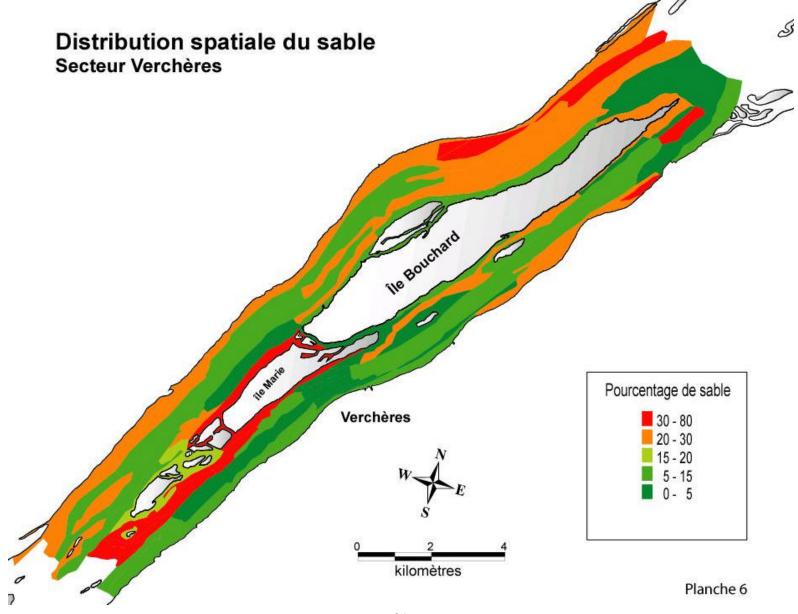
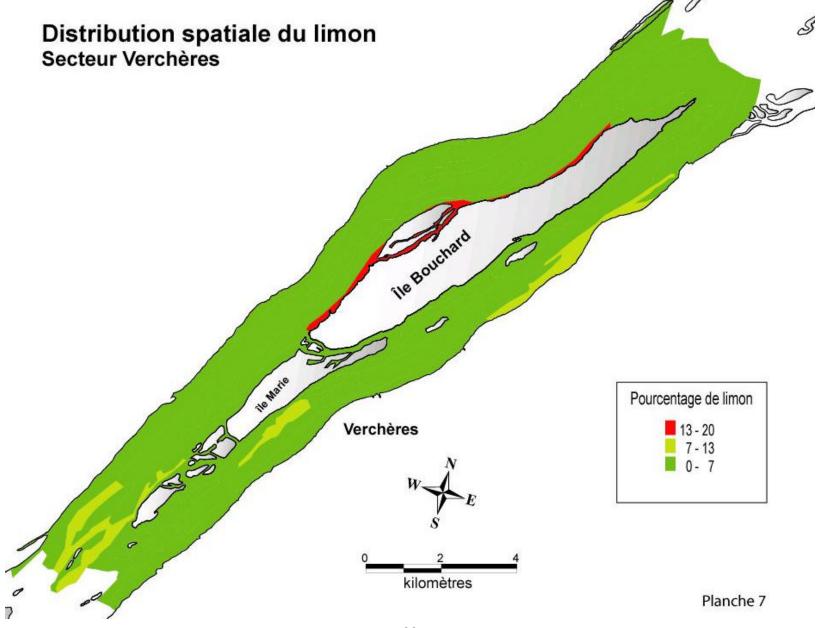
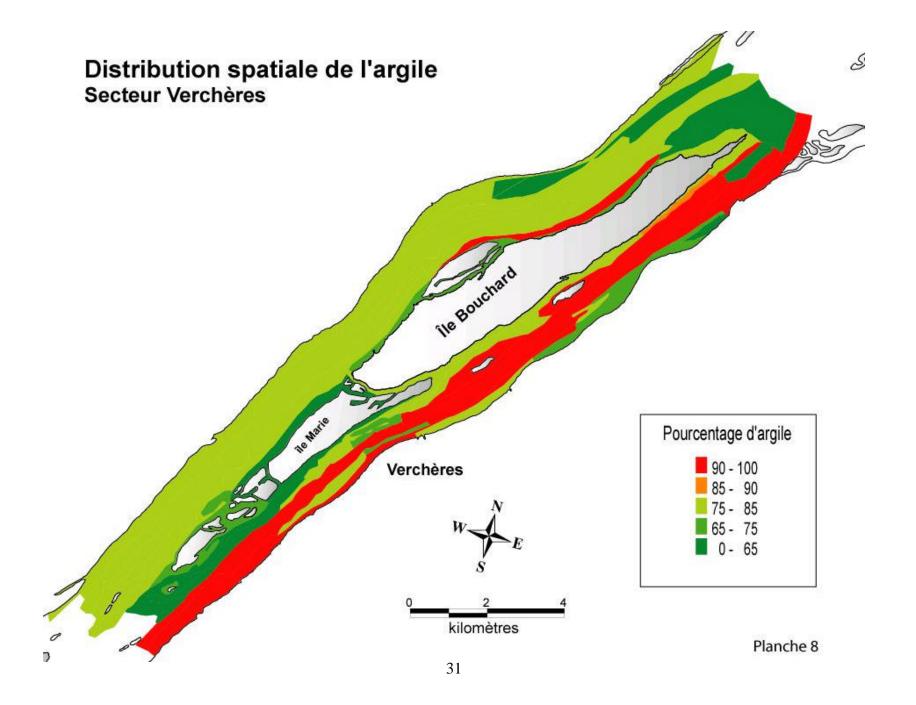

Planche 7 : Distribution spatiale du limon, secteur Verchères


Planche 8 : Distribution spatiale du gravier, secteur Verchères







Annexes : Notes de Terrain

Échantillon	Date	Note terrain (MID)
1	2000-11-21	Argile marine; mince couche de gravier sablonneux; Bloc: couverture:20-30%, dimension:5-40cm (moy:20cm)
2	2000-11-21	Sable fin silteux avec ride
3	2000-11-21	Boue silteuse; beaucoup de matière organique en réduction
4	2000-11-21	Argile consolidé; mince couche de sable (1mm) mélangée à l'argile; bio-film
5	2000-11-21	Galets d'argile; mince couche de sable(1 mm); bio-film d'algues; bloc
6	2000-11-21	Argile; sable (peu); blocs assez compact; érosion
7	2000-11-21	Argile très compacte; biofilm
8	2000-11-21	Argile compacte
9	2000-11-21	Argile marine
10	2000-11-21	Argile massive; biofilm brunâtre en plaque
11	2000-11-21	Argile; boue fine (1cm); biofilm
12	2000-11-21	Argile
13	2000-11-21	Argile compacte
14	2000-11-21	Argile; cailloux et bloc, couv.:80%;
15	2000-11-21	Argile; plaque de sable; cailloux (5-10 cm)
null	2000-11-21	
16	2000-11-21	Argile compacte et lisse; cailloux (1-10 cm) couv.: variable; bloc (30 cm)
17	2000-11-21	Argile compacte; boue fine (< 1 cm); algue filamenteuse
18		Galets d'argile arrondis (1 cm); sable moyen-grossier; bloc (20-30 cm), couv.:20%
19	2000-11-21	Argile; 2 mm de sable fin
20	2000-11-21	Argile; sable fin à grossier; un peu de gravier
21	2000-11-21	Argile; 1-2 mm de sable; cailloux (10 cm), couv.: < 5%
22	2000-11-21	Argile; sable fin, cailloux (10-20 cm)
23	2000-11-21	Sable fin, accumulation locale
24	2000-11-21	Gravier moyen
25		Argile en galets; caillou (10-15cm), couv.:60%
26	2000-11-21	Argile; biofilm (2 mm)
27	2000-11-21	Argile en érosion; biofilm. Texture: gratinée

28-I	2000-11-21	Sable compacte et fin
28-II	2000-11-21	Argile; sable fin
29	2000-11-21	Argile; boue sableuse
30	2000-11-21	Boue organique sableuse
100	2000-11-22	Argile compacte, 2 cm de sable
1001		ILE. Argile, sable, bloc (5-15 cm)
101	2000-11-22	Sable
102	2000-11-22	Boue sableuse; bloc.
103	2000-11-22	Argile compacte; quelques galets d'argile arrondis; sable moyen; cailloux (10-30 cm), couv.:20%
104	2000-11-22	Plaque d'argile; gravier sableux; boue organique; biofilm
105	2000-11-22	Argile compacte; cailloux et bloc, couv.:20%
106	2000-11-22	Sable moyen avec gravier argileux
107	2000-11-22	Sable moyen à grossier
108-I	2000-11-22	Sable fin; boue organique
108-II	2000-11-22	Argile mou; bloc; sédiment actif
109	2000-11-22	Argile; plaque de sable; cailloux, couv.:80%
110	2000-11-22	Argile; caillou; bloc, (5-30cm)
111	2000-11-22	Argile compacte; gravier grossier; caillou, couv.:80%
112	2000-11-22	Argile; gravier grossier, couv.:80%
113	2000-11-22	Argile; gravier grossier, couv.:80%
114	2000-11-22	Galets d'argile; cailloux, couv.:80%; bloc de toute grandeur
115	2000-11-22	Argile compacte; gravier; cailloux; bloc. Couv.:90%
116	2000-11-22	
117	2000-11-22	Argile compacte; gravier (1-20cm); bloc (20-60cm). Coquilles de moule sur bloc.
118	2000-11-22	
120	2000-11-22	Galets d'argile; biofilm
121	2000-11-22	Argile; caillou; bloc, couv.:75%.
122	2000-11-22	Argile compacte; caillou, couv.:10%; biofilm
123		Argile; biofilm. Trou de bioturbation
124	2000-11-22	Argile; bloc, couv.:60%; biofilm
125	2000-11-22	Argile; biofilm
126	2000-11-22	Argile; galets d'argile; bloc, couv.: < 10%.

127	2000-11-22 Argile; gravier, bloc, couv.:60%
128	2000-11-22 Argile en gravier; sable en dune décimétrique
129	2000-11-22 Argile; sable en dune décimétrique
130	2000-11-22 Sable fin; biofilm
131	2000-11-22 Argile; plaque de sable; caillou
132	2000-11-22 Argile; sable moyen à fin
133	2000-11-22 Sable fin, 10cm épaisseur et +
134	2000-11-22 Argile; sable, caillou; bloc.
135	2000-11-22 Argile; sable fin; caillou et bloc en patch
136	2000-11-22 Sable fin
Pline	2000-11-22
Line	2000-11-22
Line	2000-11-22
150	2000-11-22 Argile fracturé; boue légerement sableuse (1cm); beaucoup d'algues filamenteuses
151	2000-11-22 Galets mobiles d'argile en érosion; algues filamenteuses
152	2000-11-22 Argile; fortes varves soulignées par des biofilms à différentes textures semblables à des rides. Érosive.
153	2000-11-22 Argile; plaque de gravier mélangé avec des coquilles de moule; cailloux; bloc (50cm), couv.:50%.
154	2000-11-22 Argile; gravier; caillou
155	2000-11-22 Boue sableuse et gravelleuse
156	2000-11-22 Boue fine visqueuse; quelques cailloux et blocs; algues filamenteuses.
Pline	2000-11-22
Line	2000-11-22
157	2000-11-22 Argile; galets d'argile; mince plaque de sable fin; cailloux et blocs, couv.:10%
Line	2000-11-22
158	2000-11-22 Argile; plaque d'argile décollée; mince couche de sable fin.
159	2000-11-22 Argile lisse; quelques bloc montrant des traces d'érosion
160	2000-11-22
161	2000-11-22 Argile; gravier; caillou
162	2000-11-22 Argile; sable et gravier sur 2 cm; caillou; bloc.
163	2000-11-22 Sable fin ridés en dunes décimétrique
164	2000-11-22 Sable fin en dunes
Line	2000-11-23

200	2000-11-23	Argile; couches de sable avec dune, couv.:85%; cailloux (5cm), couv.:5%
201	2000-11-23	Sable très fin avec trace d'argile
202	2000-11-23	Argile peu compacte; boue (1cm); algues filamenteuses
203	2000-11-23	Argile; dunes de sable; bloc (15-30cm)
204	2000-11-23	Argile gratinée; caillou; bloc
205	2000-11-23	Argile ou sable; quelques cailloux et blocs (5-20cm); dépôt de sédiment??
207	2000-11-23	Argile; cailloux
206	2000-11-23	Argile très compacte; algues filamenteuses
208	2000-11-23	Argile peu compacte mélangée à du sable, mince couche de sable
209	2000-11-23	Argile compacte; 5 mm de sable
210		Argile moyennement compacte; mince couche de sable déposé
211A	2000-11-23	
211B	2000-11-23	
212	2000-11-23	Argile très compacte gratinée
212A	2000-11-23	
212B	2000-11-23	
213A	2000-11-23	
213B	2000-11-23	
214	2000-11-23	Argile compacte; couche de sable
Null	2000-11-23	
Null	2000-11-23	
216	2000-11-23	Argile compacte; boue (1cm); biofilm
215A	2000-11-23	
215B	2000-11-23	
216A	2000-11-23	
216B	2000-11-23	
217	2000-11-23	Argile compacte; algues filamenteuses
219	2000-11-23	Argile compacte; algues filamenteuses
220	2000-11-23	Boue sableuse
221A	2000-11-23	
221B	2000-11-23	Argile; sable; caillou; bloc
222	2000-11-23	Argile compacte; cailloux
223A	2000-11-23	

223B	2000-11-23	
224A	2000-11-23	
224B	2000-11-23	Argile; cailloux; bloc
225	2000-11-23	Argile; biofilm
226	2000-11-23	Argile peu compacte mélangée avec gravier (1-3mm); boue; algues filamenteuses
227	2000-11-23	Argile compacte
500	2000-11-29	Argile; sable; biofilm (1cm)
501	2000-11-29	Argile; plaque de sable; cailloux (1-15cm), couv.:15%
502	2000-11-29	Argile compacte; sable; gravier
503	2000-11-29	Plaque d'argile; gratinée. Quelques blocs d'argile (5-25cm)
504	2000-11-29	
505	2000-11-29	Sable ou boue sableuse; forte densité de moules
506	2000-11-29	Argile; cailloux; bloc; algues filamenteuses
507A	2000-11-29	Cailloux; biofilm. "Trace de tracteur"
507B	2000-11-29	
508A	2000-11-29	Gravier; cailloux (5-15cm). Fond noir.
508B	2000-11-29	
509A	2000-11-29	Bloc d'argile; bloc
509B	2000-11-29	
510	2000-11-29	Argile compacte; mince couche de sable (< 1mm)
511A	2000-11-29	Gratin, dune
511B	2000-11-29	Argile; sable.
512	2000-11-29	Argile compacte; sable; gravier
513	2000-11-29	Dune de sable
514	2000-11-29	Argile; sable
515	2000-11-29	Dune de sable
516	2000-11-29	Argile; cailloux (10-15cm), couv.:10-15%
517	2000-11-29	Argile très compacte; mince couche de sable
518	2000-11-29	Argile; boue sableuse
519	2000-11-29	Argile; cailloux (5-15cm), couv.:90%
520	2000-11-29	Argile; cailloux (5-15cm), couv.:10%
521	2000-11-29	Cailloux en banc, couv.:(10-80%)

522	2000-11-29	Argile; sable 1cm d'épaisseur
523A	2000-11-29	Argile; cailloux; gratin; plantes aquatiques
523B	2000-11-29	
524	2000-11-29	Fond très dur. La benne ne fonctionne pas
Line	2000-11-29	
Line	2000-11-29	
525	2000-11-29	Galets d'argile; biofilm; algues filamenteuses
526	2000-11-29	Argile; sable; gravier-cailloux (1mm-2cm)
527A	2000-11-29	Matière en suspension (eau brouillé); algues filamenteuses
527B	2000-11-29	
528-I	2000-11-29	Argile compacte; mince couche de sable; gravier-caillou (5mm-3cm)
528-II	2000-11-29	Matières organiques fixées à des cailloux
529	2000-11-29	Argile compacte; sable; gravier; algues filamenteuses ou matières organiques
530	2000-11-29	Eau très brune, visibilité réduite
531	2000-11-29	Argile; cailloux
532	2000-11-29	Sable mélangé avec des morceaux d'argile
533	2000-11-29	Sable
534	2000-11-29	Boue sableuse
535	2000-11-29	Argile; sable; algues filamenteuses
536	2000-11-29	Dune de sable; algues filamenteuses
537	2000-11-29	Sable; sable grossier; algues filamenteuses
538A	2000-11-29	Argile; sable en dune; bloc (15-30cm); algues filamenteuses
538B	2000-11-29	
539A	2000-11-29	
539B	2000-11-29	
540A	2000-11-29	Argile; galets d'argile; bloc
540B	2000-11-29	
541	2000-11-29	Sable; dune de sable. Sable 99%, gravier 1%. Eaux troubles
542-I	2000-11-29	Argile; dune de sable; cailloux (1cm)
542-II	2000-11-29	Argile peu compacte; dune de sable
543A	2000-11-29	Dune de sable; gravier
543B	2000-11-29	
544A	2000-11-29	gratin

544B	2000-11-29	
545	2000-11-29	Argile; sable; gravier; biofilm
546A	2000-11-29	Algues, couv.:60%
546B		Algues, couv.:80%
547	2000-11-29	Argile compacte; boue sableuse; algues filamenteuses
548	2000-11-29	Argile compacte; mince couche de sable
549A	2000-11-29	Sable; gravier; cailloux; bloc. Prof:44pieds
549B	2000-11-29	
550	2000-11-29	Argile; cailloux, couv.:95%
551A	2000-11-29	Plaque d'argile; algues filamenteuses. Gratin
551B	2000-11-29	
551-l	2000-11-29	Argile compacte; boue; biofilm
552	2000-11-29	Argile; boue sableuse; algues
553	2000-11-29	Argile très compacte; couche de sable très mince
554A	2000-11-29	
554B	2000-11-29	
555A	2000-11-29	
555B	2000-11-29	
556A	2000-11-29	
556B	2000-11-29	
556C	2000-11-29	
556D	2000-11-29	
556E	2000-11-29	
557	2000-11-29	Boue sur boue plus organique et plus foncé
558A	2000-11-29	
558B	2000-11-29	
559	2000-11-29	Petit morceau d'argile; sable; gravier (1-3mm)
559A	2000-11-29	
559B	2000-11-29	
560		Petit morceau d'argile; sable; gravier
561		Argile compacte; sable
562		Argile très compacte; mince couche de sable
563	2000-11-29	Argile; sable

Annexes : Minutage de la vidéographie sous-marine

Éstrandillan	
Échantillon	Minute vidéo
115	0
116	2:03
117	
118	4:22
158	5:47
159	7:03
202	8:42
203	9:44
204	10:52
205	11:24
207	13:11
206	14:48
211B	16:47
212B	17:50
215A	19:43
215B	20:36
216B	20:40
219	22:29
221A	22:31
221B	
222	
223A	
223B	26:31
500	26:31
501	27:24
502	27:24
503	
504	28:17
507A	28:17
507B	30:27
508A	30:27
508B	31:38
509A	31:38
509B	32:45
511A	32:45
511B	35:53
523A	35:53
523B	36:20
526	36:20
527A	36:58
538A	36:58

538B	38:10
539A	38:10
539B	39:39
540A	39:42
540B	
541	
542-l	
542-II	
543A	
543B	
544A	
544B	
545	
546A	
546B	
547	
548	
549A	45:04
551A	45:18
551B	
551-l	
552	
553	
554A	
554B	
555A	
555B	
556A	
556B	
556C	
556D	
556E	53:03
557	
558A	
558B	
559	
559A	
559B	54:54