
RELEASABLE

oc 	 cv.2_

LKC

91
.C655
M678
1984
c . 2

IC

MASTER COPY

ERROR CORRECTICN SCHEMES

FOR BROADCAST TELETEXT

S'? STEMS

Brian Mortimer

Michael Moore

Department of
Mathematics and Statistics

irleton University
Dttawa, Canada

1 ÇD
 k I cCsS

'3-

Industry Canada
Library - Queen

NOV 2 1 2013

Industrie Canada
Bibliothèque - Queen

llomeletet*weemarsataateeearex.4

ERROR CORRECTION SCHEMES

FOR BROADCAST TELETEXT

SYSTEMS

Brian Mortimer

Michael Moore

Prepared under DSS Contract No. OST83-00078

for the

Department of Communications

Ottawa, Canada

March, 1984

Principal Investigator:
Dr. Brian Mortimer

NSERC University Research Fellow
Department of Mathematics and Statistics
Carleton University
Ottawa, Canada

Scientific Authority:
Dr. Mike Sablatash

Communications Research Centre
Department of Communications
Ottawa, Canada

Table of Contents

Statement of Results
Acknowledgements

1. Introduction and Results

1.1 Error Correction Schemes: an Outline 	 1-1
1.2 Our Proposed System 	 1-2
1.3 Correction Capabilities of the

Double Bundle Code 	 1-8
1.4 Other Proposect. Teletext Codes 	 1-10
1.5 Performance Results with Independent Errors 	1-12
1.6 Decoding the Double Bundle . 	 1-12

2. Performance of the Double Bundle Code with
Indepedent Errors

2.1 Results 	 2-1
2.2 Methods 	 2-5
Appendix: the Software 	 2-14

3. An Assessment of the Proposed Japanese
Teletext Code

3-1

3-3
3-6

4-1

4+-z

4-13

3.1 The Japanese Proposal and the NABTS
3.2 The Comparison of Various Packet

Coding Systems
3.3 Method of Calculation

4. Performance in a More Real World

4.1 Afterall Errors May Not be Independent
4.2 Analyzing Field Data for Code Performance:

a beginning
4.3 An Example: E184R-2
Appendix: the Software

(a) FLDANALB
(h) DATA CRUNCH
(c) QUICK PASS

5. Support for the Patent Applications

5.1 Activities
5.2 A Hardware Encoder for Carleton Code.

References

1
F- 1

CONCATENATED ERROR CORRECTION SCHEMES FOR BROADCAST TELETEXT SYSTEMS

DSS Contract No. 0ST83-00078

Principal Researcher: Dr. Brian Mortimer

Principal Results

1. The Double Bundle error correcting code was defined and studied on

channels with independent errors. It was shown that this code gives a

significant improvement in performance compared to the Single Bundle

code at bit error rates less than 10

2. Repeated decoding of the Double Bundle code was studied and shown to

give a minor improvement over single decoding for bit error rates at most

10
-3

and independent errors. Decoding more than twice is only rarely

useful.

3. Decoding of the Double Bundle code was studied. It was shown to be

possible to decode an h packet bundle on a 6809 microprocessor at

2 MHz. in atmost 3.5h milliseconds.

4. Various proposed coding options were compared with the Japanese

proposal, called code 'Best', on channels with independent errors. The

Japanese code out-performs our code on this channel at a cost of low

information rate and of violating the NABTS.

5. A framework was devised and software written to analyze the performance

of various codes on the field data collected by the Communications Research

Centre. One site was analyzed as an example only.

6. 	A hardward encoder was designed for Carleton Code.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the assistance we have received

from Linton Hutchison in dealing with the field data and from

Susan Jameson, Beverley Hall and Suzanne Drahotsky in preparing the

reports

1. INTRODUCTION AND RESULTS

1.1 Error Correction Schemes: an Outline

This report is concerned with proposals for error correction

schemes appropriate for broadcast teletext systems. Error correction

can greatly improve the performance and extend the range of such

systems. Since a broadcast system will be used in both rural and

urban settings a variety of error types are to be expected and an

error correction system must be able to deal with independent and

a spectrum of burst error events. Moreover, code should place a

minimum demand on the teletext decoder in terms of cost, memory,

hardware. The code should be quickly decodable to permit on-line

decoding or minimum delay off-line processing. Furthermore, the

code rate must be kept high to satisfy the efficiency demands of the

system operators.

An additional constraint which we have insisted upon is that

the coding system consists of a nested sequence of compatible codes

of increasing power. Thus a teletext decoder which is only capable

of decoding the simplest code will be able to decode data encoded

with a more powerful code to the extent that the decoder is able.

Conversely, a teletext decoder which is equipped to make use of the

most powerful code can still decode the simpler codes by ignoring

part of its own abilities.

1-1

1-2

The background organization of the data to be encoded is de-

scribed in the North American Broadcast Teletext Standard (draft)

(NABTS)[1]. The coding scheme proposed here is compatible with

this standard. (The codes discussed in Chapter 3 which have been

proposed by Japanese do not appear to be compatible with the NABTS

so our comparison with them is only approximate.) The basic unit

for data transmissions is the data packet or 'packet'. Each

packet consists of 33 bytes (of 8 bits each). All bytes have odd

parity. (The packet is preceded by synchronization signals to

form a data line. This will not concern us, though we will feel

the effects of these signals.)

1.2 Our Proposed System

We will now describe our proposal for an error correction system

for a Broadcast Teletext System. The early parts of the system are

already included in the NABTS [1] and the remainder can easily be

included.

The first 5 bytes form the prefix and are encoded with an odd-

parity Hamming [8,4] code. Thus the prefix is encoded with a rate

1/2 code. One of the 5 prefix bytes, called the packet structure byte,

is used to indicate the number of bytes taken from the remaining 28,

1-3

which form the data block , for use in error correction. The

number taken is 0, 1, 2 or 28 . Let us denote this number by S .

We take the values of S in turn:

S = 0: 	In this case the only error protection comes from the

fact that the 28 bytes of the data block have odd parity.

Thus an odd number of errors in any byte is detected but

no correction is performed.

S = 1: 	One of the bytes (the last) of the data block is redundant.

We will take this byte to be the exclusive-or (mod 2 sum)

of the other 27 bytes. 'The forms a 'two-way' parity

check code capable of single bit-error correction and

double bit-error detection.

S = 2: 	The two check bytes are defined in such a way as to make

the data block a codeword of a particular (algebraically

defined) Reed-Solomon code, which we call code C. This

code can be decoded bytewise and will correct any single

byte-error or any double byte-errors when both erroneous

bytes have a parity failure. 	Implicit in this statement

is the codes ability to correct any double bit-error

pattern.

1-4

S = 28: 	In this case all 28 bytes of the data block are used as

check bytes for "vertical" codewords. The vertical code-

words are defined as elements of the code C discussed above

and hence require two check bytes per codeword. Using

vertical as well as horizontal coding results in what we

have called a Bundle Code. This scheme is described

below.

The Bundle Coding system encodes a set of h data packets

into a bundle. Each packet has a Hamming encoded prefix of 5 bytes

and data block encoded with a horizontal code (one of the cases

S = 0,1,2 above). We have considered two ways to complete the system

which we call the Single Bundle and Double Bundle systems. The Single

Bundle system was introduced in [2] and [3]. It uses 13 vertical

codewords (14 if the horizontal code is type S = 0 or 1) from

code C • Each such codeword takes two bytes from each data block of

the bundle. The two bytes from the last block are the check bytes

of the codeword. For best performance the two bytes are taken as

byte i and i + 13 in each data block.

The Double Bundle system was briefly mentioned in [3] and is

discussed at length in this report. The final 2 data blocks are

used to hold the vertical check bytes. Once again code C is used

1-5

vertically and now we take the i th byte from each block and write

the two check bytes in the ith bytes of the fixed two blocks. The

Double Bundle System is somewhat better than the Single Bundle for

independent errors and is very much more powerful for bursts.

The proposed system would work as follows. The data packets

would be encoded with one of the horizontal (or data block) codes:

(i) odd parity bytes

(ii)two-way parity check

(iii)code C .

A bundle might also be formed if the information transmitter wishes.

The vertical codewords are built up as the data packets are sent

down the channel. When the pre-defined bundle length has been

reached the check bytes can be calculated and two (or one for

single-) packets of 28 check bytes, encoded with the horizontal

code, are sent.

1-6

prefix: 5 bytes data block: 28 bytes

	

.0. 	did
• *4.44

	

A 	• 	Pr 	."weeir
,6%,•■ „. It 	A 	 À 	. 	 . 	 IWIlle.■.111. 410'

• I
I 	 •
i 	 _ ,•_ . 	

or
I 	 , • •

1

	

0 .44 	
à 	

_
• 	

À
•,•,,, 	• 	e ,. 	■ • 	. • e

	

•• ' 	■ ••

/ separateà
by 13 bytes

typical
vertical
codeword

Hamming(8,4)

4----typical
horizontal
codeword

a data byte

1

h

packets

Ve 4 .Utete.„1 a check byte

Figure 1 The arrangement of the Single Bundle Code

1-7

prefix: 5 bytes data block: 28 bytes

E7--- typical
horizontal
codeword

h

packets

lr
typical
vertical
codeword

Hamming (8,4)

bop ',gel •••• le • 4

betee.t.1

a data byte

a check byte

Figure 2 The Arrangement of the Double Bundle Code

1-8

1.3 Correction Capabilities of the Double Bundle Code

The Hamming codes in the prefix can correct a single bit

error in each of the five bytes and detect any double error.

Essentially all undetected errors will result in a mis-identification

of the packet and the loss of a data block. Whole packets may be

lost by synchronization failures.

The horizontal code is one of three choices: Parity-Only,

Parity Product, code C • The first is an error detecting code

while the second is a single-error correcting double-error detecting

code (SEC-DED). The code C is single byte-error correcting and

also corrects a double byte-error if the two erroneous bytes each

show a parity failure. (This second feature is used in the vertical

codewords below.)

The Bundle Code uses 26 vertical codewords from code C

storing the check bytes in two data blocks, and insists that all

data blocks of the bundle, including the check blocks,are encoded

with code C. To decode the bundle, the packets are received and

decoded using the prefix and horizontal codes. The decoded data blocks

are stored in a buffer. Any missing data blocks are written into this

buffer as a string of bytes with a parity failure i.e., in the odd

parity NABTS context they can be written in as a string of zeroes.

l-9

The vertical codewords are now decoded bytewise. Each vertical

codeword contains one byte from each data block. Many sets of errors

will be decoded in this place. For example:

- any burst of length at most 33 bytes will be corrected if
the horizontal codewords have cleaned out any other errors,

- one or two missing data blocks will be replaced if the

horizontal codewords have cleaned out any other errors,

- any pattern less than 6 errors anywhere in the bundle will

be corrected,

- a scattering of short bursts has a good chance of being

corrected.

This ends the "Single Decoding" of the Double Bundle Code.

At this point one could go back to the horizontal code and

correct any correctable patterns left by the Single Decoding. Then

one could go on to the vertical codewords. In effect, we run the

full Bundle Decoder twice. We call this Double Decoding. Double

Decoding provides some benefits, but there is only an insignificant

improvement in repeating a third time.

So far we have been describing the full power of the Bundle

System obtained by using horizontal and vertical codewords from

Code C . A reduced version of the system might be of use in particular

environments. One might use Parity-Product codewords (SEC) on the

1 - 10

horizontal data blocks and also for the vertical codewords. The

decoder could recognize this since one of the prefix bytes will in-

dicate the horizontal code and a single check packet could be used

as a flag that vertical codewords are from the Parity-Product code.

In the report [3] we studied the Single Bundle System in depth.

The benefit from using a Double Bundle System is an improvement in

performance with both independent errors and with bursts. Moreover,

the increased redundancy of the Double Bundle System can be offset

by using longer bundles without degrading performance significantly.

1.4 Other Proposals for Teletext Codes

In this section we will describe some of the previous literature

by other authors relevant to our subject.

The Parity-Product, or row-column, code has often been studied.

It was suggested as a teletext code by Sablatash and Storey [7], [12].

In their paper they discuss the performance of this code with in-

dependent errors.

The Japanese have proposed a different packet code which we

discuss in Chapter 3.

Bhargava, Allard and Seguin [4], [5] proposed a novel data

packet code 	using one byte of parity checks (the same as the

Parity-Product). This code is defined in such a way that all single

1-11

errors are correctable and a double error affecting two different

bytes is correctable. The code is defined by finding an appropriate

set of 8 x 8 binary matrices. We showed in [t4] that this code

essentially meets the bound for a probability of decoding error in

a one-byte data block code. Decoding is feasible but not outstandingly

quick. Upwards extension to a two byte code has not been examined.

In a report [6] of February, 1983, Hari, Seguin, Bhargava and

Allard examined the performance of two Reed-Solomon codes defined

using bytes as symbols, with the Broadcast Teletext System in the

back of their minds. In fact they study a code of length 27 bytes

with 2 check bytes and a code of 28 bytes with 3 check bytes (hence

not exactly on target for NABTS). The first of these codes is

essentially Code C , shortened by one byte and using the a and a
3

in place of 1 and a in the defining rule for the code ((.."(x) is

a codeword (polynomial) if and only if C(1) = C(a,) = 0) . Therefore

their code should have roughly the same performance as Code C with

independent errors. In fact they do get the same results; compare

our Figure 1.3 with [6, Fig. 5.5, page 78]. Their choice of

generator polynomial (i.e. C(x) is a codeword if and only if

, 3. C(œ) =) = 0) means that their code does not extend the

Parity-Product code.

Figure 1.1 Comparison of Several Codes with

Independent Errors

Packets
10 	i

	

11-1 	 -„,„,
, Double Decoding

'Until
"Decoding

Fault

10 9 -I 	
Bundle

Single

Code C

Parity -
-«"-■ Product

Parity-Only

Double Bundle:

Single Decoding

10 1

1 0

10
1

Expected

11 Number of
Data

1 -s
10 - 1.0

-4
10

-3

Bit Error Rate

1

1-12

1.5 Performance Results with Independent Errors

So far we have only compared codes on the assumption of in-

dependent errors. We use as a measure the expected number of data

packets until decoding faul, i.e. an error which is not correctable.

Our results are displayed in Figure 1.1. Note the small benefit

from using Double Decoding (cycling the Bundle Decoder twice) and

the small benefit from Double Bundle over Single Bundle at higher

rates. In fact, the reason for going to a Double Bundle is to give

better performance with burst errors. As discussed in [3] the

benefit of either Bundle code with independent errors is to overcome

decoding failures in the prefix code by replacing one or two data

blocks.

The comparison with the Japanese code BEST is contained in

Chapter 3.

1.6 Decoding the Double Bundle

We have carried through an implementation of a Double Bundle

Decoder in MC6809 software. This is a look up table decoder which

uses at)'ost:

3.5h milliseconds,

364 	bytes of program,

256 bytes of look-up table.

The decoding is greatly simplified by using the same code for

horizontal and vertical codewords and by taking only 1 byte from each

data block for each vertical codeword (as in Double Bundle).

2-1

2. PERFORMANCE OF THE DOUBLE BUNDLE CODE WITH INDEPENDENT ERRORS

2.1 Results

The most common theoretical benchmark used for assessing error

• correcting codes is their performance on channels with independent

errors. Such channels do arise at least occasionally in practice

and a channel with burst errors may well have a background of in-

dependent errors.

We suppose that each bit is received in error with probability

p with 	in the range 10
-3

down to 10
-5

. At each bit error

rate a particular code has a fixed probability PCD of
correctly

decoding a packet. We use the expected number of correct packets

before an undecodable one arrives. We approximate this by 1/ (1-P

We compare six codes, (four of which have already been compared

in [3]). The codes are

- Parity-Only

- Parity-Product

- Code C

- Single Bundle On = 9)

- Double Bundle (a = 13): single decoding

- Double Bundle (a = 13): double decoding.

2-2

The length of the Bundle Codes were chosen to give them comparable

rates. The results are in Table 2.1; they are portrayed graphically

in Figure 1.3 .

Table 2.1 Expected Number of Packets until Incorrect Decoding:

various codes

Code /BER 	 10
-3

4x 10
-4

10
-4

10
-5

Rate

Parity-Only 	 1.0e1 	1.7e1 	5.4e1 	5.0e2 	.82

Parity-Product 	5.4e1 	2.9e2 	4.2e3 	4.2e5 	.79

Code C 	 5.9e2 	8.1e3 	5.4e5 	1.9e7 	.77

Single Bundle 	 1.1e5 	2.3e6 	1.7e8 	1.4ell 	.69

Double Bundle - S.D. 	2.1e5 	2.6e7 	2.7e10 	2.7e15 	.66

Double Bundle 	D.D. 	3.3e5 	2.9e7 	2.8e10 	2.7e15 	.66

The effect of varying the Bundle Length is revealed in

Tables 2.2 - and 2.3 .

2-3

Table 2.2 Expected Number of Packets until Incorrect Decoding:

various lengths, single decoding

Bit Error Rate

Bundle
10

-3
3 x 10

-4
10

-4
10

-5

Length (h)

5 	 6.0e5 	2.4e8 	5.8e10 	5.5e15

6 	 5.2e5 	2.2e8 	5.2e10 	5.1e15

7 	 4.5e5 	1.9e8 	4.6e10 	4.6e15

8 	 3.9e5 	1.7e8 	4.2e10 	4.1e15

9 	 3.4e5 	1.6e8 	3.8e10 	3.7e15

10 	 3.0e5 	1.4e8 	3.5e10 	3.4e15

11 	 2.7e5 	1.3e8 	3.2e10 	3.2e15

12 	 2.4e5 	1.2e8 	2.9e10 	2.9e15

13 	 2.1e5 	1.1e8 	2.7e10 	2.7e15

14 	 1.9e5 	1.0e8 	2.6e10 	2.5e15

15 	 1.6e5 	9.8e7 	2.4e10 	2.4e15

2-4

Table 2.3 Expected Number of Packets until Incorrect Decoding:

various lengths, double decoding

Bit Error Rate

Bundle
10

-3
3 x 10

-4
10

-4
10

-5

Length (h)

5 	 6.9e5 	2.5e8 	5.9e10 	5.5e15

6 	 6.1e5 	2.2e8 	5.2e10 	5.1e15

7 	 5.5e5 	2.0e8 	4.7e10 	4.6e15

8 	 4.9e5 	1.8e8 	4.2e10 	4.1e15

9 	 4.5e5 	1.6e8 	3.8e10 	3.7e15

10 	 4.1e5 	1.5e8 	3.5e10 	3.4e15

11 	 3.8e5 	1.4e8 	3.2e10 	3.2e15

12 	 3.5e5 	1.3e8 	3.0e10 	2.9e15

13 	 3.3e5 	1.2e8 	2.8e10 	2.7e15

14 	 3.1e5 	1.1e8 	2.6e10 	2.5e15

15 	 2.9e5 	1.0e8 	2.4e10 	2.4e15

What we see is that bundle length is not very crucial over this

range and that performance levels are all acceptable. Double de-

coding is beneficial if the BER is high enough but is not usually

very helpful. It may be very useful for the range 10
-3

to 10
-2

.

2-5

2.2 Methods

We are studying the performance of the Double Bundle code in

an environment of independent errors. We will therefore assume

that errors occur in the data bits with a fixed probability p(BER)

and for convenience we set q - 1-p and x = pi/q. (This x is

essentially the same size as p .) We assume that the message bits

do not influence the pattern of errors so that we can and generally

do assume that a message of all zeroes has been sent.

We would like to calculate the probability of a correct de-

coding of the Double Bundle in the two cases of Single and Double

Decoding. We will deal with Single Decoding first. There are three

possible scenarios in this case depending on the number (0, 1 or 2)

of prefix codes that fail. The probability that a prefix code is

correctly decoded is

PrefixCor 	(q
8

+ 8 •pq
7

)
5

= (q
8
(1 + 8x))5 •

We will also need the probability of a correct decoding of a horizontal

codeword and of the Bundle Code which we denote respectively HorCor,

Bundle Cor.

If the bundle includes h packets in all (including check

packets) we can write down formulae for the probability that a cor-

rect decoding is achieved after 0, 1 or 2 prefix failures:

2-6

= PrefixCor
h

Bundle Cor All Prefix Cor

One Failed Prefix = h(1 -Prefixeor)(PrefixCor * HorCor)
h-1

hh- Two Failed Prefixes= (
2
)(1 -PrefixCor)

2
(PrefixCor * HorCor)

2

We are left with the calculation of HorCor and BundleCor .

The horizontal codewords are assumed to be corrected by the

bytewise decoder. Thus any error in a single byte is corrected and

any error in two bytes which changes the parity of each is correctable.

Since there are 28 bytes in each codeword the probability of an error

,8, t 224-t
pattern corrupting one byte is 28 E)p q 	which we can

t=1 t

write as

q
224

28((l+X)
8
-1) .

The probability of the second type of error is

224 28 	8 	min(t,4) 	8 	8
q 	(2) 	 (

2s-1
)(
2t-2s+1

»êt .
t=2 s=max(t-3,1)

Here we are summing over the patterns of 2t errors of which 2s -1

fall in one byte and 	2(t-s)+1 fall in the other. Of course

1 < 2s -1 < 7 and 2s -1 < 2t and 2(t-s)+1 < 2t and

1 < 2(t-s)-11-1 < 7. This all boils down to max(t-3 ,1) < s < min(t,4) .

Finally, we include the expression for a correct reception

and obtain

2-7

224 	 8 	28 8 	min(t,4) 8 	8 HorCor = q[1 + 28 ((1+X) -1) + () E)X
2t

] .
2 	 (

2s-1)(
2t-2s+1

t=1 s=max(t-3,1)

In the 1983 Final Report [3] we used q
224

[1+224X+ (
224

)X
2
] which

2

gives nearly the same result being the probability of 0, 1 or 2 bit

errors.

We come to the probability of an error pattern correctable by

Single Decoding of the bundle itself. We write

224 œ
BundleCor = 1 -q 	[EIXk]

k=1 k

where I
k

is the number of uncorrectable error patterns of k errors.

Note that I
k

is a non-linear function of h . In fact I = 0

for k = 1,2,3,4 and 5 . The point is that the horizontal code can

correct double errors so it will clear out all errors from packets

with only 1 or 2 . Moreover, if only one horizontal codeword is

uncorrectable then the vertical codewords correct it. Thus the

minimal pattern of uncorrectable errors is two packets with 3 errors

in each.

If six errors are uncorrectable by the double bundle code then

they occur as three in each of two codewords. We denote this by

drawing two labelled horizontal lines:

3

3

h v 8 2 2
(2) (2)2(

2
) 8 6(a)

4 2

V) .(8) 2 8 2 2
3)15(2

) 8 6 (b)

h v 	8 4
(
2
)(

3
)6 (2) (

2
)8 6(c)

21 	11 0

1 1 1

(h) (v)4 (2)3 (8)84
2 4 	2

6(d)

6(e)
h v 8 2

 8
2

(
2

) (
2

)2 (
2

)

2-8

This is a type 3-3 error pattern. Not all of these are uncorrectable.

We draw in vertical lines to represent vertical codewords and use

numbers at the intersections to denote the number of errors in the

byte where the vertical and horizontal codewords meet. The following

arrangements are uncorrectable:

Here we denote by h , the number of horizontal codewords and by v

the number of vertical codewords (i.e. v = 28). The formulae at

2-9

the right enumerate the number of different error patterns of the

given form. Note that the type 6(e) patterns are the only ones

which are not correctable on a second pass; count them as I .
6

This gives

_ (h) f (v)4(fi) 2 82 + (v) [is(8) 2 82 + 6.2. (8)8 4] 	(:.4/.
)

..2.3a) 8 1/
6 	2 	2 	2 	3 	2 	 2

h v 	 h v
= (2) (2

) (200704) + (
h
2) (

v
3

) (;:e...t:=LgYese) + (
2

) (
4
) (2 752512)

hv8 	hv
= ()(

2)2()2 82 = (2)(2)(100 352) . 6 	2 	2

Moving t.r patterns of 7 errors we see that many uncorrectable

patterns are in fact an uncorrectable pattern of 6 errors with one

more error in any of the (n-2)224 remaining bits. We denote these

by types 7(a) through 7(e) and they count for I6(11 -2)224

patterns of uncorrectable errors.

The remaining uncorrectable patterns of seven errors are of

type 3-4. The packet with 3 errors has 2 in one byte and 1 in another;

the packet with 4 errors has errors in at least 3 bytes or else 3 in

one and 1 in another. We list the possibilities with their enumer-

ations.

2-10

7 (f)

(2-1-1-1-1)

7(g)

(3-2-1-1)

2

11 1

2 	1 1

12

11 	1

4

3

4

3

4

3

4

3

(l) (55100-85 (8) 2 	 2

.1

2 	1

7(j)

 (4-1-1-1)

7(k)

(4-2-1)

h v 	8 2 	3
(2

) (
4

)2.4. (2) •3'8

7 (h)

(3-2-2)

7 (i)

(3-3-1)

2-11

3 R h
) (3v

)2 .3 .8 (-)
2
 (2+1)

2 • 	2

2-12

7 (i) h y 8 3
(2)(

2
)4(

2
) 8 . (4_3)

type

3-3-1-1

3-3-2

4-3-1

The result is an expression for 1 7 •
7

us-.29-4 g h y
17 = I

6
 (h-2)224 + (2)i (5) (91750400) + ()GA.

 4

+
3

 (v 	
2

) (26578944) + (v) (702464)] •

The weight 8 uncorrectable error patterns are distributed

in horizontal codewords in one of the follawing ways: 3-3-1-1,

3-3-2, 4-3-1, 4-4, 5-3. The first three types can be counted using

16 and I; they account for essentially all of the uncorrectable

error patterns. We count them by noting that for example a type

3-3-1-1 uncorrectable error consists of an uncorrectable pattern

of six errors (type 3-3) and one more error in a third packet.

(Note that the weight 7 type 4-3 uncorrectable error patterns are

enumerated as 17 -16 (h-2)224.)

number

16 (1
à-2

)224
2

2

I
6
(h -2)(2 24)

2

[I
7
 -I

6
 (1i-2)224](h-2)224

2-13

We take 18 	62
(
h-2

)224
2
+
I6 	2

(h-2) (
224

) + [
7
- 1

6
(h-2)224] (h-2)224 .

For the case of nine errors we have many types, but most of

them are covered by adding one additional error to a weight 8 error

in one of (1-2) packets. Similarly, for 10 errors:

I
9

1
8
(h-2)224

19 (h-2)224 .

(0sing these estimates over counts. some types and ignores others.)

1

1

PROGRAM Independent;
{Performance of the double bundle with independent errors>
{March 26, 1984>

VAR P:real;
hpflag:integer;

FUNCTION Power(X:real;M:integer):real;
VAR I:integer;

POW:real;

POW:=1;
IF M>0 THEN FOR I:=3 TO M DO POW:=POW*X;
IF h<0 THEN FOR I:=-1 DOWNTO M Du POW:-POW/X;
POWER:=POW

END,{POWER>

FUNCTION Power2(X:real;M,K,SI:integer):real
Ve.R SUM,TERM:real;

I:integer;
BEGIN

Sum:=1;Term:=1;
For I:=1 to K do
BEGIN

Term:=TermAX1cSIMM-I+1)/I; •

Sum:=Sum + Term
END;
POWER2:=Sum

END;{Power2>

FUNCTION inf(a,b:integer):integer;
begin

inf:=a;
if b<a then inf:=b

end;

FUNCTION sup(a r b:integer):integer;
begin

sup:=a;
if b>a then sup:=b

end;

PROCEDURE LENGTH(h:integer;P:real)

VAR 	X ,H2,H3 : real ;
t: integer ;

term , sum2 sum V , V1 V2 p V3 p V4 V5 : REAL ;
Vi e 1:7, 	 pPro c u 	tz, eirr-
Hor Cor 2 y Pr efixCor , By t eCor 	Cor y Bun d 1 eCor r er t ab 1 e : r eal
All.PrefixesCorrect ,OneFailetiPrefix,TwoFailedPrefixes:real;
C,11: array [O. .83 of real;

1

BEGIN
0:=1-P;X:=P/O;
V:=28;
142:=11*(H-1)/24H3:412h(H-2)/3;

1, V2:=VA(V-1)/2;V3:=V2*(V-2)/3,V4:=V3*(V-3)/4;V5:=V4*(V-4)/5;

II DCO]:=1;for I:=I to 7 do DCI3:=IICI-1]A(224-I+1)/I;

• II {16:=N2*V2*1.00352e5;›
II 16:=N2*V2*2.007E5 +H2*V3*2.1289E6 + N2*V4*2.753E6;

(17:=H3V2*8.7436E7 + H2*V3*6.02112E5 + H2AV2*5.268E5,1
- 11 17:=16*(01-2)/3)*24icv + H2*V5A9.175E7 + HUV4*1.528E8

N2*V3*2.658E7 + N2*V2*7.025E5;
18:=17*(224*(H-2));
19:=18*(224*(N-2));

•II I10:=19*(224A01-2));

C[0]:=1;for I:=1 to 8 do cri3:=cri-1)*(8-i+1)/i; • -

ir bo9in
term:=0; , 	for s:=sup(t-3,1) to inf(t,4) do term:=term + cE2hs-1]*cE2*t-2*s+13;
sum:=sum+term*power(X,2*t);

II end;

sum2:=0;for t:=3 to 8 do sum2:=sum2+cEtUpower(X 1 t);

r 11 PrefixCor:=Power(power(0,8)*(1+8*x),5);

HorCor:=Power2(F,224,10,-1)*(1+28*(8*X + 28*X)cX +sum2)+378*(64*X*X +

BundleCorrectable:=1 - Power2(P,224*h,10,-1)*(I6)cPower(X,6) + I7*Power(X,7)
+ I8*Power(X,8) +19*Power(X,9) + I1O*Power(X,10));

' 11 	AllPrefixesCorrect:=Power(Prefixeorph) * BundleCorrectable;

OneFailedPrefix:=h*(1-PrefixCor)*Power(PrefixCor*HorCor,h-1);

TwoFailedPrefixes:=H2*Power((l-PrefixCor),2)*Power(PreFixCor*HorCorph-2);

ProbCdr:=AllPrefixesCor+OneFailedPrefix+TwoFailedPrefixes;

ExpDerFault:=1/(1-ProbCor);
write(tExpIlecFau1tic(h-2))e.5 7 ' --
END;

11
for t:=2 to 8 do

I .

6

BEGIN {The program proper....›

II 	
writeln('Nardcope 0/1 ');readln(flag);
if FLAG=1 then writeln(chr(27),/t10,759 1 pchr(27), 1 [5,60r 1);
writeln('Expected number of PACKETS until decoding fault - Double Bundle'

II
writeln(' using Single decoding');
writeln;writeln(1 ********AMfflich***A*A**A******* 1);writeln;writeln;
write('Bit error rate > ');
writeln(' le-3 	4e-4 	3e-4 	le-4 	le-5');

II 	
writeln('Bundle length');
FOR h:=5 TO 15 DO 	 .

begin

II 	
write(h:2, 1 	 ');len9th(h y le-3);
len9th(h r 4e-4);1en9th(h,3e-4);
len9th(h,le-4);length(h y le-5);writeln

II 	
end;

END.

3-1

3. AN ASSESSMENT OF THE PROPOSED JAPANESE TELETEXT CODE

3.1 The Japanese Proposal and the NABTS

The Japanese have proposed [2] that a particular majority-logic

decodable cyclic code, which they have called "BEST", be used as

error protection for teletext data packets. They have described

this code as covering all bits of the packet after the bit and byte

synchronization bytes. Thus the control bits for addressing, con-

tinuity count and packet structure would be encoded along with any

data bits. They do not make use of or refer to using bytes of odd

parity or of a set of five Hamming encoded prefix bytes.

The code "BEST" is capable of correcting any pattern of 8 bit

errors that corrupt a single data packet. The field data reported

in [8] suggest that this could take care of about 99.3% of erroneous

packets and deliver the quality of service that the Japanese desire.

In addition, the choice of a majority logic decocable code will allow

an LSI hardware implementation. This would in turn allow this

powerful code to be decoded on the fly as the packets arrive. Their

idea 	to perform error correction at the "signal level" ([11],

page 3, Table I, Item 3.9).

To achieve its correction power this code "BEST" must use 82

check bits. The proposal [9] is based on a 34 byte data packet whereas

3-2

the NABTS (draft) specifies 33 bytes ([1], Sec. 3.1, page 9).

Moreover, the NABTS (draft) assumes that all bytes have odd parity

([1], Sec. 3.3, page 10) and that there is a five byte prefix encoded

with a Hamming [8,4] code ([1], Sec. 3.2, page 9). The Japanese

assessment of their code does not refer to any of this structure.

On a 33 byte pecket BEST would have 264-82 = 182 message bits, some

of which are control bits (20 in the NABTS scheme). So the infor-

mation rate is about 69%. However, if we follow the NABTS pre-

scriptions then we are committed to 20-F28 further bits of parity

checks. This would mean a total of 48+82 = 130 check bits for

264-130 = 134 message bits; an information rate of 51%. Thus

the "BEST" code is only practical if all other parity checking and

error correction coding is removed.

The document [9] does not make any comment on implementation.

How will the code be organized with respect to the byte structure?

Of course 8 does not divide 82 so there needs to be some comment on

where the check bits will sit in the packet.

More information on the code itself, which is obtained from a

perfect, cyclic difference set, can be obtained in [10], page 134.

3-3

3.2 The Comparison of Various Packet Coding Systems

The document [9] compares the code 'BEST" with several other

packet codes (of a variety of rates) in two ways. In the first

study the probability of a page with an uncorrectable error is

calculated for each code in the context of independent errors. The

results were presented as a graph over the range of bit error rates

from 10
-5

to 10
-2

([9], fig. 2). The codes were also compared in a

field trial. We have attempted to reproduce the theoretical results

and extend them to include the code C and the Bundle coding system

which we have proposed in [3] as a teletext coding scheme.

The document [9] is not clear on the size of a page. This is

important since the codes cover a wide range of rates. They quote

a page length of 120 characters but do not relate this to bits or

bytes. We found that by charging "BEST" with 20 control bits and

taking a page as about 1056 information bits we could come reasonably

close to their results. In our study we have used a whole number of

packets for each page. The number of packets depends on the rate of

the code but was chosen to come as close to 1056 information bits

per page as possible. Our results are presented in Table 3.1 and

Figure 3.1.

3-4

Table 3.1 Parameters Used in Comparing the Codes

Information Number of 	Number of
rate 	packets/page 	data bits/page

No coding 	 1.00 	 5 	 1056

Prefix with Hor. & Ver. 	0.79 	 6 	 1134
Parity

Prefix with Code C 	0.77 	 6 	 1092

Code BEST 	 0.69 	 6 	 972

Bundle System (code C) 	0.67 	 7 	 1092

Prefix with 14 Hamming 	0.66 	 7 	 1078
[16,11]

Prefix with 28 Hamming 	0.50 	 9 	 1008

[8,4]

We observe that the Bundle coding system based on code C

actually achieves the target of a page error rate below 5 x10
-2

at a bit error rate of 5 x 10
-3

which the Japanese have set in [8].

In addition to the theoretical studies, the codes were compared

in [9] in a number of field trials. It was correctly observed that

the channels were not introducing independent errors but the exact

nature of the bursts encountered can not be deduced from the data

presented. A comparison of the observed page error rates [8], Fig. 2,

with the theoretical curves [9], Fig. 2 show that in fact the per-

formance was usually but not always worse that that predicted from

Code

PROBABILITY THAT A PAGE CONTAINS AN UNCORRECTABLE ERROR
(I PAGE m A WHOLE NUMBER OF PACKETS GIVING

APPROX. 1056 DATA BITS.)

NO CODING

PRODUCT

Ar2

PROBABILIT
OF UNCOR-
RECTABLE
ERROR IN
A PAGE 2

(0''

BIT ERROR RATE

3-5

independent errors. Without more detailed information about the

burst patterns we cannot predict the performance of the Bundle

coding system on real channels. We note though that the Bundle code

should work better on a bursty channel than code "BEST" since the

latter code is restricted to bursts of length 8 bits per packet.

The Japanese strategy appears to be to select a code which performs

very much better than their target on the theoretical independent

error channel so that even when there are bursts it doesn't degrade

below the target.

3.3 Method of Calculation

The results in Section 3.2 were calculated in a reasonably .

 straightforward wey. A single bit-error correcting code of length

t used on a channel with independent errors that arise with

probability of correct decoding given by q
t
+ tpq

t-1
where

q = 1 -p. So we obtain some of the required formulas for probability

of correct decoding of a packet:

No Code 	 : qn

: q
n HE

npq
n-1

Hor. &Ver. Parity

734
34 bytes of Hamming [8,4] 	: [q

8
+8pq

17 bytes of Hamming [16,11] : [q
16

+16pq
15

]
17

where n = 272 and X = p/q.

=qn (l+nX)

= qn(i+ sx)34

= qn (1+ 16X) 17

3-6

The formulas for Code C and the Double Bundle Codes have

been developed in Chapter 2. The Single Bundle Code is dealt with

in detail in [3], Table 1.3, page 15.

The code "BEST" is an 8 error correcting code, so the probability

of a correct decoding is

8 n i n-i
PC= E (

i
) p q

i=0

This number is generally very close to one so we in fact calculate

the complement,

n n i n-i
1 -PC= E (

i
) p q

i=9

4-1

Chapter 4. Performance in a More Real World

4.1 Afterall Errors May Not be Independent

The assumption that errors are independent events is

convenient for analysis but is not necessarily what happens

in any real channel. There are several ways to try to estimate

the performance of an error correction system in a real or more

realistic channel. In previous reports [14], [15] we have used

model channels to assess codes. A variety of stochastic processes

were hypothesized and expected performance was calculated for a set

of codes. This is only relevant to the real expected performance

if the models describe the real channels. We have not found in

the literature, any reports of stochastic models fitted to channels

relevant to Broadcast Teletext System at the high bit transmission

rate used by the System (5.727272Mbits/Sec). It is hard to see

how to modify a description of a channel with a low bit transmission

rate to describe what would happen if the bit rate was increased greatly.

Better than modelling is to measure real channels. Field

data became available to us in February, 198 4. and we have worked

on using this data. Ultimately we should be able to get a very

good idea of the level of coding required. We may eventually be

able to describe one or several models of the channels on which

the data was collected.

4-2

4.2 Analyzing Field Data for Code Performance

The field data inour analysis system exists as a computer

file consisting of a sequence of integers. The data looks

like one of the following:

x(20),

-1 y n
l

e
l
n
2

e
2 	

ny ey ,

-2.

The x means x packets in a row received correctly, The -1 flags

a packet with y byte errors. The integers ni ,ei say that byte

haserrore..The error is the decimal representation of

the error byte. Eg. 11, 64 means error 01000000 in byte 11.

The flag - 2 means that a packet is missing (through synchonization

failure or prefix code failures). Since we might have a very

large number of correct packets tn a row (on a good day), we may

write several numbers into the file for that one series. Eg. we might

have:

17 - 1 1 4 3 200 19 -2 -1 2 3 8 21 17 113

meaning 17 correct pa,ckets
a packet with error (00000011) in byte 4
200 + 19 correct packets
a missing packet
a packet with error (0000 1000) in byte 3 and

error (0001 0001) in byte 21
113 correct packets

•
•
•
•

Code
Performance _
and Channel
Description for
one Site

Condensedl
Field
Data --

- +
General

>Description
of Code
Performance

Statistical
Analysis of
one Site

General
Empirical
ttescription
& Channel
Modelling

4-3

The data does not arrive from CRC in this form, but in a

similarbut expanded form. We have written the program DATACRUNCH

of the Appendix to convert the field data to our format.

We have also written a program to analyze the condensed

field data for code performance. This is the program FLDANALB.

This program looks at the data in the context of a run-time supplied

bundle length. It reports generally on the channel and then on

the bundle cod.... The parameters calculated are:

i) number of pa_ckets
ii) number of packets with errors
iii) number of missing packets
iv) number of bit errors; BER
v) the number of packets with i bit errors for

i = 1 to 10.
vi) the number of packets with at least i errors

or missing for i = 1 to 3.
vii) BUNDLE REPORT; for length h.

the number of correctly received bundles
the number of correct or correctable bundles
the number of uncorrectable bundles.

Note that item vi) tells us how to assess the performance of the

Parity-Product code and Code C.

This is of course just the first stage in analyzing the field

data. The whole picture looks something like this.

EIEF-3-* Data

tModel*
I Channel

- - -L

Figure 4-1: Output of FLDANALB

SITE 184R-2, MARK IV Decoder

1146 of 7489 packets were in error or missing
rate = 1.526E-1

0 of these were missing

The Bit Error Rate was
i.e. 1333 bit errors in 1.797E6 bits (E- 	.3 sec)

#of packets with i errors

1 	 985
2 	 136
3 	 24
4 	 1
5 	 0

•

11 0

4-4

Before the field data became available we haA, planned to use

a model channel (*) to produce files of Condensed Field Data.

This is however now irrelevant.

In conjunction with this analysis strategy we have also

written programs such as QUICK PASS that do part of the analysis

in a different way and hence provide a check on the program

correctness. Ensuring internal consistency is a crucial part

of a large programming project.

4.3 An Example: E184R-2

We illustrate our analysis with one particular site, namely

E184R-2. This site used a Norpak Mark IV teletext decoder.

The output of FLDANALD is given in Figure 4.1.

4-5

BUNDLE REPORT 	length = 10 packets
750 bundles
139 correct
750 correctable

0 uncorrectable (rate = 0)

Note that the this site, during the test

Avg.itpackets
between failures

Patity-Only failed with frequency 15.3% 	6.6
Parity-Product 	 2.1% 	46.6
Code C 	 .33% 	300.3
Double Bundle (h=10) 	 0%

Since this is only 1 second at one site on one day we cannot

conclude anything further.

4-6

- a program which produces the "standard field-data"
file from a raw data file.

(b) DATACRUNCH

(a)

Appendix: Software

Included here are three PASCAL programs as follows:

(a) FLDANALB - a program which analyzes the performance of the
Double Bundle Code on a "standard field-data" file.

(c) QUICKPASS -

1

a program which counts the number of packets and
the number of bad pàckets in a "standard field-data"
file. This program is a check on FLDANALB which
performs a more intricate calculation.

PROGRAM FLDANALBe

fMarch 14, 1984

Analysis of bundle code performance an a file of Condensed

Field datai

var h r x,y,R,U,W,leftovers,n,e,i:integer;
CBunLen„ CBadPackets:integer;
BitError,UnFix„CorBundle,Fix,TotalBundles:real;
TotalPackets,BadFackets,Missing:real;
flag,title,INFILE,OUTFILE:string;
INDATA,OUTDATA:text;
Errflis:arrayE1...111 of integer;
B:array Cl..15,1..28] of integer;

PROCEDURE CLEARB;

1

1

1

j .

4-7
var i f j:integer;

begin
for i:= 1 to 15 do for j:.-1 to 28 do BEi,j3:=0
end;

£74*A***********AAA*******AAA*Muk*********A***A****A**AA***********
****71/4**AA*J

PROCEDURE ErroneousBundle;

[This routine deals wih a bundle which contains an error/

var'odd-rever4i;j,k:integerf
cor:boolean;

begin
for i:=1 to CBadPackets do

begin
for j:=1 to 28 do write(BEi,j3);
writeln 	'
end;"

writeln('*A**********9cA74*A********A**********');
cor:=true;

[Horizontal Decoding/

for j:=1 to CBadFackets do
begin
odd:=0;even:=0;
for k:=1 to 28 do if (B[j,k] mod 2)=1 then odd:=odd+1

else if BEj e k3>0 then eve
n:=even+1;

if ((even=0) and (odd<=2)) or ((even=1) and (odd=0)) then,
for k:=1 to 28 do Brj,k3:=0

end;

[Vertical Decoding/

for j:=1 to 26 do
begin
odd:=0;even:=0;
for k:=1 to CBadPackets do if (BEk,j] mod 2)=1 then odd:=odd+1

else if bEk,p>0 then even:=e
venta.;

if not(((even=0) and (odd<=2)) or ((even=1) and (odd=0))) then
cor:=false

end;

if cor=true then Fix:=Fix+1 else UnFix:=UnFix+1;
CBadPackets:=0;
CBunlen:=0;

ClearB;

I.

4-8

end;[erronoeous bundle 3

C*******A****AAA*A*********A**********A******AAA**7k******te**A
********AA*1

FUNCTION Weight(X:integer):integer;

fReturns the weight of X when it is converted to a binary string)

var s rw r tlinteger;.

begin
t:=128;w:=0;
while t>=1 do

begin
s:=x div t;
x:=x-s*t;
t:=t div 2;
w:=w+s
end;

Weight:=w
endif Weight function)

*** A* ********1

[Main Program)

Begin

writeUName of the input file, please: ');readln(INFILE);
reset(INDATA,INFILE);
writeln('Hardcopy (Y/N>');readln(flag);
if (flag=iy!) or (flag='Y') then OUTI.ULE:='printer:' else OUT.e'ILEI
='console';
rewrite(OUTDATA,OUTFILE);

leftovers:=0;CBunLen:=0;CBadPackets:=0;BitError:=0;Missing:=0;CorB
undle:=0;
BadPackets:=0;TotalPackets:=0;Fix:=0;UnFix2=0;
ClearB;R:=500;
for i:=1 to 11 do ErrDisEi7:=0;

readln(INDATA,title);writeln(OUTDATA,title);writeln(OUTDATA);
writeln(iBundle length, please ');readln(h);

while not(eof(INDATA)) do
begin
readin(INDATA,-u); - -
if x>0 then

begin
TotalFackets:=TotalPackets 	x;
x:.-- x+leftovers;lenovers:=0;
if x >= (h-CBunLen) then

• 1
1 4-9 begin

x := x-h+CBunLen;
CorBundle := CorBundle + (x div h);
Leftovers := x mod h;
if CBadPackets = 0 then

begin
CorBundle := CorBundle + 1;
CBunLen := 0
end

else ErroneousBundle
end

else CBunLen := CBunLen + x
end;

if x=-1 then
begin
TotalPacketL:=TotalPackets + 1;
BadPackets:= BadPackets + 1;•
'CBadPackets:= CBadPackets + 1;
CEunLen := CBunLen +1;

readln(INDATA,y);U:=0;
for i:=1 to y do

begin
readln(INDATA,n,e);W:=weight(e);
BitErrorS:=BitErrors 	W;
BECBadPackets,n] := W;
U := U + W
end;

if U<11 then ErrEds[U3 := ErrDisEU] + 1
else ErrDis[113:= ErrDisEll]+1;

if CBunLen = h then ErroneousBundle

end;
- - 	-

if x=-2 then
begin
TotalPackets := TotalPackets + 1;
BadFackets := BadPackets +1;
Missing := Missing + 1;
CBunLen := CBunLen 	1;
CBadFackets := CBadPackets + 1;

for i:=1 to 28 do BECBadPackets,i3 := 7;

if CBunLen = h then ErroneousBundle
end;

end;[data reading 1

CParameter Calculations)

TotalBundles := CorBundle + Fix + UnFix;

writeln(OUTDATA,trunc(BadPacets), of 1,trunc(TotalPackets),

4-10

' packets were in error or rissing. Rate=',
BadPackets/TotalPackets); 	 •

writeln(OUTDATA);writeln(OUTDATA,trunc(Missing),' of these were mi
ssing');
writeln(OUTDATA);

writeln(OUTDATA,'The Bit Error.Rate was ',BitError/(264*TotalPacke
ts));
Writeln(OUTDATA r 'i.e. ',trunc(BitError),

' bit errors in 1 ,trunc(264*TotalPackets),' bits.'
);

writeln(OUTDATA,' 	
writeln(OUTDATA,' i 	# of Packets with i - errors');
writeln(OUTDATA,' 	

for i:= J. to 11 do writeln(OUTDATA,",i:2,' 	 ',ErrDisCi
3:5);

• 	 writeln(OUTDATA,.'

writeln(OUTDATA,'HUNDLE REPORT: length= ',h,' packets');
"Taheitâlrf(OUTDATA)fceritélh .(OUTDATA,thitic- (iTc5fall3ilridlègrri--
writeln(OUTDATA,trunc(CorBundle),' correct bundles„');
writeln(OUTDATA,trunc(Fix+CorBundle),'' were correctable and');
writeln(OUTDATA,trunc(UnFix),

were uncorrectable. Rate ',UnFixtTotalBundle
s)

end.[PROGRAMI1

(1°) PROGRAM DATACRUNCH;
[FIELD DATA RENDERED DOWN TO SIZE)

var INFILE,OUTFILE,TITLE,S:string;
i r a,b,j„x„max,count,U,PAGE,LINE:integer;

— 	char _ _
•INDATA:text;
OUTDATA:text;

function trans(t1string):integer;
var s i i:integer;

begin
s:=0;
for i:=1 to 3 do s:=BAs+ord(t[i])-ord(1 0');
trans:=s

• end;
•

,PROCEDURE finish;
begin

writeln(OUTDATA,count);
close(INDATA);
close(OUTDATA,lock);
EXIT(PROGRAM)

end;

PROCEDURE GetLine;

begin
if eof(INDATA) then finish;
readln(INDATA,$);u:=12;
while length(s)<55 do

begin
writeln(s,'
if eof(INDATA) then finish;
readln(INDATA„s);
u:=33
end;

end;

FUNCTION Next:inte .ger;

begin
if eof(INDATA) then finish;
if U(61 then U:=U+7 else GetLine;
Next:=trans(copy(s,U,3)).
end;

[THE MAIN PROGRAM < 	 *A*******AA*3

begin
write('Data File ame: ');readln(INFILE);
reset(indata,infile);

4-12

writeln;writeln;write('Results to File: ');readln(OUTFILE);
rewrite(OUTDATA,OUTFILE);
readln(TITLE);writeln(OUTDATA,TITLE);

for i:= 1 to 7 do readln(INDATA,$);
U:=26;
MAX:=27720;
COUNT:=0;
READLN(INDATA,S);

while eof(INDATA)=false do
begin

X:=next;

if x=0 then
begin
count:=count+1;
if count=max then

begin
writeln(OUTDATA,count);
writeln('--> ',count);
count:=0
end;

end
else if x<33 then

begin
writeln(OUTDATA,count);count:=0;
writeln(OUTDATA,- l) ;writeln(OUTDATA,x);
write('--> ',-1,",x);
for i:=1 to x do

begin
a:=next;b:=trans(copy(s,U-3,3));
write(' == ',b,",a);
writeln(OUTDATA,b,",a);
end;

writeln;
end

else if x=255 then repeat getline until (copy(5,1,6)='000000')
else writeln(OUTDATA,-2)

end;

finish

und.

Hi
4-13

(p) PROGRAM QUICKPASS;

fQuick run through the data)

var title,infile,outfile:string;
x,y,i,pack,badpack:integer;
OUTDATA,INDATA:text;
flag:string;

• begin
write('Input file name please: ');readln(infile);
reset(INDATA,infile);
write('Hardcopy? (y/n>');readln(flag);
if (flag='y') or (flag='Y') then outfile:='printer:' else outfile:
='console:';
rewrite(OUTDATA,outfile);

readln(INDATA,title);writeln(OUTDATA,title);writeln;
pack:=0;badpack:=0;

while not(eof(INDATA)) do
begin
readln(INDATA,x);
if x>0 then pack:=pack + x;
if x<0 then

begin
----53:tkf=p-aCk+1-; -

badpack:=badpack + 1;
if x=-1 then

begin
readln(INDATA,y);
for i:=1 to y do readln(INDATA)
end;

end;
if (pack mod 1000)=0 then write(OUTDATA,pack,' 	',badpack)
end;

write(OUTDATA,pack,' 	',badpack)
end.

5-1

Chapter 5. Support for the Patent Applications

5.1 Activities

During the course of this contract, the Department of Communications

decided to attempt to patent 1) the Carleton Code and 2) the Bundle

Code. After acceptance by the Canadian Patent Development Limited

these files were rnssed to the firm of Barragar and Oyen for

preparation of the patent applications.

During this year we have undertaken the following activities

in support of the patent applications:

(i) participated in two meetings with John Morissey
and Lyn Cassan of Barragar and Oyen to discuss
and explain the coding systems,

(ii) held numerous conversations with Lyn Cassan as
she prepared the patent applications,

(iii) provided an annotated diary of all occasions when we
have presented any of our results over the preceding
contracts to an audience, and supplied copies of all
materials used in such lectures,

(iv) read and commented on various versions of the patent
applications and,

(v) designed a hardware encoder for Carleton Code.

5.2 A hardware Encoder for Carleton Code.

The Carleton Code, which is in a sense one of the constituents

of Code C, was defined in [14] and [151. A hardware encoder for

this code was designed to support the attempt to patent application

for Carleton Code. We present this encoder below.

I) Byte Parity
Calculation

II) Shift register to:
i) calculate the algebraic check bits

ii) adjust these to give
odd parity

III) Calculation
of the parity
of the 7 bits
above.

•■••■1

111■1

In

-

CARLETON CODE ENCODER

Data 	 1. °

Clocking and reset circuits are not included in the diagram.

CARLETON CODE ENCODER

F-3

Switch Specifications

a : 8 bit cycle at 1 for 7 bits,
at 2 for 1 bit.

: 224 bit cycle , 	at 1 for 27 bytes,
at 2 for bit 2 of byte 28,
at 3 for bits 1, 3, 4, 5, 6, 7, 8 of byte 28.

y : 224 bit cycle , 	at 1 for bytes 1 to 27,
at 2 for bits 2, ... , 8 of byte 28,
at 3 for bit 1 of byte 28.

: 224 bit cycle , 	closed for 27 bytes
open for byte 28

Operations

I) This circuit calculates the cumulative parity of the incoming data bits.
After 7 bits,switch a changes and the inverted contents of the parity
flip-flop pass down the channel. Not shown is a circuit to reset the
flip-flop to zero at this point.

II) This sequence of mod 2 adders (EOR gates) and flip-flops perform two
functions. For the first 27 bytes it calculates the sum

224
L. 	cia

i=8

expressing the value as the seven coefficients of a sum

6
djaJ

j=0

The circuit III then contains the parity of these 7 bits. If this parity
is even then we must add (1 0 0 1 0 0 0 1) to the byte (d 	d

1
... d

6
0) .

If the parity is odd we send (d
0

d
1 	

d
6

0) unaltered.
0

fbr the 28th byte, the circuit does not cycle on bit 1 but the inverted
parity 	from circuit III is sent out as d 7 ' Hence switch y is
in position 3. On bit 2, the register resumes cycling and the inverted
parity is added to d

0
 and d

3 (i.e. switch S is at position 2) as these
shift up the register. This shift ushes d6 down the channel. The shift
register then continues to shift d5 , d4 	do out of the register
with no feedback (switch 5 open) and no additions (switch S at position 3).

E.g. Each data bit arrives as if it were in the 0 position. So since

a8 = a + a4 we add the bit to stages 2 and 5. The feeback than multiplies
this bit by a once for each successive bit which is input.

Suppose 0 1 1 I 0 0 0 0 	is fed in. We will have

input 	 register

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 I 0 0 I 0 0

0 I I 0 I I Q

0 I I 1 I 1 I

I 0 I 0 I I I

1

1

1

9 	10 	11
= a + 	+a 	.

III) Circuit III calculates the parity of the seven bits in the register II
above. This parity changes whenever a one is fed back from the end to
the beginning of register II. 	Incoming data bits do not change the
parity since they are added to two bits of

REFERENCES

[l] 	North American Broadcast Teletext Specification - Draft, June, 1983.

[2] B.C. Mortimer and M.J. Moore, "Two-byte Data Block and Bundle Codes for
the Broadcast Telidon System", Progress Report, Department of
Communications, DSS Contract No. 0SU82-00164, November, 1982.

[3] Brian Mortimer and Michael Moore, "More Powerful Error-Correction
Scheme ofr the Broadcast Telidon System", Final Report, Department
of Communications, DSS Contract No. 0SU82-00164, March, 1983.

[4] P. Allard, V.K. Shargava and G.E. Sequin, "Realization, Economic and
Performance Analysis of Error-correcting Codes and ARQ Systems
for Broadcast Telidon and other Videotex Transmission", Department
of Communications, Ottawa, DSS Contract No. OSU80-00133, Final
Report, June, 1981.

[5] G.E. Seguin, P. Allard and V.K. Bhargava, "A Class of High Rate Codes
for Byte-oriented Information Systems", I.E.E.E. Trans. Comm.
COM-31, 1983.

[6] K. Hari, G.E. Seguin, V.K. Bhargava and P.E. Allard, "Further Results
on High Rate Codes for Byte-oriented Information Systems", Research
Report, Department of Electrical Engineering, Concordia University,
Montreal, Quebec, February, 1983.

[7] M. Sablatash and J.R. Storey, "Determination of Through puts, Efficiencies
and Optimal Block Lengths for an Error Correcting Scheme for the
Canadian Broadcast Telidon System", Can. Elec. Eng. J., 5 (1979),
pp. 25-39.

[8] "Simmulation of Error Correction for Japanese Teletext", CCIR (1982-1986),
Study Groups Document 11/29-E (Japan), 6 May, 1983.

[9] "Error Correction for Japanese Teletext", CCIR (1982-1986), Study Groups
Document 11/129-E (Japan), 29 August, 1983.

[10] George C. Clark and J. Bib Cain, Error-Correction Coding for Digital
Communications, Plenum, New York, 1981.

[ll] 	"Japanese Teletext Utilizing an Alpha - DRCS - Photographic Coding Scheme",
CCIR (1982-1986), Study Groups Document 11/27 (Japan), 2 May, 1983.

[12] B.C. Mortimer, "A Correction to a Recent Analysis of a Product Code",
Can. Elec. J., 7 (1982) 40.

[13] Jack K. Wolf, Arnold M. Michelson and Allen H. Levesque, "On the Probability
of Undetected Error for Linear Block Codes", I.E.E.E. Trans. Comm.
Vol. COM-30, 1980, pp. 317-324.

[14] B. Leroux, M. Moore, B.C. Mortimer, L. Oattes and T. Ritchford, "A Study
of the Use of Error Correcting Codes in the Canadian Broadcast Telidon
System", Depautment of Communications, Ottawa, Progress Report,
DSS Contract No. OSU81-00095, August, 1981.

[15] Brian Mortimer, "A Description of the Carleton Code", DSS Contract
No. OSU81-00095, Progress Report, Department of Communications,
Canada, September, 1981.

