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DSS Contract No. 0ST83-00078 

Principal Researcher: Dr. Brian Mortimer 

Principal Results  

1. The Double Bundle error correcting code was defined and studied on 

channels with independent errors. It was shown that this code gives a 

significant improvement in performance compared to the Single Bundle 

code at bit error rates less than 10 

2. Repeated decoding of the Double Bundle code was studied and shown to 

give a minor improvement over single decoding for bit error rates at most 

10
-3 

and independent errors. Decoding more than twice is only rarely 

useful. 

3. Decoding of the Double Bundle code was studied. It was shown to be 

possible to decode an h packet bundle on a 6809 microprocessor at 

2 MHz. in atmost 3.5h milliseconds. 

4. Various proposed coding options were compared with the Japanese 

proposal, called code 'Best', on channels with independent errors. The 

Japanese code out-performs our code on this channel at a cost of low 

information rate and of violating the NABTS. 

5. A framework was devised and software written to analyze the performance 



of various codes on the field data collected by the Communications Research 

Centre. One site was analyzed as an example only. 

6. 	A hardward encoder was designed for Carleton Code. 
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1. INTRODUCTION AND RESULTS 

1.1 Error Correction Schemes: an Outline  

This report is concerned with proposals for error correction 

schemes appropriate for broadcast teletext systems. Error correction 

can greatly improve the performance and extend the range of such 

systems. Since a broadcast system will be used in both rural and 

urban settings a variety of error types are to be expected and an 

error correction system must be able to deal with independent and 

a spectrum of burst error events. Moreover, code should place a 

minimum demand on the teletext decoder in terms of cost, memory, 

hardware. The code should be quickly decodable to permit on-line 

decoding or minimum delay off-line processing. Furthermore, the 

code rate must be kept high to satisfy the efficiency demands of the 

system operators. 

An additional constraint which we have insisted upon is that 

the coding system consists of a nested sequence of compatible codes 

of increasing power. Thus a teletext decoder which is only capable 

of decoding the simplest code will be able to decode data encoded 

with a more powerful code to the extent that the decoder is able. 

Conversely, a teletext decoder which is equipped to make use of the 

most powerful code can still decode the simpler codes by ignoring 

part of its own abilities. 

1-1 
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The background organization of the data to be encoded is de-

scribed in the North American Broadcast Teletext Standard (draft) 

(NABTS)[1]. The coding scheme proposed here is compatible with 

this standard. (The codes discussed in Chapter 3 which have been 

proposed by Japanese do not appear to be compatible with the NABTS 

so our comparison with them is only approximate.) The basic unit 

for data transmissions is the data packet or 'packet'. Each 

packet consists of 33 bytes (of 8 bits each). All bytes have odd 

parity. (The packet is preceded by synchronization signals to 

form a data line. This will not concern us, though we will feel 

the effects of these signals.) 

1.2 Our Proposed System 

We will now describe our proposal for an error correction system 

for a Broadcast Teletext System. The early parts of the system are 

already included in the NABTS [1] and the remainder can easily be 

included. 

The first 5 bytes form the prefix  and are encoded with an odd-

parity Hamming [8,4] code. Thus the prefix is encoded with a rate 

1/2 code. One of the 5 prefix bytes, called the packet structure byte, 

is used to indicate the number of bytes taken from the remaining 28, 
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which form the data  block , for use in error correction. The 

number taken is 0, 1, 2 or 28 . Let us denote this number by S . 

We take the values of S in turn: 

S = 0: 	In this case the only error protection comes from the 

fact that the 28 bytes of the data block have odd parity. 

Thus an odd number of errors in any byte is detected but 

no correction is performed. 

S = 1: 	One of the bytes (the last) of the data block is redundant. 

We will take this byte to be the exclusive-or (mod 2 sum) 

of the other 27 bytes. 'The forms a 'two-way' parity 

check code capable of single bit-error correction and 

double bit-error detection. 

S = 2: 	The two check bytes are defined in such a way as to make 

the data block a codeword of a particular (algebraically 

defined) Reed-Solomon code, which we call code C.  This 

code can be decoded bytewise and will correct any single 

byte-error or any double byte-errors when both erroneous 

bytes have a parity failure. 	Implicit in this statement 

is the codes ability to correct any double bit-error 

pattern. 
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S = 28: 	In this case all 28 bytes of the data block are used as 

check bytes for "vertical" codewords. The vertical code-

words are defined as elements of the code C discussed above 

and hence require two check bytes per codeword. Using 

vertical as well as horizontal coding results in what we 

have called a Bundle Code. This scheme is described 

below. 

The Bundle Coding system  encodes a set of h data packets 

into a bundle.  Each packet has a Hamming encoded prefix of 5 bytes 

and data block encoded with a horizontal code  (one of the cases 

S = 0,1,2 above). We have considered two ways to complete the system 

which we call the Single Bundle and Double Bundle systems. The Single 

Bundle system was introduced in [2] and [3]. It uses 13 vertical 

codewords (14 if the horizontal code is type S = 0 or 1) from 

code C • Each such codeword takes two bytes from each data block of 

the bundle. The two bytes from the last block are the check bytes 

of the codeword. For best performance the two bytes are taken as 

byte i and i + 13 in each data block. 

The Double Bundle system was briefly mentioned in [3] and is 

discussed at length in this report. The final 2 data blocks are 

used to hold the vertical check bytes. Once again code C is used 
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vertically and now we take the i th  byte from each block and write 

the two check bytes in the ith bytes of the fixed two blocks. The 

Double Bundle System is somewhat better than the Single Bundle for 

independent errors and is very much more powerful for bursts. 

The proposed system would work as follows. The data packets 

would be encoded with one of the horizontal (or data block) codes: 

(i) odd parity bytes 

(ii)two-way parity check 

(iii)code C . 

A bundle might also be formed if the information transmitter wishes. 

The vertical codewords are built up as the data packets are sent 

down the channel. When the pre-defined bundle length has been 

reached the check bytes can be calculated and two (or one for 

single-) packets of 28 check bytes, encoded with the horizontal 

code, are sent. 
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prefix: 5 bytes data block: 28 bytes 
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1.3 Correction Capabilities of the Double Bundle Code  

The Hamming codes in the prefix can correct a single bit 

error in each of the five bytes and detect any double error. 

Essentially all undetected errors will result in a mis-identification 

of the packet and the loss of a data block. Whole packets may be 

lost by synchronization failures. 

The horizontal code is one of three choices: Parity-Only, 

Parity Product, code C • The first is an error detecting code 

while the second is a single-error correcting double-error detecting 

code (SEC-DED). The code C  is single byte-error correcting and 

also corrects a double byte-error if the two erroneous bytes each 

show a parity failure. (This second feature is used in the vertical 

codewords below.) 

The Bundle Code uses 26 vertical codewords from code C 

storing the check bytes in two data blocks, and insists that all 

data blocks of the bundle, including the check blocks,are encoded 

with code C. To decode the bundle, the packets are received and 

decoded using the prefix and horizontal codes. The decoded data blocks 

are stored in a buffer. Any missing data blocks are written into this 

buffer as a string of bytes with a parity failure i.e., in the odd 

parity NABTS context they can be written in as a string of zeroes. 
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The vertical codewords are now decoded bytewise. Each vertical 

codeword contains one byte from each data block. Many sets of errors 

will be decoded in this place. For example: 

- any burst of length at most 33 bytes will be corrected if 
the horizontal codewords have cleaned out any other errors, 

- one or two missing data blocks will be replaced if the 

horizontal codewords have cleaned out any other errors, 

- any pattern less than 6 errors anywhere in the bundle will 

be corrected, 

- a scattering of short bursts has a good chance of being 

corrected. 

This ends the "Single Decoding" of the Double Bundle Code. 

At this point one could go back to the horizontal code and 

correct any correctable patterns left by the Single Decoding. Then 

one could go on to the vertical codewords. In effect, we run the 

full Bundle Decoder twice. We call this Double Decoding. Double 

Decoding provides some benefits, but there is only an insignificant 

improvement in repeating a third time. 

So far we have been describing the full power of the Bundle 

System obtained by using horizontal and vertical codewords from 

Code C . A reduced version of the system might be of use in particular 

environments. One might use Parity-Product codewords (SEC) on the 
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horizontal data blocks and also for the vertical codewords. The 

decoder could recognize this since one of the prefix bytes will in-

dicate the horizontal code and a single check packet could be used 

as a flag that vertical codewords are from the Parity-Product code. 

In the report [3] we studied the Single Bundle System in depth. 

The benefit from using a Double Bundle System is an improvement in 

performance with both independent errors and with bursts. Moreover, 

the increased redundancy of the Double Bundle System can be offset 

by using longer bundles without degrading performance significantly. 

1.4 Other Proposals for Teletext Codes 

In this section we will describe some of the previous literature 

by other authors relevant to our subject. 

The Parity-Product, or row-column, code has often been studied. 

It was suggested as a teletext code by Sablatash and Storey [7], [12]. 

In their paper they discuss the performance of this code with in-

dependent errors. 

The Japanese have proposed a different packet code which we 

discuss in Chapter 3. 

Bhargava, Allard and Seguin [4], [5] proposed a novel data 

packet code 	using one byte of parity checks (the same as the 

Parity-Product). This code is defined in such a way that all single 
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errors are correctable and a double error affecting two different 

bytes is correctable. The code is defined by finding an appropriate 

set of 8 x 8 binary matrices. We showed in [t4] that this code 

essentially meets the bound for a probability of decoding error in 

a one-byte data block code. Decoding is feasible but not outstandingly 

quick. Upwards extension to a two byte code has not been examined. 

In a report [6] of February, 1983, Hari, Seguin, Bhargava and 

Allard examined the performance of two Reed-Solomon codes defined 

using bytes as symbols, with the Broadcast Teletext System in the 

back of their minds. In fact they study a code of length 27 bytes 

with 2 check bytes and a code of 28 bytes with 3 check bytes (hence 

not exactly on target for NABTS). The first of these codes is 

essentially Code C , shortened by one byte and using the a and a
3 

in place of 1 and a in the defining rule for the code ((.."(x) is 

a codeword (polynomial) if and only if C(1) = C(a, ) = 0) . Therefore 

their code should have roughly the same performance as Code C with 

independent errors. In fact they do get the same results; compare 

our Figure 1.3 with [6, Fig. 5.5, page 78]. Their choice of 

generator polynomial (i.e. C(x) is a codeword if and only if 

, 3. C(œ) = 	) = 0 ) means that their code does not extend the 

Parity-Product code. 
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1.5 Performance Results with Independent Errors  

So far we have only compared codes on the assumption of in-

dependent errors. We use as a measure the expected number of data 

packets until decoding faul, i.e. an error which is not correctable. 

Our results are displayed in Figure 1.1. Note the small benefit 

from using Double Decoding (cycling the Bundle Decoder twice) and 

the small benefit from Double Bundle over Single Bundle at higher 

rates. In fact, the reason for going to a Double Bundle is to give 

better performance with burst errors. As discussed in [3] the 

benefit of either Bundle code with independent errors is to overcome 

decoding failures in the prefix code by replacing one or two data 

blocks. 

The comparison with the Japanese code BEST is contained in 

Chapter 3. 

1.6 Decoding the Double Bundle  

We have carried through an implementation of a Double Bundle 

Decoder in MC6809 software. This is a look up table decoder which 

uses at  )'ost: 

3.5h milliseconds, 

364 	bytes of program, 

256 bytes of look-up table. 

The decoding is greatly simplified by using the same code for 

horizontal and vertical codewords and by taking only 1 byte from each 

data block for each vertical codeword (as in Double Bundle). 
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2. PERFORMANCE OF THE DOUBLE BUNDLE CODE WITH INDEPENDENT ERRORS 

2.1 Results 

The most common theoretical benchmark used for assessing error 

• correcting codes is their performance on channels with independent 

errors. Such channels do arise at least occasionally in practice 

and a channel with burst errors may well have a background of in-

dependent errors. 

We suppose that each bit is received in error with probability 

p with 	in the range 10
-3 

down to 10
-5 

. At each bit error 

rate a particular code has a fixed probability PCD of 
correctly 

decoding a packet. We use the expected number of correct packets 

before an undecodable one arrives. We approximate this by 1/ (1-P 

We compare six codes, (four of which have already been compared 

in [3]). The codes are 

- Parity-Only 

- Parity-Product 

- Code C 

- Single Bundle On = 9) 

- Double Bundle ( a = 13): single decoding 

- Double Bundle ( a = 13): double decoding. 
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The length of the Bundle Codes were chosen to give them comparable 

rates. The results are in Table 2.1; they are portrayed graphically 

in Figure 1.3 . 

Table 2.1 Expected Number of Packets until Incorrect Decoding: 

various codes 

Code /BER 	 10
-3 

4x 10
-4 

10
-4 

10
-5 

Rate 

Parity-Only 	 1.0e1 	1.7e1 	5.4e1 	5.0e2 	.82 

Parity-Product 	5.4e1 	2.9e2 	4.2e3 	4.2e5 	.79 

Code C 	 5.9e2 	8.1e3 	5.4e5 	1.9e7 	.77 

Single Bundle 	 1.1e5 	2.3e6 	1.7e8 	1.4ell 	.69 

Double Bundle - S.D. 	2.1e5 	2.6e7 	2.7e10 	2.7e15 	.66 

Double Bundle 	D.D. 	3.3e5 	2.9e7 	2.8e10 	2.7e15 	.66 

The effect of varying the Bundle Length is revealed in 

Tables 2.2 - and 2.3 . 
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Table 2.2 Expected Number of Packets until Incorrect Decoding: 

various lengths, single  decoding 

Bit Error Rate 

Bundle 
10

-3 
3 x 10

-4 
10

-4 
10

-5 

Length ( h) 

5 	 6.0e5 	2.4e8 	5.8e10 	5.5e15 

6 	 5.2e5 	2.2e8 	5.2e10 	5.1e15 

7 	 4.5e5 	1.9e8 	4.6e10 	4.6e15 

8 	 3.9e5 	1.7e8 	4.2e10 	4.1e15 

9 	 3.4e5 	1.6e8 	3.8e10 	3.7e15 

10 	 3.0e5 	1.4e8 	3.5e10 	3.4e15 

11 	 2.7e5 	1.3e8 	3.2e10 	3.2e15 

12 	 2.4e5 	1.2e8 	2.9e10 	2.9e15 

13 	 2.1e5 	1.1e8 	2.7e10 	2.7e15 

14 	 1.9e5 	1.0e8 	2.6e10 	2.5e15 

15 	 1.6e5 	9.8e7 	2.4e10 	2.4e15 
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Table 2.3 Expected Number of Packets until Incorrect Decoding: 

various lengths, double decoding 

Bit Error Rate 

Bundle 
10

-3 
3 x 10

-4 
10

-4 
10

-5 

Length (h) 

5 	 6.9e5 	2.5e8 	5.9e10 	5.5e15 

6 	 6.1e5 	2.2e8 	5.2e10 	5.1e15 

7 	 5.5e5 	2.0e8 	4.7e10 	4.6e15 

8 	 4.9e5 	1.8e8 	4.2e10 	4.1e15 

9 	 4.5e5 	1.6e8 	3.8e10 	3.7e15 

10 	 4.1e5 	1.5e8 	3.5e10 	3.4e15 

11 	 3.8e5 	1.4e8 	3.2e10 	3.2e15 

12 	 3.5e5 	1.3e8 	3.0e10 	2.9e15 

13 	 3.3e5 	1.2e8 	2.8e10 	2.7e15 

14 	 3.1e5 	1.1e8 	2.6e10 	2.5e15 

15 	 2.9e5 	1.0e8 	2.4e10 	2.4e15 

What we see is that bundle length is not very crucial over this 

range and that performance levels are all acceptable. Double de-

coding is beneficial if the BER is high enough but is not usually 

very helpful. It may be very useful for the range 10
-3 

to 10
-2

. 
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2.2 Methods 

We are studying the performance of the Double Bundle code in 

an environment of independent errors. We will therefore assume 

that errors occur in the data bits with a fixed probability p(BER) 

and for convenience we set q - 1-p and x = pi/q. (This x is 

essentially the same size as p . ) We assume that the message bits 

do not influence the pattern of errors so that we can and generally 

do assume that a message of all zeroes has been sent. 

We would like to calculate the probability of a correct de-

coding of the Double Bundle in the two cases of Single and Double 

Decoding. We will deal with Single Decoding first. There are three 

possible scenarios in this case depending on the number (0, 1 or 2) 

of prefix codes that fail. The probability that a prefix code is 

correctly decoded is 

PrefixCor 	(q
8 

+ 8 •pq
7

)
5 

= (q
8 
(1 + 8x) )5 • 

We will also need the probability of a correct decoding of a horizontal 

codeword and of the Bundle Code which we denote respectively HorCor, 

Bundle Cor. 

If the bundle includes h packets in all (including check 

packets) we can write down formulae for the probability that a cor-

rect decoding is achieved after 0, 1 or 2 prefix failures: 



2-6 

= PrefixCor
h 

Bundle  Cor All Prefix Cor 

One Failed Prefix = h(1 -Prefixeor)(PrefixCor * HorCor)
h-1 

hh- Two Failed Prefixes= (
2
)(1 -PrefixCor)

2
(PrefixCor * HorCor)

2 
 

We are left with the calculation of HorCor and BundleCor . 

The horizontal codewords are assumed to be corrected by the 

bytewise decoder. Thus any error in a single byte is corrected and 

any error in two bytes which changes the parity of each is correctable. 

Since there are 28 bytes in each codeword the probability of an error 

,8, t 224-t 
pattern corrupting one byte is 28 E 	)p q 	which we can 

t=1 t 

write as 

q
224 

28((l+X)
8 
-1) . 

The probability of the second type of error is 

224 28 	8 	min(t,4) 	8 	8 
q 	( 2 ) 	 (

2s-1
)(
2t-2s+1

»êt  . 
t=2 s=max(t-3,1) 

Here we are summing over the patterns of 2t errors of which 2s -1 

fall in one byte and 	2(t-s)+1 fall in the other. Of course 

1 < 2s -1 < 7 and 2s -1 < 2t and 2(t-s)+1 < 2t and 

1 < 2(t-s)-11-1 < 7. This all boils down to max(t-3 ,1) < s < min(t,4) . 

Finally, we include the expression for a correct reception 

and obtain 
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224 	 8 	28 8 	min(t,4) 8 	8 HorCor = q[ 1 + 28 ( (1+X) -1) + ( ) E 	 )X
2t 

] . 
2 	 (

2s-1 )(
2t-2s+1 

t=1 s=max(t-3,1) 

In the 1983 Final Report [3 ] we used q
224

[1+224X+ (
224

)X
2
] which 

2 

gives nearly the same result being the probability of 0, 1 or 2 bit 

errors. 

We come to the probability of an error pattern correctable by 

Single Decoding of the bundle itself. We write 

224 œ  
BundleCor = 1 -q 	[EIXk ] 

k=1 k  

where I
k 

is the number of uncorrectable error patterns of k errors. 

Note that I
k 

is a non-linear function of h . In fact I = 0 

for k = 1,2,3,4 and 5 . The point is that the horizontal code can 

correct double errors so it will clear out all errors from packets 

with only 1 or 2 . Moreover, if only one horizontal codeword is 

uncorrectable then the vertical codewords correct it. Thus the 

minimal pattern of uncorrectable errors is two packets with 3 errors 

in each. 

If six errors are uncorrectable by the double bundle code then 

they occur as three in each of two codewords. We denote this by 

drawing two labelled horizontal lines: 

3 

3 



h v 8 2 2 
(2 ) (2 )2(

2
) 8 6(a) 

4 2 

V ) .(8 ) 2 8 2 2 
3 )15(2

) 8 6 (b) 

h v 	8 4 
(
2
)(

3
)6 (2) (

2
)8 6(c) 

21 	11 0 

1 1 1 

(h ) (v )4 (2)3 (8 )84  
2 4 	2 

6(d) 

6(e) 
h v 8 2 

 8
2 

(
2

) (
2

)2 (
2

)  

2-8 

This is a type 3-3 error pattern. Not all of these are uncorrectable. 

We draw in vertical lines to represent vertical codewords and use 

numbers at the intersections to denote the number of errors in the 

byte where the vertical and horizontal codewords meet. The following 

arrangements are uncorrectable: 

Here we denote by h , the number of horizontal codewords and by v 

the number of vertical codewords (i.e. v = 28). The formulae at 
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the right enumerate the number of different error patterns of the 

given form. Note that the type 6(e) patterns are the only ones 

which are not correctable on a second pass; count them as I . 
6 

This gives 

_ (h )  f (v )4(fi ) 2 82 + (v) [is(8 ) 2 82 + 6.2. (8 )8 4 ] 	(:.4/.
)

..2.3a) 8 1/ 
6 	2 	2 	2 	3 	2 	 2 

h v 	 h v 
= (2 ) (2 

) (200704) + (
h
2 ) (

v
3 

) (;:e...t:=LgYese) + (
2 

) (
4
) (2 752512 ) 

hv8 	hv 
= ( )(

2  )2( )2 82 = (2 )(2 )(100 352) . 6 	2 	2 

Moving t.r patterns of 7 errors we see that many uncorrectable 

patterns are in fact an uncorrectable pattern of 6 errors with one 

more error in any of the ( n-2)224 remaining bits. We denote these 

by types 7(a) through 7(e) and they count for I6(11  -2)224 

patterns of uncorrectable errors. 

The remaining uncorrectable patterns of seven errors are of 

type 3-4. The packet with 3 errors has 2 in one byte and 1 in another; 

the packet with 4 errors has errors in at least 3 bytes or else 3 in 

one and 1 in another. We list the possibilities with their enumer-

ations. 
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7 (f) 

(2-1-1-1-1) 

7(g) 

(3-2-1-1) 

2 

11 1 

2 	1 1 

12 

11 	1 

4 

3 

4 

3 

4 

3 

4 

3 

( l ) (55100-85  (8 ) 2 	 2 

.1 

2 	1 



7(j)

 (4-1-1-1) 

7(k)  

(4-2-1) 

h v 	8 2 	3  
(2

) (
4

)2.4. (2 ) •3'8 

7 (h)  

(3-2-2) 

7 (i)  

(3-3-1) 

2-11 

3 R  h
) ( 3v

)2 .3 .8 (- )
2 
 (2+1) 

2 • 	2 
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7 (i ) h y 8 3  
(2 )(

2
)4(

2
) 8 . (4_3)  

type  

3-3-1-1 

3-3-2 

4-3-1 

The result is an expression for 1 7 • 
7 

us-.29-4 g h y 
17  = I

6 
 (h-2)224 + (2 )i (5 ) (91750400) + ()GA.  

 4 

+ 
3 

 (v 	
2 

) (26578944) + (v) (702464)] • 

The weight 8 uncorrectable error patterns are distributed 

in horizontal codewords in one of the follawing ways: 3-3-1-1, 

3-3-2, 4-3-1, 4-4, 5-3. The first three types can be counted using 

16 and I; they account for essentially all of the uncorrectable 

error patterns. We count them by noting that for example a type 

3-3-1-1 uncorrectable error consists of an uncorrectable pattern 

of six errors (type 3-3) and one more error in a third packet. 

(Note that the weight 7 type 4-3 uncorrectable error patterns are 

enumerated as 17 -16 (h-2)224.) 

number  

16  (1
à-2

)224
2 

2 

I
6
(h -2)(2 24) 

2 

[I
7 
 -I

6 
 (1i-2)224](h-2)224 
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We take  18 	62 
(
h-2

)224
2 
+ 
I6 	2 

(h-2) (
224 

 ) + [
7 
- 1

6 
(h-2)224]  (h-2)224 . 

For the case of nine errors we have many types, but most of 

them are covered by adding one additional error to a weight 8 error 

in one of (1-2) packets. Similarly, for 10 errors: 

I
9 

1
8 
(h-2 )224 

19 (h-2)224 . 

(0sing these estimates over counts. some types and ignores others.) 
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PROGRAM Independent; 
{Performance of the double bundle with independent errors> 
{March 26, 1984> 

VAR P:real; 
hpflag:integer; 

FUNCTION Power(X:real;M:integer):real; 
VAR I:integer; 

POW:real; 

POW:=1; 
IF M>0 THEN FOR I:=3 TO M DO POW:=POW*X; 
IF h<0 THEN FOR I:=-1 DOWNTO M Du POW:-POW/X; 
POWER:=POW 

END,{POWER> 

FUNCTION Power2(X:real;M,K,SI:integer):real 
Ve.R SUM,TERM:real; 

I:integer; 
BEGIN 

Sum:=1;Term:=1; 
For I:=1 to K do 
BEGIN 

Term:=TermAX1cSIMM-I+1)/I; • 

Sum:=Sum + Term 
END; 
POWER2:=Sum 

END;{Power2> 

FUNCTION inf(a,b:integer):integer; 
begin 

inf:=a; 
if b<a then inf:=b 

end; 

FUNCTION sup(a r b:integer):integer; 
begin 

sup:=a; 
if b>a then sup:=b 

end; 

PROCEDURE LENGTH(h:integer;P:real) 

VAR 	X ,H2,H3 : real ; 
t: integer ; 

term , sum2 sum V , V1 V2 p V3 p V4 V5 : REAL ; 
Vi e  1:7, 	 pPro c u 	tz, eirr- 
Hor Cor 2 y  Pr efixCor , By t eCor 	Cor y  Bun d 1 eCor r er t ab 1 e : r eal 
All.PrefixesCorrect ,OneFailetiPrefix,TwoFailedPrefixes:real; 
C,11: array [O. .83 of real; 
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BEGIN 
0:=1-P;X:=P/O; 
V:=28; 
142:=11*(H-1)/24H3:412h(H-2)/3; 

1, V2:=VA(V-1)/2;V3:=V2*(V-2)/3,V4:=V3*(V-3)/4;V5:=V4*(V-4)/5; 

II DCO]:=1;for I:=I to 7 do DCI3:=IICI-1]A(224-I+1)/I; 

• II {16:=N2*V2*1.00352e5;› 
II 16:=N2*V2*2.007E5 +H2*V3*2.1289E6 + N2*V4*2.753E6; 

(17:=H3V2*8.7436E7 + H2*V3*6.02112E5 + H2AV2*5.268E5,1 
- 11 17:=16*(01-2)/3)*24icv + H2*V5A9.175E7 + HUV4*1.528E8 

N2*V3*2.658E7 + N2*V2*7.025E5; 
18:=17*(224*(H-2)); 
19:=18*(224*(N-2)); 

•II I10:=19*(224A01-2)); 

C[0]:=1;for I:=1 to 8 do cri3:=cri-1)*(8-i+1)/i; • - 

ir  bo9in 
term:=0; , 	for s:=sup(t-3,1) to inf(t,4) do term:=term + cE2hs-1]*cE2*t-2*s+13; 
sum:=sum+term*power(X,2*t); 

II end; 

sum2:=0;for t:=3 to 8 do sum2:=sum2+cEtUpower(X 1 t); 

r 11 PrefixCor:=Power(power(0,8)*(1+8*x),5); 

HorCor:=Power2(F,224,10,-1)*(1+28*(8*X + 28*X)cX +sum2)+378*(64*X*X +  

BundleCorrectable:=1 - Power2(P,224*h,10,-1)*(I6)cPower(X,6) + I7*Power(X,7) 
+ I8*Power(X,8) +19*Power(X,9) + I1O*Power(X,10)); 

' 11 	AllPrefixesCorrect:=Power(Prefixeorph) * BundleCorrectable; 

OneFailedPrefix:=h*(1-PrefixCor)*Power(PrefixCor*HorCor,h-1); 

TwoFailedPrefixes:=H2*Power((l-PrefixCor),2)*Power(PreFixCor*HorCorph-2); 

ProbCdr:=AllPrefixesCor+OneFailedPrefix+TwoFailedPrefixes; 

ExpDerFault:=1/(1-ProbCor); 
write(tExpIlecFau1tic(h-2))e.5 7 ' --  
END; 

11 
for t:=2 to 8 do 
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6 

BEGIN {The program proper....› 

II 	
writeln('Nardcope 0/1 ');readln(flag); 
if FLAG=1 then writeln(chr(27),/t10,759 1 pchr(27), 1 [5,60r 1 ); 
writeln('Expected number of PACKETS until decoding fault - Double Bundle' 

II 
writeln(' using Single decoding'); 
writeln;writeln( 1 ********AMfflich***A*A**A******* 1 );writeln;writeln; 
write('Bit error rate > '); 
writeln(' le-3 	4e-4 	3e-4 	le-4 	le-5'); 

II 	
writeln('Bundle length'); 
FOR h:=5 TO 15 DO 	 . 

begin 

II 	
write(h:2, 1 	 ');len9th(h y le-3); 
len9th(h r 4e-4);1en9th(h,3e-4);  
len9th(h,le-4);length(h y le-5);writeln 

II 	
end; 

END. 
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3. AN ASSESSMENT OF THE PROPOSED JAPANESE TELETEXT CODE 

3.1 The Japanese Proposal and the NABTS  

The Japanese have proposed [2] that a particular majority-logic 

decodable cyclic code, which they have called "BEST", be used as 

error protection for teletext data packets. They have described 

this code as covering all bits of the packet after the bit and byte 

synchronization bytes. Thus the control bits for addressing, con-

tinuity count and packet structure would be encoded along with any 

data bits. They do not make use of or refer to using bytes of odd 

parity or of a set of five Hamming encoded prefix bytes. 

The code "BEST" is capable of correcting any pattern of 8 bit 

errors that corrupt a single data packet. The field data reported 

in [8] suggest that this could take care of about 99.3% of erroneous 

packets and deliver the quality of service that the Japanese desire. 

In addition, the choice of a majority logic decocable code will allow 

an LSI hardware implementation. This would in turn allow this 

powerful code to be decoded on the fly as the packets arrive. Their 

idea 	to perform error correction at the "signal level" ([11], 

page 3, Table I, Item 3.9). 

To achieve its correction power this code "BEST" must use 82 

check bits. The proposal [9] is based on a 34 byte data packet whereas 
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the NABTS (draft) specifies 33 bytes ([1], Sec. 3.1, page 9). 

Moreover, the NABTS (draft) assumes that all bytes have  odd parity 

([1], Sec. 3.3, page 10) and that there is a five byte prefix encoded 

with a Hamming [8,4] code ([1], Sec. 3.2, page 9). The Japanese 

assessment of their code does not refer to any of this structure. 

On a 33 byte pecket BEST would have 264-82 = 182 message bits, some 

of which are control bits (20 in the NABTS scheme). So the infor-

mation rate is about 69%. However, if we follow the NABTS pre-

scriptions then we are committed to 20-F28 further bits of parity 

checks. This would mean a total of 48+82 = 130 check bits for 

264-130 = 134 message bits; an information rate of 51%. Thus 

the "BEST" code is only practical if all other parity checking and 

error correction coding is removed. 

The document [9] does not make any comment on implementation. 

How will the code be organized with respect to the byte structure? 

Of course 8 does not divide 82 so there needs to be some comment on 

where the check bits will sit in the packet. 

More information on the code itself, which is obtained from a 

perfect, cyclic difference set, can be obtained in [10], page 134. 
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3.2 The Comparison of Various Packet Coding Systems  

The document [9] compares the code 'BEST" with several other 

packet codes (of a variety of rates) in two ways. In the first 

study the probability of a page with an uncorrectable error is 

calculated for each code in the context of independent errors. The 

results were presented as a graph over the range of bit error rates 

from 10
-5 

to 10
-2 

([9], fig. 2). The codes were also compared in a 

field trial. We have attempted to reproduce the theoretical results 

and extend them to include the code C and the Bundle coding system 

which we have proposed in [3] as a teletext coding scheme. 

The document [9] is not clear on the size of a page. This is 

important since the codes cover a wide range of rates. They quote 

a page length of 120 characters but do not relate this to bits or 

bytes. We found that by charging "BEST" with 20 control bits and 

taking a page as about 1056 information bits we could come reasonably 

close to their results. In our study we have used a whole number of 

packets for each page. The number of packets depends on the rate of 

the code but was chosen to come as close to 1056 information bits 

per page as possible. Our results are presented in Table 3.1 and 

Figure 3.1. 
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Table 3.1  Parameters Used in Comparing the Codes 

Information Number of 	Number of 
rate 	packets/page 	data bits/page 

No coding 	 1.00 	 5 	 1056 

Prefix with Hor. & Ver. 	0.79 	 6 	 1134 
Parity 

Prefix with Code C 	0.77 	 6 	 1092 

Code BEST 	 0.69 	 6 	 972 

Bundle System (code C) 	0.67 	 7 	 1092 

Prefix with 14 Hamming 	0.66 	 7 	 1078 
[16,11] 

Prefix with 28 Hamming 	0.50 	 9 	 1008 

[8,4] 

We  observe  that the Bundle coding system based on code C 

actually achieves the target of a page error rate below 5 x10
-2 

at a bit error rate of 5 x 10
-3 

which the Japanese have set in [8]. 

In addition to the theoretical studies, the codes were compared 

in [9] in a number of field trials. It was correctly observed that 

the channels were not introducing independent errors but the exact 

nature of the bursts encountered can not be deduced from the data 

presented. A comparison of the observed page error rates [8], Fig. 2, 

with the theoretical curves [9], Fig. 2 show that in fact the per-

formance was usually but not always worse that that predicted from 

Code 



PROBABILITY THAT A PAGE CONTAINS AN UNCORRECTABLE ERROR 
(I PAGE m A WHOLE NUMBER OF PACKETS GIVING 

APPROX. 1056 DATA BITS.) 

NO CODING 

PRODUCT 

Ar2 

PROBABILIT 
OF UNCOR-
RECTABLE 
ERROR IN 
A PAGE 2 

(0'' 

BIT ERROR RATE 
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independent errors. Without more detailed information about the 

burst patterns we cannot predict the performance of the Bundle 

coding system on real channels. We note though that the Bundle code 

should work better on a bursty channel than code "BEST" since the 

latter code is restricted to bursts of length 8 bits per packet. 

The Japanese strategy appears to be to select a code which performs 

very much better than their target on the theoretical independent 

error channel so that even when there are bursts it doesn't degrade 

below the target. 

3.3 Method of Calculation 

The results in Section 3.2 were calculated in a reasonably . 

 straightforward wey. A single bit-error correcting code of length 

t used on a channel with independent errors that arise with 

probability of correct decoding given by q
t 
+ tpq

t-1 
where 

q = 1 -p. So we obtain some of the required formulas for probability 

of correct decoding of a packet: 

No Code 	 : qn 

: q
n HE

npq
n-1  

Hor. &Ver. Parity 

734 
34 bytes of Hamming [8,4] 	: [q

8
+8pq 

17 bytes of Hamming [16,11] : [q
16

+16pq
15

]
17 

where n = 272 and X = p/q. 

=qn (l+nX) 

= qn(i+ sx)34  

= qn  (1+ 16X ) 17 
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The formulas for Code C and the Double  Bundle Codes have 

been developed in Chapter 2. The Single Bundle Code is dealt with 

in detail in [3], Table 1.3, page 15. 

The code "BEST" is an 8 error correcting code, so the probability 

of a correct decoding is 

8 n i n-i 
PC=  E (

i
) p q 

i=0 

This number is generally very close to one so we in fact calculate 

the complement, 

n n i n-i 
1 -PC= E (

i
) p q 

i=9 
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Chapter 4. Performance in a More Real World  

4.1 Afterall Errors May Not be Independent 

The assumption that errors are independent events is 

convenient for analysis but is not necessarily what happens 

in any real channel. There are several ways to try to estimate 

the performance of an error correction system in a real or more 

realistic channel. In previous reports [ 14], [15] we have used 

model channels to assess codes. A variety of stochastic processes 

were hypothesized and expected performance was calculated for a set 

of codes. This is only relevant to the real expected performance 

if the models describe the real channels. We have not found in 

the literature, any reports of stochastic models fitted to channels 

relevant to Broadcast Teletext System at the high bit transmission 

rate used by the System (5.727272Mbits/Sec). It is hard to see 

how to modify a description of a channel with a low bit transmission 

rate to describe what would happen if the bit rate was increased greatly. 

Better than modelling is to measure real channels. Field 

data became available to us in February, 198 4. and we have worked 

on using this data. Ultimately we should be able to get a very 

good idea of the level of coding required. We may eventually be 

able to describe one or several models of the channels on which 

the data was collected. 
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4.2 Analyzing Field Data for Code Performance 

The field data inour analysis system exists as a computer 

file consisting of a sequence of integers. The data looks 

like one of the following: 

x(20), 

-1 y n
l 

e
l 
n
2 

e
2 	

ny ey , 

-2. 

The x means x packets in a row received correctly, The -1 flags 

a packet with y byte errors. The integers ni ,ei  say that byte 

haserrore..The error is the decimal representation of 

the error byte. Eg. 11, 64 means error 01000000 in byte 11. 

The flag - 2 means that a packet is missing (through synchonization 

failure or prefix code failures). Since we might have a very 

large number of correct packets tn a row (on a good day), we may 

write several numbers into the file for that one series. Eg. we might 

have: 

17 - 1 1 4 3 200 19 -2 -1 2 3 8 21 17 113 .... 

meaning 17 correct pa,ckets 
a packet with error (00000011) in byte 4 
200 + 19 correct packets 
a missing packet 
a packet with error (0000 1000) in byte 3 and 

error (0001 0001) in byte 21 
113 correct packets 

• 
• 
• 
• 
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The data does not arrive from CRC in this form, but in a 

similarbut expanded form. We have written the program DATACRUNCH 

of the Appendix to convert the field data to our format. 

We have also written a program to analyze the condensed 

field data for code performance. This is the program FLDANALB. 

This program looks at the data in the context of a run-time supplied 

bundle length. It reports generally on the channel and then on 

the bundle cod.... The parameters calculated are: 

i) number of pa_ckets 
ii) number of packets with errors 
iii) number of missing packets 
iv) number of bit errors; BER 
v) the number of packets with i bit errors for 

i = 1 to 10. 
vi) the number of packets with at least i errors 

or missing for i = 1 to 3. 
vii) BUNDLE REPORT; for length h. 

the number of correctly received bundles 
the number of correct or correctable bundles 
the number of uncorrectable bundles. 

Note that item vi) tells us how to assess the performance of the 

Parity-Product code and Code C. 

This is of course just the first stage in analyzing the field 

data. The whole picture looks something like this. 

EIEF-3-*  Data 

tModel* 
I  Channel 

- - -L 



Figure 4-1: Output of FLDANALB 

SITE 184R-2, MARK IV Decoder 

1146 of 7489 packets were in error or missing 
rate = 1.526E-1 

0 of these were missing 

The Bit Error Rate was 
i.e. 1333 bit errors in 1.797E6 bits (E- 	.3 sec) 

#of packets with i errors 

1 	 985 
2 	 136 
3 	 24 
4 	 1 
5 	 0 

• 

11 0 
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Before the field data became available we haA, planned to use 

a model channel (*) to produce files of Condensed Field Data. 

This is however now irrelevant. 

In conjunction with this analysis strategy we have also 

written programs such as QUICK PASS that do part of the analysis 

in a different way and hence provide a check on the program 

correctness. Ensuring internal consistency is a crucial part 

of a large programming project. 

4.3 An Example: E184R-2 

We illustrate our analysis with one particular site, namely 

E184R-2. This site used a Norpak Mark IV teletext decoder. 

The output of FLDANALD is given in Figure 4.1. 
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BUNDLE REPORT 	length = 10 packets 
750 bundles 
139 correct 
750 correctable 

0 uncorrectable (rate = 0) 

Note that the this site, during the test 

Avg.itpackets 
between failures  

Patity-Only failed with frequency 15.3% 	6.6 
Parity-Product 	 2.1% 	46.6 
Code C 	 .33% 	300.3 
Double Bundle (h=10) 	 0% 

Since this is only 1 second at one site on one day we cannot 

conclude anything further. 
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- a program which produces the "standard field-data" 
file from a raw data file. 

(b) DATACRUNCH 

(a) 

Appendix: Software 

Included here are three PASCAL programs as follows: 

(a) FLDANALB - a program which analyzes the performance of the 
Double Bundle Code on a "standard field-data" file. 

(c) QUICKPASS - 

1 

a program which counts the number of packets and 
the number of bad pàckets in a "standard  field-data" 
file. This program is a check on FLDANALB which 
performs a more intricate calculation. 

PROGRAM FLDANALBe  

fMarch 14, 1984 

Analysis of bundle code performance an a file of Condensed 

Field datai 

var h r x,y,R,U,W,leftovers,n,e,i:integer; 
CBunLen„ CBadPackets:integer; 
BitError,UnFix„CorBundle,Fix,TotalBundles:real; 
TotalPackets,BadFackets,Missing:real; 
flag,title,INFILE,OUTFILE:string; 
INDATA,OUTDATA:text; 
Errflis:arrayE1...111 of integer; 
B:array Cl..15,1..28] of integer; 

PROCEDURE CLEARB; 
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var i f j:integer; 

begin 
for i:= 1 to 15 do for j:.-1 to 28 do BEi,j3:=0 
end; 

£74*A***********AAA*******AAA*Muk*********A***A****A**AA*********** 
****71/4**AA*J 

PROCEDURE ErroneousBundle; 

[This routine deals wih a bundle which contains an error/ 

var'odd-rever4i;j,k:integerf 
cor:boolean; 

begin 
for i:=1 to CBadPackets do 

begin 
for j:=1 to 28 do write(BEi,j3); 
writeln 	' 
end;" 

writeln( '*A**********9cA74*A********A**********'); 
cor:=true; 

[Horizontal Decoding/ 

for j:=1 to CBadFackets do 
begin 
odd:=0;even:=0; 
for k:=1 to 28 do if (B[j,k] mod 2)=1 then odd:=odd+1 

else if BEj e k3>0 then eve 
n:=even+1; 

if ((even=0) and (odd<=2)) or ((even=1) and (odd=0)) then, 
for k:=1 to 28 do Brj,k3:=0 

end; 

[Vertical Decoding/ 

for j:=1 to 26 do 
begin 
odd:=0;even:=0; 
for k:=1 to CBadPackets do if (BEk,j] mod 2)=1 then odd:=odd+1 

else if bEk,p>0 then even:=e 
venta.; 

if not(((even=0) and (odd<=2)) or ((even=1) and (odd=0))) then 
cor:=false 

end; 

if cor=true then Fix:=Fix+1 else UnFix:=UnFix+1; 
CBadPackets:=0; 
CBunlen:=0; 

ClearB; 
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end;[ erronoeous bundle 3 

C*******A****AAA*A*********A**********A******AAA**7k******te**A 
********AA*1 

FUNCTION Weight(X:integer):integer; 

fReturns the weight of X when it is converted to a binary string) 

var s rw r tlinteger;. 

begin 
t:=128;w:=0; 
while t>=1 do 

begin 
s:=x div t; 
x:=x-s*t; 
t:=t div 2; 
w:=w+s 
end; 

Weight:=w 
endif Weight function) 

*** A* ********1 

[Main Program) 

Begin 

writeUName of the input file, please: ');readln(INFILE); 
reset(INDATA,INFILE); 
writeln('Hardcopy (Y/N>');readln(flag); 
if (flag=iy!) or (flag='Y') then OUTI.ULE:='printer:' else OUT.e'ILEI 
='console'; 
rewrite(OUTDATA,OUTFILE); 

leftovers:=0;CBunLen:=0;CBadPackets:=0;BitError:=0;Missing:=0;CorB 
undle:=0; 
BadPackets:=0;TotalPackets:=0;Fix:=0;UnFix2=0; 
ClearB;R:=500; 
for i:=1 to 11 do ErrDisEi7:=0; 

readln(INDATA,title);writeln(OUTDATA,title);writeln(OUTDATA); 
writeln(iBundle length, please ');readln(h); 

while not(eof(INDATA)) do 
begin 
readin(INDATA,-u); - - 
if x>0 then 

begin 
TotalFackets:=TotalPackets 	x; 
x:.-- x+leftovers;lenovers:=0; 
if x >= (h-CBunLen) then 
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x := x-h+CBunLen; 
CorBundle := CorBundle + (x div h); 
Leftovers := x mod h; 
if CBadPackets = 0 then 

begin 
CorBundle := CorBundle + 1; 
CBunLen := 0 
end 

else ErroneousBundle 
end 

else CBunLen := CBunLen + x 
end; 

if x=-1 then 
begin 
TotalPacketL:=TotalPackets + 1; 
BadPackets:= BadPackets + 1;• 
'CBadPackets:= CBadPackets + 1; 
CEunLen := CBunLen +1; 

readln(INDATA,y);U:=0; 
for i:=1 to y do 

begin 
readln(INDATA,n,e);W:=weight(e); 
BitErrorS:=BitErrors 	W; 
BECBadPackets,n] := W; 
U := U + W 
end; 

if U<11 then ErrEds[U3 := ErrDisEU] + 1 
else ErrDis[113:= ErrDisEll]+1; 

if CBunLen = h then ErroneousBundle 

end; 
- - 	- 

if x=-2 then 
begin 
TotalPackets := TotalPackets + 1; 
BadFackets := BadPackets +1; 
Missing := Missing + 1; 
CBunLen := CBunLen 	1; 
CBadFackets := CBadPackets + 1; 

for i:=1 to 28 do BECBadPackets,i3 := 7; 

if CBunLen = h then ErroneousBundle 
end; 

end;[ data reading 1 

CParameter Calculations) 

TotalBundles := CorBundle + Fix + UnFix; 

writeln(OUTDATA,trunc(BadPacets), of 1,trunc(TotalPackets), 
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' packets were in error or rissing. Rate=', 
BadPackets/TotalPackets); 	 • 

writeln(OUTDATA);writeln(OUTDATA,trunc(Missing),' of these were mi 
ssing'); 
writeln(OUTDATA); 

writeln(OUTDATA,'The Bit Error.Rate was ',BitError/(264*TotalPacke 
ts)); 
Writeln(OUTDATA r 'i.e. ',trunc(BitError), 

' bit errors in 1 ,trunc(264*TotalPackets),' bits.' 
); 

writeln(OUTDATA,' 	  
writeln(OUTDATA,' i 	# of Packets with i - errors'); 
writeln(OUTDATA,' 	  

for i:=  J.  to 11 do writeln(OUTDATA,",i:2,' 	 ',ErrDisCi 
3:5); 

• 	  writeln(OUTDATA,.'  

writeln(OUTDATA,'HUNDLE REPORT: length= ',h,' packets'); 
"Taheitâlrf(OUTDATA)fceritélh .(OUTDATA,thitic- (iTc5fall3ilridlègrri--  
writeln(OUTDATA,trunc(CorBundle),' correct bundles„'); 
writeln(OUTDATA,trunc(Fix+CorBundle),'' were correctable and'); 
writeln(OUTDATA,trunc(UnFix), 

were uncorrectable. Rate ',UnFixtTotalBundle 
s) 

end.[PROGRAMI1 



( 1°) PROGRAM DATACRUNCH;  
[FIELD DATA RENDERED DOWN TO SIZE) 

var INFILE,OUTFILE,TITLE,S:string; 
i r a,b,j„x„max,count,U,PAGE,LINE:integer; 

— 	char  _ _ 
•INDATA:text; 
OUTDATA:text; 

function trans(t1string):integer; 
var s i i:integer; 

begin 
s:=0; 
for i:=1 to 3 do s:=BAs+ord(t[i])-ord( 1 0'); 
trans:=s 

• end; 
• 

,PROCEDURE finish; 
begin 

writeln(OUTDATA,count); 
close(INDATA); 
close(OUTDATA,lock); 
EXIT(PROGRAM) 

end; 

PROCEDURE GetLine; 

begin 
if eof(INDATA) then finish; 
readln(INDATA,$);u:=12; 
while length(s)<55 do 

begin 
writeln(s,' 
if eof(INDATA) then finish; 
readln(INDATA„s); 
u:=33 
end; 

end; 

FUNCTION Next:inte .ger; 

begin 
if eof(INDATA) then finish; 
if U(61 then U:=U+7 else GetLine; 
Next:=trans(copy(s,U,3)). 
end; 

[THE MAIN PROGRAM < 	 *A*******AA*3 

begin 
write('Data File  ame: ');readln(INFILE); 
reset(indata,infile); 
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writeln;writeln;write('Results to File: ');readln(OUTFILE); 
rewrite(OUTDATA,OUTFILE); 
readln(TITLE);writeln(OUTDATA,TITLE); 

for i:= 1 to 7 do readln(INDATA,$); 
U:=26; 
MAX:=27720; 
COUNT:=0; 
READLN(INDATA,S); 

while eof(INDATA)=false do 
begin 

X:=next; 

if x=0 then 
begin 
count:=count+1; 
if count=max then 

begin 
writeln(OUTDATA,count); 
writeln('--> ',count); 
count:=0 
end; 

end 
else if x<33 then 

begin 
writeln(OUTDATA,count);count:=0; 
writeln(OUTDATA,- l) ;writeln(OUTDATA,x); 
write('--> ',-1,",x); 
for i:=1 to x do 

begin 
a:=next;b:=trans(copy(s,U-3,3)); 
write(' == ',b,",a); 
writeln(OUTDATA,b,",a); 
end; 

writeln; 
end 

else if x=255 then repeat getline until (copy(5,1,6)='000000') 
else writeln(OUTDATA,-2) 

end; 

finish 

und. 
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(p) PROGRAM QUICKPASS; 

fQuick run through the data) 

var title,infile,outfile:string; 
x,y,i,pack,badpack:integer; 
OUTDATA,INDATA:text; 
flag:string; 

• begin 
write('Input file name please: ');readln(infile); 
reset(INDATA,infile); 
write('Hardcopy? (y/n>');readln(flag); 
if (flag='y') or (flag='Y') then outfile:='printer:' else outfile: 
='console:'; 
rewrite(OUTDATA,outfile); 

readln(INDATA,title);writeln(OUTDATA,title);writeln; 
pack:=0;badpack:=0; 

while not(eof(INDATA)) do 
begin 
readln(INDATA,x); 
if x>0 then pack:=pack + x; 
if x<0 then 

begin 
----53:tkf=p-aCk+1-; -  

badpack:=badpack + 1; 
if x=-1 then 

begin 
readln(INDATA,y); 
for i:=1 to y do readln(INDATA) 
end; 

end; 
if (pack mod 1000)=0 then write(OUTDATA,pack,' 	',badpack) 
end; 

write(OUTDATA,pack,' 	',badpack) 
end. 
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Chapter 5. Support for the Patent Applications  

5.1 Activities  

During the course of this contract, the Department of Communications 

decided to attempt to patent 1) the Carleton Code and 2) the Bundle 

Code. After acceptance by the Canadian Patent Development Limited 

these files were rnssed to the firm of Barragar and Oyen for 

preparation of the patent applications. 

During this year we have undertaken the following activities 

in support of the patent applications: 

(i) participated in two meetings with John Morissey 
and Lyn Cassan of Barragar and Oyen to discuss 
and explain the coding systems, 

(ii) held numerous conversations with Lyn Cassan as 
she prepared the patent applications, 

(iii) provided an annotated diary of all occasions when we 
have presented any of our results over the preceding 
contracts to an audience, and supplied copies of all 
materials used in such lectures, 

(iv) read and commented on various versions of the patent 
applications and, 

(v) designed a hardware encoder for Carleton Code. 

5.2 A hardware Encoder for Carleton Code. 

The Carleton Code, which is in a sense one of the constituents 

of Code C, was defined in [14] and [151. A hardware encoder for 

this code was designed to support the attempt to patent application 

for Carleton Code. We present this encoder below. 



I) Byte Parity 
Calculation 

II) Shift register to: 
i) calculate the algebraic check bits 

ii) adjust these to give 
odd parity 

III) Calculation 
of the parity 
of the 7 bits 
above. 

•■••■1 

111■1 

In 

- 

CARLETON CODE ENCODER 

Data 	 1. ° 

Clocking and reset circuits are not included in the diagram. 
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Switch Specifications  

a : 8 bit cycle at 1 for 7 bits, 
at 2 for 1 bit. 

: 224 bit cycle , 	at 1 for 27 bytes, 
at 2 for bit 2 of byte 28, 
at 3 for bits 1, 3, 4, 5, 6, 7, 8 of byte 28. 

y : 224 bit cycle , 	at 1 for bytes 1 to 27, 
at 2 for bits 2, ... , 8 of byte 28, 
at 3 for bit 1 of byte 28. 

: 224 bit cycle , 	closed for 27 bytes 
open for byte 28 

Operations  

I) This circuit calculates the cumulative parity of the incoming data bits. 
After 7 bits,switch a changes and the inverted contents of the parity 
flip-flop pass down the channel. Not shown is a circuit to reset the 
flip-flop to zero at this point. 

II) This sequence of mod 2 adders (EOR gates) and flip-flops perform two 
functions. For the first 27 bytes it calculates the sum 

224 
L. 	cia 

i=8 

expressing the value as the seven coefficients of a sum 

6 
djaJ  

j=0 

The circuit III then contains the parity of these 7 bits. If this parity 
is even then we must add (1 0 0 1 0 0 0 1) to the byte ( d 	d

1 
... d

6 
0) . 

If the parity is odd we send (d
0 

d
1 	

d
6 

0) unaltered.
0  

fbr the 28th byte, the circuit does not cycle on bit 1 but the inverted 
parity 	from circuit III is sent out as d 7 ' Hence switch y is 
in position 3. On bit 2, the register resumes cycling and the inverted 
parity is added to d

0 
 and d

3 (i.e. switch S is at position 2) as these 
shift up the register. This shift  ushes d6 down the channel. The shift 
register then continues to shift d5  , d4 	do out of the register 
with no feedback (switch  5 open) and no additions (switch S at position 3). 



E.g. Each data bit arrives as if it were in the 0 position. So since 

a8 = a + a4 we add the bit to stages 2 and 5. The feeback than multiplies 
this bit by a once for each successive bit which is input. 

Suppose 0 1 1 I 0 0 0 0 	is fed in. We will have 

input 	 register  

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 I 0 0 I 0 0 

0 I I 0 I I Q 

0 I I 1 I 1 I 

I 0 I 0 I I I 

1 

1 

1 

9 	10 	11 
= a + 	+a 	. 

III) Circuit III calculates the parity of the seven bits in the register II 
above. This parity changes whenever a one is fed back from the end to 
the beginning of register II. 	Incoming data bits do not change the 
parity since they are added to two bits of 



REFERENCES 

[ l] 	North American Broadcast Teletext Specification - Draft, June, 1983. 

[2] B.C. Mortimer and M.J. Moore, "Two-byte Data Block and Bundle Codes for 
the Broadcast Telidon System", Progress Report, Department of 
Communications, DSS Contract No. 0SU82-00164, November, 1982. 

[3] Brian Mortimer and Michael Moore, "More Powerful Error-Correction 
Scheme ofr the Broadcast Telidon System", Final Report, Department 
of Communications, DSS Contract No. 0SU82-00164, March, 1983. 

[4] P. Allard, V.K. Shargava and G.E. Sequin, "Realization, Economic and 
Performance Analysis of Error-correcting Codes and ARQ Systems 
for Broadcast Telidon and other Videotex Transmission", Department 
of Communications, Ottawa, DSS Contract No. OSU80-00133, Final 
Report, June, 1981. 

[5] G.E. Seguin, P. Allard and V.K. Bhargava, "A Class of High Rate Codes 
for Byte-oriented Information Systems", I.E.E.E. Trans. Comm. 
COM-31, 1983. 

[6] K. Hari, G.E. Seguin, V.K. Bhargava and P.E. Allard, "Further Results 
on High Rate Codes for Byte-oriented Information Systems", Research 
Report, Department of Electrical Engineering, Concordia University, 
Montreal, Quebec, February, 1983. 

[7] M. Sablatash and J.R. Storey, "Determination of Through puts, Efficiencies 
and Optimal Block Lengths for an Error Correcting Scheme for the 
Canadian Broadcast Telidon System", Can. Elec. Eng. J., 5 (1979), 
pp. 25-39. 

[8] "Simmulation of Error Correction for Japanese Teletext", CCIR (1982-1986), 
Study Groups Document 11/29-E (Japan), 6 May, 1983. 

[9] "Error Correction for Japanese Teletext", CCIR (1982-1986), Study Groups 
Document 11/129-E (Japan), 29 August, 1983. 

[10] George C. Clark and J. Bib Cain, Error-Correction Coding for Digital  
Communications, Plenum, New York, 1981. 



[ ll] 	"Japanese Teletext Utilizing an Alpha - DRCS - Photographic Coding Scheme", 
CCIR (1982-1986), Study Groups Document 11/27 (Japan), 2 May, 1983. 

[12] B.C. Mortimer, "A Correction to a Recent Analysis of a Product Code", 
Can. Elec. J., 7 (1982) 40. 

[13] Jack K. Wolf, Arnold M. Michelson and Allen H. Levesque, "On the Probability 
of Undetected Error for Linear Block Codes", I.E.E.E. Trans. Comm. 
Vol. COM-30, 1980, pp. 317-324. 

[14] B. Leroux, M. Moore, B.C. Mortimer, L. Oattes and T. Ritchford, "A Study 
of the Use of Error Correcting Codes in the Canadian Broadcast Telidon 
System", Depautment of Communications, Ottawa, Progress Report, 
DSS Contract No. OSU81-00095, August, 1981. 

[15] Brian Mortimer, "A Description of the Carleton Code", DSS Contract 
No. OSU81-00095, Progress Report, Department of Communications, 
Canada, September, 1981. 




