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EXECUTIVE SUMMARY 

In the present manuscript, we have attempted to do three 

things: discuss the issues involved in selecting a scaling pro-

cedure for teletext systems, recommend and discuss the most 

viable of the procedures currently available, and present a 

psychological model of the processes involved in making a scaling 

judgment. In the first chapter we accomplish the first of those 

goals. Broad classes of scaling techniques are discussed and it 

is ultimately concluded that indirect scaling is most appropriate 

in the present circumstance. 

In chapters 2, 3 and 4 we meet our second goal by suggesting 

a) the optimal way to collect scaling data, h) the best tech-

niques for analyzing those.data to produce scale values and c) 

the most appropriate way of analyzing the resultant scale values. 

The recommendation is that since the industry has adopted a five-

point rating scale for data collection, a scale which also suits 

our purposes, that we also use a five-point scale ranging from 

bad to excellent. The best techniques for analyzing those data 

are Thurstonian (1927) scaling and Allnatt's (1973; 1975; 1979) 

more recently developed method. Detailed descriptions of how to 



carry out each of these techniques, and how to test the assump-

tions each technique makes, are included. The analysis of 

variance is felt to be the optimal tool for analyzing the re-

sultant scale values although data transformations or even non-

parametric alternatives may be necessary. 

Our final goal is achieved in chapter five. Here a model of 

the entire scaling process is presented and discussed. As is 

argued, the model has a number of strengths including its 

generality and testability. Further, it represents an integra-

tion of a number of areas of psychological research and, thus, 

its principles have strong empirical backing. Hopefully, it can 

serve as a useful framework for understanding the nature of 

subjective scaling judgments. 

iii  
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CHAPTER 1 - SCALING ISSUES 

The assessment of subjective reactions has had a very long 

history. The first recorded attempt to describe subjective res-

ponses was the scale of stellar magnitudes used by astronomers in 

150 BC to measure the perception of the stars (Stevens, 1960). 

In the mid-1800's psychologists began to study the problem 

formally, and, since that time, various "schools of thought" have 

developed. There are large areas of disagreement between ex-

perts, and it would be impossible to make recommendations com-

patable with all theoretical approaches. 

In terms of the subjective assessments of teletext systems, 

there are constraints on the type of procedures which can be 

used. A review of the procedures indicates that a specific type 

of assessment, indirect scaling, is the most appropriate approach 

to apply to teletext evaluations. Procedures will be recommended 

for developing a theoretical representation of the assessment 

process and the perceptually important aspects of teletext dis-

plays. In subsequent chapters, specific methods will be examined 

from both statistical and procedural points of view. 

I. 2eUEDIDUCLIe EZMUJIMEUT 

Measurement is the process of assigning numbers to events or 

objects. In physics, measurement involves comparing the object 



to be measured to sonie calibrated standard, such as a yard stick 

or balance. The result is a numerical representation which has a 

clearly defined meaning by virtue of the known characteristics of 

the measuring device. 

The goal of psychophysics is to measure mental events, and 

the observer is the measuring device. Each judgment the observer 

makes can be considered a reading from a mental "yard stick". 

The mental scale is not an objectively calibrated device. 

Assumptions must be made about the way in which subjective 

assessments are made. Without these assumptions the subjective 

assessment  bas no meaning, just as it has no meaning to describe 

a .  physical object as "5" without specifying that we are talkinç 

about length and that the units are centimeters. Any substantive 

conclusions based on subjective responses necessarily imply a 

theory of the subjective measurement process, whether the 

assumptions are made explicit or not. 

All psychophysical procedureS. make the assumption that 

observers are able to follow the instructions they are given to 

Perform the task. The instructions define, at least in part, the 

nature of the measurement scale. Sometimes there is little doubt 

that the instructions can be followed. For instance, an observer 

may be asked to judde which of two objects is larger, more 

colourful, more interesting, prettier cr sexier. The task is 

quite simple, to make a choice, and the concept (and therefore 

the measurement) is defined by the observer. In other procedures 



the observer performs a more difficult task, such as to assign a 

number to an object which represents its ratio to some known 

standard. The observer is expected to choose a number twice the 

value assigned to the standard if the test stimulus is perceived 

as twice as bright, interesting, attractive, or whatever attri-

bute is specified in the instructions. Here, the observer Fust 

define the concept and perform a reasonably difficult task. 

The basic psychophysical assumptions are that the observer 

can: 

1) isolate the attribute of interest, and 

2) perfora the requested judgment. 

The extent to which a particular procedure can  te  expecteé to 

meet these requirements determines its viability as a psycho-

physical technique. 

LA1 CLeiJPIUP.P Pf 2sYchoVhYsjcA2 ntboc:is 

OLjectiv_e Technizues 

There  are a number of rrocedures which can be applied when 

juddmers can be classified as either correct or incorrect. The 

questions these techniques ara  used to answer involve the detect-

ion of stimuli or the discrimination between two or more alter-

natives. The techniques comE.letely solve the basic problems cf 

psycholohysical measurement, and are included as an exemL-larv 



baseline for the adeçuate measurement of subjective responses. 

The basic procedure is to present the observers with 

stimuli, either in isolation or in sets, and require them to 

identify the stimulus which has the attribute in question. The 

observer's choice can be scored as correct or incorrect, anC the 

measure is defined in terms of the accuracy of responses. For 

e›:ample, to determine an observer's sensitivity to acoustic in-

tensity, two sounds differine only in intensity could be pre-

senteC. The observer would be reouireC to identify the more 

intense of the twc. The observer's ability to perforn the task 

is explicitly determined in the comf:Erisen of accuracy to Chance 

performance. If accuracy is greater than chance, the observer can 

perform the task. The problem of the definition cf the attribute 

used for the judgment is solved by the selection.of stimuli such 

that they only vary in terms of the attribute cf interest.  If  two 

stimuli differ only on a sincle attribute and the observers  ce-ri 

 accuratel Ciscriminate the stimuli, then the judgment must be 

banco  on that attribute. 

Objective procedures require the control of the attribute of 

interest, while keeping other attributes constant. This is often 

difficult, even with apparently well-defined stimuli. For 

instance, the  duration of an auditory stimulus can easily be 

controlled, and the detectability of a change  in duration  cari 

 easily be measured. However, it is difficult to determine 
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whether the discrimination is based on changes in duration, 

signal energy, the short-term energy spectrum, or some combin-

ation of these various cues. Great care and effort must be taken 

to ensure that stimuli vary only in terms of the attribute of 

interest. 

With respect to the problem of the subjective quality of 

teletext displays, an observer's response cannot be scored as 

correct or incorrect. There is no objective definition of sub-

jective quality against which to judge the accuracy of a res-

ponse. For this reason, objective techniques are inappropriate 

for the assessment of subjective quality. It is strongly recom-

mended, however, that if situations arise at any point in this 

project which are amenable to objective techniques, then these 

techniques should be adopted immediately. These procedures pro-

vide the most satisfactory solution to the basic problems of 

psychophysical measurement, and the natural inertia to alter 

experimental paradigms should be avoided if objective techniques 

become applicable. 

1.1.2 ilàbigplyg Zegbniuuez 

A subjective psychophysical procedure is one which involves 

responses which cannot be classified as correct or incorrect. In 

subjective techniques, the observers are reporting, as best they 

can, the psychological impact of a stimulus. Since there is no 

physical device which can measure psychological impact, a res- 
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ponse cannot be shown to be incorrect. 	Objective descriptions 

of the stimulus can only be used to characterize the stimulus, 

but not to define accuracy. 

In subjective techniques, the observer is presented with 

stimuli, either individually or in sets, and asked to deliver a 

descriptive judgment. The instructions define the criterion for 

the response, but the observer's interpretation ultimately de-

fines the measurement. A judgment might be required to assess 

the acceptability, attractiveness, suitability, or whatever 

attribute is requested, of the stimulus in question. The exam-

ples were chosen to emphasize a potential problem: the attributes 

are different because of the nuances of language, but it is not 

at all clear that different observers will employ the same pre-

cise definition. This problem is usually dealt with by employing 

very broad categories for the attribute being assessed, and not 

attempting to make fine discriminations of attribute's. The 

observer'is sometimes given a scenario to orient the task, so 

that all the observers will approach the problem from a similar 

perspective. For instance, an observer might be told to rate a 

number of teletext frames as Bad, Poor, Fair, Good, Excellent, 

and told to think of them as'television images which might be 

transmitted into their home. 

The issue of adequately defining the attribute being 

measured can also be addressed by requiring a degree of consist- 

ency in responses, both between and within Unfortun- subjects. 



7 

ately, this requirement provides only a minimal indication that 

the attribute is being clearly defined. Consistency only pro-

vides assurances that the response is based on some stable 

stimulus characteristic. It provides no evidence that the judu-

ment was made solely on the attribute of interest. Another 

approach is to examine the judgments to make sure they uake 

"sense", seeu to provide judgments which order stimuli in a 

reasonable way, or correlate with scores on E. related task. 

igthoueh this seems defensible, it is a circular r.roceft:re sirce 

the proper subjective ranking of stimuli on the attribute in 

question was the criginal purDose cf the  measurement. Thus, 

these sorts of 1-.roeedures c,-:, r1 only previde an assessment of the 

face valieity of the resronses. Overall, the 'Ëroblem of the 

ce-finition  of the attribute is dealt with by the assuml.tion that 

the observers can fellow the instructions, with a few minimal 

fors  of verification. 

The second issue involves the ability of the observer to 

i;.erfori. the task, once the attribute cf interest is defineC. Frer: 

the perspective of subjective assessments, this issue is assessed 

by the success achieved in prcviding numberE vhich accurately 

reflect the observer's opinions. This point is judged Ly the 

decree to which meaningful scale values cari  be recovered fron the 

data. Unfortunately, there are large cifferences of opinion  as  

tO what constitutes a meanineful psycholoe.ical scale. Since the 

true scale is an unknown duantity, attemr.ts are made to verify 
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the accuracy of the values by examining the statistical pro-

perties of the results. Therefore, it is important to deal with 

this issue in some manner, because it addresses the way in which 

values are assigned to objects, and thus, the meaning of the 

measurement. 

1.1*2.1 Degxetipuill DelinÀtiDni5 

One approach is the pragmatic approach of using" an oper-

ational definition of the scale values. The measurement takes 

its meaning solely from the instructions and the procedure, and 

the main goal is to develop a standardized testing situation. 

The observer is viewed as a "black box" which is confronted with 

a standard stimulus situation, and produces a standard measure-

ment. No reference is made to the processes by 'which judgments 

are made, and the psychophysical scale reduces to a summary of 

the input-output relations between the stimulus and response. 

Judgments are taken at their face value, and the adequacy of the 

measurement is merely the utility of the results. The consistency 

of observers on the task, and the success of the scale in dis-

criminating between the stimuli, are indicative of an adequate 

measurement under this criterion. 

lelm2.2Dkx eç1111110 

Related to the above logic in simplicity, but not quite so 

atheoretical, are the so-called direct psychophysical procedures. 

Here, it is assumed that observers can make complex judgments, 
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and are able to report the values of psychological events 

directly. In particular, observers are asked to make ratio 

judgments about the attributes of stimuli. The observer simply 

assigns a number to a stimulus which represents the ratio of the 

attribute in question to that assigned to a known standard. 

Procedures of magnitude estimation, magnitude production, and 

fractionation are of this type. 

The assumption being made here is that these techniques 

define ratio values, so that the obtained judgments represent a 

direct estimate of the underlying psychological scale. Investi-

gation of a number of rather simple relations, such as that 

between acoustic power and loudness, luminance and brightness, 

electrical current and perceived sensation to name a few, have 

all indicated an encouraging amount of consistency. All such 

functions can be adequately described as power functions, such 

that the perceived magnitude is related to the physical magnitude 

raised to some power. The value of the exponent is unique to the 

relation being assessed. An example is the sone scale of loud-

ness, where auditory signals of various frequencies and intensit-

ies are scaled relative to a 1000  Hz  tone presented at 40 dB SL. 

A scale such as this might be constructed for picture quality, by 

having observers make magnitude estimates of quality to a 

standard presentation. All judgments could be refered to a 

standard, with stimuli judged to be at equal ratios to the 

standard being regarded as equivalent on the dimension. 
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Although this procedure may seem attractive, there is a 

serious problem in the validation of the scale. The technique of 

magnitude estimation has been argued to apply to continua of 

quantity, the so-called prothetic continua. Ratio scaling is a 

valid approach in these instances because there is a true zero, 

that is, there exist some stimuli that contain no amount of the 

attribute. The existence of a true zero is required for ratios 

to be meaningful. If the psychological representation instead 

has an arbitrary zero, then the value assigned to the standard by 

the observer is likewise arbitrary, and so too will be the ratio 

steps on the psychological scale. Attempts to use direct scaling 

procedures with attributes which have no clear zero have resulted 

in largely unsatisfactory results. Under some conditions, con-

sistent subjective scales can be obtained, but the resultant 

scales do not seem descriptive to competent observers (Ward, 

1970; Marks, 1974). This problem makes the use of magnitude 

estimation scaling of a given stimulus to a known standard a 

risky procedure, if no validation can be provided that the 

judgment represents a ratio value on a prothetic dimension. 

If the scaling of picture image quality is thought to be 

prothetic, then ratio scaling would certainly be possible, but 

the issue of validation is complicated because there may be no 

objective scale of image quality. One approach would be to 

measure the growth of subjective image  quality with increases in 

the magnitude of various parameters related to overall image 
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quality. Each type of teletext system to be evaluated may, of 

course, vary on more than one of the parameters of objective 

quality. Thus, interactions of the parameters must also be 

assessed to allow a prediction of the overall subjective quality 

of the system. An examination of the relation between the sub-

jective magnitudes and each of the physical parameters o -J" uélity 

would provide validation of ratio scaling of the judgmentb, ii 

the plots can be described as power functions. The assessment of 

interactions between individual parameters in the determination 

of overall image quality could define the relative salience of 

each physical parameter as a determinant of overall subjective 

quality. This result would be a useful one, because it would 

define the parameters that subjective quality is most sensitive 

to. However, other procedures which do not make the assumptions 

of direct judgments can be used to obtain similar sorts of in-

formation. The effort required in validating the use of mag-

nitude estimation may turn out to be excessive, especially since 

the assessment of each single parameter is only one component of 

the overall subjective quality. 

A potentially more acceptable application of direct scaling 

would be to develop a physical scale of image quality which 

accurately reflects the sense of objective quality intended for a 

given application. For instance, if the concern was the trans-

mission of static frames, a measure could be developed which 

describes the correlation between the transmitted and displayed 
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message. Each teletext option could be quantified with respect 

to this measure, and the relation between this Objective metric 

.and subjective quality.could be asseSsed using magnitude estim-

ation techniques. Other senses of the term "picture quality" 

would require new physical descriptions of the stimulus to quan-

tify the new meaning of the term in objective terms. The success 

of the scaling could be assessed, once again, by the success of a 

power function in describing the relation between subjective and 

objective quality measures. An approach such as this would 

depend critically on the success of the physical measure in 

capturing the essential characteristics of the physical "picture 

quality". 

Although direct scaling techniques have been enormously 

successful in some areas of subjective assessment, their applic-

ation to the problem at hand is not a simple matter. This type 

of approach is possible, but not without either making some risky 

assumptions, or providing some form of scale validation. A 

central problem is that direct scaling requires a meaningful 

quantification of the physical stimulus such that the subjective 

judgment of interest can be represented on a ratio scale relative 

to the objective measure. 	For these reasons, ratio scaling 

techniques in general are not obvious solutions to the problem at 

hand. 
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1.1.1a Inili‘ggt 

The final category of subjective measurement techniques are 

those described as indirect scaling. In these methods, theie is 

no need for an objective scale of the attribute in question, 

because it is not necessary that the procedures relate judgments 

to any scale of physical magnitude. Rather, the attempt can be 

made to relate the stimuli to one another, in a psychological 

representation which is consistent with the observed set of 

judgments. 

All indirect scaling procedures make an explicit set of 

assumptions about the way in which observers make responses. That 

is, they make assumptions about the form of the psychological 

representation of stimuli, and about the transform between the 

representation and the judgment in question. Since the subject-

ive responses are known and the transform is assumed, the origin-

al psychological representation can be defined. 

The adequacy of the assumed representation in accounting for 

the observed set of responses can be evaluated empirically. 

Given the obtained subjective representation, the measurement 

model can be used to predict the pattern of subjective responses, 

based on the solution and the assumed transform. These predicted 

subjective judgments can be compared to the original data set, 

and the adequacy of the model in accounting for the observations 

can be directly tested. Poor models can be discarded, and alter- 
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nate representations can be assessed. 

Given a reasonable fit between the model and the data, there 

is very little to lose in using indirect scaling techniques. At 

the very worst, the derived scale values can be taken as trans-

forms of an operationally defined measurement. Since the oper-

ational definition of measurement makes no claim of being an 

optimal representation, it makes little difference whether they 

are transformed or not. At best, the derived scale values will 

be an accurate representation of the true subjective values. 

What is actually obtained is probably a compromise between the 

worst and best case. 

The decision essentially boils down to whether or not it is 

useful to transform the raw data to estimates of the psycho-

logical representation. If the goal of the measurement is merely 

to test some hypothesis in a single experiment, then the trans-

formation is probably not worth the effort. In terms of a large 

scale project the exercise is probably useful. It allows the 

assignment of a numerical value to a stimulus which describes the 

psychological value of the stimulus on some subjective attribute. 

The meaning of the measurement is defined by the model used to 

describe the judgment process, in a manner analogous to the way 

in which physical measurements derive their meaning. This is a 

clear advantage to the operational definition approach, where the 

issue of the assignment of values to events is ignored. 
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l*La kireegelmâl Celaglesieu 

The major conclusion is that indirect scaling provides the 

most plausible solution to the measurement of subjective 

reactions to teletext systems. This follows from 1) the fact 

that no clear objective measurement is available to define the 

physical stimulus, which excludes objective psychophysics and 

complicates direct scaling procedures, and 2) the assertion that 

the mere operationalization of the measurement protocol does not 

address the basic issue of the accurate representation of sub-

jective quality. Indirect scaling procedures, on the other hand, 

focus on the process by which judgments are made, and require no 

objective description of stimuli. These attributes make such 

procedures most applicable to the current problem. 

The great difficulty in deriving psychophysical scales stems 

from the fact that when purely subjective attributes are being 

dealt with, there can be no objective assessment of the accuracy 

of the scale. As a consequence, all subjective scales derive 

support from demonstrations of the utility of the derived 

measure. 

GMBAL ZISIBDPU=1Q11  Q ZUDZEUZ ULU/Se 

The consideration of the categories of psychophysical 

assessments has indicated that indirect scaling procedures 
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provide the most promising approach for the subjective evaluation 

of teletext systems. The argument is based on a very general 

consideration of the options available in the psychophysical 

procedures applicable to subjective reactions. The decision to 

use an indirect scaling approach does not specify a single pro-

cedure because there are a number of methods which are included 

under this general categorization. 

The selection of a particular procedure should be based on a 

number of criteria. One is the ease of measurement, that is, the 

effort required to collect the raw data. Another consideration 

is the form of the resultant psychological representation, and 

the utility of the results obtained to the solution of the 

problem at hand. Finally, the statistical properties of the 

procedures and the adequacy of the method from a measurement 

point of view is of vital concern. The latter consideration will 

be addressed in great detail in subsequent chapters. At that 

time, specific indirect scaling procedures will be described and 

evaluated from a statistical point of view. 

The balance of this initial chapter will be concerned with 

indirect scaling from a general perspective, and will provide 

comments relevant to the first two considerations.  •The purpose 

of this discussion is to provide a background for the more de-

tailed analysis, and to discuss the options available from a 

global perspective. This analysis will attempt to clarify the 

goals of indirect scaling methods, and will indicate how each 
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could be applied to the problem of subjective assessment of 

teletext systems. 

Z.1 

 

D. 	.1241,1gelisal îxûzedlage 

The raw data required for indirect scaling techniques are 

obtained by having observers make judgments about the relation 

between stimuli. The main goal of indirect scaling is to des-

cribe the position of specific stimuli or events in their psycho-

logical co-ordinates. The scale is derived by a consideration of 

the relation between the observed psychological responses, with-

out reference to physical attributes. It is not surprising, then, 

that the main form of the raw data must be an estimation of the 

psychological relation between the stimuli presented to the 

observer. 

There are many nuances in the specific procedures used, but 

virtually all can be considered to be a form of one of three 

major categories of tasks: category judgments, subjective rank-

ings, or direct subjective comparisons. The specific instruct-

ions change on the basis of the attribute being considered and 

the type of scaling being employed, but the presentation of 

stimuli and the form of the observer's task can be reasonably 

summarized in this way. In constucting this categorization 

scheme a thorough review of the literature was undertaken. (See 

the additional Reference section for a list of those papers 

reviewed but not cited in the text.) All of the papers reviewed 
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which provide data amenable to indirect scaling used procedures 

that can be categorized according to this scheme. 

1.1*1 	QQQjï  

In this type of procedure, observers are asked to place each 

stimulus presented into a descriptive category. The categories 

can be defined by the instructions, or in some rare cases, the 

categories appropriate for the stimuli are chosen by the 

observer. 

The most common procedure is category ranking. The observer 

is presented with an p-point  scale, and asked to assign a value 

to each stimulus which represents its position on the scale. The 

verbal description of the scale defines the attribute in 

question, and the meaning of various scale values are often 

specified. The categories are often described numerically, but 

verbal descriptions are quite common. Most often there is an 

attempt to give some absolute values on the scale and anchors are 

provided for the judgments, but in other cases the observer is 

given very little information about the intended meaning of the 

scale values. In these cases, the observer's interpretation is a 

major determinant of the meaning of the scale. 

One variant of this procedure is the sorting task, where the 

observer is given a number of stimuli and asked to sort them into 

a number of groupings. Once again, the groupings are sometimes 
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clearly defined, but at other times the group characteristics are 

left up to the observer. 

Another variation is the so-called analogue scale, where 

observers are given a dial, slide potentiometer, or a continuous 

scale of some sort and asked to indicate a reading on the scale 

which represents the amount of the attribute contained by each 

stimulus. The scale reading is taken as the response, which  cari 

 be considered a special case of category judgment, where there 

are a large number of cateçories. The number of categories is 

determined by the precision of the device useC to subdivide the 

scale. 

.E.P.biegli.ve Benkinep 

A second approach is to present the observers with all the 

stimuli at one time, and have them rank order the entire set on 

the basis of some attribute. The proceduTe is usually applied by 

not allowing tied ranks, but forcing the observer to choose a 

specific ordinal ranking. The attribute chosen for the ranking is 

defined by the verbal description provided to the observer. In 

some instances, the observer is given a subset of the entire set 

rather than the complete collection, or given a number of subsets 

and asked to rank each of the smaller groupings. If a subset 

procedure is employed, then the subsets are usually chosen to 

contain overlapping elements to allow an estimate of the overall 

ranking of the complete set of stimuli from the ranking of the 
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subsets. 

2.1.2 Dixeot J5libàeglime ZQD.PiilLig.C111â 

In this sort of procedure, an observer is presented with two 

or more stimuli and asked to choose one stimulus over the others 

according to some criterion. In the method of paired compari-

sons, for example, every possible pairing of two stimuli' from a 

set are presented to the observer, and a choice is made on every 

pair. Likewise, the method of triads asks,the observer to choose 

which of three stimuli is the most dissimilar to the other two on 

the basis of some attribute. In its most complete form, this 

type of procedure requires that each stimulus from the set be 

presented with each other member or combination of members from 

the entire stimulus set, which may often be a prohibitive re-

quirement. For instance, the choice of the most attractive of 

two stimuli from a twenty-element set presented in pairs would 

require 190 choices to be made, and the same judgment with 

stimuli presented three at a time would necessitate 1140 judg-

ments. In sbme instances, therefore, the complete set of choices 

are not sampled. 

2.2 Lete blulyeig .egiumeg 

All three procedures provide data which can be treated in a 

simple pragmatic manner, that is, as simple operationally defined 

measurements. The form of category judgment data is a frequency 
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distribution of category choices, which can be used to define the 

average category rating, be it a mean, median or modal average, 

or statistical tests can be completed to compare the frequency 

distributions obtained by different conditions in an experimental 

arrangement. Likewise, the ranking of stimuli can provide data 

in the form of average ranks, and direct subjective comparisons 

can provide frequency data regarding various choices. If viewed 

as mere dependent measures of a behaviour, these data can be 

analysed by conventional statistical procedures to make decisions 

regarding the significance of experimental manipulations. 

The preferred type of analysis will be explored more fully 

in subsequent chapters. The main concern here is to address the 

issue of indirect scaling, and the type of representations that 

can be constructed to characterize the obtained data set. There 

are two distinct sorts of indirect scaling, these being attribute 

scaling and multi-dimensional representations. 

2.2.1 LilLikule 

The attempt here is to assign a value to each stimulus in 

the set which describes the psychological value of the attribute 

in question. The attribute does not have to be a one-dimensional 

concept, nor do stimuli have to vary on only one attribute. The 

technique relies on the ability of observers to isolate the 

attribute of interest in each member of the stimulus set, and to 

base judgments on that single attribute. Observers are assumed 
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to reduce various components of an attribute to a one-dimensional 

judgment, which is an appropriate projection of the various 

components. 

For instance, judgments of the attractiveness of paintings 

clearly involve elements of colour, form and composition. Pre-

sumably, attractiveness is a combination of these components. In 

attribute scaling, observers are assumed to perform the required 

combination of factors to define the attribute. In these cases, 

great care must be taken to define the attribute of interest. 

Vastly different scales might result, even with the same 

observers and stimulus set, if paintings were rated for their 

attractiveness and for their artistic impact. Presumably, the 

stimuli would have the same psychological representation in both 

tasks, but the salience of each dimension would be different in 

the judgments of the two attributes. 

Attribute scaling requires some degree of variability of 

judgments to proceed, since virtually all procedures scale 

attributes on the basis of some concept of the errors of judg-

ment. The most widely used procedure is the Thurstonian (1927) 

scaling technique, which assumes that the psychological repre-

sentation is a normally distributed variable, and that differ-

ences in judgments are a reflection of this inherent variability. 

If all stimuli are described as being very good, for example, no 

psychological scale can be derived. The Thurstonian scale is 

then a description of the relative positions of stimuli, in 
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standard deviation units obtained from the model. For this 

reason, variability of responses is required for this type of 

scaling. No variability defines an infinite distance between 

stimuli, since two normal distributions must be separated by an 

infinite distance in order to not overlap. Attribute scales are 

best applied, then, to reasonably homogeneous groupings of 

stimuli, or at least to stimulus sets which cover the range of 

the attribute in reasonably small steps. 

111111À=‘Liperaziûnehl ,UeLLu 

The goal in multi-dimensional scaling is totally different 

from attribute scaling, as are the itructions given to the 

observer in making judgments. In these procedures, the attempt 

is to place each stimulus in the set into a space which describes 

the psychological representation of the stimuli. Observers do 

not make judgments about the value of a stimulus with respect to 

an attribute, but rather estimate the similarity, degree of 

difference, or distance separating stimuli on a given attribute. 

To scale the attractiveness of paintings, then, observers would 

be presented with two stimuli from the set, and asked to rate 

their similarity in terms of attractiveness. The estimates of 

the distances between stimuli are used to construct a psycho-

logical space, which describes the position of all the stimuli 

from the set, such that the distances between stimuli in the 

space are consistent with the set of judgments. The result is an 

D-dimensional space, where each dimension is Some sort of psycho- 
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logical vector required to describe the stimulus. The goal is to 

minimize the difference between the observed distance estimates 

and the distances between stimuli in the space, using the fewest 

possible dimensions. 

The definition of the dimensions of the space requires 

extreme care and a reasonable approach, since the true dimension-

ality of the space is not known. An error-free fit can always be 

obtained by using one dimension less than number of stimuli in 

the set, and the error of the fit decreases with the addition of 

new dimensions to the psychological space. In practice, however, 

judgments can usually be accounted for with a reasonable number 

of dimensions. The result is a plot of stimuli in a multi-

dimensional space which is an estimate of the psychological 

representation of the stimulus set when judgments are made of a 

given attribute. 

It must be understood that this approach does not give a 

scaling of an attribute, but describes the dimensionality of an 

attribute. Presumably, in order to make a judgment about an 

attribute, the observer must weight each dimension, and project a 

one-dimensional value to describe the attribute of interest. 

Multi-dimensional scaling can be made of specific attributes, or 

of the representation of the entire set in terms of the similar-

ity of the elements of the set. The multi-dimensional solutions 

for the two cases may not be the same. 
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ApplUzetipp.5 

These scaling techniques provide an exciting set of possi-

bilities with respect to the evaluation of teletext systems. 

When taken together, these procedures hold promise for a large-

scale, broad-based assessment of subjective quality. 

To begin, attribute scaling can be used to provide first-

crder estimates of picture quality. The meaning of the scale 

values are clear from the particular model used to define the 

scale units. The adequacy of the scale to account for the data 

set can be tested by a comparison of the expected and observed 

data set, given the model used to derive the scale. At the very 

worst, the representation will allow the discussion of the de-

sired attributes from the framework of the model. The model 

might not be a true description of the psychological represent-

ation, but certainly the results can be interpreted in these 

terms, "as if" the model were true. The representation would be, 

at least, a useful fiction. Since many people believe that any 

sufficiently advanced technology is indistinguishable from magic, 

this should not be a major concern. 

Taking a less pragmatic view, these tools can be used to 

develop a very complete representation of picture quality. There 

are a lot of unknowns in this process, and the success of each 

stage of the development of the theory is uncertain, but a 
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plausible research scenario can be described to explore the 

possibilities. First, a multi-dimensional scaling of picture 

quality would be most useful, to describe a psychological space 

of picture quality and the position of various stimuli from a set 

of typical examples. The dimensions of the space would be un-

defined, but an examination of the position of stimuli in the 

space could provide a clue as to the meaning of each dimension. 

Formally, correlations could be obtained between the dimension 

values and physical parameters of picture quality and trans-

mission modes. In the best possible case, the dimensions will 

simply represent parameters of physical picture quality, or some 

simple combination of these physical measures. If this was 

successful, new stimuli could be placed in the space on the basis 

of these physical measures. 

To address the question of subjective quality, correlations 

could be made between the results of attribute scaling and the 

dimensional values obtained. In all probability, acceptable 

picture quality, or quality according to any criterion, would be 

restricted to a region of the space, rather than randomly dis-

tributed through the psychological representation. Assuming a 

non-random distribution, multiple regression techniques could be 

used to define the relative salience of each of the psychological 

dimensions of picture quality. If these dimensions could be 

given a physical interpretation, then predictions of picture 

quality could be made on the basis of physical measures of tele-

text systems. 
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This discussion has been based on a review of the literature 

with our goal being to try to extract the collective wisdiom of 

researchers as to the most effective way to measure subjective 

reactions. A library search was conducted and articles were 

reviewed which deal with subjective assessments. Our review 

indicates that there is no real agreement on how to measure 

subjective reactions. Individual researchers apply specialized 

procedures to their particular measurement situation. Most of 

the research projects were relatively limited in scope, in com-

parison to the type considered here. The only reasonable summary 

of the literature is that there is no one approach that can be 

described as being correct, but that the available techniçues 

shoulà be applied in a reasonable, thoughtful manner. It is a 

matter of tailoring the measurement to the purposes of the pro-

ject. This first chapter has attempted to provide a broad 

theortical base for the selection of an appropriate procedure for 

the evaluation of teletext systems. 

27 
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CHAPTER 2 - RECOMMENDED PROCEDURES 

In the previous chapter it was recommended that indirect 

scaling of subjective quality be used in the evaluation of tele-

text systems. This decision leaves a number of options open, 

both in terms of the procedures used to collect the data and the 

methods of analysis employed to derive the subjective scales. 

The purpose of the present chapter is to resolve these  issues and 

to recommend specific procedures. For all intents and purposes, 

the issue of the appropriate data collection procedure can be 

unambiguously solved: There is enough of an evaluation protocol 

established in the teletext industry to indicate a substantial 

benefit to the use of categorical judgment procedures. The issue 

of the most appropriate analytic technique is less clear, and 

only guidelines can be established at this time. The availabl e. 

options will be discussed, and their relative merits evaluated. 

I. lbIL zusucTur UDZEDIJEL5 

A number of standard psychophysical procedures have evolved 

over the history of subjective testing, and none has ever been 

shown to be superior to the rest on any substantive grounds. 

Preferences abound, certainly, but these preferences are based on 

factors other than the ability of the procedures to provide data 

adequate for the indirect scaling of subjective reactions. 
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In the case of the evaluation of teletext systems, it is 

recommended that a categorical judgment procedure be used. The 

case is clear enough that it would be quite irresponsible to make 

any other choice. 

1A1 ZeleueLigel ;1102Denl 

In this method, observers are presented with a number of 

response categories which they are to use to describe the 

attribute of interest. For example, a scale to estimate the 

subjective heaviness of objects might employ five categories, 

such as very light, light, average, heavy, and very heavy. The 

number of categories is formally irrelevant, but in practice, 

five to seven categories are typically used. The number of 

choices simply determines the resolution of the scale, at least 

in theory. 

On each trial, the observer is presented with a stimulus, and 

asked to classify it according to the provided categories. If 

stimuli are presented in groups rather than singly, the procedure 

is usually described as a sorting task, but the logic is 

essentially the same. 

If the main concern is the subjective impressions of a 

particular individual, the observer must make a large number of 

repeated judgments on the saine stimuli to estimate the van- 
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ability of responses. If the main concern is the character-

ization of an "average" observer, then a large number of observers 

can make single judgments of the stimulus set. In the particular 

application considered here, the average response would often be 

the primary concern. 

Degieien 

Categorical judgment was developed by Thurstone (1927), and 

it is based on a particular model of decision making. In the 

model, each stimulus, Zi is mapped to a subjective dimension, 15, 

by some unknown function, f. The dimension i5 is the attribute of 

interest, defined by the instructions given to the observer. 

There is noise in the mapping function, so that each physical 

stimulus Z. can be described by a mean psychological value J5, 

with a specific variance. In Thurstone's conception, this notion 

of variability in the mapping function is fundamental to the 

characterization of sensory systems. It is referred to as the 

discriminai dispersion. In the formal Thurstonian theory, dis-

criminal dispersions are assumed to be well represented by a 

normal density function, as illustrated in Figure 1. 

In order to make categorical judgments, it is assumed that 

the observers can isolate dimension 	from all other descriptive 

psychological dimensions and establish category boundaries, i g , 

in the space. For D categories, D-1 category boundaries must be 
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established. (Noise can also be assumed to be associated with 

the criterion positions, which would also be described as normal-

ly distributed variables.) A more complete characterization, 

showing a number of stimuli and the -1  criteria positioned on 

the e dimension, is depicted in Figure 2. 

Assuming that the five categories are referred to as Bad, 

Poor, Fair, Good, and Excellent, 1 would be the boundary between 
1 

Bad and Poor, 1
2 

would separate Poor and Fair, 1
3 

would deliniate 

Fair from Good, and 1 would separate Good from Excellent. On 
4 

the presentation of a physical stimulus Z., the sensory impress- 
]. 

ion X would be produced by the function 1. Due to the noise 
i 

 

inherent in 1, X is regarded as a normally distributed variable 

with mean .15, and standard deviation e.. The observer classifies 

the stimulus by reporting the category into which the value X. 
1 

falls, given the (momentary) placement of the criteria. 

Although this characterization is extremely simple, it is 

the only seriously proposed model for the decision process 

involved. The details of the conceptualization may change, that 

is, some theorists may make the criterion fixed rather than 

variable, or make the function f take a special form, or choose a 

probability distribution other than the normal, but the bbsic 

concept is tie Earne. 

One aspect of the decision process which has developed since 

Thurstone's description relates to the determination of the 
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criterion placements. Thurstone was relatively mute on the 

mechanism by which criteria were established. Presumably, he 

felt that the verbal descriptions of Poor, Good, or Excellent 

would be sufficient to allow observers to establish Criteria, As 

will be discussed below, the Thurstonian analysis procedure actu-

ally solves for the criterion positions, so that in his scheme, 

the only important consideration was that the variation in 

criterion positions be minimized in order to reduce the error ci 

measurement in any given scaling task. 

The work of Parducci (1965) has brought considerable doubt 

to the idea that verbal descriptions fix criterion placements 

across scaling tasks. He has proposed that the observer adjusts 

the category boundaries such that in the long run, each category 

will be used equally often over the course of the emperiment. 

Further, Parducei has shown that such a stratecy maximizes the 

information transmitted by the use of the scale. In this sense, 

the observer is assumed to make optimum use of the categories 

provided. 

Parducci has amassed an impressive amount of evidence con-

sistent with his model. On the other hand, all the support comes 

from experiments in ,%7Iiich the category labels are quite 

arbitrary. For example, observers micjht be asked to describe a 

series of lines as very short, short, medium, long or very long. 

The  meaninq of the labels here clearly depends on the context. 
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If all the lines range from 1" to 20", then the observer will 

classify 1" lines as very short and 20" lines as very long. The 

observers quite reasonably do not categorize all lines as very 

short in anticipation of the presentation of a line 7 miles long. 

Parducci often maximizes the arbitrariness of categories by 

simply assigning each category a number rather than a verbal 

descriptor. 

According to this view, category judgment scales are not 

absolute: The frequency of each response depends on the set of 

11 	stimuli used in the experiment. The meaning of the categories 

Good, Bad, Excellent, and so on depends on the stimuli chosen for 

evaluation, so that the exact same stimulus can be given quite 

different evaluations when presented to the same observers in 

different stimulus sets. 

In a model explicitly developed to evaluate teletext picture 

quality, Allnatt and his colleagues (1973; 1975; 1979) have taken 

quite a different view of the problem of criterion placement (see 

Section 2.2). In this conceptualization, the psychological con-

tinuum, „5, is mapped onto a second continuum, 1. On the 1 

continuum, criteria are placed such that the range of the scale 

is divided into equal parts. As far as can be discerned from the 

relevent papers, there is no real evidence for this suggestion. 

The assumption seems to have been made to make the mathematical 

analysis more straightforward. As will be discussed below, the 

Allnatt analysis scheme provides considerable promise for the 
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characterization of subjective responses to teletext systems, but 

the assumed process of criterion placement for categorical judg-

ments is an unsubstantiated component of Allnatt's system. 

Basically, then, the decision-making model used to represent 

categorical judgments is essentially a Thurstonian model. Each 

stimulus is thought of as producing a discriminai  dispersion on a 

subjective attribute. The observer classifies each stimulus by 

the comparison of the resultant subjective attribute value with 

the values of the category boundaries. The only real disagree-

ment in the literature concerning this basic model is the process 

by which observers determine the positions of  these category 

boundaries on the subjective scale. 

L. 	 XQn 1?..f CJIteellry 

The justification for the use of categorical judgment as a 

primary procedure for the evaluation of teletext systems is quite 

simple. It is as good as any other indirect procedure, it is 

easy to use, it is widely used in subjective assessment and it 

has more or less become the standard in the industry. 

Category judgment is the method recommended by the CCU 

(1974) as the preferred method of Videotext evaluations. The 

recommendations include specifications of viewing conditions, 

number of observers, instructions to observers, and the like. 
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These functions are formally independent of the procedure, but 

the adherence to a standard procedure can do nothing but reduce 

the error component of cross-laboratory comparisons. The fact 

that this procedure is recommended by an international agency 

which seems to carry some weight in the industry is a real 

advantage. 

Category judgment is the method of preference for the sub-

jective evaluation of related telecommunications products. The 

grade of service models employed by AT&T (Cavanaugh, Hatch and 

Sullivan, 1979) and BNR (Lui and Ebert, 1976) are based on sub-

jective evaluations through category judgments. Thus, an added 

advantage is that consulting and technical expertise can be 

sought in these highly specialized and related industries. Like-

wise, advances in technology in that sector could readily be 

applied to the current problem if the procedural differences were 

minimized. 

From an even more global perspective, category judgments 

seem to be the most widely used form of subjective evaluations. 

In compiling the recommendations offered in chapter 1, a series 

of 95 papers were collected and reviewed. These reports gave 

procedural details on about 158 subjective measurements made on a 

wide range of topics. Of these reported measurements, a full 70 

(44.3%) involved categorical judgments. The next most popular 

procedure was accuracy methods (23 measurements - 14.6%), and 

since accuracy involves an objective procedure, it cannot apply 
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here. To complete the survey, the other procedures used in the 

literature were choice behaviour methods (23 cases. - 14.6%), 

magnitude estimation (14 cases - 8.9%), ranking (11 cases - 

7.0%), verbal descriptions (7 cases - 4.4%), paired comparisons 

(5 cases - 3.2%), and methods of adjustment (4 cases - 2.5%). 

Procedures of ranking and paired comparisons result in  sub- 

jective measurements very similar to that obtained from, the 

recommended categorical judgment procedures'. Doth, however are 

unwieldy for large stimulus sets. In ranking, the entire group 

should be simultaneously presented for optimum results. If the 

experiment had a large stimulus set, say 50 pages of teleter.t, 

that would mean the simultaneous presentation of 50. monitors. In 

paired comparisons, observers make preference judgments between 

all possible pairings of the stimulus set taken two at a time. 

For a 50 item stimulus set, this means •1225 judgments per 

observer. In botb ranking and paired comparison procedures, some 

labour-saving presentation regimens are available, but only at 

the cost of comL,licating assumptions. 

The ether related procedures are those involving choice 

behaviour. In thiS approach, observers are given the entire set 

of stimuli, and asked to state which one they prefer. Luce 

(1959) has shown that by making some reabonable assumptions about 

the nature of that judgment, a scale of subjective quality or 

preference can be derived from the freçuency of choice from the 
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set. However, it is now apparent that the obtained solution is 

very similar to the Thurstone solution. In fact, civen certain 

assumptions about the distribution of errors in the choice model, 

the two are identical (Luce, 1S'77). Further, a direct comparison 

of the Luce and Thurstone models has indicated that the latter 

tends to fit the data with greater rrecision (Kornbrot,  1g78). 

The conclusion is inescapable. The vast majority of evalu-

ations, both in the general psychological literature  and in the 

evaluation of teletext graphics employ categorical judgment. It 

is an easy procedure to use which observers can learn quickly. 

Uo other procedure seems to be demonstrably superior, so that 

there is no reason to deviate frcm the choice of others. By 

taking this course of action, compatibility can be maintained 

with other laboratories, and the project can aie in the refine-

ment of the aeoptee protocols. 

LA 15Deglî.iP lIP.Eglà1Me.1 UPPEIL,QIILQUI5 

The pTocedure of category judgment  bas  been recommended as a 

standard procedure for the subjective evaluation of teletext 

systems. The reasons are to maintain compatibility with the rest 

of the industry and because there is a well-defined eecision 

model available for the task. At the saine time, the procedure is 

susceptible to specific problems. For example, the criterion 

placements may change, depending on the stimulus set, and the 
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scale obtained is only unique up to a linear transformation (see 

below). The following specific recommendations should help to 

minimize the problems and maximize the advantages of the 

procedure. 

1.Adhere to the measurement recommendations of the CCIR. This 
will increase the comparability of the measurements with those 
taken in other laboratories. 

2. Test about 50 observers in an experiment, at least as a first 
guess as to the number of observers required. Simulations of 
category judgments of telephone grade of service has indicated 
that this is a reasonable number of observers to produce stable 
results (Kort, 1983). 

3. Give the observers a series of practice trials, probably 
between 10 and 20 judgments, with stimuli which provide a reason-
able sample of the range of teletext qualities to be assessed in 
the experiment. This will assist in the establishment of stable 
criteria. If practice trials are not provided and Parducci's 
suggestions are correct, the initial experimental trials will be 
dominate d  by large shifts in criterion placement, as observers 
try to optimize the information transmitted by the scale. If 
Parducci's ideas are not correct and the meaning of the 
categories define the boundaries, the inclusion of these practice 
trials will not matter much. A little practice never hurt any-
body. Unfortunately, contrary to the old adage, it never makes 
anybody perfect either. 

4. Regardless of the stimulus set of interest, always include 
samples which span the entire range of quality. For instance, 
even if the prime interest was to assess a number of stimuli with 
relatively good quality images, poor and excellent images should 
also be included for consideration by the observers. The purpose 
here is to prevent drastic shifts in criterion placements, which 
make comparisons across experiments difficult. The assessment of 
the same approximate range of quality in pictures across exper-
iments will minimize analysis problems due to criterion place-
ment. Since the relevant stimuli will be presented in a random 
fashion, these stimuli should also be randomly intermixed. 

5. The most important and innovative recommendation has been left 
to the last. Since this is the initiation of a relatively long- 
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term and unified research effort, a very simple procedure can be 
used to unify all the experiments in the set. A few standard 
stimuli should be created which approximately span the range of 
picture quality. Choose one poor, one average, and one excellent 
quality frame with quality varying on as many dimensions as 
possible. Include these stimuli in every quality assessment 
experiment performed. This will do two things. First, it will 
approximately define the range of stimuli across experiments to a 
standard value. More importantly, this procedure will provide a 
common standard by which all measurements can be compared. 

The last recommendation is extremely important in categor-

ical judgment. In the following section, analysis schemes will 

be described. The most widely used analysis, Thurstonian 

scaling, produces a subjective scale linear with true psycholog-

ical representation. The parameters of that linear transform 

depend on which stimulus is chosen as a standard, because that 

stimulus sets the zero point of the scale. The standard 

deviation of its  discriminai dispersion process determines the 

unit size of the scale. 

Without a set standard the procedure will arbitrarily use 

the lowest ranked stimulus in the set. Therefore, the linear 

transform between each obtained scale and the true psychological 

scale can change from one measurement situation to the next. 

This makes the results quite difficult to compare across experi-

ments, even within the same laboratory. However, if the same 

stimuli are included in each experiment, the most stable of these 

can always be used as a referent, standardizing the origin and 

the unit of the scale. Thus, all  •the scaled solutions from all 

experiments should be set in the same linear relation to the 
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"true" psychological scale. This should mean that the evalu-

ations would be directly comparable. 

Dbn bleleL52,5 22e,ceueu 

Two data analysis methods will be described. Thurstonian 

scaling is a traditional procedure which is generally used for 

subjective evaluations. The second procedure is an approach 

developed by Allnatt, specifically for use in the evaluation of 

teletext systems. However, some crucial assumptions are made in 

this analysis, which may or may not be justified. The claims 

Allnatt makes for this analysis system make it very appealing, 

because the implications are that the resultant scale of teletext 

impairment is additive. That is, the claim is that if one noise 

source impairs subjective quality by 12 and another independent 

noise source impairs subjective quality by b, then the effect of 

both sources presented together is .e+b. 

One bright spot in the analysis problem is the fact that the 

data collection procedure for both analyses is the same, so that 

if a clear decision cannot be made between the two analyses, both 

can be applied to the same data. 
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2.1 nuxeleniâz .egelin2 

The Thurstonian solution involves the estimation of the 

positions of the discriminai  process distributions on the sub-

jective dimension .5. In order to obtain the solution, stimulus 

, the lowest ranking stimulus on the scale, is arbitrarily 

assigned a scale value of zero. (Although, as noted, any 

stimulus can serve as the standard, for purposes of this discuss-

ion we will detail the procedure as it is typically applied.) 

The position of
2 
with respect to 1; is measured in standard 

1 
deviation units of the discriminai dispersion of stimulus 

l e  

The position of
3 
with respect to

2 
is similarly determined, 

and concatenated with the difference between and 
 2' 

 to  pro-

duce a scale position for 1;
3
. This process is repeated with 

successive stimuli until the entire stimulus set has been 

positioned on the subjective dimension . 15. The overall strategy 

is like measuring a football field with a six-inch ruler. 

Here, the origin of the scale is determined by Z and the 
1 

step size or basic unit is set by the standard deviation of the 

discriminai dispersion of stimulus 	. No physical measures are 
1 

used, so the scale is completely psychological. 	The "true" 

psychological scale is not recovered, but the result is linear 

with that "true" scale, at least according to the model. The 

parameters of the linear transform are entirely determined by 

stimulus I
1

, or, more generally, by whichever stimulus is chosen 

to act as an arbitrary reference. If recommendation 5 is 
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followed, the chosen standard common to all experiments will 

become the referent. 

.C.êlgulelUDD Delile Q.  IlaiLulDnien i5P.ealiD2 

The basic data for categorical judgments is a matrix of size 

D x E, where D is the number of categories and E is the number 

of stimuli used in the measurement. A cell in the matrix is the 

frequency of occurrence of a given judgment for a particular 

stimulus. For Thurstonian scaling, the first step is to convert 

these data to probabilities, and to rank the stimuli from the 

lowest to highest in terms of the obtained judgments. This is 

only a first-order ranking, and it is done by arbitrarily assign-

ing the values from 1 to D to the D categories. The lowest 

ranking category (i.e., Bad) is assigned the value 1, and the 

best category (i.e., Excellent) is assigned the number D. A mean 

opinion score is calculated for each stimulus, and the stimuli 

are ranked on the basis of the mean opinion score. 

The matr,ix is then used to obtain a cumulative probability 

distribution for each stimulus in the set, as a function of the 

category number. These data represent the probability that a 

. stimulus would be judged at or below the category in Question. 

Since the cumulative distribution • sums to one, the last category 

is lost, and we now have a matrix of size D - 1 x E. Under the 

normality assumption, the cumulative probabilities are transform-

ed'to 2 scores to obtain a new matrix. This matrix is a matrix 
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of positions of the D-1 category boundaries described in standard 

deviation units relative to the mean of the discriminai  disper-

sion process for each stimulus. In the following paragraphs, the 

subscript  j  will be used to denote stimuli, and subscript will 

describe category boundaries. Variable 2 will refer to the 

values entered in the category boundary matrix, so that 	is 
gi 

the 7, score of the eh boundary for the jith stimulus. 

ne matrix of 	values provide the raw data for the Thur- 
gi 

stonian analysis. Successive stimuli are chosen, first stimulus 

pairs 1 and 2, then 2 and 3, through to pair IS-1 and E r  and the 

standard deviation àifference between the pairs is determined. 

ThiscanbedonegraphicallybyplottingthevaluesofZ gi as a 

function of
g i+1

. If the assumption of normality is met, even 

to a first approximation, the plot should be linear. The slope 

of the least-squares linear fit is the ratio of the standard 

deviations of the discriminai dispersions. If the standard àevi- 

ation of stimulus j is denoted as, then the slope, r . 	I i 1+1 
will be equal to the ratio ,e 	/.e . The Thurstone technique 

i+1 i 
arbitrarily sets ‘e to 1.0, so that all the standard deviations 

1 
can be solved as â. 	=â. x 

1+1 	1 	i 1+1 

The intercept of the same plot, 	, is the difference 
i i+1 

between the means of the discriminai dispersions, defined in 

standard deviation units of â.• The subjective position i+1 
of 

stimulus I in relation to stimulus ï is thus .5 
+ 1 - 

i+1 	 1 



In this way, the mean and variance of the discriminai 
•  i 1 

a.E. 
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dispersions of the entire data set are determined by the success-

ive concatenation of results. The reader should note that this 

process will always involve E-1 plots regardless of whether it is 

done as outlined here or as suggested in Chapter 3. 

. In this analysis, it is possible that some  stimuli have only 

one value because there was so little variability in responses. 

These stimuli must be eliminated from the analysis because the 

successive plots cannot be realized. If their inclusion is 

critical, their position on the .0 dimensicin  cari  be estimated by 

placing them in their approximately proper position relative to 

the scaled values, on the basis of their mean opinion score (see 

above) 

Once the stimulus positions •E and standard deviations 

are determined, the criterion placements çan be determined. The 

value Z 	is the criterion boundary placement for the jth stin- 
gi 

ulus, in standard deviation units of stimulus Z . Therefore, the• 

criterion placement t for stimulus Z can be defined as Z a 
i 	 gi 

. There  cari  be up to E samples of . this value, one for each 

stimulus in the set, provided that the value 	could be  calcul- 
91 

ated for all U. The estimate of the criterion  placement  is thus 

the mean of these estimates, so that: 	• 

= 1 
j 	4-• gi 

i=l 
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If t is not provided for a particular stimulus, it is excluded 

from the sum and E is reduced by one. 

The procedure obtains, then, estimates of the mean and 

standard deviations of the discriminai dispersion processes for 

each stimulus, along with criterion placements for the set. The 

procedure outlined here is covered in Torgerson (1958), and other 

analysis procedures are described there as well. The procedure 

included here was chosen because its steps are intuitive with 

respect to the model, and it can be easily realized in computer 

code. The judgments involved are variable enough that the exact 

calculation procedure is not of primary concern. 

2.2 IllalullLe 2x9egiàae 

The Thurstone solution is a general one and it is widely 

used. Allnatt's procedure has been developed specifically for 

teletext evaluations, and the impairment of image quality. The 

material reviewed here is contained in a series of papers 

published by Allnatt and his associates over a number of years 

(e.g., Allnatt, 1973; 1975; 1979). 

In the Allnatt approach, category judgments are made of 

stimuli which vary on a physically quantifiable impairment dimen- 

sion. In the standard procedure five categories, labelled from 

Excellent to Bad, are used. The research program Allnatt has 
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undertaken focusses on three main concerns: 

1. The nature of the psychophysical function which relates the 
degree of impairment (or physical Quality) with the.perceived 
quality of teletext displays. 

2.The relation between the perceived quality derived from 
psychophysical functions and the recorded categorical responses. 

3.The result of combined impairments from multiple, independent 
noise sources. 

Each aspect will be considered in turn. 

2,2.1 Tbg 	 fpn_cljsm 

The psychophysical function is assumed to be a power 

function of the form 

= a Db  

where y (r) is the perceived impairment on scale S, 	is the 

physical impairment, and 	and b are constants specific to the 

units of D. The justification is the general success of this 

representation in sensory scaling. Supportive data were discuss-

ed in the first chapter. 

In some ways, the assumption is fairly weak, in that the 

only recuirement is that the function be power-like, anC not 

necessarily follow the exact form. To a first approximation, 
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this is probably a reasonable guess, because the power function 

is quite versatile in fitting monotonic functions, regardless of 

the "true" form. 

In other ways, however, the assumption is much stronger in 

that it requires the mapping to be onto a unidimensional psycho-

logical space, what we have been calling the scale. In the 

case of many physical dimensions (i.e., height, weight), a direct 

mapping can be reasonably assumed. However, when rating the 

impairment of teletext systems, the representational space may 

actually involve two or three dimensions. If so, a further 

assumption must be made; that these dimensions are combined in a 

static fashion (perhaps by weighting them 50:50) to produce 

values on the scale. Variance in either the nature of this 

multidimensional space or the way in which the dimensions are 

combined (because of, say, differential experimental instruct-

ions .) may invalidate the final scaling solution. Thurstone's 

procedure, while it also requires a unidimensional 1J scale, would 

be much more robust in the face of this type of variance. 

1..2 .CelezQxy &b.Puigg 

This process is crucial to Allnatt's approach. It corres- 

ponds to the decision process in Thurstonian scaling. Unfort-

unately, it is difficult to extract a clear rationalization of 

Allnatt's decision process from his descriptions. Quite often, 

the concept cari  be expressed, but the mathematical realization is 
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a tad obtuse. 

Allnatt suggests that the observer performs the category 

judgment task by a specific set of operations. First, the 

observer normalizes the scale of 4) . This is done by defining a 

psychological quantity  W (1) ), where 	is the physical impair- 

ment required to split a five-point opinion scale in half. Upon 

presentation of p the mean opinion rating would be 3.0 on a 1 to 

5 scale. Observers express the psychological.magnitude of the 

stimulus D i as a ratio of 4)  (p ). This ratio is scaled by a 

second power function, which can be expressed as a ratio of the 

original exponent b, so that we can >write 

n
(D) =-()/ 	(E ))

G/b 

G/b 
= (a D /a  D ,, ) 

(Di /D )
G 

ji  

The value Y (p,) 
n 

represents the psychological value of p i  on the 

normalized scale. The value of G is thoudht of as an observer-

dependent parameter, which gives the model additional degrees of 

freedom. 

Since D is an impairment parameter, the values of 4)  

increase with stimulus degradation. This cuantity is further 

transformeé, to a normalized (0 to 1 representation) acceptabilitv 

scale t by the relation 



t= 	1 

1 + it) 

Thus, we have two descriptions of the same thing, a 4)  scale 

which is a psychological impairment scale (what we have called 

the dimension), and the scale which is the corresponding 

acceptability scale and from which the response is to be deter- 

mined. 

At this point we come back to something very similar to the 

Thurstone decision model. The scale is divided into D equal 

steps, corresponding to the D categories provided. There is 

variability in the representation of 1, and the decision process 

is the process of determining the category into which the value 

on 1 falls. The category boundaries are placed, again, to equal-

ly divide the range of 1. The proportion of judgments in each 

category allow us to estimate the distribution function of 1 1 

 E(I). This is quite similar to the concept employed in the 

Thurstonian analysis scheme. From this function the median of 

the distribution (t
m

) is derived by interpolation. This value is 

the scale value which Allnatt's procedure utilizes. 

49 

According to the original decision model and the 
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normalization process, the equation for the median of the 

category judgment distribution for a given impairment 

be: 

D. should 

t (D ) = 
m i 

1 

1 	( D ID
E

) 

This claim  cari  be evaluated by defining a parameter jj., 

1/t
m 

- 1 

Defined in this way, it must be true that 

J = (D /D ) 
i 	II 

so that we can predict that 

loc, J=Glog .D . -G log D 
U 

Thus, the plot between log 11 and log D should obtain a straight 

line with a slope of L- and an intercept of -Glog(D ). These 

parameters would allow a determination of the psychological scale 

y(p), although it is not an important aspect of.Mlnatt's 

procedure. What is important is that the straiçht-line function 

be empirically obtained, since failure to do so invalidates the 

analysis. 
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£12n1Iininu 

This all sounds very strange. 	There is very little 

psychological theory to justify the assumptions, and it is even 

hard to characterize the exact nature of the decision process. 

However, Allnatt (1975) has provided some evidence for the notion 

that impairments from independent noise sources can be predicted 

by the additivity of J2, such that for noise sources J.  and 2 

= j 	+ cJ  
1 	2 

= (D /D ) G1 + (D /D )
G
2 

1 	Mi 	 2 	1.12  

«Thus, the median of the distribution of the category judgments 

with both impairments can be predicted as 

- 

m1,2 
1 

1 + (D /D. 
1 nl  + 	/D )2 

2 	1 . 2  

Since all the parameters in the right-hand side of the eçuation 

are defined by the separate analyses of judgments with 

impairments
1 

and D2 
 the joint effects should be predictable. 

LUELLEY 

The evaluation of teletext systems should be done usiné 

categorical judgment procedures. Specific recommendations de- 
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tailed in this report should be followed to optimize the use of 

these procedures. 

In terms of the analysis, the same data can be represented 

by Thurstonian scaling or by the Allnatt procedure. Allnatt's 

approach assumes specific criterion placements and a general form 

of the psychophysical function. In addition, it is based on the 

notion of impairments which can be defined on a physical dimen-

sion. The payoff, however, is in the claim that the combined 

effects of impairment can be predicted. Thurstonian scaling is 

theoretically established, but is less optimistic in the analytic 

solution of the effects of compound impairments. 

In the short term, both a.nalysis schemes are recommended-, 

until such time as the utility of the two ca,n be empirically 

compared. After all, the only perfect science is hindsight. 
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CHAPTER 3 - IMPLEMENTING THE TWO PROCEDURES 

In the previous chapter, two issues were addressed: the 

optimal data collection technique to use in evaluating teletext 

systems, and the best way to analyze those data. With respect to 

the first of these issues, the categorical judgment technique was 

deemed superior to any other techniques for a number of reasons 

(refer to the previous chapter for a discussion of these 

reasons). With respect to the analysis question, two methods 

were suggested: Thurstonian (1927) scaling, and Allnatt's (1973; 

1975; 1979) more recently presented technique. At present, 

neither of these seems to be clearly superior to the other. In 

the present chapter, a more complete summary and comparison of 

these two techniques will be presented. For both techniques, 

discussion will centre on three issues: a) the assumptions under-

lying the analysis, b) the nuts and bolts of how the analysis is 

carried out, and c) how to determine whether the technique can be 

legitimately applied (including means of testing the 

assumptions). 

1. mulluonabr JULLIEe 

lel Zbelmellgel MIGegXeiDDIDZO 

As with all scaling techniques, Thurstonian scaling is based 
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on the idea that there is a subjective dimension f representing 

only the attribute of interest. For our purposes, we  cari  con-

sider that attribute to be acceptability. When a stimulus is 

presented, it undergoes an analysis which ultimately yields a 

value on that dimension. Subjects must then use this value to 

produce a response on whatever response scale the experimenter 

has provided. 

Thurstone has actually suggested a number  cf  slightly dif-

ferent approaches to the scaling problem. They vary simply in 

the assumptions each makes.  The  approach we are suggesting is 

referreC to as Case IV. It's important assumptions are as 

follows: 

1. The value Xi produced by a given stimulus 1:i on the L7 dimen-
sion can be characterized as a random selection from a normal 
distribution havinc mean fi and variance 

2. On each trial, n-1 criteria are placed on the Icj dimension 
dividinci it into D sections (D is the number cf'categories the 
observer is asked to use). Each section corresponds to a cate-
gory. The response given is the category corresponding to the 
section into which Xi falls. Further, although the positions of 
the criteria may vary from trial to trial, this variation is 
uncorrelated with the value of Yi. 

There are two important issues associated with the first 

assumption. The first is the assuffied shape of the distribution. 

Since all subsequent calculations depend  on the assumption of 

normality, the shape of the distribution shotild be evaluated. 

The method of evaluation will be discussed in section 1.3.1. 
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The second issue concerns the idea of a one-to-one mapping 

from each stimulus Z, onto a mean subjective impression 
 • . ' 

Since the .e. represent the scale values of the stimuli, their 
' 

determination is essentially the goal of this analysis. If the 

analysis is to yield meaningful values it's important that the 

J5.s remain relatively stable both over the course of the experi-
' 

ment and over experiments using identical experimental para-

meters. 

In the previous chapter, a set of experimental procedures 

was outlined which should maximize the chance of the .e.s remain- 
' 

ing stable. However, there are no guarantees here nor is there 

any way to determine whether the assumption holds throughout the 

experiment. Variations across seemingly identical experiments 

can, of course, be detected and, if the discrepancies are sub- 

stantial, the technique would have limited usefulness. That is, 

ultimately one may want to examine changes in .5 , as a function of 
' 

other variables (e.g., instructions). To do so one must be sure 

that irrelevant variables like habituation, or perhaps time it- 

self, are not affecting the .,5s. 
i 

 

There is one very important issue associated with the second 

assumption. While it is not crucial that the criteria remain 

stable throughout the experiment, whatever variation there is 

must be random rather than systematic. If the variation is 

random, no problems are created for the analysis. The only 
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change would be that the calculated criterion positions would be 

estimates of an average position rather than a stable position. 

However, if the variation were systematic (e.g., if the top two 

criteria move up the dimension whenever a high quality stimulus 

is presented), the obtained 	values would be relatively mean- 
' 

ingless. 	Fortunately, there is a test (to be described in 

section 1.3.2) which should allow us to determine whether there 

are stability problems. 

1.2 .C111gIllelien hniie  

The theoretical rationale for calculating the .15.s was pre- 
1 

sented in the previous chapter. Here, we would like to concen- 

trate more on the calculation details through the use of an 

exaMple. Following the suggestions presented in the previous 

chapter, observers will be asked to use 5 categories (category 1 

reflects the lowest acceptability, category 5 the highest). Two 

stimuli 	and Z
6 

are included in the experiment to help. 
0 

establish the range of the scale to be used in the observer's 

ratings. Stimulus 	is very poor in quality and serves as a 
0 

lower anchor. Stimulus
6 
 is as close to perfection as can be 

physically achieved and, thus, serves as an upper anchor. The 

data from these stimuli will not be considered in the analysis. 

However, if the ratings given these stimuli are not as expected 

(mainly ls and 2s for Z o , mainly 4s and 5s for
6 

 ) it would be a 
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cause for concern. A third stimulus, ï 1 
is the standard stimulus 

which is used in all scaling experiments. It is created by 

combining a number of different types of impairments to produce 

an interrediate level of acceptability. It will serve as our 

referent stimulus in the calculation process. Finally, stimuli 

and ï
5 

are the stimuli we wish to scale. 

Each stimulus will be presented to the observer a numberof 

times (say 100 to keep our ratios simple). The steps in the 

analysis would be as follows. 

1. Create a data matrix like that presented in Table 1. 

2. Calculate a mean opinion score for all stimuli via the formula 

where 	is the number of categories, j is the category number, Ej 
is the frequency per category and r is the total number of ties 
the stimulus was presented. Table I also contains the mean 
opinion scores fer the seven stimuli. 

3. Check the Li values for the anchor stimuli ZO and Z6. If they 
are at the aprropriate levels, we can  assu m e  they have served 
their purpose and, thus, their data can now be disregarded. 

4. Interchange the rows of the remaining stimuli (including the 
standard) so that the r

i
s are in descending order as in Table 2. 

5. Turn these frequencies into probabilities es in Table 3. 

6. Transform each row of this matrix to produce a cumulative 

z,, 

r. 
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probability matrix as in Table 4. The last column will always be 
1.00 and, thus, can be dropped. 

7. Using a 	table convert the cumulative probabilities in Table 
4 into a matrix of 	scores as in Table 5. 

8. Using ïl as the standard, create separate plots of the  •  
scores for Z1 against the 2 scores for each of the other stimuli. 
These are shown in Figure 3. (Note that the Z scores for Z1 go 
on the Y-axis. Note also that there are 4 plots. This follows 
from the fact that there are 5 stimuli being used in the analy-
sis.) Correlation coefficients, slopes and intercepts of the 
best fitting straight line should be calculated for each plot. 
These are shown on the figure. In each case, the intercept of 
the line is the scale value, 15i, for the stimulus being compared 
to Zl. The unit is the standard deviation of the distribution 
for Zl. Essentially what is being done is that j51 has been set to 
0 and 	to 1. This is perfectly legitimate since the ,5is are 
only determined up to a linear transformation in any case. - The 
slope of the line is the ratio of the standard deviations (e.g., 

sai to al). Since  1  has been arbitrarily set to 1, the slope can 
be considered to be our best estimate of 	Thus, the ,eis and 
ais are the intercept and slope values found on the figure. 

9. Finally, the positions of the criteria should be calculated. 
Each stimulus should allow an estimate of the position of each 
criterion with respect to its own mean. For a given stimulus Zi 
the criterion.  points tgi can be estimated by the following formula, 

= S 	+ a Z 
gi 	1 	1  gi 

e.g., for stimulus Z 

t
12 	

= S 	+ a Z 
2 	2 12 

= -.36 + (.996 x -1.27) 

= -1.63 

where the Zgi are the values listed in Table 5. These values are 
listed in Table 6. 

10. The overall estimate for the position of each criterion is 
obtained by averaging over these estimates 

2 
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= 	 t 
9 	K 	i=1 	gl 

where 	is the number of stimuli being scaled. These are also 
contained in Table 6. 

This description of the analysis process has been for an 

ideal data set. One problem that often arises is that the vari-

ability for a stimulus might be sufficiently small that some 

values in the / matrix might be ± c<gbe (e.g., 	in the present 
5 

example). In this circumstance, certain alterations are necess-

ary. First, when determining for this stimulus, points such 

as these are obviously not plotted (note that the
1 

versus
5 

plot has only 3 points). Second, when determining criterion 

placements these points are simply omitted, decreasing E by one. 

(The final criterion placement was calculated in this fashion.) 

If 
1 

itself has one or more 	values of  ±c0, a situation 

could be created in which the plot of 	versus 	has only 2 
1 

points. This would be extremely unfortunate. In this circum- 

stance, a concatenation technique should be used. After the 

stimuli have been ordered according to 	s, proceed as before for 

stimuli both immediately above and immediately below z, in the 

ordering (call these stimuli I and 	). For the stimulus im- 
a 

mediately above
a 

(call it 	), create a plot with 	values of 
a+1 

I
a+1 

on the X-axis and those for
a 

on the Y-axis. The intercept 

of this function will be the difference between means for the two 



= 	S
a 

+ a
l 	

x B 
a+1 a a+1 
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stimuli • 

a 

and 1; a+1 
in terms of the standard deviation of

a
. 

It would then be necessary to change the units of this value 

so that they are equal to âl . To do this, multiply the intercept 

by the ratio ,e
1 a 
/ 1 . 	 This value can then be added to 	to 

a 
produce the scale value for 	. a+1 	

That is, 

a 

where 	is the slope of the line relating the 	scores of 
a+1,a 

a+1 
and

a
. 

A.similar procedure would then be carried out using I to 

produce the scale value for the stimulus immediately below it in 

the ranking. If more stimuli need to be scaled, we can simply 

continue the concatenation process. For any stimulus whose mean 

is larger than that for the stimulus immediately below it in 

the ordering is used while for any stimulus whose mean is less 

than that for L ,  the stimulus immediately above it in the rank-
1 

ing is used. 

Hopefully, with this concatenation technique, the bulk of 

the plots will always involve at least 3 points. If any involve 

only 2 points large estimation errors can arise and the normality 

assumption cannot be tested (see section 1.3.1). If,a given 
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stimulus produces only one 	score, the technique itself cannot 

be used. This would occur, for example, if a given stimulus is 

only rated good or excellent. The basic problem is that this 

single point won't allow an estimate of both a mean and a 

standard deviation for the stimulus. If this occurs, a scale 

value must be estimated in a somewhat different fashion. After 

final
i 
values for the other stimuli have been determined, the 

regression equation relating these values to their respective r 
values should be calculated. This equation should then be used 

to predict the 	for the problem stimulus based on that 
1 

11 	stimulus' E value. 

1.2 iliJe5lifyino lbe Zeglinizpe 

One thing to realize about Thurstonian scaling is that it 

can be applied to any set of stimuli. Unlike Allnatt's tech- 

nique, which will be discussed shortly, the stimulus set does not 

have to vary along a quantitative dimension. This fact actually 

has both positive and negative implications. The positive im-

plication is that all stimuli, even those which are only qualita-

tively different, can be scaled. The negative implication is 

that even if we can empirically validate the model, we learn 

nothing about the scale values of any stimuli not actually used 

in the experiment. 

More specifically, the aim of any technique which requires 

variation on a physical dimension is to specify a function re- 
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lating values on this dimension to values on an internal dimen-

sion.  If  such a function can be validated empirically, the 

effects of additional variations on that dimension can . be deter-

mined without further empirical work. The other technique to be 

discussed (Allnatt's) does require variation on a physical dimen-

sion, and, if validated, will yield a psychophysical function.. 

In addition, with a method that also needs to be validated em-

pirically, it may allow investigators to specify a .exi.gix.1 the 

scale value for stimuli which vary along two physical dimensions. 

Thus, this technique, if successful, could be a much more power-

fui and useful tool than Thurstonian scaling in the evaluation cf 

teletext systems. 

With respect to Thurstonian scaling, there are two tests 

that can, and should, be performed before acceptinc. the derived 

scale values as legitimate. In the first instance, the assumi-

tion of normality should be evaluated. The second test is a test 

of the relative stability (or nonsystematic variation) in the 

positions of both distributions and criteria along the dimen-

sion. If either test is unsuccessful, the results of the pro-

cedure would have to be regarded with extreme suspicion. 

lbg EDX.e j-DDPII.en Pi ibeee 1.11P leei Uz lbe .Z.RPPDÉ L.)fle. 

Failure here indicates that criterion placements vary system- 

atically with positions of the discriminai distributions. Thus, 

our ability to locate and talk about the position of these dis- 
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tributions relative to established points of reference would be 

minimal. The problems created by a lack of normality would be 

less severe. Fortunately, the more powerful test is the test for 

criterion stability. 

Lael 

Testing the normality of the distributions involves an ex-

amination of the plots shown in Figure 3. (This test can, and 

probably should, be carried out before any further analysis is 

undertaken.) If the normality assumption is correct each plot 

should be well described by a straight line. The linearity of 

these relationships can be tested by simply comparing the value 

of the correlation coefficient to a criterion value. Obtained 

values less than the criterion would suggest that the assumption 

should be rejected. 

The correlation coefficients can be found on their res-

pective plots in Figure 3. For a four-point plot, a value 

of .90 should serve as the criterion while, for a three point 

plot, a value of .988 should be used. (If a graph contains only 

2 points, this test simply cannot be made.) In all cases, these 

criterion values represent those values for an hypothesis test 

with an alpha of .05 (one-tailed). In every case shown here, the 

obtained is greater than the criterion, suggesting that the 

normality assumption may be valid.> 
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This test of normality is obviously not a powerful one. It 

would be more powerful if more categories were used in the data 

collection procedure and, consequently, more points appeared in 

these plots. However, for the sake of consistency across labor-

atories, we will hold to the recommendation of using 5 categor-

ies. Thus, these plots.will never involve more than 4 points. 

If, by and large, they do involve all 4 points, no real problems 

should arise. However, if many contain only 3 points, the devi-

ation from normality would have to be extreme before it would be 

detected. Further, as noted, if a plot contained only 2 points, 

the test simply could not be performed since 2 points always lie 

on a straight line. 

J5lebilitï 

We have already determined 1) the means of the distributions 

on „5, 2) the standard deviations of these distributions, and 3) 

the relative positions of the criteria in terms of the standard 

deviation of the referent stimulus. In our "stability" test, we 

will begin with the assumption that these values are all valid 

and then attempt to regenerate  the  original data. If we can do 

so to a suitable degree of accuracy we can conclude that the 

means, standard deviations and criterion placements represent 

stable characteristics. This test will always be the last test 

in the validation process. If it also is successful we can then 

regard the distributions' means as legitimate representations of 

I 
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the scale values of the stimuli being examined. 

The technique is quite simple. Using the observed mean and 

standard deviation and the derived criterion placements, the 

proportions of scores falling into each category can be calcul-

ated based on the normality assumption. (The normality assump-

tion must, of course, be validated first.) This is essentially a 

matter of determining the relative positions of the criteria in 

each distribution. That is, a score is calculated for each 

criterion in terms of the mean and standard deviation of each 

distribution (see Table 7). These scores are then used to cal-

culate the expected proportion of responses falling into each 

category by using a table (see Table 8). These proportions can 

then be turned into expected frequencies (see Table 9) which can 

be compared against the actual data. (Note that the expected 

frequencies should be correct to one decimal place because the 

original data set were integer values.) 

At this point, the expected frequencies should be surveyed 

in order to make sure none are less than 5.0. In the present 

case, two cells are (the category 1 cells for I
3 

and 4 ). In 

cases like this, the expected frequency matrix (and the associat-

ed data matrix) must be altered slightly. The problem cells 

should be combined with their closest neighbor to create expected 

and obtained frequencies for placing these stimuli into either 

category 1 or category 2 (see Table 10). 



2E 
expected frequency 

OP_2 

66 

A 1 2-  statistic is then computed by applying the following 

formula to each cell in the altered matrices and then summing 

over all the cells. 

In the present case, the obtained rvalue is 12.46. This value 

is evaluated against a -;( 2-  distribution  with the number of 

degrees of freedom equal to the number of cells in the altered 

matrix minus the number of stimuli. Here the degrees of freedom 

is 18. If the is significant, there is reason to suspect 

that the stability assumption is incorrect. To minimize the 

likelihood of failing to detect violations of the assumptions, it 

is best to choose a very liberal alpha value, for example, .10. 

The .10 cutoff for the distribution with 18 degrees of free-

dom is 26.0. Since our obtained value is well below 26.0, the 

assumption is not demonstrably violated. Thus, all things con-

sidered, the scale values obtained for our stimuli seem to be 

valid ones. 

ULM/MU liclaula /IQUIQUE 

Zel 	 UndgxzUnniluLu 

Like Thurstonian scaling, and all other scaling procedures, 

Allnatt's scaling technique is based on the notion of a sub- 
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jective dimension, 15. In Thurstonian scaling, we talked about 

as a dimension of acceptability with higher values reflecting 

higher levels of acceptability. Eere, 15 will be an impairment 

dimension with higher values representing lower levels of accept-

ability. (These dimensions could conceivably be regarded as the 

reverse of one another.) According to Allnatt, however, observers 

do not use the .0 dimension to determine their responses. The 

obtained values on the i5 dimension are mapped onto a second, 

response dimension, 1, which runs from 0 to 1. It is the value 

on the t dimension which is used in the response process. 

With respect to these processes, the following assumptions 

are made. 

1. The momentary value, Yi, produced by a given stimulus, Zi, on 
the 1U dimension can be characterized as a random selection from a 
distribution having mean  i  where 

S
i 	

= a D, 

The value pi is a measure of impairment on a physical dirLension 
while a and L. are constants specific to the units of the dimen-
sion D. 

2. The Yi value is transformed internally to produce a value 
on the 1 dimension which can be characterized as a random sample 
from a distribution with median 1 mi  where 

1  
mi 

1+(Si)
G/b 	 b Gib 

14-(aD, ) 	 1-1- (D,) 

--L  
aD

5 	
D
M 

t 

(1) 
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The value rim is the physical impairment which will produce a 
median 	value exactly in the middle of the 	dimension (i.e., 
t = 1/2) while 	is a parameter dependent on the physical dimen- 
sion being investigated. 

(Note: there is an important difference between the two sub-
scripts r and B. r is used to refer to a particular stimulus, 
that stimulus which bisects the t dimension.  In  any given'exper-
iment it's unlikelv that this stimulus would exist. The ether 
subscript,  j,  refers always to the DgÉt,j,./m y...p.,lpe on the t dimen-
sion fQI .01-MOD 

3. The 1 dimension is divided into D equal-width sections by D-1 
firmly fixed criteria. (Again, n refers to the number of cate-
gories the observers have to use. In the present case, with 5 
categories, there would be criteria at .2, .4, .6, and .8 along 
the 1 dimension.) The response given is the category correspond-
ing to the section into which  i  falls. 

There are a number of issues associated with these assumpt-

ions. With respect to the first assumption, the idea that a 

physical dimension and a psychOlogical dimension cari  be related 

by a power function is well-documented. ilowever, in the >classic 

circumstances (e.g., height, weight, brightness), two things are 

true which are not necessarily true here: 1) there is a value on 

the physical dimension which represents an absolute 0, and 2) the 

psychological representation has a straicihtforward one-dimension-

al form. The first of these attributes is absolutely crucial to 

the existence of a power function relationship. Without a 

physical 0 point, there can be no subjective 0 point (0 

objectively must produce 0 subjectively - a 0
b 

0), and the best 

that coulé be hoped for would be a linear, rather than a power, 
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relationship between the Di s and j5 i s. With respect to impairment 

of teletext systems, the notion of 0 physical impairment is 

problematic. In fact, it would appear to change with the 

development of new technologies. Thus, this assumption might 

have problems right from the start. A discussion of how this 

aspect of the first assumption can be evaluated will be included 

in section 2.3.3. 

The second of these aspects of assumption I was discussed to 

some extent in the previous chapter. The ultimate representation 

of a stimulus on the D dimension may be achieved fairly directly. 

That is, even if the initial representation of a stimulus is in a 

multidimensional space, as long as the way in which the dimen-

sions are handled ..dege DDI miuy (e.g., each of à dimensions may 

be weighted equally), then the relationship between D and can 

be considered to be straightforward. If, however, the way in 

which the multidimensional representation is handled depends on 

something like task instructions, the same stimulus could give 

rise to a number of 	s. Thus, a straightforward power function 

equation simply could not capture the nature of the relationship 

between D and 

One other comment should be made about the first assumption. 

Nothing is being said here explicitly about the shape or variance 

of the distribution about J5 . Nonetheless, implicit assumptions 

are being made. What Allnatt has chosen to do is to state these 

assumptions in terms of the t dimension. Since there is a one- 
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to-one mapping between B and 1, either dimension can be used as 

the vehicle for stating and testing the assumptions. Interest-

ingly enough, however, the shape and variance of the distribution 

on the 1 dimension are so complicated that testing the assump- 

tions at that level is not advised either. Instead, as we shall 

see, Allnatt recommends a second transformation to a T dimension 

in which the mathematics are simpler and the ease of testing 

assumptions is greater. 

The second assumption really repreSents the central con-

tribution of Allnatt's technique. If accurate, it specifies the 

exact relationship between the physical dimension, p, and scale 

values on the 1 dimension. It is this dimension that Allnatt 

finds most meaningful psychologically. Thus, the scale values 

we're after hei. e are those representing central tendency on this 

dimension rather than the s. The test of the proposed re-

lationship between D and 	will be described in section 2.3.2. 

The validity of the final assumption is absolutely crucial 

to the success of Allnatt's technique. Even if all the earlier 

assumptions are correct, this assumption must also be correct if 

the obtained scale values are to be interpretable. Allnatt and 

Corbett (1972) suggest that this assumption may fail if the 

stimulus set includes too narrow a range of impairment levels. 

Allnatt and Corbett (1972) have worked  out a set of instructions 

for analyzing data under those circumstances. In the present 
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circumstances, no problems of this sort should arise since, as 

recommended in the previous chapter, the stimulus set will always 

include one very bad and one very good stimulus. Unfortunately, 

even under the present circumstances, there is no way to test 

this assumption independent of hllnatt's second assumption. 

2.1..2 The T dj.E.Q1110D 

As noted above, for analysis purposes, neither the 	dimen- 

sion nor the t dimension is to be used. Instead, a third dimen-

sion, T, is recommended. Values on this dimension are relatee 

to those on t via the equation 

T= lu  (t/1-t) 	 (2) 

This T dimension has b.solutely ng psychological relevance 

or reality. 	It does not exist in anyone's head nor does it 

necessarily represent anythinc in the real world. 	It's usee 

solely for analysis purposes. 	It Coes have a number of pro- 

perties that Allnatt regaros as important. The first is that the 

range cf this dimension is the whole real line rather than C to 1 

as in the 1 dimension. In much of Allnatt's earlier work, he 

struggled with ways of modelinc the shape and variability of the 

distribution on the 1 dimension. However, since the dimension is 

strictly limited at each end the distribution was always, in some 

sense, truncated, making modeling difficult. On the 1 dimension, 

no such problem exists and Allnatt (1973) suggests that the 
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where _q isafree parameter and f
m 

is the transform of the median 

of the t distribution for the stimulus under consideration. This 

proposed distribution function will, of course, need to be 

tes tee.  

The other nice property is that, because the transform is 

monotonic, the median of the f distribution is the transform of 

the median of the t distribution. Thus, when 	is found, 1 is 
m 

 

determined through the inverse of the transformation in equation 

(2). 

(4) 1 
-T 

1 	e m 

The t are the stimulus scale values which we are ultimately 

attempting to find. 

2.2 _C.J.P.P.1.e1UPD Teçbnizila 

The theoretical rationale for calculating the f s was not 
in  

presented in a very complete way in the previous chapter. Thus, 

although the purpose of this section is to outline the calcul- 
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ation technique, more attention will be paid to the theory behind 

the steps than was in the discussion of Thurstonian scaling. 

Since the data collection method here is the saine as that 

for Thurstonian scaling, this example will employ the saine data 

set as scaled earlier. Again, stimuli 	and I are the anchor 
0 	6 

stimuli which helped the observers maintain their criterion 

placements appropriately. The data from these stimuli can again 

be disregarded. 	Stimulus ï
1 

is our referent stimulus which 

supposedly represents a middle level of quality. However, as 

notely previously, it was created by combining impairments from a 

number of dimensions. Thus, it doesn't fit with the other stimuli 

which will only vary along one dimension. As such, in practice, 

the only reason to scale it is to make certain that its 1 value 

remains relatively constant across experiments. Nonetheless, for 

the present example, it will be assumed to represent an impair-

ment only along the dimension of interest and, thus, it will be 

scaled to the same end as stimuli
2

,
3

,
4 

and
5

. 

The steps in the analysis will be as follows: 

1. Create a data matrix like that presented in Table 1. 

2. Eliminate the anchor stimuli and turn the matrix into a 
probability matrix like that in Table 3. (The ordering of the 
rows is irrelevant. They can be left as they were in Table 1 or 
ranked as in Table 3.) 
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3. Turn this matrix into a cumulative probability matrix as in 
Table 4. The last column will again contain only 1.00s and, 
thus, can be dropped. 

4a. The values in the rows of this matrix plotted against the 
placements of the four criteria on the 1 dimension (.2, .4, .6 
and .8) would give an estimate of the distribution function on 1. 
What we want is an estimate of the distribution function on Z. 
Thus, the cumulative probability values should be plotted against 
the 	transforms of .2, .4, .6, and .8 (i.e., -1.386, -.405, 
+.405 and +1.386). In either case a best fitting function could 
then be drawn through these points and the median (Irn or 2m) 
estimated by interpolation. However, since the precise form of 
these functions is actually specified, the plotting should not be 
done by eye. Instead, if this approach is to be taken the I 
dimension should be used and the value 	should be estimated in a 
way which allows equation (3) to best fit the data. However, 
since estimating parameters of logistic functions is overly com-
plicated at best, a simpler way to solve for the Zms  is found in 
4b. 

4b.  This  simpler procedure is actually the standard trick for 
dealing with logistics, taking logarithms in order to produce 
linear relationships. Beginning with equation (3) if we invert 
both. sides and subtract 1 we obtain 

e
-g(T-T

m
) 

- 1 	= 
F ( T ) 

Taking logarithms produces: 

ln ( [1 / F(T)] - 1 ) = 	-g T + g T 
in  

Thus, a plot of the derived values from the left-hand side of 
this equation should produce a straight line with slope -£ and 
intercept jam . Therefore, what we want to do here is to trans-
form the f(I) values in the three step process of a)inversion 
(Table 11), h) subtraction of 1 (Table 12), and c) conversion to 
logarithms (Table 13). 

5. For each stimulus, plot the values in Table 13 against the 
four values of I determined previously (i.e., -1.386, -.405, 
+.405 1 +1.386). (These plots are contained in Figure 4.) 

1 
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6. Correlation coefficients, slopes, intercepts and estimates of 
g (g is the negative of the slope) should be determined for 
each plot (see Figure 4). 

7. An average g value should be determined to produce the most 
stable estimate (see Table 14). 

8. The intercepts should all be divided by g to produce 
estimates of Zm (see Table 14). 

9. The ,Tm values should be transformed by equation (4) to 
produce the scale values, im, on the 1 dimension (see Table 14). 

10. While the corresponding values on the .e dimension may also 
be desired and, in theory, possible to determine, in practice 
they are unattainable from the present data. As noted in equa-
tion (1), the basic relationship between 1 and 	is: 

t , 1 

Gib 1 	(S 

While the equation can be used to solve for „Si, determining its 
value requires knowledge of and b. (= eDp4 b  ) is the 
scale value for the stimulus whose im value is .5, h is the 
exponent in the power function relationship.) Shortly we will 
discuss an evaluation technique which provides a value for Lim, 
however, ,e and b can not be solved for until the analysis out-
lined in section 2.3.3 has been carried out. This analysis will 
require additional data collection. 

Zegianiulàg 

The thing to keep in mind about Allnatt's technique is that 

it's based on the notion that the stimuli vary along some mea-

sureable physical dimension. Thus, the ultimate product of this 
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analysis is a psychophysical function relating D values to 1 

values. If the existence of such a function can be validated our 

understanding of the psychological impact of stimuli varying 

along D would be greatly enhanced. Further, as will be discussed 

later, it may be possible to predict the effects of varying 

stimuli along two or more physicai dimensions concurrently. How-

ever, the requirement that the stimuli tO be scaled vary only 

along a single physical dimension does limit us a bit in terms of 

the nature of the stimulus set that can be scaled in a given 

analysis. 

There are three aspects of Allnatt's technique that do need 

to be evaluated in order to have confidence in the obtained scale 

values. These are 1) that the internal sensation •E
i 
is related 

to the physical stimulus D i 
by a power function, 2) that the 

shape of the distribution on the f dimension is reasonably logis-

tic and 3) that the psychophysical function relating D and 1 is 

as specified in equation (1). The second and third of these can 

be tested using the same data used in the scaling analysis. 

Evaluating the first is substantially more complicated and needs 

an additional experiment. As such, it will be discussed last. 

23.2.1 leelins tbe LIM Di Ibk 

This test involves an examination of the plots in Figure 4. 

(Normally, this test will be carried out before any further 

analysis is undertaken.) If the assumption about the logistic 
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shape of the 	distribution (and the placement of criteria) is 

correct, each plot should be well described by a straight line. 

The linearity of these relationships can be tested by comparing 

the values of the correlation coefficients to a criterion value. 

Obtained values less than the criterion would suggest that the 

assumption is incorrect. 

The correlation coefficients can be found on their res-

pective plots in Figure 4. As with the test of normality in the 

Thurstonian analysis, a value of .90 should serve as the criter-

ion for.four-point plots while a value of .988 should be used as 

the criterion for three-point plots. In every case, the obtained 

value of the correlation coefficient is larger than the criter-

ion, suggesting that the assumption is valid. 

As before, these tests of distributions are not strong ones. 

If the number of categories were larger than five, the test would 

be more powerful. However, in the present circumstances, these 

plots will never have more than four points. Hopefully, most 

will have all four points although the test can be performed with 

a three-point plot. If a plot only contains one or two points 

the test cannot be performed. 

Zeetieu 	21am Q. 	Jayluebyeigel Eunglisea 

The proposed form of the psychophysical function is given in 
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equation (1). If one inverts both sides of this equation and 

then subtracts one, the following relationship is obtained: 

( D. 
1 

- 

t 
rn  

The expression on the left-hand side has a couple of uses and has 

been given a designation of it.s own, JJ •  If we take logarithms 
mi 

of both sides, we next obtain: 

ln 	(J ) 	G ln D. 	- G ln ,E,  
mi 	 1 

Thus, a plot 'of the values ln (j ) against ln r should produce 
m• 

a straight line with a slope of 	and an intercept of - G ln D . 

(The 	values values are contained in Table 14.) 

Until now, we've considered stimuli Z.
1 

to
5 

as arbitrarv 

and not as representing particular values on the D dimension. In 

order to complete the analysis, we will need to specify values 

for each stimulus on D. As Allnatt (19.79) • notes  this is more 

difficult than it sounds, "It is, however, sometimes necessary to 

spend a little time searching . for a suitable objective measure of 

impairment that can be simply related to its subjective effect" 

(p. 615). For the prescrit  example we plan to use signal to noise 
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1 

ratio in decibel units (dE). The problem here is that dB is 

already a log scale raising the ouestion of whether it is the log 

of logs we're interested in or the dr values themselves. For our 

purposes, we'll just use the scale values themselves, arbitrarily 

assigned to be: 

ï 1 = 25 dD, 	= 20 dr,, L, = 30 dF, ;: = 25 OD, and 2:
5 

= 15 dB. 

(rote: rer.enber, under normal circumstances the referent,
1

r 

will vary along a number cf impairrrent dir(ensions. 	Thus, it 

would not be included in this analysis. 	It's includeo here just 

te aid in the presentation  of the example.) 

Uhat we're about to do is plot the logarithms of the 12 s 

against cur dE values which are already expressed in log units. 

If the model ecjuation is correct, we should observe a straight 

line with Elope C. This plot is contained in Figure 5, with the 

slcre, interce .p.t and correlation coefficient listed on it. 

The test once again involves the obtained value of the 

correlation coefficient. If it is larger than a criterion value, 

the fit of the model eouation is acceptable. The choice of 

criterion is not as straichtfcrward as in previous analyses 

because it will depend on the number cf points in the plot which 

will vary witt the number of stimuli beine scaled. Here, there 

are 5 stimuli and,thus, 5 points. Ue therefore have 3 (E-2) 

degrees of freedom. The criterion value should be .805. The 
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correlation coefficient is greater than .805 . Thus, the model 

equation seems to be a reasonable one. 

One additional thing which can be determined here is the 

value of D , the stimulus that produces a scale value on the î 

dimension of .5. The intercept of the line in Figure 5 is 

(- G ln D 1, and .O is defined by the slope. Thus, 

Ds are already in log units: 

intercept 	 (1.8496) 
= 	 = 19.91 

- G 	 .0929 

2.1.2 Zzâlejalinu lbe Zelexe Pf 

The first assumption of Allnatt's technique, the power 

law assumption, has two important implications. One is that the 

psychological representation of a stimulus is ultimately uni-

dimensional in a straightforward way. The issues involved in 

this assumption and the implications of multidimensional repre-

sentations will be discussed in chapter 5. The other implic-

ation, that the physical and hence psychological dimensions have 

true 0 points and, thus, that ratios on the .e dimension are 

meaningful, is the issue to be discussed here. 

The technique to be used does not involve the data al-

ready collected for the scaling analysis. Instead, it requires 

data from an independent experiment which should be carried out 
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before applying Allnatt's technique. The experiment allows an 

assessment of the physical and corresponding psychological dimen-

sions themselves. If successful, it indicates that ratios on 

these dimensions are meaningful and, thus, substantiates the 

notion of psychological and physical 0 points. 

The technique was developed by Fagot (1978). A number of 

stimuli (5-7) varying along the physical dimension of interest 

are selected. Suppose for the present example that five stimuli 

are selected (call them e, b, g, jj, and e in increasing magni-

tude). Pairs of these stimuli are presented to an observer whose 

job it is to produce a ratio of magnitudes of these stimuli on 

the e, dimension. These pairs should be presented randomly a 

number of times to provide stable estimates of the ratios. These 

mean ratio estimates can then be placed in a table as shown in 

Table 15. 

The first aspect of the data to examine is refered to as 

the monotonicity rule. Moving both from left to right across 

columns and from top to bottom within each column, the ratios 

should decrease monotonically (i.e, successive ratios should be 

less than their predecessors). In the present situation, there 

are no violations of this rule. 

The second step in the evaluation procedure is a bit more 

complicated. All tetrads of the stimuli are listed and (label- 
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ling the stimuli in a tetrad 1, 2, 3 and 4 in ascending order) 

the quantities
14 

x B23 and E13 x
24 

are calculated. (E 	is 
XY 

simply the ratio from the data matrix relating stimulus 	to 

stimulus Z.) The resulting ratio products for the example are 

listed in Table 16. 

Demonstrating that the physical dimension has ratio pro-

perties is essentially a matter of demonstrating that the ratio 

products in the two columns of Table 16 are identical. Calcul-

ation of a correlation coefficient would be inappropriate here 

because it would be insensitive to certain types of differences 

between the two columns (e.g., if the two columns differed by a 

constant). Instead, a test developed by Bartko (1976) can be 

used. A one-way repeated-measures analysis of variance (AMOVA) 

is carried out on the ratio products in Table 16 treating the 

tetrads as observers and the columns as two levels of an in-

dependent variable. The ArovA table is presented in Table 17. 

First an f ratio for columns is calculated. It should be 

nonsignificant indicating no overall difference between the two 

columns. Here, the E value is 6.77 while the .05 cutoff for 1 

and 4 degrees of freedom is 7.71. Thus, no problems have arisen 

yet. (In actuality, to maxiuize the possibility of finding 

nonratio scale tendencies, it would be better to be more liberal 

here and use an alpha level of .10. The criterion f value would 

then be 4.54 meaning that the test would fail. However, for 

demonstration purposes, we'll assume our test has succeeded so 
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and continue.) 

The final step is to produce an .1 ratio for tetrads. How-

ever, the one shown in the ANOVA table is not the one we're 

looking for. To create the proper f ratio we use the fact that 

we've failed to find an effect for columns and assume that its 

mean square represents only error. Thus, a new error mean  square  

is created by pooling the sums of squares and degrees of freedom 

from the column effect with those for error. The resulting 

pooled mean square (ms ) is indicated in Table 17. This value is 

then used to create the f ratio for tetrads as shown in the 

table. 	The resulting E value of 20.05 is compared against 

the .05 criterion for 4 and 5 degrees of freedom of 5.19 (actual-

ly, here it might be better to be a bit more conservative and use 

an alpha of .01, that value is 11.39). In any case, the obtained 

value far exceeds either criterion indicating that the variance 

in the data in Table 17 is almost entirely due to differences 

between tetrads and not to differences between columns  or  random 

error. Thus, we can conclude that, for our purposes, the two 

columns match and that the creation of a ratio scale is possible. 

Whenever this test is undertaken, it will be important to 

calculate both I.  ratios. In order to validate ratio scaling, we 

have to show both that there is no overall difference between 

columns (the first test) and that error variance plays a minor 

role in the overall variability (the second f test). Thus, the 

far 
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point becomes that most of the variance must be due to differ-

ences between row means as it was in this example. A measure of 

the proportion of variance due to the differences between rows 

(Bartko, 1976) is given by: 

MS
tetrads 	

- MS 
pooléd 

MS 
tetrads 

+ (C-1)  MS 
pooled 

where .Ç is the number of columns. Here the value is .965 indic-

ating that row differences account for 90.5% of the variance. 

The remainder of the variance (i.e., 9.5 6) is attributable to 

column differences and error, two factors which, for the present 

data set, we have concluded are unimportant. 

Successful completion of the test described above in-

dicates that . the data satisfy Fagot's (1978) minimum requirement 

for the creation of a ratio scale (what he calls C3). To com-

plete this evaluation we next must determine whether the scale 

values are reasonably well described by a power function. There 

are two ways of aCcomplishing this. One way would be carry out a 

magnitude estimation experiment using the dimension of interest. 

The only caveat here is that the stimulus which is used as the 

standard should be more intense than any of the comparison 

stimuli (in the present case, this means it should have a greater 

amount of impairment). Thus, the task would actually be a frac-

tionation task. (The reason we would have to use the greatest 
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magnitude stimulus as the standard is because satisfying Fagot's 

C3 requirement only guarantees that we can generate a ratio scale 

under this specific condition.) The second way to do this would 

be to recognize that a fractionation experiment has already been 

done within the context of the study reported in Table 15. That 

is, the values in the rightmost column of Table 15 are exactly 

the data needed here. In each case a comparison of less inten-

sity has been compared to the highest magnitude stimulus in the 

set and a ratio judgment has been given. 

The analysis to be done on these data is a standard one. 

According to the power law equation: 

s.  = a D 

C,  ._) .J  

ln S 	=  in  a 	b ln D. 

Thus, if the logarithms of the values in the rightmost column of 

Table 15 are plotted against the logarithms of p, .we should 

observe a straight line with slope 12. These data are plotted in 

Figure 6. (Remember, the D s are already in log units.) 

The fit of the straight line to the points is again 

evaluated using a correlation coefficient which in this example 

is .9909. The criterion for evaluation would be the one-tailed 
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cutoff for E-3 degree of freedom ( i1. is the number of stimuli so 

here (-3.2). This value is .900. Thus, the fit appears to be a 

good one. Based on this result and the success of the preceding 

analysis, the assumption of a power function relationship between 

12 and seems to be a reasonable one. Also note that this 

analySis gives us an estimate of .13 for L, the exponent in the 

power function (and the slope of the best-fitting  lire). 

LbITILtimily Pi Effgglz 

Once we have verified the applicability of Allnatt's 

procedure to  more  than one physical dimension, the çuestion of 

coexisting impairments arises. Allnatt (1975) argues that the 

effects of coexisting impairments are additive in their 17 values 

(remember j = 1/1
m 

- 1). 	As far as we can tell, he has no 

theoretical basis for this claim. Pe does, however, produce one 

empirical result which supports his position. 

In his demonstration, random noise and long-delayedecho 

were selected as the two dimensions of interest. For both dimen-

sions, single impairment source stimuli were scaled and the 

relationship given in equation (1) was validated. (No attempt 

was made, however, to validate the ratio scale assumption.) 

Predictions,were then made for stimuli containing coexisting 

impairments by adding the lj scores appropriate to the level of 
Tri 

impairment on each dimension to get a total ja . This score was 
r.i 
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then reconverted to a 	score by the inverse of the .1,1 transform- 

ation: 

= 	1 / (1 +
m 

These scores represent the predicted 	s which were then compared 

to the 1 s obtained in the scaling procedure. The results, 

reported graphically, suggest a good match between predicted and 

s. observed t 

Allnatt (1979) also reports a similar investigation 

carried out by the British Broadcasting Corporation using a 

couple of additional impairment dimensions. Apparently, this 

analysis was also successful, suggesting that the technique may 

hold a certain amount of promise. However, as Allnatt (1979) 

notes, if the effects cf impairment on two physical dimensions 

are visually similar, the additive rule will not hold. Thus, 

before additivity is ever assumed for any two dimensions, it 

should be evaluated empirically. 

The choice of the optimal procedure for evaluating the 

match between the observed and predicted s is not clearcut. 

What we are trying to do is take a large number of observed 

values and determine whether they equal their corresponding pre-

dicted values. Presumably a factorial design will be used in 

which stimuli are created by crossing e levels of dimension 1 
with gi levels of dimension 2. Thus, the number of observed 
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values will be 	x g. (There will, of course, be the same number 

of predicted
m 

values.) Cur suggestion here is that these 

values be arranged in two columns such that one column contains 

the observed 1 s and the other the predictedt in s. The same 

analysis as was carried out on the values in Table 16 can then be 

carried out here. Again,  there should be a nonsignificant f when 

testing the difference between columns and a . highly significant E 

when testing the difference between rows (i.e., stimuli) with the 

row test being carried out using the pooled mean square. If so, 

the claim Can ihen be made that the two dimensions do combine 

additively. 

If three or more dimensions are used, the same evaluation 

procedure should be followed. The only difference is that the 

number of stimuli and, hence, the number of rows would increase. 

kLt ZUEULLY 

For both Thurstone's and Allnatt's techniques we have row 

comileted our discussion of the three issues set out in this 

chapter's first paragraph: a) the assumptions; underlying the 

technique; b) the nuts and bolts of the analysis procedure; and 

c) the method of determining whether the technique can be legiti-

mately applied. In reference to the first issue, Thurstonian 

scaling has fewer and less strict assumptions. The assumptions 

involve the placement of normal distributions and criteria on the 

dimension. 	Allnatt's . set of assumptions involves assumptions 
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about a) the nature of the relationship between the physical 

dimension, D, and J51 h) the transformation of the ,5 dimension to 

produce the 1 dimension and c) the shape of the distributions and 

the criterion placements on t. In reference to the second issue, 

the procedures both are fairly cut and dried in that they can be 

implemented in a straightforward, step-by-step procedure. In 

reference to the third issue, both techniques allow each of their 

assumptions to be tested as outlined in the chapter. In chapter 

four our discussion will turn to ways of analysing our results, 

that is, the scale values we have discovered. Fowever, because 

the reader may have missed it, we should first mention an inter-

esting phenomenon. 

For both techniques, issues b) and c) were discussed by 

using sample data and going through the procedures in a step-by-

step fashion. The data, of course, were totally fabricated. 

ronetheless, both techniques passed all tests with flying 

colcurs.  s  such, one must realize a couple of things. First, 

at best, these tests of the assumptions are not powerful. It 

appears unlikely that either technique will be invalidated very 

often. Second, validation of one technique definitely Coes not 

invalidate the other. In most cases both mav be reasonable. 

Therefore, in circumstances in which both can be applied (i.e., 

when the stimuli vary on a single physical dimension), the choice 

of technique may be somewhat arbitrary. For the present we just 

have to accept the fact that you can never tell which way the 

train went just by looking at the tracks. 
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CHAPTER 4 - ANALYSING SCALE VALUES 

The previou s .  chapter contained a complete  discussion of the 

issues which should be considered when selecting one of the 

recommended scaling techniques over the other. Assumptions and 

how to test them were layed out for both techniques and the pro-

cedures for generating scaleyalues were detailed. Regardless of 

which scaling technique was selected, its ultimate purpose was to 

produce scale values for each stimulus in the experiment. . Once 

this has been done and all relevant tests of assumptions have 

been complete d , additional analyses may be performed. If the 

Thurstonian technique were used one might wish to determine which 

stimuli have scale values significantly different from the scale 

values of the other stimuli. One might also wish to determine 

whether the scale,values vary as a function of different experi-

mental conditions. For example, if the data were collected under 

2 or 3 different sets of instructions, the nature of the 

instructions  couic have a strong influence on the obtained scale 

values. Thus, it would be important to analyse the effects of 

such a variable. 

The preferred method of analysis would be the ArovA. If the 

question is whether the scale values are significantly different 

from one another, a simple one-way ANOVA coulà be carried out 

with stimuli as the single factor. If one or more additional 

factors are introduced, a standard multifactor ANOVA would be 

preferred and interactions could be examdned. Planned and/or 



post hoc comparisons would also be useful. 

There are, of course, two major assumptions involved in 

doing these types of analyses. The first is the normality 

assumption. Violations of this assumption should not be a pro-

blem here, however, since tests for normality have already been 

performed. If the normality assumption were incorrect, we 

wouldn't have reacheô this point. The second assumption is that 

cf homogeneity of variance. The remainder cf this chapter will 

be devotee to a discussion of this issue. 

In Mlnatt's technique one woulc not neeè to test scale 

values to determine whether they are àifferent from one another. 

The goal of his technique is to specify mathematically ho w.  scale 

values vary as the physical dimension varies. If successful, the 

question of which stimuli are different from which has alreaày 

been answered. However,  the  c:uestion of whether the scale values 

vary as a function of aàôitional factors woulo be relevant. Tc 

answer this cuestion, we woulo not recon:mend testine the scale 

values directly, however. Instead, it seems more reasonable to 

test the parameters that  cive  birth to the scale values, C and 

Once again, the ANOVP. is the preferred method of analysis. 

With respect to the normality assumption, the sampling distrib- 

utions oiC and D may not be normal. rowever, here the certral 
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limit theorem can  corne  to our aid.. As long as the number 

observers per condition is more than twenty, the normality 

assumption should be satisfied. Since we have previously sug-

gested using up to fifty observers there should be no problems 

here. Again, however, there could be problems with the homo-

geneity of variance assumption. It is to that issue that we now 

turn. 

rETER,Q.QFPEITY  OF VLLIAUCE 

In the following examples we will be assjlraing that the 

Thurstonian scaling technique has been carried out on E stimuli. 

The data to be analyzed are the scale values for each stimulus. 

The exl-ression, i' 
represents the number of, scale values  pro-

duce d for stimulus i. This value is ec:ual to the number ci 

observers who have scaled stimulus j. Under normal circumstances 

all observers will scale all stimuli, meaning n will be a con- 
i" - 

stant. 	Fowever, for cciiiileteness sake, the followincj discussion 

will include examples in which the ,p s are not assumed to be 

ecual. 

For present purposes, the most important assumption un- 

derlying the APOVA is that the populations from which the 

samples  are cirawn have equal variances. 	is r:irk (192) ha s 

pointed out, none of the ArOVA's assumptions are ever fully 

satisfied by real data; the important questions to ask are what 

effects do violations of the assumptions have on the significance 
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levels and the power of the test, and what measures can be taken 

to deal with those assumptions which are found to have been 

violated. 

A number of studies have demonstrated that the ANOVA is 

relatively robust to violations of the assumption of equal vari- 

ances, exsaieelj lbg giutelg,5 beye 	,glzeâ (Glass, Peckham, and 

Sanders, 1972). 	The exact effects of unequal variances are 

difficult to calculate, but, generally, the actual significance 

level of the test is somewhat higher than the nominal level. 

Thus, the analysis is more likely to result in a Type I error 

(i.e., a false rejection of the null hypothesis). A summary of 

the effect of unequal variances on alpha -- the probability of a 

Type I  error -- is shown in Table 18. Here, the nominal alpha 

is .05 and, as can be seen, except for the case of many samples 

(1; = 7) and small sample size (D. = 3), inequality of variances 

has only a small effect on the actual alpha. However, most post-

hoc multiple-comparison procedures (e.g., Tukey Honestly Signif-

icant Difference, rewman-Keuls, Duncan Multiple Range, Fisher 

Least Significant Difference, and Scheffe) also require homo-

genous variances, and the robustness of these tests to heter-

ogeneous variances is unknown, even with equal sample sizes 

(Games, Winkler, and Probert, 1972). With respect to the power 

of ANOVA, calculations are impossible if the assumption of equal 

variances is violated since there would be no true population 

variance ( de). Budescu (1982) presents a method for computing 
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the approximate power, but this procedure has not received wide- 

spread acceptance. 

If sample sizes are unequal -- a situation that should not 

arise in the present circumstance -- unequal variances can have a 

serious effect. The direction of this effect depends upon the 

magnitudes of the variances of the larger samples relative to 

those of the smaller samples. The mean square error (MSE) -- the 

denominator of the f ratio in one-way fixed-effects ANOVA -- is a 

weighted average of the sample variances with greater weight 

being placed on the variances of the larger samples. Thus, if 

larger samples have larger variances, MSE will be inflated and 

the probability of a Type II error (failure to reject a false 

null hypothesis) will be increased. Conversely, if larger samples 

have smaller variances, MSE will be smaller than it should be and 

the Type I error rate (false rejection of the null hypothesis) 

will be increased (Lindman, 1974). 

In this chapter, attention will first be paid to statistical 

tests designed to detect whether the assumption of equality of 

variances has been violated. Following this, a number of pro-

cedures will be described whose purpose is to equate Initially 

unequal variances or to compensate for unequal variances in other 

ways. Finally, a section is devoted to analytic procedures which 

can be used instead of the ANOVA. 
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Uele .pf 	fàf Nexiezeek 

If sample sizes are equal, several authors recommend that 

the equality-of-variance assumption of ANOVA not be tested (e.g" 

Keppel, 1982). This is because, as noted, a violation of the 

assumption has only a minor effect unless the D i  are very small. 

Somewhat surprisingly, two of the most commonly cited tests of 

equality of variances -- Hartley's and Cochran's -- can only be 

performed when sample sizes are equal or nearly equal. These 

tests' popularity is due to their computational simplicity and, 

for this reason they are described below. Two additional tests 

are also described -- Bartlett's and the Dox-Scheffe -- which, 

while computationally more laborious, can be applied when sample 

sizes are unequal. The Box-Scheffe test has an additional advan-

tage which will be discussed when the test is described.. Two 

simple numerical examples will be employed to illustrate the use 

of the tests. In each case, the null hypothesis: 

2 
: 	Cr = 	Cr = <7 	. • • = C7 

1 	3 

will be tested against the alternative hypothesis that at least 

one variance is significantly different from the others. 

1.1.1 Hartley's E 	Test 
max 

The test statistic for this test, f 	, is computed as the 
max 
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ratio of the largest sample variance divided by the smallest 

sample variance. Consider the following sample data. Here four 

stimuli have been scaled (E = 4) by six observers (D. =6): 

n = 6 	n
2 

= 6 
1 

2. 
 S = 12 

1 	 5 2 =8  

n
3 

= 6 - 

z 
S
3 

= 25 

= 6 

s
2 

= 6 
4 

The largest variance, 
3
2

, is 25, the smallest, .e
4
2

, is 6, so the 

test statistic: 

. 

Emax 	= 	25 	=4.167  6 

The critical value, E, is defined by E (the number of stimuli or 

samples),  n .  - 1 (the degrees of freedom associated with each 
1 

sample variance), and 1 - 	, and can be found in Table B.7 

(copied without permission from Winer, 1971). With p< = .05, 

the critical E, E .95 
statistic (4.167) does not exceed this critical value, FI 	is not 

o  
rejected and equality of variances can be assumed. (Note: assum-

ing equality of variances is tantamount to accepting the null 

hypothesis, a dubious practIce unless beta -- the Type II error 

probability -- is known, but one which most researchers seem 

willing to adopt in this case.) 

is 13.7. 	Since the obtained test 
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le1.2 .CpehirAple Ig.51 

In this test, the test statistic, C, is computed as the 

ratio of the largest sample variance to the sum of all sample 

variances. Using the same sample data as above, the largest 

sample variance is ,e
3
2 
 (= 25), and the sum of all the variances 

is 51, so the test statistic: 

= 	= .4902 
51 

The critical 	value is defined by E, D - 1, and 1 - 	, and 

can be found in Table B.8 (copied without permission from Winer, 

1971). 	With "7--'‹  = .05, the critical
4,5,.95

, is .5895. 

Again, since the obtained test statistic does not exceeC this 

critical value, H 	is not rejected and equality of variances can 

be assumed. 

With respect to both of the above tests, Winer (1971) notes 

that if sample sizes are nearly equal, the largest D. can be used 

to determine the appropriate degrees of freedom (D - 1) with 

which to enter the critical values Tables. In most cases, the 

Hartley's and Cochran's tests will lead to the same decision 

although, given that Cochran's procedure employs more of the 

information in the sample data, generally it is slightly more 

sensitive than Hartley's test. 
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1.1.2 efuliallLe zegt 

This test is more appropriate than either Hartley's or 

Cochran's procedure if sample sizes are unequal. It is also more 

powerful. It should not be used if any
i 

is smaller than 3, and 

most D 's should be greater than 5. As will be seen, it is more 
1.  

complex computationally than the previous tests but in many cases 

it is the preferred procedure. 

The test statistic for this procedure is a chi - square  

statistic, computed as: 

= 2.303 	(N - K)1og
10

MSE - 	(n - 1)log
10

S
i
2  

i=1 

Where: 2.303 is a constant 

K = number of samples (stimuli), 

N = total number of observations across all K samples, 

ESE = mean square error (defined below), 

n - 1 = degrees of freedom associated with each sample 

variance (S 2 ), 

• and 	.Ç = 1 + 	 
3(K - 1) 

i=1 

■■• 

I1 -1 	 N - K 

Using the same data as before, 	is computed as: 

=1+ 	[ 
3(3) 	

1+1+1+1 - 11 
5 	5 	5 	5 	20 



USE = 

i=1 

= 1.0792 

= 	.9031 

= 1.397S: 

The critical is define6 by 	- 1 and all;ha. 	In this examLle, X 

= 1.0833 
K 

(n
i 

- 1) 5
i

2 
= 5(12) + 5(8) + 5(25) +5(6) = 12.75 

- 	 20 

log
10 - 

USE = 1oo10 12.75 = 1.105 5 
- 	 ' 

loo s 2 = loo-10 12 
- 10 1  

	

2 	 r.  loc 	S 	= lcc u 

	

- 10 2 	10 

2 loc s 	= loo 1025 

loci S
4
-  = loci 6 

10 
 

- 10 

and, = 2.303 	(20)(1.1055) - ((5) (1.07.9;2) + (5) (.9031) 
1.0033 

]

-F(.5) (1.3979)+(5) (.77 0 2)) 

[22.11  - 20.720] 

= 2.U20 

the critical 	
';,.o5 

, is  7.01.  Since the obtained value of 

the test statistic, 2.004, does not exceed the critical value, 

o 
is not rejected and equality of variances can be assumed. 
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10.1,4 	 .Teel 

1 
Each of the previous three tests -- Hartley's, Cochran's, 

and Bartlett's -- provides a valid test of equality of variances 

àidf lulJer1yin.2 epeuletipp ;JielxibiltiDD ere Iga»el. However, 

if the normality of the distribution is either unknown or if it 

is known to be nonnormal, these tests are inappropriate (Box, 

1953; Eartin and Games, 1977; Games, Keselman, and Clinch, 1979). 

If they are used when the distribution is not normal, the null 

hypothesis of equal variances may be falsely rejected and re-

searchers may wrongly believe that they cannot proceed with an 

ANOVA. This is especially problematic since the ANOVA itself is 

relatively insensitive to departures from normality. (In the 

present circumstances, however, a test for normality will already 

have been successfully carried out. Thus, the following dis-

cussion is only for the sake of completeness.) 

A test first .proposed by Box (1953), later modified by 

Scheffe (1959), and now referred to as the Box-Scheffe procedure, 

can be used whenever nonnormality is suspected. It can also be 

used when sample sizes are unequal and, although it is computa-

tionally quite laborious, it is probably worth the effort. To 

describe this procedure, consider the results from another scal-

ing study using E = 4 stimuli, each scaled by D = 8 observers, 

as shown in Table 19. 



For the data in Table 22, find the weighted means f( 	) c r 
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The first step in the procedure is to divide the D, obser-

vations in each sample randomly into a number of subsamples. 

According to  Carnes, Keselman, and Clinch (1979), the optimum 

size of the subsamples (D.) is the nearest integer value to 

In this example, with D, = 8, each subsample should 

consist of (8)
1/2

, or 3 observations. Thus, the 8 observations 

in each sample are randomly divided into 3 subsamples of size 3, 

3, and 2, as shown in Table 20. (Note: for smaller D,, the use 
1 

of D, = 2 for subsamples is DD1 recommended (Gartside, 1972; 
3 

Games, Keselman, and Clinch, 1979), since this will result in 

considerably less power than with subsamples of intermediate 

size.) 

The second step is to compute the variances of each of the 

subsamples (Table 21) and to convert these variances into natural 

logarithms (Table 22). Finally, as illustrated below, an ANOVA 

is performed on these locarithms to test the original equality of 

variance hypothesis. 

each group, weighting by the subsample variance degrees of 

freedom (i.e., D - 1 = 	,). Thus, for group 1: 
.1 

7=  2(-1.0986) + 2(-1.0986) + 1(1.5041) 
.1 	 (2 + 2 + 1) 

= -.5781 (with 	= 5 ) 
.1 



1 
1 
1 
1 
1 

1 

In like manner, compute: 

7.2 = -1.0175 (with 	= 5) .2 

i
.3 

= -1.0175 (with 	= 5) 
.3 

.4 
. 	.0085 (with ?)/ 	= 5) 4 

And the grand mean of all the cells, Z 
• • 

Il 
--f 	= 	•Z ï= (-.5781) + (-1.0175) + (-1.0175) + (.0085) i.  

I 
.. 	.r.. ■ 	. 

	

K 	 4 

1 
Then compute the following 3 statistics: 

I -  ' 	7 2  = 20(-.6512)
2 

= 8.4812 
• • 

.2.2'6 	4  = 2(1.0966) 2 	2('-1.0986) 2 	eee 	1(-.6931)
2  

j 	sii  Ji 	 1  = 24.9005 

III 	7 2 = 5(-.5781) 2  + 5(-1.0175) 2  + 5(-1.0175) 2  + 5(.0065) 
.i 

= 12.0244 

Finally, compute the sums of squares for treatment (SST) and for 

error (SSE): 

102 

= -.6512 (with 	= 20) 
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SST = III - I = 12.0244 - 8.4812 = 3.5432 

SSE = II - III = 24.9005 - 12.0244 = 12.8761 

and corresponding mean squares: 

MST = SST/(K - 1) 	= 3.5432/3 = 1.1811 

MSE = SSE/K(n 1  - 1) = 12.8761/(4 x 2) = 1.6095 

where p' is the number of subsamples per group,and the test 

statistic, F: 

F = MST/MSE = 1.1811/1.6095 = .7338 . 

The critical 	, E 	for this example, is 4.07. Since the 
3,8,.05 

obtained test statistic does not exceed this critical value, E 
o  

is not rejected and the variances can be assumed to be equal. 

Clearly, this procedure is considerably more laborious than 

either Hartley's or Cochran's test and, if the treatment popula-

tions are known to be normal and the sample sizes are equal, 

these are the recommended tests (Games, Winkler, and Probert, 

1972; Church and Wike, 1976; Keppel, 1982). If normality can be 

assumed but the sample sizes are unequal, Bartlett's test is 

recommended. If normality cannot be assumed, the Box-Scheffe 

procedure is preferred. 



104 

Note that one disadvantage of the Box-Scheffe procedure 

results from the initial random assignment of sample observations 

to subsamples. Conceivably, different researchers could produce 

different subsamples and could reach different conclusions from 

their analyses (Games, Keselman, and Clinch, 1979). An alter-

native procedure, called the jackknife test (Miller, 1968), also 

divides observations into subgroups but has the advantage that 

all users will obtain the same results with the same data. In 

this procedure, the original D
i 
observations are divided into 

i
subgroups, each with D - 1 observations (i.e., one observation 

is Cropped in each subgroup). This procedure has been shown to 

have greater power than the Box-Scheffe test but it also results 

in an inflated alpha (Martin and Games, 1977). The Box-Scheffe 

test maintains alpha close to its nominal value and affords 

reasonable power (Keppel l  1982) so, overall, it is the recommend-

ed procedure (see Brown and Forsythe, 1974, however, for a con-

trary  opinion and  another test of equality of variances). 

1.2 2xpggelmee fû,r ,Eptuet.insl JUaDele YeLiimege 

Assuming one of the above tests has been applied and the 

null hypothesis of equal variances has been rejected, it may 

still be possible to perform an ANOVA. A number of procedures 

exist for transforming the original scores (Z.,) to scores (ï..) 
13 	 13 

whose scale has more desirable statistical properties. 	In this 

section, four of the most commonly-used transformation procedures 
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are described, followed by a brief discussion of their advantages 

and disadvantages. Finally, some other correction procedures are 

described which can be adopted in certain ANOVA designs. 

1.2s1 	1r,ânefgalletieuu 

1.2.1a1  .ezilexer"BeDi 2x.ânefD,rmielipn 

In certain distributions, sample variances are proportional 

to the sample means (e.g., the Poisson distribution, in which 

e=it ). (Such a distribution frequently occurs when the data 

represent frequency counts of events which have small probabilit-

ies of occurrence.) If such is the case, transformed scores 

(x.Jcanbecomputedfromtheoriginalscores(z)as: 
13 	 i3 

Y.. 
	

Xii  

If anY ïij is less than 10, a more appropriate transformation is 

given by: 

or, x ..  + 1 
13 

y. 	= 

The latter transformation has been recommended by Freeman and 

Tukey (1950), and tables for the transformation are available in 

Mosteller and Bush (1954). 
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12.uxilbrLiP Txengi.Qxr12(iiina 

If standard deviations rather than variances are 

proportional to the sample means -- as often occurs if the data 

are positively skewed -- an appropriate transformation is: 

Y
ij 

= loa 	X.  
10 13 

Y =boa 	(X 	-I- 1) 
iJ 	10 	ij 

The latter is  particularly effective when some of the original 

ï
ij 

are equal to zero or are very small (Kirk, 1982). 

Zecjrocal TransfprEtjon 

If the data are skewed such that the sample variances in-

crease as a monotonic nonroportional function of increasind 

sample means, as an alternative to the logarithmic transform-

ation, an appropriate transformation may be: 

= 1 / X „ 
1 3 

or, 	 Y. 	= 1/(X
ij 	

1) 
13 

e equal to zero 13 

or ,  I 

(Kirk, 1982). 
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Arg.eip Uelleflumelien 

Although such would not occur in the present circumstances, 

if the Z.. are proportions, then the sample variances will almost 
13 

certainly differ from one another as a function of the sample 

means. In this case, an appropriate transformation is: 

ij 
= arcsin 	X

. 

which should make the variances approximately eçual, independent 

of the means. 

The major advantage of these procedures is that, under 

different conditions, they may equalize (or approximately equal-

ize) initially unequal variances, thereby satisfying the assump-

tion for ANOVA. The major disadvantage, however, is that the 

sample means will also be transformed and, thus, inferences 

regarding treatment effects must be made with respect to the 

transformed data. Clearly, this could produce results which are 

a bit hard to interpret. In the case of proportions, for exam-

ple, the statement that the means of the proportions differ 

across samples is easy to understand. In contrast, the statement 

that the means of the arcsins of the square roots of the propor-

tions differ across samples is considerably harder to interpret 

(Lindman, 1974). A second disadvantage is that for some data, 

none of these transformations has a noticeable effect (e.g., Wike 
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and Church, 1982). In many cases, however, the transformations 

will not only equate variances but also may minimize skew. In 

such cases the use of transformed scores would increase the power 

of the ANOVA (Levine and Dunlap, 1982, 1983; but see Games, 1983 

for a contrary opinion). 

Finally, transformed scores may not be advisable in 2-way 

.(or higher order) ANOVA designs. Transformations can have large 

and undesirable effects on the nature and size of interaction 

effects; in fact, interactions which really did exist  in the 

original data may now fail to be significant (Lindman, 1974). 

1.2.2 .elelUelige1 efax£gliûne. 

A number of procedures have been proposed to overcome the 

effect of unequal variances on the actual significance levels in 

the ANOVA. Attention will be given to some of these in this 

section. 

1.2.2.1 DDZ .c12XX.e&i.i.DD 

The Box correction (Box, 1953) is applicable in ANOVA de-

signs , with randdm effects (1-way or higher-order), or, in fact, 

in any design for which the denominator of the f ratio is an 

interaction mean square. The procedure allows the researcher to 

estimate the actual significance level of an obtained E test 

statistic (or, more properly, a range of values within which the 

actual significance level falls). In the procedure, the numer- 
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ator and denominator degrees of freedom ( 	and L , respective- 

ly) are divided by a constant, g. 	The exact value of g is 

unknown, since its magnitude depends on the extent to which the 

equal-variances assumption has been violated, but its upper and 

lower limits are and 1, respectively. Thus, the actual sig-

nificance level of the E test statistic can be found twice: once 

with g set to 1 and degrees of freedom /1 and /1 (i.e., 

the regular degrees of freedom) and once with .p set to 	and 

degrees of freedom, 	/ 	(or 1) and 	 Note that the 

value of the test statistic remains the same under both con-

ditions but its level of significance will change, as illustrated 

in the following example. 

Suppose 	is 3, 	-2„ is 15, and the 	test statistic is 

5.25. In the regular procedure (using = 3, = 15), an E of 

5.25 has a significance level, D, of .02. With the correction 

degrees of freedom ( \di = 1, = 15/3 = 5), an I of 5.25 has a 

significance level of .08. The researcher can thus conclude that 

the actual significance level of the test is between .02 and .08, 

even though the assumption of equal variances has been violate d . 

If the violation were relatively small, the true significance 

level would be close to .02. If the violation were large, the 

true significance level would be closer to .08. 
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1.2.22Zeki.e.e.eirr,GzegillieM.ge CD/xeollûn 

This procedure (Geisser and Greenhouse, 1958) is applicable 

in repeated measures ANOVA designs, and also involves a modific-

ation of the degrees of freedom. The obtained f test statistic 

is evaluated against a new critical value that assumes maximum 

heterogeneity of variance. The procedure is quite simple: the 

original Y, and s6 1, are divided by a factor equal to the degrees 

of freedom associated with the repeated factor (or factors). As 

an example, suppose we  have
i
= 6 observers who have each scaled 

E = 4 stimuli. In the regular repeated measures ANOVA, the 

treatment degrees of freedom ( ) is E - 1 or 3, the observer 

D
i 

- 1 or 5, and the interaction (or error) 

degrees of freedom (L__) is (Z - 1)(11 - 1) or 15. If the 

variances are equal, the appropriate critical value for treat-

ments is E
3,15

. However, if the variances are not equal, ,?5 ) and 

are divided by 3, giving a critical value of E If the 

test statistic E exceeds the corrected critical f, the results 

may be considered significant although the variances are unequal. 

1,202,-3 LeDxpiLireele f 	 21Junngd Celee..âxiDn.z 

Instead of performing an overall ANOVA, a researcher may 

wish to test a number of specific hypotheses which were planned 

prior to data collection. The principal advantage of planned 

comparisons is that they can be one-tailed (if desired) and, 

consequently, their critical values are usually smaller than 

those of most post-hoc procedures. 

degrees of freedom is 



n
4 

= 8 

= 13.75 

S
z
= 2.796 

i=l 

where, 
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Consider the following data for E = 4 random samples, each 

consisting of D. = 8 observers: 

n 
1

8 	n
2 

= 8 	n
3 

= 8 

= 6.75 	R 2 = 10.375 	i3 = 8.625 

2 2 
S = 8.214 	5

2 
= 8.839 	S = 9.696 

3 

Here, the ESE turns out to be 7.386. 

First, assume that the variances are statistically equal and 

consier a comparison of the mean of group 1 with the average of 

the means of groups 2, 3, and 4. The contrast coefficients (Ç) 

for  this comparison are 3, -1, -1, and -1, for groups 1 to 4 

respectively. Thus, the null hypothesis is, 

E 	: (33)1 + (-1)A2_ 4- (-12/1
3 	

-I- (-124 4  = 0 
o 	 1 

The f ratio for this contrast is given as: 

F = 	2 
SE ̂  

7 	= (3)(6.75)+(-1)(10.375)+(-1)(8.625)+(-1)(13.75) 
11 

= -12.5 
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A Z 

= (-12.5)
2 

= 156.25 

2 	 2 
and, SE^

Y 
 = VLSE2.  (C. /n ) 

1=1 

2 
= 7.386(3

2
/8 + -1

2
/8 + -1

2
/8 + -1 /8) 

= 11.079 

Thus, E = 156.25/11.079 = 14.103 

This E value would be evaluated against a critical E 
1 	

= 
,Y-K 

E1,28 = 4.20 with 
e< ..,.. .05. 

Now, assume that the variances have been found to be un-

equal, and consider the same comparison, now tested through the 

approximate E procedure. 

As before, 

c 7 	= -12.5 
31  

and, 

= 156.25 

2 
SE^

2 
now = 1/n 	[C S. J 

il  

SO, 

1=1 
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= 1/8 [(3)
2
(8.214) + (-1)

2
(8.839) + (-1)

2
(9.696) 

+ (-1 ) 2
(2.796) 1  

= 11.907 

and, 	 = 156.25/11.907 = 13.122 

(Note: in this example D. is a constant, the term D is being used 

to refer to this common value  of 
1
s.)  

The approximate f ratio is thus somewhat smaller than the 

original E (this may not always happen), but, more important, it 

has to be evaluated against a critical 2 with 1 and degrees 

of freedom, where, 

3 	2 	4 	4 4  
= (n - n ) (SEy ) / 	C

i 
i=1 

4 
=(8

3
-8

2
)(11.906) 

 2/3) 
 (8.214)

2 
+ (-1)

4
(8.839) 2  

+ (-1)
4
(9.696)

2 
 

+ (-1)
4
(2.796) 

= 11.349 

which is always rounded down (in this case to 11). 

The critical 	E
1,11

, is 4.84 with 0‹ = .05. 
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The main difference, in this example, is the loss in degrees 

of freedom. Note that this is only an .eDia.guLtre ilt.g test. 	When 

the D. are fairly large, the approximation is quite good. For 

small D., the procedure is not recommended. If sample sizes are 
2 

unequal, the approximate SE tij  and 	are computed by: 

2 
 SE S') 	= 2 C
2
. S.

2 
 /n. 

a. 	a. 
1=1 

and, SE 	
1 	1 

4 	4 	4 2 
= 	Î, 	[C. 	S. /(n. 	n. )] 

i=1 

1.2.2m4  Igeleb.r.L5Din iTeel 

When E = 2, the usual procedure for testing the significance 

of the difference between means is the two-sample 1 test, 

although an ANOVA can be performed if it is preferred. Like the 

ANOVA, the 1 test reçuires the assumption of equal variances and, 

if the assumption is violated, the following procedure -- the 

Welch-Aspin test -- can be used instead. It can also be modified 

and used as an alternative to the usual post-hoc procedures which 

would follow an ANOVA. 

Consider the following 2-sample data, for which 

n  = 16 	 n  =21  
1 	 2 

= 946.50 	72 = 931.50 1 
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Thus, 
1 	2 

(n
1 

- 1)(1 - C)
2 	

(n
2 

- 1)C
2 

* 
(n - 1)(n - 1) 

1 	2 

S 	437.48 	S 	150.25 
1 

The test statistic, 1*, is computed in a manner similar to 

the usual two-sample 1 statistic, except that individual sample 

variances are used in the denominator rather than a pooled 

variance. 

,1 

2 
S S

2 1 

1 

t* = 	946.50 - 931.50 

437.48 	150.25 
16 	21 

15 

034.497 

= 2.554 

If this test had been a regular 1 test, the critical 	would 

have 35 degrees of freedom, and would be 1.645. For the Welch-

Aspin, the degrees of freedom, 	*, are computed as: 
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1
2/n

1 
where, 

(15)(20) =. Thus, 

S
1
2
/n

1 
+ S

2
2
/n

2 

437.48/16 
34.497 

= .7926 

	

2 	. 2 

	

15(1 - .7926) 	+ 20(.7926) 
 

= 300  
13.21 

= 22.712 

which is always rounded flgain (in this case to 22). 

The appropriate critical  value,* 22 
	

, is 1.717. Since 

the obtained test statistic exceeds this 'value, the difference 

between the means can be considered significant although the 

variances are unequal. 

When E is - > 2 and variances are unequal, a modifiedWelch- 

Aspin test can be used to perform multiple comparisons instead of 

an ANOVA and the usual post-hoc tests. Again, the main differ-

ences between this procedure and . the usual post-hoc tests are 

that individual sample variances are used rather than a pooled 
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MSE, and a modified denominator degrees of freedom ( O z. ) iS used 

to find the critical value. 

Consider the data from the example in section 3.2.2.2, and 

the same contrast that was used in that demonstration. That is, 

H 	(3> + (-1y4 2 	(-1)/t4 3 	(-1)A4 = 0 
0 

For which, 

Y = -12.5 

Following the Welch-Aspin model, SE;
2 

and 1 9: are computed as 

before: 

2 	 2 SE 	= 	C 	S
i
2
/ n

i 
(as in the approximate f test) 

i=1 

= 	(3)
2
(8.214) 	+ (-1)

2
(8.839) 	+ (-1) - (9.696) 

8 	 8 	 8 

+(-1) 
2
(2.796)  
8 

= 11.907 

and, 

« 

t*= 	 =  -12.5 	= -3.622 

SE A 	j 11.906 

Thus far, the procedure is identical to the approximate E 



- 	te.  
1 	 2 	W; 

	 +- 	
1 

2 
W. 1 	= 	3 

4 

2. 
1 

) 

2 
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test illustrated in section 3.2.2.3. Note that I* = -3.623 is 

the square root of f = 13.124. 

The critical value against which the test statistic in this 

model is evaluated is an approximate Scheffe coefficent, 5*, 

given by: 

S* 
( e 	, 

where, 

= K - 1 = 3 

and, 

and .each W. = 
1 

computations for 	.7„  are summarized in Table 23. They lead 

to: 

1 	3 	 (2) (.7950) 	1.5193  
{: .5716 - 	 

r 	42  - 1 	 5.5653 (5.5653) 2  

3 	.5716 - .2857 + .0491] 
15 

The 

= . 



3.165 

= .067 
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So, r= 1 
2. 	.067  

= 14.93 

which is always rounded sil2mn (in this case to 14). 

The critical value can then be computed as: 

S* = 	(3)(f ) 
3,14,.95 

 

= à (3)(3.34) 

For interest, we can compare this value to the critical value of 

the Scheffe coefficient which would be used if the variances were 

statistically equal: 

S =  

(3)(f
3,28,.95

) 

= 	(3)(2.95) 

= 2.975 

Thus, even though the degrees of freedom have been reduceâ from 

28 to 14, the new critical value is only marginally larger than 

I 
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that from the original ANOVA. The new value can be used to 

assess the significance of the test statistic from any contrast. 

Clearly, the procedure is computationally quite laborious but it 

is an appropriate way to deal with unequal variances while sacri-

ficing very little power. 

1.2 bltexiletime iD tbg AuDyL 

If the researcher wishes to avoid the problem of unequal 

variances entirely, a number of nonparametric alternatives to the 

ANOVA can be performed. In most cases, these tests are only 

slightly less powerful than their ANOVA counterparts when the 

assumptions of normality and equal variances are satisfied. If 

the equal-variance assumption is violated, they are an excellent 

alternative to the ANOVA. However, these tests cannot be 

applied unless the experimental design involves only a single 

factor. Thus, interactions between factors cannot be assessed. 

lekl 

Kruskal and Wallis (1952) developed a test statistic for use 

with a one-way ANOVA design which has a sampling distribution 

that is approximately A with E - 1 degrees of freedom. The test 

is simple to perform by hand and is demonstrated here with the 

data presented in Table 24. 

First, consider all r (= 12) observations and rank them from 



E = 	12 

F(N + 1) 

Post-hoc contrasts can be performed by computing 1 

1 

Z test 

statistic: 

FE ^  

it c,r. 11  
where, tji  
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1 to r, assigning a rank of 1 to the smallest value (see Table 

25"Sec°11 dIfirthes 1,1111 oftheranks (BAwithin each sample 

(Table 25). Third, compute the test statistic, E, using: 

I( 

1 

(where the 12 in the 
numerator of the first 
term. is a constant, not 
the value of r) 

2] 
- 3(13) 

■•••■• 

= 	12 	1 4 2 	41 2  
	 —± — — 
12(13)  L  4 	4 	4 

= 7.2(2 

The critical value, X 

(with 	c."< 	= .05). Since the obtained test statistic excee • s 

this value, the null hypothesis that the means of the ranked data 

for the different samples are eçual can be rejected. 

), is  5.147  



n. 12 

122 

- 	2 
and, SEi, 	= N(K + 1) 	C 

(where again the 12 in the de-
nominator of the first term is 
a constant) 

As an example, consider contrasting the mean for group 2 with the 

average of those for groups 1 and 3. The contrast coefficients 

(e ) are thus -1, 2, and -1, so: 

= 	(-1) 	(14) + 	(2)(41) 4- 	(-1)(:23 
7- 	4 	 T-) 

= 11.25 

and, 

	

,s2 	 2 	2 	2 

	

SE, 	= 12(13)  -1 	2-1 	= 19.5 
12  

conseçuentiv, 

= 11.25 	= 2.547G 

The critical value for all post-hoc contrasts is found as 

-- 5.99147 =+ 2.4477 in this example. 	Since thc 
5' )( K-1.,1--< - 
obtained test statistic exceeds this value, the contrast is 

significant. 



-(t.3 	t.) 

= the number of observations tieo at a civen and,  

..■••• 

T 12 

(16)(17) 

•••-■ 

- (3)(17) 
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If many of the observations are tied, it may be worthwhile 

applyind a correction factor (C) and comr.utind a new test 

statistic (C), where: 	E* 

v,7alue. 

Consider the data in Table 26, which have been assigned rank 

values in Table 27. Note that when two  ci:  more observations are 

tic-c,  they are each assigned the average of the ranks that they 

would have been assignee, had they been different.  Fer  these 

ranked data: 

A 

	

 
2 	

(1:
- 	 L 	 L 

	

— 	+ + 
4 

= 3.3 • , 

To compute the correction factor (C), note that 

observations are tied with rank 1.5, 3 are tic-c'  with rank 4, 2 

are tied with rank 6.5, 3 are tied with rank 	3 are tied with 

rank 12, and 2 are tied with rank 14.5. 
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Thus, C = 1 - 	1  

16
3
- 16 

= .9779 

and, H* = 3.309 	= 3.384 
.9779 

Note that even with many ties, as in this example, 11* is 

only marginally greater than E. Since E* will always be larger 

than E, one need not compute E* unless E does not exceed the 

critical value. With a large number of ties, and if an E is 

obtained close to the critical value, E* may turn out to be 

significant and should be computed. 

1.3.2  Izieriliu Ieet 

This is the most frequently used nonparametric alternative 

to the repea.ted-measures ANOVA. Consider the data in Table 28, 

representing the scores of D = 6 observers scaling E = 3 stimuli. 

First, rank each observer's scores from 1 to E, assigning a rank 

of 1 to the smallest score (Table 29). Second, find the sum of 

the ranks (2. ) for each of the stimuli 	(Table 29). 	Third, 

compute the tèst statistic, er, as: 

12 
= 

nK(K+1) i=1 

2 R 	- 3n (K+1) 

where: 12 is a constant 



Thus, 

- 

C R 
i 

•-> 

n is the number of observers per condition 

F. is the number of stimuli 

3 is a constant 
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10 2 	-I- 18
2 	

- (3)(6)(4) 

= 9."):%3 

2,.95 
The critical value, with o< =.05), iE 

Since the obtaineC test statistic e>:ceeds this value, it can be 

concludeà that there is at least cne significant difference 

between the mean ranks across trials. 

Post-hoc tests are performed in a similar manner to those in 

the Truskal-rallis wodel, usinG a 	test statistic, computec 

SE 
= 

Leforc, 

i=1 

2 
In this  motel, 	,n,A, 	= K(F„ 4. 1) 

(wherc the 12 is a constant) 
12 	n, 

1 

Consider the ccmi.arison of croup 3 with the average of groups 1 

and 2: 
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Then, (2)( 18 ) 
6 

= 	(-1)(8) + 	(-1) 110 
6 	 6 

= 3.0 

and, 	SEle = 	(3)(4) 	(-1)
2 
÷ (-1)

2 	
(2) 

12 	L .6 	6 	6 

= 1.0 

So, 	2- 	=  3.0 	= 3.0 

The'critical value, (K-11- X 2' 	is +2.4477. Since the obtained ,D< 
test statistic exceeds this value, the contrast is significant. 

When all the assumptions of the ANOVA are satisfied, the 

Friedman test is somewhat less powerful than the ANOVA, though 

its power increases as a function of E. If the assumptions of 

the ANOVA, including equal variances, are not patisfied, the 

Friedman test may actually be more powerful, and, thus, would be 

an excellent alternative. An even more powerful procedure would 

be tc perforr . multiple matched-pair Wilcoxon tests, but this 

requires that only pairwise contrasts be perfermed. If the 

researcher plans to do only pairwise contrasts, this is the 

recommended procedure and it is illustrated in the following 

Section. 
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lisqlcher2eiL Wilg.Qz9D JUJU 

Initially, this test was developed as a nonparametric alter-

native to the matched-pair or repeated measures test. As 

mentioned, it can also be used to perform multiple pairwise 

contrasts when E is greater than 2 and , by using appropriate 

Tables, p<can be controlled across all the contrasts to some 

predetermined value (e.g., .05). Since the procedure is 

identical regardless of the number of groups or the number of 

contrasts being performed, it is illustrated here with an example 

with D. = 8 observers tested on E = 2 stimuli. The data, and the 

computations involved in this test, are presented in Table 30. 

First, find the difference between each observer's scores -- 

subtracting stimulus 2 from stimulus 1 scores. Second, record 

the absolute values of the differences. Third, assign ranks to 

the absolute differences, giving a rank of 1 to the smallest 

difference. For tied values, assign the average of the ranks 

that would have been assigned had the values differed. Finally, 

compute the sum of the ranks associated with initially positive 

differences (z ), and the sum of the ranks associated with init-
+ 

ially negative differences (Z ). Either 	(8.5 in this example) 

(27.5 in this example) can be used as the test statistic 

To determine the significance level of the test statistic, 

refer to Table A-21 (copied without permission from Marascuilo 
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and McSweeney, 1977). In this example, with an D of 8, the null 

hypothesis of no difference between the distributions of scores 

on stimulus 1 and stimulus 2 would have been rejected if f were 

5 or 231, with probability of a Type I  error (?) 1= .039. 

When multiple pairwise contrasts are pert ormed, c"<  can be 

controlled at a predetermined level by the following procedure. 

Suppose we have 10 observers tested on E = 4 stimui. There are 6 

possible pairwise contrasts, and if the overall DC were set 

at .05, each would be performed with < .05/6 

(or .0083). Referring to Table A-21, for D . 10, it  cari  be seen 

that the decision rule for each contrast would be to reject 17 o 
if I were 4 or 2 51. With this decision rule, each contrast 

bas an c›< of .007, for an overall (--,< of 6(.007) or .e2. 

If any observers produce the same scale value for 2 stimuli, 

(i.e., the difference between the scale values is 0) this differ-

ence is disCarded before the other differences are ranked. Sub- 

sequently, the critical value is found with an D' cf n  - 

(where
o 

is the number of differences equal to 0). 

.WEÇLDEUM 	ItEconEEDLTIOU 

1. If sample sizes are all ecual or close to equal, inequality 
of variances is seldom a problem for MOW! and a test of equality 
of variances need not be performed. 

2. If sample sizes are unequal and the underlying distribution 
is normal, use Bartlett's test to assess the homogeneity of the 
variances. 
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3. If sample sizes are unequal and the underlying distribution 
is nonnormal, the Box-Scheffé

, 
 test would be the preferred test 

for assessing the equality of the variances. 

4. If the variances are found to be unequal, one of several data 
transformation procedures may be used to remove the hetero-
geneity. This may not be advisable if the researcher is inter-
ested in studying interactions between independent variables. 

5. A number of alternative analytic procedures may be used in 
place of the regular ANOVA if variances are unequal. If planned 
comparisons are performed, the approximate I test can be used. 
If post-hoc tests are performed, the Welch-Aspin model is 
recommended. Either of these procedures can be used to test any 
hypothesis of interest (e.g., pairwise contrasts, complex 
contrasts, interaction contrasts, tests for trends, etc.). 

6. If the variances are very heterogeneous, use of nonpara-
metric alternatives to ANOVA may result in more power and is, 
thus, recommended. 
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CHAPTER 5 - A COMPLETE MODEL OF THE SCALING PROCESS 

I 

In the previous chapters, we have outlined rationale and 

instructions for what we feel to be the optimal data collection 

and analysis techniques to use in the evaluation of teletext 

systems. The categorical judgment technique was deemed to be the 

best of the data collection techniques available. Two analysis 

procedures for scaling stimuli were recommended, Thurstone's 

(1927) and Allnatt's (1973;1975;1979). Allnatt's technique is 

the more powerful of the two but it can only be used if the 

stimuli vary along a quantitative physical dimension. 

Thurstone's technique is more flexible and should be used when-

ever stimulus variation is qualitative or the assumptions of 

Allnatt's technique are demonstrably incorrect. The assumptions 

of Thurstone's technique must, of course, be validated before 

attempting to calculate or further analyze its resultant scale 

values. Finally, means of analyzing the resultant scale values 

were suggested. The ANOVA is the preferred analysis method. 

However, when the homogeneity of variance assumption of the ANOVA 

is demonstrably incorrect, a number of options are available, 

including data transformation, statistical corrections and non-

parametric techniques. 

In both Thurstone's and Allnatt's techniques, there is an 

assumption of an internal dimension, g, which the observers use 
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in some way to produce the resultant scale values. In this fifth 

chapter, we would like to examine the means by which values on 

this internal dimension are created. In some cases the scale 

values may arise in a fairly direct fashion. In others, a number 

of cognitive variables may be important. In this chapter, we 

will present a general model of this procedure which will 

encompass both types of situations. 

;a WE D.14,EIC 

Central to both Thu r s tone' s (1927) and Al 1 na tt' s 

(1973;1975;1979) scaling procedure is an internal subjective 

dimension, 15, which is presumed to represent the dimension of 

judgment. For example, if observers are asked to rate the plea-

santness of a set of objects, _15 is a pleasantness dimension. In 

the present circumstance, in which observers are asked to rate 

the acceptability of a teletext screen, this dimension is pre-

sumed to be an acceptability dimension, although it could be 

thought of as a dimension of impairment, presumably the reverse 

of acceptabn — y. 

Each time a stimulus Z. is presented, a valu 	is assumed 

to be produced on this 15 dimension. The ï i  value: . 	Dt con- 

stant but are assumed to be random selections from a normal 

distributiononl3withamean.5.and variance A.
2

. The scale 

values we determine in Thurstonian scaling are assumed to be 
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these e values. The scale values produced by Allnatt's tech-

nique are assumed to be transformations of the g values. 

Both Thurstone's and Allnatt's scaling techniques go on to 

make a number of assumptions about how observers treat the 

values in order to produce a final response. Chapter three 

provides a detailed analysis of these assumptions for both 

techniques. What is yet to be discussed are the mechanics by 

which the .E dimension is created and e values determined. These 

are the issues addressed in this chapter. 

In our conceptualization, the JU dimension is not considered 

to exist prior to the scaling session. Instead, observers must 

create this dimension on the basis of the experimental context. 

In particular, things like the instructions the observer re-

ceives, the beliefs he or she brings to the experiment, the types 

of stimuli being scaled and all the effects of context will play 

some role in the creation of this dimension. However, there have 

to be some primitives here. In particular, the assumption is 

being made that an initial perceptual process always reveals a 

stable perceptual representation of any stimulus, regardless of 

task variables. 

multidimensional 

The dimensions, 

Experimental and 

In many cases, this representation will be 

and its dimensions will need to be discovered. 

of course, must also be presumed to 

analysis techniques for determining 

of these dimensions will be addressed in section 2.2. 
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The observer's task then becomes that of taking this per-

ceptual representation and distilling a value on the e dimension. 
The way this is presumed to be done is to weight the various 

perceptual dimensions in some fashion. Some of these may have 0 

weight, meaning the dimension is irrelevant to the acceptability 

judgment. The maximum weight a dimension may receive can vary, 

depending on the relationship between the units of the perceptual 

dimensions and those of This weighting process is basically 

the interesting one in the model because it is through this 

process that the e dimension is defined. That is, only when the 

observer decides, for example, that each of three perceptual 

dimensions should be weighted equally does the g dimension come 

into existence. Further, it is here that context effects arise. 

That is, context is assumed to influence the judgment process by 

inducing an observer to use a different set of weights for the 

keleg àlkellieept in different contextual situations. 

Different types of judgments will, of course, also produce 

different weighting schemes. For example, observers would un-

doubtedly weight, say, three perceptual dimensions, in a differ-

ent fashion when asked judge pleasantness than when asked to 

judge acceptability. The general assumption is that observers 

are free to weight the dimensions in any way they want. A main 

purpose of our analysis is simply to determine what weighting 

scheme they've chosen. However, with some types of judgments 

only certain weighting schemes would be acceptable. In 

a 
1 
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particular, when more mainline physical dimensions are being 

varied (e.g., radiance, weight) judgments on the corresponding 

perceptual dimensions (i.e., brightness, heaviness) must be 

straightforward and must, in fact, follow a power function re-

lationship (Stevens, 1961). This can only occur if the observers 

isolate a single relevant perceptual dimension and give only it a 

nonzero weight. If observers include any other perceptual dimen-

sions in this process, for example, if they give a nonzero weight 

to a dimension corresponding to colour while making heaviness 

judgments, we would have to conclude that they simply weren't 

following the task instructions. 

IÂ. Tie keezelumzueegze 

ZWà-..11 De eggeLlIgrî ee Deeb2g2 

The first issue to be dealt with is the claim that the 

perceptual process yields a stable representation of any stimulus 

irrespective of task demands. This idea is by no means a new 

one. In fact, if we had stated it at any time before the late 

1940's it would have been regarded as a statement of the obvious. 

However, with the end of that decade and the beginning of the 

next a somewhat different view of perception emerged. Simply 

stated, the idea became that perception does not yield a stable 

representation .of a stimulus. Instead, a host of nonperceptual 

factors (e.g., expectation, familiarity, set) interact with the 
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sensory information, creating a situation where the same sensory 

stimulus can be perceived differently in two different situ-

ations. This view has become known as the New Look in perception 

(Bruner, 1957). 

Although it isn't clear why the New Look view emerged when 

it did, there appear to have been two lines of research at that 

time which may have given it its impetus. One was Helson's 

(1948) work on adaptation level. Briefly, what Belson demon-

strated was that the results of even the most basic scaling 

experiments were influenced by nonperceptual factors, in parti-

cular, by memory for other stimuli. The other area that provided 

an impetus to these notions was the area of perceptual defence 

(McGinnies,1949). Here, the findings seemed to show that certain 

words which were regarded by the society of the day as taboo 

(e.g., raped, whore) could not be perceived as readily as 

"normal" words (e.g., apple, table). Thus, once again, we seem 

to be observing an influence of nonperceptual factors on the 

perceptual process. 

In the thirty-five years since the New Look view emerged, an 

impressi.c_rra of data and an impressive set of arguments have 

emerged to support it. Now classic examples would be two 

phenomena involving the perception of words, the word-superiority 

effect (Reicher,1969; Wheeler, 1970) and the semantic priming 

effect (Meyer and Schvaneveldt,1971; Meyer, Schvaneveldt and 
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Ruddy, 1975). The word superiority effect refers to the finding 

that a letter is more readily reported from a briefly displayed 

word (e.g., the 	in CAT) than from a briefly displayed nonword 

(e.g., the 	in DMT). Semantic priming refers to the finding 

that a word (e.g" BUTTER) is responded to more rapidly following 

perception of a related word (e.g., BREAD) than following per-

ception of an unrelated word (e.g., DOCTOR). In both cases, the 

finding is explained by suggesting that the context in which the 

stimulus appears alters and, thus, facilitates its perception. 

Additional arguments for the New Look view can be based on 

everyday observations. Try, for example, to listen to someone 

speaking English and hear the speech sounds as noise (like one 

can do if they are not familiar with the speaker's language). 

Even with great effort you will find it almost impossible to do. 

Thus, here the fact that you have 41geLiaeç; the English language 

appears to be influencing how these sounds are perceived. 

There is obviously merit in the arguments for the New Look 

view of perception. The studies (and anecdote) cited above 

clearly are demonstrations of the influence of nonperceptual 

factors. Thus, they raise the question of whether our assumption 

of a stable perceptual representation, uninfluenced by external 

factors, can be a viable one. 	The answer is, in fact, still 

yes. 	The reason lies in the basic definitional difference 

between the New Look researchers' conception of perception and 

the one we have adopted. In particular, we wish to view per- 
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ception as the process of establishing a perceptual represent-

ation while in the New Look the perceptual process also includes 

the process of interpreting or categorizing that representation. 

Probably the easiest way of explaining this distinction is 

by considering the theory of signal detection. An issue that the 

researchers of the 19th century had to grapple with was the fact 

that observers in detection experiments often said a signal was 

present when no signal, not even a subthreshold one, was present-

ed. The whys and wherefores of this problem went unresolved 

until the mid 1950's when Tanner and Swets (1954; see also Green 

and Swets, 1966) brought the theory of signal detection to 

psychology. In signal detection theory it is realized that the 

data in these "perceptual" experiments (the observers' responses) 

reflect not only the observers' perceptions but also their 

biases, mental set and so on. As such, signal detection theory 

provides a means for deriving two measures, one, ijs, to index 

the perceptibility of a stimulus, and a second," , to index the 

extent of the observer's bias. Thus, the usefulness of the 

theory is that it gives a way of separating more cognitive 

factors from the actual perceptual effects an investigator is 

trying to study. 

In constructing our model, we are attempting to do the same 

thing, that is, to separate theoretically the decision process 

involved in deriving the JU values from the perceptual information 
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on which the e values are based. However, to be a useful model, 

it must have more than theoretical reality. That is, the separ-

ation of these two processes must be possible on a practical 

level as well. (The fact that in some circumstances they can't 

be makes the New Look approach quite attractive.) While we can't 

guarantee that such a separation can be accomplished in the 

present circumstances (i.e., when scaling teletext service para-

meters), there are a number of reasons for believing we will be 

successful. 

The first reason is that a substantial amount of evidence 

suggests that perceptions can't simply be changed by learning new 

facts about the environment. Observationally, illusions, such as 

those in Figure 7, are perceived by nearly everyone. More 

importantly, the perception remains even after objective measure-

ment demonstrates to the observer that he or she is viewing an 

illusion (e.g., measure the lines in Figure 7a to convince your-

self they are of equal length, then try to perceive them as 

such). 

A second case involves one's perceptual response to moving 

one's eyes artificially. If you place your finger on one eyelid 

and press gently but firmly, you will move your eye slightly. 

Although you realize that it is your eye which is moving and not 

the outside world, the typical phenomenal experience observers 

report is that they perceive the world as moving. 
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A third reason for believing we will be successful is that 

many of the data favouring the New Look view do not stand up to 

close experimental scrutiny. For example, consider the 

phenomenon referred to as the word superiority effect. In this 

task, an observer is shown a letter string very briefly and then 

asKea to report the identity of the letter at a particular 

position. In an attempt to minimize the use of obvious non-

perceptual strategies (e.g., guessing on the basis of knowledge 

of English), observers are only required to select one of two 

possibilities for the letter in question. If a word had been 

presented, the two possibilities would complete words (e.g., if 

the word had been WORD and the fourth position was probed, the 

two possibilities might be and If a nonword had been 

presented neither possibility would complete a word (e.g., if 

MCRD had been presented and the fourth position was probed, the 

two possibilities might be D and 10. As noted above, in these 

circumstances, a letter in a word is reported more accurately 

than a letter in a nonword. 

At first, this result was taken as reasonably strong evidence 

that letters are perceived differently in word contexts than in 

nonword contexts. However, more recently, a number of investi-

gators (Thompson and Massaro, 1973; Bjork and Estes, 1973) have 

demonstrated that the word-superiority effect is an artifact of 

the experimental situation. In particular, if the two possible 

responses and the letter position to be probed are known by the 
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observer ahead of time, the effect disappears. Further, using 

more sensitive measures of what is perceived, Krueger and Shapiro 

(1979) and Massaro (1979) have demonstrated that the letter's 

perceptual representation is unaffected by its context. Thus, it 

appears that the word superiority effect is not a perceptual 

phenomenon but one which arises at a later stage. 

Similar arguments can be directed against the interpretation 

of other linguistic phenomena as perceptual effects (e.g., the 

semantic priming effect, our inability to treat speech as noise). 

That is, while these effects appear to demonstrate the influence 

of nonperceptual factors on perception, their actual influence 

occurs at a later level. The main reason these types of stimuli 

cause the interpretation problems they do is well explained by 

the automatic versus controlled processing distinction first 

proposed by Posner and Snyder (1975) and later expanded on by 

Shiffrin and Schneider (1977). The notion is that, for a begin-

ning reader (or listener), understanding language is a matter of 

going through each processing step in a conscious controlled 

manner. However, with a sufficient amount of practice, these 

processes and the linkages between them require less and less 

effort and attention. Ultimately, the whole sequence of 

behaviors becomes automatic in the sense that it requires vir-

tually no processing effort and, in fact, inevitably runs to 

completion whether the observer wants it to or not. In this way, 

the perceptual process becomes so intertwined with other process-

es that teasing them apart becomes an extremely difficult task. 
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For a New Look theorist, this creates no real problems. Per-

ception is defined to involve all these automatic processes and 

it is simply studied as such. However, for our purposes, 

problems are created both for the experimenter trying to study 

the basic perceptual processes and for an observer trying to use 

raw perceptual information. 

For the stimuli we wish to scale and, in fact, for most 

nonlinguistic stimuli, the automatic processing issue really 

shouldn't be important. Whatever automatic processing goes on 

when people judge teletext screens will, most likely, involve 

only the linguistic aspects of the text (i.e., its meaning). If 

the text message is kept constant, while other, more relevant, 

stimulus parameters are varied, this automatic processing should 

have little effect on either the perceptual representations or 

the acceptability judgments. If so, the model assumption that 

the perceptual process can be separated from what is done next 

appears to be a viable one and we should, therefore, be able to 

study the nature of these perceptual representations. (As a 

caveat, however, the reader should realize that these techniques 

can't be applied willy-nilly in other scaling situations. If the 

to-be-scaled stimuli do engage much automatic processing, the 

results of this processing may obscure the perceptual nature of 

the stimuli. Thus, it may be the results of this subsequent 

processing rather than the results of perceptual processing that 

the observers are using in the scaling process.) 
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If we accept the assumption that observers have access to 

stable perceptual representations of teletext service parameter 

effects, the next step is to understand the nature of those 

representations. We start this analysis by assuming that a 

perceptual representation can be thought of as a point in a 

multidimensional space. The point is the stable representation 

we've been talking about. The dimensions themselves represent 

constant perceptual attributes. If all goes well, the end pro-

duct of our analysis will be the re-creation of this multidimen-

sional space. From this, we should be able to discover both the 

nature of the dimensions and how each stimulus is represented. 

The analysis technique to be used here is called multidimen-

sional scaling (MDS). The data for MDS are measures of 

"proximity" between pairs of stimuli. For our purposes, the 

proximity measures will be direct similarity or dissimilarity 

judgments. For the task, a large number of stimuli varying on 

ell the physical dimensions of interest would be presented in 

pairs. Observers will be asked to rate either the similarity or 

dissimilarity of each pair on some scale. After all pairs of 

stimuli have been presented at least once, a similarity or dis-

similarity matrix can be created where the average rating for 

each stimulus pair is the value contained in the appropriate cell 

in the matrix. (See Table 31 for a sample dissimilarity matrix. 

142 
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For the remainder of this discussion, we will assume that the 

observers are rating the dissimilarity of the stimulus pairs.) 

Note  that the obtained averages can actually be tabled in only 

one-half of a matrix. The reason is there should be no differ-

ence either theoretically or practically between the dissimilar- 

t is this 

half matrix that provides the data for any rps analysis. 

The scale that observers use to produce their ratires is 

somewhat arbitrary. Probably the best experimental procedure 

woulo be to anchor the scale by presenting two identical stimuli 

to the observer and suggesting that they be given a dissimilarity 

rating of O. Then, two stimuli which are quite different, for 

exanple, the clearest picture possible and total noise, could be 

presented with the suggestion that they be given a rating of 10. 

Intermediate levels of dissimilarity  (i.e., those representeo by 

the stimuli the observer is about to rate) would therefore re-

ceive ratings intermediate to the values 0 and 10. 

Care should be taken with the instructions given the 

observer. The subjective dimension of acceptability should not 

be mentioned. Uhat we are trying tc do is discover the dimen-

sions which make up the perceptual space, not to buil d  new dimen-

sions into the ratings. Similarly, variation on irrelevent phy-

sical dimensions should be avoideô. For example, unless vari-

ations in colour are of interest, care should be taken to hold 
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colour constant. However, physical dimensions which are of 

interest should be represented. The scaling programs can't allow 

discovery of important perceptual dimensions if stimuli don't 

vary on those dimensions. Since we don't know how the physical 

dimensions are represented as perceptual dimensions we can't 

afford to leave out any physical dimensions that could be 

important. 

Ideally, the stimulus set will be created by factorially 

crossing all physical dimensions of interest. At least three 

levels on each dimension should be selected. Thus, if there are 

four dimensions of interest there would be 3
4 

(= 81) stimuli. If 

each stimulus is compared to each other stimulus once by each 

observer, there would be 81 * 80/2 (= 3240) judgments per 

observer. More stability would, of course, be obtained if each 

judgment were made two or three times by each observer. Obvious-

ly, even with only one judgment per pair, the task will take a 

certain amount of time. However, until something more is known 

about the perceptual dimensions, it's probably best to be as 

thorough as possible. 

Fortunately, this "discovery scaling" process needs to be 

done only once. Once a few subjects (5 - 10) have been run in 

this extensive dissimilarity rating task, we shoulà know what the 

perceptual dimensions are and how they relate to the physical 

dimensions. However, prior to each scaling experiment using a 

different stimulus set, the dissimilarity rating task will have 
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to be carried out with the set of stimuli to be scaled. The 

purpose here is not to discover perceptual dimensions (presum-

ably, we already know what they are) but to determine the precise 

coordinates on those dimensions of the stimuli being scaled. 

These coordinates can then be used in the subsequent analyses. 

Given that a typical scaling study seldom will involve many 

stimuli (e.g., more than 10), the number of dissimilarity ratings 

required should always be less than 100. 

The number of MDS programs one has to choose from is quite 

large. In the older methods (Torgerson, 1952; 1958), dissimilar-

ity ratings are assumed to be proportional to distance in 

Euclidean space. (These are referred to as metric procedures.) 

In more recent techniques (Shepard, 1962; Kruskal, 1964), it is 

simply assumed that there is a monotonic relationship between 

dissimilarity ratings and distance (nonmetric procedures). In 

either case, the scaling program attempts to fit the stimuli into 

an D-dimensional space so that the distances between stimuli in 

the space accurately reflect the dissimilarity ratings. The 

number D is usually allowed to vary between, say, 2 and 6, with a 

solution returned for each situation. 

The solution returned consists of a set of coordinates for 

each stimulus in an D-dimensional space and a measure of how well 

the dissimilarity ratings match up with the interstimulus dis- 

tances in this space. The latter measure is called the STRESS or 
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S-STRESS of the solution. Because there is variability in obser-

vers' response processes, the match between distance and dissim-

ilarity is never perfect. Thus, the STRESS value is never zero. 

In addition, STRESS will decrease as the number of dimensions 

used increases, simply because the number of free parameters is 

increasing. Thus, the solution we wish to accept is one which 

minimizes not only STRESS but also D. Typically, STRESS is 

plotted as a function of n. (as in Figure 8) and an elbow on the 

graph is located. (The elbow here is at D=.3.) The idea is that 

increasing D from the elbow provides only  minimal  decreases in 

STRESS, while decreasing D increases STRESS quite dramatically. 

Thus, the best solution is assumed to have three dimensions. 

(Figure 8 is, of course, artificial. In the real world, the 

elbow is always much less clear, however, very few solutions need 

more than three dimensions.) 

At this point (in the example), we know we have a three- . 

dimensional solution (i.e., a three-dimensional perceptual 

space). However, we still do not know what the axes represent or 

where they are located in the space. We next have to discover 

not only what but where those axes are. To understand why this 

problem arises, one needs only realize . that distances between 

points (what  the  • program is interested in) are totally 

independent of where the axes are. Thus, the program orients the 

axes somewhat arbitrarily.in the solution. The axes, thus, must 

be rotated to allow the dimensions to be understood. Rotation 

can be accomplished by formal procedures (e.g., varimax) or by 
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hand. In either case, the point of the rotation (and, in fact, 

the point of the entire procedure) is to find three dimensions 

that have psychological (here, perceptual) reality. In many 

instances (although not always), a physical dimension will have a 

direct relationship to a perceptual dimension. Thus, the 

physical dimensions should be kept in mind when doing the 

rotation. 

Selection of a MDS program is more or less up to the 

individual. Many nonmetric procedures were developed during the 

197 :Eee Schinman, Reynolds and Young (1981) for a review) and 

selection of one of these is suggested. The two most highly 

recommended programs are KYST and ALSCAL. KYST seems to have the 

best features of almost all the MDS programs written in the 

1970s. ALSCAL is nearly as powerful and also includes provisions 

for doing individual-difference scaling if observer differences 

are an issue. Ultimately, however, the selected program will 

probably be the one most accessible in the available statistical 

packages. 

UDDIJ£111O IILLUZ Dr 45 
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Once the perceptual process has been completed and a repre- 
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I  

sentation established, observers must next turn this represent-

ation into a value on e. According to the model, this is done by 

a simple weighting process. The coordinates on the various 

perceptual dimensions are multiplied by weights, and the products 

summed, (potentially, a constant could be added to the equation). 

Thus, if we have, for example, a three dimensional solution in 

which coordinat es fo r  stimulus 	are designated (i; , ). 

i2 	i3 
e. can be expressed as: 

S = w
1
x 	w

2
x
i2 	

w
3
x
i 
+k•

3 
 

swhere 	i the weight for dimension à and l is a constant. 

As the equation indicates, scale values depend on both the 

nature of the perceptual representation and the way that 

observers choose to weight the various dimensions of that repre-

sentation. Different 15 values could be produced by the same 

stimulus if circumstances dictated different  s. For example, 

if observers were specifically told to attend to a particular 

stimulus aspect that is directly reflected in a perceptual dimen-

sion, they would presumably weight that dimension more than they 

would in other circumstances. Understanding the role of experi-

mental manipulations will, thus, be a matter of understanding how 

they influence the choice of weights. 

The reader should note that we do not require that the sum 

of the weights equals one. Thus, this equation is more appro- 
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priately referred to as a linear equation in D variables rather 

than a weighting equation. The reason the sum of the weights 

isn't constrained is that units in the perceptual space and units 

in the e dimension have no particular relationship to one 

another. If the units of the perceptual space were smaller than 

those ot the dimension, coordinate values would be larger than 

they should be. Thus, weights must shrink these values to pro-

duce  trie s. As such, the sum of the weights would be less than 

one. On the other hand, if the units of e were smaller, the 

weights must increase the coordinate values, meaning that their 

sum would be greater than one. 

With respect to the issue of how the weights are affected, 

there appear to be two general types of variables that may have 

an effect. The first could be called experimental context vari-

ables. These are variables that are introduced to the observer 

by the experimenter berore the experiment starts. Typically, 

thèse are introduced through instructions but they can also arise 

from any other experimental manipulations that create expect-

ations. Examples would be things like the instruction to be 

critical or lax or, perhaps, the instructions to assume various 

roles when judping. How these instructions could influence the 

weights is, of course, an empirical question. However, one could 

envision that instructions to pay attention to particular physic-

al dimensions would increase the weight put on relevant percept-

ual dimensions and decrease the weight put on irrelevant percept- 
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1 

ual dimensions. Instructions to be lax or critical may have the 

effect of increasing (or decreasing) all the weights and so on. 

The other type of variables that could affect the assigned 

weights would be referred to as stimulus variables. For example, 

if the stimuli were all high in quality, observers might adopt a 

more critical weighting scheme (Allnatt and Corbett, 1972). 

Similarily, if the stimuli were all quite unfamiliar, observers 

might adopt a more neutral weighting scheme while they try to 

determine which dimensions are more important. 

One thing to be aware of is that while we're hypothesizing 

that variables such as these affect the weighting process there 

are other possibilities. In particular, as Parducci (1965) has 

suggested, these variables may affect criterion placements. For 

example, if all the stimuli are of high quality all the criteria 

could be placed on the high end of the acceptability dimension. 

Again, the exact effect the variables are having can be deter-

mined empirically. If it turns out that Parducci's suggestion is 

correct, even part of the time, the model can be amended with no 

harm being done to its basic structure. 

This model, as conceptualized, has  différent implications 

for the two scaling models discussed earlier (Thurstone's and 

Allnatt's). In particular, the present model and Thurstone's 

model are completely compatible with one another. Thus, as we 

will suggest, Thurstone's model can be incorporated into our 
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model as a sort of a "back-end", a description of how the scaling 

process is completed. Allnatt's model, on the other hand, res-

tricts the present model. The restrictions necessary for the two 

models to fit together will be discussed in subsequent sections. 

However, at this point, with the present model being as general 

as it is, there is no reason to believe that these restrictions 

are totally unreasonable. 

/.1.2 Lueleeli5 Iegueg 

T 	 a linear 
1 

function of D variables is actually borrowed from Anderson 

(1968). In Anderson's scaling procedure, stimuli are created by 

selecting a number of physical dimensions (either quantitative or 

qualitative), selecting a number of levels on each dimension and 

then factorially crossing these dimensions. For example, if we 

have two physical dimensions with four levels for each, there 

would be 4
2 

(or 16) stimuli to scale. 

Each level, 1, on a given dimension, j, is presumed to give 

rise to an impression, 	These impressions are then weighted 
13 

by a dimension specific weight, y., and summed. Thus, the 

resultant scale value for a stimulus created by mixing, say level 

3 on dimension 1 and level 4 on dimension 2 (i.e., J534)  would be 

S34 
= w

1
1
31 

+ w
2
1
42 

+ k 
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where  • is a constant. There would, of course, be 16 of these 

equations, one for each stimulus being scaled. 

In Anderson's analysis, the next step would be to use all 16 

scale value equations to solve for the À. 	The calculated 2.. 
13 	 13 

values are then regarded as measurements on an interval, rather 

than a ratio, scale (i.e., the resultant values are linear 

functions of the "true" 	). In our situation, however, we 
ij 

already have the 41 ; they are the perceptual coordinates derived 
ij 

from our dissimilarity judgments. We also have the values on 5 

from the category scaling analysis. 	What we need are the 

weights, 	and the constant, t. Thus, our system of equations 
3 

will have one unknown for each perceptual dimension plus one more 

for the constant. In the above example, we'd have 16 equations 

in 3 unknowns. 

If there ever were fewer equations than unknowns, we would 

have what is referred to as an underdetermined system and we 

would be unable to solve for the weights. This situation will 

probably never arise here as it's unlikely that we'd ever have 

more than four perceptual dimensions (thus, five unknowns) or 

fewer than five stimuli being scaled. If the number of equations 

and unknowns are equal (also an unlikely possibility) the weights 

can be solved for unambiguously. In the more common situation, 

there will be more equations than unknowns, as above. This 

situation is referred to as an overdetermined system. One set of 
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values for the unknowns may work for some stimuli but not for 

others. Thus, we have to produce best estimates of the weights 

which fit these equations as well as possible. This is best 

accomplished by applying a multiple regression analysis. 

In multiple regression analysis, an equation of the form 

Y = //?go  + /44 X
1
+ /6 X

2
+ /é? X

3
+ . . . te X 

k 

is used to input known values, the Zs, and to predict scores on 

another variable, the Zs. This is done through estimation of the 

s. The 	values are selected by comparing predicted values 

on the X variable C iis) to observed values on the X 

variables and minimizing the sum of the squared differences, 
« 2 

2:( 	- X) . Obviously, if the equations and the procedure work 
2 

1( 	- X) should be as small as possible. If so, the procedure 

has selected /f 1  s which fit well in the equations. A measure of 

how good the fit is is provided by the multiple regression pro- 

cedure and is referred to as L 2
. To the extent that L

2 
is close 

to 1 (it's always between 0 and 1, inclusive) we've been success- 

ful in finding /d s. A test of how well we've done (i.e., a test 

of how big jr
2 

is) is also provided by the procedure. An 	value 

is produced which is evaluated against a critical g with numer- 

ator degrees of freedom equal to the number of s solved for 

minus one, and denominator degrees of freedom equal to the number 

of scores on the X variable minus the number of s solved for. 

In our circumstance, the 	scores are the U.s found in the 
1 
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scaling analysis. The 	scores are the coordinates on the vari- 

ous perceptual dimensions and the s are the weights and con- 

stant in the set of equations. If the multiple regression pro- 

cedure produces  an L2  large enough that f is significant, we can 

feel fairly confident that the s the procedure has produced 

are good estimates of the weights and constant. The fit would 

never be perfect (i.e.,
2 
will never be 1.0), of course, because 

the 	scores are only estimates of the "true" coordinate values. 

However, if the E was not significant, it would indicate that the 

model wasn't doing an adequate job of describing the data. As 

such, its validity would be called into question. 

The procedure can be applied to any stimuli for which we 

have e values (from Thurstone's or Allnatt's procedure) and for 

which we have coordinates in perceptual space. The next question 

is whether experimental context or stimulus variables change the 

weights (or 1). Thus, suppose the perceptual space were three 

dimensional in a certain circumstance and, we have estimated 

three weights and a ç for a given observer under each of two 

instructional conditions. The way to determine whether there has 

been an effect of instructions is to submit these data to a 

multivariate analysis of variance (MANOVA). 

The MANOVA is a technique for doing an analysis of variance 

with more than one dependent variable. In this example, we would 

have four dependent variables (3 weights and J ) . Because there 
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are only two conditions (two different types of instructions), 

our independent variable has only two levels. (There could, of 

course, be as many levels and as many independent variables as an 

experimenter might want.) It should be noted that, as with the 

ANOVA, normality and equality of variance are being assumed. 

With a large number of observers, the normality problem dis-

appears. However, we may still have a violation of the equal 

variance assumption. Thus, each dependent variable should be 

analyzed as outlined in chapter 4 to determine whether it obeys 

the equal variance assumption. If not, an appropriate transform-

ation technique should be applied. 

The technique for doing a MANOVA is quite complicated and 

won't be described here. It's, perhaps, best to submit your data 

to a MANOVA program in some available statistical package. What 

will be produced by the procram  i in the ANOVA, an E ratio. 

If it is significant, we can assume our independent variable has 

had an effect. If we wish to determine where that effect lies 

(i.e., with which dependent variable) we can then do separate 

AMOVAs on each of our dependent variables. 

2.2 	 nuirgtûnilu 

As mentioned earlier, the model and analyses discussed above 

can be applied with essentially no caveats to the J5 s derived 

from Thurstonian scaling. Perceptual dimensions can be dis- 

covered by means of either metric or nonmetric MDS techniques. 
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The coordinates can be used straightforwardly in the multiple 

regression analysis. The resulting weights and constant can then 

be taken at face value and changes in weights due to experimental 

manipulations can be evaluated through the MANOVA. 

One additional strength of the Thurstonian scaling procedure 

is that it permits determination of whether changes are being 

induced in the weights or in the criterion placements. That is, 

as discussed in chapter 3, the results of Thurstonian scaling are 

both a set of scale values (the .a.) and a set of criterion 

placements. If an experimental manipulation affects only the 

criterion placements, only these values will differ across 

different conditions. The ,Z s will remain constant. Similarily, 

if only the weights are being affected, only the .e s and not the 

criterion positions will change value. Thus, the effects of any 

manipulation will be transparent. 

Such is not the case with Allnatt's technique. With this 

technique, either experimentally induced criterion changes or 

experimentally induced weight changes will produce changes in the 

calculated scale values. There is, of course, a test, described 

in chapter 3, for the stability of criteria in Allnatt's pro-

cedure. However, it's so weak that, in most instances, a lack of 

stability would never be detected. Thus, most experimentally 

induced changes will have to be modelled as affecting the J5 

dimension, whether or not such is the case. 
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2.2 Iwellgâtien Ica hilDellIg Ieglutizug 

As mentioned previously, Allnatt's scaling technique does 

not yield scale values on the .15 dimension. Instead, a value is 

produced on a 1 dimension which runs from 0 to 1. Thus, in order 

to use the multiple regression procedure, it is necessary to 

transform 1 values to .$5 values via the inverse of equation (1) in 

chapter 3 

S 	= (1 - t 	)
b/G 

s 

JU will, of course, be needed. The value 

for 	is determined in the basic scaling procedure. The value 

for 	can be found by carrying out a fractionation task as des- 

cribed in section 2.3.3 in chapter 3. The value for 	is deter- 

mined by realizing that 

S = a D
M 

The value for U is derived at the same time as that for 	and 

the value for jâ is derived at the same time as the value for 

Thus, if the analysis described in chapter 3 is carried out 

fully, all the necessary information will be available to produce 

the .s.  From these, it's then possible to carry out all the 

analyses presented in this chapter. 

(1) 

The values for b, e and 
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One important thing to realize about Allnatt's technique, 

which isn't true about Thurstone's technique, concerns the nature 

of the ,5s. In Thurstonian scaling, the ,5 s are only assumed to•

be values on an interval scale. Thus, they are no more than 

linear representations of the "true" scale values. Allnatt's 

technique assumes the .a values are on a ratio scale. In part-

icular, the assumption is made that Stevens' power law 

	

S, 	= a D. 

	

1 	 1 

holds. Thus, the ,5
i 
values are, at most, multiples of the "true" 

scale values. This assumption, of course, represents a restrict- 

ion on the present model but one that can be incorporated under 

certain circumstances. 

For purposes of understanding under what circumstances 

Allnatt's ideas can fit into the present model, let's consider 

that there are three possible scenarios for how a given physical 

dimension, D, relates to the perceptual space. The first is that 

the MDS solution returns one corresponding perceptual dimension 

for each physical dimension. The second is where there is more 

than one perceptual dimension for a given physical dimension. 

(We don't have to worry if a physical dimension has no represent-

ation in perceptual space. This just means the observer regards 

it as irrelevant.) The third is where two or more physical 

dimensions amalgamate to form a single perceptual dimension. 
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In the first instance (a one-to-one relationship between 

physical dimensions and perceptual dimensions), let's consider 

each dimension separately for a minute. For each separate dimen-

sion, it's not overly difficult to maintain a power function 

relationship between the physical dimension and „5. The require-

ment is simply that both the relationship between the _11(;a 1  

and the perceptual and the relationship between the perceptual 

and be power functions. That is, letting 2 be the value on the 

perceptual dimension, if 2 =..1?
n 
and 	= 2

m 
then 

S = d (c D
n 	 b 

)
m 

= d c
m 

D
mn 

= a D 
 

If D is 1, then the equation 

in  
d P 

is nothing more than a weighting equation in one variable with a 

constant of zero. On an intuitive level, the equation would 

represent the observer simply using the perceptual dimension as 

the dimension, although the 1 value may be multiplied by a 

constant. In many ways, this kind of use of the 1 dimension 

makes good sense. Assuming again that the observers have access 

to 2, it's likely that they would keep the transformation between 
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it and 	as simple as possible. The only way to make it simpler 

would be to set d to I also. 

The next step would be to determine what happens when 

physical dimensions having these single perceptual represent-

ations are combined. -  The model says the resultant scale value is 

.‘leiqhted sum of the perceptual coordinates. Thus, the scale 

value for a stimulus having coordinate on dimension 1 and 

coordinate j on dimension 2 would be 

S 	= w S 	+w S
jz

+ k 
2 ij 	1 

S. 
 

=w c D n. + w c 	n2 ± k 
1 1 	i l 	2 2 j z  

where 	must be assumed to be 0 if Allnatt is correct. However, 

Allnatt also has proposed a model ecjuation for handlinq these 

ki- nd of stimuli. He claims that it isn't the _E values which are 

additive but a transform of these, the j s, where 
ru 

1 	-1 
m- , 

; 

and, as before 

111; 

(2) 



In other words, Allnatt's processing model suggests 

J =  J + 
; rn 

These two ideas, ours and Allnatt's, appear to be quite 

different on the surface. However, an examination of equation 

(1) suggests the relationship 

b/C 
= . 

1 

s 

If 	Q  (which Allnatt suggests it may generally be - AllnEtt, 

1_975) then the 17 s are nothing more than multiplicative functions 

of the scale values. Thus, if G (and if the further 

restriction that È = 0 is invoked) the present processing model 

and Allnatt's processinc model actually uredict essentia11\7 the 

thino. Certainly distinguishing between thew empirically, 

c, ven when and G aren't identical, would be virtually 

impossible.  Thus, in the circumEtance in which every physical 

dimension is represented by a single  perceptual dimension, All-

natt's model can be incorporated into the prescrit  conceptual 

framework. 

161 

In the present circumstance (scaling teletext systems), a 

one-to-one relationship between the physical and the perceptual 
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may or may not arise. How.ever, such isomorphic relationships 

probably are quite common in general. For example, most simple 

sensory manipulations (brightness, loudness, heaviness, etc.) 

will probably yield a one-dimensional perceptual representation. 

Thus, in each of these situations, it makes sense that there 

woun be a power function relationship between D and E. There 

presumably would be a power function relationship between D ano 

the one dimensional perceptual space and a very simple relation-

shiil between the perceptual space and E.  (gain,  note that the 

second transformation cannot even involve the addition of a 

constant or the ratio scale properties of and, hence, the power 

function relationship, will be lost.) 

One final issue with respect to physical dimensions that 

have one-dimensional perceptual representations should be men-

tioned. The nonmetric LIDS programs return solutions in which the 

distances between values are only monotonically related to the 

dissimilarity ratings. If we assume that the dissimilarity rat-

ings reflect distances on a ratio scale, then metric programs 

should produce the best representation of the perceptual dimen-

sion. Powever, the number of eissimilarity judgments per 

stimulus pair will be too small (maybe one per pair) to produce 

stable distance estimates. Thus, metric procedures are probably 

best avoided. Yet, nonmetric procedures may distort the percept-

ual space a bit since they treat the dissimilarity judgments as 

only monotonically related to true distance. Failure, then, to 

observer a power function between  Q  and  B  may be partly attribut- 
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1 
I 

1 I 
1 

able to the UDS procedure. The only way to guarà against these 

problems would be to take a large number of measurements and to 

assure that the perceptual space is well mapped out before deal-

ing with it. 

Ue next have to conSider the situation where a given 

physical dimension has no perceptual correlate but instead maps 

onto two or more perceptual dimensions. If this occurs there is 

no way to assure that there will be a power function between the 

physical dimension and In particular, suppose we have E: 

physical dimension D which maps into a perceptual space having 

dimensions 1 and E . Even if both P and 1 are power functions 

b l  
 of 	D 	(P1 =a 1

D and P
2
=a

2
D
bt 

 ) no additive mixture cf the values 

on 2 and E
2 

can be a power function of D. In order to produce L 
1 

values via a power function, it would be necessary to attach a 

weight of zero to one of the perceptual dimensions. 	(Even 

attaching a very small weight would disturb the power function 

relationshil_, although it's not clear that this could be detected 

eupirically. As noted in chapter 3, testing for a power function 

relationship involves fitting, a straight line to a set cf points 

ano a straight line fits just about anything.) 

If observers do tend to handle these situations by attaching 

a weight of zero to one perceptual dimension, it shoulO be pos-

sible to alter that strategy experimentally. In particular, the 

dimension with the zero weight would first have to be identified 
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through a MDS analysis. Then, perhaps, a set of instructions 

could be created to force attention to that dimension. If this 

manipulation is successful a nonzero weight will now be attached 

to this dimension. Unless the observer then chooses to give zero 

weight to the other dimension the effect will be to alter the 

value of  .  hence, of 1) and destroy the power function 

relationship. In contrast, for physical dimensions which have 

only I related perceptual dimension, the scale values of „5 can 

only be altered by increasing or decreasing the single weight 

parameter. In other words, only a multiplicative change is 

possible. Since ,5 is a ratio scale, changes of this sort would 

be irrelevant to the power function relationship. Further, al-

though values on ,5 would change, the values should not. Re-

examination of equation (2) demonstrates why this is so. In 

converting from an e i value to a I value the 45
i 

value is divided 

by a normalizing scale value, (,5 is the scale value for the 

stimulus which has al value of 1/2). If an experimental mani- 

pulation alters J5 multiplicatively, it will probably also alter 

in the same fashion. Thus, neither the ratio nor the 	value 

should change. 

Finally, we must consider the situation where two (or more) 

dimensions (D
1 

and D
2

) amalgamate to form a single perceptual 

dimension. The question is how can these two dimensions combine 

and still maintain a power function relationship between each D. 

and 2 when examined separately. The answer is, that only certain 

ways of combining the dimensions allow this to occur. For 
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example, if they combine in an additive power function: 

P=  a (D +D
2

)
n 

1 

the relationship between 2 and either P. will not reflect a power 

function. To see this, take logarithms of both sides: 

log P = log a + n log ( D + D
2

) 
1 

If we have a power function between L
i 

and 2, this must be the 

equation of a straight line when the other p
i 

equals a constant. 

In fact, it isn't a straight line relationship of D 1 
or p, unless 

the other equals O. On the other hand, if D and D
2 
 combine in a 

1  
multiplicative power function 

ft ■ 	A z  
a D D 

1 2  

Its true that 

log P = log a + n1  log D 1  + n2  log D 2  

Here, there is a straight line relationship between log 2 and 

either  log  D
1 	' 

or loci D 2  . Thus, both physical dimensions would be 

related to I appropriately and, once again Allnatt's 

conceptualizaton could be incorporated into the present 

conceptual framework. The only issue the reader must take note 

p (3) 
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of is that the 2 dimension which emerges from the MDS analysis 

should be reasônably well described by equation (3). 

On a closing,note, it should be mentioned that 15
M 

regarded as a constant in Allnatt's conceptualization. In fact, 

it's viewed as the variable which creates all the context 

effects. If it could be shown that an experimental manipulation 

altered 1 values in Allnatt's procedure, he would initially try 

to explain this through changes in • . For example, under normal 

circumstances, the stimulus which produces(D ) would, rre- 
le t:1 

sumably, be near the middle of the p dimension. However, if a 

narrow range of stimuli is used, _L? :  may tend to drift toward the 

middle of that range, alterino all the t values. The ability of 

this one parameter (L, ) to capture all the effects of ex:peri-
l:J. 

mental manipulations is, of course, an empirical question. How-

ever, until and unless the relevant experimentation and model-

fitting are done, we have no reason to claim that our model with 

its many pararneters explains context effects better  char 

 Allnatt's single parameter. 

,ÇEETELL LUILLEY Lrp .W.ULIMIQUE 

In the present manuscript we have attempted to do three 

things: acquaint the reader with the issues involved in selecting 

a scaling procedure, recommend and discuss the optimal scaling 

is not 
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procedures for the present purposes, and provide a general pro-

cessing model for how scaling operations are undertaken. In 

chapter 1 the first of these goals was accomplished with the 

suggestion being that, for present purposes, indirect scaling 

techniques are optimal. In chapter 2 the reader was introduced 

to the two indirect scaling techniques that appear to be most 

useful for present purposes, Thurstone's (1927) technique and 

Allnatt's (1973; 1975; 1979) technique. In chapters 3 and 4 

these techniques were examined in considerably greater detail. 

Methods for examining the techniques themselves and for analyzing 

their results were discussed. Finally in chapter 5 we've put 

together a general processing model. Thus, the three goals of 

the project appear to have been accomplished. In closing, we'd 

like to provide a brief overview of the model as well as a brief 

discussion of what we feel are its important strengths. 

A schematic diagram of the model is provided in Figures 9 

and 10 (Figure 9 contains the general schematic. Figure 10 fills 

insorneofthedetails).AnYstimulusrli.,is presumed to give 

rise to a perceptual representation. This representation is 

assumed to be stable in that it is uninfluenced by context. 

Further, it's assumed to be characterized by a set of coordinates 

in an D-dimension space (z
il' Z i2 fZ i3 	Zin 4 

) •The scale value 

is created from this representation by taking a weighted sum of 

these coordinates as follows 

S
i 
= w

l
x 	+ 

w2xi2 
+ 	+ 

wnxin 	
k 
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where the y. represent the weights and the 	is a scaling con- 

stant. 

The process of assigning weights is the heart of the model. 

It is here that essentially all effects of experimental manipul-

ations are manifest. Different types of judgments (e.g" accept-

ability vs. pleasantness, heaviness vs. denseness) will undoubt-

edly produce different weighting schemes. Further, different 

contexts for making the saine  judgments (e.g., instructions to 

rate the stimuli as an engineer would vs. instructions to rate 

the stimuli as an everyday viewer would) would also produce 

differences in the basic weighting scheme. 

Once i5 has been established, it is used to produce a res-
i 

ponsP on the response scale provided by the experimenter'. • In 

order to maintain continuity with previous reseE.rch, it is recom-

mended that a 1 to 5 (i.e., h to Z) rating scale be used. The 

model, as stated, makes no. assumpt:ions about the conversion from 

the •E dimension to a response. However, Thurstonian analysis is 

perfectly compatible with all the assumptions of the mdoel and 

is, thus , . regarded as the best "back - end" of the process. The 

.15 s are assumed to reflect average rather than deterministic 

values on a newly created ,a dimension. That is, there is random 

variability in the actual value, 	, that a given stimulus pro- 

duces on e. The .1U dimension is presumed to be divided into D 

segments by D-1 criteria. The response given corresponds to the 
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segment into which Z i  falls at the moment the stimulus is being 

evaluated. Because of the variability about 	the saine stimulus 
1 

will not always provide a value in the saine segment and, thus, 

will lead to different responses under identical circumstances. 

In general, Thurstonian analysis is preferred to Allnatt's 

analysis as a back-end to the model. In order for Allnatt's 

analysis to be applicable, the model would need a number of 

additional assumptions, detailed earlier in this chapter, which 

seem unnecessarily restrictive. In essence, if Allnatt's 

analysis is an accurate description it necessitates a somewhat 

different model as a front-end. In fact, Allnatt's theorizing 

has been extended to include a discussion of some of these front-

end processes. Thus, one could say his model already has an 

implicit front-end. Obviously, we feel the model, as proposed, 

is the best way of viewing the process at present. What follows 

is a discussion of the model's strengths. 

One obvious strength of the model is it represents an 

attempt to integrate a number of different lines of successful 

psychological research. Earlier in the present chapter the sup-

port for the idea of a stable perceptual representation was 

discussed. The notion of a multidimensional space underlying the 

perceptual representation of stimuli has received considerable 

support in recent years (Carroll and Wish, 1974; Shepard, 1963). 

Anderson's (1968) notion that perceptual dimensions are combined 
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to form a weighted sum has also proven to be a quite viable one, 

as has the idea of differential weighting of the dimensions. 

Finally, the model even has the flexibility to encompass Stevens' 

(1961) findings that the nature of the function relating physical 

dimensions and psychological dimensions is a power function for 

many types of stimuli. 

A second strength of the model is its generality. That is, 

it's applicable for virtually every type of scaling judgment and 

it provides a framework for understanding how different scaling 

judgments are related to one another. In much of the work on 

scaling, the ,e dimension, regardless of what it represents - 

prettiness, acceptability, artistic value - is taken as a 

primitive. The models, in some sense, evolve around the judgment 

itself (e.g., Allnatt's theorizing is a case in point). In the 

present model the primitives are not the ,e dimensions but the 

perceptual representations of the stimuli. Regardless of the 

nature of the judgment the observers are about to make, observers 

are assumed to perceive the stimuli in a stable fashion. The 12.  

dimension that the experiment calls for is then created from.a 

weighting of the perceptual dimensions. Thus, prettiness ratings 

would involve one set of weights while acceptability ratings 

would involve another. In essence, any kind of scaling judgment 

about any stimulus that can be perceived, can fit into this 

framework. Further, the framework provides a means of under-

standing hoW and why the different judgments are different. By 

examining the different weighting schemes used when making, for 
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example, prettiness judgments on the one hand versus acceptibil-

ity judgments on the other, we can gain abetter understanding of 

what perceptual dimensions are most relevant to each of the 

judgments. 

The flexibility of changing weights as a result of exper-

imental manipulations also has implications for how context can 

influence judgments. As noted in discussing Thurst oni an 

analysis, one effect of context could be to create different 

placements of criteria on the dimension. However, it's also 

possible that different contexts can actually produce different 

values for the 	In the present framework the explanation of 

this result would be quite straightforward. The observers simply 

selected a different set of weights in the two different con- 

texts, perhaps emphasizing dimension 	in context 1 and dimension 

in context 2. Again, by looking at how the weights change, 

information can be gained about how various perceptual dimensions 

relate to various contextual manipulations. In Allnatt's frame-

work there is also a way of accounting for the effects of con-

text, the physical value of the normalizing stimulus. D 1,1 (see 

equation 1 in chapter 3). However, as mentioned previously, it 

seems quite unlikely that variations in P alone could account 

for contextual effects beyond those Allnatt and Corbett (1972) 

have already investigated. Whether there will be effects beyond 

those is an empirical question. If so, more work on the front-

end of their model will be necessary. 



172 

A third strength of the model, and one which is not im-

mediately obvious, is it testability. As Figure 9 makes clear, 

the model is a stage model. The first stage, the perceptual 

stage, and the third stage, the response stage, can be empirical-

ly evaluated independent of the other stages. The means of 

determining whether the response process can be described in 

ternis of Thurstonian analysis has been discussed extensively in 

chapter 3. The perceptual stage can be evaluated by considering 

the fit of the multicimenLidnal solution of the scaling analysis 

described in the present chapter. If the STRESS is low and the 

dimensions are reasonable the notion of a workable perceptual 

representation is supported. The second stage, in which the 

are determined, is not independent of stage 1. An adequate 

evaluation of stage 2 requires that the perceptual represent-

ations of the stimuli be known. If the evaluation of stage I was 

successful, this information will be available. If not, it 

won't. Thus, the model really does hinge on the notion that each 

stimulus provides a stable perceptual representation. If this 

assumption is incorrect, the model as it stands could be 

rejected. . 

On the basis of the argument just presented we feel that the 

model offers a substantial advance over anything that has gone 

before it in the area of evaluating teletext systems. The model 

is general, yet testable, and it integrates a number of lines of 

psychological research. Putting Thurstone's response model at 
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the back end of ours completes the picture. Trying to attach 

Allnatt's response model is much less desirable. Generality 

would be lost as the assumptions of our model were made more 

restrictive and, as the reader may remember, Allnatt's technique 

itself requires that the stimuli vary on a quantitative 

dimension. Since the psychological literature does not seem to 

contain any empirical demonstrations that any of these 

restrictions are necessary, Allnatt's model must remain a second 

choice. The only cost of our model is in terms of the time and 

effort involved in determining the nature of the psychological 

space. That is, a number of subjects will have to make a large 

number (>3000) of judgments of stimulus pairs. However, once 

this extensive data collection is complete it won't need to be 

done again. Thus, overall, our feeling is that the positive 

aspects of the model far outweigh any of the difficulties 

involved in testing it. 
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Table 1. Sample Data Matrix. (Cell entries are frequencies.) 

Categories 

1 	2 	3 	4 	5 	M 
i 

Stimuli 

X
o 	

87 	12 	1 	0 	0 	1.14 

X 	 5 	16 	30 	, 30 	19 	3.42 
1 

, 

X
2 	

10 	20 	40 	18 	12 	3.02 

X 	 2 	8 	20 	30 	40 	3.98 
3 

X
4 	

1 	q 	18 	22 	54 	4.23 

X 	 20 	30 	30 	20 	0 	2.50 
5 

X
6 	

0 	0 	0 	9 	91 	4.91 

1 



Table 2. Rearranged Data Matrix 

Categories 

1 	2 	3 	4 	5 	M 
i 

X
4 	

1 	5 	18 	22 	54 	4.23 

X 	 2 	8 	20 	30 	40 	3.98 
3 

Stimuli 

X 	 5 	16 	30 	30 	19 	3.42 
1 

X
2 	

10 	20 	40 	18 	12 	3.02 

X 	 20 	30 	30 	20 	0 	2.50 q 
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Table 3. Probability Matrix 

Categories 

2 	3 	4 

X
4 	

.01 	.05 	.18 	.22 	.54 

X
3 	

.02 	.08 	.20 	.30 	.40 

Stimuli 

X 	 .05 	.16 	.30 	.30 	.19 
1 

X
2 	

.10 	.20 	.40 	.18 	.12 

X
5 	

.20 	.30 	.30 	.20 	.00 
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Table 4. Cumulative Probability Matrix 

Categories 

191 

Stimuli 

1 	2 	3 	4 

X
4 	.01 	.06 	.24 	.46 

x
3 	

.02 	.10 	.30 	.60 

X 	 .05 	.21 	.51 	.81 
1 

X
2 	

.10 	.30 	.70 	.88 

X
ç 	.20 	.50 	.80 	1.00 



Table 5. Z-Score Matrix 

1 

X 
3 

Stimuli 

-2.327 

-2.054 

CX) X
5 

.000 	+.841 -.841 

192 

Categories 

2 	 3 

-1.555 	-.706 	-.100 

-1.282 	-.524 	+.253 

X 	-1.645 	-.806 	+.025 	+.878 1 

X
2 	

-1.282 	-.524 	+.524 	+1.175 

1 
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Table 6. Criterion Position Matrix 

Categories 

1 	 2 	 3 	 4 

X
4 	

-1.670 	-.813 	+.130 	+.803 

X 	-1.648 	-.803 	+.026 	+.876 
3 

Stimuli 

X 	-1.645 	-.806 	+.025 	+.878 
1 

X 	-1.630 	-.880 	+.158 	+.803 , z. 

X 	-1.644 	-.809 	+.026 
5 

.. .. 

1- 

-1.647 	-.822 	+.073 	+.840 



1 

X
4 

-2.23 

194 

Table 7. Relative Positions of the Criteria 

Criterion 

2 	 3 	4 

-1.51 	-.74 	-.07 

-1.98 	-1.25 	-.46 	+.22 

• Stimuli  

X 	-1.64 	-.81 	+.02 	+.88 1 

X
2 	

-1.20 	-.40 	+.46 	+1.10 

X
5 	

-.7.6 	+.05 	+.92 	+1.65 

X 
3 

1 
1 
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Table 8 ,,  

Stimuli 

Expected Percentages in Each Category 

Categories 

1 	 2 3 	 4 	 5 X
4 	.0129 	.0526 	.1641 	.2425 	.5279 

X 
.0239 	.0817 	.2172 	.2643 	.4129 

3 

X 
.0505 	.1585 	.2990 	.3026 	.1894 

1 

X
2 	.1151 	.2295 	.3326 	.1871 	.1357 

X 
.2236 	.2963 	.3013 	.1293 	.0495 

5 



1.3 	5.3 	16.4 24.2 	52.8 X 4 

Stimuli 

1 

Table 9. Expected Frequencies in Each Category 

Categories 

1 	 2 	 3 	 4 	 5 

196 

X
2 

	

2.4 	8.2 	21.7 

	

5.0 	15.8 	29.9 

	

11.5 	23.0 	33.3 

	

22.4 	29.6 	30.1 

	

26.4 	41.3 

	

30.3 	18.9 

	

18.7 	13.6 

	

12.9 	5.0 



1 

5.0 

11.5 

22.4 

X 
4 

X,., 

Stimuli 

1 

X
2 

X 
5 

Table 10. Altered Matrices 

ZzDegtge ExeglIenzy Li 

197 

Categories 

2 	 3 	 4 	 5 

	

6.6 	16.4 	24.2 	52.8 

	

10.6 	21.7 	26.4 	41.3 

	

15.8 	29.9 	30.3 	18.9 

	

23.0 	33.3 	18.7 	13.6 

29.6 	30.1 	12.9 	5.0 

DbLej,DeJ 

Categories 

Stimul i 

1 	 2 	 1  4 	 5 

X
4 	

--- 	6 	18 	22 	54 

X
3 	

___ 	10 	20 	. 	30 	40 

X 	5 	16 	m 	30 	19 
1 

X
2 	

10 	20 	40 	18 	12 

X
5 	

20 	30 	30 	20 
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Table 11. Inversions (reciprocals) of the Probabilities in-Table 4 

Categories 	 . 

1 	 2 	 3 	' 	4 

X
4 	

100.000 	16.667 	4.167 	2.174 

X 	50.000 	10.000 	3.333 	1.667 
3 

Stimuli 

X 	20.000 	4.762 	1.961 	1.235 
1 

X2 	
10.000 	3.333 	1.429 	1.136 

X
5 	

5.000 	2.000 	1.250 	1.000 



Table 12. Values from Table 11 Minus 1.00 

Categories 

1 	 2 	 3 	 4 

19- 9 

Stimuli 

X
4 	

99.000 	15.667 	3.167 	1.174 

X
3 	

49.000 	9.000 	2.333 	.667 

X 	19.000 	3.762 	.961 	.235 
1 

X
2 	

9.000 	2.333 	.429 	.136 

X
5 	

4.000 	1.000 	.250 	.000 



Categories 

2 

2.752 

3 

1.153 

1 

4.595 X
4 

X -) 

X 
1 

X
2 

X 
5 

Stimuli 

Table 13. Natural Logarithms of Values in Table 12 

200 

4 

.160 

3.892 	2.197 	.847 	-.405 

2.944 	1.325 	-.040 	-1.448 

	

2.197 	• 847 	-.847 	-1.992 

	

1.386 	.000 	-1.386 	- cAlp 



Table 14. Parameter Values for Allnatt's Basic Technique 

îetipele.P e.£ 

X
5 	

X
2 	

X
1 	

X
3 	

X
4 

1.543 	1.557 	1.595 	1.559 	1.629 

g = 1.577 

- 
1e1ÀDIltel5 Qt Zul linlgx;ekl keljauleg Ëjmisle bï ul 

X
5 	

X
2 	

X 	X
3 	

X
4 1 

-.452 	.032 	.393 	1.036 	1.373 

Eplialteg e£ 

X
5 	

X
2 	

X 	X 	 X
4 1 

.388 	.50e 	.597 	.738 	.798 

Zeljmelee Qi 	111LIn1=11 

X
52 	

X 	X
3 	

X 
1 	 4  

1.578 	.969 	.675 	.355 	.253 

201 



b 

Smaller 
Stimulus 

a 	.80 

b 

C  

d 

I 
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Table 15. Sample Ratio Matrix 

Larger Stimulus 

c 	 d 	 e 

.40 	.20 	.10 

.75 	.50 	.25 

	

.70 	.40 

.75 



Tetrads R
14

xR
23 

R
13

xR
24 

Table 16. Tetrads and Their Associated Ratio Products 

203 

(a,b,c,d) 	R xR =(.20)(.75) =.15 	R xR =(.40)(.50) =.20 
ad bc 	 ac bd 

(a l b,c,e) 	RxR
bc

=(.10)(.75) =.075 	R xR =(.40)(.25) =.10 
ae 

 
ac be 

(a,b,d,e) 	R xR =(.10)(.50) =.05 	R _xR =(.20)(.25) =.05 
ae bd 	 ad be 

(a,c,d,e) 	R xR =(.10)(.70) =.07 	R xR =(.20)(.40) =.08 
ae cd 	 ad ce 

(b,c,d,e) 	R xR =(.25)(.70) =.175 	R xR =(.50)(.40) =.20 
be cd 	 bd ce 



Table 17. ANOVA Table for the Data from Table 16 

.aelugg 	ef 	J5,5 	 a 	1' 

Tetrads 	4 	.030875 	.00771875 	43.18 

Columns 	1 	.00121 	.00121 	6.77 

Error 	4 	.000715 	.00017875 

Total 	9 	.0328 

= .00121+.000715 
= *e0192 	= .000385 

1+4 	 5 

ET 	= .00771875 	= 20.05 

.000385 

204 

MS 



5 
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Table 18. Effect of Unequal Variances on the Significance Level 

of ANOVA
a 

Ratio of 	 Actual 
Sample Variances 	Significance Level 

2 	7 	 1:2 	 .051 

	

1:5 	 .05C 

	

1:10 	 .063 

1:2:3 	 .058 

1:1:3 

5 	5 	 1:1:1:1:3 

7 	3 	 1:1:1:1:1:1:7 

.059 

.074 

.120 

aNominal o< = .05 

This table is copied without permission from Lindman, 1974. 
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7 , t15 

. 99 

8 	.95 
; .99 

7.18 	8.12 	9 . 11 	9,78 	10 	11.1 	11.7 

	

 
11.2 	14 5 	15.8 	11e 	17.9 	18.9 

.1. 4 (1.0)) 
tp . ,) 

6.7 
9,5 

7.00 
9.9 

0 42 
■ 1 . 1 

15 .9 ." 
I 

60 ".21 .!. I I .• - 7 1 	91,  2.30 
2.6 , ■ ,•1 

Table 13.7 Distribution of F„,,,, Statistic* 

number of 3411ances 

206, 

df for 	1 	• 
s 21 	 2 	3 	4 	5 	6 	7 

	

.95 	9.60 	.15.5 	20.0 	25.2 	29.5 	33.0 	17.5 	41.4 	44.6 

	

.99 	23.2 	37. 	49. 	59. 	69. 	79. 	89. 	97. 	106. 

1  

6 	.95 	5.8' 	. 8,38 	10.4 	12.1 	13.7 	15.0 	16.1 	17.5 	18.0 

	

.99 	11 1 	15 5 	19.1 	22 . 	15. 	27. 	30, 	32. 	.14. 

4 99 	6 194 	8..14 	9.70 	1(0 	11.8 	12.7 	13.5 	14.3 
12.1 	14. 8 	10.5 	18.4 	20 	22. 	23. 	24. 

4 

5 	.95 
.99 

	

7.15 	10.8 	13.7 	10.3 	18.7 	20.8 	22.9 	24.7 ' 	26.5 

	

14.9 	22. 	28. 	33. 	38. 	42. 	40. 	50. 	54. 

30 

, 
9 	.95 	1 .03 	5.34 	0 31 	7  .11 	7. 80 	8.41 	8 '15 	9.45 	9.91 

6 :',..4 	>: 5 	0  q 	11.1 	12 1 	13 1 	1 1  9 	1.1 7 	15.3 
, 

10 	,:s 	3 '2 	4.8 8 	5 ,..- 	(‘ 34 	6 ' 1 2 	7.4 2 	7  :i 7 	8.28 	8.66 
ç ,5 	7,4 	8 i, 	' , .1, 	l 0,4 	11.1 	118 	12,1 	12.9 

12 	• ■ ).5 	 11. 	 to 	 1,11')  

4 	 6.! 	1. 1 	7j. 	8 2 	8.7 

; 	4.00 	>1" 	4.68 	.1 9i 	5.I  u 	5.40 	5,59 
- 	 6.4 	 7.1 	- 3 	7.5 

211 	 74. 2 95 	 4.54 	 1.14 	410 	4.24 	4.37. 
.•6; 	 3 8 	; 	t 	 5 1 	; 	 • 	5,6 

	

7.40 	 2 ' , I 	3111 	1.12 	>21 	3.29 

	

1,0 	1 , 	 3 . 4 	 3,8 	 4.0 

	

.95 	1.90 	1 400 	 1.10 	1.0 1 % 	 ' 00 	I .00 	1.00 

	

.99 	I »0 	00 	1 .1' 	1.181 	1.00 	00 	1 00 	1.00 	1.00 

* This iahle 	ahrttli.!ed Cron) Table +I in Biome/rt./1/4a Tables  /ør  Statisticians, vol. 1. 

(2d  cd.)  Nev■ Vol k: Cambridge ,  1958. Edited 	S. Pearson and 11, 0. Hanley.. 

Reproduced v.ith  1 he kind permission ()I' 	S. Pearson and  1 he trustees or Itionwirika. 
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Table  U. 	Critical Values for (' ochran's Test for Homogeneity of Variance* 

	

21 	( 7‘)s 	,,s,.. 5 	2 . '.-;-) 	.1.74 

-`.2 5 	 .,,;—,, 	 — f4.1 	— 1 —'  

• :' I 	.5-'2 	'15 . 	....--; 	 .....;, 	: .- c...; 
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• Et errod u e e il  t i ll, per 	 c 	cd‘dt t. 
Nev.. Ytmk: 	 till, 1 ,147 

\ 	'0■, 	I  Ltt.t, ansi \ 	\ 	 ■ 11 , 11 ■ 1 ■ )e , 	.% ig 	,?• 	1 n, ,11 ti,. 
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Table 19. Original Data for Box-Scheffe Test 

11 

11 SAMPLES 
1 	2 	3 	4 	 11 

1 	2 	5 	7 II 
, 

2 	3 	5 	8 

2 	3 	6 	8 	 1 

2 	3 	6 	9 I 
3 	4 	6 	9 

3 	4 	7 	10 	 Il 
3 	4 	7 	10 

6 	5 	8 	11 	 II 

X 	2.75 	3.50 	6.25 	9.00 

s. 2 
 

	

1.488 	.926 	1.035 	1.309 

I/ 



6 

5 

6 

8 

0 

11 

7 

10 

8 

7 

7 

5 

1 

SUESAMPLES 

2 

3 

Table 20. Data of Table 19 Divided into Subsamples 

SAMPLES 

1 	 2 	 3 	 4 

209 

3 	 4 

3 	 5 

2 	 4 

2 	 3 

2 	 3 

1 	 2 

6 	 4 

3 	 3 

10 

6 	 9 



Table 21. Variances of Subsample Data in Table 20 

SAMPLES 

1 	 2 	 3 	 4 

1 	 .3333 	.3333 	.3333 	.3333 

SUBSAMPLES 2 	.3333 	.3333 	.3333 	4.3333 

n 	4.5000 	.5000 	.5000 	.5000 ., 

Table 22. Natural Logarithms of Variances in Table 21 

SAMPLES 

1 	 2 4 

	

1 	-1.0986 	-1.0986 	-1.0986 	-1.0986 

	

SUBSAMPLES 2 	-1.0986 	-1.0986 , 	-1.0986 	1.4663 

	

3 	1.5041> 	-.6931 	-.6931 	-.6931 

210 
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Computations Needed to Obtain 
)/* 

for the Table 23. 

Welch-Aspin Test 

SAMPLE 	n 	n -1 	S.
2 

	

W. 	Iy(ry 	
i 

l) 	U. 2/(n. - 1) 1/(n -1) 

	

i 	i 	1 	1 	 1 1  

1 	 8 	7 	8.214 	.9739 	.1391 	.1355 	.1429 

2 	C 	7 	8.839 	.9051 	.1293 	.1170 	.1429 

3 	8 	7 	9.696 	.8251 	.1179 	.0973 	.1429 

A 	 8 	7 	2.796 2.6612 	.4007 	1.1695 	.1429 

TOTALS 	 5.5653 	.7950 	1.5193 	.5716 
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1 

1 
1 

1 

1 

3 

2 

7 

Table 24. Original Data for the Kruskal-Wallis Test (Example 1) 

SAMPLE 

1 	.2 	3 

12 	2e 	14 

16 	32 	11 

10 	23 	17 

1*" 	35 	24 

Table 25. Ranked Data for the Kruskal-Wallis Test (Example 1) 

SAMPLE 

• 	2 

10 

11 

1 

4 	12 

TOTALS(R.) 	14 	41 	23 

I 



1 2 

2.13 

Table 26. Original Data for the Kruskal-Wallis test  (Example 2) 

SAMPLE 

2 	 3 	 4 

6 	 7 	 e 	 7 

8 	10 	 6 	 4 

6 	12 	12 	10 

10 	13 	 E. , 	E 

Table 27. Ranked Data for the Kruskal-Wallis Test (Example 2) 

SAMPLE 

e 	 6.5 	1.5 	6. 5 

0 	12 	 4 	 1.5 

4 	14.5 	14.5 	12 

12 	16 	 0 , 	 9 

TOTALS(R..) 	29 	eq 	29 	 29 
1 



J. 

2 

1 

2 

8 

sunni 

	

2 	 3 

	

2 	 3 

2 

	

2 	 3 

	

2 	 3 

	

10 	18 

1 

2 

ODSERVFES 	3 

4 

5 

6 

TOTALE (R.)  

Table 28. Original Data for the Friedman Test 

STIMULI 

3. 	 2 	 3 

1 	 4 	 6 	 7 

2 	 5 	 it 	 8 

ODSERVERS 	1 	 3 	 7 	 8 

4 	 5 	 6 	 8 

5 	 3 	 7 	 9 

6 	 6 	 5 	 8 

Table 29. Ranked Data for the Friedman Test 

214 
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Table 30. Data and Computations for the Uatched-Pair 

Wilcoxon Test 

Stimulus Stimulus 
1 	2 	 Ranks of 	Sign of 

Scale 	Scale 	 Absolute 	Absolute 	Initial 
Observer Values Values Difference Difference Difference Difference 

1 	4 	8 	-4 	 4 	 5.5 

2 	6 	c. 	-3 	 3 	 '-',. 

3 	3 	12 	- 	 Q 	 c u 

4 	q L 	7 	 1 	 1 	 1 

5 	10 	6 	 4 	 4 	 5.5 

6 	4 	0 - 	-5 .) 	 7 

7 	5 	3 	 2 	 2 	 2 

E 	7 	10 	- 	 -, c 	 --1  

	

-, 	 J 	 3.5 

= 1 + 5.5 + 2 = 8.5 

T_ = 5.5 + 3.5 + 8 + 7 + 3.5 = 27.5 

1 



TABLE A-21. Distribution of the signed-rank statistic T 

The percentiles listed cover the range it = .005 to .125 for every sample size up to n = 20. 
Values T( ,., are such that the probability is a that the sigrfed rank statistic is less than or equal 
to 	The values T.. )  are such that the probability is a that Tis greater than or equal to T_ ) . 
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-1 	a 
n 	I 

O 	1 	.500 
n 2  

0 	3 	250 
'( = 3  

0 	6 	125 
n = 4 

0 	10 	.062 
1 	9 	.125 

n =  5 
0 	15 	.031 
1 	14 	.062 

2 	13 	004 
3 	12 	156 

n  = 6  
0 	21 	016 
1 	20 	031 
2 	19 	.047 
3 	18 	.078 
4 	17 	.109 
5 	16 	.156 

----- 7 
0 	28 	008 
1 	27 	.016 
2 	26 	.023 
3 	25 	039 
4 	24 	055 
5 	23 	078 
C. 	22 	.109 
7 	21 	148 

n = 8 
0 	36 	.004 
1 	35 	008 
2 	34 	.012 
3 	33 	.020 

4 	32 	.027 
5 	31 	039 
6 	30 	.055 
7 	29 	074 
8 	28 	098 
9 	27 	125 

P) 	9 
1 	44 	.004 
2 	43 	006 
3 	42 	.010  

T1. 	7 , 	a 
n = 9 ( ('am.) 

	

4 	41 	.014 

	

5 	40 	020 

	

6 	39 	027 

	

7 	38 	037 

	

8 	37 	049 

	

9 	36 	061 

	

10 	35 	082 

	

II 	34 	102 

	

12 	33 	125 
n = 10 

	

3 	52 	.005 

	

4 	51 	.007 

	

5 	50 	010 

	

6 	19 	.014 

	

7 	43 	019 

	

8 	47 . .024 

	

9 	46 	.032 

	

10 	45 	.042 

	

11 	44 	053 

	

12 	43 	065 

	

13 	12 	080 

	

14 	41 	097 

	

15 	10 	116 

	

16 	30 	138 
n - 11 

	

5 	61 	005 

	

6 	60 	007 

	

7 	59 	009 

	

8 	58 	012 

	

9 	57 	01G 

	

10 	56 	021 

	

11 	55 	027 

	

12 	54 	.034 

	

13 	53 	042 

	

11 	52 	.051 

	

15 	51 	062 

	

16 	50 	074 

	

17 	49 	087 

	

18 	48 	103 

	

19 	47 	120 

	

20 	46 	139 
n - 

	

7 	71 	.005 

	

8 	70 	.006  

T( _, 	a 

n = 12 ( ( unt.) 

9 	69 	.008 
10 	68 	010 

67 	.013 
12 	66 	017 
13 	65 	021 
14 	64 	026 
15 	63 	.032 
16 	62 	039 
17 	GI 	.016 
18 	60 	.055 
19 	59 	065 
20 	58 	076 
21 	57 	088 
22 	56 	.102 
23 	55 	.117 
24 	54 	133 

n =13  
9 	82 	.001 

10 	SI 	005 
11 	80 	.007 
12 	79 	.009 
13 	78 	.011 
14 	77 	013 
15 	76 	.016 
16 	75 - .020 
17 	74 	021 
18 	73 	029 
19 	72 	.034 
20 	71 	040 
21 	70 	.017 
22 	60 	.055 
23 	68 	.064 
24 	07 	.073 
25 	66 	081 
26 	65 	095 
27 	61 	108 
28 	63 	.122 
29 	62 	.137 

n 	14 
12 	93 	001 
13 	92 	(105 
14 	91 	007 
15 	90 	.008 
16 	89 	.010 

T ( , ) T1-1 	a 
n = l4 ((ont.)  

17 	88 	.012 
18 	87 	015 
19 	80 	.018 
20 	85 	.021 
21 	81 	025 
22 	83 	.029 
2:3 	82 	.031 
2 ) 	81 	039 
25 	80 	.015 
26 	79 	.052 
27 	78 	.059 
23 	77 	.068 
29 	76. 	.077 
30 	75 	.086 
31 	74 	.097 
32 	73 	.108 
33 	72 	.121 
31 	71 	.134 

n = 15 
15 	105 	.004 
16 	104 	.005 
17 	103 	.006 
18 	102 	008 
19 	101 	.009 
20 	100 	.011 
21 	90 	.013 
22 	98 	.015 
23 	97 	.018 
21 	96 	.021 
25 	95 	.024 
26 	94 	.028 
27 	93 	.032 
28 	92 	.036 
29 	91 	042 
30 	90 	.0.17 
31 	80 	053 
32 	88 	.060 
33 	87 	.oes 
34 	86 	.076 
35 	85 	.084 
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Table 31. Sample Dissimilarity Matrix. 
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Figure 4. Plots of ln ([1/F(T)J-l) against transformed Criterion Positions for 

all  X. in Allnatt's Analysis. 
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Figure 6. Plot of ln (.5) against Impairment Measure (in dB). 
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7b. The distance from A to B is 
the same as the distance from 
A to C. 

7c. The vertical line and 
the horizontal line are 
the same length. 

Figure 7. Some Classic Illusions. 
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7a. The tWo vertical lines are the same length. 
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Figure 8. Plot of STRESS as a Function of the Dimensionality of the Solution. 
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FIGURE 9 GENERAL SCHEMATIC OF THE MODEL 
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FIGURE 10 MORE DETAILED REPRESENTATION OF THE MODEL 
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