





EXECUTIVE SUMMARY

In the present manuscript, we have attempted to do three
things: discuss the issues involved in selecting a scaling pro-
cedure for teletext systems, recommend and discuss the most
viable of the procedures currently available, and present a
psychological model of the processes involved in making a scaling
judgment. In the first chapter we accomplish the first of those
goals, Broad classes of scaling techniques are discussed and it
is ultimately concluded that indirect scaling is most appropriate

in the present circumstance,

In chapters 2, 3 and 4 we meet our second goal by suggestinc
a) the optimal way to collect scaling data, b) the best tech-
nigues for analyzing those .data to produce scale values and c)
the most appropriate way of analyzing the resultant scale values.
The recommendation is that since the industry has adopted a five-
point rating scale for dafa collection, a scale which also suits
our purposes, that we also use a five-point scale ranging frecm
bad to excellent. The best techniques for analyzing those data
are Thurstonian (1927) scaling and Allnatt's (1973; 1975; 1979)

more recently developed method. Detailed descriptions of how to
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carry out each of these techniques, and how to test the assump-
tions each technique makes, are included. The analysis of
variance is felt to be the optimal tool for analyzing the re-
sultant scale values although data transformations or even non-

parametric alternatives may be necessary.

Oour final goal is achieved in chapter five. Here a model of
the entire scaling process is presented and discussed. As is
argued, the model has a number of strengths including its
generality and testability. Further, it represents an integra-
tion of a number of areas of psychological research and, thus,
its principles have strong empirical backing. Hopefully, it can
serve as a useful framework for understanding the nature of

subjective scaling judgments,
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CEAPTER 1 - SCALING ISSUES

The assessment of subjective reactions has had a very long
history. The first recorded attempt to describe subjective res-
ponses was the scale of stellar magnitudes used by astronomers in
150 BC to measure the perception of the stars (Stevens, 1960).
In the mid-1800's psychologists began to study the problem
formally, and, since that time, various "schools of thought" have
developed. There are large areas of disagreement between ex-
perts, and it would be impossible to make recommendations com-

patable with all theoretical approaches,

In terms of the subjective assessments of teletext systems,
there are constraints on the type of procedures which can be
used, A review of the procedures indicates that a specific tyre
of assessment, indirect scaling, is the most appropriate approach
to apply to teletext evaluations. Procedures will be recommended
for developing a theoretical representation of the assessment
process and the perceptually important aspects of teletext dis-
plays. In subsequent chapters, specific methods will be examined

from both statistical and procedural points of view.

da PSYCHOLOCICAL MEASUREMENT

Measurement is the process of assigning numbers to events or

objects. In physics, measurement involves comparing the object




to be measured to some calibrated standard, such s & yverd stick
or belance. The result is & numerical representation which has &
cleerly defined meaning by virtue of the known characteristics of

the measuring device,

The goal of psychophysics is to measure mental events, and
the okserver is the measuring cdevice. TLach judgmenrt the obkserver

“vard stick"”.

nakes can be considered a reaaing from a menteal
The mertal scale is not en objectively celibkrated device,
hssumrticng must ke made about the wey in which subjective
assessments are made. Withcout these assumptioné the subjective
ascessment has no meaning, Jjust as it has no meaning tc describe
& physical object as "5" without specifying that we are telking
about lencgth and that the units are centimeters., Any substentive
conclusions based on subjective responses necessarily imply e
theory of the cubjective measurement process, whether the

assumptions ere meade explicit or not,.

E1l psychophysical precedures. make the assumption that
observers are able to follcew the instructions they ere given to
perform the task., The instructicns define, at least in part, the
nature of the measufement scale. Sometimes there is little doulkt
that the instructions can be follcowed, For instence, an observer
may be askec to judce which cof two objects is lerger, more
colourful, more interesting, prettier cr sexier. The tack is
gquite simple, to make a chcice, anc¢ the coricept (anc¢ therefore

the measurement) is defined by the observer. 1In other procecures
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the observer performs a more cifficult task, such as to assi¢n &
number to an okbject which represents its retic to some known
standard. The observer is expected to choose a number twice the
value assigned to the standara if the test stimulus is perceived
as twice as bright, interesting, attractive, or whatever attri-
bute is specified in the instructions. FHere, the observer rnust

¢efine the concert ana perform a reasonably difficult task.

The bhasic psychophysicel assumptions are that the observer
can:
1) isolate the ettribute of interest, anc

2) perform the reguested jucgment.

The extent to which & particvlar procecure can ke exrectec to

rneet these recuirements determines ite viability s & psycho-
I

rhveical technicue,
I ]

There ere a number ¢f rrocedures which can be appliec when
juccemerts cer be classified ss either ccrrect or incorrect, Uhe
Guestione these technicues ore Used to answer invelve the Getect-
ion of stimuli or the discrimination between two or more alter-
natives. The technigues completely cclve the basic problems cf

reychephysical meesurement, and cre inclucdec as an exemplary

(S
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baseline for the acdecuete measurement of subjective responses,

The besic procedure is to present the observers with
stimuli, either in isclation ¢r in sets, anc¢ require them tc
identify the stimulus which has the attribute in cuestion. The
observer's choice can be scored a&s correct cor incorrect, anc the
measure is c¢efined in terms ¢f the accurecy of respongses. For
exanrle, to determine an observer's sensitivity to.acoustic in=-
tensity, twoe sounds Gifferinc cnly in intensity couvld be pre-
sentec, The observer would be recuirec to identify the mcore

intenze ¢f trke twe., The cbserver's abilityv to perforrn the tacek
. Y ¥

4]

is explicitly cetermined in the comperiscn of cecuracy to cheance
performance, If accuracy is greater thean chance, the chserver cen
perioru. the tasik., The problem of the definhition ¢f the attribivte
tseC¢ for the judgment is solved by the selecticon of stimuli such
that they only vary ir terms 6f the attribute cf interest. IL two
stimuli ¢ifier only on & sincle acttribute end the oheservers cen
accuretely ciscriniinete the stimuli, then the jucoment must be

bcsed on thet attrikbute.

Objective procedures recuire the controi of the attribute oi
interecst, while keeping cther attributes constent. This is ofter
Ggifficult, even with apparently well-Gefinedéd stimuli. For
instance, the curation of an éuditory stimulus can easily bc

contrclled, and the detectability of & chancge in Guretiocon can

easily be mcasured. However, it is cdifficult to deternine

N
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whether the discrimination is based on changes in duration,
signal energy, the short-term energy spectrum, or some combin-
ation of these various cues. Great care and effort must be taken
to ensure that stimuli vary only in terms of the attribute of

interest.

With respect to the problem of the subjective qguality cof
teletext displays, an observer's response cannot be scored as
correct or incorrect. There is no objective cdefinition of sub-
jective guality against which to judge the accuracy of a res-
ponse. For this reason, objective technicues are inappropriate
for the assessment of subjective cuality. It is strongly recom-
mended, however, that if situations arise at any point in this
project which are amenable to objective techniques, then these
technigues should be adopted immediately. These procedures pro-
vide the most satisfactory solution to the basic proklems of
psychophysical measurement, and the natural inertia to alter
experimental paradigms should be avoided if objective technicues

become applicable.

lalag Subjective Tecbpigues

A subjective psychophysical procedure is one which involves
responses which cannot be classified as correct or incorrect. 1In
subjective technigues, the observers are reporting, as best they
can, the psychological impact of a stimulus., Since there is no

physical device which can measure psychological impact, a res-




ponse cannot be shown to be incorrect. Objective descriptions
of the stimulus can only be used to characterize the stimulus,

but not to define accuracy.

In subjective techniques, the observer is presented with
stimuli, either individually or in sets, and asked to deliver a
descriptive judgment, The instructions define the criterion for
the response, but the observer's interpretation ultimately de-
fines the measurement, A judgment might be required to assess
the acceptability, attractiveness, suitability, or whatever
attribute is requested, of the stimulus in question. The exam-
rles were chosen to emphasize a potential problem: the attributes
are different because of the nuances of language, but it is not
at all clear that different observers will employ the same pre-
cise definition, This problem is usually dealt with by employing
very broad categories for the attiibute being assessed, and not
attempting to make fine discfiminations of attributes., The
observer is sometimes given a scenario to orient the task, so
that all the observers will approach the problem from a similar
perspective. For instance, an observer might be tolé to rate a
number of teletext frémes as Bad, Poor, Fair, CGCood, Excellent,
and tcld to think of them as television images which might be

transmitted into their home,

The issue of adequately defining the attribute being
measured can also be addressed by requiring a degree of consist-

ency in responses, both between and within subjects. Unfortun-
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ately, this reguirement provices only a minimal incicatior thet
the attribute is being clearly defined. Consistency only pro-
viges &acsurances that the response is based on some steble
stimulus characteristic., It provides no evidence that the judo-
ment wes macde solely on the attrikute of interest. Ancther
approach is to examine the judcgments te make sure they nake
"sense",'seeﬁ to provicde judaments which orcer stinuli in &
reesoneble way, or correlatc with escoree cn & related teck.
Ilthoucl thig seers cdefensible, it is e circuler jprocectre girce

the preper subjective renking of stimulil on the attribute in

Al

guestion waes the cricinal purrose cf the measuvrement. Thueg,
tlhese corte ¢f yrocedures can only previce en cssesswent of the
face velicity of the resyponcses., Overell, the jroblen of the
cefinition of the &ttribute is cealt with by the essumption that

the observers can fcllow the instructionsg, with & few wminimel

forims of verificetion.

The ceconé issue invelves the ebility ¢f the chserver to

cericrn the tesk, once the attribute ci irterest is cefinec, From

1

the perspective of subjective ascessmente, this issue is ascesced
by the succegs achievec in previdcing numibere vihiich eccuretely
reflect the cbserver's copinions. Thieg point is jucdced by the
Gecree to which meanincful scale values cen be recovercc iron the
data. Unfcrtunately, there are larcge cifferences of opinion as¢
to what constitutes a wmeaninciul psycholocical scale. Since the

true scele is an unknown cuantity, attempts are made to veriiy




the accuracy of the values by examining the statistical pro-
perties of the results, Therefore, it is important to deal with
this issue in some manner, becausé it addresses the way in which
values are assigned to objects, and thus, the meaning of the

measurement,

lela2al Qperaticnal DRefipikiops

One approach is the pragmatic approach of using an oper-
ational definition of the scale values. The measurement takes
its meaning solely from the instructions and the procedure, and
the main goal is to develop a standardized testing situation.
The observer is viewed as a "black box" which is confronted with
a standard stimulus situation, and produces a standard measure-
ment, No reference is macde fo the processes by which judgments
are made, anc the psychophysical scale reduces to a summary of
the input-output relations between the stimulus and response.
Judgments are taken at their face value, and the adecuacy of the
measurement is merely Ehe utility of the results. The consistency
of observers on the task, ané the success of ﬁhe scale in dis-
criminating between the stimuli, are indicative of an adequate

measurement under this criterion.,

dnleleg Direct Scaling

Related to the above logic in simplicity, but not quite so
atheoretical, are the so-called direct psychophysical procedures,

Here, it is assumed that observers can make complex judgments,
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and are able to report the values of psychological events
directly. In particular, observers are asked to make ratio
judgments about the attributes of stimuli. The observer simply
assigns a number to a stimulus which represents the ratio of the
attribute in question to that assigned to a known standard.
Procedures of magnitude estimation, magnitude procduction, anad

fractionation are of this type.

The assumption being made here is that these technigues
define ratio values, so that the obtained judgments represent a
direct estimate of the underlying psychological scale. Investi-
gation of a number of rather simple relations, such as thet
between acoustic power and loudness, luminance and brightness,
electrical current and perceived sensation to name a few, have
all indicated an encouraging amount of consistency. All such
functions can be adeguately described as power functions, such
that the perceived magnitude is related to the physical magnitude
raised to some power. The value of the exponent is unique to the
relation being assessed. An example is the sone scale of loucd-
ness, where auditory signals of various frequencies and intensit-
ies are scaled relative to a 1000 Hz tone presented at 40 dB SL,
A scale such as this might be constructec for picture cuality, by
having observers make magnitude estimates of quality to a
standard presentation. All judgments could be refered to a
standard, with stimuli judged to be at equal ratios to the

standarG being regarded as equivalent on the dimension.
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Although this procedure may seem attractive, there is a
serious problem in the validation of the scale. The technique of
magnitude estimation has been argued to apply to continua of
quantity, the so-called prothetic continua. Ratio scaling is a
valid approach in these instances because there is a true zero,
“that is, there exist some stimuli that contain no amount of the
attribute. The existence of a true zero is fequireé‘for ratios
to be meaningful. If the psychological representation instead
has an arbitrary zero, then the value assigned¢ to the standard by
the observer is likewise arbitrary, and so too will be the ratic
steps on the psychclogical scale, Attempts to use direct scaling
procedures with attributes which have no clear zero have resulted
in largely unsatisfactory results. Under some conditions, con-
sistent subjective scales can be obtained, but the resultant
cscales do not seem descriptive to competent observers (Vard,
1970; Marks, 1974). This probiem makes the use of magnitude
estimation scaling of a given stimulus to a known standardé a
risky procedure, if no validation can be provided that the

judgment represents a ratio value on a prothetic dimension.,

If the sceling of picture image gquality is thought to be
prothetic, then ratio scaling would certainly be possible, but
the issue of validation is complicated because there may be no
objective scale of image guality. One approach would‘be to
measure the growth of subjective image quality with increases in

the magnitude of various parameters relatec to overall image

-
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guality. Each type of teletext system to be evaluated may, of
course, vary on more than one of the parameters of objective
gquality. Thus, interactions of the parameters must also be
assessed to allow a prediction of the overall subjective quality
of the system., An examination of the relation between the sub-
jective magnitudes and each of the physical parameters of :velity
vould provide validation of ratio scaling of the judgments, it
the plots can be described as power functions. The assessment of
interactions between individual parameters in the determination
of overall image quality could define the relative salience of
each physical parameter as a determinant of overall subjective
guality. This result would be a useful cne, because it would
define the parameters that subjective cuality is most sensitive
to. However, other procedures which do not make the assumptions
of direct judgments can be used to obtain similar sorts of in-
formation. The effort required in validating the use of mag=-
nitude estimation may turn out to be excessive, especially since
the assessment of each single parameter is only one component of

the overall subjective quality.

2 potentially more acceptable application of cdirect scaling
would be to develop a physical scale of image guality which
accurately reflects the sense of objective quality intended for a
given application. For instance, if the concern was the trans-
mission of static frames, a measure could be developed which

describes the correlation between the transmitted and displayed
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message, Each teletext option could be quantified with respect
to this measure, and the relation between this objective metric
.and subjective gquality could be assessed using magnitude estim-
ation technigues. Other senses of the term "picture quality"
would reguire new physical descriptions of the stimulus to éuan—
tify the new meaning of the term in objective terms. The success
of the scaling could be assessed, once again, by the success of &
power function in describing the relation between subjective and
objective guality measures, An approach such as this would
depend critically on the success of the physical measure in
capturing the essential characteristics of the physical "picture

quality".

Although direct scaling techniques have been enormously
successful in some areas of subjective assessment, their applic-
ation to the problem at hand is not a simple matter. This type

of approach is possible, but not without either making some risky

assumptions, or providing some form of scale validation. A

central proklem is that direct scaiing requires a meaﬁingful
guantification of the physical stimulus such that the subjective
'judgment of interest can be regpresented on a ratio scale relative
to the objective measure., For these reasons, ratio scaling
téchniques in general are not obvious solutions to the problem zt

hand.
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lale2ad Indirect Scaling

The final category of subjective measurement techniques are
those described as indirect scaling. 1In these methods, there is
no need for an objective scale of the attribute in question,
because it is not necessary that the procedures relate judgments
to any scale of physical magnitude., Rather, the attempt can be
made to relate the stimuli to one another, in a psychoclogical
representation which is consistent with the observed set of

judgments.

All indirect scaling procedures make an explicit set of
assumptions about the way in which observers make responses. That
is, they make assumptions about the form of the psychoclogical
representation of stimuli, and about the transform between the
representation and the judgment in cuestion, Since the subject-
ive responses are known anG the transform is assumed, the origin-

al psychological representation can be defined.

The adecquacy of the assumed representation in accounting for
the observed set of responses can be evaluated empirically.
Given the obtained subjective representation, the measurement
model can be used to predict the pattern of subjective responses,
based on the solution and the assumec transform., These predicted
subjective judgments can be compared to the original data set,
and the adequacy of the model in accounting for the observations

can be directly tested. Poor mocdels can be discarded, and alter-
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nate representations can be assessed.

Given a reasonable fit between the model and the data, there
is very little to lose in using indirect scaling techniques. At
the very worst, the derived scale values can be taken as trans-
fbrms of an operationally defined measurement. Since the oper-
ational definition of measurement makes no claim of being an
optimal representation, it makes little difference whether they
are transformed or not. At best, the derived scale values will
be an accurate representétion of the true subjective values.
What is actually obtained is probably a compromise between the

worst and best case.

The decision essentially boils down to whether or not it is
useful to transform the raw data to estimates of the psycho-
logical representation, 1If the goal of the measurement is merely
to test some hypothesis in a single experiment, then the trans-
formation is probably not worth the effort. 1In terms of a larce
scale project the exercise is probably useful. It allows the
assignment of a numerical value to a stimulus which describes the
psychological value of the stimulus on some subjective attribute.
The meaning of the measurement is defined by the model used to
gescribe the judgment process, in a manner analogous to the way
in which physical measurements derive their meaning. This is a
clear advantage to the operational definition approach, where the

issue of the assignment of values to events is ignored.
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dnled Brecedural Copclusions

The major conclusion is that indirect scaling provides the
most plausible solution to the measurement of subjective
reactions to teletext systems. This follows from 1) the fact
that no clear objective measurement is available to define the
physical stimulus, which excludes objective psychophysics and
complicates direct scaling procedures, and 2) the assertion that
the mere operationalization of the measurement protocol does not
address the basic issue of the accurate representation of sub-
jective quality. Indirect scaling procedures, on the other hand,
focus on the process by which judgments are made, and require no
objective description of stimuli. These attributes make such

procedures most applicable to the current problem.

The great difficulty in deriving psychophysical scales stems
from the fact that when purely subjective attributes are being
dealt with, there can Be no objective assessment of the accuracy
of the scale., As a consequence, all subjective scales derive
support from demonstrations of the utility of the derived

measure,

dle GENERAL INIRQDUCIION IQ INRIRECT SCALING

The consideration of the categories of psychophysical

assessments has indicated that indirect scaling procedures
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provide the most promising approach for the subjective evaluation
of teletext cystems, The argument is based on a very general
consideration of the options available in the psychophysical
procedures applicable to subjective reactions. The decision to
use an indirect scaling approach does not specify a single pro-
cedure because thefe are a ﬁumber of methods which are included

under this general categorization,

The selection of a particular procedure should be based on a
number of criteria. One is the ease of measurement, that is, the
effort required to collect the raw data. Another consideration
is the form of the resultant psychological representation, and
the utility of the results obtained to the solution of the
problem at hand. Finally, the statistical properties of the
procedures and the adequacy of the method from a measurement
point of view is of vital concern., The latter consideration will
be addressed in great detail in subseguent chapters, At that
time, specific indirect scaling procedures wili be described and

evaluated from a statistical point of view.

Thé balance of this initial chapter will be concerned with
indirect scaling from a general perspective, and will rrovide
comments relevant to the first two considerations. -The purpose
of this discussion is to provide a background for the more de-
tailed analysis, and to‘discuss the options available from a
global perspective, This analysis will attempt to clarify the

goals of indirect scaling methods, and will indicate how each
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could be applied to the problem of subjective assessment ot

teletext systems.,

221 Data Colleckiop Rrpcedures

The raw data required for indirect scaling techniques are
obtained by having observers make judgments about the relation
between stimuli., The main goal of indirect scaling is to des-
cribe the position of specific stimuli or events in their psycho-
logical co-ordinates. The scale is derived by & consideration of
the relation between the observed psychological responses, with-
out reference to physical attributes, It is not surprising, then,
that the main form of the raw data must be an estimation of the
psychological relation between the stimuli presented to the

observer,

There are many nuances in the specific procedures used, but
virtually all can be considerec¢ to be a form of one of three
major categories of tasks: category judgments, subjective rank-
ings, or direct subjective comparisons., The specific instruct-
ions change on the basis of the attribute being considered and
the type of scaling being employed, but the presentation of
stimuli and the form of the observer's task can be reasonably
summarized in this way. In constucting this categorization
scheme a thorough review of the literature was undertaken. (See
the additional Reference section for a list of those papers

reviewed but not cited in the text.,) All of the papers reviewed
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which provide data amenable to indirect scaling used procedures

that can be categorized according to this scheme.

2elel Cotegory Judgnents

In this type of procedure, observers are asked to place each
stimulus presented into a descriptive categbry. The categories
can be defined by the instructioné, or in some rare cases, the
categories appropriate for the stimuli are chosen by the

observer.,

The most common proce&ure is category ranking. The observer
is presented with an gp-point scale, and asked to assign a value
to each stimulus which represents its position on the scale., The
verbal description of the scale defines the attribute in
question, and the meaning of various scale values are often
specified. The categories are often described numerically, but
verbal descriptions are gquite common. Most often there is an
attempt to give some absclute values on the scale and anchors are
provided for the judgments, but in other cases the observer is
given very little information about the intended meaning of the
scale values. . In these cases, the observer's interpretation is a

major determinant of the meaning of the scale,

One variant of this procedure is the sorting task, where. the
observer is given a number of stimuli and asked to sort them into

a number of groupings. Once again, the groupings are sometimes
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clearly defined, but at other times the group characteristics are

left up to the observer.

Another variation is the so-called analogue scale, where
observers are given a dial, slide potentiometer, or a continuous
scale of some sort and asked to indicate a reading on the scale
which represents the amount of the attribute contained by each
stimulus, The scale reading is taken as the response, which can
be consicered a special case of category judgment, where there
are a large number of catecories., The number of categories is
determined by the precision of the cdevice usec to subdivide the

sceale.

2.l.2 Subjective Rapkings

A second approach is to present the observers with all the
stimuli at one time, and have them rank crder the entire set on
the basis of some attribute. The procedure is usuelly applied by
not allowing tiec ranks, but forcing the observer to choose a
specific ordinal ranking, The attribute chosen for the ranking is
cefined by the verbal description providecd to the observer. 1In
some instances, the observer is given & subset of the entire set
rather than the complete collection, or given a number of subsets
and asked to rank each of the smaller croupings, If & subset
procedure is employed, then the subsets are usually chosen to
contain overlapping elements to allow an estimate of the overall

ranking of the complete set of stimuli from the ranking of the




subsets.

2ale3 Direct Subéeztjye Lopparisons

In this sort of procedure, an observer is.presented with two
or more stimuli and asked to choose one stimulus over the others
according to some criterion. In the method of paired compari-
sons, for example, every possible pairing of two stimuli from a
set are presented to the observer, and a choice is made on every
pair. Likewise, the method of triads asks the observer to choose
which of three stimuli is the most dissimilar to the other two on
the basis of some attribute. In its most complete form, this
type of procecdure requires that each stimulus from the set be
presented with each other member cr combination of members from
the entire stimulus set, which may often be a prohibitive re-
gquirement. For instance, the choice of the most attractive of
two stimuli from a twenty-element set presented in pairs would
require 190 choices to be made, and the same judoment with
stimuli presented three at a time would necegssitate 1140 judg-
ments. In some instances, therefore, the complete set of choices

are nbt sampled.

2ag R2ka Ppalysis Schemes

All three procedures provide data which can be treated in a
simple pragmatic manner, that is, as simple operationally defined

meaéurements. The form of category judgment data is a frequency
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distribution of category choices, which can be used to define the
average category rating, be it a mean, median or modal averadge,
or statistical tests can be completed to compare the freguency
distributions obtained by different conditions in an experimental
arrangement, Likewise, the ranking of stimuli can provide data
in the form of average ranks, and direct subjective comparisons
can provide frequency data regarding various choices., If viewed
as mere dependent measures of a behaviour, these data can be
analysed by conventional statistical procedures to make decisions

regarding the significance of experimental manipulations.

The preferred type of analysis will be explored more fully
in subsequent chapters. The main concern here is to address the
issue of indirect scaling, anc¢ the type of representatione that
can be constructed to characterize the obtained data set. There
are two distinct sorts of indirect scaling, these being attribute

scaling and multi-dimensional representations,

2022l Attribute Scaling

The attempt here is to assign a value to each stimulus in
the set which describes the psychological value of the attribute
in cuestion. The attribute does not have to be a one-dimensional
concept, nor do stimuli have to vary on only one attribute. The
technique relies on the ability of observers to isolate the
attribute of interest in each member of the stimulus set, anc to

base judgments on that sincle attribute, Observers are assumed
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to reduce various components of an attribute to a one-~dimensional
judgment, which is an appropriate projection of the various

components.,

For instance, judgments of the attractiveness of paintings
clearly involve elements of colour, form and composition. Pre-
sumably, attractiveness is a combination of these components. 1In
attribute scaling, observers are assumed to perform the required
combination of factors to define the attribute. 1In these cases,
creat care must be taken to define the attribute of interest,
Vastly different scales might result, even with the same
observers and stimulus set, if paintings were rated for their
attractiveness and for their artistic impact. Presumably, the
stimuli would have the same psychological representation in both
tasks, but the salience of each dimension would be different in

the judgments of the two attributes,

Attribute scaling reguires some dearee of variability of
judgments to proceed, since virtually all procedures scale
attributes on the basis of éome concept of the errors of judg-
ment, The most widely used procedure is the Thurstonian (1927)
scaling technigque, which aésumes that the psychological repre-
sentation is a normally distributed variable, and that differ-
ences in judgments are a reflection of this inherent variability.
If all stimuli are described as being very good, for example, no
psychological scale can be derived. The Thurstonian scale is

then a description of the relative positions of stimuli, in

J
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standard deviation units obtained from the model. For this
reason, variability of responses is required for this type of
scaling. No variability defines an ;nfinite distance between
stimuli, since two normal distributions must be separated by an
infinite distance in order to not overlap., 2attribute scales are
best applied, then, to reasonably homogeneous groupings of
stimuli, cr at least to stimulus sets which cover the range of

the attribute in reasonably small steps.

22242 Muplti-dimepnsional Sgcaling

The goal in multi-dimensional scaling is totally different
from attribute scaling, as are the instructions given to the
observer in making judgments. In these procedures, the attempt
is to place each stimulus in the set into a space which describes
the psychological representation of the stimuli. Observers co
noct make judgments about the value of a stimulus with respect to
an attribute, but rather estimate the similarity, degree of
difference, or distance separating stimuli on a given attribute.
To scale the attractiveness of paintings, then, observers would
be presented with two stimuli from the set, ana askec tc rate
their similarity in terms of attractiveness, The estimates of
the distances between stimuli are used to construct a psycho-
logical space, which describes the position of all the stimuli
from the set, such that the distances between stimuli in the
space are consistent with the set of judgments. The result is an

p-dimensional space, where each dimension is some sort of psycho-
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logical vector required to describe the stimulus., The goal is to
minimize the difference between the observed distance estimates
an¢ the distances between stimuli in the space, using the fewest

possible dimensions.

The definition pf the dimensions of the space reqguires
extreme care and a reasonable approach, since the true dimension-
ality of the space is not known. An error-frée fit can always be
cbtained by using one dimension less than number of stimuli in
the set, and the error of the fit decreases with the addition of
nev dimensions to the psychological space. 1In practice,_however,
juagments can usually be accounted for with a reasonable number
cf dimensions. The result is a plot of stimuli in a multi-
dgimensional space which is an estimate of the psychological
representation of the stimulus set when judgments are made of &

given attribute.

It must'be uncderstood that this approach does not give a
scaling of an attribute, but describes the dimensionality of an
attribute, Presumably, in order to make a judgment about an
attribute, the observer must weight each dimension, and project a
one-dimensional value to describe the attribute of interest,
Multi-dimensional scaling can be made of specific attributes, or
of the representation of the entire set in terms of the similar-
ity of the elements of the set. The multi-dimensional solutions

for the two cases may not be the same.
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2«3 2pplicatiopns

These scaling techniques provide an exciting set of possi-
bilities with respect to the evaluation of teletext systems.
When taken together, these procedures hold promise for a large-

scale, broad-based assessment of subjective quality.

To begin, attribute scaling can be used to provide first-
crder estimates of picture guality. The meaning of the scale
values are clear from the particular model used to define the
gcale tnits., The adequacy of the scale to account for the data
set can be tested by a comparison of the expected and observed
data set, given the model usec to derive the scale., At the very
worst, the representation will allow the discussion of the de-
sired attributes from the framework of the model. The model
might not be a true cdescription of the psychological represent-
ation, but certainly the rgsults can be interpreted in these
terms, "as if" the model were true. The representation would be,
at least, a useful fiction., Since many people believe that any
sufficiently advanced technology is indistinguishable from magic,

this should not be a major concern,

Taking a less pragmatic view, these tools can be used to
develop a very complete representation of picture quality. There
are a lot of unknowns in this process, and the success of each

stage of the development of the theory is uncertain, but a
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plausible research scenario can be described to explore the
possibilities, First, a multi-dimensional scaling of picture
quality would be most useful, to describe a psychological space
of picture guality and the position of various stimuli from a set
of typical examples. The dimensions of the space would be‘un-
defined, but an examination of the position of stimuli in the
space could provide a clue as to the meaning of each dimension.
Formally, correlations could be obtained between the dimension
values and physical parameters of picture quality and trans-
mission modes, In the best possible case, the dimensions will
simply represent parameters of physical bicture guality, or some
simple combination of these physical measures., If this was
successful, new stimuli could be placed in the space on the basis

of these physical measures.

To address the question of subjective quality, correlations
could be made between the results of attribute scaling and the
Gdimensicnal values obtained., In all probability, accepteble
picture quality; cr quality according to any criterion, would be
restricted to a regioh of the space, rather than randomly dis-
tributed through the psychological representation, Assuming a
non-random distribution, multiple regression technigques could be
used to define the relative salience of each of the psychological
dimensions of picture quality. If these dimensions coulé be
given a physical interpretation, then predictions of picture
guality could be made on the basis of physical measures of tele-

text systems.

——
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ddds CONCLUSION

This discussicn has been based on a review of the literature
with our goal being to try to extract the collective wisdom of
researchers as to the most effective way to measure subjective
reactions., A library search was conducted and articles were
reviewed which deal with subjective assessments, Our review
indicates that there is no real agreement on how to measure
subjective reactions. Individual researchers apply specialized
procedures to their particular measurement situation., Most of
the research projects were relatively limited in scope, in com-
parison to the type considered here. The only reasonakle summary
of the literature is that there is no one approach that can be
described as being correct, but that the available technicues
shouldé be applied in a2 reascnable, thoughtful manner. It is a
matter of tailoring the measurement tc the purposes of the pro-
ject., This first chapter has attempted to provide a broad
theortical base for the selection of an approrpriate procedure for

the evaluation of teletext systems,
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CHAPTER 2 - RECOMMENDED PROCEDURES

In the previous chapter it was recommended that indirect
scaling of subjective quality be used in the evaluation of fele-
text systems. This decision leaves a number of options open,
both in terms of the procedures useé to collect the data and the
'methods of analysis employed to derive the subjective scales.
The purpose of the present chapter is to resolve these issues and
to recommend specific procedures. For all intents and purposes,
the issue of the appropriéte data doilection procedure can be
unambiguously solved: There is enough of an evaluation protocol
established in the teletext industry to indicate a substantial
benefit to the use of categorical judgment procedures, The issue
of the most appropriate analytic technigue is less clear, &nd
only guidelines can be established at this time., The available

options will be discussed, anc¢ their relative merits evaluated.

Ia DBIB COLLECTION PROCEDURES

A number of standard psychophysical procedures have evolved
over the history of subjective testing, and noné has ever keen
shown to be superior to the rest on any substantive grounds.
Preferences abound, certainly, but these preferences are based on
factors other than the ability of the pfocedures to provide Gata

adequate for the indirect scaling of subjective reactions.
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In the case of the evaluation of teletext systems, it is
recommended that a categorical judgment procedure be used. The
case is clear enough that it would be quite irresponsible to make

any other choice.

dal Categerigcal Judgment

In this method, observers are presented with a number of
response catecories which they are to use to describe the
attribute of interest. For example, a scale to estimate the
subjective heaviness of objects might employ five categories,
such as very light, light, average, heavy, ané very heavy. The
number of cateqgories is formally irrelevant, but in practice,
five to seven categories are typically used. The number of
choices simply determines the resolution of the scale, at least

in theory.

On each trial, the observer is presented with & stimulus, and
askeca to classify it according to the provided categories. If
stimuli are presented in groups rather than singly, the procecure
is usually described as a sorting task, but the logic is

essentially the same.

If the main concern is the subjective impressions of a
particular individual, the observer must make a large number of

repeated judgments on the same stimuli to estimate the vari-




30

ability of responses. If the main concern is the character-
ization of an "average" observer, then a large number of observers
can make single judgments of the stimulus set. In the particular
application consiéered here, the average response would often be

the primary concern,

la2 Degcisien Medel

Categorical judgment was developed by Thurstone (1927), and
it is based on a particular model of decision making. In the
model, each stimulus, X, is mapped to a subjective dimension, S,
by some unknown function, f. The dimension § is the attribute of
interest, defined by the instructions given to the observer.
There is noise in the mapping function, so that each physical
stimulus xi can be described by a méan psychological value Si
with a specific variance. In Thurstone's conception, this notion
of variability in the mapping function is fundamental to the
characterization of sensory systems. It is reférred to as the
discriminal dispersion, In the formal Thurstonian theory, dis-
criminal dispersions are assumed to be well represented by a

normal density function, as illustrated in Figure 1,

In order to make categorical judgments, it is assumec that
the observers can isolate dimension § from all other descriptive

psychological dimensions and establish category boundaries, ;a,

in the space. For p categories, p-1 category boundaries must be
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established. (Noise can also be assumed to be associated with
the criterion positions, which would also be described as normal-
ly distributed variables.) A more complete characterization,
showing a number of stimuli and the p-1 criteria positioned on

the § dimension, is depicted in Figure 2,

Assuming that the five categories are referred to as Bad,
Poor, Fair, Good, and Excellent, ;l would be the boundary between

Rad and Poor, L2 would separate Poor and Fair, ;3 would deliniate

Fair from Good, and ;4 would separate Good from Excellent, On
the presentation of a physical stimulus Ki' the sensory impress-
ion Xi would be produced by the function f. Due to the ncise
inherent in £, ¥ is regarcded as a normally distributed variable
with mean Si and standard deviation a- The observer classifies
the stimulus by reporting the category into which the value Y

i
falls, given the (momentary) placement of the criteria.

Although this characterization is extremely simple, it is
the only seriously proposed model for the decision process
involved. The details of the conceptualization may change, that
is, some theorists may make the criterion fixed rather than
variable, or make the function f take a special form, or choose a
probability distribution other than the normal, but the Lesic

concept is tle came.

One aspect of the decisiocn process which has developed since

Thurstone's description relates to the determination of the




criterion placements, Thurstone was relatively mute on the
mechanism by which criteria were established., Presumably, he
felt that the verbal cescriptions ¢f Poor, Good, or Excellent
would be sufficient to éllow observers to esteblish criteria. Z¢
will be discussed below, the Thurstonian analysis procedure actu-
ally solves for the cfiterion positions, sc that in his scheme,
the only important consiceration was that the variation in
critericn positions be minimized in orcer to recuce the error ct

measurenent in eny given scalincg task.

The work ¢f Parducci (1965) has brought consideralle coubt
to the idea that verbal cGescriptions fix criterion placements
acrcss scelince tesks., Ee has proposed that the observer acjusts
the catecory boundaries suchk that in the long¢ run, each ceteccory
will be usec egually often over the course cf the experiment,.
Perther, Farcucci hes shown thet such & stratecy meximizes the
information transmittec¢ by the use of the scale. In this sense,
the observer is @ssuned to meke optimum use of the categories

roviced,

Parcducci has amassed an impressive amount of evidence con-
sistent with his model. On the other hand, all the support comes
from experiments in which the catecory labels are cuite
arbitrery. For exarniple, observers micht be asked to describe &
series c¢f lines &s very short, short, medium, long or very lcnc.

The meaning of the labels here cleerly depends on the context.
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If all the lines range from 1" to 20", then the observer will
classify 1" lines as very short and 20" lines as very long. The
observers quite reasonably do not categorize all lines as very
short in anticipation of the presentation of a line 7 miles long.
Parducci often maximizes the arbitrariness of categories by
simply assigning each category a number rather than a verbal

descriptcr,

According to this view, category judgment scales are not
absclute: The frequency of each response depends on the set of
stimuli used in the experiment. The meaning of the categories
Good, Bad, Excellent, and so on depends on the stimuli chosen for
evaluation, so that the exact same stimulus can be given quite
different evaluations when presented to the same observers in

different stimulus sets,

In a model explicitly developed to evaluate teletext picture
guality, Allnatt and his colleagues (1973; 1975; 197%) have taken
gquite a different view of the problem of criterion placement (see
Section 2.2). In this conceptualization, the psychological con-
tinuum, g, is mapped onto a second continuum, f. On the %
continuum, criteria are placed such that the range of the scale
is divided into equal parts. As far as can be discerned from the
relevent papers, there is no real evidence for this suggestion.
The assumption seems to have been made to make the mathematical
analysis more straightforward., As will be discussed below, the

Allnatt analysis scheme provides considerable promise for the
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characterization of subjective responses to teletext systems, but
the assumed process of criterion placement for categorical judg-

ments is an unsubstantiated component of Allnatt's system.

Basically, then, the decision-making model used to represent
categorical judgments is essentially a Thurstonian model. Each
stimulus is thought of as producing & discriminal dispersion on &
subjective attribute. The observer classifies each stimulus by
the comparison of the resultant subjeétive attribute value with
the values of the category boundaries. The only real disagree-
ment in the literature concerning this basic model is the process
by which observers determine the ppsitions_of these category

boundaries on the subjective scale,

i3 Justification of Cafegory Judgment

The justification for the use of categorical judgment as a
primary procedure for the evaluation of teletext systems is quite
simple., It is as good as any other indirect procedure, it is
easy to use, it is widely used in subjective assessment and it

has more or less become the standard in the industry.

Category judgment is the method recommended by the CCIR
(1974) as the preferred method of Videotext evaluations. The
recommendations include specifications of viewing conditions,

number of observers, instructions to observers, and the like.
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These functions are formally independent of the procedure, but
the adherence to a standard procedure can do nothing but reduce
the error component of cross-laboratory comparisons, The fact
that this procedure is recommended by an international agency
which seems to carry some weight in the industry is a real

advantage.,

Category judgment 1is the method of preference for the sub-
jective evaluation of related telecommunications products. The
grade of service models employed by AT&T (Cavanaugh, Hatch and
Sullivan, 1979) and BNR (Lui and Ebert, 1976) are based on sub-
jective evaluations through category judgments, Thus, an added
advantage is that consulting and technical expertise can be
sought in these highly specialized and related industries. Like-
wise, advances in technology in that sector could readily be
applied to the current problem if the procedural differences were

minimized.,

From an even more global perspective, category judgments
seem to be the most widely usec¢ form of subjective evaluations.
In compiling the recommendations offered in chapter 1, a series
of 95 papers were collected and reviewed. These reports gave
procedural details on about 158 subjective measurements made on a
wide range of topics. Of these reported measurements, & full 70
(44,3%) involved categorical judgments., The next most popular
procedure was accuracy methods (23 measurements - 14.6%), and

since accuracy involves an objective procedure, it cannot apply
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here. To complete the survey, the other procedures used in the
literature were choice behavicur methods (23 cases - 14.6%),
magnitude estimation (14 cases - 8.9%), ranking (11 caces -
7.0%8), verkal descriptions (7 cases - 4,4%), paired comparisons

(5 cases - 3.2%), &nd methods of adjustment (4 cases - 2.5%).

'Procedures of ranking and pairea comparisons result in sub-
jective measurements very similer to that obteined fror the
recomnencec catecorical judcment proceéureé. Both, however cre
unwielcy for lerge stimulus sets. In ranking, the entire grouyp
shouid be simultaneocusly presented for cptimum resulte, If the
experinent haa a Iarge stimulus set, say 50 paces of teleterxt,
that would mean the simultanecus presentation of 50 monitors., 1In
peired compérisons, observers m;ke preference Judgments between
all possible pairings of the stimulus set taken two at a tirme.
For a 50 item stimulus set, this meang 1225 judgmerts per
ocbserver, In hkoth renking end pairec¢ comparison procecurea, 50Mmi e
lebour-saving presentation recimens ere availakle, but only at

the cost of complicating assumpticons,

The cther related procecdures ere thosge involving chcice
behaviour, 1In this approach, observers are civen the entire cet
of stimuli, &anc¢ askec to state which one they prefer. ILuce
(1959) has shown that by making some reascnable essumptions azbout
the nature of that judgment, a scale of subjective guality or

preference can be derived¢ from the freguency of choice from the
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set. FHowever, it is now apperent that the obtained solution is
very gimilar to the Thurstone solution. 1In fact, civen certzain
assuriptions about the distribution of errors in the choice mocel,
the two are identical (Luce, 1877). Further, a direct comgarison
of the Luce and Thurstone models hes incdicated that the letter

tends to fit the data with creater rrecision (Korrbrot, 1¢78).

The conclusion is inescapable. The vast wmajority of evalu-
aticns, both in the ceneral psycholcgiceal literature ana in the
evaluaticn of teletext graphics employ categcrical jucgment. It
is an easy procedure to use which observers can learn cuickly.
I'c cther procedure seemes to be cemonstrably surerier, so that
there is no reason to ceviate frcm the choice of others. Ry
taeking this course of azction, comratibility can be maintainec
with otter laboratories, anc the project cen aic¢ in the refine-

ment of the acopted¢ proctocols.,

lad Specific Procecural Recommencatlions

The procedure of cetegcry judgment has been recommencec &g &
stancdarc procecure for the subjective evaluation of teletexnt
csyetemns. The reasons ére to maintain compatibility with the rest
of the industry anc¢ because there is a well-cdefined cdecision
model availeble for the task. 2t the same time, the procecdure is

susceptible to specific problems. For example, the criterion

rlacements may change, depending onr the stimulus set, andc the
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scale obtained is only unique up to a linear transformation (see
below)., The following specific recommendations should help to
minimize the problems and maximize the advantages of the

procedure,

l.Adhere to the measurement recommendations of the CCIR, This
will increase the comparability of the measurements with those
taken in other laboratories,

2. Test about 50 observers in an experiment, at least as a first
guess as tc¢ the number of observers required, Simulations of
category judgments of telephone grade of service has indicated
that this is a reasonable number of observers to produce stable
results (Kort, 1983),

3. Give the observers a series of practice trials, probably
between 10 and 20 judgments, with stimuli which provide a reason-
able sample of the range of teletext qualities to be assessed in
the experiment. This will assist in the establishment of stable
criteria, If practice trials are not provided and Parducci's
sugcestions are correct, the initial experimental trials will be
dominated by large shifts in criterion placement, as observers
try to optimize the information transmitted by the scale., 1If
Parducci's ideas are not correct and the meaning of the
categories define the boundaries, the inclusion of these practice
trials will not matter much, A little practice never hurt any-
body. Unfortunately, contrary to the old adage, it never makes
anybody perfect either.

4. Regardless of the stimulus set of interest, always include
samples which span the entire range of guality. For instance,
even if the prime interest was to assess a number of stimuli with
relatively good quality images, poor and excellent images should
also be included for consideration by the observers. The purpose
here is to prevent drastic shifts in criterion placements, which
make comparisons across experiments difficult. The assessment of
the same approximate range of quality in pictures across exper-
iments will minimize analysis problems due to criterion place-
ment. Since the relevant stimuli will be presented in a random
fashion, these stimuli should also be randomly intermixed.

5. The most important and innovative recommendation has been left
to the last. Since this is the initiation of a2 relatively long-
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term and unified research effort, a very simple procedure can be
used to unify all the experiments in the set. A few standarc
stimuli should be created which approximately span the range of
picture quality. Choose one poor, one average, and one excellent
gquality frame with quality varying on as many dimensions as
possible. Include these stimuli in every guality assessment
experiment performed. This will do two things. First, it will
approximately define the range of stimuli across experiments to a
standard value, More importantly, this procedure will provide a
common standard by which all measurements can be compared.

The last recommendation is extremely important in categor-
ical judgment. In the following section, analysis schemes will
be described. The most widely used analysis, Thurstonian
scaling, produces a subjective scale linear with true psycholog-
ical representation., The parameters of that linear transform
depend on which stimulus is chosen as a standard, because that
stimulus sets the zero point of the scale. The standara
deviation of its discriminal dispersion process determines the

unit size of the scale.

Without a set standard the procedure will arbitrarily use
the lowest ranked stimulus in the set. Therefore, the linear
transform between each obtained scale and the true psychological
scale can change from one measurement situation to the next.
This makes the results quite difficult to compare across experi-
ments, even within the same laboratory. However, if the same
stimuli are included in each experiment, the most stable of these
can always be used as a referent, standardizing the origin and
the unit of the scale. Thus, all the scaled solutions from all

experiments should be set in the same linear relation to the
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"true" psychological scale. This should mean that the evalu-

ations would be directly comparable.

dle DRAIZ ANBLYSIS PROCEDURES

Two data analysis methods will be described. Thurstonian
scaling is a traditional procedure which is generally useé for
subjective evaluations. The second proéedure is an approach
developed by Allnatt, specifically for use in the evaluation of
teletext systems., Fowever, some crucial assumptions are made in
this analysis, which may or may not be justified. The claims
Allnatt makes for.this analysis system make it very appealing,
because the implications are that the resultant scale of teletext
impairment is additive. That is, the claim is that if one noise
source impairs subjective quality by @ and another independent
noise source impairs subjective quzlity by L, then the effect of

both sources presented together is g+b.

One bright spot in the analysis problem is the fact that the
data collection procedure for both analyses is the same, so that
if a clear decision cannot be made between the two analyses, both

can be aprlied to the same data.
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2.1 Thursteopiap Scalipg

The Thurstonian solution involves the estimation of the
positions of the discriminal process distributions on the sub-
jective dimension §. In order to obtain the solution, stimulus
xl, the lowest ranking stimulus on the scale, is arbitrarily
assigned a scale value of zero, (Although, as noted, any
stimulus can serve as the standard, for purposes of this discuss-
ion we will detail the procedure as it is typically applied.)
The position of xz with respect to xl is measured in standarad
deviation units of the discriminal dispersion of stimulus ;l,
The position of X, with respect to X, is similarly determined,
and concatenated with the difference between xl and xz, to pro-
duce a scale position for X3- This process is repeated with
successive stimuli until the entire stimulus set has been
positioned on the subjective dimension §. The overall strategy

is like measuring a football field with a six-inch ruler.

Here, the origin of the scale is determined by xl anc the
step size or basic unit is set by the standard deviation of the
discriminal dispersion of stimulus xl. No physical measures are
used, so0 the scale is completely psychological. The "true"
psychclogical scale is not recovered, but the result is linear
with that "true" scale, at least according to the model. The
parameters of the linear transform are entirely determined by

stimulus Xl, or, more generally, by whichever stimulus is chosen

to act as an arbitrary reference. If recommendation 5 is



fcllowed, the chosen standerd common to all experiments will

become the referent,

2e1lal Calculation Deteils of Thurstopian Scaling

The basic deate for categorical judgments is a matrix of size
D x KB, vhere p is the number of categories and E is the number
of stimuli usec¢ in the measurement, & cell in the matrix is the
frequency of occurrence of a2 civen judgment for & particular
cstinulus, For Thurstonian scaling, the first step ic to convert
these éata to probabilities, and to rank the stimuli from the
lowest to highest in terms of the obtained judgments, This is

only a first-order ranking, and it is cone by erkitrerily assign-
ing the values from l to p to the p categcries. The lcwest
ranking category (i.e., Bad) is assigned the value 1, and the
best categcry (i.e., Excellént) is assignec the number p. A mean

opinion score is calculateé for each stimulus, ané the stimuli

are ranked on the basis of the mean opinion egccore,

The matrix is then used to obtain a cumulative probability

dictribution for each stimulus in the set, as a fqnction cof the
category number., These cdata represent the probability that a
stimulus would be judged at or below the category in cuestion.
Since the cumulative distributicn sums to one, the last category
is lost, and we now have a mat;ix of sizep ~ 1 x E. Under the
normality assumption, the cumuléti&e probabilities are transform-

eGd to Z scores to obtain a new matrix., This matrix is a metriz
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of positions of the p-1 category boundaries described in standard
deviation units relative to the mean of the discriminal disper-
sion process for each stimulus., In the following paragraphs, the
subscript i will be used to denote stimuli, and subscript g will
describe category boundaries. Variable Z will refer to the

values entered in the category boundary matrix, so that 2 , is
gi
the Z score of the gth boundary for the jth stimulus.,

The matrix of Zgi values provice the rew data for the Thur-
stonian enalysis. Successive stimuli are chosen, first stimulus
pairs 1 and 2, then 2 and 2, throuch to pair E-1 anc K, and the
standard deviation aifference between the pairs is cetermined.
This can be done cgraphically by plotting the values of Z . as a

gl

function of Z i1t If the assumption of normality is met, even
g

to a first approximation, the plot shoula be linear. The slope
of the least-squares linear fit is the ratio of the standarc
deviations of the discriminal caispersions. If the standard devi-
ation of stimulus j is denoted as gi, then the slope, Ei ie1’

will be eqguzl to the ratio §_+1/§,. The Thurstone techniqgue
i i

arbitrarily sets ﬁl to 1.0, so that all the stancdard deviations

can be solved as g . =a. x M. . .
i+l él Li i+l

The intercept of the same plot, B. is the difference
i

N 14
i+1
between the means of the discriminal dispersions, defined in
standard deviation units of gi. The subjective position £i+1 of

stimulus ¥ in relation to stimulus ¥. is thus §. =S +
i+l 1 i+ 1 i



a.B. . .- 1In this way, the mean and variance of the discriminal
TiTi i+l :

dispersions of the entire data set are determined by the success-
ive concatenation of results. The reader should note theat this
process will always involve K-1 plcte regardless of whether it is

done as outlined here or as suggested in Chapter 3.

In this anelysis, it 1is ppésible that some stimulil heve only
cne Z value because there was so little variability in responces,
These stinmuli nmust ke eliminated from the eanalyeis because the
successive plots cannot be réalizeé. If their inclusicen is
critical, their position on the $ dimension can be estimated by
acing them in their approzximately proper positior relative to

1
the scaled¢ velues, on the basis of their mean opinion score (see

Once the stimulus positions £, and stendard ceviotions g,

i i

ere Geterminec, the criterion placements can be cGeterminec. The
velue Z | is the critericn boundary placement fcr the ith stin-

ulue, in standerd deviation units of stimulus ¥%,. Thereiore, thc
. : 1

criterion placement L for stirmulus ¥, can be deiined as 2% .g. +
g i : giTi

& .« There can be up to E samples of thig value, one for each

i
stimulus in the set, provided that the value Z . cculé be calcul-
gi

atec for all i. The estimete of the criteriocn pladement is thus

the mean of these estimates, so that:

K
T a1 ) e
g T gi
i=1
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If £ 1is not provided for a particular stimulus, it is excluded
a

from the sum and K is reduced by one.

The procedure obtains, then, estimates of the mean and
standard deviations of the discriminal dispersion processes for
each stimulus, along with criterion placements for the set. The
procedure outlined here is covered in Torcerson (1958), and other
analysis procedures are described there as well. The procedure
includeéd here was chosen because its steps are intuitive with
respect to the model, and it can be easily realized in computer
code. The judgments involvedG are variable enough that the exact

calculation procedure is not of primary concern.

2.2 Allpatil!s Procedure

The Thurstone solution is a general one and it is widely
used., Allnatt's procedure has been developed specifically for
teletext evaluations, and the impairment of image quality. The
material reviewed here is contained in a series of papers
published by Allnatt and his associates over a number of years

(e.g., Allnatt, 1973; 1975; 1979).

In the Allnatt approach, category judgments are mace of
stimuli which vary on a physically quantifiable impairment dimen=-
sion. In the standard procedure five categories, labelled from

Excellent to Bad, are used. The research program Allnatt has



|
1
1

undertaken focusses on three main concerns:

l. The nature of the psychophysical function which relateg the
degree of impairment (or physical cuality) with the perceivec
guality of teletext displayes.

2,The relation between the perceived¢ cquality derived¢ from
psychophysical functions anc¢ the recorded categorical responses.

3.The result of combined impairments from multiple, independent
noise sources.

Each aspect will be considered in turn,

22221 The Psycheophysical Function

The psychcophysical function is sume¢ to be & powver

jat}
s}

function of the form

Y = a Db

wvhere VY (I') ig the perceived¢ impeirment on egcale &, [ is the
Ihyeical impairment, anétg and b are constente srecific to the
units of D. The justification is the cgeneral success of this
rerresentation in sensory sceling. Supportive cate were discuss-—

ed in the first chapter.

In some ways, the essumption is feirly weak, in that the
only recuirement is that the function be power-like, and not

necessarily follow the exact form., To a first approximeticn,
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this is probably a reasonable guess, because the power function
is qguite versatile in fitting wonotonic functions, regardless of

the "true" form.

In other ways, however, the assumption is much stronger in
that it requires the mapping to be onto a unidimensional psycho-
logical space, what we have been calling the £ scale. 1In the
case of many physical dimensions (i.e., height, weight), a direct
mapping can be reasonably assumed. FHowever, when rating the
impairment of teletext systems, the representational space may
actually involve two or three dimensions. If so, a further
assumption must be made; that these dimensions are combined in &
static fashion (perhaps by weighting them 50:50) to produce
values on the § scale, Variance in either the nature of this
multidimensional space or the way in which the dimensions are
combined (because of, say, differential experimental instruct-
ions) may invalidate the final scaling solution. Thurstone's
procedure, while it also reguires a unidimensional $ scale, would

be much more robust in the face of this type of variance.

22222 LategoXxy Lhoices

This process is crucial to Allnatt's approach. It corres-
ponds to the decision process in Thurstonian scaling, Unfort-
unately, it is difficult to extract a clear rationalization of
Allnatt's decision process from his descriptions. Quite often,

the concept can be expressed, but the mathematical realization is



a tac obtuse.

Allnatt succests that the observer performs the catecory
judgment task by a =pecific set of operations. First, the
observer normalizes the scale of Y . This is done by defining e
psycholocical quantity W (DM)' where D . is the physical impair-
ment requireé¢ to split a five-point opinicn scale in half, Upon
presentation of [, the mean orinion rating would be 3.0 onal to

L.
5 scale., Cbserveres express the psychclocical magnitude of tlre
stimulus D;as a ratio of q’(py)- This ratio is scaled by a
ceconc¢ power function, which can be expressedc as a ratio of the

oricinal eryonent b, so that wve canwrite

G/b
Y ) =(Y¥@®m)sr¥Yew.) /
b k,G/b
= (a D, /a D)
1 {i
= (D, /D()G
3 I

The value W (D.) represents the psychological value of [, on the
n i i

normalized ecale. The value of € is thoucht of s an cbserver-

Gepencent larameter, which cives the model additional degrees of

freedom,

Since D is an impairment parameter, the values of W
n
increase with stimulus degradation, This cuantity is further
transformed to a normalized (0 to 1 representation) acceptability

scale £ by the relation
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1+ Y .

Thus, we have two descriptions of the same thing, a %’n scale

which is a psychological impairment scale (what we have called
the § dimension), and the L scale which is the corresponding
acceptability scale and from which the response is to be deter-

mined.

At this point we come back to something very ecimilar to the
Thurstone decision model. The f scale is divided into p ecual
steps, corresponding to the p categories provided. There is
variability in the representation of %, anc the decision process
is the process of determining the category into which the value
on t falls. The category boundaries are placed, again, to equal-
ly divide the range of £. The proportion of judgments in each
category allow us to estimate the distribution function of g,
F(t). This is guite similar to the concept employed in the
Thurstonian analysis scheme. From this function the median of
the distribution (Em) is derived by interpolation., This value is

the scale value which Allnatt's procedure utilizes.

According to the original decision model and the




|

50

normalization process, the eguation for the median of the
category judgment distribution for a given impairment D  ghould
A i

be:

t (D) = 1
m i

P i

G
1+ (p./0)
l I‘A

This claim can be evaluated by defininc a parameter Jir

Defined in this way, it must be true that

' ¢
J, = (p./D )
iTTE

1

so that we can predict that
log J, = ¢ log'Di - G log D,

Thus, the plot between log J ané log D should okbtain @ straight

line with & slope of ¢ and an intercept of —Glog(D”). These
- M

parameters would allow a determination of the psychological scale

Y@, although it is not an important aspect of Allnett's

procedure., Vhat is Iimportant is that the straicht-line function

be empirically obtainec¢, since feilure to do so invalidates the

analysis.
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2.2.3 Combipnipng Inpalrlmepis

This all sounds very strange., There is very little
psychological theory to justify the assumptions, and it is even
hard to characterize the exact nature of the cdecision process,
However, Allnatt (1575) has provided some evidence for the notion
that impairments from independent noise sources can be predictec

by the aaditivity of J, such that for noise sources 1l anc¢ ?

o}
]
(o}
+

J

12 1 2

-

= (D
%

G G
1+ (C_/D_ ) 2
wp) 1 F Ty,

‘Thus, the median of the distribution cf the category judgments

with both impeirrwrents can be predicted as

w1,2

G G,
1+ (/D)1 + (p./D.) 2
177 2" 1y

Since all the perameters ir the right-hand side of the ecuation

are cefinec¢ by the separate analyses of judgments with

irpairments El and Dz' the joint effects should be predictable.

ill. SUELARY

The evaluation of teletext systems should be done using

categorical judgment procedures., Specific recommendations ce-




tailed in this report should be followec to optimize the use of

the se procedures.

In terms of the analysis, the same data can be repfesented
by Thurstonian scaling or by the Allnatt procedure., Allnatt's
approach assumes specific criterion placements and a general form
of the psychophysical function. In addition, it is based on the
notion of impairments which can be defined on a physical dimen-
sion. The payoff, however, is in the claim that the combined
effects of impairment cen be precGicted. Thurstonien scaling is
theoretically established, but is less optimistic in the analytic

solution of the effects of compound impeairments.

In the short term, both analysis schemes are recommencec,
until such time as the utility of the two can be empirically

comparec. After all, the only perfect science is hindsight.
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CHAPTER 3 - IMPLEMENTING THE TWO PROCEDURES

In the previous chapter, two issues were addressed: the
optimal data collection technique to use in evaluating teletext
systems, and the best way to analyze those data. With respect to
the first of these issues, the categcrical judgment technicue was
deemed superior to any other techniques for a number of reasons
(refer to the previous chapter for a discussion of these
reasons). With respect to the analysis guestion, twoc methods
were suggested: Thurstonian (1927) scaling, and Allnatt's (1973;
1975; 1¢79) mnore recently presented technique, At present,
neither of these seems to be clearly superior to the other. 1In
the present chapter, a more complete summary and comparison of
these two technigues will be presented., For both techniques,
Giscussion will centre on three issues: a) the assumptions under-
lying the analysis, b) the nuts and bolts of how the analysis is
carried out, and ¢) how to deterrine whether the technique can be
legitimately applied (including means of testing the

assumptions).

1. TEURSIONIAN SCALINEG

led Theorekfical Underpibnibgs

As with all scaling techniques, Thurstonian scaling is based
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on the iaea that theré is a subjective Gdimensicn £ representing
only the attribute of interest. For cur purposes, We& can con-
siGer that attribute to be acceptability. When a stimulus is
presented, it undergoes an anelysis which ultimately yields &
value on theat dimension. ESubjectec must tﬁen use this value to
procduce 2 response on whatever response scale the experimenter
has providec.

Thurstone has actually sucdested & number cf slichtly cif-
ferent approaches to the scaling proklem. They vary simply in
the assumptions each makes. The epproach we are stuggesting is
referrec to as Cacse 1V, It's important assumpﬁions are as

fcllows:

1. The value Yi produced by & given stimulus i on the £ édimen~-
csion can be cheracterized as a2 random selection from a normal
distribution havinc mean £i ané variance gZi.

. On eacl trial, n-1 criteria ere placed or. the £ dimension
ividing it into p sections (p is the nunber cf categories the
obeerver is asked to use). Each section ccrresponcds to & cate-
gory., The response civen is the catedory corresgponding to the
section into which Yi falls., Further, elthouch the positione of
the criterie may very from trial to trial, this variation ig
uncorrelatec¢ with the value of Yi.

2
¢

There are two important iessues associatec with the first
assumption. The first ig the assumed shape of the aictribution.
Since all subsequent celculations depenc on the assumption cf
normality, the shape cf the Gistribution should be evaluszted.

The method of eveluation will be discussed in section 1.,3.1.
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The second issue concerns the idea of a one-to-one mapping
from each stimulus Xi onto a mean subjective impression Si.
Since the Si represent the scale values of the stimuli, their
determination is essentially the goal of this analysis. If the
analysis is to yield meaningful values it's important that the
Sis remain relatively stable both over the course of the experi-
ment and over experiments using identical experimental para-

meters.

In the previous chapter, a set of experimental procedures
was outlined which should maximize the chance of the siS remain-
ing stable. However, there are no guarantees here nor is there
any way to determine whether the assumption holés throughout the
experiment, Variations across seemingly identical experiments
can, of course, be detected and, if the discrepancies are sub-
stantial, the technique would have limited usefulness. That is,
ultimately one may want to examine changes in Si as a function of
other variables (e.g., instructions). To Go so one must be sure
that irrelevant variables like habituation, or perhaps time it-

self, are not affecting the § s,
i

There is one very important issue associated with the second
assumption. While it is not crucial that the criteria remain
stable throughout the experiment, whatever variation there is
must be random rather than systematic. If the variation is

random, no problems are created for the analysis, The only
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change would be that the calculated criterion positions would be
estimates of an average position rather than a stable position.
However, if the variation were systematic (e.g., if the top two
criteria move up the dimension whenever a high quality stimulus
is presented), the obtained Si values would be relatively mean-
ingless. Fortunately, there is a test (to be described in
section 1.3.2) which should allow us to determine whether there

are stability problems.

la2 Lalculatiopn Iegchbbpigue

The theoretical rationale for calculating the sis was pre-
sented in the previous chapter. Here, we would like to concen-
trate more on the calculation cdetails through the use of an
example. Following the suggestions presented in the previous
chapter, observers will be asked to use 5 categories (category 1
reflects the lowest acceptability, catecory 5 the highest). Two
stimuli KO and x6 are included in the experiment to help
establish the range of the scale to be used in the observer's
ratings, Stimulus XO is very poor in guality and serves as a
lower anchor., Stimulus 36 is as close to perfection as can be
physically achieved and, thus, serves as an upper anchor. The
data from these stimuli will not be considered in the analysis.

However, if the ratings given these stimuli are not as expected

(mainly 1s and 2s for XO' mainly 4s and 5s for 36) it would be a
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cause for concern. A third stimulus, X, is the standarc stimulus
which is used in 211 scaling experiments, It is createc¢ by
combinineg a number of different types of impairments to fproduce
an intermediate level of acceptability. It will serve &s our

referent stimulus in the calculation process. Finally, stimuli

&y %1 ¥, andé ¥, are the stimuli we wish to scale.

&

Each stimulus will be presented to the observer a numberof
times (say 100 to keep our retios simple). The cteps in the

aralveis would be as follows.

1. Crecte & Gate matrix like that presented in Table 1.

2. Calculate a mean opinion score fcr &ll stimuli via the formula

=0

P

.

vVhere o is the number ¢f catecories, J is the categeory number, ]
ie the frecuency per categcry anc¢ ' is the totel rumker of times
the stimulug was presentec, Table 1 also contains the mean
crinion sccres for the seven stimuli.

2. Check the [Fi values for the anchor stimuli Z0 eand Z€. If they
are at the appropriate levels, vwe cen ascsune they heave cervec
their purpose and, thus, their deta can now be cisregarcec.

4, Interchance the rows of the remaining stimuli (including the
standarcd) so that the I s are in cdescendinc order as in Table 2.
1

5. Turn these freguencies into probabilities es in Table 3.

6.

3

rensforrm each row of this matrix to produce a cumulaetive
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probability matrix as in Table 4. The last column will always be
1.00 and, thus, can be dropped.

7. Using a g table convert the cumulative probabilities in Table
4 into a matrix of g scores as in Table 5.

8. Using X1 as the standard, create separate plots of the Z
scores for Zl against the Z scores for each of the other stimuli.
These are shown in Figure 3. (Note that the Z scores for g1 go
on the Y-axis. MNote also that there are 4 plots. This follows
from the fact that there are 5 stimuli being used in the analy-
sis.,) Correlation coefficients, slopes and intercepts of the
best fitting straight line should be calculated for each plot.
These are shown on the figure. 1In each case, the intercept of
the line is the scale value, gi, for the stimulus being compared
to ¥l. The unit is the standard deviation of the distribution
for ¥l1. Essentially what is beinc¢ done is that 1 has been set to
0 and gl to 1. This is perfectly legitimate since the gis are
only determined up to a linear transformation in any case. ' The
slope of the line is the ratio of the standard deviations (e.c.,
gi to gl). Since gl has been arbitrarily set to 1, the slope can
be considered to be our best estimate of gi. Thus, the §is and
ails are the intercept and slope values found on the figqure.

9. Finally, the positions of the criteria should be calculated.
Each stimulus should allow an estimate of the position of each
criterion with respect tc¢ its own mean., For a given stimulus Xi

the criterion points f£gi can be estimated by the following formula,

t . = 5+ a, I
gi i i gi

e.¢., for stimulus zz

|

~.36 + (,926 x -1,27)

= ~1.63

where the gZgi are the values listed in Table 5. These values are
listed in Table 6.

10. The overall estimate for the position of each criterion is
obtained by averaging over these estimates

Il I B BN a B HEe A B B BN e
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where  is the number of stimuli being scaled. These are also
contained in Table 6,

This description of the analysis procesc has been for an
ideal data set. One problem that often arises is that the vari-

ability for & stimulus might be sufficiently small that some

values in the Z matrix might be 3 <O (e.g., XS in the present

example). In this circumstance, certain alterations are necess-
ary. First, when determining Si for this stimulus, points such
as these are obviously not plotted (note that the Xl versus KS
rlot has only 3 points)., Second, when determining criterion
placements these points are simply omitted, decreasing K by one.

(The final criterion placement was calculated in this fashion.)

If Kl itself has one or more 2 values of 40, @ situation
could be created in which the plot of Ki versus 31 has only 2
points. This would be extremely unfortunate. In this circum-
stance, a concatenation technique should be used., After the
stimuli have been ordered accorcing to ﬂis, proceed as before for
stimuli both immediately above and immediately below xl in the
ordering (call these stimuli xa and zb). For the stimulus im-
mediately above Xa (call it Xa+l)' create a plot with Z values of
L cn the X—-axis and those for Ka on the Y-axis. The intercept

a+1
of this function will be the difference between means for the two
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stimuli ¥_ and Xa+1 in terms of the standard deviation of xa-
a _

It would then be necessary to change the units of this value
so that they are equal to 8- To Go this, multiply the intercept
by the ratio al/a . This value can then be added to sa to

a _

produce the scale value for Sa+1' That is,

5 = S + a X B
a+l a 1 a+l,a
B S TV e T
a
a
where P N is the slope of the line relating the g scores of
a+l,a ,
4 anda .
Xa+1 na xa

A.similar procedure would then be carriedé out using xb to
produce the scale value for the stimulus immediately below it in
the ranking. If more stimuli need to be scaled, we can simply
continue the concatenation process. For any stimulus whose mean
is larger then that for Kl, the stimulus‘immediately below it in
the ordering is used while for any stimulus whose mean is less
than that for Xl, the stimulus immediately above it in the rank-

ing is used.

Hopefully, with this concatenation technigue, the bulk of
the plots will always involve at least 3 points. 1If any involve
only 2 points large estimation errors can arise and the normality

assumption cannot be tested (see section 1.3.1). If a given
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stimulus produces only one g score, the technique itself cannot
be used. This would occur, for example, if a given stimulus is
only rated good or excellent, The basic problem is that this
single point won't allow an estimate of both a mean and a
standard deviation for the stimulus., If this occurs, a scale
value must be estimated in a somewhat different fashion. After
final Ei values for the other stimuli have been determined, the
regression equation relating these values to their respective }M,

i
values should be calculated. This equation should then be used

to predict the Si for the problem stimulus based on that

stimulus!' Mi value.
dad Juskifyipg tbe ITechnigue

One thing to realize about Thurstonian scaling is that it
can be appliec to any set of stimuli, Unlike Allnatt's tech-
nicque, which will be discussed shortly, the stimulus set cdoces not
have to vary along a cuantitative dimension. This fact actually
has both positive and negative implications. The positive im-
plication is that all stimuli, even those which are only cualita-
tively different, can be scaled. The negative implication is
that even if we can empirically validate the model, we learn
nothing about the scale values of any stimuli not actually used

in the experiment.

More specifically, the aim of any technique which reqguires

variation on a physical dimension is to specify a functior re-
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lating values on this dimension to values on an internal dimen-
sion., ‘If such & function can be validated empirically, thte
effects of additional variations or that dimension can be deter-
mined without further empirical work. The other technique to be

discussed (Allnatt's) dGoes recuire variation on a physical dimen-

sion, and, if validated, will vield a psychophysical function..

In adcdition, with a metho¢ that also needs to be validated en-
pirically,Ait may allcw investicatore to speéify 2 priori the
scale value for stimuli wvhich vary along two physicel dimensions.
Thue, this technigue, 1if successful, could be a much more power-

ful enc¢ useful tool than Thurstonian sceling in the evaluation c¢f

teletext systems,

¥ith respect to Thurstenian scaling, there are two tests
that can, ancd should, be perfcocrmed before accepting the derived
scale valuecs as legitimete, In the first instence, the assumy -~
tion of nermelity shouid be evaluated, The second test is a test
of the relative stability (cr nonsystematic veriation) in the
positions of both distributions en¢ criteria alon¢g the § dimen-—
gion. If either test is unsuccescsful, the results c¢f the pro-

cedure would have to be recarded with extreme suspicion.

The more important of thesg two tests is the secong one.
Failure here indicates that criterion placements vary system-—
atically with positions of the discriminal distributions. Thus,

ouvr ability to locate andé talk about the position of these ¢is-
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tributions relative to established points of reference would be
minimal. The problems created by a lack of normality woulc be
less severe, Fortunately, the more powerful test is the test for

criterion stability.

dndeal Testipg Normalify

Testing the normality of the distributions involves an ex-
amination of the plots shown in Figure 3. (This test can, ana
probably should, be carried out before any further analysis is
undertaken.) If the normality assumption is correct each plot
should be well described by a straight line., The linearity of
these relationships can be tested by simply comparing the value
of the correlation coefficient to a criterion value. Obtaineac
values less than the criterion would suggest that the assumption

should be rejected.

The correlation coefficients can be found on their res-
pective fplots in Figure 3., For &a four-point plot, a valve
of .90 should serve as the criterion while, for a three point
crlot, a value of .988 should be used., (If a graph contains only
2 points, this test simply cannot be made.) In all cases, these
criterion values represent those values for an hypothesis test
with an alpha of .05 (one-tailed). In every case shown here, the
obtained r is greater than the criterion, suggesting that the

normality assumption may be valid, -




This test of normality is obviously not a powerful one. It
would be more powerful if more categories were used in the data
collection procedure and, conéequently, more points appeared in
these plots. However, for the sake of consistencyvacross labor-
atories, we will hold to the recommendation of using 5 categor-
ies, Thus, these plots will never involve more than 4 poihts.
If, by and large, they do involve all 4 points, nc real proklems
should arise, However, if many contain only 3 points, the devi-
ation from normality would have to be extreme before it would be
detected, Further, as noted, 1if a plot contained only 2 points,
the test simply could not be performed since 2.points always lie

on & straight line.

deda2 Igsiibpg Sfabilify

We have already determinec 1) the means of the distributions
on §, 2) the standard deviations of these distributions, and 3)
the relative positions of the criteria in terms of the standard
deviation of the referent stimulus., 1In our "stability" test, we
will begin with the assumption that these values are all valid
and then attempt to regenerate the criginal data. If we can do
so to & suitable degree of accuracy we can conclude that the
means, standard deviations and criterion placements repfesent
stable characteristics, This test will always be the last test
in the validation process. If it also is successful we can then

regard the distributions' means as legitimate representations of
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the scale values of the stimuli being examined.

The technique is guite simple. Using the observed mean and
standard deviation anc¢ the derived criterion placements, the
proportions of scores faliing into each category can be calcul-
ated based on the normality assumption. (The normality assump-
tion must, of course, be validated first.) This is essentially a
matter of determining the relative positions of the criteria in
each cdistribution., That is, a g score is calculated for each
criterion in terms of the mean and standard deviation of each
distribution (see Table 7). These scores are then used to cal-
culate the expected proportion of responses falling into each
category by using a Z table (see Table 8), These proportions can
then be turned into expectec¢ freguencies (see Table 9) which can
be compared against the actual data. (Note that the expected
frequencies should be correct to one decimal place because the

original data set were integer values.)

At this point, the expectec¢ frequencies should be surveyed
in order to make sure none are less than 5.0. In the present
case, two cells are (the category 1 cells for XB and X4)° In
cases like this, the expected frequency matrix (and the associat-
ed data matrix) must be altered slightly. The problem cells
should be combined with their closest neighbor to create expected
and obtained frequencies for placing these stimuli into either

category 1 or category 2 (see Table 10),
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2 .
y:y ’X statistic is then computed by epplying the following
formula to each cell in the altere¢ matrices and then summing

over all the cells.

_7(2= {obsexrved fregpency = expected ﬁgggugngy)z

expected freguency

In the present cése, the obtained ?(1§alue is 12,46, This value
ie evalueted against a 7(2 Gicstribttion with the number of
cdegrees of freedom ecuel tc the number ¢f cells in the altered
matrixz wminus the number of stimuli. FHere the cdecrees of freecon
is 18, TIf the '7<L is significant, there is reason to suspect
that the stability ssesumption is incorrect. To minimize the
likelihood of failing to detect violations of the assumptions, it
is best tc choose & very liberal alpha value, fcr example, .10,
The .10 cutoff for the ;szistribution with 1€ decrees of free-
¢om ig 26.0. Since our obtcined value is well below 26.0, the
assunption is not demonstrebly vioclated., Thus, all things con-
sicdered, the scale values obtained for our stimuli seem to be

valid ones.

dIl. ALLEAIT.!S SCALING IECENICUE

2.1 Theoretical Underpipnpings

Like Thurstonian scaling, and all other scaling procedures,

Allnett's scalinc technique is based on the notion of & sub-
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jective dimension, §. In Thurstonian scaling, we talked about £
as a dimension of acceptability with higher values reflecting
higher levels of acceptability. Fere, § will be an impairment
dimension with hicher values representing lower levels of accept-
ability. (These dimensions could conceivakbly be regarded as the
reverse of one another.,) Accorcing to Allnatt, however, observers
¢o not use the § dimension to determine their recsponses. The
obtained¢ values on the £ dimensicn are mapped¢ onto & second,
response dimension, §, which runs from C to 1. It ies the value
on the t diwmension which is usec in the response procesec.

Vith respect to these processes, the fcllowing assumptions
Sre macGe.
1. The momentary value, Yi, produced by a giyen stimulus, i, on

the ¢ ¢imension can be characterized ss & rancom selection from &
¢igtribution having mean i where

b
. a b,
i i

9]
]

The value Di is & measure of impairment on @ physical cinencion
while a8 anG £ ere constants syecific to the unites of the cdimen-
sion D.

2. The Yi vealue ic transformed internally to procduce a value £i
o the t Gimensicn which can be characterized as & rancom samfple
from a Gistribution with median tmi where

t = 1 1 1
T = = G
1+/8 /b 1+/abh, b\ G/E 1+/D,
i i i
S al D (1)
A I I
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The value Dm is the physical impairment which will produce &
mecdian t value exactly in the middle of the £ dimension (i.e.,
t = 1/2) while ¢ is a parameter dependent on the physical dimen-
sion being investicated.

(Note: there is an important difference between the two sub-
scripts I and m. [ is used to refer to & particular stimulus,
that stimulus which bisects the t dimensicn. In eny g¢iven exper-—
iment it's vnlikely that this stimulus woulé exist. The cther
subscript, m, referg ealweys to the pedian value on the £t dimen-—
sion fpr & givep stipulus.)

-~

3. The f dimension is diviced into p egual-widath sectiong by p-1
firmly firec criteria. (Rgain, n refers to the numnber of cacte-
gories the observers have to use. In the present case, with 5
categecries, there would be criteria at .2, .4, .G, ané¢ .2 along
the £ cdimension.) The response civen is the category correspond-
ing tc the section into which ti falls.

There are a number of issues associated with these assumpt-—

-+
y
[+}
N

ions, With respect to the first assumption, the idesc
physical ¢imension and a psychological dimension cen be relatec
by & power function is well-cGocumentedé. However, in the classic
circunistences (e.q., height, weicht, brightress), twoe things are
truelwhich eére not necessarily true here: 1) there is & value on
tke physical Gimension which represents &n ebsolute 0, and 2) the
psychological representation has a straichtforward one~Gimension-
al form. The first of these attributes is absolutely crucial to
the existence of a power function relationship. Without &
physical 0 point, there can be no subjective 0 point (0
objectively must produce C subjectively - a Ob= 0), and the bect

that coulé¢ be hoped for would be a linear, rather than a power,
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relationship between the Dis and SiS. With respect to impairment
of teletext systems, the notion of 0 physical impairment is
problematic. In fact, it would appear to change with the
development of new technologies., Thus, this assumption might
have problems right from the start. A discussion of how this
aspect of the first assumption can be evaluated will be included

in section 2.3.3.

The second of these aspects of assumption 1 was discussed to
some extent in the previous chapter. The ultimate representation
of a stimulus on the § dimension may be achieved fairly directly.
That is, even if the initial representation of a stimulus is in a
multidimensional space, as long as the way in which the dimen-
sions zre handled does pof vary (e.g., each of jJ dimensions may
be weighted equally), then the relationship between R and § can
be considered to be straightforward. If, however, the way in
which the multidimensional representation is handled depends on
something like task instructions, the same stimulus could give
rise to a number of Sis. Thus, a straightforwaré power function
ecuation simply could not capture the nature of the relationship

between D and g.

One other comment should be made about the first assumption.
Nothing is being said here explicitly about the shape or variance
of the distribution about Si. Nonetheless, implicit assumptions
are being made. What Allnatt has chosen to do is to state these

assumptions in terms of the t dimension., £fince there is @ one-
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to-one mapping between 8 and £, either dimension can be used as
the vehicle for stating and testing the assumptions, 1Interest-
ingly ehough, however, the shape and variance of the distribution
on the £ dimension are so complicated that test;ng the assump-
tions at that level is not advised either. 1Instead, as we shall
see, Allnatt recommends a second transformation to a I dimension
in which the mathematics are simpler anc the eacse of testing

assumptions is greater,

The second assumption really repreéents the central con-
tribution of Allnatt's technique.' If accurate, it specifies the
exact relationsﬁip between the physical dimension, P, and scale
values on the [ dimension, It is this £ dimension that Allnatt
finds most meaningful psychologically. Thus, the scale values
we're after here are those representing central tendency on this
dimension rather than the Sis. The test of the proposed re-

lationship between D and £ will be described in section 2.3.2.

The validity of the final assumption is absolutely crucial
to the success of ARllnatt's technique, Even if all the earlier
assumptions are correct, this assumption must also be correct if
the obtained scale values are to be interpretable, Allnett anc
Corbett (1272) suggest that this assumption may fail if the
stimulus set includes too narrow a iange of impairment levels,
Allnatt and Corbett (1972) have wo;ked’éut a set of instructions

for analyzing data under those circumstances. In the present
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circumstances, no proklems ¢f this sort shoulc arise since, as
recommencec in the previous chapter, the stimulus set will always
inclucie one very bad and one very good stimulus. Unfortunstely,
even uncer the present circumcstences, there is no way to test

this assumption incdepencent of Allnatt's seconc assumption.

2ala2 The T Gimension

1
m

rotec &bove, for cnalyecis purposes, nheither the § dimen-
sicn nor the t éimension is to ke used, Instead, & third dimen-—
sicn, T, is recommenceds. Values on this cimension ere relatec

to those on £ via the eguation

T=1rn (t/1-t) (2)

This T dimension has agpsoclutely ne psycholocical relevance
or reclity. It coes not exist in enyone's head nor cces it
necesserily represent enythine ir the resl wcecrld, Tt's usec
solely for e@nelysis purposes, it cdoes have & number cf pro-
perties thet Bllnatt recercs as important. The first is that the
rancge cf this ¢imension is the whole real line rether thanC te 1l
&% in the t dimension. In much of Allnatt's earlier weork, he
struggled with wayvs of modelinc the shape ena varisbility of the
aistribuvtion orn the § dimension., Lcwever, since the dimension is
strictly limitec at each enc the cdistribution was always, in some
sense, truncated, making modeling cdifficult. Onrn the T dimension,

ro such problem exists and Allnatt (19873) sucggests that the
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jistribution function can be modele¢ by the eguation
F(T) = 1 _ (3)
-g (T=T )
1 + e g( ll’[l

where g is a free parameter andI 1is the trensform of the median
3

of the t distribution fcr the stimulus under consideration., This

proposedc distribution function will, of course, need to be

testec,

The other nice property is that, beczuse the transform is
monotonic, the median of the I «aistribution is the transform of
the mecdian of the t distribution. Thus, when I is found, £ is

m )

Getermined throuch the inverse ¢f the transformation in ecuation

(2).

The Ens are the stimulus scale values which ve are ultimately
1

attempting to find.
222 Calculation Technigue
The theoretical rationale for calculating the T s was not
' m

presente¢ in a very complete way in the previous chapter, Thus,

although the purpose of this section is to outline the calcul-

By an By S G oy s D B B A Iy aE ER AN B EE A =,
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ation technique, more attention will be paid to the theory behind

the steps than was in the discussion of Thurstonian scaling.

Since the data collection method here is the same as that
for Thurstonian scaling, this example will employ the same data
set as scaled earlier., Again, stimuli XO and K6 are the anchor
stimuli which helped the observers maintain their criterion
placements appropriately., The data from these stimuli can again
be disregarded., Stimulus Kl is our referent stimulus which
supposedly represents a middle level of guality. FHowever, as
notely previously, it was created by combining impairments from a
number of dimensions, Thus, it cdoesn't fit with the cther stimuli
which will only vary alcng one dimension., As such, in practice,
the only reason to scale it is to make certain that its Lm value
remains relatively constant across experiments. Nonetheless, for
the present example, it will be assumed to represent an impair-

ment only along the dimension of interest and, thus, it will ke

scaled to the same end as stimuli xz, X3, X4 and KS'

The steps in the analysis will be as follows:
1. Create a data matrix like that presented in Takle 1.

2., Eliminate the anchor stimuli and turn the matrix into a
probability matrix like that in Table 3. (The ordering of the
rows is irrelevant., They can be left as they were in Table 1 or
ranked as in Table 3.)
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3., Turn this matrix into a cumulative probability matrix as in
Table 4. The last column will again contain only 1.00s and,
thus, can be cropped.

4a. The values in the rows of this matrix plotted against the
placenments of the four criteria on the £ dimension (.2, .4, .6
and .8) would give an estimate of the distribution function on f.
What we want is an estimate of the distribution function on T.
Thus, the cumulative probability values should be plotted against
the T transforms of .2, .4, .6, and .8 (i,e., -1.386, -.405,
+.405 and +1.386)., In either case a best fitting function could
then be arawn throuch these points and the median (fm or Im)
estimated by interpolation., However, since the precise form of
these functions is actually specified, the plotting should not be
done by eye. Instead, 1if this approach is to be taken the T
dimension should be used and the value g should be estimated in a
way which allows equation (3) to best fit the data. However,
since estimating parameters of logistic functions is overly com-
plicated at best, a simpler way to solve for the Ims is found in
i,

4b, "This simpler procedure is actually the standara trick for
dealing with logistics, taking logarithms in order to produce
linear relationships. Becinning with equation (3) if we invert
both. sides ané subtract 1 we obtain

1 X
-G (T-T
o g ( m)

F (T)

Taking lcgarithms produces:

In ([1 /7 F(T)] - 1) -g T+ g T
m

Thus, a plot of the derived valuec from the left-hand side of
this equation should produce a straight line with slope -g and
intercept gIm . Therefore, what we want to do here is to trans-
form the F(J) values in the three step process of a)inversion
(Table 11), b) subtraction of 1 (Table 12), &and c¢) conversion to
logarithms (Table 13).

5. For each stimulus, plot the values in Table 13 against the
four values of I determined previously (i.e., -1.386, -.405,
+.405, +1.386). (These plote are conteained in Figure 4,)
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6. Correlation coefficients, slopes, intercepts and estimates of
g (g is the negative of the slope) should be determined for
each plot (see Figure 4),

7. An average g value should be determined to produce the most
stable estimate (see Table 14).

8., The intercepts should all be divided by g to produce
estimates of Im (see Table 14).

. The TIm values should be transformed by equation (4) to
produce the scale values, £m, on the § dimension (see Table 14).

10, While the corresponding values on the § dimension may also
be desired and, in theory, possikle to determine, in practice
they are unattainable from the present data. As noted in egua-
tion (1), the basic relationship between § and § is:

While the egquation can be used to solve for i, determining its
value requires knowledge of S, and p. (EM(= aDpm" ) is the
scale value for the stimulus whose ftm value is .5, b is the
exponent in the power function relationship.) Shortly we will
discuss an evaluation technique which provides a value for Lm,
however, @ and b can not be solved for until the analysis out-
lined in section 2.3.3 has been carried out, This analysis will
require additional data collection,

243 Justifying fhe Iechbnigue
The thing to keep in mind about Allnatt's technique is that

it's based on the notion that the stimuli vary along some mea-

sureable physical dimension, Thus, the ultimate product of this
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analysis is a psychophysical function relating D values to f
values. If the existence of such a function can be validated our
understanding of the psychological impact of stimuli varying
along D would be greatly enhanced. Further, as will be discussed
later, it may be possible to predict the effects of varying
stimuli along two or more physical dimensions concurrently. How-
ever, the requirement that the stimuli to be scaled vafy only
along a single physical dimension does limit us a bit in terms of
the nature of the stimulus set that cean be scaled in a given

analysis.

There are three aspects of Allnatt's technique that do need
to be evaluated in order to have confidence in the obtained scale
values., These are 1) that the internal sensation,si is related
to the physical stimulus Di by a power fuﬁction, 2) that the
shape of the distribution on the I dimension is reasonably logis-
tic and 3) that the psychophysical function relating P and t is
as specified in equation (1). The second and third of these can
be tested using the same aata used in the scaling analysis.
Evaluating the first is substantially more complicated and needs

an additional experiment. As such, it will be discussed last,

2n3al Iestipg tbe Form of tbe T Distribukiop

This test involves an examination of the plots in Figure 4,
(Normally, this test will be carried out before any further

analysis is undertaken.,) If the assumption about the logistic
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shape of the J distribution (and the placement of criteria) is
correct, each plot should be well described by a straight line.
The linearity of these relationships can be tested by comparing
the velues of the correlation coefficients to a criterion value.
Obtained values less than the criterion would suggest that the

assumption is incorrect,

The correlation ccefficients can be found on their res-
pective plots in Figure 4, As with the test of normality ir the
Thurstonian analysis, a value of .90 should serve as the criter-
ion for four-point plots while a value of .988 should be used as
the criterion for three-point plots. 1In every case, the obtained
value of the correlation coefficient is larger than the criter-

ion, suggesting that the assumption is valid.

As before, these tests of distributions are not strong ones.
If the number of categories were larger than five, the test would
be more powerful. However, in the present circumstances, these
plots will never have more than four points. FHopefully, most
will have all four points although the test can be performed with

a three—pdint plot. If a plot cnly contains one or two points

the test cannot be performed.

2m3n2 ITeskipg tbe Feorm of Lthe Psychepbysical Lupgkigp

The proposed form of the psychophysical function is given in




ecquation (l). If one inverts both sides of this ecguation and

then subtracts one, the following relationship is obtained:

The exyrecsion on the left-hand side has a couple of uses andc hae

been given & designation of ite own, Jd , If we teke lcocgarithms

mg

of both sices, we next obtain:

Thue, & plot of the values 1n (J_) againet In L, should produce
By 1 .
& streight line with & slope of C and an intercept of = G 1n DF,

(The J values &re containec in Table 14.)
I

Until now, we've consideredé stimuli Zl to ZS as arbitrary
an¢ not as representing particular values orn the D dimension. In
order to complete the anelysis, we will need to specify values
for each stimulus ¢cn DP. £As Allnatt (187¢) notes this is ﬁore
difficult than it sounds, "It ig, however, sometimes necessary to
spend & little time seerchinc for a suitakle objective measure of
impairment that can ke simply related to its subjective effect”

(p. 615). For the present example we plan to use signél to noise




ratio in decibel units (GB). The problen here ie thet dB is
already a log scale raising the cuestion of whether it is the lcg
of loge we're interested in cr the GE values themselves. For our
purposes, we'll just use the ccele values themselves, arbitrerily

assignec to be:

15 C&E‘-n

p:
™
~
“
Y
(3]
[82]
o
1
~
i}
o}
<
I

Kl = 25 ¢b, ¥, = 20 ¢k, ¥, = 30
&

(#5]

('cte: remerker, uncder nermal circumstences the referent, Zl'
will vary alonc a number c¢f impeirment ciwmensions, Thug, it
woulcd not be inclucdecd in this enalysies., It's incluGea here just

tc aic in the presentation of the example.)

Uhet we're about to co is rlet the locerithwme cf the J S
acainst cur cb velues which are elready exypressed in log unite,
If the mocel eguation is ccrrect, we chould observe @ straicht
line witk clope . This plot i contained in Ficure 5, with the

gelcye, intcrcept end¢ correlaticon coefficient listed on it.

The test once ecain invelves the ckteined velue cf tho
correlation coefficient, If it is lerger than & criterion value,

the fit of the model ecuation is acceptable. The choice of

n

criterion is not as sctraichtfcrwerd as ir rfrevious enalyse
because it will cGepend on the number ¢f pointe in the plot which
will vary with the number of stimuli beinc scalec. Eere, there
are 5 stimuli and, thus, 5 points. Ve therefore have 3 (K-2)

decrees of freedom. The criterion value should be .805. The
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correlation coefficient is greater than .805 . Thus, the model

equetion seems to be a reasonable one,

One additional thing which can be determined here is the
value of DM' the stimulus that produces a scale value on the g
dimension of .5. The intercept of the 1line in Figure 5 is
[- G 1n DM 1, and § is defined by the slope. Thus, because the

Ds are already in log units:

intercept (1.8496)
D = = 4+ e— = 10,091
M -G .0929

22323 Examipipg Lbe Nafure of S

The first assumption of Allnatt's technigque, the power
law assumption, has two important implications. One is that the
psychological representaticn of a stimulus is ultimately uni-
Gimensional in a straightforward way. The issues involved in
this assumption and the implications of multidimensional repre-
sentations will be discussed in chapter 5., The other implic-
ation, that the physical and hence psychological dimensionsg have
true 0 points and, thus, that ratios on the § dimension are

meaningful, is the issue to be discussed here,

The technique to be used does not involve the data al-
ready collected for the scaling analysis., Instead, it requires

data from an independent experiment which should be carried out

'l
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before aprlying Allnatt's technique. The experiment allows an
assessment of the physical and corresponding psychological dimen-
sions themselves. If successful, it indicates that ratios on
these dimensions are meaningful and, thus, substantiates the

notion of psychological and physical 0 points.

The technigue was developed by Fagot (1978). A number cf
stimuli (5-7) varying along the physical dimension of interecst
are selected. Suppose for the present example that five stimuli
are selected (call them g, b, £+ €, and g in increasing magni-
tude). Pairs of these stimuli are presented to an observer whose
job it is to produce a ratio of magnitudes c¢f these stimuli on
the £ dimension., These pairs should be presented randomly &
number of times to provide stable estimates of the ratios. These
mean ratic estimates can then be placed in & table as shown in

Table 15,

The first aspect of the data to examine is refered to as
the monotonicity rule, Moving both from left to right across
columns and from top to bottom within each column, the ratios
should decrease monotonically (i.e, successive ratios should be
less than their predecessors). In the present situation, there

are no violations of this rule,

The second step in the evaluation procedure is a bit more

complicated., All tetrads of the stimuli are listed and (label-
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ling the stimuli in a tetrad 1, 2, 3 and 4 in ascending order)

the gquantities | ted. i

: g 314 X 323 and 313 X 324 are calculated (BXY is
simply the ratio from the data matrix relating stimulus X to
stimulus Y¥.) The resulting ratio products for the example are

listed in Table 16.

Demonstrating that the physical dimension has ratioc pro-
perties is essentially a matter 6f demonstrating that the ratio
products in the two columns of Table 16 are identical, Calcul-
ation of a correlation coefficient would be inapproprizte here
because it would be insensitive to certain types of differences
between the two columns (e.g., if the two columns differed by a
constant). Instead, a test devéloped by Bartko (1976) can be
used, A one-vay repezted-measures analysis of variance (AMNOVA)
is carried out on the ratid products iniTable 16 treating the
tetrads as observers and the cclumns as two levels of an in-

cependent variable. The ANOVA table is presented in Table 17,

Firet an F ratio for columns is calculzated. It should be
nonsignificant indicating no overall difference between the two
columns. FEere, the F value is 6,77 while the .05 cutoff for 1
and 4 degrees of freedom is 7.71. Thus, no problems have arisen
yet., (In actuality, to maximize the possibility of finding
nonratic scale tendencies, it would be better to be more liberal
here and use an alpha level of .10. The criterion F value woulc
then be 4.54 meaning that the test would fazil. However, for

demonstration purposes, we'll assume our tecst has succeeded so




83
far and continue.)

The final step is to produce an F ratioc for tetrads. EHow-
ever, the one shown in the ANOVA table is not the one we're
looking for. To create the proper F ratio we use the fact that
we've failed to find an effect for columns and assume that its
mean square represents only error. Thus, a new error mean sguare
is created by poolinc the sums of squares ancd decrees cf freedom
from the column effect with those for errcr. The resulting
pocled mean sguare (MSP) is incdicated in Table 17. This value is
then used to create the f ratio for tetrads ss shown in the
takle, The resulting F value of 20.05 is compared against
the .05 criterion for 4 and 5 degrees of freedom of 5.19 (actual-
ly, here it might be better to be a bit more conservative and use
an a2lpha of .01, that value is 11.39). 1In eany case, the obtained
value far exceeds either criterion indicating that the variance
in the data in Table 17 is almost entirely due to differences
between tetrads and not to aifferences between columns cr random
error. Thus, we can conclude that, for our purposes, the two

columns match and that the creation of a ratio scele is possible.

Whenever this test is undertaken, it will be important to
calculate both F ratios. In order to valicdate ratio scaling, we
have to show both that there is no overall difference between
columns (the first F test) and that error variance plays & minor

role in the overall variability (the second F test). Thus, the
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point becomes that most of the variance must be due to differ-
ences between row means as it was in this example., A measure of
the proportion of variance due to the differences between rows

(Bartko, 1976) is given by:

- tH

& ‘Spooled

=]
jutetrads

MG + -
M tetrads (€-1) MSpooled

where £ is the number of columns. Fere the value is ,905 incic-
ating that rdw differences account for 90.5% of the variance,
The remainder of the variance (i.e., 9.5%) is attributable to
column Gifferences andé error, two factors which, for the present

data set, we have concluded are unimportant.

Successful completion of the test described above in-
Gicates that the cdata satisfy Fagot's (1978) minimum reguirement
for the creation of a ratio scale (what he calls C3). To com-
pPlete this evaluation we next must Getermine whether the scale
values ere reasonebly well described by a power function. There
are two ways of aécomplishing this., One way would be carry out a
magnitude estimation experiment using the dimension of interest.
The only caveat here is that the stimulus which is used as the
standard should be more intense than any of the comparison
stimuli (in the present case, this means it should have a greater
amount of impairment). Thus, the task would actuélly be a frac-

tionation task. (The reason we would have to use the greatest
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magnitude stimulus as the standard is because satisfying Fagot's
C3 requirement only guarantees that we can generate a ratio scale
under this specific condition.) The second way to do this would
be to recognize that a fractionation experiment has already been
done within the context of the study reported in Table 15, That
is, the values in the rightmost column of Table 15 are exactly
the data needed here. 1In each case a comparison of less inten-
sity has been compared to the highest magnitude stimulus in the

set eand & ratio judgment has been given.,

The analysis to be done on these data is a standard one,

According to the power law eguation:

S0,

in
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|
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o

Thus, 1if the logarithms of the values in the rightmost column of
Table 15 are plotted against the logarithms of D, -we should
observe a straight line with slope p. These data are plottéd in

Figure 6., (Remember, the D s are already in log units.)
i

The fit of the straight line to the points is again
evaluated using a correlation coefficient which in this example

is .9909. The criterion for evaluation would be the one-tailea
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cutoff for K-2 decgree of freedom (£ is the number of stimuli so
here K-3=2)., This value.is .900. Thus, the fit appears to be &
good¢ one. Based on this result anc the success of the preceding
analysis, the assumption of a power function relationship between
D and § seems to be & reasonabkle one, Also note thet this
analyéis gives us &n estimate of .13 for k, the exponent in the

power function (anc the slope of the best-fitting line).
£e4 DAGitivity of Effects

Once we have verified the applicebility of Ellnatt's
procectre tce more than one physicel ¢dimencion, the guestion of
coexisting impairments arises. 2Allnatt (1879) arcues that the
eifects of coexisting impairments are acditive in their Jm values
(remember Jn = l/_t_rp - 1), 2s far as we can tell, he has ro

i .
thecretical basis for this cleim. Fe does, however, produce one

empiricel result which supports his positicn.

In his cemonctration, rancom noise znc long-celayec echo
were selected as the two aimensions of interest, Fer Loth dimen-
sions, single impairment source stimuli were scaled end the
relationship given in equation (1) was validated. (Mo attemrt
was made, however, to validate the ratio scale assumption.)
Predictions were then made for stimuli containing coexisting
impairments by adding the J scorés appropriate to the level of

i

impairment on each dimensionr to get ¢ totel J , This score was

]
it
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then reconverted toaf score by the inverse of the J transform-

ation:

t = 1/01+J 1
m

These scores represent the predicted £ s which were then compared

to the £ s obtained in the scaling procedure, The results,
m

reported graphically, suggest a good match between precicted and

observed t S.
m

Allnatt (1979) also reports a similar investigation
carried out by the British Broadcasting Corporation using a
couple of additional impairment dimensions, Apparently, this
enalysis was also successful, suggesting that the technique may
holé a certain amount of promise. Bowever, as Bllnatt (1979)
notes, if the effects cf impairment on two physical dimensions
are visually similar, the additive rule will not hold. Thus,
before acditivity is ever assumed for any two dimensions, it

shoulc be evaluated empirically.

The choice of the optimal procedure for evaluating the

match between the observed and predicted ;ms is not clearcut.
WWhat we are trying to do is take a largce number of cbserved Lr

A
values and determine whether they egual their corresponding pre-
dicted values, Presumably a factorial design will be used in

which stimuli are created by crossing p levels of dimension 1

with g levels of dimension 2. Thus, the number of observed g
m
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values will be p % g. (There will, of course, be the same number
of predicted &m values,) Cur suggestion here is that these
values be arrangec¢ in two columns such that one column contains
the observed Lms and the other the precdicted ;ms. The same
analycis as was carriedé out on the values in Table 16 can then be
carried out here. Bgain, there shoulc¢ be @ nonsignificant F when
testing the difference between cclumne and a hichly significant E
when testing the ¢ifference between roweg (i.e., stimuli) with the
rcv test being carried out using the poolec mean scuare., If so,
the claim can then be made that the two dimensions c¢o combine

adcéitively.

If three or more dimensions are used, the same eveluation
procedure should be follovweds, The only aifference ig that the

number of stimuli and, hence, the number cf rcws would increase.

Il1l. CUUEALY

\

For both Thurstone's and llnatt's technicues we have nrow
completed our discussicon cf the three iscuesc set out in this
chapter's first pareacreph: a) the assumptions underlyinc the
techniqgue; k) the nuts and bolts ¢f the analysis procedure; anc
c) the method of cetermining whether the techniqgue can be legiti-
mately applied. 1In reference to the firet issue, Thurstonian
scalinc has fewer and less strict assumptions., The assumptions
involve the placement of normal distributions and criteria on the

£ Gimension., Allnatt's set of assumptions involves assumptions
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about a) the nature of the relationship between the physical
Gimension, P, and 8, b) the transformaticn of the £ dimension to
produce the £ dimension and c¢) the shape of the distributions and
the criterion placements on t. 1In reference to the second issue,
the procedures both are fairly cut and dried in that they can be
implemented in a straightforwarc, step-by-step procecure, In
reference to the thiré issue, both technicues allow each of their
assumprtions to be tested as outlinec¢ in the chapter. In chapter
four our Giscussion will turn to ways cof analysinc ouvr resulte,
that is, the scele values we have discoverec, Fowever, becausc
the reacer may have missed it, we shoulc first mention an inter-

esting phenomenon.

For both techniques, issues b) anc ¢) were discussed by
using semple data and coinc through the procecdures in a step-by-
step feshion. The cdata, of cource, were totally febricated.
I'onetheless, both technicues passed all tests with flying
colcurs. BAsg such, cne must realize @ couple of things, Firet,
et best, these tests of the assumptions are nct powerful., It
arpears unlikely that either technique will be invelidated very
often., Secona, validation of one technicure cefinitely Goes not
invalidate the other. In most cases both may be reasonzble.
Therefore, in circumestances in which kboth can be arpliec (i.e.,
when the stimuli very on & single physical aimension), the choice
of technicque may be somewhat arbitrary. For the present we just
have to accept the fact that you can never tell which way the

train went just by looking et the tracks.



CEAPTEFR. 4 - ANALYSING SCALE VALUES

The previous chapter contained a complete discussion of the
issues which shoulcd¢ be considered when selecting one of the
recommendea scaling techniques over the other, Assumptions and
how to test them were laved out for both téchniques anc¢ the pro-
cecdures for generating scele values were detailed. Regardlecs of
which scaling technicue was selected, its ultimate purpose wag to
procuce scale values for each stimulus in the experiment. Once
this has been done andg all relevant teste of assumptions have
been completed, additional analyseg may be performed., If the
Thurstonian technicue were used one micht wish to'determine which
stimull have scale vealues significantly different from the scale
valueg of the other stiruli, One might also wish to cdeternine
whether the scale values vary as & function of Gifferent experi-
mental conditions., For example, if the data were ccllected uncer
2 or 2 cGifferent =ets of instructions, the nature of the
instructions coulcd have & strong influence on the obteained scale
values. Thus, it wculd be important to analyse the effects cf

such & variable,

The preferred method of analysis would be the AFOVA., If the
gquestion is whether the scale values ere significantly different
from one another, a simple one-way ANMOVA could be carried out
with stimuli as the single factor, If one or more additional
factors are introduced, a stendard multifactor ANOVA would be

preferred and interactions could be examined., Planned ancd/cr
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post hoc comparisons would also be useful.

There are, of course, two major assumptions involved in
doing these types of analyses. The first is the normality
assumption., Violations of this assumption should not be a rpro-
blem here, however, since tests for normelity have already been
rerformec, If the normality assumytion were incorrect, we
woulan't have reached this point. The seccend assumption is that

cf homoceneity of variance. The remaincer cf this chapter will

he cdevoted to a discussion of this issue.

In Allnatt's technigue one woulc noct neec to test cscele
values tc¢ determine whether they are Gifferent from one another.
The c¢oal of hie technicue is to specify mathematically how cscale
values vary as the physical dimension varies, If successful, the
¢uesticn of which stimuli are ¢ifferent from which has alreaay
been answerec. Eowever, tle cuestion c¢f whether the scale values
vary as a functicn of aacitional factors woula be relevant. 7c
answer this cuection, we woula not reconmenc testinc the scele
values directly, bhowever., Instead, it ceems inore reasonable to
tect the rarameters thet cive birth to the scale values, G and
DK'

Once again, the ANOVE is the preferred method of analysis.
With resyect toc the normality assumption, the sampling distrib-

utions or € and DV may not e normeal., Fowever, here the certrel
!
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limit theorem can come to our aid. ©Bns long as the number ot
observers per condition is more than twenty, the normality
assumption sﬁould be catisfied. Eince we have previously sug-
gested¢ usinc up to fifty observerse there should be no prdblems
here, #fg¢ain, however, there coulc be problems with the homo-
geneity of variance assumnption. It ie to that issue that we now

turn.

In the following examples we will.be assuming thet the
Thurstonian scaling technicue has leen carried out on [ stinuli,
The dGete to Le enalyzed are the scale values for each stimulus,
The exprgssion, Bi, represents the number c¢f scalc velues pro-
c¢ucec¢ for stimulus i. Thie value 1s ecual to the nuwmber oi
observerg who have scaled¢ stimulus i. Under norral circumetences
all obscrvers will scale &ll stimuli, meaning D, will be & con-
stant., Yowever, fcr cciijleteness sake, the fcllowing discuscion
vwill incluce exemples in which the giS ere not assuwed to be

ecual,

For rresent purposes, the mest inportant assumption un-—
derlying the AI'CVA is that the populeticns frow whiclk the [
samples ere drawn have equal variances., £z Iirk (1882) has
pointed cut, none of the AFOVA's assumptions are ever fully
satisfied by real data; the important cuestions to ask are wheat

effects Go vicleticne cf the zscumptions heve on the significence
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levels and the power of the test, and what measures can be taken
to deal with those assumptions which are found to have been

violated.

A number of studies have demonstrated that the ANOVA is
relatively robust to violations of the assumption of equal vari-
ances, previgded the samples bave equal sizes (Glass, Peckham, and
Sancers, 1972),. The exact effects of unegual variances are
Gifficult to calculate, but, genereslly, the actual significance
level of the test is somewhat higher than the nominal level.
Thus, the anzlysis is more likely to result in & Type I error
(i.e., a false rejection of the null hypothesis)., A summary of
the effect of unequal variances on alpha -- the probability of &
Type I error -- is shown in Table 18. Here, the nominal alpha
is .05 and, as can be seen, except for the case of many samples
(E = 7) and small samrle size (ni = 3), inequality of variances
has only & small effect on the actual algha. However, most post-
hoc multiple-comparison procedures (e.g., Tukey Honestly Signif-
icant Difference, Newman-Keuls, Duncan Multiple Range, Fisher
Least Sicnificant Difference, and Scheffé3 also recuire homo-
genous variances, and the robustness of these tests to heter-
ogeneous variances is unknown, even with equal sample sizes
(Games, Winkler, and Probert, 1872), With respect to the power
of ANOVA, calculations are impossible if the assumption of equal
variances is violated since there would be no true population

2
variance ( 9 )., Budescu (1982) presents a method for computing
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the approximate power, but this procedure has not received wide-

spread acceptance,

If sample sizes are unequal -- a situation that should not

arise in the present circumstance =-- uneéual variances can have a
serious effect, The direction of this effect depends upon the
magnitudes of the variances of the larger samples relative to
those of the smaller samples. The mean sguare error (MSE) -- the
denominator of the F ratio in one-way fixed-effects ANOVA -- is a
weighted average of the sample variances with greatef weight
being placed on the variances of the larger samples., Thus, if
larger samples have larger variances, MSE will be inflated and
the probability of a Type II error (failure to reject a false
null hypothesis) will be increased. Conversely, if larger samples
have smaller variances, ﬁSE‘will be smaller than it should be and
the Type I error rate (false rejection of the null hypothesis)

" will be increased (Lindman, 1974).

In this chapter, attention will first be paid to statistical
tests designed to éétect whether the assumption of equality of
variances has been violated. Following this, a number of pro-
cedures will be described whose purpose is to equate initially
‘unequal variances or to compensate forbunequal variances in other
ways. Finally, a section is devoted to analytic procedures which

can be used instead of the ANOVA,
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del Tests of Equaliiy of Variapgces

If sample sizes are equal, severel authors recommend that
the equality-of-variance assumption of ANOVA not be tested (e.q.,
Keppel, 1982). This is because, as noted, a violation of the
assumption has only a minor effect unless the Di are very small,
Somewhat surprisingly, two of the most commonly cited tests of
ecuality of variances -- Hartley's and Cochran's ——- can only be
performed when sample sizes are equal or nearly equal, These
tests' popularity is due to their computational simplicity end,
for this reason they are described below. Two acditional tests
are also described -- Bartlett's anc the Box—Schefféﬂ—— which,
while computationally more laborious, can be applied when sample
sizes are unéqual. The Box—Scheffg test has an additional advan-
tage which will be discussed when the test is described. Two
simple numerical examples will be employec to illustrate the use

of the tests. 1In each case, the null hypothesis:
2
n: O = 0;=O'=...=U

will be tested against the alternative hypothesis that at least

one variance is significantly different from the others.

l1.1.1 Hartley's F Test

JF UGN YOUN VRN SIS VAN SEPIEIpIORION St SR SO IR SUPRRI S G W TO SRR T SNT

The test statistic for this test, F ; 1s computed as the
max




ratio of the largest sample variance divided by the smallest

sample variance, Consider the following sample data. Here four

stimuli have been scaled (K = 4) by six observers (ni =6):

nl = 6 n. =6 n3 = 6 n4 = 6
2% 2 2 2

he = = = = 6

ql 12 S2 8 53 25 54

. 2 2
The largest variance, 53 , is 25, the smallest, §, , is 6, so the

test statistic:

E = 25 = 4,167
max 6

The critical value, E, is defined by K (the number of stimuli or
samples), Di - 1 (the degrees of freedom associated with each
sample variance), and 1 - o4 , and can be found in Takle B.7
(copied without permission from Winer, 1971), With <& = ,05,

the critical F, F is 13.7. Since the obtained test

4,5,.95'
statistic (4.167) does not exceed this critical value, HO is not
rejected and ecuality of variances can be assumed, (lNote: assum-
ing equality of variances is tantamount to accepting the null
hypothesis, a dubious practice unless beta -- the Type II error

probability -- is known, but one which most researchers seem

willing to adopt in this case.)




lele2 CLochrapls Test

In this test, the test statistic, £, is computed as the
ratio of the largest sample variance to the sum of all K sample
variances, Using the same samgple data as above, the largest
sample variance is 532 (= 25), and the sum of all the variances

is 51, so the test statistic:

£ = PAS) = ,4902
51

The critical £ value is dGefined by K, D, - 1, and 1 - =< , and
i
can be found in Table B.8 (copied without permission from Winer,

1971)., With & = ,05, the critical ¢, C is .5865,

4,5,.95"
Again, since the obtainea test statistic does not exceec this

critical value, H is not rejected and equality of variances can
0

be assumed.

With respect to both of the above tests, Winer (1971) notes
that if sample sizes are nearly equal, the largest n, can be usec
to determine the appropriate degrees of freedom (Di - 1) with
which to enter the critical values Tables. In most cases, the
Hartley's and Cochran's tests will lead to the same decision
althouch, given that Cochran's procedure employs more of the

information in the sample data, generally it is slightly more

sensitive than Hartley's test.
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lele3 Bartleii!s ITest

This test is more appropriate than either Hartley's or
Cochran's procedure if sample sizes are unequal, ’It is also more
powerful, It should not be used if any ni is smaller than 3, and
mOSt.ni'S should be gcreater than 5., As will be seen, it is more
complex computatiocnally than the previous tests but in many cases

it is the preferred procedure,

The test statistic for this prccedure is & chi=squere

statistic, computed as:

K

2

1% = 2,303 (N - K)log_ MSE - Zg (n - 1Dlcg_ S,
C 10 i

Where: 2.303 is a constant

K

]

number of samples (stimuli),

N

L]

total number of observations across all K samples,
IiSE = mean square errcr (defined below),
n, — 1 = decrees of freedom associated with each sample

1

variance (8,2),
i

K
and Q = l + llili'll‘ z ililri'[' - I"i'll . 3
3(K = 1 n, -1 N - K
1=

Using the same data as before, £ is computed as:

£L=1+ 1., [l"'l"’l"’l-l]
5 20




w
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¢
[ISE = (ni - 1)5i = 5(12) + 5(8) + 5(25) +5(6) = 12.7%
i=1 I - 2C |
loag. l'SE = log. 12.75 = 1,1055
"1 16
2
log, ¢ = log¢ = G2
%105 Oglol? 1.0782
lcclcszé = loglco = L&G031
2
loclos: = log,,25 = 1.,367¢
10310C4 = 109106 = J77CZ
2.
anc, = 2,303 |(20)(1.1055) - ((5)(1.0792) + (5)(.6021)
1.0832

+(5)(l.3979)+(5)(.77€2§ﬂ

. _ L . - .
The critical fz is cefined¢ by § - 1 ana alpha. In this example,

2 = . ! - . e s : .
the critical ?( ,Yf r is 7.61. Since the obtained value of
3,.05
the test statistic, 2.004, does not exceed the critical value,
H is nct rejected and ecuality of variances can be assumed,
0



100
’
dedad Beox-Scbeffe Test
Each of the previous three tests -- Hartley's, Cochran's,
and Bartlett's -- provides a valid test of equality of variances

if the upderlying pepulatien gistribukions are permal. However,
if the normality of the distribution is eithe; unknown or if it
is knowﬁ to be nonnormal, these tests are inappropriate (Box,
1653; Martin and Games, 1977; Games, Keselman, and Clinch, 1979),
If they are used when the distribution is not normal, the null
hypothesis of equal variances may be falsely rejected anc re-
searchers may wrongly believe that they cannot proceed with an
ANMOVA. This is especially problematic since the ANOVA itself is
relatively insensitive to departures from normality. (In the
present circumstances, however, a test for normality will already
have been successfully carried out. Thus, the following dis-

cussion is only for the sake of completeness.,)

A test first proposed by Box (1¢53), later modified by
Scheffé (195¢), anda now referreé¢ toc as the Box—Scheffé procedcure,
can be used whenever nonnormality is suspected., It can also be
used when sample sizes are unequal and, although it is computa-
tionally guite laborious, it is probably worth the effcrt. To
describe this procedure, consider the results from another scal-
ing study using ¥k = 4 stimuli, each scaled by Di = 8 observers,

as shown in Table 19.
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The first stepr in the procecure is to divide the Di obser-
vations in each sample randomly into a number of subsamples.
Accordinc to Games, Keselman, and Clinch (1¢79), the optimum
size of the subsamples (Dj) is the nearest integer value to

(ni)l/z. In this example, with Di = 8, each subsample should

consist of (8)1/2, or 3 observations. Thus, the 8 observations
in each sample are randomly divided into 3 subsamples of size 3,
3, and 2, as shown in Table 20. (Note: for smaller Bi' the use
of Dj = 2 for subsamrples is ppt recommendecd (Gartside, 1972;
Games, Keselman, anc¢ Clinch, 1979), since this will result in

considerably less power than with subsamples of intermediate

size.)

The second step is to compute the variances of each of the
subsamples (Table 21) and to convert these variances into natural
logarithms (Table 22), Finally, as illustrated below, an ANOVA
is performed on these logarithms to test the original ecuality of

variance hypothesis.

For the cdata in Table 22, find the weighted means (¥ |)fcr
i

each group, weighting by the subsample variance decrees of
freedom (i.e., b, -1 = 5 .)+ Thus, for cgroup 1l:
i o1

2(-1.0886) + 2(-1.0986) + 1(1.5041)
.1 2+ 2 + 1)

>}
1

-.5781 (with 6/ 1 = 5)
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In like manner, compute:
§'2 = -1.0175 (with 5 = 5)
" o2
£, = -1.0175 (with X _ =5
X, = .0085 (with 5’.4 = 5)
And the cgrand mean of all the cells, 2 :
"4
X = & X, = (-.5781) + (-1.0175) + (-1.0175) + (.0085)
K 4

= -.6512 (with (§ = 20)

Then compute the following 3 statistics:
5 2 2
1= ?f bt = 20(-.6512)° = g,4812

_ 2 2
11T =22%.%..° = 2(-1.0986)% + 2(=1.0986)% + v.. + 1(-.6931)
J i '

Ji Jji
= 24,9005
K
v 2 2 2
III =ZE?5,X s 5(-.5781)° + 5(-1.0175)° + 5(—1.0175)2 +-5(.0085)2
i:' W . .
= 12.0244

Finally, compute the sums of squares for treatment (SST) and for

error (SSE):




103

SST 12,0244 - 8,4812 3.5432

"

IIT - I

fl
I

SSE = II - III 12.8761

24,9005 - 12,0244

and corresponding mean squares:

MST SST/(K - 1)

I

3.5432/3 = 1.1811

MSE SSE/K(n' - 1) 12.8761/(4 x 2) = 1.6085

wvhere p' 1is the number of subsamples per group,and the test

statistic, FE:

F = NST/MSE = 1,1811/1.6085 = ,7338 .,
The critical | , E3 8 ot for this example, is 4.07. Since the
14 re
obtained test statistic does not exceed this critical value, E

o
is not rejected and the variances can be assumecd to be equal.

Clearly, this procecure is consicerably more laborious than
either HPartley's or Cochran's test and, if the treatment popula-
tions are known to be normal and the sample sizes are equal,
these are the recommended tests (Games, Winkler, and Probert,
1972; cChurch and Wike, 1976; Keppel, 1982). If normality can be
assumed but the sample sizes are unequal, Partlett's test is
recommended., If normality cannot be assumed, the Box-Scheffg

procedure is preferred.
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Mote that one disadvantage of the Box—Scheffé procecure
results from the initial random assignment of sample observations
to subsamples. Conceivably, different researchers could produce
different subsamples &and could reach different conclusions from
their analyses (Games, Keselman, and Clinch, 1979). 2An alter-
native procedure, called the jackknife test (Miller, 1968), also
divides observations into-subgroups but has the advantage that
all users will obtain the same results with the same data. 1In
this procedure, the original ni observations are divideé into
Disubgroups, each with Di -1 observatioﬁs (i,e.,, one observation
is ¢ropped in each subcroup). This procedure has been shown to
have greater power than the Box-Scheffé'test but it also results
in an inflated alphé (Martin and Games, 1977). The Box-Scheffg
test maintains alprha close to its nominal value and affords
reasonable power (Keppel, 1982) so, overall, it is the recommend-
ed procedure (see Brown and Foresythe, 1974, however, for a con-

trary opinion and another test of equality of variances).

La2 Procedures for EQuaktipg Sample Variabges

Assuming one of the above tests has been applied and the
null hypothesis of equal variances has been rejected, it may
still be possible to perform an ANMOVA. A number of procedures
exist for transforming the original scores (xi_) to scores (Xi_)
whose scale has more desirable statistical préLerties. In this

section, four of the most commonly-used transformation procedures
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are described, followed by a brief discussion of their advantages
and disadvantages. Finally, some other correction procedures are

described which can be adopted in certain ANOVA designs,

dadal DReio Irapnsformafions
delelal Squarer-Repet Trapsformaficen

In certain distributions, sample variances are proportional
to the sample means (e.g., the Poisson distribution, in which
6}=/M ). (Such a distribution freguently occurs when the data
represent frequency counts cf events which have small probabilit-
ies of occurrence.) If such is the case, transformed scores

(Eij) can be computed from the original scores (xij) ass

If any ¥ ., is less than 10, a more appropriate transformation is
1]

given by:

or, Y. . =5xij + X,., +1

The latter transformation has been recommended by Freeman and
Tukey (1550), anc tables for the transformation are availakle in

Mosteller and Bush (1854).,




da2ele?2 Logaritbmigc Transiorwaiion

If standard deviations rather than variances are

e}
V]
(w
)

proportional to the sample means -- as often occurs if the

are positively skewed -- an appropriate transformation is:

YlJ B lOglO ij
or Y = 1 X L
r is ].Ogl0 (/ij + 1)

The latter is particulerly effective when some of the cricinel

<

o

zij are equal to zero or are very small (Xirk, 1982).

1.2.1.3 Reciprocal Trgpsiprmation

If the cdats are skewed such that the sample variences in-
crease a& a monotonic nonpropcortional functicon of increasinc
sample means, as an alternative to the locarithmic trensfornm-

ation, an e¢ppropriate transformation may be:

Y . =1/%, .
ij 13

or, Y /.. + 1)
13

ij

The latter should be usecd if any of the Z are equal tec Zero
1]

(Kirk, 1982).
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dadnled AIgsipn ITrapsformation

Although such would not occur in the present circumstances,

if the ¥.. are proportions, then the sample variances will almost
1]

certainly differ from one another as a function of the sample

means. In this case, an appropriate transformation is:

Y . = arcsin |\ X..
1] 1]
which should make the variances approximately ecual, independent

of the means.

The major advantage of these procedures is that, under
different conditions, they may equalize (or approximately equal-
ize) initially unegual variances, thereby satisfying the assump-
tion for ANOVA, The major disadvantage, however, is thet the
sample means will also be transformed anda, thus, inferences
regaraing treatment effects must be made with respect to the
transformed data. Clearly, this could produce results which are
a bit har¢ to intergret. 1In the case of proportions, for exan-
rle, the statement that the means of the proportions differ
across samples is easy to understand. In contrast, the statement
that the means of the ercsins of the sguare rcots of the propor-
tions differ across samples is considerably harder to interpret
(Lindman, 1874). 2 second disadvantage is that'for some data,

none of these transformations has a noticeable effect (e.g., Wike
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ané¢ Church, 1982). In many cases, however, the transformations
will not only equate variances but also may minimize skew. 1In
such cases the use of transformed scores would inérease the power
of the ANOVA (Levine and Dunlap, 1982, 19283; but see Games, 1983

for a contrary opinion).

Finally, transformed scores may not be advisable ih 2-vay
.(or higher order) ANOVA designs. Transformations can have larce
and undesirable éffects on the nature and size of interaction
effects; in fact, interactions which really did exist in the

original data may now fail to be significant (Liﬁdman, 1974),

Lle222 Skatisktical LorrecfiEns

A number of procecdures have been proposed to overcome the
effect of unegual variances on the actual significance levels in
the ANOVA, Attention will be given to some of these in this

section.

dala2al Box Lorrecktien

The Box correction (Béx, 1853) is appliceble in ANOVA de-
signs-with random effects (l-way or higher-order), or, in fact,
in any design for which the denominator of the F ratio is an
interaction mean square. The procedure allows the researcher to
estimate the actuzal éignificance level of an obtained [ test
statistic (or, more properly, a range of values within which the

actual significance level falls). In the procedure, the numer-
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ator and denominator degrees of freedom ( K} and Xz  respective-
ly) are divided by a constant, g. The exact value of g is
unknown, since its magnitude depends on the extent to which the
equal-variances assumption has been violated, but its upper and
lower limits are 5| and 1, respectively., Thus, the actual sig-
nificance level of the [ test statistic can be found twice: once
with g set toc 1 and decrees of freedom Bl /1 and Kz/l (i.e.,
the regular degrees of freedom) and once with g set to 5, and
decgrees of freedom,x,/ B‘ (cr 1) and Kl/ X‘ . DMNote that the
value of the [ test statistic remains the same under both con-
ditions but its level of significance will change, as illustrated

in the following example,

Suppose 5, is 3, Kl is 15, and the [ test statistic is
5.25. In the regular procedure (using‘b‘= 3, 6;_= 15), an F of
5.25 has a significance level, p, of .02, With the correction
decrees of freedom ( ?& =1, Xl = 15/3 = 5), an F of 5.25 has a
significance level of .08. The researcher can thus conclude that
the actual sicgnificance level of the test is between .02 and .08,
even though the assumption of equal variances has been violated.
If the violation were relatively small, the true significance
level would be close to .02, If the violation were large, the

true significance level would be closer to .08,
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1:2e222 Geisser-Greepbeuse Coxxeciiop

This procedure (Geisser and Greenhouse, 1958) is applicable
in repeated measures ANOVA designs, and also involves a modific-
ation of the cegrees of freedom. The obtained [ test statistic
is evaluated against a new critical value that assumes maximum
heterogeneity of variance. The procedure is quite simple: the
original.& and Kl\ are divided by a faétor equal to the decrees
of freedom associated with the repeated factor (or factors). As
an examgple, suppose we havegni==6 observers who have each scaled
E = 4 stimuli, In the regqgular repeated measures ANOVA, the
treatment degrees of freedom (6\) is R - 1 or 3, the observer
degrees of freedom is Di - 1 or 5, and the iﬁteraction (or error)
degrees of freedom ( KL) is (R - l)(ni - 1) or 15. 1If the
variances are equal, the appropriate critical value for treat-

. FHowever, if the variances are not equal, 5 anad

3,15 )

glare dgivided by 3, giving a critical value of El . If the
[

test statistic F exceeds the corrected critical F, the results

ments is F

may be considered significant although the variances are unegual,

lalalel BApproximgte F tesi for Planned Lomparispons

Instead of performing an overall ANOVA, a researcher may
wish to test a number of specific hypctheses which were planned
prior to data collection. The princigpal advantage of planned
comparisons is that they can be one-tailed (if desired) and,
consedquently, tﬁeir critical values are usually smaller than

those of most post-hoc procedures.
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i}

Consider the following data for K 4 random samgples, each

consisting of p, = @ observers:
i

n = 8 = 8 = =

1 n2 n3 8 n4 e

¥. = 6.75 X = 10.375 X = 8.625 ¥ = 13.75
1 2 3 ¢

s* = g.214 s* - ¢ gae st 696 5% = 2.796
u_l Y 2 IS & s 3 = Yo, - 4 = - b7

Fere, the MSE turns out to be 7.3286.

First, assume that the variances are statistically egual anc
consicer a comparison of the mean of group 1 with the average of
the means ¢f groups 2, 3, and 4, The contrast coefficients(gi)
fcr this comparison are 3, -1, -1, andé -1, for groups 1 toc ¢

respectively. Thus, the null hypothesis 1is,

B ‘3%1: + (D4, 4+ (—].)/q3 + (—})/&4 = 0

The F ratio for this contrast is civen cs:

Az
L’)
F = 2
SB\V
K
A —
where,(e =ZE C X = (3)(6.,75)+(~1)(10.,375)+(-1)(8,625)+(-1)(13.75)
1 1
i=1

= =12.5
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AZ 5
so, Y = (-12.5)7 = 156.25
K
2 2
and, SEQ = MSEZE.(C, /n )
i i
i=1
2 2 2 2
= 7.386(3 /8 + -1 /8 + -1 /8 + -1 /8)
= 11.079
Thus, F = 156.25/11.07% = 14,103
This F wvalue would be evaluated against a critical El . =
. (25 )
; = 40 i 4 0< = . L-o
Ll,28 20 with 05

Mow, assume that the variances have been found to be un-
ecual, and consider the same comparison, now tested¢ through the

approximate [ procedure.

A
Y = CX = -12.5
iTi
i=1
and,
= 156.25
K
2 2
SEy now = 1/n [c.s5, ]
i7i
i=1
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1/8 [(3)2(8.214) + (-1)2(8.839) + (-1)2(9.696)

+ (—1)2(2.796)]

11.907

and, 156.25/11.,907 = 13.122

o]
]

(Note: in this example p, is a constant, the term p is being usead
i

to refer to this common value of p s.)
i

The approximate F ratio is thus somewhat smaller than the
original F (this may not always happen), but, more important, it
has to be evaluated against a critical f with 1 and 2§;degrees
of freedom, where,

K

{ 3 2 ~ 4 4
= - )(SEy) S
\Kz (n n ) (SkEy /:2. Ci i
i=1

4

=(83—82)(11.906)2/%3)4(8.214)2 + (-1)%(8.839)2
4 2
+ (-1 %(5.656)

+ (—1)4(2.796)2]

= 11.34%

which is always rounded down (in this case to 11).

The critical E, Ey 1,7 is 4.84 with X = ,05.

4
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The main difference, in this example, is the loss in degrees
of freedom. Note that this is only an gpprosimake test. When
the Di are fairly large, the apprbximation is guite good., For
small Di, the procedure is not recommended. If sample sizes are

2 ! .
unequal, the approximate SEq, and B:L are computed by:

SE:@ = ;Z C 8 /n
i i i
i=1 K
u
4 4 4 3 2
and, .2: = SEQ ZE [Ci cH /(ni - ni)]
i=l :

dala2.4 Welsh-pspip Iest

When K = 2, the usual procecdure for testing the significance
of the difference between means is the two-sample f£ test,
although an ANOVA can be performed if it is preferred. Like the
AMNOVA, the L test recuires the‘assumption of egual variances andg,
if the assumptioﬁ is violated, the following procedure -- the
Welch-Aspin test -- can be used iﬁstead. It can also be modified
and used as an alternative to the usual post-hoc procedures which

would follow an ANOVA,

Consider the following 2-sample data, for which

l6 n 21

o]
it

b
"
"
"

846.50 ©31.50
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2
437 .48 82 150,25

S

The test statistic, £*, is computed in a manner similar to
the usual two-sample L statistic, except that individual samgle
variances are used in the denominator rather than a poolec

variance.

ThUS, t* = >:1 - X

t* 946.50 - 931.50

437.48 , 150.25
16 21

= 15

‘i34.497

= 2,554

If this test hed been & regular £ test, the critical t would
have 35 degrees of freedom, and would be 1.645, For the Welch-

Aspin, the cdegrees of freedom, X *, are computec as:

»*
‘6 = (nl—l)(nz—l)

Z 2
( - -
nl 1) (1 C) + (n2 1)C
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h ¢ = s. %/
where, = , . /0y ,
S + 8"
1 /nl 5 /n
= 437 .48/16
34,487
= ,7926
. .
Thus, ZS = (15) (20)
15(1 - .7926)2 + 20(.7926)°
= _300
13.21
= 22,712
which is always rounded gpwp (in this case to 22).,
The appropriate critical value, t* , is 1.717. S8ince

22,.95
the obtained test statistic exceeds this value, the cdifference

between the means can be considered significant althouchk the

variances are unecual.

When K is > 2 and variances are unequal, a modified Welch-
Aspin test can be usec¢ to perform multiple comparisons instead of
an ANOVE and the usual post-hoc tests. Again, the main differ-
ences between this procedure and the usual post-hoc tests are

that individual sample variances are used rether than a pooled

-

il wiD mh e B = Aa
| 3

-l - E .
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2 204 : 5 ) 2 * : ]
MSE, and a modified denominator degrees of freecom ( 5&_)15 used

to find the critical value,

Congider the cdata from the example in section 3.2.2.2, and

the same contrast that was used in that demonstration. That 1is,

jusi

(3) + (=1) + (-1 + (=1) =0
o /4' //Mz 1/03 l'/a4
For which,

-12.5

£
]

. . . 2 -
Following the Welch-Aspin mocel, SEY and L* are computed as

before:
2 2 2 . .
SEy = Ci Si / ni (as in the approximate F test)
i=1
2 2 2
= (3) (8.214) + (=1) (8.839%) + (-1) (9.6%6)
e 8 8
2
+(=1) (2.796)
g
= 11,907
A
ang, gx = W = -12.5 = -3.622
A (¢
SE) | 11.906

Thus far, the procedure is identical to the approximate [



test illustrated in section 3.2,.,2.3.

the square root of F = 13.124.
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Mote that £* = -3.623 is

The critical value against which the test statistic in this

7/
model is evaluated is an approximate Scheffe coefficent, 8%,

given by:

S*

. X .o . .
The computations for 23 are summarized in Table 23, They lead
Z

to:

L
*
L

3 (2) (.7950)
3 5716 - ————— 4
4° -1 5.5653
3 [.5716 - ,2857 + .0491]
15 ,

1.5193

(5.5653)2

N I




= .067
So, 25“= 1 = 14.93
2 067

which is always rounded gpwp (in this case to 14).

The critical value can then be computed as:

wm
*
n

(3) (
d 3,14,.05’

1) (3)(3.34)

= 3,165

For interest, we can compare this value to the critical value of
14 N o .
the &cheffe coefficient which would be used if the variances were

statistically equal:

n
1

d E\(E }y‘rzftrl-—ok)

(3)(
O E3,28,.95)

n

Q(z) (2.95)

= 2,975

Thus, even though the cdegrees of freedom have been reducea from

28 to 14, the new critical value is only marginally larger than
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that from the original ANOVA, The new value can be usec to
assess the significance of the test statistic from any contrast.
Clearly, the procedure is computationally guite laborious kut it
is an appropriate way to deal with unegual variances while sacri-

ficing very little power,

lad Aliexrpafives £0 Lhe ANOVA

If the researéher wishes to avoid the problem of unecgual
variances entirely, a number of nonperametric alternatives toc the
ANQOVE can be performed. In most cases, these tests are only
slightly less powerful than their ANOVA éounterparts when the
assumptions of normality and equal variances are satisfied, If
the equal~-variance assumption is vioclated, they &re en excellent
alternative to the ANOVA. Bowever, these tests cannot be
applied unless the experimental design involves only a single

factor. Thus, interactions between factorg cannct be assessed.

ded.l EKruskal-VWallis tesk

Kruskal and Wallis (1952) developed & test statistic for use
with a one-way ANOVA design which has a sampling distribution
that is approximately szwith E - 1 degrees of freedom. The test
is simple to perform by hand and is demonstrated here with the

data presented in Table 24,

First, consider all § (= 12) cbservations and rank them from

-
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1 to I, assigning a rank of 1 to the smallest value (see Takble
25). Second, finc the sum of the renks (R ) within each sample
i

(Table 25). Thirdg, compute the test statistic, E, using:

E = 12 F.
_— i 3(1 o+ 1) (where the 12 in the
MK 4+ 1) i=1 1. numerator of the first
i

tern 1s & consteant, not
the value of [)

8 :

The critical value ( jK ig 5.6C147
' F-1,1- 2,.95)'

(with £ = ,05), Since the obtainec test staticstic exceecs
this value, the rull hypothesis that the means of the rankec catea

for the c¢iitferent samples ere ecual can ke rejectea.

Fost-hoc contrasts can be performed by computing a 2

stetistic:

~
.Y
£ 7 A
ol )
;EY
It
where, W) = CiDi
i=1 n
i
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and, SE& = KK + 1) C. _
¥ _ 1 (vhere again the 12 in the de-
12 izl i, nominator of the first term is

1 a constant)

As an example, consider contresting the mean for group 2 with the
average of those for croups 1 and 3. The contrast coefficients

(c.) ere thus -1, 2, and -1, so:
i

Y o= (-1) (14) + (2) z_1_) +  (-1)f23
4 4 4
= 11.25
anaG,
2 2 2 2
SE?, = 12(13) | -1 p -1 = 18.5
12 i A
conseguently,
Z = 11.25 = 2.5476

[
bt
(e
L]
wm

The critical value for all post-hoc contrasts is found &«

'l » . »
’X =\5,68147 =4 2,4477 in this example. Since the
K-1,1-<
obtainec test statistic exceeds this value, the contrest is

significant.

.i. a s = ] - ]

S

i
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If many of the observations are tieé, it may be worthwhile

applying a correction factor (€) anc computing a new test

statistic (F#*), where: B* = F_
C
K
where, c=1 - 1 3
3 E (t.” - &)
No- K 1 1
i=1
anc, ti = the rumber of observations tiec et & civen

vVaolue,

Consiaer the date in Takle 26, which have been essigned rank
values in Table 27, liote that when twce c¢r more observations ere
tiec, they are each assignec the averace of the renks thet they
voula have been assigneu hac they bkeen cifferent., Fcr these
reankec cata:

-~ ~

2 ;
3 ac” 26"

+ —t —
4 4

.\
n

T = 12

™
[

Lo}
w3

- (3)(17)

)?'\' l

(16) (17) 4

To compute the correction factor (L), note that Z
okservaetions are tied with rank 1.5, 2 are tiec with renk &, 2
are tiec¢ with rank €.5, 3 are tied with renk &, 3 are tiec with

rank 12, and 2 are tied with rank 14.5.
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3 3 3 3
Thus, C =1 - 1 (B2 (3234 (22 =24 (=) + (37 =3) +(2°-2)
16°- 16
= .977¢
and, H* = 3,300 = 3.384
5779

Note that even with many ties, as in this example, H* is
only marginally greater than . Since f* will always be larger
than E, one need not compute E* unless B does not exceed the
critical value, With a large number of tieé, and if an B is
obtained close to the critical value, E* may turn ouf to be

significant and should be computed.

le3a2 Friedman Test

This is the most frequently used nonparametric alternative
to the repeated-measures AMOVA. Consider the data in Table 28,
representing the scores of n.= 6 observers scaling K = 3 stimuli.
First, rank each observer's scores from 1 to K, assigning a rank
of 1 to the smallest score (Table 29). Second, find the sum of
the ranks (Ei) for each of the stimuli (Table 29), Third,

N 2.
compute the test statistic, 7% ;, as:
K

ixv‘ 12 5
= R, - 3n (K+1)

i
nk (K+1) i=1

where: 12 is a constant

-a
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n is the number of observers per condition
I’ is the number cf stimuli
3 is a constant
2,
Thus, j% = 12 2 - 5
¢ + 10 + 18 - (3)(6) (&)
(6) (3) (&)
= 0,333
z z
The criticel value 'X ] K = (08 ¢ L.OCIlT.
€ ' I(—l,l—ax( 12“95 with LB, die L0010

Since the okbtained tecst staticetic enceeds this value, it can be
conclucea thet there is at least cne significant cifference

hetweenl the meear ranke across trials.

Post-lioc tests are performed in a sinilar manner to those in

the Kruskal-T"allis mwocel, usinc a Z test statistic, computec ze:

A
Y
rz -—
£ - ~
Ehy
It
A C.E
g reiocre, K‘) = 11
n.
i=1 i

2
A

~ K
i z
Ir. this nocel, SEq, = K(E + 1) za

i

Consider the ccmparison of croup 3 with the average of groups 1

2

[eX

an

_ 1 (wherc the 12 is ¢ constent)
n
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(-1)(-_8_) + (-1)(1_0_) + (2)<E)
6 6 6

3.0

A

Then, WJ,

it

]

2 22 2
and,  SE{ = G)4) | DT, (=D *‘(‘e‘l]

i
]
.
[en)

So, Z = 3.0 = 3.0

C s 2
The critical valuerb'x 1] 1~ o 1€ £2.4477. Since the obtained
1-1,1-

test statistic exceecde thie value, the contrast is significant.

When all the assumptions of the ANOVA are satisfiéé, the
Friecman test is somewhat less powerful than the ANOVZ, thouch
its power increases as & function of K. If the assumiytions of
the AFOVZE, including eguel variances, are not satisfiecd, the
I'riecman test may actuzlly ke nicre pbwerful, and, thus, wculc bLe
an'excellent alternative. An even more powerful procedurc would
be tc perform multiple matchecé-pair Wilcoxon tests, but this
requirees that only pairwise contracts be perf¢rmed. If the
reseafcher Flans to Go -only pairwise contrasts, thie is the
recommended procecure ana it is illustrated¢ in the fcllowing

secticn.
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la3.3 MaicbedrPoir WilcoxpoD Jleskt

Initially, this test was developed as a nonparametric alter-
native to the matched-pair ¢r repeated measures £ test., As
mentioned, it can also be used to perform multiple pairwise
contrasts when ¥ is greater than 2 and , by using approgrpriate
Tables, X can be controlled across all the contrasts to scme
predetermined value (e.g., .05). Since the procedure is
identical regardless of the number of ¢roups or the number of
contrasts being performed, it is illustrated here with an examgple
with Di = 8§ observers tested on K = 2 stimuli, The data, and the

computations inveolved in this test, are presented in Table 30.

First, find the difference between each observer's scores --
subtracting stimulus 2 from stimulus 1 scores., Second, recora
the absolute values of the cdifferences, Thiré, assign ranks to
the absolute differences, giving a rank of 1 to the smallest
difference. For tied values, assign the average of the ranks
that would have been assigned had the values aiffered. Finally,
compute the sum of the ranks associated with initially positive
differences (E+), and the sum of the ranks associated with init-
ially negative differences (I )., FEither T, (8,5 in this example)

or T (27.5 in this example) can be used as the test statistic

(m) .

To determine the significance level of the test statistic,

refer to Table A-21 (copied without permission from Marascuilo




and McSweeney, 1977). In this example, with an By of 8, the null
hypothesis of no difference between the distributions of scores
on stimulus 1 and stimulus 2 would have been rejected if T were

£5 or 231, with probability of & Type I error (p) = .036,

When multiple pairwise contrasts are performed, “ can be
controlled at a predetermined level by the followinc procedure,
Suppose we have 10 observers tested on K = 4vstimui. There are 6
possible peirwise contrasts, and if the overall o< were cet
at .05, 'each woulc be performed with £ £ 05/6
(or .00&3)., Referring to Table A-21, for Ei =10, it can bé seen
that the decision rule for each contrast would be tc reject Ho
if T were £ 4 or > 51, With this decision rule, each contréest

has an X of .007, for an overall X of 6(.007) cr .C4LZ,

If any observers prccuce the same scele value for 2 stimuli,
(i.e., the cGifference between the scale values is 0) this differ-
ence is discarced¢ before the other cifferences arce ranked. Sub~-

csequently, the critical value 1ic¢ found with an p' cfp - &

&

c
(where Qo is the nunber of cifferences eqgual to 0),

Il. COECLUSIOBS AED EECOLEENDATIORS

l. If sample sizes are all ecgual or clcse to egual, inecuality
of variances is seldom & problem for ANOVE and a test of eguality
of variances need not be performed.

2., If sample sizes are unecgual anc the uncerlying distribution
is normal, use Bartlett's test to assess the homogeneity of the
veriances.

- eaE B au <li-W
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3. If sample sizes are unequal and the underlying distribution
is nonnormal, the Box-Scheffe test would be the preferred test
for assessing the equality of the variances.

4, If the variances are found to be unequal, one of several data
transformation procedures may be used to remove the hetero-
geneity. This may not be advisable if the researcher is inter-
ested in studying interactions between independent variables.

5. A number of alternative analytic procedures may be used in
place of the regular ANOVA if variances are unecqual. If planned
comparisons are performed, the approximate [ test can be used.
If post-hoc tests are performed, the Welch-Aspin model is
recommended. Fither of these procedures can be used to test any
hypothesis of interest (e.c., pairwise contrasts, complex
contrasts, interaction contrasts, tests for trends, etc.).

6. If the variances ere very heterogeneous, use of nonpera-
metric alternatives to ANOVA may result in more power ana is,
thus, recommended.
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CHAPTER 5 - A COMPLETE MODEL OF THE SCALING PROCESS

In the previous chapters, we have outlined rationale and
instructions for what we feel to be the optimal data collection
and analysis techniques to use in the evaluation of teletext
systems, The categorical judgment technigue was deemed to be the
best of the data collection techniques available. Two analycsis
procedures for scaling stimuli were recommended, Thurstone's
(1927) and Allnatt's (1973;1975;1979). Allnatt's technique is
the more powerful of the two but it can only be used if the
stimuli vary along a gquantitative physical dimension,
Thurstone's technique is more flexible and should be used when-
ever stimulus variation is qgualitative or the assumptions of
Allnatt's technicue are demonstrably incorrect. The assumptions
of Thurstone's technique must, of course, be validated before
attemptingﬁto calculate or further analyze its resultant scale
values, Finally, means of analyzing the resultant scale values
were suggested. The ANOVA is the preferred analysis method.
Hoﬁever, when the homogeneity of variance assumption of the ANOVA

is demonstrably incorrect, a number of options are avéilable,
including data transformation, statistical corrections and non-

parametric technigues.

In both Thurstone's and Allnatt's techniques, there is an

assumption of an internal dimension, 8§, which the observers use

-

. _ S
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in some way to produce the resultant scale values. In this fifth
chapter, we would like to examine the means by which values on
this internal dimension are created. 1In some cases the scale
values may arise in a fairly direct fashion., In others, a number
of cognitive variables may be important. 1In this chapter, we
will present a general model of this procedure which will

encompass both types of situations.

Aa IHE BRSIC MODEL

Central to both Thurstone's (1927) and Allnatt's
(1973:;1975;1979) scaling procedure is an internal subjective
dimension, §, which is presumed to represent the dimension of
judament. For example, if observers are asked to rate the plea-
santness of a set of objects, § is a rleasantness dimension. In
the present circumstance, in which observers are asked to rate
the acceptability of a2 teletext screen, this dimersion is pre-
sumed to be an acceptability dimension, although it could be
thought of as a dimension of impairment, presumably the reverse

of acceptabil "v.

Each time a stimulus Ki is presented, a valu: Y  is assumed
to be produced on this § dimension, The Xi valvel >t con-
stant but are assumed to be random selections from a normal

2
distribution on 8 with a mean §. and variance a, - The scale
i

values we determine in Thurstonian scaling are assumed to be
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these 5i values. The scale values produced by Allnatt's tech-

nique are assumed to be transformations of the §. values.,
i

Both Thurstone's and Allnatt's scaling techniques go on to
make a number of assumptions about how observers treat the Xi
values in order to produce a final response. Chapter three
provides a detailed analysis of these assumptions for koth
techniques. What is yet to be discussed are the mechaﬁics by

which the § dimension is created and §, values determined. These
i

are the issues addressed in this chapter.

In our conceptualization, the § dimension is not considered
to exist prior to the scaling session, Instead, observers must
create ‘this dimension on the basis of the experimental context.
In particular, things like the instructions the observer re-
ceives, the beliefs he or she brings to the experiment, the types
of stimuli being scaied and &ll the effects of context will play
some role in the‘creation of this dimension. However, there have
to be some primitives here. In particular, the assumption is
being made that an initial perceptual process always reveals a
stable perceptual representation of any stimulus, regardless of
task wvariables., In many cases, this representation will be
multidimensional and its dimensions will need to be discovered.
The dimensions, of course, must also be presumed to be stable.
Experimental and analysis techniques for determining the néture

of these dimensions will be addressed in section 2.2,
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The observer's task then becomes that of taking this per-
ceptual representation and distilling a value on the § dimension,
The way this is presumed to be done is to weight the various
perceptual dimensions in some fashion., Some of these may have 0
weight, meaning the dimension is irrelevant to the acceptability
judgment. The maximum weight a dimension may receive can vary,
depending on the relationship between the units of the perceptual
dimensions and those of §. This weighting process is basically
the interesting one in the model because it is through this
process that the § dimension is defined. That is, only when the
observer decides, for example, that each of three perceptual
dimensions should be weighted equally does the § dimension come
into existence., Further, it is here that context effects arise.
That is, context is assumed to influence the judgment process by
inducing an observer to use a different set of weights for the

s8ne judgment in different contextual situations,

Different types of judgments will, of course, also produce
different weighting schemes., For example, observers would un-
doubtedly weight, say, three perceptual dimensions, in a differ-
ent fashion when asked judge pleasantness than when asked to
judge acceptability. The general assumption is that observers
are free to weight the dimensions in any way they want. A main
purpose of our analysis is simply to determine what weighting
scheme they've chosen. However, with some types of judgments

only certain weighting schemes would be acceptable. In
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particular, when more mainline physical dimensions are being
varied (e.g., radiance, weight) judgments on the corresponding
perceptual dimensions (i.e., brightness, heaviness) must be
straightforward and must, in fact, follow a power function re-

lationship (Stevens, 1961). This can only occur if the observers

isolate a single relevant perceptual dimension and give only it a
nonzero weight. If observers include any other perceptual dimen-
sions in this process, for example, if they give a nonzero weight
to a dimension corresponding to colour while making heaviness
jddgments, we would have to conclude that they simply weren't

following the task instructions.

dls TEE RERCEPILUAL BROCESS
2l Lap IL Be Regoxded 2s Stablel

The first issue to be dealt with is the claim that the
perceptual process yields a stable representation of any stimulus
irrespective of task demands. This ideé is by no means a new
one. In fact, if we had stated it at any time before the late
1940's it would have been regafded as a statement of the obvious.
However, with the end of that decade and the béginning of the
next a somewhat different view of perception emerged. Simply
stated, the idea became that perception does not yield a stable
representation of a stimulus. Instead, a host of nonperceptual

factors (e.g., expectation, familiarity, set) interact with the
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sensory information, creating a situation where the same sensory
stimulus can be perceived differently in two different situ-
ations. This view has become known as the New Look in perception

(Bruner, 1957).

Although it isn't clear why the New Look view emerged when
it did, there appear to have been two lines of research at that
time which may have given it its impetus. One was Helson's
(1948) work on adaptation level. Briefly, what Helson demon-
strated was that the results of even the most basic scaling
experiments were influenced by nonperceptual factors, in parti-
cular, by memory for other stimuli. The other area that provided
an impetus to these notions was the area of perceptual defence
(McGinnies,1949)., Here, the findings seemed to show that certain
words which were regarded by the society of the day as taboo
(e.g., raped, whore) could not be perceived as readily as
"normal" words (e.g., apple, table). Thus, once again, we seem
to be observing an influence of nonperceptual factors on the

perceptual process.

In the thirty-five years since the New Look view emerged, an
impressive array of data and an impressive set of arguments have
emerged to support it. Now classic examples woula be two
phenomena involving the perception of words, the word-superiority
effect (Reicher,1969; Wheeler, 1970) and the semantic priming

effect (Meyer and Schvaneveldt,197l; Meyer, Schvaneveldt and
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Ruddy, 1975). The word superiority effect refers to the finding
that a letter is more réadily reported from a briefly displaYed
word (e.g., the I in CAT) than from a briefly displayed nonword
(e.g., the I in DMT). Semantic priming refers to the finding
that a word (e.g., BUTTER) is responded to more rapidly following
perception of a related word (e.g., BREAD) than'following per-
ception of an unrelated word (e.q., DOCTOR). In both cases, the
finding is explained by suggesting that fhe context in which the

stimulus appears alters and, thus, facilitates its perception,

Additional arguments for the New Look view can be based on
everyday observations, Try, for example, to listen to someone
speaking English and hear the speech sounds as noise (like one
can Go if they are not familiar with the speaker's language).
Even with great effort you will find it almost impossible to do.
Thus, here the fact that you have lgarped the English language

appears to be influencing how these sounds are perceived.

There is obviously merit in the arguments for the New Look
view of perception. The studies (and anecdote) cited above
clearly are demonstrations of the influence of nonperceptual
factors. Thus, they raise the question of whether our assumption
of a stable perceptual representation, uninfluenced by external
factors, can be a viable one. The answer is, in fact, still
yes, The reason lies in the basic definitional difference
between the New Look researchers' conception of perception and

the one we have adopted. 1In particular, we wish to view per-

: ;
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ception as the process of establishing a perceptual represent-
ation while in the New Look the perceptual process also includes

the process of interpreting or categorizing that representation.

Probably the easiest way of explaining this distinction is
by considering the theory of signal detection. An issue that the
researchers of the 19th century had to grapple with was the fact
that observers in detection experiments often said a signal was
present when no signal, not even & subthreshold one, was present-
ed. The whys and wherefores of this problem went unresolved
until the mid 1950's when Tanner and Swets (1954; see also Green
and Swets, 1966) brought the theory of signal detection to
psychology. 1In signal detection theory it is realized that the
data in these "perceptual" experiments (the observers' responses)
reflect not only the observers' perceptions but also their
biases, mental set and so on. As such, signal detection theory
provides a means for deriving two measures, one, g', to index
the perceptibility of a stimulus, and a second,fg , to index the
extent of the observer's bias. Thus, the usefulness of the
theory is that it gives a way of separating more cognitive
factors from the actual perceptual effects an investigator is

trying to study.

In constructing our model, we are attempting to do the same
thing, that is, to separate theoretically the decision process

involved in deriving the § values from the perceptual information
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on which the § values are based. - However, to be a useful model,
it must have more than theoreticai reality. That is, the separ-
ation of these two processes must be possible on a practical
level as well., (The fact that in some circumstances they can't
be makes the New Look approach guite attractive.,) While we can't
guarantee that such a separation can be accomplished in the
present circumstances (i.,e., when scaling teletext service para-
meters), there are a number of reasons for believing we . will be

successful,

The first reason is that a substantial amount of evidence
suggests that perceptions can't simply be changed by learning new
facts about the environment, Observationally, illusions, such as
those in Figure 7, are perceived by nearly everyone. More
importantly, the perception remains even after objective measure-
ment demonstrates to the observer that he or she is viewing an
illusion (e.g., measure the lines in Figure 7a to convince your-
self they are of equal length, then try to perceive them as

such) .

A second case involves one's perceptual response to moving
one's eyes artificially. If you place your finger on one eyelid
and press gently but firmly, you will move your eye slightly,
Although you realize that it is your eye which is moving and not
the outside world, the typical phenomenal experience observers

report is that they perceive the world as moving.

- e - N aE A -
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A third reason for believing we will be successful is that
many of the data favouring the New Look view do not stand up to
close experimental scrutiny. For example, consider the
phenomenon referred to as the word superiority effect. In this
task, an observer is shown a letter string very briefly and then
askea to report the identity of the letter at a particular
position., In an attempt to minimize the use of obvious non-
perceptual strategies (e.g., guessing on the basis of knowledge
of English), observers are only required to select one of two
possibilities for the letter in question. If a word had been
presented, the two possibilities would complete words (e.g., if
the wora had been WORD and the fourth position was probed, the
two possibilities might be D and EK). If a nonword had been
presented neither possibility would complete a word (e.g., if
MCRD had been presented and the fourth position was probed, the
two possibilities might be D and K). As noted above, in these
circumstances, a letter in a word is reported more accurately

than a letter in a nonword.

At first, this result was taken as reasonably strong evidence
that letters are perceived differently in word contexts than in
nonword contexts., However, more recently, a number of investi-
gators (Thompson and Massaro, 1973; Bjork and Estes, 1973) have
demonstrated that the word-superiority effect is an artifact of
the experimental situation. 1In particular, if the two possible

responses and the letter position to be probed are known by the
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observer ahead of time, the effect disappears. Further, using
more sensitive measures of what is perceived, Krueger and Shapiro
(1979) and Massaro (1979) have demonstrated that the letter's
perceptual representatioh is unaffected by its context. Thus, it
appears that the word superiority effect is not a perceptual

phenomenon but one which arises at a later stage.

Similar arguments can be directed against the interpretation
of other linguistic phenomena as perceptual effects (e.g., the
semantic priming effect, our inability to treat speech as noise).
That is, while these effects appear to demonstrate the influence
of nonperceptual factors on perceptidn, their actual influence
occurs at a later level., The main reason these types of stimuli
cause the interpretation problems they do is well explained by
the automatic versus controlled processing distinction first
proposed by Posner aﬁd Snyder (1975) and later expanded on by
Shiffrin and Schneider (1977). The notion is that, for a begin-
ning reader (or listener), understanding language is a matter of
going through each processing step in a conscious controlled
manner, However, with a sufficient amount of practice, these
processes and the linkages between them require less and less
effort and attention. Ultimately, the whole sequence of
behaviors becomes automatic in the sense that it requires vir-
tually no processing effort and, in fact, inevitably runs to
completion whether the observer wants it to or not. In this way,
the perceptual process becomes so intertwined with other process-

es that teasing them apart becomes an extremely difficult task.

-’ - - - -'
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For a New Look theorist, this creates no real problems. Per-
ception is defined to involve all these automatic processes and
it is simply studied as such, However, for our purposes,
problems are created both for the experimenter trying to study
the basic perceptual processes ané for an observer trying to use

raw perceptual information.

For the stimuli we wish to scale and, in fact, for most
nonlinguistic stimuli, the automatic processing issue really
shouldn't be important., Whatever automatic processing goes on
when peorle judge teletext screens will, most likely, involve
only the linguistic aspects of the text (i.e., its meaning), If
the text message is kept constant, while other, more relevant,
stimulus parameters are varied, this automatic processing should
have little effect on either the perceptual representations or
the acceptability judgments, If so, the model assumption that
the perceptual process can be separated from what is done next
appears to be a viable one and we should, therefore, be able to
study the nature of these perceptual representations. (As a
caveat, however, the reader should realize that these techniques
can't be applied willy-nilly in other scaling situations. If the
to-be-scaled stimuli do engage much automatic processing, the
results of this processing may obscure the perceptual nature of
the stimuli, Thus, it may be the results of this subsequent
processing rather than the results of perceptual processing that

the observers are using in the scaling process.)
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4ng Retexmipnipg fbe Nafure of Lbe Pexcepiual Bepieseptatien

If we accept the assumption that observers have access to

stable perceptual representations of teletext service parameter

effects, the next step is to understand the nature of those

representations. We start this analysis by assuming that a
perceptual representation can be thought of as a point in a
multidimensional space. The point is the stable representation
we've been talking about. The dimensions themselves represent
constant peiceptual attributes., If all goes well, the end pro-
duct of our analysis will be the re-creation of this multidimen-
sional space.' From this, we should be able to discover both the

nature of the dimensions and how each stimulus is represented.

The analysis technique to be used here is called multidimen-
sional scaling (MDS). The data for MDS are measures of
"proximity"~betweeﬁ pairs of stimuli; For our purposes, the
proximity measures will be difect similarity or dissimilarity
judgments. For the task, a large number of stimuli varying on
81l the physical dimensions of interest would be presented in
pairs. Observers will be asked to rate either the similarity or
dissimilarity of each pair on some scale, After all pairs of
stimuli have been presented at least once, a similarity or dis—
similarity matrix can be created where the average rating for
each stimulus pair.is the value contained in the appropriate cell

in the matrix., (See Table 31 for a sample dissimilarity matrix.
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For the remaincder of this ¢iscussion, we will assume that the
observers are ratinc the ciseimilarity of the stimulus rairs.
Mote that the obtained averages can actually be tabled in only
one-half c¢f @ matrix. The reason is there should be no differ-
ence either theoretically or practically between the discsimiler-

i
hall matrix that provides the cdate for any I'DS anelysis,
2

ity between Ei and Zj and thet between Ej anc £.. It is this

The scele that observers use to prcduce their retirge ic
somewhat arbitrary. Probebly the best experimental procecure
woulc be to anchor the scale by presenting twe icentical stimuli
to the observer ana sucagesting that they be civen a aissimilerity
rating of ¢, Then, two stimulil which are quite different, tor
exanple, the clearest rictire possible anc total noise, could ke
Irresented with the succgesticn that they bhe civen & rating of 10.
Intermediate levels of dissimilarity (i.e., those reprecentec by
the stimuli the observer is about to rate) weuld therefore re-

ceive ratings intermeciate to the values ¢ ena 10.

Care shoulc be teaken with the instructions given the
observer. The subljective aimension of acceptalkility should not
be mentionedc. U hat we are trying tc ¢o is ciscover the cimen-
sions which make up the perceptual epace, not to build new dimen-
sions into the ratings., €fimilarly, variaticn on irrelevent phy-
sical dimensions shoula be avoided. For example, unless vari-

ations in colour are of interest, care should be taken to holc
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colour constant. However, gll physical dimensions which are of
interest should be represented. The scaling programs can't allow
~discovery of important perceptual dimensions if stimuli don't
vary on those dimensions, Since we don't know how the physical
dimensions are représented as perceptual dimensions we can't
afford to leave out any physical dimensions that could be

important.

Ideally, the stimulus set will be created by factorially
crossing all physical dimensions of interest., At least three
levels on each dimension should be seiected. Thus, if there are
four dimensions of interest. there would be 34 (= 81) stimuli. If
each stimulus is compared to each other stimulus once by each
observér, there would be 81 * 80/2 (= 3240) judgments per
observer. More stability would, of course, be obtained if each
judgment were made two or three times by each observer. Obvious-
ly, even with only one judgment per pair, the task will take a
certain amount of time., However, until something more 1is known

about the perceptual dimensions, it's probably best to be as

thorough as possible.

Fortunately, this "discovery scaling" process needs to be
done only once. Once a few subjects (5 - 10) have been run in
this extensive dissimilarity rating task, we should know what the
perceptual dimensions are and how they relate to the physical
dimensions. However, prior to each'séaling experiment using a

different stimulus set, the dissimilarity rating task will have
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to be carried out with the set of stimuli to be scaled. The
purpose here is not to discover perceptual dimensions (presum=-
ably, we already know what they are) but to determine the precise
coordinates on those dimensions of the stimuli being scaled.
These coordinates can then be used in the subsequent analyses.
Given that a typical scaling study seldom will involve many
stimuli (e.g., more than 10), the number of dissimilarity ratings

required should always be less than 100,

The number of MDS programs one has to choose from is quite
large. In the older methods (Torgerson, 1952; 1958), dissimilar-
ity ratings are assumed to be proportional to distance in
Euclidean space. (These are referred to as metric procedures.)
In more recent techniques (Shepard, 1962; Kruskal, 1964), it is
simply assumed that there is a monotonic relationship between
dissimilarity ratings and distance (nonmetric procedures). In
either case, the scaling program attempts to fit the stimuli into
an p~dimensional space so that the distances between stimuli in
the space accurately reflect the dissimilarity ratings. The
number p is usually allowed to vary between, say, 2 and 6, with a

solution returned for each situation.

The solution returned consists of a set of coordinates for
each stimulus in an p-dimensional space and a measure of how well
the dissimilarity ratings match up with the interstimulus dis-

tances in this space. The latter measure is called the STRESS or
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S-STRESS of the solution. Because there is variability in obser-
vers' response processes; the match between distance and dissim-
ilarity is never perfect. Thus, the STRESS value is never zero.
In addition, STREES will decrease as the number of dimensions
used increases} simply because the number of free parameters is
increasing. Thus, the solution we wish to accept is one which
minimizes not only STRESS but also p. Typically, STRESE is
plottecd as a function of n (as in Figure 8) and an elbow on the
c¢rarh is located., (The elbow here is at p=3.) The icea it thet
increasing L from the elbow providcdes only minimal decreases in
STRESS, while decreasing p increases STRESS quite cramatically.
Thus, thé best solﬁtion is assumed to have three dimensions,
(Figure 8 is, of course, artificisl. In the feal world,ithe
elbow is always much less clear, however, very few solutions neec

more thean three dimensions.

At this point (in the exemple), we know we have a three-
Gimensional sclution (i,e., a three-dimensional perceptual
space), However, ve still do not know what the axes represent or
where they ere located in the space. Ve next have to discover
not only what but where those axes are, To uncderstand why this
problem arises, one needs only realize that distances between
points (what the program 1is interested in) are totally
independent of vhere the axes eare. Thus, the procram oriente the
axes somewhat arbitrarily. in the solution. The axes, thus, must
be rotated to allow the dimensions to be understood, Rotation

can be accomplished by formal procedures (e.¢., varimax) or by
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hand. 1In either case, the point of the rotation (and, in fact,
the point of the entire procedure) is to find three dimensions
that have psychological (here, perceptual) reality. In many
instances (although not always), a physical dimension will have a
direct relationship to a perceptual dimension. Thus, the
physical dimensions shouléd be Kkept in mind when doing the

rotation.

Selection of a MDS program is more or less up to the
indivicual., fany nonmetric procedures were developed during the
197 ‘cee Schiffman, Reynolds and Young (1981) for a review) and
selection of one of these is suggested. The two most hichly
recommended programs are KYST and ALSCAL. KYST seems to have the
best features of almost all the MDS programs written in the
1970s, ALSCAL is nearly as powerful and also includes provisions
for doing individual-difference scaling if observer differences
are an issue. Ultimately, however, the selected program will
probably be the one most accessible in the available statistical

packages.

dll. BRORDCING & NALUE QN o

3xl Basic Issues feor fbe Medel
andad Theexefical Issues

Once the perceptual process has been completed and a repre-
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sentation established, observers must next turn this represent-
ation into a value on g§. According to the model, this is done by
a simple weighting process. The coordinates on the various
perceptual dimensions are multiplied by weights, and the products
summed, (potentially, a constant could be aéded to the equation).
Thus, if we have, for example, a three diménsional solution in
which coordinates for stimulus xi are designated (xil' “iz' 313)'
Si can be expressed as:

where hlj is the weight for dimension j and k is a constant.

As the equation indicates, scale values depend on both the
ﬁature of the perceptual representation énd the way that
observers choose tq weight the various dimensions of that repre-
sentation. Different £ values could be produced by the same
stimulus if circumstances dictated different ij- For example,
if observers were specifically told to attend to a particular
stimulus aspect that is directly reflected in a pérceptuai dimen-
sion, they would presumably weight that dimension more ﬁhan they
would in other circumstances, Understanding the role of experi-
mental manipulations will, thus, be a maﬁtéf of understanding how

they influence the choice of weights.,

The reader should note that we do not require that the sum

of the weights equals one. Thus, this eguation is more appro-
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priately referred to as a linear equation in p variables rather
than a weighting equation. The reason the sum of the weights
isn't constrained is that units in the perceptual space and units
in the § dimension have no particular relationship to one
another. If the units of the perceptual space were smaller than
those ot the § dimension, coordinate values would be larger than
they should be. Thus, weights must shrink these values to pro-
duce tne Sis. As such, the sum of the weights would be less than
one. On the other hand, if the units of § were smaller, the
welghts must increase the coordinate values, meaning that their

sum would be greater than one.

With respect to the issue of how the weights are affected,
there appear to be two general types of variables that may have
an effect. The first could be called experimental context vari-
ables. These are variables that are introduced to the observer
by the experimenter berore the experiment starts. Typically,
these are introduced through instructions but they can also arise
from any other experimental manipulations that create expect-
ations. Examples would be things like the instruction to be
critical or lax or, pe;haps, the instructions to assume various
roles when judging. How these instructions could influence the
weights is, of course, an empirical question. However, one could
envision that instructions to pay attention to particular physic-
al dimensions would increase the weight put on relevant percept-

ual dimensions and decrease the weight put on irrelevant percept-
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ual dimensions, Instructions to be lax or critical may have the

effect of increasing (or decreasing) all the weights and so on,

The other type of variables that could affect the assigned
weights‘would be referred to as stimulus variables., For example,
if the stiﬁuli were all high in quality, observers might adopt a
more critical weighting scheme (Allnatt and Corbett, 1972).
Similarily, if the stimuli were all guite unfamiliar, observers
might adopt a more neutral weightihg scheme while they try to

determine which dimensions are more important.

One thing to be aware of is that while we're hypothesizing
that variables such as these affect the weighting process there
are other possibilities. In particular, as Parducci (1965) has
suggested, these variables may affect criterion placements. For
exémple, if all the stimuli are of high quality all the c;iteria
could be placed on the high end of thé acceptability dimension.
Again, the exact effect the variables are having can be deter-
mined empirically. If it turns out that Parducci's sﬁggestion is
correct, even pért of the time, the model can’be amended with no

harm being done to its basic structure.

This model, as conceptualized, has différent implications
for the two scaling models discussed earlier (Thurstone's and
Allnatt‘s). In particular, the present model and Thurstone's
model are completely compaﬁible with one another. Thus, as we

will suggest, Thurstone's model can be incorporated into our
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model as a sort of a "back-end", a description of how the scaling
process is completed. Allnatt's model, on the other hand, res-
tricts the present model. The restrictions necessary for the two
models to fit together will be discussed in subsequent sections.
However, at this point, with the present model being as general
as it is, there is no reason to believe that these restrictions

are totally unreasonable.

2ala2 2Dalysis IssSues

The basic conceptualization that each ﬁi is a linear
function of p variables is actually borrowed from Anderson
(1968)., In Anderson's scaling procedure, stimuli are created by
selecting a number of physical dimensions (either quantitative or
qualitative), selecting a number of levels on each dimension and
then factorially crossing these dimensions, For example, if we
have two physical dimensions with four levels for each, there

would be 42 (or 16) stimuli to scale.

Each level, j, on a given dimension, J, is presumed to give
rise to an impression, Iij’ These impressions are then weighted
by a dimension specific weight, yj, and summed. Thus, the
resultant scale value for a stimulus created by mixing, say level

3 on dimension 1 and level 4 on dimension 2 (i.e., 534) would be
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where K is a constant. There would, of course, be 16 of these

equations, one for each stimulus being scaled.,

In Anderson's analysis, the next step would be to use all 16
scale value equations to solve for the Ii" The calculatéd Ii'
values are then regarded as measurements gn an interval, rather
than a ratio, scale (i.e., the resultant values are linear
functions of the "true" ;ij). In our situation, however, we
already have the Iij; they'are the perceptual coordinates derived
from our dissimilarity judgments. We also have the values on §
from the category scaling analysis. What we need are the
‘ weights, Hj' and the constant, k. Thus, our system of eguations
will have one unknown for each perceptual dimension plﬁs one more
for the constant. In the above example, we'd have 16 equations

in 3 unknowns.

If there ever were fewer equations than unknowns, we would
have what is referred to as an underdetermined system and we
would be unable to solve for the weights. This situation will
probablyvnever arise here as it's unlikely that we'd ever have
more than four perceptuél dimensions (thus, five unknowns) or
féwer than five stimuli being scaled., I1f the number of equations
and unknowns are equal (also an unlikely possibility) the weights
can be solved for unambiguously. In the more common situation,
there will be more equations than unknowns, as above. This

situation is referred to as an overdetermined system. One set of

1

\
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values for the unknowns may work for some stimuli but not for
others. Thus, we have to produce best estimates of the weights
which fit these equations as well as possible. This is best

accomplished by applying a2 multiple regression analysis.

In multiple regression analysis, an equation of the form

=/go+/gxl+/5x2+/gx3+ /ka

is used to input known values, the ¥s, and to predict scores on
another variable, the Y¥s. This is done through estimation of the
/g s. The /fg values are selected by comparing predicted values
Qn the Y variable ( ﬁs) to observed values on the X
variables and minimizing the sum of the squared differences,
2 ( X - Q)z. Obviously, if the equations and the procedure work
2.( X - §)2 should be as small as possible. If so, the procedure
has selected}xg s which fit well in the equations. A measure of
how good the fit is is provided by the multiple reqression‘pro—
cedure and is referred to as ‘2. To the extent that ;2 is close
to 1 (it's always between 0 and 1, inclusive) we've been success-
ful in finding /5 s. A test of how well we've done (i.e., a test
of how big ;2 is) is also provided by the procedure. An [ value
is produced which is evaluated against a critical f with numer-
ator degrees of freedom equal to the number of/%gs solved for
minus one, and denominator cegrees of freedom equal to the number

of scores on the Y variable minus the number of/ﬁ? s solved for,

In our circumstance, the Y scores are the §.s found in the
i
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scaling analysis. The X scbres are the coordinates on the vari-
ous perceptual dimensions and the/zé s are the weights and con-
stant in the set of equations. If the multiple regression pro-
cedure produces an x2 large enough that F is significant, we can
feel fairly confident that the/¢g s the procedure has produced
are good estimates of the weights and constant. The fit would
néver bevperfect (i.e”rxz will never be 1.0), of course, because
the X scores are only estimates of the "true" coorcdinate values.
However, if the F was not significant, it wo‘uld indicate that f.he
model wasn't doing an adequate job of describing the data. As

such, its validity would be called into guestion.

The procedure can be applied to any stimuli for which we
have Si values (from Thurstone's or Allnatt's procedure) and for
which we have coordinates in perceptual space. The next guestion
is whether experimental context or stimulus variables change the
weights (or k). Thus, suppose the perceptual space were three
dimensional in a certain circumstance and, we have estimated
three weights and a k for a given observer under each of two
instructional conditions. The way to determine whether there has
been an effect of instructions is to submit these date to a

multivariate analysis of variance (MANOVA).

The MANOVA is a technique for doing an analysis of variance
with more than one dependent variable. In this example, we would

have four dependent variables (3 weights and k). Because there
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are only two conditions (two different types of instructions),
our independent variable has only two levels. (There could, of
course, be as many levels and as many independent variables as an
experimenter might want,) It should be noted that, as with the
ANOVA, normality and equality of variance are being assumed.
With a large number of observers, the normality problem dis-
appears. However, we may still have a violation of the equal
variance assumption. Thus, each dependent variable should be
analyzed as outlined in chapter 4 to determine whether it obeys
the equal variance assumption. If not, an appropriate transform-

ation technique should be aprlied.

The technique for doing a MANOVA is quite complicated and
won't be described here. It's, perhaps, best to submit your data
to a MANOVA program in some available statistical package. What
will be produced by the procram isc, ¢& in the ANOVA, an F ratio,
If it is significant, we can assume our independent variable has
hacd an effect. If we wish to determine where that effect lies
(i,e., with which dependent variable) we can then do separate

ANOVAs on each of our dependent variables.

3=2 Inplications for Thursioniap Scaling

As mentioned earlier, the model and analyses discussed above

can be applied with essentially no caveats to the § s derived
i

from Thurstonian scaling., Perceptual dimensions can be dis-

covered by means of either metric or nonmetric MDS techniques.
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The coordinates can be used straightforwardly in the multigple
regression analysis. The resulting weights énd constant can then
be taken at face value and changes in weights due to experimental

manipulations can be evaluated through the MANOVA.

One additional strength of the Thurstonian sgaling procédure
is that it permits cdetermination of whether changes are being
induced in the weights or in the criterion placements. That is,
as discussed in chapter 3, the results of Thurstonian scaling are
~both a set of scale values (the si) and a set of criterion
placements, If an experimental manipulation affects only the
criterion placements, only these values will differ across
different conditions. The Sis will remain constant, Similarily,
if'only the weights are being affected, only the sis and not the
Criterion positions will chénge value. Thus, the effects of any

manipulation will be transparent..

Such is not the case with Allnatt's technique. With this
technique, either experimentally induced criterion changes or
experimentally induced weight cbanges will produce changes in the
calculated scale values. There is, of course, a test, described
in chapter 3, for the stability of criteria in Allnatt's pro-
cedure. However, it's sb weak that, in most instances,.a lack of
stability would never be detected. Thus, most experimentally
induced changes will have to be modelled as affecting the S

dimension, whether or not such is the case.
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a3 Inplicaticp fbx Allpatils Tecbpigue

As mentioned previously, Allnatt's scaling technique does
not yield scale values on the § dimension. Instead, a value is
produced on a £ dimension which runs from 0 to 1. Thus, in order
to use the multiple regression procedure, it is necessary to
transform £ values to § values via the inverse of ecuation (1) in
chapter 3

S, = (1 -tm )C (1)

The values for R, £ and SM will, of course, be needed. The value
for G is determined in the basic scaling procedure. The value
for p can be found by carrying out a fractionation task as ces-
cribed in section 2.3.3 in chapter 3. The value for,sM is deter-

mined by realizing that

The value for DM is derived at the same time as that for ¢ and

the value for g is derived at the same time as the value for L.
Thus, if the analysis described in chapter 3 1is carried out
fully, all the necessary information will be available to produce
the Sis. From these, it's then possible to carry out all the

analyses presented in this chapter.
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One important thing to realize about Allnatt's technique,
which isn't true about Thurstone's technique, concerns the nature
of the Sis. In Thurstonian scaling, the Sis are only assumed to
be values on an interval scale. Thus, they are no more than
linear representations of the "true" scale values. Allnatt's

technique assumes the Si values are on a ratio scale. 1In part-

icular, the assumption is made that Stevens' power law

holds. Thus, the § values are, at most, multiples of the "true"
1 s

scale values, This assumption, of course, represents a restrict-

ion on the present model but one that can be incorporated under

certain circumstances.,

For purposes of understanding under what circumstances
Allnatt's ideas can fit into the present model, let's consider
that there are three possible scenarios for how a given physical
dimension, D, relates to the perceptual space.,. The first is that
the MDS solution returns one corresponding pérceptual dimension
for each physical dimensiqn. The second is where there is more
than one perceptual aimension for & given physical dimension,
(We don't have to worry if a physical dimension has no represent-
ation in perceptual space. This just means the observer reg;rds
it as irrelevant.) The'third is where two or more physical

dimensions amalgamate to form a single perceptual dimension,
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In the first instance (a one-to-one relationship between
physical dimensions and perceptual dimensions), let's consider
each dimension separately for a minute. For each separate dimen-
sion, it's not overly difficult to maintain a power function
relationship between the physical dimension and §. The require-
ment is simply that both the relationship between the » _:1cal
and the perceptual and the relationship between the perceptual
and § be power functions. That is, letting P be the value on the
perceptual dimension, if P=¢ Dn and S =g Bm then

m _mn b
c

m
s=a (cpH™ =g D' = a D

m .
where b = pp, and ¢ 1is just a constant,

If m is 1, then the equation

is nothing more than a weighting equation in one variable with a
constant of zero. On an intuitive level, the equation would
represent the observer simply using the perceptual dimension as
the § dimension, although the P value may be multiplied by a
constant., In many ways, this kind of use of the P dimension
makes good sense. Assuming again that the observers have access

to P, it's likely that they would keep the transformation between
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it and § as simple as possible. The only way to make it simpler

would be to set ¢ to 1 also,

The next step would be to determine what happens when
physical dimensionsthaving these single perceptual represent-
ations are combined., The model says the resultant scele value is
a.weighted sum of the perceptual coordinates. Thus, the scele
value for a stimulus havincg coordinate i on dimension 1 and

coorcinate j on dimension 2 woulc be

. ; > g
i3~ 1 i, 2 73,

n n .
=w. c. D, '+ w_ c_ D, %+ Kk
1 1 13 2 2 3,
where Kk must be assumecd to be 0 if Allnett is correct. Fowever,
Allnatt also has propcsed a mocel eguation for handling these
kindg of stimuli. FHe claims that it isn't the S values which ere

acGitive kut a transfcrm Of these, the J &, where
m

14/ s (2)
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In other words, Allnatt's processing model suggests

These two ideas, ours and Allnatt's, appear to be quite
Gifferent orn the surface., However, an examination of ecuation

(1) suggests the relaticnship

b/G

1 Nty

™m

I

If £t ® ¢ (which Allnatt sucgests it may generally be - Zllnett,
1¢75) then the g S are nothing more than multirlicative functions
It
cf the scale velues. Thus, if p X € (and if the further
restriction that K = 0 is invokec) the present processing¢ mocel
an¢ Allnatt's processinc model actually rrecict essentiallvy the
seme thine, Certeinly cistincuishing between them empirically,
ever when p ana ¢ eren't icdentical, woulcd ke virtually
imjpossible, Thus, in the circumstance in which every physical
dirmensicn is represented by & single perceptual dimension, All-

natt's mocdel can be inceorporated into the present conceptual

framevork,

In the present circumstance (scalinc teletext systems), a

one-to~one relationship betweenr the physical ancé the perceptucal
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may or may nct arise. However, such isomorphic relationships
probably are guite common in general. For example, most simple
sensory manipulations (brichtness, loudness, heaviness, etc.)
will probably yield & one-dimensional perceptual representaticn.
Thus, in each of these situations, it makes sense that there
would be a power function relationship between P and §. There
presumably would be a power functiorn relationship betvieen D anc
the one dimensicnal perceptual space and a very cimple relation-
shiy between the perceptual space and €. (Rcain, note that the
secon¢ transformation cannot even involve the addition of &
constant or the ratio scale properties of g and, hcﬁce, the pcwer

functicn relaticnship, will ke lost.)

Cre finel issue with recspect to physicel dimensicne that
have cne-dimensiocnal perceptuel representations should be men-
tionec., The nonmetric DS procrams return sclutions in which the
cistances between values are orly monofonically related to the
giseimilarity ratings, If we assume that the dissimilarity rat-
ings reflect distances on & ratic scale, then metric pregrems
shoulc produce the best represernteticn of the perceptual dimen-
sicn. Eowever, the number o¢f cissimilarity judgments jer
stimulﬁs pair will be too small (maybe one per pair) to produce
stable distance estimates., Thus, metric procedures are probably
best avoicec. Yet, nonmetric procedtres may dGistort the percept-
ual space a bit gince they treat the dissimilarity judgments as
only monotcnically relate¢ to true c¢istance. Failure, then, to

observer a power functicn between D and P may be partly attribut-
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akle to the D8 procedure, The only way to c¢uard acainst these
problems would be to take a large number of measurements and to
asstre thet the perceptual space is well mapped out before ceal-

ing with it.

Ve next have to consider the situation where a given
phyeical d¢imension has no perceptual correlate but insteac maps
ocnto two or rnore perceptual dimensions. If this occurs there is
ne way to assure thet there will be & power function lketween the
Fhyeical dimension and gS. In particular, supprose we have ¢
physicael dimension D which maps into a perceptual space having
dimensions El ana P_.. Even if both El and E_ are power functiong

: _ Dy, R " )
ct L (P1=alD anc P2=a2D ) no acditive mixture of the values
on El and 22 can ke a power function of L. 1In orcer to procuce £
values via & power function, it would be necessery to attach &
weight of zerc to one ci the perceptual cimensions, (BEven
atteching & very small weicht woulc cisgsturl the power functiorn
relationehiy, although it's not clear that this could be detected
enpirically., As notec¢ in chapter 3, testince for a power function
relationshiy involves fitting a streight line to a set c¢f points

and a straicht line fits juset about anything.)

If observers G¢o tend to handle these situations by attachinc
a weight of zero to one percertual dimension, it shoulda be pos-—
sible to alter that strategy experimentally. In particular, ttre

Gimension with the zerc weicht woulc first have to be identifiec
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through a MDS analysis. Then, perhaps, a set of instructions
could be created to force attention to that dimension. If this
manipulation is successful a nonzero weight will now be attached
to this dimension. Unless the observer then chooses to give zero
weight to the other dimension the effect will be to alter the
value of § (and, hence, of t) and destroy the power function
relationship. 1In contrast, for physical dimensions which have
only 1 related perceptual dimension, the scale values of § can
only be altered by increasing or decreasing the single weight
parameter. In other words, only a multiplicative change is
possikle. Since § is a ratio scale, changes éfvthis sort would
be irrelevant to the power function relationship. Further, al-
though values on § would change, the £ values should not. Re-
examination of equeation (2) demonstrates why this is so. 1In
converting from an si value to a £ value the Si value is divided
by a normalizing scale value, SM (5, is the scale value for the
stimulus which has a £ value of 1/2). If an experimental mani-
pulation alters Si multiplicatively, it will probably also alter
SM in the same fashion, Thus, neither the ratio nor the % Qalue

should chance.:

Finally, we mﬁst consider the situation where two (or more)
dimensions (Dl and Dz) amalgamate to form a single perceptgal
dimension. The guestion is how can these two dimensions combine
and still maintain a power function relationship between each Di
and P when examined separately. The answer is, that only certain

ways of combining the dimensions allow this to occur. For
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example, if they combine in an additive power function:
P= a (D n
1 T Dz)

the relationship between P and either b_ will not reflect a power
i

function. To see this, take logarithms of both sides:
log P = 1log a + n log ( D1 + Dz)

If we have a power function between [, and P, this must be the
i

equation of a straight line when the other R, eguals a constant.
i

In fact, it isn't a straight line relationship of Dl or D, unless
L

the other equals 0., On the other hand, if Dl and Dz combine in &

multiplicative power function
P= abD p (3)
1
Its true that

log P = loga+n +
g g 1 log D1 n2 log D2
Here, there is a straight line relationship between log P and
either log D, or log p,. Thus, both physical dimensions would be
related to P appropriately and, once again Allnatt's
conceptualizaton could be incorporated into the present

conceptual framework. The only issue the reader must take note
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of is that the P dimension which emerges from the HDS znalysis

should be reasonably well described by equation (3).

[

Cn & closing note, it should be mentioned that SN is not
regaréed as a constant in Allnatt's conceptualization. 1In fact)
it's viewed as the variable which creates ali the context
effects. If it could¢ ke shown that an erperimentel wanipulation
altereda £ values in Allnatt's proceduvre, he would initially try
to explein this through changes in EF' For example, under norral
circumstances, the stimulus which produces Sﬂ (DF) woulc, rre-
sumably,/be near the miééle of the D ¢imension., Fowever, if a
narrow rance of stimuli is used, b may'tend to crift towarc the
miadle of that renge, altering 21l the t values. The akility of
this one paremeter (g, ) to capture all the effects ci experi-

I
mental manipulaticns is, of course, an empirical qqestion. BEow-
ever, until and unless the relevant experimentation and modGel-
fitting are cone, we have no reason to cleim thet our model with

its meany pérametere expleins context effects ketter than

Bllnatt's sincle paremeter.

iV, GEFERBL SUHHERY EED COECLUSIQLE

Inr the present manuscript we have attenpted to do three
things: accueint the reader with the issues involved in selectinc

& sceling procedure, recommenc and ¢iscuse the optimal scaling
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procedures for the present purposes, and provide a general pro-
cessing model for how scaling operations are undertaken. 1In
chapter 1 the first of these goals was accomplished with the
suggestion being that, for present purposes, indirect scaling
techniques are optimal., 1In chapter 2 the reader was introduced
to the two indirect scaling techniques that appear to be most
useful for present purposes, Thurstone's (1927) technigue and
Allnatt's (1973; 1975; 1979) technigue. In chapters 3 and 4
these techniques were examined in considerably creater detail,
Methods for examining the technigues themselves and for analyzing
their results were discussed., Finally in chapter 5 we've put
together a general processing model, Thus, the three goals of
the project appear to have been accomplished. In closing, we'd
like to provide a brief overview of the model as well as a brief

discussion of what we feel are its important strengths,

A schematic diagram of the model is provided in Figures ©
and 10 (Figure 9 contains the general schematic. Figure 10 f£ills
in some of the details). Any stimulus, Ki' is presumed to give
rise to a perceptual representation., This representation is
assumed to be stable in that it is uninfluenceé by context.
Further, it's assumed to be characterized by a set of coordinates

in an p-dimension space (x The scale value

117 Bypr Ey3 eee Fyp)e
is created from this representation by taking a weighted sum of

these coordinates as follows

S = W.X.. + W.X.. 4 eee +wx, =+k
in
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where the y. represent the weights and the [ is a scaling con-
]

stant,

The process of assigning weights is the heart of the model.
It is here that essentially all effects of experiﬁental manipul-
ations are manifest, Different types of Jjudgments (e.g., accept-
ability vs. pleasantness, heaviness vs. denseness) will undoubt-
edly produce Gifferent weighting schemes, Further, different
contexts for making the same judgments (e.g., instructions to
rate the stimuli as an engineer would vs. instructions to rate
the stiﬁuli as an everyday viewer would) would also produce

differences in the basic weighting scheme.

Once Si has been established, it is used to produce a res-
ponse c¢n the response scale provided by the experimenter. - In
order to maintain continuity with previoue receerch, it ig recom-
mendec¢ that 2 1 to 5 (i.e., & to E) rating scale be used. The
model, as stated; makes no assumptions about the conversion from
the § dimension to & response. However, Thurstonian analysis is
perfectly compatible with all the assumptions of the mdoel and
is, thus, regarcded as the best "back-end" of the process. The
sis are assumed to reflect average rather than deterministic
values on a newly created § dimension, That is, there is random
variability in the actual value, X, that a given stimulus pro-
duces on §. The § dimension is presumed to be divided into p

segments by p-1 criteria. The response given cbrresponds to the
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segment into which Y., falls at the moment the stimulus is being
i
evaluated, Because of the variability about §. the same stimulus
i
will not always provide a value in the same segment and, thus,

will lead to different responses under identical circumstances.

In general, Thurstonian analysis is preferred to Allnatt's
analysis as a back-end to the model. 1In order for Rllnatt's
analysis to be applicable, the model would need a number of
additional assumptions, detailed earlier in this chapter, which
seem unnecessarily restrictive, In essence, if Allnatt's
analysis is an accurate description it necessitates a somewhat
different model as a front-end, In fact, Allnatt's theorizing
has been extended to include a discussion of some of these front-
end processes., Thus, one could say his model already has an
implicit front-end., Obviously, we feel the model, as proposed,
is the best way of viewing the process at present. What follows

is a discussion of the model's strengths.

One obvious strength of the model is it represents an
attempt to integrate a number of Gifferent lines of successful
psychological research. Earlier in the present chapter the sup-
port for the idea of a stable perceptual representation was
discussed. The notion of a multidimensional space underlying the
perceptual representation of stimuli has received considerable
support in recent years (Carroll and Wish, 1974; Shepard, 1963).

Anderson's (1968) notion that perceptual dimensions are combined
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to form a weighted sum has also proven to be a quite viable one,
as has the idea of differential weighting of the dimensions.
Finally, the model even has the flexibility to encompass Stevens'
(1961) findings that the nature of the function relating physical
. dimensions and psychological dimensions is a power function for

many types of stimuli.

A second strength of the model is its generality. That is,
it's applicable for virtually every type of scaling judgment and
it provides a framework for understanding how different scaling
judgments are related to one another., In much of the work on
scaling, the § dimension, regardless of what it represents -
prettiness, acceptability, artistic value - is taken as a
priﬁitive. The models, in some sense, evolve around the judgment
itself (e.g., Allnatt's theorizing is a case in point). 1In the
present modei the primitives are not the § dimensions but the
perceptual representations of the stimuli. Regardless of the
nature of the judgment the observers are about to make, observers
are assumed to perceive the stimuli in a stable fashion. The g
dimension that the experiment calls for is then created from.a
weighting of the perceptual dimensions. Thus, prettiness ratings
would involve one set of weights while acceptability ratings
would involve another. 1In essence, any kind of scaling judgment
about any stiﬁulus that can be perceived, can fit into this
framework. Further, the framework provides a means of under-
standing how and why the different judgments are different. By

examining the different weighting schemes used when making, for
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example, prettiness judgments on the one hand versus acceptibil-
ity judgments on the other, we can gain a better understanding of
what perceptual dimensions are most relevant to each of the

judgments.

The flexibility of changing weights as a result of exper-
imental manipulations also has implications for how context can
influence judgments. As noted in discussing Thurstonian
eanalysis, one effect of context could be to create different
placements o0f criteria on the § dimension. However, it's also
possible that different contexts can actually produce different
values for the Sis. In the present framework the explanation of
this result would be quite straightforward. The observers simply
selected & different set of weights in the two different con-
texts, perhaps emphasizing dimension A in context 1 and dimension
B in context 2, Again, by looking at how the wéights change,
information can be gained about how various perceptual dimensions
relate to various contextual manipulations. In Allnatt's frame-
work there is also a way of accounting for the effects of con-
text, the physical value of the normalizing stimulus, DM (see
eguation 1l in chapter 3). However, as mentioned previously, it
seems quite unlikely that variations in DM alone could account
for contextual effects beyond those Allnatt and Corbett (1872)
have already investigated. Whether there will be effects beyond
those is an empirical question., If so, more work on the front-

end of their model will be necessary.
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A third strength of the model, and one which is not im-
mediately obvious, is it testability. As Figure 9 makes clear,
the model is a stage model. The first stage, the perceptual
stage, and the third stage, ﬁhe response stage, can be empirical-
ly evaluated independent of the other stages. The means of
determining whether the response process can be.described in
terms of Thurstonian analysis has been discussed extensively in
chapter 3. The perceptual stage can be evaluated by considering
the fit of the multicimencicnal solution of the scaling analysis
described in the present chapter. If the STRESS is low and the
dimensions are reasonable the notion of a workable perceptual
representation is supported. The second stage, in which the_si
are determined, is not independent of stage 1. An adeguate
evaluation of stage 2‘requires that the perceptual represent-
ations of the stimuli be known. If the evanluation of stage 1 was
successful, this information will be available. If not, it
won't, Thus, the model really does hinge on the notion that each
stimulus providés a stable perceptual representation. If this
assumption is incorrect, the model as it stands could be

rejected.

On the basis of the argument just presented we feel that the
model offers a substantial advance over anything that has gone
before it in the area of evaluating teletext systems. The model
is general, yet testable, and it integrates a number of lines of

psychological research, Putting Thurstone's response model at

-
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the back end of ours completes the picture., Trying to attach
Allnatt's response model is much less desirable. Generality
would be lost as the assumptions of our model were made more
restrictive and, as the reader may remember, Allnatt's technigque
itself requires that the stimuli vary on a quantitative
dimension. Since the psychological literature does not seem to
contain any empirical demonstrations that any of these
restrictions are necessary, Allnatt's model must remain a second
choice, The only cost of our model is in terms of the time and
effort involved in determining the nature of the psychological
space. That is, a number of subjects will have to make a large
number (>3000) of judgments of stimulus pairs. However, once
this extensive data collection is complete it won't need to be
cdone again, Thus, overall, our feeling is that the positive
aspects of the model far outweigh any of the difficulties

involved in testing it.
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Table 1.

Stimuli

Sample Data Matrix.

b4

87

10

(Cell entries are frequencies.)

12

16

20

Categories

30

18

30

.30

18

30

22

20

[te/

40

188

3

1.14

3.42

3.02

2.50

4.1

. - N . .
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Table 2,

Stimuli

Rearranged Data Matrix

1

3 1

Xy

X 2
)

X 5
1

X 10
2

X 20

82}

16

20

30

Categories

18

20

30

40

30

22

30

30

18

20

12

189




Table 3.

Stimuli

Probability Matrix

1
X, .01
X3 .02
xl .05
X, ‘ .10
X, .20

Categories

2 3
.05 .18
Loe .20
.16 .30
.20 .40
.30 .30

022

.30

«30

.20

180

(6]

AC

.12




Table 4. Cumulative Probability BMatrix
Categories
1 2 3
X
4 .01 .06 .24
X .02 .10 .30
3
Stimuli
X .05 .2 .
1 0 1 51
P4 .10 .30 .70
2
X .20 .50 .80

.46

.60




Table 5.

Stimuli

Z-Score

X

1¢2
Matrix
Categories
1 2 3 4

-2 327 ~-1.555 ~-,706 -,100

-1.645 -.806 +.025 +.878

-1.282 -.524 +.524 +1.175
o>

-.841 L.000 +,841




Table 6.

Stimuli

Criterion

e+
)

Position Matrix

_10670

-1.64¢8

-10630

_10644

Categories

N

-.813

-.803

-.806

—0880

-.809

+,130

+.026

+.158

+.026

+,803

+.876

+.878

+.803

—a)

A e S e e i e S e e e e e o i e e B i i o B e e e e e e e i e e e e e e

-1.647

-.822

+,073

+.840

3
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Table 7. Relative Positions of the Criteria
Criterion
1 2 3 4
X4 _2.23 _lnsl _074 _007
X3 _1.98 —1025 _.46 +|22
‘Etimuli
xl —1064 —.81 +.02 +088
x2 -1,20 -40 +,46 +1.10
X5 -.76 +,05 +,52 +1,65
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Stimuli

X

0129

.023¢

.0505

1151

«2236

Categorijes

2 3
-052¢ +1641
0817 <2172
1585 .2990
«2285 .3326
+2963 3013

«2643

.3026

1871

195

4129

.1804

«1357



Table 9,

Stimuli

Expected Frequencies in Fach Category

1.3

[N
.
L~

11.5

22,4

15.8

23.0

29,6

Categories

16.4
21.7

22.9

30.1

LN

30.3

18.7

12.9

18,9

13.6

n
.
o

|
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Table 10.

Stimuli

Stimuli

Altered Matrices

Expected Freguency Mafiix

1
X —_—
4
X, ---
9
X
1 5.0
{ 11.5
XZ
X 2.
5 22.4

Qbtained Freqguepcy Matrix

1
X ——
4
X ---
9
X 5
1
X, 10
2
X 20
5

6.6

10.6

15.8

23.0

10

16

30

Categories

l6.4

21.7

28.9

33.3

30.1

Categories

W

18

20

40

30

24,2

26.4

30.3

18 .7

12.9

B

22

30

30

18

20

40

19

12



Table 11,

Stimuli

Inversions (reciprocals) of the Probabilities in-Table 4

100.000

50.000

20,000

10.000

5.000

Categories

16.667

10.000

4,762

3.333

2,000

4,167

3.333

1.261

1.429

1.250

2.174

1.667

1.235

1.136

1.000

5




Table 12. Values from Table 11 Minus 1.00

Categories
1 2 3 4
X4 65.000 15.667 3.167 1.174
X3 42,000 9.000 2,333 667
Stimuli
Xl 19,000 3.762 .961 .235
X2 9.000 2,333 .429 .136
X5 4,000 1.000 .250 .000




Table 13, Matural Logarithms of Values in Table 12

Stimuli

2,197

1,386

Catedories
2 3
2,752 1,153
2,167 847
1,325 -.040
.247 -.847

.000 -1.386

200

.160

-.405

-1.448

-




Table 14.

Parameter Values for Allnatt's Basic Technique

X
5

1.543

%2

1.557

o
g =

Estimates pof g

! %3

1,595 1.558

1.577

1.629

201

Estipates of In Liptercept estimates divided by El

1,578

X
2

.032

.50€

969

X X
1 3

.393 1.036

Estimates of tm

*1 *3

« 567 .738

%4

1,373

X

. 796

Esfimates of Jm ([l/Ztmlz-l)

X X
1 3

675 «355

X

$253




Table 15.

Smaller
Stimulus

Sample Ratio Matrix

joF}

Stimulus
d
.20

.50

.70

.25

.4C

202
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Table 16.

Tetrads

(a,b,c,d)

(a,b,c,e)

(a,b,d,e)

(a,c,d,e)

(b,c,d,e)

Tetrads and Their Associated Ratio Products

R .
14%Ro3

e e o o o e o S it B i S

]
=
u

R x =(, .75
aGYRbc (.20)(.75)

R xR =(,10)(,75) =,075
ae bc

.05

n

R xR _=(, .50
aey bd (.10) ( )

R xR _=(,10)(.70) .07

ae caG

R xR =(,25)(,70) =,175
be cd

X

R13 R24
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R =R
b

ac

R xR
b

ac

_XR
ad

R XxPB
ad

G

e

be

ce

R _xR
ce

ba

=(.40) (,50)

=(,40) (.28%)

=(,20) (.25)

=(,20) (.40)

=(.,50) (.40)

.20

.10

.08

.20




Table 17. ANOVA Table for the Data from Table 16

LSeurce

Tetrads

Columns

Error

Total

o
T
m

gL

B3

2R

.030875

.00121

.000715

.0328

.,00121+.060715

1+4

.00771875

—————r——o o t———p

.000385

U
.00771875
.00121

.00017875

£
43,18

6.77

.000385

204
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Table 18, Effect of Unequal Variances on the Significance Level

a
of ANQVA

Ratio of Actual
K n Sample Variances Significance Level
2 7 1:2 .051
1:5 .058
1:10 .063
3 5 1:2:3 .058
1:1:3 .05¢
5 5 1:1:1:1:3 .074
7 3 1:1:1:1:21:1:7 .120
®Mominal X = .05

This table is copiec¢ without permission from Lindman, 1%74.
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Distribution of £, Statistic?
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* This txble is abrdged From Table 30 in Biomewilo Tobdes for
{2d ed.) New York: Cambridpe, 19380 Ldited by b

5. 'earson

Statisticions, vol, |,
and H. O, Hurtley,

Reproduced with the Lind permission of §0 8, Pearson and the trustecs ol fiiometeika,
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Table B.&  Critcal Values for Cochran’s Test for Flomogeneity of Variance*
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* Reproduced wish permsann trom O bascsbant, MOW Hastay s and W A Walhis, Tovmnggues of Stanne 7 fnalyva, chape 18,
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Table 16,

A

m

rd
Original Data for Box-Scheffe Test

SAMPLES

(o)

w

10
10

11
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Table 20, Data of Table 19 Divided into Subsamples

SAKPLES
1 2 3
3 4 6
1 3 5 5
2 4 6
SUBSAKPLES
2 3 8
2 2 3 7
1 2 7
3 6 4 5
3 3 6

w0

co

11

10

10

209



Table 21. Variances of Subsample Data in Table 20

SAMPLES
1 2 3 4
1 .3333 .3333 .3333 .3333
SUBSAMPLES 2 «3333 .3333 .3332 4,3333
3 4,5000 +5000 .5000 ;5000

Table 22, ©Natural Logarithms of Variances in Tabkle 21

SAMPLES
1 2 3 4
1 -1.0986 -1.0986 -1.02€E6 -l.b986
SUBSAFPLEES 2 -1.00%¢86 -1.0886 -1.0%¢86 1.4663
3 1.5041 -.6931 -.6931 -.6831

NS aE AN A O Oy Aar Iy AN A B A W T N aa A e e
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Table 23. Computations MeedecG to Obtain B’* for the
k3

n,
1

Welch-Aspin Test

Ww./(n, -1) W.z/(n.-l)
i i i i

[\

o
(8]

(o8

211

.1428

5716



Table 24. Original Data for the Kruskal-Wallis Test (Example 1)

SANMPLE
1 -2 3
12 20 12
16 32 11
10 23 17
13 35 24

Table 25. Renked Date for the Kruskal-Wallis Test (Example 1)

SAKPLE
1 2 2
3 10 5
€ 11 2
1 e 7
4 12 o

TOTELS(R,) 14 41 23
1




Table 26,

Table 27.

TCTALS (R )
1

Criginal Data for the Kruskal-Wallis Test (Example 2)

SANPLE
1 2 3 4
6 7 4 7
g 10 G 4
& i2 12 10
iQ 13 2 &

Rankeé Data for the Kruskal-VWallis Test (Example 2)

SAHPLE
1 2 3 4
4 6.5 1.5 6.5
¢ 12 4 1.5
4 14.5 14,5 12
12 i6 ¢ e
2¢ 40 2¢C 28
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Takle 28, Criaoinal Date for the Friedman Test

STIMULT

] 2 3
1 4 6 7
2 5 4 8
ODSERVERS 3 3 7 g
4 5 _6 e
5 3 7 1
G 6 5 &

Table 26, Rankeé Data for the Friedman Test

STIBULT

1 2 3
1 1 2 3
7 2 1 3
OLSERVERS 3 : 1 2 3
4 1 2 3
5 1 2 3
6 2 1 3
TOTALE (R .) 8 0 18
1




Takle 30. Data and Computations for the Matched-Pair

Stimulus
1
Scale
Observer Values

1 4

2 ¢

3 3

4 &

5 10

& 4

7 5

& 7
T+ =
T =

Wilcoxon Test

Stimulus
2

Scale

Values

Ranks of
Absolute Absolute
Difference Difference Differencce

g -4 4 5.5
¢ -3 3 2.5
12 -& ¢ 13
7 1 1 ]
6 4 4 5.5
. -5 5 7
3 2 2 2
1C -3 3 3.5
1 +5.5+ 2 =8.5
E5 + 3.5+ 8+7 + 3.5 = 27,5

215

Sign of
Initial
LCifference



TABLE A—21. Distribution of the signed-rank statistic T

The percentiles listed cover the range @ = .005 to 125 for every sample size up to n = 20.
Values 7, are such that the probability is « that the sigrfed rank statistic is less than or equal
to T, The values T, _, arc such that the probability is a that T'is greater than or equalto 7} _).

Tioy Tio @ Ty Tty o« Toy Tio o Ty T a
n=1 n =9 (Cont.) n=12(Cunt.) n = 14 (Cont.)
0 1 .500 4 41 014 9 64 .008 17 88 .012
n=2 5 40 020 10 68 (VYY) 18 87 015
0 3 250 6 39 027 11 67 013 19 86 018
n =13 7 33 037 12 66 017 20 85 021
0 6 125 8 37 049 13 65 021 21 81 025
o= 1] RTY) un i 14 654 (26 22 83 .029
0 10 062 14) 3o 682 15 63 032 23 82 034
1 9 (125 11 34 102 16 62 039 24 81 0139
noe= s 12 33 125 17 T R 1] 25 80 045
0 15 .031 n =10 18 60 L0865 26 79 .062
1 14 .062 3 52 005 19 59 065 27 78 .059
2 13 94 4 51 007 20 58 076 28 77 068
3 12 156 5 50 010 21 o7 0838 29 76, '
n=206 6 49 014 22 30 102 30 75 086
0 21 016 7 48 019 23 55 T Sl 74 .097
1 20 031 8 47 . .024 24 54 133 32 73 108
2 19 047 9 16 032 oo =13 HH 72121
3 18 078 10 15 042 9 82 .00 34 71 134
4 17 109 11 44 (153 10 31 005 n =15
5 16 .156 12 43 063 11 80 .07 15 105 .004
ne=7 13 42 080 12 7900y 16 104 .005
0 22 008 14 41 007 13 78 RUR! 17 103 006
1 27 01y 15 40 116 14 i 013 15 102 008
2 26 .023 16 39 138 15 76 016 149 10t .00Y
3 25 049 n -1 16 75 0 .020 20 100 011
4 24 063 5 61 005 17 T 024 2 99 013
) 23 078 6 60 07 18 73 12y 24 08 L0156
G 22 10y 7 59 00Y 19 72 034 23 97 018
7 21 148 8 58 012 20 71 040 24 96 021
n=28 ' 9 o7 016 21 70 047 25 45 .024
0 36 004 10 56 021 22 69 L0585 26 i) 028
1 .35 008 11 55 027 23 68 064 27 03 .032
2 34 012 12 54 034 24 [in 073 28 92 .036
3 33 020 13 Ha 042 25 6 084 24 91 042
4 32 027 14 52 .U61 26 65 093 30 90 047
5 31 039 15 51 062 27 64 108 31 89 013
6 30 055 16 50 074 28 63 1122 32 88 060
7 29 074 i 49 087 24 62 137 33 87 068
8 28 (3 18 48 103 n: 14 34 86 076
9 27 125 19 47 120 12 u3 (0 35 85 084
n -9 20 46 139 13 92 5 36 R4 094
1 44 004 no- 12 14 91 007 37 83 104
2 43 8 7 71 L0056 15 90 KL 38 82 115
3 42 .010 8 70 .006 16 89 .010 39 81 126

~
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TABLE A-21 (continuedj

1, . o

- 17 (Coni)
17 (2N
|y 0A2
(A) (RR{})
111 Ul

10 01l
112 (S]
1! Nyt

1o Lty
HEY NN
10N [
107 s}
1, UNy
HEE) ()
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T, Tioy a
n =19 (Cont.)

6t 126 1

t5) 125 121

Gh 124 120
n = 20

37 173 .0uS
o8 172 0UH
3h 171 R0
&Y 170 007
41 169 LOOR
12 163 M
13 167 R
14 1h6 Ul

15 163 012
Y 14 R
17 IR} 013
N -2 Ol1e

U tul KUK

50 16U 02y
51 159 022
52 1558 024
53 157 i
3l 150 029
53 155 (032
56 154 035
Yl 153 (3R
58 152 RIENY

34 151 L0453
60 150 040
bl 149 NiEN
L2 148 0a7
03 147 N,
tl 146 RN
%) 145 071
6H0 144 AT
67 143 082
HY 142 088
LY 141 095
0 140 10
71 HEA (108
2 138 113
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Vet Intredin tion o Starese aad eaiives Cied e sy WO T Dinon and B3 Massey Je 7 Copy-
pht 6 T oy leCian -l fae Used with perovssion ot McGraw-Hhill Book Company.
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Table 31. Sample Dissimilarity Matrix.
Stimuli
1 2 3 ) %5 %6 g
kl
Z . .7 -
2
Y 3.4 6.3 -
Stimuli
Xﬁ .6 1.1 Z.1 -
X .5 3.5 8.6 5.3 -
}{6 500 A.3 7.0 Scl 1.6 -
)'37 4--—‘ 202 9.5 004 Oo[. 3.? -
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Figure 1. Discriminal Dispersion of Stimulus —}31 on Attribute S.
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Figure 2. Thurstonian Characterization of the Categorical Judgment
Situation.
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Pigure 3. Plots of Z-scores for zi against those for X, in Thurstonian Analysis.

1
X1 Z-Scoxe X1 Z-Score
1.0 . . 1.0 r : :
slope = .996 i slope = 1.09 i
intercept = -.36 intercept = .598
0.5} = .996 0.5Fr = .999
0 = 0
-0.5 -0.3
_ o a
-1.0 -1.0
-1.5 - -1.5 z
~2.0 —2.0 '
-1.%9-1.0-0.5 .0 0.5 1.0 1.5 2.0 -3.0-2.9-2.0-1.5-1.0-0.5 ,o‘ 0.5
XZ Z-score X3 Z-score
- X1 2-Score X1 2-Score
1.0 e ; 1.0 . .
slope = 1.11 i slope = .988
intercept = .913 intercept = -.81
0.9}r = .997 0.5Fkr = 1.00
.0 .0
-0.9 -0.5
’ (o]
-1.0 -1.0
-1.5 . -1.5 -
-2.0 -2.0

~2.0-2.5-2.0-1.9-1.0-0.5 .0 0.5 -1.5-1.0-0.5 .0 0.5 1.0 1.5 2.0

x4 Z-score X5 Z-score
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Figure 4. Plots of In ([IL/F(T)1-1) against transformed Criterion Positions for
all §i in Allnatt's Analysis.
X1 Values X2 Values :
v 3 v
e slope = -1.595 slope = -1.57
intercept = .62 intercept = .04
r = -.995 o r =-.995
2 2
o]
1 1 fu)
0 0
o]
ja]
-1 -1
ja]
-2 -2 B—
-z -1 0 1 -2 -1 0 1 2
T Yalue T Yalue
X3 Values X4 YValues
4 8 - 5 .
slope = -1.56 o slope = -1.63
intercept = 1.63 intercept = 2.16
r = -,997 r = -.990
3 4
2 2 3
o]
i 2
o
o]
0 i
ja]
ju]
-1 0
-2 -1 ¢} 1 -2 -1 0 1 2
T Yalue T VYalue
X5 Yaluss
2 v
slope = -1.54
D intercept = -.72
{ r = -.998
0 a
-1
ja]
-2
-3
-2 -1 0 1 2
T Yalue
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TR

FPigure 5. Plot of 1n (gm) against Impairment Measure (in d&B).
1n(Jm)
0.3 ] . i
slope = -.09 !
interfcept = 1.85
T = -.996
.0 &
]
~0.5
-1.0 ]
(1o
-1.5
10

15 20 25 30 35 40

IMPAIRMENT (dB)




225

Figure 6. Plot of 1n (gi) against Impairment Measure (in dB).

1n(Si)
0 :
slope = :.13
intercept = -4.16 :
r= .991
0.5
9
~1.0 =
o]
1.5
~2.0
]
-2.5 i
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Figure 7. Some Classic Illusions.

\//

7a. The two vertical lines are the same length.

7b. The distance from A to B is
the same as the distance from
A to C. )

\\

7c.
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The vertical line and
the horizontal line are
the same length.




Figure 8.
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Plot of STRESS as a Function of the Dimensionality of the Solution.
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FIGURE 9 GENERAL SCHEMATIC OF THE MODEL

CONTEXT VARIABLES>
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FIGURE 10 MORE DETAILED REPRESENTATION OF THE MODEL

CONTEXT VARIABLES
* INSTRUCTIONS
* TYPE OF JUDGEMENT

* NATURE OF RESPONSE SCALE

STIMULUS VARIABLES
e TYPE OF STIMULI
¢ RANGE OF STIMULI

STIMULUS (X))

ESTABLISH INTERNAL SCALE

s WEIGHT PERCEPTUAL
DIMENSIONS (€.g.,01,...,p)
« SET UP SCALE (e.g.,

n
S = I wpX;
j=1wj J)
e PLACE RESPONSE SCALE

CUTQFFS ON INTERNAL
SCALE

FORM INTERNAL
REPRESENTATION

CO-ORDINATES IN
n-DIMENSIONAL
SPACE (e.g.,
X{1see0rXin)

|

DETERMINE INTERNAL
SCALE VALUE

WEIGHT AND COMBINE
VALUES ON PERCEPTUAL
DIMENSIONS (e.g.,

n
S = ‘Z wj'xi])
j=1

i

RESPOND

RESPOND USING
CUTOFFS RELATING
S; TO RESPONSE
SCALE POINTS







