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1.0 	INTRODUCTION 

This study consisted of three parts. The first part 

involved determining the parameters and evaluating the 

performance of a demodulator (for CPM signals), that is 

based on maximum likelihood detection principles for 

reception over Rayleigh fading channels. The second part 

involved evaluating the performance of concatenating a 

simple 8-state TCM modem with a Reed-Solomon code for the 

reliable transmission of data over Rician fading channels. 

The third part of the study was to prepare a software 

documentation manual for the entire software package, 

including software that was developed under previous 

contracts. 

Continuous phase modulated (CPM) signals are of current 

interest for terrestrial mobile data communications because 

relatively good spectral efficiency can be achieved, and 

the resulting transmitted signal has a constant envelope. 

It is well known that the terrestrial mobile communications 

channel can be accurately modelled by a Rayleigh 

flat-fading channel model. Reception of these 

transmissions is usually done in a noncoherent or 

differentially coherent fashion, because conventional 

coherent detection techniques do not work very well unless 

the fading rate is several orders of magnitude less than 

the baud rate. These reception techniques are suboptimal, 

and can therefore be relatively power inefficient under 

certain conditions. In particular, when the fading rate is 

high, they exhibit an irreducible error rate that cannot be 

improved upon at any signal-to-noise ratio. An approach 

based upon the maximum likelihood detection of constant 

envelope modulation (CPM) schemes, transmitted over 

flat-fading Rayleigh channels, had been studied previously 

(in work funded by  Transport Canada) for the detection of 
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Aviation Binary Phase Shift Keying transmitted over Rician 

fading channels. One of the purposes of the first part of 

this study was to determine the performance of this 

detection approach when applied to a CPM scheme transmitted 

over a Rayleigh fading channel. While the proposed 

approach is applicable to virtually any CPM scheme, the 

example scheme chosen here was one that had been recently 

developed by researchers at the University of Toronto, 

known as N32FM [3]. The performance for the proposed 

approach was compared to that of differential detection 

preceded by linear phase lowpass filtering (assuming a 

complex baseband implementation). 

There has also recently been an interest in the potential 

use of satellite services to support future aeronautical 

communications and navigation requirements. The 

aeronautical-satellite communications link can be modeled 

as a Rician fading channel, and because of safety 

considerations very reliable communications links are 

required. The second part of this study was to determine, 

using computer simulation, the performance of concatenating 

a simple 8-state trellis code [3] with a Reed-Solomon (RS) 

code, for the reliable transmission of data over fading 

channels. The Reed-Solomon code chosen was the (240,180) 

shortened Reed-Solomon code. This code has the desirable 

features that each symbol contains 8-bits (a byte of 

information); and each codeblock contains an integer number 

of the 96 bit INMARSAT signal units. This code is a rate 

3/4 code, that contains 15 signal units of data, and is 

capable of correcting any packet with no more than 30 bytes 

in error! The error correction capability (i.e., BER 

performance) of the above scheme was evaluated by computer 

simulation. However, almost all of the remaining 

uncorrectable errors can be detected by the RS decoder. 

The error detection capability of the code was also 

estimated. 



In the past few years MCS has developed a massive software 

package, under funding from the Government of Canada, for 

determining the fading-channel performance of advanced 

modulation and coding schemes. While this software has 

been documented on a contract-by-contract basis, no single 

up-to-date comprehensive documentation exists. The third 

part of this study was to prepare a comprehensive "Software 

User's Guide". 
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2.0 	MAXIMUM LIKELIHOOD DETECTION OF CPM OVER RAYLEIGH FADING 

CHANNELS 

Some recent work [1] has shown that maximum likelihood 

sequence estimation of constant envelope signals over 

Rayleigh flat—fading channels is equivalent to minimizing a 

series of prediction errors. The motivation behind this 

equivalent approach is the observation that if the received 

CPM signal is multiplied by the conjugate of the modulating 

signal then the resulting signal is simply the fading and 

noise variations of the channel. If the spectrum of the 

fading and noise process is known then this resulting 

signal must satisfy certain statistical properties, which 

are exemplified by the predictor equations. If the 

received signal was multiplied by the conjugate of a signal 

other than the modulating signal then it is less likely 

that these statistical properties would be satisfied. 

2.1 	Simplification of the Detection Technique  

In [1] it is shown that the weighted sum of predictor 

errors for predictors of order 1 through N must be 

minimized where N is the number of received signal samples. 

These predictors are the linear predictors corresponding to 

the composite, fading and noise spectrum [2]. The first 

approximation we will make to simplify the implementation 

complexity is the assumption that the composite fading and 

noise spectrum can be accurately modeled by a M'th order 

all—pole filter. With this assumption, all predictors of 

higher order are equivalent to the M'th order predictor. 

We also assume the data sequence is sufficiently long to 

allow the contribution of predictors of order less than M 

to be ignored with negligible performance degradation. 
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(1) 

With these assumptions MLSE is equivalent to minimizing 

N 	M 

J(I) = 	 p. yxj-i  (I)] j-i  
j=1 i=0 

with respect to the choice of data sequence I={a l , a 2  a 3 , 3 

 ...} whene a.=±1. In this expression the inner summation 

is the j i th predictor error, {pi } are the prediction error 

coefficients, { .} are the received signal samples and Y 3  
{x .} is the modulated signal corresponding to the data 3  

sequence I. For a CPM signal, x(t) is given by (in complex 

baseband) 

x(t) = A exp{j2nh f n f(s-nT) ds} 

where f(t) is the frequency pulse shape, h is the 

modulation index, and T is the symbol period. 

The next simplifying assumption is that the frequency pulse 

shape is zero outside the interval [0, 9,T]. With this 

assumption it can be shown that (1) can be written in the 

incremental form 

'In (I n )  = jn-1 (I n-1 ) 	Bn (I n )  

where I n = {a 1 , 	.' an is the sequence of bits affecting 

the signal up to stage n, and B(I) is simply those terms 

of the summation (1) which depend on the bit an . It can be 

shown that under the above assumptions B(I) depends only 

on the bit an and the 2 + q - 1 preceding bits, where q is 

the time span of the predictor in symbol periods. 

(2) 

(3) 
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This is exactly the problem formulation which can 

effectively be solved by the dynamic programming (Viterbi 
t+q-1 detection) algorithm with 2 	states corresponding to 

all possible preceding sequences of Q + q - 1 bits and with 

a branch metric given by B n (I n ). If we let s be a state in 

the Viterbi decoder, then the terms in the branch metric 

calculation can be written as 

h.(s,a ) y. .l 2  
n 	3-1 

i=0 

where we have combined the linear predictor coefficients 

{p i } and modulated sequence {x i } into a single FIR filter 

depending on the state s and the next bit a n . Thus the 

branch metric calculation at each step can be evaluated 

through a bank of filter and squares. 

2.2 	Simulation Results  

To evaluate the performance of this detection technique we 

chose the N32FM frequency pulse shape [3] which satisfies 

both Nyquist's second and third criteria. When this pulse 

shape is FM modulated, the resulting signal has excellent 

spectral properties with low out of band energy. 

Truncating the pulse shape to three symbol periods (9.=3) 

does not significantly degrade these properties. 

In the following simulation results the received signal was 

sampled twice per symbol period and a 5'th order predictor 

(q=3) was used. In Figure 2.1, we show a typical composite 

fading and noise spectrum; in this example the fading 

bandwidth is .05 times the bit rate and the Eb/No ratio is 

10 dB. Also shown is the spectrum of the corresponding 

(4) 
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5'th order predictor. The predictor spectrum, while not a 

close approximation, would seem quite reasonable 

considering possible inaccuracies in the assumed composite 

spectrum. 

In Figure 2.2 we show the performance of this technique 

over a Rayleigh fading channel when the fading bandwidth to 

bit rate ratio, n , is 0.01. Also shown is the performance 

. of 2-DPSK and a differentially-detected version of the same 

CPM signal. Performance of all three techniques are quite 

similar and thus the complexity of the MLSE technique would 

not be warranted under these conditions. 

In Figure 2.3 we show the performance of the same three 

detection techniques but with a fading bandwidth to bit 

rate ratio of 0.3. Under these conditions the two 

conventional techniques are unreliable while the maximum 

likelihood strategy performs remarkably better considering 

the severe fading conditions. The maximum likelihood 

strategy performs so much better, in fact, that, when used 

in conjunction with a constraint length 7 rate 1/2 

convolutional code (and an interleave depth of 10), quite 

reliable  performance  can be obtained over this severely 

faded channel, as shown in Figure 2.4. 
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3.0 	CONCATENATED REED-SOLOMON/TRELLIS CODE PERFORMANCE 

The second part of this study was to determine, using 

computer simulation, the performance that results when an 

8-state trellis code is concatenated with a Reed-Solomon 

(RS) code for reliable transmission of data over fading 

channels. The fading channels being considered here were 

Rician fading channels, with fading bandwidths which would 

. be typical of land-mobile or aeronautical satellite 

communications. The trellis code considered was an 8-state 

trellis code which independently codes the inphase and 

quadrature channels to provide a 16 point QAM 

constellation. Interleaved with the code sequence is a 

known pilot sequence, which is used to provide coherent 

detection and gain control at the receiver. The details of 

this coding and modulation strategy may be found in [4]. 

While the trellis coding and modulation scheme described 

above does provide good performance, it does not provide 

any error detection capabilities. Concatenating a 

Reed-Solomon code with the above scheme can improve 

performance and also provide error detection capabilities. 

Because of potential applications, it is desirable that the 

symbols for the RS code be 8-bit symbols, that is, elements 

of the . Galois field GF(256). Another desirable 

characteristic of the RS code is that the number of 

information bits in a packet be a multiple of the 96-bit 

INMARSAT signal unit. This motivates the choice of the 

(240,180) shortened RS code (shortened from (255,195)). 

This is a rate 3/4 code that contains 15 signal units of 

data, and is capable of correcting a codeword with up to 30 

bytes in error. 
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Reed-Solomon Code Implementation  

The block diagram of Figure 3.1 shows the position of the 

Reed-Solomon code in the overall coding and modulation 

strategy. The RS(240,180) code is the outer code in this 

scenario and it takes a block of 8x180 = 1440 information 

bits and codes it up to 8x240 = 1920 code bits. The output 

symbols of the RS code are interleaved on a subsymbol 

. basis, that is, the RS symbols are read into a buffer, one 

symbol (8 bits) per row. The interleaving depth (the 

number of symbols in the buffer) matches the interleaving 

depth (number of codecs) in the multiplexed trellis code. 

The trellis code is interleaved (or multiplexed) because 

these codes perform best when the errors are independent. 

Interleaving breaks up sequences of burst errors caused by 

the fading channel and results in better trellis code 

performance. On the other hand, an error event at the 

output of a trellis codec is usually a burst of errors. 

The interleaving also breaks up these error sequences and 

makes them look like uncorrelated errors. A RS code, 

however, is ideally suited to burst errors because it 

functions on a per symbol basis. An error burst of 8 bits 

will cause one or at most two Reed-Solomon symbols to be in 

error.. The code we have chosen can correct up to 30 such 

symbol errors. Interleaving the RS code on the subsymbol 

basis, as shown in Figure 3.1, means that not only does one 

get the benefits of interleaving for the trellis codec, but 

de-interleaving after the trellis code means that errors 

will be grouped together in bursts which is the ideal 

situation for the RS decoder. 

The Reed-Solomon code was implemented in software using 

Galois field arithmetic. The approach chosen to decode the 
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received codeword was the Peterson-Gorenstern-Zierler 

algorithm [5]. While this algorithm is not as fast as the 

Berlekamp-Massey algorithm or variations of it, it is a 

simple, understandable algorithm which is readily 

implemented and flexible. 

3.2 	Performance of the Reed-Solomon Code  

In this section we look at the performance, estimated 

through computer simulation, of the concatenated coding 

scheme using a (240,180) shortened Reed-Solomon outer code 

and an 8-state QAM trellis inner code. The performance of 

the trellis code alone has been documented in [4], and the 

results here are mainly concerned with the combined 

performance. In Table 3.1 we present the fraction of 

codeblocks rejected as a function of the noise and fading 

parameters for a 60 Hz fading channel. The fading varies 

from the static channel case (K=-00) to the severe fading 

case (K = 0 dB). Over the range of Eb/No , the percentage 

of blocks rejected ranges from 0 to 100%. It should be 

pointed out that in the table 0% rejected implies 0 out of 

the 896 codeblocks simulated were rejected. For comparison 

purposes, Table 3.2 provides the average output bit error 

of the inner trellis code under these conditions. It was 

found that tile performance of the Reed-Solomon code was 

strictly a function of the input error rate. It did not 

explicity depend on the fading channel parameters in any 

other way. The critical point in the performance curve 

appears to occur at an input bit error rate of 1.0 x 10 - ' 

to the Reed-Solomon decoder. Below this error rate, almost 

all codeblocks are corrected and accepted; above this, 

error rate performance deteriorates rapidly. 



Rician K Factor (dB) 
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Rician K Factor (dB) 

-10 	 -5 0 -CO 

E
b
/N
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.0 	 .0 	 .0 	 .0 

.0 	 .0 	 .0 	 .0 

.002 	.008 	.036 	.006 

.63 	 .66 	 .60 	 .15 

1.0 	 1.0 	 .99 	 .62 

Table 3.1: Fraction of codeblocks rejected in a 60 Hz 

Rician fading channel for various noise and 

.fading parameters. 
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E
b
/N
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.0 	 1x10 -5 	6x10 -5 	2x10 -4  

	

1x10 -4 	4x10 -4 	1x10 -5 	1x10 -5  

	

8x10 -3 	lx10 -2 	1x10 -2 	8x10 -3  

	

4x10 -2 	4x10 -2 	4x10 -2 	2x10 -2  

	

1x10 -1 	1x10 -1  ' 	8x10 -2 	4x10 -2  

Table 3.2: Average output error rate of inner trellis code 

which produced the results in Table 3.1. 

11 

9 

7 

6 
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In all of the examples simulated, all code blocks were 

either successfully decoded or rejected. There were no 

falsely decoded code blocks! .This will be explained in 

Section 3.3. 

In Table 3.3 the codeblock rejection rates over a 120 Hz 

fading channel are provided. The corresponding average 

output error rates of the inner trellis code are provided 

in Table 3.4. The major effect of the faster fading rate 

is a worsening of the average output error rate of the 

inner trellis code. The critical point in the performance 

of the Reed-Solomon code is, again, when the output error 

rate of the trellis code is 10- 2 . Increasing the fading 

rate simply increases the 
Eb/No 

at which this point is 

reached. 

Probability of False Decoding  

When decoding block codes three outcomes are possible. The 

code block can be correctly decoded, a codeblock can be 

rejected because an internal consistency check indicates 

that there are two many errors for the code to correct, or 

the codeblock can be falsely decoded. The simulation 

results obtained with the (240,180) shortened RS code only 

produced the first two outcomes; no false decodings 

occurred. The purpose of this section is to estimate the 

probability of false decoding. 

Reed-Solomon codes are popular because they are optimum for 

their structure. They are maximum distance codes. To 

determine the probability of false decoding for the above 

code means getting a handle on the weight distribution of 

the code. Fortunately formulae exist for calculating these 

quantities in the case of maximum distance codes [5]. 



-10 	 -5 	 0 - CO 

Rician K Factor (dB) 

E
b
/N

o 

.0 	 .0 	 .0 	 .0 

	

.0 	 .0 	 .0 	 .0 

	

.079 	.12 	 .22 	 .079 

	

.95 	 .95 	 .92 	 .59 

	

1.0 	 1.0 	 1.0 	 .97 

Table 3.3: Fraction of codeblocks rejected in a 120 Hz 

Rician fading channel for various noise and 

fading parameters. 
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6,x10 -2 	6x10 -2 	6x10 -2 	4x10 -2  

	

1x10 -1 	1 x10 -1 	8x10 -2 	7x10 -2  

Table 3.4: Average output error rate of inner trellis code 

which produced the results in Table 3.3. 
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These formulae apply to the (255,195) Reed-Solomon code, 

but because the (240,180) shortened code has effectively 15 

extra parity check bits, its performance should be even 

better. 

The results are shown in Table 3.6 for the (255,195) code, 

along with the results for simpler codes with proportionate 

error correction capabilities. The probability of a false 

decoding for this code is less than 10- 33 , that is, 

essentially zero. The smallness of these numbers may make 

one suspicious of the numerical accuracy of the results, 

but the software has been compared to results in the 

literature [6] for the (31,23) code and they match exactly. 

We therefore feel confident in these results. 

1 
1 

1 
1 
1 

1 
1 



Probability ,  of False Decoding 

RS(31,23) 	RS(63,47) 	RS(127,97) 	RS(255,195) 

	

1.5.10 -2 	7.3x10 -5 	1.5x10 -13 	3.0x10 -94  

	

1.4x10 -2 	6.4x10 -5 	1.3x10 -13 	2.7x10 -54  

	

1.2x10 -2 	5.5x10 -5 	1.1x10 -13 	2.3x10 -9 " 

	

6.0x10 -9 	3.1x10 -5 	7.1x10 -14 	1.4x10 -54  

	

1.2x10 -9 	3.6x10 -7 	6.5x10 -15 	5.6x10 -95  

	

6.6x10 -9 	1.7x10 -14  3.0x10 -27 	2.6x10 -59  

Table 3.5: Probability of false decoding versus 

probability of input symbol error for various 

Reed-Solomon codes. 
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4.0 	CONCLUSIONS 

Under the reasonable assumptions of finite frequency pulse 

duration for the CPM signal and •a finite duration linear 

predictor for the composite fading and noise spectrum, it 

was shown that MLSE of CPM signals over Rayleigh flat 

fading channels could be implemented using the Viterbi 

algorithm. It was also shown that the branch metric 

calculations required in the Viterbi algorithm could be 

implemented as a bank of FIR filter and square circuits. 

The resulting algorithm, while not simple in terms of 

complexity, could be implemented using existing digital 

signal microprocessor technology for lower data rates, that 

is, less than 5 kbps. The performance of this algorithm 

was estimated through computer simulation. The results 

showed that MLSE was comparable in performance to more 

conventional techniques such as 2-DPSK and differentially 

detected CPM when the fading bandwidth to bit rate ratio 

was low, less than .01. However, at higher fading rates, 

MLSE performed remarkably better. In fact, at a fading 

bandwidth to bit rate ratio of 0.3, these conventional 

techniques were totally unreliable, while MLSE, in 

conjunction with a constraint length 7 rate 1/2 

convolutional code, could provide very good data 

performance. . In mobile communication applications, this 

technique would allow the use of either higher carrier 

frequencies or lower bit rates. 

With regard to the second task, it was found that the 

concatenated coding scheme provided very good performance. 

Over Rician fading channels with K-factors ranging from -oe 

to 0 dB and for 60 and 120 Hz fading, the concatenated 

coding scheme was found to provide perfect performance (no 

block errors or rejections) for Eb/No  ratios greater than 8 

dB. It was also found that the Reed-Solomon coding scheme 
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has very powerful error detection properties, with the 

probability of falsely decoding a block being less than 

10-33. 
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