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1.0 	INTRODUCTION 

This study consisted of three parts. The first part 

involved determining the parameters and evaluating the 

performance of a demodulator (for CPM signals), that is 

based on maximum likelihood detection principles for 

reception over Rayleigh fading channels. The second part 

involved evaluating the performance of concatenating a 

simple 8-state TCM modem with a Reed-Solomon code for the 

reliable transmission of data over Rician fading channels. 

The third part of the study was to prepare a software 

documentation manual for the entire software.  package, 

including software that was developed under previous 

contracts. 

An approach based upon the maximum likelihood detection of 

constant envelope modulation (CPM) schemes, transmitted 

over flat-fading Rayleigh channels, had been studied 

previously (in work funded by Transport Canada) for the 

detection of Aviation Binary Phase Shift Keying transmitted 

over Rician fading channels [1]. One of the purposes of 

the first part of this study was to determine the 

performance of this detection approach when applied to a 

CPM scheme transmitted over a Rayleigh fading channel. 

While the proposed approach is applicable to virtually any 

CPM scheme, the example scheme chosen here was one that had 

been recently developed by researchers at the University of 

Toronto, known as N32FM [2]. The performance for the 

proposed approach was compared to that of differential 

detection preceded by linear phase lowpass filtering 

(assuming a complex baseband implementation). 

The second part of this study was to determine, using 

computer simulation, the performance of concatenating a 

simple 8-state trellis code [3] with a Reed-Solomon (RS) 



code, for the reliable transmission of data over fading 

channels. It is desirable that the symbols for the RS code 

be 8-bit symbols (i.e. elements of GF(256)). Another 

desirable characteristic of the RS code is that the number 

of information bits in a packet be a multiple of the 96 bit 

INMARSAT signal unit. An example of such a code is the 

(240,180) shortened RS code (shortened from (255,195)). 

This code is a rate 3/4 code, that contains 15 signal units 

of data, and is capable of correcting any packet with no 

more than 30 bytes in error! Even better performance can 

be achieved if the TCM decoder can pass suitable erasure 

information to the RS decoder. The error correction 

capability (i.e., BER performance) of the above scheme was 

evaluated by computer simulation. However, almost all of 

the remaining uncorrectable errors can be detected by the 

RS decoder. The error detection capability of the code 

was also estimated. 

In the past few years MCS has developed a massive software 

package, under funding from the Government of Canada, for 

determining the fading-channel performance of advanced 

modulation and coding schemes. While this software has - 

been documented on a contract-by-contract basis, no single 

up-to-date comprehensive documentation exists. The third 

part of this.study was to prepare a comprehensive "Software 

User's Guide". 
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2.0 MAXIMUM LIKELIHOOD DETECTION OF CPM SIGNALS

In this section, we discuss techniques for the maximum

likelihood sequence estimation (MLSE) of continuous phase

modulated signals. The simulated performance of the

derived technique is compared to differential detection

over a number of different Rayleigh fading channels.

2.1 CPM Signals and N32FM Pulse Shaping

Continuous phase modulated signals are strong candidates

for power-limited communications systems such as mobile

radio because of their constant envelope properties. In

addition, proper choice of the modulating waveform will

result in a quite narrow transmit spectrum with remarkably

low out-of-band energy. This is also important in such

applications as mobile radio, which are subject to the

"near-far" problem. In this section we will briefly

describe CPM signals, and, in particular, the N32FM pulse

shape.

The generic form for a CPM signal is

x(t) = A cos (2f t + ^(t) + ^o)

where fc is the carrier frequency and ^o is a constant

phase offset. The information bearing excess phase

function ^(t) can be expressed as

t

^(t) = 27rh jE am f (s -mT) d s (2.2)

-co m

I



CO 

1 f f(t) dt = 7  (2.3) 
00 

1 
N32 (f) = { 

0 

(2.4) 

where am is a data symbol, f(t) is the frequency pulse and 

h is the modulation index. The following normalization 

constraint is used to define  •the modulation index h. 

From [2], we have that the pulse shape f(t), that satisfies 

both Nyquist's second and third criteria for no intersymbol 

interference, has a frequency response given by 

1 + Tlfl (sinc(2fT)-1) 	1 
sinc(fT) 	 fp 7 

where T is the symbol period. Using this pulse shape with 

FM modulation produces a scheme called N32FM. The spectral 

density of N32FM can be shown to fall off asymtotically at 

the rate of 1/1f-fc 1 6 , due to zero crossings at time 

constants which are odd multiples of T/2 [2]. This is 

superior to most other CPM pulse shapes where the 

asymptotic spectrum is proportional to 1/1f-f c 1 4  or more. 

The modulation index is usually chosen as h=1/2 so that the 

CPM signal may be coherently demodulated [2]. 

Note that when truncating the N32FM pulse in an FIR 

implementation one must be careful to choose the truncation 

length such that the Nyquist second and third criteria are 

still satisfied. 

Nyquist's third criteria is embodied in the constraint 



= -2-  E am' 
m=1 

(2.6) 

k+1 n odd 

kir  
(P n  ={ 

n even 
(2.7) 

	

(2n+1)T 	±i 
( 	2 	) -±j 

n even 
n odd 

(2.8) 

(2k+1)T 
2 

(2k-1)T 
2 

k = 0 

k 	0 

f(t) dt = (2.5) 

Substituting this into the excess phase function q5(t), 

equation (2.2), and setting t - (2n+1)T  , we obtain 2 

(2n+1)T 	 a 
4) /1 : = (I) ( 	2 	)= 27rh 	m  

2 

where am = ±1 and h = 1/2. Thus we have 

for some k  e z (k is a function of n). If we form the 

difference ,;D ri  - çb ri../ , we can recover the data sequence 

(am ). 

In practice, this is not as easy as described above. If 

one coherentiy demodulates the signal then one is left with 

the excess phase function 11)(t) = cos cp(t) + j sin (f(t) in 

complex baseband representation. This still has the 

property 

and can be used with differential decoding in the absence 

of noise. However, if noise is present it will distort 
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the above situation due to the attendant filters. The 

problem of doing optimum filtering under these 

circumstances is investigated in [4]. 

In our situation, however, we are interested in performing 

differential detection of the N32FM waveform, which is, in 

fact, a simpler problem, given the above observations. 

Given the rapid fall off of the spectrum of N32FM, 

intuition would suggest that using a rectangular bandpass 

filter followed by a standard differential detection 

circuit would provide close to optimal differential 

detection. The bandpass filter should be lust wide enough 

to pass the modulated signal without significant distortion 

(this should include any modulation due to fading). For 

example, a bandpass filter which passes 99% of the signal 

energy should be more than sufficiently wide. (Note that 

it was required for this study that we test fade rates up 

to 0.3 times the bit rate.) With this formulation the 

signal processing is almost identical to standard 

differential detection as shown in Figure 2.1. 

For N32FM, performance with differential detection should 

be close to ideal differential detection with 2-DPSK. 

There would seem to be no advantage to going to advanced 

noncoherent detection schemes such as those discussed in 

[5] and [6], using modified discriminator detection. These 

schemes are intended for the case of correlative coding, 

and for those cases where the phase differential between 

adjacent symbols is less than  71/2. Neither of these 

situations apply here. 

2.2 	MLSE of CPM Signals over Rayleigh Fading Channels  

In [1], a technique is developed for the maximum likelihood 

detection of a data sequence corresponding to a constant 
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	11› 

s(t) + n(t) 
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Bits 

■.] 
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111, MI Ili ill 1111, MI IMO MO MI MI am ris or am am um es am 

Figure 2.1 A differential detection scheme for CPM with a frequency pulse shape 
satisfying Nyquist's second and third criteria. 



envelope signal transmitted over a Rayleigh fading channel. 

The technique is based on the observation that, if one 

multiplies the received signal by the conjugate of the 

transmitted signal, then the resulting signal is a Gaussian 

process which is independent of the data and has a spectrum 

which is determined solely by the fading process and the 

noise process. If the spectrum of this Gaussian process 

can be modeled as an all-pole filter, then maximum 

likelihood detection is equivalent to choosing the data 

sequence (transmitted signal) which minimizes the squared 

errors of the corresponding forward linear predictor. 

Mathematically, we wish to choose the transmitted signal 

x(t,I), which is a function of the data sequence I = (..., 

ao , a l/  a2 1 ...), that minimizes 

t 2 
J 1 (I) = f 	[ f 	h(t-s) x(s/I) y(s) ds] 	dt 	(2.9) 

CO 	 CO 

where y(t) is the received sequence and h(t) is the linear 

prediction error filter corresponding to the fading plus 

noise process. (All signals are assumed to be in complex 

baseband representation.) In the discrete time or sampled 

scenario in which we will be working this becomes 

0:1 	 CO 

2 
J(I) = 	î h. 77-77 y. .1 	 (2.10) 

1 3-1 	3-1 

j ==x) i=0 

Under the assumption of a causal frequency pulse of finite 

duration/ it is possible to perform the minimization of 

(2.10) using a dynamic programming approach. That is, we 

assume the frequency pulse shape f(t) satisfies 
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f(t) = 0 for t40 and t^'QT (2.11)

where T is the symbol period.. Under this condition, the

transmitted CPM signal, in complex baseband representation,

is

t n

x(t,I) = A exp{j 2uh f amf(s-mT)ds} (2.12)

-°° m=n-Q

for (n-1)T 4 t t nT. Clearly, x(t,I) (and the sampled

version xi(I)) only depends on the data sequence up to an,

that is, on In =(...,an-2, an-l, a n)•

Assume that, in the sampled version, there are r samples

per symbol period. Then define

nr . CO

Jn(I) = X [ ^ hi x 7.-i I

j=-°° i=0

(n-l)r °°

C^ h . X. TI T y ]
1 j-i j-i

j=-°° i=0

nr 00

(2.13)

2

2

+
h i x j-i I yj-i ]

(2.14)

j=(n-l)r+l i=0

There are several observations to be made about equations

(2.13) and (2.14). The first is that, because of (2.12),

in depends only upon the data symbols up to and including

the n'th, that is, J n (I) = J n (I n ). Secondly, we note that

the first summation of (2.14) i . s simply J n-1 (I n-1 ). Thus

(2.14) can be written as

Jn(In) = Jn-1(In-1) + Bn(In) (2.15)

I



nr 03 

r q Jn = min 1Jn +Bn (qfp)} (2.19) 

1 0 

where Bn (I n ) corresponds to the branch metric in the 

Viterbi decoding algorithm 

2 
B(I) = 	 [ 	h. x 	(I ) y 	] 	(2.16) n n  1 j-i n 	j-i 

j=(n- 1)r+1 1=0 

In theory, J(I) can be determined by calculating J(i) 

using (2.15). The practicality of this approach, however, 

depends on the complexity of the branch metric (2.16). If 

we assume a linear predictor of order N I  then 

h. = 
1 

for i<0 and i>N+1 	 (2.17) 

Under this assumption, consider the j = nr term of 

B n (I n ) = 

nr 
2 

î 	h. x 	.(I ) y 	.] 
1 	j-1 	

(2.18) 

j=(n- 1)r+1 1=0 

For 0 < i < r-1, equation (2.12) shows that x
nr-i 

depends 

on (a 	a
n-1+1

, ..., a
n
). In general, for kr < i < 

(k+1)r-1, x 	depends on (a 	I 	 a 	). If we 
nr-i 	 n-L-k 	n-k 

assume the predictor order N = pr-1, for some p, and 

consider all the possible j in equation (2.18), we see that 

B(I) depends only on the bits (ai,  an-t-p+1 
d" 	

n 
fe, a ). 

n--p 
That is, the branch metric at stage n depends only on the 

+p+1 most recent bits. Because of this /  the program can 

be set up as a dynamic programming problem with 2
t+p 

states. The metric cumulative function for state p is 

given by 
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where Bn (q,p) is the branch metric from state q to p, that 

is, from (an-t-p' ..., an-1)  to  (an-i-p+11 ..., an ). The 

optimum sequence histories which lead to a given state are 

stored, and the decision for the most likely bit in a given 

position is made after the sequences converge. 

2.3 	Implementation of MLSE of CPM Over Rayleigh Fading  

Channels  

In the previous section, the theoretical details of MLSE of 

CPM signals over Rayleigh fading channels were explained 

and it was found that they result in a 'trellis (finite 

state machine) with 2 /.4-P  states, where t is the duration of 

the frequency pulse shape in symbol periods and p is the 

duration of the linear predictor used to model the fading 

spectrum, also in symbol periods. The implementation 

complexity is proportional to the number,  of states. It is 

also proportional to the complexity of computing a branch 

metric, which is also a function of the order of the linear 

predictor. To make an implementation practical, we wish to 

minimize the complexity as much as possible. 

We first tackled the problem of minimizing p, the duration 

of the frequency pulse. We have chosen the N32FM waveform 

as the frequency pulse shape because of its superior 

spectral proPerties. We chose t=3, as the minimum number 

of symbol periods to which this pulse shape could be 

truncated. The corresponding pulse shapes and spectrums 

after FM modulation are shown in Figure 2.2. Clearly, 

there is little loss in the spectral properties with this 

approach. Using a shorter pulse shape, i.e.,  9=2, resulted 

in significant spectral distortion. 

Secondly, we looked at the predictor order. Linear 

prediction, as we have described it, is equivalent to 
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Figure 2.2: Pulse shape and FM modulated spectrum of 
N32FM waveform 
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modeling the fading and noise spectrum with an all-pole 

filter [8]. The predictor order, rp-1 in the notation of 

Section 2.2, is the number of poles used in this model. 

Clearly, we would like to maximize the number of poles to 

maximize the accuracy of the model. In practice, this will 

be limited by the accuracy to which the fading spectrum is 

known. On the other hand, one wishes to minimize p to 

reduce the implementation complexity. This would seem to 

leave the option of increasing the sampling rate r. 

However, increasing r reduces the signal to noise ratio; 

thus this parameter should also be minimized. The sampling 

rate, however, must be large enough to avoid causing 

significant distortion to the constant envelope properties 

of the received signal (in an ideal channel). The choice 

r=2 was selected as the best compromise between maximizing 

the signal to noise ratio and minimizing the signal 

distortion. Complexity constraints limit the value of p to 

four or less. 

If we choose p=3, then the corresponding trellis diagram 

would have 2 	= 64 states; and similarly, 128 states 

result with  9=4. An approach we have taken to simplify 

this is illustrated in Figure 2.3 for the case t=3. In 

this figure we have defined a window representing the 

received signal samples over which each term (linear 

prediction error) of the branch metric is calculated. For 

the case r=2, there are two such terms and the 

corresponding windows are shown (see equation (2.16)). 

Clearly, in this case (5=3, p=3) the branch metric is 

influenced by six bits. However, the influence of the 

sixth bit appears to be quite minor; it does not affect the 

calculation of the first term of the branch metric at all, 

and only influences the last sample of the second term. 

For this reason, it was felt that the influence of the 

sixth bit, or the (+p)  'th bit in general, could be 

ignored, and as a result the complexity is reduced by a 

factor of 2. 
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Figure 2.3 Illustration of bits affecting a branch metric calculation. 
(r=2,J1=3, p=3) 
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2.4 

Under the above assumptions, the modulated sequences 

corresponding to the 22.+p-1 bit sequences (representing the 

different trellis states) can be generated, and multiplied 

by the linear predictor coefficients to form a bank of 

matched filters. Note that these are r matched filters for 

each state, corresponding to the r terms of each branch 

metric calculation. These matched filters are all finite 

impulse response (FIR) filters with pr coefficients, and 

are thus quite simple to implement. 

In Figure 2.4, we illustrate how well a 5'th and 7'th order 

predictor matches the fading spectrum when the fading 

bandwidth to bit rate is .01, .05, 0.1 and 0.3 (r=2). The 

fading spectrum is assumed to have a 10% root raised cosine 

spectral shape and Eb/No  = 10 dB. Visually, there is a 

reasonable match between them, and there is no apparent 

significant advantage of the 7'th order predictor over the 

5'th order. 

Given the above definition of state, and the corresponding 

branch metric calculation, MLSE is performed using the 

standard dynamic programming algorithm, analogous to 

Viterbi detection of convolutional codes. 

MLSE Detection of CPM Signals With Coding  

When CPM data is protected by coding in conjunction with 

interleaving, true MLSE must use one gigantic trellis which 

accounts for the combined effects of the channel and the 

coding. Such an approach has been taken to the MLSE of 

data which is protected by forward error correction coding, 

and transmitted over a channel with intersymbol 

interference [7]. For technical reasons (the correlation 

matrix is data dependent and does not possess a square 

root), this approach cannot be applied here. A theoretical 

1 
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approach is possible but, in general, the resulting 

implementation is too complex to be of practical use in 

these circumstances. Instead.the obvious simplification is 

proposed, that is, separating the detection and decoding 

processes into two separate trellises of manageable size. 

This simplification will result in some loss in performance 

relative to true MLSE, but it is believed that if the right 

information is passed between the two trellises this loss 

can be minimized. 

2.4.1 	Soft Decision Techniques 

As previously mentioned, minimizing the implementation 

complexity of MLSE when coding has been applied seems to 

require the separation of the detection and decoding 

trellises with an exchange of information between the two. 

Considerable effort has focused on the best information or 

"soft decisions" to exchange between the trellises. 

However, we believe that we have not yet found the best 

definition of a soft decision. 

The following methods showed some improvement over simple 

hard decisions: 

(i) 	The first method was based on the bit sequences 

(histories) of the most likely paths through the 

trellis, as determined by the Viterbi decoding 

algorithm. By looking at a point before these paths 

merged, it was thought that the distribution of ls 

and Os would be indicative of the confidence in the 

decision at that point. However, it was found that, 

with this detection technique, the sequence paths 

merged quite quickly, within two or three bits of 

the system memory. As a result, the soft decisions 

produced by this technique were quantized quite 
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coarsely, typically to levels of (-1, -%, 0, k, 1). 

Consequently, the performance of this technique was 

only slightly better than hard decisions. 

(ii) The second method was based on the observation that 

in the derivation of the maximum likelihood sequence 

estimator for coded data, the objective function 

being minimized is inversely weighted by the 

received noise spectral density [9, p. 296 1 . 

Because the noise spectral density is usually 

constant, this proportionality is ignored. This 

derivation also implicitly assumes a constant 

received energy per bit, a situation which is not 

true under fading channel conditions. This 

motivated the approach of exchanging hard decisions 

between the two trellises but also.providing channel 

state information which was used as a weighting 

factor in the Viterbi decoding. The channel state 

information (received energy per symbol) is directly 

estimated using the envelope of the received signal. 

The received envelope is a reasonably accurate 

estimate of the channel state because the average 

signal to noise ratio is quite high in the cases of 

interest. This technique performed the best of the 

soft decision techniques investigated • and results 

are given in Section 2.6. 

(iii) The third method investigated was based on the 

predictor errors produced by the detection 

algorithm. The difficultly with this approach is 

that at the time the predictor errors are produced, 

the actual bit decision is unknown, as well as the 

actual path arriving at that decision. 

Consequently, we compared the minimum predictor 

error over all paths arriving at a given bit 
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decision to the minimum predictor error over all 

paths arriving at the opposite decision. The 

difference between these two minimums was the soft 

decision information. 

This method performed only slightly better than the 

hard decision approach. 

. (iv) 	The last method considered was motivated in part by 

the third method but more by the following. 

Consider the implementation when one does true MLSE, 

that is, the detection and decoding trellises are 

not separated. Assume the interleaving depth is n, 

and q i  is the state of the i'th multiplexed decoder, 

then the overall trellis state, Q, is the 

combination (product space) of the individual 

states 

= (q1 ,  

At each step in the trellis, only one of the q i  are 

altered and these are altered in sequence. The 

branch metric calculation of equation (2.18) is 

still the same when the full trellis is used; the 

only difference is in the manner that x, depends on 

I n . This dependency is illustrated in Figure 2.5 

for the case p=3 and £=3. 

Each bit in the sequences depends on a different 

decoder, in a cyclical manner which repeats every n 

bits (assuming bit interleaving as opposed to symbol 

interleaving). In general, the number of possible 

states Q is immense. If, for example, a constraint 

length 7 convolutional code is used, then the number 

ofstatesineachdecoderisk.1=2 6 , and the total 

number of states'is 1Q1 = (2 6 ) n , where n is the 
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interleaving depth. Updating this number of 

cumulative.metrics at each step is clearly not 

feasible and justifies the separation of detection 

and decoding trellises. (Note that the number of 

branch metrices to be calculated at each step is 
9.4-p 

 much less than IQ1. It is 2 9.4-p 	 i , where 2 	s the 

number of different coded bit sequences affecting 

the window.) 

The suggested approach for generating a soft 

decision for bit i is, given the MLSE of the bits 

surrounding i (the merged sequence in the Viterbi 

decoder of the CPM signal) assume the surrounding 

bits are correct and generate the prediction errors 

corresponding to bit i and an inverted bit i (see 

Figure 2.6). These two prediction errors are then 

used as explicit branch metrics in the Viterbi 

decoding algorithm of the convolutional code, not 

just as a "soft decision". 

This approach and several variations of it have been 

tried but none provide reliable detection under 

noisy channel conditions. This technique, however, 

is intuitively felt to be close to the optimum 

approach with a split trellis. Further 

investigation of this approach is strongly 

recommended, although time constraints have 

prevented our doing so here. 

2.5 	Performance Without Coding  

The performance of both differentially detected CPM (DCPM) 

and maximum likelihood detection of CPM was estimated 

through computer simulation. The results are shown in 

Figure 2.7 for the case of uncoded data. Also included for 
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comparison and validation purposes is the performance of 

differentially detected binary PSK (2 -DPSK). All results 

are for Rayleigh fading channels, with one-sided fading 

bandwidths of 0.01, 0.05, 0.1 and 0.3 times the channel bit 

rate. The fading spectrum is that described in [10]. 

Looking at these results in order of increasing fading 

bandwidth the following observations can be made. When the 

ratio of fading bandwidth to bit rate, n, is 0.01, there is 

very little difference between any of the techniques. In 

this case, the performance with 2-DPSK matches closely the 

theoretical performance curve for slow-fading Rayleigh 

channels [9, p. 491]. Performance with DCPM is slightly 

poorer than with 2-DPSK and this difference can be 

attributed to filtering losses. Performance of the MLSE 

technique is very slightly better than 2-DPSK and DCPM at 

lower Eb/No and 
slightly worse at high E

b
/N

o
. This is true 

for both a 6'th and an 8'th order predictor. The poorer 

performance at high 
Eb/No 

is because the predictors have 

been selected for an E /N of 10 dB. In general, at this 
b o 

low fading rate, there is very little difference between 

any of the methods. 

As the fading parameter n is increased to 0.05 through 0.3 

we see.a gradual degradation of the performance of 2-DPSK 

and DCPM. When n = 0.3 these two techniques are almost 
useless, providing an error rate between 0.3 and 0.4. On 

the other hand, performance with the MLSE technique remains 

remarkably good considering the channel conditions. There 

is some degradation in performance as the fading bandwidth 

increases, but even when n=0.3, MLSE in conjunction with a 

moderate complexity coding algorithm could provide reliable 

performance. The slight variations and discrepancies seen 

between the 6'th and 8'th order predictor results are due 

to the fact that both are optimized to an 
Eb/No 

of 10 dB. 
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Traditional techniques for using these faster fading 

channels are to employ FSK modulation with noncoherent 

detection and diversity. Diversity is used to make the 

fast fading channel look like a series of slow fading 

channels. The advantage of the MLSE technique is that it 

does not require the bandwidth expansion needed to 

implement diversity. 

2.6 	Performance With Coding  

The performance of 2-DPSK, DCPM and MLSE of CPM in 

conjunction with a constraint length 7 convolutional code 

was also estimated through simulation. The conditions were 

the same as in the tests without coding. The fading 

parameter n is defined as the ratio of the one-sided fading 

bandwidth to the channel bit rate. The results for 2-DPSK 

and DCPM, with hard and soft decisions being passed on to 

the Viterbi decoder for the convolutional code, are shown 

in Figure 2.8. The soft decision used for both these 

methods was the output of the delay and multiply portion of 

the differential detector. In all but the fastest fading 

rate case, coding improves performance substantially. Soft 

decisions offer a considerable performance advantage over 

hard decisions. As before, there is a slight degradation 

of performance of differential CPM relative to DPSK. In 

general, performance degrades as the fading rate increases, 

and, as one can see, when n = 0.3 coding is quite 

ineffectual. The only exception to this is that soft 

decision performance with a fading parameter of 0.01 seems 

to be slightly worse than with a fading parameter of 0.05. 

This is believed to be due to less than optimum 

interleaving in the former case. The interleave factor was 

10 in all examples and interleaving was performed on a 

subsymbol basis. 
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In Figure 2.9, the performance of MLSE with coding is 

shown. As one would expect from the uncoded results, the 

hard decision performance is better than that of both DCPM 

and DPSK, and the difference becomes more-dramatic as the 

fading bandwidth increases. The "soft decision" technique 

used was hard decisions in conjunction with channel state 

information, as described in Section 2.4. This soft 

decision technique does offer a significant advantage over 

hard decisions, but it does not perform as well as soft 

decision DPSK on the slower fading channels. It is thought 

that a better choice of soft decision may eliminate this 

difference (see Section 2.4). 
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CONCATENATED REED-SOLOMON/TRELLIS CODE PERFORMANCE 

The second part of this study was to determine, using 

computer simulation, the performance that results when an 

8-state trellis code is concatenated with a Reed-Solomon 

(RS) code for reliable transmission of data over fading 

channels. The fading channels being considered here were 

Rician fading channels, with fading bandwidths which would 

be typical of land-mobile or aeronautical satellite 

communications. The trellis code considered was an 8-state 

trellis code which independently codes the inphase and 

quadrature channels to provide a 16 point QAM 

constellation. Interleaved with the code sequence is a 

known pilot sequence, which is used to provide coherent 

detection and gain control at the receiver. The details of 

this coding and modulation strategy may be found in [14]. 

While the trellis coding and modulation scheme described 

above does provide good performance, it does not provide 

any error detection capabilities. Concatenating a 

Reed-Solomon code with the above scheme can improve 

performance and also provide error detection capabilities. 

Because of potential applications, it is desirable that the 

symbols for the RS code be 8-bit symbols, that is, elements 

of the Galois field GF(256). Another desirable 

characteristic of the RS code is that the number of 

information bits in a packet be a multiple of the 96-bit 

INMARSAT signal unit. This motivates the choice of the 

(240,180) shortened RS code (shortened from (255,195)). 

This is a rate 3/4 code that contains 15 signal units of 

data, and is capable of correcting a codeword with up to 30 

bytes in error. 

This section is divided into three subsections. The first 

discusses the implementation of the RS coding scheme. The 
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second presents the performance of the combined 

concatenated coding scheme. The third section looks at the 

error detection capability of the code. 

Reed-Solomon Code Implementation  

The block diagram of Figure 3.1 shows the position of the 

Reed-Solomon code in the overall coding and modulation 

strategy. The RS(240,180) code is the outer code in this 

scenario and it takes a block of 8x180 = 1440 information 

bits and codes it up to 8x240 = 1920 code bits. The output 

symbols of the RS code are interleaved on a subsymbol 

basis, that.is, the RS symbols are read into a buffer, one 

symbol (8 bits) per row. The interleaving depth (the 

number of symbols in the buffer) matches the interleaving 

depth (number of codecs) in the multiplexed trellis code. 

The trellis code is interleaved (or multiplexed) because 

these codes perform best when the errors are independent. 

Interleaving breaks up sequences of burst errors caused by 

the fading channel and results in better trellis code 

performance. On the other hand, an error event at the 

output of a trellis codec is usually a burst of errors. 

The interleaving also breaks up these error sequences and 

makes them look like uncorrelated errors. A RS code, 

however, is ideally suited to burst errors because it 

functions on a per symbol basis. An error burst of 8 bits 

will cause one or at most two Reed-Solomon symbols to be in 

error. The code we have chosen can correct up to 30 such 

symbol errors. Interleaving the RS code on the subsymbol 

basis, as shown in Figure 3.1, means that not only does one 

get the benefits of interleaving,for the trellis codec, but 

de-interleaving after the trellis code means that errors 

will be grouped together in bursts which is the ideal 

situation for the RS decoder. 
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The Reed-Solomon Coding Algorithm 

The RS class of codes is a subclass of the Bose-Chaudhuri-

Hocquenghem (BCH) class of codes. The BCH codes are 

multiple-error-correcting block codes and are among the 

more important coding techniques for three reasons; they 

are well understood, there are good codes in this class; 

and there are practical implementations of these codes. 

The RS codes are maximum distance BCH codes. They have the 

property that the block length divides the multiplicative 

order of the symbol alphabet. That is, if there are q 

different symbols, then the blocklength is q-1. In our 

case q2 8  and the block length is 255. 

The steps to implementing the coding algorithm for a 

RS(q-1,k) code, where k is the number of information 

symbols, are as follows: 

(i) 	define a generator polynomial g(y) by 

- where t is the number of symbol errors the code must 

be capable of correcting and f3 is a primitive 

element of the field GF(q). The number t must 

satisfy the constraint 

q-1-k-2t = 0 	 (3.2) 

(ii) 	information bits are coded into blocks of k symbols 

in GF(q) (i.e., eight information bits per symbol in 

GF(256)) and form the information polynomial 



q-1  

= 	
ci  yi 

j=0 

(3.5) 
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k-1 

i(Y) = 	si  

j= 0  

where (s.) are the information symbols. 

(3.3) 

(iii) the codeword polynomial is then given by 

c(Y) = i(Y) * g(Y) 	 (3.4) 

The coef ficients (c.) are the code symbols to be 
7 

transmitted. 

All of the computations in the above algorithm must use the 

arithmetic of GF(q). If 5 is a primitive element of this 

field, then all elements of this field except 0 (the 

additive identity) can be represented as (3 k for some k, 

and 

k 	9, 	(k+9,) mod (q-1) 
f3 	* P, 	= 13 	 (3.6) 

or using p. as . a logarithmic base 

k * 9, = 	k +  2,  mod (q-1) 	 (3.7) 

where * on the left hand side is multiplication in GF(q) 

and + on the right hand side is addition in the integers. 

While this appears to be the simplest notation, it means 

that addition in GF(q) is not simple to compute. 
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It was found that the simplest and fastest way to implement 

addition was to create an addition table and save it in 

memory. Note that with the logarithmic notation described 

above, the multiplicative identity is denoted by 0, and the 

additive identity must be denoted by some other element, 

say -.. Also note that when one writes expressions such as 

(y - 0) in equation (3.1), one means (id.y - 5j) where id 

is the multiplicative identity, (that is, 1 is not the 

multiplicative identity). 

To implement a Reed-Solomon code shortened by m information 

symbols, one follows the same procedure as above except 

that the information bits are used to form (k-m) 

information symbols in step (ii), and the remaining 

information symbols (higher terms in i(y)) are set to zero 

(the additive identity). 

The resulting codeword has a zero coefficient for the m 

highest terms and only the q-l-m lower coefficients are 

transmitted. 

3.1.2 	The Reed-Solomon Decoding Algorithm 

The approach chosen to decode the received codeword is the 

Petersen-Gorenstein-Zierler (PGZ) algorithm [11]. While 

this algorithm is not as fast as the Berlekamp-Massey 

algorithm or variations of it, it is a simple, 

understandable algorithm which is readily implemented and 

is flexible. The algorithm is flexible in the sense that 

it can be easily adapted to other Reed-Solomon (or BCH) 

codes. 

To implement this decoder requires the following steps: 

(i) 	determine the syndromes (S,) of the received 

codeword by 



A 
v 

A 
v-1 

A v-2 

A l  

-S
v+1 

_S \)2  

-S
2v 

=  11 	(1-y Xj ) 

j=1 

(3.10) 

S, = c(0) 	j = 1, 	2t 	 (3.8) 

that is, evaluate the received codeword polynomial 

c(y) at the zeros 5 3  of the generator polynomial. 

(ii) 	solve the system of equations 

i■•••■ ■■•••••■• ■•■•■ 

S 	S 	S 	... 	Sv 1 	2 	3  
S
2 	

S3 	S4 	... 
S
v+1 

S 3 	S4 	S5 	... Sv+2 

S v . S v+1 2v+2 	2v-1 

(3.9) 

for (A.), the coefficients of the error locator 

polynomial A(y) 

v-1 
A( Y )  = A vY 	Av-1 	+ 	+ A 1  y+1 

where X. .are the error locations (in GF(q)). In 
3 

the above v is clearly the number of errors. In 

practice this is unknown, and one solves (3.9) by 

beginning with the assumption v=t (the maximum 

number of errors that can be corrected) and 

decreasing it until the matrix on the left hand side 

of (3.9) is non-singular. The system of equations 

(3.9) was solved by performing an LU decomposition 

using Galois field arithmetic. 
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(ii) the zeros of the error locator polynomial .  I1(y), 

which are the inverted error locations X7 1 , are 

found using a Chien search [11], that is, by trial 

and error. Since we are dealing with a finite 

field, this is quite simple to do. 

(iii) once the error locations are known, the error 

magnitudesY . can be determined using the Forney 3  

algorithm [11] 

smx7 1) 

where ( )' means the formal derivative and n(x) is 

the error evaluator polynomial given by 

n(x) = S(x) A(x) mod x2t 

where 

2t 

S(x) = 	S. 

j=1 

(3.12) 

(3.13) 

(iv) 	the appropriate corrections are made to the received 

« codeword. Then the corrected received codeword is 

divided by the generator polynomial to recover the 

information polynomial. 

The above algorithm is relatively straightforward to 

implement and executes quite quickly. With this approach 

there are three criteria on which to reject a codeword 

(packet) for having too many errors. They are: 
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1 
3.1.3 

1  

1 

- an error position of zero (the additive identity) is 

found, 

- an error magnitude of zero is found, or 

- the remainder after dividing the corrected codeword 

polynomial by the generator polynomial is not zero. 

We will show later that these are very strong error 

detection criteria. 

If a shortened RS code is used then the received codeword 

is simply assumed to have zeros as the higher order 

coefficients, and the algorithm is executed as above. The 

shortened RS code has even stronger error detection 

capabilities, because an error position which falls in the 

m higher order symbols, which are known to be zero, is a 

further rejection criterion. 

Reed-Solomon Decoding With Erasures 

With each RS codeword there is associated k information 

symbols and 2t parity symbols, although these are not, in 

general, arranged in a systematic form. The 2t parity 

symbols allow the correction of up to t errors. In a 

sense, t parity symbols are used to determine the error 

locations and the remaining t are used to determine the 

error magnitudes. If some of the error locations are known 

(erasure information), then the code can be used to correct 

more than t errors. In fact, if the location of c'errors 

(erasures) are known, then the code can correct these 

errors and (2t-e)/2 other errors whose locations are 

unknown. (We must necessarily have e2t.) 

To implement the decoding algorithm with erasures we first 

note that the set of equations (3.9) is equivalent to 

forming the product, S(x) A(x), of the syndrome polynomial 



2t+e 

= 	S e  (3.14) 

j=1 

where 

= 	Ak  S. (3.15) 

1=0 
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and the error locator polynomial, and setting terms of 

degree greater than v equal to zero (.v...t). To implement 

erasure decoding we write 

A (x)  =. 	(x) A k (x)  

where A u (x) is the error locator polynomial corresponding 

to unknown error locations, and A k (x) is the error locator 

polynomial corresponding to known error locations. We then 

form 

Se (x) = S(x) A k (x) 

2t 

= (" L s
i 

xi) (Z A k  x 
j=1 	 t=0 

and where Ak = 1, and Ak = 0 if t 	We then set the 
0 	 t 

terms of Se (x) . A(x) of order greater than v equal to zero 

to obtain the set of equations 
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(3.16) 

This set of equations is solved forthe remaining error 

locations (up to (2t-E)/2 of them). The remainder of the 

algorithm is then executed as in the case with no erasure 

information. (The theory behind this may be found in [11], 

[12], [13 ] .) 

Performance of the Reed-Solomon Code  

In this section we look at the performance, estimated 

through computer simulation, of the concatenated coding 

scheme described in Section 3.1. This scheme uses a 

(240,180) shortened Reed-Solomon outer code and an 8-state 

QAM trellis inner code. The performance of the trellis 

code alone has been documented in [14], and the results 

here are mainly concerned with the combined performance. 

In Table 3.1 we present the fraction of codeblocks rejected 

as a function of the noise and fading parameters for a 60 

Hz fading channel. The fading varies from the static 

channel case (K=-co) to the severe fading case (K = 0 dB). 

Over the range of Eb/No , the percentage of blocks rejected 

ranges from 0 to 100%. It should be pointed out that in 

the table 0% rejected implies 0 out of the 896 codeblocks 

simulated were rejected. For comparison purposes, Table 

3.2 provides the average output bit error of the inner 
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Table 3.2: Average output error rate of inner trellis code 

which produced the results in Table 3.1. 
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trellis code under these conditions. It was found that the 

performance of the•Reed-Solomon code was strictly a 

function of the input error rate. It did not explicitly 

depend on the fading channel parameters in any other way. 

The critical point in the performance curve appears to 

occur at an input bit error rate of 1.0 x 10 -2  to the 

Reed-Solomon decoder. Below this error rate, almost all 

codeblocks are corrected and accepted; above this, error 

rate performance deteriorates rapidly. 

In all of the examples simulated, all code blocks were 

either successfully decoded or rejected. There were no 

falsely decoded code blocks! This will be explained in 

Section 3.4. 

In Table 3.3 the codeblock rejection rates over a 120 Hz 

fading channel are provided. The corresponding average 

output error rates of the inner trellis code are provided 

in Table 3.4. The major effect of the faster fading rate 

is a worsening of the average output error rate of the 

inner trellis code. The critical point in the performance 

of the Reed-Solomon code is, again, when the output error 

rate of the trelis code is 10 -2 . Increasing the fading 

rate simply'increases the Eb/No at which this 
point is 

reached. 

3.3 	Performance of the Reed-Solomon Code With Erasure  

Information  

As explained in Section 3.1.3, the correction capabilities 

of a code can be enhanced if some information about the 

location of errors can be provided. In this case the 

erasure information would be an output of the inner trellis 

code. 
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.079 	.12 	 .22 	 .079 

	

.95 	 .95 	 .92 	 .59 

	

1.0 	 1.0 	 1.0 	 .97 

Table 3.3: Fraction of codeblocks rejected in a 120 Hz 

Rician fading channel for various noise and 

'fading parameters. 

Table 3.4: Average output error rate of inner trellis code 

which produced the results in Table 3.3. 

1 



There is one tradeoff involved in the use of erasure 

information. This 'tradeoff is unknowingly declaring a 

symbol to be erased when one actually has detected it 

correctly. This will increase the number of errors and can 

result, if the error rate is'high enough, in either 

rejection of the codeblock or false decoding. 

Seemingly, the most logical source for this erasure 

• information is the channel state information generated as 

part of the trellis code demodulator [14]. In particular, 

it was decided to use the estimated channel gain as an 

erasure criterion. If the channel gain fell below a 

certain threshold, the corresponding symbol was declared 

erased. This left the problem of setting the threshold. 

This latter problem was solved by simulating performance 

using different threshold settings. In Figure 3.2, the 

code block rejection rate is plotted as a function of this 

threshold setting for various channel scenarios. In all 

cases, the unfaded channel gain is unity. We observe that, 

except for very low threshold settings, including erasure 

information can significantly increase the rejection rate. 

There were no falsely decoded blocks in all of the 

simulated blocks. 

The conclusion  is that the number of erasures is very 

sensitive to the threshold setting. Either very few 

erasures occur, or enough erasures occur to cause a block 

rejection. One might expect this to be the case, because 

the channel gain information (or any type of erasure 

criterion) obtained from the trellis code is provided on a 

bit basis and one bad bit is enough to corrupt a RS 

symbol. 

To more explicitly show the effects of this type of erasure 

criterion, simulation scenarios, identical to those which 
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produced Table 3.1, were run with a threshold setting of 

0.07. The results are shown in Table 3.5. Comparing these 

results to Table 3.1 we see that the only effect is a 

slight worsening of the rejection rates under the poorer 

channel conditions. 

From this we conclude that this erasure criterion is of 

little benefit. Other erasure criteria which are not as 

. sensitive to a single bit fading but more to a symbol fade 

could provide better performance, but these were not 

tested. 

Probability of False Decoding  

When decoding block codes three outcomes are possible. The 

code block can be correctly decoded, a codeblock can be 

rejected because an internal consistency check indicates 

that there are two many errors for the code to correct, or 

the codeblock can be falsely decoded. The simulation 

results obtained with the (240,180) shortened RS code only 

produced the first two outcomes; no false decodings 

occurred. The purpose of this section is to estimate the 

probability of false decoding. 

Reed-Soiomon codes are popular because they are optimum for 

their structure. They are maximum distance codes. To 

determine the probability of false decoding for the above 

code means getting a handle on the weight distribution of 

the code. Fortunately we have the following results for 

maximum distance codes. 

The weight distribution of a maximum distance (n,k) code 

over GF(q) is given by [11, p. 434] 

1 
1 
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Table 3.5: Fraction of codeblocks rejected in a 60 Hz 

Rician fading channel with an erasure threshold 

'of .07 and various noise and fading 

parameters. 



( 	)( 9.1 	 (q-1) 	(q-2) ‘j+h-t N(£,h;s) = 

0..d“1 
i+2j+h=s+2, (3.18) 

1 	 t=0 

A£ = { 0 	 £=1, ..., d*-1 

t-d* 

( 191) 	E 	(-1)J ()  (q 	-1) 

j = 0  

9, ?d* 	(3.17) 

where t is the number of codewords of weight 9, and d* is 

the minimum distance. We also have the result that the 

number of error patterns of weight h that are at a distance 

s from a particular codeword of weight t is [11, p. 441] 

With these results we find that the probability of a 

decoding error is [11, p. 441] 

h 	 t 	n 

(—) 	(1-P) 11-11  

h=0 q-1 	 s=0 £-1 

A
9, 
N(t,h;s) (3.19) 

where P is the probability of a symbol error. 

These formulae apply to the (255,195) Reed-Solomon code, 

but beCause the (240,180) shortened code has effectively 15 

extra parity check bits, its performance should be even 

better. Thus, equation (3.19) was evaluated to upper bound 

the probability of a false decoding. Note that because the 

probabilities in equation (3.19) are very small, while the 

numbers A and N are very large, this evaluation had to be 

performed using extended precision arithmetic. 



The results are shown in Table 3.6 for the (255,195) code, 

along with the results for simpler codes with proportionate 

error correction capabilities. The probability of a false 

decoding for this code is less than 10 -33 , that is, 

essentially zero. The smallness of these numbers may make 

one suspicious of the numerical accuracy of the results, 

but the software has been compared to results in the 

literature [15] for the (31,23) code and they match 

exactly. We therefore feel confident in these results. 



.6 

.5 

.4 

.2 

.1 

.01 

Probability of False Decoding 

RS(31,23) 	RS(63,47) ' 	RS(127,97) 	RS(255,195) 

	

1.5.10 -2 	7.3x10 -5 	1.5x10 -13 	3.0x10 -34  

	

1.4x10 -2 	6.4x10 -5 	1.3x10 -13 	2.7x10 -94  

	

1.2x10 -2 	5.5x10 -5 	1.1x10 -13 	2.3x10 -94  

	

6.0x10 -3 	3.1x10 -5 	7.1x10 -14 	1.4x10 -94  

	

1.2x10 -3 	3.6x10 -5 	6.5x10 -15 	5.6x10 -95  

	

6.6x10 -9 	1.7x10 -14 	3.0x10 -27 	2.6x10 -59  

Table 3.6: Probability of false decoding versus 

probability of input symbol error for various 

Reed-Solomon codes. 
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4.0 	SUMMARY AND CONCLUSIONS 

The three objectives of this 'study were the software 

implementation and simulation of maximum likelihood 

detection of continuous phase modulated signals over 

Rayleigh fading channels, simulating the performance over 

Rician fading channels of a (240,180) shortened 

Reed-Solomon code concatenated with a 8-state trellis code, 

and the preparation of a software user's guide for the 

complete software package. 

Under the reasonable assumptions of finite frequency pulse 

duration for the CPM signal and a finite duration linear 

predictor for the composite fading and noise spectrum, it 

was shown that MLSE of CPM signals over Rayleigh flat 

fading channels could be implemented using the Viterbi 

algorithm. It was also shown that the branch metric 

calculations required in the Viterbi algorithm could be 

implemented as a bank of FIR filter and square circuits. 

The resulting algorithm, while not simple in terms of 

complexity, could be implemented using existing digital 

signal microprocessor technology for lower data rates, that 

is, less than 5 kbps. The performance of this algorithm 

was estimated through computer simulation. The results 

showed that MLSE was comparable in performance to more 

conventional techniques such as 2-DPSK and differentially 

detected CPM when the fading bandwidth to bit rate ratio 

was low, less than .01. However, at higher fading rates, 

MLSE performed remarkably better. In fact, at a fading 

bandwidth to bit rate ratio of 0.3, these conventional 

techniques were totally unreliable, while MLSE, in 

conjunction with a constraint length 7 rate 1/2 

convolutional code, could provide very good data 

performance. 



With regard to the second task, it was found that the 

concatenated coding scheme provided very good performance. 

Over Rician fading channels with K-factors ranging from 

to 0 dB and for 60 and 120 Hz fading, the concatenated 

coding scheme was found to provide perfect performance (no 

block errors or rejections) for Eb/No  ratios greater than 8 

dB. It was also found that the Reed-Solomon coding scheme 

has very powerful error detection properties, with the 

probability of falsely decoding a block being less than 

10 -32 . With this powerful coding scheme, it was found that 

the obvious approach to providing erasure information was 

not beneficial; the major effect being to increase the 

rejection rate. 

The software users' guide, for the LINKSIM simulation 

program which was used to generate most of the above 

performance results, is included as a separate document. 
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