
(1 . 1 RELEASABLE
DOC - CR-SP-90-001

Harnessing Knowledge with Technology

CompEngServ

PERFORMANCE ANALYSIS

OF

THE FTDCS SIMULATOR & OPERATING SYSTEM

March 6, 1990

IC By:

G. Ram, D. Bowen, B.A. Bowen
CompEngServ Ltd.

Suite 600, 265 Carling Avenue
Ottawa, Ontario

Canada K1S 2E1
(613) 563-1920

LKC
QA
76.9
.F38
R36
1990
c.2

41111
.1 RELEASABLE

DOC-CR-SP-90-001

Harnessing Knozvledge with Technology

CompEngServ

Industry Canada
Library - Queen

PERFORMANCE ANALYSIS

OF

SEP 2 3 2013
Industne Canada

Bibliothèque - Queen

THE FTDCS SIMULATOR & OPERATING SYSTEM

March 6, 1990

By:

C s C

A-s.0

G. Ram, D. Bowen, B.A. Bowen
CompEngServ Ltd.

Suite 600, 265 Carling Avenue
Ottawa, Ontario

Canada K1S 2E1
(613) 563-1920

Government Gouvernement
of Canada 	du Canada

Department of Communications

DOC CONTRACTOR REPORT 	 DOC-CR-SP-90-001

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA
SPACE PROGRAM

TITLE: Performance Analysis of the FTDCS Simulator & Operating System

AUTHOR(S): G. Ram
D. Bowen
B.A. Bowen

ISSUED BY CONTRACTOR AS REPORT NO: None

PREPARED BY: CompEng Serv Ltd.
Suite 600,265 Carling Ave.
Ottawa, Ontario
K1S 2E1
(613) 563-1920

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 	36001-9-3593
S.N. 660ER-8-0003/39

DOC SCIENTIFIC AUTHORITY: 	J.M. Savoie

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

I*

DATE: February 21, 1990

Mi\R 27 MO

1.1W11111,1 	etlYean

• • • • •
• PREFACE • •
• This work was performed for the Department of Communications under DSS Contract

Number 36001-9-3593 entitled, "1-1DCS Analysis". •
• This document describes the analysis of the FMCS operating system and associated
• development environment. •
• The analysis methodology, conclusions and recommendations are provided in the main body
• of the report. The detailed results of the analysis are provided in the five Appendices.
• • • • • • • • • • • • • • • • • •
•• 	

dcw
•

• •
•
• •
• Table of Contents •
• •
• page

• 1. INTRODUCTION 	 1 • 2. THE ANALYSIS ALGORITHM 	 2 • 3. AN OVERVIEW OF THE SYSTEM 	 2 • 4. SYSTEM SOFTWARE MODULES 	 3
• 5. BEHAVIORAL ANALYSIS 	 3 6. DATA STRUCTURES 	 3 • 7. SYSTEM PERFORMANCE ANALYSIS 	 4 • 8. DESIGN AND IMPLEMENTATION - AN EVALUATION 	 5 • 8.1 Comments on the System Design 	 5 • 8.2 Comments on Design Documentation 	 5
• 8.3 Comments on Source Code Documentation 	 6 8.4 Comments on Fault Tolerance 	 7 8.5 Comments on Performance 	 7 • 9. SUMM.ARY AND CONCLUSIONS 	 8 • 9.1 Summary 	 8 • 9.2 Conclusions 	 8
• 9.2.1 System Design 	 8
• 9.2.2 Fault Tolerance 	 9 10. RECOMMENDATIONS 	 10 • 11. REFERENCES 	 11 •
• Appendices •
• Appendix A: Tables of Software Modules in FMCS Simulator

Appendix B: Tables of Software Modules in the I-TDCS Operating System
• Appendix C: Structure Design Document for the FMCS Simulator & Operating System
• Appendix D: Data Structures Used by the FMCS Simulator & The Operating System
• Appendix E: Performance Analysis Tables •
• •
• •
• • •
•
•
• • •
•
• •
•
•
• ii • •

• • • • • • • • 1. INTRODUCTION • •
• This report describes the analysis of the Fault Tolerant Distributed Computer System (FiDCS) operating system and associated Sun-based simulator. The purpose was to
• reconstruct from the source code the logical structure, behavior, functionality and
• performance of the FMCS software. In addition, as a secondary mission, an evaluation of
• the extensibility and modularity is required. •
• The work was performed by executing a reverse engineering algorithm, which involved

examining the source code to reconstruct the functionality of software modules, thus creating
• a description of the system behavior using structure diagrams, tabulating the data flow
• between modules and finally determining performance from the code traversed and the data
• passed. As part of this detailed analysis, an evaluation of the design and its implementation
• was fomaulated. • The results of such an analysis produces a rather bulky data set. This data is recorded in
• Appendices relevant to each step in the analysis algorithm. The data, not only documents the
• analysis and provides quantifiable evidence for the conclusions, but are useful separately as a
• basis for extending the functionality of the system and as a basis for designing and predicting
• the performance of new applications programs. •
• The body of the report is presented in eight sections. Section 2 records the analysis

algorithm, executed to produce these results. •
• Section 3 gives an overview of the 1-e1DCS software as it is purported to have been designed. •
• Section 4, 5, & 6 contain the results of the execution of the input data set. Section 4 is
• devoted to a description of the software modules as identified from the examination of the

source code. Section 5 is a behavioral description of the interaction of these modules based
• on the call hierarchy. Section 6 tabulates the data structures. •
• Section 7 contains an estimate of performance, Section 8 contains our evaluation of the
• overall design of the code. Section 9 contains a summary of the results with respect to the
• statement of work, and our conclusions and recommendations based on these results and our

extensive exposure to the details of the implementation. • • • • • • • • • • • • • • • • 1 • •

lb
 l
b
 lb

 lb
 l
b 6
 lb

 lb
 lb
 lb

 l
b
 6
 lb

 l
b 6
 lb

 l
b 6
 lb

 l
b
 lb

 l
b

lb
 lb

 4
b
0

6
 0 1

6
 lb

 0
 lb

 l
b
 lb

 lb
 lb

 lb
 l
b
 6
 lb

 6
 lb

 lb
 6
 lb

 l
b
 lb

 l
b

lb
 l

b
6
 lb

 lb
 l
b
 lb

2. THE ANALYSIS ALGORITHM

The system was analyzed by executing the following algorithm:

1. Create the Analysis Data Base

The data set supplied to the project team was examined to determine the purpose,
functionality and implementation of the FMCS software. The data set was organized to
support the requirements of this algoiithm.

2. Detennine Software Modularity

The source code was analyzed to determine the structure, extent and purpose of all the
identifiable software modules, as well as the data stored and passed.

3. Determine Behavior

System behavior was determined using structure diagrams based on the data obtained in
step 2 which shows the calling hierarchy and the structure of the calls of all modules.

4. Determine Data Structures and Data flow

From the data obtained in Step 2, a tabulation of all data structures was obtained.

5. Determine Performance

From step 2 to 4, and in terms of the expectations in 1, an evaluation of the system
design and the implementation is obtained; from steps 3 and 4, a performance analysis of
the execution of all system calls is obtained.

3. AN OVERVIEW OF THE SYSTEM

The FIDCS is a fault tolerant distributed computer system designed to utilize clusters of
processors in applications requiring reliable, high performance real-time computation. The
three major components of the 1-ri.DCS architecture are:

1) hardware building blocks,
2) software building blocks and,
3) a layered operating system.

The FIDCS hardware building blocks are buses and processing units (PUs). The software
building blocks are developed using high level languages.

The operating system is composed of three distinct layers - the kernel, the executive and the
distributed system manager. The layered operating system not only provides the designer

2

• • • • • •
• with hardware transparency, but also provides the necessary fault detection, isolation and

recovery mechanisms. Further details about the operating system are given in Appendix A. •
• Application program development for the FMCS is supported by a simulator for system
• development and testing. System development consists of 4 phases: system definition,
• system design, system implementation and system configuration. The FMCS simulator
• provides support in all the areas of system development. The simulator is also useful for

evaluating several fault tolerant techniques. Appendix B gives more details about system • • development, vvith an example. • • • 4. SYSTEM SOFTWARE MODULES
• From the input data set, the modules of the FMCS operating system and the simulator were
• identified. For each module the following information was accumulated: • • - name of the module, • - its parameters, • - a brief description on its purpose, - the number of lines of "C" code in it, • - list of all the other modules it calls, • - its output, and • - a brief description on whether the module is completed and if the module algorithm
• complies with its code. •
• Appendix A contains a brief description and example of the system development phases.

Generic modules are grouped together, with a tabulation of parameters. •
• Appendix B lists the software modules used in implementing the FMCS operating system.
• The modules are grouped together based on the 3 different layers of the operating system -
• kernel, executive and distributed system manager.
• • 5. BEHAVIORAL ANALYSIS •
• A behavioral analysis defines interaction between all the software modules. It usually relates
• the calls in a hierarchical decomposition and provides information not only on the topology
• of the interaction, but on the structure of the call.

• Such an analysis uses the definition of modules obtained in Section 4, and is conveniently
111 	presented as a structure diagram. •
• Appendix C describes in detail, the purpose of having a structure design for a system, the
• structure diagram conventions used in this document and the behavior of F1DCS software

based on our analysis. • • • 6. DATA STRUCTURES •
• The data structures necessary to support the system, and the data passed during intermodule

calls form an important part of a performance estimate. These data were identified and
• isolated during the examination of the source code (Section 4). • • • • 3 • •

•

A complete data dictionary, which resulted from this analysis is contained in Appendix D.

7. SYSTEM PERFORMANCE ANALYSIS

Based on the FilDCS source code, and the resulting structure diagram (see Appendix C, &
D), this section details the performance of the te1DCS. The performance of the various
system software modules is tabulated in Appendix E. Each row of this table corresponds to a
software module listed in Appendices A or B.

The following describes in detail how the data listed for each module was obtained.

Column I: Name of the software module..

Column 2: Number of other modules called in order to execute this module.

Column 3: The sum of the total # of lines of "C" code in order to execute this module. This
is the sum of the total number of lines of code in this module and the total number of
lines of code in each of the called modules.

Column 4: The number of lines of "C" code required to execute the module in the worst
case. A worst case scenario for a module represents the longest path through it. In order
to calculate what percentage of the total code is executed in the worst case situation, the
following was done.

Five modules were chosen at random: "st_sw_config", "st_config_exec",
"add resource", "K_cpu_executive" and "xnetwork_assign". It was assumed that the
loops in these modules are executed only once (for any other number, the percentage
needs to be modified accordingly). Next, the sum of the total number of lines of "C"
code in each of the 5 modules was determined (205). Also the sum of the number of
lines of code required to traverse the longest path through these 5 functions was
calculated (170). The ratio of the latter to the former was about 83%. Hence, it was
assumed that about 83% of the total code is run in the worst case. Thus the results in
column 4 are obtaineçl using:

0.83 * (result in column 3).

Column 5: The number of lines of assembly code required to execute the module in the
worst case. This consists of both the actual code and the overhead in the conversion
from "C" to assembly code.

The following assumptions are made for the calculations. A line of C code is
approximately equal to 10 lines of assembly code. Also, for every C function called,
about 30 lines of assembly code is added as overhead. Hence, the results in this column
are obtained using:

[(result in column 4) * 10] + [(result in column 2) * 301 .

Column 6: The number of clock cycles required to execute this module. For this, the
following assumption is made. A line of assembly code is nearly equal to 6 clock cycles
"(for an Intel 8086). Hence, the results in this column are calculated using:

4

0
 lb

 6
 lb

 6
 6
 6
 6
 lb

 lb
 lb

 l
b
 6
 lb

 l
b l
b 0
 lb

 l
b
 lb

 6

0
 lb

 6

6
 0
 lb

 lb
 l
b
lb
 0
 lb

 6

6

0
 lb

 6

6
 6

 6

6

6
 lb

 0
 6
 lb

 l
b
 0
 lb

 0

6
 lb

 0
 lb

 6

(result in column 5) * 6.

The tables in Appendix E give the time for executing most of the 1-riDCS functions in
the worst case. These numbers can be used to choose the entry point functions in
creating application programs with appropriate execution times.

8. DESIGN AND IMPLEMENTATION - AN EVALUATION

8.1 Comments on the System Design

The overall system can be commented on under two major heading: the design and the
implementation.

The design appears to have been undertaken without a clear statement of requirements.
These would have normally included, at least, a statement of the intended applications, the
functionality and the performance. The logical design of the system would have addressed
these requirements, in terms of the necessary functionality, and the overall organization of
the necessary interfaces to the application programs. For example, exposing all layers of the
system to the application programmer provides flexibility but leaves fault tolerance as a
suspicious feature.

The implementation is incomplete with several missing modules, and the recursive nature of
the Executive frustrates attaining the desired features.

8.2 Comments on Design Documentation

After constructing the tables for the FMCS software modules, a detailed analysis of the
1-e1DCS simulator and the operating system was done. This included constructing a tree of
processes using the functions defined in the tables.

The following points are worth mentioning, with regard to the 1-4-TDCS software design, and
related documentation.

1. A hierarchical approach is not maintained in the implementation of some of the
modules. The code for these functions is scattered. This might probably have been due
to the fact that a structure design was not done before implementation. Note however,
that this does not mean that the module is incorrect.

For example, one could implement the main simulator module as a loop which only calls
other functions to execute chosen commands. Therefore, the clean up at the end of
simulation would be left to the exit function. This would present a neater approach to
understanding the working of the system. anTently, "s_test" does both.

2. It was mentioned by concerned authorities that some of the 1411)CS software modules
were not tested. However, the structure design assumes that not only all of them have
been tested but also that they are all correct.

3. Some of the functions (e.g., ICHLbus, ICHI_device and KHI_process) are implemented
so that they rely on interrupts created by VMS.

5

•
•
•
•
•
•
•
•
•
•
•
•
•
•

4. Majority of the control entry point functions have not been implemented. However,
there are provisions to add to them. The following is a list of functions which can be
completed:

K_link_control,
xsimple_control and xnmr_control,
kbus_control, kdevice_control and kprocess_control,
xnetwork_control,
kmb_master control, kmb_slave_control and k188_contol.

5. Since the documents claim that the system is based on an object oriented approach, it
would be helpful if these objects (or data structures) are described as clearly and
completely as possible. A bunch of files containing "C" code for the data structures is
all that is available. Therefore, it is up to the reader to figure out why, how, and where
these data structures are used.

Also, there is no documentation on the purpose of the various fields in a data structure.
For example, it is difficult to figure out the purpose of the field "sp_value" or "ds_value"
in the data structure "context".

8.3 Comments on Source Code Documentation

The FMCS source code listings and detailed design manuals for the simulator and the
operating system were used to create tables of software modules.

During this study, the following shortcomings were noticed in the FMCS documents (source
code listings).

1. There is high level description of the system followed by a low level source code. How
the transition from one to the other has been done is not explained anywhere. This
makes it difficult to tie the two together and to check if the source code really satisfies
system goals. It takes quite a while for an unfamiliar reader to understand the mapping.

2. A few of the data structures are only mentioned by name. Their contents are not
defined.

3. Some functions have not been implemented (e.g., "mc_unknown_name"). Also, there is
no documentation provided for the DSM fault manager modules and data structures.

4. The code and the algorithm for certain software modules have the following problems:

* most often for a module, the algorithm explicitly states that a value is to be returned
from it But there is no value returned from the function in the source code.

* a module source code may sometimes contain calls to other functions, and these calls
are not described in the algorithm. Why these functions are called is thus not known.
(Code lacks comments - see below).

* there are no comments in the code whatsoever. This may not matter for simple
functions. If functions are long and complicated (e.g., with nested loops and 'if'
statements), it is difficult to detemiine what is happening or whether the code really does

6

6
 6
 0
 6
 6
 lb

 6
 6
 lb

 6
 6
 lb

0

0
 0

6

6

6

6

6
 lb

 6
 lb

6

6

6
 6
 lb

 6
 lb

 Ce
 6

 6
 I
I

I

I
le

6
 6

6

6

what it is supposed to do. This is a very serious problem for someone wishing to modify
the existing code. Note: it is very difficult for a non "C" programmer to read and
understand functions with hundreds of lines of "C" code.

Also, algorithm statements in some functions are quite low level, simple and redundant
(e.g., set X to 0). These statements are superfluous and more appropriate to appear as
comments in the code.

* some complicated functions do not have an associated algorithm. What the module
does or is supposed to do can only be determined from its brief (often 1 line) description.
Therefore it is not possible to establish whether the module is correct.

* occasionally there are discrepancies between the algorithm and the code. For example,
the algorithm may state "perform function X"; the code might contain the statement "if
conditions A and B are true - then perform the function X". It is conditions like these
that define the structure design of the module.

* order of function calls differ in certain modules. This may affect the behavior of the
module and its end result. For example, the steps: square X and then increment X yield
a result different from the result obtained by incrementing X and then squaring it.

* for some of the functions, the code does not contain the implementations for major
portions of the algorithm (e.g., "xnmr_done").

8.4 Comments on Fault Tolerance

Since it is possible for application code to access the Operating System through the
Distributed System Manager, the Executive or the Kernel, application programs can by-pass
the Distributed System Manager, and thus the fault tolerance protection claimed by the
overall system.

The Fault Tolerant features of the Operating System were not complete, as shown in Section
8.2.

The recursive nature of the Executive lends itself to programmer's abuse and errors.

The Distdbuted System Manager appears to have a single point failure. It would seem that
for all processes there will be one master process on one CPU which spawns processes for
execution on multiple machines, analyzes the results and determines sanity.

8.5 Comments on Performance

The Tables documented in the appendices provide timing data that can be used in
determining the performance of a proposed application. The.Executive portion is difficult to
get timing for (because of its recursive nature).

For most of the operating system executive modules in the tables, no data is given. This is
due to the fact that the function calls they make are very convoluted. It is quite impossible to
determine the total number of lines of code in them, as it is very difficult to trace the more
than hundred function calls made. Moreover, the number of lines of code in the worst case is

7

l b
 lb

 0
 0

 0
 0

 l
b

0
0

lb
 l b

 lb
 lb

 0
 0

 lb
 l

b
lb

 l b
 0

 0
 lb

 lb
 l b

 lb
 lb

 0
 lb

 0
 lb

 lb
 l b

 lb
 lb

 lb
 lb

 lb
 0

 0
lb

 lb
 l b

 0
 l

b
lb

 lb
 lb

 0
 l b

 lb
 0

 0
lb

 l b
 lb

very much execution dependent. Figure Fi shows an example of the function calls made by
one such module "XB_boot".

Some of the Shell functions could take up to 250 milli seconds, which could seriously affect
real time performance.

9 SUMMARY AND CONCLUSIONS

9.1 Summary

Under the ternis of the contract, we have examined the FTDCS design documents and source
code. In order to develop an understanding of the system, to model its performance, we
have performed an extensive reverse engineering exercise. The results have been tabulated
and presented in the appendices. We have also developed comprehensive tables which will
allow performance analysis for any application program to be written in the future.

As well, the results in the first four appendices provide the designers data base for anyone
tasked with adding to the existing software. It will be necessary for anyone working in the
program to study these appendices and use them as a road map when changes must be made
and to determine what the ripple effect of changes will be.

It is generally concluded .that the Operating System is a prototype aimed at the distributed
processing applications. It is hard to conceive of how and why one would use it as it is
currently designed and built. Adding this prototype functions to the operating system
functions of a real time operating system could create a more usable product

The other major concern raised is the extensive use of recursion in programing the
Executive. This use of recursion appears as a misuse of the capabilities provided by
recursive programming techniques.

9.2 Conclusions

9.2.1 System Design

It is not apparent from either the supplied documentation or the analysis of the source code
that a complete system requirements analysis and design was performed before beginning
this project.

The high level description followed by pseudo code is inappropriate for Object Oriented
Program design.

There is no explanation of how this operating system would be used by application
programmers or if it provides sufficient functionality. A comparison to other real time
operating systems such as VRTX or Harmony would identify many features for an
application program, which are not available in this system.

As a result of the convoluted, recursive and undocumented design. It will be a very difficult
job to modify this code. The number of other functions called and how modifications might
affect them is hard to detemline. This will make the maintenance costs high. Thus, it will be
difficult for a third party to assume responsibility for life cycle support.

8

X_set memory X set mes§ages

xr_enter_ 	xr_set_ 	X-report_ 	xsimple_ 	xnmr
name 	junction 	error 	control 	control

X set
stack

XR_
assign

X allocate XMI_Network XMUo XMl_process

XCB control X set queue

X_mem
error

X_more_
memory

XM_
control

K_Iink_
assign

X_new_ 	X new _ _
message 	buffer

X_report_
error

X_next
query

XC_query_
dsm

xsimple_ 	xnmr xnerwork xio_ 	xprocess_
in 	 in 	 out 	ouf 	 out

X command... 	X route
consumer

xio_
send

xio_
query

XR_ 	X_copy_
assign 	message

list_
status

• ••■ ••
XB_boot

Figure Fi: Possible execution paths for XB_boot

lb
 6
 6
 lb

 l
b
6
 le

 l
b
0

0
 lb

 0
 lb

 6
 lb

 6
 lb

 l
b
lb
 6
 lb

 lb
 lb

 l
b

lb
 0
 lb

 l
b
lb
 l

b
lb

 l
b
 le

 l
b
 6
 lb

 6
 0
 I
!
 6
 lb

 6

0
 0
 lb

 l
b

l b
 l

b 0
 lb

 l
b

lb
 l
b
 0

0

The design appears to have been more concerned with the Fault Tolerant issues than
achieving real time performance and functionality.

9.2.2 Fault Tolerance

The operating system has been design around the intercommunication between consumers
and users and between different layers of the operating system. The facility to have tasks
executing on separate machines exist, however, the fault tolerant algorithm is incomplete. It
does not have the control function for responding to detected faults implemented.

10

•
•
•
•
•
• 10. RECOMMENDATIONS •
• Future Enhancements •
• The following is a list of recommended actions assuming future work will be undertaken
• using this software.

• 1. Study of User needs and requirements: The operational environment of theF1DCS should
• be analyzed to determine any missing functionality. As well any special needs for
• distributed processing and fault tolerance should be defined.
• • 2. Study of Features: The performance requirements, the fault tolerance requirements and the

distributed nature of the operational environment. •
• 3. A full identification of what modules have been tested and work: There is a question
• remaining of which modules work and which have not been tested. This should be resolved.
• • 4. Implement missing functions: The functions listed above should be implemented.

• 5. Re Implement the Executive: Ideally the executive should be reimplemented to minimize
• the recursive nature and thread like style. • • 6. Add new input/output servers to Kernel (RS323, RS422, IEEE488, etc.): Any new I/O
• servers should be identified and added.

• 7. Modify as a result of User needs study: Depending on the users need study new
• functionality should be added to the operating system. • • • • • • • • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• 11

•

• • • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
O
•

11. REFERENCES

1. FMCS Applications: Source Code Listings, June 15, 1987, PRIOR Data Sciences Ltd.,
Kanata, Ontario, Canada.

2. FMCS Applications: System Interface Design and Programmer's Guide, June 15, 1987,
PRIOR Data Sciences Ltd., Kanata, Ontario, Canada.

3. ker.00S Operating System Revisions: Detailed Design, April 22, 1988, PRIOR Data
Sciences Ltd., Kanata, Ontario, Canada.

4. 1-e1DCS Operating System Revisions: Source Code Listings, April 22, 1988, PRIOR
Data Sciences Ltd., Kanata, Ontario, Canada.

5. PTDCS Software Development: Source Code Listings, April 22, 1988, PRIOR Data
Sciences Ltd., Kanata, Ontario, Canada.

6. FTDCS Software Development: System Programmer's Guide, April 22, 1988, PRIOR
Data Sciences Ltd., Kanata, Ontario, Canada.

7. A Fault-Tolerant Distributed Computer System For Spacecraft and Other Applications,
Executive Summary: May 31, 1987, Tridex Systems Inc., Nepean, Ontario, Canada.

12

• • • • • • • • APPENDIX A •
• TABLES OF SOFTWARE MODULES IN •
• THE FTDCS SIMULATOR •
• (from 1988 manuals) •
•
•
•
•
•
•
•
•
•
•
•
•
•

6
 6
 lb

 lb
 lb

 lb
 lb
 0
 6
 lb
 lb
 l
b

lb
 l
b
 lb

 1
,
6
l b
 lb

 lb
 lb
 l
b
 lb

 6
lb
 l
b l
b 6
 lb

 l
b l

e l
b l
b
 lb

 lb
 lb
 6
 lb

 lb
 6
 6
 lb

 0
 lb
 lb

 lb
 6
 lb

 6
 lb

 6
lb

 0
 0
 0

Table of Contents

page

1.INTRODUCTION 	 A-1
2. SYSTEMS DEFINITION 	 A-1
3. SYSTEMS DESIGN 	 A-4
4. SYSTEM EVIPLEMENTATION 	 A-4
5. SYSTEM CONFIGURATION 	 A-8
6. SYSTEM DEVELOPMENT EXAMPLE 	 A-11

6.1 Description 	 A-11
6.2 Definition 	 A-11
6.3 Design 	 A-11
6.4 Implementation 	 A-12

6.4.1 Distdbuted Software Implementation 	 A-12
6.4.2 Kernel Implementation 	 A-17
6.4.3 Executive Implementation 	 A-21
6.4.4 Local Configuration Specification 	 A-21

6.5 Configuration 	 A-22

lb
 l
b
 lb

 l
b
lb
 l

b
6
 lb

 6
 lb

 l
b
lb

 l
b
 lb

 6
 lb

 lb
 l
b

lb
 l
b
 01

 l
b
0

6
 l

b
lb
 l
b

lb
 6
 6
 le

 lb
 lb

 lb
 lb

 l
b
 lb
 6
 lb

 l
b l
b I
I l
b
 6
 lb

 6
6

6

0
 l

b
lb

 l
b

lb
 l
b
 0

List of Tables

page

Table 2.1 Simulator Defniition Functions. 	 A-2
Table 2.1 Simulator Definition Functions (Contd.) 	 A-3
Table 2.1 Simulator Definition Functions (Contd.) 	 A-3
Table 4.1 Local Configuration Specification Modules. 	 A-6
Table 4.1 Local Configuration Specification Modules (Contd.) 	 A-7
Table 4.1 Local Configuration Specification Modules (Contd.) 	 A-8
Table 5.1 Simulator Configuration Support Functions. 	 A-9
Table 5.1 Simulator Configuration Support Functions (Contd.). 	 A-10
Table 5.1 Simulator Configuration Support Functions (Contd.). 	 A-10
Table 6.1 Distributed Software Implementation Functions. 	 A-13
Table 6.1 Distributed Software linplementation Functions (Contd.). 	 A-14
Table 6.1 Distributed Software Implementation Functions (Contd.). 	 A-15
Table 6.1 Distributed Software Implementation Functions (Contd.). 	 A-16
Table 6.2 Resource Link Specific Functions. 	 A-18
Table 6.2 Resource Link Specific Funcitons (Contd.). 	 A-19
Table 6.2 Resource Link Specific Funcitons (Contd.). 	 A-20
Table 6.2 Resource Link Specific Funcitons (Contd.). 	 A-21
Table 6.4 Simulator Configuration Modules. 	 A-23
Table 6.4 Simulator Configuration Modules (Contd.). 	 A-24
Table 6.4 Simulator Configuration Modules (Contd.). 	 A-25

A-ii

lb
 le

 lb
 6
 lb

 l
b
 lb
 lb

 6
 lb

 l
b

lb
 l
b
lb

 6
 lb

 l
b

lb
 l

b
lb

 l
b

lb
 lb
 lb

 lb
 6
 lb

 lb
 0
 lb

 l
b
 lb
 lb
 l
b
 lb

 lb
 lb

 6
 lb

 l
b
 lb

 lb
 lb

 lb
 II
 lb

 l
b
 6

6
 lb

 l
b
 6
 lb

 l
b l

b

1. INTRODUCTION

Developing a FMCS system consists of four phases: definition, design, implementation and
configuration. The FMCS simulator provides support in all the four phases.

The following four sections describe the four system development phases supported by the
simulator.

2. SYSTEMS DEFINITION

The entire system definitions consists of - hardware and software definitions. It specifies the
hardware and software components needed to meet the system requirements.

The simulator provides an interactive interface through which the system hardware definition
(specifications of pmcessors, I/O devices, network devices and their interconnections) can be
specified.

The software definitions can be specified through a text file, which can be edited through any
interactive text editor. Data in the distributed software specification text file includes:

1. DSM consumer defmition: text file entry is of the form:

manager resource router processor [processor]

where "resource" is the application resource which contains the "manager" (DSM) code,
"router is the fault tolerant routing (1-rfR) algorithm used by DSM, and "processor" is the
list of processors on which the DSM will run.

2. Application consumers definition: 3 types of entries for this:

* Definition - consumer definition:

define consumer resource router namecount

where "define" is defme consumer command, "consumer" is the name of the consumer
to define, "resource" is the application or I/O resource for the consumer, "router" is FTR
algorithm, and "namecount" is redundancy level for the consumer.

* Linking - consumer output channels:

link consumer branch° branchl I branchN]

where "link" is a link consumer command, "consumer" is consumer to link, "branchX" is
a consumer name to which the output message will be sent.

* Running - activating consumers at system startup time:

run consumer

lb
 l

b
lb

6
 lb

 0
 l
b

lb
 lb

 l
b
lb
 lb

 lb
 lb

 lb
 lb

 l
b
lb
 6
 lb

 lb
 lb

 lb
 l
b

lb
 6

lb
 l

b
lb
 l
b l
b 6
 lb

 lb
 6
 6
 6
 II

 6
 6
 6
 6
 6

lb
 l
b
lb
 l
b
lb
 l
b
lb

6

6
 lb

 l
b
lb

where "run" is the run consumer command and "consumer" is the name of the consumer
to run at system startup time.

The system definition is used by the simulator to create a system model.

Functions:

The functions in Table 2.1 implement the system definition in order to be submitted to the
DSM. The following functions are in the file stsystem.c.

Module 	 Parameters 	Module Description

st_system 	 model 	 creates a simulator system definition
st_set_system 	model 	 initializes system definition structure
st_sw_config 	model 	 reads & interprets distributed s/w specs
read_consumers 	file_buffer, 	reads application consumer specs &

cmd_buffer 	creates DSM commands
std_define 	 file_buffer, 	creates define consumer command

cmd_buffer
std_link 	 file_buffer, 	creates link consumer command

cmd_buffer
std_run 	 file_buffer, 	creates run consumer command

cmd_buffer
st_sys_config 	model 	 inteiprets and integrates hardware model

to the system definition
add_sys_manager 	model, system, 	adds a resource manager to system definition

manager_id
add_sys_router 	model, system, 	adds a routing manager to system definition

router_id
add_sys_resource 	model, system, 	adds a resource to system definition

resource_id
add_sys_exec 	model, system, 	adds a processor's local executive id to

cpu_id 	 system definition

Table 2.1 Simulator Definition Functions.

0
 lb

 l
b

 6
 l

b
lb

 l
b

 6
lb

 l
b

lb
 6

 II
 l

b
 6

 6
 l

b
lb

 0
 lb

 lb
 0

 l
b

lb
 lb

 II
 le

 lb
 lb

 lb
 0

 lb
 II

 I
I

lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 6
 lb

 6
 lb

 lb
 6

 6
 l

b
lb

 6
 l

b
 0

 6

Module 	 Lines 	Calls made to 	 Return Value
in code

st_system 	 7 	st_set_system 	none
st_sw_config
st_sys_config

st_set_system 	47 	none 	 none
st_sw_config 	57 	read_consumers 	none
read_consumers 	15 	std_define 	 none

std_link
std_run

std_define 	 23 	sh_define_cmd 	none
std_link 	 35 	sh_set_link_cmd 	none

sh_add_link_cmd
std_run 	 9 	sh_run_cmd 	 none
st_sys_config 	35 	add_sys_manager 	none

add_sys_router
add_sys_resource
add_sys_exec

add_sys_manager 	11 	none 	 none
add_sys_router 	12 	none 	 none
add_sys_resource 	15 	none 	 none
add_sys_exec 	22 	none 	 none

Table 2.1 Simulator Definition Functions (Contd.)

Module 	 Completed? 	Is code the exact implementation of algorithm?

st_system 	 yes 	 yes
st_set_system 	yes 	 yes
st_sw_config 	yes 	 algorithm does not quite explain the code
read_consumers 	yes 	 yes
std_define 	 yes 	 algorithm does not quite explain the code
std_link 	 yes 	 algorithm does not quite explain the code
std_run 	 yes 	 algorithm does not quite explain the code
st_sys_config 	yes 	 yes
add_sys_manager 	yes 	 yes
add_sys_router 	yes 	 yes
add_sys_resource 	yes 	 yes
add_sys_exec 	yes 	 yes

Table 2.1 Simulator Definition Functions (Contd.)

• • • • •
3. SYSTEMS DESIGN 	 • •

	

The simulator provides two support aids for system design. These are in the form of 	•

	

information, displayed interactively during a simulation session. The two system design 	•
requirements are given below. 	 • • 1. Loading Requirements: indicate which application software modules have to be

compiled and linked for each processor. Command "show applications". 	 • •
2. Local operating system requirements: indicate the kernel link servers and interrupt 	•

	

handlers to be incorporated into the local operating system kernel for each processor, 	• i.e., shows which resources are linked to each processor. Command "show cpu • cpuname". •

	

Besides the simulator design, there are the distributed software (DSM and application 	•

	

software) design requirements and local operating system (kernel, configuration and 	•
executive) design requirements. 	 • •
4. SYSTEM IMPLEMENTATION 	 • •
System implementation consists of the implementation of the following modules: 	 • •
1. Distributed Software implementation: consists of coding, compiling and linldng 	• software modules determined by the system design for - DSM and application software. •
2. Local operating system executive implementation: consists of the implementation of the 	•

	

executive resource manager components and routing manager components. For each of 	•

	

these components, the implementation consists of coding the component initialization 	•

	

function and its associated event handling functions (e.g., "in", "out", "assign" and 	• "control"). • '
3. Local operating system kernel implementation: consists of the implementation of the 	•

	

local operating system kernel components - processor specific functions, kernel interrupt 	•
handlers and kernel link servers. 	 • • The processor specific functions include the processor reset trap function and a number • of kernel processor management functions. This code is written in assembly. •

	

Interrupt handlers service processor interrupts. Implementation of an interrupt handler 	•

	

requires the coding of at least 2 functions: an initialization function and an interrupt 	•
service routine. 	 • • Kernel link servers perform the kernel level processing associated with individual

	

processor resource links. Implementation of kernel link managers consists of coding the 	•

	

component initialization function and its associated event handling functions (e.g., "in", 	•
"out", "assign" and "control"). 	 • •

4. Local Configuration Specification: consists of data in a form which can be interpreted 	• by the simulator to produce configuration (text) files for each local operating system. • Local configuration specifications include data which defines interrupt handlers and

	

kernel link servers for each processor. For example, shared memory addresses, code 	• • • • • • A - 4 • •

11
 1
1
 1
1
 1
)
 1
1
 11

 1
,
 11

 1
1

1,
 1
1

1
1
 1

1
11

 1
,

11
 1
1
1
1
 4
1
 1,

 1
1
1
1

1
,
 CI

 11
 1
1
1 1
 1
1
 1
1
 11
 11

 1
1
 11
 1
,
 11

 1
1

1
1
 1
1
 I
I
 11

 1
1
 II

 I
I
 11

 1
1
11
 11

11
 11

segment and stack addresses and length, etc. Tables below show the modules for
processor independent configuration and modules to interpret local configuration specs.
for a simulated processor. These functions are defined in the file stconfig.c and
stsimconfi g. c

lb
 II

lb
 l
e l

b
lb

 lb
 I

I
lb

 II
 l

b
 lb

 0
1

ll
lb

 lb
 lb

 lb
 II

 11
 lb

 lb
 lb

 lb
 lb

 l
b

lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 le

 lb
 1

1
lb

 le
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 II

 lb
 lb

Module 	 Parameters 	Module Description

st_config 	 model, cpu_id, 	creates a local OS config structure based
config_fn 	on system definition & local config. specs

st_config_header 	model, cpu, 	sets up a header for a local executive
config 	 configuration data structure

st_config_exec 	model, cpu, 	creates DSM and executive portions of local
config 	 configuration data structure

config_resources 	model, cpu, 	adds executive resource data to the local
config, exec_mark 	configuration data structure

config_execs 	model, home_cpu, 	adds linked executive data to the local
config, exec_mark 	configuration data structure

add_exec_consumer 	model, exec_id, 	adds executive consumer definition to the
config, exec_mark 	local configuration data structure
link_id

config_dsm 	 model, system, cpu, 	adds DSM consumer to the
link_mark, config 	local configuration data structure

st_simconfig 	model, cpu, 	creates config data for processor's local OS
config 	 running on the simulator

simconfig_managers 	model, cpu, 	initializes exec. resource managers
config 	 configuration data

simconfig_handlers 	model, cpu, 	initializes kernel interrupt handlers
config 	 configuration data

simconfig_servers 	model, cpu, 	initializes kernel link servers
config 	 configuration data

simconfig_resources 	model, cpu, 	initializes processor's linked resources
config 	 configuration data

simconfig_links 	model, cpu, 	initializes processor's resource links
config 	 configuration data

simconfig_kernel 	model, cpu, 	adds kernel configuration data to the
config 	 configuration data structure

simconfig_kmemory 	model, cpu, 	adds kernel memory manager config. to the
config 	 configuration data structure

simconfig_kcpu 	model, cpu, 	adds kernel processor manager config. to the
config 	 configuration data structure

simconfig_Idink 	model, cpu, 	adds kernel link manager config. to the
config 	 configuration data structure

sim_network_link 	model, link_id, 	adds link to n/w resource config. to the
config, marker 	configuration data structure

sim_io_link 	 model, link_id, 	adds link to I/O resource config. to the
config, marker 	configuration data structure

sim_process_link 	model, link_id, 	adds link to application process resource
config, marker 	config. to the configuration data structure

Table 4.1 Local Configuration Specification Modules.

Module 	 Lines 	Calls made to 	 Return Value
in code

st_config 	 13 	st_config_header 	none
config. entry point

st_config_header 	11 	none 	 none
st_config_exec 	39 	config_resources 	none

config_execs
config_dsm

config_resources 	50 	none 	 none
config_execs 	20 	add_exec_consumer 	none
add_exec_consumer 	24 	none 	 none
config_dsm 	 65 	none 	 none

st_simconfig 	13 	simconfig_managers 	none
simconfig_handlers
simconfig,servers
simconfig_resources
simconfig_links
simconfig_kernel
st_config_exec

simconfig_managers 	14 	none 	 none
simconfig_hancllers 	17 	none 	 none
simconfig_servers 	16 	none 	 none
simconfig_resources 	8 	none 	 none
simconfig_links 	22 	none 	 none
simconfig_kemel 	9 	simconfig_kmemory 	none

simconfig_kcpu
simconfig_Idink

simconfig_kmemory 	13 	none 	 none
simconfig_kcpu 	11 	none 	 none
simconfig_klink 	65 	sim_network_link 	none

simio_link
sim_process_link

sim_network_link 	23 	none 	 none
sim_io_link 	 18 	none 	 none
sim_process_link 	19 	none 	 none

Table 4.1 Local Configuration Specification Modules (Contd.)

0
il

 6
 0
 II

 6

6
 II

 6
 6
 l

b
lb
 l
b
 0
 lb

 I
I
II
 l
b
 lb

 6
 lb

 6
 6
 6
 lb

 6
 6
 6
 41

 6
 l
b 6

0
 lb

 6
 6
 6
 I
I 6
 lb

 6
 lb

 6
 lb

 6
 lb

 0
 6
 lb

 6
 lb

 6

6
 II

 6

Module 	 Completed? 	Is code the exact implementation of algorithm?

st_config 	 yes 	 yes
st_config_header 	yes 	 yes
st_config_exec 	yes 	 yes
config_resources 	yes 	 yes
config_execs 	yes 	 yes
add_exec_consumer 	yes 	 yes
config_dsm 	 yes 	 code easier to follow with comments

st_simconfig 	yes 	 yes
simconfig_managers 	yes 	 yes
simconfig_handlers 	yes 	 yes
simconfig_servers 	yes 	 yes
simconfig_resources 	yes 	 yes
simconfig_links 	yes 	 yes
simconfig_kernel 	yes 	 yes
simconfig_lcmemory 	yes 	 yes
simconfig_kcpu 	yes 	 yes
simconfig_klink 	yes 	 yes
sim_network_link 	yes 	 yes
sim_io_link 	 yes 	 yes
sim_process_link 	yes 	 yes

Table 4.1 Local Configuration Specification Modules (Contd.)

S. SYSTEM CONFIGURATION

The system configuration consists of 2 "C" files with data required to configure each local
operating system. The 2 files are the functional configuration table file and the configuration
data file.

1. Functional Configuration table: this is a table of entry points through which the local
operating system functionality can be accessed at both the kernel and the executive
levels. Entry points can be divided into 2 groups: configuration dependent entry points
(initialization function) generated by the simulator according to local configuration
specifications (Section 4.1); and entry points common to all local operating systems
(e.g., boot functions).

2. Configuration Data: this is the data required to initialize the local operating system at
processor boot time. The data consists of:

(a)Configuration data header:

- system processor id,
- length of kernel, executive and DSM data components

(b)Kernel configuration data:

•
•
•
•
•
• - initialization data for kernel memory, processor and link managers
• - initialization data for kernel interrupts and link servers
• - hardware dependent data associated with each of the processor's resource links
•
• (c) Executive configuration data:

• - initialization data for executive controller and executive routing and resource managers •
• (d) Distributed system manager data: This data is included only if the DSM is scheduled
• on the processor for which the configuration data is being generated.
•
•

- string of commands describing the system software and hardware configuration to the
DSM, generated from simulator's system definition. •

The simulator produces the local configuration data and the local functional configuration
table using the system definition and the local configuration specification. The modules
which provide this functionality are described in Table 5.1. They are defined in the file
stfile.c.

Module 	 Parameters 	Module Description

st_file 	 model, prefix, 	produces config data & functional config.
config_fn 	table

stf data 	 name, config 	produces configuration data file.
add_header 	fid, name, 	writes configuration data header to

header 	 configuration data file
add_kernel 	fid, ptr 	writes kernel configuration data to

configuration data file
add_exec 	fid, exec 	writes executive configuration data to

configuration data file
add_dsm 	 fid, ptr 	writes DSM configuration data to

configuration data file
add_dsm_command 	fid, command 	writes a DSM command to

configuration data file
stf table 	 name, config 	produces a functional configuration table file
tbl_header 	fid, name, 	writes configuration table header to

header 	 the functional configuration table file
tbl_handlers 	fid, config 	writes handler init , entry points to

the functional configuration table file
tbl_servers 	fid, config 	writes server init , entry points to

the functional configuration table file

Table 5.1 Simulator Configuration Support Functions.

A - 9

• Functions: •
•
•
•
•
•

•

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
6
•
•
•
•
•

Module 	 Lines 	Calls made to 	 Return Value
in code

stifle 	 18 	st_config 	 none
stf data
stf table

stf data 	 26 	add_kernel 	 none
add_header
add_exec
add_dsm

add_header 	31 	none 	 none
add_kernel 	 13 	none 	 none
add_exec 	 94 	none 	 none
add_dsm 	 7 	add_dsm_command 	none
add_dsm_command 	18 	none 	 none
stf table 	 18 	tbl_header 	 none

tbl_handlers
tbl_servers

tbl_header 	 28 	none 	 none
tbl_handlers 	28 	none 	 none
tbl_servers 	 28 	none 	 none

Table 5.1 Simulator Configuration Support Functions (Contd.).

Module 	 Completed? 	Is code the exact implementation of algorithm?

stifle 	 yes 	 yes
stf data 	 yes 	 algorithm does not fully explain the code
add_header 	yes 	 yes
add_kemel 	 yes 	 yes
add_exec 	 yes 	 code easier to read with comments
add_dsm 	 yes 	 yes
add_dsm_command 	yes 	 yes
stf table 	 yes 	 algorithm does not fully explain the code
tbl_header 	 yes 	 yes
tbl_handlers 	yes 	 yes
tbl_servers 	 yes 	 yes

Table 5.1 Simulator Configuration Support Functions (Contd.).

For each process, a local operating system image is produced by compiling the functional
configuration tables and linking it to the processor reset trap function.

After the generation of all system software, it is downloaded to the target according to the
load specification known to the local operating system.

lb
 lb

 0
 6
 6
 lb

 6
 lb
 lb

 lb
 6
 lb

 l
b
lb
 lb

 l
b
lb
 6

II
 6

 l
b 6

 l
b
 6
 lb

 l
b

li
b
 lb

 l
b
 lb
 lb

 l
b 6

0
 6
 lb

 lb
 l
b
lb
 lb

 l
b 6
 lb
 lb

 lb
 6

 l
b

lb
 l

b
lb

 lb
 l
b

lb
 lb

 6

6. SYSTEM DEVELOPMENT EXAMPLE

6.1 Description

This section describes an example of system development. It lists the modules used in each
phase of the system development (Sections 2-5).

The test system application provides a system which monitors two I/O devices, performs
high priority processing of one and low priority processing of the other. In addition, there is
an interface to DSM in order to issue commands to the operating system.

The test system hardware configuration consists of two processing sites connected via a
multibus. One of the processors is also connected to an advanced communicating computer
(also via a multibus), which is used for I/O device management.

6.2 Definition

Hardware Specification: six hardware components:

- 86/35 SBC (named k35)
- NIU processor (named kniu)
- console terminal (named console)
- I/O devices (named iol and io2)
- multibus inter-processor link (named multibus)

Distributed Software Specification: describes to the simulator the software components of
the system. The application processes include "dsm", "testl", "test2" and "shell". The
software specification file for input to the simulator is given in detail in Section 7.2.2 in
FTDCS Software Development - System Prograrnmer's Guide. Commands: define, link and
run are used to describe the specifications for the application processes.

6.3 Design

The system design requirements identify the software components required to implement the
system at both the distributed software and local operating system levels.

The following simulator commands can be used: "show applications", "show cpu k35" and
"show cpu kniu".

0

0
 lb

 l
b
 lb

 0

0

0
 lb
 l
b
0
lb
 lb

 lb
 0
 lb
 lb

 lb
 0
 0
 lb

 lb
 lb

 0
 0
 lb

 lb
 0

 l
b
 lb

 lb
 lb

 lb
 lb

 lb

0
 0

0
 l
b 0
 0
 0
 0
 0
 0

0
 lb

 0
lb

 0
 0

0
 0
 0
 0

6.4 Implementation

6.4.1 Distributed Software Implementation

This consists of coding, compiling, linking and locating distributed software modules. This
includes coding for "dsm" (described in 'Tables of Software Modules in FMCS Operating
System' & `FTDCS Operating System Revisions'), "testl", "test2" and "shell".

The "shell" functions are the first group of functions in the table below. They are defined in
the files: shell.c, shcommand.c and shstatus.c. These functions process operating system
commands.

Application processes like "testl" and "test2" can send messages to and receive messages
from the OS using the basic run time library functions. These functions are defined in the
file rtllib.c and listed as the second set in the table below.

The application processes "testl" and "test2" are defined in the files testl.c and test2.c
respectively. They are listed as the third set of functions in Table 6.1.

11
 1
1
 III
 11

 4
1

11
 1

1
11

 1
,

11
 1

1
11

 I
,
lb

 1
1
11

 I
I

11
 I

I
11

 1
1
11
 11
 1
1
 1
1
 11
 11)
 11
 11

 1
1
 I,

 11
 1
1
 11

 1
1
11

 1
1
II
 11

 I
le
 1
1 1
1
 1
1
 1
1
 11

 1
1

1,
 1

1
11

 1
1

11
 1
1
11

0
11
 11

Module 	 Parameters 	Module Description

main 	 none 	 mainline function for operating system shell
sh_define 	 command_buffer 	processes "define consumer" shell commands
sh_link 	 command_buffer 	processes "link consumer" shell commands
sh_run 	 command_buffer 	processes "run consumer" shell commands
sys_command 	command, ack_buffer 	sends a command to the DSM

ack_length
sh_status 	 buffer 	 processes "status" shell commands
consumer_status 	buffer 	 processes "status consumer" shell commands
exec_status 	buffer 	 processes "status cpu" shell commands

sys_accept 	 notify, reply, 	accepts a query or call message (no
reply_length 	block)

sys_query 	 branch, notify, 	sends a query message (no block)
parameter, data,
data_length, reply,
reply_length

sys_reply 	 consumer, signature, replies to a query or call message
data, data_length 	(no block)

sys_call 	 branch, data, 	sends a query message, waits for reply
data_length, reply, 	(block)
reply_length

sys_receive 	reply, reply_length 	waits for data message (block)
sys_send 	 branch, data, 	sends a data message (no block)

data_length
sys_ready 	 none 	 sets ready state (block)
wait_event 	 mode 	 waits for an event
setup 	 none 	 sets up processor for simulator compatibility
tx_packet 	 none 	 sends packet to opera.ting system
rx_packet 	 none 	 receives packet from operating system

testl 	 none 	 application process to process input data
and send results to output channel 0

accept_fn 	 source, sign, 	replies to a query message with most recent
data, length 	input data

test2 	 none 	 application process to receive input data
data from channel 0, and send it to channel 1

process_data 	ptrl, 11, ptr2, 	combines two character strings to a third
12, ptr3

Table 6.1 Distributed Software Implementation Functions.

Module 	 Lines 	Calls made to 	Return Value
in code

main 	 27 	sh_define 	 none
sh_link
sh_run
sh_status
U_set_memory
U_set_command
U_str_line
U_flush_line

sh_define 	 17 	sh_define_cmd 	none
sys_command
U_str_line
U_word_line

sh_link 	 36 	sh_set_link_cmd 	none
sh_add_link_cmd
sys_command
U_str_line

sh_run 	 9 	sh_run_cmd 	 none
sys_command
U_str_line

sys_command 	16 	sys_write 	 length of data returned in
sys_call 	 acknowledgement buffer

sh_status 	 20 	exec_status 	 none
consumer_status
U_flush_line
U_str_line

consumer_status 	48 	sys_call 	 none
U_flush_line
U_str_line

exec_status 	63 	sys_call 	 none
U_flush_line
U_str_line

Table 6.1 Distributed Software Implementation Functions.

lb
 l
b
 0
 lb

0
 lb

 6
lb

 l
b
lb
 lb

 l
b

lb
 l
b
 lb

 6
 lb

 l
b

lb
 6

 l
b

lb
 6
 l
b l

b
lb
 0
 fb

 6
lb
 lb

 lb
 lb

 l
b

lb
 lb

 l
b
lb

 l
b

lb
 l

b 6
 l

b f
b
 6
 0

lb
 6
 l
b
lb

 lb
 lb

 6
 lb
 01

Module 	 Lines 	Calls made to 	 Return Value
in code

sys_accept 	 12 	tx_packet 	 none
sys_query 	 19 	tx_packet 	 none
sys_reply 	 13 	tx_packet 	 none
sys_call 	 17 	tx_packet 	 call reply data length

wait_event
sys_receive 	12 	tx_packet 	 received data length

wait_event
sys_send 	 11 	tx_packet 	 none
sys_ready 	 7 	tx_packet 	 none

wait_event
wait_event 	36 	tx_packet 	 none

rx_packet
setup 	 7 	none 	 none
tx_packet 	 6 	none 	 none
rx_packet 	 6 	none 	 none

testl 	 19 	setup 	 none
sys_receive
sys_send
sys_accept
sys_reply
accept_fn

accept_fn 	 10 	sys_reply 	 UPKT_READY, indicating
sys_accept 	 return to ready state

test2 	 24 	setup 	 none
sys_receive
sys_call
sys_send
process_data

process_data 	18 	none 	 concatenated string length

Table 6.1 Distributed Software Implementation Functions (Contd.).

11
 0

 1
1

11
 1
1 1

1
6

II
 1

1
11

0
 11

 1
1
 II

 1
1
11

 1
1
11
 1
1
11
 11

 0
 1

1
11
 1

1
0 6

 1
1
II
 11

 1
1 1
1
 11
 11

 1
1

0 6
 11

 11
 6
 11
 11

 6
11

 1
1
 II

 11
 1
1
 6
 II

 I
I
11

 6
 0

 1
1

Module 	 Completed? 	Is code the exact implementation of algorithm?

main 	 yes 	yes (function has no "quit" - infinite loop)
sh_define 	 yes 	yes
sh_link 	 yes 	algorithm does not fully explain the code
sh_run 	 yes 	yes
sys_command 	yes 	yes
sh_status 	 yes 	yes
consumer status 	yes 	code easier to follow with comments
exec_status 	 yes 	code easier to follow with comments

sys_accept 	 yes 	yes
sys_query 	 yes 	yes
sys_reply 	 yes 	yes
sys_call 	 yes 	yes
sys_receive 	 yes 	yes
sys_send 	 yes 	yes
sys_ready 	 yes 	yes
wait_event 	 yes 	yes
setup 	 yes 	yes
tx_packet 	 yes 	yes
rx_packet 	 yes 	yes

testl 	 yes 	yes
accept_fn 	 yes 	yes
test2 	 yes 	yes
process_data 	yes 	yes

Table 6.1 Distributed Software Implementation Functions (Contd.).

11
 6
 0
 11

 11
 11

 11
 11
 11

 1
1 1

1
11
 1
1 1
1 6

 1
1 I

I 1
1

0
11

 1
1

0
11

 1
1 1

11
 11

 0
 1
1

0
0
0

11
 11

 6
 11

 11
 6
 6

6
11

 6
 6
 li

 6
 11

 6
 1
1
6

11
 1

1
11
 6

6
 11

 6

6.4.2 Kernel Implementation

The kernel implementation consists of processor specific and kernel interrupt hancllers and
link server functions.

The processor specific functions are described below:

- k86cpu.c contains kernel processor manager functions. They are similar to the functions
listed in Table 2.1 of Appendix B. The difference being these functions are more
hardware specific than the functions in the tables. They make calls to assembly
language routines required specifically for the operating system kernel on an Intel 8086.
For example, K_cpu_kernel calls K86_DISABLE instead of the general ICU_disable.
The algorithms and code however remain the same. The assembly language routines are
defined in the file "k86mc.asm".

- k86memory.c contains the kernel memory manager functions. They are the same as the
functions in Table 2.2 of Appendix B.

- k861ink.c contains the kernel link manager functions. They are the same as the functions
in Table 2.3 of Appendix B.

Following are the kernel interrupt handlers and link servers functions:

- the file k86process.c contains applications to system server functions. They are similar
to the functions in "ksimprocess.c" listed in Table 2.4 of Appendix B. However, the
following differences can be listed between the two sets of functions: functions in
"k86process.c" are more hardware specific (and use the assembly language routines
given in the file "k86prmc.asm"), function KHI_process (the interrupt handler function)
is implemented.

- functions in lcmbmaster.c are multibus shared memory master server functions. The C
functions are listed as the first group of functions in Table 6.2 below. The related
assembly language routines are defined in the file "kmbmasmc.asm".

- functions in kmbslave.c are multibus shared memory slave server functions. The C
functions are listed as the second group of functions in Table 6.2 below. The related
assembly language routines are defined in the file "kmbslvmc.asm".

- k188.c contains functions which implement a server to support the 188/48 I/0
processors. The C functions are listed as the third group of functions in Table 6.2 below.
The related assembly language routines are defined in the file "k188mc.asm".

1
1
 1
1
 11
 11

 1
,

11
 1

1
11

 1
1

11
 1
1
 II

 1
1
 II

 1
1
 11

 1
1
11

 1
1
11
 1
1
11
 0
 11

 1
1
 4
1
 1
1
 1,

 0
1
1
1
 1
1
 0

11
 11
 1
1
 1
/
 11
 1
1
 1
1
 1
1
 1
1
 11

 1
1
 11
 11
 11
 11
 1
1
 11

 1
1

11
 1

1
11

1
11
 1
1

Module 	 Parameters 	Module Description

KSI_mb_master 	server 	 server initialization entry point
KIE_mb_master 	unit_base, vector 	interrupt handler initialization entry point

unit_count
lanb_master_in 	server, status, 	server in entry point

bus_id
kmb_master out 	server, bus_id, 	server output entry point

packet
kmb_master assign 	server, link, name 	server assign entry point
kmb_master_control 	server, code, 	server control entry point

local_id, data

KSI_mb_slave 	server 	 server initialization entry point
KHI_mb_slave 	unit_base, vector 	interrupt handler initialization entry point

unit_count
kmb_slave_in 	server, status, 	server in entry point

bus_id
kmb_slave_out 	server, bus_id, 	server output entry point

packet
kmb_slave_assign 	server, link, name 	server assign entry point
kmb_slave_control 	server, code, 	server control entry point

local_id, data

KSI_i188 	 server 	 server initialization entry point
KHU188 	 unit_base, vector 	interrupt handler initialization entry point

unit_count
kl 88_in 	 server, data, 	server in entry point

tty_id
k188_out 	 server, tty_id, 	server output entry point

packet
k 1 88_assign 	server, link, name 	server assign entry point
k188_control 	server, code, 	server control entry point

local_id, data
k188_receive 	tty, offset, 	processes receive interrupt

length
in_188_raw 	tty, e_ptr 	processes input characters
k188_transmit 	tty 	 processes transmit complete interrupt
out_188_raw 	tty, data, length 	processes output characters
k188_tx_packet 	tty, data, length 	sends characters to 188/48 board

Table 6.2 Resource Link Specific Functions.

Module 	 Lines 	Calls made to 	 Return Value
in code

KSI_mb_master 	19 	K_allocate 	 none
KHI_mb_master 	7 	MB86_M_LNIT 	none
kmb_master_in 	49 	K_new_network 	none

K_new_buffer
K_cpu_k2x
K_free_network
K_release_buffer
K_copy_buffer
K_next_queue
MB86_SIG_SLAVE

kmb_master out 	22 	K_add_queue 	 none
K_new_network
K_copy_buffer
MB86_SIG_SLAVE

kmb_master assign 	30 	K_allocate 	 none
K_new_network
K_new_buffer
MB86_M_CONTROL
K_link_control

kmb_master_control 	11 	device specific control 	none
functions

KSI_mb_slave 	19 	K_allocate 	 none
KHI_mb_slave 	7 	MB86_S_INIT 	none
kmb_slave_in 	40 	K_new_network 	none

K_new_buffer
K_cpu_k2x
K_free_network
K_release_buffer
K_next_queue
MB86_SIG_MAS'TER
MB86_SLAVE RX
MB86_PUT_S2—M
MB86_SLAVE TX
MB86_GET_M2S

kmb_slave_out 	19 	K_add_queue 	 none
K_new_network
K_copy_buffer
MB86_PUT_S2M
MB86_SIG_MASTER

kmb_slave_assign 	30 	K_allocate 	 none
K_new_network
K_new_buffer
MB86_S_CONTROL
Klink_control

kmb_slave_control 	11 	device specific control 	none
functions

Table 6.2 Resource Link Specific Functions.

A - 19

II
 1,

 1
1
11
 11

 1
1
11
 1

1
IP

 1
1

1,
 1

1 1
1
11
 1
1
 lb

 l
b 1
1 1

1
11

 1
1

11
 11

 1
1
11
 1

1 I
I 1

1
11

 1
1

1,
 11

 1
1 1
1
 41

 11
 1,

 11
 6
 11

 11
 1

1
11

 1
1
 11
 11

 1,
 1,
 11

 1
1

11
 1
, I
I 1

1
11

Module 	 Lines 	Calls made to 	 Return Value
in code

KSI_i188 	 20 	K_allocate 	 none
KEll_i188 	 7 	I1881NIT 	 none
k188_in 	 19 	k188_receive 	 none

k188 transmit
I188fN

k188_out 	 18 	out_188_raw 	 none
K_new_io
K_copy_buffer
K_add_queue

k188_assign 	50 	K_allocate 	 none
K_new_io
K_new_buffer
Klink_control
I188SETUP
I188OUT

k188_control 	11 	device specific control 	none
functions

k188_receive 	18 	in_188_raw 	 none
k188_tx_packet
I188DIN
I188OUT

in_188_raw 	37 	K_cpu_k2x 	 number of characters in
K_new_io 	 echo buffer
K_new_buffer

k188_transmit 	18 	in_188_raw 	 none
k188_tx_packet
K_next_queue
out_188_raw
K_release_buffer
K_free_io

out_188_raw 	20 	k188_tx_packet 	none
K_new_buffer
K_release_buffer

k188_tx_packet 	13 	I188DOUT 	 none
I188OUT

Table 6.2 Resource Link Specific Functions (Contd.).

lb
 lb

 lb
 lb

 l
b

lb
lb

 6
 lb

 le
 lb

 ID
 lb

 l
b

lb
 lb

 l
b

 lb
 lb

 lb
 lb

 0
 le

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 II

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 II
 lb

 lb
 1

1 l
b

 lb

Module 	 Completed? 	Is code the exact implementation of algorithm?

KSI_mb_master 	yes 	 yes
KHI_mb_master 	yes 	 yes
lcmb_master in 	yes 	 code easier to read with comments
kmb_master_out 	yes 	 yes
lcmb_master_assign 	yes 	 yes
kmb_master control 	yes 	 no, cuirently, control functions not implemented

KSI_mb_slave 	yes 	 yes
KIII_mb_slave 	yes 	 yes
lcmb_slavein 	yes 	 code easier to read with comments
kmb_slave_out 	yes 	 yes
kmb_slave_assign 	yes 	 yes
kmb_slave_control 	yes 	 no, currently, control functions not implemented

KSI_1188 	 yes 	 yes
KHU188 	 yes 	 yes
k188_in 	 yes 	 yes
k188_out 	 yes 	 yes
k188_assign 	yes 	 code easier to read with comments
k188_control 	yes 	 no, currently, control functions not implemented
k188_receive 	yes 	 yes
in_188_raw 	yes 	 yes
k188_transmit 	yes 	 yes
out_188_raw 	yes 	 yes
k188_tx_packet 	yes 	 yes

Table 6.2 Resource Link Specific Functions (Contd.).

6.4.3 Executive Implementation

All components required to implement the executive are given in "FIDCS Operating System
Revisions" manuals and listed in Appendix B. There are no changes made to these modules.
The code modules are compiled and added to the executive code library.

6.4.4 Local Configuration Specification

The local configuration specification specifies to the simulator the kernel configuration data
for each processor. The interrupt handlers and link servers data definitions are included.
The local configuration specification for the processors k35 and kniu are given in detail in
"FTDCS Software Development - System Programmer's Guide".

• ' •

6.5 Configuration

System configuration consists of: the inteipretation by the simulator of the local
configuration specifications, generation of the local OS using the local configuration
specifications, and downloading of all the system software to the target hardware.

The configuration modules are defined in the file st86config.c. They create the configuration
data structures for an Intel 8086 family processor's local operating system. The functional
configuration tables and the configuration data files thus created for the example are given in
"F1DCS Software Development: System Programmer's Guide".

A - 22

11
 l
b l

b 1
1
 II

 l
b
 lb

 11
 lb

 I
I
lb

 I
I 1

1
11
 II

 11
 1

1
II
 11

 1
1
 lb

 l
b
 11

 1
1
 lb

 II
 11

 lb
 11

 11
 II

 I
I
 11

 1
1
11
 1
1
 II

 11
 1

1
11

 1
1
 11
 lb

 1
1
 II

 11
 I

I
11

 1
1

II
 1

1
II
 1

1
1
1
 lb

Module 	 Parameters 	Module Description

st86_config 	model, cpu, 	creates config data for Intel 8086's local OS
config 	 running on the simulator

st86_managers 	config 	 initializes exec. resource managers
configuration data

st86_handlers 	config 	 initializes kernel interrupt handlers
configuration data

st86_servers 	config 	 initializes server config. data structures
st86_resources 	config, model 	initializes resource config. data structures
st86_read 	 file, model, 	reads local configuration specification

config 	 file
add_handler 	file_buffer, 	reads a handler definition from the local

config 	 configuration specification file
add_server 	 file_buffer, 	reads a server definition from the local

config 	 configuration specification file
add_resource 	file_buffer, 	reads a resource definition from the local

config, model 	configuration specification file
add86_network 	file_buffer, 	reads network resource specific data from

resource 	local configuration specification file
add86_io 	 file_buffer, 	reads I/O resource specific data from

resource 	local configuration specification file
add86_process 	file_buffer, 	reads appl. process resource specific data

resource 	from local configuration specification file
st86_1inks 	 model, cpu, 	initializes processor's resource links

config 	 configuration data
st86_kernel 	model, cpu, 	adds kernel configuration data to the

config 	 configuration data structure
st86_kmemory 	model, cpu, 	adds kernel memory manager config. to the

config 	 configuration data structure
st86_kcpu 	 model, cpu, 	adds kernel processor manager config. to the

config 	 configuration data structure
st86_1dink 	 model, cpu, 	adds kernel link manager config. to the

config 	 configuration data structure
st86_network_link 	model, link_id, 	adds link to n/w resource config. to the

config, marker, 	configuration data structure
resource

st86_io_link 	model, link_id, 	adds link to I/O resource config. to the
config, marker 	configuration data structure
resource

st86_process_link 	model, link_id, 	adds link to application process resource
config, marker, 	config. to the configuration data structure
resource

Table 6.4 Simulator Configuration Modules.

11
 4
1
11

6
 11

 11
 1
1
0
6
11

 1
1 1
1 6

0
 1

1
11

 0
 6

 1
1
11
 1
1 6
 11

 11
 1
1 1

1 1
1 1

1
11

 1
1 1
1 1
1 1

1
11
 1
1
6
11

 1
1
 11

 11
 11

 11
 11

 1
1

11
 1

1
11
 1
1 1

1
0

11
 11

 0
 11
 6

Module 	 Lines 	Calls made to 	Return Value
in code

st86_config 	23 	st86_managers 	none
st86_handlers
st86_servers
st86_resources
st86_read
st86_1inks
st86_keniel
st_config_exec

st86_managers 	12 	none 	 none
st86_handlers 	11 	none 	 none
st86_servers 	11 	none 	 none
st86_resources 	12 	none 	 none
st86_read 	 17 	add_handler 	 none

add_server
add_resource

add_handler 	30 	none 	 none
add_server 	 34 	none 	 none
add_resource 	61 	add86_network 	none

add86_io
add86_process

add86_network 	17 	none 	 none
add86_io 	 15 	none 	 none
add86_process 	29 	none 	 none
st86_1inks 	 32 	none 	 none
st86_kernel 	 9 	st86_kmemory 	none

st86_kcpu
st86_klink

st86_kmemory 	13 	none 	 none
st86_kcpu 	 11 	none 	 none
st86_klink 	 65 	st86_network_link 	none

st86_io_link
st86_process_link

st86_network_link 	24 	none 	 none
st86_io_link 	22 	none 	 none
st86_process_link 	26 	none 	 none

Table 6.4 Simulator Configuration Modules (Contd.).

11
 I/

 II
 11

 II
 II
 11

4
1
 4

1
1
1
 II

 11
 I
I I

, 1
1
11

I
I
 11

 I
, 1

1
11

 1
1

I,
 11

 1
1

0
1
 1

1
I
,
 11

 I
I 1

1
1
1
 I
I
 11

Module 	 Completed? 	Is code the exact implementation of algorithm?

st86_config 	yes 	 algorithm does not fully explain the code
st86_managers 	yes 	 yes
st86_handlers 	yes 	 yes
st86_servers 	yes 	 yes
st86_resources 	yes 	 yes
st86_read 	 yes 	 yes
add_handler 	yes 	 algorithm does not fully explain the code
add_server 	 yes 	 algorithm does not fully explain the code
add_resource 	yes 	 algorithm does not fully explain the code,

also code is easier to read with comments
add86_network 	yes 	 algorithm does not fully explain the code
add86_io 	 yes 	 algorithm does not fully explain the code
add86_process 	yes 	 algorithm does not fully explain the code
st86_1inks 	 yes 	 yes
st86_kernel 	yes 	 yes
st86_kmemory 	yes 	 yes
st86_kcpu 	 yes 	 yes
st86_klink 	 yes 	 code is easier to read with comments
st86_network_link 	yes 	 yes
st86_io_link 	yes 	 yes
st86_process_link 	yes 	 yes

Table 6.4 Simulator Configuration Modules (Contd.).

•
•
•
•
•
•
• APPENDIX B
•
•
• TABLES OF SOFTWARE MODULES IN THE

•
• 	 YFDCS OPERATING SYSTEM

• (from 1988 manuals)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

lb
 0
 lb

 0
 0
 lb
 lb

 0
 0
 lb

 0
 lb

 0
 lb

 l
b
0

lb
 0

 l
b

lb
 l

b
lb

6
 lb

 6
lb

 0
 lb

 l
b

lb
 l

b
lb
 lb

 l
e

lb
 0

lb
 0
 6
 lb

 lb
 0
 6
 6
 0
 lb

 6
 0
 0
 41

 0
 6

lb
 lb

 0

Table of Contents

page

1. INTRODUCTION 	 B-1
2. KERNEL DATA STRUCTURES & FUNCTIONS 	 B-1

2.1 Processor Management 	 B-1
2.2 Memory Management 	 B-4
2.3 Link Management 	 B-7
2.4 Kernel Link Server Functions 	 B-9

3. EXECUTIVE DATA STRUCTURES & FUNCTIONS 	 B-11
3.1 Executive Controller 	 B-11
3.2 Executive Router Manager 	 B-17
3.3 Executive Resource Manager 	 B-22

4. DISTRIBUTED SYSTEM MANAGER DATA STRUCTURES & FUNCTIONS B-30
4.1 DSM Controller 	 B-30
4.2 DSM Scheduler 	 B-32
4.3 DSM Resource Manager 	 B-35
4.4 DSM Fault Manager 	 B-35

0
 0
 0
 0
 0
 0
 0
 0
 0

0
 6
 0
 0
 0

0

0
 0

0
 lb

 0
 0

 0
 0

0
 0
 0
 0
 0
 0

0
 lb

 0
 0

0

0

0

0

0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 lb

 0
 0
 0
 6
 0
 0
 0

List of Tables

page
Table 2.1 Processor Management Functions 	 B-2
Table 2.1 Processor Management Functions (Contd.) 	 B-3
Table 2.1 Processor Management Functions (Contd.) 	 B-4
Table 2.2 Memory Management Functions 	 B-5
Table 2.2 Memory Management Functions (Contd.) 	 B-6
Table 2.2 Memory Management Functions (Contd.). 	 B-7
Table 2.3 Link Management Functions. 	 B-8
Table 2.3 Link Management Functions (Contd.). 	 B-8
Table 2.3 Link Management Functions (Contd.). 	 B-8
Table 2.4 Kernel Link Server Functions. 	 B-9
Table 2.4 Kernel Link Server Functions (Contd.). 	 B-10
Table 2.4 Kernel Link Server Functions (Contd.). 	 B-11
Table 3.1 Executive Controller Functions. 	 B-13
Table 3.1 Executive Controller Functions (Contd.). 	 B-14
Table 3.1 Executive Controller Functions (Contd.). 	 B-15
Table 3.1 Executive Controller Functions (Contd.). 	 B-16
Table 3.2 Executive Routing Manager Functions. 	 B-18
Table 3.2 Executive Routing Manager Functions (Contd.). 	 B-19
Table 3.2 Executive Routing Manager Functions (Contd.). 	 B-20
Table 3.2 Executive Routing Manager Functions (Contd.). 	 B-21
Table 3.3 Executive Resource Manager Functions. 	 B-23
Table 3.3 Executive Resource Manager Functions (Contd.). 	 B-24
Table 3.3 Executive Resource Manager Functions (Contd.). 	 B-25
Table 3.3 Executive Resource Manager Functions (Contd.). 	 B-26
Table 3.3 Executive Resource Manager Functions (Contd.). 	 B-27
Table 3.3 Executive Resource Manager Functions (Contd.). 	 B-28
Table 3.3 Executive Resource Manager Functions (Contd.). 	 B-29
Table 4.1 DSM Controller functions 	 B-30
Table 4.1 DSM Controller functions (Contd.) 	 B-31
Table 4.1 DSM Controller functions (Contd.) 	 B-32
Table 4.2 DSM Scheduler Functions. 	 B-33
Table 4.2 DSM Scheduler Functions (Contd.) 	 B-34
Table 4.2 DSM Scheduler Functions (Contd.) 	 B-35

• • • • •
• 1. INTRODUCTION •
• The following tables lists the software modules used in implementing the FMCS operating
• system. The modules are taken from the l-r1BCS Operating System - Detailed Design and
• Source Code Listings, April 1988. The operating system is composed of three distinct layers - the kernel, the executive and the distributed system manager. •
• The three sections below list the software modules used to implement them. The modules
• are grouped together according to the functions they perform. For example, all kernel
• memory management functions are listed in a table. •
• The information for each module is given in three tables. The first table gives the module

name, its parameters and description. The second table lists the length of the code in number
• of lines, functions called by this module and return value for the module. The final table
• indicates if the module has been completed and whether the code is the exact implementation
• of the algorithm (and if not, what is the difference). •
•• 2. KERNEL DATA STRUCTURES & FUNCTIONS

• The kernel is the machine dependent portion of the operating system specific to a single
• processor. It provides an interface between the operating system and the actual hardware.
• The three components of the kernel are processor manager, memory manager and link
• manager. The data structures and functions for processor management, memory

management and interface link management are described in the following subsections. •
• 2.1 Processor Management •
• Data Structures:
• • 1. Flag indicating the mode of operation:

• - kernel mode, • - executive mode, • - user mode and • - idle mode • 2. Flags indicating the pending mode of operation of the operating system: • • - kernel mode, • - executive mode and • - user mode. • • • • • • • • • • • • B - 1 • •

lb
 0

 0
 l

b
lb
 6

6
 l
b
 lb
 lb

 l
b
6
 6
 6
 6
 6
 lb

 0
 6
 6
 lb

 lb
 6
 6

lb
 6
 6
 lb

 l
b
0
6

lb
 6
 6
 6

0
 0
 lb

 lb
 6
 lb
 6
 6
 lb

 6
 6
 lb

 0
 6
 0
 II

 1
1
 6

lb
 l

b

3. Event queues: 2 queues for each of the executive and kernel modes - a queue for events
that are currently being processed and another for pending events.

4. A pointer to current application process context.

5. A table of kernel entry points available to the executive.

Functions:

The following functions are in the file ksimcpu.c.

Module 	 Parameters 	Module Description

KB_boot 	 none 	 kernel boot entry
KMB_cpu 	 data 	 initializes kernel processor manager
K_cpu_kernel 	none, 	 kernel mode operation
K_cpu_executive 	kcpu 	 executive mode operation
K_cpu_enter 	none 	 context switch on interrupt
K_cpu_exit 	 none 	 continue interrupted execution
K_cpu_fork 	 unit_id, data 	pending switch from interrupt to kernel mode
K_cpu_k2x 	 xid, data 	pending switch from kernel to executive

mode
K_cpu_x2k 	 entry_id, data 	switch from executive to kernel mode

local
K_cpu_x2u 	 user_context 	pending switch to user mode
K_cpu_u2x 	 none 	 block switch to user mode
KU_enable 	 none, 	 enables processor inputs
KU_disable 	 none, 	 disables processor interrupts
U_copy 	 from, to, 	performs utility copy

length
KU_invalid 	 none 	 identifies invalid function entry points

Table 2.1 Processor Management Functions

lb
 l
b

0
 6

0

6
 le

 l
b
lb
 0

 6
 6

 6
 l
b
6
6

lb
 l

b
0

lb
 l

b
lb
 0

6

0

6
 0
 6
 0
 0
 6
 6
 6
 lb

 6
 lb
 0
 l

b
6
0
lb
 6

0
 l

b
lb

 6
 6

 6
 6

 6
 6
 6

lb
 l

b
6

Module 	 Lines 	Calls made to 	 Return Value
in code

KB_boot 	 21 	K_new_buffer 	none
K_release_buffer
K_cpu_k2x
K_cpu_exit

KMB_cpu 	 27 	K_allocate 	 none
K_cpu_kernel 	25 	K_link_in 	 none

K_cpu_executive
KU_clisable
KU_enable

K_cpu_executive 	27 	KU_enable 	 none
KU_disable

K_cpu_enter 	10 	none 	 none
K_cpu_exit 	24 	KU_disable 	 none

KU_enable
K_cpu_kernel

K_cpu_fork 	14 	none 	 none
K_cpu_k2x 	13 	none 	 none
K_cpu_x2k 	14 	K_cpu_kernel 	 none

KU_disable
KU_enable

K_cpu_x2u 	 8 	none 	 none
K_cpu_u2x 	 6 	none 	 none

KU_enable 	 4 	none. 	 none
KU_dis able 	4 	none. 	 none
U_copy 	 7 	none. 	 none
KU_invalid 	4 	none. 	 none

Table 2.1 Processor Management Functions (Contd.)

Module 	 Completed? 	Is code exact implementation of algorithm?

KB_boot 	 yes 	 K_release_buffer listed in called functions,
but not called in code.

KMB_cpu 	 yes 	 yes
K_cpu_kemel 	yes 	 yes
K_cpu_executive 	yes 	 yes
K_cpu_enter 	yes 	 yes
K_cpu_exit 	 yes 	 yes
K_cpu_fork 	 yes 	 yes
K_cpu_lax 	 yes 	 yes
K_cpu_x2k 	 yes 	 yes
K_cpu_x2u 	 yes 	 yes
K_cpu_u2x 	 yes 	 yes

KU_enable 	 yes 	 algorithm not defined, but OK.
ICU_disable 	 yes 	 algorithm not defined, but OK.
U_copy 	 yes 	 algorithm not defined, but OK.
KU_invalid 	 yes 	 algorithm not defined, but OK.

Table 2.1 Processor Management Functions (Contd.)

2.2 Memory Management

Data Structures:

Pointers to:

- general memory management structure,
- utility buffer management structure,
- packet management structures and
- utility queue management structure.

Functions:

The following functions are defined in the file ksimmemory.c. The functions are divided
into five groups in the tables: kernel initialization, memory management, queue
management, buffer and packet management, and executive accessible functions.

Module 	 Parameters 	Module Description

KMB_memory 	data 	 kernel memory manager initializer entry
point.

K_refill 	 ptr, size 	 expands kernel memory pool
K_mem_error 	ptr, code 	kernel memory management error function
K_allocate 	 size 	 allocates kernel memory
K_reallocate 	from_ptr, size 	reallocates kernel memory
K_free 	 ptr 	 frees kernel memory
K_set_stack 	size, initial, 	preallocates blocks of kernel memory

expand_size

K_add_queue 	queue, data 	adds item to queue tail
K_next_queue 	queue 	 removes item from queue head

K_new_buffer 	size 	 allocates a data buffer
K_release_buffer 	buffer 	 releases a data buffer
K_free_buffer 	buffer 	 deallocates a data buffer
K_copy_buffer 	buffer 	 copies a data buffer
K_new_network 	none 	 allocates network data packet
K_free_network 	network_pkt 	deallocates network data packet
K_new_io 	 none 	 allocates I/O consumer packet
K_free_io 	 io_pkt 	 deallocates I/O consumer packet
K_new_user 	none 	 allocates application consumer packet
K_free_user 	user_pkt 	deallocates application consumer packet

X2K_allocate 	size, ptr 	 allocates kernel memory from executive
X2K_free 	 not_used, pli 	frees kernel memory from executive
X2K_new_buffer 	size, pli 	 allocates data buffer fi-om executive
X2K_free_buffer 	not_used, pli 	deallocates data buffer from executive
X2K_free_network 	not_used, ptr 	deallocates network packet from executive
X2K_free_io 	not_used, ptr 	deallocates I/O packet from executive
X2K_free_user 	not_used, pli 	deallocates user packet from executive

Table 2.2 Memory Management Functions

Module 	 Lines 	Calls made to 	Return Value
in code

K1V113_memory 	23 	K_set_stack 	 none

K_refill 	 10 	none 	 none
K_mem_error 	6 	none 	 none
K allocate 	 7 	none 	 none
K_reallocate 	10 	none 	 none
K_free 	 5 	none 	 none
K_set_stack 	10 	none 	 ptr to preallocated block

control structure

K_add_queue 	6 	none 	 none
K_next_queue 	7 	none 	 ptr to queue head item data

K_new_buffer 	8 	none 	 ptr to allocated buffer
K_release_buffer 	7 	K_free_buffer 	none
K_free_buffer 	5 	none 	 none
K_copy_buffer 	6 	none 	 input parameter
K_new_network 	6 	none 	 ptr. to network data packet
Kfree_network 	5 	none 	 none
K_new_io 	 6 	none 	 ptr. to I/O data packet
K_free_io 	 5 	none 	 none
K_new_user 	6 	none 	 ptr. to user data packet
K_free_user 	5 	none 	 none

X2K_allocate 	6 	K_allocate 	 none
X2K_free 	 6 	Kiree 	 none
X2K_new buffer 	6 	K_new_buffer 	ptr. to allocated buffer
X2K_freelbuffer 	6 	Kfree_buffer 	none
X2K_free_network 	6 	K_free_network 	none
X2K_freeio 	6 	K_free_io 	 none
X2K_free_user 	6 	K free_user 	 none

Table 2.2 Memory Management Functions (Contd.)

II
 0
 II

 I
I
 II

 0
 II

 II
 0
 0
 I

I
II
 I

I
6
 II

 0

0
 0

 6

0
 6
 II

 0

6
 0

0
 I
I 0
 0
 0
 0
 0
 II

 0
 0
 0
 II

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 I

I
0
 II

 0
0
 0
 0

Module 	 Completed? 	Is code exact implementation of algorithm?

KMB_memory 	yes 	 yes

K_refill 	 yes 	 no algorithm defined for the module
K_mem_error 	yes 	 no algorithm defined for the module
K_allocate 	 yes 	 no algorithm defined for the module
K_reallocate 	yes 	 no algorithm defined for the module
K_free 	 yes 	 no algorithm defmed for the module
K_set_stack 	yes 	 no algorithm defined for the module

K_add_queue 	yes 	 no algorithm defined for the module
K_next_queue 	yes 	 no algorithm defined for the module

K_new_buffer 	yes 	 no algorithm defined for the module
K_release_buffer 	yes 	 no algorithm defined for the module
K_free_buffer 	yes 	 no algorithm defined for the module
K_copy_buffer 	yes 	 no algorithm defined for the module
K_new_network 	yes 	 no algorithm defined for the module
Kfree_network 	yes 	 no algorithm defined for the module
K_new_io 	 yes 	 no algorithm defined for the module
K_free_io 	 yes 	 no algorithm defined for the module
K_new_user 	yes 	 no algorithm defined for the module
K_free_user 	yes 	 no algorithm defined for the module

X2K_allocate 	yes 	 no algorithm defined for the module
X2K_free 	 yes 	 no algorithm defined for the module
X2K_new_buffer 	yes 	 no algorithm defined for the module
X2K_free_buffer 	yes 	 no algorithm defined for the module
X2K_free_network 	yes 	 no algorithm defined for the module
X2K_free_io 	yes 	 no algorithm defined for the module
X2K_free_user 	yes 	 no algorithm defined for the module

Table 2.2 Memory Management Functions (Contd.).

2.3 Link Management

Data Structures:

1. Interrupt management data: a table of inteirupting sources vs. kernel identifiers.

2. Link server management data: table of control structures for each kernel link server.
Each entry consists of:

- server ids,
- server link count,
- server interrupt, output, assign and control entry pointe,
- ptr. to local server data

3. Link configuration data - a table of link configuration data for each kernel link.

4. Kernel identifier tables - a table of kernel ids vs. server and local ids.

Functions:

The following functions are defined in the file ksimlink.c.

Module 	 Parameters 	Module Description

KMB Jink 	 data 	 initializes kernel link manager
K_link_in 	 unit, data 	link manager interrupt entry point
K_link_out 	kid, data 	link manager output entry point
K_link_assign 	link_id, name 	link manager assign resource entry point
K_link_control 	code, kid, data 	link manager control function entry point
Id_enter 	 name 	 adds link table entry

Table 2.3 Link Management Functions.

Module 	 Lines 	Calls made to 	 Return Value
in code

KMB_link 	 56 	K_allocate, link 	none
handle mit. & link
server mit. entry pts.

Klink_in 	 12 	1.s. in entry pts. 	none
Klink_out 	 12 	1.s. out entry pts 	none
K Jink_assign 	14 	1.s. assign entry pts 	none
K Jink_control 	10 	Id_enter, link server 	none

control entry pts. 	none
kl_enter 	 27 	none 	 none

Table 2.3 Link Management Functions (Contd.).

Module 	 Completed? 	Is code exact implementation of algorithm?

ICMBlink 	 yes 	 code definitely needs some comments
Klink_in 	 yes 	 slight discrepancy between code and alg.
K Jink_out 	yes 	 value returned in code but not in alg.
K Jink_assign 	yes 	 value returned in code but not in alg.
Klink_control 	yes 	 algorithm not fully implemented
kl_enter 	 yes 	 K_reallocate called but not listed.

Table 2.3 Link Management Functions (Contd.).

0
 lb

 6
 lb

 l
b l

b
lb

 6
lb

 l
b

lb
 0

 6
 l

b
6

lb
 0

 l
b
6

lb
 l

b
lb

 l
b
 6
 lb

 l
b

lb
 lb

 lb
 l

b
6

lb
 lb

 l
b
6

lb
 l
b

lb
 6

 0
 l

b l
b

0 l
b
 lb

 lb
 lb

 6
 l

b
6
 lb
 lb

 6
 0
 lb

2.4 Kernel Link Server Functions

The following functions are grouped together in the order of the files in which they are
found: ksimbus.c, ksintio.c and ksimprocess.c. Ksimbus.c, ksitnio.c and ksimprocess.c
contain simulated network server, I/O server and application to system server functions
respectively.

Module 	 Parameters 	Module Description

KSI_bus 	 server 	 server initialization entry point
KHI_bus 	 unit_base, vector 	handler initialization entry point

unit_count
kbus_in 	 server, data, 	server interrupt service entry point

bus_id
kbus_out 	 server, bus_id, 	server output entry point

packet
kbus_assign 	server, link, name 	server assign resource entry point
kbus_control 	server, code, 	server control function entry point

localid, data

KSI_device 	server 	 server initialization entry point
ICHI_device 	unit_base, vector 	handler initialization entry point

unit_count
kdevice_in 	server, data, 	server interrupt service entry point

device_id
kdevice_out 	server, packet, 	server output entry point

device_id
kdevice_assign 	server, link, name 	server assign resource entry point
kdevice_control 	server, code, 	server control function entry point

local_id, data

KSI_process 	server 	 server initialization entry point
KIII_process 	unit_base, vector 	handler initialization entry point

unit_count
kprocess_in 	server, packet 	server request entry point

not_used
kprocess_out 	server, packet, 	server reply entry point

process_id
kprocess_assign 	server, link, name 	server assign resource entry point
kprocess_control 	server, code, 	server control function entry point

local_id, data

Table 2.4 Kernel Link Server Functions.

lb
 le

lb
 lb

 lb
 lb

 l
b

lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 1
, 6

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 I
I l

b
 lb

 lb
 lb

 6
 lb

 II
 l
b

 0
 de

 lb
 lb

 II
 6

 0
 II

 l
b

 lb
 lb

 lb
 lb

 lb
 l b

 lb
 II
 11

 lb
 0

 lb
 lb

Module 	 Lines 	Calls made to 	Return Value
in code

KSI_bus 	 19 	K_alloc ate 	 none
ICHI_bus 	 6 	none 	 none
kbus_in 	 22 	K_new_network 	none

K_new_buffer
K_cpu_lc2x

kbus_out 	 14 	none 	 none
kbus_assign 	26 	K_allocate 	 none

K_link_control
kbus_control 	13 	device specific control 	none

functions

KSI_device 	19 	K_allocate 	 none
ICHI_device 	6 	none 	 none
kdevice_in 	 21 	K_new_io 	 none

K_new_buffer
K_cpu_k2x

kdevice_out 	10 	none 	 none
kdevice_assign 	26 	K_allocate 	 none

Klink_control
kdevice_control 	13 	device specific control 	none

functions

KSI_process 	22 	K_allocate 	 none
KHI_process 	6 	none 	 none
kprocess_in 	23 	K_new_user 	 none

K_new_buffer
K_cpu_k2x
K_cpu_u2x

kprocess_out 	26 	K_cpu_x2u 	 none
K_cpu_u2x

kprocess_assign 	37 	K_allocate 	 none
K_link_control

kprocess_control 	13 	device specific control 	none
functions

Table 2.4 Kernel Link Server Functions (Contd.).

II
 lb

 II
 0
 II

 I
I
 0
 II

 I
I
II
 l
b
l b
 lb

 II
 I
I

II
 II

 I
I
II
 I

I
II

 l
b
II
 I

I l
b
lb
 I
I
 6
 II

 l
b 6
 6
 0

0
 II

 6
 lb

 I
I
 6
 II

 6
 II

 l
b

lb
 6

6
 II

 I
I
6
 lb

 l
b
 6
 II

 II
 6

Module 	 Completed? 	Is code exact implementation of algorithm?

KSI_bus 	 yes 	 yes
KHI_bus 	 yes 	 null function as simulated interrupts created by

VMS
kbus_in 	 yes 	 yes
kbus_out 	 yes 	 yes
kbus_assign 	yes 	 yes
kbus_control 	yes 	 discrepancy between code and algorithm, also

value returned in code but not in algorithm

KSI_device 	yes 	 yes
KHI_device 	yes 	 null function as simulated interrupts created by

VMS
kdevice_in 	yes 	 yes
kdevice_out 	yes 	 yes
kdevice_assign 	yes 	 yes
kdevice_control 	yes 	 discrepancy between code and algorithm, also

value returned in code but not in algorithm

KSI_process 	yes 	 yes
KHI_process 	yes 	 null function as simulated interrupts created by

VMS
kprocess_in 	yes 	 yes
kprocess_out 	yes 	 yes
kprocess_assign 	yes 	 yes
kprocess_control 	yes 	 discrepancy between code and algorithm, also

value returned in code but not in algorithm

Table 2.4 Kernel Link Server Functions (Contd.).

3. EXECUTIVE DATA STRUCTURES & FUNCTIONS

The operating system executive layer is composed of 3 components. They are the executive
controller, the executive routing manager, and the executive resource manager. The
following subsections list the data structures and functions used to implement them.

3.1 Executive Controller

Data Structures:

1. Executive identification.

2. DSM routing data: specification of DSM consumer with which executive communicates.

• ' • • ' • • • • • • • • • '
•
•
•
•
•
•
•
•
•
•
•
•
•

3. Query support data: data to be used in querying DSM (same structures as DSM replies).

4. Executive controller entry points: invoked when messages are sent to or received from
DSM.

Functions:

There are 2 groups of functions defined below. The first group of functions are the executive
control functions found in the file xcontrol.c. The other group of functions defined in
xutility.c and they are the executive utility functions. These functions are further divided
into 3 groups: executive memory management, executive queue management and executive
message and packet management functions.

B - 12

Module 	 Parameters 	Module Description

XB_boot 	 data 	 executive boot entry point
XCB_control 	data 	 control component boot entry point
xcontrol_in 	 command 	entry point from kernel
xcontrol_out 	message 	entry pt. to receive message to executive
X_command 	message, command 	processes executive command
list_status 	 query 	 reports executive status
XC_next_query 	code, length, 	allocates a system query command

dest., local_id
XC_query_dsm 	query, notify, 	requests data from DSM

parameter
X_report_enor 	code, error msg. 	reports fault to DSM

X_set_memory 	size 	 initializes executive memory management
X_more_memory 	ptr, size 	expands executive memory pool
X_mem_error 	ptr, code 	executive memory management error fn.
X_allocate 	 size 	 allocates executive memory
X_reallocate 	ptr, size 	reallocates executive memory
X_free 	 ptr 	 frees executive memory
X_set_stack 	 size, initial, 	preallocates block of executive memory

expand

X_set_queue 	initial, expand 	initializes executive queue management
X_add_queue 	queue, data 	adds item to queue tail
X_next_queue 	queue 	 returns item from queue head
X join_queue 	from_queue, 	joins a queue to the tail of another

to_queue, join_queue 	queue
X_find_signature 	queue, 	 searches a queue for a message

signature 	signature

X_set_messages 	initial, 	 initializes executive message mgmt.
expand

X_new_message 	none 	 allocates an executive message
X_free_message 	message 	deallocates an executive message
X_copy_message 	message, dest. 	copies an executive message
X_new_buffer 	size 	 allocates a data buffer
X_free_buffer 	buffer 	 deallocates a data buffer
X_copy_buffer 	buffer 	 copies a data buffer
X_free_network 	network_pkt 	deallocates a network data packet
X_free_io 	 io_pkt 	 deallocates a I/O consumer packet
X_free_user 	user_pkt 	 deallocates an application consumer packet

Table 3.1 Executive Controller Functions.

Module 	 Lines 	Calls made to 	Return. Value
in code

XB_boot 	 16 	X_set_memory 	none
X_set_messages
X_set_queues
exec. components init , entry pts.

XCB_control 	40 	X_set_stack 	 none
exec. router control entry pts.
exec. router assign entry pt5

xcontrol_in 	15 	X_new_message 	none
exec. manager out entry pts,

xcontrol_out 	32 	X_find_signature 	none
X_report_error
X_free_buffer
X_free_message
X_copy_buffer
X_command
query notify fn. entry pts.,
exec. router in entry pts

X_command 	32 	X_command 	 none
list_status
X_report_error
exec. router assign entry pt5
exec. router control entry pts

list_status 	 31 	X_new_buffer 	none
X_new_message
exec. router in entry pts

XC_next_query 	14 	X_new_buffer 	pt. to allocated system
command

XC_query_dsm 	23 	X_new_message 	none
X_add_queue
exec. router in entry pts

X_report_error 	29 	X_new_message 	none
X_new_buffer
exec. router in entry pts

X_set_memory 	8 	X_more_memory 	ptr to memory management
X_mem_error 	structure

X_more_memory 	6 	none 	 none
X_mem_error 	6 	none 	 none
X_allocate 	 9 	none 	 ptr. to allocated memory
X_reallocate 	8 	none 	 ptr. to reallocated memory
X_free 	 5 	none 	 none
X_set_stack 	9 	none 	 ptr. to preallocated block

control structure

Table 3.1 Executive Controller Functions (Contd.).

lb
 lb

 l
b
6
 lb

 lb
 l

b
lb

 l
b
lb

 0
 lb

 l
b

lb
 lb

 lb
 0
 6

6

6
 lb

 l
b l
b
 lb

 lb
 l
b
 6
 6
 I,

 lb
 lb
 lb
 6
 lb

 l
b
 6

6
 6
 6
 lb

 0
 6
 lb

 l
b

lb
 6
 lb

 6
0
 l

b
6
 6

6
 lb

 6

Module 	 Lines 	Calls made to 	Return Value
in code

X_set_queue 	8 	none 	 ptr. to Q mgmt. structure
X_add_queue 	6 	none 	 none
X_next_queue 	7 	none 	 ptr. item data
X_join_queue 	7 	none 	 none
X_find_signature 	26 	none 	 none

X_set_messages 	8 	none 	 ptr. to message mgmt.
control structure

X_new_mes sage 	9 	none 	 ptr. to executive message
X_free_message 	5 	none 	 none
X_copy_mes sage 	11 	X_copy_buffer 	ptr. to copied exec message
X_new_buffer 	7 	none 	 ptr. to allocated buffer
X_free_buffer 	9 	none 	 none
X_copy_buffer 	6 	none 	 input parameter
X_free_network 	5 	none 	 none
X_free_io 	 5 	none 	 none
X_free_user 	5 	none 	 none

Table 3.1 Executive Controller Functions (Contd.).

lb
 lb

 l
b

lb
 l

b
lb

 l
b
6

0
 lb

 l
b
0
 lb

 l
b

lb
 l

b
lb

 l
b
6
 lb

 l
b
 lb

 lb
 l

b
lb

 6
 lb

 I
,
i
b
 6
 lb

 lb
 l
b
 lb
 6
 6
 ib

 6
 l

b
lb
 01

 lb
 6

6
 6
 lb

 l
b 4

1
6
 lb

 l
b
lb
 I

I
lb
 l

b

Module 	 Completed? 	Is code the exact implementation of algorithm?

XB_boot 	 yes 	yes
XCB_control 	yes 	yes
xcontrol_in 	 yes 	yes
xcontrol_out 	yes 	yes
X_command 	yes 	yes
list_status 	 yes 	yes
XC_next_query 	yes 	yes
XC_query_dsm 	yes 	yes
X_report_error 	yes 	yes

X_set_memory 	yes 	 For none of the functions in this
X_more_memory 	yes 	 group, the algorithm is defined.
X_mem_error 	yes 	 For one or two line functions (which
X_allocate 	 yes 	 most of them are), it does not matter.
X_reallocate 	yes 	 But for the others at least comments in
X_free 	 yes 	 the code would help.
X_set_stack 	 yes

X_set_queue 	yes 	. 	For none of the functions in this
X_add_queue 	yes 	 group, the algorithm is defined.
X_next_queue 	yes 	 For one or two line functions (which
X join_queue 	yes 	 most of them are), it does not matter.
X_find_signature 	yes 	 But for the others at least comments in

the code would help.

X_set_messages 	yes
X_new_message 	yes 	 For none of the functions in this
X_free_message 	yes 	 group, the algorithm is defined.
X_copy_message 	yes 	 For one or two line functions (which
X_new_buffer 	yes 	 most of them are), it does not matter.
X_free_buffer 	yes 	 But for the others at least comments in
X_copy_buffer 	yes 	 the code would help.
X_free_network 	yes
X_free_io 	 yes
X_free_user 	yes

Table 3.1 Executive Controller Functions (Contd.).

lb
 lb

 lb
 I
I
 II

 I
!

lb
 I

I
lb
 II

 I
I
II
 l

b
lb
 l
b
lb
 l

b
lb
 I

I
II

 l
b
 OI

 f
b
lb

 lb
 lb

 I
I

lb
 l
b
f
b
 lb

 II
 lb

 I
I
lb
 II
 lb

 0
 lb

 lb
 lb

 lb
 II
 II

 II
 II
 lb
 II

 II
 I

I
lb
 lb

 l
b

II
 I

I

3.2 Executive Router Manager

Data Structures:

1. Consumer table: consists of,

- consumer ids,
- consumer names,
- routing manager component specs which processes messages to/from consumer
- consumer data specific to the routing manager component

2. Name table: consists of,

- status,
- executive id

3. Pending message queue

4. Routing component control structure: data to maintain and access executive routing
components.

- component ids,
- component data,
- entry points

5. Entry point table: executive routing manager entry point table.

Functions:

The functions below have been divided into 3 groups. The executive routing manager
functions are defined in xrouter.c. These functions perform processing common to all
routing algorithms. The operating system supports 2 routing algorithms: simple (standard
routing algorithm) and NMR (N-Module Redundancy algorithm). The other 2 groups of
functions in Table 3.2 contain functions used to implement them. They are defined in the
files: xsimple.c and xnmr.c.

Module 	 Parameters 	Module Description

XCB_router 	data 	 router initialization entry point
XR_in 	 message 	router in entry point
XR_out 	 message 	router out entry point
XR_assign 	 data 	 router assign entry point
XR_control 	 code, data, 	router control entry point

router id
new_name 	 id, state, 	allocates a name entry in the routing

consumer_id 	table.
new_consumer 	id, router_id 	allocates a consumer entry in the routing

table.
lookup_name 	reply 	 processes a lookup reply from DSM
X_route _junction 	message, route_ptr, 	routes a message to a junction

route_count 	branch
X_route_consumer 	message, 	send a message to a consumer

consumer id

XRI_simple 	 router 	 simple router initialization entry Pt.
xsimple_in 	 router, message, 	simple router in entry point

consumer
xsimple_out 	router, message 	simple router out entry point

consumer
xsimple_assign 	router, consumer 	simple router assign entry point
xsimple_control 	router, code, 	simple router control entry point

data

XRI_nmr 	 router 	 NMR router initialization entry point
xnmr_in 	 router, nmr, 	NMR router in entry point

message
xnmr_out 	 router, nmr, 	NMR router out entry point

message
xnmr_assign 	router, consumer 	NMR router assign entry point
xnmr_control 	router, code, 	NMR router control entry point

data
xnmr_out_new 	router, nmr, 	receives first message copy from consumer

message
xnmr_out_error 	router, nmr, 	receives message copy before valid copy

check, message 	created
xnmr_out_valid 	router, nmr, 	receives message copy after valid copy

check, message 	created
xnmr_ready 	 router, nmr, 	creates valid message

check, message
xnmr done 	router, nmr, check 	message reception complete

Table 3.2 Executive Routing Manager Functions.

lb
 lb

 lb
 lb
 lb

 0
 lb

 0
•
•
O
 0
 lb

lb
 l

b
lb

 •
 0
 lb

 0
 lb

 l
b
6
0

lb
 l
b 0
 lb

 0
0

lb
 0
 0
 0
 l
b l
b
 0
 0
 41

 l
b
0
 lb

 0
 0
 0
 0

 0
 0
 l

b
lb
 ô

•
lb
 0
 0

Module 	 Lines 	Calls made to 	Return Value
in code

XCB_router 	35 	X_set_stack 	 none
X_allocate
init , entry pts.
for routing algorithm

XR_in 	 12 	exec. controller 	none
out & routing alg.
in entry points

XR_out 	 44 	X_report_error 	none
new_name
X_add_queue
X_next_query
XC_query_dsm
exec. manager out
& routing algorithm
in entry points

XR_assign 	55 	new_consumer 	none
new_name
executive manager
assign, routing
algorithm assign &
exec. router out
entry points

XR_control 	19 	X_report_error 	none
routing algorithm
control entry pts.

new_name 	32 	X_reallocate 	 ptr. to name data structure
new_consumer 	26 	X_reallocate 	 consumer data structure ptr
lookup_name 	8 	X_report_error 	none

XR_assign
X_route_junction 	18 	X_copy_message 	none

executive router in
entry pts.

X_route_consumer 	19 	X_copy_message 	none
executive router
out entry pts

XRI_simple 	9 	none 	 none
xsimple_in 	 7 	X_route_consumer 	none
xsimple_out 	7 	exec. res. manager 	none

out entry points
xsimple_assign 	9 	X_allocate 	 none
xsimple_control 	13 	X_report_error 	none

Table 3.2 Executive Routing Manager Functions (Contd.).

lb
 l
b

0
0

lb
 6
 l

b l
b
 lb
 l

b
lb

 lb
 lb

 0

6
 lb
 6
 lb
 lb
 6
 6
 lb

 l
b

II
 l
b
 6

0

l
b
 6
 6
 lb

 6
 6
 l

b
lb
 l

b
lb
 6

 l
b

lb
 l
b
6

6
6

lb
 6

 l
b
6
6

Module 	 Lines 	Calls made to 	Return Value
in code

XRI_nmr 	 13 	X_set_stack 	 none
X_allocate

xnmr_in 	 7 	X_route_consumer 	none
xnmr_out 	 14 	xntnr out_new 	 none

xnmr_out_error
xnmr_out_valid
xnmr_done

xnmr_assign 	11 	none 	 none
xnmr_control 	7 	X_report_error 	 none
xnmr_out_new 	28 	X_add_queue 	 NMR message structure ptr

xnmr ready
xnmr_out error 	25 	X_add_queue 	 none

X_next_queue
xnmr_ready

xnmr_out_valid 	17 	X_add_queue 	 none
xnmr_ready 	 16 	X_copy_message 	none

xnmr_done
exec. res. manager out entry pts.

xnmr_done 	 52 	X_add_queue 	 none
X_next_queue
X_free_buffer
X_free_message
X_report error

Table 3.2 Executive Routing Manager Functions (Contd.).

6
 l

b
lb

 l
b

lb
 l

b
lb
 l
b
6

lb
 6

 6
 6

 l
b

lb
 l

b
lb
 6
 l

b l
b

lb
 l

b
lb
 6

lb

6
 lb

 0
 l

b
lb

 6
 6

 l
b

lb
 6
 lb

 l
b

lb
 6
 l

b
lb
 fb

 0
 6

lb
 l

b
6

6
lb

 l
b

lb
 6

 6
 l

b
lb

Module 	 Completed? 	Is code the exact implementation of algorithm?

XCB_router 	yes 	 yes
XR_in 	 yes 	 yes
XR_out 	 yes 	 yes
XR_assign 	 yes 	 X_add_queue & X_next_queue called in code,

but not listed.
XR_control 	 yes 	 yes
new_name 	 yes 	 yes
new_consumer 	yes 	 yes
loolcup_name 	yes 	 yes
X_route_junction 	yes 	 yes
X_route_consumer 	yes 	 yes

KRI_simple 	 yes 	 yes
xsimplein 	 yes 	 yes
xsimple_out 	yes 	 yes
xsimple_assign 	yes 	 yes
xsimple_control 	yes 	 yes, but no control functions implemented.

XRI_nmr 	 yes 	 yes
xnmr_in 	 yes 	 yes
xnmr_out 	 yes 	 yes
xnmr_assign 	yes 	 yes
xnmr_control 	yes 	 no, also no control functions implemented.
xnmr_out_new 	yes 	 yes
xnmr_out_error 	yes 	 yes
xnmr_out_valid 	yes 	 yes
xnmr_ready 	 yes 	 yes
xnmr_done 	 yes 	 1/2 algorithm statements not in code

Table 3.2 Executive Routing Manager Functions (Contd.).

Note: Some of the executive routing functions in Tables 3.2 definitely need comments. For
example function: XR_assign. It is extremely difficult to follow such functions as they have
nested loops and 'if' statements.

lb
 I

I
II
 l

l
6

6

6

6
 6

6

6
 l
b 0
 6
 lb

 6

0
 0
 6
 II

 lb
 6
 lb

 0
i
l
 lb

 6
 6
 lb

 6
 0
 6
 i
l
 6

0
 6
 II

 6
 6
 6
 0
 6

6
 l

b
6
 II

 6
 6
 lb

 l
b 6
 4
1
 II

 0
 II

3.3 Executive Resource Manager

Data Structures:

1. Resource table:

- system and local resource ids,
- manager component specs.

2. Resource manager component control structures: data to maintain and access resource
manager components

- component ids,
- entry points,
- component data

3. Executive ids to manager component and local ids mapping

4. Entry point table

Functions:

Table 3.3 contains the executive resource manager functions. The operating system currently
supports 3 types of resources - network, 110 and application, and respective functions are
grouped in the order described below. The executive manager functions perform processing
conmlon to all resources and are defined in the file xmanager.c, xnetwork.c contains network
resource manager functions, xio.c has 1/0 resource manager functions and xprocess.c
contains application resource manager functions.

lb
 lb
 lb

 0
 6
 II

 l
b

lb
 l
b
 lb
 lb
 lb

 lb
 lb
 0
 lb

 lb
 lb

 l
b

lb
 l

b
6

0
 6
 6
 lb

 0
 lb

 l
b l
b
 lb

 lb
 6
 II

 6
 6
 6
 lb

 6
 0
 6
 lb

 l
b
 lb
 l
b
6
 lb

 6
 lb

 l
b
 6
 lb

 l
b
 lb

 6

Module 	 Parameters 	Module Description

XCB_manager 	data 	 manager initialization entry point
XM_in 	 xid, data 	manager in entry point
XM_out 	 xid, data 	manager out entry point
XM_assign 	 resource_id, 	manager assign entry point

name
XIVI_control 	code, xid, data 	manager control entry point
xm_enter 	 name 	 enters an executive id in manager tables

XMLnetwork 	manager 	n/w manager initialization entry point
xnetwork_in 	manager, packet 	n/w manager interrupt entry point

local_id
xnetwork_out 	manager, message 	n/w manager output entry point

path_id
xnetwork_assign 	manager, name, 	n/w manager assign resource entry point

resource_id
xnetwork_control 	manager, code, 	n/w manager control function entry

local_id, data 	point

XMLio 	 manager 	1/0 manager initialization entry point
xio_in 	 manager, packet 	I/O manager interrupt entry point

local_id
xio_out 	 manager, message 	I/O manager output entry point

local_id
xio_assign 	 manager, name, 	I/O manager assign resource entry point

resource_id
xio_control 	 manager, code, 	I/O manager control function entry

local_id, data 	point
xio_send 	 manager, io, 	processes output data message

message
xio_query 	 manager, io, 	processes output query message

message
xi_reset_junction 	manager, local_id, 	reset I/O resource consumer

junction 	junction

Table 3.3 Executive Resource Manager Functions.

Module 	 Parameters 	Module Description

XMl_process 	manager 	application manager init, entry point
xprocess_in 	manager, packet 	application manager interrupt entry pt.

local_id
xprocess_out 	manager, message 	application manager output entry Pt.

local_id
xprocess_assign 	manager, name, 	application manager assign resource

resource_id 	entry point
xprocess_control 	manager, code, 	application manager control function

local_id, data 	entry point
process_accept 	manager, packet, 	processes application accept packet

process
process_query 	manager, packet, 	processes application query packet

process
process_reply 	manager, packet, 	processes application reply packet

process
process_call 	manager, packet, 	processes application call packet

process
process_receive 	manager, packet, 	processes application receive packet

process
process_send 	manager, packet, 	processes application send packet

process
process_ready 	manager, packet, 	checks for application process ready packet

process
match_query 	manager, packet, 	checks query packet

process
process_out_query 	manager, process, 	processes output query message

message
process_out_reply 	manager, process, 	processes output reply message

message
process_out_send 	manager, process, 	processes output send message

message
process_run2wait 	manager, process 	disable application consumer scheduling
process_wait2ready 	manager, process 	enable application consumer scheduling
next_process 	manager 	schedule next application consumer
xp_resetjunction 	manager, junction, 	reset application consumer junction

local_id

Table 3.3 Executive Resource Manager Functions (Contd.).

Module 	 Lines 	Calls made to 	Return Value
in code

XCB_manager 	76 	X_allocate, routing 	none
alg. init , entry pts.

XM_in 	 13 	resource manager in 	none
& exec. control in
entry points

XM_out 	 13 	resource manager out 	none
& exec. control out
entry points

XM_assign 	20 	X_report_error 	none
resource manager assign

entry points
XM_control 	23 	xm_enter 	 none

X_report_error
resource manager control
entry points

xm_enter 	 28 	Xreallocate 	 none

XMI_network 	52 	X_allocate, exec. 	none
manager control &
kernel assign entry pts.

xnetwork_in 	13 	X_new_message 	none
X_free_network
exec. router out entry pts

xnetwork_out 	17 	X_free_buffer 	none
X_free_message
kernel out entry pts

xnetwork_assign 	25 	X_report_error 	none
exec. manager control
entry points

xnetwork_control 	8 	X_report_error 	none

XMlio 	 37 	X_reallocate 	 none
xio_in 	 36 	X_next_queue 	none

X_free_io
X_new_message
X_add_queue
X_route_junction
exec. router in entry Pt.

xio_out 	 14 	xio_send 	 none
xio_query
X_report_error

xio_assign 	 44 	X_allocate 	 none
X_reallocate
X_report_etror
exec. manager control & •
kernel link assign entry pt.

Table 3.3 Executive Resource Manager Functions (Contd.).

lb
 1

,
lb

 1
,

lb
 1
1
11
 1

1
lb

 6
 6

 l
b

lb
 1

1
11

 l
b

lb
 l

b 0
 lb
 6
 01

 lb
 11

 11
 1

1
te

 1
1
lb
 11

 1
1
 11

 1
1
 6

lb
 l

b
11
 lb

 6
11
 6
 6
 t

e
11

 6
 1
1

6
11
 6
 l
b
 11

 11
 6

11
 1

1

Module 	 Lines 	Calls made to 	Return Value
in code

xio_control 	11 	xi_reset_junction 	none
X_report_error

xio_send 	 14 	X_free_buffer 	none
X_free_message
kernel out entry pts.

xio_query 	 19 	X_next_queue 	none
X_free_io
X_add_queue
exec. router in entry Pt.

xi_reset_junction 	11 	X reallocate 	 none

XMl_process 	41 	X_allocate 	 none
xprocess_in 	21 	process_accept 	none

process_query
process_reply
process_call
process receive
process_send
process_ready
X_report_error

xprocess_out 	16 	process_out_query 	none
process_out_reply
process_out_send
X_report error

xprocess_assign 	52 	X_allocate 	 none
X reallocate
X_report_error
process_wait2ready
exec. manager contTol &
kernel link assign entry pts

xprocess_control 	11 	xp_reset_junction 	none
X report_error

Table 3.3 Executive Resource Manager Functions (Contd.).

Module 	 Lines 	Calls made to 	Return Value
in code

process_accept 	20 	X_next_queue 	 none
X_free_message
X_add_queue
kernel out entry Pt.

process_query 	10 	match_query 	 none
kernel out entry pt.

process_reply 	17 	X_new_message 	none
X_free_user
executive router in &
kernel out entry pts.

process_call 	 8 	match_query 	 none
process_ready

process_receive 	20 	X_next_queue 	 none
X_free_message
X_add_queue
process_ready

process_send 	37 	X_new_message 	none
X_route_junction
X_report_error
X_free_user
executive router in &
kernel out entry points

process_ready 	16 	X_next_queue 	. 	none
X_free_user
X_free_buffer
process_run2wait
kernel out entry points

match_query 	52 	X_find_signature 	none
X_add_queue
X_new_message
X_free_message
X_routejunction
X_report_error
exec. router in entry Pt.

Table 3.3 Executive Resource Manager Functions (Contd.)

6
 te
6

0
 lb

 lb
 6
 0
 I,

 6

6
 6
 Ce

6
 CI

 6

6
 6
 6
 le

 6
 0
 I

,
6

11
 4
1

0
 6
 6
 C

I
0

0
 lb

 6
 6

6
 6
 le

 6

0

0

6
 6

0
 6
 le

 I
I 6
 6

0
 0
 6
 6
 CI

 6

Module 	 Lines 	Calls made to 	Return Value
in code

process_out_query 	20 	X_free_message 	none
X_add_queue
process_wait2ready

process_out_reply 	22 	X_fmd_signature 	none
X_add_queue
X_free_message
process_wait2ready

process_out_send 	22 	X_add_queue 	none
X_free_message
process_wait2ready

process_run2wait 	7 	next_process 	 none
process_wait2ready 	8 	next_process 	 none

X_add_queue
next_process 	17 	X_next_queue 	none

X_free_user
X_free_buffer
kernel out entry point

xp_reset_junction 	12 	Xreallocate 	 none

Table 3.3 Executive Resource Manager Functions (Contd.).

Module 	 Completed? 	Is code the exact implementation of algorithm?

XCB_manager 	yes 	 code long, hard to follow without comments
XM_in 	 yes 	 yes
XM_out 	 yes 	 yes
XM_assign 	yes 	 yes
XM_control 	yes 	 yes
xm_enter 	 yes 	 yes

XMLnetwork 	yes 	 code long, hard to follow without comments
xnetwork_in 	yes 	 yes
xnetwork_out 	yes 	 yes
xnetwork_assign 	yes 	 yes
xnetwork_control 	yes 	 no, also no control functions implemented.

XMI_io 	 yes 	 yes
xio_in 	 yes 	 code long, hard to follow without comments
xio_out 	 yes 	 yes
xio_assign 	 yes 	 code long, hard to follow without comments
xio_control 	yes 	 yes
xio_send 	 yes 	 yes
xio_query 	 yes 	 yes
xi_reset_junction 	yes 	 yes

XMI_process 	yes 	 code long, hard to follow without comments
xprocess_in 	yes 	 yes
xprocess_out 	yes 	 yes
xprocess_assign 	yes 	 code long, hard to follow without comments
xprocess_control 	yes 	 yes
process_accept 	yes 	 yes
process_query 	yes 	 yes
process_reply 	yes 	 yes
process_call 	yes 	 yes
process_receive 	yes 	 yes
process_send 	yes 	 yes
process_ready 	yes 	 yes
match_query 	yes 	 code long, hard to follow without comments
process_out_query 	yes 	 yes
process_out_reply 	yes 	 yes
process_out_send 	yes 	 yes
process_run2wait 	yes 	 yes
process_wait2ready 	yes 	 yes
next_process 	yes 	 yes
xp_reset_junction 	yes 	 yes

Table 3.3 Executive Resource Manager Functions (Contd.).

lb
 l

b
lb
 0
 l
b l

b
11

 l
b
 6

0
11

 l
b
 lb

 lb
 6
 11

 0
 6
 0
 l
b 6
 6
 lb
 6
 l

b
lb

 0
 6
 lb

 t
e
lb
 lb

 lb
 lb

 l
b
6

lb
 lb

 6
 0
 11

6
 6

lb
 6
 lb

 lb
 lb

 lb
 l
b l
b 6
 lb

 11
 6

4. DISTRIBUTED SYSTEM MANAGER DATA STRUCTURES & FUNCTIONS

The distributed system manager (DSM) monitors and maintains the state of the entire
distributed system. It provides a high level fault management, assigns and activates
resources to implement consumers and monitors the overall resource performance. DSM has
four components: the DSM controller, DSM resource manager, DSM scheduler and DSM
fault manager. The modules and data structures in these components are described below.

4.1 DSM Controller

Data Structures:

Currently, the actual data structures to support the controller activity are not well defined.

Functions:

The DSM controller functions are given in Table 4.1. The function "main" is defined in the
file dsm.c. The file mboot.c contains the DSM boot functions. Finally, the distributed
system manager commands are in mcommand.c. Table 4.1 has grouped functions in the
same files.

Module 	 Parameters 	Module Description

main 	 none 	 DSM mainline function.

mc_boot 	 system, command 	boot entry point for DSM
mc_add_manager 	manager_ptr, 	adds new manager entry to manager list

system
mc_add_router 	router_ptr, 	adds new router entry to router list

system
mc_add_resource 	resource_pc, 	adds new resource entry to resource list

system
mc_add_exec 	exec_ptr, system 	adds new executive entry to executive list
mc_add_link 	system, link, 	adds new link entry to executive link list

exec_id
network_link 	system, link, 	adds niw link entry to executive link list

exec_id
io_link 	 system, link, 	adds io link entry to executive link list

exec_id
appl_linIc 	 system, link, 	adds process link entry to executive

exec_id 	 link list

mgr_command 	command 	executes a DSM command
mc_list 	 system, command 	executes a list of DSM commands of given

length
mc_exec_error 	system, command 	prints out an error message
mc_undefined 	system, command 	prints out an undefined command error msg.

Table 4.1 DSM Controller functions

fP
 l
b l

b
lb
 l

b l
b
lb
 6
 II

 0

0

6

0
 l
b 6

 f
P

II
 l
b

lb
 0
 6
 lb

 l
b

lb
 l
b
lb
 lb

 l
b
 0
 le

 6
 lb

 0
 lb

 lb
 6
 lb

 lb
 l

b
lb

 lb
 lb

 l
b
 lb

 l
b
 lb
 lb

 l
b

lb
 II

 l
b

lb
 fP

 l
b 6

Module 	 Lines 	Calls made to 	 Return Value
in code

main 	 11 	sys_accept 	 none
sys_read
mgr_command

mc_boot 	 81 	U_set_memory 	none
U_set_stack
U_set_command
U_allocate
mc_add_manager
mc_add_router
mc_add_resource
mc_add_exec
mc_add_link
enter_consumer
enter_name
assign_resource

mc_add_manager 	13 	U_allocate 	 none
mc_add_router 	16 	U_allocate 	 none
mc_add_resource 	35 	U_allocate 	 none
mc_add_exec 	29 	U_allocate 	 none

enter_consumer
enter_name

mc_add_link 	13 	network_link 	. 	none
io_link
appl_link

network_link 	20 	none 	 none
io_link 	 13 	none 	 none
appl_link 	 13 	none 	 none

mgr_command 	6 	mclist, mc_boot 	none
mc_unknown_con
mc_unIcnown_name
mc_define
mc_link, mc_run
mc_get_consumer
mc_get_cpu
mc_exec_error
mc_undefined

mc_list 	 14 	same as mgr_command 	none
mc_exec_error 	8 	none 	 none
mc_undefined 	6 	none 	 none

Table 4.1 DSM Controller functions (Contd.)

Module 	 Completed? 	Is code the exact implementation of algorithm?

main 	 yes 	yes

mc_boot 	 yes 	code long, hard to follow without comments
mc_add_manager 	yes 	yes
mc_add_router 	yes 	yes
mc_add_resource 	yes 	yes
mc_add_exec 	yes 	yes
mc_add_link 	yes 	 slight discrepancy between code and algorithm
network_link 	yes 	yes
io_link 	 yes 	yes
appl_link 	 yes 	yes

mgr_command 	yes 	yes
mc_list 	 yes 	yes
mc_exec_error 	yes 	yes
mc_undefined 	yes 	yes

Table 4.1 DSM Controller functions (Contd.)

4.2 DSM Scheduler

Data Structures:

Currently, the actual data structures to support the scheduler activity are not well defined.

Functions:

The DSM scheduler functions are defined in the following files: mcdefine.c, mclink.c,
mcrun.c, mcstatus.c and mcunknown.c. The functions in the tables below are grouped
accordingly.

11
 lb

 41
 11

 41
 11

 l
b l

b
11

 1
1

11
 4

1
11
 1

1
lb
 1

1
11
 1
1

11
 1

11
11
 1

1
11

 1
1

11
 l
b

11
 1
1
 11

 1
1

11
 l
b
 11

 1
>
11
 11

 1
1

lb
 1

1
11

 1
1 6
 1
, 4

1
lb
 11

 41
 lb

 11
 lb
 11

 11
 1
1
 lb

 lb

Module 	 Parameters 	Module Description

mc_define 	 system, command 	defines a consumer.
assign_resource 	system, consumer, 	assigns exec. with available resources

manager_id, mask 	to a consumer
assign_io 	 system, mask, 	assigns executives with available io

consumer 	resources to a consumer
assign_appl 	system, mask, 	assigns executives with available process

consumer 	resources to a consumer
assign_network 	system, exec_id, 	assigns network between consumer

consumer 	executives
sort_execs 	 system, exec_id, 	sorts system executive table
sort_network 	system, manager, 	sorts networks in system resource table

mc_link 	 system, command 	defines a link between consumers.

mc_run 	 system, command 	begins execution of a consumer
run_tos 	 system, consumer 	adds consumer address to all execs.

which must communicate with it

mc_get_consumer 	system, command 	sends ack. with status info , describing
the given consumer

mc_get_cpu 	system, command 	sends ack. with status info , describing
the given executive

mc_unknown_con 	system, command 	adds consumer address to an executive
which must communicate with it

mc_unknown_name 	system, command 	module not implemented

Table 4.2 DSM Scheduler Functions.

6
 lb

 l
e
6
lb

 lb
 l

b
lb

 0
 6
 6
 6
 l
b

l
b
 l
b l

b 6
 lb

 l
b
 lb

 lb
 l
b
 6

lb
 lb
 lb

 lb
 l
b 6

0
 lb

 lb
 l

b
lb

 l
b
6

lb
 lb

 l
b

lb
 l
b
 lb

 6
 lb

 6
 lb

 lb
 lb

 d
e

lb
 lb

 6
 l

b
lb

Module 	 Lines 	Calls made to 	 Return Value
in code

mc_define 	 48 	r_lookup 	 none
rtr lookup
enter_consumer
enter_name
assign_resource
assigm_network

assign_resource 	25 	assign_io 	 # of executives assigned to
assign_appl 	 the consumer

assign_io 	 40 	sort_execs 	 # of executives assigned to
the consumer

assign_appl 	40 	sort_execs 	 # of executives assigned to
the consumer

assigm_network 	70 	sort_networks 	# of additional networks
assigned to the consumer

sort_execs 	 29 	none 	 none
sort_network 	34 	none 	 none

mc_link 	 60 	c_lookup 	 none
set _junction
reset_,junction
U_allocate
U_free

mc_run 	 23 	c_lookup 	 none
U_allocate
run_tos
run_names

run_tos 	 46 	lookup_link 	 none
next_x_command
issue_x_command

mc_get_consumer 	64 	c_lookup 	 none
next_ack, U_copy

mc_get_cpu 	19 	x_lookup 	 none
sys_get_message
sys_send_query
cpu_report
next_ack
U_pop_stack

mc_unknown_con 	29 	assign_network 	none
next_ack
lookuplink

mc_unknown_name 	6 	none 	 none

Table 4.2 DSM Scheduler Functions (Contd.)

II
 I

I 6
 6
 6

 6
 I
I 6

6
 II

 I
I 6
 II

 6

6
 I>

 I
I
 6

6
 OW

 6
il
e

I,
 6

6
 II

 6

6
 6

 0
 6

 6

0
 II

 I
I
II
 6

0
 I

I
6
 II

 I
I

II
 6
 II

 II
 6
 II

 6

6

6
 I
I 6

0

6

Module 	 Completed? 	Is code the exact implementation of algorithm?

mc_define 	 yes 	 yes
assigm_resource 	yes 	 algorithm does not quite explain the code
assign_io 	 yes 	 yes
assign_appl 	yes 	 algorithm does not quite explain the code
assign_network 	yes 	 code too long, slightly difficult to follow,

needs comments
sort_execs 	 yes 	 yes
sort_network 	yes 	 yes

mc_link 	 yes 	 code too long, slightly difficult to follow,
needs comments

mc_run 	 yes 	 yes
run_tos 	 yes 	 yes

mc_get_consumer 	yes 	 yes
mc_get_cpu 	yes 	 yes

mc_unknown_con 	yes 	 yes
mc_unIcnown_name 	no 	 this module has not been implemented

Table 4.2 DSM Scheduler Functions (Contd.)

4.3 DSM Resource Manager

Currently, the DSM resource manager modules are implemented as local functions within the
DSM controller and scheduler components.

4.4 DSM Fault Manager

No documentation about modules or data structures are given in the 141.1.)CS OS manuals.

• • • • • • • APPENDIX C • •
• STRUCTURE DESIGN DOCUMENT •
• FOR THE

• FTDCS SIMULATOR & THE OPERATING SYSTEM • • • • s • • • • • • • • • • . • • • • • , •

•
•
•
•
• Table of Contents •
•
•
• page
• 1. ENTRODUCHON 	 C-1
• 2. STRUCTURE DESIGN 	 C-2
• 2.1 Purpose of Structure Design 	 C-2
• 2.2 Structure Design Diagram Conventions 	 C-2
• 3. SIMULATOR STRUCTURE DESIGN 	 C-5
• 4. OPERATING SYSTEM STRUCTURE DESIGN 	 C-19
• 4.1 Kernel Processes 	 C-19

4.2 Executive Processes 	 C-29
• 4.3 Distributed System Manager & Shell Processes 	 C-47 • Appendix Cl- CONNECTORS DRAWN IN STRUCTURE DIAGRAMS 	C-160

Appendix B - REFERENCES 	 C-174

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• C - i
0 •

0
 1

1
11

 0
 1
1 0
 11

 0

6
 6

 6
 1
1

0
11

 1
1
6

0
0

0
11
 0
 0

 0
 0

 0
 0

 0
 0

 0

0

6

0
 0

0
0
 0

0
 0
 0
 10

0
 0

0
 0

0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0

List of Figures

page

Figure EX1 Example Structure Diagram. 	 C-4
Figure Si Main (Simulator). 	 C-61
Figure S2 st_system. 	 C-62
Figure S3 st_memory. 	 C-63
Figure S4 st_io. 	 C-64
Figure S5 st_console. 	 C-65
Figure S6 st_file. 	 C-66
Figure S7 st__go. 	 C-67
Figure S8 st_node. 	 C-68
Figure S9 st_set_system. 	 C-69
Figure S10 st_sw_config. 	 C-70
Figure Sll st_sys_config. 	 C-71
Figure S12 sim_to_resource. 	 C-72
Figure S13 st_config. 	 C-73
Figure S14 stf data. 	 C-74
Figure S15 stf tables. 	 C-75
Figure S16 st86_config. 	 C-76
Figure S17 st86_read. 	 C-77
Figure S18 st86_kemel. 	 C-78
Figure S19 st_config_exec. 	 C-79
Figure Ki sim_cpu__go. 	 C-80
Figure K2 cpu_run. 	 C-81
Figure K3 KMB_memory. 	 C-82
Figure K4 KMB_link. 	 C-83
Figure K5 K_cpu_exit. 	 C-84
Figure K6 K_cpu_kemel. 	 C-85
Figure K7 Klink_in. 	 C-86
Figure K8 K_cpu_executive. 	 C-87
Figure K9 kmb master_in. 	 C-88
Figure K10 'uni:7 slave_in. 	 C-89
Figure Kll K18§ in. 	 C- 90
Figure K12 in le_raw. 	 C-91
Figure K13 ou—t_188_raw. 	 C-92
Figure K14 K_link_out. 	 C-93
Figure K15 K_link_assign. 	 C-94
Figure El XM_in. 	 C-95
Figure E2 XB boot. 	 C-96
Figure E3 xneiwork_in. 	 C-97
Figure E4 xio_in. 	 C-98
Figure E5 xprocessin. 	 C-99
Figure E6 xcontrol_in. 	 C-100
Figure E7 XCB_control. 	 C-101
Figure E8 XCB_router. 	 C-102
Figure E9 XCB_manager. 	 C-103
Figure El0 XR_out. 	 C-104
Figure E 11 XR_in. 	 C-105

te
 l
b l

b
0

te
 0
 0

 0
 1
,

lb
 l
b
lb
 0
 lb

 te
 I
I 0
 II

 l
b 0
 lb

 lb
 0
 0
 0

0
 lb

 lb
 0
 lb

 0
 lb

 lb
 0
 le

 0
 II

 l
b
 0
 lb

 0
 0
 0
 lb

 II
 0
 lb

 l
b 0
 lb

 0
 lb

 0
 t
e
 0

Figure E12 process_accept. 	 C-106
Figure E 1 3 process_query. 	 C-107
Figure E 1 4 process_reply. 	 C-108
Figure E 1 5 process_call. 	 C-109
Figure E 1 6 process_receive. 	 C-110
Figure E 1 7 process_send. 	 C-111
Figure E 1 8 process_ready. 	 C-112
Figure E 19 XM_out. 	 C-113
Figure E20 XR_assign. 	 C-114
Figure E21 XR_control. 	 C-115
Figure E22 XMI_network. 	 C-116
Figure E23 new_name. 	 C-117
Figure E24 XC_query_dsm. 	 C-118
Figure E25 xcontrol_out. 	 C-119
Figure E26 match_query. 	 C-120
Figure E27 xnetwork_out. 	 C-121
Figure E28 xio_out. 	 C-122
Figure E29 xprocess_out. 	 C-123
Figure E30 XM_assign. 	 C-124
Figure E31 XM_control. 	 C-125
Figure E32 xnmr_out. 	 C-126
Figure E33 next_process. 	 C-127
Figure E34 process_out_query. 	 C-128
Figure E35 process_out_reply. 	 C-129
Figure E36 process_out_send. 	 C-130
Figure E37 xio_assign. 	 C-131
Figure E38 xprocess_assign. 	 C-132
Figure E39 X_route_consumer. 	 C-133
Figure E40 list_status. 	 C-134
Figure E41 xnmr_ready. 	 C-135
Figure E42 xnmr_done. 	 C-136
Figure Di Main (DSM). 	 C-137
Figure D2 mgr_command. 	 C-138
Figure D3 mc_list. 	 C-139
Figure D4 mc_boot. 	 C-140
Figure D5 mc_unknown_con. 	 C-141
Figure D6 mc_define. 	 C-142
Figure D7 mclink. 	 C-143
Figure D8 mc_run. 	 C-144
Figure D9 mc_get_consumer. 	 C-145
Figure D10 mc__get_cpu. 	 C-146
Figure Dll assign_resource. 	 C-147
Figure D12 assign_network. 	 C-148
Figure D13 run_tos. 	 C-149
Figure D14 mc_add_link. 	 C-150
Figure D15 assign_io. 	 C-151
Figure H1 Main (shell). 	 C-152
Figure H2 sh_status. 	 C-153
Figure H3 sys_command. 	 C-154
Figure H4 exec_status. 	 C-155
Figure H5 name_status. 	 C-156
Figure H6 map_status. 	 C-157

0

0
 1
1 1

1 6
 6
 0
 11

 II
 11

 0
 1
1
6
1 1
 11

 1,
 1
1
11

 1
1 1

1
11
 6

11
 6

li
 6

 1
1
11
 6

 1
1
11
 1

1
11

 1
1
11
 1

1
11

 1
1
 11

 1
1

0 1
1

11
 11

 1
1
11
 0
 1
1
11
 6

 1
1
11

 1
1
 11

 11

Figure H7 consumer_status. 	 C-158
Figure H8 sys_call. C-159

• •

• • • •
• 1. INTRODUCTION •
• This appendix describes in detail the Structure Design for both the 1-elDCS simulator and
• operating system. A hierarchical approach is taken in structure design. It begins with an
• overview of the general design, followed by a detailed decomposition.
• Section 2 explains the structure design diagram conventions.

• Sections 3 and 4 explain in detail the structure design of the FTDCS simulator and operating
• system respectively. The simulator and the operating system (e.g., kernel) descriptions are
• based on the system development example explained in Chapter 7 of "telDCS Software
• Development: System Programmer's Guide".

• The structure diagrams are given at the end of Section 4.3. The connectors used throughout
• the structure diagrams are listed for easy reference in Appendix Cl. • • • • • •
•
•
•
•
• C - 1

11
 11

 II
 11

 II
 II

 I
I
11

 II
 11

 I
I
II
 II

 I
I
II
 6
 II

 I
,
I,
 41

 11
 II

 II
 I
I
 II

 110
 I

I
1,

 I
,
II
 I

,
II
 1

1
II
 I
I 4

1
I,

 I
I
I I
 I

I 1
, I

I
11

 !
I 0

1 I
/ 1

1
II
 I

I 1
1
II
 11

 II
 111

 11

2. STRUCTURE DESIGN

2.1 Purpose of Structure Design

The structure design defines the physical specifications to accomplish the data
transformations. This design corresponds to the physical system and shows the processing
and control through structure diagrams.

2.2 Structure Design Diagram Conventions

Structure diagrams in this document use the following symbol conventions:

Rectangles and squares correspond to processes and are designated with a task name. Each
diagram contains a process tree consisting of a parent process and the children processes that
it calls. A particular parent process may also appear as a child on other structure diagrams.

Invocation arrows are used to show that control is passed from a parent process to a child
process, and also passed back again when the called process has fmished execution. There
are two ways in which a child process may be called by a parent process: either directly or
upon user input. The former case is shown with a solid line having an arrow at its end
between the processes, while a dotted line with an arrow at its end is used to depict the latter.
Processes at the called end of a dotted line correspond to processes invoked upon specific
user input (often options). In Figure EX1 for example, the process B is called directly by the
parent process A, and control returns to A when B is finished. Process A simply enables
process C, but does not invoke it; it will be executed upon specific user input corresponding
to process C. Upon completion of C, control returns to A, but C is still enabled.

The sequence with which a set of child processes are called by a common parent process is
shown by a direction arrow through the invocation arrows. The children of process B in
Figure EX1 for example, is called in the order D, E and F.

Conditional process control flow is designated by a diamond-shaped condition symbol that is
attached to a process. In Figure EX1, for example, process D can call either G or H.
Condition symbols occur in two forms: automatic or user option. User instigated options
have dotted lines and processes are selected as a function of an external choice. Automatic
selection occurs as a result of a condition being met by the system. Such connections can be
thought of as traditional "if then ..." condition links.

Looping is shown by a rounded arrow through the invocation arrows of the processes called
in the loop. In Figure EX1, process F loops through calls to processes I and J.

Certain processes may be invoked at different times by several other processes. Moreover
two processes drawn at the two ends of a structure diagram may have the same process as
their child process. Drawing links from these processes to the child process may make the
diagram messy and difficult to understand. Therefore in such cases, instead of redrawing the
process every time it is invoked, connectors are used. The very first time a process is
described, it is drawn as a rectangle or a square. For all subsequent occurrences of that
process, its connector is drawn. A connector is a circle with the process name (full or
abbreviated) and figure number (corresponding to the figure where it is described as a regular
process) in it. For example, "X" is a connector in Figure EX1. For the structure diagrams in
this document, a list of connectors, (with the corresponding process's full name, the process

6
 lb

 lb
 6

 l
b

 lb
 lb

 lb
 lb

 lb
 0

 lb
 6

 lb
 lb

 lb
 lb

 lb
 0

 l
b

 lb
 lb

 lb
 lb

 6
 le

 l
e 6

 lb
 lb

 lb
 lb

 lb
 lb

 l
b

6
 l

b
lb

 6
 0

 l
b

 lb
 lb

 l
b
6
 le

 l
b

lb
 0

 lb
 lb

 lb
 l

b
lb

 lb

identification number and a list of all the figures in which this connector appears) is given in
Appendix Cl.

The names for some processes desciibe the process functionality in brief (e.g., "display error
msg." displays an error message). However, since the FMCS structure design has been
developed from the existing code, majority of the processes are named after the
corresponding "C" functions (e.g., "X_report_error"). This makes it easier to compare the
two.

The following numbering convention is used for the processes. Each child process is related
back to the parent process through its identification number designation, which is a decimal
of the parent process. For example, process 2 has three children processes 2.1, 2.2 and 2.3;
2.1 is decomposed to 2.1.1, 2.1.2 etc., and so on (see Figure EX1).

In the following sections, the main process and its subprocesses are explained in a breadth-
first manner (i.e., in the sequence 1,2, ... n; 1.1, 1.2 ... 1.n; 2.1, 2.2 ... 2.n etc.). The numbers
correspond to the process identification numbers shown on the figures. Processes which do
not contain subprocesses are indicated as such with a hollow circle appearing at the end of
their descriptions.

The following two sections explain the structure design processes for the FIDCS simulator
and the operating system in detail.

•&

C

2

X

Figure EX1: Example Structure Diagram

2.2.1

II
 II

 0
 6
 II

 II
 I
I
 II

 6
 II

 II
 6
 CI

 I
I

II
 I

I
II
 I

I I
I
II
 I

I
II
 II

 II
 6
 6
 6
 6
 II

 6
 6
 6

6
 6

6
 II

 6

0
 II

 6
 6
 II

 6
 II

 II
 6

0

6
 6

0
 6
 6
 II

 II
 0

6
 6
 lb

 lb
 lb

 lb
 lb

 0
 lb

 0
 lb

 lb
 l
b

lb
 l
b
 0
 lb

 6

0
 l
b 0

6
 0

 6
 0

 l
b
0
 lb

 0

6

6
 l

b
6

0
 l

b
lb
 6
 lb

 6
 lb

 lb
 6
 6
 lb

 0
 6

0

0
 lb

 6
 6
 6
 6
 0
 lb

3. SIMULATOR STRUCTURE DESIGN

The structure design diagrams and descriptions for the FTDCS simulator are given below.
The corresponding structure diagrams are shown in Figures Si through S19.

Main (Simulator)

This is the mainline process for the simulator. It controls the entire simulation. First it
calls "st_system" to define the system model.

Next, it makes available a set of commands for the user, and waits for the user to select a
command. When the user selects a command, it calls the respective process to execute
that command. For example, it calls "st_memory" if the user wants a display of the
memory status. Typing the wrong command by the user will make the system display a
list of choices ("show command list"). Execution of commands can be repeated as many
times as necessary, until the user decides to quit. In order to terminate the simulator, the
user must type 'x'. This will cause the process to make calls to other processes to free
the simulator, stop the CPU and delete the system model. See Figure Si.

1. st_system

This function creates a simulator system definition model from the hardware definition
and the distributed software specifications. It calls "st_set_system" to initialize the
system definition structure, "st_sw_config" to read and interpret the distributed software
specifications for the model and "st_sys_config" to interpret the hardware definition for
the model. See Figures 51 and S2.

2. st memory

This process displays the memory status. It calls "get memory status" to get the memory
information and displays this information to the user by a call to "show memory status".
See Figures Si and S3.

3. st_io

This process simulates an I/O event. Initially, it gets the resource type input by the user.
If the resource is not an I/O device, an error message is displayed ("display error
message"). Otherwise, "sim_to_resource" is called to simulate an I/O event. See
Figures Si and S4.

4. st console

This process simulates an I/O console. Initially, it gets the resource type input by the
user. If the resource is not an I/O device, an error message is displayed ("display error
message"). Otherwise, "sim_to_resource" is called repeatedly to simulate an I/O
console. See Figures Si and S5.

•

5. st file

This process creates a configuration file for the CPU. It calls "st_get_cpu" to get the
processor for configuration from the user. Next, the processor configuration data
structure is created ("st_config"). Also, configuration data and functional configuration
table files are created (calls to "stf data" and "stf tables"). Finally, the configuration
data structure is deallocated. See Figures Si and S6.

6. st_go

This process starts the simulation. For every defined processor, this process calls
"st_config" to create a local operating system configuration structure based on the
system definition and the local configuration specification, "sim_cpu_go" to start the
simulation and lastly, "st_free_config" to free the configuration data structures. Finally
"cpu_run" is called to include the event in the kernel queue for execution. See Figures
Si and S7.

7. st_node

This process configures a node for testing the system. It gets the CPU name from the
user and looks up the CPU id. If the CPU id is empty, a message is displayed stating
that the processor is not defined. Otherwise, a local operating system configuration
structure is created based on the system definition and the local configuration
specification ("st_config"), simulation is started ("sim_cpu_go"), and the configuration
data structures are freed ("st_free_config"). Finally, "cpu_run" is called to include the
event in the kernel event queue for execution. See Figures Si and S8.

8. sm_show

This process shows the hardware configuration. See Figure Si. 0

9. st_disable

This process disables a component. See Figure Si. 0

10. st_enable

This process enables a component. See Figure Si. 0

11. show command list

This process displays a list of simulator commands, what they do and how they can be
invoked. See Figure Si. 0

C - 6

II
 11

 0
 41

 4
1
I,
 41

 1
1
 4
1
 1
1
 II

 I,
 41

 4
1
 II

 11
 I

I
I ,
 I
, 1
1
 11
 0

11
 1
1
 II

 11
 1
11
 II

 I
I I
I 1

1
 1
1
 41

 4
1
1
1
 I,

 I,
 41

 4
1
 4
1
 4
1
 II

 11
 I

,
II
 II

 41
 1

1
11
 I
I 0

1
11
 4
1
 4
1
 II

12. sim_cpu_stop

This process frees the memory allocated for the operating system structures and the
CPU's OS memory. See Figure Si. 0

13. st _ free_ system

This process deletes a system model definition, freeing its allocated memory. See
Figure si. 0

1.1 st_set_system

This function initializes the system definition structure. The ids are set for each resource
manager ("set resource manager ids") and each resource ("set resource ids"). Finally,
"set processor links" sets ids and creates a table of resource links for each processor.
See Figures S2 and S9.

1.2 st_sw_config

This process reads and interprets the distributed software specification for the system
definition model. Initially, it gets the distributed software specification file name from
the user and accesses the data in it. Next, the DSM consumer definition command list is
initialized, memory is allocated for the processor table and each entry in the table is set
to empty. The DSM name count and the processor mask are both set to 0. The DSM
consumer id is set to the number of system processors.

Next, this process calls other processes to read and set DSM resource, router and
processors. Finally "read consumers" is called to read a list of application consumer
specifications and create DSM commands to implement them. See Figures S2 and S10.

1.3 st_sys_config

This process interprets the hardware definition and integrates it to the system definition
model. It initializes the system definition structure. Space is allocated for the system
definition header. Next, the system DSM data is set. So are the resource manager count,
routing manager count, resource count, processor count and processor/link count. The
initial DSM table sizes are also set.

Next, each resource manager is added to the system definition ("add_sys_manager") as
are the routing managers ("add_sys_router"), resources ("add_sys_resource") and
processors ("add_sys_exec"). See Figures S2 and S11.

2.1 get memory status

This process retrieves the memory status information (such as the number of used and
free, bytes and blocks of memory). See Figure S3. 0

• • • • • •
•

This process displays the memory status information to the user (which includes 	•
information such as the number of used and free, bytes and blocks of memory). See 	•
Figure S3.0 	 •

•
3.1 display error message 	 •

•
This process displays the error message (given to it as its input) to the user (e.g., 	•
resource not JO message, etc.). See Figure S4. 0 	 •

•
3.2 sim_to_resource 	 •

•
This process simulates an I10 console or an I/O event. It checks to see if the given 	•
resource has any assigned links. If the resource does not have any assigned links, an 	•
error message is displayed. 	 •
Otherwise, the process gets the system model id and thus the model simulator id. A 	•
message is created ("new_message") and set to the simulator message. Finally, the 	•
message is included in the kernel event queue for execution ("cpu_run"). See Figures S4 	•
and S12. 	 •

•
5.1 st_get_cpu 	 •

•
This process gets the processor for which the configuration data and functional 	•
configuration files are to be created, from the user. See Figure S6. 0 	 •

•
5.2 st_config 	 •

•
This process creates a local operating system configuration structure based on the 	•
interpretation of the system definition and the local configuration specification. This 	•
structure is used to create the functional configuration table file. It initializes • configuration data management and processor configuration pointer. Next, the
configuration data header is setup ("st_config_header"). Finally, the processor (an Intel 	•
8086) dependent portion of the configuration data structure is created ("st86_config"). 	•
See Figures S6 and S13. 	 •

•
5.3 stf data •

•
This process produces the configuration data file from the configuration data for a 	•
processor. First, it attaches the prefix "cfg" and suffix ".c" to the file name. The process 	•
then tries to create and open the configuration data file. If the file cannot be created, an 	•
error message is displayed. 	 •
If the file is created successfully, the following information is written to the file. The 	•
configuration data header ("add_header"), kernel configuration data ("add_kernel"), 	•

•
•
•
•

C - 8 	 •
•
•

2.2 show memory status

• • • • •
fb
• executive configuration data ("add_exec") and the DSM configuration data ("add_dsm").

The file is then closed. See Figures S6 and S14. •
•
• 5.4 stf tables
•
• This process produces the functional configuration table file from the configuration data

for a processor. Initially it attaches the prefix "tbl" and suffix ".c" to the file name. The
• process then tries to create and open the functional configuration table file. If the file
• cannot be created, an error message is displayed.
•
• If the file is created successfully, the following information is written to the file.
• Configuration table headers ("tbl_header"), handler initialization entry points ("tbl_handlers") and server initialization entry points ("tbl_servers"). The file is then
• closed. See Figures S6 and S15.

This process initializes the operating system structures with the required kernel,
• executive and DSM initialization routines. Next, it calls the kernel boot process • ("KB_boot").
•
• See Figures S7 and Ki. Note: this process is the same as process 1 in Figure Ki.
•
• 6.2 st_free_config

•
• This process queues each message at the tail of the kernel event queue for future
• execution. It gets the CPU id for the system model and thus the operating system data
• for the CPU. Next, it calls "K_cpu_enter" to make the context switch to the OS context. "K_cpu_fork" is called after this to add the event to the kernel event pending queue.
• Finally the system is returned to normal operation ("K_cpu_exit"). See Figures S7 and
• K2.
•
• Note: this process calls the OS kernel functions, which are described in Section 4.1
• below. This process is the same as the process 2 in Figure K2.
•
• 1.1.1 set resource manager ids
•
• System identifiers in consecutive order are assigned to each resource manager in the
• system definition model by this process. See Figure S9. 0
• • • • • • c - 9 •
•

•
•
• 6.1 sim_cpu_go
•

•
• This process frees the data structures allocated for the configuration data. See Figure
• S7.0
•
• 6.3 cpu_run

11
 11

 1
1
11
 6

 1
1

11
 I

I
11
 1

1
11
 1

1
6

11
 1

1 1
1
11
 1

1
1 1
 6
 II

 11
 1

1
11

 1
1
II

 11
 1
1

11
 6
 1

1
0

11
 11
 6
 11

 11
 11
 6
 II

 11
 11

6

0
 II

 11
 6
 1

1 6

6
 I

I
11

 I
I
11
 6

1.1.2 set resource ids

System identifiers in consecutive order are assigned to each resource in the system
definition model by this process. See Figure S9. 0

1.1.3 set processor links

System identifiers in consecutive order are assigned to each processor in the system
definition model by this process. Also, for each processor a table of its resource links is
created. This table is sorted by resource manager. See Figure S9. 0

1.2.1 read & set DSM resource

This process reads the DSM resource name from the file and sets the DSM resource id to
the system resource id. See Figure S10. 0

1.2.2 read & set DSM router

This process reads the DSM router name from the file and sets the DSM router id to the
system router id. See Figure S10. 0

1.2.3 read & add DSM processors

This process reads processor names from the file and looks up the system id for
processors. It then adds the processor id to both the DSM processor table and the DSM
processor mask. Also for each processor, the name count is incremented. See Figure
S10. 0

1.2.4 read consumers

This process reads a list of application consumer specifications and creates DSM
commands to implement them. For each command read from the file, it calls the
respective process (e.g., "std_define", "std_link" and "std_run" for the define, link and
run commands respectively). For any other command, an error message is displayed.
See Figure S10.

1.3.1 add_sys_manager

This process allocates space for the resource manager structure and the resource
manager system id is set from the model resource manager. See Figure S11. 0

• •
•
•
• •
• 1.3.2 add_sys_router
• This process allocates space for the routing manager structure and the routing manager
• system id is set from the model routing manager. Also, the routing manager name is
• copied from the model manager. See Figure S11. 0

•
1.3.3 add_sys_resource •

• This process allocates space for the resource structure. The resource system id, type,
• name, manager id and the link id are set from the model resource. See Figure S11. o
•
•• 	1.3.4 add_sys_exec
• This process allocates space for the executive structure. The executive system id and
• type are set from the model processor. The executive name and the link count are set
• from the model executive.

• For each processor/resource link, space is allocated for the executive link structure. The
• link resource system id and the link unit id are set from the model. See Figure S11. 0
•
•
• 3.2.1 new_message

This process creates a message structure, sets its id, the cpu id, unit id, time lag, length,
• and the message data (which includes the header and the actual data) and returns the new
• message. See Figure S12. 0
•
•
• 5.2.1 st_config_header

5.2.2 st86 config •
• This process creates configuration data structure (the processor dependent and
• independent portions) for an Intel 8086 processor's local operating system running on
• the simulator. The local configuration specification file is read by a call to "st86_read".
• Appropriate processes are called to initialize the following structures:

- executive resource manager ("st86_managers"),
- handler configuration data (flst86_handlers"),

• - server configuration data ("st86_servers"),
• - resource configuration data ("st86_resources"), and
• - processor/resource links configuration data ("st86_1inks").
• The kernel ("st86_kernel") and processor independent configuration data

("st_config_exec") are also added. See Figures S13 and S16.
•
•
•
•
• C - 11
•

•

• This process sets up the header for a local executive configuration data structure. The
• configuration data length and the executive id are set. The lengths of the kernel,
• executive and DSM configuration data are set to 0. See Figure S13. 0
•
•

•

5.3.1 add_header 	 •
0

This process writes the configuration data header to the configuration data file. The 0
following information is wiitten to the file: - configuration file title, 	 • - configuration code, • - processor system id, - configuration data length for kernel, executive and DSM and the total configuration 	•

data length. See Figure S14. 0 	 9
•
• 5.3.2 add kernel •

This process writes the kernel configuration data to the configuration data file. The 	•
following information is written to the file: kernel memory manager configuration data 	0 ("add_kmemory"), kernel processor manager configuration data ("add_kcpu") and kernel 	•
link manager configuration data ("add klink"). See Figure S14. 	 •

•
5.3.3 add exec 	 •

0
This process writes the executive configuration data to the configuration data file. The 	• following information is written to the file: 	 • - executive controller, resource and routing manager configuration data, • - the resource and link data id for each resource linked to the processor,
- executive consumer name and data for each executive linked to the processor, 	 0
- DSM consumer data, 	 0 - DSM consumer name data for each DSM consumer name, 	 • - local DSM consumer name and junction, if DSM is scheduled on a processor. See 	• Figure S14. 0 •

•
5.3.4 add dsm 	 •

• This process writes the DSM configuration data to the configuration data file. It writes a 	• header to the file and calls "add_dsm_command" to write DSM list command to the file.
See Figure S14. 	 •

•
5.4.1 tbl header •

0 This process writes the configuration table header to the functional configuration table
file. The following information is written to the file: 	 •
- title of the file, 	 •
- C include statements for machine data types, processor independent table data and 	•

configuration data file.
•
•
•
•
•
•
•

C- 12 	 •
•
•

See Figure S15. 0

•
•
•
•
•
•
• 5.4.2 tbl handlers

• This process writes the handler initialization entry points to the functional configuration
• table file. The following information is written to the file: • - external function declaration for each handler in configuration data, • - handler initialization entry point for each handler in configuration data. See Figure
• S15. 0
•
• 5.4.3 tbl_servers
• This process writes the server initialization entry points to the functional configuration
• table file. The following information is written to the file:
• - external function declaration for each server in configuration data, - server initialization entry point for each server in configuration data. See Figure S15. • • •
• 1.2.4.1 std define
• This process reads the consumer's name, its resource and router names and its name
• count from the input file. It then creates a define consumer command in the command
• buffer. See Figure S10. 0 •
•• 1.2.4.2 std link

• This process reads the consumer's name from the input file and initializes a link
• consumer command. It then reads the consumer name for link and the branch flag from
• the input file and adds link to the input consumer. See Figure S10. 0

•
• This process reads the consumer's name from the input file and creates a run consumer
• command in the command buffer. See Figure S10. 0
•
• 5.2.2.1 st86 managers •
• This process initializes the configuration data structures for the executive resource
• managers. It sets the manager count to the number of simulator resource managers and
• allocates memory for resource manager data structures. The manager id, server and link
• counts of each resource manager data structure are initialized. See Figure S16. 0
•
• 5.2.2.2 st86 handlers
•
• This process initializes the configuration data structures for the kernel inteirupt handlers.
• It sets the handler count to 0 and allocates memory for handler data structures. The

handler link count of each interrupt handler is set to 0. See Figure S16. 0 •
• • • C - 13 •

•
• 1.2.4.3 std run

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

5.2.2.3 st86_servers

This process initializes the configuration data structures for the kernel link servers. It
sets the server count to 0 and allocates memory for server data structures. The server
link count of each server is set to O. See Figure 516. 0

5.2.2.4 st86_resources

This process initializes the configuration data structures for the processor's linked
resources. The resource count is set to 0, memory is allocated for resource data structure
and the resource data structures are set to empty. See Figure S16. 0

5.2.2.5 st86 read

This process reads a local configuration specification file for an 8086 family processor.
For each configuration line read from the file, it either calls "add_handler" (to add
handler data to configuration data), "add_server" (to add server data to configuration
data), "add_resource" (to add resource data to configuration data) or "display error
message" (for an unknown command). See Figures S16 and S17.

5.2.2.6 st86 links

This process initializes the configuration data structures for the processor's resource
links. The link count is set to the number of processor links and link data structures to
empty. Each processor link's handler link count, resource manager link count and server
link count are incremented. For each kernel interrupt handler, the handler unit base and
configuration unit count are modified. See Figure S16. 0

5.2.2.7 st86 kernel

This process adds the kernel configuration data to the configuration data structures. In
order to do this, it calls processes to add the kernel memory manager ("st86_1anemory"),
kernel processor manager ("st86_kcpu") and kernel link manager ("st86_1dink")
configuration data. See Figures S16 and S18.

5.2.2.8 st config_exec

This process creates the executive and DSM portions of the local configuration data
structure. Initially, it sets the executive and the DSM table and memory sizes, ids (e.g.,
executive id), counts (e.g., resource, routing manager, etc.).

It then calls "config_resources" to add resource data to executive configuration,
"config_execs" to add linked executive data to executive configuration and
"config_dsm" to add DSM configuration data to local configuration. See Figures S16
and S19.

C - 14

•
•
•
•
•
•
• 5.3.2.1 add kmemory
• This process wiites the kernel memory manager configuration data to the configuration
• data file. See Figure S14. 0 •
•
• 5.3.2.2 add kcpu
• This process wtites the kernel processor manager configuration data to the configuration
• data file. See Figure S14. 0 •
•
• 5.3.2.3 add klink
• This process writes the kernel link manager configuration data to the configuration data
• file. See Figure S14. 0 •
•
• 5.3.4.1 add_ dsm_ command

• This process writes DSM commands to the configuration data file. It writes a DSM
• command header to the output file. Next, depending upon the type of command, it calls
• the appropriate process which writes the command to the file (e.g., "add_dsm_boot" is
• called to write the boot command to the output file, "add_dsm_link" for the link
• command, etc.). See Figure S14.
•
• 5.2.2.5.1 add handler
•
• This process reads a handler definition from the local configuration specification file and
• adds it to the configuration data structure. See Figure S17. 0
•
• 5.2.2.5.2 add_server
•
• This process reads a server definition from the local configuration specification file and
• adds it to the configuration data structure. See Figure S17. 0
•
• 5.2.2.5.3 add resource
•
• This process reads a resource definition from the local configuration specification file
• and adds it to the configuration data structure. Depending upon the type of the resource
• manager (e.g., network), the appropriate process is called to read the resource specific

data (e.g., "add86_network"). See Figure S17. •
•
• 5.2.2.7.1 st86 kmemory
•
• This process adds the kernel memory manager configuration data structure to the

configuration data structure. It allocates memory for the data structure. It also sets •
•
•
•
• C - 15 •
•

II
 I

, 1
1
 1 1
 11

 1
1
11
 1
1
 11
 1

1
11

11

 1
1
 1,
 1
1
 11

 1
1
 11

 I
,

11
 1
1
11
 1

1
II

 11
 1
1
41
 1

1
11
 4
1
II

 11
 1
1
 11

 1
1
 1
1
 1
1
 11

 1
1
 11
 0
1
 11
 11
 4

1 1
1
 1
1
 1
1
 1
1
 11

 1
1 1

1
1 1
 11

 1
1
 11

kernel memory manager data size, processor id, initial memory size and buffer
management parameters. See Figure S18. 0

5.2.2.7.2 st86_kcpu

This process adds the kernel processor manager configuration data structure to the
configuration data structure. It allocates memory for the data structure. It also sets
kernel processor manager data size, kernel and executive event queue sizes. See Figure
S18. 0

5.2.2.7.3 st86 klink

This process adds the kernel link manager configuration data structure to the
configuration data structure. It allocates memory for the data structure. Next, it sets the
kernel link manager data size, kernel id table parameters, inten-upt handler count, unit
count, server count, link count and link data size.

For each interrupt handler, space is allocated for the structure, and the handler data size,
unit count and vector are set. For each link server, space is allocated for the structure,
and server link count and data size are set.

For each processor resource link, depending upon the type of the link resource manager,
the appropriate link (network, I/O, application) configuration data is added to the file
("st86_network_link", "st86_io_link" and "st86_process_link"). See Figure S18.

5.2.2.8.1 config_resources

This process adds executive resource data to the local configuration data for all
resources which are available to a given executive. See Figure S19. 0

5.2.2.8.2 config_execs

This process adds a linked executive data structure to the executive portion of the local
configuration data structure. Also, for each model processor, its executive consumer
definition is also added ("add_exec_consumer"). See Figure S19.

5.2.2.8.3 config_dsm

This process adds the distributed system manager consumer to the local executive
configuration data structure. If the DSM is assigned to the executive, then the DSM
configuration data is also added to the local configuration data. See Figure S19. 0

5.3.4.1.1 add_dsm_boot

This process writes the parameters associated with a DSM boot command to the
configuration data file. See Figure S14. 0

6

0
 lb

 lb
 6
 II

 0
 lb

 0
 lb

 lb
 l
b

lb
 l

b
lb

 l
b
l b
 6

6

6
 lb

 lb
 0
 lb

 l
b
lb
 l
b
 6
 lb

 lb
 l
b 6
 6
 lb

 l
b l
b
 lb

 lb
 6
 1,

 lb
 lb

 lb
 lb

 lb
 0
 lb

 lb
 l

b
6
 6
 6

0
 l

b
lb

5.3.4.1.2 add dsm list

For every command in the list, this process calls "add_dsm_command" to add each
command to the configuration data file. See Figure S14.

5.3.4.1.3 add dsm define

This process writes the parameters associated with a DSM define consumer command to
the configuration data file. See Figure S14. 0

5.3.4.1.4 add dsm link _ _

This process writes the parameters associated with a DSM link consumer command to
the configuration data file. See Figure S14. 0

5.3.4.1.5 add_dsm_run

This process vvrites the parameters associated with a DSM run consumer command to
the configuration data file. See Figure S14. 0

5.2.2.5.3.1 add86 network

This process reads the network resource specific data from the local configuration
specification file and adds it to the configuration data structure. The data includes
shared memory segment and shared memory offset used to synchronize communication
across the multibus. See Figure S17. 0

5.2.2.5.3.2 add86 io

This process reads the I/O resource specific data from the local configuration
specification file and adds it to the configuration data structure. The data includes
shared memory segment and shared memory offset used to synchronize communication
with the 188/48 communicadng SBC. See Figure S17. 0

5.2.2.5.3.3 add86_process

This process reads the application process resource specific data from the local
configuration specification file and adds it to the configuration data structure. This data
consists of the load addresses and segment lengths of the process' object code. See
Figure S17. 0

5.2.2.7.3.1 st86 network link

This process adds the configuration data for a link to a network resource to the
configuration data structure. It allocates space for the structure, and sets the link server,

• • • • • • • • • • • • • • • • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

unit id, data size, resource id, address count, network link segment, offset and home
address. See Figure S18. 0

5.2.2.7.3.2 st86 io link

This process adds the configuration data for a link to an I/0 resource to the configuration
data structure. It allocates space for the structure, and sets the link server, unit id, data
size and I/O link segment and offset. See Figure 5 18. 0

5.2.2.7.3.3 st86_processlink

This process adds the configuration data for a link to an application process resource to
the configuration data structure. It allocates space for the structure, and sets the link
server, unit id, data size and resource id. See Figure S18. 0

5.2.2.8.2.1 addexec_consumer

This process adds an executive consumer definition to the local executive configuration
data structure. The consumer id is set to the system id, router to simple, name count to
1, name id to exec. id. The name, local and unit ids are all set. See Figure S19. 0

C - 18

II
 l

b
lb

 l
e
lb

 lb
 lb

 6
 lb

 l
b

II
 l

b
lb
 l
b
 lb

 l
b

le
 l

b
lb

 l
b

lb
 l

b
lb

 l
b

lb
 lb

 li
 II

 l
b

II
 l

b
6
 lb

 l
b

II
 lb

 lb
 lb

 l
b

lb
 l
b

lb
 II

 lb
 lb

 l
b
II
 lb

 I
I
lb

 lb
 II

 l
b
II
 lb

4. OPERATING SYSTEM STRUCTURE DESIGN

The following three subsections describe the structure design processes of the 141DCS
operating system. The operating system kernel processes are described in Section 4.1.
Section 4.2 explains the executive processes. Finally, the distributed system manager
structure design is given in Section 4.3.

4.1 Kernel Processes

The following processes are the operating system kernel functions. They are called by the
simulator functions from Section 3. The corresponding structure diagrams are shown in
Figures K1 through K15.

1.1 KB boot

This process provides the boot entry point for the operating system. It initializes the OS
through the predefined processor configuration data.

It invokes each kernel manager initialization entry point with configuration data
("KMB_cpu", "KMB_memory" and "KMB_link"). Next, buffer is allocated for the
executive configuration data ("K_new_buffer"), the executive boot entry point is
invoked ("XB_boot") and the executive configuration data buffer is deallocated
("K_release_buffer"). If the DSM configuration data is present, then a new buffer is
allocated for it ("K_new_buffer"), DSM configuration data is copied to the buffer and
the buffer is submitted to the executive ("K_cpu_k2x"). Finally, interrupted execution is
continued ("K_cpu_exit"). See Figure Ki.

2.1 K_cpu_enter

This process is called by interrupt service routines to make a context switch to the
operating system context after an interrupt. It blocks the execution of any active user
process. See Figure K2. 0

2.2 K cpu_fork

This process is invoked by the interrupt function to add an event to the tail of the kernel
event pending queue. See Figure K2. 0

1.1.1 KMB_cpu

This process is the initialization entry point for the kernel processor manager. It
allocates memory ("K_allocate") for processor control structure and sets it to that from
configuration data. It allocates memory for the kernel and executive pending event
queues and initializes them. Also, the user, kernel and executive flags are cleared. See
Figure Ki.

•

1.1.2 KMB memory

This process is the initialization entry point for the kernel memory manager. It
initializes memory management from configuration data and also initializes buffer,
packet and queue management ("K_set_stack"). Finally, the executive accessible entry
points are set ("set exec. entry pts."). See Figures Ki and K3.

1.1.3 KMB link

This process is the initialization entry point for the kernel link manager. It allocates
("K_allocate") and initializes the link control structures. Next, it invokes all the link
handler and server initialization entries. See Figures Ki and K4.

1.1.4 K_new_buffer

This process allocates a data buffer. See Figure Ki.

1.1.5 XB boot

This is the executive boot entry point process. It has been explained in Section 4.2, as
process 2. See Figures Ki and E2.

1.1.6 Krelease_buffer

This process deallocates a data buffer by decrementing the number of links to the buffer.
See Figure Ki. 0

1.1.7 K_cpu_k2x

This process is invoked by kernel functions to add an event to the executive event
pending queue. The event is added to the end of the queue. See Figure Kl.

1.1.8 K_cpu_exit

This process is called by intemipt service routines upon their exit, to return to the
normal operation. If the interrupted execution is not the kernel mode but the executive
mode, processor interrupts are enabled ("K86_enable") and the kernel mode is entered
("K_cpu_kernel"). The kernel busy flag is set if the kernel or executive events are
pending ("kernel busy"). "Unblock user" is called to enable processor interrupts and
unblock the user if a user process is pending. If none of the above conditions are true,
idle state is entered ("idle state"). Finally, processor interrupts are enabled. See Figures
Ki and K5.

C - 20

II
 I
I
II
 I
I
II
 II

 I
I
II

 I
I
II

 I
I

II
 I

I
II

 I
I

I/
 I

I
II
 I

I
II

 I
I
II

 I
I

II
 I

I
II

 I
i
 II

 6
 II

 I
I

II
 I

I
II

 I
I
II
 I

I 6
 II

 I
,

II
 I
I
II
 II

 I
I
II
 I
I
II
 I
I I
I I
I
 II

 I
I
II
 II

1.1.1.1 K_allocate

This process allocates a contiguous block of memory with at least the specified size.
See Figure Ki. 0

1.1.2.1 Kset_stack

This process preallocates a number of blocks of a fixed size, allowing allocation and
deallocation of these blocks with minimal overhead. After preallocation, if the number
of blocks is exhausted, a preset number of blocks is again allocated. See Figure K3. 0

1.1.2.2. set exec. entry pts.

This process sets up the executive accessible entry points (i.e., executive functions
which access kernel memory management functions). See Figure K3. 0

1.1.3.1 KSI_ mb _master

This process is the initialization entry point for the Multibus master shared memory
server. It allocates ("K_allocate") and initializes the Multibus master shared memory
link control structures with the input configuration data. See Figure K4.

1.1.3.2 KHI mb _master _
This process is the initialization entry point for the Multibus master shared memory
interrupt handler. It calls "init , master communication" to establish the interrupt trap
function. See Figure K4.

1.1.3.3 KSI _ mb _slave

This process is the initialization entry point for the Multibus slave shared memory
server. It allocates ("K_allocate") and initializes the Multibus shared memory link
control structures with the input configuration data. See Figure K4.

1.1.3.4 KIII_mb_slave

This process is the initialization entry point for the Multibus slave shared memory
interrupt h andler. It calls "init, slave communication" to establish the interrupt trap
function. See Figure K4.

1.1.3.5 KSI i188

This process is the initialization entry point for the INTEL iSBC 188/48 server. It
allocates ("K_allocate") and initializes the 188-based resource link control structures
with the input configuration data. See Figure K4.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1.1.3.6 KHI i188

This process is the initialization entry point for the INTEL iSBC 188/48 interrupt
handler. It calls "perform board test" to reset the 188/48 board and establish the
interrupt trap function. See Figure K4.

1.1.8.1 K86 enable

This process enables the function of interrupt recognition by the operating system. See
Figure 1(5. 0

1.1.8.2 K_cpu_kernel

This process implements the operating system running in the kernel mode. The kernel
pending events are added to the kernel event queue and processor interrupts are enabled
("K86_enable"). For each event in the kernel event queue, the link manager in entry
point is invoked ("Klink_in"). Processor interrupts are disabled ("K86_disable"). The
above steps are repeated until no more events are pending in the kernel event queue.
Finally, the executive mode is entered ("K_cpu_executive"). See Figures K5 and K6.

1.1.8.3 kernel busy

If the kernel or executive events are pending, this process sets the kernel busy flag to
true. See Figure K5. 0

1.1.8.4 unblock user

This process enables processor interrupts and unblocks the user process. See Figure K5.
0

1.1.8.5 enter idle

This process enables processor interrupts and enters the idle state. See Figure K5. 0

1.1.3.2.1 mit. master communication

This process establishes the interrupt trap function and initializes master communication.
See Figure K4. 0

1.1.3.4.1 mit. slave communication

This process establishes the interrupt trap function and initializes slave communication.
See Figure K4. 0

C - 22

0
 6
 lb

 II
 lb

 lb
 0
 6

II
 lb

 6
lb

 l
b
I!

 lb
 l
b
 lb

 l
b l
b
 0

l b
 l
b
 II
 6
 lb
 l

b
l b
 lb

 lb
 l
b

II

0
 6

lb
 l

b
6

6
 6

6
 0

 l
b l

b
lb

 I
I
 lb

 II
 I

I
lb

 l
b

lb
 l
b
 6

II
 II
 6

1.1.3.6.1 perform board reset

This process resets the 188/48 board and establishes the interrupt trap function. See
Figure K4. 0

1.1.8.2.1 K link in

This process is the kernel link manager in entry point. It looks up the kernel, local and
server ids from the respective tables. With the ids, the appropriate server in entry point
("kmb_master in", "kmb_slave_in" or "k188_in") is invoked. See Figures K6 and K7.

1.1.8.2.2 K86 disable

This process disables the function of interrupt recognition by the operating system. See
Figure K6. 0

1.1.8.2.3 K_cpu_executive

This process implements the operating system running in the executive mode. Initially,
it enables processor interrupts ("K86_enable"). For each event in the executive event
queue, the executive resource manager in entry point is invoked ("XM_in"). Next,
interrupts are disabled ("K86_disable"). The above steps are repeated until there are no
more events in the executive event queue. Finally, if an application process is pending,
the process is unblocked. Otherwise, idle state is entered. See Figures K6 and K8.

1.1.8.2.1.1 kmb master in

This process is the in entry point for the Multibus master shared memory server. Three
interrupts are processed by this process.

For the transmit complete intenupt (which indicates that the slave has completed
transmission to the master), current network packet data is submitted to the executive
("K_cpu_k2x").

The second type of interrupt is the transmit ready interrupt. A network packet is
allocated ("K_new_network") and the slave data header is copied to it. A new slave to
master buffer is allocated ("K_new_buffer") and receive ready is set in reply signal
word.

For the receive complete interrupt, the master to slave buffer is deallocated
("K release_buffer"). If there is a packet in the transmit queue ("K_next_queue"), the
packet header and data are copied to the master to slave packet and the network packet is
freed ("Kfree_network"). Also transmit ready is set in reply signal word.

Finally, if the reply signal was set, reply interrupt is sent to the slave ("send reply to
slave"). See Figures K7 and K9.

• • • • •

For the transmit ready interrupt (which indicates that master has a transmission for the • slave), a network packet ("K_new_network") and network packet data buffer
("K new_buffer") are allocated. The network packet data is submitted to the executive 	•
("K_cpu_k2x"). 	 •

•
If the interrupt is receive ready, the master to slave buffer is deallocated 	• ("K_release_buffer"). Also, the network packet is deallocated ("K_free_network") and • transmit done is set in reply signal word. If there is a packet in the transmit queue
("K_next_queue"), it is copied to the slave to master packet and transmit ready is set in 	•
reply signal word. 	 •

•
Finally, if the reply signal was set, reply interrupt is sent to the master. See Figures K7 	• and K10. •

•
1.1.8.2.1.3 k188 in 	 •

•
This process is the in entry point for the iSBC 188/48 server. If the interrupt type is 	• receive data, "k188_receive" is called. Otherwise, (for the transmit complete interrupt), • "k188_transmit" is called. If the carrier is detected, the link status is enabled. The link
status is disabled for a lost carrier. See Figures K7 and K11. 	 •

•
• 1.1.8.2.3.1 XM_in 	 •
• This is the executive resource manager in entry point. It has been explained in Section

4.2, as process 1. See Figures K8 and El. 	 •
•
• 1.1.8.2.1.11 K new network . _ _ 	 •
• This process allocates a network data packet. See Figure K9. 0 •
•

1.1.8.2.1.12 K next queue . _ _ 	 •
• This process returns an item from the head of the queue. See Figure K9. 0 •
•

1.1.8.2.1.1.3 K free network 	 •
•

This process deallocates a network data packet. See Figure K9. 0 	 •
•

1.1.8.2.1.1.4 send reply to slave 	 •
•

This process sends a reply interrupt to the slave. See Figure K9. 0 	 •
•
•
•

C - 24 •
•
•

1.1.8.2.1.2 kmb_slave_in 	 •
•

This process is the in entry point for the Multibus slave shared memory server. Two 	•
types of interrupts are processed by this process. 	 •

•

6
 lb

 6
 6

0
lb

 0
 6

0
 lb

 lb
 6

II
 6
 6

lb
 l
b
l b

6
 0

6
0

l b
 6
 6

lb
 6
 6
 6

0
lb

 6
 lb

 6
 6
 6
 lb
 6

6

6

6
 lb

 6
 6
 6
 6

6
lb

 l
b
 lb

 6

6
 lb

 6
 6

1.1.8.2.1.2.1 send reply to master

This process sends a reply interrupt to the master. See Figure K10. 0

1.1.8.2.1.3.1 k188 transmit

This process processes an interrupt from the 188/48 board indicating that the data
transmission is complete. If there are any transmissions pending for the link, then the
input characters are processed ("in_188_raw") and characters are echoed to 188/48
board ("k188_tx_packet"). If an I/O packet is in the output queue, the output characters
are processed ("out_188_raw"), I/O packet data buffer is deallocated
("K_release_buffer") and the I/O packet is deallocated ("K_free_io"). See Figure K11.

1.1.8.2.1.3.2 k188 receive

This process processes an interrupt from the 188/48 board indicating that the input data
is available. It processes the input characters ("in_188_raw") and if there are characters
to echo, they are echoed to 188/48 board ("k188_tx_packet"). Finally, a receive
complete control packet is created and sent to the 188/48 board. See Figure K11.

1.1.8.2.1.3.1.1 in 188 raw

This process processes input characters from a raw input queue to an input data packet.
For each character in the raw input queue, the character is copied to the input packet data
and the echo buffer, and the input packet is submitted to the executive ("K_cpu_k2x").
Also, a new input packet ("K_new_io") and data buffer for input packet
("K_new_buffer") are allocated. See Figures Kll and K12.

1.1.8.2.1.3.1.2 k188_ tx_ packet

This process creates transmit control packet for the 188/48 board, copies output data to
the 188/48 board and sends a control packet initiating data transmission. See Figure
K11. 0

1.1.8.2.1.3.1.3 out_188_raw

This process processes output characters to the 188/48 board. A buffer is allocated for
processed characters ("K_new_buffer") and characters in output data are copied to
output buffer. Processed output is sent to 188/48 board ("k188_tx_packet") and the
output buffer is deallocated ("K_release_buffer"). See Figures Kll and K13.

1.1.8.2.1.3.2.1 K free io

This process deallocates an I/O data packet. See Figure K11. 0

lb
 l
b

11
 lb

 l
b

lb
 l
b

11
 l

b
11

 1
1 l

b
6

lb
 1

1
11

 1
1

11
 0

1
11
 l

b
lb

 l
b l
b
 lb

 4
1

11
 l
b
l b

0
 lb

 lb
 11

 l
b
 lb

 1
1 l
b
 lb

 lb
 li

 11
 l
b
 lb

 l
b

11
 lb

 l
b
6

lb
 6

 6
 l
b

11
 l

b
lb

1.1.8.2.1.3.1.1.1 K_new_io

This process allocates an I/O data packet. See Figure K12, 0

3 K link out . _ _

This process is the out entry point for the kernel link manager. It finds the local and the
server ids using the kernel id, and invokes the appropriate server out entry point
("kmb_master out", "kmb_slave_out" or "k188_out").

Note: this process is the same as process 1.3.1.2 in Section 4.2. See Figures K14 and
E12.

4. K link assign _ 	_ 	 ,
This process is the assign entry point for the kernel link manager. It accesses the link
configuration data from the link id and the server control structure from the link
configuration data. The appropriate server assign entry point is then invoked
("kmb_master_assign", "kmb_slave_assign" or "k188_assign").

Note: this process is the same as process 2.6.1.2 in Section 4.2. See Figures K15 and
E22.

3.1 kmb_master_out

This process is the out entry point for the Multibus master shared memory server. If the
network link is busy, a new network packet is allocated, the packet data is copied to it
("K_copy_buffer"), and the new packet is added to the link transmit packet queue
("K_add_queue"). Otherwise, packet data is copied to the master to slave data
("K_copy_buffer") and transmit ready interrupt is sent to the slave ("send transmit ready
to slave"). See Figure K14.

3.2 kmb_slave_out

This process is the out entry point for the Multibus slave shared memory server. It
allocates a new network packet ("K new_network"), copies the packet data and header
to the new packet ("K_copy_buffer"). If the network link is busy transmitting, the
packet is queued ("K_add_queue"). Otherwise, the packet is transmitted immediately
("send transmit ready to master"). See Figure K14.

3.3 k188 out

This process is the out entry point for the iSBC 188/48 server. If the output link is not
busy, output data is processed immediately ("out_188_raw"). If the output link is busy,
a new I/O packet is allocated ("K_new_io"), output packet data is copied to it
("K_copy_buffer") and the new packet is queued ("K_add_queue"). See Figure K14.

•
•
•
•
•
• 4.1 kmb_master_assign •
• This process is the assign entry point for the Multibus master shared memory server. It
• allocates ("K_allocate") and initializes a Multibus link control structure. It also allocates
• ("K_new_network") master/slave packets. Finally, the kernel link manager control entry
• point is invoked ("K_Iink_control"). See Figure K15.
•
• 4.2 kmb slave assign
•

_ _
• This process is the assign entry point for the Multibus slave shared memory server. It
• allocates ("K_allocate") and initializes a Multibus link control structure and invokes the
• kernel link manager control entry point ("K_link_control"). See Figure K15.
•
• 4.3 k188 assign
•
• This process is the assign entry point for the iSBC 188/48 server. It allocates
• ("K_allocate") and initializes a link control structure. A new buffer is allocated

("K_new_buffer") for raw and processed input data. An I/O packet is allocated for input
• data ("K_new jo"). Finally, the kernel link manager control entry point is invoked
• ("K_link_control"). See Figure K15.
•
•
• 3.1.1 K_ copy_ buffer

• This process copies a data buffer by incrementing its link count, which ensures that the
• buffer is not deallocated until all copies are deallocated. See Figure K14. 0
•
• 3.1.2 K_add_queue •
• This process adds an item to the tail of a queue. See Figure K14. 0
•
•
• 3.1.3 send transmit ready to slave

• This process sends transmit ready interrupt to the slave. See Figure K14. 0 •
•
• 3.2.1 send transmit ready to master
•
• This process sends transmit ready interrupt to the master. See Figure K14. 0
•
• 4.1.1 Klink_control
•
• This process is the control entry point for the kernel link manager. If the kernel id is
• empty, "kl_enter" is called to assign a new kernel id. Otherwise, it finds the local and

the server id using the kernel id, and invokes the appropriate server control entry point

•
• 	 ("kmb_master control", "lcmb_slave_c ontrol" or "k188_control). S ee Figure K15.
•
•
•
•
• C - 27
•
•

•
•
•
•
•
• 4.1.1.1 kmb_master_control •

This process is the control entry point for the Multibus master shared memory server. 	•
Currently no control functions are implemented. See Figure K15. 0 	 •

•
4.1.1.2 kmb_slave_control 	 •

•
• 4.1.1.3 k188 control •

This process is the control entry point for the iSBC 188/48 server. Currently no control 	•
functions are implemented. See Figure K15. 0 	 •

•
• 4.1.1.4 kl enter •

This process assigns a new kernel id. Entries are made in the kernel id to server id, 	•
kernel id to local id and unit id to kernel id tables. See Figure K15. 0 	 •

•
• S. K free_user •

This process deallocates an application consumer packet. See Figure E14. O 	 •
•
• 6. K_free_buffer 	 •

This process deallocates a data buffer. See Figure E18. 0 	 •
•
•
• • • • •
• • • • • • • • • • • •

C - 28 • •

•
This process is the control entry point for the Multibus slave shared memory server. 	•
Currently no control functions are implemented. See Figure K15. 0 	 •

•
•
•
• 4.2 Executive Processes
• The following describes the processes identified in the operating system executive. The
• corresponding structure diagrams are shown in Figures El through E42.
•
• 1. XM in
•
• This process is the in entry point for the executive manager. If the executive id is empty,

the execu tive control in entry point is invoked excontrol_in"). Otherwise, the process
• finds the resource manager and the local id, and invokes the appropriate resource
• manager in entry point ("xnetwork_in", "xio_in" or "xprocess_in"). See Figure El.
•
•
• 2. XB boot

• This process is the boot entry point for the executive. It sets up the executive memory
• management ("X_set_memory") and allocates memory for the executive data structures.
• Next, it sets up the executive message management ("X_set_messages") and executive
• queue management ("X_set_queues"). Finally the initialization entry point for each
• executive component is invoked ("XCB_control", "XCB_router" and "XCB_manager").

See Figure E2. •
•
• 1.1 xnetwork_in
•
• This process is the in entry point for the network resource manager. It allocates an

executive message ("X_new_message") and copies message data from network packet to
• it. Next, it invokes the executive router out entry point ("XR_out") to route the message.
• Finally, the network data packet is deallocated ("X_free_network"). See Figures El and
• E3.
•
• 1.2 xio in •
• This process is the in entry point for the I/O resource manager. It calls "X_next_queue"
• to find out if there is a query message in the consumer request queue. If there is one, a
• reply message is created, the executive router in entry point ("XR_in") is invoked and
• the I/O data packet is deallocated ("X_free_io").
• If the resource consumer has a junction branch, an executive message is allocated
• ("X_new_message"), a send message is created, the message is routed according to
• junction branch 0 ("X_route_junction") and the I/O data packet is deallocated
• ("X_free_io").
• If there is neither a query message in the consumer request queue nor a junction branch
• for the resource consumer, the I/O packet is added to the resource consumer input queue
• ("X_add_queue"). See Figures El and E4.
•
•
•

•
• •
• C - 29 •
•

lb
 0
 lb

 lb
 lb

 lb
 l

b
6 0
 lb

 l
b 6
 lb

 l
b
 lb

 lb

6
 lb

 l
b

lb
 6
 lb

 lb
 6
 lb

 lb
 6
 lb

 6
 l

b l
b l

b
lb

 l
b

lb
 l
b 6
 lb

 l
b

lb
 l

b
lb

l
b

l
b

lb
 6

 l
b
6

lb
 l

b 6
 l
b
lb

1.3 xprocess_in

This process is the in entry point for the application resource manager. Based on the
type of the application packet, the appropriate process is caLled to process the packet
(e.g., for an application packet of type ACCEPT, "process_accept" is called). An error
message is displayed for an invalid packet type ("X_report_error"). See Figures El and
E5.

1.4 xcontrol in

This process is the entry point for the executive control component. It is currently used
to pass the DSM configuration data at boot time. If the DSM has a local name, a
message is allocated ("X_new_message") and its source, destination and data are set.
Finally, the executive manager out entry point ("XM_out") is invoked. See Figures El
and E6.

2.1 Xset_memory

This process initializes the executive memory management. If the executive memory
pool is to be expanded, "X_more_memory" is called. In case of a memory management
error, "X_mem_error" is called. See Figure E2.

2.2 X_ set _messages

This process initializes executive message management by preallocating a number of
executive messages. See Figure E2. 0

2.3 X_set_queues

This process initializes executive queue management. See Figure E2.

2.4 XCB control

This process is the initialization entry point for the executive control component. First,
it allocates memory for DSM query control ("X_set_stack"). Next, the DSM query
queue is initialized and executive control entry points are set. For each executive
consumer, the router assign entry point ("XR_assign") is invoked in order to assign the
consumer. If the DSM consumer name is assigned to executive, the router control entry
point ("XR_control") is invoked to enter the local name. See Figures E2 and E7.

2.5 XCB_router

This process is the initialization entry point for the executive router component. It
allocates and initializes ("X_allocate" and "X_set_stack") the general executive routing
structures such as the consumer index table, name index table, etc. The router entry
points are set. Finally, for each routing algorithm supported (in this case - simple and

•
•
•
•
•
•
• NMR), the algorithm initialization entry point is invoked ("XRI_simple" and

"XRI_nmr"). See Figures E2 and E8. •
•
• 2.6 XCB manager
•
• This process is the initialization entry point for the executive manager component. It

allocates and initializes ("X_allocate") the general executive routing structures such as ' • 	 resource manager control structures, executive id to manager mappings, executive id to
, • 	 local id mappings, etc. It then invokes the specific manager initialization entry points , • ("XMLnetwork", "XMLio" and "XMI_process") for each resource manager supported
• by the operating system. See Figures E2 and E9.
•
• 1.1.1 X_new_message

•
• This process is the out entry point to the executive router. If the message destination is
• undefined, an error message is reported ("X_report_error"). If the message destination is
• external, the message is relayed appropriately ("XM_out").
• If neither of the above cases is true, the process tries to find the source name from the
• routing name table. If the source name is undefined, it is entered in the table
• ("new_name"), a message is added to the out pending queue ("X_add_queue"), a system
• unknown consumer command is allocated ("X_next_query") and the query is issued to
• the DSM ("XC_query_dsm"). If the source name status is out pending, a message is
• added to the out pending queue ("X_add_message"). Otherwise, the appropiiate routing

algorithm out entry point is invoked. See Figures E3 and E10. •
• 1.1.3 X free network
•
• This process deallocates a network data packet by calling the kernel deallocate network

packet entry point ("K_free_network"). See Figure E3. •
0
• 1.2.1 X_next_queue
•
• This process returns an item from the head of a queue. See Figure E4.
•
• 1.2.2 XR in
•
• This process is the in entry point to the executive router. Each message has to have the
• appropriate routing algorithm applied to it before 11 can be sent to the external world.

This process invokes the executive control out entry point if the message destination is
• empty and the appropriate routing algorithm in entry point otherwise. See Figures E4
• and Ell.
•
•
•
• C - 31
•
•

•
• This process allocates an executive message. See Figure E3.
•
• 1.1.2 XR_out

1.2.3 X_free_io

This process deallocates an I/O consumer packet by calling the kernel deallocate I/O
packet entry point ("K_free_io"). See Figure E4.

1.2.4 X route junction

This process routes a message to a specified junction branch by routing a copy of the
message to the consumer associated with each route of the branch. For each route in the
junction branch, if it is not the last route, the input message is copied to the route
message ("X_copy_message"). The router in entry point is invoked to route the
message. See Figure E4.

1.2.5 X_add_queue

This process adds an item to the tail of the queue. See Figure E4.

1.3.1 process_accept

This function processes an ACCEPT packet from an application resource consumer. If
the consumer has a waiting query message ("X_next_queue"), the packet message is set
to the data from the query message, the packet is added to the consumer ready queue
("X_add_queue") and the query message is deallocated ("X_free_message"). Finally,
the kernel link manager out entry point ("Klink_out") is invoked in order to send an
empty acknowledgement packet to the calling process to prevent it from blocldng. See
Figures E5 and E12.

1.3.2 process_query

This function processes a QUERY packet from an application resource consumer. The
consumer's reply message queue is checked ("match_query") and the kernel link
manager out entry point ("K_link_out") is invoked in order to send an empty
acknowledgement packet to the process to prevent it from blocldng. See Figures E5 and
E13.

1.3.3 process_reply

This function processes a REPLY packet from an application resource consumer. An
executive message is allocated ("X_new_message"). The message type, source,
signature, destination and data are set. The executive router in entry point ("XR_in") is
invoked to route the reply. The application consumer packet is deallocated
("X_free_user"). The kernel link manager out entry point ("K_link_out") is invoked.
See Figures E5 and E14.

lb
 lb

 lb
 lb

 l
b
 lb

 11
 lb

 l
b
lb

 lb
 lb

 l
b
 11

 lb
 l
b
lb
 l

b l
b
 lb

 l
b

li
 l

b
lb

 6
 l

b
li

 l
b

lb
 I

I
41

 l
b
lb
 I

I
lb

 l
b
 lb

 l
b
 lb

 l
b l
b l

b
lb
 II

 l
b
 li

 l
b
lb
 0
 l

b
lb

 l
b

II
 lb

 40

1.3.4 process_call

This function processes a CALL packet from an application resource consumer. The
consumer's reply message queue is checked ("match_query") and if a matching reply is
available it used to satisfy the request. Otherwise, "process_ready" is called to check an
application consumer's ready packet queue to see if a packet is available for the process.
The application will block if no packets are ready. See Figures E5 and E15.

1.3.5 processreceive

This function processes a RECEIVE packet from an application resource consumer. If a
send message is available for the application consumer ("X_next_queue"), the packet
message is set to the data from the send message, the packet is added to the application
ready queue ("X_add_queue") and the send message is deallocated ("X_free_message").
Finally, "process_ready" is called to check an application consumer's ready packet
queue to see if a packet is available for the process. The application will block if no
packets are ready. See Figures E5 and E16.

1.3.6 process_send

This function processes a SEND packet from an application resource consumer. If the
packet specifies a consumer, then an executive message is allocated
("X_new_message"), the message type, source, signature, destination and data are set
and the message is sent to that consumer ("XR_in").

If the packet does not specify a consumer and the junction branch as specified in the
packet has at least one route, then an executive message is allocated
("X new_message"), the message type, source, signature, destination and data are set
and the message is routed to that junction branch ("X_route_junction"). In case both the
above fail an error message is reported ("X_report_error").

Finally, the application consumer packet is deallocated ("X_free_user") and the kernel
link manager out entry point ("K_link_out") is invoked. See Figures E5 and E17.

1.3.7 process_ready

This process checks an application consumer's ready packet queue to see if a packet is
available for the process. If the function is invoked with a READY packet, the ready
packet is deallocated ("X_free_user").

Next, if a packet is available in the application consumer ready queue ("X_next_queue"),
it passed to the application consumer via the kernel out entry point ("K_link_out").
Also, if the packet has data, the packet data is deallocated ("X_free_buffer") and ready
application consumer packet is deallocated ("X_free_user").

If a packet is unavailable, the application consumer scheduling is blocked
("process_run2wait"). See Figures E5 and E18.

•
O
•
•
•
•
•
•
•
•
•
0
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1.3.8 X_report_error

This process creates an error report message and sends it to the DSM. It allocates
message for an error message ("X_new_message"). The message type, source,
signature, and destination are set. A buffer is allocated for the DSM error command
("X_new_buffer"). The error message is formatted and sent to the DSM ("XR_in"). See
Figure E5.

1.41 XM out
This process is the out entry point to the executive resource manager. If the executive id
is empty, the executive control out entry point is invoked ("xcontrol_out"). Otherwise,
the process finds the resource manager and the local id, and invokes the appropriate
resource manager out entry point ("xnetwork_out", "xio_out" or "xprocess_out"). See
Figures E6 and E19.

2.1.1 X_more_memory

This process expands the size of the executive memory pool by requesting memory from
the kernel memory pool. See Figure E2.

2.1.2 X_mem_error

This process is invoked by the memory management functions when a memory
management error occurs. Examples of such errors include: memory management
structure corruption, attempts to reallocate or free unallocated memory, and no more
memory faults. See Figure E2.

2.4.1 Xset_stack

This process preallocates a number of blocks of fixed size, allowing allocation and
deallocation of these blocks with minimal overhead. See Figure E7.

2.4.2 XR assign

This process is the assign entry point of the executive router. It is invoked to add a
consumer to the routing consumer tables. First, a consumer is entered in consumer table
("new_consumer"). For each name associated with the consumer, if the name is not in
the table, it is entered ("new_name") and if the name is not local, the executive manager
assign ently point ("XM_assign") is invoked to assign a network path. Next, the
appropriate routing algorithm assign entry point is invoked. Finally, the pending queues
are checked for messages directed to the new names, and if any are found, these are
routed as required ("XR_out"). See Figures E7 and E20.

C - 34

CI
 II

 II
 I
I
 II

 I
I 6
 6
 II

 I
I I
I I

I
II
 0
 II

 C
I

II
 0

0
 I

I
II
 I

I
I I

 I
I

II
 I
I
 6
 II

 I
I 6

6

6
 II

 I
I

II
 I
I
 II

 6
 II

 I
I

II
 II

 I
I
 II

 II
 0
 II

 I
I 0
 II

 I
I
II
 6

0
 II

2.4.3 XR_control

This process is the control entry point of the executive router. If the routing algorithm is
empty, it calls one of the control processes below depending upon the control code. The
control processes include "xr_enter_name" (to enter local executive id for name) and
"xr_set_,junction" (to reset consumer junction). Otherwise, the appropriate routing
algorithm control entry point is invoked. Invalid codes however, cause an error message
to be reported ("X_report_error"). See Figures E7 and E21.

2.5.1 X allocate

This process allocates a contiguous block of memory having at least a specified size.
See Figure E8.

2.5.2 XRI_simple

This process is the initialization entry point for the simple router. It sets simple routing
entry points in the executive control structure. See Figure E8.

2.5.3 XRI nmr

This process is the initialization entry point for the NMR router. It allocates memory for
the NMR routing control ("X_allocate"). It also allocates memory for NMR consumers
and messages ("X_set_stack"). Finally, it sets the NMR routing entry points in the
executive control structure. See Figure E8.

2.6.1 XMI network

This process is the initialization entry point for the executive network resource manager.
Memory is allocated for the network resource control and link table ("X_allocate").
Next, for each network resource, its link is activated to enable the reception of network
messages from that link ("XM_control" and "K_link_assign"). See Figures E9 and E22.

2.6.2 XMI io

This process is the initialization entry point for the executive I/O resource manager.
Memory is allocated for the I/O resource control, link table and resource consumer table
("X_allocate"). Next, for each I/O resource link, the link table entry is initialized. Also,
the entry points in the executive manager control structure are set. See Figure E9.

2.6.3 XMI_process

This process is the initialization entry point for the executive application resource
manager. Memory is allocated for the application resource control, link table and
resource consumer table ("X_allocate"). Next, for each application resource link, the

•

link table entry is initialized. Also, the entry points in the executive manager control
structure are set. See Figure E9.

1.1.2.1 new_name

This process creates a new entry in the name routing tables and initializes it. A name
structure is allocated. If the name id is greater than the name index, the latter is
reallocated ("X_reallocate"). The name data structure is entered into the table and
initialized. Finally, if the consumer id is defined, the name is linked to the consumer
name list ("link name"). See Figures El0 and E23.

1.1.2.2 X next query _ _
This process allocates a data buffer ("X_new_buffer") and initializes it as a system
command by setting the command header parameters. See Figure E10.

1.1.2.3 XC_query_dsm

This process sends a query message to the DSM. It allocates a message for query
("X_new_message"). The message type, source, data, signature, and destination are set.
Next, it is added to the outstanding query queue ("X_add_queue") and the message is
sent by invoicing the executive router in entry point ("XR in"). See Figures El0 and
E24.

1.1.2.4 X_ add_ message

This process adds a message to the out pending queue. See Figure E10. 0

1.1.2.5 invoke routing alg. out point

This process looks up the routing algorithm for the message, and invokes the out entry
point of the appropriate routing algorithm. Currently, there are 2 routing algorithms
being used: simple and NMR. Thus, this process calls either "xsimple_out" or
"xnmr_out". See Figure E10.

1.2.2.1 xcontrol_out

This process is the out entry point for the executive control component. If the message
is a reply message, it is sent to the DSM as a reply for the query ("query reply").
Otherwise, the message is processed locally as either a DSM or an executive command
("set command"). See Figures Ell and E25.

C - 36

lb
 11
 11

 11
 1
1
 11

 11
 lb
 1

1
lb
 11

 lb
 1
1
 11

 l
b
lb

 li
 11

 1
1

fi
 6

 6
 f
i
 11

 6
lb

 l
b
11
 1
1

11
 lb

 lb
 11

 l
b 6
 l
b
 6
 fi

 1
1

11
 li

 lb
 11
 lb
 11
 fi

 6
lb
 1
1
 6
 11
 6
 11
 11

 11

1.2.2.2 invoke routing alg. in point

This process looks up the routing algorithm for the message destination, and invokes the
in entry point of the appropriate routing algorithm. Currently, there are 2 routing
algorithms being used: simple and NMR. Thus, this process calls either "xsimple_in" or
"xnmr_in". See Figure El 1.

1.2.4.1 X_copy_message

This process allocates an executive message ("X_new_message") and copies the input
message to it ("X_copy_buffer"). See Figure E4.

1.3.1.1 X_ free_ message

This process deallocates an executive message. See Figure E12. 0

1.3.1.2 K link out

This process is the same as the process 3 in Section 4.1 above. See Figures E12 and
K14.

1.3.2.1 match_query

This process checks the application consumer reply message queue for a reply to a given
query or call. If the queue contains a reply for the query ("X_find_signature"), packet
message data is set to reply message, the packet is added to the application consumer
ready packet queue ("X_add_queue") and the reply message is deallocated
("X_free_message").

Otherwise, the packet is added to the application consumer query packet queue
("X add_queue") and a query message is sent as indicated by the packet message data
("send consumer query packet"). See Figures El3 and E26.

1.3.3.1 X free user _ _
This process deallocates an application consumer packet by invoicing the kernel
deallocate application packet entry point ("K_free_user"). See Figure E14.

1.3.7.1 X_ free_ buffer

This process deallocates a data buffer by decrementing the number of links to the buffer.
If the link count is 0, the kernel deallocate buffer entry point ("K_free_buffer") is called.
See Figure E18.

II
 1

1
IP

 I
I

I,
 I

I
I I

 II
 I,

 I
I

II
 1

, 1
1

11
 11

 11
 I,

 1
1

11
 II

 I
I

II
 I

I I
I I

I 1
1

fI
 I
, 1

1,
 II

 II
 11

 1
1

II
 1

1
 I,

 I
I I

I I
) I

I
I,

 I
I

II
 1

1
0
 I,

 I
I

II
 11

 1
1 1

1
11

 I
I I

I 1
1

1.3.7.2 process_run2wait

This process disables the scheduling of an application consumer, blocldng that
consumer. The next application consumer with scheduling enabled is scheduled
("next_process"). See Figure E18.

1.3.8.1 X_new_buffer

This process allocates a data buffer by involdng the kernel allocate buffer process
("K_new_buffer"). See Figure E5.

1.4.1.1 xnetwork_out

This process is the out entry point for the network resource manager. It creates a
network packet from the message data and invokes the kernel out entry point
("K_link_out") to transmit the packet. If the message has data, the message data is
deallocated ("X_free_buffer"). Finally, the executive message is deallocated
("X_free_message"). See Figures E19 and E27.

1.4.1.2 xio_out

This process is the out entry point for the I/O resource manager. If the message type is
SEND, the send message is processed ("xio_send"), and if the message type is QUERY,
the query message is processed ("xio_query"). For invalid message types, an error
message is reported ("X_report_error"). See Figures E19 and E28.

1.4.1.3 xprocess_out

This process is the out entry point for the application resource manager. Depending
upon the type of the message (SEND, QUERY or REPLY), the appropriate process is
called to process the message ("process_out send", "process_out_query" or
"process_out_reply"). For invalid message types, an error message is reported
("X_report_error"). See Figures E19 and E29.

2.4.2.1 new_consumer

This process creates a new entry in the consumer routing tables, and initializes it. If the
consumer id is greater than the consumer index size, space for the latter is reallocated
("X_reallocate"). See Figure E20.

2.4.2.2 XM_assign

This process is the assign entry point of the executive manager. It looks up the local
resource id, and if one is found, the appropriate resource manager assign entry point is
invoked ("xnetwork_assign", "xio_assign" or "xprocess_assign"). Otherwise, an error
message is reported ("X_report_error"). See Figures E20 and E30.

•
•
•

' •

•
• 2.4.2.3 invoke routing alg. assign entry pt.

• This process invokes the assign entry point of the routing algorithm associated with that
• consumer. Currently, there are 2 routing algorithms being used: simple and NMR.
• Thus, this process calls either "xsimple_assign" or "xnmr_assign". See Figure E20.
•
•
• This process assigns an executive identifier to a specified name. It looks up the name
• from the input name id. If the name is not defmed, an error message is reported
• ("X_report_error"). Otherwise, the executive manager assign entry point ("XM_assign")
• is invoked. See Figure E21.
•
• 2.4.3.2 xr_set _junction
•
• This process resets a consumer junction. With the executive id for the name, it invokes
• the executive manager control entry point. See Figure E21.
•
• 2.4.3.3 invoke routing alg. control entry pt.
•
• This process invokes the appropriate control entry point of the routing algorithm.
• Currently, there are 2 routing algorithms being used: simple and NMR. Thus, this

process calls either "xsimple_control" or "xnmr_control". See Figure E21. •
•
• 2.6.1.1 XM control
•
• This process is the control entry point of the executive manager. If the executive id is

not empty, the appropriate resource manager control entry point is invoked
• ("xnetwork_control", "xio_control" or "xprocess_control"). Otherwise, if the control
• code is ENTER, "xm_enter" is called to enter the executive id mappings. For all invalid
• codes an error message is reported ("X_report_error"). See Figures E22 and E31.
•
• 2.6.1.2 K link assign •
• This is the same as the process 4 in Section 4.1. See Figures E22 and K15.
•
•
• 1.1.2.1.1 X reallocate

• This process reallocates an allocated block of memory. See Figure E23.
•
•
• 1.1.2.1.2 enter and mit, name
• This process enters the name data structure in the name index by name id and initializes
• the name data structure fields. Also the name state is set. See Figure E23.
•
•
•
•
• C - 39 • •

2.4.3.1 xr enter name •

11
 1
1

11
 1
1

11
 6

 6

11
 11

 1
1

11
 1
1
 0

1
1
 11

 6
 1
1

11
 11
 0
 0
 1
1
0
 1

1
11
 0
 1

1
11
 6

6
 1
1
 6

11
 6
 1
1
6

1
1
 6
 6

0

6

0
 6

6
 6
 6

 1
1

11
 6

1 1
 1

1
6
 11

 1
1

6

1.1.2.1.3 link name

This process links the new name to the consumer name list, if the consumer id is
defined. See Figure E23. 0

1.1.2.5.1 xsimple_out

This process is the out entry point to the simple router. The received messages are
submitted to the executive resource manager for transmission to the appropriate active
resource ("XM_out"). See Figure E10.

1.1.2.5.2 xnmr_out

This process is the out entry point to the NMR router. First, the NMR consumer
message list is checked for another message copy. If no other copy is found, the first
message copy is processed ("xnmr_out_new"). If the message copy has a valid message,
it is processed ("xnmr_out_valid"). If the message copy does not have a valid message,
a message copy stating that no valid message is available is processed
("xnmr_out error"). Finally, if the message is the last expected copy, message reception
is completed ("xnmr_done"). See Figures El0 and E32.

1.2.2.1.1 query reply

This process initially, finds a query for reply ("X_find_signature"). If the query is not
found, an error message is reported ("X_report_error"). Otherwise, a notify function
associated with the query is invoked, query request is freed, message data is deallocated
("X_free_buffer") and the message is deallocated ("X_free_message"). See Figure E25.

1.2.2.1.2 set command

This function processes the message data as a command. If the command is to DSM, it
is copied ("X_copy_message") and relayed to the DSM ("XR_in"). Otherwise, the local
executive command is processed ("X_command"). Finally, the message data is
deallocated ("X_free_buffer") and the message is deallocated ("X_free_message"). See
Figure E25.

1.2.2.2.1 xsim ple_in

This process is the in entry point to the simple router. Each message is sent to its
destination consumer ("X_route_consumer"). See Figure El 1.

1.2.2.2.2 xnmr in

This process is the in entry point to the NMR router. Each message is copied and sent to
its destination consumer ("X_route_consumer"). See Figure El 1.

Il
 I

I I
I
 0
 II

 I
, 0

 II
 I

I
II

 I
I

II
 I

I I
I I

I
II

 I
I

II
 I
I
 II

 II
 I

I
II

 II
 I

I
II

 I
I

II
 II

 II
 I

I
II

 I
I

II
 I

I
II

 II
 I
I
 0
 I,

 I
I I

I
II

 I
I
 II

 I
I

I,
 I

I
I,

 I
I

II
 I

I
II

 I
I
 II

1.2.4.1.1 X_copy_buffer

This process copies a data buffer by incrementing the link count to ensure that the buffer
will not be actually deallocated until all copies are deallocated. See Figure E4. 0

1.3.2.1.1 send consumer query packet

This process sends a consumer query packet. If the packet specifies a consumer, an
executive message is allocated ("X_new_message"), the type, signature, source,
destination and data are set for the message and the reply is routed ("XR_in").

If the packet does not specify a consumer and the packet's junction branch has at least
one route, then an executive message is allocated ("X_new_message"), the type,
signature, source, destination and data are set for the message and the message is routed
to the junction branch ("X_route_junction"). If neither of the above conditions are true,
an error message is reported ("X_report_error"). See Figure E26.

1.3.3.11 K free user . 	_ _

This is the same as the process 5 in Section 4.1. See Figure E14.

1.3.7.1.1 K free buffer

This is the same as the process 6 in Section 4.1. See Figure E18.

1.3.7.2.1 next_process

This process checks if an application consumer is in the ready queue ("X_next_queue").
If so, the application consumer is scheduled ("K_link_out"). Also, if the scheduled
application consumer has a ready packet with data, the packet data is deallocated
("X_free_buffer") and the application consumer packet is deallocated ("X_free_user").
See Figures E18 and E33.

1.4.1.2.1 xio_send

This function processes a SEND output message. If the message has associated data, the
I/O packet data is set to it, kernel out entry point is invoked ("K_link_out"), and the
message data is deallocated ("X_free_buffer"). Finally, the executive message is
deallocated ("X_free_message"). See Figure E28.

1.4.1.2.2 xio_query

This function processes a QUERY output message for an I/0 resource consumer. First,
it checks if an I/O packet is in the data queue ("X_next_queue"). If so, a reply message
is created, the message is routed ("XR_in") and I/O data packet is deallocated

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

("X_free_io"). If there is no I/O packet in the data queue, the query message is added to
the resource consumer request queue ("X_add_queue"). See Figure E28.

1.4.1.3.1 process_out_query

This function processes a QUERY output message by checking if the application
consumer has an outstanding accept packet. If the application consumer has an accept
packet, the accept packet is added to the ready packet queue ("X_add_queue"), the
executive query message is deallocated ("X_free_message") and the application
consumer scheduling is enabled (if it was disabled) ("process_wait2ready"). If there is
no accept packet, the query message is added to the query message queue
("X_add_queue"). See Figures E29 and E34.

1.4.1.3.2 process_out_reply

This function processes a REPLY output message by checldng if the application
consumer has a query or call packet outstanding for the reply. First, it checks if the
application consumer has a query for reply ("X_find_signature"). If it does, the query
packet is added to the ready packet queue ("X_add_queue"), the executive reply
message is deallocated ("X_free_message") and the application consumer scheduling is
enabled (if it was disabled) ("process_wait2ready"). If there is no query packet, the
reply message is added to the reply message queue ("X_add_queue"). See Figures E29
and E35.

1.4.1.3.3 process_out_send

This function processes a SEND output message by checking if the application
consumer has an outstanding receive packet. If the application consumer has a receive
packet, it is added to the ready packet queue ("X_add_queue"), the executive send
message is deallocated ("X_free_message") and the application consumer scheduling is
enabled (if it was disabled) ("process_wait2ready"). If there is no receive packet, the
send message is added to the send message queue ("X_add_queue"). See Figures E29
and E36.

2.4.2.2.1 xnetwork assign

This process is the assign entry point of the network resource manager. If the link to
resource is found and the network path unassigned, the executive manager control entry
point ("XM_control") is invoked to assign executive id. Otherwise, an error message is
reported stating that the resource is unavailable ("X_report_error"). See Figure E30.

2.4.2.2.2 xio assign

This process is the assign entry point of the I/O resource manager. If the link to the
resource is found, memory is allocated for the resource consumer structure
("X allocate"), resource consumer table is expanded if needed ("X_reallocate"),
executive manager control entry point is invoked to enter the consumer ("XM_control")

C - 42

11
 11

 11
 6
 6
 6
 6

6

6

0
 6

11
 6

6

6
 6

0

6
 6
 6
 0

11
 6

6
6

6
 6
 6

6
11

 0
 6
 6
 6

11
 6
 11
 6
 6
 6
 6
 11

 6
 1
1
 6

6

6

6
 6
 6
 6
 0
 0
 0

and the kernel link assign entry point is invoked to activate the resource
("K_link_assign"). Otherwise, an error message is reported stating that the resource is
unavailable ("X_report_effor"). See Figures E30 and E37.

2.4.2.2.3 xprocess_assign

This process is the assign entry point of the application resource manager. If the link to
the resource is found, memory is allocated for the resource consumer structure
("X_allocate"); resource consumer table is expanded if needed ("X_reallocate");
executive manager control entry point is invoked to enter the consumer ("XM_control");
kernel link assign entry point is invoked to activate the resource ("K_link_assign") and
the resource consumer scheduling is enabled ("process_waiaready"). Otherwise, an
error message is reported stating that the resource is unavailable ("X_report_error"). See
Figures E30 and E38.

2.4.2.3.1 xsimple_assign

This process is the assign entry point of the simple router. It allocates memory for the
simple consumer local data ("X_allocate") and initializes the data which is specific to
the simple routing algorithm. See Figure E20.

2.4.2.3.2 xnmr assign

This process is the assign entry point of the NMR router. It initializes the data which is
specific to the NMR routing algorithm. See Figure E20.

2.4.3.3.1 xsimple_control

This process is the control entry point of the simple router. An error message is reported
for an invalid control code ("X_report_error"). Note: currently, no simple control
functions are implemented. See Figure E21.

2.4.3.3.2 xnmr_control

This process is the control entry point of the NMR router. An error message is reported
for an invalid control code ("X_report_error"). Note: currently, no NMR control
functions are implemented. See Figure E21.

2.6.1.1.1 xm_enter

This process allocates a new executive id and makes entries for the resource manager
and the local id in the manager mapping tables. If there are no more available executive
ids, the tables are expanded ("X_reallocate"). See Figure E31.

lb
 lb

 l
b

 l
b

 l
b

 lb
 lb

 lb
 lb

 6
lb

 lb
 6

 l
b

 l
b

 lb
 lb

 lb
 l

b
 l

b
 l

b
 l

b
 6

 l
b

 l
b

 l
b

 lb
 6

 l
b

 lb
 6

 l
b

 l
b

 6
 6

 l
b

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 6

lb

2.6.1.1.2 xnetwork_control

This process is the control entry point of the network resource manager. An error
message is reported for an invalid control code ("X_report_error"). Note: currently, no
control functions are implemented. See Figure E31.

2.6.1.1.3 xio_control

This process is the control entry point of the I/O resource manager. If the control code is
JUNCTION, "xi_reset_junction" is called to reset the I/O resource consumer junction.
An error message is reported for an invalid control code ("X_report_error"). See Figure
E31.

2.6.1.1.4 xprocess_control

This process is the control entry point of the application resource manager. If the
control code is JUNCTION, "xp_reset_junction" is called to reset the application
consumer junction. An error message is reported for an invalid control code
("X_report_error"). See Figure E31.

1.1.2.4.2.1 xnmr_out_new

This function processes the first copy of a message received from an NMR consumer. It
initializes an NMR structure. If N is 1, the message is added to the valid copy queue
("X_add_queue") and a valid message is created ("xnmr_ready"). Otherwise the
message is added to the error copy queue ("X_add_queue"). See Figure E32.

1.1.2.4.2.2 xnmr_out_error

This function processes a message from an NMR consumer when no valid copy of the
message is available. First, it checks the error copy queue for the exact copy message.
If the exact copy is found, it is added to the valid copy queue ("X_add_queue"); deleted
from the error copy queue ("X_next_queue"). Next, if a valid copy is available, a valid
message is created ("xnmr_ready"). Otherwise, the message is added to the error copy
queue ("X_add_queue"). See Figure E32.

1.1.2.4.2.3 xnmr_out_valid

This function processes a message from an NMR consumer when a valid copy of the
message is available. If the message same as the valid copy, it is added to the valid copy
queue; otherwise it is added to the error copy queue ("X_add_queue"). See Figure E32.

1.1.2.4.2.4 xnmr_done

This process is invoked when the message reception is complete. If the NMR message
has error copies, then for each copy in the error queue ("X_next_queue"), an error

II
 6
 II

 II
 II

 6
 II

 II
 II

 0
 II

 6
 0
 I

I
II
 I

I
II
 I

I
II
 6

6
 II

 6
 II

 6
 II

 I
,
6
 II

 I
I
6

6
 I
I 0
 II

 II
 6
 6

0
 6
 6
 II

 I
I
6
 6
 6
 II

 I
I

II
 6
 II

 6
6
0
6

message is reported to the DSM ("X_report_error") and the error copy is added to the
valid queue ("X_add_queue").

If valid copy count is not equal to expected copy count, then for each NMR consumer
name, if a copy is found, the message and data are deallocated ("X_free_buffer" and
"X_free_message"). Otherwise, an etror message is reported to the DSM
("X_report_error") stating that the message is missing.

If valid copy count is equal to expected copy count, then for each message in the valid
queue, the message and data are deallocated ("X_free_buffer" and "X_free_message").
See Figures E32 and E42.

1.2.2.1.1.1 Xfind_signature

This process searches a queue for a message containing the given signature. See Figure
E25. 0

1.2.2.1.2.1 X command

This function processes a system command directed to the executive. One of the
following processes is called based on the control code: "X_command" (to process a list
of commands); "XR_assign" (to add a consumer); "XR_control" (add a name);
"list_status" (to report executive status) or "X_report_error" (to report an error for an
invalid code). See Figure E25.

1.2.2.2.1.1 X route consumer

This process sends a message to a specified consumer ("XR_out") by sending a copy of
the message ("X_copy_message") to each name associated with the consumer. See
Figures Ell and E39.

1.4.1.3.1.1 process_wait2ready

This process enables the scheduling of an application consumer and adds it to the ready
queue ("X_add_queue"). The next application process is scheduled ("next_process").
See Figure E34.

2.6.1.1.3.1 xi _reset junction

This process resets the junction for an I/O resource consumer. It accesses the I/O
 resource consumer from the resource consumer table; reallocates the I/O resource

consumer to hold new junction ("X_reallocate") and copies resource consumer junction
from input junction. See Figure E31.

11
 0

11
 1

1 l
b

41
 l

b
11
 1

1
0
0
11
 1

1
11

 1
1

lb
 1

1
lb
 1

1
Ob

 l
b

11
 l

b
lb
 0

0
 1

1
11

 11
 l
b
 lb

 lb
 l
b
 0
 lb

 11
 0
 11

 lb
 1

1
11

 lb
 6

lb
 1

1
6
11
 l
b
11
 1

1
11

 1
1

lb
 0
 6

2.6.1.1.4.1 xpreset_junction

This process resets the junction for an application resource consumer. It accesses the
application resource consumer from the resource consumer table; reallocates the
application consumer to hold new junction ("X_reallocate") and copies consumer
junction from input junction. See Figure E31.

1.1.2.4.2.1.1 xnmr_ready

This process is called when a valid message is available from an NMR consumer. The
valid message is copied ("X_copy_message") and is routed ("XM_out"). Next, for each
NMR message in the NMR consumer message list, if the message destination is the
same as the valid message and the message signature is less than the valid message
signature by a predetermined constant, the message reception is completed
("xnmr_done"). See Figures E32 and E41.

1.2.2.1.2.1.1 list_status

This process creates and sends a reply message to a request for the executive status. A
message data buffer ("X_new_buffer") and a message ("X_new_message") are allocated
for the reply. The type, signature, source, destination and data are set for the reply
message. Executive router in entry point ("XR_in") is invoked to route the reply
message. See Figures E25 and E40.

•
•
•
•
•
•
• 4.3 Distributed System Manager & Shell Processes

• The following describes the processes identified in the distributed system manager (DSM) of
• the operating system. The corresponding structure diagrams are shown in Figures D1
• through D15.
•
• Main (DSM)
• This is the distributed system manager (DSM) mainline process. It calls "sys accept" to
• set up the system to accept commands. Next, it repeats the two steps "sys_re—ad" (i.e., to
• read commands from standard input) and "mgr_command" (to execute the command).
• See Figure Dl.
•
• 1. sys_accept •
• This process calls "set user packet buffer" to set the user packet data and then calls
• "tx_packet" to send the user packet to the system. See Figure Dl.

•
• This process reads command from standard input. See Figure Dl. 0
•
•
• 3. mgr_command
• Depending upon the type of the command, this process calls the respective process to
• execute the command. For example, "mc_boot" is called if the command is to initialize
• DSM with configuration boot data and "mc_define" is called to define a consumer and

_ • 	so on. See Figures D1 and D2.
•
• 1.1 set user packet data
•
• This process sets the various fields in the data packet with the user packet data. The
• packet type is set to "UPKT_ACCEPT" and the data length to O. Also set are the

address of the reply buffer and its length. See Figure Dl. 0 •
• 1.2 tx_packet
•
• This process checks if the data packet has any data and if so, it calls "U_copy" to copy

packet data to user packet buffer. Next, it calls "write ttri pipe to os" to write the user
• packet buffer to pipe to operating system. See Figure Dl. •
•
• 3.1 mc list
• For each command in the command list, this process calls the respective process to
• execute that command. If the command in the list is itself a list of commands, it calls •
•
•
•
• C - 47
•

•
• 2. sys_read

• I •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

itself. This process is repeated until all commands are executed. See Figures D2 and
D3.

3.2 mc_boot

This process is the boot entry point for the distdbuted system manager. It performs the
following functions. Memory management, stack for messages, buffer to write to execs
and acknowledgement buffer are set up by a call to "set up memory, stack & buffer
sizes". Next, "allocate spaces for tables" is called to allocate spaces for managers,
routers, resources, executives and consumers tables. The system id is initialized to that
in the configuration.

Each manager is then added to the manager table (repeated calls to "mc_add_manager").
Similarly, each router and resource is added to the corresponding table (repeated calls to
"mc_add_router" and "mc_add resource"). Not only is each executive added to the
executive table, each executive's link is also added to the executive's link table (a call to
"add_execs"). The DSM is added to the consumer table, and initialized with
configuration data and each name required for DSM is entered in system and consumer
tables ("enter_name & enter consumer"). Executives with DSM resource are assigned
to DSM consumer ("assign_resource"). Finally, space is allocated for junctions and the
DSM consumer state is initialized. See Figures D2 and D4.

3.3 mc_unknown_con

This process adds a consumer address to an executive which must communicate with it.
It gets the consumer table entry by calling "get consumer". Next, "assign_network" is
called to assign networks between the consumer and the given executive. The process
"prepare acknowledgement" is called to prepare an ack with "add consumer" command.
Finally, the consumer data is added to the buffer ("add consumer"). See Figures D2 and
D5.

3.4 mc unknown_name

This process has not been implemented. See Figure D2. 0

3.5 mc_define

This process is used to define a consumer. It calls "find resource" to look up the
resource from the system resource table. If the resource is not found, an error message is
displayed. Else, a new consumer is created and entered into the system ("create & enter
consumer"). See Figures D2 and D6.

3.6 mclink

This process is used to define a link from one consumer to another. It calls "find
consumer" to get the consumer (to be linked to this consumer) from the system

C - 48

6
 lb

 0
 6
 0
 11
 41

 4
1
11

 1
1 1
1 6

 6
 l
b
lb
 1

1
41

 1
1

11
 1
1
11
 lb

 6
41

 l
b
lb
 II
 lb

 1
1 l
b 1

1 l
b
lb
 11

 11
 lb

 1
1
 11

 6
 lb

 lb
 6
 II

 11
 1

1
11
 l
b
 6
 6
 6

6
 6

0
 41

 lb

consumer table. If the consumer is not found, an error message is displayed. Otherwise,
process "link consumer" links the consumer. See Figures D2 and D7.

3.7 mc_run

This process is used to begin the execution of a consumer. It calls "find consumer" to
get the consumer from the system consumer table. If the consumer is not found, an error
message is displayed. Otherwise, the consumer's address is added to all executives
which must communicate with it ("run_tos") and execution of all consumer names is
begun ("run_names"). See Figures D2 and D8.

3.8 mc_get_consumer

This process sends an acknowledgement to the calling process with the status of the
given consumer. It calls "find consumer" to get the consumer from the system consumer
table. If the consumer is not found, it calls "prepare ack" to prepare an empty
acknowledgement buffer. Otherwise, if the consumer does not have a junction, an
empty one is allocated for it. Consumer data is placed in the buffer and an appropriate
acknowledgement buffer is prepared. See Figures D2 and D9.

3.9 mc_get_cpu

This process sends an acknowledgement to the calling process with the status of the
given executive. It calls "find executive" to get the id of the executive from the system
executive table. If the executive is not found, it calls "prepare ack" to prepare an empty
acicnowledgement buffer. Otherwise, a request status command buffer is prepared and
sent to the executive. See Figures D2 and D10.

3.10 mc_exec_error

This process prints out an error message with the given executive id and the error code.
See Figure D2. 0

3.11 mc_undefined

This process prints out a message indicating that the received command is undefined.
See Figure D2. 0

1.2.1 U_eopy

This process copies a specified number of bytes from a source to a destination. See
Figure Dl. 0

lb
 lb

 l b
 6

 lb
 lb

 lb
 l

b
lb

 lb
 6
 6
 0

 lb
 6

 lb
 l

b
 lb

 lb
 lb

 lb
 6

 l
b

 6
 lb

 lb
 6

 lb
 l

b
lb

 l
b

 6
 6

 6
 lb

 0
 lb

 6
 lb

 lb
 lb

 lb
 6

 l
b

 6
 lb

 6
 lb

 lb
 lb

 0
 lb

 0
 6

 l
b

1.2.2 write to pipe to os

This process writes the user packet buffer to pipe to operating system. See Figure Dl.
 0

3.2.1 set up memory, stack & buffer sizes

This process sets up the following parameters required for system boot: memory
management with 4 Kbytes, a stack for messages, a 256 byte buffer to write to execs, a
256 byte acknowledge buffer. See Figure D4. 0

3.2.2 allocate spaces for tables

This process a llocates space for tables of the following: managers, routers, resources,
executives, consumers and their names. See Figure D4. 0

3.2.3 mc_add_manager

This process allocates space for the new manager entry and initializes entry with
manager configuration data. It also sets the resource count to 0 and adds the entry to the
table of managers. See Figure D4. 0

3.2.4 mc_addrouter

This process allocates space for the new router entry and initializes entry with router
configuration data. The entry is added to the table of routers and the new entry index to
the beginning of the system router list. See Figure D4. 0

3.2.5 mc_add_resource

This process allocates space for the new resource entry and its links, and initializes entry
with resource configuration data. The entry is added to the table of resources and the
new entry index to the beginning of the system resource list and resource manager' s
resource list. See Figure D4. 0

3.2.6 add execs

For each executive in the configuration, this process adds the executive to the executive
table and the list ("mc_add_exec"), and adds all the executive's links to the executive's
link table ("mc_add_link"). See Figure D4.

• • • • • • 3.2.7 enter name & enter consumer •
• For each name required for the DSM, this process enters the name in system and
• consumer tables. Also, the DSM is added to the consumer table, and initialized with
• configuration data. See Figure D4. 0
•
•
• 	3.2.8 assign_resource
• This process assigns executives with the available resource to a consumer. The
• appropriate assign process ("assign_io" or "assign_appl") is called depending on the
• manager id. For any other id an error message is displayed. See Figures D4 and D11.
•
• 3.3.1 get consumer
•
• This process gets the consumer name table entry from the given name id. It then gets
• the consumer table entry from the id of the consumer associated with the name. See

Figure D5. 0 • •
• 3.3.2 assign_network
•
• This process assigns networks between the given executive assigned to the consumer

and the consumer's other assigned executives. •
• The process gets the executive table entry for the given executive id. If the executive is
• in the consumer's name mask, it is removed from the mask. Next, "check & assign
• network" is called to test network executive and consumer name masks and if possible,
• assign a network. If no network is assigned at the end of all the testing and assigning, an

error message is displayed. Finally, the network manager's resource list is sorted • ("sort_networks"). See Figures D5 and D12. •
•
• 3.3.3 prepare acknowledgement

•
• This process prepares an appropriate acknowledgement buffer. See Figure D5. 0
•
• 3.3.4 add consumer
•
• This process places the consumer id, router type, the name count and the consumer name

list in the buffer. See Figure D5. 0 •
•
• 3.5.1 find resource
•
• This process looks up the resource from the system resource table to get the id. See

Figure D6. 0 •
•
•
•
•
•
• C - 51 •
•

4
1
 1 1

 4
1

1 1
 11

 1
1 1
1
 1
1
 11

 1
1

11
 1
1

11
 11
 11

 1
,

11
 1
1
 1
1
 11
 1
1
 11

 1
1
 1
1
 11

 1
1
11
 1

1
11
 1
1

11
 1
1
11

11
 1
1

6
 l
b
 lb

 4
0 l
b l

b
lb
 lb

 l
b l
b l

b l
b
lb
 lb

 l
b
lb

 l
b l
b

lb
 lb

3.5.2 display error msg

This process displays the error message given to it as its input (e.g., resource not found
message, etc.). See Figure D6. 0

3.5.3 create & enter consumer

This process creates a new consumer entry. It calls "find router" to get the router id. If
the router is not found, an error message is displayed. Otherwise "enter new consumer"
is called to do further processing. See Figure D6.

3.6.1 find consumer

This process looks up consumer in the system resource table to get the id. See Figure
D7.0

3.6.2 link consumer

This process initially gets the consumer table entry and the junction data. It allocates
space for junction and initializes it. For each route up to the given junction route count,
it calls "get junction to destination" which tries to get a link from the source to the
destination. Next, for each route in junction, a junction is set up between the consumer
and the destination ("set_junction"). Finally, if the consumer already had junctions
defined, the old junction space is freed and the new one is reset if the consumer is active
("free old & reset new junction"). See Figure D7.

3.7.1 runtos

This process adds the consumer address to all executives which must communicate with
the given consumer. First, it gets all executives which will communicate with the
consumer, excluding those on which the consumer's names will execute. Next, the
consumer id, router type and name count data are filled into a buffer.

For each executive and for each name in the consumer's name list, the name's id is
placed in the command buffer. If the name is on the current executive, "name on current
exec." is called. Otherwise, "add consumer to exec." will add the consumer address to
the executive. Finally a command is issued to the current executive. See Figures D8
and D13.

3.7.2 run names

This process starts the execution of each name for a given consumer, after "run_tos"
(above) has established all links. See Figure D8. 0

11
 11

 11
 41

 11
 11
 41

 11
 0
1
11
 lb

 11
 II

 11
 4
1

11
 4

1
11
 ID

 l
i

41
 1

1
11
 4
1

11
 1
1
11
 41

 1
1
11
 11

 11
 1

1
11
 1

1 I
I 1

1 1
1 4
1 1

1 4
1
41
 1
1 1

1
11
 11

 11
 41

 11
 1

1
11
 11

 11
 11

 11

3.8.1 place consumer data in buffer

This process places the consumer data such as: id, router type, name count, link data and
junction data in the buffer. See Figure D9. 0

3.9.1 find executive

This process looks up the executive name in the system executive table to get its id. See
Figure D10. 0

3.9.2 prepare & send reply to executive

This process gets the system message from the stack. It then prepares a request status
command buffer to send to the executive. Finally, it sends a query with cpu report as the
reply function to the executive. See Figure D10. 0

3.2.6.1 mc_add_exec

This process adds a new executive entry to the executive list. It allocates space for the
new entay and initializes it with executive configuration data. Next it adds the entry to
the executives table and adds the entry index to the beginning of the system executive
list. Finally, it calls "enter_name & enter_consumer" to add a consumer entry for the
executive and a name entry for the executive consumer into the respective tables. See
Figure D4.

3.2.6.2 mc_add_link

This process gets the id of the manager for the resource to be linked. It either calls the
appropriate link process ("network_link", "io_link" or "appl_link") for a valid manager
id or displays an eiTor message for an invalid id. See Figures D4 and D14.

3.5.3.1 find router

This process looks up the given router name in the system router table to get the id. See
Figure D6. 0

3.5.3.2 enter new consumer

Each consumer name is entered into the system and consumer tables (repeated calls to
"enter_name & enter consumer"). Next, executives with available resource are assigned
to the consumer ("assign_resource"). If all names were not successfully assigned, an
error message indicating a resource limitation is displayed. Networks are established
between executives of the consumer ("assign_network"). Finally, the new consumer is
entered into the table. See Figure D6.

•
O
•
• • • • • • • • • • • • • • •

3.6.2.1 get junction to destination

For each route up to the given junction route count, this process looks up the destination
consumer in the table ("ad consumer"). If the consumer was not found, an error
message is displayed. Otherwise, "set up junction list from branch" gets junction list to
destination. See Figure D7.

3.6.2.2 set junction

This process assigns networks between the executives of the given and the destination
consumers. Note that the cases where the destination and the source reside on the same
executive are excluded. See Figure D7. 0

3.6.2.3 free old & reset new junction

This process frees the space allocated for the old junction definition. If the consumer is
active, the junction is reset. See Figure D7. 0

3.2.8.1 assign_io

This process assigns executives with available I/O resource to a consumer. First it calls
"get resource" to get required I/O resource entry from the corresponding table. For each
consumer's name, "find exec. for resource" tries to find the executive linked to the given
resource. If an executive is found, it is assigned to the consumer ("assign exec. to
consumer") and the executive table is sorted ("sort_execs"). See Figures Dll and D15.

3.2.8.2 assign_appl

This process assigns executives with available process resource to a consumer. As can
be seen in the code for this process (FiDCS Operating Systems Revisions: Source Code
Listings), it is exactly the same as that of "assign_io" maldng the exact same calls. See
Figure D11. 0

3.3.2.1 check & assign network

For each executive in the network's executive and consumer's name masks, and for each
name in the consumer's name list, this process places the network id in executive's name
map, if name's executive is in both network's executive and consumer's name masks.
The network load count is incremented. See Figure D12. 0

3.3.2.2 sort_networks

This process does a partial sort of networks in the system resource table, based on their
load counts. Networks are sorted in the increasing order of their load counts, so that
when new consumers are defined, the one with the smallest load is used. See Figure
D12. 0

C - 54

0
11

 11
 II

 11
 11

 11
 41
 1

1
0
11
 0
 1

1
11
 4
1
11
 II

 0
 11

 1
1
11
 I,

 11
 4
1 6

 1
1

11
 1

1 I
D 1

1
6
11
 I
I 1

1
II

 1
1 1

1
11

 1
1

11
 I
I 1

1
11
 11

 11
 I,

 6
11

 CI
 11

 1
1
 11

 1
1 1
1
 11

3.7.1.1 name on current exec.

Since the consumer name is on the current executive, its address is not added to the
executive. The local and unit ids in the command buffer are both placed as EMPTY.
See Figure D13. 0

3.7.1.2 add consumer to exec.

This process places the local id for current executive in the command buffer. If the local
id is not empty, the link for name's executive and resource is also placed in the buffer.
See Figure D13. 0

3.2.6.2.1 network_link

This process adds network link entry to an executive's link list. It gets the network
resource entry from system resource table and the executive entry from the system
executive table. It then increments the network's executive count if network resource
mask does not include this executive. It adds the executive to the network's executive
mask and the executive id to the network's link list. Finally, it calls "add all other
execs" to connect all executives connected to this executives network. See Figure D14.

3.2.6.2.2 io link

This process adds I/0 link entry to an executive's link list. It gets the 110 resource entry
from system resource table and the executive entry from the system executive table. It
then increments the resource's executive count if JO resource mask does not include this
executive. Finally, it adds the executive to the resource's executive mask and the
executive id to the resource's link list. See Figure D14. 0

3.2.6.2.3 appl_link

This process adds a process link entry to an executive's link list. It gets the process
resource entry from system resource table and the executive entry from the system
executive table. It then increments the resource's executive count if the process resource
mask does not include this executive. Finally, it adds the executive to the resource's
executive mask and the executive id to the resource's link list. See Figure D14. 0

3.2.8.1.1 get resource

This process gets the resource table entry for the consumer's required resource. See
Figure D15. 0

3.2.8.1.2 find exec. for resource

This process finds an executive linked to the required resource and in given mask. See
Figure D15. 0

6
 lb

 6
 lb

 6
 6
 lb

 I
I
6
 lb

 f
b

lb
 l

b
lb

 lb
 6
 lb

 6
 lb

 lb
 l

b l
b 0
 6

6
 lb

 II
 l
b
 0
 lb

 6
 6

6
 l
b 6

0
 l
b
lb
 6
 6
 6
 lb

 6
 lb

 0

0
 lb

 l
b
 6
 lb

 6
 lb

 6
 le

 6

3.2.8.1.3 assign exec. to consumer

This process inserts data for the executive into the name list entry. The name is added to
the beginning of the executive's name list and the executive to consumer's mask.
Finally, the assign and load counts are incremented. See Figure D15. 0

3.2.8.1.4 sort_execs

This process does a partial sort of executives in the system executive table, based on
their load counts. Executives are sorted in the increasing order of their load counts, so
that when new consumers are defined, the one with the smallest load is used. See Figure
D15. 0

3.6.2.1.1 set up junction list from branch

If the route's branch id is different from the previous, a junction list from the branch is
set up. The branch's route base is initialized to the route count and the latter set to O.
See Figure D7. 0

3.2.6.2.1.1 add all other execs

For each entry in the system executive list, this process gets the executive entry from the
system executive table. If this executive is assigned to the network, then all other
executives in network's executive mask are added to this executive's executive mask.
See Figure D14. 0

• • •
I • • • In addition to the above processes, there is a shell application process connected to a system
• console. This provides an interface to the DSM, in order to issue commands to the operating
• system and to display the system status reports. The corresponding structure diagrams are
• shown in figures HI through H8. •
• Main (shell)

• This is the mainline for the operating system shell. It prompts the user for a shell
• command, and when the user has entered a line, the appropriate routine is called to
• process it. A list of commands is displayed ("display commands"), if the user inputs a
• wrong command. See Figure Hl.
•
• 1. sh define •
• This function processes a "define consumer" shell command. It reads the consumer,
• resource, router naines and name count, places the define consumer command in the
• buffer and sends the buffer to the DSM ("sys_command"). See Figure Hl.
•
• 2. sh link
•
• This function processes a "link consumer" shell command. It reads the consumer name
• for each branch and route, places the link consumer command in the buffer and sends

the buffer to the DSM ("sys_command"). See Figure Hl. • •
• 3. sh_run •
• This function processes a "run consumer" shell command. It reads the consumer name,

places the run consumer command in the buffer and sends the buffer to the DSM • ("sys_command"). See Figure Hl. • •
• 4. sh_status
• This function processes a "status" shell command. It reads the choice of the status
• information and calls the appropriate process. A list of choices is displayed ("display
• choices") if the user specifies a wrong choice. See Figures HI and H2. • •
• 5. display commands

• This process displays a list of shell commands available and how to invoke each of
• them. See Figure Hl. 0 • •
• 1.1 sys_command
• This process sends a command to the DSM. If an acknowledgement buffer is not
• provided, the command is sent to the DSM ("sys_write"). Otherwise, the command is • • • •
• C - 57 • •

6
 lb

 0
 6
 6
 6

lb
 l
b
6
 lb
 6
 0
 lb
 0
 lb

 6
 6
 6
 0

6
6

6
lb

 l
b
lb
 lb

 0
 6
 6

 l
b

lb
 0
 l

b
0

lb
 6
 l

b
lb
 6

0
 6
 6
 6

0
 0
 6
 6
 lb

 0
 0
 6

6
 lb

 l
b 6

sent to the DSM and the acknowledgement read back ("sys_call"). See Figures HI and
H3.

4.1 exec_status

This function processes a "status cpu" shell command. First, it reads the name of the
CPU and prepares the command to get the executive status information. Next, it sends
the command to the DSM and waits for a response ("sys_call"). If the reply buffer is not
empty, the executive status information is displayed ("display exec. status"). Otherwise,
a message is displayed indicating the failure to find the executive ("display exec. not
found"). See Figures H2 and H4.

4.2 name_status

This process shows the name status information. It reads the consumer name, and
prepares the command to get the name status information. Next, it sends the command
to the DSM and waits for a response ("sys_call"). If the reply buffer is not empty, the
name status information is displayed ("display name status"). Otherwise, a message is
displayed indicating the failure to find the name ("display name not found"). See
Figures H2 and H5.

4.3 map_status

This process shows the executive network map information. It reads the executive, and
prepares the command to get the executive network map status information. Next, it
sends the command to the DSM and waits for a response ("sys_call"). If the reply buffer
is not empty, the executive network map status information is displayed ("display map
status"). Otherwise, a message is displayed indicating the failure to find the executive
("display map not found"). See Figures H2 and H6.

4.4 consumer_status

This function processes a "status consumer" shell command. First, it reads the name of
the consumer and prepares the command to get the consumer status information. Next,
it sends the command to the DSM and waits for a response ("sys_call"). If the reply
buffer is not empty, the consumer status information is displayed ("display consumer
status"). Otherwise, a message is displayed indicating the failure to find the consumer
("display consumer not found"). See Figures H2 and H7.

4.5 display choices

This process displays a list of choices whose status information can be shown, and how
to invoke them. See Figure H2. 0

II
 6

 lb
 lb

 l
b

 lb
 II

 lb
 lb

 lb
 6

 6
 lb

 l
b

 Ib
 lb

 lb
 lb

 II
 lb

 lb
 l

b
 II

 fb
 6

 lb
 lb

 6
 lb

 lb
 lb

 lb
 lb

 II
 l

b
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 lb
 6

 lb
 lb

 II

1.1.1 sys_write

This process sends a message to another consumer. See Figure H3. 0

1.1.2 sys_call

This process sends a query message to a consumer, and waits for reply. It sends the user
packet to the specified channel ("tc_packet"), puts the process in a ready state and waits
for a reply ("wait_event"). See Figures H3 and H8.

4.1.1 display exec. status

This process displays the executive status information. This includes: executive
memory, router and manager information; also the kernel memory information. See
Figure H4. 0

4.1.2 display exec. not found

This process displays a message which states that the CPU (input by the user) was not
found. See Figure H4. 0

4.2.1 display name status

This process displays the name status information. This includes: consumer, executive
and resource names, and its external addresses. See Figure H5. 0

4.2.2 display name not found

This process displays a message which states that the name (input by the user) was not
found. See Figure H5. 0

4.3.1 display map status

This process displays the executive network map information. See Figure H6. 0

4.3.2 display map not found

This process displays a message which states that the executive name (input by the user)
was not found. See Figure H6. 0

II
 0
 II

 I
I
 II

 II
 II

 II
 I
I
 0
 II

 II
 0
 0

0
 0
 0
 0
 0
 0
 0
 0
 0
 II

 0

0
 0
 0
 0
 0
 0

0
 II

 0
 0
 0
 0

0
 0

0
 0
 0
 0

0
 II

 0
 0
 0
 0

0
 0
 0
 0

0
 0

4.4.1 display consumer status

This process displays the consumer status information. This includes: the consumer's
router type, its executive, its name on the executive, the number of branches and routes
it has, etc. See Figure 117. 0

4.4.2 display consumer not found

This process displays a message which states that the consumer name (input by the user)
was not found. See Figure 117. 0

1.1.2.1 wait_event

This process is called whenever the calling process is ready to accept input messages. It
waits for a receive packet from the operating system ("rx_packet"). If a notification
function is indicated, it is invoked. Otherwise, the ready state is cleared. Finally, even
after packet is processed, if the process is still in ready state, a user packet is sent to the
operating system ("tx_packet"). See Figure 118.

1.1.2.1.1 rx_packet

This process is used to receive a user packet from the operating system to a process. The
user packet is read from pipe from operating system. If the packet has reply data, it is
copied from the user packet buffer. See Figure 118. 0

9 8 10 4 	 5 	 6 11

0 . - . , - ' *.•
."' .". 	 » 	4 • .. 	 # 	q

... .'
• . 	4.. 	0 . 	.. 	0

e4. 	4 	4 	4 .. * 	• 	• 4..... 	•.' e 	• 	 I,
o 	I 	•

e o 	é • • 4 	•
4.... 	

e.. 	
. 	4 	• 	4 • •

.... 	 e 	• e 	• 	• •' 	•• 	• 	• e 	 • e . 	 • 	 • * 	 •
.*

. 	 11 . 	 •..

• •
• • 	•
I 	4 	•
•

4 	
• • 	•

• • •
I. 	•

• •
•

• •
•

h •

(-3 St_
console

st_go st_node sm_
show

St_
disable

St_
enable

show
command
list

lb lb lb lb lb lb lb El lb lb lb lb II lb lb lb lb lb lb lb II le lb lb lb lb le lb lb lb lb II lb lb II II lb • lb le lb lb II lb lb lb CI lb lb lb lb lb lb lb lb

Figure Si: Main (Simulator)

,

st_sw_config

Figure S2: st_system

st_sytem

1.2 	 1.3

st_sys_config

11
, l
e 0
 II

 0
 II

 I
,

II
 I
I
 1,

 01
 0

0

0
 lb

 0
 II

 II
 0
 II

 II
 0
 de

 0
 0
 0
 II

 lb
 II
 0
 de

 0
 II

 II
 I
I 0
 II

 0
 0
 le

 le
 II

 I
,
 1,

 II
 I

I 0
 II

 I
I
I I
 lb
 0
 011
 1
1
 II

st_set_system

1.1

show memory
status

get memory
status

•
•
•
•
•
•
•
•
•
•
•
•

, •
•

' •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

st_memory

2.1 	 2.2

Figure S3: st_memory

C - 63

t_io

1 	display
error message

# 	 3.1

errT:o -t
i...g. Sy

sim_to_resource

Figure S4: st_io

resource
not 10,dire?,

Figure S5: st_console

C - 65

• • • •
0
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
e
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

st_file

.Z 	
t_get_cpu st_config stf_data stf_tables

5.1 4 	5.2 	 5.3 	 5.4

Figure S6: st_file

st_go

config
(Fig. S6) cpu_run t_free_config sim_cpu_go

41- 6.1
(also Fig. K1:1)

6.3
(also

Fig. K2:2)

cpu go
(Fig. S7 & K -1)

free 	 cpu
config. 	 Figs. S7 & K2)

(Fig. S7)

Figure S7: st_go

1
1
 lb

 11
 1

1
11

6
 l

b
11

 O
b
 lb

 11
 1

1
11
 6

 1
1 6

41

6
 l

b
II

 l
b

111
 1

1
II

 l
b
1
1
 lb

 6
 1
1
 1
1
 1
1
 1
1
 1
1
 1
1
 lb

 11
 lb

 0
11
 lb

 l
b
lb
 11

 lb
 1
1
 lb

 11
 1
1
 lb

 11
 1

1
10
 1

1
11

 1
1

Figure S8: st_node

set resource ids

1.1.2

set processor links

1.1.3

1.1

st_ set_system

6
 lb

 0
lb
 lb

 1
, 6
 6
 l
b

lb
 l

b
6

lb
 l

b
6
6

6
6
6
 6
 6
 0
 0

 6
 6

 l
b

lb
 6
 lb

 6
 6

lb
 lb
 l
b

lb
 l

b
lb
 6

6
lb

 lb
 lb

 0
 6
 l
b

lb
 l
b

6
6
 6
 6
 l
b
lb
 l

b
6

set resource
manager ids

1 .1 .1

Figure S9: st_set_system

std_define std_link std_run
error

(Fig. S4)

1.2.1 	 1.2.2 	 1.2.3 1.2.4

sly
wrong
command

1.2.4.1 1.2.4.2 	 1.2.4.3

1.2

st_sw_config

read & set
DSM resource

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure S10: st_sw_config

C-70

•

read & set 	I 	read & add 	 read 	 •
DSM router I DSM processors 	consumers 	•

•

1.3

st_sys_config

add_sys_
manager

1.3.1

add_sys_router

1.3.2

add_sys_
resources

1.3.3

add_sys_
exec

1.3.4

11
 1
1
 11
 1
1

11
 11
 41

 11
 6

 0
 11

 11
 1
1
 11

 11
 1
1
 11

 1
1

11
 1

1
11
 te

 0
 1

1
11

 1
1
11
 11

 11
 6
 11

 1
1
 11

 6

6

6
 6
 6
 6
 6
 11
 6

 1
1 6

 1
1
6

11

6
 6
 1
1 6
 11

 1
1
11

 6

Figure S11: st_sys_config

Figure S12: sim_to_resource

3.2

res. has no
assigned links

st86_config st_config_header

5.2.1 5.2.2

0
 lb

 II
 l
b 6
 6
 l
b

0
lb

 l
b
 lb

 6
 l

b
lb
 6

6
 lb

 l
b

6
 lb
 lb

 0
lb
 6
 l

b
lb

 l
b
lb
 lb

 l
b

lb
 l

b
lb
 6
 l
b
 lb

 lb
 6
 6

0
lb
 lb

 lb
 6
 6
 6
 lb

 l
b
lb
 6

lb
 6

 l
b

lb
 6

5.2

Figure S13: st_config

5.3

cannot create
config file

(—add

—

 command
Fig. S14)

add_klink

add_dsm_
boot

5.3.4.1.2 	 5.3.4.1.3 5.3.4.1.4 	 5.3.4.1.5

Figure S14: stf_data

C - 74

lb
 lb

 lb
 l

b
lb
 l
b
lb
 l
b
 lb

 lb
 l
b

lb
 lb
 lb

 6
 lb

 l
b
lb
 0

 lb
 lb

 l
b

lb
 l

b
6
 lb
 lb

 lb
 lb
 6
 6
 lb

 6
 lb
 l

b 0
 lb

 l
b

II
 lb

 lb
 6
 lb

 lb
 lb

 lb
 lb

 lb
 6

0
 lb

 lb
 lb

 lb
 lb

stf_tables

cannot creat
tables file

tbl_header

5.4.1

tbl_handlers

5.4.2 	 5.4.3

tbl_servers

lb
 0
 0
 lb

 lb
 lb

 6
 lb
 0
 l
b

6
l
b

l
b

l
b
 lb

 6
 l

b
lb

 lb
 6

6

lb
 6

6
 6

0
 6
 II

 lb
 l

b
0

6
lb

 l
b

6

0
 6

5.4

Figure S15: stf_tables

it86_
managers

5.2.2.1

st86_
handlers

5.2.2.2 	5.2.2.3

st86_
resources

5.2.2.4 	5.2.2.5

n
1

--a
On

error
(Fig. S4)

st86_
read

st86_
links

st86_
kernel

st_config
exec

,st86_
ervers

5.2.2.6 	5.2.2.7 5.2.2.8

5.2.2

st86_config

Figure S16: st86_config

lb lb lb lb lb II lb lb 6 6 lb lb lb le II II lb lb lb le lb lb lb lb lb 6 lb 6 6 lb lb 0 6 lb 0 lb lb 6 lb 6 lb lb 6 6 6 lb lb lb lb lb 6 6 lb 6 II

add_server
5.2.2.5.2

add_resource
5.2.2.5.3

lb
 6
 II

 I
I
 II

 lb
 6
 II

 6
 lb

 II
 6
 6
 II

 I
I 0
 6
 II

 l
b
I I

 I
I

I I
 I

I 6
 6
 II

 6

6
 I,

 I
I
II

 I
I
II
 I
I
 6
 II

 I
I
 6
 6
 II

 I
I
6
 I,

 l
b I

I
II
 II

 6
 lb

 6
 6

6
 II

 II
 lb

add_handler
5.2.2.5.1

add86_network

Figure S17: st86_read

st86_read

5.2.2.5.3.1

5.2.2.5

add86_io
5.2.2.5.3.2

add86_process
5.2.2.5.3.3

st86_network_link st86_io_link
5.2.2.7.3.1 5.2.2.7.3.2 5.2.2.7.3.3

5.2.2.7

st86_kernel

Y
st86 klink st86_kmemory st86_kcpu

5.2.2.7.3

st86_process_link

II
 I,
 CI
 11

•
 II

III
 •

 1
1

•
11

 1
1
 II

 d
e
CI

 1
1
 II

 11
 II

 II
 I
I l

b
•

•
 111

 S
• S
•

11
 1

1
11

 1
1
 1,
 1
1
 1
1
 1
1
 II

 1
1
 II

I 1
1
 11
 I,

 11
 1
1
 1
1
 I,

 II
 11

 II
 11

 11
 1

1
11
 II

Figure S18: st86_kernel

st_config_exec

y

config_execs

5.2.2.8

add_exec_consumer

5.2.2.8.2.1

config_resources

5.2.2.8.1

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

config_dsm

5.2.2.8.3

Figure S19: st_config_exec

C-79

sim_cpu_go

(also Fig. S7: 6.1)

(also Fig. E2:2)
1.1.5

p_retleasel 	
buf. 	k2x 	exit

(new
u

1 . 1 .6 	Ky 	
1.1.7

1.1.8

K_cpu_ 	K_cpu_
XB_boot 	ffer

K_new_
buffer

1.1.3 1.1.4 1.1.1 1.1.2

rel.
but.

K -1

	1.1.1.1
K_allocate

Figure Ki: sim_cpu_go

lb lb 6 lb 6 6 lb lb lb 6 lb 11 lb lb lb lb lb lb lb 6 lb lb lb 6 lb lb lb lb 6 lb lb lb lb lb lb lb lb 0 6 lb lb 6 6 lb 6 lb 6 lb lb lb 6 6 lb lb 6

cpu_run

K_cpu_enter

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

K_cpu_fork
exit

(Fig. K1)

Figure K2: cpu_run

C - 81

2.1 2.2

2 (also Fig. S7: 6.3)

set exec.
entry pts.

1.1.2.1 1.1.2.2

1.1.2

KMB_memory

Az
K_set_stack

Figure K3: KMB_memory

KMB_Iink

• • • • • • e•

1.1.3

allocate
(Fig. Ki)

KSI_mb_ KHl_mb_
master 	I I master 	I I slave

I I KHl_mb_ I I KSI_mb_
I I slave

1 .1 .3.1 1 .1 .3.2 1 .1 .3.3 1 .1 .3.4

KSI_i188

1.1.3.5

KHl_i188

1 .1 .3.6

init. slave
communication allocate

(Fig. Ki)

init , master
communication

1.1.3.2.1
allocate
(Fig. Ki) 1.1 .3.4.1 (Fig. K -1)

a
00 perform

board reset
1 .1 .3.6.1

Figure K4: KMB_Iink

enable
(Fig. K5)

1.1.8

K_cpu_exit

K86_enable K_cpu_kernel kernel busy unblock user enter idle

1.1.8.5 1.1.8.4 1.1.8.3 1.1.8.2

r3

00
.4.

Figure K5: K_cpu_exit

0

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
O
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1 .1 .8.2

K_cpu_kernel

enable
(Fig. K5)

K_Iink_in

1 .1 .8.2.1

K86_disable

1 .1 .8.2.2

K_cpu_executive

1 .1 .8.2.3

Figure K6: K_cpu_kernel

C-85

kmb_slave_in

1 .1 .8.2.1 .2

K188_in

1 .1 .8.2.1 .3

1 .1 .8.2.1

K_Iink_in

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

kmb_master_in

1 .1 .8.2.1 .1

Figure K7: K_Iink_in

C-86

1 .1 .8.2.3.1

(also Fig. E1 :1)

1.1.8.2.3

•
• •
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
O
•
•
•
•
•
•
•
•

Figure K8: K_cpu_executive

C - 87

send reply
to slave

411.1.8.2.1.1.1

K_next_
queue

.4-7.277.7.2
n
00
00

1.1.8.2.1.1

free n/w.
(Fig. K9)

_

i

.8.2.1.1.3 	1.1.8.2.1.1.4

Figure K9: kmb_master_in

lb 0 lb lb 0 0 lb 0 0 0 lb 0 lb 0 lb lb 0 lb 0 lb lb 0 lb lb 6 0 6 lb lb lb 0 6 6 0 0 0 0 6 6 0 lb 0 lb lb 6 6 0 lb 0 lb lb lb 0 0 lb

1.1.8.2.1.2

V

I send reply to master

1.1.8.2.1.2.1 (-)

00
,40

0 II II lb II II lb CI II II II II II I, II II II II II II II II II II II II II II II II II II II lb II CI III II II II II II II II II 111 II CI CI I, II II II II II

Figure K10: kmb_slave_in

1.1.8.2.1.3

k188_receive

in_188_raw 	k188_tx_packet 	out_188_raw
• 1.1.8.2.1.3.1.2 	# 1.1.8.2.1.3.1.3 I (Fig. K1) J 	# 1.1.8.2.1.3.2.1

Figure K11: K188_1n

r)

o

lb II 6 lb lb lb lb lb 6 lb lb 6 lb lb lb 6 lb lb lb lb 6 lb 6 lb lb 0 6 II lb lb lb lb lb lb 0 lb 6 lb lb 6 lb 6 lb lb lb lb 6 lb 6 lb 0 lb lb

in_188_raw

Qft

1 .1 .8.2.1 .3.1 .1

1 .1 .8.2.1 .3.1 .1 .1

new io
(Fig. K12)

K_new_io

lb
 lb

 lb
 lb

 lb
 lb

 lb
 lb

 l
b
lb
 lb

 41
 lb

 l
b

lb
 lb

 lb
 l

b
lb

 q
b

lb
 l

b
lb

 I
I
6
 lb

 l
b
 lb

 l
b

lb
 l

b
lb
 l

b
lb

 l
b
lb

 l
b
 6
 lb

 l
b l

b
lb

 l
b

lb
 l

b
lb
 11

 l
b

lb
 l

b
lb
 lb

 l
b
lb
 lb

Figure K12: in_188_raw

1 .1 .8.2.1 .3.1 .3

Figure K13: 	out_188_raw

3 (also Fig. E12: 1.3.1.2)

K_Iink_out

kmb_master_
out —

kmb_slave_
out —

k188_out

K_copy_
queue
K-add_

buffer

4. 3.1.1 	ià 3.1.2 3.1.3 3.2.1

1/40 copy buf.
(Fig. K14)

send transmit
ready to slave

new n/w
(Fig. K9)

copy buf.
,(Fig. K14)

' add Q
(Fig. K14)

send transmit
ready to maste

out 188
(Fig. K11)

new io
(Fig. K12)

copy buf.
,(Fig. K14)

' addQ
(Fig. K14)

II 	01 	 II 	 II 	ID II 	CI 	II 	II 	 II I/ II 	I,

Figure K14: 	K_Iink_out

4 (also Fig. E22: 2.6.1.2)

Klink_assign

•
kmb_master_assign kmb_slave_assign k188_assign

4.1 	 / I 	4.2 4.3

link
control
Fig. K15

a
‘Ca

K_Iink_control

e link
control
Fig. K15)

kmb_master_control kmb_slave_control k188_control kl_enter

4.1.1.1 	 4.1.1.2 4.1.1.3 	 4.1.1.4

allocate
(Fig. K1)

new n/w
(Fig. K9)

allocate
(Fig. K1)

(link \
control

(Fig. K15
allocate
(Fig. K1)

new buf.
(Fig. K1)

new io
(Fig. K9)

Figure K15: K jink_assign

lb 	6 	01 lb lb 6 	01 lb 41 lb lb 0 11 41 11 6 lb lb 6 0 6 6 6 6 6 6 6 lb 6 	lb 6 6 CI 0 6 lb 6

1.1 1.3 1.4 1.2

6
 lb

 lb
 0
 6
 lb

 6
 lb

 6

6
 6
 lb

 6
 Ob

6
 lb

 l
b
 lb

 0
 lb

 6
 lb

 lb
 lb
 l

b l
b 6
 lb

 0
 lb

 lb
 lb

 6
 lb

 6
 0
 6
 6
 lb

 lb
 lb
 lb
 lb

 lb
 II

 6
 lb

 lb
 lb
 6
 lb

 6
 lb

(also Fig. K8: 1.1.7.2.3.1)

XM_in

xnetwork_in xio_in xprocess_in xcontrol_in

Figure El: XM_In

XB_boot

2 (also Fig. K1: 1.1.5)

XCB_
router

XCB_
control

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •

2.1.1 2.1.2

2.6 	 • • • • • • • • •

2.4 	 2.5

X_set_
memory

X_set_
messages

X_set_
queues

2.3

XCB_
manager

• • •
Figure E2: XB boot 	 • • • • • •

• • • • • • • • • • • • •
C- 96 	 • •

•

new msg
(Fig. E3)

1.1

xnetwork_in

X_free_network XR_out X_new_message

4 	1.1.1 	 4 	1.1.2 1.1.3

free n/w.
(Fig. K9)

Figure E3: xnetwork_in

xio_in

X-copy_
buffer ,,

copy msg.1

1.2.4.1.1

new msg.
(Fig. E3)

1.2

add Q
(Fig. E4)

exec \
router in 1

 (Fig._Ey

free io
(Fig. E4)

new
msg.

(Fig. E3)

free io
\(Fig. K11)

1.2.4.1

1.2.5

route jn
(Fig. E4)

X_next_
queue

AL 	1.2.1 	 41 1.2.2

1.2.4

X_route_
iunction XR_in

X_copy_
message

X_free_io

41 	1.2.3

free io
(Fig. E4)

X_add_queue

(-) ,
,.0 00

Figure E4: xio_in

lb 0 0 6 lb lb lb lb 6 lb lb 6 lb lb lb 6 6 6 lb lb lb 0 lb 6 6 lb lb 6 lb 6 6 6 6 6 6 lb 6 lb lb lb 6 6 6 6 6 6 lb 6 6 6 6 0 lb lb lb

eocess
ready

1.3.8.1 exec.
router in
(Fig. E4)

X_new_
buff er

new
msg

(Fig. E3)

lb lb lb lb lb 	lb lb lb lb lb lb 	lb lb lb lb 0 lb lb 6 lb lb 6 lb 	lb lb 	lb lb lb lb lb lb lb lb fP II lb 	lb 	lb 	!I lb lb lb lb

1.3

xprocess_in

repôrt
error

(Fig. E5)

V

1.3.4 1.3.8

ri
process_
receive

process_
send

1.3.5 	 1.3.6

new
buffer

(Fig. E5)

new
buf.

(Fig. Ki)

process_
accept

1.3.1

process_
query

1.3.2

process_
reply

1.3.3

process_
call

process_
ready

X_report
error

Figure E5: xprocess_in

6
 0
 lb

 0
 lb

 l
b
6
0 l
b l

b
6

lb
 l
b

6
6

6

6
 6
 lb
 6
 0
 6
 lb

 l
b
lb
 6
 6
 6
 0

6

6
 6
 lb

 lb
 0

0
 lb

 0
 6
 lb

 lb
 6
 6

6
 6

0
 6

 0
 l

b
0

0
lb

6
 lb

 6

1.4

xcontrol_in —0 	

1.4.1

exec. mg
out (Fig..„Ey

Figure E6: xcontrol_in

XR_control

- exec. -
router
control
'Fig. E7

n • 	

Figure E7: XCB_control

C-101

2.4

• XCB_control •
O
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• •
•
•
•
•
•
•
•

2.5

X_allocate XRI_simple

XCB_router

\
4 	2.5.1 2.5.2

XRI_nmr

2.5.3

allocate
(Fig. E8)

allocate
(Fig. E8)

set
stack

(Fig. E7)

Figure E8: XCB_router

XCB_manager

7
XMl_network

2.6

0
 lb

 lb
 0
 l

b
lb

 lb
 l
b

lb
 l

b
lb
 l
b
 lb

 0

0
 l

b l
b l

b 0
 0

0
 lb
 0

 l
b
lb
 l

b
0

lb
 0

 l
b
lb

0
 lb

 l
b
0 0
 lb

 lb
 l
b
 lb

 0
 lb

 lb
 l

b
lb
 0
 lb

 0
 0
 lb
 lb
 l
b
 0
 0

 l
b

/ allocate \
(Fig. E8)

J

Figure E9: XCB_manager

XM l_io XMl_process

2.6.2 	 U., 	2.6.3

allocate
(Fig. E8)

2.6.1

xnmr_out xsimple_out

1.1.2.5.1 	1.1.2.5.2

msg. dest
undefined

new name
(Fig. E10)

1.1.2

new_name

41 1.1.2.1

X_next_
query

XC_query_
dsm

X_add_
message

invoke routing
alg.„out pt.

1.1.2.2 	1.1.2.3 1.1.2.4 	del4 1.1.2.5

1r
new

buffer
(Fig. E5)

exec.
mgr. out
(Fig. E6)

report
error

(Fig. E5)

exec. mgr
out

,(Fig. E6),

add Q
(Fig. E4)

C-)
1

r--‘
CD
4-

Figure E10: XR_out

0 II II 0 II II 0 0 0 II 0 0 II II 0 II II 0 0 0 II 0 II II II II 0 II II II II II 0 II II II 0 II 0 0 0 II II 0 II II 0 0 0 0 0 0 0 0 0

invoke routing
alg. in point

xsimple_in

.2.2.2

xnmr_in

1.2.2.2.1 	 ,..."- 	 1.2.2.2.2

xcontrol_out

A 	1.2.2.1

(exec. I
control ou
(Fig. Ell),

1.2.2

XR_in

X_route_
consumer

1.2.2.2.1.1

Figure Ell: XR_in

1.3.1

process_accept o

add Q
(Fig. E4)

X_free_
message

A 	1.3.1.1 	 4 	1.3.1.2
(also Fig. K14:3)

'link out
(Figs.

E12&K14)

Figure E12: process_accept

matchn
query

(Fig. E13)

Figure E13: process_query

lb
 lb

 lb
 lb
 0
 0

 6
 l
b
0

lb
 0

 l
b
0

lb
 6
 lb

 lb
 6
 lb

 lb
 l

b
lb
 lb

 lb
 01

 l
b
6

lb

0
 lb
 6

 l
b
 lb

 l
b
lb
 l
b

lb
 l
b

6
lb

 l
b
6

lb
 lb

 lb
 6
 6
 lb

 lb
 lb
 6
 lb

 lb
 lb

 6

1.3.2

process_query

1.3.2.1 A

match_query

free
user

(Fig. E14)J
Kiree_user

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1 .3.3

1 .3.3.1 .1

Figure E14: process_reply

C-108

process
ready

(Fig. E5)

1 .3.4

process_call

Figure E15: process_call

C - 109

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

process_receive

o

• ob • gn •

1.3.5

Figure E16: process_receive

C-110

lb 0 0 lb 6 6 6 lb lb 6 lb lb lb lb 6 6 6 6 0 lb 6 0 6 6 lb 6 lb 6 lb lb 6 6 lb lb 0 6 6 lb 6 lb lb lb 6 lb 6 6 lb lb 6 6 lb 6 0 6 0

r)
i

S...
1...11.
›...

1.3.6

Figure E17: process_send

process_ready

K_free_buffer
next_process

1.3.7

free user
(Fig. E14)

next Q
(Fig. E4)

ree user
(Fig. E14)

Xfree_buffer

A 	1.3.7.1

process_run2wait

1.3.7.2

link out
(Figs. E12

& K14)

(next
process

(Fig. E18)

free
buffer

(Fig. E18) 1.3.7.1.1

Figure E18: process_ready

6 lb lb 6 6 6 lb lb lb 6 lb 6 lb lb lb 6 lb 0 6 lb 0 6 lb 0 lb 0 lb 6 6 6 0 lb lb 6 6 6 6 lb 6 lb 0 6 6 lb 6 6 6 lb lb lb 6 6 6 0 II

XM_out
1.4.1

xnetwork_out
1 .4.1 .1

xprocess_out
1 .4.1 .3

exec.
control

out
Fig El 1

xio_out
1 .4.1 .2

I.
•
i•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure E19: 	XIVI_out

C - 113

xnmr_assign xsimple_assign
reallocate

2.4.2.3.1 	 2.4.2.3.2

-exec:-•
man.

assign
Fig. E20,

2.4.2

XR_assign

new_consumer

2.4.2.1

new
name

(Fig. E10)

XM_assign

2.4.2.2)Ne4n 2.4.2.3

invoke routing alg.
assign entry pts.

/exec
router

out
(Fig. E3

allocate
(Fig. E8)

Figure E20: XR_assign

II 01 lb lb II lb lb II lb lb lb II lb lb 41 II lb lb lb 	lb lb 	lb CI lb lb 	lb 	lb lb 	lb lb II lb 40 	lb lb lb lb lb 	lb lb 	lb lb lb

2.4.3

'report
error

(Fig. E5)

xr_enter_name

-exec. -
 man.

assign
Fig. E20

xr_set_junction

man.
control
Fig. E22

2.4.3.2

XR_control

report
error

(Fig. E5)

xsimple_control

2.4.3.3.1

linvoke routing alg.
Control entry pt.

report
error

(Fig. E5)

xnmr control

Figure E21: XR_control

2.6.1

XMl_network

XM_control

- exec. -
man.

control
Fig. E22

K_Iink_assign

/link •
assign

(Figs. E22
K15)/

allocate
(Fig. E8) 2.6.1.2

(also Fig. K15:4)

lb
 I

I
lb
 l

b
lb

 l
b
lb
 l
b

lb
 l

b
lb
 l

b
lb
 l
b 0
 lb

 l
b
lb
 l

b
lb

 0
 6
 00

 l
b
lb

 lb
 l
b
 lb

 6

0
 lb

 0
 lb

 lb
 lb

 6
 lb

 0
 II

 6
 lb

 lb
 lb

 l
b l
b 0

1 l
b

lb
 l

b
lb
 l

b
lb
 6

6

Figure E22: XMLnetwork

enter & mit, name X_reallocate link name

new_name

•

1 .1 .2.

1 .1 .2.1 .1 1 .1 .2.1 .2 	 1 .1 .2.1 .3

reallocate
(Fig. E23)

I*
•
I.

 •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure E23: new_name

C-117

II
 1

1
II

 11
 1
1
 1
1
 II

 I
I
 II

 II
 II

 II
 II
 II

 I
I
II
 II

 II
 II
 II

 II
 II
 II

 11
 II

 41
 II

 II
 II
I
 1)
 II

 II
 I
I I
I I

I 1
1
 11

 I
I

41
 1
1
 II

 I
I
4
1
 II

 I
I
II
 II

 II
 41

 II
 I

I 1
1
 II

 11
 9

1.1.2.3

XC_query_dsm

Figure E24: XC_query_dsm

1.2.2.1

xcontrol_out

query reply set command
1.2.2.1.2

1.2.2.1.1

1.2.2.1.1.1 Ar'-

X_find_
signature

fit
error

E5)

' free
buffer

(fig. E18)

free
msg.

E12)

copy
msg

(Fig. E4)

exec.
router in
(Fig. E4)

X_command

1.2.2.1.2.1
free

buffer
fig. E18)

free
msg.

(Fig. E12

É

signature
(Fig. E25)

list_status

1.2.2.1.2.1.1

command
(Fig. E25)

/exec.
router
control
(Fig. E7

- exec
router
assign
Fig. E7

report
error

(Fig. E5)

Command
(Fig. E25)

6 lb 0 0 6 6 lb 6 lb le lb 0 6 11 6 lb 0 lb 6 6 lb 0 lb 6 lb lb lb II 6 6 lb lb 6 lb Ce lb 6 lb 6 0 lb 6 lb lb lb 6 lb lb lb 6 lb 6 6 lb lb

Figure E25: xcontrol_out

match_query

o

send consumer
query packet

o 1.3.2.1.1

exec.
router in
(Fig. E4),

1.3.2.1

signature
(Fig. E25)

add Q
(Fig. E4)

free msg
(Fig. E12)

add Q
(Fig. E4)

new
msg.

(Fig. E3)

new
msg

(Fig. E3)

route jn.
(Fig. E4)

report
error

(Fig. E5)

Figure E26: match_query

r)
C.)
CD

lb lb lb lb 6 lb lb lb lb lb 6 lb 0 lb lb lb lb 0 lb lb lb lb II 6 lb lb lb 6 lb lb lb lb lb lb lb 0 lb lb 6 lb lb lb lb lb lb lb 6 lb 6 lb lb lb lb lb lb

• • • • • • • •
•
•
•
•
•
O
•
•
•
•
O
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1 .4.1 .1

Figure E27: xnetwork_out

C-121

xnetwork_out

o

free
buffer

(Fig. E18)

1.4.1.2

Figure E28: xio_out

n

0 11 41 11 6 11 41 41 0 11 6 41 lb lb lb lb 6 11 11 0 lb 6 11 6 11 11 11 6 lb 11 lb 6 11 11 lb lb 01 11 41 0 lb 41 lb 11 6 lb lb 6 0 11 lb 6 41 lb lb

1.4.1.3

xprocess_out

Figure E29: xprocess_out

process_out_
query

1.4.1.3.1

process_out_ 	process_out_
reply 	 send

1.4.1.3.2 	 1.4.1.3.3

report
error

E5)

XM_assign

2.4.2.2

xnetwork_assign -« 2.4.2.2.1

xprocess_assign report
error

(Fig. E5)

xio_assign

2.4.2.2.2 	 2.4.2.2.3

man.
control
Fig. E22

report
error

(Fig. E5)

• • • •
•

Figure E30: XM_assign

C - 124

XM control

xnetwork_
co).k. ol

V2.6.1.1.

xio_control

2.6.1.1.3 2.6.1.1.4

xprocess_
control xm_enter

xp_reset_
junction

_Y_______
xi_reset_
junction

(),

2.6.1.1.4.1 2.6.1.1.3.1

UI

report
error

(Fig. E5)

i Itiç

(repor
error

(Fig. .Ey

6 6 6 lb 6 lb lb 6 lb 6 lb lb lb 0 le lb lb 6 lb 6 lb 6 ib 6 lb 6 lb 6 lb 0 lb 6 lb II lb 6 6 lb lb 6 lb 0 6 lb lb 6 6 lb 6 6 lb lb lb lb lb

2.6.1.1

nreallocate
(Fig. E23)

Figure E31: XM_control

1.1.2.4.2

xnmr_out

nmr
done

(Fig. E32)

xnmr_out_new xnmr_out_error xnmr_out_valid xnmr_done

1.1.2.4.2.1 1.1.2.4.2.2 .1.2.4.2.3 	 1.1.2.4.2.4

ri

r:). •
ON

xnmr_ready

1.1.2.4.2.1.1

add Q
(Fig. E4)

next Q
(Fig. E4)

nmr ready
(Fig. E32)

add Q
(Fig. E4)

nmr ready
(Fig. E32)

Figure E32: xnmr_out

lb 6 0 6 lb 	lb CI 	lb 	lb lb lb 	6 	 6 lb lb 	6 le 6 	lb lb 6 lb lb lb lb 6

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1.3.7.2.1

Figure E33: next_process

C - 127

free
msg.
.E12)

wait
2ready

(Fig. Ey)

Figure E34: process_out_query

6
 lb

 II
 l
b
6
 lb

 l
b

lb
 l
b

lb
 6
 6
 0

 l
b
6

0
 6

6
6
 lb

 l
b
6
 lb

 l
b O
b l
b l
b
 6
 lb

 lb
 0
 6
 lb

•
 II

 6
 lb

 s
•

lb
 lb

•
 lb

 lb
 6
 lb

 lb
 0
 lb

 6
 6
 lb

 l
b l
b
 6

1.4.1.3.2

Figure E35: process_out_reply

lb
 lb

 l
b 0
 lb

 lb
 I

I
lb

 l
b 6
 lb

 l
b
lb
 lb

 l
b
lb
 l
b

lb
 l
b
 lb

 lb
 lb

 lb
 lb
 lb
 6
 lb

 lb
 6
 lb

 6
 6
 lb

 l
b l
b 6
 6

0
 lb

 6
 6
 lb

 6
 lb

 lb
 l
b l
b 6
 lb

 I
I
 0
 lb

 lb
 lb

1 .4.1 .3.3

Figure E36: process_out_send

allocate
(Fig. E8)

exec.
man.

control
Fig. E22

reallocate
(Fig. E23)

report
error

(Fig. E5)

link
assign

(Fig. E22
&K15)

I*
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

2.4.2.2.2

xio_assign

Figure E37: xio_assign

C- 131

xprocess_assign

'link -
assign

(Fig. E22
&K15),

2.4.2.2.3

0

0
 0

 0
 0

0

0

0
 0
 0

0
0
 0
 0
 0

0

0

0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

0
 0
 0

0
 0

 0

0

0
 0

0

0
 0
 0
 0
 0

0
 0

0
 0

0
 0
 0
 0

0
 0
 0
 0

execn
man.

control
Fig. E22

wait
2ready

(Fig. E34)

report \s\

error
(Fig. E5))

allocate
(Fig. E8)

reallocate
(Fig. E23)

Figure E38: xprocess_assign

14)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1 .2.2.2.1 .1

Figure E39: X_route_consumer

C - 133

1 .2.2.1 .2.1 .1

Figure E40: list_status

•
ï•
ï•
ï•
ï.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1 1 .2.4.2.1 .1

Figure E41: xnmr_ready

C - 135

1.1.2.4.2.4

Figure E42: xnmr_done

free
msg.

(Fig. E12

report
error

(Fig. E5)
_-/

lb II lb lb lb lb lb lb lb lb II lb lb lb lb lb 	lb lb lb lb lb lb lb 	40 lb lb lb 6 6 lb lb lb lb lb 40 lb lb 6 lb lb lb 40 II lb lb lb lb lb 	lb lb lb

le

II
I,

 l
b

111
 II

 I
,

I,

I
I

I
I

I
I

l
b
 I
I
 I
l
l
 II

Figure Dl: Main (DSM)

3 1 command

mc_
unknown

name

mc_
define

mc_
link

mc_
run

mc_
get_

consumer
3.1 	3.2 3.3 	3.4

mc_
exec_
error

mc_
Undefined

n
i.--, e...b...) cc

mgr-command

3.5 	3.6 	3.7 	3.8

mc_
unknown

_con

mc_
get_
cpu

3.9 3.10 	3.11

hic_li s t mc_boot

Figure D2: mgr_command

II II II II II II II III I, II II I, II II II II II II I, 111 II CI II II II II II II III II II II II II II II II II II II II II II 111 II I, II I, II II II II II II II

Isyste m,
command

mc_list
(Fig. D3)

mc_
unknown

_con

mc_
unknown
_name

m c_
define

mc_ mc_
link

rum

3.7

mc_
get_

consumer
3.8

mc_
get_
cpu

3.9

mc_
exec_
error

3.10

mc_
kindefined

3.11

mc_
boot

3.2 3.6 3.5 3.3 3.4

lb 	II lb lb lb II 6 lb lb lb lb lb lb lb lb lb 11 	lb lb lb lb lb lb lb lb lb de lb lb lb lb 01 lb lb lb lb lb lb 	le le 11 le 11 1, le el le le le le le le

Figure 03: mc_list

enter_
name &
enter_

'consumer'
3.2.7

assign_
resource

mc_add_
resource

add_
execs

mc_add_
router

mc_add_
manager

allocate
space for

tables
3.2.8

set up
memory,
stack &

buffer sizes
3.2.1

system, command ;
3.2

mc_boot

P're-ç‘l
(enter \
name/con
(Fig. D4)) 'assign

resource
(Fig. D4)

mc_
add_
exec

mc_
add_
link

3.2.6.1 	 3.2.6.2

enter
name/cons.

(Fig. D4)

3.2.2 	 3.2.3 3.2.4 	 3.2.5

Figure D4: mc_boot

11 lb 11 11 	41 lb 6 lb lb lb 11 11 6 11 lb 11 6 II lb lb 0 11 11 11 41 41 	11 lb 11 	11 lb 11 11 6 11 11 6 lb 11 11 6 lb lb 11 lb 41 11 11 11 41 lb

3.3

mc_
unknown_con

get
consumer

assign_
network

prepare
acknowledgement

add
consumer

prepare
ack

(Fig. D5)

3.3.4 3.3.2 3.3.1 3.3.3

System, Command ;

Figure 05: mc_unknown_con

le ; System, Command

mc_define

3.5
reS.
not lei
found/

find
resource

display
error
msg

create &
enter

CO nsumer
3.5.3

3.5.1 	 3.5.2
router
not p
found_ 3.5.3.2

error
msg

(Fig. D6)

find
router

3.5.3.1

error
msg.

(Fig. D6)

enter new
consumer

res.
limitation

Fig. D6) 	(Fig. D5)

error)(assign
msg 	network

enter
name/cons

(Fig. D4)

assign
resource
Fig. D4),

11
 lb

 1
1
11
 l
b
11
 I

I
lb

 l
b
0

11
 6

 1
1
11

 lb
 11

 lb
 l

b
II
 1

1
lb
 l
b
 11

 41
 1

1
6

lb
 1
1 1

1
11
 11

 1
1
11
 lb

 11
 11

 11
 l
b
 11

 6
 lb

 6
 6

0
 1

1
11

 1
1

6
l b

 l
b
11

 6
 lb

 11
 lb

Figure D6: mc_define

3.6.1 3 .6.2

system,
command

3.6

/ find
consumer
,(Fig. D7),

find
consumer

consumer?
not found V

error
msg

(Fig. Dy link
consumer

3.6.2.1

get junction to
destination set_junction free old & reset

new junction

3.6.2.2 	 3.6.2.3

ç find '
consumer
(Fig. D7),

dest.
not

found

set up junction
list from branch

3.6.2.1.1

error
msg

Fig. D6)

Figure D7: mc_link

eonsumer
not found

3.7.1 	 3.7.2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
O
•

O

•
•

Figure D8: mc_run

C - 144

I•
F•
•
• • • • • • • • • • • • • • • • •
•
• • • • • • • • • •

Figure D9: mc_get_consumer

C - 145

3.9

prepare
ack

Fig. D.5)

mc_get_cpu

prepare & send
reply to executive

3.9.2

find
executive

3.9.1

Figure D10: mc_get_cpu

assign_resource

3.2.8

invalid
‘zanager z

error
msg

Fig. D6)
assign_io

3.2.8.1 	 3.2.8.2

assign_appl

Figure D11: assign_resource

• • • • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

3.3.2

assign_network

check & assign
network

3.3.2.2

Figure D12: assign_network

C - 148

3.3.2.1

sort_networks

1e
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

3.7.1

name on
current exec.

3.7.1.1

add consumer
to exec.

3.7.1.2

Figure D13: run_tos

C - 149

network_link

3.2.6.2.1

It
add all

other execs

invalid
manager

mc_add_link

3.2.6.2.1.1

io_link

3.2.6.2.2

appl_link

3.2.6.2.3

Figure D14: mc_add_link

C - 150

3.2.6.2

0
 0

0
 0
 0
 0

0
 0

0
 0

0
0
 0

 0
 0

 0
 0

0

0

0

0

0
 0
 0
 0
 0

0
 0

 0
 0

0

0

0
 0
 0
 0
 0
 0
 41

 0
 0
 0
 0

0
0

0
 0
 0
 0

0

0
 0
 0
 II

 lb

error \
msg

(Fig. 131 	

3.2.8.1

assign_io

gibe. .n 11111.

get resource

3.2.8.1.1

find exec. for
resource

3.2.8.1.2

assign exec.
to consumer

3.2.8.1.3

sort_execs
3.2.8.1.4

Figure 0 15: assign_io

sh_link

sys_command ts..)

sh_define

1.1

sh_run sh_status display
commands

4 	 5

Figure Hl: Main (shell)

lb 6 lb lb 6 6 lb lb lb 6 lb lb lb 0 lb lb lb lb 6 lb lb 6 6 lb 6 lb lb lb lb lb lb lb 1! 6 lb lb lb lb lb lb 6 lb 0 lb lb lb 0 lb lb 6 6 lb lb lb

exec_status name_status map_status display
choices

consumer_statu4

sh_status

4.1 4.2 4.3 4. 4.5

•••••0•00•11••••••••.••••0•41••••••••••••••••••••••••••••

1-n
ut
U.)

Figure H2: sh_status

• • • • • • • • • • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• 111 • • • •
•

1 .1

Figure H3: sys_command

C - 154

4.1

display exec.
status

4.1.1

display exec.
not found

4.1 .2

i• i • • •
•

Figure H4: exec_status

C - 155

4.2

display name
status

4.2.1

display name
not found

4.2.2

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure H5: name_status

C - 156

43

display map
status

4.3.1

display map
not found

4.3.2

•

•
I .

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
a
•
•
•
•
•
•
•
•
•
•
•

Figure H6: map_status

C - 157

4.4

Id isplay consumer
status

4.4.1

display consumer
not found

4.4.2

•
•
O
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure H7: consumer_status

C - 158

sys_call

1 .1 .2.1
tx

packet
(Fig. DI)

1.1.2.1.1

wait_event

tx
packet

(Fig. DI)
rx_packet

6
 lb

 0
 lb

 l
b

lb
 6

 l
b
lb

 l
b
6

lb
 l

b
lb

 0
 l

b
l b
 Ob

 l
b
lb
 l
b

lb
 l
b
 lb

 l
b

lb
 6

 6
 lb

 l
b
6
41
 lb

 l
b
lb
 l

b
lb

 l
b
 6

II
 lb

 6
 l

b
6
lb
 l
b
6
 6
 I

I
lb
 l
b
6
lb
 lb

 6

1 .1 .2

Figure H8: sys_call

• • • • •
Appendix Cl- CONNECTORS DRAWN IN STRUCTURE DIAGRAMS 	 • •
This section lists connectors used in the structure diagrams of the simulator and the operating 	•
system described in this document. For each connector, the corresponding process name, the 	•
process number and a list of all the figures where this connector is drawn are given. 	• • • •

•
•
•
0
•
•
•
0
•
•
•
•
•
•
•
•
6
•
•
•
•
•
•
•
•
•
•
•
•
9
•
•
•
•
•
•
•

C - 160 	 • • •

Sim. to
res. 'ig.:Szy

cpt--
(Figs. S7

& K1)

free
config,

(Fig. S7)

cpu run
(Figs. S7

& K2)

List of Connectors (Simulator)

Process name: Display error message
Process #: 3.1
Figures: S4, S5, S8, S10, S12, S14, S15, S16

Process name: sim_to_resource
Process #: 3.2
Figures: 3 4, S5

Process name: st_config
Process #: 5.2
Figures: S6, S7, S8

Process name: sim_cpu_go
Process #: 6.1 (in Fig. S7) & 1 (in Fig. K1)
Figures: 3 7, 38

Process name: st_free_config
Process #: 6.2
Figures: S7, S8

Process name: cpu_run
Process #: 6.3 (in Fig. 37) & 2 (in Fig. K2)
Figures: S7, S8, S12

C-161

•
•
•
•
•
•
•
•
•
•
•
•
•

Process name: add_dsm_command 	 •
Process #: 5.3.4.1 	 •
Figures: S14 	 •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

List of Connectors (Simulator) contd.

C - 162

allocate
(Fig. K1)

enable
(Fig. K5)

_--,

Process name: K86_enable
Process #: 1.1.8.1
Figures: K5, K6, K8

C - 163

lb
 l

b
lb
 41

 lb
 41

 lb
 0
 lb

 0
 lb

 41
 lb

 lb
 0

4
1
 lb

 l
b
 11

 l
b l

b l
b 1

1
 0
 lb

 l
b
 0
 lb

 11
 0
 40

 1
1
 0
 0
 lb

 41
 0

6

0
 lb

 lb
 6
 6
 lb

 0
 lb

 41
 lb

 0
 1
1
 lb

 0
 lb

 1
1
 0

List of Connectors (0.S. Kernel)

Process name: K_allocate
Process #: 1.1.1.1
Figures: K1, K4, K15.

Process name: K_new_buffer
Process #: 1.1.4
Figures: K1, K9, K10, K12, K13, K15, E5

Process name: K_release_buffer
Process #: 1.1.6
Figures: K1, K9, K10, K11, K13

Process name: K_cpu_k2x
Process #: 1.1.7
Figures: K1, K9, K10, K12

rexi-t. 	Process name: K_cpu_exit
Process #: 1.1.8 (Fig. K1) ; Figures: K1, K2

next Q
(Fig. K9)

...._ disable
(Fig. K6)

...../

Process name: K86_disable
Process #: 1.1.8.2.2 	 •
Figures: K6, K8 	 •

•
•
•

Process name: K new network 	 • Process #: 1.1.8.2—.1.1.1— 	
•

 •
Figures: K9, K10, K14, K15 	 •

•
•
•
• Process name: K next_queue • Process #: 1.1.8;2.1.1.2 	 •

Figures: K9, K10 	 •
•
•
•

Process name: Kiree network 	 •
Process #: 1.1.8.2.1.1.3— 	 •
Figures: K9, K10, E3 	 •

•
•
•
•
•

Process name: in_188_raw 	 •
Process #: 1.1.8.2.1.3.1.1 	 •
Figures: K11 	 •

•
•
•
•
•
•
•
•
•
•
•
•
•

Process name: k188_tx_packet
Process #: 1.1.8.2.1.3.1.2
Figures: K11, K13

C - 164

• • • • • • • • • • •

List of Connectors (O.S. Kernel) Contd.

out188
(Fig. K11)

add Q
(Fig. K14)

List of Connectors (0.S. Kernel) Contd.

Process name: out_188_raw
Process #: 1.1.8.2.1.3.1.3
Figures: K11, K14

Process name: K_free_io
Process #: 1.1.8.2.1.3.2.1
Figures: K11, E4

Process name: K_new_io
Process #: 1.1.8.2.1.3.1.1.1
Figures: K12, K14, K15

Process name: K_copy_buffer
Process #: 3.1.1
Figures: K14

Process name: K_add_queue
Process #: 3.1.2
Figures: K14

I i n 1C.
control

(Fig. K15

Process name: K_Iink_control
Process #: 4.1.1
Figures: K15

C- 165

exec.
router in
(Fig. E4)

List of Connectors (O.S. Executive)

Process name: X_new_message
Process #: 1.1.1
Figures: E3, E4, E5, E6, E14, E17, E24, E26, E40

Process name: XR_out
Process #: 1.1.2
Figures: E3, E20, E39

Process name: X_next_queue
Process #: 1.2.1
Figures: E4, E12, E16, E18, E28, E32, E33, E42

Process name: XR_in
Process #: 1.2.2
Figures: E4, E5, E14, E17, E24, E25, E26, E28, E40

Process name: X_free_io
Process #: 1.2.3
Figures: E4, E28

Process name: X_add_queue
Process #: 1.2.5
Figures: E4, E10, E12, E16, E24, E26, E28, E32,

E34, E35, E36, E42

C - 166

copy
msg.

F* i_g_i_Ezly

(p-r-oce.-
ready

(Fig. E5)

report
error

(Fig. E5)

exec.
mgr. out
(Fig. E6)

List of Connectors (O.S. Executive) Contd.

Process name: X_route__junction
Process #: 1.2.4
Figures: E4, E17, E26

route jn.
(Fig. E4)

Process name: X_copy_message
Process #: 1.2.4.1
Figures: E4, E25, E39, E41

Process name: process_ready
Process #: 1.3.7
Figures: E5, E15, E16

Process name: X_report_error
Process #: 1.3.8
Figures: E5, E10, E17, E21, E25, E26, E28,

E29, E30, E31, E37, E38, E42

Process name: X_new_buffer
Process #: 1.3.8.1
Figures: E5, E10, E40

Process name: XM_out
Process #: 1.4.1
Figures: E6, E10, E41.

C- 167

-exec. -
router

control
Fig. E7

Process name: XR_control
Process #: 2.4.3
Figures: E7, E25

allocate
(Fig. E8)

List of Connectors (0.S. Executive) Contd.

	

E(Fig

se2-- 	Process name: X_set_stack

	

stack 	Process #: 2.4.1
. Ey 	Figures: E7, E8

Process name: XR_assign
Process #: 2.4.2
Figures: E7, E25

Process name: X_allocate
Process #: 2.5.1
Figures: E8, E9, E20, E22, E37, E38

Process name: new_name
Process #: 1.1.2.1
Figures: E10, E20

exec. 	Process name: xcontrol _out
control out 	Process #: 1.2.2.1
(Fig. E 11) 	Figures: El 1, E 1 9

C - 168

link out
 (Figs. E12

& K14)1

match
query

Fig. E13)

free
buffer

(Fig. E18

user
(Fig. E14)

List of Connectors (O.S. Executive) Contd.

Process name: Xfree_message
Process #: 1.3.1.1
Figures: E12, E16, E25, E26, E27, E28, E34, E35,

E36, E42

Process name: Klink_out
Process #: 1.3.1.2 (in Fig. E12) & 3 (in Fig. K14)
Figures: E12, E13, E14, E17, E18, E27, E28, E33

Process name: match_query
Process #: 1.3.2.1
Figures: E13, E15

Process name: X_free_user
Process #: 1.3.3.1
Figures: E14, E17, E18, E33

Process name: X_free_buffer
Process #: 1.3.7.1
Figures: E18, E25, E27, E28, E33, E42

next
process

(Fig. Ely

Process name: next_process
Process #: 1.3.7.2.1
Figures: E18, E34

C- 169

exec. man
assign

njFig. E20

(Fig. E23)

4--mmand
(Fig. E25)

•
•
•
•
•
•
•
•
•
•
•

Process name: XM_assign 	 •
Process #: 2.4.2.2
Figures: E20, E21 	 •

•
•
•

Process name: XM_control 	 •
• Process #: 2.6.1.1 • Figures: E21, E22, E30, E37, E38 •
•
•
•

Process name: K link_assign 	 •
Process #: 2.6.1.2 (in Fig. E22) & 4 (in Fig. K15) 	•

• Figures: E22, E37, E38 •
•
•
•
• Process name: X reallocate • Process #: 1.1.2.1—.1 	 •

Figures: E20, E23, E31, E37, E38 	 •
•
•
•

Process name: X_find_signature 	 •
Process #: 1.2.2.1.1.1 	 •
Figures: E25, E26, E35 	 •

•
•
•
•

Process name: X_command 	 •
Process #: 1.2.2.1.2.1 	 •
Figures: E25 	 •

•
•
•
•
•
•
•

List of Connectors (0.S. Executive) Contd.

C - 170

nmr done
(Fig. E32)

List of Connectors (0.S. Executive) Contd.

Process name: xnmr_done
Process #: 1.1.2.4.2.4
Figures: E32, E41

....__
n mr--«: 	Process name: xnmr_ready

ready 	Process #: 1.1.2.4.2.1.1
(Fig. E32)/ 	Figures: E32

Process name: process_wait2ready
Process #: 1.4.1.3.1.1
Figures: E34, E35, E36, E38

assign
network
(Fig. D5)

• • • • • • • • • •
List of Connectors (0.S. DSM & shell)

Process name: tx_packet 	 •
Process #: 1.2 •

•
Figures: D1, H8 	 •

•
•
•

Process name: mc_list 	 •
Process #: 3.1 	 •
Figures: D3 	 •

•
•
•
• Process name: enter_name & enter_consumer 	•

Process #: 3.2.7 	 •
Figures: D4, D6 	 •

•
•
•
• Process name: assign_resource • Process #: 3.2.8 	 •

Figures: D4, D6 	 •
•
•
•

Process name: assign_network 	 •
• Process #: 3.3.2

Figures: D5, D6 	 •
•
•
•
•
•

Process name: Prepare Acknowledgement 	 •
Process #: 3.3.3 	 •
Figures: D5, D9, D10 	 •

• • • • • • •
C - 172

' 	find 	'
consumer
,(Fig. D7),

List of Connectors (0.S. DSM & shell) contd.

Process name: Display Error Message
Process #: 3.5.2
Figures: D6, D7, D8, D11, D12, D14

Process name: find consumer
Process #: 3.6.1
Figures: D7, D8, D9

Process name: sys_call
Process #: 1.1.2
Figures: H3, H4, H5, H6, H7

• ie
•
• APPENDIX D • •
• DATA STRUCTURES •
• USED BY • THE FTDCS SIMULATOR & THE OPERATING SYSTEM • • • • • • • • • • • • • •
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • • • • • • •

lb
 6
 6
 6

.
.
 lb

 6
 lb

 lb
 lb

 lb
 6
 lb

 0
l b
i
b
 lb

 l
b l
b
 lb
 0

•
 6
 lb

 l
b
6
 lb

 0
 lb

 l
b 0
 lb

 l
b
lb
 6

0
 l
b 6
 lb

 l
b
 lb

 l
e
 lb

 6
 6
 lb

 0
 lb

 lb
 l

b 6

Table of Contents

page

1. INTRODUCTION 	 D-1
2. DATA STRUCTURES 	 D-2

2.1 Simulator Model Data 	 D-3
2.2 Simulator Link Data 	 D-7
2.3 Operating System Data 	 D-8
2.4 Operating System Message Structures 	 D-9
2.5 Kernel Data Types 	 D-11
2.6 Kernel/Executive Boot and Initialization Functions 	 D-13
2.7 Kernel Handler and Server Data 	 D-14
2.8 Kernel/Executive Configuration Data 	 D-15
2.9 Executive Data 	 D-17
2.10 Executive Commands Data 	 D-20
2.11 DSM Commands Data 	 D-21
2.12 Consumer Junction Data 	 D-24
2.13 Utility Function Data 	 D-25
2.14 Machine Data Types 	 D-27

Appendix Dl- FILES CONTAINING FLOCS DATA STRUCTURES 	 D-28

1. INTRODUCTION

This Appendix describes the data structures that are used by the 1-4TDCS simulator and the
operating system. It is a data dictionary of the data items contained within the system.

The following section lists the data structures used by F1DCS. And Appendix Dl lists the
"C" function files which desclibe them.

D - 1

2. DATA STRUCTURES

The subsections below give a list of the data structures used by F1DCS. However, the
various software modules of the F1DCS simulator and the operating system do not use them
as they are. They create copies of the data structures and manipulate the contents as desired.
Thus, each copy of the data structure exists within the scope of that module.

At the beginning of each subsection, is a general description of data structures explained in
that subsection. Appendix C will help understand the context of use for some of the data
structures. For example, the kernel boot data structure "KM_Boot" in Section 2. is used by
the kernel boot process "KB_boot", explained in Section 4.1 of Appendix C. However, note
that some of the data structures are quite general (e.g., "Message") and that they are used in a
number of places throughout the system.

For each data structure described, the following information is given:

- the purpose of having this data structure in the system (in some cases this description
may be vague or it may be missing, as very little documentation about the corresponding
data structure is available).

- 	the fields (or contents) of the data structure. Note that the fields of some data structures
may be used to hold pointers to other data structures or pointers to executable functions,
in which case this is specified.

processor component structure for the CPU.
name,
id,
type,
link_count,
unit_count,
handler_count,
server_count,
resource_count,
config_ptr,
os_memory,
os_data,
linked_execs,
nw_depth,
nw_offset,

3. MDL_Cpu
purpose:
fields:

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

1.

2.1 Simulator Model Data

The following data structures are used by the simulator to define the model system. These
data structures contain the model information such as, the processor data (e.g., handlers,
links, CPUs), manager, resource, router and server data, data structure for messages passed,
simulator and system data.

purpose:
fields:

D - 3

Simulator Def
purpose:
fields:

a data structure for the simulator (to initialize/free it).
name,
mit (ptr. to function which initializes simulator),
free (ptr. to function which frees simulator).

MDL Handler
purpose: 	processor component structure for the handler.

id, (handler id)
cfg_id,
cfg_count,
unit_base,
unit_count,
trap (interrupt trap routine for handler),
name.

2. MDL Link:
processor component structure for the link.
id, (link id)
cfg_id,
sim_unit,
server_id, handler_id, (server & hancller ids)
unit_id,
length,
cfg_data.

•
4. MDL Manager 	 •

purpose: 	resource manager component structure.
fields: 	id, 	 •

link_count, 	 •
name, 	 • cfg_count, 	 • sys. •

5. MDL_Router 	 •

•
•
•
•
•
• nw_count • sys.

• purpose: 	router component structure (for simple & NMR routers).
fields: 	id, 	 •

name, 	 •
cfg_count, 	 • sys. 	 •

6. MDL Server •
purpose: 	server component structure 	 • fields: 	id, 	 • ' name, add_link, 	 •

cfg_id, 	 •
cfg_count. 	 •

7. MDL Message • •
purpose: 	model message component structure. 	 • fields: 	id, to_link_id, 	 •

from_link_id, 	 •
cpu_id, 	 •
unit_id, 	 •
time lag, 	 • lengtit (message length), • next, last (pus, to MDL_message),
data (message data). 	 fb

8. MDL Simulator 	 •
purpose: 	simulator component structure. 	 0
fields: 	id, 	 •

name, 	 • server_id, 	 • cpu_server,
setup, (ptr. to function to setup simulator) 	 •
free, (ptr. to function to free simulator) 	 •
in (ptr. to in entry point function), 	 •
out (ptr. to out entry point function), 	 •
assign (pu. to assign entry point function), 	 •

•
•
•

D - 4 	 •
•
•

•
•

•
• control (ptr. to control entry point function),
• data.
•
• 9. MDL Resource
• purpose: 	resource (network, I/O or process) component structure
• fields: 	name,
• sim_id,
• id,

type,
• manager (resource manager),
• link_count,
• cfg_id,
• cfg_count,
• cfg_base,

sys. •
• 10. MDL_System
• purpose: 	system structure.
• fields: 	sys,
• cpu2model,
• resource2model,
• sys_id2model,

sys_id2resource,
• sys_id2cpu,
• sys_id2local_id,
• local_id2sys_id,
• linked_execs,
• nw_map_limit,
• nw_map_count,

network_map,
• dsm_ptr.
•
• 11. Model
• purpose: 	system model structure
• fields: 	link_count,
• link_limit,
• linIc2cpu,

linIc2resource,
• linIc2status,
• links (ptr. to MDL_Link, see 2 above),
• handler_limit,
• handlers (ptr. to MDL_Handler, see 1 above),
• simulator_limit,

simulators (ptr. to MDL_Simulator, see 8 above),
• manager_limit,
• managers (ptr. to MDL_Manager, see 4 above),
• router_limit,
• routers (ptr. to MDL_Router, see 5 above),
• server_limit,

servers (ptr. to MDL_Server, see 6 above),
• resource_count,
•
•
•
• D - 5
•
•

• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
O
•
•
•
•
•
•
•
•
•
•
•
•
•
•

resource_litnit,
resources (ptr. to MDL_Resource, see 9 above),
cpu_count,
cpu_limit,
cpus (ptr. to MDL_Cpu, see 3 above),
system (ptr. to MDL_System, see 10 above),
message_stack,
buffer_stack,
head, tail (both ptrs. to MDL_Message, see 7 above),
id_limit,
next_id,
id2link,
id2sim,
id2local.

D - 6

2.2 Simulator Link Data

The following are the link data structures for the simulator, network, 1188, 8086 processor
etc.

1. Sim_link
purpose:
fields:

simulator link data structure.
model_id.

2. Sim_NVV_Link

W

•

3. NW Link
purpose:
fields:

4. MB Link
purpose:
fields:

5. I188_Link
purpose:
fields:

6. P86 Link
purpose:
fields:

purpose:
fields:

simulator network link data structure.
model_id,
address,
link_count,
NW_add0, NW_addl, NW_add2 (network address).

network link data structure.
segment,
address,
offset,
link_count,
NW_add0, NW_addl, NW_add2 (network address).

Multibus link data structure.
segment,
address,
offset.

1188 link data structure.
segment,
offset.

8086 processor link data structure.
cs_value, cs_length,
ds_value, ds Jength,
ss_value, ss_length.

D - 7

2.3 Operating System Data

The following data structure contains the operating system data and pointers to operating
system boot and initialization functions.

OS data
purpose: 	operating system structure.
fields: 	system_id,

kernel_boot, (ptr. to kernel boot function)
km_count,
km_inits, (table of kernel initialization functions)
km_data,
kernel_entries,
handler_inits, (table of handler initialization functions)
server_inits, (table of server initialization functions)
exec_boot, (ptr. to executive boot function)
exec_ptr,
xc_count,
xc jnits, (table of executive controller initialization functions)
xm_inits, (table of executive manager initialization functions)
xr_inits, (table of executive router initialization functions)
config_data.

5. IO_Pkt
purpose:
fields:

6. EN Address
purpose:
fields:

7. EN Data
purpose:
fields:

2.4 Operating System Message Structures

The data structures given below define structures for messages passed between operating
system components.

1. X_ Header
purpose:
fields:

2. I_ Header
purpose:
fields:

3. Message
purpose:
fields:

a structure for the external header of the message.
source,
destiny (i.e., destination),
length.

a structure for the internal header of the message.
type (MSG_SEND, MSG_REPLY, MSG_QUERY, etc.),
signature,
source,
destiny (i.e., destination),
length.

a data structure for the message.
internal (of type I_Header, see 2 above),
data.

4. Network_Pkt
purpose:
fields:

a data structure for a network packet.
external (of type X_Header, see 1 above),
internal (of type I_Header, see 2 above),
data.

a data structure for an I/O packet.
length, data.

a data structure for the address of an ethernet.
add0, addl, add2.

a data structure for the ethernet data.
external (of type X_Header, see 1 above),
internal (of type I_Header, see 2 above),
msgbuf (a buffer of a particular size to hold data).

8. EN Header
purpose:
fields:

10. 	Ethernet _Pkt

9. Incoming
purpose:
fields:

a data structure for the ethernet data header.
source (of type EN_address, see 6 above),
destiny (i.e., destination) (of type EN_address, see 6 above),
unused.

an incoming data on ethernet.
header (of type EN_Header, see 8 above),
data (of type EN_Data, see 7 above).

purpose:
fields:

11. 	User Pkt
purpose:
fields:

12. Name
fields:

13. Link
purpose:
fields:

a data structure for an ethernet packet.
header (of type EN_Header, see 8 above),
external (of type X_Header, see 1 above),
internal (of type I_Header, see 2 above),
data.

a data structure for the user packet.
message,
location,
notify (ptt to a notify function),
parameter,
reply_length,
reply,
status,
return_length.

id, local_id, unit_id.

a link data structure.
server_id, unit_id, length.

2.5 Kernel Data Types

The data structures given below hold kernel specific information, including the kernel
processor, link, server, and memory data.

1. K Event
purpose:
fields:

2. X _Event
purpose:
fields:

3. KM_Cpu
purpose:
fields:

4. K_ Server
purpose:
fields:

5. KM_Link
purpose:
fields:

a structure to hold kernel events.
next (ptr. to K_Event),
unit_id,
data.

a data structure to hold executive events.
next (ptr. to X_Event),
xid,
data.

kernel processor manager data structure.
active_user,
user mode, idle_mode,
kevent_limit,
kemel_pending,
kernel_busy,
kemel_pending_head (ptr. to K_Event, see 1 above),
kernel_pencling_tail (ptr. to K_Event, see 1 above),
kernel_next_head (ptr. to K_Event, see 1 above),
kernel_next_tail (ptr. to K_Event, see 1 above),
xevent_limit,
exec_pending,
exec_busy,
exec_pending_head (pc. to X_Event, see 2 above),
exec_pending_tail (ptr. to X_Event, see 2 above),
exec_next_head (ptr. to X_Event, see 2 above),
exec_next_tail (ptr. to X_Event, see 2 above),
user_busy.

kernel server data structure.
server_id,
link_count,
control, assign, in, out (ptrs. to entry point functions),
data.

kernel link manager data structure.
unit_count,
unit2kid,
server_count,
servers (ptr. to K_Server, see 4 above),

link_count,
link_size,
link_table (ptr. to Link, see 13 in Section 2.4),
links,
kid_limit, Idd_expand, kid_count,
next_kid,
Idd2server, Idd2local.

6. KIVI Memory
purpose:
fields:

kernel memory manager data structure.
memory,
buffers,
en_packets,
network_packets,
io_packets,
user_packets,
queues.

7. Context
purpose:
fields:

context information data structure.
cs_value, csiength,
ds_value, ds_length,
ss_value, ss_length,
sp_value.

2.6 Kernel/Executive Boot and Initialization Functions

Six table structures are described below. They contain the functions used for the following:
kernel boot, kernel handler initialization, kernel server initialization, executive boot,
executive resource manager initialization and executive routing algorithm initialization.

1. KM Boot
purpose:
fields:

a table of kernel boot functions.
KMB_memory (kernel memory manager boot function),
KMB_cpu (kernel processor manager boot function),
KMB_link (kernel link manager boot function).

2. KII Inits
purpose:
fields:

3. KS Inits
purpose:
fields:

4. XCB Boot
purpose:

5. XM_Inits
purpose:
fields:

6. XR Inits
purpose:
fields:

a table of kernel handler initialization functions.
KHI_bus (bus handler initialization function),
ICHI_enet (enet handler initialization function),
KHI_device (device handler initialization function),
KHI_process (process handler initialization function).

a table of kernel server initialization functions.
KSI_bus (bus server initialization function),
KSI_enet (enet server initialization function),
KSI_device (device server initialization function),
KSI_process (process server initialization function).

a table of executive boot functions.
XCB_router (executive router boot function),
XCB_manager (executive resource manager boot function),
XCB_control (executive controller boot function).

a table of executive resource manager initialization functions.
XMLnetwork (executive network manager initialization function),
XMLio (executive I/O manager initialization function),
XMI_process (executive application process manager initialization

function).

a table of routing algorithm initialization functions.
XRI_simple (simple routing algorithm initialization function),
XRI_nmr (NMR routing algorithm initialization function).

D - 13

2.7 Kernel Handler and Server Data

This section gives the data structures for the kernel handler and server tables.
1. Handler_Def

purpose: 	kernel handler data structure for the handler table (below).
fields: 	name,

trap (interrupt service routine for the handler).

2. handler _defs
purpose: 	a table of handlers (each handler structure as described in 1 above).

3. Server_ Def
purpose: 	kernel server data structure for the server table (below).
fields: 	name,

add_link.

4. server_ defs
purpose: 	a table of servers (each server structure as described in 3).

2.8 Kernel/Executive Configuration Data

The following data structures contain the definitions for the hardware independent data in the
kernel/executive configuration data blocks.

1. CD Header
purpose:
fields:

configuration data header.
code,
cpu jd,
kernellength,
executive_length,
dsm_length,
config_length.

2. KCD Manager
purpose: 	kernel manager configuration data.
fields: 	length.

3. KCD Memory
purpose:
fields:

4. KCD_Cpu
purpose:
fields:

5. KCD_Link
purpose:
fields:

kernel memory manager configuration data.
header (ptr. to KCD_Manager, see 2 above),
exec_id,
memory_size,
min_buffer,
max_buffer.

kernel processor manager configuration data.
header (ptr. to KCD_Manager, see 2 above),
kevent_limit,
xevent_limit.

kernel link manager configuration data.
header (ptr. to KCD_Manager, see 2 above),
initial_kid,
expand_Idd,
handler_count,
unit_count,
server_count,
link_count,
lin.k_size.

6. KCD Handler
purpose: 	kernel handler configuration data.
fields: 	unit_count, vector.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• ,
•
• ,
•
•

7. KCD Server
purpose: 	kernel server configuration data.
fields: 	link_count.

9. XCD Resource
purpose:
fields:

8. XCD Executive
purpose:
fields:

executive configuration data block.
exec_id,
memory_size,
initial_messages, expand_messages,
initial_queue, expand_queue,
initial_xid, expand_xid,
initial_names, expand_names,
initial_consumers, expand_consumers,
router count,
linked_execs,
dsm_id,
dsm_resource,
dsm_name_count,
dsm router,
dsm_name,
manager_count,
resource_count,
link_count.

executive resource configuration data block.
resource_id,
manager_id,
type,
sys_link_count,
link_count.

10. XCD Consumer
purpose: 	executive consumer configuration data block.
fields: 	consumer id,

router type,
name_count.

D - 16

2.9 Executive Data

The data structures given below contain information for the executive and its components.

1. X_DSM_Query
purpose:
fields:

2. XC Control
purpose:
fields:

3. X Resource
purpose:
fields:

4. X Manager
purpose:
fields:

5. XM Control
purpose:
fields:

data structure to hold the query message to the DSM.
message,
notify,
parameter.

executive controller structure.
exec_id,
linked_execs,
dsm_id,
dsm_resource,
dsm_name_count,
dsm_data,
dsm_name,
signature,
dsm_query_stack,
dsm_query_queue,
in, out (in & out entry point function pointers).

executive resource data structure.
system_id,
sys_link_count,
manager_id,
resource_id,
type,
link_base,
link_count.

executive manager data structure.
system_id,
sys_link_count,
manager_id,
resource_base, resource_count,
link_base, link_count,
in, out, assign, control (all entry point functions),
data.

the complete executive manager data structure.
manager_count,
managers (ptr. to X_Manager, see 4 above),
link_count,
resource_count,

6. X Name _
purpose:
fields:

resources (ptr. to X_Resource, see 3 above),
xid_limit,
xid_expand,
xid_count,
next_xid,
xid2manager,
xid2local,
in, out, assign, control (ptrs. to entry point functions).

name data structure.
consumer id,
consumer link,
xid,
state.

7. X_ Consumer
purpose:
fields:

8. X_ Router
purpose:
fields:

9. XR_ Control
purpose:
fields:

consumer data structure.
consumer id,
router,
name_count,
name_list,
in_pencling,
out_penciing,
data.

router data structure.
router_id,
data,
in, out, assign, control (ptrs. to entry point functions).

the complete executive router structure.
consumer count,
consumer limit,
consumer stack,
consumers (ptr. to X_consumer, see 7 above),
name_count,
name_limit,
name_stack,
names (ptr. to X_Name, see 6 above),
in_pending_count,
in_pending,
out_pending_count,
out_pending,
router_count,
routers (ptr. to X_Router, see 8 above),
in, out, assign, cont-rol (ptrs. to entry point functions).

10. 	Executive
purpose:
fields:

6
 lb

 lb
 lb

 l
b
 lb

 6
 lb
s
 lb

 s
 e

 s

6
 lb

 s
 6
 l
b
 6
 lb
•l

b
e
s
s
e
s

s
 6

 s
e
 6
 e

s
 l

b l
b 6
 lb

l

b

the complete executive data structure.
exec_id,
memory,
messages,
queues,
exec_control (ptr. to XC_Control, see 2 above),
manager_control (ptr. to XM_Control, see 5 above),
router_control (ptr. to XR_control, see 9 above).

7. XC _ Set _Junction
purpose:
fields:

set junction command data structure.
command, name_id.

2.10 Executive Commands Data

The following data structures contain information about the executive commands. They
contain pointers to the actual command function in addition to other related data.

1. XC _ Add_ Consumer
purpose: 	add consumer command data structure.
fields: 	command, consumer.

2. XC Add Name
purpose: 	add consumer name command data structure.
fields: 	command, name.

3. XC Status
purpose: 	executive status command data structure.
fields: 	command.

4. XAS Executive
purpose:
fields:

5. XAS Kernel
purpose:
fields:

6. XA Status
purpose:
fields:

executive memory and consumer information data structure.
memory_f bytes, memory_f blocks,
memory_u_bytes, memory_u_blocks,
message_count, free_mes sages,
consumer count, consumer_limit,
name_count, name_limit,
xid_count, xid_limit.

kernel memory information data structure.
memory_f bytes, memory_f blocks,
memory_u_bytes, memory_u_blocks,
user count, free_users,
io_count, free_ios,
network_count, free_networks,
en_count, free_ens,
buffer_count, free_buffers,
buffer_bytes, buffer_free_bytes.

status information for executive and kernel information.
exec_id,
executive (of type XAS_Executive, see 4 above),
kernel (of type XAS_Kemel, see 5 above),

D 20

• •
• • • • 2.11 DSM Commands Data

• Each of the following data structures shown below contain pointers to the DSM command
• functions in addition to other related data.
• • 1. MC boot
• purpose: 	data structure for the DSM boot command.
• fields: 	command (ptr. to command function). • 2. MC Unknown Con •
• purpose: 	data structure for unknown consumer DSM command.
• fields: 	command (ptr. to command function), name_id, • exec_id. • • 3. MC Unknown Name
• purpose: 	data structure for unknown name DSM command.
• fields: 	command (ptr. to command function),
• name_id,
• exec_id.
• 4. MC Define •
• purpose: 	data structure for DSM define command.

fields: 	command (ptr. to command function),
name,

• resource,
• router type,
• name_count.
• 5. MC Link •
• purpose: 	data structure for DSM link command.

fields: 	command (ptr. to command function),
• name,
• junction. • • 6. MCD Junction
• purpose: 	data structure for the junction.
• fields: 	branch_id, name.
• • 7. MC Run
• purpose: 	data structure for DSM run command.
• fields: 	command (ptr. to command function), name.

• 8. MC _ Get _Resource •
• purpose: 	data structure for DSM get resource command

fields: 	command (ptr. to command function), name. •
•
0
•
•
• D - 21
•
•

•
•
•
•
•

9. MA Get Resource _ _ 	 •
fields: 	ack, 	 • resource_id,

name, 	 •
manager_id, 	 •
type, 	 • link_count, 	 • load_count, 	 • exec_count, exec_mask. •

10. MC Get Map 	 •
purpose: 	data structure for the get map DSM command. 	 •
fields: 	command (ptr. to command function), exec_name. 	 0

•
11. MA Get Map 	 •

fields: 	ack, 	 •
exec_name, 	 • map_count. 	 •

12. MAD Map Entry _ _ 	 •
• fields: 	to_name, • depth,

count. 	 •
•

13. MAD Link 	 •
fields: 	id, name. 	 •

•
14. MC _ Get_ Consumer 	 •

purpose: 	data structure for the get consumer DSM command. 	 •
fields: 	command (ptr. to command function), name. 	 •

15. MA 111 Get Consumer _ _ 	 •
fields: 	ack, 	 •

name, 	 • consumer id,
router type, 	 •
name_count. 	 •

16. MC _ Get_ name 	 •
purpose: 	data structure for the get name DSM command. 	 •
fields: 	command (ptr. to command function), name_id. 	 •

17. MA Get Name • •
fields: 	ack, 	 • name_id, 	 • map_count, • exec_name,

6
•
•

D - 22 	 •
•
•

11
 1

1
0

0
11

11

 11
 1

1
11

0
 1

1 1
1
0
11
 0

0

0

0

6
 1

1
11

0

6

6

6
 6

 1
1
 6

0
 0

6

0
 0

11

0
 6

0
 0

11

0

0
 0
 0
 0

11
 0

 1
1
 0
 0
 6
 0
 11
 0

 0

0

resource_name,
consumer name.

18. MAD Name
fields: 	exec_name, resource_name.

19. MC Get Exec
purpose: 	data structure for the get exec. DSM command.
fields: 	command (ptr. to command function), name.

20. MA Get Exec
fields: 	ack, status.

21. MC _Error
purpose: 	data structure for the DSM error command.
fields: 	command (ptt to command function),

code,
exec_id,
text.

22. MA_ Error
fields: 	ack.

23. MC Halt
purpose: 	data structure for the DSM halt command.
fields: 	command (pit to command function).

24. MC Get Status
purpose: 	data structure for the get status DSM command.
fields: 	command (pit to command function), name.

2.12 Consumer Junction Data

The following define the consumer junction data types. The data structures for the junction
and the junction branch are given below.

Junction
purpose: 	junction data structure.
fields: 	branch_count,

route_count.

Branch
purpose: 	junction branch data structure.
fields: 	route_base,

route_count.

_Block
memory linkage structure.
size, last_size.

6. U Memory
purpose:
fields:

2.13 Utility Function Data

The following describes the utility function data structures.
structures are used a number times throughout the system.

1. IO Buffer

Copies of the utility data

purpose:
fields:

2. U Buffer
purpose:
fields:

3. Stack
purpose:
fields:

4. Q_Iink
purpose:
fields:

S. Queue
purpose:
fields:

an I/O buffer data structure.
fid,
status,
ptr,
length,
data_length,
data.

a user buffer data structure.
size, user_id.

stack management structure.
memory,
items_used,
item_count,
item_size,
expand_count,
next_block,
next_item.

queue linkage structure.
next (a pointer to Q_link),
data.

queue management structure.
head, tail (both pointers to Q_link, see 4 above).

7. U_Memory _Free
purpose:
fields:

data structure for free memory.
block (ptr. to U_Memory_Block, see 6 above),
next_free, last_free (both pointers to U_Memory_Free).

8. U Memory
purpose:
fields:

9. U Cmd Ctl
purpose:
fields:

purpose:
fields:

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• '
•
•
•
•
•
•

memory management structure.
expand_size,
alloc_fn (ptr. to allocate memory function),
error_fn (ptr. to display memory management
used_blocks, used_bytes,
free_blocks, free_bytes,
first_block, free_head, free_tail (all ptrs. to U_
above).

command control structure.
memory,
buffer_limit, buffer_ptr.

user buffer control structure.
memory,
small_size, small_count, small_limit,
next_small (ptr. to U_Buffer, see 2 above),
large_size, large_limit, large_count,
next_large (ptr. to U_Buffer, see 2 above),
oversize_count, oversize_bytes.

D - 26

10. U_Buffer_Ctl

errors function),

Memory_Free, see 7

Byte
Word
Long
Integer
Address
Pointer
Indirect
Function
Table

OS_Channel
OS Process
OS:File

•
• •
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

2.14 Machine Data Types

The following lists the machine data types. The data fields in Sections 2.1 through 2.13,
(which are not pointers to functions or other data structures) are any one of the structures
given below.

8 bits unsigned.
16 bits unsigned.
32 bits unsigned.
16 bits integer.
pointer to 8 bits.
pointer to 16 bits.
pointer to pointer.
pointer to function returning Word.
structure with Functions, (for Function see above).

structure with pid (Long) & dsc (dscSdescriptor s).
structure with pid (Long).
structure of type Long (for Long, see above).

D - 27

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

APPENDIX Dl- FILES CONTAINING FTDCS DATA STRUCTURES

The following is a list of all the "C" function files (in alphabetical order) which contain the C
code for the data structures explained in Appendix D.

config.h,
config86.h,
configsim.h,
cpudef.inc,
enet.h,
executiv.h,
handlerdef.inc,
junction.h,
kernel.h,
mcommand.h,
mdlsimulator.inc,
message.h,
model.h,
os.h
serverdefinc,
sysmc.h,
utility.h,
xcornmand.h,

D - 28

APPENDIX E

PERFORMANCE ANALYSLS TABLES

1 4, '• •
,•
•
•
• APPENDDC E
• PERFORMANCE ANALYSIS TABLES •
• LIST OF TABLES
•
•
• Table 1: Main Functions of the Simulator 	 E-1
• Table 2: Simulator System Definition Functions 	 E-2
• Table 3: Local Configuration Specification Functions 	 E-3
• Table 4: Simulator Configuration Support Functions 	 E-4

Table 5: Distributed Software Implementation Functions 	 E-5 • Table 6: Kernel Processor Management Functions 	 E-6
• Table 7: Kernel Memory Management Functions 	 E-7
• Table 8: Kernel Link Management Functions 	 E-8
• Table 9: Kernel Link Server Functions 	 E-9
• Table 10: Executive Controller Functions 	 E-10
• Table 11: Executive Utility Functions 	 E-11
• Table 12: Executive Routing Manager Functions 	 E-12
• Table 13(a): Executive Resource Manager Functions 	 E-13
• Table 13(b): Executive Resource Manager Functions 	 E-14

Table 14: DSM Controller Functions 	 E-15
• Table 15: DSM Scheduler Functions 	 E-16 •
•
• E - i • •

lb lb lb 0 6 lb lb lb lb lb II lb lb lb 6 I, lb lb le 0 0 lb lb lb lb lb lb lb lb lb lb lb lb 6 lb 0 lb lb 6 6 lb lb 6 lb lb 6 lb lb 6 lb lb 6 lb lb lb

Module 	No. 	of called 	Lines of 	"C" code 	Lines of 	"C" code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

st_memory 	1 	 10 	 8 	 110 	 660

st_system 	12 	 288 	 239 	 2750 	 16500

st_file 	 47 	 1201 	 997 	 11,380 	 68,280

st_io 	 * 	 * 	 * 	 * 	 *

st_console 	* 	 * 	 * 	 * 	 *

st_go 	 * 	 * 	 * 	 * 	 *

st_node 	 * 	 * 	 * 	 * 	 *

Note: The code for the functions (for which no data given in this table) is very
convoluted. The total number of lines of code in these functions can only be
determined at execution time.

Table 1: Main Functions of the Simulator

E-1

Module 	 No. of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	 (worst case) 	 clock cycles

St_set_system 	0 	 47 	 39 	 390 	 2340

St_sw_config 	4 	 139 	 115 	 1270 	 7620

read_consumers 	3 	 82 	 68 	 770 	 4620

std_define 	 1 	 23 	 19 	 220 	 1320

std_link 	 2 	 35 	 29 	 350 	 2100

std_run 	 1 	 9 	 8 	 110 	 660

st_sys_config 	4 	 95 	 79 	 910 	 5460

add_sys_manager 	0 	 11 	 9 	 90 	 540

add_sys_router 	0 	 12 	 10 	 100 	 600

add_sys_resource 	0 	 15 	 13 	 130 	 780

add_sys_exec 	0 	 22 	 18 	 180 	 1080

Table 2: Simulator System Definition Functions
E-2

lb 0 6 lb lb lb lb lb 6 lb lb 6 lb li 6 6 lb 0 lb 6 6 lb lb lb 41 0 II lb lb lb lb lb lb 0 lb 6 lb lb 6 lb lb lb lb lb 6 lb lb lb lb lb 6 lb lb lb lb

11 11 11 11 6 0 11 11 6 II 0 0 0 6 6 6 6 6 0 11 11 6 11 6 6 0 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 11 6 11 6

Module 	No. 	of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

st_config 	 19 	 470 	 390 	 4470 	 26,820

st_config_header 	0 	 11 	 9 	 90 	 540

st_config_exec 	4 	 198 	 164 	 1760 	 10,560
config resources 	0 	 50 	 42 	 420 	 2520
config_execs 	1 	 44 	 37 	 400 	 2400
add_exec_consumer 	0 	 24 	 20 	 200 	 1200
config_dsm 	0 	 65 	 54 	 540 	 3240

st_simconfig 	17 	 446 	 370 	 4210 	 25,260

simconfig_managers 	0 	 14 	 12 	 120 	 720
simconfig_handlers 	0 	 17 	 14 	 140 	 840
simconfig_servers 	0 	 16 	 13 	 130 	 780
simconfig_resources 	0 	 8 	 7 	 70 	 420
simconfiglinks 	0 	 22 	 18 	 180 	 1080

simconfig_kernel 	3 	 98 	 81 	 900 	 5400
simconfig_kmemory 	0 	 13 	 11 	 110 	 660
simconfig_kcpu 	0 	 11 	 9 	 90 	 540
simconfig_Idink 	3 	 125 	 104 	 1130 	 6780

sim_network_link 	0 	 23 	 19 	 190 	 1140
sim_io_link 	0 	 18 	 15 	 150 	 900
sim_process_link 	0 	 19 	 16 	 160 	 960

Table 3: Local Configuration Specification Functions

E-3

Module 	 No. of called 	Lines of "C" 	code 	Lùies of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

stf data 	 4 	 189 	 157 	 1690 	 10,140

add_header 	0 	 31 	 26 	 260 	 1560
add_kernel 	 0 	 13 	 11 	 110 	 660
add_exec 	 0 	 94 	 78 	 780 	 4680
add_dsm 	 1 	 25 	 21 	 240 	 1440
add_dsm_command 	0 	 18 	 15 	 150 	 900

stf table 	 3 	 102 	 85 	 940 	 5640

tbl_header 	 0 	 28 	 23 	 230 	 1380
tbl_handlers 	0 	 28 	 23 	 230 	 1380
tbl_servers 	 0 	 28 	 23 	 230 	 1380

Table 4: Simulator Configuration Support Functions.

E-4

0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •O 0

• • • • • • • • • • 111 • • • • • • • • • • 6 • • • • • 6 • 6 • • 4 • • • • • é • • • • • • • • • • • Ili lb • • •

Module 	No. 	of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

sh_define 	 10 	 104 	 86 	 1160 	 6960
sh_link 	 10 	 123 	 102 	 1320 	 7920
sh_run 	 9 	 96 	 80 	 1070 	 6420
sys_command 	6 	 87 	 72 	 900 	 5400

sh_status 	 18 	 273 	 227 	 2810 	 16,860
consumer_status 	7 	 119 	 99 	 1200 	 7200
exec_status 	7 	 134 	 111 	 1320 	 7920

sys_accept 	 1 	 18 	 15 	 180 	 1080
sys_query 	 1 	 25 	 21 	 240 	 1440
sys_reply 	 1 	 19 	 16 	 190 	 1140
sys_call 	 4 	 71 	 59 	 710 	 4260
sys receive 	4 	 66 	 55 	 670 	 4020
sys_send 	 1 	 17 	 14 	 170 	 1020
sys ready 	 4 	 61 	 51 	 630 	 3780

wait_event 	 2 	 48 	 40 	 460 	 2760
setup 	 0 	 7 	 6 	 60 	 360
tx_packet 	 0 	 6 	 5 	 50 	 300
rx_packet 	 0 	 6 	 5 	 50 	 300

Table 5: Distributed Software Implementation Functions

E-5

Module 	No. 	of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

KB_boot 	143 	 2741 	 2275 	 27,040 	 162,240

KMB_cpu 	 1 	 34 	 28 	 310 	 1860
K_cpu_kernel 	9 	 146 	 121 	 1480 	 8880
K_cpu_executive 	2 	 35 	 29 	 350 	 2100
K_cpu_enter 	0 	 10 	 8 	 80 	 480
K_cpu_exit 	12 	 178 	 148 	 1840 	 11,040
K_cpu_fork 	0 	 14 	 12 	 120 	 720

K_cpu_k2x 	0 	 13 	 11 	 110 	 660
K_cpu_x2k 	11 	 168 	 140 	 1730 	 10,380
K_cpu_x2u 	0 	 8 	 7 	 70 	 420
K_cpu_u2x 	0 	 6 	 5 	 50 	 300
ICU_enable 	0 	 4 	 3 	 30 	 180
KU_disable 	0 	 4 	 3 	 30 	 180

Table 6: Kernel Processor Management Functions.

E-6

te te 0 0 110 0 0 0 0 0 0 0 0 0 g> 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 4> 0 10 0 0 1> 1> 0 0 0 0 0 0 0 0 1> 0 0 10 0 1> 1> 0 0 111

6 6 6 II 0 6 6 6 6 10 6 0 6 6 6 6 6 6 6 0 6 6 6 6 6 0 6 6 II 6 6 6 6 6 6 6 110 6 II II II 6 II 6 6 6 6 6 6 II 6

Module 	No. of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

KMB_memory 	1 	 33 	 27 	 300 	 1800

Krefill 	 0 	 10 	 8 	 80 	 480
K_mem_error 	0 	 6 	 5 	 50 	 300
K_allocate 	 0 	 7 	 6 	 60 	 360
Kreallocate 	0 	 10 	 8 	 80 	 480
K_free 	 0 	 5 	 4 	 40 	 240
K_set_stack 	0 	 10 	 8 	 80 	 480

K_add_queue 	0 	 6 	 5 	 50 	 300
K_next_queue 	0 	 7 	 6 	 60 	 360

K_new_buffer 	0 	 8 	 7 	 70 	 420
Krelease_buffer 	1 	 12 	 10 	 130 	 780
K_free_buffer 	0 	 5 	 4 	 40 	 240
K_copy_buffer 	0 	 6 	 5 	 50 	 300
K_new_network 	0 	 6 	 5 	 50 	 300
K_free_network 	0 	 5 	 4 	 40 	 240
K_new_io 	 0 	 6 	 5 	 50 	 300
K_free_io 	 0 	 5 	 4 	 40 	 240
K_new_user 	0 	 6 	 5 	 50 	 300
K_free_user 	0 	 5 	 4 	 40 	 240

Table 7: Kernel Memory Management Functions

E-7

Module 	 No. of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	 (worst case) 	 clock cycles

KMB_link 	 7 	 141 	 117 	 1380 	 8280

K _link_in 	 4 	 78 	 65 	 770 	 4620
K_link_out 	4 	 62 	 51 	 630 	 3780
Klink assign 	4 	 103 	 86 	 980 	 5880
K_link_control 	5 	 76 	 63 	 780 	 4680
kl_enter 	 0 	 27 	 22 	 220 	 1320

Table 8: Kernel Link Management Functions.

E- 8

0 lb 0 lb 0 lb lb lb lb db lb lb 0 lb 11 0 lb 0 lb lb 11 lb lb 0 lb lb lb 0 lb 11 0 0 0 0 lb 0 0 lb lb 10 0 0 0 0 0 0 lb 40 0 0 lb 10 lb lb 0

lb lb 6 lb 6 6 0 6 6 lb lb lb lb lb 6 6 lb 6 6 lb 6 6 lb 6 lb lb lb lb 6 lb 6 6 6 II 6 6 6 lb 6 II lb 6 0 6 II 0 lb lb lb lb 6 6 0 lb 6

Module 	No. of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

KSI_bus 	 1 	 26 	 22 	 250 	 1500
KHI_bus 	 0 	 6 	 5 	 50 	 300
kbus_in 	 3 	 49 	 41 	 500 	 3000
kbus_out 	 0 	 14 	 12 	 120 	 720
kbus_assign 	6 	 109 	 91 	 1090 	 6540
kbus_control 	0 	 13 	 11 	 110 	 660

KSI_device 	 1 	 26 	 22 	 250 	 1500
KHI_device 	0 	 6 	 5 	 50 	 300
kdevice_in 	 3 	 48 	 40 	 490 	 2940
kdevice_out 	0 	 10 	 8 	 80 	 480
kdevice_assign 	6 	 109 	 91 	 1090 	 6540
kdevice_control 	0 	 13 	 11 	 110 	 660

KSI_process 	1 	 29 	 24 	 270 	 1620
KHI_process 	0 	 6 	 5 	 50 	 300
kprocessin 	4 	 56 	 47 	 590 	 3540
kprocess_out 	2 	 40 	 33 	 390 	 2340
kprocess_assign 	6 	 120 	 100 	 1180 	 7080
kprocess_control 	0 	 13 	 11 	 110 	 660

Table 9: Kernel Link Server Functions

E-9

Module 	No. of called 	Lines of "C" code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

XB_boot 	 * 	 * 	 * 	 * 	 *
XCB_control 	* 	 * 	 * 	 * 	 *
xcontrol_in 	* 	 * 	 * 	 * 	 *
xcontrol_out 	* 	 * 	 * 	 * 	 *
X_command 	* 	 * 	 * 	 * 	 *
list_status 	 * 	 * 	 * 	 * 	 *
XC_next_query 	1 	 21 	 17 	 200 	 1200
XC_query_dsm 	1 	 32 	 27 	 300 	 1800
X_report_error 	* 	 * 	 * 	 * 	 *

Note: The code for the functions (for which no data given in this table) is very
convoluted. The total number of lines of code in these functions can only be
determined at execution time.

Table 10: Executive Controller Functions.

E-10

0 0 0 0 0 0 0 0 lb 0 1,

0 11 II 0 lb 11 6 6 6 11 0 0 le 01 11 11 6 11 6 6 11 0 te le 6 0 6 le 6 6 11 6 0 11 6 6 0 6 6 le 6 6 11 6 6 II 11 6 6 6 6 0 6 6

Module 	No. of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

X_set memory 	2 	 20 	 17 	 230 	 1380
X_more_memory 	0 	 6 	 5 	 50 	 300
X_mem_etTor 	0 	 6 	 5 	 50 	 300
X_allocate 	 0 	 9 	 8 	 80 	 480
X_reallocate 	0 	 8 	 7 	 70 	 420
X_free 	 0 	 5 	 4 	 40 	 240
X_set_stack 	 0 	 9 	 8 	 80 	 480

X_set_queues 	0 	 8 	 7 	 70 	 420
X_add_queue 	0 	 6 	 5 	 50 	 300
X_next_queue 	0 	 7 	 6 	 60 	 360
X join_queue 	0 	 7 	 6 	 60 	 360
X_find_signature 	0 	 26 	 22 	 220 	 1320
X_set_messages 	0 	 8 	 7 	 70 	 420
X_new_message 	0 	 9 	 8 	 80 	 480
X_free_message 	0 	 5 	 4 	 40 	 240
X_copy_message 	1 	 17 	 14 	 170 	 1020
X_new buffer 	0 	 7 	 6 	 60 	 360
X_freeibuffer 	0 	 9 	 8 	 80 	 480
X_copy_buffer 	0 	 6 	 5 	 50 	 300
X_free_network 	0 	 5 	 4 	 40 	 240
X_free_io 	 0 	 5 	 4 	 40 	 240
X_free_user 	0 	 5 	 4 	 40 	 240

Table 11: Executive Utility Functions
E-11

Module 	 No. of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	 (worst case) 	 clock cycles

XCB router 	4 	 75 	 62 	 740 	 4440
XR_in 	 * 	 * 	 * 	 * 	 *
XR_out 	 * 	 * 	 * 	 * 	 *
XR_assign 	 * 	 * 	 * 	 * 	 *
XR_control 	* 	 * 	 * 	 * 	 *
new_name 	 1 	 40 	 33 	 360 	 2160
new_consumer 	1 	 34 	 28 	 310 	 1860
X_route _junction 	* 	 * 	 * 	 * 	 *
X_route_consumer 	* 	 * 	 * 	 * 	 *

XRI_simple 	0 	 9 	- 	 8 	 80 	 480
xsimple_in 	 * 	 * 	 * 	 * 	 *
xsimple_out 	* 	 * 	 * 	 * 	 *
xsimple_assign 	1 	 18 	 15 	 180 	 1080
xsimple_control 	* 	 * 	 * 	 * 	 *

XRI_nmr 	 2 	 31 	 26 	 320 	 1920
xnmr_in 	 * 	 * 	 * 	 * 	 *
xnmr_out 	 * 	 * 	 * 	 * 	 *
xnmr assign 	0 	 11 	 9 	 90 	 540
xnmr_control 	* 	 * 	 * 	 * 	 *
xnmr_out_new 	* 	 * 	 * 	 * 	 *
xnmr_out_error 	* 	 * 	 * 	 S 	* 	 *
xnmr_out_valid 	1 	 23 	 19 	 220 	 1320
xnmr_ready 	* 	 * 	 * 	 * 	 *
xnmr_done 	* 	 * 	 * 	 * 	 *

Note: The code for the functions (for which no data given in this table) is very convoluted. The total number of
lines of code in these functions can only be determined at execution time.

Table 12: Executive Routing Manager Functions
E-12

6 6 lb 6 6 lb 6 0 lb 6 6 lb 0 lb lb 6 lb 0 0 lb 6 6 6 lb 6 0 	6 6 6 	6 40 6 0 6 lb 6 lb lb 0 6 lb lb

1, 11 1, 11 II II1 11 II II II II 11 11 II II ID 11 11 11 II II 11 11 11 11 II 111 11 11 II II 11 1, II 0 lb 1, II lb 11 I, II II lb 11 11 11 0 11 11 II di 0 1, II

Module 	No. of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

XCB_manager 	* 	 * 	 * 	 * 	 *
XM_in 	 * 	 * 	 * 	 * 	 *
XM_out 	 * 	 * 	 * 	 * 	 *
XM_assign 	* 	 * 	 * 	 * 	 *
XM_control 	* 	 * 	 * 	 * 	 *
xm_enter 	 1 	 36 	 30 	 330 	 1980

XMLnetwork 	* 	 * 	 * 	 * 	 *
xnetwork_in 	* 	 * 	 * 	 * 	 *
xnetwork_out 	6 	 93 	 77 	 950 	 5700
xnetwork_assign 	* 	 * 	 * 	 * 	 *
xnetwork_control 	* 	 * 	 * 	 * 	 *

XMLio 	 1 	 45 	 37 	 400 	 2400
xio_in 	 * 	 * 	 * 	 * 	 *
xio_out 	 * 	 * 	 * 	 * 	 *
xio_assign 	 * 	 * 	 * 	 * 	 *
xio_control 	* 	 * 	 * 	 * 	 *
xio_send 	 6 	 90 	 75 	 930 	 5580
xio_query 	 * 	 * 	 * 	 * 	 *
xi_reset_junction 	1 	 19 	 16 	 190 	 1140

Note: The code for the functions (for which no data given in this table) is very convoluted. The total number of
lines of code in these functions can only be determined at execution time.

Table 13(a): Executive Resource Manager Functions

E-13

Module 	No. 	of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

XMl_process 	1 	 50 	 41 	 440 	 2640
xprocess_in 	* 	 * 	 * 	 * 	 *
xprocess_out 	* 	 * 	 * 	 * 	 *
xprocess_assign 	* 	 * 	 * 	 * 	 *
xprocess_control 	* 	 * 	 * 	 * 	 *

process_accept 	7 	 100 	 83 	 1040 	 6240
process_query 	* 	 * 	 * 	 * 	 *
process reply 	* 	 * 	 * 	 * 	 *
process_call 	* 	 * 	 * 	 * 	 *
process_receive 	20 	 224 	 186 	 2460 	 14,760
process_send 	* 	 * 	 * 	 * 	 *
process_ready 	16 	 206 	 171 	 2190 	 13,140
match_query 	* 	 * 	 * 	 * 	 *
process_out query 	12 	 145 	 120 	 1560 	 9360
process_out reply 	13 	 179 	 149 	 1880 	 11,280
process_out_send 	12 	 147 	 122 	 1580 	 9480
process_run2wait 	8 	 107 	 89 	 1130 	 6780
process_wait2ready 	9 	 114 	 95 	 1220 	 7320
next_process 	7 	 100 	 83 	 1040 	 6240
xp_reset _junction 	1 	 20 	 17 	 200 	 1200

Note: The code for the functions (for which no data given in this table) is very
convoluted. The total number of lines of code in these functions can only be
determined at execution time.

Table 13(b): Executive Resource Manager Functions.

E-14
11 41 11 11 lb lb 11 	lb 11 II 41 lb 11 11 11 I/ 11 lb lb lb 11 lb lb 00 lb 11 lb lb lb lb 	lb lb lb lb 11 11 	lb 11 lb 11 lb lb 	lb II lb 10 11 lb lb 10

lb lb 6 6 lb 6 6 lb 0 6 lb lb lb lb 6 0 lb 6 6 lb lb lb lb 6 6 lb 6 6 0 6 6 6 6 lb lb 6 lb 6 6 lb 6 6 lb lb 6 lb 0 6 6 6 6 6 lb 0 lb

Module 	No. 	of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

mc_boot 	 23 	 396 	 329 	 3980 	 23,880
mc_add manager 	1 	 13 	 11 	 140 	 840
mc_add_router 	1 	 16 	 13 	 160 	 960
mc_add_resource 	1 	 35 	 29 	 320 	 1920
mc_add_exec 	1 	 29 	 24 	 270 	 1620

mc_add_link 	3 	 59 	 49 	 580 	 3480
network_link 	0 	 20 	 17 	 170 	 1020
io_link 	 0 	 13 	 11 	 110 	 660
appl_link 	 0 	 13 	 11 	 110 	 660

mgr_command 	* 	 * 	 * 	 * 	 *

mc_list 	 * 	 * 	 * 	 * 	 *

mc_exec_error 	0 	 8 	 7 	 70 	 420

mc_undefined 	0 	 6 	 5 	 50 	 300

Note: The code for the functions (for which no data given in this table) is very
convoluted. The total number of lines of code in these functions can only be
determined at execution time.

Table 14: DSM Controller Functions.

E-15

Module 	No. 	of called 	Lines of "C" 	code 	Lines of "C" 	code 	Lines of "assembly" code 	No. of
Functions 	(Total) 	 (worst case) 	(worst case) 	 clock cycles

mc_define 	11 	 315 	 261 	 2940 	 17,640

assign_resource 	4 	 163 	 135 	 1470 	 8820
assign_io 	 1 	 69 	 57 	 600 	 3600
assign_appl 	1 	 69 	 57 	 600 	 3600
assign_network 	1 	 104 	 86 	 890 	 5340

sort_execs 	 0 	 29 	 24 	 240 	 1440
sort_network 	0 	 34 	 28 	 280 	 1680

mc_link 	 5 	 117 	 97 	 1120 	 6720

mc_run 	 7 	 75 	 62 	 830 	 4980
run_tos 	 3 	 59 	 49 	 580 	 3480

mc__get_consumer 	3 	 64 	 53 	 620 	 3720

mc_get_cpu 	6 	 33 	 27 	 450 	 2700

mc_unknown_con 	4 	 146 	 121 	 1330 	 7980

Table 15: DSM Scheduler Functions.

E-16

11 I, 1, 	11 11 	II 11 	11 	11 11 lb CI 11 I, 11 I, II 	11 lb 11 	111 	11 11 11 II I, 11 11 11 11 lb II 11 11 	11 	I, 	11 I, OI CI 11 11

•
• • • •
• • • • • • • • • • • • •
• • • • • • • • • • • •
•

