RS PO L T s,
¢ .1 RELEASABLE
DOC-CR-SP-90-001"

Harnessing Knowledge with Technology

A

CompEngServ

1C

LKC
QA
76.9
.F38
R36
1990
Couid

PERFORMANCE ANALYSIS
OF

THE FTDCS SIMULATOR & OPERATING SYSTEM

March 6, 1990

By:

G. Ram, D. Bowen, B.A. Bowen
CompEngServ Ltd.
Suite 600, 265 Carling Avenue
Ottawa, Ontario
Canada K18S 2E1
(613) 563-1920

=
.1 RELEASABLE

“DOC-CR-SP-90-001

)

Harnessing Knowledge with Technology

CompEngServ

Industry Canada
Library - Queen

SEP 2 3 2013

Industre Canada
Bibliotheque - Queen

PERFORMANCE ANALYSIS

OF

THE FTDCS SIMULATOR & OPERATING SYSTEM

March 6, 1990

COMMERIATIONS
CRC

By:

G. Ram, D. Bowen, B.A. Bowen
CompEngServ Ltd.
Suite 600, 265 Carling Avenue
Ottawa, Ontario
Canada K1S 2E1
(613) 563-1920

I Government Gouvernement
of Canada du Canada

Department of Communications

DOC CONTRACTOR REPORT DOC-CR-SP-80-001
DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA
SPACE PROGRAM

TITLE: Performance Analysis of the FTDCS Simulator & Operating System

AUTHOR(S): G. Ram
D. Bowen
B.A. Bowen

ISSUED BY CONTRACTOR AS REPORT NO: None

PREPARED BY: CompEng Serv Ltd.
Suite 600, 265 Carling Ave.
Ottawa, Ontario
K1S 2E1
(613) 563-1920

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 36001-9-3593
S.N. 660ER-8-0003/39

DOC SCIENTIFIC AUTHORITY: J.M. Savoie

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: February 21, 1990

PREFACE
This work was performed for the Department of Communications under DSS Contract
Number 36001-9-3593 entitled, "FTDCS Analysis".

This document describes the analysis of the FTDCS operating system and associated
development environment.

The analysis methodology, conclusions and recommendations are provided in the main body
of the report. The detailed results of the analysis are provided in the five Appendices.

MAR 271990

LIBRARY - BBLITHERNE

Table of Contents

page

INTRODUCTION
THE ANALYSIS ALGORITHM
AN OVERVIEW OF THE SYSTEM
SYSTEM SOFTWARE MODULES
BEHAVIORAL ANALYSIS
DATA STRUCTURES
SYSTEM PERFORMANCE ANALYSIS
DESIGN AND IMPLEMENTATION - AN EVALUATION

8.1 Comments on the System Design

8.2 Comments on Design Documentation

8.3 Comments on Source Code Documentation

8.4 Comments on Fault Tolerance

8.5 Comments on Performance
9. SUMMARY AND CONCLUSIONS

9.1 Summary
9.2 Conclusions
9.2.1 System Design
9.2.2 Fault Tolerance

10. RECOMMENDATIONS
11. REFERENCES

b R o ad el

HF OOV ~TI~IA UL A WWLWWNN -

-

Appendices

Appendix A: Tables of Software Modules in FTDCS Simulator

Appendix B: Tables of Software Modules in the FTDCS Operating System

Appendix C: Structure Design Document for the FTDCS Simulator & Operating System
Appendix D: Data Structures Used by the FTDCS Simulator & The Operating System
Appendix E: Performance Analysis Tables

i

1. INTRODUCTION

This report describes the analysis of the Fault Tolerant Distributed Computer System
(FTDCS) operating system and associated Sun-based simulator. The purpose was to
reconstruct from the source code the logical structure, behavior, functionality and
performance of the FTDCS software. In addition, as a secondary mission, an evaluation of
the extensibility and modularity is required.

The work was performed by executing a reverse engineering algorithm, which involved
examining the source code to reconstruct the functionality of software modules, thus creating
a description of the system behavior using structure diagrams, tabulating the data flow
between modules and finally determining performance from the code traversed and the data
passed. As part of this detailed analysis, an evaluation of the design and its implementation
was formulated.

The results of such an analysis produces a rather bulky data set. This data is recorded in
Appendices relevant to each step in the analysis algorithm. The data, not only documents the
analysis and provides quantifiable evidence for the conclusions, but are useful separately as a
basis for extending the functionality of the system and as a basis for designing and predicting
the performance of new applications programs.

The body of the report is presented in eight sections. Section 2 records the analysis
algorithm, executed to produce these results.

Section 3 gives an overview of the FTDCS software as it is purported to have been designed.

Section 4, 5, & 6 contain the results of the execution of the input data set. Section 4 is
devoted to a description of the software modules as identified from the examination of the
source code. Section 5 is a behavioral description of the interaction of these modules based
on the call hierarchy. Section 6 tabulates the data structures.

Section 7 contains an estimate of performance, Section 8 contains our evaluation of the
overall design of the code. Section 9 contains a summary of the results with respect to the
statement of work, and our conclusions and recommendations based on these results and our
extensive exposure to the details of the implementation.

2. THE ANALYSIS ALGORITHM

The system was analyzed by executing the following algorithm:
1. Create the Analysis Data Base

The data set supplied to the project team was examined to determine the purpose,
functionality and implementation of the FTDCS software. The data set was organized to

support the requirements of this algorithm.,
2. Determine Software Modularity

The source code was analyzed to determine the structure, extent and purpose of all the
identifiable software modules, as well as the data stored and passed.

3. Determine Behavior

System behavior was determined using structure diagrams based on the data obtained in
step 2 which shows the calling hierarchy and the structure of the calls of all modules.

4. Determine Data Structures and Data flow

From the data obtained in Step 2, a tabulation of all data structures was obtained.

5. Determine Performance

From step 2 to 4, and in terms of the expectations in 1, an evaluation of the system
design and the implementation is obtained; from steps 3 and 4, a performance analysis of
the execution of all system calls is obtained.

3. AN OVERVIEW OF THE SYSTEM

The FTDCS is a fault tolerant distributed computer system designed to utilize clusters of
processors in applications requiring reliable, high performance real-time computation. The
three major components of the FTDCS architecture are:

1) hardware building blocks,
2) software building blocks and,
3) alayered operating system.

The FTDCS hardware building blocks are buses and processing units (PUs). The software
building blocks are developed using high level languages.

The operating system is composed of three distinct layers - the kernel, the executive and the
distributed system manager. The layered operating system not only provides the designer

......O..C..............0.................Q.OQ.OQO.....

with hardware transparency, but also provides the necessary fault detection, isolation and
recovery mechanisms. Further details about the operating system are given in Appendix A.

Application program development for the FTDCS is supported by a simulator for system
development and testing. System development consists of 4 phases: system definition,
system design, system implementation and system configuration. The FTDCS simulator
provides support in all the areas of system development. The simulator is also useful for
evaluating several fault tolerant techniques. Appendix B gives more details about system
development, with an example.

4. SYSTEM SOFTWARE MODULES

From the input data set, the modules of the FTDCS operating system and the simulator were
identified. For each module the following information was accumulated:

- name of the module,

- its parameters,

- a brief description on its purpose,

the number of lines of "C" code in it,

list of all the other modules it calls,

its output, and

a brief description on whether the module is completed and if the module algorithm
complies with its code.

Appendix A contains a brief description and example of the system development phases.
Generic modules are grouped together, with a tabulation of parameters.

Appendix B lists the software modules used in implementing the FTDCS operating system.
The modules are grouped together based on the 3 different layers of the operating system -
kernel, executive and distributed system manager.

5. BEHAVIORAL ANALYSIS

A behavioral analysis defines interaction between all the software modules. It usually relates
the calls in a hierarchical decomposition and provides information not only on the topology
of the interaction, but on the structure of the call.

Such an analysis uses the definition of modules obtained in Section 4, and is conveniently
presented as a structure diagram.

Appendix C describes in detail, the purpose of having a structure design for a system, the
structure diagram conventions used in this document and the behavior of FTDCS software

based on our analysis.

6. DATA STRUCTURES

The data structures necessary to support the system, and the data passed during intermodule
calls form an important part of a performance estimate. These data were identified and
isolated during the examination of the source code (Section 4).

A complete data dictionary, which resulted from this analysis is contained in Appendix D.

7. SYSTEM PERFORMANCE ANALYSIS

Based on the FTDCS source code, and the resulting structure diagram (see Appendix C, &
D), this section details the performance of the FTDCS. The performance of the various
system software modules is tabulated in Appendix E. Each row of this table corresponds to a
software module listed in Appendices A or B.

The following describes in detail how the data listed for each module was obtained.

Column 1: Name of the software module..
Column 2: Number of other modules called in order to execute this module.

Column 3: The sum of the total # of lines of "C" code in order to execute this module. This
is the sum of the total number of lines of code in this module and the total number of
lines of code in each of the called modules.

Column 4: The number of lines of "C" code required to execute the module in the worst
case. A worst case scenario for a module represents the longest path through it. In order
to calculate what percentage of the total code is executed in the worst case situation, the
following was done.

Five modules were chosen at random: "st_sw_config", "st_config_exec",

"add_resource”, "K_cpu_executive" and "xnetwork_assign". It was assumed that the
loops in these modules are executed only once (for any other number, the percentage
needs to be modified accordingly). Next, the sum of the total number of lines of "C"
code in each of the 5 modules was determined (205). Also the sum of the number of
lines of code required to traverse the longest path through these 5 functions was
calculated (170). The ratio of the latter to the former. was about 83%. Hence, it was
assumed that about 83% .of the total code is run in the worst case. Thus the results in
column 4 are obtained using:

0.83 * (result in column 3).

Column 5: The number of lines of assembly code required to execute the module in the
worst case. This consists of both the actual code and the overhead in the conversion
from "C" to assembly code.

The following assumptions are made for the calculations. A line of C code is
approximately equal to 10 lines of assembly code. Also, for every C function called,
about 30 lines of assembly code is added as overhead. Hence, the results in this column
are obtained using:

[(result in column 4) * 10] + [(result in column 2) * 30].
Column 6: The number of clock cycles required to execute this module. For this, the

following assumption is made. A line of assembly code is nearly equal to 6 clock cycles
(for an Intel 8086). Hence, the results in this column are calculated using:

(result in column 5) * 6.

The tables in Appendix E give the time for executing most of the FTDCS functions in
the worst case. These numbers can be used to choose the entry point functions in
creating application programs with appropriate execution times.

8. DESIGN AND IMPLEMENTATION - AN EVALUATION

8.1 Comments on the Syétem Design

The overall system can be commented on under two major heading: the design and the
implementation.

The design appears to have been undertaken without a clear statement of requirements.
These would have normally included, at least, a statement of the intended applications, the
functionality and the performance. The logical design of the system would have addressed
these requirements, in terms of the necessary functionality, and the overall organization of
the necessary interfaces to the application programs. For example, exposing all layers of the
system to the application programmer provides flexibility but leaves fault tolerance as a
suspicious feature.

The implementation is incomplete with several missing modules, and the recursive nature of
the Executive frustrates attaining the desired features.

8.2 Comments on Design Documentation

After constructing the tables for the FTDCS software modules, a detailed analysis of the
FTDCS simulator and the operating system was done. This included constructing a tree of
processes using the functions defined in the tables.

The following points are worth mentioning, with regard to the FTDCS software design, and
related documentation.

1.. A hierarchical approach is not maintained in the implementation of some of the
modules. The code for these functions is scattered. This might probably have been due
to the fact that a structure design was not done before implementation. Note however,
that this does not mean that the module is incorrect.

For example, one could implement the main simulator module as a loop which only calls
other functions to execute chosen commands. Therefore, the clean up at the end of
simulation would be left to the exit function. This would present a neater approach to
understanding the working of the system. Currently, "s_test" does both.

2. It was mentioned by concerned authorities that some of the FTDCS software modules
were not tested. However, the structure design assumes that not only all of them have
been tested but also that they are all correct.

3. Some of the functions (e.g., KHI_bus, KHI_device and KHI_process) are implemented
so that they rely on interrupts created by VMS.

Majority of the control entry point functions have not been implemented. However,
there are provisions to add to them. The following is a list of functions which can be

completed:

K_link_control,
xsimple_control and xnmr_control,
kbus_control, kdevice_control and kprocess_control,

xnetwork_control,
kmb_master_control, kmb_slave_control and k188_control.

Since the documents claim that the system is based on an object oriented approach, it
would be helpful if these objects (or data structures) are described as clearly and
completely as possible. A bunch of files containing "C" code for the data structures is
all that is available. Therefore, it is up to the reader to figure out why, how, and where
these data structures are used.

Also, there is no documentation on the purpose of the various fields in a data structure.
For example, it is difficult to figure out the purpose of the field "“sp_value" or "ds_value"
in the data structure "context".

8.3 Comments on Source Code Documentation

The FTDCS source code listings and detailed design manuals for the simulator and the
operating system were used to create tables of software modules.

During this study, the following shortcomings were noticed in the FTDCS documents (source
code listings).

L.

There is high level description of the system followed by a low level source code. How
the transition from one to the other has been done is not explained anywhere. This
makes it difficult to tie the two together and to check if the source code really satisfies
system goals. It takes quite a while for an unfamiliar reader to understand the mapping.

A few of the data structures are only mentioned by name. Their contents are not
defined.

Some functions have not been implemented (e.g., "mc_unknown_name"). Also, there is
no documentation provided for the DSM fault manager modules and data structures.

The code and the algorithm for certain software modules have the following problems:

* most often for a module, the algorithm explicitly states that a value is to be returned
from it. But there is no value returned from the function in the source code.

* a module source code may sometimes contain calls to other functions, and these calls
are not described in the algorithm. Why these functions are called is thus not known.
(Code lacks comments - see below).

* there are no comments in the code whatsoever. This may not matter for simple
functions. If functions are long and complicated (e.g., with nested loops and ‘if’
statements), it is difficult to determine what is happening or whether the code really does

what it is supposed to do. This is a very serious problem for someone wishing to modify
the existing code. Note: it is very difficult for a non "C" programmer to read and
understand functions with hundreds of lines of "C" code.

Also, algorithm statements in some functions are quite low level, simple and redundant
(e.g., set X to 0). These statements are superfluous and more appropriate to appear as
comments in the code.

* some complicated functions do not have an associated algorithm. What the module
does or is supposed to do can only be determined from its brief (often 1 line) description.
Therefore it is not possible to establish whether the module is correct.

* occasionally there are discrepancies between the algorithm and the code. For example,
the algorithm may state "perform function X"; the code might contain the statement "if
conditions A and B are true - then perform the function X". It is conditions like these
that define the structure design of the module.

* order of function calls differ in certain modules. This may affect the behavior of the
module and its end result. For example, the steps: square X and then increment X yield
a result different from the result obtained by incrementing X and then squaring it.

* for some of the functions, the code does not contain the implementations for major
portions of the algorithm (e.g., "xnmr_done").

8.4 Comments on Fault Tolerance

Since it is possible for application code to access the Operating System through the
Distributed System Manager, the Executive or the Kernel, application programs can by-pass
the Distributed System Manager, and thus the fault tolerance protection claimed by the
overall system.

The Fault Tolerant features of the Operating System were not complete, as shown in Section
8.2.

The recursive nature of the Executive lends itself to programmer’s abuse and errors.

The Distributed System Manager appears to have a single point failure. It would seem that
for all processes there will be one master process on one CPU which spawns processes for
execution on multiple machines, analyzes the results and determines sanity.

8.5 Comments on Performance

The Tables documented in the appendices provide timing data that can be used in
determining the performance of a proposed application. The Executive portion is difficult to
get timing for (because of its recursive nature).

For most of the operating system executive modules in the tables, no data is given. This is
due to the fact that the function calls they make are very convoluted. It is quite impossible to
determine the total number of lines of code in them, as it is very difficult to trace the more
than hundred function calls made. Moreover, the number of lines of code in the worst case is

very much execution dependent. Figure F1 shows an example of the function calls made by
one such module "XB_boot".

Some of the Shell functions could take up to 250 milli seconds, which could seriously affect
real time performance.

9 SUMMARY AND CONCLUSIONS

9.1 Summary

Under the terms of the contract, we have examined the FTDCS design documents and source
code. In order to develop an understanding of the system, to model its performance, we
have performed an extensive reverse engineering exercise. The results have been tabulated
and presented in the appendices. We have also developed comprehensive tables which will
allow performance analysis for any application program to be written in the future.

As well, the results in the first four appendices provide the designers data base for anyone
tasked with adding to the existing software. It will be necessary for anyone working in the
program to study these appendices and use them as a road map when changes must be made
and to determine what the ripple effect of changes will be. -

It is generally concluded -that the Opérating System is a prototype aimed at the distributed
processing applications. It is hard to conceive of how and why one would use it as it is
currently designed and built. Adding this prototype functions to the operating system
functions of a real time operating system could create a more usable product.

The other major concern raised is the extensive use of recursion in programing the
Executive. This use of recursion appears as a misuse of the capabilities provided by
recursive programming techniques.

9.2 Conclusions
9.2.1 System Design

It is not apparent from either the supplied documentation or the analysis of the source code
that a complete system requirements analysis and design was performed before beginning
this project.

The high level description followed by pseudo code is inappropriate for Object Oriented
Program design.

There is no explanation of how this operating system would be used by application
programmers or if it provides sufficient functionality. A comparison to other real time
operating systems such as VRTX or Harmony would identify many features for an
application program, which are not available in this system.

As a result of the convoluted, recursive and undocumented design. It will be a very difficult
job to modify this code. The number of other functions called and how modifications might
affect them is hard to determine. This will make the maintenance costs high. Thus, it will be
difficult for a third party to assume responsibility for life cycle support.

00000000000 00000 0000000000000 000000O0C00O0COF0COOFOGOOOOOOONNOONSNITS
XB_boot

. X_set_memory X_set_messages - X_set_queue XCB_control * XCB_router } XCB_manager
X_more_ X_mem_ X_set_ XR_ XR_ X_allocate XMI_Network XMl_io XMl process
memory error stack control assign

xr_enter__ - xr_set_ X-report_ xsimple_ xnmr_
name junction error control control

XM_ K_link_
control assign

a _new_ X_report_ XM_ X_next_ XC_query_
message buffer error out query dsm

xcontro| xsmple xnmr xnerwork_ Xio_ xprocess_ || xcontrol_ _ o
out out out out out
Aﬂm&md X_route_ xio xio_
consumer query

list_ XR_ XR_ X_copy_ L
status control assign message

Figure F1: Possible execution paths for XB_boot

The design appears to have been more concerned with the Fault Tolerant issues than
achieving real time performance and functionality.

9.2.2 Fault Tolerance
The operating system has been design around the intercommunication between consumers
and users and between different layers of the operating system. The facility to have tasks

executing on separate machines exist, however, the fault tolerant algorithm is incomplete. It
does not have the control function for responding to detected faults implemented.

10

10. RECOMMENDATIONS
Future Enhancements

The following is a list of recommended actions assuming future work will be undertaken
using this software.

1. Study of User needs and requirements: The operational environment of the FTDCS should
be analyzed to determine any missing functionality. As well any special needs for
distributed processing and fault tolerance should be defined.

2. Study of Features: The performance requirements, the fault tolerance requirements and the
distributed nature of the operational environment.

3. A full identification of what modules have been tested and work: There is a question
remaining of which modules work and which have not been tested. This should be resolved.

4. Implement missing functions: The functions listed above should be implemented.

5. Re Implement the Executive: Ideally the executive should be reimplemented to minimize
the recursive nature and thread like style.

6. Add new input/output servers to Kernel (RS323, RS422, IEEE488, etc.): Any new 1/O
servers should be identified and added.

7. Modify as a result of User needs study: Depending on the users need study new
functionality should be added to the operating system.

11

11. REFERENCES

1.

FTDCS Applications: Source Code Listings, June 15, 1987, PRIOR Data Sciences Ltd.,
Kanata, Ontario, Canada.

FTDCS Applications: System Interface Design and Programmer’s Guide, June 15, 1987,
PRIOR Data Sciences Ltd., Kanata, Ontario, Canada.

FTDCS Operating System Revisions: Detailed Des1gn, April 22, 1988, PRIOR Data
Sciences Ltd., Kanata, Ontario, Canada.

FTDCS Operating System Revisions: Source Code Listings, April 22, 1988, PRIOR
Data Sciences Ltd., Kanata, Ontario, Canada.

FIDCS Software Development: Source Code Listings, April 22, 1988, PRIOR Data
Sciences Ltd., Kanata, Ontario, Canada.

FIDCS Software Development: System Programmer’s Guide, April 22, 1988, PRIOR
Data Sciences Ltd., Kanata, Ontario, Canada.

A Fault-Tolerant Distributed Computer System For Spacecraft and Other Applications,
Executive Summary: May 31, 1987, Tridex Systems Inc., Nepean, Ontario, Canada.

12

APPENDIX A
TABLES OF SOFTWARE MODULES IN
THE FTDCS SIMULATOR

(from 1988 manuals)

Table of Contents

1. INTRODUCTION
2. SYSTEMS DEFINITION
3. SYSTEMS DESIGN
4, SYSTEM IMPLEMENTATION
5. SYSTEM CONFIGURATION
6. SYSTEM DEVELOPMENT EXAMPLE
6.1 Description
6.2 Definition
6.3 Design
6.4 Implementation
6.4.1 Distributed Software Implementation
6.4.2 Kernel Implementation
6.4.3 Executive Implementation
6.4.4 Local Configuration Specification
6.5 Configuration

List of Tables

Table 2.1 Simulator Definition Functions.

Table 2.1 Simulator Definition Functions (Contd.)

Table 2.1 Simulator Definition Functions (Contd.)

Table 4.1 Local Configuration Specification Modules.

Table 4.1 Local Configuration Specification Modules (Contd.)
Table 4.1 Local Configuration Specification Modules (Contd.)
Table 5.1 Simulator Configuration Support Functions.

Table 5.1 Simulator Configuration Support Functions (Contd.).
Table 5.1 Simulator Configuration Support Functions (Contd.).
Table 6.1 Distributed Software Implementation Functions.

Table 6.1 Distributed Software Implementation Functions (Contd.).
Table 6.1 Distributed Software Implementation Functions (Contd.).
Table 6.1 Distributed Software Implementation Functions (Contd.).
Table 6.2 Resource Link Specific Functions.

Table 6.2 Resource Link Specific Funcitons (Contd.).

Table 6.2 Resource Link Specific Funcitons (Contd.).

Table 6.2 Resource Link Specific Funcitons (Contd.).

Table 6.4 Simulator Configuration Modules.

Table 6.4 Simulator Configuration Modules (Contd.).

Table 6.4 Simulator Configuration Modules (Contd.).

A-ii

=]
o
agQ
[¢]

> > > > > >
O ooURLWR

1. INTRODUCTION

Developing a FTDCS system consists of four phases: definition, design, implementation and
configuration. The FTDCS simulator provides support in all the four phases.

The following four sections describe the four system development phases supported by the
simulator.

2. SYSTEMS DEFINITION

The entire system definitions consists of - hardware and software definitions. It specifies the
hardware and software components needed to meet the system requirements.

The simulator provides an interactive interface through which the system hardware definition
(specifications of processors, I/O devices, network devices and their interconnections) can be
specified.

The software definitions can be specified through a text file, which can be edited through any
interactive text editor. Data in the distributed software specification text file includes:

1. DSM consumer definition: text file entry is of the form:
manager resource router processor [processor]
where "resource"” is the application resource which contains the "manager" (DSM) code,
“router is the fault tolerant routing (FTR) algorithm used by DSM, and "processor" is the
list of processors on which the DSM will run.

2. Application consumers definition: 3 types of entries for this:
* Definition - consumer definition:
define consumer resource router namecount
where "define" is define consumer command, "consumer" is the name of the consumer
to define, "resource" is the application or I/O resource for the consumer, "router" is FTR
algorithm, and "namecount" is redundancy level for the consumer.
* Linking - consumer output channels:

link consumer branchQ [| branchl ... | branchN]

where "link" is a link consumer command, "consumer" is consumer to link, "branchX" is
a consumer name to which the output message will be sent.

* Running - activating consumers at system startup time:

run consumer

where "run" is the run consumer command and "consumer" is the name of the consumer
to run at system startup time.

The system definition is used by the simulator to create a system model.

Functions:

The functions in Table 2.1 implement the system definition in order to be submitted to the
DSM. The following functions are in the file stsystem.c.

Module Parameters Module Description

st_system model creates a simulator system definition

st_set_system model initializes system definition structure

st_sw_config model reads & interprets distributed s/w specs

read_consumers file_buffer, reads application consumer specs &
cmd_buffer creates DSM commands

std_define file_buffer, creates define consumer command
cmd_buffer

std_link file_buffer, creates link consumer command
cmd_buffer

std_run file_buffer, creates run consumer command
cmd_buffer

st_sys_config model interprets and integrates hardware model

to the system definition

add_sys_manager model, system, adds a resource manager to system definition
manager_id

add_sys_router model, system, adds a routing manager to system definition
router_id

add_sys_resource model, system, adds a resource to system definition
resource_id

add_sys_exec

model, system,
cpu_id

adds a processor’s local executive id to
system definition

Table 2.1 Simulator Definition Functions.

A-2

Module Lines Calls made to Return Value
in code
st_system 7 st_set_system none
st_sw_config
st_sys_config
st_set_system 47 none none
st_sw_config 57 read_consumers none
read_consumers 15 std_define none
std_link
std_run
std_define 23 sh_define_cmd none
std_link 35 sh_set_link_cmd none
sh_add_link_cmd
std_run 9 sh_run_cmd none
st_sys_config 35 add_sys_manager none
add_sys_router
add_sys_resource
add_sys_exec
add_sys_manager 11 none none
add_sys_router 12 none none
add_sys_resource 15 none none
add_sys_exec 22 none none

Table 2.1 Simulator Definition Functions (Contd.)

Module Completed? Is code the exact implementation of algorithm?
st_system yes yes

st_set_system yes yes

st_sw_config yes algorithm does not quite explain the code
read_consumers yes yes

std_define yes algorithm does not quite explain the code
std_link yes algorithm does not quite explain the code
std_run yes algorithm does not quite explain the code
st_sys_config yes yes

add_sys_manager yes yes

add_sys_router yes yes

add_sys_resource yes yes

add_sys_exec yes yes

Table 2.1 Simulator Definition Functions (Contd.)

3. SYSTEMS DESIGN

The simulator provides two support aids for system design. These are in the form of
information, displayed interactively during a simulation session. The two system design
requirements are given below.

1.

Loading Requirements: indicate which application software modules have to be
compiled and linked for each processor. Command "show applications”.

Local operating system requirements: indicate the kernel link servers and interrupt
handlers to be incorporated into the local operating system kernel for each processor,
i.e., shows which resources are linked to each processor. Command "show cpu
cpuname”.

Besides the simulator design, there are the distributed software (DSM and application
software) design requirements and local operating system (kernel, configuration and
executive) design requirements.

4. SYSTEM IMPLEMENTATION

System implementation consists of the implementation of the following modules:

1.

Distributed Software implementation: consists of coding, compiling and linking
software modules determined by the system design for - DSM and application software.

Local operating system executive implementation: consists of the implementation of the

executive resource manager components and routing manager components. For each of

these components, the implementation consists of coding the component initialization

't:unction')and its associated event handling functions (e.g., "in", "out", "assign" and
control").

Local operating system kernel implementation: consists of the implementation of the
local operating system kernel components - processor specific functions, kernel interrupt
handlers and kernel link servers.

The processor specific functions include the processor reset trap function and a number
of kernel processor management functions. This code is written in assembly.

Interrupt handlers service processor interrupts. Implementation of an interrupt handler
requires the coding of at least 2 functions: an initialization function and an interrupt
service routine.

Kernel link servers perform the kernel level processing associated with individual
processor resource links. Implementation of kernel link managers consists of coding the
component initialization function and its associated event handling functions (e.g., "in",

"out", "assign" and "control").

Local Configuration Specification: consists of data in a form which can be interpreted
by the simulator to produce configuration (text) files for each local operating system.
Local configuration specifications include data which defines interrupt handlers and
kemnel link servers for each processor. For example, shared memory addresses, code

segment and stack addresses and length, etc. Tables below show the modules for
processor independent configuration and modules to interpret local configuration specs.
for a simulated processor. These functions are defined in the file stconfig.c and

stsimconfig.c

A-5

Module

Parameters

Module Description

st_config
st_config_header
st_config_exec
config_resources
config_execs

add_exec_consumer

model, cpu_id,
config_fn

model, cpu,
config

model, cpu,
config

model, cpu,
config, exec_mark
model, home_cpu,
config, exec_mark
model, exec_id,
config, exec_mark
link_id

creates a local OS config structure based
on system definition & local config. specs
sets up a header for a local executive
configuration data structure

creates DSM and executive portions of local
configuration data structure

adds executive resource data to the local
configuration data structure

adds linked executive data to the local
configuration data structure

adds executive consumer definition to the
local configuration data structure

config_dsm model, system, cpu, |adds DSM consumer to the
link_mark, config | local configuration data structure
st_simconfig model, cpu, creates config data for processor’s local OS
config running on the simulator
simconfig_managers model, cpu, initializes exec. resource managers
config configuration data
simconfig_handlers model, cpu, initializes kernel interrupt handlers
config configuration data
simconfig_servers model, cpu, initializes kernel link servers
config configuration data
simconfig_resources model, cpu, initializes processor’s linked resources
config configuration data
simconfig_links model, cpu, initializes processor’s resource links
config configuration data
simconfig_kernel model, cpu, adds kernel configuration data to the
config configuration data structure
simconfig_kmemory model, cpu, adds kernel memory manager config. to the
config configuration data structure
simconfig_kcpu model, cpu, adds kernel processor manager config. to the
config configuration data structure
simconfig_klink model, cpu, adds kernel link manager config. to the
config configuration data structure
sim_network_link model, link_id, adds link to n/w resource config, to the
config, marker configuration data structure

sim_io_link

sim_process_link

model, link_id,
config, marker
model, link_id,
config, marker

adds link to I/O resource config. to the
configuration data structure

adds link to application process resource
config. to the configuration data structure

Table 4.1 Local Configuration Specification Modules.

Module Lines Calls made to Return Value
in code
st_config 13 st_config_header none
config, entry point
st_config_header 11 none none
st_config_exec 39 config_resources none
config_execs
config_dsm
config_resources 50 none none
config_execs 20 add_exec_consumer none
add_exec_consumer 24 none none
config_dsm 65 none none
st_simconfig 13 simconfig_managers none
simconfig_handlers
simconfig_servers
simconfig_resources
simconfig_links
simconfig_kernel
st_config_exec
simconfig_managers 14 none none
simconfig_handlers 17 none none
simconfig_servers 16 none none
simconfig_resources 8 none none
simconfig_links 22 none none
simconfig_kernel 9 simconfig_kmemory none
simconfig_kcpu
simconfig_klink
simconfig_kmemory 13 none none
simconfig_kcpu 11 none none
simconfig_klink 65 sim_network_link none
sim_io_link
sim_process_link
sim_network_link 23 none none
sim_io_link 18 none none
sim_process_link 19 none none

Table 4.1 Local Configuration Specification Modules (Contd.)

Module Completed? Is code the exact implementation of algorithm?
st_config yes yes
st_config_header yes yes
st_config_exec yes yes
config_resources yes yes
config_execs yes yes
add_exec_consumer yes yes
config_dsm yes code easier to follow with comments
st_simconfig yes yes
simconfig_managers yes yes
simconfig_handlers yes yes
simconfig_servers yes yes
simconfig_resources yes yes
simconfig_links yes yes
simconfig_kernel yes yes
simconfig_kmemory yes yes
simconfig_kcpu yes yes
simconfig_klink yes yes
sim_network_link yes yes
sim_io_link yes yes
sim_process_link yes yes

Table 4.1 Local Configuration Specification Modules (Contd.)

5. SYSTEM CONFIGURATION

The system configuration consists of 2 "C" files with data required to configure each local
operating system. The 2 files are the functional configuration table file and the configuration

data file.

1. Functional Configuration table: this is a table of entry points through which the local
operating system functionality can be accessed at both the kernel and the executive
levels. Entry points can be divided into 2 groups: configuration dependent entry points
(initialization function) generated by the simulator according to local configuration
specifications (Section 4.1); and entry points common to all local operating systems

(e.g., boot functions).

2. Configuration Data: this is the data required to initialize the local operating system at

processor boot time. The data consists of:

(a) Configuration data header:

- system processor id,
- length of kernel, executive and DSM data components

(b) Kernel configuration data:

- initialization data for kernel memory, processor and link managers
- initialization data for kernel interrupts and link servers
- hardware dependent data associated with each of the processor’s resource links

(c) Executive configuration data:

- initialization data for executive controller and executive routing and resource managers

(d) Distributed system manager data: This data is included only if the DSM is scheduled
on the processor for which the configuration data is being generated.

- string of commands describing the system software and hardware configuration to the
DSM, generated from simulator’s system definition.

Functions:

The simulator produces the local configuration data and the local functional configuration
table using the system definition and the local configuration specification. The modules
which provide this functionality are described in Table 5.1. They are defined in the file

stfile.c.
Module Parameters Module Description
st_file model, prefix, produces config data & functional config.
config_fn table
stf_data name, config produces configuration data file.
add_header fid, name, writes configuration data header to
header configuration data file
add_kernel fid, ptr writes kernel configuration data to
configuration data file
add_exec fid, exec writes executive configuration data to
configuration data file
add_dsm fid, ptr writes DSM configuration data to

add_dsm_command

stf_table
tbl_header

tbl_handlers

tbl_servers

fid, command

name, config
fid, name,
header

fid, config

fid, config

configuration data file

writes a DSM command to

configuration data file

produces a functional configuration table file
writes configuration table header to

the functional configuration table file

writes handler init. entry points to

the functional configuration table file

writes server init. entry points to

the functional configuration table file

Table 5.1 Simulator Configuration Support Functions.

Module Lines Calls made to Return Value
in code
st_file 18 st_config none
stf_data
stf_table
stf_data 26 add_kernel none
add_header
add_exec
add_dsm
add_header 31 none none
add_kernel 13 none none
add_exec 94 none none
add_dsm 7 add_dsm_command none
add_dsm_command 18 none none
stf_table 18 tbl_header none
tbl_handlers
tbl_servers
tbl_header 28 none none
tbl_handlers 28 none none
_| tbl_servers 28 none none
Table 5.1 Simulator Configuration Support Functions (Contd.).
Module Completed? Is code the exact implementation of algorithm?
st_file yes yes
stf_data yes algorithm does not fully explain the code
add_header yes yes
add_kernel yes yes
add_exec yes code easier to read with comments
add_dsm yes yes
add_dsm_command yes yes
stf_table yes algorithm does not fully explain the code
tbl_header yes yes
tbl_handlers yes yes
tbl_servers yes yes

Table 5.1

Simulator Configuration Support Functions (Contd.).

For each process, a local operating system image is produced by compiling the functional
configuration tables and linking it to the processor reset trap function.

After the generation of all system software, it is downloaded to the target according to the
load specification known to the local operating system.

A-10

6. SYSTEM DEVELOPMENT EXAMPLE
6.1 Description

This section describes an example of system development. It lists the modules used in each
phase of the system development (Sections 2-5).

The test system application provides a system which monitors two I/O devices, performs
high priority processing of one and low priority processing of the other. In addition, there is
an interface to DSM in order to issue commands to the operating system.

The test system hardware configuration consists of two processing sites connected via a
multibus. One of the processors is also connected to an advanced communicating computer
(also via a multibus), which is used for I/O device management.

6.2 Definition
Hardware Specification: six hardware components:

- 86/35 SBC (named k35)

- NIU processor (named kniu)

- console terminal (named console)

- I/O devices (named iol and i02)

- multibus inter-processor link (named multibus)

Distributed Software Specification: describes to the simulator the software components of
the system. The application processes include "dsm", "testl", "test2" and "shell". The
software specification file for input to the simulator is given in detail in Section 7.2.2 in
FTDCS Software Development - System Programmer’s Guide. Commands: define, link and
run are used to describe the specifications for the application processes.

6.3 Design

The system design requirements identify the software components required to implement the
system at both the distributed software and local operating system levels.

The following simulator commands can be used: "show applications", "show cpu k35" and
"show cpu kniu".

A-11

6.4 Implementation
6.4.1 Distributed Software Implementation

This consists of coding, compiling, linking and locating distributed software modules. This
includes coding for "dsm" (described in ‘Tables of Software Modules in FTDCS Operating
System’ & ‘FTDCS Operating System Revisions’), "test1", "test2" and "shell".

The "shell” functions are the first group of functions in the table below. They are defined in
the files: shell.c, shcommand.c and shstatus.c. These functions process operating system
commands.

Application processes like "testl” and "test2" can send messages to and receive messages
from the OS using the basic run time library functions. These functions are defined in the
file rtllib.c and listed as the second set in the table below.

The application processes "testl" and "test2" are defined in the files testl.c and test2.c
respectively. They are listed as the third set of functions in Table 6.1.

A-12

Module Parameters Module Description

main none mainline function for operating system shell
sh_define command_buffer processes "define consumer"” shell commands
sh_link command_buffer processes "link consumer" shell commands
sh_run command_buffer processes "run consumer" shell commands

sys_command

sh_status

consumer_status

exec_status

command, ack_buffer
ack_length

buffer

buffer

buffer

sends a command to the DSM

processes "status" shell commands
processes "status consumer" shell commands
processes "status cpu” shell commands

sys_accept

sys_query

sys_reply
sys_call

sys_receive

notify, reply,
reply_length
branch, notify,
parameter, data,
data_length, reply,
reply_length
consumer, signature,
data, data_length
branch, data,
data_length, reply,
reply_length
reply, reply_length

accepts a query or call message (no
block)
sends a query message (no block)

replies to a query or call message

(no block)

sends a query message, waits for reply
(block)

waits for data message (block)

sys_send branch, data, sends a data message (no block)
data_length
sys_ready none sets ready state (block)
wait_event mode waits for an event
setup none sets up processor for simulator compatibility
tx_packet none sends packet to operating system
rX_packet none receives packet from operating system
testl none application process to process input data
and send results to output channel 0
accept_fn source, sign, replies to a query message with most recent
data, length input data
test2 none application process to receive input data
data from channel 0, and send it to channel 1
process_data ptrl, 11, ptr2, combines two character strings to a third
12, ptr3

Table 6.1 Distributed Software Implementation Functions.

A-13

Module

Lines
in code

Calls made to

Return Value

main

sh_define

sh_link

sh_run

sys_command

sh_status

consurmmer_status

exec_status

27

17

36

16
20

48

63

sh_define
sh_link

sh_run

sh_status
U_set_memory
U_set_command
U_str_line
U_flush_line
sh_define_cmd
sys_command
U_str_line
U_word_line
sh_set_link_cmd
sh_add_link_cmd
sys_command
U_str_line
sh_run_cmd
sys_command
U_str_line
sys_write
sys_call
exec_status
consumer_status
U_flush_line
U_str_line
sys_call
U_flush_line
U_str_line
sys_call
U_flush_line
U_str_line

none

none

none

none

length of data returned in
acknowledgement buffer
none

none

none

Table 6.1 Distributed Software Implementation Functions.

Module Lines Calls made to Return Value
in code
sys_accept 12 tx_packet none
sys_query 19 tx_packet none
sys_reply 13 tx_packet none
sys_call 17 tx_packet call reply data length
wait_event
sys_receive 12 tx_packet received data length
wait_event
sys_send 11 tx_packet none
sys_ready 7 tx_packet none
wait_event
wait_event 36 tx_packet none
rx_packet
setup 7 none none
tx_packet 6 none none
rx_packet 6 none none
testl 19 setup none
sys_receive
sys_send
sys_accept
sys_reply
accept_fn
accept_fn 10 sys_reply UPKT_READY, indicating
sys_accept return to ready state
test2 24 setup none
sys_receive
sys_call
sys_send
process_data
process_data 18 none concatenated string length

Table 6.1 Distributed Software Implementation Functions (Contd.).

A-15

Module Completed? Is code the exact implementation of algorithm?
main yes yes (function has no "quit" - infinite loop)
sh_define yes yes

sh_link yes algorithm does not fully explain the code
sh_run yes yes

sys_command yes yes

sh_status yes yes

consumer_status yes code easier to follow with comments
exec_status yes code easier to follow with comments
sys_accept yes yes

sys_query yes yes

sys_reply yes yes

sys_call yes yes

sys_receive yes yes

sys_send yes yes

sys_ready yes yes

wait_event yes yes

setup yes yes

tx_packet yes yes

rXx_packet yes yes

testl yes yes

accept_fn yes yes

test2 yes yes

process_data yes yes

Table 6.1 Distributed Software Implementation Functions (Contd.).

A-16

6.4.2 Kernel Implementation

The kernel implementation consists of processor specific and kernel interrupt handlers and
link server functions.

The processor specific functions are described below:

k86¢cpu.c contains kernel processor manager functions. They are similar to the functions
listed in Table 2.1 of Appendix B. The difference being these functions are more
hardware specific than the functions in the tables. They make calls to assembly
language routines required specifically for the operating system kernel on an Intel 8086.
For example, K_cpu_kernel calls K86_DISABLE instead of the general KU_disable.
The algorithms and code however remain the same. The assembly language routines are
defined in the file "k86mc.asm".

k86memory.c contains the kernel memory manager functions. They are the same as the
functions in Table 2.2 of Appendix B.

k86link.c contains the kernel link manager functions. They are the same as the functions
in Table 2.3 of Appendix B.

Following are the kernel interrupt handlers and link servers functions:

the file k86process.c contains applications to system server functions. They are similar
to the functions in "ksimprocess.c" listed in Table 2.4 of Appendix B. However, the
following differences can be listed between the two sets of functions: functions in
"k86process.c" are more hardware specific (and use the assembly language routines
given in the file "k86prmc.asm"), function KHI_process (the interrupt handler function)
is implemented.

functions in kmbmaster.c are multibus shared memory master server functions. The C
functions are listed as the first group of functions in Table 6.2 below. The related
assembly language routines are defined in the file "kmbmasmc.asm".

functions in kmbslave.c are multibus shared memory slave server functions. The C
functions are listed as the second group of functions in Table 6.2 below. The related
assembly language routines are defined in the file "kmbslvmc.asm".

k188.c contains functions which implement a server to support the 188/48 I/O

processors. The C functions are listed as the third group of functions in Table 6.2 below.
The related assembly language routines are defined in the file "k188mc.asm".

A-17

Module Parameters Module Description
KSI_mb_master server server initialization entry point
KHI_mb_master unit_base, vector interrupt handler initialization entry point
unit_count
kmb_master_in server, status, server in entry point
bus_id
kmb_master_out server, bus_id, server output entry point
packet
kmb_master_assign server, link, name server assign entry point
kmb_master_control server, code, server control entry point
local_id, data
KSI_mb_slave server server initialization entry point
KHI_mb_slave unit_base, vector interrupt handler initialization entry point
unit_count
kmb_slave_in serveii status, server in entry point
bus_i
kmb_slave_out server, bus_id, server output entry point
packet
kmb_slave_assign server, link, name | server assign entry point
kmb_slave_control server, code, server control entry point
local_id, data
KSI_i188 server server initialization entry point
KHI_i188 unit_base, vector interrupt handler initialization entry point
unit_count
k188_in server, data, server in entry point
tty_id
k188_out server, tty_id, server output entry point
packet
k188_assign server, link, name | server assign entry point
k188_control server, code, server control entry point
local_id, data
k188_receive tty, offset, processes receive interrupt
length
in_188_raw tty, e_ptr processes input characters
k188_transmit tty processes transmit complete interrupt
out_188_raw tty, data, length processes output characters
k188_tx_packet tty, data, length sends characters to 188/48 board

Table 6.2 Resource Link Specific Functions.

Module

Lines
in code

Calls made to

Return Value

KSI_mb_master
KHI_mb_master
kmb_master_in

kmb_master_out

kmb_master_assign

kmb_master_control

19
49

22

30

11

K _allocate
MB86_M_INIT

K _new_network

K _new_buffer
K_cpu_k2x
K_free_network

K _release_buffer
K_copy_buffer
K_next_queue
MB86_SIG_SLAVE
K_add_queue

K _new_network
K_copy_buffer
MB86_SIG_SLAVE
K_allocate
K_new_network
K_new_buffer
MB86_M_CONTROL
K _link_control
device specific control
functions

none
none
none

none

none

none

KSI_mb_slave
KHI_mb_slave
kmb_slave_in

kmb_slave_out

kmb_slave_assign

kmb_slave_control

19
40

19

30

11

K _allocate
MB86_S_INIT

K _new_network
K_new_buffer

K _cpu_k2x

K _free_network

K _release_buffer
K_next_queue
MB86_SIG_MASTER
MB86_SLAVE_RX
MB86_PUT_S2M
MB86_SLAVE_TX
MB86_GET_M2S
K_add_queue

K _new_network

K _copy_buffer
MB86_PUT_S2M
MB86_SIG_MASTER
K _allocate

K _new_network

K _new_buffer
MB86_S_CONTROL
K_link_control

device specific control
functions

none
none
none

none

none

none

Table 6.2 Resource Link Specific Functions.

A-19

Module

Lines
in code

Calls made to

Return Value

KSI_i188
KHI_i188
k188_in

k188_out

k188_assign

k188_control

k188 _receive

in_188_raw

k188_transmit

out_188_raw

k188_tx_packet

20
19

18

50

11

18

37

18

20

13

K _allocate
I188INIT
k188_receive
k188_transmit
I188IN
out_188_raw
K_new_io
K_copy_buffer
K_add_queue
K_allocate
K_new_io
K_new_buffer
K_link_control
I188SETUP
I11880UT
device specific control
functions
in_188_raw
k188_tx_packet
I1188DIN
11880UT
K_cpu_k2x
K_new_io
K_new_buffer
in_188_raw
k188_tx_packet
K_next_queue
out_188_raw

K _release_buffer
K _free_io
k188_tx_packet
K_new_buffer
K release_buffer
1188DOUT
11880UT

none
none
none

none

none

none

none

number of characters in
echo buffer

norie

none

none

Table 6.2 Resource Link Specific Functions (Contd.).

A-20

Module Completed? Is code the exact implementation of algorithm?
KSI_mb_master yes yes

KHI_mb_master yes yes

kmb_master_in yes code easier to read with comments
kmb_master_out yes yes

kmb_master_assign yes yes

kmb_master_control |yes no, currently, control functions not implemented
KSI_mb_slave yes yes

KHI_mb_slave yes yes

kmb_slave_in yes code easier to read with comments
kmb_slave_out yes yes

kmb_slave_assign yes yes

kmb_slave_control yes no, currently, control functions not implemented
KSI_i188 yes yes

KHI_i188 yes yes

k188_in yes yes

k188_out yes yes

k188_assign yes code easier to read with comments
k188_control yes no, currently, control functions not implemented
k188_receive yes yes

in_188_raw yes yes

k188_transmit yes yes

out_188_raw yes yes

k188_tx_packet yes yes

Table 6.2 Resource Link Specific Functions (Contd.).

6.4.3 Executive Implementation

All components required to implement the executive are given in "FTDCS Operating System
Revisions" manuals and listed in Appendix B. There are no changes made to these modules.
The code modules are compiled and added to the executive code library.

6.4.4 Local Configuration Specification

The local configuration specification specifies to the simulator the kernel configuration data
for each processor. The interrupt handlers and link servers data definitions are included.
The local configuration specification for the processors k35 and kniu are given in detail in
"FTDCS Software Development - System Programmer’s Guide".

6.5 Configuration

System configuration consists of: the interpretation by the simulator of the local
configuration specifications, generation of the local OS using the local configuration
specifications, and downloading of all the system software to the target hardware.

The configuration modules are defined in the file st86config.c. They create the configuration
data structures for an Intel 8086 family processor’s local operating system. The functional
configuration tables and the configuration data files thus created for the example are given in
"FTDCS Software Development: System Programmer’s Guide".

Module Parameters Module Description

st86_config model, cpu, creates config data for Intel 8086’s local OS
config running on the simulator

st86_managers config initializes exec. resource managers

configuration data
st86_handlers config initializes kernel interrupt handlers
configuration data

st86_servers config initializes server config. data structures

st86_resources config, model initializes resource config. data structures

st86_read file, model, reads local configuration specification
config file

add_handler file_buffer, reads a handler definition from the local
config configuration specification file

add_server file_buffer, reads a server definition from the local
config configuration specification file

add_resource file_buffer, reads a resource definition from the local
config, model configuration specification file

add86_network file_buffer, reads network resource specific data from
resource local configuration specification file

add86_io file_buffer, reads I/O resource specific data from
resource local configuration specification file

add86_process file_buffer, reads appl. process resource specific data
resource from local configuration specification file

st86_links model, cpu, initializes processor’s resource links
config configuration data

st86_kernel model, cpu, adds kernel configuration data to the
config configuration data structure

st86_kmemory model, cpu, adds kernel memory manager config. to the
config configuration data structure

st86_kcpu model, cpu, adds kernel processor manager config. to the
config configuration data structure

st86_klink model, cpu, adds kernel link manager config. to the
config configuration data structure

st86_network_link model, link_id, adds link to n/w resource config. to the
config, marker, configuration data structure
resource

st86_io_link model, link_id, adds link to I/O resource config. to the
config, marker configuration data structure
resource

st86_process_link model, link_id, adds link to application process resource
config, marker, config, to the configuration data structure
resource

Table 6.4 Simulator Configuration Modules.

A-23

Module Lines Calls made to Return Value
in code

st86_config 23 st86_managers none

st86_handlers

st86_servers

st86_resources

st86_read

st86_links

st86_kernel

st_config_exec
st86_managers 12 none none
st86_handlers 11 none none
st86_servers 11 none none
st86_resources 12 none none
st86_read 17 add_handler none

add_server

add_resource
add_handler 30 none none
add_server 34 none none
add_resource 61 add86_network none

add86_io

add86_process
add86_network 17 none none
add86_io 15 none none
add86_process 29 none none
st86_links 32 none none
st86_kernel 9 st86_kmemory none

st86_kcpu

st86_klink
st86_kmemory 13 none none
st86_kcpu 11 none none
st86_klink 65 st86_network_link none

st86_io_link

st86_process_link
st86_network_link 24 none none
st86_io_link 22 none none
st86_process_link 26 none none

Table 6.4 Simulator Configuration Modules (Contd.).

Module Completed? Is code the exact implementation of algorithm?

st86_config yes algorithm does not fully explain the code

st86_managers yes yes

st86_handlers yes yes

st86_servers yes yes

st86_resources yes yes

st86_read yes yes

add_handler yes algorithm does not fully explain the code

add_server yes algorithm does not fully explain the code

add_resource yes algorithm does not fully explain the code,
also code is easier to read with comments

add86_network yes algorithm does not fully explain the code

add86_io yes algorithm does not fully explain the code

add86_process yes algorithm does not fully explain the code

st86_links yes yes

st86_kernel yes yes

st86_kmemory yes yes

st86_kcpu yes yes

st86_klink yes code is easier to read with comments

st86_network_link yes yes

st86_io_link yes yes

st86_process_link yes yes

Table 6.4 Simulator Configuration Modules (Contd.).

APPENDIX B

TABLES OF SOFTWARE MODULES IN THE
FTDCS OPERATING SYSTEM

(from 1988 manuals)

Table of Contents

page

1. INTRODUCTION
2. KERNEL DATA STRUCTURES & FUNCTIONS
2.1 Processor Management
2.2 Memory Management
2.3 Link Management
2.4 Kernel Link Server Functions
3. EXECUTIVE DATA STRUCTURES & FUNCTIONS
3.1 Executive Controller
3.2 Executive Router Manager
3.3 Executive Resource Manager
4. DISTRIBUTED SYSTEM MAN AGER DATA STRUCTURES & FUNCTIONS
4.1 DSM Controller
4.2 DSM Scheduler
4.3 DSM Resource Manager
4.4 DSM Fault Manager

5o B 3 o oy 1o rim pis 4 0 G0 B B0 L0 O

[} 5

vsRusRvsRuvRusBuoNusRusRus)
NUANOONN IR RO

List of Tables

Table 2.1 Processor Management Functions

Table 2.1 Processor Management Functions (Contd.)
Table 2.1 Processor Management Functions (Contd.)
Table 2.2 Memory Management Functions

Table 2.2 Memory Management Functions (Contd.)

Table 2.2 Memory Management Functions (Contd.).
Table 2.3 Link Management Functions.

Table 2.3 Link Management Functions (Contd.).

Table 2.3 Link Management Functions (Contd.).

Table 2.4 Kernel Link Server Functions.

Table 2.4 Kemel Link Server Functions (Contd.).

Table 2.4 Kernel Link Server Functions (Contd.).

Table 3.1 Executive Controller Functions.

Table 3.1 Executive Controller Functions (Contd.).

Table 3.1 Executive Controller Functions (Contd.).

Table 3.1 Executive Controller Functions (Contd.).

Table 3.2 Executive Routing Manager Functions.

Table 3.2 Executive Routing Manager Functions (Contd.).
Table 3.2 Executive Routing Manager Functions (Contd.).
Table 3.2 Executive Routing Manager Functions (Contd.).
Table 3.3 Executive Resource Manager Functions.

Table 3.3 Executive Resource Manager Functions (Contd.).
Table 3.3 Executive Resource Manager Functions (Contd.).
Table 3.3 Executive Resource Manager Functions (Contd.).
Table 3.3 Executive Resource Manager Functions (Contd.).
Table 3.3 Executive Resource Manager Functions (Contd.).
Table 3.3 Executive Resource Manager Functions (Contd.).

Table 4.1 DSM Controller functions

Table 4.1 DSM Controller functions (Contd.)
Table 4.1 DSM Controller functions (Contd.)
Table 4.2 DSM Scheduler Functions.

Table 4.2 DSM Scheduler Functions (Contd.)
Table 4.2 DSM Scheduler Functions (Contd.)

B-ii

page

5 153 s 053 00 03 13 1 13 1 10 13 19 13 10 1s v 1 e v 1, 1, 99 00 60 o £ B0 U0 B0 U 1o

NMPARNOOROLYLOIO NP,V OVRAANNPALRLROOVYXXO-TITONUNPAWRN

UJUJUJUJUJUJUJUJUJUJUJQJUJUJUJUJUJUJUJUJUJUJUJ

1. INTRODUCTION

The following tables lists the software modules used in implementing the FTDCS operating
system. The modules are taken from the FTDCS Operating System - Detailed Design and
Source Code Listings, April 1988. The operating system is composed of three distinct layers
- the kernel, the executive and the distributed system manager.

The three sections below list the software modules used to implement them. The modules
are grouped together according to the functions they perform. For example, all kernel
memory management functions are listed in a table.

The information for each module is given in three tables. The first table gives the module
name, its parameters and description. The second table lists the length of the code in number
of lines, functions called by this module and return value for the module. The final table
indicates if the module has been completed and whether the code is the exact implementation
of the algorithm (and if not, what is the difference).

2. KERNEL DATA STRUCTURES & FUNCTIONS

The kernel is the machine dependent portion of the operating system specific to a single
processor. It provides an interface between the operating system and the actual hardware.
The three components of the kernel are processor manager, memory manager and link
manager. The data structures and functions for processor management, memory
management and interface link management are described in the following subsections.

2.1 Processor Management
Data Structures:
1. Flag indicating the mode of operation:
- kernel mode,
- executive mode,
- user mode and
- idle mode
2. Flags indicating the pending mode of operation of the operating system:
- kernel mode,

- executive mode and
- user mode.

3. Event queues: 2 queues for each of the executive and kernel modes - a queue for events
that are currently being processed and another for pending events.

4. A pointer to current application process context.

5. A table of kernel entry points available to the executive.

Functions:

The following functions are in the file ksimcpu.c.

Module Parameters Module Description
KB_boot none kernel boot entry
KMB_cpu data initializes kernel processor manager
K_cpu_kernel none. kernel mode operation
K_cpu_executive kcpu executive mode operation
K_cpu_enter none context switch on interrupt
K_cpu_exit none continue interrupted execution
K_cpu_fork unit_id, data pending switch from interrupt to kernel mode
K_cpu_k2x xid, data pending switch from kernel to executive
mode
K_cpu_x2k entry_id, data switch from executive to kernel mode
local
K_cpu_x2u user_context pending switch to user mode
K_cpu_u2x none block switch to user mode
KU_enable none. enables processor inputs
KU_disable none. disables processor interrupts
U_copy from, to, performs utility copy
length
KU_invalid none identifies invalid function entry points

Table 2.1 Processor Management Fuhctions

Module Lines Calls made to Return Value
in code
KB_boot 21 K_new_buffer none
K_release_buffer
K_cpu_k2x
K_cpu_exit
KMB_cpu 27 K_allocate none
K_cpu_kernel 25 K_link_in none
K_cpu_executive
KU_disable
KU_enable
K_cpu_executive 27 KU_enable none
KU_disable
K_cpu_enter 10 none none
K _cpu_exit 24 KU _disable none
KU_enable
K_cpu_kernel
K_cpu_fork 14 none none
K_cpu_k2x 13 none none
K_cpu_x2k 14 K_cpu_kernel none
KU_disable
KU_enable
K_cpu_x2u 8 none none
K_cpu_u2x 6 none none
KU_enable 4 none. none
KU_disable 4 none. none
U_copy 7 none. none
KU_invalid 4 none. none

Table 2.1 Processor Management Functions (Contd.)

Module Completed? Is code exact implementation of algorithm?
KB_boot yes K_release_buffer listed in called functions,
but not called in code.

KMB_cpu yes yes

K_cpu_kernel yes yes

K_cpu_executive yes yes

K_cpu_enter yes yes

K_cpu_exit yes yes

K_cpu_fork yes yes

K_cpu_k2x yes yes

K_cpu_x2k yes yes

K_cpu_x2u yes yes

K_cpu_u2x yes yes

KU_enable yes algorithm not defined, but OK.
KU_disable yes algorithm not defined, but OK.

U_copy yes algorithm not defined, but OK.
KU_invalid yes algorithm not defined, but OK.

Table 2.1 Processor Management Functions (Contd.)

2.2 Memory Management
Data Structures:
Pointers to:
- general memory management structure,
- utility buffer management structure,
- packet management structures and
- utility queue management structure.

Functions:

The following functions are defined in the file ksimmemory.c. The functions are divided -

into five groups in the tables: kernel initialization, memory management, queue
management, buffer and packet management, and executive accessible functions.

Module Parameters Module Description
KMB_memory data kernel memory manager initializer entry
point.

K_refill ptr, size expands kernel memory pool

K_mem_error ptr, code kernel memory management error function

K_allocate size allocates kernel memory

K_reallocate from_ptr, size reallocates kernel memory

K_free ptr frees kernel memory

K_set_stack size, initial, preallocates blocks of kernel memory
expand_size

K_add_queue queue, data adds item to queue tail

K_next_queue queue removes item from queue head

K_new_buffer size allocates a data buffer

K_release_buffer buffer releases a data buffer

K_free_buffer buffer deallocates a data buffer

K_copy_buffer buffer copies a data buffer

K_new_network none allocates network data packet

K _free_network

network_pkt

deallocates network data packet

K_new_io none allocates I/O consumer packet
K_free_io io_pkt deallocates I/O consumer packet
K_new_user none allocates application consumer packet
K_free_user user_pkt deallocates application consumer packet
X2K _allocate size, ptr allocates kernel memory from executive
X2K_free not_used, ptr frees kernel memory from executive
X2K _new_buffer size, ptr allocates data buffer from executive
X2K_free_buffer not_used, ptr deallocates data buffer from executive
X2K _free_network not_used, ptr deallocates network packet from executive
X2K_free_io not_used, ptr deallocates I/O packet from executive
X2K_free_user not_used, ptr deallocates user packet from executive

Table 2.2 Memory Management Functions

Module Lines Calls made to Return Value
in code
KMB_memory 23 K_set_stack none
K _refill 10 none none
K_mem_error 6 none none
K_allocate 7 none none
K _reallocate 10 none none
K _free 5 none none
K_set_stack 10 none ptr to preallocated block
control structure

K_add_queue 6 none none
K_next_queue 7 none ptr to queue head item data
K_new_buffer 8 none ptr to allocated buffer
K_release_buffer 7 K free_buffer none

_free_buffer 5 none none
K_copy_buffer 6 none input parameter
K_new_network 6 none ptr. to network data packet
K _free_network 5 none none
K_new_io 6 none ptr. to I/O data packet
K_free_io 5 none none
K _new_user 6 none ptr. to user data packet
K free_user 5 none none
X2K_allocate 6 K _allocate none
X2K_free 6 K_free none
X2K new_buffer 6 K _new_buffer ptr. to allocated buffer
X2K_free_buffer 6 K_free_buffer none
X2K_free_network 6 K_free_network none
X2K_free_io 6 K free_io none
X2K free_user 6 K_free_user none

Table 2.2 Memory Management Functions (Contd.)

Module Completed? Is code exact implementation of algorithm?
KMB_memory yes yes

K_refill yes no algorithm defined for the module
K_mem_error yes no algorithm defined for the module
K_allocate yes no algorithm defined for the module
K_reallocate yes no algorithm defined for the module
K_free yes no algorithm defined for the module
K_set_stack yes no algorithm defined for the module
K_add_queue yes no algorithm defined for the module
K_next_queue yes no algorithm defined for the module
K_new_buffer yes no algorithm defined for the module
K_release_buffer yes no algorithm defined for the module
K_free_buffer yes no algorithm defined for the module
K_copy_buffer yes no algorithm defined for the module
K_new_network yes no algorithm defined for the module
K_free_network yes no algorithm defined for the module
K_new_io yes no algorithm defined for the module
K_free_io yes no algorithm defined for the module
K_new_user yes no algorithm defined for the module
K_free_user yes no algorithm defined for the module
X2K _allocate yes no algorithm defined for the module
X2K _free yes no algorithm defined for the module
X2K_new_buffer yes no algorithm defined for the module
X2K_free_buffer yes no algorithm defined for the module
X2K_free_network yes no algorithm defined for the module
X2K _free_io yes no algorithm defined for the module
X2K_free_user yes no algorithm defined for the module

Table 2.2 Memory Management Functions (Contd.).

2.3 Link Management
Data Structures:
1. Interrupt management data: a table of interrupting sources vs. kernel identifiers.

2. Link server management data: table of control structures for each kernel link server.
Each entry consists of:

- server ids,

- server link count,

- server interrupt, output, assign and control entry pointe,
- ptr. to local server data

3. Link configuration data - a table of link configuration data for each kernel link.

4. Kernel identifier tables - a table of kernel ids vs. server and local ids.

Functions:

The following functions are defined in the file ksimlink.c.

Module Parameters Module Description
KMB_link data initializes kernel link manager
K _link_in unit, data link manager interrupt entry point
K_link_out kid, data link manager output entry point
K_link_assign link_id, name link manager assign resource entry point
K_link_control code, kid, data link manager control function entry point
kl_enter name adds link table entry
Table 2.3 Link Management Functions.
Module Lines Calls made to Return Value
in code

KMB_link 56 K _allocate, link none

handle init. & link

server init. entry pts.
K_link_in 12 Ls. in entry pts. none
K _link_out 12 Ls. out entry pts none
K_link_assign 14 L.s. assign entry pts none
K _link_control 10 kl_enter, link server none

control entry pts. none
kl_enter 27 none none

Table 2.3 Link Management Functions (Contd.).

Module Completed? Is code exact implementation of algorithm?
KMB_link yes code definitely needs some comments
K_link_in yes slight discrepancy between code and alg.
K_link_out yes value returned in code but not in alg.
K_link_assign yes value returned in code but not in alg.
K_link_control yes algorithm not fully implemented
kl_enter yes K _reallocate called but not listed.

Table 2.3 Link Management Functions (Contd.).

2.4 Kernel Link Server Functions

The following functions are grouped together in the order of the files in which they are
found: ksimbus.c, ksimio.c and ksimprocess.c. Ksimbus.c, ksimio.c and ksimprocess.c

contain simulated network server, I/O server and application to system server functions

respectively.

Module Parameters Module Description

KSI_bus server server initialization entry point

KHI_bus unit_base, vector handler initialization entry point
unit_count

kbus_in server, data, server interrupt service entry point
bus_id

kbus_out server, bus_id, server output entry point
packet

kbus_assign server, link, name server assign resource entry point

kbus_control server, code, server control function entry point
local_id, data

KSI_device server server initialization entry point

KHI_device unit_base, vector handler initialization entry point
unit_count

kdevice_in server, data, server interrupt service entry point
device_id

kdevice_out server, packet, server output entry point
device_id

kdevice_assign server, link, name |server assign resource entry point

kdevice_control server, code, server control function entry point
local_id, data

KSI_process server server initialization entry point

KHI_process unit_base, vector handler initialization entry point
unit_count

kprocess_in server, packet server request entry point
not_used

kprocess_out server, packet, server reply entry point
process_id

kprocess_assign server, link, name server assign resource entry point

kprocess_control server, code, server control function entry point
local_id, data

Table 2.4 Kernel Link Server Functions.

Module Lines Calls made to Return Value
in code
KSI_bus 19 K_allocate none
KHI_bus 6 none none
kbus_in 22 K_new_network none
K_new_buffer
K_cpu_k2x
kbus_out 14 none none
kbus_assign 26 K_allocate none
K_link_control
kbus_control 13 device specific control none
functions
KSI_device 19 K _allocate none
KHI_device 6 none none
kdevice_in 21 K_new_io none
K_new_buffer
K_cpu_k2x
kdevice_out 10 none none
kdevice_assign 26 K_allocate none
K_link_control
kdevice_control 13 device specific control none
functions
KSI_process 22 K _allocate none
KHI_process 6 none none
kprocess_in 23 K_new_user none
K_new_buffer
K_cpu_k2x
K_cpu_u2x
kprocess_out 26 K_cpu_x2u none
K_cpu_u2x
kprocess_assign 37 K_allocate none
K_link_control
kprocess_control 13 device specific control none
functions

Table 2.4 Kemel Link Server Functions (Contd.).

Module Completed? Is code exact implementation of algorithm?

KSI_bus yes yes

KHI_bus yes null function as simulated interrupts created by
VYMS

kbus_in yes yes

kbus_out yes yes

kbus_assign yes yes

kbus_control yes discrepancy between code and algorithm, also
value returned in code but not in algorithm

KSI_device yes yes

KHI_device yes null function as simulated interrupts created by
VMS

kdevice_in yes yes

kdevice_out yes yes

kdevice_assign yes yes

kdevice_control yes discrepancy between code and algorithm, also
value returned in code but not in algorithm

KSI_process yes yes

KHI_process yes null function as simulated interrupts created by
VMS

kprocess_in yes yes

kprocess_out yes yes

kprocess_assign yes yes

kprocess_control yes discrepancy between code and algorithm, also

value returned in code but not in algorithm

Table 2.4 Kemel Link Server Functions (Contd.).

3. EXECUTIVE DATA STRUCTURES & FUNCTIONS

The operating system executive layer is composed of 3 components. They are the executive
controller, the executive routing manager, and the executive resource manager. The
following subsections list the data structures and functions used to implement them.

3.1 Executive Controller

Data Structures:

1. Executive identification.

2. DSM routing data: specification of DSM consumer with which executive communicates.

3. Query support data: data to be used in querying DSM (same structures as DSM replies).

4. Executive controller entry points: invoked when messages are sent to or received from
DSM.

Functions:

There are 2 groups of functions defined below. The first group of functions are the executive
control functions found in the file xcontrol.c. The other group of functions defined in
xutility.c and they are the executive utility functions. These functions are further divided
into 3 groups: executive memory management, executive queue management and executive
message and packet management functions.

Module Parameters Module Description
XB_boot data executive boot entry point
XCB_control data control component boot entry point
xcontrol_in command entry point from kernel
xcontrol_out message entry pt. to receive message to executive
X_command message, command | processes executive command
list_status query Teports executive status
XC_next_query code, length, allocates a system query command
dest., local_id
XC_query_dsm query, notify, requests data from DSM
parameter
X_report_error code, error msg. reports fault to DSM

X_set_memory
X_more_memory
X_mem_error
X_allocate
X_reallocate
X_free
X_set_stack

size

ptr, size
ptr, code
size

ptr, size

ptr

size, initial,
expand

initializes executive memory management
expands executive memory pool
executive memory management error fn.
allocates executive memory

reallocates executive memory

frees executive memory

preallocates block of executive memory

X_set_queue

X_add_queue
X_next_queue
X_join_queue

initial, expand
queue, data
queue
from_queue,

initializes executive queue management
adds item to queue tail

returns item from queue head

joins a queue to the tail of another

to_queue, join_queue queue
X_find_signature queue, searches a queue for a message
signature signature
X_set_messages initial, initializes executive message mgmt.
expand
X_new_message none allocates an executive message
X_free_message message deallocates an executive message
X_copy_message message, dest. copies an executive message
X_new_buffer size allocates a data buffer
X_free_buffer buffer deallocates a data buffer
X_copy_buffer buffer copies a data buffer
X _free_network network_pkt deallocates a network data packet
X_free_io io_pkt deallocates a I/O consumer packet
X_free_user user_pkt deallocates an application consumer packet

Table 3.1 Executive Controller Functions.

Module Lines Calls made to Return Value
in code
XB_boot 16 X_set_memory none
X_set_messages
X_set_queues
exec. components init. entry pts.
XCB_control 40 X_set_stack none
exec. router control entry pts.
exec. router assign entry pts
xcontrol_in 15 X_new_message none
exec. manager out entry pts
xcontrol_out 32 X _find_signature none
X_report_error
X_free_buffer
X_free_message
X_copy_buffer
X_command
query notify fn. entry pts.,
exec. router in entry pts
X_command 32 X_command none
list_status
X_report_error
exec. router assign entry pts
exec. router control entry pts
list_status 31 X_new_buffer none
X _new_message
exec. router in entry pts
XC_next_query 14 X_new_buffer ptr. to allocated system
command
XC_query_dsm 23 X_new_message none
X_add_queue
exec. router in entry pts
X _report_error 29 X_new_message none
X_new_buffer
exec. router in entry pts
X_set_memory 8 X_more_memory ptr to memory management
X_mem_error structure
X_more_memory 6 none none
X_mem_error 6 none none
X _allocate 9 none ptr. to allocated memory
X_reallocate 8 none ptr. to reallocated memory
X _free 5 none none
X_set_stack 9 none ptr. to preallocated block
control structure

Table 3.1 Executive Controller Functions (Contd.).

Module Lines Calls made to Return Value
in code

X_set_queue 8 none ptr. to Q mgmit. structure

X_add_queue 6 none none

X_next_queue 7 none ptr. item data

X_join_queue 7 none none

X_find_signature 26 none none

X_set_messages 8 none pir. to message mgmt.
control structure

X_new_message 9 none ptr. to executive message

X_free_message 5 none none

X_copy_message 11 X_copy_buffer ptr. to copied exec message

X _new_buffer 7 none ptr. to allocated buffer

X_free_buffer 9 none none

X_copy_buffer 6 none input parameter

X_free_network 5 none none

X_free_io 5 none none

X_free_user 5 none none

Table 3.1 Executive Controller Functions (Contd.).

Module Completed? Is code the exact implementation of algorithm?

XB_boot yes yes

XCB_control yes yes

xcontrol_in yes yes

xcontrol_out yes yes

X_command yes yes

list_status yes yes

XC_next_query yes yes

XC_query_dsm yes yes

X _report_error yes yes

X_set_memory yes For none of the functions in this

X_more_memory yes group, the algorithm is defined.

X_mem_error yes For one or two line functions (which

X _allocate yes most of them are), it does not matter.

X_reallocate yes But for the others at least comments in

X _free yes the code would help.

X_set_stack yes

X_set_queue yes For none of the functions in this

X_add_queue yes group, the algorithm is defined.

X _next_queue yes For one or two line functions (which

X_join_queue yes most of them are), it does not matter.

X _find_signature yes But for the others at least comments in
the code would help.

X_set_messages yes

X_new_message yes For none of the functions in this

X _free_message yes group, the algorithm is defined.

X_copy_message yes For one or two line functions (which

X_new_buffer yes most of them are), it does not matter.

X _free_buffer yes But for the others at least comments in

X_copy_buffer yes the code would help.

X_free_network yes

X_free_io yes

X_free_user yes

Table 3.1 Executive Controller Functions (Contd.).

3.2 Executive Router Manager
Data Structures:
1. Consumer table: consists of,

- consumer ids,

- COnsumer names,

- routing manager component specs which processes messages to/from consumer
- consumer data specific to the routing manager component

2. Name table: consists of,

- status,
- executive id

3. Pending message queue

4. Routing component control structure: data to maintain and access executive routing
components.

- component ids,
- component data,
- entry points

5. Entry point table: executive routing manager entry point table.
Functions:

The functions below have been divided into 3 groups. The executive routing manager
functions are defined in xrouter.c. These functions perform processing common to all
routing algorithms. The operating system supports 2 routing algorithms: simple (standard
routing algorithm) and NMR (N-Module Redundancy algorithm). The other 2 groups of
functions in Table 3.2 contain functions used to implement them. They are defined in the
files: xsimple.c and xnmr.c.

Module Parameters Module Description
XCB_router data router initialization entry point
XR_in message router in entry point
XR_out message router out entry point
XR_assign data router assign entry point
XR_control code, data, router control entry point
router_id
new_name id, state, allocates a name entry in the routing

new_consumer -

lookup_name
X_route_junction

X_route_consumer

consumer_id
id, router_id

reply

message, route_ptr,
route_count
message,
consumer_id

table.

allocates a consumer entry in the routing
table.

processes a lookup reply from DSM
routes a message to a junction

branch

send a message to a consumer

XRI_simple
xsimple_in

xsimple_out

xsimple_assign
xsimple_control

router

router, message,
consumer
router, message
consumer
router, consumer
router, code,

simple router initialization entry pt.
simple router in entry point

simple router out entry point

simple router assign entry point
simple router control entry point

data
XRI_nmr router NMR router initialization entry point
Xnmr_in router, nmr, NMR router in entry point

message
Xxnmr_out router, nmr, NMR router out entry point

message

Xnmr_assign
xnmr_control

Xnmr_out_new
XNmr_out_error
xnmr_out_valid
xnmr_ready

xnmr_done

router, consumer
router, code,
data

router, nmr,
message

router, nmr,
check, message
router, nmr,
check, message
router, nmr,
check, message
router, nmr, check

NMR router assign entry point
NMR router control entry point

receives first message copy from consumer

receives message copy before valid copy
created

receives message copy after valid copy
created

creates valid message

message reception complete

Table 3.2 Executive Routing Manager Functions.

Module

Lines
in code

Calls made to

Return Value

XCB_router

XR_in

XR_out

XR_assign

XR_control

new_name
new_consumer
lookup_name

X_route_junction

X_route_consumer

35

12

55

19

32
26

18

X_set_stack

X _allocate

init. entry pts.

for routing algorithm
exec. controller
out & routing alg.
in entry points
X_report_error
new_name
X_add_queue
X_next_query
XC_query_dsm
exec. manager out
& routing algorithm
in entry points
new_consumer
new_name
executive manager
assign, routing
algorithm assign &
exec. router out
entry points
X_report_error
routing algorithm
control entry pts.
X reallocate

X _reallocate
X_report_error
XR_assign

X _copy_message
executive router in
entry pts.
X_copy_message
executive router
out entry pts

none

nonc

none

nonec

none

ptr. to name data structure
consumer data structure ptr
none

nonc

none

XRI_simple
xsimple_in
xsimple_out

xsimple_assign
xsimple_control

u—y
SO N=Nv

none
X_route_consumer
exec. res. manager
out entry points
X_allocate

X _report_error

none
none
none

none
none

Table 3.2 Executive Routing Manager Functions (Contd.).

Module Lines Calls made to Return Value
in code
XRI_nmr 13 X_set_stack none
X _allocate
xnmr_in 7 X_route_consumer none
Xnmr_out 14 Xnmr_out_new none
Xnmr_out_error
xnmr_out_valid
xnmr_done
Xnmr_assign 11 none none
xnmr_control 7 X_report_error none
Xnmr_out_new 28 X_add_queue NMR message structure ptr
xnmr_ready
Xnmr_out_error 25 X_add_queue none
X_next_queue
xnmr_ready
xnmr_out_valid 17 X_add_queue none
xnmr_ready 16 X_copy._message none
xnmr_done
exec. res. manager out entry pts.
xnmr_done 52 X_add_queue none
X_next_queue
X_free_buffer
X _free_message
X_report_error

Table 3.2 Executive Routing Manager Functions (Contd.).

Module Completed? Is code the exact implementation of algorithm?

XCB_router yes yes

XR_in yes yes

XR_out yes yes

XR_assign yes X_add_queue & X_next_queue called in code,
but not listed.

XR_control yes yes

new_name yes yes

new_consumer yes yes

lookup_name yes yes

X_route_junction yes yes

X_route_consumer yes yes

XRI_simple yes yes

xsimple_in yes yes

xsimple_out yes yes

xsimple_assign yes yes

xsimple_control yes yes, but no control functions implemented.

XRI_nmr yes yes

Xnmr_in yes yes

Xxnmr_out yes yes

Xnmr_assign yes yes

xnmr_control ' yes no, also no control functions implemented.

Xnmr_out_new yes yes

Xnmr_out_error yes yes

xnmr_out_valid yes yes

xnmr_ready yes yes

xnmr_done yes 1/2 algorithm statements not in code

Table 3.2 Executive Routing Manager Functions (Contd.).

Note: Some of the executive routing functions in Tables 3.2 definitely need comments. For
example function: XR_assign. Itis extremely difficult to follow such functions as they have
nested loops and ’if’ statements.

3.3 Executive Resource Manager
Data Structures:
1. Resource table:

- system and local resource ids,
- manager component Specs.

2. Resource manager component control structures: data to maintain and access resource
manager components

- component ids,
- entry points,
- component data

3. Executive ids to manager component and local ids mapping
4. Entry point table
Functions:

Table 3.3 contains the executive resource manager functions. The operating system currently
supports 3 types of resources - network, I/O and application, and respective functions are
grouped in the order described below. The executive manager functions perform processing
common to all resources and are defined in the file xmanager.c, xnetwork.c contains network
resource manager functions, xio.c has I/O resource manager functions and xprocess.c
contains application resource manager functions.

Module Parameters Module Description
XCB_manager data manager initialization entry point
XM_in xid, data manager in entry point
XM_out xid, data manager out entry point
XM_assign resource_id, manager assign entry point
name
XM_control code, xid, data manager control entry point
Xm_enter name enters an executive id in manager tables
XMI_network manager n/w manager initialization entry point

xnetwork_in

xnetwork_out

manager, packet
local_id
manager, message

n/w manager interrupt entry point

n/w manager output entry point

path_id

xnetwork_assign manager, name, n/w manager assign resource entry point
resource_id

xnetwork_control manager, code, n/w manager control function entry
local_id, data point

XML io manager I/O manager initialization entry point

xio_in manager, packet I/O manager interrupt entry point
local_id

xio_out manager, message | I/O manager output entry point
local_id

xi0_assign manager, name, I/O manager assign resource entry point
resource_id ‘

xio_control manager, code, I/O manager control function entry
local_id, data point

xio_send manager, io, processes output data message
message

xio_query manager, io, processes output query message
message

Xi_reset_junction

manager, local_id,
junction

reset I/O resource consumer
junction

Table 3.3 Executive Resource Manager Functions.

Module Parameters Module Description
XMI_process manager application manager init. entry point
Xprocess_in manager, packet application manager interrupt entry pt.

Xprocess_out
Xprocess_assign
xprocess_control
process_accept
process_query
process_reply
process_call
process_receive
process_send
process_ready
match_query
process_out_query
process_out_reply
process_out_send
process_run2wait
process_wait2ready

next_process
Xp_reset_junction

local_id

manager, message
local_id

manager, name,
resource_id
manager, code,
local_id, data
manager, packet,
process

manager, packet,
process

manager, packet,
process

manager, packet,
process

manager, packet,
process

manager, packet,
process

manager, packet,
process

manager, packet,
process

manager, process,
message
manager, process,
message
manager, process,
message
manager, process
manager, process
manager
manager, junction,
local_id

application manager output entry pt.
application manager assign resource
entry point

application manager control function
enfry point

processes application accept packet
processes application query packet
processes application reply packet
processes application call packet
processes application receive packet
processes application send packet
checks for application process ready packet
checks query packet

processes output query message
processes output reply message
processes output send message

disable application consumer scheduling
enable application consumer scheduling

schedule next application consumer
reset application consumer junction

Table 3.3 Executive Resource Manager Functions (Contd.).

Module

Lines
in code

Calls made to

Return Value

XCB_manager
XM_in

XM_out
XM_assign

entry points
XM_control

Xm_enter

76
13

13

20

23

28

X_allocate, routing

alg. init. entry pts.
resource manager in

& exec. control in

entry points

resource manager out

& exec. control out
entry points
X_report_error

resource manager assign

Xm_enter

X_report_error

resource manager control
entry points

X_reallocate

none

none

none

none

none

none

XMI_network

xnetwork_in

xnetwork_out

xnetwork_assign

xnetwork_control

52

13

17

25

X_allocate, exec.
manager control &
kernel assign entry pts.
X _new_message
X_free_network

exec. router out entry pts
X_free_buffer
X_free_message
kernel out entry pts
X_report_error

exec. manager control
entry points
X_report_error

none

none

none

none

none

XML io
xio_in

xio_out

Xio_assign

37
36

14

X _reallocate

X _next_queue

X_free_io

X _new_message
X_add_queue
X_route_junction

exec. router in entry pt.
xio_send

xio_query

X_report_error

X _allocate

X _reallocate
X_report_error

exec. manager control &
kernel link assign entry pt.

none
none

none

none

Table 3.3 Executive Resource Manager Functions (Contd.).

Module

Lines
in code

Calls made to

Return Value

xio_control

xio_send

xio_query

xi_reset_junction

11
14

19

11

Xi_reset_junction
X_report_error
X_free_buffer
X_free_message
kernel out entry pts.
X_next_queue
X_free_io
X_add_queue

exec. router in entry pt.
X _reallocate

none

none

none

none

XMI_process
xprocess_in

Xprocess_out

Xprocess_assign

xprocess_control

41

16

52

11

X_allocate
process_accept
process_query
process_reply
process_call
process_receive
process_send
process_ready
X_report_error
process_out_query
process_out_reply
process_out_send
X_report_error
X_allocate
X_reallocate
X_report_error
process_wait2ready
exec. manager control &
kernel link assign entry pts
Xp_reset_junction
X_report_error

none
none

none

none

none

Table 3.3 Executive Resource Manager Functions (Contd.).

Module

Lines
in code

Calls made to

Return Value

process_accept

process_query

process_reply

process_call

process_receive

process_send

process_ready

match_query

20

10
17

20

37

16

52

X_next_queue
X_free_message
X_add_queue

kernel out entry pt.
match_query

kernel out entry pt.
X_new_message
X_free_user
executive router in &
kernel out entry pts.
match_query
process_ready
X_next_queue
X_free_message
X_add_queue
process_ready
X_new_message
X_route_junction
X_report_error
X_free_user
executive router in &
kernel out entry points
X_next_queue
X_free_user
X_free_buffer
process_run2wait
kernel out entry points
X_find_signature
X_add_queue
X_new_message
X_free_message
X_route_junction
X_report_error

exec. router in entry pt.

none

none

none

none

none

none

none

none

Table 3.3 Executive Resource Manager Functions (Contd.)

Module Lines Calls made to Return Value
in code
process_out_query 20 X_free_message none
X_add_queue
process_wait2ready
process_out_reply 22 X_find_signature none
X_add_queue
X_free_message
process_wait2ready
process_out_send 22 X_add_queue none
X_free_message
process_wait2ready
process_run2wait 7 next_process none
process_wait2ready 8 next_process none
X_add_queue
next_process 17 X_next_queue none
X_free_user
X_free_buffer
kernel out entry point
Xp_reset_junction 12 X _reallocate none

Table 3.3 Executive Resource Manager Functions (Contd.).

Module Completed? Is code the exact implementation of algorithm?
XCB_manager yes code long, hard to follow without comments
XM_in yes yes

XM_out yes yes

XM_assign yes yes

XM_control yes yes

Xm_enter yes yes

XMI_network yes code long, hard to follow without comments
xnetwork_in yes yes

xnetwork_out yes yes

xnetwork_assign yes yes

xnetwork_control yes no, also no control functions implemented.
XMLio yes yes

xio_in yes code long, hard to follow without comments
Xio_out yes es

Xio_assign yes code long, hard to follow without comments
xio_control yes yes

xio_send yes yes

xio_query yes yes

Xi_reset_junction yes yes

XMI_process yes code long, hard to follow without comments
Xprocess_in yes yes

Xprocess_out yes yes

Xprocess_assign yes code long, hard to follow without comments
Xprocess_control yes yes

process_accept yes yes

process_query yes yes

process_reply yes yes

process_call yes yes

process_receive yes yes

process_send yes yes

process_ready yes yes

match_query yes code long, hard to follow without comments
process_out_query yes yes

process_out_reply yes yes

process_out_send yes yes

process_run2wait yes yes

process_wait2ready yes yes

next_process yes yes

Xp_reset_junction yes yes

Table 3.3 Executive Resource Manager Functions (Contd.).

4. DISTRIBUTED SYSTEM MANAGER DATA STRUCTURES & FUNCTIONS

The distributed system manager (DSM) monitors and maintains the state of the entire
distributed system. It provides a high level fault management, assigns and activates
resources to implement consumers and monitors the overall resource performance. DSM has
four components: the DSM controller, DSM resource manager, DSM scheduler and DSM
fault manager. The modules and data structures in these components are described below.

4.1 DSM Controller

Data Structures:

Currently, the actual data structures to support the controller activity are not well defined.
Functions:

The DSM controller functions are given in Table 4.1. The function "main" is defined in the

file dsm.c. The file mboot.c contains the DSM boot functions. Finally, the distributed
system manager commands are in mcommand.c. Table 4.1 has grouped functions in the

same files.

Module Parameters Module Description

main none DSM mainline function.

mc_boot system, command | boot entry point for DSM

mc_add_manager manager_ptr, adds new manager entry to manager list
system

mc_add_router router_ptr, adds new router entry to router list
system

mc_add_resource TESOurce_ptr, adds new resource entry to resource list
system

mc_add_exec exec_ptr, system adds new executive entry to executive list

mc_add_link system, link, adds new link entry to executive link list
exec_id

network_link system, link, adds n/w link entry to executive link list
exec_id

io_link system, link, adds io link entry to executive link list
exec_id

appl_link system, link, adds process link entry to executive
exec_id link list

mgr_command command executes a DSM command

mc_list system, command | executes a list of DSM commands of given

length
IC_EeXeC_error system, command | prints out an error message
mc_undefined system, command | prints out an undefined command error msg.

Table 4.1 DSM Controller functions

Module

Lines
in code

Calls made to

Return Value

main

11

sys_accept
sys_read
mgr_command

none

mc_boot

mc_add_manager
mc_add_router
mc_add_resource
mc_add_exec

mc_add_link

network_link
io_link
appl_link

81

13

20
13
13

U_set_memory
U_set_stack
U_set_command
U_allocate
mc_add_manager
mc_add_router
mc_add_resource
mc_add_exec
mc_add_link
enter_consumer
enter_name
assign_resource
U_allocate
U_allocate
U_allocate
U_allocate
enter_consumer
enter_name
network_link
io_link
appl_link

none

none

none

none

none
none
none
none

none

none
none
none

mgr_command

mc_list
mc_exec_error
mc_undefined

mc_list, mc_boot
mc_unknown_con
mc_unknown_name
mc_define

mc_link, mc_run
mc_get_consumer
mc_get_cpu
mc_exec_error
mc_undefined

same as mgr_command
none

none

none

none
none
none

Table 4.1 DSM Controller functions (Contd.)

Module Completed? Is code the exact implementation of algorithm?
main yes yes

mc_boot yes code long, hard to follow without comments
mc_add_manager yes yes

mc_add_router yes yes

mc_add_resource yes yes

mc_add_exec yes yes

mc_add_link yes slight discrepancy between code and algorithm
network_link yes yes

io_link yes yes

appl_link yes yes

mgr_command yes yes

mc_list yes yes

mc_exec_error yes yes

mc_undefined yes yes

Table 4.1 DSM Controller functions (Contd.)

4.2 DSM Scheduler

Data Structures:

Currently, the actual data structures to support the scheduler activity are not well defined.
Functions:

The DSM scheduler functions are defined in the following files: mcdefine.c, mclink.c,

mcrun.c, mestatus.c and mcunknown.c. The functions in the tables below are grouped
accordingly.

Module

Parameters

Module Description

mc_define
assign_resource

assign_io
assign_appl
assign_network

sort_execs
sort_network

system, command
system, consumer,
manager_id, mask
system, mask,
consumer

system, mask,
consumer

system, exec_id,
consumer

system, exec_id,
system, manager,

defines a consumer.

assigns exec. with available resources
to a consumer

assigns executives with available io
resources to a consumer

assigns executives with available process
resources to a consumer

assigns network between consumer
executives

sorts system executive table

sorts networks in system resource table

mc_link system, command | defines a link between consumers.
mc_run system, command | begins execution of a consumer
run_tos system, consumer | adds consumer address to all execs.

which must communicate with it

mc_get_consumer

mc_get_cpu

system, command

system, command

sends ack. with status info. describing
the given consumer
sends ack. with status info. describing
the given executive

mc_unknown_con

mc_unknown_name

system, command

system, command

adds consumer address to an executive
which must communicate with it
module not implemented

Table 4.2 DSM Scheduler Functions.

Module Lines Calls made to Return Value
in code
mc_define 48 r_lookup none
rtr_lookup
enter_consumer
enter_name
assign_resource
assign_network
assign_resource 25 assign_io # of executives assigned to
assign_appl the consumer
assign_io 40 sort_execs # of executives assigned to
the consumer
assign_appl 40 sort_execs # of executives assigned to
the consumer
assign_network 70 sort_networks # of additional networks
assigned to the consumer
sort_execs 29 none none
sort_network 34 none none
mc_link 60 c_lookup none
set_junction
reset_junction
U_allocate
U_free
mc_run 23 c_lookup none
U_allocate
run_tos
run_names
run_tos 46 lookup_link none
next_x_command
issue_x_command
mc_get_consumer 64 c_lookup none
next_ack, U_copy
mc_get_cpu 19 x_lookup none
Sys_get_message
sys_send_query
cpu_report
next_ack
U_pop_stack
mc_unknown_con 29 assign_network none
next_ack
lookup_link
mc_unknown_name 6 none none

Table 4.2 DSM Scheduler Functions (Contd.)

000000000 0000000000000 00000000000O0COCGOCGOCGROIOIOIOINOIFONOONONOGIOONOCGOCNOSTTSYYS

Module Completed? Is code the exact implementation of algorithm?

mc_define yes yes

assign_resource yes algorithm does not quite explain the code

assign_io yes yes

assign_appl yes algorithm does not quite explain the code

assign_network yes code too long, slightly difficult to follow,
needs comments

sort_execs yes yes

sort_network yes yes

mc_link yes code too long, slightly difficult to follow,
needs comments

mc_run yes yes

run_tos yes yes

mc_get_consumer yes yes

mc_get_cpu yes yes

mc_unknown_con yes yes

mc_unknown_name no this module has not been implemented

Table 4.2 DSM Scheduler Functions (Contd.)

4.3 DSM Resource Manager

Currently, the DSM resource manager modules are implemented as local functions within the
DSM controller and scheduler components.

4.4 DSM Fault Manager

No documentation about modules or data structures are given in the FTDCS OS manuals.

APPENDIX C

STRUCTURE DESIGN DOCUMENT
FOR THE
FTDCS SIMULATOR & THE OPERATING SYSTEM

Table of Contents

1. INTRODUCTION
2. STRUCTURE DESIGN

2.1 Purpose of Structure Design

2.2 Structure Design Diagram Conventions
3. SIMULATOR STRUCTURE DESIGN
4. OPERATING SYSTEM STRUCTURE DESIGN

4.1 Kernel Processes

4.2 Executive Processes

4.3 Distributed System Manager & Shell Processes
Appendix C1 - CONNECTORS DRAWN IN STRUCTURE DIAGRAMS
Appendix B - REFERENCES

List of Figures
page
Figure EX1 Example Structure Diagram. C-4
Figure S1 Main (Simulator). C-61
Figure S2 st_system. C-62
Figure S3 st_memory. C-63
Figure S4 st_io. C-64
Figure S5 st_console. C-65
Figure S6 st_file. C-66
Figure §7 st_go. C-67
Figure S8 st_node. C-68
Figure S9 st_set_system. C-69
Figure S10 st_sw_config. C-70
Figure S11 st_sys_config. C-71
Figure S12 sim_to_resource. C-72
Figure S13 st_config. C-73
Figure S14 stf_data. C-74
Figure S15 stf_tables. C-75
Figure S16 st86_config. C-76
Figure S17 st86_read. C-77
Figure S18 st86_kernel. C-78
Figure S19 st_config_exec. C-79
Figure K1 sim_cpu_go. C-80
Figure K2 cpu_run. C-81
Figure K3 KMB_memory. ' C-82
Figure K4 KMB_link. C-83
Figure K5 K_cpu_exit. C-84
Figure K6 K_cpu_kernel. C-85
Figure K7 K_link_in. C-86
Figure K8 K_cpu_executive. C-87
Figure K9 kmb_master_in. C-88
Figure K10 kmb_slave_in. C-89
Figure K11 K188_in. C-90
Figure K12 in_188_raw. C-91
Figure K13 out_188_raw. C-92
Figure K14 K_link_out. C-93
Figure K15 K_link_assign. C-94
Figure E1 XM_in. C-95
Figure E2 XB_boot. C-96
Figure E3 xnetwork_in. C-97
Figure E4 xio_in. C-98
Figure E5 xprocess_in. C-99
Figure E6 xcontrol_in. C-100
Figure E7 XCB_control. C-101
Figure E§ XCB_router. C-102
Figure E9 XCB_manager. C-103
Figure E10 XR_out. C-104
Figure E11 XR _in. C-105
C-ii

Figure E12 process_accept.
Figure E13 process_query.
Figure E14 process_reply.
Figure E15 process_call.
Figure E16 process_receive.
Figure E17 process_send.
Figure E18 process_ready.
Figure E19 XM_out.
Figure E20 XR_assign.
Figure E21 XR_control.
Figure E22 XMI_network.
Figure E23 new_name.
Figure E24 XC_query_dsm.
Figure E25 xcontrol_out.
Figure E26 match_query.
Figure E27 xnetwork_out.
Figure E28 xio_out.

Figure E29 xprocess_out.
Figure E30 XM_assign.
Figure E31 XM_control.
Figure E32 xnmr_out.
Figure E33 next_process.

Figure E34 process_out_query.

Figure E35 process_out_reply.
Figure E36 process_out_send.
Figure E37 xio_assign.

Figure E38 xprocess_assign.

Figure E39 X_route_consumer.

Figure E40 list_status.
Figure E41 xnmr_ready.
Figure E42 xnmr_done.
Figure D1 Main (DSM).
Figure D2 mgr_command.
Figure D3 mc_list.

Figure D4 mc_boot.

Figure D5 mc_unknown_con.
Figure D6 mc_define.
Figure D7 mc_link.

Figure D8 mc_run.

Figure D9 mc_get_consumer.
Figure D10 mc_get_cpu.
Figure D11 assign_resource.
Figure D12 assign_network.
Figure D13 run_tos.

Figure D14 mc_add_link.
Figure D135 assign_io.
Figure H1 Main (shell).
Figure H2 sh_status.

Figure H3 sys_command.
Figure H4 exec_status.
Figure HS name_status.
Figure H6 map_status.

C-iii

C-106
C-107
C-108
C-109
C-110
C-111
C-112
C-113
C-114
C-115
C-116
C-117
C-118
C-119
C-120
C-121
C-122
C-123
C-124
C-125
C-126
C-127
C-128
C-129

C-133
C-134
C-135
C-136
C-137
C-138
C-139
C-140
C-141
C-142
C-143
C-144
C-145
C-146
C-147
C-148
C-149
C-150
C-151
C-152
C-153
C-154
C-155
C-156
C-157

C-158
C-159

C-iv

mer_status.

Figure H7 consu
Figure H8 sys_call.

1. INTRODUCTION

This appendix describes in detail the Structure Design for both the FTDCS simulator and
operating system. A hierarchical approach is taken in structure design. It begins with an
overview of the general design, followed by a detailed decomposition.

Section 2 explains the structure design diagram conventions.

Sections 3 and 4 explain in detail the structure design of the FTDCS simulator and operating
system respectively. The simulator and the operating system (e.g., kernel) descriptions are
based on the system development example explained in Chapter 7 of "FTDCS Software
Development: System Programmer’s Guide".

The structure diagrams are given at the end of Section 4.3. The connectors used throughout
the structure diagrams are listed for easy reference in Appendix C1.

2. STRUCTURE DESIGN
2.1 Purpose of Structure Design

The structure design defines the physical specifications to accomplish the data
transformations. This design corresponds to the physical system and shows the processing
and control through structure diagrams.

2.2 Structure Design Diagram Conventions
Structure diagrams in this document use the following symbol conventions:

Rectangles and squares correspond to processes and are designated with a task name. Each
diagram contains a process tree consisting of a parent process and the children processes that
it calls. A particular parent process may also appear as a child on other structure diagrams.

Invocation arrows are used to show that control is passed from a parent process to a child
process, and also passed back again when the called process has finished execution. There
are two ways in which a child process may be called by a parent process: either directly or
upon user input. The former case is shown with a solid line having an arrow at its end
between the processes, while a dotted line with an arrow at its end is used to depict the latter.
Processes at the called end of a dotted line correspond to processes invoked upon specific
user input (often options). In Figure EX1 for example, the process B is called directly by the
parent process A, and control returns to A when B is finished. Process A simply enables
process C, but does not invoke it; it will be executed upon specific user input corresponding
to process C. Upon completion of C, control returns to A, but C is still enabled.

The sequence with which a set of child processes are called by a common parent process is
shown by a direction arrow through the invocation arrows. The children of process B in
Figure EX1 for example, is called in the order D, E and F.

Conditional process control flow is designated by a diamond-shaped condition symbol that is
attached to a process. In Figure EX1, for example, process D can call either G or H.
Condition symbols occur in two forms: automatic or user option. User instigated options
have dotted lines and processes are selected as a function of an external choice. Automatic
selection occurs as a result of a condition being met by the system. Such connections can be
thought of as traditional "if then ..." condition links.

Looping is shown by a rounded arrow through the invocation arrows of the processes called
in the loop. In Figure EX1, process F loops through calls to processes I and J.

Certain processes may be invoked at different times by several other processes. Moreover
two processes drawn at the two ends of a structure diagram may have the same process as
their child process. Drawing links from these processes to the child process may make the
diagram messy and difficult to understand. Therefore in such cases, instead of redrawing the
process every time it is invoked, connectors are used. The very first time a process is
described, it is drawn as a rectangle or a square. For all subsequent occurrences of that
process, its connector is drawn. A connector is a circle with the process name (full or
abbreviated) and figure number (corresponding to the figure where it is described as a regular
process) in it. For example, "X" is a connector in Figure EX1. For the structure diagrams in
this document, a list of connectors, (with the corresponding process’s full name, the process

identification number and a list of all the figures in which this connector appears) is given in
Appendix C1.

The names for some processes describe the process functionality in brief (e.g., "display error
msg." displays an error message). However, since the FTDCS structure design has been
developed from the existing code, majority of the processes are named after the
corresponding "C" functions (e.g., "X_report_error”). This makes it easier to compare the
two.

The following numbering convention is used for the processes. Each child process is related
back to the parent process through its identification number designation, which is a decimal
of the parent process. For example, process 2 has three children processes 2.1, 2.2 and 2.3;
2.1 is decomposed to 2.1.1, 2.1.2 etc., and so on (see Figure EX1).

In the following sections, the main process and its subprocesses are explained in a breadth-
first manner (i.e., in the sequence 1,2, ... n; 1.1, 1.2 ... 1.n; 2.1, 2.2 ... 2.n etc.). The numbers
correspond to the process identification numbers shown on the figures. Processes which do
not contain subprocesses are indicated as such with a hollow circle appearing at the end of
their descriptions.

The following two sections explain the structure design processes for the FTDCS simulator
and the operating system in detail.

e e e e e e e e e e e e e e

2.2

2.2.1

2.1.3.2

2.1.3

2.1.3.1

Example Structure Diagram

2.1

\i.1.2
Figure EX1

H
2.1.1.2

2.1.1

G
2.1.1.1

3. SIMULATOR STRUCTURE DESIGN

The structure design diagrams and descriptions for the FTDCS simulator are given below.
The corresponding structure diagrams are shown in Figures S1 through S19.

Main (Simulator)

This is the mainline process for the simulator. It controls the entire simulation. First it
calls "st_system" to define the system model.

Next, it makes available a set of commands for the user, and waits for the user to select a
command. When the user selects a command, it calls the respective process to execute
that command. For example, it calls "st_memory" if the user wants a display of the
memory status. Typing the wrong command by the user will make the system display a
list of choices ("show command list"). Execution of commands can be repeated as many
times as necessary, until the user decides to quit. In order to terminate the simulator, the
user must type 'Xx’. This will cause the process to make calls to other processes to free
the simulator, stop the CPU and delete the system model. See Figure S1.

1. st_system

This function creates a simulator system definition model from the hardware definition
and the distributed software specifications. It calls "st_set_system" to initialize the
system definition structure, "st_sw_config" to read and interpret the distributed software
specifications for the model and "st_sys_config" to interpret the hardware definition for
the model. See Figures S1 and S2.

2. st_memory

This process displays the memory status. It calls "get memory status" to get the memory
information and displays this information to the user by a call to "show memory status".
See Figures S1 and S3.

3. st_io

This process simulates an I/O event. Initially, it gets the resource type input by the user.
If the resource is not an I/O device, an error message is displayed ("display error
message"). Otherwise, "sim_to_resource" is called to simulate an I/O event. See
Figures S1 and S4.

4. st_console

This process simulates an I/O console. Initially, it gets the resource type input by the
user. If the resource is not an I/O device, an error message is displayed ("display error
message"). Otherwise, "sim_to_resource” is called repeatedly to simulate an I/O
console. See Figures S1 and S5.

5. st_file

This process creates a configuration file for the CPU. It calls "st_get_cpu" to get the
processor for configuration from the user. Next, the processor configuration data
structure is created ("st_config"). Also, configuration data and functional configuration
table files are created (calls to "stf_data" and "stf_tables"). Finally, the configuration
data structure is deallocated. See Figures S1 and S6.

6. st_go

This process starts the simulation. For every defined processor, this process calls
"st_config" to create a local operating system configuration structure based on the
system definition and the local configuration specification, "sim_cpu_go" to start the
simulation and lastly, "st_free_config" to free the configuration data structures. Finally
"cpu_run" is called to include the event in the kernel queue for execution. See Figures
S1 and S7.

7. st_node
This process configures a node for testing the system. It gets the CPU name from the
user and looks up the CPU id. If the CPU id is empty, a message is displayed stating
that the processor is not defined. Otherwise, a local operating system configuration
structure is created based on the system definition and the local configuration
specification ("st_config"), simulation is started ("sim_cpu_go"), and the configuration
data structures are freed ("st_free_config"). Finally, "cpu_run" is called to include the
event in the kernel event queue for execution. See Figures S1 and S8.

8. sm_show

This process shows the hardware configuration. See Figure S1. O

9. st_disable

This process disables a component. See Figure S1. O

10. st_enable

This process enables a component. See Figure S1. O

11. show command list

This process displays a list of simulator commands, what they do and how they can be
invoked. See Figure S1. O

12. sim_cpu_stop

This process frees the memory allocated for the operating system structures and the
CPU’s OS memory. See Figure S1. O

13. st_free_system

11

1.2

1.3

2.1

This process deletes a system model definition, freeing its allocated memory. See
Figure S1. O

st_set_system

This function initializes the system definition structure. The ids are set for each resource
manager ("set resource manager ids") and each resource (“set resource ids"). Finally,
"set processor links" sets ids and creates a table of resource links for each processor.
See Figures S2 and S9.

st_sw_config

This process reads and interprets the distributed software specification for the system
definition model. Initially, it gets the distributed software specification file name from
the user and accesses the data in it. Next, the DSM consumer definition command list is
initialized, memory is allocated for the processor table and each entry in the table is set
to empty. The DSM name count and the processor mask are both set to 0. The DSM
consumer id is set to the number of system processors.

Next, this process calls other processes to read and set DSM resource, router and
processors. Finally "read consumers" is called to read a list of application consumer
specifications and create DSM commands to implement them. See Figures S2 and §10.

st_sys_config

This process interprets the hardware definition and integrates it to the system definition
model. It initializes the system definition structure. Space is allocated for the system
definition header. Next, the system DSM data is set. So are the resource manager count,
routing manager count, resource count, processor count and processor/link count. The
initial DSM table sizes are also set.

Next, each resource manager is added to the system definition ("add_sys_manager") as
are the routing managers ("add_sys router"), resources ("add_sys_resource") and
processors ("add_sys_exec"). See Figures S2 and S11.

get memory status

This process retrieves the memory status information (such as the number of used and
free, bytes and blocks of memory). See Figure S3. O

2.2 show memory status

3.1

3.2

5.1

5.2

5.3

This process displays the memory status information to the user (which includes
information such as the number of used and free, bytes and blocks of memory). See
Figure S3. O

display error message

This process displays the error message (given to it as its input) to the user (e.g.,
resource not IO message, etc.). See Figure S4. O

sim_to_resource

This process simulates an I/O console or an I/O event. It checks to see if the given
resource has any assigned links. If the resource does not have any assigned links, an
error message is displayed.

Otherwise, the process gets the system model id and thus the model simulator id. A
message is created ("new_message") and set to the simulator message. Finally, the
message is included in the kernel event queue for execution ("cpu_run"). See Figures S4
and S12.

st_get_cpu

This process gets the processor for which the configuration data and functional
configuration files are to be created, from the user. See Figure S6. O

st_config

This process creates a local operating system configuration structure based on the
interpretation of the system definition and the local configuration specification. This
structure is used to create the functional configuration table file. It initializes
configuration data management and processor configuration pointer. Next, the
configuration data header is setup ("st_config_header"). Finally, the processor (an Intel
8086) dependent portion of the configuration data structure is created ("st86_config").
See Figures S6 and S13.

stf_data

This process produces the configuration data file from the configuration data for a
processor. First, it attaches the prefix "cfg" and suffix ".c" to the file name. The process
then tries to create and open the configuration data file. If the file cannot be created, an
error message is displayed.

If the file is created successfully, the following information is written to the file. The
configuration data header ("add_header"), kernel configuration data (“add_kernel"),

executive configuration data ("add_exec") and the DSM configuration data ("add_dsm").
The file is then closed. See Figures S6 and S14.

5.4 stf_tables

6.1

6.2

6.3

This process produces the functional configuration table file from the configuration data
for a processor. Initially it attaches the prefix "tbl" and suffix ".c" to the file name. The
process then tries to create and open the functional configuration table file. If the file
cannot be created, an error message is displayed.

If the file is created successfully, the following information is written to the file.
Configuration table headers ("tbl_header"), handler initialization entry points
("tbl_handlers") and server initialization entry points ("tbl_servers"). The file is then
closed. See Figures S6 and S15.

sim_cpu_go
This process initializes the operating system structures with the required kernel,
executive and DSM initialization routines. Next, it calls the kernel boot process

("KB_boot").

See Figures S7 and K1. Note: this process is the same as process 1 in Figure K1.

st_free_config

This Oproce:ss frees the data structures allocated for the configuration data. See Figure
S7.

cpu_run

This process queues each message at the tail of the kernel event queue for future
execution. It gets the CPU id for the system model and thus the operating system data
for the CPU. Next, it calls "K_cpu_enter" to make the context switch to the OS context.
"K_cpu_fork" is called after this to add the event to the kernel event pending queue.
Finally the system is returned to normal operation ("K_cpu_exit"). See Figures S7 and

Note: this process calls the OS kernel functions, which are described in Section 4.1
below. This process is the same as the process 2 in Figure K2.

1.1.1 set resource manager ids

System identifiers in consecutive order are assigned to each resource manager in the
system definition model by this process. See Figure S9. O

1.1.2 set resource ids

System identifiers in consecutive order are assigned to each resource in the system
definition model by this process. See Figure $9. O

1.1.3 set processor links
System identifiers in consecutive order are assigned to each processor in the system
definition model by this process. Also, for each processor a table of its resource links is
created. This table is sorted by resource manager. See Figure S9. O

1.2.1 read & set DSM resource

This process reads the DSM resource name from the file and sets the DSM resource id to
the system resource id. See Figure S10. O

1.2.2 read & set DSM router

This process reads the DSM router name from the file and sets the DSM router id to the
system router id. See Figure S10. O

1.2.3 read & add DSM processors

This process reads processor names from the file and looks up the system id for
processors. It then adds the processor id to both the DSM processor table and the DSM
processor mask. Also for each processor, the name count is incremented. See Figure
S10.O

1.2.4 read consumers
This process reads a list of application consumer specifications and creates DSM
commands to implement them. For each command read from the file, it calls the
respective process (e.g., "std_define", "std_link" and "std_run" for the define, link and
run commands respectively). For any other command, an error message is displayed.
See Figure S10.

1.3.1 add_sys_manager

This process allocates space for the resource manager structure and the resource
manager system id is set from the model resource manager. See Figure S11. O

C-10

1.3.2 add_sys_router

This process allocates space for the routing manager structure and the routing manager
system id is set from the model routing manager. Also, the routing manager name is
copied from the model manager. See Figure S11. O

1.3.3 add_sys_resource

This process allocates space for the resource structure. The resource system id, type,
name, manager id and the link id are set from the model resource. See Figure S11. O

1.3.4 add_sys_exec

This process allocates space for the executive structure. The executive system id and
type are set from the model processor. The executive name and the link count are set
from the model executive.

For each processor/resource link, space is allocated for the executive link structure. The
link resource system id and the link unit id are set from the model. See Figure S11. O

3.2.1 new_message

This process creates a message structure, sets its id, the cpu id, unit id, time lag, length,
and the message data (which includes the header and the actual data) and returns the new
message. See Figure S12. O

5.2.1 st_config_header

This process sets up the header for a local executive configuration data structure. The
configuration data length and the executive id are set. The lengths of the kernel,
executive and DSM configuration data are set to 0. See Figure S13. O

5.2.2 st86_config

This process creates configuration data structure (the processor dependent and
independent portions) for an Intel 8086 processor’s local operating system running on
the simulator. The local configuration specification file is read by a call to "st86_read".
Appropriate processes are called to initialize the following structures:

- executive resource manager ("st86_managers"),

- handler configuration data ("st86_handlers"),

- server configuration data ("st86_servers"),

- resource configuration data ("st86_resources"), and

processor/resource links configuration data ("st86_links").

The kernel ("st86_kernel") and processor independent configuration data
("st_config_exec") are also added. See Figures S13 and S16.

C-11

5.3.1 add_header

This process writes the configuration data header to the configuration data file. The
following information is written to the file:

configuration file title,

configuration code,

processor system id,

configuration data length for kernel, executive and DSM and the total configuration
data length. See Figure S14. O

5.3.2 add_kernel

This process writes the kernel configuration data to the configuration data file. The
following information is written to the file: kernel memory manager configuration data
("add_kmemory"), kernel processor manager configuration data ("add_kcpu") and kernel
link manager configuration data ("add_klink"). See Figure S14.

5.3.3 add_exec

This process writes the executive configuration data to the configuration data file. The
following information is written to the file:

executive controller, resource and routing manager configuration data,

the resource and link data id for each resource linked to the processor,

executive consumer name and data for each executive linked to the processor,

DSM consumer data,

DSM consumer name data for each DSM consumer name,

local DSM consumer name and junction, if DSM is scheduled on a processor. See
Figure S$14. O

5.3.4 add_dsm

This process writes the DSM configuration data to the configuration data file. It writes a
header to the file and calls "add_dsm_command" to write DSM list command to the file.
See Figure S14. '

5.4.1 tbl_header

This process writes the configuration table header to the functional configuration table
file. The following information is written to the file:

title of the file,
C include statements for machine data types, processor independent table data and
configuration data file.

See Figure S15. O

C-12

5.4.2 tbl_handlers

This process writes the handler initialization entry points to the functional configuration

table file. The following information is written to the file:

- external function declaration for each handler in configuration data,

- }Sxandlg initialization entry point for each handler in configuration data. See Figure
15.

5.4.3 tbl_servers

This process writes the server initialization entry points to the functional configuration
table file. The following information is written to the file:

- external function declaration for each server in configuration data,

- server initialization entry point for each server in configuration data. See Figure S15.

1.2.4.1 std_define

This process reads the consumer’s name, its resource and router names and its name
count from the input file. It then creates a define consumer command in the command
buffer. See Figure S10. O

1.2.4.2 std_link

This process reads the consumer’s name from the input file and initializes a link
consumer command. It then reads the consumer name for link and the branch flag from
the input file and adds link to the input consumer. See Figure $10. O

1.2.4.3 std_run

This process reads the consumer’s name from the input file and creates a run consumer
command in the command buffer. See Figure $10. O

5.2.2.1 st86_managers

This process initializes the configuration data structures for the executive resource
managers. It sets the manager count to the number of simulator resource managers and
allocates memory for resource manager data structures. The manager id, server and link
counts of each resource manager data structure are initialized. See Figure S16. O

5.2.2.2 st86_handlers
This process initializes the configuration data structures for the kernel interrupt handlers.

It sets the handler count to O and allocates memory for handler data structures. The
handler link count of each interrupt handler is set to 0. See Figure S16. O

5.2.2.3 st86_servers

This process initializes the configuration data structures for the kernel link servers. It
sets the server count to 0 and allocates memory for server data structures. The server
link count of each server is set to 0. See Figure S16. O

5.2.2.4 st86_resources

This process initializes the configuration data structures for the processor’s linked
resources. The resource count is set to 0, memory is allocated for resource data structure
and the resource data structures are set to empty. See Figure $16. O

5.2.2.5 st86_read

This process reads a local configuration specification file for an 8086 family processor.
For each configuration line read from the file, it either calls "add_handler" (to add
handler data to configuration data), "add_server" (to add server data to configuration
data), "add_resource" (to add resource data to configuration data) or "display error
message" (for an unknown command). See Figures S16 and S17.

5.2.2.6 st86_links

This process initializes the configuration data structures for the processor’s resource
links. The link count is set to the number of processor links and link data structures to
empty. Each processor link’s handler link count, resource manager link count and server
link count are incremented. For each kernel interrupt handler, the handler unit base and
configuration unit count are modified. See Figure S16. O

5.2.2.7 st86_kernel

This process adds the kernel configuration data to the configuration data structures. In
order to do this, it calls processes to add the kernel memory manager ("st86_kmemory"),
kernel processor manager ("st86_kcpu") and kernel link manager ("st86_klink")
configuration data. See Figures S16 and S18.

5.2.2.8 st_config_exec

This process creates the executive and DSM portions of the local configuration data
structure. Initially, it sets the executive and the DSM table and memory sizes, ids (e.g.,
executive id), counts (e.g., resource, routing manager, etc.).

It then calls "config resources" to add resource data to executive configuration,
"config_execs" to add linked executive data to executive configuration and
"config_dsm" to add DSM configuration data to local configuration. See Figures S16
and S19.

5.3.2.1 add_kmemory
This process writes the kernel memory manager configuration data to the configuration
data file. See Figure S14. O

5.3.2.2 add_kcpu
This process writes the kernel processor manager configuration data to the configuration
data file. See Figure S14. O

5.3.2.3 add_klink
This process writes the kernel link manager configuration data to the configuration data
file. See Figure $14. O

5.3.4.1 add_dsm_command
This process writes DSM commands to the configuration data file. It writes a DSM
command header to the output file. Next, depending upon the type of command, it calls
the appropriate process which writes the command to the file (e.g., "add_dsm_boot" is
called to write the boot command to the output file, "add_dsm_link" for the link
command, etc.). See Figure S14.

5.2.2.5.1 add_handler
This process reads a handler definition from the local configuration specification file and
adds it to the configuration data structure. See Figure S17. O

5.2.2.5.2 add_server
This process reads a server definition from the local configuration specification file and
adds it to the configuration data structure. See Figure $17. O

5.2.2.5.3 add_resource
This process reads a resource definition from the local configuration specification file
and adds it to the configuration data structure. Depending upon the type of the resource
manager (e.g., network), the appropriate process is called to read the resource specific
data (e.g., "add86_network"). See Figure S17.

5.2.2.7.1 st86_kmemory

This process adds the kernel memory manager configuration data structure to the
configuration data structure. It allocates memory for the data structure. It also sets

kernel memory manager data size, processor id, initial memory size and buffer
management parameters. See Figure S18. O

5.2.2.7.2 st86_kcpu

This process adds the kernel processor manager configuration data structure to the
configuration data structure. It allocates memory for the data structure. It also sets
kernel processor manager data size, kernel and executive event queue sizes. See Figure
S18.0O

5.2.2.7.3 st86_Klink

This process adds the kernel link manager configuration data structure to the
configuration data structure. It allocates memory for the data structure. Next, it sets the
kernel link manager data size, kernel id table parameters, interrupt handler count, unit
count, server count, link count and link data size.

For each interrupt handler, space is allocated for the structure, and the handler data size,
unit count and vector are set. For each link server, space is allocated for the structure,
and server link count and data size are set.
For each processor resource link, depending upon the type of the link resource manager,
the appropriate link (network, I/O, application) configuration data is added to the file
("st86_network_link", "st86_io_link" and "st86_process_link"). See Figure S18.
5.2.2.8.1 config_resources
This process adds executive resource data to the local configuration data for all
resources which are available to a given executive. See Figure S19. O
5.2.2.8.2 config_execs
This process adds a linked executive data structure to the executive portion of the local
configuration data structure. Also, for each model processor, its executive consumer
definition is also added ("add_exec_consumer”). See Figure S19.
5.2.2.8.3 config_dsm
This process adds the distributed system manager consumer to the local executive
configuration data structure. If the DSM is assigned to the executive, then the DSM
configuration data is also added to the local configuration data. See Figure S19,. O
5.3.4.1.1 add_dsm_boot

This process writes the parameters associated with a DSM boot command to the
configuration data file. See Figure S14. O

5.3.4.1.2 add_dsm_list

For every command in the list, this process calls "add_dsm_command" to add each
command to the configuration data file. See Figure S14.

5.3.4.1.3 add_dsm_define

This process writes the parameters associated with a DSM define consumer command to
the configuration data file. See Figure S14. O

5.3.4.1.4 add_dsm_link

This process writes the parameters associated with a DSM link consumer command to
the configuration data file. See Figure S14. O

5.34.1.5 add_dsm_run

This process writes the parameters associated with a DSM run consumer command to
the configuration data file. See Figure S14. O

5.2.2.5.3.1 add86_network

This process reads the network resource specific data from the local configuration
specification file and adds it to the configuration data structure. The data includes
shared memory segment and shared memory offset used to synchronize communication
across the multibus. See Figure S17. O

5.2.2.5.3.2 add86_io

This process reads the I/O resource specific data from the local configuration
specification file and adds it to the configuration data structure. The data includes
shared memory segment and shared memory offset used to synchronize communication
with the 188/48 communicating SBC. See Figure $17. O

5.2.2.5.3.3 add86_process

This process reads the application process resource specific data from the local
configuration specification file and adds it to the configuration data structure. This data
consists of the load addresses and segment lengths of the process’ object code. See
Figure S17. O

5.2.2.7.3.1 st86_network_link

This process adds the configuration data for a link to a network resource to the
configuration data structure. It allocates space for the structure, and sets the link server,

unit id, data size, resource id, address count, network link segment, offset and home
address. See Figure S18. O

5.2.2.7.3.2 st86_io_link

This process adds the configuration data for a link to an I/O resource to the configuration
data structure. It allocates space for the structure, and sets the link server, unit id, data
size and I/O link segment and offset. See Figure S18. O

5.2.2.7.3.3 st86_process_link

This process adds the configuration data for a link to an application process resource to
the configuration data structure. It allocates space for the structure, and sets the link
server, unit id, data size and resource id. See Figure S18. O

5.2.2.8.2.1 add_exec_consumer

This process adds an executive consumer definition to the local executive configuration
data structure. The consumer id is set to the system id, router to simple, name count to
1, name id to exec. id. The name, local and unit ids are all set. See Figure S19. O

4. OPERATING SYSTEM STRUCTURE DESIGN

The following three subsections describe the structure design processes of the FTDCS
operating system. The operating system kernel processes are described in Section 4.1.
Section 4.2 explains the executive processes. Finally, the distributed system manager
structure design is given in Section 4.3.

4.1 Kernel Processes

The following processes are the operating system kernel functions. They are called by the
simulator functions from Section 3. The corresponding structure diagrams are shown in
Figures K1 through K15.

1.1 KB_boot

This process provides the boot entry point for the operating system. It initializes the OS
through the predefined processor configuration data.

It invokes each kernel manager initialization entry point with configuration data
("KMB_cpu", "KMB_memory" and "KMB_link"). Next, buffer is allocated for the
executive configuration data ("K_new_buffer"), the executive boot entry point is
invoked ("XB_boot") and the executive configuration data buffer is deallocated
("K_release_buffer"). If the DSM configuration data is present, then a new buffer is
allocated for it ("K_new_buffer"), DSM configuration data is copied to the buffer and
the buffer is submitted to the executive ("K_cpu_k2x"). Finally, interrupted execution is
continued ("K_cpu_exit"). See Figure K1.

2.1 K cpu_enter

This process is called by interrupt service routines to make a context switch to the
operating system context after an interrupt. It blocks the execution of any active user
process. See Figure K2. O

2.2 K _cpu_fork

This process is invoked by the interrupt function to add an event to the tail of the kernel
event pending queue. See Figure K2. O

1.1.1 KMB_cpu

This process is the initialization entry point for the kernel processor manager. It
allocates memory ("K_allocate") for processor control structure and sets it to that from
configuration data. It allocates memory for the kernel and executive pending event
queues and initializes them. Also, the user, kernel and executive flags are cleared. See
Figure K1.

1.1.2 KMB_memory

This process is the initialization entry point for the kernel memory manager. It
initializes memory management from configuration data and also initializes buffer,
packet and queue management ("K_set_stack"). Finally, the executive accessible entry
points are set ("set exec. entry pts."). See Figures K1 and K3.

1.1.3 KMB_link

This process is the initialization entry point for the kemnel link manager. It allocates
("K_allocate") and initializes the link control structures. Next, it invokes all the link
handler and server initialization entries. See Figures K1 and K4.

1.14 K_new_buffer
This process allocates a data buffer. See Figure K1. O

1.1.5 XB_boot

This is the executive boot entry point process. It has been explained in Section 4.2, as
process 2. See Figures K1 and E2.

1.1.6 K_release_buffer

This process deallocates a data buffer by decrementing the number of links to the buffer.
See Figure K1. O

1.1.7 K_cpu_k2x

This process is invoked by kemel functions to add an event to the executive event
pending queue. The event is added to the end of the queue. See Figure K1. O

1.1.8 K_cpu_exit

This process is called by interrupt service routines upon their exit, to return to the
normal operation. If the interrupted execution is not the kernel mode but the executive
mode, processor interrupts are enabled ("K86_enable") and the kemnel mode is entered
("K_cpu_kemel"). The kernel busy flag is set if the kemel or executive events are
pending ("kernel busy"). "Unblock user” is called to enable processor interrupts and
unblock the user if a user process is pending. If none of the above conditions are true,
idle state is entered ("idle state"). Finally, processor interrupts are enabled. See Figures
K1 and KS5.

1.1.1.1 K _allocate

This process allocates a contiguous block of memory with at least the specified size.
See Figure K1. O

1.1.2.1 K _set_stack
This process preallocates a number of blocks of a fixed size, allowing allocation and

deallocation of these blocks with minimal overhead. After preallocation, if the number
of blocks is exhausted, a preset number of blocks is again allocated. See Figure K3. O

1.1.2.2, set exec. entry pts.
This process sets up the executive accessible entry points (i.e., executive functions
which access kernel memory management functions). See Figure K3. O

1.1.3.1 KSI_mb_master
This process is the initialization entry point for the Multibus master shared memory

server. It allocates ("K_allocate") and initializes the Multibus master shared memory
link control structures with the input configuration data. See Figure K4.

1.1.3.2 KHI_mb_master

This process is the initialization entry point for the Multibus master shared memory
interrupt handler. It calls "init. master communication” to establish the interrupt trap
function. See Figure K4.

1.1.3.3 KSI_mb_slave

This process is the initialization entry point for the Multibus slave shared memory
server. It allocates ("K_allocate") and initializes the Multibus shared memory link
control structures with the input configuration data. See Figure K4.

1.1.3.4 KHI_mb_slave

This process is the initialization entry point for the Multibus slave shared memory
interrupt handler. It calls "init. slave communication" to establish the interrupt trap
function. See Figure K4.

1.1.3.5 KSI_i188
This process is the initialization entry point for the INTEL iSBC 188/48 server. It

allocates ("K_allocate") and initializes the 188-based resource link control structures
with the input configuration data. See Figure K4.

1.1.3.6 KHI _i188
This process is the initialization entry point for the INTEL iSBC 188/48 interrupt

handler. It calls "perform board test" to reset the 188/48 board and establish the
interrupt trap function. See Figure K4.

1.1.8.1 K86_enable
This process enables the function of interrupt recognition by the operating system. See
Figure K5. O

1.1.8.2 K_cpu_kernel
This process implements the operating system running in the kernel mode. The kernel
pending events are added to the kernel event queue and processor interrupts are enabled
("K86_enable"). For each event in the kernel event queue, the link manager in entry
point is invoked ("K_link_in"). Processor interrupts are disabled ("K86_disable"). The
above steps are repeated until no more events are pending in the kernel event queue.
Finally, the executive mode is entered ("K_cpu_executive"). See Figures K5 and K6.

1.1.8.3 kernel busy
If the kernel or executive events are pending, this process sets the kernel busy flag to
true. See Figure K5. O

1.1.8.4 unblock user

This process enables processor interrupts and unblocks the user process. See Figure K5.

1.1.8.5 enter idle

This process enables processor interrupts and enters the idle state. See Figure K5. O

1.1.3.2.1 init, master communication
This process establishes the interrupt trap function and initializes master communication.
See Figure K4. O

1.1.3.4.1 init. slave communication

This process establishes the interrupt trap function and initializes slave communication.
See Figure K4. O

1.1.3.6.1 perform board reset

This process resets the 188/48 board and establishes the interrupt trap function. See
Figure K4. O

1.1.8.2.1 K_link_in

This process is the kernel link manager in entry point. It looks up the kernel, local and
server ids from the respective tables. With the ids, the appropriate server in entry point
("kmb_master_in", "kmb_slave_in" or "k188_in") is invoked. See Figures K6 and K7.

1.1.8.2.2 K86 _disable

This process disables the function of interrupt recognition by the operating system. See
Figure K6. O

1.1.8.2.3 K_cpu_executive

This process implements the operating system running in the executive mode. Initially,
it enables processor interrupts ("K86_enable"). For each event in the executive event
queue, the executive resource manager in entry point is invoked ("XM_in"). Next,
interrupts are disabled ("K86_disable"). The above steps are repeated until there are no
more events in the executive event queue. Finally, if an application process is pending,
the process is unblocked. Otherwise, idle state is entered. See Figures K6 and K8.

1.1.8.2.1.1 kmb_master_in

This process is the in entry point for the Multibus master shared memory server. Three
interrupts are processed by this process.

For the transmit complete interrupt (which indicates that the slave has completed
transmission to the master), current network packet data is submitted to the executive
("K_cpu_k2x").

The second type of interrupt is the transmit ready interrupt. A network packet is
allocated ("K_new_network") and the slave data header is copied to it. A new slave to
master buffer is allocated ("K_new_buffer") and receive ready is set in reply signal
word.

For the receive complete interrupt, the master to slave buffer is deallocated
("K_release_buffer"). If there is a packet in the transmit queue ("K_next_queue"), the
packet header and data are copied to the master to slave packet and the network packet is
freed ("K_free_network"). Also transmit ready is set in reply signal word.

Finally, if the reply signal was set, reply interrupt is sent to the slave (“send reply to
slave"). See Figures K7 and K9.

1.1.8.2.1.2 kmb_slave_in

This process is the in entry point for the Multibus slave shared memory server. Two
types of interrupts are processed by this process.

For the transmit ready interrupt (which indicates that master has a transmission for the
slave), a network packet ("K_new_network") and network packet data buffer

("K_new_buffer") are allocated. The network packet data is submitted to the executive
("K_cpu_k2x").

If the interrupt is receive ready, the master to slave buffer is deallocated
("K_release_buffer"). Also, the network packet is deallocated ("K_free_network") and
transmit done is set in reply signal word. If there is a packet in the transmit queue
("K_next_queue"), it is copied to the slave to master packet and transmit ready is set in
reply signal word.

Finally, if the reply signal was set, reply interrupt is sent to the master. See Figures K7
and K10.

1.1.8.2.1.3 k188 _in

This process is the in entry point for the iSBC 188/48 server. If the interrupt type is
receive data, "k188_receive" is called. Otherwise, (for the transmit complete interrupt),
"k188_transmit" is called. If the carrier is detected, the link status is enabled. The link
status is disabled for a lost carrier. See Figures K7 and K11.

1.1.8.2.3.1 XM_in

This is the executive resource manager in entry point. It has been explained in Section
4.2, as process 1. See Figures K8 and E1.

1.1.8.2.1.1.1 K_new_network

This process allocates a network data packet. See Figure K9. O

1.1.8.2.1.1.2 K_next_queue

This process returns an item from the head of the queue. See Figure K9. O

1.1.8.2.1.1.3 K_free_network

This process deallocates a network data packet. See Figure K9. O

1.1.8.2.1.1.4 send reply to slave

This process sends a reply interrupt to the slave. See Figure K9. O

1.1.8.2.1.2.1 send reply to master

This process sends a reply interrupt to the master. See Figure K10. O

1.1.8.2.1.3.1 k188 _transmit

This process processes an interrupt from the 188/48 board indicating that the data
transmission is complete. If there are any transmissions pending for the link, then the
input characters are processed ("in_188_raw") and characters are echoed to 188/48
board ("k188_tx_packet"). If an I/O packet is in the output queue, the output characters
are processed ("out_188_raw"), I/O packet data buffer is deallocated
("K_release_buffer") and the I/O packet is deallocated ("K_free_io"). See Figure K11.

1.1.8.2.1.3.2 k188_receive

This process processes an interrupt from the 188/48 board indicating that the input data
is available. It processes the input characters ("in_188_raw") and if there are characters
to echo, they are echoed to 188/48 board ("k188_tx_packet"). Finally, a receive
complete control packet is created and sent to the 188/48 board. See Figure K11.

1.1.8.2.1.3.1.1 in_188_raw

This process processes input characters from a raw input queue to an input data packet.
For each character in the raw input queue, the character is copied to the input packet data
and the echo buffer, and the input packet is submitted to the executive ("K_cpu_k2x").
Also, a new input packet ("K_new_io") and data buffer for input packet
("K_new_buffer") are allocated. See Figures K11 and K12.

1.1.8.2.1.3.1.2 k188 _tx_packet
This process creates transmit control packet for the 188/48 board, copies output data to

the 1%/48 board and sends a control packet initiating data transmission. See Figure
K11.

1.1.8.2.1.3.1.3 out_188 raw
This process processes output characters to the 188/48 board. A buffer is allocated for
processed characters ("K_new_buffer") and characters in output data are copied to
output buffer. Processed output is sent to 188/48 board ("k188_tx_packet") and the
output buffer is deallocated ("K_release_buffer"). See Figures K11 and K13.
1.1.8.2.1.3.2.1 K free_io

This process deallocates an I/O data packet. See Figure K11. O

1.1.8.2.1.3.1.1.1 K_new_io

This process allocates an I/O data packet. See Figure K12. O

3. K_link_out

This process is the out entry point for the kernel link manager. It finds the local and the
server ids using the kernel id, and invokes the appropriate server out entry point
("kmb_master_out", "kmb_slave_out" or "k188_out").

Note: this process is the same as process 1.3.1.2 in Section 4.2. See Figures K14 and
El2.

4. K_link_assign

3.1

3.2

3.3

This process is the assign entry point for the kernel link manager. It accesses the link
configuration data from the link id and the server control structure from the link
configuration data. The appropriate server assign entry point is then invoked
("kmb_master_assign", "kmb_slave_assign" or "k188_assign").

Note: this process is the same as process 2.6.1.2 in Section 4.2. See Figures K15 and
E22.

kmb_master_out

This process is the out entry point for the Multibus master shared memory server. If the
network link is busy, a new network packet is allocated, the packet data is copied to it
("K_copy_buffer"), and the new packet is added to the link transmit packet queue
("K_add_queue"). Otherwise, packet data is copied to the master to slave data
("K_copy_buffer") and transmit ready interrupt is sent to the slave ("send transmit ready
to slave"). See Figure K14.

kmb_slave_out

This process is the out entry point for the Multibus slave shared memory server. It
allocates a new network packet ("K_new_network"), copies the packet data and header
to the new packet ("K_copy_buffer"). If the network link is busy transmitting, the
packet is queued ("K_add_queue"). Otherwise, the packet is transmitted immediately
("send transmit ready to master"). See Figure K14.

k188 _out

This process is the out entry point for the iSBC 188/48 server. If the output link is not
busy, output data is processed immediately ("out_188_raw"). If the output link is busy,
a new I/O packet is allocated ("K_new_io"), output packet data is copied to it
("K_copy_buffer") and the new packet is queued ("K_add_queue"). See Figure K14.

4.1

4.2

4.3

kmb_master_assign

This process is the assign entry point for the Multibus master shared memory server. It
allocates ("K_allocate") and initializes a Multibus link control structure. It also allocates
("K_new_network") master/slave packets. Finally, the kernel link manager control entry
point is invoked ("K_link_control"). See Figure K135.

kmb_slave_assign

This process is the assign entry point for the Multibus slave shared memory server. It
allocates ("K_allocate") and initializes a Multibus link control structure and invokes the
kernel link manager control entry point ("K_link_control"). See Figure K18.

k188_assign

This process is the assign entry point for the iSBC 188/48 server. It allocates
("K_allocate") and initializes a link control structure. A new buffer is allocated
("K_new_buffer") for raw and processed input data. An I/O packet is allocated for input
data ("K_new_io"). Finally, the kernel link manager control entry point is invoked
("K_link_control"). See Figure K15.

3.1.1 K_copy_buffer

This process copies a data buffer by incrementing its link count, which ensures that the
buffer is not deallocated until all copies are deallocated. See Figure K14, O

3.1.2 K_add_queue

This process adds an item to the tail of a queue. See Figure K14, O

3.1.3 send transmit ready to slave

This process sends transmit ready interrupt to the slave. See Figure K14. O

3.2.1 send transmit ready to master

This process sends transmit ready interrupt to the master. See Figure K14. O

4.1.1 K_link_control

This process is the control entry point for the kernel link manager. If the kernel id is
empty, "kl_enter" is called to assign a new kernel id. Otherwise, it finds the local and
the server id using the kernel id, and invokes the appropriate server control entry point
("kmb_master_control", "kmb_slave_control" or "k188_control). See Figure K135.

4.1.1.1 kmb_master_control
This process is the control entry point for the Multibus master shared memory server.
Currently no control functions are implemented. See Figure K15. O

4.1.1.2 kmb_slave_control
This process is the control entry point for the Multibus slave shared memory server.

Currently no control functions are implemented. See Figure K15. O

4.1.1.3 k188_control

This process is the control entry point for the iSBC 188/48 server. Currently no control
functions are implemented. See Figure K15. O

4.1.1.4 Kkl_enter

This process assigns a new kernel id. Entries are made in the kernel id to server id,
kernel id to local id and unit id to kernel id tables. See Figure K15. O

5. K free_user

This process deallocates an application consumer packet. See Figure E14. O

6. K_free_buffer
This process deallocates a data buffer. See Figure E18. O

4.2 Executive Processes

The following describes the processes identified in the operating system executive. The
corresponding structure diagrams are shown in Figures E1 through E42.

1. XM_in

This process is the in entry point for the executive manager. If the executive id is empty,
the executive control in entry point is invoked ("xcontrol_in"). Otherwise, the process
finds the resource manager and the local id, and invokes the appropriate resource
manager in entry point ("xnetwork_in", "xio_in" or "xprocess_in"). See Figure El.

2. XB_boot

11

1.2

This process is the boot entry point for the executive. It sets up the executive memory
management ("X_set_memory") and allocates memory for the executive data structures.
Next, it sets up the executive message management ("X_set_messages") and executive
queue management ("X_set_queues”). Finally the initialization entry point for each
executive component is invoked ("XCB_control", "XCB_router" and "XCB_manager").
See Figure E2.

xnetwork_in

This process is the in entry point for the network resource manager. It allocates an
executive message ("X_new_message") and copies message data from network packet to
it. Next, it invokes the executive router out entry point ("XR_out") to route¢ the message.
Fisnally, the network data packet is deallocated ("X_free_network"). See Figures El and
E3.

xio_in

This process is the in entry point for the I/O resource manager. It calls "X_next_queue”
to find out if there is a query message in the consumer request queue. If there is one, a
reply message is created, the executive router in entry point ("XR_in") is invoked and
the I/O data packet is deallocated ("X_free_io").

If the resource consumer has a junction branch, an executive message is allocated
("X_new_message"), a send message is created, the message is routed according to
junction branch 0 ("X_route_junction") and the I/O data packet is deallocated
("X_free_io").

If there is neither a query message in the consumer request queue nor a junction branch
for the resource consumer, the I/O packet is added to the resource consumer input queue
("X_add_queue"). See Figures E1 and E4.

1.3 xprocess_in

This process is the in entry point for the application resource manager. Based on the
type of the application packet, the appropriate process is called to process the packet
(e.g., for an application packet of type ACCEPT, "process_accept” is called). An error
mgssage is displayed for an invalid packet type ("X_report_error"). See Figures E1 and
ES.

1.4 xcontrol_in

2.1

2.2

2.3

24

2.5

This process is the entry point for the executive control component. It is currently used
to pass the DSM configuration data at boot time. If the DSM has a local name, a
message is allocated ("X_new_message") and its source, destination and data are set.
Finally, the executive manager out entry point ("XM_out") is invoked. See Figures E1
and E6.

X_set_memory

This process initializes the executive memory management. If the executive memory
pool is to be expanded, "X_more_memory" is called. In case of a memory management
error, "X_mem_error" is called. See Figure E2.

X _set_messages

This process initializes executive message management by preallocating a number of
executive messages. See Figure E2. O

X_set_queues

This process initializes executive queue management. See Figure E2. O

XCB_control

This process is the initialization entry point for the executive control component. First,
it allocates memory for DSM query control ("X_set_stack"). Next, the DSM query
queue is initialized and executive control entry points are set. For each executive
consumer, the router assign entry point ("XR_assign") is invoked in order to assign the
consumer. If the DSM consumer name is assigned to executive, the router control entry
point ("XR_control") is invoked to enter the local name. See Figures E2 and E7.

XCB_router

This process is the initialization entry point for the executive router component. It
allocates and initializes ("X_allocate" and "X_set_stack") the general executive routing
structures such as the consumer index table, name index table, etc. The router entry
points are set. Finally, for each routing algorithm supported (in this case - simple and

NMR), the algorithm initialization entry point is invoked ("XRI_simple" and
"XRI_nmr"). See Figures E2 and E8.

2.6 XCB_manager

This process is the initialization entry point for the executive manager component. It
allocates and initializes ("X _allocate") the general executive routing structures such as
resource manager control structures, executive id to manager mappings, executive id to
local id mappings, etc. It then invokes the specific manager initialization entry points
("XMI_network”, "XMI_io" and "XMI_process") for each resource manager supported
by the operating system. See Figures E2 and E9.

1.1.1 X_new_message

This process allocates an executive message. See Figure E3. O

112 XR out

This process is the out entry point to the executive router. If the message destination is
undefined, an error message is reported ("X _report_error"). If the message destination is
external, the message is relayed appropriately ("XM_out").

If neither of the above cases is true, the process tries to find the source name from the
routing name table. If the source name is undefined, it is entered in the table
("new_name"), a message is added to the out pending queue ("X_add_queue"), a system
unknown consumer command is allocated ("X_next_query") and the query is issued to
the DSM ("XC_query_dsm"). If the source name status is out pending, a message is
added to the out pending queue ("X_add_message'"). Otherwise, the appropriate routing
algorithm out entry point is invoked. See Figures E3 and E10.

1.1.3 X_free_network
This process deallocates a network data packet by calling the kernel deallocate network
packet entry point ("K_free_network"). See Figure E3.

1.2.1 X next_queue

This process returns an item from the head of a queue. See Figure E4. O

1.2.2 XR_in

This process is the in entry point to the executive router. Each message has to have the
appropriate routing algorithm applied to it before it can be sent to the external world.
This process invokes the executive control out entry point if the message destination is
empty and the appropriate routing algorithm in entry point otherwise. See Figures E4
and E11.

1.2.3 X free_io

This process deallocates an I/O consumer packet by calling the kernel deallocate /O
packet entry point ("K_free_io"). See Figure E4.

1.2.4 X route_junction

This process routes a message to a specified junction branch by routing a copy of the
message to the consumer associated with each route of the branch. For each route in the
junction branch, if it is not the last route, the input message is copied to the route
message ("X_copy_message"). The router in entry point is invoked to route the
message. See Figure E4.

1.2.5 X_add_queue
This process adds an item to the tail of the queue. See Figure E4. O

1.3.1 process_accept

This function processes an ACCEPT packet from an application resource consumer. If
the consumer has a waiting query message ("X_next_queue"), the packet message is set
to the data from the query message, the packet is added to the consumer ready queue
("X_add_queue") and the query message is deallocated ("X_free_message"). Finally,
the kernel link manager out entry point ("K_link_out") is invoked in order to send an
empty acknowledgement packet to the calling process to prevent it from blocking. See
Figures ES and E12.

1.3.2 process_query

This function processes a QUERY packet from an application resource consumer. The
consumer’s reply message queue is checked ("match_query") and the kernel link
manager out entry point ("K_link out") is invoked in order to send an empty
acknowledgement packet to the process to prevent it from blocking. See Figures ES and
E13.

1.3.3 process_reply

This function processes a REPLY packet from an application resource consumer. An
executive message is allocated ("X_new_message"). The message type, source,
signature, destination and data are set. The executive router in entry point ("XR_in") is
invoked to route the reply. The application consumer packet is deallocated
("X_free_user"). The kernel link manager out entry point ("K_link_out") is invoked.
See Figures ES and E14.

1.3.4 process_call

This function processes a CALL packet from an application resource consumer. The
consumer’s reply message queue is checked ("match_query") and if a matching reply is
available it used to satisfy the request. Otherwise, "process_ready" is called to check an
application consumer’s ready packet queue to see if a packet is available for the process.
The application will block if no packets are ready. See Figures ES and E15.

1.3.5 process_receive

This function processes a RECEIVE packet from an application resource consurner. If a
send message is available for the application consumer ("X_next_queue"), the packet
message is set to the data from the send message, the packet is added to the application
ready queue ("X_add_queue") and the send message is deallocated ("X_free_message").
Finally, "process_ready" is called to check an application consumer’s ready packet
queue to see if a packet is available for the process. The application will block if no
packets are ready. See Figures E5 and E16.

1.3.6 process_send

This function processes a SEND packet from an application resource consumer. If the
packet specifies a consumer, then an executive message is allocated
("X_new_message"), the message type, source, signature, destination and data are set
and the message is sent to that consumer ("XR_in").

If the packet does not specify a consumer and the junction branch as specified in the
packet has at least one route, then an executive message is allocated
("X_new_message"), the message type, source, signature, destination and data are set
and the message is routed to that junction branch ("X _route_junction™). In case both the
above fail an error message is reported ("X_report_error").

Finally, the application consumer packet is deallocated ("X_free_user") and the kernel
link manager out entry point ("K_link_out") is invoked. See Figures ES5 and E17.

1.3.7 process_ready

This process checks an application consumer’s ready packet queue to see if a packet is
available for the process. If the function is invoked with a READY packet, the ready
packet is deallocated ("X_free_user").

Next, if a packet is available in the application consumer ready queue ("X_next_queue"),
it passed to the application consumer via the kernel out entry point ("K_link_out").
Also, if the packet has data, the packet data is deallocated ("X_free_buffer”) and ready
application consumer packet is deallocated ("X_free_user").

If a packet is unavailable, the application consumer scheduling is blocked
("process_run2wait"). See Figures E5 and E18.

1.3.8 X_report_error

This process creates an error report message and sends it to the DSM. It allocates
message for an error message ("X_new_message”). The message type, source,
signature, and destination are set. A buffer is allocated for the DSM error command
("X_new_buffer"). The error message is formatted and sent to the DSM ("XR_in"). See
Figure ES.

1.4.1 XM_out

This process is the out entry point to the executive resource manager. If the executive id

is empty, the executive control out entry point is invoked ("xcontrol_out"). Otherwise,

the process finds the resource manager and the local id, and invokes the appropriate
"non

resource manager out entry point ("xnetwork_out", "xio_out" or "xprocess_out"). See
Figures E6 and E19.

2.1.1 X_more_memory

This process expands the size of the executive memory pool by requesting memory from
the kernel memory pool. See Figure E2. O

2.1.2 X_mem_error

This process is invoked by the memory management functions when a memory
management error occurs. Examples of such errors include: memory management
structure corruption, attempts to reallocate or free unallocated memory, and no more
memory faults. See Figure E2. O

2.4.1 X_set_stack

This process preallocates a number of blocks of fixed size, allowing allocation and
deallocation of these blocks with minimal overhead. See Figure E7. O

2.4.2 XR_assign

This process is the assign entry point of the executive router. It is invoked to add a
consumer to the routing consumer tables. First, a consumer is entered in consumer table
("new_consumer™). For each name associated with the consumer, if the name is not in
the table, it is entered ("new_name") and if the name is not local, the executive manager
assign entry point ("XM_assign") is invoked to assign a network path. Next, the
appropriate routing algorithm assign entry point is invoked. Finally, the pending queues
are checked for messages directed to the new names, and if any are found, these are
routed as required ("XR_out"). See Figures E7 and E20.

2.4.3 XR_control

This process is the control entry point of the executive router. If the routing algorithm is
empty, it calls one of the control processes below depending upon the control code. The
control processes include "xr_enter_name" (to enter local executive id for name) and
"xr_set_junction" (to reset consumer junction). Otherwise, the appropriate routing
algorithm control entry point is invoked. Invalid codes however, cause an error message
to be reported ("X_report_error”). See Figures E7 and E21.

2.5.1 X_allocate

This process allocates a contiguous block of memory having at least a specified size.
See Figure E8. O

2.5.2 XRI_simple

This process is the initialization entry point for the simple router. It sets simple routing
entry points in the executive control structure. See Figure E8. O

2.5.3 XRI_nmr

This process is the initialization entry point for the NMR router. It allocates memory for
the NMR routing control ("X_allocate"). It also allocates memory for NMR consumers
and messages ("X_set_stack"). Finally, it sets the NMR routing entry points in the
executive control structure. See Figure ES.

2.6.1 XMI_network

This process is the initialization entry point for the executive network resource manager.
Memory is allocated for the network resource control and link table ("X_allocate").
Next, for each network resource, its link is activated to enable the reception of network
messages from that link ("XM_control" and "K_link_assign"). See Figures E9 and E22.

2.6.2 XML io

This process is the initialization entry point for the executive I/O resource manager.
Memory is allocated for the I/O resource control, link table and resource consumer table
("X _allocate"). Next, for each I/O resource link, the link table entry is initialized. Also,
the entry points in the executive manager control structure are set. See Figure E9.

2.6.3 XMI_process
This process is the initialization entry point for the executive application resource

manager. Memory is allocated for the application resource control, link table and
resource consumer table ("X _allocate"). Next, for each application resource link, the

link table entry is initialized. Also, the entry points in the executive manager control
structure are set. See Figure E9.

1.1.2.1 new_name

This process creates a new entry in the name routing tables and initializes it. A name
structure is allocated. If the name id is greater than the name index, the latter is
reallocated ("X _reallocate"). The name data structure is entered into the table and
initialized. Finally, if the consumer id is defined, the name is linked to the consumer
name list ("link name"). See Figures E10 and E23.

1.1.2.2 X next_query

This process allocates a data buffer ("X_new_buffer") and initializes it as a system
command by setting the command header parameters. See Figure E10.

1.1.2.3 XC_query_dsm

This process sends a query message to the DSM. It allocates a message for query
("X_new_message"). The message type, source, data, signature, and destination are set.
Next, it is added to the outstanding query queue ("X_add_queue") and the message is
sen‘{ by invoking the executive router in entry point ("XR_in"). See Figures E10 and
E24.

1.1.2.4 X _add_message

This process adds a message to the out pending queue. See Figure E10. O

1.1.2.5 invoke routing alg. out point

This process looks up the routing algorithm for the message, and invokes the out entry
point of the appropriate routing algorithm. Currently, there are 2 routing algorithms
being used: simple and NMR. Thus, this process calls either "xsimple_out" or
"xnmr_out". See Figure E10.

1.2.2.1 xcontrol_out

This process is the out entry point for the executive control component. If the message
is a reply message, it is sent to the DSM as a reply for the query ("query reply").
Otherwise, the message is processed locally as either a DSM or an executive command
("set command"). See Figures E11 and E25.

1.2.2.2 invoke routing alg. in point
This process looks up the routing algorithm for the message destination, and invokes the
in entry point of the appropriate routing algorithm. Currently, there are 2 routing

algorithms being used: simple and NMR. Thus, this process calls either "xsimple_in" or
"xnmr_in". See Figure E11.

1.24.1 X copy_message
This process allocates an executive message ("X_new_message") and copies the input
message to it ("X_copy_buffer"). See Figure E4.

1.3.1.1 X free_message

This process deallocates an executive message. See Figure E12. O

1.3.1.2 K link_out

This process is the same as the process 3 in Section 4.1 above. See Figures E12 and
K14.

1.3.2.1 match_query

This process checks the application consumer reply message queue for a reply to a given
query or call. If the queue contains a reply for the query ("X_find_signature"), packet
message data is set to reply message, the packet is added to the application consumer
ready packet queue ("X_add_queue") and the reply message is deallocated
("X_free_message").

Otherwise, the packet is added to the application consumer query packet queue

("X_add_queue") and a query message is sent as indicated by the packet message data
("send consumer query packet"). See Figures E13 and E26.

1.3.3.1 X_free_user
This process deallocates an application consumer packet by invoking the kernel
deallocate application packet entry point ("K_free_user”). See Figure E14.

1.3.7.1 X_free_buffer
This process deallocates a data buffer by decrementing the number of links to the buffer.

If the link count is 0, the kernel deallocate buffer entry point ("K_free_buffer") is called.
See Figure E18.

1.3.7.2 process_run2wait

This process disables the scheduling of an application consumer, blocking that
consumer. The next application consumer with scheduling enabled is scheduled
("next_process"). See Figure E18.

1.3.8.1 X_new_buffer

This process allocates a data buffer by invoking the kernel allocate buffer process
("K_new_buffer"). See Figure ES5.

1.4.1.1 xnetwork_out

This process is the out entry point for the network resource manager. It creates a
network packet from the message data and invokes the kernel out entry point
("K_link_out") to transmit the packet. If the message has data, the message data is
deallocated ("X_free_buffer"). Finally, the executive message is deallocated
("X _free_message"). See Figures E19 and E27.

1.4.1.2 xio_out

This process is the out entry point for the I/O resource manager. If the message type is
SEND, the send message is processed ("xio_send"), and if the message type is QUERY,
the query message is processed ('xio_query"). For invalid message types, an error
message is reported ("X_report_error"). See Figures E19 and E28.

1.4.1.3 xprocess_out

This process is the out entry point for the application resource manager. Depending
upon the type of the message (SEND, QUERY or REPLY), the appropriate process is
called to process the message ("process_out_send”, '"process_out_query" or
"process_out_reply"). For invalid message types, an error message is reported
("X_report_error"). See Figures E19 and E29.

2.4.2.1 new_consumer

This process creates a new entry in the consumer routing tables, and initializes it. If the
consumer id is greater than the consumer index size, space for the latter is reallocated
("X _reallocate"). See Figure E20.

2.4.2.2 XM_assign

This process is the assign entry point of the executive manager. It looks up the local
resource id, and if one is found, the appropriate resource manager assign entry point is
invoked ("xnetwork_assign", "xio_assign" or "xprocess_assign"). Otherwise, an error
message is reported ("X_report_error"). See Figures E20 and E30.

2.4.2.3 invoke routing alg. assign entry pt.
This process invokes the assign entry point of the routing algorithm associated with that

consumer. Currently, there are 2 routing algorithms being used: simple and NMR.
Thus, this process calls either "xsimple_assign" or "xnmr_assign". See Figure E20.

2.4.3.1 xr_enter_name
This process assigns an executive identifier to a specified name. It looks up the name
from the input name id. If the name is not defined, an error message is reported
("X_report_error"). Otherwise, the executive manager assign entry point ("XM_assign")
is invoked. See Figure E21.

2.4.3.2 xr_set_junction
This process resets a consumer junction. With the executive id for the name, it invokes
the executive manager control entry point. See Figure E21.

2.4.3.3 invoke routing alg. control entry pt.
This process invokes the appropriate control entry point of the routing algorithm.
Currently, there are 2 routing algorithms being used: simple and NMR. Thus, this
process calls either "xsimple_control" or "xnmr_control". See Figure E21.

2.6.1.1 XM_control
This process is the control entry point of the executive manager. If the executive id is
not empty, the appropriate resource manager control entry point is invoked
("xnetwork_control", "xio_control" or "xprocess_control"). Otherwise, if the control
code is ENTER, "xm_enter" is called to enter the executive id mappings. For all invalid
codes an error message is reported ("X_report_error"). See Figures E22 and E31.

2.6.1.2 K link_assign

This is the same as the process 4 in Section 4.1. See Figures E22 and K15.

1.1.2.1.1 X_reallocate

This process reallocates an allocated block of memory. See Figure E23. O

1.1.2.1.2 enter and init. name

This process enters the name data structure in the name index by name id and initializes
the name data structure fields. Also the name state is set. See Figure E23. O

1.1.2.1.3 link name

This process links the new name to the consumer name list, if the consumer id is
defined. See Figure E23. O

1.1.2.5.1 xsimple_out

This process is the out entry point to the simple router. The received messages are
submitted to the executive resource manager for transmission to the appropriate active
resource ("XM_out"). See Figure E10.

1.1.2.5.2 xnmr_out

This process is the out entry point to the NMR router. First, the NMR consumer
message list is checked for another message copy. If no other copy is found, the first
message copy is processed ("xnmr_out_new"). If the message copy has a valid message,
it is processed ("xnmr_out_valid"). If the message copy does not have a valid message,
a message copy stating that no valid message is available is processed
("xnmr_out_error"). Finally, if the message is the last expected copy, message reception
is completed ("xnmr_done"). See Figures E10 and E32.

1.2.2.1.1 query reply

This process initially, finds a query for reply ("X_find_signature"). If the query is not
found, an error message is reported ("X_report_error"). Otherwise, a notify function
associated with the query is invoked, query request is freed, message data is deallocated
("X _free_buffer") and the message is deallocated ("X _free_message"). See Figure E25.

1.2.2.1.2 set command
This function processes the message data as a command. If the command is to DSM, it
is copied ("X_copy_message") and relayed to the DSM ("XR_in"). Otherwise, the local
executive command is processed ("X_command"). Finally, the message data is
deallocated ("X_free_buffer") and the message is deallocated ("X_free_message"). See
Figure E25.

1.2.2.2.1 xsimple_in
This process is the in entry point to the simple router. Each message is sent to its
destination consumer ("X_route_consumer”). See Figure E11.

1.2.2.2.2 xnmr_in

This process is the in entry point to the NMR router. Each message is copied and sent to
its destination consumer ("X_route_consumer"). See Figure E11.

1.24.1.1 X_copy_buffer

This process copies a data buffer by incrementing the link count to ensure that the buffer
will not be actually deallocated untl all copies are deallocated. See Figure E4. O

1.3.2.1.1 send consumer query packet

This process sends a consumer query packet. If the packet specifies a consumer, an
executive message is allocated ("X_new_message"), the type, signature, source,
destination and data are set for the message and the reply is routed ("XR_in").

If the packet does not specify a consumer and the packet’s junction branch has at least
one route, then an executive message is allocated ("X_new_message"), the type,
signature, source, destination and data are set for the message and the message is routed
to the junction branch ("X_route_junction"). If neither of the above conditions are true,
an error message is reported ("X_report_error"). See Figure E26.

1.3.3.1.1 K_free_user

This is the same as the process 5 in Section 4.1. See Figure E14. O

1.3.7.1.1 K_free_buffer

This is the same as the process 6 in Section 4.1. See Figure E18. O

1.3.7.2.1 next_process

This process checks if an application consumer is in the ready queue ("X_next_queue").
If so, the application consumer is scheduled ("K_link_out"). Also, if the scheduled
application consumer has a ready packet with data, the packet data is deallocated
("X_free_buffer") and the application consumer packet is deallocated ("X_free_user").
See Figures E18 and E33.

1.4.1.2.1 xio_send

This function processes a SEND output message. If the message has associated data, the
I/O packet data is set to it, kernel out entry point is invoked ("K_link_out"), and the
message data is deallocated ("X_free_buffer"). Finally, the executive message is
deallocated ("X_free_message"). See Figure E28.

1.4.1.2.2 xio_query
This function processes a QUERY output message for an I/O resource consumer. First,

it checks if an I/O packet is in the data queue ("X _next_queue"). If so, a reply message
is created, the message is routed ("XR_in") and I/O data packet is deallocated

("X _free_io"). If there is no I/O packet in the data queue, the query message is added to
the resource consumer request queue ("X_add_queue"). See Figure E28.

1.4.1.3.1 process_out_query

This function processes a QUERY output message by checking if the application
consumer has an outstanding accept packet. If the application consumer has an accept
packet, the accept packet is added to the ready packet queue ("X_add_queue"), the
executive query message is deallocated ("X_free_message") and the application
consumer scheduling is enabled (if it was disabled) ("process_wait2ready”). If there is
no accept packet, the query message is added to the query message queue
("X_add_queue"). See Figures E29 and E34.

1.4.1.3.2 process_out_reply

This function processes a REPLY output message by checking if the application
consumer has a query or call packet outstanding for the reply. First, it checks if the
application consumer has a query for reply ("X_find_signature"). If it does, the query
packet is added to the ready packet queue ("X_add_queue”), the executive reply
message is deallocated ("X_free_message") and the application consumer scheduling is
enabled (if it was disabled) ("process_wait2ready"”). If there is no query packet, the
re%ly r:%essage is added to the reply message queue ("X_add_queue"). See Figures E29
and E35.

1.4.1.3.3 process_out_send

This function processes a SEND output message by checking if the application
consumer has an outstanding receive packet. If the application consumer has a receive
packet, it is added to the ready packet queue ("X_add_queue"), the executive send
message is deallocated ("X_free_message") and the application consumer scheduling is
enabled (if it was disabled) ("process_wait2ready”). If there is no receive packet, the
ser:ld mgssage is added to the send message queue ("X_add_queue"). See Figures E29
and E36.

2.4.2,2,1 xnetwork_assign

This process is the assign entry point of the network resource manager. If the link to
resource is found and the network path unassigned, the executive manager control entry
point ("XM_control") is invoked to assign executive id. Otherwise, an error message is
reported stating that the resource is unavailable ("X_report_error"). See Figure E30.

2.4.2.2.2 xio_assign

This process is the assign entry point of the I/O resource manager. If the link to the
resource is found, memory is allocated for the resource consumer structure
("X _allocate™), resource consumer table is expanded if needed ("X_reallocate"),
executive manager control entry point is invoked to enter the consumer ("XM_control")

and the kernel link assign entry point is invoked to activate the resource
("K_link_assign"). Otherwise, an error message is reported stating that the resource is
unavailable ("X _report_error"). See Figures E30 and E37.

2.4.2.2.3 xprocess_assign

This process is the assign entry point of the application resource manager. If the link to
the resource is found, memory is allocated for the resource consumer structure
("X_allocate"); resource consumer table is expanded if needed ("X_reallocate");
executive manager control entry point is invoked to enter the consumer ("XM_control");
kernel link assign entry point is invoked to activate the resource ("K_link_assign") and
the resource consumer scheduling is enabled (“process_wait2ready"). Otherwise, an
error message is reported stating that the resource is unavailable ("X_report_error"). See
Figures E30 and E38.

2.4.2.3.1 xsimple_assign
This process is the assign entry point of the simple router. It allocates memory for the
simple consumer local data ("X_allocate") and initializes the data which is specific to
the simple routing algorithm. See Figure E20.

2.4.2.3.2 xnmr_assign
This process is the assign entry point of the NMR router. It initializes the data which is
specific to the NMR routing algorithm. See Figure E20. O

2.4.3.3.1 xsimple_control
This process is the control entry point of the simple router. An error message is reported
for an invalid control code ("X_report_error"). Note: currently, no simple control
functions are implemented. See Figure E21.

2.4.3.3.2 xnmr_control
This process is the control entry point of the NMR router. An error message is reported
for an invalid control code ("X_report_error). Note: currently, no NMR control
functions are implemented. See Figure E21.

2.6.1.1.1 xm_enter
This process allocates a new executive id and makes entries for the resource manager

and the local id in the manager mapping tables. If there are no more available executive
ids, the tables are expanded ("X _reallocate"). See Figure E31.

2.6.1.1.2 xnetwork_control

This process is the control entry point of the network resource manager. An error
message is reported for an invalid control code ("X_report_error"). Note: currently, no
control functions are implemented. See Figure E31.

2.6.1.1.3 xio_control

This process is the control entry point of the I/O resource manager. If the control code is
JUNCTION, "xi_reset_junction” is called to reset the I/O resource consumer junction.
An error message is reported for an invalid control code ("X _report_error"). See Figure
E31.

2.6.1.1.4 xprocess_control

This process is the control entry point of the application resource manager. If the
control code is JUNCTION, "xp_reset_junction” is called to reset the application
consumer junction. An error message is reported for an invalid control code
("X_report_error"). See Figure E31.

1.1.2.4.2.1 xnmr_out_new

This function processes the first copy of a message received from an NMR consumer. It
initializes an NMR structure. If N is 1, the message is added to the valid copy queue
("X_add_queue") and a valid message is created ("xnmr_ready"). Otherwise the
message is added to the error copy queue ("X_add_queue"). See Figure E32.

1.1.2.4.2.2 xnmr_out_error

This function processes a message from an NMR consumer when no valid copy of the
message is available. First, it checks the error copy queue for the exact copy message.
If the exact copy is found, it is added to the valid copy queue ("X_add_queue"); deleted
from the error copy queue ("X_next_queue"). Next, if a valid copy is available, a valid
message is created ("xnmr_ready"”). Otherwise, the message is added to the error copy
queue ("X_add_queue"). See Figure E32.

1.1.2.4.2.3 xnmr_out_valid
This function processes a message from an NMR consumer when a valid copy of the
message is available. If the message same as the valid copy, it is added to the valid copy
queue; otherwise it is added to the error copy queue ("X_add_queue"). See Figure E32.
1.1.2.4.2.4 xnmr_done

This process is invoked when the message reception is complete. If the NMR message
has error copies, then for each copy in the error queue ("X_next_queue"), an error

message is reported to the DSM (“X_report_error") and the error copy is added to the
valid queue ("X_add_queue").

If valid copy count is not equal to expected copy count, then for each NMR consumer
name, if a copy is found, the message and data are deallocated ("X_free_buffer" and
"X_free_message"). Otherwise, an error message is reported to the DSM
("X _report_error") stating that the message is missing.

If valid copy count is equal to expected copy count, then for each message in the valid
queue, the message and data are deallocated ("X_free_buffer" and "X_free_message").
See Figures E32 and E42.

1.2.2.1.1.1 X find_signature

This process searches a queue for a message containing the given signature. See Figure
E25.0O

1.2.2.1.2.1 X_command

This function processes a system command directed to the executive. One of the
following processes is called based on the control code: "X_command" (to process a list
of commands); "XR_assign" (to add a consumer); "XR_control" (add a name);
"list_status" (to report executive status) or "X_report_error" (to report an error for an
invalid code). See Figure E25.

1.2.2.2.1.1 X route_consumer

This process sends a message to a specified consumer ("XR_out") by sending a copy of
the message ("X_copy_message") to each name associated with the consumer. See
Figures E11 and E39.

1.4.1.3.1.1 process_wait2ready

This process enables the scheduling of an application consumer and adds it to the ready
queue ("X_add_queue"). The next application process is scheduled ("'next_process").
See Figure E34.

2.6.1.1.3.1 xi_reset_junction

This process resets the junction for an I/O resource consumer. It accesses the I/O
resource consumer from the resource consumer table; reallocates the I/O resource
consumer to hold new junction ("X _reallocate") and copies resource consumer junction
from input junction. See Figure E31.

2.6.1.1.4.1 xp_reset_junction

This process resets the junction for an application resource consumer. It accesses the
application resource consumer from the resource consumer table; reallocates the
application consumer to hold new junction ("X_reallocate") and copies consumer
junction from input junction. See Figure E31.

1.1.2.4.2.1.1 xnmr_ready

This process is called when a valid message is available from an NMR consumer. The
valid message is copied ("X_copy_message") and is routed ("XM_out"). Next, for each
NMR message in the NMR consumer message list, if the message destination is the
same as the valid message and the message signature is less than the valid message
signature by a predetermined constant, the message reception is completed
("xnmr_done"). See Figures E32 and E41.

1.2.2.1.2.1.1 list_status

This process creates and sends a reply message to a request for the executive status. A
message data buffer ("X_new_buffer") and a message ("X_new_message") are allocated
for the reply. The type, signature, source, destination and data are set for the reply
message. Executive router in entry point ("XR_in") is invoked to route the reply
message. See Figures E25 and E40.

LI

4.3 Distributed System Manager & Shell Processes
The following describes the processes identified in the distributed system manager (DSM) of
the operating system. The corresponding structure diagrams are shown in Figures D1
through D15.
Main (DSM)
This is the distributed system manager (DSM) mainline process. It calls "sys_accept" to
set up the system to accept commands. Next, it repeats the two steps "sys_read" (i.e., to

read commands from standard input) and "mgr_command" (to execute the command).
See Figure D1.

1. sys_accept

This process calls "set user packet buffer" to set the user packet data and then calls
"tx_packet" to send the user packet to the system. See Figure D1.

2. sys_read

This process reads command from standard input. See Figure D1. O

3. mgr_command

Depending upon the type of the command, this process calls the respective process to
execute the command. For example, "mc_boot" is called if the command is to initialize
DSM with configuration boot data and "mc_define" is called to define a consumer and
so on. See Figures D1 and D2.

1.1 set user packet data
This process sets the various fields in the data packet with the user packet data. The

packet type is set to "UPKT_ACCEPT" and the data length to 0. Also set are the
address of the reply buffer and its length. See Figure D1. O

1.2 tx_packet
This process checks if the data packet has any data and if so, it calls "U_copy" to copy
packet data to user packet buffer. Next, it calls "write to pipe to os" to write the user
packet buffer to pipe to operating system. See Figure D1.

3.1 mc_list

For each command in the command list, this process calls the respective process to
execute that command. If the command in the list is itself a list of commands, it calls

3.2

3.3

34

3.5

3.6

itself. This process is repeated until all commands are executed. See Figures D2 and
D3.

mc_boot

This process is the boot entry point for the distributed system manager. It performs the
following functions. Memory management, stack for messages, buffer to write to execs
and acknowledgement buffer are set up by a call to "set up memory, stack & buffer
sizes". Next, "allocate spaces for tables" is called to allocate spaces for managers,
routers, resources, executives and consumers tables. The system id is initialized to that
in the configuration.

Each manager is then added to the manager table (repeated calls to "mc_add_manager").
Similarly, each router and resource is added to the corresponding table (repeated calls to
"mc_add_router" and "mc_add_resource”). Not only is each executive added to the
executive table, each executive’s link is also added to the executive’s link table (a call to
"add_execs"). The DSM is added to the consumer table, and initialized with
configuration data and each name required for DSM is entered in system and consumer
tables ("enter_name & enter_consumer"). Executives with DSM resource are assigned
to DSM consumer ("assign_resource"). Finally, space is allocated for junctions and the
DSM consumer state is initialized. See Figures D2 and D4.

mc_unknown_con

This process adds a consumer address to an executive which must communicate with it.
It gets the consumer table entry by calling "get consumer”. Next, "assign_network" is
called to assign networks between the consumer and the given executive. The process
"prepare acknowledgement” is called to prepare an ack with "add consumer" command.
Figally, the consumer data is added to the buffer ("add consumer™"). See Figures D2 and
D5.

mc_unknown_name

This process has not been implemented. See Figure D2. O

mc_define

This process is used to define a consumer. It calls "find resource” to look up the
resource from the system resource table. If the resource is not found, an error message is
displayed. Else, a new consumer is created and entered into the system ("create & enter
consumer"). See Figures D2 and D6.

mc_link

This process is used to define a link from one consumer to another. It calls "find
consumer” to get the consumer (to be linked to this consumer) from the system

3.7

3.8

3.9

consumer table. If the consumer is not found, an error message is displayed. Otherwise,
process "link consumer” links the consumer. See Figures D2 and D7.

mc_run

This process is used to begin the execution of a consumer. It calls "find consumer"” to
get the consumer from the system consumer table. If the consumer is not found, an error
message is displayed. Otherwise, the consumer’s address is added to all executives
which must communicate with it ("run_tos") and execution of all consumer names is
begun ("run_names"). See Figures D2 and DS.

mc_get_consumer

This process sends an acknowledgement to the calling process with the status of the
given consumer. It calls "find consumer" to get the consumer from the system consumer
table. If the consumer is not found, it calls "prepare ack" to prepare an empty
acknowledgement buffer. Otherwise, if the consumer does not have a junction, an
empty one is allocated for it. Consumer data is placed in the buffer and an appropriate
acknowledgement buffer is prepared. See Figures D2 and D9.

mc_get_cpu

This process sends an acknowledgement to the calling process with the status of the
given executive. It calls "find executive" to get the id of the executive from the system
executive table. If the executive is not found, it calls "prepare ack" to prepare an empty
acknowledgement buffer. Otherwise, a request status command buffer is prepared and
sent to the executive. See Figures D2 and D10.

3.10 mc_exec_error

This process prints out an error message with the given executive id and the error code.
See Figure D2. O

3.11 mc_undefined

This process prints out a message indicating that the received command is undefined.
See Figure D2. O

1.2.1 U_copy

This process copies a specified number of bytes from a source to a destination. See
Figure D1. O

1.2.2 write to pipe to os

This process writes the user packet buffer to pipe to operating system. See Figure D1.
@)

3.2.1 set up memory, stack & buffer sizes .
This process sets up the following parameters required for system boot: memory

management with 4 Kbytes, a stack for messages, a 256 byte buffer to write to execs, a
256 byte acknowledge buffer. See Figure D4. O

3.2.2 allocate spaces for tables

This process allocates space for tables of the following: managers, routers, resources,
executives, consumers and their names. See Figure D4. O

3.2.3 mc_add_manager

This process allocates space for the new manager entry and initializes entry with
manager configuration data. It also sets the resource count to 0 and adds the entry to the
table of managers. See Figure D4. O

3.2.4 mc_add_router

This process allocates space for the new router entry and initializes entry with router
configuration data. The entry is added to the table of routers and the new entry index to
the beginning of the system router list. See Figure D4. O

3.2.5 mc_add_resource

This process allocates space for the new resource entry and its links, and initializes entry
with resource configuration data. The entry is added to the table of resources and the
new entry index to the beginning of the system resource list and resource manager’s
resource list. See Figure D4. O

3.2.6 add execs
For each executive in the configuration, this process adds the executive to the executive

table and the list ("mc_add_exec"), and adds all the executive’s links to the executive’s
link table ("mc_add_link"). See Figure D4.

C-50

3.2.7 enter_name & enter_consumer

For each name required for the DSM, this process enters the name in system and
consumer tables. Also, the DSM is added to the consumer table, and initialized with
configuration data. See Figure D4. O

3.2.8 assign_resource

\

This process assigns executives with the available resource to a consumer. The
appropriate assign process ("assign_io" or "assign_appl") is called depending on the
manager id. For any other id an error message is displayed. See Figures D4 and D11.

3.3.1 get consumer
This process gets the consumer name table entry from the given name id. It then gets

the consumer table entry from the id of the consumer associated with the name. See
Figure D5. O

3.3.2 assign_network

This process assigns networks between the given executive assigned to the consumer
and the consumer’s other assigned executives.

The process gets the executive table entry for the given executive id. If the executive is
in the consumer’s name mask, it is removed from the mask. Next, "check & assign
network" is called to test network executive and consumer name masks and if possible,
assign a network. If no network is assigned at the end of all the testing and assigning, an

error message is displayed. Finally, the network manager’s resource list is sorted
("sort_networks"). See Figures D5 and D12.

3.3.3 prepare acknowledgement

This process prepares an appropriate acknowledgement buffer. See Figure D5. O

3.3.4 add consumer

This process places the consumer id, router type, the name count and the consumer name
list in the buffer. See Figure D5. O

3.5.1 find resource

This process looks up the resource from the system resource table to get the id. See
Figure D6. O

3.5.2 display error msg

This process displays the error message given to it as its input (e.g., resource not found
message, etc.). See Figure D6. O

3.5.3 create & enter consumer

This process creates a new consumer entry. It calls "find router” to get the router id. If
the router is not found, an error message is displayed. Otherwise "enter new consumer”
is called to do further processing. See Figure D6.

3.6.1 find consumer

This process looks up consumer in the system resource table to get the id. See Figure
D7.

3.6.2 link consumer

This process initially gets the consumer table entry and the junction data. It allocates
space for junction and initializes it. For each route up to the given junction route count,
it calls "get junction to destination" which tries to get a link from the source to the
destination. Next, for each route in junction, a junction is set up between the consumer
and the destination ("set_junction"). Finally, if the consumer already had junctions
defined, the old junction space is freed and the new one is reset if the consumer is active
("free old & reset new junction"). See Figure D7.

3.7.1 run_tos

This process adds the consumer address to all executives which must communicate with
the given consumer. First, it gets all executives which will communicate with the
consumer, excluding those on which the consumer’s names will execute. Next, the
consumer id, router type and name count data are filled into a buffer.

For each executive and for each name in the consumer’s name list, the name’s id is
placed in the command buffer. If the name is on the current executive, "name on current
exec." is called. Otherwise, "add consumer to exec.” will add the consumer address to
the executive. Finally a command is issued to the current executive. See Figures D8
and D13.

3.7.2 run_names

This process starts the execution of each name for a given consumer, after "run_tos"
(above) has established all links. See Figure D8. O

3.8.1 place consumer data in buffer

This process places the consumer data such as: id, router type, name count, link data and
junction data in the buffer. See Figure D9. O

3.9.1 find executive

This process looks up the executive name in the system executive table to get its id. See
Figure D10. O

3.9.2 prepare & send reply to executive

This process gets the system message from the stack. It then prepares a request status
command buffer to send to the executive. Finally, it sends a query with cpu report as the
reply function to the executive. See Figure D10. O

3.2.6.1 mc_add_exec

This process adds a new executive entry to the executive list. It allocates space for the
new entry and initializes it with executive configuration data. Next it adds the entry to
the executives table and adds the entry index to the beginning of the system executive
list. Finally, it calls "enter_name & enter_consumer" to add a consumer entry for the
executive and a name entry for the executive consumer into the respective tables. See
Figure D4,

3.2.6.2 mc_add_link

This process gets the id of the manager for the resource to be linked. It either calls the
appropriate link process ("network_link", "io_link" or "appl_link") for a valid manager
id or displays an error message for an invalid id. See Figures D4 and D14.

3.5.3.1 find router

This process looks up the given router name in the system router table to get the id. See
Figure D6. O

3.5.3.2 enter new consumer

Each consumer name is entered into the system and consumer tables (repeated calls to
"enter_name & enter consumer"). Next, executives with available resource are assigned
to the consumer ("assign_resource"). If all names were not successfully assigned, an
error message indicating a resource limitation is displayed. Networks are established
between executives of the consumer ("assign_network"). Finally, the new consumer is
entered into the table. See Figure D6.

3.6.2.1 get junction to destination

For each route up to the given junction route count, this process looks up the destination
consumer in the table ("find consumer”). If the consumer was not found, an error
message is displayed. Otherwise, "set up junction list from branch" gets junction list to
destination. See Figure D7.

3.6.2.2 set_junction

This process assigns networks between the executives of the given and the destination
consumers. Note that the cases where the destination and the source reside on the same
executive are excluded. See Figure D7. O

3.6.2.3 free old & reset new junction

This process frees the space allocated for the old junction definition. If the consumer is
active, the junction is reset. See Figure D7. O

3.2.8.1 assign_io

This process assigns executives with available I/O resource to a consumer. First it calls
"get resource” to get required I/O resource entry from the corresponding table. For each
consumer’s name, "find exec. for resource” tries to find the executive linked to the given
resource. If an executive is found, it is assigned to the consumer ("assign exec. to
consumer") and the executive table is sorted ("sort_execs"). See Figures D11 and D15.

3.2.8.2 assign_appl

This process assigns executives with available process resource to a consumer. As can
be seen in the code for this process (FTDCS Operating Systems Revisions: Source Code
Listings), it is exactly the same as that of "assign_io" making the exact same calls. See
Figure D11. O

3.3.2.1 check & assign network

For each executive in the network’s executive and consumer’s name masks, and for each
name in the consumer’s name list, this process places the network id in executive’s name
map, if name’s executive is in both network’s executive and consumer’s name masks.
The network load count is incremented. See Figure D12. O

3.3.2.2 sort_networks

This process does a partial sort of networks in the system resource table, based on their
load counts. Networks are sorted in the increasing order of their load counts, so that
when new consumers are defined, the one with the smallest load is used. See Figure
D12. O

3.7.1.1 name on current exec.

Since the consumer name is on the current executive, its address is not added to the
executive. The local and unit ids in the command buffer are both placed as EMPTY.
See Figure D13. O

3.7.1.2 add consumer to exec.

This process places the local id for current executive in the command buffer. If the local
id is not empty, the link for name’s executive and resource is also placed in the buffer.
See Figure D13. O

3.2.6.2.1 network_link

This process adds network link entry to an executive’s link list. It gets the network
resource entry from system resource table and the executive entry from the system
executive table. It then increments the network’s executive count if network resource
mask does not include this executive. It adds the executive to the network’s executive
mask and the executive id to the network’s link list. Finally, it calls "add all other
execs" to connect all executives connected to this executives network. See Figure D14,

3.2.6.2.2 io_link

This process adds I/O link entry to an executive’s link list. It gets the I/O resource entry
from system resource table and the executive entry from the system executive table. It
then increments the resource’s executive count if IO resource mask does not include this
executive. Finally, it adds the executive to the resource’s executive mask and the
executive id to the resource’s link list. See Figure D14, O

3.2.6.2.3 appl link
This process adds a process link entry to an executive’s link list. It gets the process
resource entry from system resource table and the executive entry from the system
executive table. It then increments the resource’s executive count if the process resource
mask does not include this executive. Finally, it adds the executive to the resource’s
executive mask and the executive id to the resource’s link list. See Figure D14. O
3.2.8.1.1 get resource
This process gets the resource table entry for the consumer’s required resource. See
Figure D15. O

3.2.8.1.2 find exec. for resource

This process finds an executive linked to the required resource and in given mask. See
Figure D15. O

3.2.8.1.3 assign exec. to consumer

This process inserts data for the executive into the name list entry. The name is added to
the beginning of the executive’s name list and the executive to consumer’s mask.
Finally, the assign and load counts are incremented. See Figure D15. O

3.2.8.1.4 sort_execs

This process does a partial sort of executives in the system executive table, based on
their load counts. Executives are sorted in the increasing order of their load counts, so
that when new consumers are defined, the one with the smallest load is used. See Figure
D15.0O

3.6.2.1.1 set up junction list from branch

If the route’s branch id is different from the previous, a junction list from the branch is
set up. The branch’s route base is initialized to the route count and the latter set to 0.
See Figure D7. O

3.2.6.2.1.1 add all other execs

For each entry in the system executive list, this process gets the executive entry from the
system executive table. If this executive is assigned to the network, then all other
executives in network’s executive mask are added to this executive’s executive mask.
See Figure D14. O

In addition to the above processes, there is a shell application process connected to a system
console. This provides an interface to the DSM, in order to issue commands to the operating
system and to display the system status reports. The corresponding structure diagrams are
shown in figures H1 through HS.

Main (shell)
This is the mainline for the operating system shell. It prompts the user for a shell
command, and when the user has entered a line, the appropriate routine is called to
process it. A list of commands is displayed ("display commands"), if the user inputs a
wrong command. See Figure H1.

1. sh_define
This function processes a "define consumer” shell command. It reads the consumer,

resource, router names and name count, places the define consumer command in the
buffer and sends the buffer to the DSM ("sys_command"). See Figure H1.

2. sh_link
This function processes a "link consumer” shell command. It reads the consumer name
for each branch and route, places the link consumer command in the buffer and sends
the buffer to the DSM ("'sys_command"). See Figure H1.

3. sh_run
This function processes a "run consumer"” shell command. It reads the consumer name,
places the run consumer command in the buffer and sends the buffer to the DSM
("sys_command"). See Figure H1.

4. sh_status
This function processes a "status" shell command. It reads the choice of the status
information and calls the appropriate process. A list of choices is displayed ("display
choices") if the user specifies a wrong choice. See Figures H1 and H2.

5. display commands

This process displays a list of shell commands available and how to invoke each of
them. See Figure H1. O

1.1 sys_command

This process sends a command to the DSM. If an acknowledgement buffer is not
provided, the command is sent to the DSM ("sys_write"). Otherwise, the command is

C-57

4.1

4.2

4.3

4.4

4.5

sent to the DSM and the acknowledgement read back ("sys_call"). See Figures H1 and
H3.

exec_status

This function processes a."status cpu” shell command. First, it reads the name of the
CPU and prepares the command to get the executive status information. Next, it sends
the command to the DSM and waits for a response ("sys_call"). If the reply buffer is not
empty, the executive status information is displayed ("display exec. status"). Otherwise,
a message is displayed indicating the failure to find the executive ("display exec. not
found"). See Figures H2 and H4.

name_status

This process shows the name status information. It reads the consumer name, and
prepares the command to get the name status information. Next, it sends the command
to the DSM and waits for a response ("sys_call"). If the reply buffer is not empty, the
name status information is displayed ("display name status"). Otherwise, a message is
displayed indicating the failure to find the name ("display name not found"). See
Figures H2 and HS.

map_status

This process shows the executive network map information. It reads the executive, and
prepares the command to get the executive network map status information. Next, it
sends the command to the DSM and waits for a response ("sys_call"). If the reply buffer
is not empty, the executive network map status information is displayed ("display map
status"). Otherwise, a message is displayed indicating the failure to find the executive
("display map not found"). See Figures H2 and H6.

consumer_status

This function processes a "status consumer" shell command. First, it reads the name of
the consumer and prepares the command to get the consumer status information. Next,
it sends the command to the DSM and waits for a response ("sys_call"). If the reply
buffer is not empty, the consumer status information is displayed ("display consumer
status"). Otherwise, a message is displayed indicating the failure to find the consumer
("display consumer not found"). See Figures H2 and H7.

display choices

This process displays a list of choices whose status information can be shown, and how
to invoke them. See Figure H2. O

1.1.1 sys_write

This process sends a message to another consumer. See Figure H3. O

1.1.2 sys_call
This process sends a query message to a consumer, and waits for reply. It sends the user
packet to the specified channel ("tx_packet"), puts the process in a ready state and waits
for a reply ("wait_event"). See Figures H3 and HS.

4.1.1 display exec. status
This process displays the executive status information. This includes: executive
memory, router and manager information; also the kernel memory information. See
Figure H4. O

4.1.2 display exec. not found
This process displays a message which states that the CPU (input by the user) was not
found. See Figure H4. O

4.2.1 display name status
This process displays the name status information. This includes: consumer, executive
and resource names, and its external addresses. See Figure HS. O

4.2.2 display name not found
This process displays a message which states that the name (input by the user) was not
found. See Figure H5. O

4.3.1 display map status

This process displays the executive network map information. See Figure H6. O

4.3.2 display map not found

This process displays a message which states that the executive name (input by the user)
was not found. See Figure H6. O

4.4.1 display consumer status

This process displays the consumer status information. This includes: the consumer’s
router type, its executive, its name on the executive, the number of branches and routes
it has, etc. See Figure H7. O

4.4.2 display consumer not found

This process displays a message which states that the consumer name (input by the user)
was not found. See Figure H7. O

1.1.2.1 wait_event

This process is called whenever the calling process is ready to accept input messages. It
waits for a receive packet from the operating system ("rx_packet"). If a notification
function is indicated, it is invoked. Otherwise, the ready state is cleared. Finally, even
after packet is processed, if the process is still in ready state, a user packet is sent to the
operating system ("tx_packet"). See Figure H8.

1.1.2.1.1 rx_packet
This process is used to receive a user packet from the operating system to a process. The

user packet is read from pipe from operating system. If the packet has reply data, it is
copied from the user packet buffer. See Figure H8. O

Main

(simulator)

how sim st
P! st S ¢ st . sm St st - -
' = = st_io — st_go ||st_node — T —
o system| nemory _ console st_file g _ show | ldisable ! | enable -ommand cpu_ free_
= ist stop system
1 2 3 4 5 6 7 8 9 10 11 12 13

Figure S1: Main (Simulator)

st_sytem

st_set_system

1.1

st_sw_config

1.2

Figure S2: st_system

st_sys_config

1.3

2.2

show memory
status
y

y
2
st_memor
C-63

st_memor

2.1
Figure S3:

get memory
status

st_io

res. not 10

display

error message

error
(Fig. S4)

3.1

Figure S4:

st_io

sim_to_resource

st_console

resource
not 1O

Figure S5: st_console

st_file

st_get_cpu

st_config

5.1

Figure S6:

stf_data

stf_tables

st_file

5.3

5.4

0000000 0000000000 0000000000000000000000%00000000000 202000

st_go

sim_cpu_go

A 6.1
(also Fig. K1:1)

cpu go

(Fig. S7 & K1)

st_free_config

A 6.2

Figure S7: st_go

C-67

cpu_run

A 6.3
(also
Fig. K2:2)

Cpu run

Figs. S7 & K2)

error
(Fig. S4)

st-node
/\

Cpu go
Figs S7&K1)

(

Figure S8: st_node

cpu run
Figs S7&K2)

set resource
manager ids

1.1.1

1.1

st_ set_system

e

y

set resource ids

set processor links

1.1.2

Figure $9: st_set_system

1.1.3

1.2

st_sw_config

read & set read & set read & add read
DSM resource DSM router DSM processors consumers
7\
1.2.1 1.2.2 1.2.3 1.2.4
wrong
command

std_define std_link std_run
1.2.4.1 1.2.4.2 1.2.4.3

Figure S10: st_sw_config

C-70

1.3
st_sys_config
add_sys_ 4d) add_sys__ add_sys_
manager ada_sys_router resources exec
1.3.1 1.3.2 1.3.3 1.3.4

Figure S11:

st_sys_config

3.2

sim_to_resource
2\

res. has no
assigned links

“

Cpu run
(Figs S7&K2)

new_message

3.2.1

Figure S12: sim_to_resource

5.2.2

g

st86_confi

5.2
g

st_confi
C-73

Figure S13: st _config

5.2.1

g_header

st_confi

5.3

stf_data
)\

cannot create
config file

(F?;msr " add_header || add_kernel add_exec add_dsm
5.3.1 5.3.2 5.3.3 5.3.4
add
command
add_kmemory add_kcpu add_Kklink add_dsm_
comRand
5.3.2.1 5.3.2.2 5.3.2.3
add_dsm_ add_dsm_ add_dsm__ add_dsm_ add_dsm_
boot list define link run
5.3.4.1.1 5.3.4.1.2 5.3.4.1.3 5.3.4.1.4 5.3.4.1.5

add
command
(Fig. S14)

Figure S14: stf_data

C-74

5.4

stf_tables
2\

cannot creat

tables file‘/o

tbl_header

tbl_handlers tbl_servers

5.4.1 5.4.2 5.4.3

Figure S15: stf tables

error
(Fig. S4)

5.2.2

st86_config
N\
st86 St86_ St86__ st86 st86_ st86_ st86 _ st_config
managers| (handlers | [servers resources| | read links kernel _exec
5.2.2.1 5.2.2.2 52.2.3 5.2.2.4 5.2.2.5 5.2.2.6 5.2.2.7 5208
Figure S16: st86_config

5.2.2.5
st86_read
7\
add_handler add_server add_reso/\u rce
5.2.2.5.1 5.2.2.5.2

add86_network

add86_io

add86_process

5.2.2.5.3.1

5.2.2.5.3.2 5.2.2.5.3.3

Figure S17: st86_read

c-77

5.2.2.7

st86_kernel

\ 4

st86_kmemory

st86_kcpu

5.2.2.7.1

5.2.2.7.2

st86_klink
Y

5.2.2.7.3

st86_network_link

st86_io_link

st86_process_link

5.2.2.7.3.1

Figure S18:

5.2.2.7.3.2

st86_kernel

5.2.2.7.3.3

5.2.2.8

st_config_exec

A 4

config_resources

config_execs

config_dsm

5.2.2.8.1 \j 5.2.2.8.2

\4
add_exec_consumer

5.2.2.8.2.1

Figure S19: st_config_exec

5.2.2.8.3

1 ({(also Fig. S7: 6.1)

K_cpu_
exit

sim_cpu_go
KB-boot
’ 1.1
Q KMB _ . K _new_ _release_
S KMB_cpu memory KMB_link buffer XB_boot tuffer
1.1.1 1.1.2 1.1.3 1.1.4 1.1.5
(also Fig. E2:2)
1.1.1.1
K_allocate
allocate
(Fig. K1)
Figure K1: sim_cpu_go

1.1.8

2 (also Fig. S7: 6.3)

(9}
o c
o |
t 59
C .m_ Q.
o > o ©
I Q. —
nUu. C_ n./m R_u
()
t
-]
Im
- L
9V}
} .
]
c
[0}]
|
o=
Q.
C_
X

1.1.2

-KMB_memory
set exec.
K_set_stack entry pts.
1121 1.1.2.2
Figure K3: KMB_memory
C-82

DO 0000000000000 000000000000000000000000000000000000000

1.1.8

KMB_link
y
KSI_mb_ KHI_mb_ KSI_mb_ KHI_mb_ .]
allocate master master slave slave KSI_i188 KHI_i188

(Fig. K1) 1.1.3.2 1.1.3.4 1.1.3.6
0
& init. master init. slave perform
allocate communication allocate communication| [allocate board reset
(Fig. K1) 1.1.3.2.1 (Fig. K1) 1.1.3.4.1 \ (Fig. K1) 1.1.3.6.1

Figure K4: KMB_link

1.1.8

K_cpu_exit

K86_enable K_cpu_kernel kernel busy unblock user enter idle
enable

1.1.8.2 1.1.8.3 1.1.8.4 1.1.8.5 (Fig. K5)

¥8-D

Figure K5: K_cpu_exit

1.1.8.2

K_cpu_kernel

K_link_in K86_disable K_cpu_executive
1.1.8.2.1 1.1.8.2.3
disable
(Fig. K6)
Figure K6: K_cpu_kernel

C-85

1.1.8.2.1

K_link_in

kmb_master_in

kmb_slave_in

K188_in

1.1.8.2.1.1

1.1.8.2.1.2

Figure K7: K_link_in

C-86

1.1.8.2.1.3

1.1.8.2.3

K_cpu_executive

N

Y
XM_in

disable
(Fig. K8)

enable
(Fig. K5)

1.1.8.2.3.1
(also Fig. E1:1)

Figure K8: K_cpu_executive

1.1.8.2.1.1
kmb_

mast%in

K_new_
network
1.1.8.2.1.1.1

K_free_ send reply
queue network to slave
1.1.8.2.1.1.2 1.1.8.2.1.1.3 1.1.8.2.1.1.4

88-D

new n/w.
(Fig. K9)

Figure K9: kmb_master_in

N S

1.1.8.2.1.2

kmb_slave_in
N\

free n/w next Q send reply to master
(Fig. K9) (Fig. K9)

new n/w new buf. rel. buf.

(Fig. K9) (Fig. K1) (Fig. K1)

1.1.8.2.1.2.1

68-DO

Figure K10: kmb_slave_in

1.1.8.2.1.3

K188_in
AN

k188_transmit k188_receive
)\

1.1.8.2.1.3.1

06-DO

in_188_raw |k188_tx_packet || out 188_raw K_free_io

rel. buf.
(Fig. K1)

1.1.8.2.1.3.1.3 1.1.8.2.1.3.2.1

1.1.8.2.1.3.11 1.1.8.2.1.3.1.2

free io
(Fig. K11)

out188
(Fig. K11)

Figure Ki11: K188_in

O

1.1.8.2.1.3.1.1

in_188_raw

1.1.8.2.1.3.1.1.1

Figure K12: in_188 raw

new buf.
(Fig. K1)

1.1.8.2.1.3.1.3

out_188_raw

rel. buf.
(Fig. K1)

Figure K13: out_188 raw

€6-D

kmb_master_
out A

K_copy_
buffer

K-add_
queue

add Q
Fig. K14)

3 (also Fig. E12: 1.3.1.2)

K_link_out
N\

kmb_slave
out

send transmit
ready to mastes

3.2.1

Figure K14: K link out

out 188

k188_out
VAN

4 (also Fig. E22: 2.6.1.2)

K_link_assign

kmb_master_assign kmb_slave_assign k188_assign
4.1
9!
e link link
allocate | (new n/w K link control control (new but.} [new io }[control
(Fig. K1)/ \(Fig. K9) — AN - i (Fig. K9)J\Fig. K15
1.1
link
control) lxmb_master_control] | kmb_slave_control k188_control kl_enter
(Fig. K15)
4.1.1.1 4112 4.1.1.3 4114

Figure K15: K_link_assign

VR

1

(also Fig. K8: 1.1.7.2.3.1)

XM_in

>

xnetwork_in

xio_in

Xprocess_in

xcontrol_in

1.1

1.2

1.3

Figure E1: XM_in

1.4

2 (also Fig. K1: 1.1.5)

XB_boot

AN

X_set_ X_set_ X_set_ XCB_ XCB_
memory messages| | queues control router manager
2.1 2.2 2.3 2.4 2.5 2.6

X_more_ X_mem_
memory error

2.1.1 2.1.2

Figure E2: XB_boot
C-96

X_new_message

new msg
(Fig. E3)

1.1

xnetwork_in

XR_out

X_free_network

Figure E3: xnetwork_ in

free n/w.
(Fig. K9)

1.2

X_next_
queue

XR_in X_free_io

86-0

next Q
(Fig. E4)

1.2.2

exec
router in
(Fig. E4)

free io
(Fig. E4)

Figure EA4:

free io
(Fig. K11)

new msg.
(Fig. E3)

xio_in

1.2.4

N

X_route_
junction

free io
(Fig. E4)

X_copy_
message

exec
router in

X-copy_
buffer

copy msg.
(Fig. E4)

Xio_in

1.2.4.1.1

add Q
(Fig. E4)

X_add_queue

1.2.5

route jn
(Fig. E4)

1.3
Xprocess_in
N\
process_ process_ process_ process_ process_ process_ process_ X_report
Q accept query reply call receive send ready error
8 1.3.1 1.3.2 1.3.3 1.34 1.3.5 1.3.6 1.3.7 1.3.8

process exec.
ready router in
(Fig. E5) (Fig. E4)

new
buffer
(Fig. E5)

Figure E5: xprocess_in

new msg

(Fig. E3)

1.4

xcontrol_in
/\\

1.4.1

XM_out

Figure E6: xcontrol_in

C-100

X_set_stack

2.4

XCB_control

XR_assign

Figure E7:

2.4.2

exec.
router
assign
Fig. E7

XCB_control

C-101

XR_control

2.4.3

exec.
router
control
Fig. E7

2.5

XCB_router

X_allocate

XRI_simple XRI_nmr

2.5.2

allocate
(Fig. E8)

allocate
(Fig. E8)

Figure E8: XCB_router

C-102

allocate
(Fig. E8)

2.6

XCB_manager

XMI_network XMl_io XMI_process

2.6.1 2.6.3

allocate
(Fig. E8)

Figure E9: XCB_manager

C-103

1.1.2

XR out

N\
msg. dest.
undeﬁned‘/o
X_next XC_query X_add invoke routing
new_name add Q Pl . - o
- : e] alg..out pt.
(Fig. E4) query dsm message g0 t pt
1.1.2.2 1.1.2.3 1.1.2.4 1.1.2.5
xsimple_out| | xnmr_out
1.1.25.2

new
buffer
(Fig. E5)

new name
(Fig. E10)

¥01-DO

Figure E10: XR_out

xcontrol_out

1.2.2.1

1.2.2

XR_in

)

Figure E11:

invoke routing
. in poi
alg }\pomt

1.2.2.2

xsimple_in

xnmr_in

1.2.2.2.1 / 1.2.22.2

X_route_
consumer

1.2.2.2.11

XR_in

C-105

1.3.1

process_accept
)\

Figure E12: process_accept

C-106

X_free .
— - K_link_out
message
1.3.1.2
(also Fig. K14:3)

1.3.2

process_query

link out
(Figs. E12

match_query

1.3.2.1 & K1 4)

Figure E13: process_query

C-107

1.8.3

process_reply

exec. X_free_user
router in

(Fig. E4)

link out
(Figs E12&
K14)

1.3.3.1

K_free_user

1.3.3.1.1

Figure E14: process_reply

C-108

1.3.4

process_call

process
ready
(Fig. E5)

Figure E15: process_call

C-109

1.3.5

process_receive

free msg.
(Fig. E12)

Figure E16: process_receive

C-110

process
ready
(Fig. EB)

|

1.3.6

process_send

exec. . link out
. . fr :
new msg route in ee user (FlgS. E12

: router in : . X
(Fig. E3) (Fig. E4) (Fig. E3) (Fig. E4) (Fig. E14) & K14)

new msg.

I11-O

Figure E17: process_send 1

1.3.7

process_ready
AN N

process_run2wait

link out X_free_buffer

(Figs. E12
& Ki4)

1.3.7.2

(Fig. E4)

Z11-2

next_process

K_free_buffer
1.3.7.2.1

1.3.7.1.1

next
process
(Fig. E18) '

Figure E18: process_ready

xnetwork_out

1.4.1

XM_out

1.4.1.1

xio_out xprocess_out

1.4.1.2 1.4.1.3

Figure E19: XM_out

C-113

exec.

control
out

Fig E11

2.4.2

XR_assign

invoke routing alg.

XM_assign .
- assign entry pts.
g AY p

new_consumer

exec:
man.
assign

Fig. E20

yi1-O

xsimple_assign Xxnmr_assign

reallocate
(Fig. E23)

2.4.2.3.2

allocate
(Fig. E8)

Figure E20: XR_assign

2.4.3

XR_control
2\

Xr_enter_name Xr_set_junction

N

exec.

invoke routing alg.
control entr {.
/\y P

2.4.3.3

man.
assign

control xsimple_control

xnmr_control
/\ /\

Fig. E20 Fig. E22

Figure E21:

C-115

2.4.3.3.2

XR_control

allocate
(Fig. E8)

2.6.1

XMI_network

\

A 4

XM_control

K_link_assign

2.6.1.1

exec.
man.
control
Fig. E22

Figure E22: XMl _network

C-116

2.6.1.2
(also Fig. K15:4)

link
assign
(Figs. E22
& K15)

X_reallocate

reallocate
(Fig. E23)

1.1.2.1

new_name
2\ 7\

A 4

enter & init. name

1.1.2.1.2

Figure E23:

C-117

new_name

link name

1.1.2.1.3

1.1.2.3

XC_query_dsm

exec.
router in
(Fig. E4)

add Q
(Fig. E4)

new msg.
(Fig. E3)

Figure E24: XC_query_dsm

C-118

"

1.2.2.1

xcontrol_out
\

T~

query reply

set command

1.2.2.1.1.1
X_find_
signature

1.2.2.1.2.1

exec.
router in
(Fig. E4)

X_command

611-D

exec
router
assign
Fig. E7

report
error
(Fig. E5)

command
(Fig. E25)

Command
(Fig. E25)

list_status

1.2.2.1.2.1.1

Figure E25: xcontrol_out

1.3.2.1

match_query
)\

signature
(Fig. E25)

free msg
(Fig. E12)

send consumer
query /Qacket

exec.
router in
(Fig. E4)

021 -D

route jn.
(Fig. E4)

Figure E26: nﬁatch_query

1.4.1.1

xnetwork_out

/

link out
(Figs. E12
& K14)

Figure E27: xnetwork out

C-121

1.4.1.2

xio_out
\

A 4
xio_send xio_query
AN N\

w0

free
buffer

link out
(Figs. E12
& K14)

exec.
router in

Figure E28: xio_out

000°

1.4.1.3

xprocess_out
N\

process_out_

query

process_out_

reply

process_out_
send

1.4.1.3.1

1.4.1.3.2 1.4.1.3.3

Figure E29: xprocess_out

C-123

2.4.2.2

XM_assign
2\

xnetwork_assign
2\

xio_assign

Xprocess_assign

exec.
man.
control

2.4.2.2.2

Figure E30: XM_assign

C-124

2.4.2.2.3

2.6.1.1

XM_control
2\

IYARSY.

xnetwork__

Xxm_enter Xxio control
- control -
A N A
N/2.6.1.1.1 N/ 2.6.1.1.2 2.6.1.1.3

reallocate

(Fig. E23)

Xi_reset_
junction

2.6.1.1.3.1

Xprocess_
control
7\

Xp_reset_
junction

reallocate
(Fig. E23)

2.6.1.1.4.1

Figure E31: XM_control

1.1.2.4.2

xnmr_out

xnmr_out_new xnmr_out_error xnmr_out_valid xnmr_done
\

1.i.2.4.2.2 1.1.2.4.2.4

9T1-D

xnmr_ready

1.1.2.4.2.1.1

nmr ready
(Fig. E32)

Figure E32: xnmr_out

1.3.7.2.1
next_process

N

link out free
(Figs. E12 butfer
& K14) (Fig. E18)

Figure E33: next_process

C-127

process_out_query
AN

process_wait

next
process
(Fig. E18)

Figure E34: process_out_query

C-128

signature
(Fig. E25)

1.4.1.3.2

process_out_reply
2\

Figure E35: process_out reply

C-129

1.4.1.3.3

process_out_send
7\

Figure E36: process_out_send

C-130

000

2.4.2.2.2

xio_assign
N\

exec.
man.
control

Fig. E22

link
assign

(Fig. E22

&K15)

reallocate
(Fig. E23)

allocate
(Fig. E8)

Figure E37: xio_assign

C-131

2.4.2.2.3

Xprocess_assign
VAN

: link
allocate reallocate c:)nrir:'ol assign
Fig. E8 Fig. E23 Fig. E22
(Fig. E8) (Fig. E23) Fig. E22 (Fig

&K15)

Figure E38: xprocess_assign

C-132

1.2.2.2.1.1

X_route_consumer
N\

Figure E39: X_route_consumer

C-133

1.2.2.1.2.1.1

list_status

exec.

router
in

Fig. E4

new
buffer
(Fig. E5)

new msg.
(Fig. E3)

Figure E40: list_status

C-134

1.1.2.4.2.1.1

xnmr_ready
N\

Figure E41: xnmr_ready

C-135

1.1.2.4.2.4

xnmr_done

free
buffer

report 2dd Q

(Fig. E4)

9¢T-D

Figure E42: xnmr_done

000

.

Main
(DSM)

sys-accept

3

sys-read

LN

set user tx_packet
packet data A
1.1 // l
U write to
—copy pipe to os
1.2.1 1.2.2

Figure D1: Main (DSM)

C-137

mgr_command

command i

mgr-command

7\
o)
1
o
[§8]
o0
) 4
mc mc
mc list |imc_boot unkno—wn unkno—wn me_ me._ me_ - mc;_ Yoo me._
- - define link run get_ gel_ eXeC_ | |Undefined
_con _hame consumer cpu error
3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11

3.1 3.2

Figure D2: mgr_command

00:

6€1-D

system,
Icommand
3.1
mec_list
Lo T

o——

\

/ N\

e rl?c_ me_ me._ me._ me._ mc_ mct_ mc_ me._

boot | [unknown|junknown| | yorine link rum get_ get_ eX€C_ | lundefined
_con || _name consumer|{| cpu error

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 311

Figure D3:

mc_list

system, commandl l

3.2
mc_boot
assign
resource
(Fig. D4)
3.2.6 v
set up llocat dd dd dd dd enter_ i
memory, a ocafe mc_add_ mc_add_ mc_add_ add_ name & assign_
a Stack & SF;aET or manager router resource execs onter_ resource
= |buffer_sizes abies consumer
3 321 322 323 324 3.25 3.2.7 328
mc_ mc_ |
add_ add_
exec link

3.2.6.2

Figure D4: mc_boot

System, Command i l
3.3

mc_
unknown_con

e

get assign_ prepare add
consumer network "acknowledgement consumer

000

3.3.1 3.3.4

assign
network
(Fig. D5)

Figure D5: mc_unknown_con

C-141

‘3 System, Command

find
resource

mc_define
N\
3.5

res.

not

found

display create &

error enter
msg consumer

3.5.1

error
msg
(Fig. D6)

3.5.2

3.5.8.2

enter new
consumer

res.
limitation

assign assign

resource

name/cons

Figure D6: mc_define

C-142

find
consumer
(Fig. D7)

system,
command 3
3.6

mc_link

consumer
not found

find
consumer
3.8.1
3.6.2.1
get junction to
destination

=X

find
consumer
(Fig. D7)

Figure D7:

C-143

link
consumer

3.6.2

set_junction

free old & reset
new junction

—

3.6.2.2

set up junction
list from branch

3.6.2.1.1

mc_link

3.6.2.3

find
consumer
(Fig. D7)

error
msg
Fig. D6)

Figure D8:

mc_run

3.7

consumer
not found

run_tos

C-144

3.7.1

mc_run

run_names

3.7.2

0000000000000 00

mc_get_consumer
7\

find
consumer
Fig. D7)

prepare

Figure D9:

Fig. D5)

place consumer

data in buffer

3.8.1

mc_get_consumer

C-145

prepare
ack
Fig. D5)

find
executive

3.9.1

l

mc_get_cpu
_Q/\T p

prepare & send

reply to executive
3.9.2

Figure D10: mc_get_cpu

C-146

prepare

E—

assign_io

3.2.8.1

assign_resource

2\
3.2.8
invalid
Q\Ranager
error
assign_appl msg
3.2.8.2 Fig. D6)

Figure D11: assign_resource

C-147

3.3.2

assign_network

check & assign
network

3.3.2.1

Figure D12:

C-148

sort_networks

3.3.2.2

assign_network

3.7.1

run_tos j
C//\/\\

name on add consumer
current exec. o exec.
3.7.1.1 3.7.1.2
Figure D13: run_tos

C-149

network_link

3.2.6.2.1

add all
other execs

3.2.6.2.1.1

3.2.6.2

mc_add_link
AN

p .

invalid
manager

io_link

3.2.6.2.2

o

appl_link

3.2.6.2.3

Figure D14: mc_add _link

C-150

000000000 0000000000000 000000000000000000C0O0C00DCOKIOYCOICNONONONINTNST

get resource

3.2.8.1.1

3.2.8.1
assign_io
N\
Q
v *
find exec. for assign exec.
resource to consumer
3.2.8.1.2 3.2.8.1.3
Figure D15: assign_io

C-151

sort_execs

3.2.8.1.4

sh_define

Main
(shell)
2\

7¢I -0

000000000000 00

sh_link

v

sys_command

1.1

sh_run

sh_status

display
commands

Figure H1: Main (shell)

5

sh_status
N
exec_status name_status map_status consumer_status display
] _statu p_ - choices
21 4.2 4.3 4.4 4.5

€ST -0

Figure H2: sh_status

o
c
> «
m £
: <
V a m -b
. o
o C_ :
,w >,
()
: - |m ﬂ-im
m e
S A :
| £ 1. ;
S - :
o . :
_ 5 .
“ S

Sys_

4.1

exec_status
/\

display exec.

status

4.1.1

display exec.
not found

4.1.2

Figure H4: exec_status

C-155

4.2

name_status
7\

display name

status

4.2.1

display name
not found

4.2.2

Figure H5: name_status

C-156

4.3
map_status
2\
display map display map
status not found
4.3.1 4.3.2

Figure H6: map_status

C- 157

4.4

consumer_status
7\

display consumer
status

4.41

display consumer
not found

4.4.2

Figure H7: consumer_status

C-158

1.1.2

sys_call

1.1.2.1

wait_event
\

rx_packet

1.1.2.1.1

Figure H8: sys_call

C- 159

Appendix C1 - CONNECTORS DRAWN IN STRUCTURE DIAGRAMS
This section lists connectors used in the structure diagrams of the simulator and the operating

system described in this document. For each connector, the corresponding process name, the
process number and a list of all the figures where this connector is drawn are given.

C- 160

error
(Fig. S4)

cpu run
(Figs. S7
& K2)

List of Connectors (Simulator)

Process name: Display error message
Process #: 3.1
Figures: S4, S5, S8, S10, 812, S14, S15, S16

Process name: sim_to_resource
Process #: 3.2
Figures: S4, S5

Process name: st_config
Process #: 5.2
Figures: S6, S7, S8

Process name: sim_cpu_go
Process #: 6.1 (in Fig. S7) & 1 (in Fig. K1)
Figures: S§7, S8

Process name: st_free_config
Process #: 6.2
Figures: S7, S8

Process name: cpu_run
Process #: 6.3 (in Fig. S7) & 2 (in Fig. K2)
Figures: §7, 88, S12

C-161

List of Connectors (Simulator) contd.

Process name: add_dsm_command
Process #: 5.3.4.1
Figures: S14

add
command
Fig. S14)

C-162

allocate

(Fig. K1)

enable
(Fig. K5)

List of Connectors (O.S. Kernel)

Process name: K_allocate
Process #: 1.1.1.1
Figures: K1, K4, K15.

Process name: K_new_buffer
Process #: 1.1.4
Figures: K1, K9, K10, K12, K13, K15, E5

Process name: K_release_buffer
Process #: 1.1.6
Figures: K1, K9, K10, K11, K13

Process name: K_cpu_k2x
Process #: 1.1.7
Figures: K1, K9, K10, K12

Process name: K_cpu_exit
Process #: 1.1.8
Figures: K1, K2

Process name: K86_enable
Process #: 1.1.81
Figures: K5, K6, K8

C-163

List

disable

(Fig. K6)

next Q
(Fig. K9)

of Connectors (O.S. Kernel) Contd.

Process name: K86_disable
Process #: 1.1.8.2.2
Figures: K6, K8

Process name: K_new_network
Process #: 1.1.8.2.1.1.1
Figures: K9, K10, K14, K15

Process name: K_next_queue
Process #: 1.1.8.2.1.1.2
Figures: K9, K10

Process name: K_free_network
Process #: 1.1.8.2.1.1.3
Figures: K9, K10, E3

Process name: in_188_raw
Process #: 1.1.8.2.1.3.1.1
Figures: K11

Process name: k188_tx_packet
Process #: 1.1.8.2.1.3.1.2
Figures: K11, K13

C-164

List of Connectors (O.S. Kernel) Contd.

out188

(Fig. K11)

free
io
Fig. K11

add Q
(Fig. K14)

link
control
(Fig. K15

Process name: out_188 raw
Process #: 1.1.8.2.1.3.1.3
Figures: K11, K14

Process name: K_free_io
Process #: 1.1.8.2.1.3.2.1
Figures: K11, E4

Process name: K_new_io
Process #: 1.1.8.2.1.3.1.1.1
Figures: K12, K14, K15

Process name: K_copy_buffer
Process #: 3.1.1
Figures: K14

Process name: K_add_queue
Process #: 3.1.2
Figures: K14

Process name: K_link_control
Process #: 4.1.1
Figures: K15

C-165

List of Connectors (O.S. Executive)

new msg.

(Fig. E3)

exec.
router out
(Fig. E8)

next Q
(Fig. E4)

exec.
router in
(Fig. E4)

free io

(Fig. E4)

add Q
(Fig. E4)

Process name: X_new_message
Process #: 1.1.1
Figures: E3, E4, E5, E6, E14, E17, E24, E26, E40

Process name: XR_out
Process #: 1.1.2
Figures: E3, E20, E39

Process name: X_next_queue
Process #: 1.2.1
Figures: E4, E12, E16, E18, E28, E32, E33, E42

Process name: XR_in
Process #: 1.2.2
Figures: E4, E5, E14, E17, E24, E25, E26, E28, E40

Process name: X_free_io
Process #: 1.2.3
Figures: E4, E28

Process name: X_add_queue

Process #: 1.2.5

Figures: E4, E10, E12, E16, E24, E26, E28, E32,
E34, E35, E36, E42

C-166

List of Connectors (O.S. Executive) Contd.

route jn.

(Fig. E4)

process
ready
(Fig. E5)

report
error
(Fig. E5)

new
buffer
(Fig. E5)

Process name: X_route_junction
Process #: 1.2.4
Figures: E4, E17, E26

Process name: X_copy_message
Process #: 1.2.4.1
Figures: E4, E25, E39, E41

Process name: process_ready
Process #: 1.3.7
Figures: ES5, E15, E16

Process name: X_report_error

Process #: 1.3.8

Figures: ES5, E10, E17, E21, E25, E26, E28,
E29, E30, E31, E37, E38, E42

Process name: X_new_buffer
Process #: 1.3.8.1
Figures: ES5, E10, E40

Process name: XM_out
Process #: 1.4.1
Figures: E6, E10, E41.

C-167

List of Connectors (O.S. Executive) Contd.

exec.
router
assign

router
control
Fig. E7

allocate
(Fig. E8)

Process name: X_set_stack
Process #. 2.4.1
Figures: E7, E8

Process name: XR_assign
Process #: 2.4.2
Figures: E7, E25

Process name: XR_control
Process #: 2.4.3
Figures: E7, E25

Process name: X_allocate
Process #: 2.5.1
Figures: E8, E9, E20, E22, E37, E38

Process name: new_name
Process #: 1.1.2.1
Figures: E10, E20

Process name: xcontrol_out
Process #. 1.2.2.1
Figures: E11, E19

C-168

000

List of Connectors (0O.S. Executive) Contd.

Process name: X_free_message

Process #: 1.3.1.1

Figures: E12, E16, E25, E26, E27, E28, E34, E35,
E36, E42

Process name: K_link_out
Process #: 1.3.1.2 (in Fig. E12) & 3 (in Fig. K14)
Figures: E12, E13, E14, E17, E18, E27, E28, E33

link out
(Figs. E12
& Ki4)

Process name: match_query
Process #: 1.3.2.1
Figures: E13, E15

Process name: X_free_user
Process #: 1.3.3.1
Figures: E14, E17, E18, E33

Process name: X_free_buffer
Process #: 1.3.7.1
Figures: E18, E25, E27, E28, E33, E42

Process name: next_process
Process #: 1.3.7.2.1
Figures: E18, E34

next
process
(Fig. E18)

C-169

List of Connectors (O.S. Executive) Contd.

exec. man.

assign

(Figs. E22
& K15)

reallocate
(Fig. E23)

signature
(Fig. E25)

command

(Fig. E25)

Process name: XM_assign
Process #. 2.4.2.2
Figures: E20, E21

Process name: XM_control
Process #: 2.6.1.1
Figures: E21, E22, E30, E37, E38

Process name: K_link_assign
Process #: 2.6.1.2 (in Fig. E22) & 4 (in Fig. K15)
Figures: E22, E37, E38

Process name: X_reallocate
Process #: 1.1.2.1.1
Figures: E20, E23, E31, E37, E38

Pfocess name: X_find_signature
Process #: 1.2.2.1.1.1
Figures: E25, E26, E35

Process name: X_command
Process #: 1.2.2.1.2.1
Figures: E25

C-170

List of Connectors (O.S. Executive) Contd.

nmr done

(Fig. E32)

Process name: xnmr_done
Process #: 1.1.2.4.2.4
Figures: E32, E41

Process name: xnmr_ready
Process #: 1.1.2.4.2.1.1
Figures: E32

Process name: process_wait2ready

Process #: 1.4.1.3.1.1
Figures: E34, E35, E36, E38

C-171

List of Connectors (0.S. DSM & shell)

assign
resource
(Fig. D4)

assign
network
(Fig. D5)

prepare
ack
(Fig. D5)

Process name: ix_packet
Process #: 1.2
Figures: D1, H8

Process name: mc_list
Process #: 3.1
Figures: D3

Process name: enter_name & enter_consumer
Process #: 3.2.7
Figures: D4, D6

Process name: assign_resource
Process #. 3.2.8
Figures: D4, D6

Process name: assign_network
Process #: 3.3.2
Figures: D5, D6

Process name: Prepare Acknowledgement
Process #: 3.3.3
Figures: D5, D9, D10

C-172

000

List of Connectors (0.S. DSM & shell) contd.

find
consumer
(Fig. D7)

Process name: Display Error Message
Process #: 3.5.2
Figures: D6, D7, D8, D11, D12, D14

Process name: find consumer
Process #: 3.6.1
Figures: D7, D8, D9

Process name: sys_call
Process #: 1.1.2
Figures: HS3, H4, H5, H6, H7

C-173

APPENDIX D

DATA STRUCTURES
USED BY
THE FTDCS SIMULATOR & THE OPERATING SYSTEM

Table of Contents

1. INTRODUCTION
2. DATA STRUCTURES

2.1 Simulator Model Data

2.2 Simulator Link Data

2.3 Operating System Data

2.4 Operating System Message Structures
2.5 Kemel Data Types

2.6 Kemel/Executive Boot and Initialization Functions
2.7 Kemel Handler and Server Data

2.8 Kemel/Executive Configuration Data
2.9 Executive Data

2.10 Executive Commands Data

2.11 DSM Commands Data

2.12 Consumer Junction Data

2.13 Utility Function Data

2.14 Machine Data Types

Appendxx D1 - FILES CONTAINING FTDCS DATA STRUCTURES

page

Al
OWoo~1Wh—

H
(S B =
GRRESIGRGE

vivivivivivivivivivle)
g

Ny
&

000000000000 00 0000000000000 000000000000000000O00OCGOICGIOGOYDY

1. INTRODUCTION

This Appendix describes the data structures that are used by the FTDCS simulator and the
operating system. It is a data dictionary of the data items contained within the system.

The following section lists the data structures used by FTDCS. And Appendix D1 lists the
"C" function files which describe them.

2. DATA STRUCTURES

The subsections below give a list of the data structures used by FTDCS. However, the
various software modules of the FTDCS simulator and the operating system do not use them
as they are. They create copies of the data structures and manipulate the contents as desired.
Thus, each copy of the data structure exists within the scope of that module.

At the beginning of each subsection, is a general description of data structures explained in
that subsection. Appendix C will help understand the context of use for some of the data
structures. For example, the kernel boot data structure "KM_Boot" in Section 2. is used by
the kernel boot process "KB_boot", explained in Section 4.1 of Appendix C. However, note
that some of the data structures are quite general (e.g., "Message") and that they are used in a
number of places throughout the system.

For each data structure described, the following information is given:

- the purpose of having this data structure in the system (in some cases this description
may be vague or it may be missing, as very little documentation about the corresponding
data structure is available).

- the fields (or contents) of the data structure. Note that the fields of some data structures
may be used to hold pointers to other data structures or pointers to executable functions,
in which case this is specified.

A X XXX XX N RN RRNNNNNNENNNR NN R N NN RN N RN NN NR N N RN NNNNNNNENNNNN)

2.1 Simulator Model Data

The following data structures are used by the simulator to define the model system. These
data structures contain the model information such as, the processor data (e.g., handlers,
links, CPUs), manager, resource, router and server data, data structure for messages passed,
simulator and system data.

Simulator_Def

purpose: a data structure for the simulator (to initialize/free it).
fields: name,

init (ptr. to function which initializes simulator),

free (ptr. to function which frees simulator).

1. MDL_Handler

purpose: processor component structure for the handler.
fields: id, (handler id)

cfg_id,

cfg_count,

unit_base,

unit_count,

trap (interrupt trap routine for handler),

name.

2. MDL_Link:

purpose: processor component structure for the link.
fields: id, (link id)

cfg_id,

sim_unit,

server_id, handler_id, (server & handler ids)

unit_id,

length,

cfg_data.

3. MDL_Cpu

purpose: processor component structure for the CPU.

fields: name,
id,
type,
link_count,
unit_count,
handler_count,
server_count,
resource_count,
config_ptr,
0s_memory,
os_data,
linked_execs,
nw_depth,
nw_offset,

nw_count
Sys.

MDL_Manager

purpose: Tesource manager component structure.
fields: id,

link_count,

name,

cfg_count,

Sys.
MDL_Router

purpose: router component structure (for simple & NMR routers).

fields: id,
name,
cfg_count,

Sys.
MDL_Server

purpose: server component structure
fields: id,

name,

add_link,

cfg_id,

cfg_count.

MDL_Message

purpose: model message component structure.
fields: id,

to_link_id,

from_link_id,

cpu_id,

unit_id,

time_lag,

length (message length),

next, last (ptrs. to MDL_message),

data (message data).

MDL_Simulator

purpose: simulator component structure.
fields: id,

name,

server_id,

cpu_server,

setup, (ptr. to function to setup simulator)
free, (ptr. to function to free simulator)

in (ptr. to in entry point function),

out (ptr. to out entry point function),
assign (ptr. to assign entry point function),

control (ptr. to control entry point function),
data.

9. MDL_Resource

10.

11.

purpose:
fields:

resource (network, I/O or process) component structure
name,

sim_id,

id,

type,

manager (resource manager),
link_count,

cfg_id,

cfg_count,

cfg_base,

sys.

MDL_System

purpose:
fields:

Model

purpose:
fields:

system structure.
sys,

cpu2model,
resource2model,
sys_id2model,
sys_id2resource,
sys_id2cpu,
sys_id2local_id,
local_id2sys_id,
linked_execs,
nw_map_limit,
nw_map_count,
network_map,
dsm_ptr.

system model structure

link_count,

link_Jlimit,

link2cpu,

link2resource,

link2status,

links (ptr. to MDL_Link, see 2 above),
handler_limit,

handlers (ptr. to MDL_Handler, see 1 above),
simulator_limit,

simulators (ptr. to MDL_Simulator, see 8 above),
manager_Jimit,

managers (ptr. to MDL_Manager, see 4 above),
router_limit,

routers (ptr. to MDL_Router, see 5 above),
server_limit,

servers (ptr. to MDL_Server, see 6 above),
resource_count,

resource_limit,

resources (ptr. to MDL_Resource, see 9 above),
cpu_count,

cpu_limit,

cpus (ptr. to MDL_Cpu, see 3 above),

system (ptr. to MDL_System, see 10 above),
message_stack,

buffer_stack,

head, tail (both ptrs. to MDL_Message, see 7 above),
id_limit,

next_id,

id2link,

id2sim,

id2local.

D-6

2.2 Simulator Link Data

The following are the link data structures for the simulator, network, 1188, 8086 processor

etc.

1.

Sim_link
purpose: simulator link data structure.
fields: model_id.
Sim_NW_Link
purpose: simulator network link data structure.
fields: model_id,
address,
link_count,
NW_add0, NW_add1, NW_add2 (network address).
NW_Link
purpose: network link data structure.
fields: segment,
address,
offset,
link_count,
NW_add0, NW_add1, NW_add2 (network address).
MB_Link
purpose: Multibus link data structure.
fields: segment,
address,
offset.
I188_Link
purpose: 1188 link data structure.
fields: segment,
offset.
P86_Link
purpose: 8086 processor link data structure.
cs_value, cs_length,

fields:

ds_value, ds_length,
ss_value, ss_length.

2.3 Operating System Data

The following data structure contains the operating system data and pointers to operating

system boot and initialization functions.

OS_data

purpose:
fields:

operating system structure.

system_id,

kernel_boot, (ptr. to kernel boot function)

km_count,

km_inits, (table of kernel initialization functions)

km_data,

kernel_entries,

handler_inits, (table of handler initialization functions)
server_inits, (table of server initialization functions)
exec_boot, (ptr. to executive boot function)

exec_ptr,

XC_count,

Xc_inits, (table of executive controller initialization functions)
xm_inits, (table of executive manager initialization functions)
xr_inits, (table of executive router initialization functions)
config_data.

2.4 Operating System Message Structures

The data structures given below define structures for messages passed between operating
system components. ~

1. X Header
purpose: a structure for the external header of the message.
fields: source,
destiny (i.e., destination),
length.
2. I_Header
purpose: a structure for the internal header of the message.
fields: type (MSG_SEND, MSG_REPLY, MSG_QUERY, etc.),
signature,
source,
destiny (i.e., destination),
length,
3. Message
purpose: a data structure for the message.
fields: internal (of type I_Header, see 2 above),
data.

4. Network_Pkt

purpose: a data structure for a network packet.
fields: external (of type X_Header, see 1 above),
internal (of type I_Header, see 2 above),
data.
5. IO_Pkt
purpose: a data structure for an I/O packet.
fields: length, data.
6. EN_Address
purpose: a data structure for the address of an ethernet.
fields: add0, add1, add2.
7. EN_Data
purpose: a data structure for the ethernet data.
fields: external (of type X_Header, see 1 above),

internal (of type I_Header, see 2 above),
msgbuf (a buffer of a particular size to hold data).

8. EN_Header

purpose: a data structure for the ethernet data header.
fields: source (of type EN_address, see 6 above),
destiny (i.e., destination) (of type EN_address, see 6 above),
unused.
9. Incoming
purpose: an incoming data on ethernet.
fields: header (of type EN_Header, see 8 above),

data (of type EN_Data, see 7 above).

10. Ethernet_Pkt

purpose: a data structure for an ethernet packet.

fields: header (of type EN_Header, see 8 above),
external (of type X_Header, see 1 above),
internal (of type I_Header, see 2 above),

data.
11. User_Pkt
purpose: a data structure for the user packet.
fields: message,
location,
notify (ptr. to a notify function),
parameter,
reply_length,
reply,
status,
return_length.
12. Name
fields: id, local_id, unit_id.
13. Link
purpose: a link data structure.
fields: server_id, unit_id, length.

D-10

2.5 Kernel Data Types

The data structures given below hold kernel specific information, including the

processor, link, server, and memory data.

1. K_Event

purpose:
fields:

2. X Event

purpose:
fields:

3. KM_Cpu

purpose:
fields:

4. K Server

purpose:
fields:

5. KM_Link

purpose:
fields:

a structure to hold kernel events.
next (ptr. to K_Event),

unit_id,

data.

a data structure to hold executive events.
next (ptr. to X_Event),

xid,

data.

kernel processor manager data structure.
active_user,

user_mode, idle_mode,

kevent_limit,

kernel_pending,

kernel_busy,

kernel_pending_head (ptr. to K_Event, see 1 above),
kernel_pending_tail (ptr. to K_Event, see 1 above),
kernel_next_head (ptr. to K_Event, see 1 above),
kernel_next_tail (ptr. to K_Event, see 1 above),
xevent_limit,

exec_pending,

exec_busy,

exec_pending_head (ptr. to X_Event, see 2 above),
exec_pending_tail (ptr. to X_Event, see 2 above),
exec_next_head (ptr. to X_Event, see 2 above),
exec_next_tail (ptr. to X_Event, see 2 above),
user_busy.

kernel server data structure.

server_id,

link_count,

control, assign, in, out (ptrs. to entry point functions),
data.

kernel link manager data structure.
unit_count,

unit2kid,

server_count,

servers (ptr. to K_Server, see 4 above),

kernel

6. KM_Memory

purpose:
fields:

7. Context

purpose:
fields:

link_count,
link_size,
link_table (ptr. to Link, see 13 in Section 2.4),

links,

kid_limit, kid_expand, kid_count,
next_kid,

kid2server, kid2local.

kernel memory manager data structure.
memory,

buffers,

en_packets,

network_packets,

io_packets,

user_packets,

queues.

context information data structure,
cs_value, cs_length,

ds_value, ds_length,

ss_value, ss_length,

sp_value.

2.6 Kernel/Executive Boot and Initialization Functions

Six table structures are described below. They contain the functions used for the following:
kernel boot, kernel handler initialization, kernel server initialization, executive boot,
executive resource manager initialization and executive routing algorithm initialization.

1. KM_Boot
purpose: a table of kernel boot functions.
fields: KMB_memory (kernel memory manager boot function),
KMB_cpu (kernel processor manager boot function),
KMB_link (kernel link manager boot function).
2. KH_Inits
purpose: a table of kernel handler initialization functions.
fields: KHI_bus (bus handler initialization function),
KHI_enet (enet handler initialization function),
KHI_device (device handler initialization function),
KHI_process (process handler initialization function).
3. KS_Inits
purpose: a table of kernel server initialization functions.
fields: KSI_bus (bus server initialization function),
KSI_enet (enet server initialization function),
KSI_device (device server initialization function),
KSI_process (process server initialization function).
4. XCB_Boot
purpose: a table of executive boot functions.
fields: XCB_router (executive router boot function),
XCB_manager (executive resource manager boot function),
XCB_control (executive controller boot function).
5. XM_Inits
purpose: a table of executive resource manager initialization functions.
fields: XMI_network (executive network manager initialization function),
XMI_io (executive I/O manager initialization function),
XMI_process (executive application process manager initialization
function).
6. XR_Inits
purpose: a table of routing algorithm initialization functions.
fields: XRI_simple (simple routing algorithm initialization function),

XRI_nmr (NMR routing algorithm initialization function).

2.7 Kernel Handler and Server Data

This section gives the data structures for the kernel handler and server tables.

1. Handler_Def

purpose:
fields:

2. handler_defs
purpose:
3. Server_Def

purpose:
fields:

4. server_defs
purpose:

kernel handler data structure for the handler table (below).
name,
trap (interrupt service routine for the handler).

a table of handlers (each handler structure as described in 1 above).

kernel server data structure for the server table (below).

name,
add_link.

a table of servers (each server structure as described in 3).

D-14

2.8 Kernel/Executive Configuration Data

The following data structures contain the definitions for the hardware independent data in the
kernel/executive configuration data blocks.

1.

CD_Header

purpose:
fields:

configuration data header.
code,

cpu_id,

kernel_length,
executive_length,
dsm_length,
config_length.

KCD_Manager

purpose: kernel manager configuration data.
fields: length.
KCD_Memory
purpose: kernel memory manager configuration data.
fields: header (ptr. to KCD_Manager, see 2 above),
exec_id,
memory_size,
min_buffer,
max_buffer.
KCD_Cpu
purpose: kernel processor manager configuration data.
fields: header (ptr. to KCD_Manager, see 2 above),
kevent_limit,
xevent_limit.
KCD_Link
purpose: kernel link manager configuration data.
fields: header (ptr. to KCD_Manager, see 2 above),

initial_kid,
expand_kid,
handler_count,
unit_count,
server_count,
link_count,
link_size.

KCD_Handler

purpose:
fields:

kernel handler configuration data.
unit_count, vector.

D-15

7. KCD_Server

purpose:
fields:

kernel server configuration data.
link_count.

8. XCD_Executive

purpose:
fields:

executive configuration data block.
exec_id,

memory_size,

initial_messages, expand_messages,
initial_queue, expand_queue,
initial_xid, expand_xid,
initial_names, expand_names,
initial_consumers, expand_consumers,
router_count,

linked_execs,

dsm_id,

dsm_resource,

dsm_name_count,

dsm_router,

dsm_name,

manager_count,

resource_count,

link_count.

9. XCD_Resource

10.

purpose:
fields:

executive resource configuration data block.

resource_id,
manager_id,
type,
sys_link_count,
link_count.

XCD_Consumer

purpose:
fields:

executive consumer configuration data block.

consumer_id,
router_type,
name_count.

2.9 Executive Data
The data structures given below contain information for the executive and its components.

1. X_DSM_Query

purpose: data structure to hold the query message to the DSM.
fields: message,

notify,

parameter.

2. XC_Control

purpose: executive controller structure.
fields: exec_id,

linked_execs,

dsm_id,

dsm_resource,

dsm_name_count,

dsm_data,

dsm_name,

signature,

dsm_query_stack,

dsm_query_queue,

in, out (in & out entry point function pointers).

3. X_Resource

purpose: executive resource data structure.
fields: system_id,

sys_link_count,

manager_id,

resource_id,

type,

link_base,

link_count.

4. X_Manager

purpose: executive manager data structure.
fields: system_id,

sys_link_count,

manager_id,

resource_base, resource_count,
link_base, link_count,
in, out, assign, control (all entry point functions),

data.
5. XM_Control
purpose: the complete executive manager data structure.
fields: manager_count,
managers (ptr. to X_Manager, see 4 above),
link_count,

resource_count,

6.

resources (ptr. to X_Resource, see 3 above),
xid_limit,

xid_expand,

xid_count,

next_xid,

xid2manager,

xid2local,

in, out, assign, control (ptrs. to entry point functions).

X_Name

purpose: name data structure.
fields: consumer_id,
consumer_link,
xid,
state.

X_Consumer

purpose: consumer data structure.
fields: consumer_id,
router,
name_count,
name_list,
in_pending,
out_pending,
data.
X_Router
purpose: router data structure.
fields: router_id,
data,
in, out, assign, control (ptrs. to entry point functions).
XR_Control
purpose: the complete executive router structure.
fields: consumer_count,

consumer_limit,

consumer_stack,

consumers (ptr. to X_consumer, see 7 above),
name_count,

name_limit,

name_stack,

names (ptr. to X_Name, see 6 above),
in_pending_count,

in_pending,

out_pending_count,

out_pending,

router_count,

routers (ptr. to X_Router, see 8 above),

in, out, assign, control (ptrs. to entry point functions).

10.

Executive

purpose:
fields:

the complete executive data structure.

exec_id,

memory,

messages,

queues,

exec_control (ptr. to XC_Control, see 2 above),
manager_control (ptr. to XM_Control, see 5 above),
router_control (ptr. to XR_control, see 9 above).

2.10 Executive Commands Data

The following data structures contain information about the executive commands.

contain pointers to the actual command function in addition to other related data.

1. XC_Add_Consumer

purpose: add consumer command data structure.
fields: command, consumer.

2, XC_Add_Name

purpose: add consumer name command data structure.
fields: command, name.

3. XC_Status
purpose: executive status command data structure.
fields: command.

4. XAS_Executive

purpose: executive memory and consumer information data structure.
fields: memory_f_bytes, memory_f_blocks,

memory_u_bytes, memory_u_blocks,

message_count, free_messages,

consumer_count, consumer_limit,

name_count, name_limit,

xid_count, xid_limit.

5. XAS_Kernel

purpose: kernel memory information data structure.
fields: memory_f_bytes, memory_f_blocks,
memory_u_bytes, memory_u_blocks,
user_count, free_users,
io_count, free_ios,
network_count, free_networks,
en_count, free_ens,
buffer_count, free_buffers,
buffer_bytes, buffer_free_bytes.

6. XA_Status

purpose: status information for executive and kernel information.
fields: exec_id,
executive (of type XAS_Executive, see 4 above),
kernel (of type XAS_Kernel, see 5 above),

7. XC_Set_Junction

purpose: set junction command data structure.
fields: command, name_id.

D-20

They

2.11 DSM Commands Data

Each of the following data structures shown below contain pointers to the DSM command

functions in addition to other related data.

L

MC_boot
purpose: data structure for the DSM boot command.
fields: command (ptr. to command function).

MC_Unknown_Con

purpose: data structure for unknown consumer DSM command.
fields: command (ptr. to command function),

name_id,

exec_id.

MC_Unknown_Name

purpose: data structure for unknown name DSM command.
fields: command (ptr. to command function),
name_id,
exec_id.
MC_Define
purpose: data structure for DSM define command.
fields: command (ptr. to command function),
name,
resource,
router_type,
name_count.
MC_Link
purpose: data structure for DSM link command.
fields: command (ptr. to command function),
name,
junction.

MCD_Junction

purpose: data structure for the junction.

fields: branch_id, name.

MC_Run

purpose: data structure for DSM run command.
fields: command (ptr. to command function), name.

MC_Get_Resource

purpose: data structure for DSM get resource command
fields: command (ptr. to command function), name.
D-21

9.

10.

11,

12,

13.

14.

15.

16.

17.

MA_Get_Resource

fields: ack,
resource_id,
name,
manager_id,
type,
link_count,
load_count,
exec_count,
exec_mask.

MC_Get_Map
purpose: data structure for the get map DSM command.
fields: command (ptr. to command function), exec_name.
MA_Get_Map

fields: ack,
exec_name,
map_count.

MAD_Map_Entry

fields: to_name,
depth,
count.
MAD_Link
fields: id, name.,

MC_Get_Consumer

purpose: data structure for the get consumer DSM command.

fields: command (ptr. to command function), name.

MA_Get_Consumer

fields: ack,
name,
consumer_id,
router_type,

name_count.
MC_Get_name
purpose: data structure for the get name DSM command.
fields: command (ptr. to command function), name_id.
MA_Get_Name
fields: ack,
name_id,
map_count,
exec_name,

00000000000 000850925 0000000000000 000%C0C0C000%000%000000000%00

18.

19.

20.

21.

22.

230

24,

resource_name,
consumer_name.

MAD_Name
fields: exec_name, resource_name.
MC_Get_Exec
purpose: data structure for the get exec. DSM command.
fields: command (ptr. to command function), name.
MA_Get_Exec
fields: ack, status.
MC_Error
purpose: data structure for the DSM error command.
fields: command (ptr. to command function),
code,
exec_id,
text.
MA_Error
fields: ack.
MC_Halt
purpose: data structure for the DSM halt command.
fields: command (ptr. to command function).
MC_Get_Status
purpose: data structure for the get status DSM command.
fields: command (ptr. to command function), name.
D-23

2.12 Consumer Junction Data

The following define the consumer junction data types. The data structures for the junction
and the junction branch are given below.

Junction
purpose: junction data structure.
fields: branch_count,
route_count.
Branch
purpose: junction branch data structure.
fields: route_base,

route_count.

D-24

2.13 Utility Function Data

The following describes the utility function data structures. Copies of the utility data
structures are used a number times throughout the system.

1. IO_Buffer

purpose: an I/O buffer data structure.
fields: fid,
status,
ptr,
length,
data_length,
data.
2. U_Buffer
purpose: a user buffer data structure.
fields: size, user_id.
3. Stack
purpose: stack management structure.
fields: memory,
items_used,
item_count,
item_size,
expand_count,
next_block,
next_item.
4. Q_link
purpose: queue linkage structure.
fields: next (a pointer to Q_link),
data.
5. Queue
purpose: queue management structure.
fields: head, tail (both pointers to Q_link, see 4 above).
6. U_Memory_Block
purpose: memory linkage structure.
fields: size, last_size.

7. U_Memory_Free

purpose: data structure for free memory.
fields: block (ptr. to U_Memory_Block, see 6 above),
next_free, last_free (both pointers to U_Memory_Free).

8.

10.

U_Memory

purpose: memory management structure.

fields: expand_size,
alloc_fn (ptr. to allocate memory function),
error_fn (ptr. to display memory management errors function),
used_blocks, used_bytes,
free_blocks, free_bytes,
first_block, free_head, free_tail (all ptrs. to U_Memory_Free, see 7
above).

U_Cmd_Ctl

purpose: command control structure.

fields: memory,

buffer_limit, buffer_ptr.

U_Buffer_Ctl

purpose: user buffer control structure.

fields: memory,
small_size, small_count, small_limit,
next_small (ptr. to U_Buffer, see 2 above),
large_size, large_limit, large_count,
next_large (ptr. to U_Buffer, see 2 above),
oversize_count, oversize_bytes.

D-26

2.14 Machine Data Types

The following lists the machine data types. The data fields in Sections 2.1 through 2.13,
(which are not pointers to functions or other data structures) are any one of the structures

given below.

Byte
Word
Long
Integer
Address
Pointer
Indirect
Function
Table

OS_Channel
OS_Process
QOS_File

8 bits unsigned.

16 bits unsigned.

32 bits unsigned.

16 bits integer.

pointer to 8 bits.

pointer to 16 bits.

pointer to pointer.

pointer to function returning Word.

structure with Functions, (for Function see above).

structure with pid (Long) & dsc (dsc$descriptor_s).

structure with pid (L.ong).
structure of type Long (for Long, see above).

D-27

APPENDIX D1 - FILES CONTAINING FTDCS DATA STRUCTURES

The following is a list of all the "C" function files (in alphabetical order) which contain the C
code for the data structures explained in Appendix D.

config.h,
config86.h,
configsim.h,
cpudef.inc,
enet.h,
executiv.h,
handlerdef.inc,
junction.h,
kernel.h,
mcommand.h,
mdlsimulator.inc,
message.h,
model.h,

0s.h
serverdef.inc,
sysmc.h,
utility.h,
xcommand.h,

D -28

APPENDIX E
PERFORMANCE ANALYSIS TABLES

APPENDIXE
PERFORMANCE ANALYSIS TABLES
LIST OF TABLES

Table 1: Main Functions of the Simulator

Table 2: Simulator System Definition Functions
Table 3: Local Configuration Specification Functions
Table 4: Simulator Configuration Support Functions
Table 5: Distributed Software Implementation Functions
Table 6: Kernel Processor Management Functions
Table 7: Kernel Memory Management Functions
Table 8: Kernel Link Management Functions

Table 9: Kernel Link Server Functions

Table 10: Executive Controller Functions

Table 11: Executive Utility Functions

Table 12: Executive Routing Manager Functions
Table 13(a): Executive Resource Manager Functions
Table 13(b): Executive Resource Manager Functions
Table 14: DSM Controller Functions

Table 15: DSM Scheduler Functions

000

Module No. of called | Lines of "C" code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles
st_memory 1 10 8 110 660
st_system 12 288 239 2750 16500
st_file 47 1201 997 11,380 68,280
st_console * * * * *
st_go * * * * *
st_node * * * * *

Note: The code for the functions (for which no data given in this table) is very

convoluted. The total number of lines of code in these functions can only be
determined at execution time.

Table 1: Main Functions of the Simulator

E-1

Module No. of called | Lines of "C" code | Lines of "C" code Lines of "assembly” code No. of
Functions (Total) (worst case) (worst case) clock cycles
St_set_system 0 47 39 390 2340
St_sw_config 4 139 115 1270 7620
read_consumers 3 82 68 770 4620
std_define 1 23 19 220 1320
std_link 2 35 29 350 2100
std_run 1 9 8 110 660
st_sys_config 4 95 79 910 5460
add_sys_manager 0 11 9 90 540
add_sys_router 0 12 10 100 600
add_sys_resource 0 15 13 130 780
add_sys_exec 0 22 18 180 1080

Table 2: Simulator System Definition Functions
E-2

W...7.7...’.....Q.O..L‘....O.....0........................

Module No. of called | Lines of "C"code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles
st_config 19 470 390 4470 26,820
st_config_header 0 11 9 90 540
st_config_exec 4 198 164 1760 10,560
config_resources 0 50 42 420 2520
config_execs 1 44 37 400 2400
add_exec_consumer 0 24 20 200 1200
config_dsm 0 65 54 540 3240
st_simconfig 17 446 370 4210 25,260
simconfig_managers 0 14 12 120 720
simconfig_handlers 0 17 14 140 840
simconfig_servers 0 16 13 130 780
simconfig_resources 0 8 7 70 420
simconfig_links 0 22 18 180 1080
simconfig_kernel 3 98 81 900 5400
simconfig_kmemory 0 13 11 110 660
simconfig_kcpu 0 11 9 90 540
simconfig_klink 3 125 104 1130 6780
sim_network_link 0 23 19 190 1140
sim_io_link 0 18 15 150 900
sim_process_link 0 19 16 160 960

Table 3: Local Configuration Specification Functions

E-3

Module No. of called | Lines of "C"code | Lines of "C" code Lines of "assembly"” code No. of
Functions (Total) (worst case) (worst case) clock cycles

stf_data 4 189 157 1690 10,140
add_header 0 31 26 260 1560
add_kemnel 0 13 11 110 660
add_exec 0 94 78 780 4680
add_dsm 1 25 21 240 1440
add_dsm_command 0 18 15 150 900
stf_table 3 102 85 940 5640
tbl_header 0 28 23 230 1380
tbl_handlers 0 28 23 230 1380
tbl_servers 0 28 23 230 1380

Table 4: Simulator Configuration Support Functions.

E-4

000000000000 00000000000000000060000000000000000000900000

Module No. of called Lines of "C" code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles

sh_define 10 104 86 1160 6960
sh_link 10 123 102 1320 7920
sh_run 9 96 80 1070 6420
sys_command 6 87 72 900 5400
sh_status 18 273 227 2810 16,860
consumer_status 7 119 99 1200 7200
exec_status 7 134 111 1320 7920
sys_accept 1 18 15 180 1080
sys_query 1 25 21 240 1440
sys_reply 1 19 16 190 1140
sys_call 4 71 59 710 4260
sys_receive 4 66 55 670 4020
sys_send 1 17 14 170 1020
sys_ready 4 61 51 630 3780
wait_event 2 48 40 460 2760
setup 0 7 6 60 360
tx_packet 0 6 5 50 300
rx_packet 0 6 5 50 300

Table 5: Distributed Software Implementation Functions

E-5

C00COOCOCOOIONCONIOCNOTRON0NOCONRICIINICOOSOIETTOONOCOOICOCTIONICROONNONS

Module No. of called | Lines of "C"code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles

KB_boot 143 2741 2275 27,040 162,240
KMB_cpu 1 34 28 310 1860
K_cpu_kemnel 9 146 121 1480 8880
K_cpu_executive 2 35 29 350 2100
K_cpu_enter 0 10 8 80 480
K_cpu_exit 12 178 148 1840 11,040
K_cpu_fork 0 14 12 120 720
K_cpu_k2x 0 13 11 110 660
K_cpu_x2k 11 168 140 1730 10,380
K_cpu_x2u 0 8 7 70 420
K_cpu_u2x 0 6 5 50 300
KU_enable 0 4 3 30 180
KU_disable 0 4 3 30 180

Table 6: Kernel Processor Management Functions.

E-6

Module No. of called | Lines of "C" code | Lines of "C" code Lines of "assembly” code No. of
Functions (Total) (worst case) (worst case) clock cycles
KMB_memory 1 33 27 300 1800
K_refill 0 10 8 80 480
K_mem_error 0 6 5 50 300
K allocate 0 7 6 60 360
K_reallocate 0 10 8 80 480
K _free 0 5 4 40 240
K_set_stack 0 10 8 80 480
K_add_queue 0 6 5 50 300
K_next_queue 0 7 6 60 360
K _new_buffer 0 8 7 70 420
K _release_buffer 1 12 10 130 780
K_free_buffer 0 5 4 40 240
K_copy_buffer 0 6 5 50 300
K_new_network 0 6 5 50 300
K_free_network 0 5 4 40 240
K_new_io 0 6 5 50 300
K free_io 0 5 4 40 240
K_new_user 0 6 5 50 300
K_free user 0 5 4 40 240

Table 7: Kernel Memory Management Functions

E-7

Module No. of called | Linesof "C"code | Lines of "C" code Lines of "assembly"” code No. of
Functions (Total) (worst case) (worst case) clock cycles

KMB_link 7 141 117 1380 8280
K_link_in 4 78 65 770 4620
K_link_out 4 62 51 630 3780
K_link_assign 4 103 86 980 5880
K _link_control 5 76 63 780 4680
kl_enter 0 27 22 220 1320

Table 8: Kernel Link Management Functions.

E-8

Module No. of called Lines of "C" code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles
KSI_bus 1 26 22 250 1500
KHI_bus 0 6 5 50 300
kbus_in 3 49 41 500 3000
kbus_out 0 14 12 120 720
kbus_assign 6 109 91 1090 6540
kbus_control 0 13 11 110 660
KSI device 1 26 22 250 1500
KHI_device 0 6 5 50 300
kdevice_in 3 48 40 490 2940
kdevice_out 0 10 8 80 480
kdevice_assign 6 109 91 1090 6540
kdevice_control 0 13 11 110 660
KSI_process 1 29 24 270 1620
KHI_process 0 6 5 50 300
kprocess_in 4 56 47 590 3540
kprocess_out 2 40 33 390 2340
kprocess_assign 6 120 100 1180 7080
kprocess_control 0 13 11 110 660

Table 9: Kernel Link Server Functions

E-9

Module No. of called Lines of "C" code | Lines of "C" code Lines of "assembly” code No. of
Functions (Total) (worst case) (worst case) clock cycles

}(B_bOOt & & & * *
XCB_control * * * * *
xcontrol_in * * * * *
xcontrol_out * * * * *
X_command * * * * ¥
list_status * * * * *
XC_next_query 1 21 17 200 1200
XC_query_dsm 1 32 27 300 1800
X_report_error * * * * *

Note: The code for the functions (for which no data given in this table) is very
convoluted. The total number of lines of code in these functions can only be
determined at execution time.

Table 10: Executive Controller Functions.

E-10

Module No. of called | Lines of "C" code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles

X_set_memory 2 20 17 230 1380
X_more_memory 0 6 5 50 300
X_mem_error 0 6 5 50 300
X_allocate 0 9 8 80 480
X_reallocate 0 8 7 70 420
X free 0 5 4 40 240
X_set_stack 0 9 8 80 480
X_set_queues 0 8 7 70 420
X _add_queue 0 6 5 50 300
X_next_queue 0 7 6 60 360
X_join_queue 0 7 6 60 360
X_find_signature 0 26 22 220 1320
X_set_messages 0 8 7 70 420
X _new_message 0 9 8 80 480
X_free_message 0 5 4 40 240
X_copy_message 1 17 14 170 1020
X _new_buffer 0 7 6 60 360
X_free_buffer 0 9 8 80 480
X_copy_buffer 0 6 5 50 300
X_free_network 0 5 4 40 240
X free_io 0 5 4 40 240
X_free user 0 5 4 40 240

Table 11: Executive Utility Functions
E-11

Module No. of called | Linesof "C"code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles
XCB_router 4 75 62 740 4440
XR in * * * * *
XR:out * * * * *
XR_assign * * * * *
XR_control * * * * *
new_name 1 40 33 360 2160
new_consumer 1 34 28 310 1860
X_route_junction * * * * *
X_route_consumer * * * * *
XRI_simple 0 9 8 80 480
xsimple_in * * * * *
xsimple_out * * * * *
xsimple_assign 1 18 15 180 1080
xsimple_control * * * * *
XRI _nmr 2 31 26 320 1920
xnmr in * * * * *
xnrnr:out * * * * *
Xnmr_assign 0 11 9 90 540
Xnmr_control * * * * *
Xnmr_out_new * * * * *
Xnmr_out_error * * * * *
xnmr_out_valid 1 23 19 220 1320
xnmr_ready * * * # *
xnmr_done * * * * *

Note: The code for the functions (for which no data given in this table) is very convoluted. The total number of
lines of code in these functions can only be determined at execution time.

Table 12: Executive Routing Manager Functions

E-12

Module No. of called | Lines of "C"code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles
XCB_manager * * * * *
XM_il'l * * * * *
XM_Ollt * * * * *
XM_assign * * * * *
XM_control * * * * *
Xm_enter 1 36 30 330 1980
XMI_network * * *
xnetwork_in * * * *
xnetwork_out 6 93 77 950 5700
xnetwork_assign * * * * *
xnetwork_control * * * *
XMI_io 1 45 37 400 2400
XiO_il'l * * * * *
xio_out * * * *
Xio_assign * * * *
xio_control * * * *
xio_send 6 90 75 930 5580
Xio_query * * * * *
Xi_reset_junction 1 19 16 190 1140

Note: The code for the functions (for which no data given in this table) is very convoluted. The total number of
lines of code in these functions can only be determined at execution time.

Table 13(a): Executive Resource Manager Functions

E-13

Module No. of called | Lines of "C"code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles

XMI_process 1 50 41 440 2640
Xprocess_in * * * * *
Xprocess_out * * * * *
Xprocess_assign * * * * *
xprocess_control * * * * *
process_accept 7 100 83 1040 6240
process_query * * * * *
process_reply * * * * *
process_call * * * * *
process_receive 20 224 186 2460 14,760
process_send * * * * *
process_ready 16 206 171 2190 13,140
match_query * * * * *
process_out_query 12 145 120 1560 9360
process_out_reply 13 179 149 1880 11,280
process_out_send 12 147 122 1580 9480
process_run2wait 8 107 89 1130 6780
process_wait2ready 9 114 95 1220 7320
next_process 7 100 83 1040 6240
Xp_reset_junction 1 20 17 200 1200

Note: The code for the functions (for which no data given in this table) is very
convoluted. The total number of lines of code in these functions can only be
determined at execution time.

Table 13(b): Executive Resource Manager Functions.

E-14
.....Q...O.O..O.WO..‘...CO.........‘.O‘.................

Module No. of called | Lines of "C" code | Lines of "C" code Lines of "assembly"” code No. of
Functions (Total) (worst case) (worst case) clock cycles

mc_boot 23 396 329 3980 23,880
mc_add_manager 1 13 11 140 840
mc_add_router 1 16 13 160 960
mc_add_resource 1 35 29 320 1920
mc_add_exec 1 29 24 270 1620
mc_add_link 3 59 49 580 3480
network_link 0 20 17 170 1020
io_link 0 13 11 110 660
app!l_link 0 13 11 110 660
mgr_command #* * * * *
mc_list * * * * *
mc_exec_error 0 8 7 70 420
mc_undefined 0 6 5 50 300

Note: The code for the functions (for which no data given in this table) is very
convoluted. The total number of lines of code in these functions can only be

determined at execution time.

Table 14: DSM Controller Functions.
E-15

Module No. of called | Linesof "C" code | Lines of "C" code Lines of "assembly" code No. of
Functions (Total) (worst case) (worst case) clock cycles
mc_define 11 315 261 2940 17,640
assign_resource 4 163 135 1470 8820
assign_io 1 69 57 600 3600
assign_appl 1 69 57 600 3600
assign_network 1 104 86 890 5340
sort_execs 0 29 24 240 1440
sort_network 0 34 28 280 1680
mc_link 5 117 97 1120 6720
mc_run 7 75 62 830 4980
run_tos 3 59 49 580 3480
mc_get_consumer 3 64 53 620 3720
mc_get_cpu 6 33 27 450 2700
mc_unknown_con 4 146 121 1330 7980

Table 15: DSM Scheduler Functions.

E-16

