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ABSTRACT  

Three aspects of spread spectrum communication systems for code division 

multiple access application are considered in this report. 

In the first part of the report a particular rapid acquisition scheme 

for CDMA spread spectrum systems which utilizes partial correlation of maximum 

length sequences is investigated. An extensive computer study of these partial 

correlations of a segment of our maximum length sequence with a sum of randomly 

phase shifted versions of distinct maximum length sequences was done. As a 

result of this study a model for these partial correlations was postulated and 

found acceptable under various statistical tests. The model was then applied 

to the analysis of a direct sequence and a hybrid frequency hopping/direct 

sequence system. Expressions were derived on such system parameters as false 

alarm probability and the probability of miss hit as functions of the detector 

threshold and compared to those values found by a detailed simulation of the 

system. 

The problem of designing sequences for use in CDMA systems is considered 

in the second part of the report. Results available in the literature are 

collected under a common terminology and discussed in sufficient detail to allow 

easy generation of the sequences for those interested. This work concentrated 

mainly on the fundamental weight enumeration work of Kasami but includes also some 

recent work on the application of bent functions to the design of such sequences. 

The final part of the report considers the maximum likelihood estimation 

of the state of a shift register generated sequence received in noise. A 

Viterbi algorithm approach is being taken to this problem and it has already been 

observed that there are possibilities to trade off the complexity of the decoder/ 

state estimator with memory and table look up techniques. It is felt that this 

approach is promising, not only for the single shift register problem of concern 



here, but also for the more general problem of the decoding of convolutional 

codes. It is hoped that the trade-offs observed will allow decoding for 

longer constraint lengths than is presently possible. 

(iii) 
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1. 

I. Rapid Acquisition Techniques in CDMA'Spread Spectrum Systems  

1.1 Introduction  

In many communication systems a common transmission medium is to be 

shared by several users. The satellite channel with large bandwidth and wide 

geographical coverage is a natural environment for multiple access communica-

tions. Conventional methods to accommodate multiple users are frequency 

division multiple access (FDMA) and time division multiple access (TDMA) in 

which fixed frequency bands or time slots are allocated to the users. When 

the number of users is large or when the data generation is random and bursty, 

inefficiencies appear in these conventional systems,and many other methods 

have been considered for various applications. 

One of these methods is spread spectrummultipleaccess (SSMA) which 

allows all the users to use all the available bandwidth in a controlled overlay 

fashion. These systems were first proposed over twenty five years ago and have 

been receiving increased attention in the last decade. They are particularly 

effective for interference suppression in high noise environments due to channel 

conditions, other user signalling,or intentional attempts to jam communications. 

By far the most widely discussed spread spectrum systems are direct 

sequence (DS)SS and frequency hopped (FH)SS. In these systems a code sequence 

is used both to identify the user and to create a very wideband signal from 

the relatively narrowband information signal. When the code sequence has 

certain properties, it is possible at the receiver to separate out the various 

signals sharing the common bandwidth. We will thus refer to both the DS and FH 

as code division multiple access (CDMA) SS systems. A brief exposition of these 

systems is presented. 

A typical DSSS system is shown in Figure 1.1, where the baseband informa-

tion m
1
(t) is first modulated in sone manner to produce a signal s 1

(t) which 
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typically has a bandwidth on the order of that of m
1 (t). The wideband spreading 

function a
1 (0., derived from the code sequence, is then superimposed to produce 

the wideband transmitted signal a
1
(t)s

1 (t). It is assumed there are N users in 

the system, each with its own spreading function, and that if user i is to 

transmittouserj,thespreadingfunction g j.(t) is used. The received signal 

for user i, r(t), is then composed of a wanted signal a
1
(t)s

1
(t), unwanted 

signals E 	(Os (0 (where we ignore for the moment the possibility that 
j=2 

more than one user may be transmitting to user 1 at any given time), channel 

noise n(t) and other noise such as an intentional jamling signal I(t). If we 

suppose for the moment that the spreading function a i (t), i=1,...,N, form an 

orthonormal set and that the receiver generated spreading function a
1
(t) is 

in synchronism with the spreading function of the incoming signal component 

intended for user 1, then the combination of the multiplier and bandpass filter 

will act as a correlator and the combination of all unwanted signals at the 

filter output will be diminished relative to that of the desired component. 

The efficiency of this system depends in large measure on the spreading 

funt-tion design and a considerable effort has been expended on this problem. 

It is unnecessarily restrictive to use an orthonormal set and in practice a 

set of time functions is sought which have low cross-correlation values and 

low off peak autocorrelation values, with a very peaked autocorrelation function, 

implying wide bandwidth. Although certain gains can be realized by using multi-

phase or even continuous time functions, it is most common to restrict attention 

to binary waveform spreading functions of the form 

a(t) = E a. P 	(t-jTc
) 

j 	TC 

wherela.lis binary (±1) sequence and p
T 

(t) is a unit amplitude pulse of 
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duration T
c

, the so-called "chip time." The spreading function a(t) is often phase 

shift keyed (psk) onto the signal s i (t), an operation in this case equivalent 

to multiplication. Such signals are relatively easy to generate and maximize 

the transmitted power. The code removal at the receiver is often accomplished 

by using a heterodyne correlator where the despreading signal is generated as 

a psk signal, modulated by the code sequence, with a carrier frequency of 

f u, This signal is then bandpass filtered at IF before demodulation and 

the frequency offset is to prevent narrow band interference from appearing at 

the correlator output. 

The most common type of code sequences in use are the pseudo-random 

noise (pn) sequences which are simple to generate and have excellent correlation 

properties. These are in fact the sequences that will be used in this investi-

gation. However, much effort has been spent on the construction and analysis of 

other sets of sequences and a survey of these is given in Blake and Mark (1978). 

The principle behind a frequency hopping SS system is the same as that 

of the DSSS system, differing only in the manner in which the spectrum spreading 

is achieved. A basic FHSS system is siloWn in Figure 1.2. As with DS there is 

no restriction on the type of modulation to be used. In an FH system however 

the code sequence is used to select the carrier frequency instead of directly 

modulating the carrier. The carrier frequency thus randomly hops over a set 

of frequencies f 	f2'...,fn in a manner controlled by the code sequence 

generator. Each frequency is used for a preset time interval and it is, in fact, 

desirable that the frequency hopping rate be the same as the input data rate. 

The frequency hopping then spreads the input signal bandwith. It should 

be noted that with the frequency hopping method it is very difficult 

to maintain carrier coherence across the total bandwidth. Each time the 

system hops to a new frequency, the signal presented to the demodulator may 
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change phase. Thus coherent demodulation methods are not suitable for FHSS. 

systems and non-coherent methods such as envelope detection are most often used. 

A common performance measure for SS systems is the processing gain 

[Dixon (1976)] 'defined as the ratio  of output signal-to-noise ratio to input 

signal-to-noise ratio: 

G = (S/N) / (S/N). 
in. 

In SS systems this quantity is often approximated by 

Gp = BRF / Rd 

where BRF is  the RF bandwidth of the system and Rd 
is the baseband information 

data rate. In a DS system, B 	is twice the code sequence rate Rc and it is RF 

seen that a high code rate, relative to the data rate, is required to achieve 

a high processing gain. In an FH system with n discrete frequencies, it can 

be shown [Dixon (1976)] that the processing gain is approximately n. Thus to 

achieve a high processing gain in an FH SS system, the number of frequencies 

must be large. 

It is possible however to combine the concepts of DS and FH signalling 

into a hybrid FH/DS system which can achieve larger bandwidths than those 

attainable by either DS or FH alone. Such ahybrid system is shown in Figure 1.3. 

The DS code rate is normally much faster than the rate of frequency hopping 

and so many bits of the DS code sequence will occur in a single frequency 

channel. Also the number of frequency channels available is usually much 

smaller than the number of code bits, so that in the course of one period of 

the code sequence, all the frequency channels will have been used many times. 

As in DS systems, removal of the code in a hybrid system also employs hetero-

dyne correlation, the difference being that the reference signal is also hybrid 

FH/DS. 

It can be shown [Dixon (1976) ].  that the processing gain in dB of the 
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hybrid FR/DS system is the sum of the processing gain of the FH and the DS 

systems, i.e. 

G (FH/DS) = G (FH) + G (DS) 

2R 
= 10 logio (n) + 10 logio 	). 

With this relationship it is easy to appreciate the advantage that a hybrid 

system can offer over a pure DS or pure PH  system to achieve a given processing 

gain. 

For the successful operation of the above CDMA systems it is necessary 

that the receiver be able to both acquire and maintain synchronization of the 

locally generated code sequence with the same sequence contained in the incoming 

signal. Moreover, it is important in many applications that acquisition takes 

place well within the first data bit so as not to lose any information. Once 

acquired there are several well known techniques to track the code sequence and 

these appear to be well understood. This work is concerned entirely with acqui-

sition which is generally regarded to be the harder of the two problems. 

The optimum method of acquiring synchronism with the code sequence is 

to employ a bank of correlators or matched filters. The lengths of the 

sequences contemplated in this work however would make such an implementation 

impracticable since correlation is usually over an entire period of the sequence. 

In this paper a rapid acquisition technique is suggested and applied to both 

a DS and a hybrid FH/DS system. These systems are introduced in the next 

section where other attempts to solve this problem are also briefly mentioned. 

The acquisition systems proposed are based on partial correlations of pn 

sequences. As these are not well understood mathematically, an extensive 

experimental investigation of them was undertaken and the results are discussed 

in section 1.3. The results are used in section 1.4 to analyze the acquisition 

systems proposed and this performance is compared to that observed in simulation. 
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1.2.  Subsequence Correlation Acquisition Methods for Spread Spectrum Systems  

The acquisition problem for the DS CDMA SS system is first considered. 

It is assumed that each of the K users in the system is furnished with a 

unique pn sequence of length N = 2n-1. The i h user's sequence is denoted by 

(i) a binary (0,1) sequence, and is generated by the primitive polynomial 

f.(x),  1=1,2,...,K. The correlation properties of these sequences is well 

understood when correlation is over an entire period. For this work the code 

sequences of interest will be binary (±1) and the transformation from the 

	

(0,1)sequences{c.Ito binary (±1) sequences fa. lis a. 	= 1 - 
J 	 J 	J 	 J 

If user j transmits to user k, he uses the code sequence generated by fk (x) 

and it is assumed for the moment that only one user transmits to user k at any 

given time. Without loss of generality, assume that k = 1. From the discussion 

of the previous section the signal received by user 1 is assumed to be of the 

form 

(1.1) r(t) = E al  ak(t-Tk) b(t-Tk) Cos (wet + cbk) + n(t) + I(t) 
k=1 

where  Œk  is either 0 or 1 depending on whether a signal intended for user k is 

present or not, T
k 

and cp
k 

are random time and phase delays respectively, 

n(t) is white Gaussian noise of double sided spectral density N0/2 and I(t) 

representsother types of interference such as intentional jamming. In later 

analysis this last type of interference will be ignored. This model and some 

of the notation used is essentially that of Pursley [1977]. 

Notice that all transmitted signals are received with equal attenuation.. 

On some channels, such as satellite channels perhaps, this may be an appropriate 

assumption. Assume there is a signal intended for user 1 present in the 

received signal (i.e. a
1
=1). At the receiver a locally generated version of 

the spreading function a
1
(t) must be generated in synchronism with that 
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contained in the received signal before it can be removed. The effect of a 

transition from a data +1 to a data -1, which multiplies the code sequence by 

-1, is ignored and a justification for this is given in the next section. 

An obvious method to acquire synchronization is to use a correlator 

or matched filter and note the time delay to observe a peak at the output. The 

amount of computation required in such a system for sequences of length 2
16 

to 

2
20

, as are intended for use here, is prohibitive. A more sophisticated approach 

in the single user case depends on the fact that any n consecutive error free 

bits of the sequence completely determine the state of the code generator. 

This fact was used by Pearce and Rishenbatt (1971) and Kilgus (1973) who treated 

the pn sequence as a code and derived a set of orthogonal partiy checks on n 

consecutive bits to form a majority logic estimate of the pn sequence generator 

state. Another method, RASE (rapid acquistion by sequentical estimation) was 

introduced by Ward (1965). It uses sequential estimation techniques to form an 

estimate of the generator state. This method was later improved by introducing 

a recursion aided version of it which uses only simple logic elements to deter-

mine whether it is likely that n given bits in the sequence are without error 

[Ward and Yui (1977a), (1977b)]. 

These techniques were derived for the single user case. It is clear 

however that the other users in a CDMA system may be regarded as simply 

increasing the level of interference. Thus any single user SS system designed 

to operate in a low noise environment may not work well when adapted to the 

multi-user situation. 

Having observed the received signal for some period of time, the 

optimum acquisition method using only the information in this time interval 

is the maximum likelihood estimate of the pn code sequence generator state. 

Deriving such an estimate for shift registers of lengths 16 to 20 would 
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doubtless involve a computationally infeasible trellis search unless backtrack 

methods are employed. These approaches are not discussed here. Instead, we 

introduce another approach which, while suboptimal, appears to be effective 

in the multiple user environment and leads to rapid acquisition. 

A block diagram of the system under consideration is shown in Figure 1.4. 

The received signal r(t) of equation (2.1) is multiplied by the output of a 

local oscillator and the result is low-pass filtered. In spread spectrum 

systems it is typical that the carrier frequency co
c 

exceeds the chip rate T
-1 

5 

c 
>> 1/T

c 
and the bandwidth of the information part in the received signal is 

(1) less than (A)
c

. The code sequence of user 1 is denoted by l I  a 	1.  

a (±1) binary sequence. Let 	be some positive integer, Z1(2n
1) and define k 

such that Z.k = 2 n-1 = N. The sequence of user 1 is divided up into e segments 

each of length k. Choose some subsequence length m, small with respect to the 

(1) segment length k, and denote by S
i 

the first m code sequence digits of 

segment i, i.e., 

S (1) = (a a
(1) 	(1) 

ik, ik+1, 	aik+m-1 ) 	= Oe 	 .." e  — 1  . 

The situation is shown graphically in Figure 1.5. The i
th 

subsequence matched 

filter is matched to the signal corresponding to the subsequence S
(1) . At a 

given instant of time the incoming register contains a segment of the received 

signal of length m T and is a sum of (±1) code sequences with random phases 

and noise. The number of users on the channel at any given time is also 

assumed to be a random variable and in practice a subsidiary function of the 

acquisition loop is to determine if a signal intended for user 1 is present 

in the received signal. This is determined automatically by the system under 

consideration. 

.th 
At a given instant of time the output of the I matched filter, 
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denoted by 1J
1' 

with input the contents of the incoming register, is determined. 

If IT
i 

exceeds the threshold T
1, 

the sequence generator of the cumulative corre- 

lator is initiated in a phase corresponding to that of the subsequence S
(1)

. 

The cumulative correlator runs for some predetermined number of chip intervals, 

MT
c 

, M > m, and if the output V at the end of this interval exceeds the thresh-

old T
2' 

it is assumed the incoming register contains a signal for user 1 and 

that the code sequence generator of the cumulative correlator is in synchronism 

with the code sequence of the signal intended for user 1 in the received signal. 

If no threshold is exceeded, the contents of the incoming register are shifted 

by  Tc  seconds and the procedure is repeated. 

The operation of this system depends upon the observed properties of 

subsequence correlations of pn sequences. These properties are discussed in the 

next section. For the present we note that it will be established there that 

cross correlation of a subsequence of length m of a pn sequence of length 

N = 2n-1, m« N, with either a distinct subsequence of length m of the same 

pn sequence or a subsequence of length m of another pn sequence, can be modelled 

as a normal random variable with mean -m/N and variance approximately m. As 

such, fewer than .27% of such subsequence cross correlations will lie outside 

the 3 0.  = 3 1rm--  level about the mean. If K
a 

users are active on the channel 

and the subsequence to which the ith  matched filter is matched is not present 

intheincoming register,theoutputofthei th inli be the 

surnoftworandoravariablesX.+U.exelereLis the output due to the code 1 	1 	1 

sequences present in r(t), and U.  is due to the white noise on the channel. 

If it is assumed that subsequence correlations from distinct pn sequences are 

independent normal random variables, an assumption" that is discussed in the 

- (1) next section, then if S
i 

is not in synchronism with any subsequence of r(t) 

Presentlyintheincomingregister,X.will be approximately a normal random 1 
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variable with mean -k
a
m/N and variance ka

m. If the subsequence is in 

synchronism, X
i 
will have mean m - (k

a
-1)111/N and variance (k

a
-k)m. The noise 

ran domvariablen.is  
1 

mT
c 

n. = f
o 	n(t) a.(t) Cos(olet) dt 

which is a normal random variable with mean zero and variance mT N 14, regardless 
Co 

of synchronism considerations. It is assumed that the bandwidth of the matched 

filters is on the order of 1/T
c 
which is very much less than the bandwidths of the 

low-pass filter. Thus,  the noise at the input to the matched filters can be still 

regarded as white. Thus, at any given instant of time the normal random variable 

U. will be a normal random variable with mean and variance: 
1 

S(
1) in synchronism: 

1 	
g
o 
= m(1 	, 

o 
) 	= (K

a
-1) m + mT N  1 4 

c o 
a 	. 

(1.2) 

S (1) 
not in synchroniem: .  g

1 
= - K

a 
m/N ; a

l
= K

a
m+ mT N  1 4 

c o 

By similar reasoning, if the cumulative correlator code sequence generator is 

initiated in the phase corresponding to the subsequenceS
(1) after MT

c 
seconds 

the cumulative correlator output will be a normal random variable with mean and 

variance - 

S (1) in synchronism : 	g
o 

= M(1-
a 

) 	 = (Ka
-1) M + MT N 

o
/4 

c  
(1.3) 

(1) 
S. not in synchronism:= -K M/N 	;a1  = K M + MT N /4 1 	 a 	 1 	a 	c o 

It is possible, of course, that the output of the 
.th 
	filter exceeds T1 

when in fact S (1) is not in synchronism and th-us the cumulative correlator will 

be initiated in an incorrect state. 

The thresholds T
1 
and T2 must 

be set in relationship to the anticipated 

number of users, the subsequence length m and the noise level on the channel. 

K -1 - 
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Once set, expressions for performance parameters of the system such as the 

probability of false alarm, probability of a false-  dismissal and probability 

distribution of the time to acquisition can be determined. These will use the 

results of the next section in which the assumptions regarding the subsequence 

correlations, mentioned above, are carefully examined. Expressions for the 

performance parameters of the system are derived in section 1.4, where they will 

be compared to results achieved by simulation. 

There are certain design considerations for this system which should 

be mentioned. It is possible that more than one subsequence matched filter 

output exceed the threshold T
I 
simultaneously. To accommodate this possibility 

either one of the filters may, at random, be assumed to be the correct indica-

tion of synchronism and the cumulative correlator initiated accordingly. It 

would also be possible to have more than one cumulative correlator initiate 

both of them and at the end of the MT
c 
seconds decide on the correct one. 

Similarly, in most systems it is likely that there uey be more than one signal 

intended for user 1 present in the received signal. If more than one cumulative 

correlator is used, with the addition of some simple logic it would be possible 

to recover the data sequences from more than one source; one cumulative cor-

relator required for each of the signals to be acquired, assuming their code 

sequences are not in synchronism (in which case the sum of the data signals 

would be given at the final output with no way of separating them). 

At the transition from a +1 data bit to a -1 data bit the cross-

correlation properties of the subsequences have not been investigated; i.e., 

the cross-correlation between a given subsequence of length m with a distinct 

subsequence of either the same or another pn sequence which is multiplied by 

-1 in its last p bits have not been considered. It is argued however that 

these cross-correlations would behave, on the average, as the ordinary 
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cross-correlations and hence are not considered further. 

Finally, it is noted that it is not necessary that the entire pn 

sequence be divided into sequences each of length k = N/e. For certain 

values of N and e desired, this would be inconvenient. All that is necessary 

is that the cumulative matched filter code sequence generator is initiated in 

the saine  state as the subsequence of the subsequence matched filter when its 

output exceeds the threshold T
1

. This has nothing to do with the divisibility 

properties of the integers involved. In the simulations of the DS system the 

parameters chosen were n = 16, N = 2
16

-1,  L  = 20 and m chosen as a (variable) 

multiple of 200. As 20  X  (216-1), the first 19 segments were chosen of length 

3270 and the last segment of length 3285. The parameter m is chosen by the 

requirement that acquistion should normally be accomplished within (1/m) th 

of a data bit. 
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1.3. Subsequence Correlation Properties of Pseudonoise Sequences  

To analyze the systems proposed in the previous section it is necessary 

to gain some insight into the correlation between a subsequence of a given pn 

sequence and a sum of a set of subsequences of other pn sequences of which the 

given pn sequence may or may not be a member. This problem is not well under-

stood mathematically. To date, investigations have been carried out on the 

correlation function between two distinct pn sequences and on the correlations 

between a subsequence of a given pn sequence and another subsequence of the 

same pn sequence. Subsequence correlations between two distinct pn sequences 

appear not to  have  been considered in the literature and the problem seems 

beyond our capabilities with our present mathematical understanding of these 

sequences. We therefore take an esperimental (computer simulation) approach 

to analyze this subsequence correlation problem and first review the known 

results for a single sequence. 

a. = 1-2c., the corresponding (±1) sequence. The cyclic autocorrelation 

function of such a sequence, with period N, is defined as 

N-1 	 N-1 	c. -c. . z 	 1+k 
C(k) = 2 	a. ai+k . 
	(-1)  1 

 
i=0  1 1=0 

where all subscripts are taken modulo N and C(0) = N, and C(k) = -1, 0 < k < N. 

Now any other pn sequence of the same length can be dbtained by decimation; 

Le.,talcingeverYdn bitoftherinsequencetc.Ito give the sequence fc dj 1. 

nals,iffe.lis a binary (0,1) pn sequence of length N, then e. = 	for 

.some d, 0 < d < N, (d, N-1) = 1 and for some suitable phase shift e. If 

the sequence {c } is generated by the polynomial m1
(x), the minimal poly-

nomial of the primitive element a E GF(2n), then the sequence {.cd.}  is generated 



and 

1 w = _ -- 
N 

(m-1)
) W

2 
= m(1 

(1.4 a) 

(1.4 b) 
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by m
d
(x) the minimal polynomial of ad . The cyclic or periodic cross-correlation 

function between the two binary (±1) sequences corresponding to the sequences 

{c. 	and  1cdj1  is given by 

N-1 	c - c 
Cd(k)= E 	(-1) 	dj 

j=0 

This function is known only for certain values of n and d, and Helleseth (1978) 

contains a summary of the known results. It is observed there that the problem 

is equivalent to determining the weight distribution of the (2n-1, 2n) code 

with generator polynomial (xN-1)/
•
m
1
(x) m

d
(x). In light of the few results 

known on this problem of cross-correlating two entirely distinct pn sequences, 

it is not surprising how little is known on the subsequence correlation problem. 

Considerthepnsequenceic.lof length N = 2
n-1 and denote by S the 

subsequence of length m, (ce,  c l , 
	c 1 )  starting at the

th 
bit, all 

subscripts taken modulo N. Denote by w the weight of S and by aw 
the number 

of the N possible subsequences of length m that are of weight w. Similarly, 

forthecorresponding(±1)sequence{a. } denote by S the subsequence 

m-1 
fae ,ae+i , 	ael_m_ 1 1 and by We  = E a. and note that We  = m-2 we . Define 

j=0 j  

the quantities 

N-1 	N-1 	 N-1 	N-1 
p 1 	 1 	p 1 	 P E.  = 	w. p = 	.P E 	A. 	WP  = — 	= — E (N-21) A.. 

1 	N 	1 	— 	N 	Wi 	N 	 1 
i=0 
	N. 
	 i=0 

Thepnsequence-fc.1 , together with all of its 2n-1 cyclic shifts and the all 

zero sequence of length 2n-1 forms a maximum length code and from this fact 

the quantities W1 and W
2 

are easily determined as 



N = 2n-1 

Now consider a set 

k = 1,2, ..., K and denote 

(k) 
' 	

(k) 	(k) at 	a 	S 	= 

20. 

It has been shown by Wainberg and Wolf [1970 ] and Lindholm [1968] that higher 

'moments  depend on the particular polynomials generating the pn sequences and 

sequences generated 
m-1 
E ae+1  ak+i  the 

i=0 
correlation between the two subsequences S and S

lc' 
By an argument similar to 

that used above, the average value of this correlation for 	k is -m/N and 

the average value of the square is m(1-(m-1)/N). We will later interpret this 

subsequence correlation as a random variable and adopt the notation 

considerable skewness in the third  moments, for  example, of 

by certain polynomials can be found. Denote by (S t , Sk) = 

11(m,n) = 2
(m,n) = m(1- (m1) ) 

m2 

N 	N2 

m
2

(1  - —
1 
) (1 + ) 

m N 

It appears to be an intractable problem to determine the subsequence 
1 

cross-correlation (S S ) for arbitrary m, when S
k 

= fa k 	 k, ak+1,.." ak+m-1 )  

is derived from a distinct pn sequence fc 1. It is reasonable to conjecture 

however that for subsequences S
k, 
 S and S

k 
(S

k, 
S
e 

derived from one sequence, e 
S
k from a distinct sequence) chosen at random, the statistical behaviour of 

(S S
k  ) will be similar to that of (S e'  S). e, 	 k 

of K distinct binary (±1) pn sequences{:a k) } j  

bYSV° asubsequenceoflerlehmoffanstarting 

(k) 	(k) 	(k) , a 	, ae+1 , 	ag+m,..1 1. Consider a subset of 

K
a 

integers  1k
1, 

k 

in correlations of the 

.' kK
a' 

 1 1  k1 
 k2 

< 	< kK  K. We are interested 

'K 
a 	(k.) 	

a 

form (S (1) 
E S 	In the communication context + /* 
i=1 i 

the set of a integers corresponds to the set of users to whom messages are 

currentlybeingtransmittedandthesubscriptst.the random phases of the 

sequences relative to each other. If k
1
=1 there is a message being transmitted 
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to user 1 and if, in addition e1 = e, the subsequence in the summation is in 

synchronism with S.(1) . Denote by 

K
a 	(k. (1) 	1) 

XK  (k) = (S p  , E S e 	) 
a 	- 1=1 i 

and from the above comments for a fixed integer e, this correlation is treated 

as a random variable. In the remainder of this section we justify modelling 

this discrete-time random process as an uncorrelated normal random process. 

Ifkl (sequencela.(1) lnot present in the summation), it would 

appear reasonable to  assume  that 

E(Xic (k)) = - Kam/N 	 (1.5 a) 
a 

Ka 	 (ki) 
V(XK  (k) =  E 	V[(S (z1) , S e:fk ) 

a 	1=1 

and 

1 = K m2 (1 - 	(1 + -g) 
a m N 

(1.5 b) 

( k 1
) 	(1) 	(k.) 

(1) 
where it has been assumed that correlations (Si ,S

ei 
) and (S 	, S J  ) 

e 	e 
j 

are uncorrelated. If k
1 
= 1 but e 1 e e,the  same expressions will hold. If 

k
1 
 = 1 and 	= then the correlation (S (1) S (1))= m introduces a "d.c. 

1 	 ' e 

offset" term into the summation and essentially reduces the number of terms 

in the sequence by 1, thus 

(K -1)m 
E(XK  (0)) = m 	N 

a 

v (XK  (o) ) = (Ka  - 1)m2 (-nli  - 	(1+ 	) 
a 

and 

(1.6 a) 

(1.6 b) 

There are two aspects to the above computations which must be verified; 

namely, it is necessary to verify that XK  (k) can be viewed as a normal random 
a 
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variable and that XK  (k) and XK  (k ) are uncorrelated, k k . Extensive simu-

lations were performed on these questions and the results are now discussed. 

To determine whether XK  (k) can be modelled as a normal random variable, 
a 

correlations for subsequences of length m = 200, 400, 600, 800 and 1000 were 

performed for the numbers of users K
a 
= 5, 10, 15, 20, 25, 30, 35, 40, 45 and 

50. In each case 8192-m correlationswere obtained by generating kK  distinct pn 
a 

sequences by choosing every 100/K
a
th  of the generating polynomials of Table 1.1 

and generating a sum of subsequence of length 200 of the first sequence, 

(Ka ) (k.) 
sequentia1ly,i.e.,(S

(1)
, 	S 	), k

1 
= 1, is determined for k = 0, 1,..., 

1=1 ei+k  

8192 = m for the five values of m. The distribution of these 8192 - m sub-

sequence correlations was considered and goodness of fit tests applied in the 

cases m = 200, 400, 600, 800 and 1,000 for Ka  = 25, and for Ka  = 5, 10, 15, ..., 

50 for m = 200. For all computations n = 16, i.e., only sequences of length 

2 16 - 1 were considered. The results of the chi-square goodness of fit tests 

are reported in Table 1.2. It is seen that for the hypotheses 

Ho : data obeys a normal distribution 

H1. 
• data does not obey a normal distribution 

The hypothesis H
o is never rejected at the 1% 

level of significance while it is 

rejected only three times at the 4% level of significance.  The test is to 

reject Ho  if 
k (u 

 

X2  e.  
1 	

i 	> 
=1 

where X2 
1-a; k- 3 

with k-3 degrees of freedom. (The mean and standard deviation of the distribu- 

tion were estimated from the data, hence the (k-3) degrees of freedom rather 

than (k-1) degrees of freedom if these parameters were assumed known). In this 

expression k is the number of intervals on the real line used for the test, 

is the (1-a)-percentage point of a chi-square random variable 



TABLE 1.1 - OCTAL REPRESENTATION OF PRIMITIVE POLYNOMIAL OF ORDER 16 

202277* 	 246515 	 306227 	 337027' 

203603 	 251447 	 306235 	 337457 

205745 	 255505 	 311203 	 337521 

206173 	 257253 	 311427 	 341337 

210435 	 261163 	 313437 	 343011 

211213 	 263641 	 314013 	 344153 

213253 	 263737 	 315o57 	 344513 

213523 	 264001 	 315713 	 346173 

214157 	 264111 	 316505 	 346243 

216313 	 267205 	 320317 	 346467 

216607 	 271341 	 321433 	 351021 

216777 	 271655 	 322111 	 352363 

217527 	 272425 	 323113 	 352653 

222535 	 273235 	 324523 	 354047 

224671 	 275247 	 326317 	 354175 

231265 	 276241 	 326423 	 355513 

232045 	 277053 	 326571 	 363657 

232233 	 277461 	 326715 	 366057 

232435 	 277505 	 330o23 	 366171 

232561 	 300025 	 330177 	 366345 

232643 	 303045 	 30523 	 367033 

234111 	 303417 	 331333 	 370467 

237337 	 303435 	 331577 	 371253 

240675 	 303463 	 332017 	 373237 

245057 	 304655 	 335717 	 377755 

23. 



24. 
TABLE 1.2 - GOODNESS OF FIT TEST RESULTS  

Degree of 	Subseq. Number 	Mean 	Standard 	Number 	Number Vui-ei ) lx2.95;k_ 3 	x2.990c....3  
Polynomial 	Length 	of 	 Deviation 	of 	of 	..--' 	e =1 i 	i 

Users 	 Samples Inter- 
vals  

16 	200 	5 	-.276 	31.64 	7992 	21 	19.582 	28.87 	34.81 

16 	200 	10 	.004 	45.25 	7992 	30 	25.863 	40.11 	46.96 

16 	200 	15 	-.058 	54.58 	7992 	21 	18.651 	28.87 	34.81 

16 	200 	20 	-2.670 	63.64 	7992 	21 	23.517 	28.87 	34.81 

16 	200 	25 	-1.400 	71.05 	7992 	25 	36.448 	33.92* 	40.29 

16 	200 	30 	-2.180 	77.15 	7992 	26 	15.747 	35.17 	41.64 

16 	200 	35 	-2.150 	83.04 	7992 	28 	17.963 	37.65 	44.31 

16 	200 	40 	-1.270 	88.55 	7992 	31 	39.841 	41.34 	48.28 

16 	200 	45 	-2.570 	94.01 	7992 	32 	40.736 	42.56 	49.59 

16 	200 	50 	-2.520 	100.17 	7992 	33 	37.636 	43.77 	50.89 

16 	400 	25 	-1.900 	100.66 	7792 	32 	43.139 	42.56* 	49.59 

16 	600 	25 	-2.06 	122.42 	7592 	16 	23.427 	22.36* 	27.69 

16 	800 	25 	-1.420 	141.78 	7392 	20 	21.754 	27.59 	33.41 
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e. is the expected number of the 8192-m correlations in the i th  interval and 

n is the observed number of correlations in this interval. From the results i  

contained in Table 1.2, it would seem reasonable for the purpose of this work 

to model the correlations as normal random variables. 

The simulation data on the behaviour of the variance of the subsequence 

correlations is given in Eigs 1.6 and 1.7. From equation (1) it is seen that 

theoretically the variance is given as 

1 1 V(XK (k)) = Kam2  (71  -) (1 + 
a 

Since m« N in cases of interest here, this expression can be well approximated 

by K m. The data of rigs. 1.6 and 1.7 indicate good agreement with this result a 

for the smaller subsequence lengths and the smaller number of users. As either 

the number of users increases or the subsequence length increases there is some 

falling off of the observed data from the theoretical value and the reasons for 

this are unknown. As the subsequence length inreases however, one might 

intuitively argue that the "degree of randomness" in the method of obtaining the 

correlations is diminished. Similarly, one might argue that as the number of 

users increases, there is more of a relationship between the generating poly-

nomials being used, leading to some deficiencies of the model used to derive the 

formulae for the mean and variance. Nonetheless, in the sequel it will be 

assumed that XK  (k) is a normal random variable with mean and variance given by 
a 

either equation (1.5) or (1.6). 

Tests were also performed to examine the correlation between Xic (k) and 
a 

XK (k) and X (k+1). For a subsequence of length m the sample correlation function 
a 

was determined by 
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, j E 	XK  (j)XK  (j+1) -I E XK  (i)1 1E 	XK  (j+1)] 
J=1 	a 	a 

J 	 J 	 J 

1= 	
, 

1 a 	j=1 	a  P= 	 ,  J=  8192-m-1 

[ 

J 2 	J 	
2— 	j  2 	

J 
(JE1 a 	1 a 	jl  XK a 	jl a  XK (j) - (. EXK (j)) 	(JE(j)) - (E XK (j)) j   

Sample correlation functions were determined for subsequence lengths m = 200, 400, 

600, 800 and 1000 and forKâ = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50, and the 

results are given in Table 1.3. To test the hypotheses 

2 1 
J 

the appropriate test is to reject H
o if 

>t  
"21/2 	

a 
(1- P ) 	

— J-2 

where t
1-a; J-2 is the (1-a) percentage point of students t-distribution with 

J-2 degrees of freedom. At the 1% level of significance, for large J, 

t a 	= 2.576 and since  ail  measured correlations are close to zero the 1--2- ;J-2 

test reduces to rejecting Ho if Ipl > t 1- 	J-2 a 	/(J-2) 1/2 , a 	quantity which 

varies from 0.0288 to 0.0304 as m varies from 200 to 1,000. From the data of 

Table 3 it would appear that most samples would lead to Ho not being rejected. 

It would have been interesting to compute sample correlations between 

XK  (k) and XK  (k + T), T > 1 but as the amount of computation becomes excessive 
a 	 a 

and it is not clear that the additional evidence would have been any more 

conclusive than that for the case T = 1, this was not done. 

The results on the correlation properties of the sequence XK  (k) are 
a 

perhaps inconclusive. Nonetheless, they generally support the assumption that 

the sequence  {X, (k)} is a normally distributed independent process, each point 
a 

having the mean and variance of either equation (1.5) or (1.6). Under the 

Ip I(J-2) 1/2 



200 

400 

600 

800 

1,000 

TABLE 1.3 - SAMPLE CORRELATION COEFFICIENT RESULTS  
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NO. OF USERS 

SUBS. 
LENGTH 

K
a 

10 	15 	20 	25 	30 	35 	40 	45 	50  

	

.0094 	.0305 	.0372 	.0258 	.0274 	.0297 	.0395 	.0283 	.0172 	.0133 

	

-.0083 	-.0027 	-.0041 	-.0093 	-.0066 	-.0004 	.0088 	-.0170 	-.0134: -.0099 

	

.0348 	.0448 	.0457 	.0345 	.0438 	.0428 	.0448 	.0263 	.0234: 	.0225 

	

.0131 	.0148 	.0063 	.0048 	.0125 	.0092 	.0144 	.0065 	-.0017; -.0018 

	

.0248 	.0319 	.0237 	.0145 	.0150 	.0072 	.0107 	.0102 	.00101 	.0041 



k = 2k , 
2m 
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conditions stated th  is se ms reesonable although on the limited amount of 

evidence presented it must he viewed with some discretion. These assumptions 

are, however, a useful approximation, and allow progress to be made on the 

analysis of the systems under consideration. 

To conclude this section, it is interesting to compare the results of 

this section with those obtained for truly random sequences. Specifically, 

let S 1 and S 2 be two binary (±1) sequences of length m where each digit of each 

sequence is chosen independently and the probability of each digit being +1 

is 1/2. The correlation (S 1, S
2
) is a random variable and its behaviour is 

identical to the correlation of S
1 
with the sequence of m 1 s. Assume for 

the moment that m is an even integer, m = 2m . The probability that X is k is 

the probability that the sequence S i  contains (m+k)/2 	l's and (m-k)/2 (-l) ' s 

and ( m 
p(x.k) = 	(1) m 

and it follows that if m is even, k must be even also. Letting m = 2m and 

P(X=k) = 111 1+1‹.) (1) Tri  ,k '  =  -ni,  -(m -1), ...,-1, 0, 1, 	m ' .  
2 

The random variable Y = (X + m )/2 is a binomial random variable with mean 

m/2 and variance m/4. Consequently, K is a random variable with mean 0 and 

variance m, a result which is to be compared with the results of equation (1.5) 

for K=1, for the pn sequences. Applying the Central Limit Theorem to the random 
a 

variable A shows thatz. (eV; tends to a standard normal random variable. 

This line of reasoning would further support the argument that the difference 

between the observed variances of the subsequence correlations and those 

anticipated by equation (1.5) is due to the sequences involved becoming "less 

random" in appearance. 
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1.4. Performance of a Direct Sequence Spread Spectrum Code Division Multiple  

Access System  

With the model developed in section 2 and the results on subsequence 

correlations discussed in the previous section, certain performance parameters 

of a DS/SS CDMA system can be evaluated. Specifically, expressions for the 

following parameters are obtained in this section: (i) the probability of 

acquiring the signal when in fact the signal is in synchronism with one of the 

matched filter subsequences; ii) the probability of missing acquisition when 

in fact the signal is in synchronism (a false dismissal); 	the probability  of 

deciding on synchronism when there is none (a false alarm); (iv) the probability 

distribution of the time to acquisition. 

From section 2 the output of matched filter i is modelled as a normal 

random variable with the means and variances of equations (1.2), depending on 

whether or not amatched filter subsequence is in synchronism or not, where 

approximate expressions are used for the variances. The problem is perhaps best 

viewed as an hypothesis testing situation. The following hypotheses on the out- 

.th put of the 	matched filter are - considered, when the number of active users 

is K
a

: 

H
o
: i th  matched filter subsequence is in synchronism 

(K -1) 
a 	 2 1 1 	1 U. has mean g = m(1 	
N 

) and vari 	
2 

ance 	= (K
a 
-1)m (- - -)(1+--

N
) 1 	 o 	

m N  

+ mT N /4 
c o 

(Ka-l)m + mTcN0/4 

. H
1

: 	th matched filter subsequence is not in synchronism 

	

22(-_1  1 	1 	I 

	

U has mean gl  = -Ka m/N and variance al  = Kam (i1-1 	 + mT N /4 
c o 

K
a
m + 	N /4 c o 
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Similarly, the hypotheses H o  and H1  are defined for V, the output of the cumu- 

lative correlator 

H
o

: the cumulative correlator is in synchronism 

(K -1) 
V has mean go  = M(1 	a 	1, variance o 2  = (K

a-
1)M2  

o 	 M N 	N 

+ MT N /4 
CO 

H1.• the cumulative matched filter is not in synchronism 

111 
V has mean g

1 
 = -K

a
M/N, variance a'

2 
= K M2 (- - -)(1+-)+MT N o

/4 
1 	a M N 	N 	c  

where M is the length of cumulative correlation. 

As discussed in section 1.2 it is assumed the cumulative correlator is 

initiated only when one of the subsequence matched filter outputs exceeds the 

threshold T, and that the cumulative correlator is initiated in a state subsequent  

to the m bits of the subsequence matched filter exceeding a threshold. The 

implication of this assumption is that the computations for threshold exceedance 

of the cumulative correlator can be performed - independently .of the computations 

for the subsequence matched filters. 

The probability of acquiring the signa], when in fact the signal is in 

synchronism with the ith  matched filterp is simply the probability that the 

threshold T
1 is exceeded under hypothesis Ho

, times the probability threshold 

T
2 

is exceeded by the output of the cumulative correlator: 

T 1-go 	
T -g 

p
s 

= P(synch. acquired/synch. present) = 	 ))(1-« 
2

, 
o)) (1.7) 

G
o 	 G

o 

where (=PM is the cumulative distribution function of the standard normal density 

function. 

The probability of missing synchronism,when in fact synchronism exists, 

is the sum of two probabilities, the probability that the siabsequence matched 

filter misses the synchronism, plus the product of the probabilities that the 

..11/ 



33. 

subsequence matched filter catches synchronism and the possibility the cumulative 

correlator misses it: 

	

T - 	T2- o  p
m 

= P(false dismissal) . cp ( Tl-go) + (1-43( 1
g 	 g 
O 
	 (1.8) 

a
o 	

a
o 	 a

o 

A false alarm is an indication of synchronism when none exists and is determined 

as 

P(false alarm) = P(synch. indicated / no synch. present) 

T
1
-g

1 	
T
2
-g

1 
= (1 - (1( 	-))(1 - 	)). 	 (1.9) 

1 41 

The probability distribution of the time to acquisition is determined 

as follows. The present time instant is assumed to be uniformly distributed 

among the,k digits of a segment. Let t be a positive integer such that 

t q.k + r, 0  E r < k, q > O. The probability it takes t chip times to acquire 

the signal is 

1 
P(T

a 
= 	= — • P • P m m 	s 

and is independent of r, the residue of t after division by q. 

(1.10) 
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1.5. Subsequence Correlation Acquisition Methods for FH/DS Hybrid Systems  

The direct sequence (DS) approach to CDMA/SS derives its spectrum 

spreading characteristic from the orthogonality property inherent in the 

time code. In a DSSS system all users in a K-user environment employ the 

same carrier frequency. Orthogonality amongst the K potential users may be 

enhanced by a superposition of spatial orthogonality, which can be accomplished 

by assigning a different carrier frequency to each of the K-users. This mode 

of signaling is termed fixed frequency diversity. From the anti-jamming 

point of view, i.e., not just multiple access, varying or hopping the carrier 

frequency over the time code by each user can impregnate the signal with 

jaunting immunity, since an intentional jammer must be able to hop his frequen-

cies synchronously with those of the transmitting user. The composite system 

is a hybrid frequency hopping/direct sequence (FH/DS) system depicted in Fig. 1.3. 

The principle of frequency hopping and its usage as a spectrum spread-

ing mechanism is well known [Dixon 1976]. A tacit assumption associated with 

an FH system is that the intended receiver knows the code generator poly-

nomial, the initial state of the code generator and the frequency hopping code. 

The intended receiver thus possesses an innate ability to hop with the desired 

transmitter. As in the preceding sections, user I will be assumed to be the 

receiver. The number of actively transmitting users is K
a 

5_ K - 1. On the 

. th 
assumption that only one user, say the i , is transmitting to user 1, the 

number of unwanted sources is K
a
-1. Arrivals from some of these Ka

-1 

unwanted transmitters, or any intentional jammers, may be at carrier frequen-

cies different from the receiver's reference frequency so that the receiver's 

response to these undesired signals will be small. 

The signal acquisition method for an FH/DS hybrid system is an 

extension of that described in section 1.2 for the DS system; the difference 
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lies in that the hybrid system possesses orthogonality (since finite length 

sequences are being considered here, the subsequences are only approximately 

orthogonal) in frequency as well as in time. Approximate time and frequency 

orthogonality is achieved by assigning each subsequence in the DS code its 

own frequency. The frequency assignment can be made by a separate code 

generator or by a selection of bits from the DS code to form a frequency 

selection code. In the present study the frequency selection code is derived 

from the DS code in the following manner: Suppose a P-bit codeword is used to 

select from a set of 2P  frequencies. As depicted in Fig. 1.8b the first bit 

of p consecutive subsequences is used as the frequency selection code. Since 

the generator polynomial and the initial state are known, the receiver has 

prior knowledge of the frequency assignment procedure. Each of the subsequence 

matched filters of Fig. 1.8a has its own center frequency. For a subsequence 

matched filter to have a coherent accumulation, m consecutive bits of the 

incoming sequence must be the  saine as the m-bit subsequence stored in the 

:natched filter and at the same frequency as the natched filter's center 

frequency. If either the frequency or the m-bit subsequence differs from that 

of the matched filter, the output response will be low, i.e., incoherent 

accumulation. 

Let fo.)
a. 1, j = 1, 2, ... , 2 P  be the frequency set and let 

J 
(ai ) 

S fae , am.]:  ..., a 1 1, az  EU,  -11, be a subsequence. The corres- 

(a.) 
ponding signal is written as S J  cos co

a.
t. Let the subsequence stored in Z 

3 

the subsequence matched filter be S (I) , so that the bandpass signal represents- 

(1) tion is S z  cos wit •  Neglecting for the time being any carrier phase 

uncertainty, the inner product has the form 
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FREQUENCY 

a 

CODE GEN. 

iNITIAL 

STATE 
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Fig. 1.8 Acquisition by Bandpass Subsequence Matched Filtering (Each at its own frequency) 
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p(t) = -- (s 	s 1- (1) 	(ai )  2  , e 	, 	k  [cos  (ffla  - ffli ) t + cos  (cc 	+ 

J 	
al 

The filtered signal is 

q(t) = LP [p(t)] 

where LP[.] denotes a low-pass filtering opere.tor. On the assumption that 

°a,  -co1 
 > w

c 
for all co

a.1
, where wc 

is the cut-off frequency of the 

low-pass filter, the following cases prevail: 

(a i ) 	(1) 
i) S 	= S 	and w = w 	i.e , k=0, Z. = Z. and a. = 1 

e+k 	e. 	a. 	1' 	. 	 1 

q(t) = —
1 

(S
(1) 	S (1) ) 	—1 m 2 	Z. 	e . 	2 1 

(a.) 
ii) S 	S (1)  and co 

Z:Fic 	Z. 	a. 	1 

1 „(1) s (1) ) 	 (k) q(t) = 	2 a. 1 

(a.) 
iii) S 	

K 
-2F ,= SP-)  and wa  

 f/i  

ci(t) 	E
a. 

1 m) 

(a i ) 	(1) 
iv) S +k  S z. 	e 	and co 	4 -(,) 

. 	J 	- 	a. 

1 

	

ci(t) = Ea. 	X  

	

J 	j 

(a.) 	 m-1 b, 	(1) 
s 	) x (n\ à fe (1)  S (1) 	— 	2  " 1 .-. 	.. e  , 	 - 	ae+n  ej 	

p=1, 
= , 

is a small quantity to account for the low-pass filter's inability to and Ea. 
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completely reject the difference frequency component. Cases (i) and (ii) above 

in which the carrier frequency of the incoming subsequence is the same as that 

of the subsequence matched filter's center frequency correspond to the DSSS mode. 

In a multi-user environment an FH/DS hybrid system, with approximate 

orhtogonality in time and in frequency, is expected to perform better compared 

to the DS system. Suppose there are K
a 
active users, of which K

2 
are at the 

same carrier frequency as the subsequence S (1) - la z.  - 	e  , ae:+1 , ae.+2 , 

a4,,.+In_ 1 1 over the space [e. e + m-11, where it is assumed that only user i is i 

transmitting to user 1.  Q  is the set of hopping frequencies, which in the 

present study, equal fw
1

, (A)2,
2p 

1. Consider for the moment an inter-

ference-free and noise-free situation so that the corrupting influence comes 

PurelYfromtheKa-lunwantedtransmitters.Leta.=1 so that the i
th user's 

(a.) (1) 
subsequence is denoted by S

ei 
. Let S

e. + k 
be the (e

j 

a 	

+k) 
 th 

subsequence of the 

. th  active transmitter. Since the transmitters have random starting time, the 

composite signal presented to the receiver, in an m-bit interval starting with 

L.  , is characterizable as 

Ka 	(a.) 
z(t) =Z 	S j +k 	.] cos (w

a. t+ 0a. ) e 
i=1  

where a. denotes the number of the intended receiver with transmission coming 

from the j
th 
 active user. Thus, if user i is transmitting to user 1, then 

a. = 1 and 1 

K
a 

	

(1) 	
(a.) 

J S
z. 

cos (w
1
t+0) -FE S 	cos (a)

a.
t + 0

a. 
 ,  1 	. 	-&-.":1" k 

	

i 	 j=1 	i 	 1 	1 

(1) 
if S z. is in the signal. 

i 

K 	(a.) 
J 	 (1) Z a S z.l. k  cos (wa  t + Oa  ), if S o 	is not in the signal. 

j=1 	J 	 j 	j 	.f,i. 

a. e 1 
1 
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Because of the carrier phase uncertainties, 0
a.

, the subsequence matched filters 

assume a quadrature configuration as depicted in Fig. 1.9. Assuming that the 

LPF cuts off the difference as well as the sum frequency components; i.e., 

•e
a. 

-› 0, the outputs at the LPFs are: 

i) In-phase channel: 

K
R 	(a4) 

S (1) 
cos 0

1
) + (S

(1)
, E 	S 	' cos 0 .) 

	

e. 	e. 

	

1 	1 	 ei 	j=1  j 
 

ji- 

if SZ
(1)  is in the signal. . 
i x(t) = 

l'<2 	(a.) J 	 (1) 

	

(S (1) 	E S 	K  -. cos 0a  ) 	if S e 	is not in the signal. Z. ' 	e.+ . › 

	

1 	j=1 J 	J 	 i 
a.41 
1 

ii) Quadrature Channel: 
K
2 	(a.) 

	

0-) 	( 	. 	 . 	(1) . 
s (S 	S 	sin 0

1
) + 	E 	 sin Oa  (S

(1) 	se+k 	) , if  S' e. 	
1) 

 e. 	 e. 

	

 1 	1 	 1 	j=1 j 
in the signal 

K
2 	(a.) (1) 	 (1 (S 	Z 	' e 	S 	sin 0 ), if S ) 

e. 
is not in the signal, . 	ttk 

j= 	 a. ' 	1 
a.#1 
1 

Y(t) = 

where K
2  Ka 

 is the set of transmitting users whose carrier frequencies over 
-  

the subsequence length equal w. The quantity presented to the threshold 1 

detector is 

R(t) = Ix
2
(0 + Y

2
(0 

For the general case in which all or some of the 0
a.'s 

 are different, the 

function R(t) is quite complex. For the special case where 0a. = 0 1 Vj, R(t) 
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simplifies to 

1(9
(1) 

in the signal s 	), 	
. R(t) = (S (1) , S (

g.
1) ) + (S

(1)
r.  , , - 	k 	S e g. 

1 	1 	1 	j=1 	 1 

This special case has a direct correspondence to the low-pass equivalent model 

used in sections 1.2 and 1.3 in the DSS case. While the P[O a. = 0 1, 
j = 1, 2, 

K
a

] may be small, the above special case nevertheless offers an insight 

into the comparative performance between a FH/DS and a DS system, which would 

otherwise be buried in a set of unwieldy algebras. 

The first two moments of R(t) are given by (for the case S
(1) in the 

signal): 

K
2 

E[R(t)] = m +  Z 	E [X (k)] 
j=1 	aj 
jei 

K
2 2 

E[R2 (t)j = m
2 

 +2m E 	E[Xa
(k)] + E 	E[X

2 
(k)] 

j 
a. 

j=1 	j=1 
Jei 	 Jei 

K2-1 K2  

+2 E 	Z 	E[X (k)] E [Xa  (r)] 
j=1 p=j+1 	aj 

and 

(1.11a) 

(1.11b) 

where m = (S (1) 	(1) ,  s)  is the inner product of the subsequence S (1) and 
1 

(a.) 
X
a.

(k) = (S
(1)

, S 	) 
k 
 is the cross-correlation between the reference sub- 

1 

sequence S (1) and a subsequence from one of the other (K
2
-1) transmitting users. e. 

Using the argument which led to equation (1.4), the first two moments of Xa.
(k) 

are given by 



and 

2 1 	1 	1 
V[R(t)] 	-  1<2 	( 	- —

N 

) (1 + —N ) (1.13b) 

and 

V[R(t)] 	V[Xic  (k)] 
FH/DS 	a 	US  

(1.14b) 

m7, 1 
EIXa (k)] 	1-1 '1  • EIX

2 
(10] 	m 	) j N ' 	a

j  

Using the above in equation (1.11) yields the following: 

K,- 1 
E[R(t)] = m(1   ) 	 (1.12a) 

and 
m-1  

E[R2 (t)] = m2 + 2m (K
2-1) 

-m
+ (K2

-1) m(1 

+ (K2-1) (K2-2) (- 

so that the variance of R(t) is prescribed by 

42. 

2 1 1 	1 
V[R(t)] = (K2-1) m (î i- - 	) (1 + 171. ) (1.12b) 

For the case S (1) not in the signal, the mean and variance of R(t) is given by 

(cf. equation (1.5) ): 

E[R(t) = -  1<2 
ni   (1.13a) 

Comparing equations (3.3) and (5.2) and noting that  1<2  Ka , we have 

EER(t)] 	>EDCK  (k)] 
FH/DS 	a 	US  

(1.14a) 

Assuming a least favourable distribution,on the average 1<2 = Ka/11211, where 

11211 is the number of frequencies,Which in the present study,..is 2-P . For the 

simulation results presented in the sequel, a 3-bit selection code is used so 

that 112P = 2 3 = 8. 

Guided by the probability of synch acquisition analysis described in sec-

tion 1.4, an extensive simulation study into the probability of correct 
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synchronization as a function of threshold values for both the DS and FH/DS systems 

has been carried out. Simulation results of Ps
= P (synch acquired/synch present), 

for subsequences of length m = 1000 bits and generator polynomials of degree 16, 

are plotted in Fig. 1.10 as a function of threshold values, with the number 

of active users as parameter. In the simulation, users transmit at random 

initial times; i.e., O a  is randomly chosen. The results of Figure 10 clearly 

show that the hybrid FH/DS system is superior to the DS system, as predicted 

•by equation (1.14). With the FH/DS system, -the subsequence matched filter 

output provides a clear synch indication. On the other hand, the cumulative 

correlator is needed, in the DS case, to ascertain synch when the number of 

active users exceeds 20. 

Since the coherent peak of the subsequence matched filter output is 

clearly larger than the off-peak values in each of the FH/DS cases studied, no false 

dismissals were ôbserved. With the DS system, false dismissals were observed in the 

K
a 

= 40 and K
a 

= 50 active users cases. Also, since the peak-to-sidelobe ratio 

of the FH/DS system's subsequence matched filter output is large, the threshold 

selection is fairly robust. The probability of synch acquisition within the 

first subsequence of the transmitted time code is very high, i.e., approaches 

unity with the proper threshold setting. 

The simulation studies have been carried out with 	= 8 different 

frequencies. It is reasonable to expect that the performance of the FH/DS system 

improves with the size of the frequency selection code. Although an exhaustive 

simulation study of frequency selection codes has not been carried out, the 

analytic and simulation results obtained hitherto lead us to conjecture that 

the subsequence matched filter technique described in this paper, particularly 

the hybrid FH/DS system, represents a viable approach to rapid acquisition. 
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1.6.  Concluding Remarks  

Recognizing that initial synchronization is a formidable problem in 

spread spectrum systems, we have proposed .a subsequence matched filtering 

approach to rapid acquisition. We considered synch acquisition in both the 

the DS and FH/DS systems, where the spreading sequence is a maximum shift 

register, or pn,sequence. While the correlation properties of cyclic pn 

sequences are well known, the correlation properties of subsequences are less 

understood, particularly correlation between subsequences belonging to distinct 

pn sequences. Extensive simulations have been conducted to determine the 

statistical behaviour of the subsequence correlation properties. Simulation 

results indicate that the subsequence correlation at the matched filter output 

can be modelled as a Gaussian random variable. The Gaussian model permits the 

formulation in section 1.4 expressions for probabilities of synch acquisition, 

false alarm and time to acquisition. These probability expression are applicable 

to the FH/DS as well as the DS system, with the difference lying in the values 

of the mean and variance of the subsequence matched filter outputs. Simulation 

results reveal that subsequence matched filtering,as described in this paper, 

is a viable rapid acquisition scheme, particularly with the FH/DS hybrid system. 
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H. Construction of Sequences for Use in CDMA Systems  

2.1. Introduction  

The use of sequences with good auto and cross correlation properties 

has been discussed in the first part of this report. There, only m-sequences 

were used and partial auto and cross correlation parameters were of importance. 

For CDMA applications it is often desirable to have large sets of sequences 

with known correlation properties and the use of m-sequences, as m-sequences, 

is limited. 

A previous report surveyed construction techniques for complex 

sequences with desirable correlation properties. The advantages of using 

binary {±1 }  sequences are significant and it is felt that further investigations 

of these sequences would be useful. Fortunately the construction of many such 

sequences has been well documented in an excellent forthcoming survey article 

by Sarwate and Pursley [1980]. Thus, rather than duplicate their effort we 

simply discuss many of these constructions from a different point of view, 

relating them more closely to the coding theory and weight enumeration work 

of Kasami [1969], from which so many of the constructions arise. Bent sequences, 

those derived from bent functions are discussed in section 2.5. They were not 

covered in the report of Sarwate and Pursley [1980]. It appears that many of 

the constructions using coding theory can be interpreted as special cases of 

bent functions. It is hoped that this report will serve as a basis for further 

work in the area. 

Only binary {±1} sequences are considered here. Furthermore, although 

the odd correlation function is recognized as being a parameter of importance 

in CDMA systems [Màssey, 1975] it is a difficult parameter to consider 

analytically and it will not be included in the discussion. 
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2.2. Preliminaries  

Let a = (ao , al , ..., aN_1) = {ai }  and b = {b i }  be two periodic binary 

{±1 }  sequences of period N. Their cross correlation function is defined by 
N-1 

2 = 0, 1. ..., N-1 
i=0 

where i + 9, is reduced modulo N. The autocorrelation function of the sequence 

a is 6
a,a

(2.) = 6 a (£) and, for a set M of binary sequences, we define the parameters 

6
a 

= max 16
x 	

6
c = max 10X,ycol 

xeM 	 x,yeM 
xey 

and 

0
max = max {6 ,6 

1. 
a c 

There have been many investigations on relationships among the various 

correlation functions and bounds on their parameters. We quote only two such 

results here. It was shown by Welch [1974] that for any set of complex sequences 

M, IM1 = M, of dimension N and unit length, 

2k 	1 	MN  6
max — EN-1 r m-k-1 1  

k / 

where k > 1, k a positive integer. Since the bound holds for complex sequences 

it certainly holds for binary {±1 }  sequeùces. For k = 1 the inequality reduces 

to 	0 	> (M-1 ) 1/2 
max — MN-1 

and it was observed by Welch [1974] that if M < N this is the only choice giving 

nontrivial results. Sidelnikov [1971] also considered this problem and showed 

that for binary {±1 }  sequence sets of size M =  NS  

6 max 	(2s(N-s)1/2 

and, in particular, for s = 1 

6 	> (2(N-1) 172 
max — 
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2.3. Maximum Length Sequences (m-sequences)  

An extraordinary amount of effort  lias  been devoted to determining the 

properties of m-sequences and, in preparation for subsequent work, some of 

these will be reviewed here. 

Following the notation of Helleseth [1976], [1978] let a = {a. } , a.eGF(2), 
a. 

i = 0, 1, ..., 2n-2 be an m-sequence of length N = 2n-1. Such a sequence can be 

generated by a linear feedback shift register with the feedback function 

determined by a primitive polynomial m1
(x), the minimum polynomial of a, a a 

primitive element of GF(2n). The m-sequence and all its cyclic shifts can also 

beviewedasacycliccodegeneratedbyg(. .(x) and this code is 

devoted by V(m
1

) following the useful notation of Gold [1968]. The m-sequence 

can also be described by 

a = Tr(aj ) 	 f3eGF(2
n) 

where 
n-1 2i 

Tr(y) = E 
Y i=0 

In this description each choice of S gives a cyclic shift of the sequence. The 

decimationofthesequence{aJby d gives the sequence {a
dj  . }

, formed by taking 
- 

everyd el bitof{ai. This decimated sequence is an m-sequence iff (d,2
n
-1)=1. 

In fact all m-sequences of a given length can be realized by decimating a given 

m-sequence and consequently there are precisely qb(2111Yncyclically distinct m-

sequencesofthislength.Ifb=lb.lis an m-sequence, then there exists a 

decimation d and phase k such that b i 
= a

di+k. 
If (d,2

n
-1) = e then the period 

of the decimated sequence  {ad.}  is (2n-1)/e and is generated by md (x), the 

minimal polynomial of a
d . This polynomial is not primitive if e > 1 but may still 

be of degree n and, if not of degree n, has degree which divides n. 

If a and b are two binary {0,1 }  sequences the cross correlation function 

of their equivalent binary {±1 }  sequences (obtained by replacing 0 by +1 and 1 by 
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-1), which we also denote by a and b is 

2n-2 	a.+b 
1 i+£ 	(a. b binary {0,1}). 

a,b
(£) = 

i
E
0 
 (-1) 	 j 

= 

It can be shown that this cross correlation function is always an odd integer 

and in fact, that 81(0
a,b

(£)+1) unless a and b are reciprocal sequences 

(generated by reciprocal polynomials), in which case 41(0 a,b (£)+1)• It is also 

true that 

2n-2 	 2n-2 
E O 	(£)=1 	 E O 2 	

(0=2
2n

-2
n
-1 

£=° a ' b £=0 
a

'
b 

Furthermore, the cross correlation function of distinct m-sequences must assume 

at least three values (as opposed, for example, to the two valued autocorrelation 

function of an m-sequence). Gold [1969] has shown there exist pairs of distinct 

m-sequences which have cross correlation values -1, -1- 2
L(n+2)/2j and 2L(n+2)12.1 

(where LIci is the integer part of x). A pair of m-sequences which have only 

these cross correlation values is called a preferred pair of sequences and the 

pair of polynomials which generate them is called a preferred pair of polynomials. 

We adopt the convenient notation of Sarwate and Pursley [1980] and let 

	

t(n) = 2
L(n+2)/2.1

+1 = f 2
(n+2)/2

+1 	n even 

	

2(n+1)/2 +1 	n odd 

It was shown by Gold [1969] that if (k,n)=1 then the pair of polynomials ml (x) 

and 
m£

(x), 1=2k+1 is a preferred pair of polynomials (cross correlation values 

of the corresponding sequences take only the values -1, -t(n), t(n)-2) and so 

0
max 

= t(n). The situation is summarized by Sarwate and Pursley [1980, Section 

3] as follows: i) for n 0 (mod 4) there exist preferred pairs of sequences 

of length N = 2n-1 (and 0
c 

= t(n)), ii) for n even  O 	t(n)-2 for reciprocal 

m-sequences iii) for n E 0 (mod 4) there exist sequences for which O c  = t(n)-2. 



For any two binary {±1 }  sequences the Sidelnikov bound 

1/2 	(211+1_4) 1/2 	2 (n+1)/2 (1  O 	> (2N-2) 
max 

 

states that 

1 \ 1/2 

2 
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> 2 (n+1)/2 
(1 	 2 1 	(n+1)/2 	1  

2n-1
) -  

> 2
(n+1)/2 

-1 

where the middle inequality follows from the fact that (1-x)
1/2 

> (1-x) for 

0<x<1. But for m-sequences,  O 	is an odd integer from which it follows that 
max 

0
max 

>2(n+1)/2 +1. For n odd this implies 0
max 

t(n) and preferred pairs of 

sequences are optimal in this sense. For n even the bound 
2(n+1)/2 

+1 is less 

than t(n) by a factor of 

Clearly one approach to determining sets of sequences with good 

correlation properties would be to search for sets of primitive polynomials 

such that any distinct pair of polynomials in the set is a preferred pair. 

Thus 0 c = t(n) for the entire set. Experimental results show however, 

[Sarwate and Pursley, 1980] that the number of sequences in such sets is 

disappointingly small. Choosing larger sets of m-sequences and not requiring 

any pair to be a preferred pair, results in quite severely degraded correlation 

properties. In the next section other approaches to the problem are described 

which lead to considerably better results. 
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2.4. Sequences from Cyclic Codes  

Let C be a cyclic (n,k) code over GF(2) with minimum distance d. If 

two code words are in distinct cyclic equivalence classes then their cross 

and auto correlation functions (of the corresponding {±l} sequences) are bounded 

above by n-2d. Massey [1975] carried the argument one step further and was able 

to obtain a bound on the odd correlation function which is not to be discussed 

here. The problem with this approach is to determine the number of cyclic 

equivalence classes with period N. It turns out that this is not hard to do 

when the generator polynomial of the code is of a certain form. 

Some preliminary results are first discussed and the following theorem 

will be useful. 

Theorem [Blake and Mullin, 1975]  

Let C 1 and C2 be binary cyclic codes of length n with generator poly-

nomials g1 (x) and g2 (x) respectively. Then 

i) C
1
UC

2 = {c1
(x) + c

2
(x), c

1
(x)EC 	c

2
(x)EC2 1 is generated by (g

i (x), 

g
2
(x)). 

ii) C
1
11c

2 
is generated by [g1 (x), g2

(x)] 	(Lcm). 

iii) C1C2  is generated by (gi (x) g2 (x), xn+1). 

From this it follows that the set of values that the auto and cross 

correlation function of a sequence from C 1  and a sequence from C
2 may take on 

is a subset of the set of weights of the code C
1
UC2 . Thus, for example, if a 

is an m-sequence in V(m1 ) (generator polynomial (x
n
+1)/m

1
(x)) and b is an m- 

sequenceinV(m i)(generatorpolynomial(xn+1)/m.(x), m.(x)mi (x)) then the 

auto and cross correlation values are weights in the code V(m1  m.) (generator 

polynomial (x
n
+1)1m

1 (x)m.( x) = ((x
n
+1)/m

1
(x), (xn+1)/m(x)). This fact is 

1 

exploited repeatedly here and the sets of Gold and Kasami sequences and their 

derivatives, which can be obtained from such considerations, are discussed. 
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The treatment of these sequences given here can be viewed as an alternative 

to that given in Sarwate and Pursley [1980] which it follows in outline. 

Consider first the following argument due to Gold [1969] and let a be 

a sequence in V(m1 (x)mt
(x)), (t,N) =1.  Then a is a sequence of the form a1

+a
t 

where a
1
e V(m

1
(x)), a

t
eV(mt (x)). Suppose that the cross correlation function 

of any two such sequences a
1 

and a
t 

is less than k. The period of a is 2,cm 

(period b, period c) = N. Then if a,be V(m1
(x)mt

(x)), the cross correlation 

of these two sequences if N-2d(a,b) = N-2w(a+b) = N-2w(a1
+a

t
+b

1
+b

t
) = 

N-2d(a
1
+b

1' 
a
t
+b

t
) which is the cross correlation of the sequences a.+at 

 V(m
1
(x)) 

and b
1
+b

t
E V(Mt (x)). 

By assumption this is less than k. In the code V(m 1
(x)m

t
(x)) 

there are 2
2n-1 nonzero sequences and each cyclic equivalence class has order N. 

Thus there are (22n-1)/(2
n
-1)=2

n
+1 such classes and a complete set of represen-

tatives of these classes can be taken as  a1  +a 1), i=0,1,...,N, where a (i) is the 
 t 

cyclic shift of a, i positions. Thus it is possible to construct a set of N+1 

sequences, each with period N, such that the maximum cross correlation and off 

peak autocorrelation is at most k. If mi (x) and  m(x)  is any pair of preferred 

polynomials then a set of 2
n
+1 sequences of length N=2

n-1 is constructed with 

maximum cross correlation c
=t(n). Further discussion on the existence of such 

sequences is deferred until results of Kasami have been considered. 

Kasami [1969] considered the problem of the weight enumeration of 

certain BCH - codes and in discussing these results we adopt his notation with 

the exception of using 2n-1 = N for the length of the code rather than 2111-1. 

It should be mentioned that some of these results were apparently known to others 

and some have since been rediscovered. We omit references to history and use 

Kasami as the most convenient and comprehensive reference. 

A d-BCH code is a binary BCH code which has elements a,a
2
,...,a

d-1
, 

but not  ad 	roots of its generator polynomial. Let g(x) = (0+1)/h 1 (x)...h (x) 
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be the generator polynomial o a cyclic code C where hi (x) =  

i= 1,2,...,P, and 0<p 1<p 2<...<pp<n/2. It is known that hi (x) is of degree n iff 

p.<n/2. If p.=n/2 then deg(h.(x)) = n/2 since in this case the cyclotomic coset 1 	 1 1 

containing a
-2n/2+1 

contains precisely the m/2 elements 

-(2n/2+1) 	-2(2
n12

+1) 	-2
n/2-1 

(2
n/2

+1) 
a 

 
, a  

-2n/2 (2
n/2

+1) 
= a

-(2
n/2

+1) 
on noting that a 

Those results of Kasami which will be useful for our discussion are 

given in Table 2.1 and we consider certain subcases now. Notice that if n is 

odd and p 2=1 then the roots of h1
(x)h2 (x) include a

-1 ,a
-2

c4
-3 

and a
-4 

and, 

for c = 1, the weight distribution given in case I A is that of the dual code of 

•  a double error correcting BCH code. In case II, the dimension of the code 

generated is 5n/2 and it can be shown that this is a (2
n-1 

-2
n/2

) - BCH code. 

In case III the code is of dimension 3n and is a (2
n-1 -2(n+1)/2) 

 - BCH code 

and also the dual of a triple error correcting code. 

A. Gold Sequences: Earlier in the section it was observed that if m.1
( x) and 

m.(x) is any preferred pair of polynomials then a set of 2n+1 = N+2 sequences 

with 6
c 

= t(n) can be obtained from V(m.m.). The sequences in V(m.m.) are of 
3 	 3 

the form a l_  A- a., a.sV(m.), ajEV(m.) and each has period N. These sequences can 

be viewed as sums of the outputs of linear feedback shift registers with feedback 

polynomialsm.(x) and m.(x) respectively. A set of representatives of the cyclic 1 
) 

equivalence classes can be taken as ai  + a.
(k 
 and, for proper sums, these are not 

maximal length sequences. 

Thus the question of the existence of Gold sequences reduces to determining 

when preferred pairs of polynomials exist. Consider case I A of the Table 2.1. 

To obtain the correct correlation function for a preferred pair of sequences, it 

is necessary that c = 1. If n is odd and (n,p 2 ) then (n,2p 2) = 1 and a 
preferred 
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pair of sequences results and this was first shown by Gold [1969]. It is 

mentioned in Sarwate and Pursley [1980, Theorem 1] that m
1
(x) and m (x), 

q = 2
2k-2 1 +1 is also a preferred pair of sequences if (n1 

 k) = 1, n odd. A similar 

weight enumeration result to that of part I A of Table 2.1 is available in this 

case. If n E 2 (mod 4) and (n,p 2 ) = 2, n/2 
is odd, (for example, choose 

p 2 = n/2-1) then again a preferred pair of sequences arises in this case also 

in that the auto and cross correlation functions assume values only in the set 

{-1, -t(n), t(n)-2}. Thus if ni0 (mod 4) preferred pairs of sequences exist and, 

from the comments of Gold quoted earlier, these will be referred to as Gold 

sequences. It has already been observed that for m-sequences the cross 

correlation value must be odd and so 6 > t(n) and for n odd Gold sequences are c— 

optimal with respect to this bound. 

m-2 

Choosing p 1 
= 0 and p 2 = - 1 and m even, we first observe that  22l 2 

is in the same cyclotomic coset as 	+ 1 and t(n) = 2 	+ 1. Thus 
2 

(x) and if n = 2 (mod 4) this is a primitive polynomial and the h2(x) = mt(n) 

codes constructed are the Gold codes. If n E 0 (mod 4), say n = 4m, then 

2(n,p 2) = 2(4m,2m-1) = (4m,2(2m-1)) = c < 4m and case I B applies. (This follows 

since (2m-1) is an odd integer and thus (4m,2m-1) is odd.). In this case h2 (x), 

which is the minimal polynomial of 
at(n) is of degrfie n but of order N13 i.e. 

—2 -1 
the sequences in V(h2 ) all have period N/3 since (2 	, 2

n-1) = 3. The code 

V(h2 ) thus consists of three linearly independent sequences and all their cyclic 

shifts of order N/3 or less. Thus in the case n E 0 (mod 4) V(m t(n)) 
 does not 

a 
contain m-sequences and the code V(11111 2 ) has five nonzero weights (case I B). 

If a, b, c are cyclically inequivalent codewords in V(h2
) and ucV(h

1
) then a 

set of cyclically inequivalent sequences in V(h.h2  ) 
is u + a 	u + b (i)  and 

i  

u + c (i) i = 0, 1, ... j -1. Furthermore, from Table 2.1, case I B since 

B. Gold-like Sequences  
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(4m,2m-1) = 1 (as 2m-1 is odd, any ged greater than unity must 

be odd and therefore must divide m, in which case it cannot divide 2m-1, unless 

it is unity) we must have c = 2 and so 

6 	= 2n-1-2(2
n-1

-2
n/2

) = 2
(n+2)/2 

+ 
max 

Thus performance wise these sequences are identical to the Gold sequences, 

differing only in their cyclic structure. 

C. Dual BCH Sequences  

Choose p 1 = 0, p 2 = 1 and note that this implies that a
-1

,a
-2

,a
-3 

and 

a-4 are roots of h
1
(x)h2 (x) and consequently the code is the dual of a double 

error correcting BCH code. When n is odd we have (m,l) = (m,2) = 1 and case 

I A applies.alen n is even 2(m,l) = (m,2)  =2  = c and case I B applies. In 

either case 0
max 

= t(n). When n is odd (3,2 11-1) = 1 and h
2
(x) is primitive and 

the resulting sequences are Gold sequences. When n is even (3,2 n-1) = 3, h2 (x) 

is of degree n but order N/3. 

This concept can be extended to the duals of other BCH codes. It is 

shown in [van Lint, 1971(P.129)] that the minimum distance of the dual of the 

binary t-error correcting BCH code of block length N = 2n-1 is at least 2
n-1 - 

1 - (t-1)2
n/2 

and Welch [3] observed the implication that there must be at least 

2
nt 

codewords with an inner product less than or equal to (t-1)2
n/2 

D. Kasami Sequences - Small Set  

For n even choose p
1
=0, p

2
=n/2 and in this case the dimension of the 

code is 3n/2. The sequences generated by h2 (x) have period 211/2-1 and it is 

possible to obtain 2
n/2-1 sequences of this period. Case I C applies and 

max 
= 2n/2 + 1 = s(n) (using the terminology of Sarwate and Pursley [1980] and 

it is shown there that this set is optimal with respect to the bound of Welch 

[19 74] ) . 
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E. Kasami Sequences - Large Set 

For n even again choose p
1 

= 0, p
2 = n/2-1 and 11

3 
= n/2 in which case 

the code is of dimension 5n/2 and case II applies. This is a (2
n-1

-2
n/2

) - 

BCH code. If n E 2 (mod 4) then sequences in V(h
1
h
2
) are Gold sequences and 

n 
the number of cyclically distinct sequences in V(h3 ) UV(h1h2 ) is 2

/2 
 (211  +1). 

If n E 0 (mod 4) the number of cyclically distinct sequences is 2
n12

(2
n
+1) -1. 

In either case
max 

= t(n) as can be determined from Table 2.1, case II. 



57. 

2.5. Bent Sequences  

Bent functions were introduced by Rothaus [1976] as Boolean functions 

on V = V
n
(2), the vector space of dimension n over GF(2). Let b(v) be a 

function from V (2) to V
1
(2) and define the function 

n 

1 	 (À) 	b(v) 
B(À) = 	/ 	E (-1)

,v 
 (-1) 

2n9 
 

"- vEV 

We call b(v) a bent function if (B(À)I=1 for all ÀEV. The name apparently 

derives from an association with Boolean functions to codewords in first order Reed-

Muller codes [MacWilliams and Sloane, 1977]. It can be shown that for a bent function 

on V to exist dim(Vn(2))=n must be even. For example if V = Ve 1/2, V? Vn/2 (2), 

dim V. = n/2 = k, let f be an arbitrary function from V2 
to V1 (2) = GF(2). 

Then 

the function b(v) = (v1 ,v2
) + f(v2

), v
1
EV v2EV2' 

v = v
1 
+ v2' is bent. 

Similarly, the function (v1 ,v2) + f(v2) + L(v), where L is any linear functional 

on V, is bent. 
f.(04) 

Consider the sequences defined by Ma={a.), (i) a . = (-1) 

j = 0,1,...,2n-2, a a primitive element of GF(2n), where fi (v) is a bent function 

of the form 

f(v) = b(v1) + L(v1
) + Tr(v), vEV, v1EV1 

n-1  2 ' 
 

where Tr(v) = E v 	EGF(2) and the L
i 

are distinct linear functionals on V1. 
i=0 

There are 2
n/2 

distinct linear functionals on V1 
which define the set of 2

n/2 

sequences (i)  a. It can be shown (Olsen, Scholz and Welch [1980]) that these 

sequences of length 2
n-1, have 0

max 
<_ 2n/2 + 1. 

The mechanization of these bent sequences is discussed in (Olsen et al, 

[1980]) where it is observed that very long period sequences can be generated with 

fewer memory elements (but were complicated logic control) than the same period 

linear shift register sequences. Other classes of bent functions are described 

in [Lempel and Cohn, 1980]. 
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2.6. Comments  

It is noticed from Table 2.2; where the parameters of all the sequences 

discussed here are summarized, that the parameters of bent sequences and the 

small set of Kasami sequences are identical. It would be interesting to determine 

if these were in fact different constructions of the same sequences. 

One limitation of all the constructions presented here is that the 

sequence lengths are of the form 2n-1. It would be useful and important to 

construct sequences of other lengths to give the system designer greater 

flexibility. 

The generation and synchronization problems of sequences other than 

m-sequences has not received much attention in the literature and this another 

area for future investigation. 
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Parameter Conditions Nonzero 	Number of Codewords of Given 
Codeword Weights 	 Weight 

I 	p=2,p 1=0 

A.  

II 	p=3,n even, 

n , 

	

p = p  =— 	p - 

	

10 ' 2 _ 2 	' 3 .2 

III p=3,n odd,n>5 

2n-1+2 (n+c-2)/2 	(2 n-c-l+2- (n-c-2)/2 )(2
n
-1) 

2 '-1  (2
n
-2
n-c

+1)(2n-1) 

n-1 (n+c-2)/2 	(n-c-2)/2 (n-c) - 2 +2 	 2 	(2 	/2+1). 

(2n-1)/(2 c/2+1) 

2n-1+2 (n-2)/2 2
(n+c-2)/2 n/2- 

(2 	+1)(2
n 
 -1)/(2c/2+1) 

((2c/2-1)2n-c+1)(2n-1) 

2n-14.2n/2-1 	(2n-14.2n/2-1)(2n/2_1)  

2n-1  2n-1 

,n-1,,n/2 

(22)/2_1) (2n_1)/3  

(2n4.2 2)  /2 4)/3  

2' 	2n-1.4_2(3n-4)/2_2n-2 

2n-1+2 (n+1)/2 

2n ±2(_12  

(5.2n-1+4)/3 

2
n-1 	

(2n-1)(9.22n-4+3.2n-3+1) 

2n-1 



t(n) = 

Table2.2 Summary of Correlation Properties of 

Sequences of Length 2n-1 
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(n+2)/2 	1  

(n+1)/2 

n even 	s(n) = 2n/2 + 1 	(n even only) 

n odd 

Sequence Name 	Existence 	Size of 	Values Assumed by 	 e 
Sequence Set 	Correlation Functions 	 u  

Gold 	 nY0 (mod 4) 	2n  + 1 	-1, -t(n), -2 	 tl 

Gold-like 	nE0 (mod 4) 	2r
-1,-t(n),t(n)-2,-s(n),s(n)-2 	t( 

Dual BCH 	n even 	2" 	 -1,-t(n),t(n)-2,-s(n),s(n)-2 	tl 

n/2 2 Kasami-small 	n even 	 -1, -s(n), s(n)-2 	 s( 
set 

Kasami-large 	nE0 (mod 4) 	2n/2 (2n+1)-1 	-1,-s(n),1-2s(n),s(n)-2,-3+2s(n) 	t( 
set 

11E2 	(mod 4) 	2n/2 (2n+1) 	-1,-s(n),1-2s(n),s(n)-2,-3+2s(n) 	t( 

Bent 	 nE0 (Mod 4) 	2
n/2 

? 	 s( 
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• 

• 
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III.  Maximum Likelihood State Estimation of Shift Register  Generators 

3.1 Evolution of System Equations  

A shift register pn sequence (or m-sequence) generator is an 

autonomous finite state machine which has a tree representation. Consider 

an n-stage shift register pn sequence generator shown in Figure 3.1. Let 

xk  be the kth input, Sk  be the state vector at the kth time instant and yk 

be the kth output symbol. With all arithmetic operations in GF(2), the 

system equations can be represented as follows: 

State equation: S k+1 =FS-k +b x. - 	 - k 

Input equation: xk  = C t S - -k 

Output equation: y k = d t S - -k 

where 

	

- 	 _ 	- 

	

0 0 ... 0 0 	 -1- 	 Sk-1 

	

1 0 ... 0 0 	 0 	 S 

	

F=  0 1 . . . 0 0 	,  b=  • 	, Sk  = .
k-2  _ 	 _ 

	

. 	 . 
. 0- 	 S 

nx1 - 	 k-n 

and 

, c.e {0,11 

• 
cn 

is the shift register generator coefficient vector. If the coefficients 

are chosen such that the generator polynomial is primitive, the output 

sequence lykl is a maximum length sequence with period N = 2
n
-1. 

There are 2n  possible states of which the 0 state is an 

Lou  . . . 1 0- nxn 

C = 

c1 c2 

(3.1) 

(3.2) 

(3.3) 



Yk 

S 1 
 

S 2 S
n 

MOD 2 

Fig. 3.1 n-Stage Shift Register m-Sequence Generator 

with Primitive Polynomial F(x). 
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absorbing state. An n-stage shift register generator has a trellis 

representation. The case of n = 3 is illustrated in Figure 3.2 where the 

contents of the boxes denote the states and the edge values xk (yk) denote 

input (output). The thick (heavy) path in Figure 3.2 represents the output 

y of a pn shift register generator with primitive polynomial F(x) = 1+x+x3 

and initial state 101. Since 0 is an absorbing state, 0 cannot be a node 

in any path of a pn sequence. It follows that the all-zeros state path 

cannot be a valid path and is therefore a "forbidden" path. In fact any 

path having 0 as a node is a forbidden path. 

The input/output relationship of a binary shift register generator 

is depicted in Figure 3.3 where the input xk  and the output yk  are prescribed, 

respectively, by (3.2) and (3.3). 

3.2 Maximum Likelihood Trellis Search  

Under the assumption that the digits {yk l are statistically 

independent and equally likely to be O's or l's (this is a consistent 

assumption since {y
k
1 is a pn sequence) all paths through the trellis are 

equally likely. Thus, for optimal state estimation we seek that path z 

through the trellis such that 

P[r = ply = y(z)] = H P[r = Pi ty = yl (z)] - - - 
i=1 

is maximum, where p is the actual received sequence, y(;) is the pn 

sequence along the path specified by z, 	is the ith digit of y(z), - 	 - - 

and.L is the depth searched. 

Let the superscript m on a vector denote its first m components. 

A function L [y
m

] which satisfies 
P 



0(0) 	0(0) r---) 0(0) r---1  0(0) 	 0(0) f="1. 	0(0) 

Favtedepei 
0e0mytee 

0", 

0 

Fig. 3.2 Trellis Diagram for m-sequence Generator with Primitive polynomial F(x) = 1 + x + x
3 
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INPUT xk  
I 	(k-1), s„ 	 OUTPUT yk  

Fig. 3.3 Input/Output Relationship at the kth 

Time Instant. 

1 
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L [ym] = 	L [y.] 
P - 	i=1 

p 1 

and 

(3.4) 

L [
1  

y 
m
] > L[y] 

if and only if P[r = pm ly = 	> P[r = pm ly = yi;] is called a path likeli- 

hood function. Optimum state estimation reduces to finding the path 

which maximizes L [y(z)]. A nature choice for L [y.] is p  
P 

I,  [Y.] = log Iqr = P.y"=yI. 	
(3.5) 

P 

On a binary symmetric channel (BSC), L [y.] can take the form p 

0 if P. = y. 

-1 if  2. 

Equation (3.6) is a Hamming metric. Thus, Lp [ym] is just the negative of 

• [ i  y = P  
(3.6) 

the apparent number of errors between Pm  and ym . The optimium path is 

that path for which L [ym] is a maximum. In the absence of noise max 
P - 

L [ym] = O. A maximum likelihood search of the trellis will thus yield P - 

the most likely state of the shift register generator. In a noisy 

environment a decision taken at a depth of approximately 5 times the 

constraint length of the shift register generator (n in the present case) 

would yield a "good" decision [Forney, 1973]. 

3.3 Properties of m-Sequence Generator  

The fact that the output symbol of an m-sequence generator 

corresponds to the nth state variable offers a desirable property which 

we state in the following theorem: 

Theorem 3.1  

Any n component vector in a trellis path, excluding the "forbidden" 

path, represents a state of an antonomous pn sequence generator. 
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Proof:  Since the output symbol is identical to the nth state variable and 

since a new state is generated by a linear shift of the old state, as in 

(3.1), n consecutive branch output symbols of a trellis path defines a 

state vector of the shift register generator. 

In the absence of noise and under a single user environment, with 

probability 1 an exhaustive search of the trellis will yield a correct 

identification of the generator state. Once the state vector has been 

correctly identified a local shift register generator can then be initiated 

to perform the despreading function. It is thus conceivable that a trellis 

search as a means of identifying the state of the shift register generator 

offers a possibility for rapid bit synchronization. 

Figure 3.4 depicts a maximum likelihood state estimation of an 

m-sequence generator, with primitive polynomial F(x) = 1 + x
3 
+ x

4 
and 

initial state S = (SS
2' S 3' S

4
) = (1001), over a length of one period. -0 

The heavy path traces out the error-free received sequence p. By theorem 

3.1 the mitai  state 1001 and the subsequent states can then be identified. 

While it is intuitively satisfying that a maximum likelihood 

search of the trellis represents an optimum state estimation of shift 

register generators, because of the large size of shift register generators 

needed for CDMA applications, the state space is simply too large for a 

trellis search to be of practical value. Consider, for example, the 16- 

stage generator used in the DS and FH/DS systems in section 1, where the 

number of valid states or nodes (the terms state and node will be used 

synonymously) is N = 2
16

-1 = 65,535. As there is 1 survivor per node per 

level searched there are 65,535 survivors per level. If a decision is to 

be taken only after penetrating the trellis at a depth equal to 5 times 

the constraint length, then, 80 x 65,535 survivors need to be stored. 
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In addition 65,535 values of the metric L [y
80

] must be stored. The 
P - 

following theorem makes trellis search a viable method to perform maximum 

likelihood state estimation of shift register generators. 

Theorem 3.2  

An n-stage autonomous shift register generator can be represented 

by a transformed trellis diagram with fewer than 2n-1 states if at least 

one of the state variables of the original state vector is preserved. 

Proof:  

Since at least one of the state variables of the original state 

is preserved and since the output symbol of a shift register generator is 

a delayed version of a state variable, the output sequences traced out in 

the original and transformed trellis diagrams are identical. Since, by 

Theorem 3.1, any n component vector of the output sequence y represents a 

state vector of the original trellis diagram, then any state vector of the 

original trellis can be identified by a search of the transformed trellis. 

Theorem 3.2 permits the representation of a general n-stage pn 

shift register generator by a trellis with a substantially smaller number 

of states than that of the original trellis. Then maximum likelihood state 

estimation via a search of the smaller trellis can be practical. Let S' 

be the new state vector. The smallest viable state vector would be one 

of dimension 2 (dimension 1 is not admissible since a 0 or a 1 input will 

produce a 0 or 1 output so that an ambiguity exists which prevents a 

unique inverse mapping to the full state representation), i.e., S'= (Si,  S ) . 

For convenience let S' = S
n' 

i.e., preserve the nth state variable of the 
2 

original state vector, and let S = f(S). The simplest transformation 

would be S' = S
1. 

This choice of new state assignments has the salient 
1 
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feature that S
2 

is identified with the output symbol yk 
and Si  is identified 

with the autonomously generated input x1 . For illustrative purposes we 

again consider the 4-stage example whose full trellis is shown in Figure 

3.4. The new trellis diagram with S = S
1 

and S' = S
4 

has a total of 
1 	 2 

2
2 

= 4 states, as shown in Figure 3.5. The state transitions in the new 

trellis is obtained from the original shift register state transitions as 

shown in Figure 3.6, where 1001 has again been taken to the initial state. 

The state transitions of the new states are shown in Figure 3.6b, where 

the edge values xk (yk) represent the input xk  generated from the state 

vector 	in accordance with the primitive polynomial F(x) = 1 + x
3 
+ x 

and the output yk  which equals the nth state variable. Simply stated, 

y
k 

equals S' in the present state and xk 
equals S' in the next state. 

2 	 1 

The complete new trellis diagram for one period of the output 

sequence y is shown in Figure 3.5. The heavy path again traces out the 

output sequence y. The edge label on the trellis is of the form 

(y )(L [y
k
]) where L [v

k
] is the likelihood function given by equations 

(3.4) and (3.6). If the received sequence is noise-free, i.e., p = y, 

which is the case shown in Figure 3.5, then any 4 consecutive received 

symbols along the heavy path represent a state of the original shift 

register generator, with initial state 1001. 

Maximum likelihood trellis search amounts to comparing the kth 

received symbol p
k 
with each possible branch output symbol at the kth 

level, as k takes on the integer values 1,2,... . Since xk  and y1  are 

computed from the same state vector, there is only one value of yk  at any 

one time instant whether xk  is a 0 or a 1 as dictated by the value of S T/  

in the next state. The metric L [y.] associated with a 0(yk)(L P [y]) or p 
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Fig. 3.6 State Transitions for "Reduced" Trellis 
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a 1(y
k
)(L

p
[y]) edge value that emanates from the same node are thus 

identical. Thus, at level 14 in Figure 3.5, we have a transition from 

state 00 to state 00 with edge value 0(0)(0) and a transition from the 

same state to state 11 with edge value 1(0)(0). The 00 - 11 transition is 

chosen because 00 - 00 is not a valid transition in which the heavy path 

leading to node 00 at level 14 is a prefix. It is noted also that there 

are two branches merging into node 10 at level 1 with a branch metric 

L
p
[y

1
] = O. These branches emanate from nodes 11 and 01 at level O. Since 

11 corresponds to one of the original states 1001, 1011, 1101 or 1111, and 

since the initial 4-tuple 	in the estimated sequence is 1001, the 

state 11 at level 0 is chosen as the root node. It also identifies 1001 

as the initial state of the m-sequence generator. 

In the pruning of the trellis branches entering any one node, 

the one with a larger metric (likelihood function) survives. Whenever 

there is a tie, the lower branch is arbitrarily cut, except when it concerns 

the seeking of the root node at level 0 (in the present example it is only 

by coincidence that the branch from the root node 11 at level 0 is also 

an upper branch, which survives the cut). 

The output from a binary symmetric channel has an effect similar 

to that of a hard decision. An error will change the binary digit to its 

complement. The effect of one error on the "reduced" trellis search is 

illustrated in Figure 3.7. The error, although occurring at a depth between 

the level 5 and level 6 nodes, exerts an effect which permeates to the 

immediately preceding and following branches. As illustrated in Figure 3.7 

the dashed heavy subpath lying between the 4th level node and the 7th level 

node represents the correct subpath. However, the error causes the solid 
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heavy subpath over the same span to be selected as the optimum estimate. 

It is noted that the correct (dashed) and the apparent (solid) subpath 

depart at the level 4 node and re-merge at the level 7 node. A knowledge 

of the generator polynomial together with the information about the states 

before and after the error event permit the making of a decision that the 

dashed subpath is the correct perfix and suffix to the error-free heavy 

subpaths. This error correction capability is an inherent property of 

the shift register generator, which we state in the following theorem: 

Theorem 3.3  

A knowledge of the generator polynomial is sufficient to correct 

random errors in the maximum likelihood searched reduced trellis. 

3.4 Comments  

Although a maximum likelihood search of the trellis offers a 

means of performing state estimation, the state space of a shift register 

generator needed in CDMA applications is simply too large for a search of 

the full trellis to be of practical use. The fact that the generator 

output sequence is a delayed version of any one of the generator state 

variables permits the representation of a shift register generator by an 

equivalent but "reduced" trellis. By preserving at_least one of the 

variables of the original state vector, a general n-stage shift register 

generator can be represented by a 4-state trellis to make maximum likelihood 

state estimation a practical scheme. 

A random error such as that introduced in Figure 3.7 would have 

been corrected by a maximum likelihood search of the full trellis. As 

illustrated in Figure 3.7 a maximum likelihood search of the "reduced" 

trellis alone cannot correct the error. In this case knowledge of the 
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generator structure is needed to correct the error. Here then lies the 

trade-off between maximum likelihood state estimation using the full trellis 

or the reduced trellis. 
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IV. Conclusions  

Three aspects of CDMA spread spectrum communication have been studied 

and reported. Section I presents a thorough investigation of a subsequence 

matched filtering approach to rapid acquisition in a DS or FH/DS system. The 

investigations have been carried out analytically and by means of computer 

simulations. Simulation results enabled the modelling of the subsequence 

matched filter outputs (the subsequence correlations) as a Gaussian sequence. 

The Gaussian model permits the formulation of expressions for probabilities 

of synch acquisition, false alarm, false dismissal, and time to acquisition. 

For the case studied in which one data digit corresponds to one period of a pn 

sequence, it is shown that subsequence matched filtering is indeed a viable method 

for rapid acquisition for either the DS or the FH/DS system. In the FH/DS 

case, discrimination against interference from unwanted transmitters manifests 

itself in the approximate orthogonal properties of the time and frequency codes. 

The added spatial orthogonality in an FH/DS system, through frequency hopping, 

renders subsequence matched filtering a suitable technique for rapid acquisition, 

as revealed by the simulation results shown in Fig. 1.10. 

Section II describes different sequence design strategies, which may 

serve as alternatives to the m—sequence, for CDMA purposes. The impact of these 

sequences, for example the bent sequence, as candidates for CDMA applications, 

particularly the rapid acquisition mode, need fnrther investigation. 

Section III focuses attention on maximum likelihood state estimation 

via a search of a "reduced" trellis. The properties of shift register sequences, 

which enable their representation by a reduced trellis, are discussed. The main 

idea behind the study of "reduced" state trellis representations and the 

associated maximum likelihood estimation is the introduction of an easily 

implementable state estimation scheme for synchronization purposes. This appears 

to  be a fruitful approach and further investigation in this direction will be 

carried out. 
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