
bilec
L KC
P
91
.C655
F52
1983
c.2

University of
Waterloo Research Institute

Telidon Server Architecture

Final Report

Deceffiber, 1983

Industry Canada
Library - Queen

NOV 2 8 2013

LIBRARY - PIBLIOTHÈQUE

JAN 85

1
1
1

Waterloo Research Institute

University of Waterloo

1

I 7

s

Project No. 207-03

Tendon Server Architecture

by

J.A. Field and H.C. Ratz

Inoustne Canada
Bibliothèque - Queen

Sponsored by

Department of Communications

Canada

under

COMIONICATIONS CANADA
R C 	-

Department of Supplies and Services

Contract No. 0ST82-00068

Dr. M. Sablatash

Scientific Authority

December 15, 1983

1• 	 I

,1-10 3 g 191
LI-11)51 19(p -0

ql

1 G\

Tendon Server Architecture

J.A. Field and H.C. Ratz

Department of Electrical Engineering
and

Computer Communications Networks Group
University of Waterloo

Waterloo, Ontario

COMMUNICATIONS CANADA
c R C

JAN 3a 1905

LIBRARY - BIBLIOTHÈQUE

Executive Summary

A Telidon system consists of one or more host computers, with their associ-

ated disks, and a communications network for connecting user terminals to the

host(s). .Any component of the system can decrease total throughput and

increase delay. This study investigated the performance limits on a Telidon

server operating over the telephone or cable television networks. For purposes

of evaluation it was assumed that the Telidon system would have 1000 active

users, with a total request rate of 100 requests per second, and that the average

Tendon page len,gth was 1000 bytes. The study considered the communications

network, the host computer, and the disk system with respect to performance

and, to some extent, cost.

It was found that the telephone network was not practical for the postulated

load, and that the page delivery system would require the use of cable television

like facilities. User request transmission is much less critical and could use

either the same cable television facility or one of several other methods.

Host computer performance is not a signiftcant factor in the performance

of a Telidon system.

If was found that disk service time was a severe system bottleneck, and that

several disks would be required to provide the required throughput. Four alter-

- -

nate Tendon server architectures are proposed that use either cache memory,

or appropriate organization of the data on the disk, to provide faster response

and hence reduce the number of disk units required. These schemes depend on

increased knowledge of the data characteristics and the pattern of requests

from the users.

An analysis of samples of Telidon traffic showed that the user requests had a

highly structured nature, and that predicting of future requests is very practi-

cal. Based on the characteristics of the sample traffic, an analysis indicted that

for a large n.umber of active users a cache memory of one page per user, com-

bined with predicting, and fetching, future requests, would allow a single disk

system to perform as well as a conventional multiple disk system. This was

verified by simulation. This system should be investigated further using other,

and more extensive, samples of TeLidon traffic.

The other Telidon architectures considered include a system with a cache,

but without prediction of future requests, and a system that collects requests

for an interval of time and then schedules the disk reads to minimize disk ser-

vice tirne. This latter system requires that the pages with a high probability of

use be grouped on the disk. Both these systems perform better than the con-

ventional system but not as well as the cache plus prediction approach. The

fourth architecture considered also uses fetching of anticipated pages but dis-

tributes the cache to the user terminals. It appears that providing storage for 6

pages at the terminal would effectively make the host computer and transmis-

sion delays transparent to the user. Since the memory requirements at the ter-

minal are small this approach is very attractive. However, its performance is

very dependent on the characteristics of the user request pattern, and more

detailed information on the structure of data bases and the user request

sequences is required before it can be evaluated fully.

Table of Contents

1. Introduction 	 1

2. Delays in Telidon Systems 	 5

2.1 Introduction 	 5

2.2 Communications System 	 6

2.2.1 Group A 	 7

2.2.2 Group B 	 9

2.2.3 Group C 	 10

2.2,4 Summary 	 11

2.3 Processor Performance 	 11

2.4 Disk Performance 	 13

2.4.1 Disk Replication 	 14

2.4.2 Cache Memory 	 15

2.4.3 Disk Access Scheduling 	 17

2.4.4 Summary 	 20

3. Telidon User Behaviour 	 21

3.1 Introduction 	 21

3.2 Page Use Distribution 	 23

3.3 User Pause Time 	 26

3.4 Distribution of Page Sequences 	 31

3.5 Cache Size 	 36

3.6 Summary 	 43

4. Alternative Telidon Architectures 	 46

4.1 Introduction 	 e
4.2 Multidisk System Without Cache Memory 	 47

4.3 Passive Cache Memory 	 47

4.4 Cache Memory With Page Prefetching 	 413

4.5 Disk Access Scheduling, No Cache Memory 	 55

4,6 Disk Access Scheduling, Distributed Cache 	 55

4.7 Summary 	 56

References 	 57

- iv -

List of Figures

Figure 1.1: Tendon cost vs. number of users 	 2

Figure 1.2: Queuing model of user request processing in Telidon 	 2

Figure 2.1: Relationship between the expected number of page requests, b,

and the number of pages read, m, during a service cycle 	 19

Figure 3.1: Cumulative frequency of page use 	 25

Figure 3.2: Pause time distribution 	 27

Figure 3.3: Procedure for cache directory registers 	 30

Figure 3.4: Cumulative distribution of sequential page requests 	 34

Figure 3.5: Average probability of the Nth user selectine a different page,

P(N), and number of distinct requests per user, A,/ U

(v=357, a=5%) 	 39

Figure 3.6: Upper bound on cache requirements per request, Ca/ A (a=5%) 	42

List of Tables

Table 2.1: Communication Channel Alternatives 	 7

Table 3.1: Parameters of the Page Use Distribution 	 25

Table 3.2: Parameters of the Page-Pair Joint Cd! 	 34

Table 4.1: Cache Size Simulation Results (FIFO Disk Scheduling) 	 52

Table 4.2: Cache Size Simulation Results (Scan Disk Scheduling) 	 53

Table 4.3: Page Prefetch Activity (FIFO Disk Scheduling) 	 54

1. Introduction

The purpose of a Telidon System [1] is to distribute textual and graphical

information rapidly and economically to many users. Obviously, by dedicating

sufficient equipment to a single user, any criterion for timely response can be

met. The problem is to configure a system so that for a given number of users

reasonable response time criteria can be satisfied with a minimum of equip-

ment, i.e. a minimum of expense. Alternatively, if it is discovered that some

basic set of equipment is required, how can the system be organized to serve the

maximum number of users?

We wish to distinguish two types of systems. The first is a small "private"

s3rstem that serves only a few users. The other is a large "public" system serving

many users. As shown in Figure 1.1, the first approach tends to have a fixed cost

with no growth potential, while the latter has a larger initial cost plus a small

incremental cost for each user. For a small number of users the first approach

is more economical, while for a large number of users the latter approach yields

the lowest cost per user. It is this latter case that we consider in this report.

In considering a large system it is necessary to identify the areas that could

cause performance degradation, and develop strategies that reliably and

economically minimize the problems. The performance factor with which we are

most concerned is the response of the system to a user request. A Telidon sys-

tem consists of the Telidon server (host computer(s)) and their associated

disks), a communications network for connecting the user terminals to the Tell-

don server, and the user terminals. In this study we are interested primarily in

systems that use either the telephone network or a cable television (CATV) net-

work for communications.

All components in a Telidon system introduce delay and decrease total

throughput. The possible problem areas can be identified by tracing the flow of

large "public" system

small "private" system

TO
T

A
L

C

O
S

T

2

NUMBER OF USERS

Figure 1.1: Telidon cost vs. number of users.

Telidon server

User 	 Delivered
requests 	 Pages

Figure 1.2: Queuing model of user request processing in Tendon.

3

a user's request and the server's response. Ignorin ig delays associated solely

with the user and user terminal, four tandem delays can be identified: the user

request is tran.smitted over the communications network, the request is

analysed by the Telidon server host computer, the requested page is read from

disk if not in memory, and the requested page is transmitted over the communi-

cations network. (See Figure 1.2). At each of these four points significant queu-

ing delay can occur if the server is overloaded.

Section 2 considers the significance of each delay. Two of the delays are

associated with the communications network, and the other two with the host

server. In Section 2.2 it is shown that a distribution system based on CATV tech-

nology will give satisfactory performance for both communications servers. Of

the two delays in the host server, it is shown in Section 2.3 that the delay associ-

ated with the analysis of the request is not significant. For large data bases it is

necessary to hold the Telidon pages on disk. Thus the page access delay is likely

to be the dominant factor in system performance, and multiple disk units

appear to be required to reduce the delay to an acceptable value. This problem

is considered in Section 2.4. It is shown there that single disk systems can give

acceptable performance if certain information about the users' page request

chara.cteristics is available for use in the system design.

Section 3 considers the user characteristics that effect system perfor-

mance. With a large data base on disk, the performance of a Telidon system,

measured by the response time to requests, can be improved by holding antici-

pated requests in a high speed cache. The feasibility of such prefetching

depends upon taking advantage of user behaviour. Frorn empirical data, it is

found in Section 3.2 that the distribution of the frequency of use of pages is

skewed, and hence, the cache approach shows considerable promise even

without prefetching of anticipated pages. In Section 3.4 it is found that the

- 4 -

effective range of choices in sequential selection is very limited. Hence it is pos-

sible to develop a scheme for prefetching pages in anticipation of the next user

request. Based on these results it is concluded that a cache size approximately

equal to the number of users when that number is large, would be adequate to

hold prefetched pages about 95% of the time. Problems in the management of

the cache, and comparisons between centralized and decentralized cache are

also discussed.

Section 4 discusses the merits of five Telidon architectures. The first is the

conventional multidisk approach, while the others include some, or all, of cache

memory, prefetching of ariticipated requests, and data organization on the disk

combined with disk access scheduling. These extensions either reduce disk

trafTic, reduce time waiting for a response, or reduce the mean time to transfer

data from the disk. The major emphasis in Section 4 is on a system that com-

bines the use of cache memory with the prefetching of anticipated requests.

Based on the results of Section 2 and 3, and from simulation results, it is con-

cluded that such a system is preferable to the conventional multidisk system. A

system with a cache memory without prefetching, and a system using data

organization on the disk combined with disk access scheduling are also dis-

cussed. These systems also appear to have some a.dvantages over the multidisk

system. Finally, a system using a distributed cache and prefetching of antici-

pated pages, combined with data organization on the disk and disk scheduling is

discussed. This system has the potential to make the Tendon server and com-

munications delays in the system transparent to the user.

5

2. Delays in Telidon Systems

2.1 Introduction

As indicated in Section 1 a Telidon system can be modelled as four tandem

servers, each with a queue of requests waiting for service. These servers

represent the transmission of the request, the analysis of the request by the

host computer, drawing the requested page from the Tendon system memory,

and finally the transmission of the page to the user. Obviously, if any of these

operations introduces a large delay, the problem can be eliminated by the use of

parallelism, i.e., multiple communications channels, or multiple processors, or

multiple disk units. This approach, however, may be unreasonable from the

economic viewpoint and less expensive methods are more desirable. In the fol-

lowing sections we will consider each of these delay sources. Where it appears

that a significant delay may occur various schemes for improving performance

are discussed.

To discuss the relative performance of various schemes it is necessary to

have a model of a typical Telidon system. We will follow the approach of [2] and

assume that a typical Telidon system consists of 1000 active users, each making

a page request every 10 seconds. The page request message is in the order of 10

bytes, and the average page length is 1000 bytes. This produces a total traffic

out of the Telidon system, after allowing for headers, error checkin,g, etc., in the

order of 1 Mbit/s. The total request traffic, on the other hand, is only in the

order of 0.1 kbit/s. We will further assume that response characteristics similar

to those of interactive computing are required, i.e., that the response time be in

the order of one to three seconds. This model will be used throughout the bal-

ance of this section when comparing different alternatives.

6

2.2 Communications System

Two communications channels are required for each user-server connec-

tion. These channels may be either dedicated to a single user or shared among

several, possibly all, users. The essential difference from the performance point

of view is that on a dedicated channel the only delays are transmission time and

signal propagation delay, whereas on a shared channel additional, and random,

delays can be introduced by service to other traffic. These additional delays

may cause a serious degradation in system performance.

The types of dedicated channels that are available are permanent circuits,

dial telephone circuits, and switched digital circuits. Possible shared channels

are broadcast, packet switching networks*, local area networks, and metropoli-

tan area networks using CATV tecluiology. In this investigation we do not con-

sider local area networks, beca.use of their limited geographic range, nor broad-

cast, since it is subject to bandwidth allocation regulations. However, most of

the technical comments about CATV distribution are also relevant to broadcast.

Since in normal operation a user request is followed by a Telidon server

response, the two channels can be provided on the same medium by a half- or

full-duplex mode of operation. However, since the data flow is highly unbal-

anced, with the information delivery channel carrying in the order of 100 times

as much traffic as the request channel, this may not be the most effective mode

of operation. Indeed it is not clear that both channels should be provided by the

same technique. Table 2.1 shows all possible combinations, and indicates three

groups where all the members of a group have similar advantages-

disadvantages. Each group will be discussed in detail below.

• It might be noted that while packet switched networks use shared channels, the sharing is
done at the network level and is invisible to the user. Hence to the user they are very simi-
lar in use to switched digital circuits. However they exhibit the random delay of a s.hared fa-
cility.

I

7

Table 2.1

Communication Channel Alternatives

information channel

request channel 	 dedicated 	switched 	packet
telephone 	

circuit 	digital 	switched 	CATV
circuit

telephone 	 A 	 C

dedicated 	 A 	 C
circuit

switched 	 A 	 C
digital circuit

packet 	 A 	C
switching

CATV 	 B

The entries in Table 2.1 that have not been assigned to a group represent

combination.s that have increased cost with no performance improvement over

combinations with both channels the same, or represent combinations that use

each medium for the operation for which it is least suited.

2.2.1 Group A

In this group both the request and information channels use the same

transmission medium. The charnels may be either dial telephone circuits, dedi-

cated circuits, switched digital circuits or packet switched virtual circuits. All

have the advantage of dedicated access, although packet switchin,g does suffer

random packet delays. Current Tendon systems, using modems and either dedi-

cated circuits or the dial telephone system, fall into this class. However, such

systems have a small number of users, and expansion to a large number, i.e.

1000, active users is not practical.

- 8 -

First we will consider the telephone system. Telephone systems are

effectively limited at 1200 bit/s due to ban.dwidth and modem costs. This m.eans

that the transmission of a page of information takes in the order of 10 seconds.

This exceeds the desired response times proposed in Section 2.1 without consid-

ering request processing and other delays in the system. In addition, supporting

1000 active users would require 1000 telephone lines, modems and interfaces at

the computer with a cost in the order of one million dollars. While appropriate

multiplexors, etc., could reduce the cost it would still remain prohibitively large.

We now consider dedicated lines. If the lines are short then limited dis-

tance modems may be used. These are higher speed and less expensive than

those discussed for the telephone systems. Hen.ce such a system could be prac-

tical for limited distances. However, for longer range the modem costs increase,

and the line charges become high, yielding the same cost problem as for the

telephone system.

Digital switched circuits do not have the severe bandwidth problem of the

telephone system, but they are more expensive and not as readily available. The

interface problem at the computer should not be as severe as for the telephone

system but will still be a significant cost.

Packet switching networks simplify the interface problem at the server,

since one interface can handle many calls. However, given the traffic require-

ments, the system would need in the order of one hundred 9600 kbit/s ports

into the network. This would have an interface cost comparable to the tele-

phone interface, and the expense of the interface at the terminals would

increase. Care would have to be taken in the software to keep the load balanced

over all the ports. This may not be easy. The time to deliver a page (including

network delays) would be in the order of one to two seconds.

In summary, all the class A systems suffer from high cost, interfacing

- 9 -

complexity at the Telidon server, and information delivery times that are on the

high side.

2.2.2 Group B

This group has a single member. The CATV system is used both to carry

requests to the Tendon server, and information pages to the user. The following

discussion assumes separate CATV channels are available for the request and

page delivery traffic. While in principle a single channel could be shared usin,g

local area network techniques, the sharing overhead is very high due to the dis-

tances involved and the highly biased traffic origination pattern. In addition, it

is not good practice to have a high power transmitter and a sensitive receiver at

the same frequency connected to the cable at the same point, i.e., the user taps.

Hence only the two channel approach will be considered.

The idea of using the CATV distribution system for the delivery of the Teli-

don information pages has been widely proposed. The advantage is obvious: a 6

MHz chann.el on the CATV system could carry at least 5 Mbit/s of data. Hence,

serving 100 user requests per second would use only about 20% of the channel

capacity. This introduces only a few milliseconds of queuing delay .waiting for

transmission, leaving an ample time allowance for request processing, etc.

There are two disadvantages to the system, compared to dedicated lines. First,

the users must have address decoding equipment to select the correct page.

This is not a significant problem since such equipment would not be expensive in

large quantities. Second, the information is less secure against passive wire tap-

pin,g since it is "seen" by all users. We conjecture that for most Tendon systems

this is not a significant problem.

The CATV channel used as the request channel could be shared by the users

in a random access mode in lightly loaded systems, or in a polling mode in more

- 10 -

heavily loaded systems. The random access approach is simplest. In a random

access scheme any terminal with a request transmits when it is ready. If two

transmissions overlap (collide) then both requests are lost. The probability of

losing a transmission is approximately X(2 / / c) where X is the number of

transmissions per second, / is the message length, and c is the channel capa-

city. If the user requests are 100 bits long, with 100 requests per second, then

on a 5 Mbit/s channel, the probability of a request bein,g lost is 0.4%. Lost

requests can be detected by a time out mechanism, or alternatively, by

transmitting each request twice, with a random spacing, this loss can be

reduced to 0.006%. This is sufficiently small that one may wish to ignore the loss

and rely on the user resubmitting the request.

It should be noted that the above technique relies on the channel being

lightly loaded. If higher request rates are desired, or if a full 6 MHz channel is

not available, then some form of polling scheme that uses less bandwidth could

be implemented. The disadvantage of such schemes is that they are more com-

plex, and introduce extra delay.

2.2.3 Group C

This group contains communication systems that use a CATV channel for

distribution of Telidon pages combined with a dedicated request channel usine

either dedicated lines, telephone, digital switched circuit or packet switching.

This approach retains all the advantages of Group B with respect to page distri-

bution, and that discussion will not be repeated here. The use of dedicated

channels for request traffic, rather than CATV system as in Group B, may be

desirable in some situations. The most obvious case is when an existing CATV

system was not designed to allow traffic to originate at a customer's premise, or

has limited bandwidth in that direction. Even if these restrictions do not exist,

- 11 -

this approach may be attractive when all the costs are considered. It should be

noted that since the request channel is low speed, the modem and multiplexing

costs at the Telidon server will be reduced substantially compared to Group A.

One very interesting possibility is the use of a packet switched network. Two

9600 bit/s ports at the server would be more than sufficient to carry the request

traffic. The users could use either dedicated lines to the packet network if they

were heavy users, or 300 bit/s dial telephone access if they were light users.

2 2.4 Suram.ary

The use of a group A system appears feasible only where the geographical

area is small and dedicated lines with low cost limited distance modems can be

used. However, either group B or group C using shared distribution over a CATV

system appears feasible for both local or city wide systems.

The method of collecting request traffic can be handled adequately by all

suggested mechanisms. Given the low volume of request traffic there should be

no difference in performance and the decision can be made purely on an

economic basis. It would appear that if a CATV cable is being used for page dis-

tribution that the cable would also be the most convenient method of collecting

the page requests. It might not, however, be the most economical.

In summary, while group A systems may have some specialized applica-

tions, most large systems will fall into groups B or C using a CATV cable system

for page distribution. The balance of the report will be based on this a.ssump-

tion, and will assume that communication delays are negligible.

2.3 Processor Performance

The processing capabilities required in a Telidon server are not large. Typi-

cally a Telidon response either requests the next page in a sequence of pages, or

- 12 -

specifies one of the items in the menu currently being displayed. To process

these responses the system must maintain, for each active user, a short table

containing the successor page identification for each menu item. Obviously

where the page is one of a sequence of pages the table would reduce to a single

item identifying the next page. When a user request is received, all that is

required is a short search of the table entries to find the addressing information

for the selected entry, and to initiate a disk read if the page is not in memory.

When the page is available, either imm.ediately, or after the disk read is com-

plete, it must be queued for transmission to the requester. Assuming that all

input/output is done by direct memory access (DMA) transfers, in the order of

1000 instructions per request seems adequate to perform the above operations,

including the processing of interrupts at the end of the DMA transfers.

While in some cases it may be necessary to perform several disk accesses

to obtain page directories, this will have to be a rare occurrence, or perfor-

mance will drop due to disk delays. Hence this type of activity was ignored in

the above estimate. If the use of labels is permitted, there will be some increase

in processing time, but the use of efficient hash table techniques should keep

this increase small.

Hence the processing power required is sufficiently small that it could be

provided by any 16-bit microprocessor, and by some of the 8-bit microproces-

sors. For example, 1000 users with a request rate of 1 page every 10 seconds

per user on a computer with a 3 ie average instruction execution time requires

only 100 request/s x 1000 instruction/request x 3 ,us/instruction = 0.3 of the

processing capacity of the computer. To estimate the interference from the

DIVIA transfers we note that memory speeds are seldom worse than 1 ps per byte

transferred. In the worst case of no duplicate requests, and no pages already in

memory, all pages would have to be transferred from disk to memory, and then

- 13 -

from memory to the output channel. For 1000 byte pages this would require

100 page/s x 1000 byte/page x 2 x 1 izs/byte = 0.2 of the memory bandwidth.

Hence only if the processor-DMA overlap were zero would the computer utiliza-

tion reach 0.5. This leaves ample time for statistical fluctuation in arrival rates

and processing time. A more powerful machine would be less heavily loaded, but

not significantly, because this type of operation primarily uses the basic "book-

keeping" instructions such as compare, load, store, increment, etc. whose time

on large and small processors is comparable (unlike floating point arithmetic for

example).

2.4 Disk Performance

The large amount of data supporting a Tendon system requires a disk for

mass storage. The rate of random retrieval of page information from a disk is

significantly lower than the anticipated page request rate; hence, disk perfor-

mance could well be the limiting factor on system performance. For example,

consider the IBM 3350 disk unit. This device has the characteristics

average seek tim.e 	 25 ms

maximum capacity per track 	19000 bytes

time per revolution 	 16.7 ms

If the pages being read are stored consecutively on the disk, then for 1000

byte pages, a transfer rate of 1000 pages per second is possible. However, if the

pages are scattered the average access delay consists of a 25 ms seek plus 16.7

ms of rotational delay, which yields a transfer rate of only 25 pages per second.

Other disks have similar characteristics. The important point is that the rate

for random retrieval of page information is significantly lower than the antici-

pated page request rate of 100 pages per second suggested in Section 2.1.

- 14 -

The initial reaction to the fact that a single disk drive cannot meet the anti-

cipated page request rate may be that it is not a serious problem since multiple

disks will be required purely for system reliability, and that the load can be

shared across many disks. This is a dangerous assumption. The repair tirne for

disks can be long, and during this period the system must still meet perfor-

mance requirements. The correct viewpoint is that the system will need n disks

to meet performance requirements, and a further m disks to meet reliability

requirements. Obviously one wishes to minimize n and m in order to reduce

cost. In this study we are concerned only with n .

Given that a single disk unit using random page retrieval cannot support

the page request rate, three strategies are possible: replicate the disk unit to

reduce the access rate, provide a cache memory for frequently accessed pages

to reduce the number of disk accesses, or organize the page requests so that

sequential access rather than random access is made to the disk.

2.4.1 Disk Replication

Replicating the disk system until the combined service rates exceeds the

user request rate is the easiest and technically safest of the three strategies.

The distribution of service times can be obtained by simulation without any

specific knowledge of the data base organization. Thus it is easy to verify that

performance criteria will be met before a commitment to a specific system is

made. The only precaution required dtiring operation is that the load on the

disks remains balanced, This is not difficult if all the disk units are attached to

the same computers. However, if multiple computers are used, then there must

be a facility to pass user requests between computers to maintain the desired

load balance. In this case it would probably be best for one computer to process

all requests, and distribute them to the other computers.

- 15 -

The disadvantage of disk replication is, of course, the cost of the additional

disks. For the typical system parameters given in Section 2.1, four disk units

would be required to match the request rate. Additional capacity would be

required to control the queuing delay caused by fluctuations in load.

2.4.2 Cache Memory

As will be discussed in Section 3, some pages of a Telidon data base are

accessed much more frequently than others. If these commonly used pages

were held in a cache memory, then the random access request rate to the

disk(s) could be reduced. If the cost of the cache is less than the cost of the

disk(s) it eliminates, then the system is economically superior to that discussed

in Section 2.4.1. One would also expect that it has superior performance since

many of the requests will be served from the cache -without queuing delay. To

obtain some performance bounds we will analyse a system with a cache.

Assume that the cache has a size C so that a fraction f of the requests is

served instantly from the cache. The balance of the requests are placed in a

queue for disk service. Let the mean arrival rate for user requests be X, and the

mean disk access time (seek and read) be e

If the number of disks is n, then the mean arrival rate of user requests to a

disk queue is (1—f)X/n. (This assumes a separate queue for each disk. If the

pages are replicated on all the disks a single queue can be used which yields

better performance; tb.us for n>1 the following results will be pessimistic.) If we

assume that the user requests can be modelled as a Poisson process, then disk

access is described by an 11/G/1 queuing model. Hence the average time in the

system for the user requests is

p2(1+Cê)
TD 	 (2.4.2.1)

2 (1—P)
where p = e (1—I)V n is the disk utilization and Ce is the squared coefficient of

- 16 -

variation for the access time. For a disk system one would expect C<1. Now

2 (1—f)X(1 ÷Cb2)/ TD = 	+ 	 (2.4.2.2)
1. 	21—(1—f)2X/n3

and the overall mean time in system, including the requests effectively serviced

instantly from the cache is

T = (1—f)TD 	 (2.4.2.3)

It should be noted that both T and TD are significant. T gives the average

response time to a request; hoveever it must be remembered that (1—f) of the

requests have a mean response time of TD . This may be significant if the system

has a performance criterion of the form that a certain percentage of the

requests must be serviced in less than a specified time. To obtain an exact

verification that such a criterion is being met will require a simulation of the

system.

Provided that f is large both TD and T are quite satisfactory for typical

values of 2 and X. However, we note that

p = ex(1-f)./ n<1 	 (2.4.2.4)

or

(2.42.5)
2X

is required for satisfactory response times. For 2 = 40ms, X = 100 requests/s,

and n=1 this implies f >0.75 is required. Intuitively, this appears a severe

requirement. The question of how the "hit ratio" f varies with cache size C, and

how large a cache size is required is unknown. Section 3 discusses this problem.

Unless a method is found to insure that f is large, then n>1, i.e., multiple disks,

is required and the cache method will not give a significant economic improve-

ment over the multiple disk approach of Section 2.4.1.

- 17 -

2.4.3 Disk Access Scheduling

If all the page requests are to be provided from a single disk without using a

cache memory it is clearly impossible to service the page requests on a one-by-

one basis; they must be grouped and. ordered to minimize the seek time over-

head. Obviously if all the requested pages were adjacent, then the transfer rate

would approach the maximum disk transfer rate which is considerably greater

than the page request rate. The problem is determining the amount of grouping

required to achieve mean transfer rates greater than the page request rate and

establishing the associated delay in page delivery.

For the purpose of analysis, we will assume that the Tendon pages can be

arran,ged on the disk such that some fraction f of the requests can be served by

scanning a "common" set of pages at the maximum transfer rate r and reading

the required pages. This would be typically several pages per disk rotation with

a seek being required only when all tracks in a cylinder have been read. If the

number of pages in the common set is C, and the total pages being read is m,

with fm from the common set, then the average transfer time per page for

pages from the coramon set is C/ (rim). The balance (1—nm of the pages

required are read individually with an average fetch time of . This yields an

average page service time t 1 of

f i = f (4+ (1„)±_
, =_, (1.--nffi

rrn
(2.4.3.1)

It should be noted that this model is not valid when 771 is sufficiently small

that it is faster to seek all the pages in the conamon set rather than scan over

the intervening pages. This occurs when Z<C/(rfm), and -±- is, therefore the

upper bound on the average page service time. Note also that the nutn.ber of

pages scanned in the common set per page transferred to memory is

- 18 -

k = C/ (fm) 	 (2.4.3.2)

Obviously k <1 is invalid. At k = 1 all the pages in the common set are being

read. This implies that mle.C/ f •

The time to transfer all 7n pages is

= t
i m = —r + (1–f)Z771 , .e>C/ (rfm)

tm
m , 	 e<C/ (rfm)

and during the time tin the average number of new requests received is

(2.4.3.3)

b = Xt m 	 (2.4.3.4)

Figure 2.1 shows the relationship between b and in for a possible set of parame-

ters. From Figure 2.1 it is noted that a value of in exists such that b =in. Call

this value mi. Now, let the system operating policy set m equal to the number

of requests awaitin,g service. If m is less than in' then the probable number of

arrivals during the service cycle is greater than. in. On the other hand if m is

greater than the probable number of arrivals during the service cycle is less

than in. Hence the system will converge towards a stable operating point at

b = in'.

We note that if À > 1 and f >1 ---1--the b vs. m relationship always has the

form shown in Figure 2.1. Hence for these conditions, the stable operating point

is given by

= Àtm.= À{ —c + (1–f) mi } 	 (2.4.3.5)

which yields the average number of pages being read per service cycle as

XC m =
711–(1–f)X2i

and the average service cycle duration of

(2.4.3.6)

tm ' = 	 .(2.4.3.7)
/1 1-(1-f)x.t

The time that a request waits for service can vary from almost zero, for a

- 19 -

2001—

.0

1—

0 100

IJ

new requests < service rate

c=300
f =0.8 	 stable

operating ic =0.04 	 point
r =1000
,=l00

/)ç..._new requests> service rate

VI 	I 	I 	II 	I 	I 	I II

100 	 200
TOTAL PAGES READ,m

Figure 2.1: Relationship between the expected number of page requests, b, and
the number of pages read, m, during a service cycle.

request that arrives just as the block of requests is being organized and is the

first served, to 2t m , for a request that just misses a service cycle and is the last

served on the next cycle. While the distribution is n.ot uniform across this inter-

val, since the disk reads are closer together when the common page set is being

scanned, tni . is a reasonable approximation for the mean time a request is in the

system.

As an example, for the typical parameter values shown in Figure 2.1,

tyre = 1.5s. This is a feasible value for a Telidon server, but it must be noted that

it is very sensitive to the value of f. To insure a specific value of 4, , requires

that

0
0

1 \ f (1— 	+ 	
X:t 	X «e rt„, ,

(2.4.3.8)

- 20 -

It is obvious that the system is practical only if XI is small, and if a small value

of C yields a high value of f. This problem is identical to that for the system

with cache memory discussed in the Section 2.4.2. Again information is required

on the relationship between a "common" set of pages and the "hit ratio" before

the effectiveness of the system can be evaluated.

2.4.4 Sumraary

The tirne for random access of Telidon pages on a typical disk is too high for

a single disk system to support a reasonable number of users. A reliable solu-

tion to the problem is to provide multiple disks. Alternative solutions that

require fewer disks require that a collection e common pages, either in the

computer memory or consecutive disk locations, provide a large fraction of the

user requests. To evaluate these latter architectures requires a knowledge of

the frequency of use of the pages in the Tendon data base. This problem is con-

sidered in Section 3.

-21-

3. Tendon User Behaviour

3.1 Introduction

The response time of a Telidon system to the user is a critical measure of

its performance and usefulness. For large data bases, it is not possible to hold

all the pages in a high speed store or cache. The use of a disk or several disks to

provide the large storage necessary presents great difficulties in controlling the

access time when there are many users. Suppose a cache supplies the data to

the user communications network, then the critical area is the communications

between the cache and the disks which hold the data base. The ultimate objec-

tive would be somehow to have all the necessary pages in cache when the

requests arrive so that the disk access time is not part of the response time to

the user.

We can be quite sure that all pages will not be equally used even in a net-

work of many users. If it were possible to hold a substantial proportion of the

pages which are more likely to be used in cache, then the disk access time

would only be encountered by a user occasionally. Hence we wish to model Teli-

don user behaviour regarding the distribution of the relative frequency of use of

pages in the data base. It will be found that a minority of pages account for

essentially all the use. However, it is important to know from empirical data,

the values of the parameters describing the distribution.

An appropriate model for the distribution can be inferred from other areas

of human behaviour such as languages and econ.omics, where a distribution pro-

portional to a power of the rank plays a dominant part. Here the rank would be

the rank of the Telidon pages listed in order of decreasing use. We will designate

the anticipated frequency of use of the page at rank r in such a list as

Ao(r) r

- 22 -

where

Ao (r) Ao (r +1)

If a list of such zero order anticipation numbers were available from the actual

use of a particular data base, then it would be possible to calculate the perfor-

mance as a function of cache size using this approach alone.

It is clear that once a user is in the data base system, he will follow a

stream of selections with a very small number of effective branches relative to

the size of the total data base available. Therefore if we could predict his nex t

 choice from among a very small set and have them ready in cache, the apparent

performance could be enhanced. To do this, we must make use of the actual

request made immediately preceding the next anticipated one. In other words,

we need the first order conditional probabilities to predict his next request con-

ditioned upon the last one known to have been made. We shall call these condi-

tional probabilities the relative anticipation probabilities, A. These must be

obtained by observations of user behaviour on a particular data base and stored

in an extensive table. This approach holds some promise if indeed the set of

anticipated next requests conditioned upon the known last request, is quite

small.

We note that the conditional probabilities are invoked by the occurrence of

an actual request at a particular instant. Therefore, as time passes these condi-

tional probabilities lose their validity since it becomes increasingly likely that

the user has made some other choice. Hence these relative anticipation

nurnbers must become functions of time, A(t), where time is measured from the

Instant of the last known request. A method is developed to have these anticipa-

tion probabilities decay in a form deduced from observations on the distribution

of the pause interval between user requests (Section 3.3). We thus arrive at a

situation where the cache contains those pages most likely to be used next,

f (r) = fi lra (3.2.1)

- 23 -

where "most likely" is based on data concerning all immediately preceding

requests , as well as the relative frequency of use of pages.

3. 2 Page Use Distribution

Suppose the pages in a Tendon data base are ranked according to their

relative frequency of use in descending order. Then, there are excellent reasons

to anticipate that such a frequency distribution will be of the form [3-5]

When the exponent a is unity, this is known as Zipf's Law. Eqn. (3.2.1) can be

written in the form:

f (r) = f i exp(-1n(r)/B) 	 (3.2.2)
which is part of an extensive analogy with thermodynamics in which the pararne-

ter B is the "temperature" of the distribution. If B<1, then the system is closed

in the sense that the distribution can be summed over all ranks to infinity, while

if B>1 the distribution is open and. one expects that at some high rank, the dis-

tribution will fail or fall off drastically, or that there is a maximum rank (finite

set).

The cumulative distribution function is more convenient for the reduction

of observed data. It is defined:

s(r)= f f (i) 	 (3.2.3)
t=.1

From the integral of the probability mass function in eqn. (3.2.1) we can expect

the cumulative distribution function also to be a power of the rank as follows:

5(r) = Si rm = O b r'n 	 (3.2.4)
which leads directly to the linear equation

InS(r) = b + mln(r) 	 (3.2.5)

In order to relate this to the probability mass function, we take the defmition

- 24 -

f (r) = S (r) S (r —1)

= b (r In — —1)m) 	 (3.2.6)

and expand the second term using the binomial theorem. This gives us, approxi-

mately (which improves with increasing rank) .

f (r) e' mrm -1 	 (3.2.7)

so that the parameters that control the shape of the distribution are related by:

a = 1—m = 1/11 	 (3.2.8)

Three sets of data were acquired over seven months at the University of

Waterloo. The cumulative page use distributions followed eqn. (3.2.5) very

closely up to the point where the cumulative sum approaches unity. This is

shown in Figure 3.1 and Table 3.1 where the three data sets are identified by the

codes 823, 827, and 210. Data set 823 used 820 pages, and we had 41 000 user

requests recorded; while data set 827 used 659 pages with over 14 000 user

requests recorded. Later, data set 827 was expanded to 1986 pages, and had

over 70 000 user requests recorded and is called set 210. The exponent parame-

ters for the data sets differ by 15%. The "effective number of pages" is obtained

by extrapolating the linear relationship, eqn. (3.2.5), until the cumulative distri-

bution is unity. This gives:

= exp (—b/m) 	 (3.2.9)

Actually, the distribution does not end there, but deviates from the assumed

form and approaches unity for the last page. The measure of the accuracy of

the fit of the observed data to the model is given by the maximum error between

the data and the point where the two asymptotes meet. This error is about 10%

to 15%. Note that the fraction of the available pages defmed as "effective" is

between 18% and 40% of the total number available.

Figure 3.1 answers the first question about predicting page use; 18 to 40% of

the pages available account for 85% to 90% of the use. While it can be expected

that the proportion effective will decrease further with larger data bases, the

10 5

104

103

- 25 -

1000 2000 10 	20 	 1.00 200
RANK (r)

Figure 3.1: Cumulative frequency of page use.

Table 3.1

Parameters of the Page Use Distribution

Data Set ID 	 823 	827 	210

Sample Size 	 S(V) 	41 001 	14 400 	70 464

Number of Pages 	V 	820 	659 	1986

Cdf slope 	 in 	0.5434 	0.4624 	0.4601

"Temperature" 	B 	2.19 	1.86 	1.85

Effective pages 	y 	283 	265 	357

Proportion effective 	v/ V 	34.5% 	40.2% 	18.0%

Maximum frequency 	5(1) 	4.7% 	7.8% 	6.4%

Error asymptote at y 	 10% 	 9.7% 	15.5%

Note: Data Set 827 is a subset of Data Set 210.

1

- 26 -

number may remain too high to retain in cache. Horspool has reported similar

results [2].

This very unequal frequency of use can be emphasized by calculating the

entropy of the distribution, usin,g data set 210 as an example. In this set the

break point or "effective" number of pages is:

= 357

The entropy of the asymptotic distribution of eqn. (3.2.1) from rank 1 to 357 is

8.103 bits (which is equivalent to 275 equally likely alternatives). If we now take

into account the ranks from 358 to 1986 with a rank distribution over that

range, we have two straight lines (on a log-log diagram) for the complete range

and the entropy is increased to 8.472 bits (which is equivalent to 355 equally

likely alternatives). Thus in this case, the average uncertainty in predicted page

use as measured by the entropy, is approximately the same as that for the

effective number of pages from eqn. (3.2.9) considering these to be used

independently and equally likely.

3.3 User Pause Time

The user pauses between requests and it is during this time that we can

ensure that his anticipated next request is available in cache. However, if an

anticipated request should not occur, its validity in cache expires and it can be

replaced. Therefore, it is important to know the distribution of the pause time

both for the prediction of the next request, and to indicate how long a predicted

page should remain in cache.

Figure 3,2 shows the cumulative distribution function for the user pause

time. Note that 50% of the requests are made within 5 seconds of the previous

request, while 3% may take as long as 30 seconds. The complementary cumula-

tive distribution function (Ccdf) is the probability that a predicted page in cache

will yet be used, treating all such individual predictions as independent. If the

810 	20 	40 60
t (sec

- 27 -

Figure 3.2: Pause time distribution.

Cedf is exponential, then the probability density function is also exponential.

From Figure 3.2, the probability density function for times over 3 seconds is

approximately exponential, at least until 10 seconds after which there are few

data with considerable scatter. Hence the anticipated use of a page in cache

decreases exponentially after about 3 seconds.

There will be competition for space in cache, and the items that are to be

discarded are those with the least anticipation of use. These will be the ones

with the least values for the parameter A(t). Two kinds of errors can be made:

one is when an item is kept and never used which occurs with probability (1—A),

and the second kind is when an item is discarded and then called for which

occurs with probability A. We are treating each item in a multiple prediction as

independent, when in fact if one item is called the others could be discarded.

This latter procedure could become quite complex since it would be necessary

to retain and review the sources of each prediction.

- 28 -

Figure 3.2 suggests that each page in cache be retained for about 3.2

seconds, after which the value of the parameter A(t) be decreased exponentially

until it is discarded. If this is done, then for a given discard threshold level for

the parameter A, the fraction discarded will be A(threshold), and the fraction

retained is:

1 — A(threshold)

which bounds the cumulative distribution function from below as shown in Fig-

ure 3.2. Since the cumulative distribution function is the proportion of

predicted items in cache which have been used by a certain time, the probabil-

ity of holding onto a page in cache is greater than the probability that it will be

used, but approaches the latter for pause times greater than 5 seconds.

It is proposed to implement the exponential decay of the anticipation

parameter by periodically multiplying all values with a factor of

7 	1 - (1 —
8

= exp(-1/7.5). 8
This can be done in binary arithmetic by a shift of 3 positions and a subtraction.

To obtain the time constant observed in the data of Figure 3.2 these decay mul-

tiplications should be done every 0.8 seconds. If the implementation of the

exponential decay is delayed for four such periods, then the policy described

above of holding pages for 3.2 seconds will also be implemented.

The procedure for processing the cache directory every 0.8 seconds is out-

lined in Figure 3.3. A 3 bit register is used to cotmt four intervals or 3.2

seconds, after which the register containing the anticipation parameter, A, is

reduced exponentially. Step 5 in Figure 3.3 allows for the case of several users

where predicted requests may overlap items already in cache. Finally, in the

case of a light load on the system it is desirable to refresh the cache from the

set of default pages rather than retain unused and very stale predictions. Hence

step 6 in Figure 3.3.

- 29 -

Under the above decay scheme for the anticipation parameter, the actual

length of time for which this parameter remains non-zero will depend upon the

nurnber of bits in the A register. The number of processing intervals before the

value of A is less than one least significant digit and therefore truncates to zero,

is given approximately by

log(2b — 1) steps = 	 — 5.2 b 	 (3.3.1)
log(8/ 7)

where b is the number of bits in the register storing A. Using 30 seconds which

includes 97% of the pause intervals, and an interval processing time of 0.8

seconds, we get the following lower bound on the number of register bits:

30 b 	
(0.8)(5.2)

= 7.2 bits 	 (3.3.2)

We may conclude, therefore, that an 8 bit register should be adequate for this

purpose.

Under heavy load conditions, competition for space in the cache can be

based upon the values of the anticipation parameter. More space can be made

available by increasing a threshold for discarding items. On the other hand,

under light load conditions stale predictions in terms of items with zero value

for A may remain for a long time in the cache.

It is proposed at each processing interval to sweep out those items for

which the anticipation parameter has already reached zero. This will be done by

replacing such items by pages from the zero-order default list which are not

already in the cache. Should a default list page already be in cache, its A value

will be updated using the value A0 from the default list. Such a procedure also

takes care of initialization at a time when the cache is empty.

- 30 -

1 When an item is brought into cache in anticipation of a future request, the

cache directory (CD) will include two registers: A (minimum, 8 bits) and B

(3 bits; 133 , 132, B 1). These are initiated with:

A = (Conditional Proba.bility from the Prediction Table)

13 = 0

2 Every item in the cache directory is to be processed every 0.8 seconds with

the following algorithm:

IF (A=0) THEN STOP

ELSE IF (133 =0) THEN

B' = B + 1

ELSE

A' = A — A/8

3 To bring a new item into cache, enter its I.D. etc. in the cache directory

buffer, Then remove the item with minimum value for A (including the new

item), and transfer the new item into the vacant space in cache.

4 When a request is received, whether or not the item is already in cache, the

prediction table is consulted and either disk requests issued for anticipated

items which are brought into cache (see 1 and 3), or the A value is adjusted

according to (5) if the item is already in cache.

5 If a prediction requires an item to be brought into cache with "anticipation"

A2, and it is already there with anticipation number Al, then adjust Al to:

Al' = (Al +A2 — Al.A2)

6 If at a processin,g interval (see step 2) one or more items have values A = 0

then the list of default pages is to be consulted. Starting with the highest

value of A0, if the item is already in cache then employ step 5, otherwise

enter the item in place of one of those for which A = 0.

Figure 3.3: Procedure for cache directory registers.

- 31 -

3.4 Distribution of Page Sequences

It was seen in Section 3.2 that as little as 18% of the pages could account for

84% of the use. Now we wish to extend our model one step by following the user

and analyzing his choice conditioned upon the fact that the page he cur•rently

has displayed is known. We suppose that once a user is in the system, he will

generally follow a chain of selections with a very small number of branches at

each selection event relative to the complete data base available. Indeed, if a

table of the possible links of successive pairs of pages actually chosen were

available, it could be used to predict the next request in a particular situation.

In this way the next request could be anticipated and brought into cache in

preparation for delivery. If the number of possible links or branches from a

given page is small, this procedure could greatly enhance the performance with

a relatively modest cost in storage. The practicality of exploiting such predicted

characteristics requires a knowledge of the joint behaviour of successive pairs of

requests, each pair consisting of an "antecedent" and a "consequent". Such an

analysis has been carried out on data set number 210 which contains the largest

sample size available to us. This record is sufficiently long that it can be used to

estimate the average error rate for a prediction procedure.

One might suppose that each page could be the antecedent, and have every

page possible as a consequent. Then there would be V2 possible links or

branches if there are V pages in the system. However, the actual number of

consequents per page averages only a very few, and the first thing which can be

deduced from our observations is the amount of choice or the number of

branches from each antecedent. Let the index a enumerate the antecedents;

then because all pages are possible antecedents and we have

a = 1,2,3, 	V

Next, for each a, let the index c enumerate the consequents; therefore,

Va E Ma„c) = NT
a=1 c=1

(3.4.1)

S(
,

r) = -= E b Tm
r B

(3.4.4)

- 32 -

c = 1,2,3, 	 Va

This indicates that page a as an antecedent has V, possible consequents.

Knowledge of the set of V.'s over the V pages is important in defining the size of

the problem and the amount of storage a prediction strategy would require.

We regard each link or successive pair of requests that occur as an event,

and from the given data set we can count the number of times such distinct

events occur. Let N(a,c) be the number of times a particular antecedent has a

particular consequent; that is, the pair (a,c) has occurred N(a,c) times. Note

that the range of the index c as well as the actual identity of the pages desig-

nated by it, are dependent upon the antecedent page. The total of such events

is:

The actual number of pair events that occur in the data (of the V2 possible) is

given by:

(3.4.2) Va = VT
a=1

Then the average number of branches at each user selection is given by:

avg () = VT / V 	 (3.4.3)

Next we take the VT events and determine their distribution in order to give

a more detailed description of user behaviour. To do this we can employ the

sarne analytic model as used in Section 3.2, in which the cumulative distribution

function is a power of the reciprocal rank where the events have been ranked in

descending order of their frequency of occurrence. From eqn. (3.2.4) we have:

Again, an "effective" number of events is obtained by extrapolatin,g this linear

relationship until

S(v) = 1

- 33 -

so that

--b/m V = e (3.4.5)

Using data set 210 which was the largest one available for analysis, it was

found that with a data base of 1986 pages (see Table 3.1), the number of distinct

successive pairs of requests was 3682. This is less than 0.1% of the possible

number of pairs, and the cumulative distribution function for the frequency of

occurrence of the different pairs is shown in Figure 3.4. The parameters of this

distribution are tabulated in Table 3.2.

From Figure 3.4 it is seen that only 114 or 3.1% of all the distinct pairs actu-

ally observed (n.amely 3682) account for one-half of the total number of joint

events observed. Also, this small group which accounts for half of the activity

obeys the reciprocal power law extremely well. Of all the events observed, the

most likely pair occurred 2% of the time, while the 114th had a probability that

was already down to 0.3%. Hence 97% of the distinct pairs observed ha.d proba-

bilities less than this, although they accounted for about half the activity. The

picture that emerges from Figure 3.4 regarding the pairs of successive requests,

is of two types each accounting for about half the activity each. The one type

consists of a relatively small nurnber of links which occur often, while the other

type consists of a very large fraction of the distinct pairs observed, but which

happen relatively rarely as distinct events.

The number of consequents that occur for each antecedent will determine

the number of lines required in a prediction table and hence the total size of

such a table. Using the data in Table 3.2 and eqn. (3.4.3) we find that:

avg. ("V,) = 1.9

It was observed that very nearly 2/3 of the pages (as antecedents), had only a

single consequent. The other 1/3 had 2 or more consequents with an average of

3.7. It was interesting to note that to a very close degree of approximation the

0.1 %
1 	1 	11 	t Ili'

10

Data Set I.D.

Sample Size

Possible page-pairs

Observed page-pairs

Cdf. slope

"Temperature"

Effective number of pairs

Proportion effective

Maximum frequency

Error at asymptote v

210

70 463

3 944 196

3682

0.684

3.16

317

8.6%

2%

27%

v/VT

s(1)

NT

V2

VT

- 34 -

-L_
2

J 	Ill!! 	 I 	1 	I 	I 	I 	III!

	

10 	20 100

RANK (r)
111111

1000 2000

100%

Figure 3.4: Cumulative distribution of sequential page requests.

Table 3.2

Parameters of the Page-Pair Joint Cdf

- 35 -

number of antecedents which had exactly V. consequents varied as:

1
va 2 (3.4.6)

As a check we see that:

1.03
0 i

Figure 3.4 can be used to relate the size of the stored table required for

prediction purposes to the errors resulting from the inability to make predic-

tions because of omissions from the table. Thus we see that if the number of

lines in the prediction table is equal to 114, or about 67 of the number of pages

in the data base (V) then the error rate, or the ina.bility to make predictions,

will be approximately 50%. If we increase the size of the prediction table to 317

which is the asymptotic value from Table 3.2 then the error rate will be about

27%. Such a prediction table is about 167 of the number of pages in the data

base. Figure 3.4 would suggest that if the number of lin.es in the prediction table

were equal to the number of pages in the data base, then predictions would be

possible in 95% of the cases required. Beyond that it becomes increasin,gly

expensive of storage to reduce the error rate further.

Before drawing any further conclusions, we note that the picture changes

somewhat if we look closely at the sample size. It has already been observed

that one group of events (or sequential pairs) have a frequency distribution that

obeys the reciprocal power law, while the other group of events are individually

rather rare although they form a large group. The quantity N(a,c) was the

count of the n.umber of times a particular pair, (a,c) occurred. However, in

many cases we have

N(a,c) = 1

which corresponds to a probability of 0.0014%. From Figure 3.4 we see that the

most likely event (or joint sequential pair) had a probability of about 2% so that

- 36 -

the range is almost 2000:1.

Using the Poisson distribution as a model for the occurrence of rare events

and a confidence limit of 90%, we may say that the observance of a single event

implies an expected probability in the range

0.00015% to 0.0055%

while for a particular event which did not occur at all the same range would be

0% to 0.0033%

For this reason, sequential pairs which only occurred once in the observed data

could be neglected from the prediction table. If this is done, the number of

observed events tabulated in Table 3.2 reduces to

V -2334

However, the lost events account for only 2% of the total activity. It is also

interesting that now 23% of the pages do not appear as antecedents at all.

We now consider the subset of the data which includes all events which

occurred two or more times. Of this subset, we find that 80% of the antecedents

have a single follower while the other 20% have, on the average, 3,6 consequents.

The average number of branching links per antecedent is thus 1.52. However,

this applies to only 77% of the pages in the data set, so that the number of lines

in the prediction table is approximately 1.2 times the number of pages in the

data set.

3.5 Cache Size

The purpose in predicting user selections is to have the likely selections

available in a cache memory for quick response. To judge the cost effectiveness

of such a system, it is necessary to estimate the size of cache required. We have

- 37 -

already seen that the average number of pages predicted (consequents) is quite

small. We can identify three main factors that will influence the size of cache

required, and then offer some comments on them. These factors are:

(a) As the number of users in a system increases, the probability of new

selections, different from those already chosen, decreases. This means that the

required size of cache increases more slowly than the number of users, since

additional users in a crowded system are likely to repeat requests already made.

Moreover, while the number of different requests that are likely to occur with a

given number of users is of interest, it will not directly add to the cache size

estimate since one expects in a functioning prediction system that ea.ch user

request will be in cache, and not require a new fetch from disk and an additional

page in cache.

(b) Once we have identified the nurnber of different requests or

antecedents expected with a set of users, then the cache size required is that to

hold the consequents predicted from these. We will assume that these conse-

quents are all different in identity. However, we can bound the total required by

taking into account the distribution of the number of consequents per indepen-

dent antecedent given in eqn. (3.4.6).

(c) lf a number of consequents are brought in cache because of their

expected request by a user, and only one (or perhaps rarely, none) is actually

used, and the others are treated according to Figure 3.3, they may linger in the

cache for some time, depending upon the pause time distribution of Figure 3.2,

and the threshold for the parameter A. This could cause much urmecesSary

occupancy of the cache.

First of all, we deal with (a); namely, the increase in new (i.e. different)

requests with an increase in the number of users. Supposing the Nth user

chooses the page of rank r; then the probability that none of the (N-1) other

- 38 -

users requested that page is:

P(r;,N)= [1 — f (r)] -1 (3.5.1)

where f (r) is given by eqn. (3.2.1). Averaged over the set available, the proba-

bility that the Nth user requests a different page is:

P(N) = 	f (T){1 - f (r)Y1-1 	 (3.5.2)
r =1

This is shown in Figure 3.5 using the parameters of data set 210 (Table 3.1) that

describe the asymptotic distribution (Figure 3.1) in. eqn. (32.1) for f (r). The

graph is approximated by:

.N-1
P(N) 0.72e ''482 0.29e -Nne e 	 (3.5.3)

Next, we attempt to use P(N) to estimate the number of distinct

antecedents, A, that will occur with U users. Each additional user adds one

antecedent if his request is different from the (N-1) others, and none if it is the

same. On the average, the Nth user adds P(N) antecedents. Hence

= E[A U] = 	P(N) 	 (3.5.4)
N=1

In Figure 3.5, the solid line shows the compression of A / U that results from

overlapping requests as the number of users increases.

Let us define the probability that U users will request exactly A distinct

pages, as Q(A I U). Thenwe have:

Q(UIU) = 	P(N)
N=1

and

Q(11 U) 	[1 P(N)]
N=2

and an iterative formula can be developed; viz.,

Q(A I = P(U)Q(A-1 I U-1) + [1 — P(U)]Q(A I U-1)

which is facilitated by using the exponential bound of eqn. (3.5.3). However,

retther than pursue that line, we wish to indicate how a confidence bound can be

•

... -

0.2

0.1
P(N)

200 1400 600 I 800 	1000
2v

N ,U

1.0
0.8

0.6

0.4

(v -A)!
Q(A I U) e-À Xv (3.5.6)

- 39 -

Figure 3.5: Average probability of the Nth user selecting a different page, P(N),
and number of distinct requests per user, A a/ U (v=357, a=57).

derived. Supposing we wish to assert that allowing for A distinct antecedents

will be adequate (1— a) of the time; that is, the probability of requiring more

than A a is a. Then, this limit is obtained from

a = E Q(u-i I U) 	 (3.5.5)
t=o

Another approach is to use results from the statistics of cell occupancy

problems. Entropy considerations suggest that the complete skew distribution

behaves like that of y equally likely alternatives. Then the probability that U

users will request A distinct pages from V equally probable alternatives is

asymptotic to

where the expected value of (y — A) is:

X = ve 	= v — 	 (3.5.7)

- 40 -

In Figure 3.5, the broken line shows the compression of (A/ U) under these

assumptions. Of course, eqn. (3.5.6) is the Poisson distribution which may be

approximated by the Gaussian for large expected values. An equation for

confidence limits analogous to eqn. (3.5.5) then results; namely,

min(if,v)
a = E 	X v-A / (I) –A)1

1 —erfc
–v + 	I 	1 erfc{ 	 X – v + min(U,v) Ri 	 (3.5.8)

2 	 2 	 N/2À

For exaraple, the probability that the number of different antecedents exceeds

44,, is a, where a and Au are solutions of eqns. (3.5.7) and (3.5,8) for given values

of y, and U. Such a confidence line for a = 5% is shown dotted in Figure 3.5 for

the same para.meters and assumptions as the broken line, for illustrative pur-

poses.

As noted above under (b), given the number of different antecedents, A,

then the cache required is that needed for the consequents of these. From Sec-

tion 3.4, the average requirement would be 1.52A. However, the requireMent for

individual users follows the distribution given by eqn. (3.4.6) which is very skew.

For example, a 4 page cache would be adequate for one user 95% of the time, but

70% of the time, 3 pages of the 4 would be empty. Again 6 pages per user would

be adequate over 98% of the time, but a cache of 6A size would be highly redun-

dant. In the case of two independent users, if instead of providing 12 (6 each)

pages only 6 pages are provided, then they are jointly covered 94% of the time.

The point is, the requirements are not simply additive because of the very

skewed distribution, in which a requirement of more than one is unlikely.

To estimate the extent of this "compression" effect we note that the crrif

(cumulative mass function) for the distribution of eqn. (3.4.6) is lower bounded

by:

1 e

- 41 -

Using this for a cumulative distribution function of a continuous density, we

obtain an associated probability density function:

f (z)= z o e -e' z ; z0 = 1/ 1.8 	 (3.5.9)

Using this continuous approximation to the lower bound, we can now set up the

integral expression for the probability of having enough cache (1— a).1007 of

the time, if the cache is of size A pages and there are A different antecedents.

This is:

A 	 A -Z1 	 A -2 1 --2.4-1

1—a;"--> f f (xi)dx 1 f f (x2) dx2 • • 	f 	f (zA)(LTA (3.5.10)

where f (zi) in eqn. (3.5.10) is given by eqn. (3.5.9). The integration in eqn.

(3.5.10) yields:

--zo A 11-1 X0
a = e 	 (3.5.11)

k! k=0
Eqn. (3.5.11) provides the solution for the cache size, A, given the confidence

level, a, and the number of different user requests, A. Let the solution be Ca;

that is, the space required for consequents with probability (1— a).

If we take 6 pages as the maximum requirement per user, then.

Co = SA

The behaviour of the ratios Cb / A and C50 / A as functions of A are shown in Fig-

ure 3.6. This results from solving eqn. (3.5.11) using the bound of eqn. (3.5.9),

and therefore is an upper bound on Ca. It would indicate that with a large

number of users, a cache size of twice the number of distinct requests would be

adequate.

The third factor noted above as (c) is more difficult to analyze without

specific data. When several predicted consequents are brought into cache, in

general we can expect one to be required end the others not. Using an algo-

rithm such as that in Figure 3.3, the others will eventually be discarded when

their A-values drop below the threshold. There would seem to be three

- 42 -

6
5
4 E

1.■

<I 3
■

a
0 2 -

-■-'--

CÇ/A

C50/4

1 I 	1 	1 	I 	II 	1 	1 	I 	 1 	1 	1 	I 	1 	1 	1 	1

2 	4 	6810 	20 	40 60 80
A

Figure 3.6: Upper botuid on cache requirements per request, Ca/ A (a=5%).

approaches to this problem:

(i) The unused consequents can be left to be discarded by the threshold

method. This could con,gest the cache unnecessarily. To the extent that the

requests overlap with a large number of users, it may actually save disk

transfers.

(ii) Each predicted page brought into cache could be tagged with the user's

identity; then, when that user made a request, all items tagged with his identity

only, would be discarded in favour of new predictions. With large numbers of

users, multiple tags can occur and the item would be discarded when the last

one is cleared. For a large number of users, say

U > 1.5v

then Figure 3.5 indicates that only about half the requests will be distinct; i.e.,

A/ U RI 1/2 	 (3.5.12)

However Figure 3.6 shows that for large A,

- 43 -

C/A i■1 2; (3.5.13)
hence a cache size approximately equal to the number of users is indicated, if

the unused predictions are systematically cleared out,

(iii) The cache could be decentralized to each user terminal where both the

current and predicted requests would be held. This would certainly facilitate

the clearing out since tagging would be unnecessary. Collectively, the system

 would have to provide for 6 predicted pages per user, or six times the cache in

(ii). This is because no advantage can be taken of duplicate requests by

different users, nor of the compression in storage requirements that result from

the very skewed distribution of the nurnber of consequents (eqn. (3.5.10)). It

also would require about 1.5 as much communication capacity on the average as

centralized systems because of the transmission of predicted but unused

material. (The average 1.8 from eqn. (3.5.9) is an upper boun.d). Nevertheless,

the decentralized cache approach may have advantages from a system

viewpoint. The organization at the central supplier is simpler and less cong-

ested; it must retain a prediction table (Section 3.4) and be advised of user

requests even if they are already in the local cache.

3.6 Summary

The analysis of the data set on the basis of a predictive model offers some

guidelines as to the expected behaviour of a prefetching method. It suggests

that a conditional prediction table can be constructed by neglecting joint events

with a probability of less than 0.002% and keepin,g those with a probability equal

or greater to 0.0037. The number of lines that are required in the prediction

table itself is not at all excessive, being of the same order as the number of

pages in the data set. This results from the relatively few number of multiple

branch points evidenced by the user data. We can also expect the prediction to

- 44 -

be effective about 95% of the time or better.

The prediction table will include the anticipation number, A, along with

each predicted subsequent page. This anticipation number is a conditiona.1 pro-

bability calculated from past observations and is given by

A(c ;a) = N(a,c)
 -< 	 (3.6.1) 1

As noted above, in 66% to 60% of the cases we will have

A=1
because only one consequent will be recorded. The number of bits required to

record A can be calculated from the minimum value for the numerator, and the

maximum value for the denominator. Using data set 210, and keeping events

with two or more occurrences, we have:

min N(a,c) = 0.003%

From Table 3.1 we have:

max E ma,c) = 6.4%

Therefore, min(A) = 0.0004. This implies that the minimum size of the words for

recording anticipation numbers should be 12 bits.

We have seen that the number of predicted pages for a given user at any

point in his chain of selections will average about 1.5 to 1.9.

Furthermore, if the cache is distributed, then the communications require-

ments would increase by the same factor (1.5). However, for a centralized cache

and a large number of users, the number of different requests does not increase

linearly with the number of users because of the increased chances of users

making the same request. Such chances are much greater than might other-

wise be expected because the effective number of pages is much smaller than

the total available (1/4 or 1/3 in the data reported here), and these are used

with a skewed frequency distribution. From an example based on data, when the

- 45 -

number of users exceeds 1.5 times the effective number of pages, then the

number of distinct requests is only half the number of users (Figure 3.5). The

first order sequential chain model for a user searching a Telidon tree also

results in a highly skewed distribution for the number of anticipated consequent

pages. As a result, while one user may occasionally require 6 pages, the number

required per user, when there are many, is much less than this. Figure 3.6

shows that two pages per distinct user request are enough when there are

several hun.dred users. As a result of these two factors we can conclude that the

size of a central cache is approximately that of the nurnber of users in the sys-

tem.

It is not known how much the structure of the data base used here for

analysis, influenced the numerical conclusions. It seems highly probable that

the skew distribution will describe the user's behaviour regardless of the organi-

zation of the material; however, the extent to which the interaction of the data

base structure and the predictability of choices vfill affect the numerical values

of the para.meters in the statistical description is not known. Data set 210 was

assembled from a number of sources and it is possible to see different patterns

in the tree structure depending upon either the originator or the subject matter

of the source. It would be valuable therefore to acquire a data base from other

sources and with a difTerent type of material.

-46-

4. Alternative Telidon Architectures

4.1 Introduction

In Section 2 and 3 two aspects of a Telidon system were discussed; first the

aspects related to the performance of the communications and computer sys-

tems, and then the aspects related to how the user interacts with the data base.

In this section the results from these two sections will be combined to evaluate

the feasibility of the various schemes that were proposed in Sections 2 and 3.

In Section 2 it was shown that the use of a CATV network for distributing

Telidon pages was the only feasible solution for a large Telidon system. Because

of the low data rate required the choice of n.etwork for collecting the user

requests is more flexible, and could be a shared CATV channel when technically

and economically feasible, or could be dedicated lines, telephone, digital

switched circuit, or a packet switched network. The choice has little impact on

the Telidon server architecture. Also in Section 3 it was shown that the comput-

ing load on the Telidon server is low, and the processing time does not place any

constraints on the Telidon server architecture. Hence the significant factors to

be decided are the tra.deoffs between the nurnber of disks, page fetching policy,

amount of cache memory and its location, and the organization of the pages on

the disks.

In Section 2 three basic approaches were discussed. Based on the results of

Section 3, two of these have variants based on whether or not prediction and

prefetching of pages is employed. This gives a total of of five possible architec-

tural alternatives. These are:

(i) a multidisk system without cache memory

- 47 -

(ii) a system with cache memory

(a) passive cache, i.e., no prediction

(b) a cache with successor page prediction

(iii) disk organization with disk access scheduling

(a) no cache memory

(b) distributed cache

Each of these alternatives will be discussed in the following sections. For pur-

poses of comparison we will assume, as before, 1000 active users with a total

request rate of 100 request/s, and disk(s) with sequential transfer rates of 1000

page /s and random access times of 40 ms. Where needed, these assumptions will

be supplemented with the user characteristics developed in Section 3.

4.2 Idultidisk System Without Cache Memory

The multidisk system without a cache memory is in many ways the simplest

system. The only user characteristic required is the total request rate. The

performance can be estimated from eqn. (2.4.2.2) (with f =0). For five disks the

mean tirae to process a request is in the order of 200 ms which is probably

acceptable, although a simulation would be required to find the actual response

time distribution. The disadvantage of this system is, of course, the large

number of disks required.

4.3 Passive Cache Memory

The systems with cache memory attempt to reduce the nurnber of disks

required by serving a large number of requests from the cache. We will consider

first a system with a passive cache, i.e., there is no attempt made to.predict

future requests and the cache is updated only when a user request is not found

- 48 -

in the cache. The performance of such a system is described by eqns. (2.4.2.2)

and (2.4.2.3). In addition to the user request rate it is necessary to know the

relationship between the size of the cache and the cache hit ratio f. One would

expect that the pages in the cache tend towards the most frequently accessed

pages. Hence, based on the information in Table 3.1, one would expect hit ratios

in the range of 85 to 90% for systems with small data bases if the cache size was

approximately the same as the number of effective pages y. Using f = 0.85 with

one disk in eqn. (2.4.2.2) yields a value of approximately 100 ms as the mean

response time for the 15% of the requests not served from the cache. As before

this is probably satisfactory, although a simulation would be required to fLnd the

actual response time distribution. However there is a significant problem in

extending this performance evaluation to large data bases, i.e., 50 000 pages.

From Table 3.1 we note that tripling the size of the data base appears to

increase the number of effective pages by about 1/3, and reduce the hit ratio by

5%. If these ratios hold as the data base size increases we would expect a

required cache in the order of 850 pages with a hit ratio of 70% for a 50 000 page

data base. The size of the cache would not be a problem, since a 1000 page

cache would require only 1 Mbyte of memory, which is quite feasible. However,

from eqn. (2.4.2.5) at least two disks would be required. This is of course specu-

lative; it could be better or it could be worse. Until information on large data

bases is available we are unable to predict the performance of this approach for

large data base systems. For small data base systems, since only one disk is

required with only a modest cache size, the passive cache approach is superior

to the multidisk approach.

4.4 Cache Memory With Page Prefetchin> g

The analysis of Sections 3.4 and 3.5 is relevant to a system with a central-

- 49 -

ized cache in which successor pages are predicted and fetched in anticipation of

a user request. It was shown that to have a 95% probability of finding the page in

the cache the cache size should be about 2 pages per user for a large number of

users when the users share the cache memory. However when the number of

users is greater than the effective n.umber of pages in the data base, we saw that

about half the requests will be duplicates. As a result of these two factors we

can conclude that the size of a central cache should be approximately equal to

the number of active users in the system. Hence, a system with 1000 active

users would require a 1000 page cache (1 Mbyte of memory). For such a system

approximately 95% of the requests would be served from the cache. Hence, if

the average total request rate was 100 request/s about 5 request/s would

require disk service. From eqn. (2.4.2.2), and the typical disk parameters given

earlier, the mean response time for these direct disk requests would be about 50

ms for a single disk system assuming they were given priority over the prefetch-

ing of anticipated pages. This response time is satisfactory, but there is still the

question of the disk access capacity required to handle the prefetching. With

100 user requ.ests per second, and an average of 1.9 successors per request, and

approximately 0.5 of the requests distinct, one would expect an average of 95

prefetch requests to be generated per second. For a large cache memory most

of these would be satisfied from the existing cache contents, and only a small

fraction would cause disk activity. For data set 210 we note from Figure 3.1 that

if the cache contained the 1000 most frequently used pages, then only about 5%

of the prefetch requests would not be resolved in the cache. Hence for this data

set, and a 1000 page cache, one would expect about 5 pages per second being

prefetched from the disk. This level of prefetch activity would not cause any

disk performance problems, and one disk would be sufficient. If due to a larger

data base, or a higher request rate, the prefetching trafTic approached 20 pages

- 50 -

per second it would be necessary to supply a second disk unit. We note, how-

ever, that it might be possible to delay the addition of the second disk by

appropriate organization of the data on the first disk. This would involve placing

the successor pages to a given antecedent sequentially on the disk. If necessary

some pages could be replicated. This entire group could then be fetched in a

time not significantly greater than fetching a single page. This would reduce the

effective disk traffic.

To investigate further the relationship between the nurnber of users, cache

size, and the disk access time a simulation study was performed. The main

objective of the study was to check the relationship between the n.umber of

users and the cache size required for a 95% cache hit ratio. The simulated user

page requests were based on the page request distribution, and the antecedent-

consequent relationships, of data set 210. To give seek times that would be real-

istic for larger data bases the 1986 pages of the data set were assurned to be

randomly distributed over the disk. The simulation considered only a single disk

system. Two queuing disciplines were studied: a simple first in, first out (FIFO)

discipline, and a scan discipline.

In a FIFO discipline pages are read from the disk in the same order that the

requests are received, i.e., the cache misses are not given priority over the pre-

fetching requests. In the scan discipline the disk access arm is swept across the

disk, always from the cylinder last involved in data transfer to the closest

cylinder, in the current direction of motion, for which a data transfer request

exists. Wh.en no further data requests exist in the direction of motion, the direc-

tion of motion is reversed. The scan discipline performs significantly better

than FIFO for heavy disk utilization [6-9]. For the simulation using the FIFO dis-

cipline a mean disk access time of 50 ms was used. For the scan discipline simu-

lation a slightly faster disk wa.s assumed, with a mean access time that varied

-51 -

from 39 ms at light load to 20 ms at heavy load.

The user page requests in the simulation had a generating function whose

interarrival time approximated that shown in Figure 3.2 with a mean interarrival

time of 3.25 s. The simulation results are shown in Tables 4.1 and 4.2. The

values given are the number of users, the cache size, the total number of

requests simulated, the percentage of requests satisfied from the cache (hit

ratio), the percentage of requests that had to be queued for disk service, the

mean disk service time for these latter requests, and the overall mean response

time. Where the disk and cache requests do not sum to 100%, the difference

represents items already scheduled for disk access when the request arrived.

The simulation results confirm the calculations in eqns. (3.5.12) and (3.5.13)

which indicated that for a large number of users one cache location per user

would be sufficient for a 95% cache hit ratio. In fact, this estimate is conserva-

tive since the actual number of cache locations required to yield a 95% hit ratio

for a specified number of users, as found by simulation, was about 15% less than

the product of C/ A=2 and the value of A/ U given in Figure 3.5 for U>1.5v. . It is

further observed that the cache size does not change significantly between the

two queuing disciplines even though the the scan discipline reduces the disk

access time by 50% under heavy load conditions.

It will be noted in Tables 4.1 and 4.2 that the mean disk service time

remains relatively constant over a wide range of n.umber of users. This is, of

course, due to the page prefetch traffic. This traffic was not recorded during

the simulation, but it may be estimated. For the FIFO discipline simulation the

mean disk access time '2 ki 50 ms and Cb2 +i 0. If we assume that the total disk

traffic is Poisson then eqn. (2.4.2.2), with f = 0, applies and we can use the

measured mean disk service time from the simulation to calculate the disk utili-

zation and disk a.ccess request rate. The results are shown in Table 4.3. The

1

1

- 52 -

Table 4.1

Cache Size Simulation Results (FIFO Disk Scheduling)

Active 	Cache 	Total 	In 	On 	Service 	Overall
Users 	Size 	Requests 	Cache 	Disk 	Time 	Response

150 	260 	40003 	95.1% 	4.8% 	123.3ms 	5.9ms
200 	300 	40000 	94.8% 	5.1% 	134.1ms 	6.8ms
200 	310 	40002 	95.4% 	4.4% 	124.7ms 	5.5ms
250 	340 	20001 	94.8% 	5.17e 	131.1ms 	6.7ms
250 	345 	20004 	95.4% 	4.4% 	120.1ms 	5.3ms

300 	360 	40004 	95.1% 	4.8% 	135.4ms 	6.4ms
300 	370 	40003 	95.1% 	4.8% 	133.0ms 	6.4ms
400 	420 	40004 	95.0% 	4.9% 	139.6ms 	6.8ms
500 	450 	40012 	93.8% 	6.0% 	193.4ms 	11.7ms
500 	460 	40001 	95.6% 	4.3% 	149.2ms 	6.4ms

600 	475 	40006 	94.9% 	5.0% 	226.8ms 	11.3ms
600 	485 	40001 	95.7% 	4.2% 	167.1ms 	7.0ms

700 	525 	40004 	95.1% 	4.9% 	232.9ms 	11.3ms
BOO 	550 	20007 	95.0% 	4.9% 	362.2ms 	17.7ms

900 	575 	20009 	94.7% 	5.2% 	531.6ms 	27.6ms
900 	600 	20013 	96.1% 	3.9% 	409.4ms 	15.9ms

prefetch activity is expressed as a percentage of the user request rate. As a

check we note that for 300 users the cache size of 360 is approximately the

effective number of pages in the data set. Hence we would expect about 84% of

the prefetch requests to be resolved in the cache, Hence the number of pre-

fetch requests passed to the disk would be 1.9x0.5x16% R3 15% of the user

requests. This compares very well with the value of 12% in Table 4.3. Hence we

conclude that the prefetch concept functions well over a wide range of loads.

The limit on the number of users appears to be primarily a function of the cache

miss traffic approaching the disk throughput limit.

With the page prefetchin,g disk accesses transparent to the user, as they

will be since the disk is not overloaded for a small data bases similar to data set

210, the system becomes equivalent to the system with a passive cache •rom the

user viewpoint. However the performance will be better since the user will see a

- 53 -

Table 4.2

Cache Size Simulation Results (Scan Disk Scheduling)

Active 	Cache 	Total 	In 	On 	Service 	Overall
Users 	Size 	Requests 	Cache 	Disk 	Time 	Response

	

150 	240 	20004 	94.9% 	5.0% 	100.8ms 	5.0ms

	

200 	275 	20001 	95.0% 	4.9% 	94.5ms 	4.6ms

	

250 	300 	20001 	95.1% 	4.8% 	102.3ms 	4.9ms

	

250 	310 	20003 	95.1% 	4,8% 	95.3ms 	4.6ms

	

300 	335 	20003 	94.5% 	5.4% 	103.7ms 	5.6ms

	

300 	340 	20001 	96.0% 	3.9% 	91.3ms 	3.6ms

	

400 	370 	20000 	94.8% 	5.1% 	99.9ms 	5.1ms

	

400 	375 	20000 	95.4% 	4.5% 	98.5ms 	4.5ms

	

500 	400 	20004 	94.6% 	5.3% 	104.4ms 	5.5ms

	

500 	420 	20002 	95.9% 	4.0% 	93.3ms 	3.8ms

	

550 	420 	20002 	94.5% 	5.4% 	124.1ms 	6.7ms

	

550 	430 	20003 	95.4% 	4,5% 	108.3ms 	4.9ms

	

600 	440 	20000 	95.1% 	4.8% 	104.2ms 	5.0ms

	

650 	450 	20002 	95.0% 	4.9% 	106.2ms 	5.2ms

	

700 	440 	20009 	93.5% 	6.3% 	160.3ms 	10.1ms

	

700 	445 	20000 	95.7% 	4.3% 	102.5ms 	4.4ms

	

750 	450 	20000 	94.3% 	5.6% 	115.9ms 	6.4ms

	

750 	465 	20011 	94.7% 	5.2% 	121.6ms 	6.4rns

	

BOO 	485 	20001 	94.5% 	5.4% 	130.2ms 	7.0ms •

	

800 	490 	20005 	95.5% 	4.4% 	105.1ms 	4.6ms

	

900 	510 	20000 	94,0% 	5.9% 	221.9ms 	13.1ms

	

900 	520 	20004 	95.6% 	4.3% 	118.2ms 	5.1ms

	

1000 	525 	20024 	95.1% 	4.8% 	156.3ms 	7.5ms

95% hit ratio rather tha.n 85%. We also conjecture, that because the performance

estimates are based on antecedent-successor relationships which are unlikely to

change significantly with data base size, this performance should also be found

for large data base systems. As before information on user characteristics for

large data. base systems is required before a definitive evaluation is possible..

4.5 Disk Access Scheduling. No Cache Idemory

When we consider the approach of organizing the data on the disk and using

- 54 -

Table 4.3

Page Pref etch Activity (FIFO Disk Scheduling)

Active 	Cache 	Cache 	Service 	Disk 	Pref etch
Users 	Size 	Miss 	Time 	Utilization 	Activity

150 	260 	4.8% 	123.3ms 	0.75 	27.5%

200 	300 	5.1% 	134.1ms 	0.77 	20.0%

250 	340 	5.1% 	131.1ms 	0.76 	14.8%

300 	360 	4.8% 	135.4ms 	0.77 	12.0%

400 	420 	4.9% 	139.6ms 	0.78 	7.8%

500 	450 	6.0% 	193.4ms 	0.85 	5.1%

600 	475 	5.0% 	226.8ms 	0.88 	4.5%

700 	525 	4.9% 	232.9ms 	0.88 	3.3%

800 	550 	4.9% 	362.2ms 	0.93 	2.6%

900 	575 	5.2% 	531.6ms 	0.95 	1.7%

disk scheduling, the results given in Table 3.1 clearly indicate it is possible for

small data base systems. For data set 210 we found that 357 pages accounted

for 84% of the page requests made. If these pages were stored sequentially on

the disk, tha.n eqn. (2.4.3.7) indicates that for a total request rate of 100

request/s the technique of disk access scheduling would be effective for this

da.ta base using only a single disk. It must be noted however that there is an

service time of approximately one second if the effect of duplicate requests is

ignored. If the number of users is large enough that the number of unique

requests is 0.5 of the total requests, the service time is reduced to about 0.5 s.

In both cases the system is inferior to the cache methods with respect to

response time but is slightly better economically since the cache memory is not

required. It should also be noted that if there were no duplicate requests the

system would fail completely if the common set of pages only gave a hit ratio

0.7, as we speculated earlier might be the case for a 50 000 page data base. If

the number of users was large enough that only half the requests were unique

the system could operate with a hit ratio as low as 0.5. Before further evaluation

- 55 -

of this alternative can be performed more information on the data characteris-

tics is required.

4.6 Disk Access Scheduling, Distributed Cache

In previous sections the possibility of having the cache of predicted page

requests distributed among the users was mentioned. This would require

memory for 6 pages per user to give equivalent performance on the storage

medium alone compared to the centralized cache. However, the centralized

cache has a problem which a distributed cache does not have; namely, when

multiple predictions have been made and the pages entered in cache, some

mechanism must be included in the centralized cache management which

disposes of the unused predictions. In the case of the distributed cache system,

these unused predictions can be discarded at the local terminal. Thus, the

decentralized cache approach may have adva.ntages from a system viewpoint

sin.ce the organization at the central server is simpler and less congested, and

t,o the extent that prediction is effective, the user will not be aware of any sys-

tem delays whatever. It should be noted that the distributed cache would

effectively increase the the page request rate (by 1.9 for the data base studied)

by fetching all the successors. However, this increase should not be significant

if the disk scheduling approach is used. While the service time would increase it

would be transparent to the user. Further, by storing successors sequentially,

the disk activity could be reduced to effectively one disk access per request,

regardless of the number of successors. We also note that if the number of

users is large enough, the reduction in the number of distinct request would

compensate for the increa.sed page request rate. The key to successful perfor-

mance is the size of the common set of pages.

- 56 -

4.7 Summ.ary

Five possible architectures for the Telidon server have been considered.

The essential differences are the disk scheduling policy, and the presence or

absence of cache memory. It was shown that a system with a central cache

memory and pref etching of anticipated page requests appears to significantly

reduce the number of disks required. This system should be investigated

further. The concept of distributing the cache memory to the user terminals

also seems promising, but lack of information on Telidon data structures

prevented more detailed investigation. Further study of the characteristics of

Tendon data structures, and user characteristics, are required before the ques-

tion of the best architecture can be resolved.

- 57 -

References

[1] D. Godfrey and E. Chang (ed.), The Telidon Book, Press Porcépic , Toronto,

1981.

[2] R.N. Horspool, G,V. Bochmann, and G.E. Saunders, "Memory Structures for

Videotex," Publication #454, Département d'informatique et de recherche

opérationnelle, Université de Montréal, Oct. 1982.

[3] G.U. Yule, "A mathematical theory of evolution, based on the conclusions of

Dr. J.C. Willis, F.R.S.," Philosophical Transactions B, Vol. 213, p. 21, 1924.

[4] G.K. Zipf, Human Behavior and the Prin.ciple of Least Effort, Addison-Wesley,

Reading, 1949.

[5] B. Mandelbrot, "A Note on a Class of Skew Distibution Furictions: Analysis

and Critique of a Paper by H.A. Simon," Information and Control, Vol. 2, p.

90, 1959.

[6] T.J. Teorey and T.B. Pinkerton, "A Comparative Analysis of Disk Scheduling

Policies," CACM, Vol. 15, pp. 177-184, 1972.

[7] C.C. Gotlieb and G.H. MacEwen, "Performance of Moveable-head Disk

Storage Devices," JACM, Vol. 20, pp. 604-623, 1973.

[8] E.G. Coffman, L.A. Klimko and B. Ryan, "Analysis of Scanning Policies for

Reducing Seek Times," JACM, Vol. 22, pp. 602-620, 1975.

[9] N.C. Wilhelm, "A General Model for the Performance of Disk Systems,"

jACM, Vol. 24, pp. 14-31, 1977.

