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Executive Summary 

A Telidon system consists of one or more host computers, with their associ-

ated disks, and a communications network for connecting user terminals to the 

host(s). .Any component of the system can decrease total throughput and 

increase delay. This study investigated the performance limits on a Telidon 

server operating over the telephone or cable television networks. For purposes 

of evaluation it was assumed that the Telidon system would have 1000 active 

users, with a total request rate of 100 requests per second, and that the average 

Tendon page len,gth was 1000 bytes. The study considered the communications 

network, the host computer, and the disk system with respect to performance 

and, to some extent, cost. 

It was found that the telephone network was not practical for the postulated 

load, and that the page delivery system would require the use of cable television 

like facilities. User request transmission is much less critical and could use 

either the same cable television facility or one of several other methods. 

Host computer performance is not a signiftcant factor in the performance 

of a Telidon system. 

If was found that disk service time was a severe system bottleneck, and that 

several disks would be required to provide the required throughput. Four alter- 
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nate Tendon server architectures are proposed that use either cache memory, 

or appropriate organization of the data on the disk, to provide faster response 

and hence reduce the number of disk units required. These schemes depend on 

increased knowledge of the data characteristics and the pattern of requests 

from the users. 

An analysis of samples of Telidon traffic showed that the user requests had a 

highly structured nature, and that predicting of future requests is very practi-

cal. Based on the characteristics of the sample traffic, an analysis indicted that 

for a large n.umber of active users a cache memory of one page per user, com-

bined with predicting, and fetching, future requests, would allow a single disk 

system to perform as well as a conventional multiple disk system. This was 

verified by simulation. This system should be investigated further using other, 

and more extensive, samples of TeLidon traffic. 

The other Telidon architectures considered include a system with a cache, 

but without prediction of future requests, and a system that collects requests 

for an interval of time and then schedules the disk reads to minimize disk ser-

vice tirne. This latter system requires that the pages with a high probability of 

use be grouped on the disk. Both these systems perform better than the con-

ventional system but not as well as the cache plus prediction approach. The 

fourth architecture considered also uses fetching of anticipated pages but dis-

tributes the cache to the user terminals. It appears that providing storage for 6 

pages at the terminal would effectively make the host computer and transmis-

sion delays transparent to the user. Since the memory requirements at the ter-

minal are small this approach is very attractive. However, its performance is 

very dependent on the characteristics of the user request pattern, and more 

detailed information on the structure of data bases and the user request 

sequences is required before it can be evaluated fully. 
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1. Introduction 

The purpose of a Telidon System [1] is to distribute textual and graphical 

information rapidly and economically to many users. Obviously, by dedicating 

sufficient equipment to a single user, any criterion for timely response can be 

met. The problem is to configure a system so that for a given number of users 

reasonable response time criteria can be satisfied with a minimum of equip-

ment, i.e. a minimum of expense. Alternatively, if it is discovered that some 

basic set of equipment is required, how can the system be organized to serve the 

maximum number of users? 

We wish to distinguish two types of systems. The first is a small "private" 

s3rstem that serves only a few users. The other is a large "public" system serving 

many users. As shown in Figure 1.1, the first approach tends to have a fixed cost 

with no growth potential, while the latter has a larger initial cost plus a small 

incremental cost for each user. For a small number of users the first approach 

is more economical, while for a large number of users the latter approach yields 

the lowest cost per user. It is this latter case that we consider in this report. 

In considering a large system it is necessary to identify the areas that could 

cause performance degradation, and develop strategies that reliably and 

economically minimize the problems. The performance factor with which we are 

most concerned is the response of the system to a user request. A Telidon sys-

tem consists of the Telidon server (host computer(s)) and their associated 

disks), a communications network for connecting the user terminals to the Tell-

don server, and the user terminals. In this study we are interested primarily in 

systems that use either the telephone network or a cable television (CATV) net-

work for communications. 

All components in a Telidon system introduce delay and decrease total 

throughput. The possible problem areas can be identified by tracing the flow of 
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a user's request and the server's response. Ignorin ig delays associated solely 

with the user and user terminal, four tandem delays can be identified: the user 

request is tran.smitted over the communications network, the request is 

analysed by the Telidon server host computer, the requested page is read from 

disk if not in memory, and the requested page is transmitted over the communi-

cations network. (See Figure 1.2). At each of these four points significant queu-

ing delay can occur if the server is overloaded. 

Section 2 considers the significance of each delay. Two of the delays are 

associated with the communications network, and the other two with the host 

server. In Section 2.2 it is shown that a distribution system based on CATV tech-

nology will give satisfactory performance for both communications servers. Of 

the two delays in the host server, it is shown in Section 2.3 that the delay associ-

ated with the analysis of the request is not significant. For large data bases it is 

necessary to hold the Telidon pages on disk. Thus the page access delay is likely 

to be the dominant factor in system performance, and multiple disk units 

appear to be required to reduce the delay to an acceptable value. This problem 

is considered in Section 2.4. It is shown there that single disk systems can give 

acceptable performance if certain information about the users' page request 

chara.cteristics is available for use in the system design. 

Section 3 considers the user characteristics that effect system perfor-

mance. With a large data base on disk, the performance of a Telidon system, 

measured by the response time to requests, can be improved by holding antici-

pated requests in a high speed cache. The feasibility of such prefetching 

depends upon taking advantage of user behaviour. Frorn empirical data, it is 

found in Section 3.2 that the distribution of the frequency of use of pages is 

skewed, and hence, the cache approach shows considerable promise even 

without prefetching of anticipated pages. In Section 3.4 it is found that the 
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effective range of choices in sequential selection is very limited. Hence it is pos-

sible to develop a scheme for prefetching pages in anticipation of the next user 

request. Based on these results it is concluded that a cache size approximately 

equal to the number of users when that number is large, would be adequate to 

hold prefetched pages about 95% of the time. Problems in the management of 

the cache, and comparisons between centralized and decentralized cache are 

also discussed. 

Section 4 discusses the merits of five Telidon architectures. The first is the 

conventional multidisk approach, while the others include some, or all, of cache 

memory, prefetching of ariticipated requests, and data organization on the disk 

combined with disk access scheduling. These extensions either reduce disk 

trafTic, reduce time waiting for a response, or reduce the mean time to transfer 

data from the disk. The major emphasis in Section 4 is on a system that com-

bines the use of cache memory with the prefetching of anticipated requests. 

Based on the results of Section 2 and 3, and from simulation results, it is con-

cluded that such a system is preferable to the conventional multidisk system. A 

system with a cache memory without prefetching, and a system using data 

organization on the disk combined with disk access scheduling are also dis-

cussed. These systems also appear to have some a.dvantages over the multidisk 

system. Finally, a system using a distributed cache and prefetching of antici-

pated pages, combined with data organization on the disk and disk scheduling is 

discussed. This system has the potential to make the Tendon server and com-

munications delays in the system transparent to the user. 
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2. Delays  in  Telidon Systems 

2.1 Introduction 

As indicated in Section 1 a Telidon system can be modelled as four tandem 

servers, each with a queue of requests waiting for service. These servers 

represent the transmission of the request, the analysis of the request by the 

host computer, drawing the requested page from the Tendon system memory, 

and finally the transmission of the page to the user. Obviously, if any of these 

operations introduces a large delay, the problem can be eliminated by the use of 

parallelism, i.e., multiple communications channels, or multiple processors, or 

multiple disk units. This approach, however, may be unreasonable from the 

economic viewpoint and less expensive methods are more desirable. In the fol-

lowing sections we will consider each of these delay sources. Where it appears 

that a significant delay may occur various schemes for improving performance 

are discussed. 

To discuss the relative performance of various schemes it is necessary to 

have a model of a typical Telidon system. We will follow the approach of [2] and 

assume that a typical Telidon system consists of 1000 active users, each making 

a page request every 10 seconds. The page request message is in the order of 10 

bytes, and the average page length is 1000 bytes. This produces a total traffic 

out of the Telidon system, after allowing for headers, error checkin,g, etc., in the 

order of 1 Mbit/s. The total request traffic, on the other hand, is only in the 

order of 0.1 kbit/s. We will further assume that response characteristics similar 

to those of interactive computing are required, i.e., that the response time be in 

the order of one to three seconds. This model will be used throughout the bal-

ance of this section when comparing different alternatives. 
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2.2 Communications System 

Two communications channels are required for each user-server connec-

tion. These channels may be either dedicated to a single user or shared among 

several, possibly all, users. The essential difference from the performance point 

of view is that on a dedicated channel the only delays are transmission time and 

signal propagation delay, whereas on a shared channel additional, and random, 

delays can be introduced by service to other traffic. These additional delays 

may cause a serious degradation in system performance. 

The types of dedicated channels that are available are permanent circuits, 

dial telephone circuits, and switched digital circuits. Possible shared channels 

are broadcast, packet switching networks*, local area networks, and metropoli-

tan area networks using CATV tecluiology. In this investigation we do not con-

sider local area networks, beca.use of their limited geographic range, nor broad-

cast, since it is subject to bandwidth allocation regulations. However, most of 

the technical comments about CATV distribution are also relevant to broadcast. 

Since in normal operation a user request is followed by a Telidon server 

response, the two channels can be provided on the same medium by a half- or 

full-duplex mode of operation. However, since the data flow is highly unbal-

anced, with the information delivery channel carrying in the order of 100 times 

as much traffic as the request channel, this may not be the most effective mode 

of operation. Indeed it is not clear that both channels should be provided by the 

same technique. Table 2.1 shows all possible combinations, and indicates three 

groups where all the members of a group have similar advantages-

disadvantages. Each group will be discussed in detail below. 

• It might be noted that while packet switched networks use shared channels, the sharing is 
done at the network level and is invisible to the user. Hence to the user they are very simi- 
lar in use to switched digital circuits. However they exhibit the random delay of a s.hared fa- 
cility. 
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Table 2.1 

Communication Channel Alternatives 

information channel 

request channel 	 dedicated 	switched 	packet 
telephone 	

circuit 	digital 	switched 	CATV 
circuit  

telephone 	 A 	 C 

dedicated 	 A 	 C 
circuit 

switched 	 A 	 C 
digital circuit 

packet 	 A 	C 
switching 

CATV 	 B 

The entries in Table 2.1 that have not been assigned to a group represent 

combination.s that have increased cost with no performance improvement over 

combinations with both channels the same, or represent combinations that use 

each medium for the operation for which it is least suited. 

2.2.1 Group A 

In this group both the request and information channels use the same 

transmission medium. The charnels may be either dial telephone circuits, dedi-

cated circuits, switched digital circuits or packet switched virtual circuits. All 

have the advantage of dedicated access, although packet switchin,g does suffer 

random packet delays. Current Tendon systems, using modems and either dedi-

cated circuits or the dial telephone system, fall into this class. However, such 

systems have a small number of users, and expansion to a large number, i.e. 

1000, active users is not practical. 
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First we will consider the telephone system. Telephone systems are 

effectively limited at 1200 bit/s due to ban.dwidth and modem costs. This m.eans 

that the transmission of a page of information takes in the order of 10 seconds. 

This exceeds the desired response times proposed in Section 2.1 without consid-

ering request processing and other delays in the system. In addition, supporting 

1000 active users would require 1000 telephone lines, modems and interfaces at 

the computer with a cost in the order of one million dollars. While appropriate 

multiplexors, etc., could reduce the cost it would still remain prohibitively large. 

We now consider dedicated lines. If the lines are short then limited dis-

tance modems may be used. These are higher speed and less expensive than 

those discussed for the telephone systems. Hen.ce such a system could be prac-

tical for limited distances. However, for longer range the modem costs increase, 

and the line charges become high, yielding the same cost problem as for the 

telephone system. 

Digital switched circuits do not have the severe bandwidth problem of the 

telephone system, but they are more expensive and not as readily available. The 

interface problem at the computer should not be as severe as for the telephone 

system but will still be a significant cost. 

Packet switching networks simplify the interface problem at the server, 

since one interface can handle many calls. However, given the traffic require-

ments, the system would need in the order of one hundred 9600 kbit/s ports 

into the network. This would have an interface cost comparable to the tele-

phone interface, and the expense of the interface at the terminals would 

increase. Care would have to be taken in the software to keep the load balanced 

over all the ports. This may not be easy. The time to deliver a page (including 

network delays) would be in the order of one to two seconds. 

In summary, all the class A systems suffer from high cost, interfacing 
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complexity at the Telidon server, and information delivery times that are on the 

high side. 

2.2.2 Group B 

This group has a single member. The CATV system is used both to carry 

requests to the Tendon server, and information pages to the user. The following 

discussion assumes separate CATV channels are available for the request and 

page delivery traffic. While in principle a single channel could be shared usin,g 

local area network techniques, the sharing overhead is very high due to the dis-

tances involved and the highly biased traffic origination pattern. In addition, it 

is not good practice to have a high power transmitter and a sensitive receiver at 

the same frequency connected to the cable at the same point, i.e., the user taps. 

Hence only the two channel approach will be considered. 

The idea of using the CATV distribution system for the delivery of the Teli-

don information pages has been widely proposed. The advantage is obvious: a 6 

MHz chann.el on the CATV system could carry at least 5 Mbit/s of data. Hence, 

serving 100 user requests per second would use only about 20% of the channel 

capacity. This introduces only a few milliseconds of queuing delay .waiting for 

transmission, leaving an ample time allowance for request processing, etc. 

There are two disadvantages to the system, compared to dedicated lines. First, 

the users must have address decoding equipment to select the correct page. 

This is not a significant problem since such equipment would not be expensive in 

large quantities. Second, the information is less secure against passive wire tap-

pin,g since it is "seen" by all users. We conjecture that for most Tendon systems 

this is not a significant problem. 

The CATV channel used as the request channel could be shared by the users 

in a random access mode in lightly loaded systems, or in a polling mode in more 
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heavily loaded systems. The random access approach is simplest. In a random 

access scheme any terminal with a request transmits when it is ready. If two 

transmissions overlap (collide) then both requests are lost. The probability of 

losing a transmission is approximately X(2 / / c) where X is the number of 

transmissions per second, / is the message length, and c is the channel capa-

city. If the user requests are 100 bits long, with 100 requests per second, then 

on a 5 Mbit/s channel, the probability of a request bein,g lost is 0.4%. Lost 

requests can be detected by a time out mechanism, or alternatively, by 

transmitting each request twice, with a random spacing, this loss can be 

reduced to 0.006%. This is sufficiently small that one may wish to ignore the loss 

and rely on the user resubmitting the request. 

It should be noted that the above technique relies on the channel being 

lightly loaded. If higher request rates are desired, or if a full 6 MHz channel is 

not available, then some form of polling scheme that uses less bandwidth could 

be implemented. The disadvantage of such schemes is that they are more com-

plex, and introduce extra delay. 

2.2.3 Group C 

This group contains communication systems that use a CATV channel for 

distribution of Telidon pages combined with a dedicated request channel usine  

either dedicated lines, telephone, digital switched circuit or packet switching. 

This approach retains all the advantages of Group B with respect to page distri-

bution, and that discussion will not be repeated here. The use of dedicated 

channels for request traffic, rather than CATV system as in Group B, may be 

desirable in some situations. The most obvious case is when an existing CATV 

system was not designed to allow traffic to originate at a customer's premise, or 

has limited bandwidth in that direction. Even if these restrictions do not exist, 
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this approach may be attractive when all the costs are considered. It should be 

noted that since the request channel is low speed, the modem and multiplexing 

costs at the Telidon server will be reduced substantially compared to Group A. 

One very interesting possibility is the use of a packet switched network. Two 

9600 bit/s ports at the server would be more than sufficient to carry the request 

traffic. The users could use either dedicated lines to the packet network if they 

were heavy users, or 300 bit/s dial telephone access if they were light users. 

2 2.4 Suram.ary 

The use of a group A system appears feasible only where the geographical 

area is small and dedicated lines with low cost limited distance modems can be 

used. However, either group B or group C using shared distribution over a CATV 

system appears feasible for both local or city wide systems. 

The method of collecting request traffic can be handled adequately by all 

suggested mechanisms. Given the low volume of request traffic there should be 

no difference in performance and the decision can be made purely on an 

economic basis. It would appear that if a CATV cable is being used for page dis-

tribution that the cable would also be the most convenient method of collecting 

the page requests. It might not, however, be the most economical. 

In summary, while group A systems may have some specialized applica-

tions, most large systems will fall into groups B or C using a CATV cable system 

for page distribution. The balance of the report will be based on this a.ssump-

tion, and will assume that communication delays are negligible. 

2.3 Processor Performance 

The processing capabilities required in a Telidon server are not large. Typi-

cally a Telidon response either requests the next page in a sequence of pages, or 
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specifies one of the items in the menu currently being displayed. To process 

these responses the system must maintain, for each active user, a short table 

containing the successor page identification for each menu item. Obviously 

where the page is one of a sequence of pages the table would reduce to a single 

item identifying the next page. When a user request is received, all that is 

required is a short search of the table entries to find the addressing information 

for the selected entry, and to initiate a disk read if the page is not in memory. 

When the page is available, either imm.ediately, or after the disk read is com-

plete, it must be queued for transmission to the requester. Assuming that all 

input/output is done by direct memory access (DMA) transfers, in the order of 

1000 instructions per request seems adequate to perform the above operations, 

including the processing of interrupts at the end of the DMA transfers. 

While in some cases it may be necessary to perform several disk accesses 

to obtain page directories, this will have to be a rare occurrence, or perfor-

mance will drop due to disk delays. Hence this type of activity was ignored in 

the above estimate. If the use of labels is permitted, there will be some increase 

in processing time, but the use of efficient hash table techniques should keep 

this increase small. 

Hence the processing power required is sufficiently small that it could be 

provided by any 16-bit microprocessor, and by some of the 8-bit microproces-

sors. For example, 1000 users with a request rate of 1 page every 10 seconds 

per user on a computer with a 3 ie average instruction execution time requires 

only 100 request/s x 1000 instruction/request x 3 ,us/instruction = 0.3 of the 

processing capacity of the computer. To estimate the interference from the 

DIVIA transfers we note that memory speeds are seldom worse than 1 ps per byte 

transferred. In the worst case of no duplicate requests, and no pages already in 

memory, all pages would have to be transferred from disk to memory, and then 
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from memory to the output channel. For 1000 byte pages this would require 

100 page/s x 1000 byte/page x 2 x 1 izs/byte = 0.2 of the memory bandwidth. 

Hence only if the processor-DMA overlap were zero would the computer utiliza-

tion reach 0.5. This leaves ample time for statistical fluctuation in arrival rates 

and processing time. A more powerful machine would be less heavily loaded, but 

not significantly, because this type of operation primarily uses the basic "book-

keeping" instructions such as compare, load, store, increment, etc. whose time 

on large and small processors is comparable (unlike floating point arithmetic for 

example). 

2.4 Disk Performance 

The large amount of data supporting a Tendon system requires a disk for 

mass storage. The rate of random retrieval of page information from a disk is 

significantly lower than the anticipated page request rate; hence, disk perfor-

mance could well be the limiting factor on system performance. For example, 

consider the IBM 3350 disk unit. This device has the characteristics 

average seek tim.e 	 25 ms 

maximum capacity per track 	19000 bytes 

time per revolution 	 16.7 ms 

If the pages being read are stored consecutively on the disk, then for 1000 

byte pages, a transfer rate of 1000 pages per second is possible. However, if the 

pages are scattered the average access delay consists of a 25 ms seek plus 16.7 

ms of rotational delay, which yields a transfer rate of only 25 pages per second. 

Other disks have similar characteristics. The important point is that the rate 

for random retrieval of page information is significantly lower than the antici-

pated page request rate of 100 pages per second suggested in Section 2.1. 
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The initial reaction to the fact that a single disk drive cannot meet the anti-

cipated page request rate may be that it is not a serious problem since multiple 

disks will be required purely for system reliability, and that the load can be 

shared across many disks. This is a dangerous assumption. The repair tirne for 

disks can be long, and during this period the system must still meet perfor-

mance requirements. The correct viewpoint is that the system will need n disks 

to meet performance requirements, and a further m disks to meet reliability 

requirements. Obviously one wishes to minimize n and m in order to reduce 

cost. In this study we are concerned only with n . 

Given that a single disk unit using random page retrieval cannot support 

the page request rate, three strategies are possible: replicate the disk unit to 

reduce the access rate, provide a cache memory for frequently accessed pages 

to reduce the number of disk accesses, or organize the page requests so that 

sequential access rather than random access is made to the disk. 

2.4.1 Disk Replication 

Replicating the disk system until the combined service rates exceeds the 

user request rate is the easiest and technically safest of the three strategies. 

The distribution of service times can be obtained by simulation without any 

specific knowledge of the data base organization. Thus it is easy to verify that 

performance criteria will be met before a commitment to a specific system is 

made. The only precaution required dtiring operation is that the load on the 

disks remains balanced, This is not difficult if all the disk units are attached to 

the same computers. However, if multiple computers are used, then there must 

be a facility to pass user requests between computers to maintain the desired 

load balance. In this case it would probably be best for one computer to process 

all requests, and distribute them to the other computers. 
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The disadvantage of disk replication  is, of course, the cost of the additional 

disks. For the typical system parameters given in Section 2.1, four disk units 

would be required to match the request rate. Additional capacity would be 

required to control the queuing delay caused by fluctuations in load. 

2.4.2 Cache Memory 

As will be discussed in Section 3, some pages of a Telidon data base are 

accessed much more frequently than others. If these commonly used pages 

were held in a cache memory, then the random access request rate to the 

disk(s) could be reduced. If the cost of the cache is less than the cost of the 

disk(s) it eliminates, then the system is economically superior to that discussed 

in Section 2.4.1. One would also expect that it has superior performance since 

many of the requests will be served from the cache -without queuing delay. To 

obtain some performance bounds we will analyse a system with a cache. 

Assume that the cache has a size C so that a fraction f of the requests is 

served instantly from the cache. The balance of the requests are placed in a 

queue for disk service. Let the mean arrival rate for user requests be X, and the 

mean disk access time (seek and read) be e 

If the number of disks is n, then the mean arrival rate of user requests to a 

disk queue is (1—f )X/n. (This assumes a separate queue for each disk. If the 

pages are replicated on all the disks a single queue can be used which yields 

better performance; tb.us for n>1 the following results will be pessimistic.) If we 

assume that the user requests can be modelled as a Poisson process, then disk 

access is described by an 11/G/1 queuing model. Hence the average time in the 

system for the user requests is 

p2(1+Cê)  
TD 	 (2.4.2.1) 

2 ( 1—P) 
where p = e (1—I )V n is the disk utilization and Ce is the squared coefficient of 
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variation for the access time. For a disk system one would expect  C<1. Now 

2 ( 1—f )X( 1 ÷Cb2)/  TD = 	+ 	 (2.4.2.2) 
1. 	21—(1—f)2X/n3 

and the overall mean time in system, including the requests effectively serviced 

instantly from the cache is 

T = (1—f )TD 	 (2.4.2.3) 

It should be noted that both T and TD are significant. T gives the average 

response time to a request; hoveever it must be remembered that (1—f ) of the 

requests have a mean response time of TD . This may be significant if the system 

has a performance criterion of the form that a certain percentage of the 

requests must be serviced in less than a specified time. To obtain an exact 

verification that such a criterion is being met will require a simulation of the 

system. 

Provided that f is large both TD and T are quite satisfactory for typical 

values of 2 and X. However, we note that 

p = ex(1-f )./ n<1 	 (2.4.2.4) 

or 

(2.42.5) 
2X 

is required for satisfactory response times. For 2 = 40ms, X = 100 requests/s, 

and n=1 this implies  f >0.75  is required. Intuitively, this appears a severe 

requirement. The question of how the "hit ratio" f varies with cache size C, and 

how large a cache size is required is unknown. Section 3 discusses this problem. 

Unless a method is found to insure that f is large, then  n>1,  i.e., multiple disks, 

is required and the cache method will not give a significant economic improve-

ment over the multiple disk approach of Section 2.4.1. 
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2.4.3 Disk Access Scheduling  

If all the page requests are to be provided from a single disk without using a 

cache memory it is clearly impossible to service the page requests on a one-by-

one basis; they must be grouped and. ordered to minimize the seek time over-

head. Obviously if all the requested pages were adjacent, then the transfer rate 

would approach the maximum disk transfer rate which is considerably greater 

than the page request rate. The problem is determining the amount of grouping 

required to achieve mean transfer rates greater than the page request rate and 

establishing the associated delay in page delivery. 

For the purpose of analysis, we will assume that the Tendon pages can be 

arran,ged on the disk such that some fraction f of the requests can be served by 

scanning a "common" set of pages at the maximum transfer rate r and reading 

the required pages. This would be typically several pages per disk rotation with 

a seek being required only when all tracks in a cylinder have been read. If the 

number of pages in the common set is C, and the total pages being read is m, 

with fm from the common set, then  the average transfer time per page for 

pages from the coramon set is C/ (rim). The balance (1—nm of the pages 

required are read individually with an average fetch time  of . This yields an 

average page service time t 1  of 

f i  = f (4+ ( 1„)±_ 
, =_, (1.--nffi 

rrn 
(2.4.3.1) 

It should be noted that this model is not valid when 771 is sufficiently small 

that it is faster to seek all the pages in the conamon set rather than scan over 

the intervening pages. This occurs when Z<C/(rfm), and -±-  is, therefore the 

upper bound on the average page service time. Note also that the nutn.ber of 

pages scanned in the common set per page transferred to memory is 
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k = C/ (fm) 	 (2.4.3.2) 

Obviously k <1 is invalid. At k = 1 all the pages in the common set are being 

read. This implies that mle.C/ f • 

The time to transfer all 7n pages is 

= t
i  m = —r + (1–f )Z771 , .e>C/ (rfm) 

tm   
m , 	 e<C/ (rfm) 

and during the time tin  the average number of new requests received is 

(2.4.3.3) 

b = Xt m 	 (2.4.3.4) 

Figure 2.1 shows the relationship between b and in for a possible set of parame- 

ters. From Figure 2.1 it is noted that a value of in exists such that b =in. Call 

this value mi. Now, let the system operating policy set m equal to the number 

of requests awaitin,g service. If m is less than in' then the probable number of 

arrivals during the service cycle is greater than. in. On the other hand if m is 

greater than the probable number of arrivals during the service cycle is less 

than in. Hence the system will converge towards a stable operating point at 

b = in'. 

We note that if À > 1 and f  >1 ---1--the  b vs. m relationship always has the 

form shown in Figure 2.1. Hence for these conditions, the stable operating point 

is given by 

= Àtm.= À{ —c + (1–f ) mi } 	 (2.4.3.5) 

which yields the average number of pages being read per service cycle as 

XC  m = 
711–(1–f)X2i 

and the average service cycle duration of 

(2.4.3.6) 

tm ' =  	 .(2.4.3.7) 
/1 1-(1-f)x.t 

The time that a request waits for service can vary from almost zero, for a 
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Figure 2.1: Relationship between the expected number of page requests,  b,  and 
the number of pages read, m, during a service cycle. 

request that arrives just as the block of requests is being organized and is the 

first served, to 2t m ,  for a request that just misses a service cycle and is the last 

served on the next cycle. While the distribution is n.ot uniform across this inter-

val, since the disk reads are closer together when the common page set is being 

scanned, tni . is a reasonable approximation for the mean time a request is in the 

system. 

As an example, for the typical parameter values shown in Figure 2.1, 

tyre  = 1.5s. This is a feasible value for a Telidon server, but it must be noted that 

it is very sensitive to the value of  f.  To insure a specific value of 4, ,  requires 

that 

0 
0 

1 \ f (1— 	+ 	 
X:t 	X «e rt„, ,  

(2.4.3.8) 
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It is obvious that the system is practical only if XI is small, and if a small value 

of C yields a high value of f.  This problem is identical to that for the system 

with cache memory discussed in the Section 2.4.2. Again information is required 

on the relationship between a "common" set of pages and the "hit ratio" before 

the effectiveness of the system can be evaluated. 

2.4.4 Sumraary 

The tirne for random access of Telidon pages on a typical disk is too high for 

a single disk system to support a reasonable number of users. A reliable solu-

tion to the problem is to provide multiple disks. Alternative solutions that 

require fewer disks require that a collection e common pages, either in the 

computer memory or consecutive disk locations, provide a large fraction of the 

user requests. To evaluate these latter architectures requires a knowledge of 

the frequency of use of the pages in the Tendon data base. This problem is con-

sidered in Section 3. 
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3.   Tendon User Behaviour 

3.1 Introduction 

The response time of a Telidon system to the user is a critical measure of 

its performance and usefulness. For large data bases, it is not possible to hold 

all the pages in a high speed store or cache. The use of a disk or several disks to 

provide the large storage necessary presents great difficulties in controlling the 

access time when there are many users. Suppose a cache supplies the data to 

the user communications network, then the critical area is the communications 

between the cache and the disks which hold the data base. The ultimate objec-

tive would be somehow to have all the necessary pages in cache when the 

requests arrive so that the disk access time is not part of the response time to 

the user. 

We can be quite sure that all pages will not be equally used even in a net-

work of many users. If it were possible to hold a substantial proportion of the 

pages which are more likely to be used in cache, then the disk access time 

would only be encountered by a user occasionally. Hence we wish to model Teli-

don user behaviour regarding the distribution of the relative frequency of use of 

pages in the data base. It will be found that a minority of pages account for 

essentially all the use. However, it is important to know from empirical data, 

the values of the parameters describing the distribution. 

An appropriate model for the distribution can be inferred from other areas 

of human behaviour such as languages and econ.omics, where a distribution pro-

portional to a power of the rank plays a dominant part. Here the rank would be 

the rank of the Telidon pages listed in order of decreasing use. We will designate 

the anticipated frequency of use of the page at rank r in such a list as 

Ao(r) r 
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where 

Ao  (r) Ao  (r +1) 

If a list of such zero order anticipation numbers were available from the actual 

use of a particular data base, then it would be possible to calculate the perfor-

mance as a function of cache size using this approach alone. 

It is clear that once a user is in the data base system, he will follow a 

stream of selections with a very small number of effective branches relative to 

the size of the total data base available. Therefore if we could predict his nex t 

 choice from among a very small set and have them ready in cache, the apparent 

performance could be enhanced. To do this, we must make use of the actual 

request made immediately preceding the next anticipated one. In other words, 

we need the first order conditional probabilities to predict his next request con-

ditioned upon the last one known to have been made. We shall call these condi-

tional probabilities the relative anticipation probabilities, A. These must be 

obtained by observations of user behaviour on a particular data base and stored 

in an extensive table. This approach holds some promise if indeed the set of 

anticipated next requests conditioned upon the known last request, is quite 

small. 

We note that the conditional probabilities are invoked by the occurrence of 

an actual request at a particular instant. Therefore, as time passes these condi-

tional probabilities lose their validity since it becomes increasingly likely that 

the user has made some other choice. Hence these relative anticipation 

nurnbers must become functions of time, A(t), where time is measured from the 

Instant of the last known request. A method is developed to have these anticipa-

tion probabilities decay in a form deduced from observations on the distribution 

of the pause interval between user requests (Section 3.3). We thus arrive at a 

situation where the cache contains those pages most likely to be used next, 



f (r) = fi lra  (3.2.1) 
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where "most likely" is based on data concerning all immediately preceding 

requests , as well as the relative frequency of use of pages. 

3. 2 Page Use Distribution 

Suppose the pages in a Tendon  data base are ranked according to their 

relative frequency of use in descending order. Then, there are excellent reasons 

to anticipate that such a frequency distribution will be of the form [3-5] 

When the exponent a is unity, this is known as Zipf's Law. Eqn. (3.2.1) can be 

written in the form: 

f (r) =  f i  exp(-1n(r)/B) 	 (3.2.2) 
which is part of an extensive analogy with thermodynamics in which the pararne- 

ter B is the "temperature" of the distribution. If B<1, then the system is closed 

in the sense that the distribution can be summed over all ranks to infinity, while 

if B>1 the distribution is open and. one expects that at some high rank, the dis-

tribution will fail or fall off drastically, or that there is a maximum rank (finite 

set). 

The cumulative distribution function is more convenient for the reduction 

of observed data. It is defined: 

s(r)= f f (i) 	 (3.2.3) 
t=.1 

From the integral of the probability mass function in eqn. (3.2.1) we can expect 

the cumulative distribution function also to be a power of the rank as follows: 

5(r) = Si  rm = O b  r'n 	 (3.2.4) 
which leads directly to the linear equation 

InS(r) = b + mln(r) 	 (3.2.5) 

In order to relate this to the probability mass function, we take the defmition 
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f (r) = S (r) S (r —1) 

=  b  (r In  — —1)m ) 	 (3.2.6) 

and expand the second term using the binomial theorem. This gives us, approxi- 

mately (which improves with increasing rank) .  

f (r)  e'  mrm -1 	 (3.2.7) 

so that the parameters that control the shape of the distribution are related by: 

a = 1—m =  1/11 	 (3.2.8) 

Three sets of data were acquired over seven months at the University of 

Waterloo. The cumulative page use distributions followed eqn. (3.2.5) very 

closely up to the point where the cumulative sum approaches unity. This is 

shown in Figure 3.1 and Table 3.1 where the three data sets are identified by the 

codes 823, 827, and 210. Data set 823 used 820 pages, and we had 41 000 user 

requests recorded; while data set 827 used 659 pages with over 14 000 user 

requests recorded. Later, data set 827 was expanded to 1986 pages, and had 

over 70 000 user requests recorded and is called set 210. The exponent parame-

ters for the data sets differ by 15%. The "effective number of pages" is obtained 

by extrapolating the linear relationship, eqn. (3.2.5), until the cumulative distri-

bution is unity. This gives: 

= exp (—b/m) 	 (3.2.9) 

Actually, the distribution does not end there, but deviates from the assumed 

form and approaches unity for the last page. The measure of the accuracy of 

the fit of the observed data to the model is given by the maximum error between 

the data and the point where the two asymptotes meet. This error is about 10% 

to 15%. Note that the fraction of the available pages defmed as "effective" is 

between 18% and 40% of the total number available. 

Figure 3.1 answers the first question about predicting page use; 18 to 40% of 

the pages available account for 85% to 90% of the use. While it can be expected 

that the proportion effective will decrease further with larger data bases, the 
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Figure 3.1: Cumulative frequency of page use. 

Table 3.1 

Parameters of the Page Use Distribution 

Data Set ID 	 823 	827 	210 

Sample Size 	 S(V) 	41 001 	14 400 	70 464 

Number of Pages 	V 	820 	659 	1986 

Cdf slope 	 in 	0.5434 	0.4624 	0.4601 

"Temperature" 	B 	2.19 	1.86 	1.85 

Effective pages 	y 	283 	265 	357 

Proportion effective 	v/ V 	34.5% 	40.2% 	18.0% 

Maximum frequency 	5(1) 	4.7% 	7.8% 	6.4% 

Error asymptote at y 	 10% 	 9.7% 	15.5% 

Note: Data Set 827 is a subset of Data Set 210. 

1 
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number may remain too high to retain in cache. Horspool has reported similar 

results [2]. 

This very unequal frequency of use can be emphasized by calculating the 

entropy of the distribution, usin,g data set 210 as an example. In this set the 

break point or "effective" number of pages is: 

= 357 

The entropy of the asymptotic distribution of eqn. (3.2.1) from rank 1 to 357 is 

8.103 bits (which is equivalent to 275 equally likely alternatives). If we now take 

into account the ranks from 358 to 1986 with a rank distribution over that 

range, we have two straight lines (on a log-log diagram) for the complete range 

and the entropy is increased to 8.472 bits (which is equivalent to 355 equally 

likely alternatives). Thus in this case, the average uncertainty in predicted page 

use as measured by the entropy, is approximately the same as that for the 

effective number of pages from eqn. (3.2.9) considering these to be used 

independently and equally likely. 

3.3 User Pause Time 

The user pauses between requests and it is during this time that we can 

ensure that his anticipated next request is available in cache. However, if an 

anticipated request should not occur, its validity in cache expires and it can be 

replaced. Therefore, it is important to know the distribution of the pause time 

both for the prediction of the next request, and to indicate how long a predicted 

page should remain in cache. 

Figure 3,2 shows the cumulative distribution function for the user pause 

time. Note that 50% of the requests are made within 5 seconds of the previous 

request, while 3% may take as long as 30 seconds. The complementary cumula-

tive distribution function (Ccdf) is the probability that a predicted page in cache 

will yet be used, treating all such individual predictions as independent. If the 



810 	20 	40 60 
t ( sec 

- 27 - 

Figure 3.2: Pause time distribution. 

Cedf is exponential, then the probability density function is also exponential. 

From Figure 3.2, the probability density function for times over 3 seconds is 

approximately exponential, at least until 10 seconds after which there are few 

data with considerable scatter. Hence the anticipated use of a page in cache 

decreases exponentially after about 3 seconds. 

There will be competition for space in cache, and the items that are to be 

discarded are those with the least anticipation of use. These will be the ones 

with the least values for the parameter A(t). Two kinds of errors can be made: 

one is when an item is kept and never used which occurs with probability (1—A), 

and the second kind is when an item is discarded and then called for which 

occurs with probability A. We are treating each item in a multiple prediction as 

independent, when in fact if one item is called the others could be discarded. 

This latter procedure could become quite complex since it would be necessary 

to retain and review the sources of each prediction. 
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Figure 3.2 suggests that each page in cache be retained for about 3.2 

seconds, after which the value of the parameter A(t) be decreased exponentially 

until it is discarded. If this is done, then for a given discard threshold level for 

the parameter A, the fraction discarded will be A(threshold), and the fraction 

retained is: 

1 — A(threshold) 

which bounds the cumulative distribution function from below as shown in Fig-

ure 3.2. Since the cumulative distribution function is the proportion of 

predicted items in cache which have been used by a certain time, the probabil-

ity of holding onto a page in cache is greater than the probability that it will be 

used, but approaches the latter for pause times greater than 5 seconds. 

It is proposed to implement the exponential decay of the anticipation 

parameter by periodically multiplying all values with a factor of 

7 	1 - (1 — 
8 

= exp(-1/7.5). 8  
This can be done in binary arithmetic by a shift of 3 positions and a subtraction. 

To obtain the time constant observed in the data of Figure 3.2 these decay mul-

tiplications should be done every 0.8 seconds. If the implementation of the 

exponential decay is delayed for four such periods, then the policy described 

above of holding pages for 3.2 seconds will also be implemented. 

The procedure for processing the cache directory every 0.8 seconds is out-

lined in Figure 3.3. A 3 bit register is used to cotmt four intervals or 3.2 

seconds, after which the register containing the anticipation parameter, A, is 

reduced exponentially. Step 5 in Figure 3.3 allows for the case of several users 

where predicted requests may overlap items already in cache. Finally, in the 

case of a light load on the system it is desirable to refresh the cache from the 

set of default pages rather than retain unused and very stale predictions. Hence 

step 6 in Figure 3.3. 
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Under the above decay scheme for the anticipation parameter, the actual 

length of time for which this parameter remains non-zero will depend upon the 

nurnber of bits in the A register. The number of processing intervals before the 

value of A is less than one least significant digit and therefore truncates to zero, 

is given approximately by 

log(2b  — 1)  steps = 	 — 5.2 b 	 (3.3.1) 
log(8/ 7) 

where b is the number of bits in the register storing A. Using 30 seconds which 

includes 97% of the pause intervals, and an interval processing time of 0.8 

seconds, we get the following lower bound on the number of register bits: 

30  b 	
(0.8)(5.2) 

= 7.2 bits 	 (3.3.2) 

We may conclude, therefore, that an 8 bit register should be adequate for this 

purpose. 

Under heavy load conditions, competition for space in the cache can be 

based upon  the values of the anticipation parameter. More space can be made 

available by increasing a threshold for discarding items. On the other hand, 

under light load conditions stale predictions in terms of items with zero value 

for A may remain for a long time in the cache. 

It is proposed at each processing interval to sweep out those items for 

which the anticipation parameter has already reached zero. This will be done by 

replacing such items by pages from the zero-order default list which are not 

already in the cache. Should a default list page already be in cache, its A value 

will be updated using the value A0  from the default list. Such a procedure also 

takes care of initialization at a time when the cache is empty. 
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1 When an item is brought into cache in anticipation of a future request, the 

cache directory (CD) will include two registers: A (minimum, 8 bits) and B 

(3 bits;  133 , 132, B 1 ). These are initiated with: 

A = (Conditional Proba.bility from the Prediction Table) 

13 = 0 

2 Every item in the cache directory is to be processed every 0.8 seconds with 

the following algorithm: 

IF (A=0) THEN STOP 

ELSE IF ( 133 =0) THEN 

B' = B + 1 

ELSE 

A' = A — A/8 

3 To bring a new item into cache, enter its I.D. etc. in the cache directory 

buffer, Then remove the item with minimum value for A (including the new 

item), and transfer the new item into the vacant space in cache. 

4 When a request is received, whether or not the item is already in cache, the 

prediction table is consulted and either disk requests issued for anticipated 

items which are brought into cache (see 1 and 3), or the A value is adjusted 

according to (5) if the item is already in cache. 

5 If a prediction requires an item to be brought into cache with "anticipation" 

A2, and it is already there with anticipation number Al, then adjust Al to: 

Al' = (Al  +A2  — Al.A2) 

6 If at a processin,g interval (see step 2) one or more items have values A = 0 

then the list of default pages is to be consulted. Starting with the highest 

value of A0, if the item is already in cache then employ step 5, otherwise 

enter the item in place of one of those for which A = 0. 

Figure 3.3: Procedure for cache directory registers. 
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3.4 Distribution of Page Sequences 

It was seen in Section 3.2 that as little as 18% of the pages could account for 

84% of the use. Now we wish to extend our model one step by following the user 

and analyzing his choice conditioned upon the fact that the page he cur•rently 

has displayed is known. We suppose that once a user is in the system, he will 

generally follow a chain of selections with a very small number of branches at 

each selection event relative to the complete data base available. Indeed, if a 

table of the possible links of successive pairs of pages actually chosen were 

available, it could be used to predict the next request in a particular situation. 

In this way the next request could be anticipated and brought into cache in 

preparation for delivery. If the number of possible links or branches from a 

given  page is small, this procedure could greatly enhance the performance with 

a relatively modest cost in storage. The practicality of exploiting such predicted 

characteristics requires a knowledge of the joint behaviour of successive pairs of 

requests, each pair consisting of an "antecedent" and a "consequent". Such an 

analysis has been carried out on data set number 210 which contains the largest 

sample size available to us. This record is sufficiently long that it can be used to 

estimate the average error rate for a prediction procedure. 

One might suppose that each page could be the antecedent, and have every 

page possible as a consequent. Then there would be V2  possible links or 

branches if there are V pages in the system. However, the actual number of 

consequents per page averages only a very few, and the first thing which can be 

deduced from our observations is the amount of choice or the number of 

branches from each antecedent. Let the index a enumerate the antecedents; 

then because all pages are possible antecedents and we have 

a = 1,2,3, 	V 

Next, for each a, let the index c enumerate the consequents; therefore, 
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c = 1,2,3, 	 Va 

This indicates that page a as an antecedent has V, possible consequents. 

Knowledge of the set of V.'s over the V pages is important in defining the size of 

the problem and the amount of storage a prediction strategy would require. 

We regard each link or successive pair of requests that occur as an event, 

and from the given data set we can count the number of times such distinct 

events occur. Let N(a,c) be the number of times a particular antecedent has a 

particular consequent; that is,  the pair (a,c) has occurred N(a,c) times. Note 

that the range of the index c as well as the actual identity of the pages desig-

nated by it, are dependent upon the antecedent page. The total of such events 

is: 

The actual number of pair events that occur in the data (of the V2  possible) is 

given by: 

(3.4.2) Va  = VT 
a=1 

Then the average number of branches at each user selection is given by: 

avg ( ) = VT / V 	 (3.4.3) 

Next we take the VT events and determine their distribution in order to give 

a more detailed description of user behaviour. To do this we can employ the 

sarne analytic model as used in Section 3.2, in which the cumulative distribution 

function is a power of the reciprocal rank where the events have been ranked in 

descending order of their frequency of occurrence. From eqn. (3.2.4) we have: 

Again, an "effective" number of events is obtained by extrapolatin,g this linear 

relationship until 

S(v) = 1 
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so that 

--b/m V = e (3.4.5) 

Using data set 210 which was the largest one available for analysis, it was 

found that with a data base of 1986 pages (see Table 3.1), the number of distinct 

successive pairs of requests was 3682. This is less than 0.1% of the possible 

number of pairs, and the cumulative distribution function for the frequency of 

occurrence of the different pairs is shown in Figure 3.4. The parameters of this 

distribution are tabulated in Table 3.2. 

From Figure 3.4 it is seen that only 114 or 3.1% of all the distinct pairs actu-

ally observed (n.amely 3682) account for one-half of the total number of joint 

events observed. Also, this small group which accounts for half of the activity 

obeys the reciprocal power law extremely well. Of all the events observed, the 

most likely pair occurred 2% of the time, while the 114th had a probability that 

was already down to 0.3%. Hence 97% of the distinct pairs observed ha.d proba-

bilities less than this, although they accounted for about half the activity. The 

picture that emerges from Figure 3.4 regarding the pairs of successive requests, 

is of two types each accounting for about half the activity each. The one type 

consists of a relatively small nurnber of links which occur often, while the other 

type consists of a very large fraction of the distinct pairs observed, but which 

happen relatively rarely as distinct events. 

The number of consequents that occur for each antecedent will determine 

the number of lines required in a prediction table and hence the total size of 

such a table. Using the data in Table 3.2 and eqn. (3.4.3) we find that: 

avg. ("V, ) = 1.9 

It was observed that very nearly 2/3 of the pages (as antecedents), had only a 

single consequent. The other 1/3 had 2 or more consequents with an average of 

3.7. It was interesting to note that to a very close degree of approximation the 
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Figure 3.4: Cumulative distribution of sequential page requests. 
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Parameters of the Page-Pair Joint Cdf 
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number of antecedents which had exactly V. consequents varied as: 

1 
va  2 (3.4.6) 

As a check we see that: 

1.03 
0  i 

Figure 3.4 can be used to relate the size of the stored table required for 

prediction purposes to the errors resulting from the inability to make predic-

tions because of omissions from the table. Thus we see that if the number of 

lines in the prediction table is equal to 114, or about 67  of the number of pages 

in the data base (V) then the error rate, or the ina.bility to make predictions, 

will be approximately 50%. If we increase the size of the prediction table to 317 

which is the asymptotic value from Table 3.2 then the error rate will be about 

27%. Such a prediction table is about 167  of the number of pages in the data 

base. Figure 3.4 would suggest that if the number of lin.es in the prediction table 

were equal to the number of pages in the data base, then predictions would be 

possible in 95% of the cases required. Beyond that it becomes increasin,gly 

expensive of storage to reduce the error rate further. 

Before drawing any further conclusions, we note that the picture changes 

somewhat if we look closely at the sample size. It has already been observed 

that one group of events (or sequential pairs) have a frequency distribution that 

obeys the reciprocal power law, while the other group of events are individually 

rather rare although they form a large group. The quantity N(a,c) was the 

count of the n.umber of times a particular pair, (a,c) occurred. However, in 

many cases we have 

N(a,c) = 1 

which corresponds to a probability of 0.0014%. From Figure 3.4 we see that the 

most likely event (or joint sequential pair) had a probability of about 2% so that 



- 36 - 

the range is almost 2000:1. 

Using the Poisson distribution as a model for the occurrence of rare events 

and a confidence limit of 90%, we may say that the observance of a single event 

implies an expected probability in the range 

0.00015% to 0.0055% 

while for a particular event which did not occur at all the same range would be 

0% to 0.0033% 

For this reason, sequential pairs which only occurred once in the observed data 

could be neglected from the prediction table. If this is done, the number of 

observed events tabulated in Table 3.2 reduces to 

V -2334 

However, the lost events account for only 2% of the total activity. It is also 

interesting that now 23% of the pages do not appear as antecedents at all. 

We now consider the subset of the data which includes all events which 

occurred two or more times. Of this subset, we find that 80% of the antecedents 

have a single follower while the other 20% have, on the average, 3,6 consequents. 

The average number of branching links per antecedent is thus 1.52. However, 

this applies to only 77% of the pages in the data set, so that the number of lines 

in the prediction table is approximately 1.2 times the number of pages in the 

data set. 

3.5 Cache Size 

The purpose in predicting user selections is to have the likely selections 

available in a cache memory for quick response. To judge the cost effectiveness 

of such a system, it is necessary to estimate the size of cache required. We have 
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already seen that the average number of pages predicted (consequents) is quite 

small. We can identify three main factors that will influence the size of cache 

required, and then offer some comments on them. These factors are: 

(a) As the number of users in a system increases, the probability of new 

selections, different from those already chosen, decreases. This means that the 

required size of cache increases more slowly than the number of users, since 

additional users in a crowded system are likely to repeat requests already made. 

Moreover, while the number of different requests that are likely to occur with a 

given number of users is of interest, it will not directly add to the cache size 

estimate since one expects in a functioning prediction system that ea.ch user 

request will be in cache, and not require a new fetch from disk and an additional 

page in cache. 

(b) Once we have identified the nurnber of different requests or 

antecedents expected with a set of users, then the cache size required is that to 

hold the consequents predicted from these. We will assume that these conse-

quents are all different in identity. However, we can bound the total required by 

taking into account the distribution of the number of consequents per indepen-

dent antecedent given in eqn. (3.4.6). 

(c) lf a number of consequents are brought in cache because of their 

expected request by a user, and only one (or perhaps rarely, none) is actually 

used, and the others are treated according to Figure 3.3, they may linger in the 

cache for some time, depending upon the pause time distribution of Figure 3.2, 

and the threshold for the parameter A. This could cause much urmecesSary 

occupancy of the cache. 

First of all, we deal with (a); namely, the increase in new (i.e. different) 

requests with an increase in the number of users. Supposing the Nth user 

chooses the page of rank r; then the probability that none of the (N-1) other 
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users requested that page is: 

P(r;,N)= [1 — f (r)] -1  (3.5.1) 

where f (r) is given by eqn. (3.2.1). Averaged over the set available, the proba-

bility that the Nth user requests a different page is: 

P(N) = 	f (T){1 - f (r)Y1-1 	 (3.5.2) 
r =1 

This is shown in Figure 3.5 using the parameters of data set 210 (Table 3.1) that 

describe the asymptotic distribution (Figure 3.1) in. eqn. (32.1) for f (r). The 

graph is approximated by: 

.N-1 
P(N)  0.72e ''482  0.29e -Nne  e 	 (3.5.3) 

Next, we attempt to use P(N) to estimate the number of distinct 

antecedents, A, that will occur with U users. Each additional user adds one 

antecedent if his request is different from the (N-1) others, and none if it is the 

same. On the average, the Nth user adds P(N) antecedents. Hence 

= E[A U] = 	P(N) 	 (3.5.4) 
N=1 

In Figure 3.5, the solid line shows the compression of  A / U that results from 

overlapping requests as the number of users increases. 

Let us define the probability that U users will request exactly A distinct 

pages, as Q(A  I  U). Thenwe have: 

Q(UIU) = 	P(N) 
N=1 

and 

Q(11 U) 	[ 1  P(N)] 
N=2 

and an iterative formula can be developed; viz., 

Q(A I = P(U)Q(A-1 I U-1) + [1 — P(U)]Q(A  I  U-1) 

which is facilitated by using the exponential bound of eqn. (3.5.3). However, 

retther than pursue that line, we wish to indicate how a confidence bound can be 
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Figure 3.5: Average probability of the Nth user selecting a different page, P(N), 
and number of distinct requests per user, A a/ U  (v=357,  a=57). 

derived. Supposing we wish to assert that allowing for A distinct antecedents 

will be adequate (1—  a) of the time; that is, the probability of requiring more 

than A a  is a. Then, this limit is obtained from 

a = E Q(u-i  I U) 	 (3.5.5) 
t=o 

Another approach is to use results from the statistics of cell occupancy 

problems. Entropy considerations suggest that the complete skew distribution 

behaves like that of y equally likely alternatives. Then the probability that U 

users will request A distinct pages from  V  equally probable alternatives is 

asymptotic to 

where the expected value of (y — A) is: 

X = ve 	= v — 	 (3.5.7) 
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In Figure 3.5, the broken line shows the compression of (A/ U) under these 

assumptions. Of course, eqn. (3.5.6) is the Poisson distribution which may be 

approximated by the Gaussian for large expected values. An equation for 

confidence limits analogous to eqn. (3.5.5) then results; namely, 

min( if,v) 
a = E 	X v-A  / (I) –A)1 

1  —erfc 
–v + 	I 	1 erfc{ 	 X – v + min( U,v)  Ri 	 (3.5.8) 

2 	 2 	 N/2À 

For exaraple, the probability that the number of different antecedents exceeds 

44,, is a, where a and Au  are solutions of eqns. (3.5.7) and (3.5,8) for given values 

of y, and U. Such a confidence line for a = 5% is shown dotted in Figure 3.5 for 

the same para.meters and assumptions as the broken line, for illustrative pur-

poses. 

As noted above under (b), given the number of different antecedents, A, 

then the cache required is that needed for the consequents of these. From Sec-

tion 3.4, the average requirement would be 1.52A. However, the requireMent for 

individual users follows the distribution given by eqn. (3.4.6) which is very skew. 

For example, a 4 page cache would be adequate for one user 95% of the time, but 

70% of the time, 3 pages of the 4 would be empty. Again 6 pages per user would 

be adequate over 98% of the time, but a cache of 6A size would be highly redun-

dant. In the case of two independent users, if instead of providing 12 (6 each) 

pages only 6 pages are provided, then they are jointly covered 94% of the time. 

The point is, the requirements are not simply additive because of the very 

skewed distribution, in which a requirement of more than one is unlikely. 

To estimate the extent of this "compression" effect we note that the crrif 

(cumulative mass function) for the distribution of eqn. (3.4.6) is lower bounded 

by: 

1 e 
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Using this for a cumulative distribution function of a continuous density, we 

obtain an associated probability density function: 

f (z)= z o e -e' z  ;  z0  = 1/ 1.8 	 (3.5.9) 

Using this continuous approximation to the lower bound, we can now set up the 

integral expression for the probability of having enough cache (1— a ).1007 of 

the time, if the cache is of size A pages and there are A different antecedents. 

This is: 

A 	 A -Z1 	 A  -2 1 --2.4-1 

1—a;"--> f f (xi )dx 1  f f (x2) dx2 • • 	f 	f (zA )(LTA (3.5.10) 

where f (zi ) in eqn. (3.5.10) is given by eqn. (3.5.9). The integration in eqn. 

(3.5.10) yields: 

--zo  A 11-1  X0  
a = e 	 (3.5.11) 

k! k=0 
Eqn. (3.5.11) provides the solution for the cache size, A, given the confidence 

level, a, and the number of different user requests, A. Let the solution be Ca; 

that is, the space required for consequents with probability (1—  a).  

If we take 6 pages as the maximum requirement per user, then. 

Co = SA 

The behaviour of the ratios Cb  / A and C50 / A as functions of A are shown in Fig- 

ure 3.6.  This  results from solving eqn. (3.5.11) using the bound of eqn. (3.5.9), 

and therefore is an upper bound on Ca. It would indicate that with a large 

number of users, a cache size of twice the number of distinct requests would be 

adequate. 

The third factor noted above as (c) is more difficult to analyze without 

specific data. When several predicted consequents are brought into cache, in 

general we can expect one to be required end the others not. Using an algo-

rithm such as that in Figure 3.3, the others will eventually be discarded when 

their A-values drop below the threshold. There would seem to be three 
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Figure 3.6: Upper botuid on cache requirements per request, Ca/ A (a=5%). 

approaches to this problem: 

(i) The unused consequents can be left to be discarded by the threshold 

method. This could con,gest the cache unnecessarily. To the extent that the 

requests overlap with a large number of users, it may actually save disk 

transfers. 

(ii) Each predicted page brought into cache could be tagged with the user's 

identity; then, when that user made a request, all items tagged with his identity 

only, would be discarded in favour of new predictions. With large numbers of 

users, multiple tags can occur and the item would be discarded when the last 

one is cleared. For a large number of users, say 

U > 1.5v 

then Figure 3.5 indicates that only about half the requests will be distinct; i.e., 

A/ U RI 1/2 	 (3.5.12) 

However Figure 3.6 shows that for large A, 
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C/A i■1 2; (3.5.13) 
hence a cache size approximately equal to the number of users is indicated, if 

the unused predictions are systematically cleared out, 

(iii) The cache could be decentralized to each user terminal where both the 

current and predicted requests would be held. This would certainly facilitate 

the clearing out since tagging would be unnecessary. Collectively, the system 

 would have to provide for 6 predicted pages per user, or six times the cache in 

(ii). This is because no advantage can be taken of duplicate requests by 

different users, nor of the compression in storage requirements that result from 

the very skewed distribution of the nurnber of consequents (eqn. (3.5.10)). It 

also would require about 1.5 as much communication capacity on the average as 

centralized systems because of the transmission of predicted but unused 

material. (The average 1.8 from eqn. (3.5.9) is an upper boun.d). Nevertheless, 

the decentralized cache approach may have advantages from a system 

viewpoint. The organization at the central supplier is simpler and less cong-

ested; it must retain a prediction table (Section 3.4) and be advised of user 

requests even if they are already in the local cache. 

3.6 Summary 

The analysis of the data set on the basis of a predictive model offers some 

guidelines as to the expected behaviour of a prefetching method. It suggests 

that a conditional prediction table can be constructed by neglecting joint events 

with a probability of less than 0.002% and keepin,g those with a probability equal 

or greater to 0.0037. The number of lines that are required in the prediction 

table itself is not at all excessive, being of the same order as the number of 

pages in the data set. This results from the relatively few number of multiple 

branch points evidenced by the user data. We can also expect the prediction to 
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be effective about 95% of the time or better. 

The prediction table will include the anticipation number, A, along with 

each predicted subsequent page. This anticipation number is a conditiona.1 pro-

bability calculated from past observations and is given by 

A(c ;a) = N(a,c) 
 -< 	 (3.6.1) 1  

As noted above, in 66% to 60% of the cases we will have 

A=1  
because only one consequent will be recorded. The number of bits required to 

record A can be calculated from the minimum value for the numerator, and the 

maximum value for the denominator. Using data set 210, and keeping events 

with two or more occurrences, we have: 

min N(a,c) = 0.003% 

From Table 3.1 we have: 

max E ma,c) =  6.4% 

Therefore, min(A) = 0.0004. This implies that the minimum size of the words for 

recording anticipation numbers should be 12 bits. 

We have seen that the number of predicted pages for a given user at any 

point in his chain of selections will average about 1.5 to 1.9. 

Furthermore, if the cache is distributed, then the communications require-

ments would increase by the same factor (1.5). However, for a centralized cache 

and a large number of users, the number of different requests does not increase 

linearly with the number of users because of the increased chances of users 

making the same request. Such chances are much greater than might other-

wise be expected because the effective number of pages is much smaller than 

the total available (1/4 or 1/3 in the data reported here), and these are used 

with a skewed frequency distribution. From an example based on data, when the 
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number of users exceeds 1.5 times the effective number of pages, then the 

number of distinct requests is only half the number of users (Figure 3.5). The 

first order sequential chain model for a user searching a Telidon tree also 

results in a highly skewed distribution for the number of anticipated consequent 

pages. As a result, while one user may occasionally require 6 pages, the number 

required per user, when there are many, is much less than this. Figure 3.6 

shows that two pages per distinct user request are enough when there are 

several hun.dred users. As a result of these two factors we can conclude that the 

size of a central cache is approximately that of the nurnber of users in the sys-

tem. 

It is not known how much the structure of the data base used here for 

analysis, influenced the numerical conclusions. It seems highly probable that 

the skew distribution will describe the user's behaviour regardless of the organi-

zation of the material; however, the extent to which the interaction of the data 

base structure and the predictability of choices vfill affect the numerical values 

of the para.meters in the statistical description is not known. Data set 210 was 

assembled from a number of sources and it is possible to see different patterns 

in the tree structure depending upon either the originator or the subject matter 

of the source. It would be valuable therefore to acquire a data base from other 

sources and with a difTerent type of material. 
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4.  Alternative Telidon Architectures 

4.1 Introduction 

In Section 2 and 3 two aspects of a Telidon system were discussed; first the 

aspects related to the performance of the communications and computer sys-

tems, and then the aspects related to how the user interacts with the data base. 

In this section the results from these two sections will be combined to evaluate 

the feasibility of the various schemes that were proposed in Sections 2 and 3. 

In Section 2 it was shown that the use of a CATV network for distributing 

Telidon pages was the only feasible solution for a large Telidon system. Because 

of the low data rate required the choice of n.etwork for collecting the user 

requests is more flexible, and could be a shared CATV channel when technically 

and economically feasible, or could be dedicated lines, telephone, digital 

switched circuit, or a packet switched network. The choice has little impact on 

the Telidon server architecture. Also in Section 3 it was shown that the comput-

ing load on the Telidon server is low, and the processing time does not place any 

constraints on the Telidon server architecture. Hence the significant factors to 

be decided are the tra.deoffs between the nurnber of disks, page fetching policy, 

amount of cache memory and its location, and the organization of the pages on 

the disks. 

In Section 2 three basic approaches were discussed. Based on the results of 

Section 3, two of these have variants based on whether or not prediction and 

prefetching of pages is employed. This gives a total of of five possible architec-

tural alternatives. These are: 

(i) a multidisk system without cache memory 
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(ii) a system with cache memory 

(a) passive cache, i.e., no prediction 

(b) a cache with successor page prediction 

(iii) disk organization with disk access scheduling 

(a) no cache memory 

(b) distributed cache 

Each of these alternatives will be discussed in the following sections. For pur-

poses of comparison we will assume, as before, 1000 active users with a total 

request rate of 100 request/s, and disk(s) with sequential transfer rates of 1000 

page /s and random access times of 40 ms. Where needed, these assumptions will 

be supplemented with the user characteristics developed in Section 3. 

4.2 Idultidisk System Without Cache Memory 

The multidisk system without a cache memory is in many ways the simplest 

system. The only user characteristic required is the total request rate. The 

performance can be estimated from eqn. (2.4.2.2) (with f  =0).  For five disks the 

mean tirae to process a request is in the order of 200 ms which is probably 

acceptable, although a simulation would be required to find the actual response 

time distribution. The disadvantage of this system is, of course, the large 

number of disks required. 

4.3 Passive Cache Memory 

The systems with cache memory attempt to reduce the nurnber of disks 

required by serving a large number of requests from the cache. We will consider 

first a system with a passive cache, i.e., there is no attempt made to.predict 

future requests and the cache is updated only when a user request is not found 
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in the cache. The performance of such a system is described by eqns. (2.4.2.2) 

and (2.4.2.3). In addition to the user request rate it is necessary to know the 

relationship between the size of the cache and the cache hit ratio  f.  One would 

expect that the pages in the cache tend towards the most frequently accessed 

pages. Hence, based on the information in Table 3.1, one would expect hit ratios 

in the range of 85 to 90% for systems with small data bases if the cache size was 

approximately the same as the number of effective pages y.  Using f = 0.85 with 

one disk in eqn. (2.4.2.2) yields a value of approximately 100 ms as the mean 

response time for the 15% of the requests not served from the cache. As before 

this is probably satisfactory, although a simulation would be required to fLnd the 

actual response time distribution. However there is a significant problem in 

extending this performance evaluation to large data bases, i.e., 50 000 pages. 

From Table 3.1 we note that tripling the size of the data base appears to 

increase the number of effective pages by about 1/3, and reduce the hit ratio by 

5%. If these ratios hold as the data base size increases we would expect a 

required cache in the order of 850 pages with a hit ratio of 70% for a 50 000 page 

data base. The size of the cache would not be a problem, since a 1000 page 

cache would require only 1 Mbyte of memory, which is quite feasible. However, 

from eqn. (2.4.2.5) at least two disks would be required. This is of course specu-

lative; it could be better or it could be worse. Until information on large data 

bases is available we are unable to predict the performance of this approach for 

large data base systems. For small  data base systems, since only one disk is 

required with only a modest cache size, the passive cache approach is superior 

to the multidisk approach. 

4.4 Cache Memory With Page Prefetchin> g 

The analysis of Sections 3.4 and 3.5 is relevant to a system with a central- 
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ized cache in which successor pages are predicted and fetched in anticipation of 

a user request. It was shown that to have a 95% probability of finding the page in 

the cache the cache size should be about 2 pages per user for a large number of 

users when the users share the cache memory. However when the number of 

users is greater than the effective n.umber of pages in the data base, we saw that 

about half the requests will be duplicates. As a result of these two factors we 

can conclude that the size of a central cache should be approximately equal to 

the number of active users in the system. Hence, a system with 1000 active 

users would require a 1000 page cache (1 Mbyte of memory). For such a system 

approximately 95% of the requests would be served from the cache. Hence, if 

the average total request rate was 100 request/s about 5 request/s would 

require disk service. From eqn. (2.4.2.2), and the typical disk parameters given 

earlier, the mean response time for these direct disk requests would be about 50 

ms for a single disk system assuming they were given priority over the prefetch-

ing of anticipated pages. This response time is satisfactory, but there is still the 

question of the disk access capacity required to handle the prefetching. With 

100 user requ.ests per second, and an average of 1.9 successors per request, and 

approximately 0.5 of the requests distinct, one would expect an average of 95 

prefetch requests to be generated per second. For a large cache memory most 

of these would be satisfied from the existing cache contents, and only a small 

fraction would cause disk activity. For data set 210 we note from Figure 3.1 that 

if the cache contained the 1000 most frequently used pages, then only about 5% 

of the prefetch requests would not be resolved in the cache. Hence for this data 

set, and a 1000 page cache, one would expect about 5 pages per second being 

prefetched from the disk. This level of prefetch activity would not cause any 

disk performance problems, and one disk would be sufficient. If due to a larger 

data base, or a higher request rate, the prefetching trafTic approached 20 pages 
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per second it would be necessary to supply a second disk unit. We note, how-

ever, that it might be possible to delay the addition of the second disk by 

appropriate organization of the data on the first disk. This would involve placing 

the successor pages to a given antecedent sequentially on the disk. If necessary 

some pages could be replicated. This entire group could then be fetched in a 

time not significantly greater than fetching a single page. This would reduce the 

effective disk traffic. 

To investigate further the relationship between the nurnber of users, cache 

size, and the disk access time a simulation study was performed. The main 

objective of the study was to check the relationship between the n.umber of 

users and the cache size required for a 95% cache hit ratio. The simulated user 

page requests were based on the page request distribution, and the antecedent-

consequent relationships, of data set 210. To give seek times that would be real-

istic for larger data bases the 1986 pages of the data set were assurned to be 

randomly distributed over the disk. The simulation considered only a single disk 

system. Two queuing disciplines were studied: a simple first in, first out (FIFO) 

discipline, and a scan discipline. 

In a FIFO discipline pages are read from the disk in the same order that the 

requests are received, i.e., the cache misses are not given priority over the pre-

fetching requests. In the scan discipline the disk access arm is swept across the 

disk, always from the cylinder last involved in data transfer to the closest 

cylinder, in the current direction of motion, for which a data transfer request 

exists. Wh.en no further data requests exist in the direction of motion, the direc-

tion of motion is reversed. The scan discipline performs significantly better 

than FIFO for heavy disk utilization [6-9]. For the simulation using the FIFO dis-

cipline a mean disk access time of 50 ms was used. For the scan discipline simu-

lation a slightly faster disk wa.s assumed, with a mean access time that varied 
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from 39 ms at light load to 20 ms at heavy load. 

The user page requests in the simulation had a generating function whose 

interarrival time approximated that shown in Figure 3.2 with a mean interarrival 

time of 3.25 s. The simulation results are shown in Tables 4.1 and 4.2. The 

values given are the number of users, the cache size, the total number of 

requests simulated, the percentage of requests satisfied from the cache (hit 

ratio), the percentage of requests that had to be queued for disk service, the 

mean disk service time for these latter requests, and the overall mean response 

time. Where the disk and cache requests do not sum to 100%, the difference 

represents items already scheduled for disk access when the request arrived. 

The simulation results confirm the calculations in eqns. (3.5.12) and (3.5.13) 

which indicated that for a large number of users one cache location per user 

would be sufficient for a 95% cache hit ratio. In fact, this estimate is conserva-

tive since the actual number of cache locations required to yield a 95% hit ratio 

for a specified number of users, as found by simulation, was about 15% less than 

the product of C/ A=2 and the value of A/ U given in Figure 3.5 for U>1.5v.  . It is 

further observed that the cache size does not change significantly between the 

two queuing disciplines even though the the scan discipline reduces the disk 

access time by 50% under heavy load conditions. 

It will be noted in Tables 4.1 and 4.2 that the mean disk service time 

remains relatively constant over a wide range of n.umber of users. This is, of 

course, due to the page prefetch traffic. This traffic was not recorded during 

the simulation, but it may be estimated. For the FIFO discipline simulation the 

mean disk access time '2 ki 50 ms and Cb2  +i 0. If we assume that the total disk 

traffic is Poisson then eqn. (2.4.2.2), with f = 0, applies and we can use the 

measured mean disk service time from the simulation to calculate the disk utili-

zation and disk a.ccess request rate. The results are shown in Table 4.3. The 
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Table 4.1 

Cache Size Simulation Results (FIFO Disk Scheduling) 

Active 	Cache 	Total 	In 	On 	Service 	Overall 
Users 	Size 	Requests 	Cache 	Disk 	Time 	Response  

150 	260 	40003 	95.1% 	4.8% 	123.3ms 	5.9ms 
200 	300 	40000 	94.8% 	5.1% 	134.1ms 	6.8ms 
200 	310 	40002 	95.4% 	4.4% 	124.7ms 	5.5ms 
250 	340 	20001 	94.8% 	5.17e 	131.1ms 	6.7ms 
250 	345 	20004 	95.4% 	4.4% 	120.1ms 	5.3ms 

300 	360 	40004 	95.1% 	4.8% 	135.4ms 	6.4ms 
300 	370 	40003 	95.1% 	4.8% 	133.0ms 	6.4ms 
400 	420 	40004 	95.0% 	4.9% 	139.6ms 	6.8ms 
500 	450 	40012 	93.8% 	6.0% 	193.4ms 	11.7ms 
500 	460 	40001 	95.6% 	4.3% 	149.2ms 	6.4ms 

600 	475 	40006 	94.9% 	5.0% 	226.8ms 	11.3ms 
600 	485 	40001 	95.7% 	4.2% 	167.1ms 	7.0ms 

700 	525 	40004 	95.1% 	4.9% 	232.9ms 	11.3ms 
BOO 	550 	20007 	95.0% 	4.9% 	362.2ms 	17.7ms 

900 	575 	20009 	94.7% 	5.2% 	531.6ms 	27.6ms 
900 	600 	20013 	96.1% 	3.9% 	409.4ms 	15.9ms 

prefetch activity is expressed as a percentage of the user request rate. As a 

check we note that for 300 users the cache size of 360 is approximately the 

effective number of pages in the data set. Hence we would expect about 84% of 

the prefetch requests to be resolved in the cache, Hence the number of pre-

fetch requests passed to the disk would be 1.9x0.5x16% R3  15% of the user 

requests. This compares very well with the value of 12% in Table 4.3. Hence we 

conclude that the prefetch concept functions well over a wide range of loads. 

The limit on the number of users appears to be primarily a function of the cache 

miss traffic approaching the disk throughput limit. 

With the page prefetchin,g disk accesses transparent to the user, as they 

will be since the disk is not overloaded for a small data bases similar to data set 

210, the system becomes equivalent to the system with a passive cache •rom the 

user viewpoint. However the performance will be better since the user will see a 
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Table 4.2 

Cache Size Simulation Results (Scan Disk Scheduling) 

Active 	Cache 	Total 	In 	On 	Service 	Overall 
Users 	Size 	Requests 	Cache 	Disk 	Time 	Response  

	

150 	240 	20004 	94.9% 	5.0% 	100.8ms 	5.0ms 

	

200 	275 	20001 	95.0% 	4.9% 	94.5ms 	4.6ms 

	

250 	300 	20001 	95.1% 	4.8% 	102.3ms 	4.9ms 

	

250 	310 	20003 	95.1% 	4,8% 	95.3ms 	4.6ms 

	

300 	335 	20003 	94.5% 	5.4% 	103.7ms 	5.6ms 

	

300 	340 	20001 	96.0% 	3.9% 	91.3ms 	3.6ms 

	

400 	370 	20000 	94.8% 	5.1% 	99.9ms 	5.1ms 

	

400 	375 	20000 	95.4% 	4.5% 	98.5ms 	4.5ms 

	

500 	400 	20004 	94.6% 	5.3% 	104.4ms 	5.5ms 

	

500 	420 	20002 	95.9% 	4.0% 	93.3ms 	3.8ms 

	

550 	420 	20002 	94.5% 	5.4% 	124.1ms 	6.7ms 

	

550 	430 	20003 	95.4% 	4,5% 	108.3ms 	4.9ms 

	

600 	440 	20000 	95.1% 	4.8% 	104.2ms 	5.0ms 

	

650 	450 	20002 	95.0% 	4.9% 	106.2ms 	5.2ms 

	

700 	440 	20009 	93.5% 	6.3% 	160.3ms 	10.1ms 

	

700 	445 	20000 	95.7% 	4.3% 	102.5ms 	4.4ms 

	

750 	450 	20000 	94.3% 	5.6% 	115.9ms 	6.4ms 

	

750 	465 	20011 	94.7% 	5.2% 	121.6ms 	6.4rns 

	

BOO 	485 	20001 	94.5% 	5.4% 	130.2ms 	7.0ms • 

	

800 	490 	20005 	95.5% 	4.4% 	105.1ms 	4.6ms 

	

900 	510 	20000 	94,0% 	5.9% 	221.9ms 	13.1ms 

	

900 	520 	20004 	95.6% 	4.3% 	118.2ms 	5.1ms 

	

1000 	525 	20024 	95.1% 	4.8% 	156.3ms 	7.5ms 

95% hit ratio rather tha.n 85%. We also conjecture, that because the performance 

estimates are based on antecedent-successor relationships which are unlikely to 

change significantly with data base size, this performance should also be found 

for large data base systems. As before information on user characteristics for 

large data. base systems is required before a definitive evaluation is possible.. 

4.5 Disk Access Scheduling. No Cache Idemory 

When we consider the approach of organizing the data on the disk and using 
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Table 4.3 

Page Pref etch Activity (FIFO Disk Scheduling) 

Active 	Cache 	Cache 	Service 	Disk 	Pref etch 
Users 	Size 	Miss 	Time 	Utilization 	Activity  

150 	260 	4.8% 	123.3ms 	0.75 	27.5% 

200 	300 	5.1% 	134.1ms 	0.77 	20.0% 

250 	340 	5.1% 	131.1ms 	0.76 	14.8% 

300 	360 	4.8% 	135.4ms 	0.77 	12.0% 

400 	420 	4.9% 	139.6ms 	0.78 	7.8% 

500 	450 	6.0% 	193.4ms 	0.85 	5.1% 

600 	475 	5.0% 	226.8ms 	0.88 	4.5% 

700 	525 	4.9% 	232.9ms 	0.88 	3.3% 

800 	550 	4.9% 	362.2ms 	0.93 	2.6% 

900 	575 	5.2% 	531.6ms 	0.95 	1.7% 

disk scheduling, the results given in Table 3.1 clearly indicate it is possible for 

small data base systems. For data set 210 we found that 357 pages accounted 

for 84% of the page requests made. If these pages were stored sequentially on 

the disk, tha.n eqn. (2.4.3.7) indicates that for a total request rate of 100 

request/s the technique of disk access scheduling would be effective for this 

da.ta base using only a single disk. It must be noted however that there is an 

service time of approximately one second if the effect of duplicate requests is 

ignored. If the number of users is large enough that the number of unique 

requests is 0.5 of the total requests, the service time is reduced to about 0.5 s. 

In both cases the system is inferior to the cache methods with respect to 

response time but is slightly better economically since the cache memory is not 

required. It should also be noted that if there were no duplicate requests the 

system would fail completely if the common set of pages only gave a hit ratio 

0.7, as we speculated earlier might be the case for a 50 000 page data base. If 

the number of users was large enough that only half the requests were unique 

the system could operate with a hit ratio as low as 0.5. Before further evaluation 
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of this alternative can be performed more information on the data characteris- 

tics is required. 

4.6 Disk Access Scheduling,  Distributed Cache 

In previous sections the possibility of having the cache of predicted page 

requests distributed among the users was mentioned. This would require 

memory for 6 pages per user to give equivalent performance on the storage 

medium alone compared to the centralized cache. However, the centralized 

cache has a problem which a distributed cache does not have; namely, when 

multiple predictions have been made and the pages entered in cache, some 

mechanism must be included in the centralized cache management which 

disposes of the unused predictions. In the case of the distributed cache system, 

these unused predictions can be discarded at the local terminal. Thus, the 

decentralized cache approach may have adva.ntages from a system viewpoint 

sin.ce the organization at the central server is simpler and less congested, and 

t,o the extent that prediction is effective, the user will not be aware of any sys-

tem delays whatever. It should be noted that the distributed cache would 

effectively increase the the page request rate (by 1.9 for the data base studied) 

by fetching all the successors. However, this increase should not be significant 

if the disk scheduling approach is used. While the service time would increase it 

would be transparent to the user. Further, by storing successors sequentially, 

the disk activity could be reduced to effectively one disk access per request, 

regardless of the number of successors. We also note that if the number of 

users is large enough, the reduction in the number of distinct request would 

compensate for the increa.sed page request rate. The key to successful  perfor-

mance  is the size of the common set of pages. 
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4.7 Summ.ary 

Five possible architectures for the Telidon server have been considered. 

The essential differences are the disk scheduling policy, and the presence or 

absence of cache memory. It was shown that a system with a central cache 

memory and pref etching of anticipated page requests appears to significantly 

reduce the number of disks required. This system should be investigated 

further. The concept of distributing the cache memory to the user terminals 

also seems promising, but lack of information on Telidon data structures 

prevented more detailed investigation. Further study of the characteristics of 

Tendon data structures, and user characteristics, are required before the ques-

tion of the best architecture can be resolved. 
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