Regional Economic Expansion

Expansion Économique Régionale

Working Paper No. 2
POPULATION IN CANDIDE-R

July 1975

FCONOMIC DEVELOPMENT ANALYSIS DIVISION

3

Working Paper No. 2
POPULATION IN
CANDIDE-R
July 1975

This working document represents a partial regionalization of the CANDIDE 1.1 model. The acronym CANDIDE refers to the Canadian Disaggregated Interdepartmental Econometric model.

The CANDIDE-R version of the model outlined in this document is designed to help build an appreciation of the regional diversity of Canada. The authors draw attention to the tentative nature of the econometric work reported upon. So as to avoid attributing official status to the views expressed, prior consultation respecting quotation would be appreciated.

Economic Development Analysis Division,
Carmeta, Dept. of Regional Economic Expansion, ζ
" 161 Laurier Avenue West,
Ottawa, Ontario,
K1A OM4.

POPULATION IN CANDIDE-R

1. - Introduction
2. - Historical Perspective: Regional Population Growth and Composition
3. - The Population Projection Mechanism
4. - 3.l Example of the Algorithm
3.2 Generalized Form of the Algorithm
3.3 The Breakdown of Net Migration Flows
3.4 The Population Blocks in CANDIDE-R
5. - Some Population Projection Exercises
6. - Concluding Comments

1.- Introduction

The population sector in CANDIDE-R is completely regionalized and integrates the natural growth of the indiaenous population of each region with inter-reqional and international migration flows. The population variables are important explanatory variables throuahout the model, notably, in reaional equations for housing starts and the labour force. Particularly in a medium-term model, the size and composition of the population are important factors in determining economic growth. This paper describes the desired characteristics of a population projection mechanism, and notes the ways in which the mechanism of CANDIDE-R satisfies these requirements. There is a brief outline of historical trends in population composition and growth in the five regions under consideration ${ }^{l}$, followed bṿ a detailed explanation of the population projection mechanism itself. The results of the projections of this sub-model over the sample

1 The five regions used in CANDIDE-R are the Atlantic reqion, Quebec, Ontario, the Prairies and British Columbia.
period are discussed, followed by four exercises in population projection, using varying assumtions regarding fertility rates and migration flows.

2. Historical Perspective: Regional Population Growth and Composition

Although marked regional differences in in the birth rate have tended to diminish in the 1960 's, there still remains considerable inter-regional disparities in the natural population growth rates due to the concentration of the population in comparatively young age groups in some regions. In 1966 the average age of the national population was estimated at 25 years. However, the average age in the Atlantic region was 22-5 years, in Quebec 24, in the Prairies 25 , and 27 and 28 in Ontario and British Columbia respectively. As can be seen in table 1 , however, the major cause of disparity in regional population growth rates can be attributed to the differences in net migration flows.

At the national level, usually over half of the population fluctuations about a trend are due to migration flows. At the regional level, where the impact of inter-regional and international migration flows is far greater, most of the disparity in population growth can be attributed to the source of fluctuations in migration. ${ }^{2}$ These migration flows are largely endogenous in CANDIDE-R, thereby, allowing the population projection mechanism to explain regional population growth as a function of natural growth and net migration.

Table I: Composition of Population Growth

 1961-1971Atlantic
Quebec

Prairies
British Columbia
Canada
(1) Rate per 1,000 people with respect to the 1961 population
(2) Natural Growth is births minus deaths

SOURCE: Calculations based on data from Statistics Canada
2. For a more detailed account of inter-regional and international migration in the framework of CANDIDE-R, see Migration in CANDIDE-R.

The regions also show considerable differences in the composition of their population. For example, the Atlantic region has a relatively small proportion of its population between the ages of 25 and 39 , while the share of this age group in Ontario is relatively high (see Table 2).

Table 2: Population Distribution by Age Group: Percentage

		0-14	15-24	25-39	40-64	$65+$
Atlantic	1961	37.6	15.5	17.4	21.8	7.8
	1971	32.8	19.6	16.9	22.6	8.3
Quebec	1961	35.4	15.9	20.8	22.0	5.8
	1971	29.6	19.4	20.2	23.9	6.9
Ontario	1961	32.2	13.2	21.7	24.8	8.2
	1971	28.7	18.0	19.7	25.3	8.4
Prairies	1961	34.1	14.1	20.0	23.5	8.2
	1971	30.5	18.3	18.1	24.3	8.7
British Columbia	1961	31.3	12.8	20.3	25.5	10.2
	1971	27.9	17.8	19.2	25.8	9.4
Canada	1961	34.0	14.3.	20.6	23.5	7.6
	1971	29.6	18.6	19.3	24.5	8.1

In examining the relative shares of the different age groups in the population, another factor worth noting is the effect of the decline in the birth rate, both in absolute terms and in rate of decline, particularly in Quebec where the share of the population aged 0-14 years fell from 35.4% to 29.6\%. Thus the changes in relative shares of the age groups in a region between 1961 and 1971 is attributed not only to the natural aging of the population, and the decline in the birth rate, but, as was noted above, to migration flows as well. The breakdown of net migrants by region and age group, for 1966-69 is shown in Table 3. While this table does not show the regional differences in flows, it does show that most migrants are relatively young (between the ages of 20 and 30), and thereby contribute to important compositional effects on population growth and the labour force structure ${ }^{3}$.
3. See: Migration in CANDIDE-R, Table 2 , for a comparison of the sizes of inter-regional and international migration flows.

Table 3: Distribution of Net Migrants by Age Group Percentage
$\underline{0-14}$ 15-24 $\underline{25-39} \quad \underline{40-64} \quad \underline{65+}$

Atlantic ${ }^{(1)}$	31.4	22.5	29.5	14.4	2.3
Quebec	31.5	18.6	30.4	16.6	2.9
Ontario	31.6	21.5	30.4	13.5	3.0
Prairies	31.8	19.7	30.1	14.9	3.5
British Columbia	31.6	19.4	29.9	16.0	3.1
Canada(2)	25.4	24.5	34.2	13.6	2.3

(1) Estimated for inter-regional migration only, 1966-1969
(2) Estimated for international migration only

SOURCE: The regional estimates are derived from data of the Population Estimates and Projections Division, Census Field, Statistics Canada. The estimates for Canada are from "The Population Projections for Canada, 1969-1984" Analytical and Technical Memorandum \#4, DBS April 1970.
2.1- Characteristics of a Population Projection Mechanism

Given the regionalization of CANDIDE-R
and the importance of the ade-sex structure and of migration flows on the regional populations, it is desirable that the population projection mechanism in CANDIDE-R incorporate the following functions:
(a) to explain separately for each region the components of population growth in order to break down miqration flows by source and destination;
(b) to break down migration flows into appropriate age-groups and to determine the composition effects attributable to each group;
(c) to disaggregate population projections into age-sex aroups in order to measure the composition effects attributable to these groups.

3.- The Population Projection Mechanism

Most demographic projection systems are based on an aging-process whereby each cohort (or group of persons of a specified sex and age) progresses to the next group after a certain number of years. Births are entered in the first age-sex cohort only, while deaths are taken into account in each cohort. The interval between cohorts is usually the same as the projection period. For instance in CANDIDE-R annual data is used to calculate the population in age-sex cohorts of 5 years for each region. The first cohorts are for males and females aged 0-4, the next 5-9, etc. The oldest cohorts are for males and females aged 65 and over. The result is 28 age-sex cohorts for each of the five regions, or 140 cohorts in total.

In the population projection mechanism each cohort advances to the next cohort every five years. In order to obtain values for the population in time t, there must exist values of the population in $t-5$, which are used as the base for the 5 year projection mechanism.

This mechanism takes into account the natural aging of each cohort, as well as births, deaths and migration in each age-sex oroup before arriving at a population estimate for year t. To give a more specific example, suppose we wanted to calculate the population, by age-sex cohort, by reaion in 1974. We would begin with the projection for 1969. By the natural aging process we could assume that those who were in the 0-4 year cohorts in 1969, would be in the 5-9 year cohorts in 1974, and those in the 15-19 year cohorts in the 20-24 year cohorts. However, over the five years, 1969-1974, there have been births, which are entered in the 0-4 year cohort, deaths which will affect all cohorts, and migration flows, which again affect all cohorts. The population structure of 1969 is adjusted to account for all these factors, with the final result being the 1974 population. To calculate the population in 1975, we have to revert to the 1970 population, and so on.

3.1 Example of the Population Algorithm

Ignoring migration flows for the moment, an example of the population mechanism can be summed up by the following equation:

$$
\text { (1) } P_{m, 24, t}=S_{m, 24} P_{m, 19, t-5}
$$

where $\quad P_{m, 24, t}=\quad \begin{array}{r}\text { regional population of males in the } \\ 20-24 \text { year age group in year } t\end{array}$

$$
\begin{aligned}
P_{m, 19, t-5}= & \text { regional population of males in } \\
& \text { the } 15-19 \text { year age group in year }
\end{aligned}
$$ $S_{m, 24}=\quad \begin{aligned} & \text { 5 year survival rate for males } \\ & \\ & 15-19 \text { in the observed region }\end{aligned}$

Thus the male population $20-24$ in a given region, in year t, is simply that proportion of the male population 15-19 in year $t-5$, who survived the five years between t-5 and t. However, as we cannot ignore the impact of migration on population, in the context of CANDIDE-R, (I) must be modified.
the 5 year aging process. There are five net migration flows, which, if broken down into age-sex cohorts, and estimated on that basis, would result in 140 migration flows, or 28 age-sex cohorts in each of the five regions. Since this type of specification is beyond the scope of CANDIDE-R, the breakdown of migrants into age-sex cohorts was assumed to be constant over time and it was also assumed that there are no deaths during migration. Equation (I) is then modified to give:
(2) $P_{m 24 t}=S_{m 24} P_{m 19, t-5}+W_{m 20} M_{t-4}+W_{m 21} M_{t-3}$

$$
+W_{m 22} M_{t-2}+W_{m 23} M_{t-1}+W_{m 24} M_{t}
$$

where $\quad W_{m 20}=\quad \begin{aligned} & \text { proportion of males } \\ & \text { regional migration flows }\end{aligned}$ in net regional migration flows
$W_{\mathrm{m} 21}=$ proportion of males 17-21 in net regional migration flows $\begin{aligned} M_{t-i}= & \text { total net regional migration, in } \\ & \text { year t-i. }\end{aligned}$

In a more general format (2) can be expressed as:
(3)

$$
\begin{aligned}
P_{x i, t}= & S_{x, i} P_{x i-5, t-5}+W_{x i-4} M_{t-4}+W_{x i-3} M_{t-3} \\
& +W_{x i-2} M_{t-2}+W_{x i-1} M_{t-1}+W_{x i} M_{t}
\end{aligned}
$$

where x refers to the sex, i refers to the age cohort and t refers to the year. 'In equation x and i in the left hand side variable are m and 24 respectively.

In each region there are four age-sex cohorts which are treated somewhat differently from other cohorts. These are the male and female 0-4 cohorts, and the male and female 65 and over cohorts. For the two 0-4 cohorts births must be taken into account. An estimate of the fertility rate in each region is obtained by applying an exogenous birth rate to the number of women age 15-49 in the sample period.

Thus fertility rate is exogenous to the model, and its values over the sample period were calculated as follows:
(4)

$$
R_{t}=\frac{B_{t}}{P F F_{t-1}}
$$

where

$$
\begin{aligned}
\mathbf{R}_{\mathbf{t}}= & \text { regional fertility rate for year } t \\
\mathbf{B}_{\mathrm{t}}= & \text { number of live births in year } t \text { (for } \\
& \text { example, for } 1970 \text { this would be the } \\
& \text { number of births from June } 1,1969- \\
& \text { May } 31,1970 \text {) }
\end{aligned} \quad \begin{aligned}
\mathrm{PFF}_{\mathrm{t}-\mathrm{l}}= & \text { regional population of females } \\
& 15-49 \text { in year } t-1 \text { (for } 1970, \\
& \text { this would be the number of } \\
& \text { women } 15-49 \text { in } 1969 \text {, or June } 1,1968- \\
& \text { May } 31,1969) .
\end{aligned}
$$

Births are included in the $0-4$ age cohorts in the following manner:

$$
\begin{align*}
P_{m 04, t}= & S_{04}\left[0 . 5 1 4 \left(R _ { t } \left(P_{F 1519, t-1}+P_{F 2024, t-1} t \ldots\right.\right.\right. \tag{5}\\
& \left.+P_{F 4549, t-1}\right)+\sum_{i=1}^{4} R_{t-i}\left(P_{F 1519, t-1-i}\right. \\
& +P_{F 2024, t-1-i} t_{\ldots} \ldots+P_{F 4549, t-1-i))]+} \\
& \sum_{i=0}^{4}\left(B_{t-i} * \operatorname{TNMr}_{t-i}\right)
\end{align*}
$$

where

$$
\begin{aligned}
P_{m n 4, t}= & \text { regional population of males age } 0-4 \\
& \text { in year } t
\end{aligned}
$$

$R_{t}=$ fertility rate in year t
Pl1519,t-1 $=$ regional population of females age 15-19 in year t-1.
$T N M$ = total net migration in region r
$B_{t-i}=$ weights to express the number of births per total net migration, not already accounted for by the rest of the equation
$S_{04}=$ five year survival rate for males $0-4$

The constant 0.514 is the ratio of male births to total births. The female 0-4 age cohort is calculated in a similar manner.

For the male 65 and over cohort, the
equation is as follows:
(6) $P_{m 65, t}=S_{m, 65} P_{m 65, t-5}+S_{m 65}^{*} P_{m 65, t-5}+W_{m 61} M_{t-4}$

$$
+W_{m 62} M_{t-3}+\cdots \cdot+W_{m 65} M_{t}
$$

where

$$
\begin{aligned}
P_{m 65, t}= & \begin{array}{l}
\text { regional male } 65 \text { and over population } \\
\text { in year } t
\end{array} \\
S_{m 65}= & 5 \text { year survival rate for males } 60-64 \\
S_{m 65}^{*}= & \begin{array}{l}
\text { 5 year survival rate for males } 65
\end{array} \\
& \text { and over }
\end{aligned}
$$

The female 65 and over cohort is determined in an identical manner.

3.2 Generalized Form of the Algorithm

The demographic sector of CANDIDE-R can be viewed as a series of five distinct regional models. Each model is composed of 28 simultaneous equations, covering 14 age \quad rroups and two sexes. Each reaional model has two equations resembling (5), one for males 0-4, one for females 0-4; and two equations resembling (6), males 65 and over, females 65 and over, while the remaining 14 equations are similar in construction to (2).

The algorithm for each region may be exoressed in the following matrix notation:
(7) $\quad P_{t}=S P^{*}+W M$

Where the vectors P_{t}, P^{*} and M represent:

$$
\begin{aligned}
& {\left[\begin{array}{l}
M_{t-4} \\
M_{t-3} \\
M_{t-2} \\
M_{t-1} \\
M_{t}
\end{array}\right]}
\end{aligned}
$$

The values for the five-year survival rates, which make up matrix S, are the result of an unpublished study carried out by the Institute of Quantitative Analysis, Toronto, for the Department of Regional Economic Expansion. Matrix S has the following form.

Finally matrix W, which represents the breakdown of migration flows into age-sex cohorts for each region has the following format:

An explanation of W follows directly.

3.3 The Breakdown of Net Migration Flows

Before explaining the individual elements of matrix W, it is useful to look at equation (2), which is repeated below:
(2) $P_{m 24, t}=S_{m 24} P_{m 19, t-5}+W_{m 20} M_{t-4}+W_{m 21} M_{t-3}$

$$
+W_{m 22} M_{t-2}+W_{m 23} M_{t-1}+W_{m 24} M_{t}
$$

In order to explain the male population, 20-24, in year t, one must consider not only the survival of the idigenous population 14-19 over the five year span from $t-4$ to $t, S_{m 24}, P_{m l 9, t-5}$, but also migration flows in each of those years. The migration flow in vear t-4 which affects the male 20-24 population in year t, is the net immioration of males $16-20, W_{m 20} M_{t-4}$, since by year t this group will have aged to 20-24. Similarly the relevant migrant group in year t-3 is males 17-21, $W_{m 21} M_{t-3}$, who by year t will be aged
to 20-24. Similarly the relevant migrant group in year $t-3$ is males $17-21, W_{m 21} M_{t-3}$, who by year t will be aged 20-24, and so on. The N_{i} weights in equation (2) represent one row of the W matrix. Similar use of W and M is made in all population equations, as can be seen in equations (5) and (6).

Note that in relation to equation (2) once more the net immigrants who in year t-5 were aged 14-19 do not enter explicity into the calculations. They already been included in the determination of $P_{\text {ml9, }}$, 5 and as such are part of the indigenous population in year t. For example:
(8) $P_{m 19, t-5}=S_{m 19} P_{m l 4, t-10}+W_{m 15} M_{t-9}+W_{m l 6} M_{t-8}$

$$
+W_{m 17} M_{t-7}+W_{m l 8} M_{t-6}+W_{m 19} M_{t-5}
$$

The last term in equation (8) , $W_{m 19} \cdot \mathrm{M}_{\mathrm{t}-5}$ is included in $P_{m l 9, t-5}$ in equation (2).

The values for the last column of the W matrix are observed values, calculated as averages of observations over 1966-1969. The remaining elements of the W matrix were calculated by interpolation between observed values. For example the values for the row $W_{\mathrm{m} 20}$ to $W_{\mathrm{m} 24}$ are determined by interpolating between observed $W_{m 19}$ and $W_{m 24}$
(9) $W_{m 19+i, t}=i / 5\left(W_{m 24, t}-W_{m 19, t}\right)+W_{m 19, t}$

$$
i=1,2 \ldots 4
$$

This results in weights for net immigrants of ages $0-1,0-2,0-3,0-4,1-5,2-6,3-7,4-8,5-9$, etc. continuing in 5 year cohorts up to 60-64, and 65 and over for males and females. These weights are invariant to the year chosen. However, for purposes of calculation in the equation
(7) $P_{t}=S P *+W M$
the weights are assigned to certain years. For example the row in matrix W which is calculated from equation (9) has the following notation $W_{m 20, t-4}, W_{m 21, t-3}$,
$W_{m 22, t-2}, W_{m 23, t-1}, W_{m 24, t}$.

The sum of the observed values in the last column of matrix W is equal to 1 , and it can be shown that by construction ${ }^{4}$ the sum of each other column is also equal to 1 .

3.4 The Population Blocks in CANDIDE-R

For simulation purposes and due to the
large number of equations in the population sector, the population model comprises Blocks 47 and 48. The family formation, and household equations are in Block 22, while migration flows are determined in Block 49. Block 47 contains population equations by
(4) Without givina a formal proof this statement can be illustrated by examing the first column in matrix W. By construction in (9) the weiahts in the first column are:

$$
\begin{aligned}
& W_{00}=1 / 5 W_{04}+0 \\
& W_{05}=1 / 5 W_{09}+4 / 5 W_{04} \\
& W_{10}=1 / 5 W_{14}+4 / 5 W_{09} \\
& : \\
& W_{60}=1 / 5 W_{64}+4 / 5 W_{59} \\
& W_{64}=1 / 5 W_{65 t}+4 / 5 W_{64}+4 / 5 W_{65 t}
\end{aligned}
$$

Given that $W_{04}+W_{09}+W_{14}+\ldots .+W_{65}=1$, it is easily shown that the sum of all right-hand members of the equations above equals 1 .
age-sex group for the Atlantic, Quebec and Ontario regions, and Block 48 completes the algorithm with equations for the Prairies and British Columbia. The age 14 and over civilian source population, used in the determination of the labour force, is also calculated in Block 48, for 21 age-sex groups.

The definition of the civilian source population from the labour force census is those persons 14 years and over excluding members of the Armed Forces, religious orders and persons who are institutionalized. Since this definition differs from an aggregation of appropriate age-sex groups in the population block, the following type of adjustment mechanism is used in Block 48 to determine civilian source population.
(9) $\operatorname{LFP}_{\mathrm{m} 24}=\mathrm{P}_{\mathrm{ml9}}+\mathrm{P}_{\mathrm{m} 24}-\mathrm{RES}$
where $L F P_{\text {m24 }}=$ regional civilian source population of males 14-24, per labour force census.
$P_{\text {ml9 }}=$ regional male population 15-19
$P_{\text {m24 }}=$ regional male population 20-24
RES = observed difference between regional population of males 15-24 and labour force census population, LFP m 24

Values for RES are observed during the sample period and are exogenous to the model. There are 10 identities in Block 48 which define the regional primary and total secondary labour force.

The total population of Canada, broken down into 28 age-sex groups, is calculated in Block 22 from the results of the regional demographic blocks. However, the population of the Yukon and North West Territories (POPYNW) is exognous and is broken down into cohort groups with fixed coefficients which sum to one.

4.- Some Population Projection Exercises

The demographic model of CANDIDE-R has been used as an autonomous population projection model, for different assumptions of fertility rates and net migration. Given the structure of the algorithm, there is no limit to the projection period, although in the following examples it is restricted to 1971-1985. In order to demonstrate the dynamic properties of the model four different projection exercises were selected This allows the establishment of a parallel between the desired characteristics of a demographic model (as outlined in 2.1 above) and the behaviour of the model in simulation. The four hypotheses shown below have the common assumption that the regional fertility rates will converge towards a common value at some time in the future, and that they will retain this
value over the rest of the period. The fertility rates for each region from the last observed value to the convergence date were calculated through linear interpolation The four projections can be summarized as follows:
(1) Hypothesis 1: This projection exercise is characterized by very low fertility rates and the continuation of the trend observed in regional migration flows for 1961-1971. Net international immigration is set at 75,000 per year for the whole period, with the following division : Atli., tic 2.5\%, Quebec 19.8\% Ontario 53.4\%, Prairies ll.5\% and British Columbia 12.6\%. Net inter-regional migration is assumed to be: -11,600 for the Atlantic region; $-6,200$ for Quebec 13,500 for Ontario, -17,500 for the Prairies and 22,000 for British Columbia. The birth rates were set at 1.8 children per woman aged $15-49$ in 1978.
(2) Hypothesis 2: This exercise is characterized by a slightly higher birth rate of 2.0 children per woman of child-bearing age. Net international immigration is maintained at a constant level of 0.3520 per thousand people throughout the period.
(3) Hypothesis 3: The fertility rates of Hypothesis 2 were retained, but the total net migration flow was set at zero for the whole period.
(4) Hypothesis 4: In this exercise, an attemot was made to obtain the same total population figuse for Canada in 1985 as in Hypothesis 2, by varying only the fertility rates, leaving net migration flows constant at zero as in Hypothesis 3. The fertility rates converge in 1985, and the object of this projection was to compare the age structure of the population 1985 with the same total population obtained through a higher birth rate.

These differing assumptions for fertility rates and migration flows are summarized in the tables below. While not all of the assumptions are completely realistic, they do serve to demonstrate the impact of varying assumptions on demographic projections.

Table 6: Regional Fertility Rate Assumptions

Last

Observation
1971 $\quad \underline{1978}$

Atlantic

Hypothesis l	0.08960	0.05140	0.05140
Hypothesis $2 \& 3$	0.08960	0.07335	0.05714
Hypothesis 4	0.08960	0.08730	0.08500

Quebec

Hypothesis l	0.06002	0.05140	0.05140
Hypothesis $2 \& 3$	0.06002	0.05856	0.05714
Hypothesis 4	0.06002	0.07251	0.08500

Ontario

Hypothesis 1	0.07407	0.05140	0.05140
Hypothesis 2 \& 3	0.07407	0.06559	0.05714
Hypothesis 4	0.07407	0.07954	0.08500
Prairies			
Hypothesis 1	0.08237	0.05140	0.05140
Hypothesis 2\&3	0.08237	0.06974	0.05714
Hypothesis 4	0.08237	0.08369	0.08500
British Columbia	0.07284	0.05140	0.05140
Hypothesis 1	0.07284	0.06497	0.05714
Hypothesis 2 \&	0.07284	0.07892	0.08500

Table 7: Net Migration Assumptions ('000 people)

Last
Observation 1971

Atlantic

Hypothesis 1	-3.3	-9.7	-9.7	-9.7
Hypothesis 2	-3.3	-9.7	-9.6	-9.4
Hypothesis $3 \& 4$	-3.3	0.0	0.0	0.0

Quebec

Hypothesis 1	-36.2	8.6	8.6	8.6
Hypothesis 2	-36.2	8.7	9.5	11.3
Hypothesis $3 \& 4$	-36.2	0.0	0.0	0.0

Ontario

Hypothesis 1	72.2	53.5	53.5	53.5
Hypothesis 2	72.2	54.0	56.0	60.8
Hypothesis 3\& 4	72.2	0.0	0.0	0.0

Prairies

Hypothesis 1	-18.5	-8.9	-8.9	-8.9
Hypothesis 2	-18.5	-8.9	-8.3	-7.3
Hypothesis 3\& 4	-18.5	0.0	0.0	0.0

British Columbia

| Hypothesis 1 | 37.5 | 31.4 | 31.4 | 31.4 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Hypothesis 2 | 37.5 | 31.4 | 32.0 | 33.1 |
| Hypothesis $3 \& 4$ | 37.5 | 0.0 | 0.0 | 0.0 |

Table 7: (Cont'd) Net Migration Assumptions

Canada	1971	1972	1976	1985
Hypothesis 1	53.9	75.0	75.0	75.0
Hypothesis 2	53.9	75.5	79.6	88.5
Hypothesis 3\& 4 53.9	0.0	0.0	0.0	

The most interesting results for the four different hypotheses are found in tables 8, 9 and 10. As was expected the rate of population growth is much weaker in Hypothesis 3, than in 2 and 4. The regional distribution of the Canadian population is strongly affected by both inter-regional and international migration flows. In order to replace the growing international migration of Hypothesis 2 (53,900 in 1971, 88,500 in 1985) the fertility rate was increased from 2.0 births per woman of child-bearing age to 3.0 . The first three hypotheses result in a proportionally older population than in 1966 (see Table 9), which would confirm the effects of compositional changes on the medium term potential of the Canadian economy. There is an appreciable slowdown in the aging of the population only in Hypothesis 4, where net migration is zero, and the birth rate relatively high. Hypotheses 3 and 4 are compatible with an equilibrated growth of the labour force between regions. This would tend to show that the maintenance of the observed migration flows of the 1960's would have the effect - particularly in the Atlantic and Prairie regions - of increasing that proportion of the population which depends on the labour force.

Table 8: Projection and Distribution of the Regional Population

Atlant	Hypothesis 1		Hypothesis 2 pop.		$\begin{array}{ll} \text { Hypothesis } & 3 \\ \text { Pop. } & 8 \end{array}$		$\begin{aligned} & \text { Hypoth } \\ & \text { Pop. } \end{aligned}$	
Atlantic								
1971	2063.7	9.6	2063.7	9.6	2063.7	9.6	2063.7	6
1976	2118.9	9.3	2142.6	9.3	2193.0	9.7	2208.1	9.7
1981	2130.7	8.9	2205.2	9.0	2309.3	9.8	2369.3	9.8
1985	2143.2	8.7	2239.9	8.8	2388.1	9.9	2509.0	9.8
Quebec								
1971	6034.4	28.0	6034.8	28.0	6034.8	28.0	6034.8	28.0
1976	6317.8	27.7	6345.5	27.6	6297.6	27.8	6345.9	27.9
1981	6574.5	27.5	6668.6	27.3	6565.4	27.8	6751.9	27.9
1985	6772.6	27.4	6921.1	27.1	6768.8	27.9	7135.2	28.0
Ontario								
1971	7702.9	35.8	7702.9	35.8	7702.9	35.8	7702.9	35.8
1976	8298.4	36.4	8366.4	36.4	8080.0	35.8	8137.9	35.8
1981	8801.5	36.9 .	9025.1	36.9	8417.4	35.7	8640.5	35.7
1985	9211.8	37.3	9534.2	37.4	8645.5	35.7	9084.5	35.6
Prairies								
1971	3542.0	16.4	3542.0	16.5	3542.0	16.5	3542.0	16.5
1976	3656.1	16.0	3691.4	16.1	3736.0	16.5	3761.7	16.5
1981	3707.3	15.5	3819.0	15.6	3908.6	16.6	4009.1	16.6
1985	3746.4	15.2	3896.6	15.3	4021.7	16.6	4221.6	16.6
British Columbia								
1971	2190.0	10.2	2190.0	10.2	2190.0	10.2	2190.0	10.2
1976	2433.4	10.7	2450.9	10.7	2286.3	10.1	2302.3	10.1
1981	2656.3	11.1	2715.3	11.1	2373.0	10.1	2434.3	10.1
1985	2841.2	11.5	2926.8	11.5	2434.2	10.0	2554.6	10.0
Canada								
1971	21533.0	100.0	21533.0	100.0	21533.0	100.0	21533.0	100.0
1976	22824.6	100.0	22996.8	100.0	22592.9	100.0	22755.9	100.0
1981	23870.3	100.0	24433.2	100.0	23573.7	100.0	24205.1	100.0
1985	24715.2	100.0	25518.6	100.0	24258.3	100.0	25504.9	100.0

Table 9: Distribution of the Regional Populations by Age Group in 1985 under the four Hypotheses (\%)

Atlant
$0-14$
$15-24$
$25-39$
$40-64$
$65+$
Quebec
$0-14$
$15-24$
$25-39$
$40-64$
$65+$

Ontario 0-14

15-24
25-39
40-64 $65+$

Prairies
0-14
15-24
25-39
40-64 $65+$

British Columbia

$0-14$	28.5
$15-24$	17.4
$25-39$	19.4
$40-64$	25.8
$65+$	8.9

Hypothesis
1

21.2
19.3
27.7
21.7
10.1
20.5
17.1
27.2
26.6
8.6
21.2
17.6
25.5
26.4
9.3
20.5
18.3
25.7
24.5
10.9
21.0
17.2
25.4
26.6
9.7

Hypothesis
2
24.6
18.6
26.5
20.7
9.7
21.9
16.8
26.7
26.1
8.4
23.4
17.1
24.8
25.6
9.0
23.4
17.7
24.8
23.7
10.5

23.0	22.1
16.8	16.7
24.8	24.0
25.9	26.5
9.5	10.7

Hypothesis
Hypothesis
3
4
28.4
17.6
25.5
19.8
8.8
25.8
15.9
25.3
24.8
8.1
26.7
16.2
23.0
25.0
9.1
27.1
16.8
23.7
22.5
9.8
25.8
15.9
22.9
25.3
10.2

Table 9 (Cont'd): Distribution of the Regional Populations by Age
Group in 1985 under the four Hypothesis (\%)

	Observed 1971	Hypothesis 1	Hypothesis 2	Hypothesis 3	$\underset{4}{\text { Hypothesis }}$
Canada					
0-14	29.8	20.9	23.1	22.8	26.6
15-24	18.6	17.7	17.2	17.2	16.3
25-39	18.9	26.2	25.5	25.2	24.0
40-64	24.9	25.8	25.1	25.3	24.0
$65+$	7.8	9.5	9.2	9.5	9.0

Table 10: Projection of the Regional Civilian Population 14 Years and Over (1000)

Ḣypothesis 1
Hypothesis 2
Hypothesis 3
Hypothesis 4 Primary Secondary Primary Secondary Primary Secondary Primary Secondary

1 Primary refers to male population aged 29-54, secondary to all other civilian population 14 years and over.
5. - Concluding Comments

The demographic sub-model of CANDIDE-R includes approximately 300 equations in Blocks 22, 47 and 48. The population algorithm is designed to calculate the population for 28 age-sex groups per region using the components of demographic growth, that is births deaths and net regional migration as explanatory variables. In general, the age-sex groups represent 5 -year cohorts. The total population, and national population by age group are obtained by summing regional projections. The only exogenous variables directly related to the algorithm are the five regional fertility rates and the population of the Yukon and North West Territories. Net migration flows are endogenously determined in Block 49 of CANDIDE-R.

Since the age distribution of the migrating population is substantially different from that of the stable population, it seemed essential to specify the population model in such a way as to break down immigration flows into the appropriate age-sex groups. This allows us to keep track of the compositional effects caused by migration flows. The overall age-sex breakdown also allows us to measure the compositional effects through time due to the aging of the post-war generation, and the sharp drop in the birth rate during the $1960^{\prime} \mathrm{s}$.

The results obtained to date demonstrate the precision of the model and the sensitivity of its projections to compositional effects outside of the sample period, allowing detailed analysis of the effects of a broad range of changes in regional population growth.

