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Résumé 

The objective is a procedure to find a minimum cost capacity 

expansion program of an interurban telecommunications network con-

taining a large number of nodes and in the presence of locally de-

creasing average costs and joint costs due to the existence of impor-

tant indivisibilities and resulting in total cost functions, defined 

for individual elements or groups of elements of the network, being 

step functions. 

The optimal capacity expansion program itself is found as a so-

lution of a mixed integer programming problem. Each chain joining a 

pair of demand points of the network gives rise to an activity of this 

problem. Even for networks of moderate size, the number of possible 

chains may be enormous. This article is chiefly concerned with dras-

tically reducing the number of chains to be submitted to the mixed in-

teger programming problem with the help of the complementary notions of 

dominated and admissible chains. The algorithm described may be viewed 

as a generalization to the case of step functions of the well-known 

minimum cost chain algorithm for non-directed graphs and is likewise 

inspired by Eellman's "PPincipte of Optimality" of dynamic programming. 

The appropriate software has been developed and made operational. 



1. 	INTRODUCTION 

The procedure described here was originally devised in the frame-

work of a research project having to do With the Canadian interurban 

telecommunications network and conducted jointly by the National Tele-

communications Branch of the Department of Communications, the firm 

Sors  Inc., of Montréal and the Laboratoire d'économétrie, Université 

1 
Laval. 

A model had to be constructed whose function would be to find mini-

mum cost capacity expansion programs designed to satisfy specified in-

creases in the demand for telecommunication facilities for one, or more 

frequently, for several pairs of demand points, or nodes. It will be 

noted that the presence of joint costs or more generally of indivisibi-

lities makes for the non-additivity of optimal solutions. Except by ac- 

cident, a piecemeal approach consisting in considering one by one the pairs 

of nodes for which demand increases are specified will not lead to an 

optimal overall solution and a simultaneous approach becomes inevitable. 

It is also important to note that even if only one pair of demand points 

is considered, the traditional piecemeal approach consisting in con-

sidering small subsets of the network at a time is also inacceptable. 

It is the shape of the cost functions and not the number of pairs of de-

mand points for which demand increases are specified that constitutes 

the fundamental characteristic of the problem. 

The problem was also characterized by the large size of the networks to 

be considered: up to 100 nodes and more. The extensions of the original 
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model, mentioned briefly in the last paragraphs of this paper and some 

of which have already been implemented, call in most cases for even 

larger networks. 

The shape of the cost functions precludes the 'applications of the, 

now traditional, "proportional cost" procedure [2], [3]. The problem 

is also fundamentally different from that of non-proportional but piece-

wise linear and non-decreasing average cost problem. This, together with 

the large size of the networks to be considered represented the challenge 

to which the proposed procedure is a response. The originality of this 

procedure lies in its containing a generalization to the case of step to-

tal cost functions (i.e. locally decreasing average costs) of the minimum 

cost chain algorithm. This generalization yields a subset of admissible 

chains, subset of the set of possible chains for one or several pairs of 

points of a non-directed graph. A chain which is not admissible is called 

dominated. These terms are defined in Section 3. below. Intuitively, 

a chain is dominated if it cannot form part of the optimal solution be- 

cause it is more costly than some other chain or chains, whatever the al-

location among the elements of the network of the demand increases to be 

considered. The admissible chain subset is thus seen to be the natural 

extension of the minimum cost chain concept. The subset of admissible 

chains only is submitted to the mixed integer programming algorithm which 

then chooses the optimal chain or chains. 

2. 	THE MAIN PROBLEM 

An interurban telecommunications network can always be represented 

by a non-directed simple graph. 
2 Connected graphs only will be con- 

. / . 
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sidered. Some or all the elements of the network, nodes and links, 

can have their capacities increased from known initial capacities. 

Elements which are contemplated but not yet in existence have zero 

initial capacities. Total cost functions of capacity expansion are 

given and are step functions. We assume here uniform capacity expan-

sion steps. The relaxation of this hypothesis does not invalidate 

the method proposed here, but would call for an additional software 

effort. The problem has to do with demand for facilities and not 

with traffic and hence it is postulated that there is no unused capa- 

. 	3 
city . However, unused capacity can be taken into account, with con- 

sequent changes in the corresponding cost functions. It is required 

to satisfy exogeneous increases of demand for facilities for one or 

more pairs of nodes called demand points. The problem consists in 

finding a capacity expansion configuration which minimizes the total 

cost. 

Let us define a few symbols: 

- j for the typical node of the set of nodes N, 

- 1 for the typical link in the set of links L, 

- k for the typical element (node or link) of the set of 

elements K for which capacity expansion is possible, 

- i for the typical pair of demand points of the set D 

of pairs of demand points. 

The mixed integer programming problem distinguishes two types 

of activities (variables): 

Capacity exPansion activities: their levels are natural numbers 

. / . 
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For each keK a total cost function of capacity expansion is de-

fined from the initial capacity to an upper bound. These bounds are 

sufficiently high for the demand increases considered to ensure the 

existence of at least one feasible solution. These total cost func-

tions are step functions (see Figures 1., 2. and 3.). It is with re-

ference to these functions that capacity expansion activities are de-

fined. There is an ordered set of these activities for each element 

of the network for which expansion is possible. 

Let t stand for the typical activity of such a set denoted by T(k). 

The first activity represents successive discrete capacity expan-

sions from the initial state and giving rise to the same total cost in-

crements. As soon as the cost increments change, a second activity has 

to be defined, and so on. Thus the "steps" cost increments of the step 

functions do not have to be uniform. It will be noted that an activity can 

take a positive value only if the preceding activity is at its upper bound. 

Thus one has to introduce sequencing constraints. 

Let y(k;t) denote the level of the expansion activity t for the 

element k, and c(k;t) the corresponding total cost increment. 

Facility assignment activities: *their levels are non-negative real 

numbers 

For each pair of demand points ieD, there exists a set of chains. 

A chain is a sequence of links without cycles joining the two points of 

the pair. 

• /• 
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Let R(i) denote such a set of chàins and r its typical member. 

A facility assignment activity is defined for each chain r. Its 

level is a non-negative real number x(i;r) and indicates the additional 

capacity assigned on each of the elements of r to satisfy the whole or 

4 
part of the demand increase for the pair of points concerned. 	It will 

be noted that given the presence of joint costs and other indivisibili-

ties, capacity expansion costs cannot in general be defined for facili-

ty assignment chains. The corresponding variables enter the mixed in-

teger programming problem with zero costs: costs are defined for the 

elements of the network. 

Objective function 

The objective function, which is to be minimized, is the total cost 

of the capacity expansion program: 

[MIN]Z = Lc« iteT(k) c(k;t)y(k;t). 
x,y 

There are four types of constraints in the main problem, other 

than the non-negativity and the integrality (wherever applicable) 

constraints. 

Demand constraints 

Let d(i) denote the increase in the demand for facilities for 

the pair of nodes i. Then the additionnai  capacity installed on the 

chain, or chains serving the two nodes concerned must be at least equal 

to d(i): 

./. 
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iED. irER(i) x(i;r) 	d(i) 

Capacity constraints 

The additional capacity installed on an element of the network 

must be at least equal to the sum of the levels of facility assignment 

activities (chains) passing through this element. 

ieD 	reR(i) cS(r;k)x(i;r) - itET(k) Y(k;t) 	0,keK, î 	Z  

where  r;k) takes the value 1 if the chain r passes through the ele- 

ment k, and O  otherwise. 

Sequencingconstraints 

The role of these constraints is to make sure that the capacity 

expansion activities on each element of the network respect the proper 

order of precedence: an activity cannot take a positive value unless 

the preceding activity is at its upper bound. 

These are conditional, that is disjunctive, constraints of the 

type often encountered in mixed integer programming problems. They 

are of the form: 

either: y(k;t-1) < Y(k;t-1) and y(k;t)=0 

or 	y(k;t-1) 	(k;t-1) and y(k;Ok0, 

lc« and teT(k). 

. / • 
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Upper bound constraints 

Each capacity expansion activity y(k;t) has an upper bound 

y(k;t) 	Y(k;t), lc« and tET(k). 

Non-negativity and integrality constraints 

x .(i;r) > 0, ieD and reR(i); 

y(k;t)EI, 	kEK and tET(k); 

where I is the set of natural numbers (non-negative integers). 

3. REDUCING THE SIZE OF THE MAIN PROBLEM 

As stated above, the main problem can in principle be solved in 

a finite number of steps. In fact, however, even for a relatively small 

network the size of this problem may be enormous and direct solution ut-

terly impractical. For instance, in a simplified version of the Cana-

dian interurban telecommunications network containing about 60 nodes, 

the identification and numbering of possible facility assignment chains 

between Montreal and Vancouver reached the astonishing figure of 300,000 

at which stage the enumeration was stopped as it was giving no sign of 

coming to an end by itself. It will be remembered that facility assign-

ment chains are among the activities, that is variables, of the mixed 

integer programming problem. The procedure described below reduces 

drastically the number of activities in the main problem without running 

any risk of leaving out the optimal solution, or solutions. 

. /. 
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This procedure defines and makes operational a sufficient con-

dition for a facility assignment chain to be absent from the minimum 

cost capacity'expansion program. If this condition is satisfied, the 

corresponding variable can be safely left out of the main problem. 

The search for such a condition was strongly inspired by Bellmants 

"Principle of Optimality" of dynamic programming whose main message in 

the present context is that the knowledge of the return functions makes 

it possible to find the optimal strategy (or strategies) without having 

to evaluate all possible strategies. More specifically, the proposed 

procedure is a generalization of the minimum cost chain algorithm to the 

case of step total cost functions, that is to the case of locally dimi-

nishing average costs. However, the outcome is not the minimum cost 

chain, or chains, but a subset of admissible chains. The final choice 

within this subset is made by the main problem. 

Reducing the number of capacity expansion activities 

Although the reduction of the size of the main problem is chiefly 

achieved by eliminating dominated facility assignment activities, a 

preliminary step relates to capacity expansion activities and leads to 

a reduction in their number. 

It is clear that in any given problem a single element of the 

network will at most be called upon to handle the total of the speci-

fied demand increases for all the pairs of nodes, that is pairs of de-

mand points, concerned. One can safely ignore capacity expansions 

. 1.  
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going beyond this total. 

Consequently the "maximum contemplated demand increase" is de- 

fined as: 

' mcd = ne D d(i). 

The set T(k) of capacity expansion activities to be considered 

becomes such that: 

îteT(k) Y(k;t)  = med , keK. 

This, of course, amounts to truncating the domains of all the 

cost functions according to the problem in hand. 

Identifying dominated facility assignment chains 

Consider the capacity expansion total cost function for a typical 

element, k, of the network. It is a non-decreasing step function de-

fined on the interval [0,mcd]. 

Define: 	cmax(k)=CMAX] c(k;t) , teT(k) 

and 	cmin(k)=EMIN] c(k;t) , teT(k) 

that is respectively the largest and the smallest steps of the total 

cost function. They will also be referred to as the upper bound and 

the lower bound unit costs. It is to be noted that if the total cost 

function over the whole of the relevant interval is a constant function, 

then the lower bound is necessarily zero. 

Let minup(i) designate the unit cost of the minimum cost chain for 

the pair of demand points i, the costs being fixed at their upper bounds. 

. / . 
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In other words, it is the cost of increasing by one unit the capacity 

of all the elements k, on the chain connecting the two points of the 

pair i, for which the sum of upper bound unit capacity expansion costs 

is the lowest. 

minup(i) = [MIN] ikEK (S(k;r)cmax(k), 
reR(i) 

where d(kg, ) = 1 if the element k belongs to the chain r, and d(k;r) = 0 

otherwise. 

Let smin(4r) designate cost of the minimum cost chain r joining 

the pair of demand points i with the costs of all the elements at their 

respective lower bounds. 

6(k;r)cmin(k). smin(i;r) = ikeK 

Lemma: For any chain connecting the two points of the pair of demand 

points i, the total cost of expanding the capacity by n units lies bet-

ween the sum of the unit costs at their lower bounds of all the elements 

involved, multiplied by n and the sum of the unit costs at their upper 

bounds of all the elements involved, multiplied by n. 

In effect, whatever the capacity increase on element k 

n = Zt€T(k) y(k;t), with 0 	n 	mcd, we have: 

cmin(k) 	c(k;t) 	cmax(k). 

It follows that, for a given chain r, with the capacity increase n on 

all the elements, the following relation holds: 

Zkt  (k;r)cmin(k)y(k;t) 	Îkit 6(k;r)c(k;t)y(k;t) 	kt  (S(k:r)cmax(k)Y(k;t). 

. / . 
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Using the expressions for n and smin(i;r) given previously, this 

is equivalent to: 

smin(i;On 5 îkit  d(k;r)c(k;t)y(k;t) LÇ. 	(S(k;r)cmax(k)n. 

Before proceding further, we shall recall the definition of 

,sub-chain. 

Definition 1: Consider the chain r, connecting the two nodes of the 

pair i. Let i' be a pair of nodes belonging to this chain. Then a sub-

chain s of the chain r is a chain connecting the two points of the pair 

it and involving solely the elements of the original chain r. One, or 

both nodes of the pair 	may, of course, be the same as those of the 

pair i. It will be noted that for a given chain r, the sub-chain con-

necting the points of the pair it is unique. 

Proposition  1: Consider the chain r for the pair of demand points i, 

with capacity expansion of n units planned for all the elements of this 

chain. Suppose there exists a sub-chain s  of the chain r, for the pair 

it such that:minup(i') < smin(it;s), then it is possible to transfer n 

units of capacity expansion from the chain r to the new chain, which is 

the same as r except that between the points of the pair i! the sub-

chain s is replaced by the chain corresponding to minup(i'). 

The possibility of such a transfer follows from the upper bounds 

on capacity expansion activities on all the elements of the network 

being large enough to accommodate theumaximum contemplated demand in-

creaselt. 

/ 
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Proposition 2: The transfer df capacity expansion referred to in Pro-

position 1 necessarily reduces the cost of the capacity expansion pro-

gram. The faqility assignment activity corresponding to the old chain, 

r, is necessariily zero in the optimal solution of the main problem. This 

follows from the construction of minup(i I ),from the Lemma and from Pro-

position 1, given above. Let the non-commot parts of the old chain r, 

and the new chain which replaces it, be s and, say, s', where s' is the 

chain corresponding to.minup(il) we then have :  

ÎlJt e(k;s')c(k;t)y(k;t)S minup(i')n< smin(P;s)n 	ikît  d(k;s)c(k;t)y(k;t), 

with n = it  y(1qt) for both s and s'. 

It is clear that if the transfer referred to in Proposition 1 is 

not carried out, then the total cost is larger than it could be and the 

corresponding solution cannot be optimal. 

Definition 2: An admissible chain is a chain which contains no sub-chain, 

say s, for a pair of nodes i', such thatminupal) < smin(i';s). 

Definition 3: A chain which is not admissible is dominated. 

It will be noted that whether a chain is admissible or dominated 

depends, inter alla, on the "maximum contemplated demand increase" (or 

the "maximum relevant demand increase" defined below). 

A capacity expansion problem to be considered may concern one or 

more pairs of demand points for which demand increaseare specified. A 

large number of facility assignment chains will in general connect the 

points of each of these pairs. 
/ 
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Definition 4: A node is dominated for a given pair, or pairs, of de-

mand points if all possible facility assignment chains relating to this 

pair, or pairs, and going through this node are dominated. 

Definttion 5: A node which is not dominated is admissible. 

It is to be noted that in any given problem the status of every node 

can be established without explicit consideration of facility assignment 

chains. In fact, the dominated nodes are eliminated first, as well as all 

the links involving these nodes. This implicitly eliminates all the domi-

nated facility assignment chains going through one or more dominated nodes. 

Once this is done, the remaining chains are identified and tested for ad-

missibility. It will be noted that chains are identified step by step, 

that is element by element. As soon as an incomplete chain contains a 

dominated subLchain it is abandoned: the corresponding chain will neces-

sarily be dominated. 

Apart from the role it plays in eliminating dominated facility as-

signment chains, the concepts of dominated and admissible nodes lead to 

an interesting by-product namely a non-arbitrary delineation of the "re-

levant region". In any given problem, the partial sub-graph of the ori-

ginal network consisting of the admissible nodes and links connecting 

them constitute this relevant region. It will be noted that the delin-

eation of this region depends not only on the pair, or pairs of demand 

points for which demand increases are specified, but also on the "maxi-

mum contemplated demand increase" (or the "maximum relevant demand in-

crease" - see below). In planning the optimal capacity expansion, only 

. / . 
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the part of the original network corresponding to the relevant region 

has to be taken into account. However, the larger the specified demand 

increase, or increases, the larger will, in general, be this relevant 

region. 

4. 	OPERATIONAL PROCEDURE FOR ELIMINATING DOMINATED FACILITY 

ASSIGNMENT CHAINS 

The structure of the main problem having been given in Section 2, 

the description which follows is concerned only with the procedure for 

eliminating dominated facility assignment chains which drastically re- 
, 

duces the number of variables and constraints to be submitted to the main 

problem which, it will be recalled, is a mixed integer programming problem. 

The procedure begins by adding up all the demand increases speci- 

fied in the problem to be solved. This total,called the "maximum con-

templated demand increase",is then used to identify the upper bounds on 

capacity expansions of all the elements of the network and hence also of 

the lower and upper bounds on the unit cost of capacity expansion for 

every element. 

Whereas the upper bounds on capacity expansions are, at this stage, 

the same for all the elements of the network, when counted from the ini-

tial state (one admits the possibility that all the demand increases 

wherever specified might all pass, at the same time, through any given ele-

ment of the network), the lower and upper bounds on unit costs of capacity 

• / • 
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expansion will not, in general be the same for all the elements of the 

network, since this depends on where on the cost functions are the ini-

tial states, that is the installed and supposedly used capacity, for 

any given element of the network. These lower and upper bounds on unit 

costs of capacity expansion, original and then revised, cmin(k) and 

cmax(k) respectively, for all k, are calculated by the subroutine BORNE. 

The subroutine DOMINO computes two tables, which take the form of 

symmetric matrices whose dimensions are equal to the number of nodes 

in the network. 

- The cost of the minimum cost chain, costs being set at their 

upper bounds, i.e. minup(i), for every element involved, from every 

node to every other node of the network; 

- The cost of the minimum cost chain, costs being set at their 

lower bounds, i.e. minlo(i), from every node to every other node in 
■ 

the network. 

The costs appearing in the two above tables are unit capacity ex- 

pansion costs. 

It is to be noted that it is the cost of minimum cost chains 

that are calculated at this stage: the corresponding chains themselves 

are not yet identified, and most of them never will be. This is akin 

. / . 
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to the "marking" procedure often used in economic applications of the 

graph theory, especially those involving the use of Bellman's "Prin-

ciple of Optimality". 

With the help of the above tables and for each pair of demand 

points, typically: NORG-NDEST, all the dominated nodes are eliminated. 

It is clear that for a different pair NORG-NDEST a different set of 

nodes will be dominated. For each node a comparison is made between 

the two scalars: 

1. The sum of the cost of the two minimum cost chains connecting 

this particular node to NORG and to NDEST respectively, costs being set 

at their lower bounds. 

2. The cost of the mihimum cost chain connecting NORG with NDEST, 

costs being set at their upper bounds. 

If the first term of this comparison is greater than the second 

term, then the node concerned is eliminated as a dominated node, for 

this particular pair NORG-NDEST. In that case, all the links connecting 

this node with any other node, dominated or not, are also eliminated. 

Using the DOMINO tables and the theory presented in Proposition 2, 

for each pair NORG-NDEST, the admissible facility assignment chains are 

identified as follows: 

. / . 



- From the origin NORG, chains of length one are constructed and 

dominated chains are immediately eliminated. It will be noted that a 

chain of length one may be dominated by a chain of length two or more. 

- Then chains of length two from the origin NORG are constructed 

by using all possible adjacent links to extend the chains of length one 

identified as admissible in the preceding step. However, before checking 

the admissibility of these length two chains, the links to be added are 

tested, the test consisting of checking whether the next adjacent node 

of the incomplete chain is dominated with respect to the previous node 

and the NDEST node. If this is the case, the links in question are eli-

minated. Then the admissibility of each remaining incomplete chain of 

length two is checked with the help of Proposition 2. of Section 3. and 

of the numerical information contained in two DOMINO tables. 

- This procedure is repeated for all the chains in the network 

between NORG and NDEST, their maximum length being finite, since the 

least cost of a chain from a node to itself is necessarily zero. 

- Having started from NORG, once NDEST is reached, the set of ad-

missible facility chains, and they will normally be more than one, is 

stored, another pair of demand points appearing in the problem is taken 

up and the procedure repeated. 

If the problem involves only one pair of demand points, the stage 

of identifying the admissible chains is now completed. If there are two 

or more pairs of demand points the procedure of eliminating the dominated 

chains may be tightened with the corresponding reduction of the burden 

./. 
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incumbing on the main problem. This tightening is related to the 

narrowing of the bounds on unit costs resulting from the fact that 

not all the demand increases concerning all the pairs of points in-

volved could conceivably pass through every element of the network. 

Once the elimination of the dominated chains has been done for all 

the pairs of demand points, a sorting is done of the elements of the 

network. For each element of the network those pairs of demand points 

are identified whose admissible chains (one or more) pass through this 

element and the corresponding demand increases added up giving what is 

called the "maximum relevant demand increase". This "maximum relevant 

demand increase" replaces now the concept of "maximum contemplated de-

mand increase" used in earlier calculations. Unlike this last concept, 

the "maximum relevant demand increase" is not necessarily the same for 

all elements of the network. Those "maximum relevant demand increases" 

are then used to recalculate the lower and upper bounds on incremental 

capacity expansion costs and hence set in motion a new round of identi-

fying dominated nodes and admissible chains. As a by-product one obtains 

also the upper bounds on admissible capacity expansion increments. The 

sorting out of the elements of the network, the calculation of the "maxi-

mum relevant demand increases" and the tightening of the bounds is done 

by the subroutine BORNE. The number of iterations is evidently finite. 

The procedure stops as soon as no further tightening of the bounds is 

possible. 

Once the admissible chains have been identified and upper bounds 

1. 
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on capacity expansion increments have been set with the help of the 

subroutines CADUCEE and BORNE, the main problem is taken up with the 

help of the subroutine TRANCHE. That module establishes an optimal, 

that is a minimum cost, capacity expansion program which satisfies the 

specified demands. The subroutine TRANCHE uses a standard branch-and-

bound algorithm for mixed integer programming. 

5. NUMERICAL EXAMPLES 

Suppose we have a network with 30 nodes and 55 existing or contem-

plated links as shown in Figure 1. We have three types of links. The 

"light route" type corresponds to the cost function of Figure 2; the 

"heavy route" corresponds to Figure 3; finally the "heavy routes with 

priority costs" are specific variations from the "heavy route"type. We 

will consider three problems. The first one consists of a 3 unit demand 

increase between the nodes 10 and 27. The second involves a 2 unit de-

mand increase between the nodes 9 and 23. The last problem is the simul-

taneous consideration of the two preceding ones. 

Figures 1., 2. and 3. 

For problems 1, 2, 3, the Figures 4, 5, 6 show respectively, the 

admissible nodes, the links belonging to the admissible chains and the 

. / . 
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links being part of the optimum solutions with the number of capacity 

units that should be added. The reader will note the relevant region 

delineated for each problem by the set of admissible nodes. The total 

expansion costs are respectively 2090, 1650 and 3580 value units. The 

solutions of problems 1 and 2 are clearly non additive since 3580 is 

smaller than 2090 + 1650; the economy of scale amounts to 160 value 

units. 

Figures 4., 5. and 6. 

The main point of this article is exemplified as follows: there 

exist perhaps several tens of thousands of possible chains and hence 

of facility assignment activities. The number of admissible chains, 

that is chains actually submitted to the main problem, is drastically 

less since there are 15 such chains for the first problem, 6 for the 

second one. As far as the third problem is concerned, we have, at the 

first iteration with a "maximum contemplated demand increase" of 5, 

37 admissible chains for the pair (10-27) and 61 for the other pair 

(9-23); at the second iteration, the concept of "maximum relevant de- 

,. 

	

	 mand increase" plays its role and the number becomes 37 for the pair 

(10-27), that is no change, and 45 for the pair (9-23). 

6. 	EXTENSIONS 

The procedure described here is intented to be used within the 

framework of a larger model. It is in fact a preliminary procedure to 

. / . 
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reduce the number of variables to be submitted to the main mixed in-

teger programming model. This main model itself is capable of farther 

extensions, most of which have already become operational in the frame-

work of the research project conducted jointly by le Laboratoire d'éco-

nométrie de l'Université Laval, the firm  Sors  Inc. and the Department 

of Communications [ l]. 

To handle situation where there are more than one type of transmis-

sion facilities between any given pair of adjacent nodes and where there 

exist more than one carrier on any given link (so that in factthere are 

more than one link between two adjacent nodes and the network is repre-

sented by a multigraph) there is available what is called the "enlarged 

network" approach which makes use of the concep13of dummy nodes and dum-

my links. Thereby the original problem is formally reduced to a problem 

involving at most one Iink between any pair of nodes for which the con-

ceptualization and the corresponding software are already available. In 

practice this increases substantially the number of nodes and links in 

the simple graph to be handled and calls for a more efficient software, which 

has been developed, although it is not reported on here. 

The problem as it stands is essentially a static formulation. Plan-

ning capacity expansion over time gives rise to a host of additional and 

extremely difficult problems. Dynamic programming techniques do not ap-

pear practicable and simulation procedures aiming at sub-optimal solutions 

are being developed. 

. / • 



22 

The main problem being a mixed integer programming problem, the 

introduction of additional constraints, whether they be simultaneous 

or conditional gives rise to nè) fundamental difficulties, although in 

practice, they cause computational difficulties. Among the possible 

additional constraints, those having to do with the survivability have 

been given particular attention and appropriate procedures developed. 

The additional computational effort is quite heavy owing to the combi-

natorial nature of the usual formulation of survivability constraints. 

Although this paper is restricted to the case of cost functions 

which are step functions in contrast to the proportionate cost func-

tions of the traditional approach to be found in the current literature 

on network analysis, procedures have been conceptualized, though not 

yet made operational, to handle problems where cost functions are the 

result of adding up 	step and proportionate cost functions. This 

may be of considerable practical importance in the handling of dynamic 

problems (the planning of capacity expansion over time) where both 

capital and operating costs have to be considered. 

It is to be noted that the problem discussed here deals with the 

demand for telecommunication facilities and not with traffic. A model 

has been developed and made operational, which does not start with the 

demand for facilities, but with traffic forecasts and translates them 

into demand for facilities, before proceding on the lines described above. 

This model introduces a distinction between the so called switching net-

work on the one hand and the facilities network on the other. The pre- 
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sent paper is, of course concerned with the facilities network only. 

Finally, an important extension of the models developed in this 

field will take account of the highly complex relations between the 

peak traffic demand and average traffic demand. Although some explo-

ratory work in that direction has been done, we have no concrete pro-

gress to report on here. 
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The coexistence of alternative transmission facilities for certain 

pairs of adjacent nodes means the presence of multiple links in the 
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network. Such a network can however be reduced to a simple graph 

by the use of "dummy nodes": see the description of "enlarged net-

work" in Section 6 below. 

3 • 	 See however Section 6 below. 

In the examples given here the units of these activities are uni- 

form throughout the network and are also the same as the discrete 

steps of capacity expansions. These units correspond to groups of 

circuits. Having non-uniform units would not affect the nature and 

in particular the computability of the approach proposed. 
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Figure 4: Solution for the demand pair 9-23 
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