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• A STUDY OF SPACE COMMUNICATIONS SPREAD-SPECTRUM SYSTEMS 

• Part 2 - Coding and Modulation 

• SUMMARY  0 
• Trellis codes are obtained for use with noncoherent m-ary FSK transmission. 

lb 	These codes give improved performance in additive noise but they do not 
require an increased bandwidth. The current task under Part B. of the work 

• statement - Coding and Modulation, is 
• 1. 	to investigate trellis-like codes to improve immunity to jamming. 
• For Phase 6, additional areas of investigation were identified: 

lb 	 2. 	to analyze and simulate the effects of the number of code states 
on performance of NCFSK trellis coded modulation. 

• 3. 	to investigate the utilization of estimated jammer information in 
• decoding. 

• This part, Part 2 of the Interim Report, reports the progress achieved in 

Ob 	this area since the work was started in October 1988. 

• Our goal in the current work is to find the performance of trellis-coded 
• noncoherent frequency-shift keying (NCFSK) as would be used in a hopped 

• spread spectrum system, in the presence of jamming and with a range of 

•
possible detection metrics or schemes that will be effective in a jamming 
environment. In particular, in our trellis coding, we expand the signal set Ob 	for noncoherently orthogonal M-ary FSK to 2M-ary noncoherent FSK. The tones 

• are uniformly spaced, but to avoid significant bandwidth expansion, 

• nonorthogonal tone spacing is permitted. For example, the tone spacing is 

•
reduced from the usual spacing of 1/T Hz to 1/2T, 1/3T or 2/3T Hz. The 
performance of 4-ary NCFSK with 2-state, 4-state and 8-state trellis coding 0 	is evaluated and the effects of tone spacing on error performance is 

• investigated. The decoding metric employed is the simple energy metric. 

• Performance in the presence of noise is analyzed and it is concluded that a 

•
coding gain of from 2 - 4 dB. can be achieved with a simple 4-state trellis 
code. The exact gain depends on the choice of signal spacing. 

0 
• In a jamming environment, the coding gains are much more dramatic. For 
• partial band noise jamming, a noncoherent receiver which is able to detect 

0 the presence of jamming in the band, is considered. The performance 

0 	analysis is based on the union Chernoff bound on the probability of bit error. The bound has been extended to take into account the fact that the 
• signals are not orthogonal. A transfer function bound is derived for the 
• present case of trellis coding and noncoherent detection. Very substantial 
• performance improvements are indicated by use of trellis coding in worst 

case partial band noise jamming. Simulations have been carried out which 
yield performance within a fraction of a dB. of that predicted by the 

• bounds. A practical self-normalizing decoding metric is shown to give 
• performance very close to that predicted by the idealized jamming bound 

• considerations. There is significant improvement in a 4-state over a 2- 

0 	state code, but little improvement is seen in going from 4-state to 8-state 
codes. 

•  • • • • • 
• -1 - 
• • 



A STUDY OF SPACE COMMUNICATIONS SPREAD-SPECTRUM SYSTEMS

Part 2 - Coding and Modulation

Statement of Work:

A previous contract identified possible issues to be investigated in

three areas:

A. Uplink Synchronization

B. Coding and Modulation

C. Surface-acoustic Wave Block Demodulation.

In particular, previous coding and modulation work obtained trellis codes

for use with noncoherent m-ary FSK, that give improved performance in

additive noise and do not require an increased bandwidth. The task under

Part B. Coding and Modulation starting with Phase*5 of the Contract, was:

1. to investigate trellis-like codes to improve immunity to the three

types of jamming: partial-band noise, tone and pulse jamming.

For Phase 6, additional areas of investigation were identified:

2. to analyze and simulate the effects of the numberof code states

on performance of NCFSK trellis coded modulation.

3. to investigate the utilization of estimated jammer information in

decoding.

This Final Report summarizes the progress achieved in Coding and

Modulation since the contract started in0ctober 1988. The general analysis

technique was reported in an earlier Interim Progress Report [1]. It is

included here for completeness and since the final report includes

simulation results that should be compared with theory. In addition, in

this final phase, error bounds that are significantly tighter than those

reported in [1] are derived and evaluated.

I. INTRODUCTION

The use of spread spectrum communications to combat jamming is well-

known and much of the on-going research in military satellite communications
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(MILSATCOM) has been focused on frequency-hopped systems [2-17]. Hopping 

the carrier frequency over a wide band results in an improved error 

performance against a simple jammer which must distribute its power thinly 

over a wide band in order to jam the signal. However, it is well-known [2, 

vol.II, PP.73-94; 2, pp.574-582 and pp.597-602] that the performance of 

uncoded frequency-hopped systems can suffer degradations of the order of 30 

- 50 dB at typical operating points when confronted with more sophisticated 

jammers such as, for example, a partial band noise jammer which jams a 

fraction of the bandwidth and brings greater degradation to the 

communications system. Worst-case partial band noise jamming involves 

balancing the probability of jamming a given hop against the effective 

strength of jamming power for a fixed total jammer power. 

Under worst case partial band noise jamming, the choice of modulation 

alone makes little difference in error performance [4, 5, 6 p.173]. The use 

of coding is extremely important when considering the worst case performance 

against an intelligent jammer. Evaluation of the coded error probabilities 

for antijam communications systems shows that gains of the order of 30-40 dB 

can be obtained over uncoded systems [7-10]. Besides error correcting 

coding [7 - 15], diversity [5,9,14,15] and interleaving [14] have also been 

utilized to enhance the protection against partial band or pulsed jammers. 

When coding is employed, various decoding metrics [9,16] for use in a 

jamming environment have been devised. The most popular decoding metrics 

under study are: the hard decision metric with and without side information 

[8,11], and Viterbi ratio threshold techniques with erasure and quality bits 

[12]. More recently, a robust metric called the square-law self-normalized 

energy metric [9,10,17] has also received attention. Results on its 

performance will be given in this report. 

The ability to detect or correct errors can be provided only by the 

transmission of additional redundant bits and thus by lowering the effective 

information rate per transmission bandwidth. Conventional hard decision 

encoders and decoders for error correction operate on binary, or more 

generally m-ary, code symbols transmitted over a discrete channel. However, 

when modulation and error-correcting coding are performed in the classical 

independent manner, disappointing results are obtained. The reason has been 

pointed out to be irreversible loss of information in the receiver due to 
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independent hard symbol decisions made prior to decoding [18]. When 

coherent detection is utilized another problem is that mapping of code 

symbols of a code optimized for Hamming distance into nonbinary modulation 

signals does not guarantee that a good Euclidean distance structure is 

obtained [18]. 

Massey [19] was the first to show that considerable performance 

improvement could be obtained by treating coding and modulation as a single 

entity. Trellis-coded modulations, so named by Ungerboeck [18,20,21], then 

evolved as a combined coding and modulation technique for digital 

transmission over band-limited channels. It can be shown that, in order to 

get a significant coding gain, it is sufficient that k bits be coded into 

k+1 2  
channel signals. The number of channel signals for uncoded modulation 

is then doubled. Redundancy is provided by the signal-set expansion and in 

the case of coherent transmission, more bandwidth is not required than for 

the equivalent uncoded scheme. Coding gains can be obtained with moderate 

additional complexity. 

Early work on trellis-coded modulation [18-23] was primarily on 

multilevel and multiphase modulations, in order to achieve coding gain 

without the accompanied sacrifice in band efficiency. Coherent detection 

was the primary detection scheme considered throughout the development of 

Ungerboeck's trellis-coded modulation. In the context of frequency hopped 

systems in MILSATCOM, noncoherent detection is required due to the 

difficulty of maintaining a coherent carrier phase through the frequency 

hopping and dehopping processes. In an earlier report [24], work on 

frequency-hopped FSK with trellis coding and the transmission of 

combinations of orthogonal FSK tones to avoid any bandwidth expansion, was 

reported. Significant coding gains were obtained for transmission in 

additive noise. Results reported were obtained by simulation with only a 

few analytical results, as the signals were correlated multiple tones for 

which there are not explicit detection expressions. Our goal in the"current 

work is to find the performance of trellis-coded noncoherent frequency-shift 

keying (NCFSK) as would be used in a hopped spread spectrum system, in the 

presence of jamming and with a range of possible detection metrics or 

schemes, as mentioned above. We wish to avoid exhaustive simulation in the 

search for good codes and in the examination of a range of techniques for 



••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

.•
••

••
••

••
••

••
• 

decoding in a jamming environment. Thus we have chosen to examine trellis 

coding for the single-tone NCFSK modulation format, which is easier to 

analyse. As well, this is the modulation commonly proposed for hopped 

spread spectrum systems. 

In this report we consider expanding noncoherently orthogonal M-ary FSK 

to 2M-ary noncoherent FSK. Nonorthogonal tone spacing is considered to 

avoid significant bandwidth expansion, and the tones are uniformly spaced. 

For example, in one case the tone spacing is reduced from the usual spacing 

of 1/T to 1/2T Hz, and 2 subsets of orthogonal FSK signals are obtained. 

The bandwidth expansion is small, tending to zero as M increases. For 

simplicity in analysis, the performance of 4-FSK with 2-state, 4-state and 

8-state trellis coding will be evaluated. The effects of tone spacing on 

error performance is investigated. The soft decision decoding metric 

employed is the simple energy metric. For partial band noise jamming 

analysis, a decoder with perfect side information is considered. The 

performance analysis is based on the union Chernoff bound on the probability 

of bit error. A transfer function bound [25-27] is derived and used to 

obtain the union bound. Performance improvement by the use of trellis 

coding under the usual additive white Gaussian noise will be presented 

first. Performance under worst case partial band noise jamming will then be 

presented. In the consideration of convolutional codes in jamming, analysis 

assuming "perfect side information" is well-known. Although these analyses 

show the potential of schemes that take into account the jamming, there is 

concern that practical implementations will fall short of this promise. To 

respond to these concerns, we include results on a self-normalizing decoding 

metric derived simply from the usual receiver observations that are passed 

to the decoder. 

Work in the first phase or year of the contract consisted of 

theoretical work which indicated that substantially enhanced performance 

could be obtained with trellis coding of an expanded noncoherent signal set 

where the signal spacing had been reduced so that the frequency allocation 

required is not significantly incPeased. The theoretical work as in most 

coding work, was based on the derivation of performance bounds. In the 

second year or most recent phase of the contract, work has been focused on 

evaluation of performance in the presence of jamming and a system simulation 
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was implemented. New tighter bounds on the performance have been derived. 

The results of the simulation have corroborated the conclusions based upon 

bounds and allowed us to conclude that the order of performance promised by 

our "perfect side information" analyses , can be achieved with simple 

practical receiver configurations. As well, we are able to simulate jamming 

situations and receivers that are not amenable to analysis. We have 

investigated specific system parameters such as the number of states in the 

codes, as specified in the contract. Our work has stressed performance in 

full-band and partial-band jamming and work on tone and pulse jamming 

remains to be carried out. 

II. SYSTEM DESCRIPTION 

The frequency-hopped system under consideration employs noncoherent 

frequency-shift-keying (NCFSK) with trellis coding. A system block diagram 
is shown in Fig. 1. The binary bit stream goes into a rate k/k+1 trellis 

encoder. The trellis-coded symbols are mapped in groups of (k+1) bits, into 

an m=2k+1  level NCFSK signal set according to the set partitioning method 
[20]. The carrier frequency of the NCFSK signal is hopped pseudorandomly by 
the frequency hopper and transmitted. In the receiver, the received signal 
is dehopped by the frequency dehopper to its original signaling frequency. 
We consider the hopping rate to be the same as the symbol transmission rate, 
in this report. Time diversity is not considered here. For NCFSK, the 
optimum detector is a bank of envelope detectors (or energy detectors which 
give the square of the envelope) matched to each of the NCFSK signaling 
frequencies. The energy detector outputs together with any side information 
about the jamming derived by the receiver go to the trellis decoder, which 
is simply a maximum metric decoder (e.g. Viterbi decoder). The transmitted 
data is decoded according to the decision rule employed. 

It should be noted that based upon a new description of trellis codes 
by Calderbank and Mazo [22], the two step processes of specifying an 
underlying trellis code and mapping the output code symbols into the signal 
constellation based on the set partitioning rule, can be combined into a 
single step [23]. The trellis-coded NCFSK signal can be easily produced by 
a voltage-controlled oscillator (VCO) with the control voltage being a 
trellis-coded m-ary level signal. The FSK tone spacing is set by the 
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Figure 1: Frequency - hopped trellis - coded noncoherent FSK 
system block diagram. 
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amplitude of the trellis-coded modulating signal and the frequency 

sensitivity of the VCO. 

Consider an m-ary NCFSK signal set with uniform tone spacing of A Hz. 

For convenience let S 1 to Sm denote the m NCFSK signals as shown in Fig. 2. 

During any signaling interval, one of the NCFSK signals in the signal set is 

transmitted. The signals are given by 

S 	/2P cos [2w f i t 	e] 	1<i<m, o <t< T 	 (1) _ _ 

where P is the signal power, f is the i th signalling frequency and 6 is 

the noncoherent carrier phase of the i th signal. With the signals ordered 

in the way shown in Fig. 2, the frequency separation between two signals S i  

and S. denoted by à.l  is given by j 

li-j1 à 	 (2) 

Thecross -correlationcoefficientpofS.and Sj is given by [28, p.148]. ij 

p ij n T A li 

1 When the tone spacing à = - IP—I = 0 for all i * j, and all NCFSK tones T 

are mutually orthogonal. This gives an expanded signal set with the best 

error performance. However, the bandwidth occupancy of this orthogonal 

NCFSK signal set is approximately twice that of the uncoded case. To avoid 

bandwidth expansion, we consider expanding the uncoded (m/2)-ary NCFSK 

signals to m-ary NCFSK signals with nonorthogonal tone spacing. According 

to the set partitioning rule [20], the m-ary signal set is successively 

partitioned into subsets of signals. The frequency separation between 

signals is doubled after each level of partitioning as shown in Fig. 2 for 

m=8. 

At the £ th level of set partitioning, the frequency spacing of signals 

in each subset is 2 £ à Hz. In particular, if à . 1/2 1T all signals in each 

-8- 
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subset are orthogonal and there is no advantage in partitioning the signals 

any further. 

For m-ary NCFSK in additive white Gaussian noise, the optimum 

noncoherent detector is a bank of m envelope or energy detectors. The 

.th 
square of the j 	envelope detector output is the energy of the received 

signal at the j th  signalling frequency. Let U 1 , 	Um be the outputs of 

theenvelopedetectors.GivenS.was transmitted, the output of the j th 

envelope detector is [28, p. 206] 

u. j * 1, 	i ' j E [1,111] ' I p ij  /É 	+n  1, 

(5) 

U. - IA-  + n I 
1 

where p 	is the complex cross-correlation coefficient of S i and S
j' 

E is ij 

thesignalenergyand.are complex-valued Gaussian random variables with nj  

zero mean and variance N o/2. 

The probability density function of the output for the j th envelope 

detector given S
i was sent, is a Rician-distributed random variable. If U. 

is normalized by (2/N ) 1/2  , the density is given by [28, p.206]. 

2 )  p(U.IS
i 
 ) - U. exp{-[U./2 + lp ij  I

2
E/N o  ]1 I o  (U. [2E ip. j

2 
 1 /N o ]

1/2  j; u.>0 
J 	J 	J 	 j 	i 	J 

	

= 0; 	u. < 0 	 (6) 
J 

where Io is the zeroth order modified Bessel function of the first kind. 

For the i th envelope detector, the probability density function is given by 

2 
p(U i lB i ) 	Ui  exp{- [U/2 + E/No]l I0 (U1 {2E/N0 ) 1/2 ); u i  > 0 

- 0;  u. < 0. 	 (7) 

To avoid the irreversible loss of information caused by hard decisions 

made in the demodulator prior to final decoding, soft-decision decoding is 

employed. (If results for the simpler case of hard-decisioning are 

required, they can be obtained as well.) The maximum-likelihood decision 



• • • • 
• rule for noncoherent detection and coding, requires a metric that includes a 
le 	zeroth order modified Bessel function and also the noise spectral density 0 
•

which must be known by the decoder. A more practical decoding metric is the 

• energy metric, which is the square of the envelope detector output. This 

• energy metric is the most commonly used metric for coded noncoherent MFSK 
systems [2, vol.I.p.211] and it approximates the optimum metric for high 

le 	signal-to-noise ratio. 

• An effective jammer against an uncoded frequency-hopped spread spectrum 

•  
equivalent broadband noise spectral density lb 

lb N = - 	 (8) J W • 
• The jamming noise power spectral density over the jammed bandwidth of aW Hz 
• is then 

lb •  N' = 	 (9) • J a 

•
and zero for the rest of the system bandwidth. 

• Assume that each hop is independent of other hops and equally likely to 

• be in any part of the total spread spectrum bandwidth. The probability of a 

hopped signal being jammed is  Œ. Also, assume that during any hop interval 
lb the whole set of m NCFSK tones is either totally in the jammed band or not. lb 
• Define a binary jammer state random variable Q, where Q=1 indicates 

411 	that the transmitted tone hopped into the jammed band, while Q=0 indicates 
• that it hopped outside the jammed band. 
lb 	 P[Q=1] = a 
lb P[Q=0] = 1 - a 	 (10) 

•
lb 

This is the jammer state information that may be available from the 

• receiver. In the section on simulation, we will present a receiver that 

• attempts to generate this information. 
lb 	 For the purposes of our early performance analysis, we will assume that 1P 
lb 	the receiver knows with certainty whether each hop is jammed or not. 

• Possible methods for deriving this information include implementing 

• automatic gain control in the receiver, which may be monitored to determine • • • • • • -11 - • 

• system is an average-power-limited partial band jammer [7]. We consider a 

• jammer with power J that transmits Gaussian noise with constant power 
lb 	spectral density over a fraction a of the system bandwidth W. We define an 

• • 
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whether jamming power is corrupting a given hop [2, vol.II p.97]. Another 

method suggested by Trumpis [30] for orthogonal noncoherent FSK is to 

declare a hopped signal to be jammed when more than one energy detector 

output goes high. When nonorthogonal FSK tone spacing is employed the 

Trumpis approach may not be as reliable, since nonorthogonal energy 

detectors will also have output. However, if à - 1/2T, two sets of 

orthogonal tones are obtained, in which case, there is always at least one 

other tone orthogonal to each transmitted tone. A hopped signal is declared 

to be jammed when two or more orthogonal energy detectors have high output. 

The metric considered in the analysis is the suboptimum energy metric 

with perfect side information [2, Vol.I, p.216]. For an input X and channel 

output Y, it is given by 

m(Y,X;Q) 	o(Q) ex 	 (11) 

where e(Q) is a weighting function depending on the jammer state variable Q. 

For example, the function can simply take on one value for Q-0 and another 

2 value for Q-1. eX= UX is the energy detector output (or the square of the 

envelope detector) corresponding to input X. The analysis includes the case 

of transmission in additive white Gaussian noise or full-band jamming. 

However, for the trellis coding of nonorthogonal signals, new theoretical 

results must be obtained, as previous work [2, Vol.I, p.216] has been for 

convolutional codes with orthogonal signalling. Simulation results will 

include other metrics. 

III. PERFORMANCE ANALYSIS 

For trellis-coded coherent multilevel and multiphase modulations, the 

error performance at high signal-to-noise ratio is specified by the minimum 

Euclidean distance between any pair of paths through the trellis. An 

asymptotic coding gain is usually defined as the ratio of the minimum 

Euclidean distance of the trellis code to the minimum distance between 
signals in the uncoded situation [18,20,23]. For the trellis-coded 

noncoherent FSK modulation with a soft energy metric and the decision rule 
considered here, the union Chernoff bound on bit error probability is 
evaluated. 

-12- 



11 
Although there are situations where the Chernoff bound may not be 

•
11 

particularly tight, it has the advantage of being relatively easy to compute 

• and of decoupling the channel influence from the code itself [9]. Our later 

• simulation results will indicate the bounds tend to fall within a dB of the 

• performance at moderate signal-to-noise ratios. The Chernoff bound is 
11 	widely used to obtain an upper bound on error probabilities for 

convolutional codes and block error-correcting codes with a maximum metric 

• decoder (eg. a Viterbi decoder) using an arbitrary metric. This method has 

• been shown to provide useful and reliable information [31]. Usual coded 

• systems use orthogonal signals and the Chernoff bound on the pairwise error 11 	probability then depends on only one parameter. When nonorthogonal signals 
• 
•

are employed, we will see that the Chernoff bound will depend on a number of 
• parameters with each parameter corresponding to a pair of signals with a 

• different cross-correlation coefficient. 
•  
le 	3.1 Chernoff Bound on Pairwise Error Probability 
le 
• Let X = (X 1 ,X 2' ...,X N ) be the transmitted code sequence of length N. 

• The channel output sequence is denoted by Y = (Y 1 ,Y2 ,...,YN ). In addition, •  
• a corresponding jammer state information sequence is denoted by 

le Q =  
• 
• The metric used for decoding is denoted by m(Y,X;Q). The maximum 

11 
• metric decoder chooses X = (X 1 ,X2' ...,X N ) which corresponds to the maximum 

• 
• metric among all possible coded sequences. Error occurs whenever X * X with 
• probability given by 

I> 
• P(X X) = Pr 	m(Yn ,Xn ;Qn ) 	m(Yn ,Xn n _ 	 ;Q ) 1 X 
• n=1 	 n-1 
• 
• = Pr {î [m(Yn ,Xn ;Qn ) - m(Yn  ,Xn  ;Q )] > 01X1 
• n=1 

• The pairwise error probability for this symbol-by-symbol noncoherent 
011 	detection with soft decision metric decoding, cannot be evaluated except for 

• the case when all the m NCFSK signals are orthogonal. 	Consequently, we 
have to resort to the Chernoff bound [2, Vol.I, App. 4A] on the pairwise 11  • •  

•  
-13- • • • 
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error probability, as commonly utilized in performance analysis of coded 

systems. 

Applying the Chernoff bound [2, Vol.I, App. 4A], we have 

P(X 	X) < E {exp 	[m(Yn ,Xn ;Qn ) - m(Yn ,Xn ;Qn )]) 1 X 
n-1 

-EfIlexp (x [m(Yn ,Xn ;Qn ) - m(Yn ,Xn ;Qn )]) IX} n=1 

IT Efexp (A [m(Yn ,Xn ;Qn ) - m(Yn ,Xn ;Qn)])1X1 n=1 
(12) 

for any A > O. 

For Xn = Xn it is clear that 

E { exp (A [m(Yn ,Xn ;Qn ) - m(Yn ,Xn ;Qn )]) I X  J = 1 

For Xn * Xn the expected value depends on both Xn and Xn when nonorthogonal 

signals are employed. 

Let Xn=j and X-i, and let p be the crosscorrelation coefficient of the 

corresponding,signalsS.and  S. 

For the energy metric given by (11) we have 
••• 

X[m(Y '  X ' .Q ) - m(Y X .Q n 	n' n' n D(adt,p) = E 	n n 	
XIX  *x n 	n 

Xc(Q )[e. -e 4 ] 
- E fe 	n 	J  ' li I j * i 

Ac(1)[ei -e i
]l 
	 Xc(0)[e. - e. ]1 J 	3. = a Ele 	 11, Q-11 + (1-a) Ele 	 i, Q=01 j * i 

(13) 

= a D'(À,p,q=1) + (1 - a) D'(X,p,q-0) 	 (14) 

Ac(q)[e.-e 1 
J where 	D'Ot,p,q) - E le 	 i i, Q-q I j * i 	 (15) 

D'(A,p,q) is evaluated in Appendix A. 

-14- 



We wish to evaluate the performance of the noncoherent trellis codes in

the following three cases:

1. additive white Gaussian noise or full-band noise jamming,

2. partial band noise jamming with jammer side information,

3• partial band noise jamming without jamming information.

For performance in additive white Gaussian noise or full band jamming

set a= 1 in (14), in which case the second term vanishes.

For partial band jamming when perfect side information is available,

the metric can be chosen with c(O) large enough so that the second term in

the (13) is negligible and c(1) = 1/2 chosen for normalization [2, Vo1.I,

p.216]. Then D(a,a,p) becomes

D(a,a,P) = a D'(11,P,1)Ic(1)=1/2 (16)

for 0 < ,1 < 1.

For the case of partial band noise jamming without jamming information,

c(1) = c(O) =1/2. Then the first term in (13) is given by (16). For the

expected value when Q=O, that is the signal is not jammed, in (15) we simply

have ej = IpI2E and ei = E when thermal background noise is neglected.

Hence,

E le
[ej-ei]

i, Q=0 } j x i

= E {eac(0)[IPI 2E-E]}
(17)

For m-ary NCFSK with uniform tone spacing of A Hz, there are (m-1)

different frequency separations between the various pairs of tones. When

orthogonal tone spacing is used (A is an integer multiple of 1/T) I pI = 0

for all tone pairs. There is only one parameter D(a,a) for orthogonal

signaling. When nonorthogonal tone spacing is employed there are (m-1)

different values of (pI resulting in (m-1) different D(a,a,p). Define

Dk(a) = 0<min
^<1

D(a,,1,pk)

where

sin7rTkA
IPkI _ Tr T k A

(18)

(19)

The Chernoff bound on pairwise error probability can be rewritten as
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, 	m-1 	Wk(X,X) 
p(X 4. X) < H  [D(a)]  

k=1 

where Wk  (X,X) is the number of places where IXn - Xn i = k * 0, n = 1,2,..,N. - - 

3.2 Union Chernoff Bound 

These pairwise error probabilities are the basis of bit error bounds 

for our trellis-coded NCFSK systems. A union bound is used to upper bound 

all the error events that can occur. Let a(X,X) denote the number of bit 

errors occurring when X is transmitted and X is chosen by the receiver. If 

p(X) is the probability of transmitting X, then the coded bit error bound 

has the form 
• 

Pb 	Î Î 	a(X,X) P(X) p(X 4- X) 

X, X e 

m-1 	W (X,X) 
< 	 a(X,X) p(X) 	EDk (a)] k  — 	 (21) 

k=1 X, X e 

where 	is the set of all coded sequences. 

An efficient method for evaluating the union bound is the transfer 

function technique [25, 27]. Since the output of the trellis encoder is 

determined by the input bit sequence and the state of the trellis encoder, a 

state diagram is a more compact representation of the code than the trellis 

diagram. For the performance evaluation of our trellis-coded NCFSK, the 

	

state transition branches are labeled with LI  I i  D 	L and I are just dummy 

variables and Dk denotes the parameter given by (18) when the incorrect and 

correct channel signals associated with the state transition are separated 

by  kt Hz. The exponents t and i denote the number of channel symbols and 

the bit error corresponding to the state transition. 

Let D denote the (m-1)-tuple of D k (a) given by (18). The transfer 

function denoted by T(L,I,D) derived from the state diagram, enumerates all 

possible pairwise error probabilities in a closed form. 

-16- 
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For trellis codes which are in general nonlinear, the probability of 

error for deciding an incorrect path is dependent on the correct path. 

Consequently, one cannot assume the all-zeros code sequence to be the 

transmitted code sequence, as is usually done for linear codes. Biglieri's 

method [26] of pairwise states or product states involves a generalized 

state diagram defined over an expanded set of product states. The 

generalized transfer function so derived enumerates all possible incorrect 

paths for all possible correct paths. For an n-state trellis this method 

requires a product state diagram of n2 states or equivalently a n2xn2 state 

transition matrix for computing the transfer function. Consequently, this 

method is useful for trellis codes with only a small number of states. s  

Another method suitable for trellis codes having certain symmetries 

such as the Ungerboeck codes and other codes based on set partitioning, has 

been derived by Zehavi and Wolf [27]. This method requires a modified state 

dragram consisting of n states for a n-state trellis code. It is therefore 

more computationally efficient than the product state method and is employed 

here. 

The union Chernoff bound on bit error probability is then given by 

1 	a T 	 L=2-k b — 2 k âI 
1=1 

with a factor of 1/2 added to improve the Chernoff bound [2, Vol.I. App.4B]. 

The worst case partial band noise jamming performance is then obtained by 

maximizing pb  over 0<a<1 as 

L=2
-k 	 (23) 

1=1 

It should be noted that the maximizing value of a is not necessarily equal 

to the worst case a, because a bound rather than an equality is maximized. 

3.3 Transfer Functions of the Specific Codes 

In this section the particular trellis codes investigated, and their 

transfer functions are presented. It was decided to focus investigation on 

4 -ary noncoherent frequency-shift-keying as the modulation format. Trellis 

coding with 2-state, 4-state and 8 -state trellises have been studied. 

Nonorthogonal NCFSK tone spacing of 1/3T, 1/2T and 2/3T have been 

(22) 

max 1 1 â 
WC 	0<a<1 	F.<  -51  T (L,I,D) b 	—  
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considered together with orthogonal spacing of 1/T. Union Chernoff bounds 

on bit error probability were found when the system is under thermal noise 

(full band jamming) and worst case partial band noise jamming, using the 

theory outlined above. 

3.3.1 	4-NCFSK with 2-state trellis coding 

The binary input sequence is coded into a 4-NCFSK signal by a rate 1/2 

2-state trellis encoder. Fig. 3 depicts the signal set partitioning, the 

signal assignments to the state transitions and the modified state diagram. 

From the state diagram the following state equations are obtained. 

T(L,I,D) - 2 L D 1  x i 	 (28) 

x i 	L I (D 1 4.D3 ) x l  + 2 L I D2 	 (29) 

Solving (28) and (29), we obtain the transfer function given by 

4L2 ID 1 D2  T(L,I,E) 
1-L I(D 1 +D3 ) 	 (30) 

for this 2-state trellis coding. 

3.3.2 	4-NCFSK with  a-state trellis coding 

The set partitioning of the 4-ary NCFSK signals remains the same as for 
2-state trellis coding. With a 4-state trellis, there are more state 

transition branches and Ungerboeck's rules 2) and 3) given in [19] can now 

be simultaneously satisfied. The signal set partitioning, assignment of 

signals to transition branches and the modified state diagram for this 4- 

state trellis coding, are shown in Fig.4. 

From the state diagram, we get the following state equations 

T(L,I,D) - 2 L D 2x0 	 (31) 

• (32) 

xb 	L I (D 1 +D3 ) xa  + 2 L I D i xb 	 (33) 

xc  . 2 L D i xa  + L (DeD3 ) x b 	 (34) 

Solving (31) to (34) yields 
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3.3.3 	4-NCFSK with 8-state trellis coding 

Again, the set partitioning of the 4-ary NCFSK signals remains the same 

as for 2 and 4-state trellis coding. With an 8-state trellis, there are 

even more state transition branches and equations, which will be indicated 

below for completeness. The signal set partitioning and the assignment of 

signals to transition branches are shown in Fig. 5. The modified state 

diagram for the 8-state trellis coding, is shown in Fig.6. 

From the state diagram, we get the following state equations 

T(L,I,D) = 2 L D 2x 4 	 (36) 

X i  = 2  L I D2  + 2 L  I x4 	 (37) 

x 2  = 2 L D i x l  + L (D 1 + D3 ) x 5 	 (38) 

x 3  = L I (D 1 + D3 ) x l  + 2 L I D 1 x5 	 (39) 

x 4  = 2 L x 2  + 2 L D 2x 6 	 (40) 

x 5  = 2 L I D2x 2  + 2 L I x 6 	 (41) 

x 6  = 2 L D 1 x 3  + L (D 1 + D3 ) x 7 	 (42) 

x 7  = L I (D i + D3 ) x 3  + 2 L I D 1  x7 	 (43) 

Solving (36) to (43) yields 

4 L2  I D
2
2 
 C

N  
T(L,I,D) - 	 (44) 

CD - 2 L I C
N 

where 	CD = AD BD 	 (45) 

C
N 

= 4L
2
D

1
A
D
B
D 

+ 2L
2
(D

1
+ D3)ADBN + 2L

2ID 2 (D 1
+ D

3
)ANBD 

+ 4L
2ID 1 D2ANBN 

B
N 

= 4L
2
ID 1 D2AD + 2L

2
I
2
(D

1
+ D3 )AN 

B
D 

= [1 - 2L
2ID2 (D 1

+ D3)JAD - 4L
2
I
2
D

1
AN 
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IV. SYSTEM PERFORMANCE EVALUATION 

In this section the performance of frequency-hopped trellis-coded 4-ary 

noncoherent frequency-shift-keying is evaluated. A 4-ary modulation was 

chosen to keep the initial computations relatively simple and to keep 

simulation times short, hopefully. Preliminary consideration of higher 

order modulations such as 8-ary NCFSK, lead us to anticipate similar 

performance improvements. Trellis coding with 2-state, 4-state and 8-state 

trellises have been investigated. Nonorthogonal NCFSK tone spacing of 1/3T, 

1/2T and 2/3T have been considered together with orthogonal spacing of 1/T. 

Union Chernoff bounds on bit error probability have been computed using the 

theory presented above and the results compared with the simulations. 

Performance has been evaluated in which the system is in thermal noise or 

full-band jamming, and has been evaluated for worst case partial band noise 

jamming. . Results are presented for performance with and without coding, and 

with and without the use in the decoder of information on the jammer derived 

in the receiver. 

4.1 Performance in Additive Noise 

We first examine the performance of the coded system in additive 

Gaussian noise. The union Chernoff bounds on bit error probability for 4- 

NCFSK with 2-state trellis coding with tone spacing A= 1/3T, 1/2T, 2/3T and 

1/T were evaluated and are plotted in Fig. 7. In the simulated system as 

indicated in Fig.1, the samples from the energy detectors were fed to a 

Viterbi decoder. The best performance is obtained when all the tones are 

orthogonal with A - 1/T, as expected. 

To avoid large bandwidth expansion, the use of nonorthogonal tone 

spacing has been investigated. For A - 1/3T, the bandwidth occupancy of the 

coded 4-NCFSK is the same as (or slightly less than, depending on the 

bandwidth criterion used) that of the uncoded orthogonal binary NCFSK but 

the performance is worse by approximately 1 dB. As the spacing is increased 

the performance improves. For example, if a spacing of à - 1/2T is used, 

-24- 
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two sets of orthogonal tones are obtained in the trellis, and the 

performance is better than that of uncoded orthogonal binary NCFSK by about 

3/4 dB. The orthogonal spacing of à - 1/T yields the best performance with 

an improvement over the uncoded case by 2 dB. 

The simulation results indicate that the bounds predict the error 

performance at moderate signal to noise ratios, within a fraction of a dB. 

The performance of 4-NCFSK in Gaussian noise with 4-state and 8-state 

trellis coding, are presented in Figs. 8 and 9. Again, results for A = 1/3T 

1/2T and 2/3T show that the performance improves as the spacing is 

increased. Implementing a 4-state code brings a further improvement of from 

1.5 to 2 dB., depending on the particular spacing being considered. There 

appears to be only a miniscule improvement in increasing from 4 to 8 states. 

4.2 Performance in Partial Band Jamming 

In this section, the performance of the systems in noise jamming will 

be considered, where the bandwidth of the noise has been selected by the 

jammer to give the maximum error-rate: worst-case partial band jamming. The 

baseline performance of uncoded binary NCFSK in worst-case partial band 

jamming is also plotted in Fig. 10 for reference. Figs. 11, 12 and 13 give 

the performance of the encoded system with a Viterbi decoder, for 2, 4 and 

8-state trellis codes. The performance of the 2-state code is about 1 dB. 

worse than that of the uncoded system with orthogonal frequency spacing. 

However the 4 and 8-state trellis codes are about 2.7 dB. better than the 

uncoded system with orthogonal spacing. This improvement disappears at very 

low signal-to-jamming ratios. As well, there appears to be no significant 

improvement in going to an 8-state code. At the higher signal-to-jamming 
ratios where the trellis codes show improvement, the appears to be little 
degradation in using the narrower nonorthogonal signal spacings. 

A very substantial improvement in performance is attainable if the 
receiver is able to estimate with reasonable accuracy the presence of 
jamming in the particular hop being received. Figs. 14, 15 and 16 indicate 

the performance that can be achieved if the receiver can pass to the decoder 
perfect information as to whether or not the hop has been jammed. Although 

there is improvement over binary NCFSK with the 2-state coding and perfect 
jammer information, the most substantial improvement comes with the 4-state 
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case partial band jamming using soft energy metric with no side 
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encoding. Little additional improvement is achieved with the 8-state 

encoder and receiver. 

At the higher signal-to-jamming ratios the improvements due to coding 

are very dramatic. In this region the bounds are tight and Table 1 

summarizes the coded performance under worst case partial band noise 

jamming, by tabulating the required signal to jamming noise ratio in dB to 

achieve a bit error rate of 10 -5 . The corresponding worst case fraction of 

the band jammed, a , which maximized the bit error rate is also listed. The 

use of nonorthogonal signals with tone spacing of 1/2T Hz rather than 1/T Hz 

for orthogonal signaling, increases the required signal to noise ratio by 

only 1/2 a dB or so. 

As an additional verification of the utility of the bounds,'a 

comparison was carried out of the worst case performance achieved with 

coding with perfect jammer side information, where the worst case fraction 

of the band jammed was calculated first using the bounds and the was 

determined by simulation. These results are shown in Figs. 17 to 19, for 

the various trellis encodings. Little difference is seen between the 

results obtained with the bound and with the simulations. 

The results for the Viterbi detection where there is perfect 

information with regard to the presence of the jammer, appear extremely 

attractive. However the question as to how close a practical receiver might 

come to this performance follows naturally. Thus we simulated a receiver 

which weights or divides the output of each energy detector by the sum of 

the energies in all the detectors, prior to passing the variables to the 

Viterbi decoder. The results for the various state codes are shown in Figs. 

20 -22. A comparison of the results for this self-normalizing metric with 

those for perfect side information are shown. The agreement is quite close. 

In some cases the performance of the self-normalizing metric appears better 

than that for perfect side information. However it should be borne in mind 

that the comparison is with perfect side information where the fraction of 

the band jammed has been chosen to achieve the worst possible performance 

when the jammer information is perfect. A different fraction would prove 

worse for the self-normalizing metric. As well, there are regions where the 

performance of the self normalizing metric changes significantly. This is 
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Tone 	Eb/NJ in dB 	worst case fraction 

Spacing 	for Pb < 10
-5 of jammed band, a* 

uncoded binary 

NCFSK 	 1/T 	 45.66 	 5.44 x 10-5  

2 - state 	1/3T 	 27 	 1.12 x 10-2 

trellis 	1/2T 	 26 	 9.60 x 10
-3 

code 	 1/T 	 25.17 	 9.12 x 10-3 

4 - state 	1/3T 	 19.2 	 6.63 x 10 -2 

trellis 	1/2T 	 18.0 	 5.56 x 10-2 

code 	 1/T 	 17.50 	 5.34 x 10-2 

Table 1: Performance of frequency-hopped trellis-coded 4 - ar y 
noncoherent frequency-shift-keying under worst case partial 
band noise jamming, decoding with jammer information. 
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due to the fact that to set a tractable number of trials in the simulation 

the fraction of the band jammed (a) was taken from the bound on performance 

for perfect jammer side information. These regions coincide with the region 

where that bound changes quite rapidly from the situation where the full 

band is jammed to the case where only a fraction of the band is jammed. 

V. CONCLUSIONS 

In this report a frequency-hopped system with trellis-coded noncoherent 

frequency-shift-keying is presented. It is proposed that k bits per baud be 

encoded into a set of m - 2 k+1 NCFSK signals. Nonorthogonal tone spacing is 

considered to avoid bandwidth expansion. Following Ungerboeck's signal set 

partitioning method, the m-ary signals are partitioned into subsets. Soft 

decision decoding with a maximum metric decoder is employed. The metric 

considered in this report is the energy metric with perfect information as 

to the presence or absence of jamming in the band. As well for the jamming 

environment, a metric that divides the output of each of the energy 

detectors by the sum of their outputs is considered. 

Performance analysis of the system under full-band and partial band 

noise jamming is presented. Theoretical results based on a new analysis of 

the Chernoff bound on pairwise error probability for energy detectors where 
the signals' are correlated, is presented. The union Chernoff bound on bit 

error probability is derived utilizing the transfer function bounding 

technique. For an m-ary nonorthogonal signal set, there are (m-1) 
parameters Dk  in the union Chernoff bound. The parameters Dk are formulated 

for partial band noise jamming and are used in the derivation of the 
transfer function bound on error performance, in place of the usual 

parameter D with squared distance exponent, which arises for coherent coded 
systems. For the codes under study, improvements in error performance and 
dramatic improvement in immunity to partial-band jamming is seen. 

System performance is evaluated for 2-state, 4-state and 8-state 
trellis codes with tone spacings of 1/3T, 1/2T, 2/3T and 1/T Hz. Results 

are presented for a system both in additive white Gaussian noise and in a 
worst case partial band noise jamming environment. The use of a reduced 



• tone spacing instead of orthogonal tone spacing of 1/T Hz, brings little 

degradation in error performance, but a saving in bandwidth occupancy. A 11 
• simulation of the system has been carried out and the theoretical results 

• using bounds come within a fraction of a dB. of the simulations. Jammer 

• side information derived in the receiver, yields substantial additional 

11 
11 	improvement in a jamming environment. The main part of this improvement can 

11 	be seen with a practical implementation which passes normalized variables to 
• the Viterbi decoder. 
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APPENDIX A 

CHERNOFF BOUND FOR NONCOHERENT M-ARY FSK 

A.1 Nonorthogonal Signalling  

To estimate the error performance for trellis coded M-ary noncoherent 

FSK, the Chernoff bound will be evaluated. In particular, we must evaluate 

(15) 

Ac(q)[e -  e 1
] D'(A,p,q) 	E le 	 1, Q-q 	* 1, 	 (A.1) 

where e i and e are the 
outputs of the i th and j

th  energy detectors. The 

expectation can be evaluated fairly directly in the case where the tones are 

orthogonally spaced since the inphase and quadrature components of the 

energydetectoroutputse.and e, are statistically independent [28]. 

However in the general case of nonorthogonal frequencies, of interest here, 

considerably more effort is required. Equation (A.1) appears similar in 

form to a moment generating or characteristic function of a Hermitian 

quadratic form of complex Gaussian random variables. Hence the technique 

used will be essentially that of finding such a characteristic function 

[29, p.590]. 

Suppose the i th signal is sent 

s i (t) 	A cos(w.t, + e i ) 	 (A.2) 

and the received signal is 

r(t) 	s1 (t) + n(t) 	 (A.3) 

where n(t) is white Gaussian noise with mean zero and power spectral density 

of No/2 watts/Hz. The complex random 
variable Z k associated with the 

kth energy detector, as shown in Fig. A.1, is 

Zk 	Xk + j Y k 	 (A.4) 

It will be convenient for analysis purposes to deal with normalized random 

variables 

c
k - 2 Zk/[NoT]

1/2
, 

and these normallized variables may be used without altering decisions or 

the receiver performance. Then, given that signal s i (t) was sent, the 

random variables 	have a mean 

(A.5) 



cos w t 

sin w t 

Fig. A.1 	The kth 
Energy Detector. 
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11, = E{ k } = [2 E/No] 1/2 p * 

4 k 

where E the energy in the signal is A2T/2, N is the single sided 

spectral density of the white noise in watts/Hz, and 

p = sin(wk w )T/(w
k
- w)T + j [1 - cos(wk  - w i  )T]/(wk w)T 	(A.7) 

In the calculation of the Chernoff bound, we will be dealing with the 

distribution of a Hermitian quadratic form of the random variables 	and 

i' 
given s(t) was sent. For notational simplicity, we will consider the 

vector 

ZT = [ 1 t 2 ] 

where T denotes the transpose. Then Z has a covariance matrix 

R = 1/2 EUZ - EtZ).] [Z - E{Zj] T 1 	 (A.9) 

= [1 

1 

The Matrix R has eigenvalues 1 ± 41. Thus a unitary transformation U 

can be formed, whose columns consist of the orthonormal eigenvectors of R 

1 	 1 

U = (1/e) 

IPI/P 	-IPI/PI 	 (A.10) 

T* U U = I 	 (A.11) 

where I is the identity matrix. The transformation U diagonalizes the 

covariance matrix R 

T* U RU - A 

T* R = UAU 

o 

1 - 4 11 	 (A.14) 

The problem of evaluating (A.1) can be viewed as that of evaluating the 

characteristic function of a Hermitian form 

T* f =ZFZ 	 (A.15) _ _ 
where in particular 

F= 

-50- 

(A. 6 ) 

(A.8) 

i 1 + 'pi 

A = 

0 

0 	-1 

01 1 

0 	- 1 

1 	0 I 
(A.16) { 



Z =UYW (A.20) 

The problem is solved by finding a transformation that simultaneously 

diagonalized both R and F. 	Suppose we factor A in the form 

* T 
A = Y Y 	 (A.17) 

{ (1 + 41) 1/2 0 

0 	(1 + 1 

41 ) 1/2 0 

0 	 41)1/2 

It can be verified directly that the transformation 

-1 T W 

yields a Gaussian random vector W whose covariance matrix is the identity 

matrix. The inverse of this transformation is 

where Y is the diagonal matrix with diagonal terms the square root of the _ 
corresponding diagonal terms of A 

(A.18) 

(A.19) 

and so the quadratic form (A.15) can be expressed as the Hermitian quadratic 

T* 
form 	f =WTW 	 (A.21) _ _ 
in the independent complex Gaussian variables W, 

T* T 	* 
where 	T =Y UFUY 	 (A.22) _ _ 	_ 
As before, the quadratic form (A.21) can be expressed in terms of a diagonal 

matrix 0 of the eigenvalues of T 

T =SOS 	 (A.23) _  
where again S is a matrix whose columns are the normalized eigenvectors of 

T. Thus with the transformation 

T* 
n = S w 
w = S n 

the quadratic form (A.21) is diagonal 

2 2 
n 

	

f = T*  (1) n = 	0.1n.1 
i=1 	1 1 

and the covariance matrix of n is the identity matrix. Finally, 

T* -1 T 
n -S Y UZ 
n i  . a i  +Je, Let 	 i = 1,2 

2 

	

2 	2 
Then 	f = 	0.(a. 	(3.) 

1 i=1 

and the probability density function of the als and qs is 

or 
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p(a1,a2,61,R2) (27r)-2 II exp(-{[ai- E{ai}]2+ Ca i- E{^i}]2/2)
i=1

(A.30)

We require E{exp(ac(q)f) which can be evaluated from (A.29) and (A.30)

to give-[29, p.593]

2

eXp(ac(q) I jE{rj i}I2 0i/[1 - 2ac(q)]

E{exp(,1c(q)f)} - i=1 (A.31)

2
II [1 - 2ac(q) ^i]

i=1

Further manipulation of the matrices [29,p.594] yields equivalent

expressions such as

E{exp(,1c(q)f)} = exp (ac(q) E{ZT*} [F-1 - 2ac(q)R*]-1E{Z}) (A.32)

I - 2ac(q) R F

The particular form evaluated in the calculations was (A.31). First the

eigenvalues of T were found

^12 = ± ( 1 - IPI 2)1/2

The terms E{n i} can be found from the relation

T* -1 T

(A.33)

E{n} = S ip U E{Z} (A.34)

and after making use of the fact =-^2, we end with the final expression

ac(q) E 01 IL1I2
01IL2I2

exp(
4 No 1 (1 - ac(q)^1) (1 + ac(q)^1)

E{exp(ac(q)f)}

1 - a2 c2(q) 0 2
1

where

and

with

L1 = p*(a + b) + (IPl/P) (a - b)

L2 = p*(a - b) + (IPl/p) (a + b)

a=(1 + Ipl)-1/2, and b =(1 - Ipl)-1/2

(A.35)

(A.36)
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lb 

lb • 
• A.2 Orthogonal Signalling  

0 
• In the case where the spacing between the NCFSK tones yields orthogonal 
lb 	signalling, the above derivation and results for the Chernoff bound 

•
simplify dramatically. Then 

• R -I-U- A 	 (A.36) 

• The eigenvalues of T are 
lb 	 (1) 	1, and cp 2 - -1  
lb 
0 	E{ ni } 	0, and E{n2 } - (2 E/N0 ) 1/2 	 (A.37) 0 
• and we have the final result 

lb 
•

exp(-Xe(q) (E /N 0 ) (1 4-  Xb(q)) -1 ) 
E{Xe(q)f} 	 (A.38) •  

lb 	
(1 - A 2 c 2 (0) 
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