

DENTIFICATION OF INDUSTRIAL COMPLEXES FROM THE INPUT-OUTPUT TABLES OF CANADA & THE U.S.A.

ANT OF REMONAL O

OCT 2

ECONOMIC ANALYSIS BRANCH PLANNING DIVISION

HC 115 L62

HC

262

IDENTIFICATION OF INDUSTRIAL COMPLEXES FROM THE INPUT-OUTPUT TABLES OF CANADA & THE U.S.A.

5

by

B.K. Lodh Economic Analysis Branch Planning Division, Department of Regional Economic Expansion.

> Ottawa February 6, 1974

OBJECTIVE OF THE STUDY & CONCLUSIONS

(A Brief Summary)

The purpose of this study has been to identify industrial complexes from the Input-Output Tables of Canada, 1961 and 1966 and the U.S.A. 1963. The main idea behind the relevance of industrial complexes has been the notion that in stimulating growth centres for regional development, certain specific technical interdependencies among industries qualifying for a complex become a sine-qua-non. The latter has been captured by a criterion of maximal interdependence of industries from the national input-output tables which for Canada (1961 and 1966) were supplied by the Input-Output Division, Statistics Canada and for the U.S.A. (1963) was obtained from the Survey of Current Business, November, 1969. The study highlights the following important features hitherto unknown or loosely couched in general terms:

(1) As a methodological device of isolating industries having maximal interdependence this study has proposed a unique approach which is directly related to the problem and which respects the original backward and forward linkages derived from input-output tables. The factor analytic approaches available in the literature on the identification of complexes distort these linkages.

(2) 100 complexes for both Canada & the U.S.A. are reported¹
1. See Tables A, B, C, pp 23-25.

here of which some twenty major complexes are further identified to be the dominant ones in both the economies. In Canada the major complexes are found to be in the nature of Steel Mills, Construction, Food and Beverage and Agriculture etc whereas in the U.S.A. the latter two types are also dominant (but Steel Mills is not).

- (3) The structure of complexes in Canada has not significantly changed between 1961 and 1966.
- (4) The study concentrates only on 165 goods producing industries in Canada and on 64 goods producing industries of the U.S.A. to the exclusion of 45 service industries of Canada and 23 similar industries of the U.S.A. Various experiments including service industries suggested only very round-about complexes which often begged interpretations and are, therefore, ignored.
- (5) Special industrial complexes starting with any given industries, christened as "Island Industry Complexes", are also an additional attraction of the study. Very often when questions like "what industries are associated with, say, breweries" are raised, for example in a feasibility study, our method helps to identify these industries both as suppliers and receivers.

(6) Never before the identification of industrial complexes

- 2 -

has been so exhaustive both in search as well as in detail for large disaggregated input-output tables.

The policy implications of industrial complex analysis in the context of regional development are significant. DREE's policy formulation in terms of grants to specific firms or industries may also be considerably tempered by these considerations. These are:

(i) If industry A (or firm A) is considered to be eligible for grants by some criteria of financial and/or commercial viability of A, then A's viability cannot be presumed to be judged by its own performance only but must share its performance in some proportions to the linkages it maintains with other industries (or firms therefrom). In other words the whole industrial selection procedure and the exploration of economic opportunities should have to be cast in terms of discovering a group of industries rather than individual industries at least insofaras they are technically related which is what the industrial complexes reveal.

(ii) If a particular region has specific resources, say gypsum, the industrial complex approach helps to render the best block of industries, directly and indirectly linked with it, that is suited to its technical viability. This block of industries can then be looked for in the region in terms of its domestic

- 3 -

production capabilities failing which the costs of imports may be calculated to evaluate the commercial viability of gypsum production in the region.

The above implications remain valid despite the fact industrial complexes are identified only from the national inputoutput tables since (a) regional input-output tables donot exist in the same detail one would like to have for meaningful results, and (b) regional input-output tables tell generally very little about technical linkages between industries which are better revealed by the national input-output tables.

The results of this study owe its origin and initial development to the Input-Output Division of Statistics Canada from whom subsequently the Economic Analysis Branch, Planning Division, Department of Regional Economic Expansion, took over the task. In the present form of this study, the Branch is grateful to the special services of Mr. J.S. Lewis of Regional Statistics, Research and Integration Division of Statistics Canada for providing various algorithms for testing complexes.

- 4 -

Table of Contents

Introduction	Pages 1- 3
Methods in Complex Analysis	3-10
The Method	11-15
Island Industrial Complex	15-16
The Data	16-19
The Empirical Results & Interpretations	19-33
References	33-36
Tables 1, 2 and 3 (100 Industrial Complexes for Canada & the U.S.A.)	

Appendices 1, 2 and 3.

.

IDENTIFICATION OF INDUSTRIAL COMPLEXES FROM THE INPUT-OUTPUT TABLES

OF CANADA AND THE U.S.A.

Introduction

Studies in the structure of production following the input-output methodology have been for a long time related primarily to the question of the inter-industrial dependence or hierarchy of industries or sectors. The latter has evolved into some approaches to 'triangulation' following the attempts by Leontief (1963), Chenery and Watanabe (1958) and later those by Helmstader (1964), Lamel, Richter and Teufelsbauer (1972) and Korte and Oberhoffer (1969, 1971). However, large disaggregated input-output tables rarely conform to the idealism of the triangularized hierarchy. There are sets of industries mutually related by backward and forward linkages to an extent that they represent coherent groups such that they remain relatively unrelated to the remaining industries in terms of transactions taking place in the input-output (I-0) tables. Such a possibility was recognised implicitly by the 'balanced growth' protagonists like Nurske (1953), Rosenstein -Rodan (1943, 1957), Scitovsky (1954) and Lewis (1956) for industrial development¹ at large and explicitly by Isard, Schooler and Vietorisz (1959), Simpson and Tsukui (1965), Streit (1969) and Czamanski (1972). It has been suggested that external economies exist and they arise out of technical interdependence of industries or sectors; this idea has also been used to explain agglomeration economies (Hoover, 1948, Hirschman, 1964, Isard, 1956, Lösch, 1952, Ullman, 1964, Richter, 1969). However, this paper will be addressed particularly to the first question, namely, how to identify sets or groups of industries from disaggregated I-O tables that have certain properties of maximal interdependence. In this vein an industrial complex in this paper will be defined as a group of industries that maximises a total linkage criterion, to be defined later, based on the backward and forward linkages derived from given I-0 tables. An outcome of this exercise is to show the existence 2 of different types of complexes

- The first two authors stress balance in demand whereas the latter two stress balance in supply. See Hirschman (1964, pp 50-51).
- 2. This has been also noted by Simpson and Tsukui (19) where decomposability i.e. existence of separable submatrices (which are almost akin to our definition of complexes) has been their prime concern. However their procedure of decomposition does not seem to follow any optimization criterion, howsoever postulated. Moreover their approach is based only on the technical coefficients, aij's, and not on aij's which we have encompassed in our subsequent discussions.

- 2 -

that are likely to arise in large I-O tables which contrast with the conventional results of 'triangulation'. The basic data of our study refer to the input-output (I-O) tables of Canada, 1961 and 1966, and the I-O table of the U.S.A. 1963. Section 1 of this paper deals with a review of the existing procedures together with a skeleton of the methodology used in the study; Section 2 provides the data with their implications; Section 3 offers various interpretations of the derived complexes.

1. Methods in Complex Analysis

Generally the procedures for deriving industrial complexes from I-O tables stem from the following four coefficients as defined by (1) and (2) that pertain to any pair of industries, i and j.

$$a_{ij} = \frac{A_{ij}}{V_j}, \quad a_{ji} = \frac{A_{ji}}{V_i}, \quad \dots \quad (1)$$
$$a_{ij}^* = \frac{A_{ij}}{V_i}, \quad a_{ji}^* = \frac{A_{ji}}{V_j}, \quad \dots \quad (2)$$

and
$$V_i = \sum_{i=1}^{P} A_{ij} + F_i$$
 ... (3)

Coefficients given by (1) are the usual Leontief backward linkages and those by (2) are the forward linkages.

- 3 -

There are, however, other alternative ways of defining linkages. For example, instead of having a denominator of V and V in (1) and (2) one can use V_i^* and V_j^* where V_i^* = = \leq_{Aij} . Ž Aij and V The coefficients then derived will be different from those in (1) and (2) as final demands are left If final demands are considered important as in Leontief out. schemes this procedure seems somewhat inadequate to reflect linkages in the whole economy. Finally, analysis may be conducted with special reference to a subset of industries, say N (N<P), instead of having the whole set of industries, P. This depends on the assumptions one may hold with respect to the importance of N industries vis-a-vis P-N industries which are left out of account¹.

Against this background it may be useful to have a short review of the existing procedures of identifying complexes which fall primarily in three categories:

(a) a specified industrial complex obtained from engineering information as developed by Isard - Schooler -Vietorisz in the case of petro-chemicals complex for Puerto-Rico;

- 4 -

In the actual experiments with the I-O tables, for example, we have worked on the N material-goods industries and have left out P-N service industries. A similar procedure is followed by Streit (12).

- (b) selection of combinations of pairs of industries that satisfy both the spatial and the economic linkages between industries where the economic linkages are derived from the national I-0 tables (Streit);
- (c) the use of multivariate analysis e.g. the method of principal components, in the identification of industrial, complexes from any given I-0 table (Czamanski) whether the latter refers to any particular region or nation.

As for (a) the question posed is specific, namely, what specific industrial products can be added or related to petro-chemicals that can render Puerto-Rico a comparative advantage in costs and/or revenues vis-a-vis an identical set of product-producing agents in the mainland U.S.A.. This type of problem is initialized with a certain product or group of products and then further products are added or linked to form a complex. In terms of detailed examination the Isard - Schooler - Vietorisz study is a classic of its type, but it requires much more information than can be derived from the I-0 tables at the national or regional levels. Such a study can be viewed as a necessary subsequent development and evaluation of complexes derived from more generalized information of I-0 tables. As an initial approach we offer a procedure of isolating a complex starting with any given industry (christened as an 'Island industry') in a

∽ 5∞∽

given I-0 table. The details of the procedure will be pursued subsequently.

In (b) the procedure is basically subjective insofar as it is not clear whether the linkages, economic (technical)or spatial, between any pairs of industries can be additive and if so whether there exists any maximum (even if local) for the total linkages forming a complex. Secondly, Streit's method of averaging the four coefficients given by (1) and (2), i.e. summing the coefficients and dividing by four, makes the matrix symmetric which loses the propriety of an essential dichotomy between a supplying industry and a receiving industry. Also a particular weakness of Streit's procedure is that it is dependent on the small size¹ of the matrix of linkages which perhaps has facilitated his search for complexes. In a nutshell, neither the objective of maximization of total linkages nor the search procedure are clearly delineated in Streit's work which deprives it of any analytical rigour.

The factor analytic approaches are exemplified by (c). Given a (N \times N) I-0 data matrix of inter-industrial transactions and a vector of N gross outputs, the adaptation of multivariate analysis to the complex analysis requires to fulfill one major condition, namely, the conversion of I-0 table into a sort of

- 6 -

Streit's I-0 tables for West Germany and France refer only to 26 X 26 matrices for production-oriented goods. See Streit (12).

(N x N) correlation matrix. The latter may be formed by (i) constructing a spatial correlation¹ between any pair of industries, (ii) postulating an average linkage² between any pair of industries from the four primary coefficients defined by (1) and (2) and treating this linkage as a surrogate correlation, and (iii) choosing the strongest correlation coefficient from among the four correlation coefficients that can be obtained from the four primary coefficients (Czamanski)³ with respect to any pair of industries. The upshot of all these

- A spatial correlation between any two industries may be obtained with respect to employment, value added or shipments data for these two industries over some defined spatial units. An approach of this sort has been made by Streit (12) who uses employment data.
- 2. Streit's procedure of dividing the sum of four coefficients, defined by (1) and (2), by four illustrates such possibilities.
- 3. Czamanski's procedure may be stated in a nutshell here. Taking any pair of industries, k and l, pairwise sets of data such as (1) aik's and ail's, (2) akj's and alj's, (3) aij's and a_{1i}^{\dagger} 's and (4) a_{ki}^{\dagger} 's and a_{11} 's can be arranged to render the four correlation coefficients. Thus a high $r(a_{ik}, a_{i1})$ is supposed to show a strong relationship between k and l in sofaras it draws heavily upon supplies from the same in-dustries, i ranging over all industries. Similarly a high r(akj, alj) means that industries k and l are supplying to a similar set of users, j ranging over all industries. Further, a high $r(a_{ik}, a_{1i}^{\uparrow})$ implies that the supplies of k industry are users of the products of 1, and a high $r(a_{ki}^{\downarrow}, a_{i1}^{\downarrow})$ signifies a reverse relationship between k and 1, namely the users of k are supplies of 1. Czamanski then picks up the highest of all four correlation coefficients between k and 1 and similarly for all pairs of industries to obtain an intercorrelation matrix (symmetric). The major defect of this procedure, apart from the more damaging ones related to the application of a correlation matrix (these are reported in the text), is that in large disaggregated I-0 tables correlation coefficient may be low anyway. Moreover, a low correlation coefficient, say r(aik, ail), should not necessarily preclude considerations of a complex formation involving high values of original coefficients, aik's and ail's, whereby industries i, k and l can be considered to be members of a complex.

devices or short-cuts is that one mostly ends up with some biased linkages or associations standing for correlation coefficients. Thus spatial correlations are usually subject to the arbitrary definition of space and they may not at all reflect technical linkages that perhaps interest a researcher of complex analysis. Moreover data requirements over space may be difficult to fulfill. The shortcomings of the other approaches have been already noted and these perhaps merit no additional attention. However, in the application of correlation matrix to multivariate analysis by means of any sort of factor analytic devices for industrial complex identification, the following major deficiencies deserve particular attention:

> A. An intercorrelation matrix (which is symmetric) invariably loses the essential dichotomy between a supplying industry and a receiving (using) industry which industrial complex analysis should ultimately reveal. Any tinkering with the original four coefficients that distorts this asymmetry or dichotomy should be usually suspect.

B. All factor analytic approaches involve a progressive reduction of the matrix as the complexes (in the present context) are isolated and removed from the system. This is an undesirable feature since each complex obtained subsequently is determined by the context of those obtained and

÷ 8 ÷

removed earlier. Thus a linkage absorbed, at least partially, in one complex assumes a reduced stature relative to any other complex following it. That is, a linkage cannot be properly reflected in more than one complex.

C. The condition of orthogonalization used in factor analytic approaches seems irrelevant to the complex analysis except in the trivial case where submatrices exist in a block-diagonal sense which in reality is never so.

Before we proceed to the primary analytical thrust of this paper a final comment seems in order. There exists some other procedures of decomposability of any data matrix into submatrices (conforming to our notion of complexes), namely the method of singular decomposition¹, which particularly can take

 See Good (1969). The basic procedure here is to decompose a given m X n matrix A as:

A = $e_1S_1R_1 + e_2S_2R_2 + \dots$ (a) where each term on the right is an m X n matrix of rank one, the S_1 , R_1 are normalized vectors of orders m, n and the e_1 's are positive scalars, the singular values (if A is symmetric, they are the eigen values). The vectors' are developed by direct iteration based on the relations S'A = eR' and AR = eS. The orthogonality occurs as $R_1R_1 = S_{11} = S_1S_1$. The matrix is reduced by each decomposition before extracting the next (in effect subtracting terms of the right side successively from each side of (a)).

This procedure was applied to the 1963 U.S. I/O matrix with the following variation. The orthogonality was relinquished by suppressing components below a specified threshold of the R and S vectors. This leads to vectors approximating dominant submatrices of A, constituting "complexes". The matrix reduction was prevented from developing negative entries by arbitrarily replacing then with zeros. The complexes obtained were satisfactory until the submatrices involved began to overlap i.e. to incorporate elements which had been included in a prior complex and hence subjected to reduction. Furthermore as a final objection, this procedure and the other factor analytic approaches require prodigeous computation with large disaggregated I/O matrices.

. 9 -

care of 'asymmetry' noted in (A) above. Unfortunately it does not enable one to overcome the limitations of (B) and (C). In some experiments worked out for large matrices of I-O tables for Canada and the U.S.A. the results often begged interpretations, and we had no other alternative than to surrender it. The Method

The method used to identify complexes in this study primarily hinges on the construction of an objective function, E, defined as follows:

E . 🗞	anna Fri Baning a spij	.i _{€S} :	je _R bij			(4)
		n	- k			
^b ij	Ξ	a _{ij} + 2	a* ij			(5)
n	-	total	number of	celle	hel	ongir

n = total number of cells belonging to the complex.

k = size control parameter, k > 1.

 $i_{\epsilon S}$ refer to industries i belonging to the whole set of suppliers, S.

 $j_{\epsilon R}$ refer to industries j belonging to the whole set of receivers, R.

The procedure of identifying complexes can be described in a nutshell as below:

(i) A matrix of N dimensions (N ≤ p) is constructed
 with all b_{ij}'s.

(ii) Starting with a maximum of b_{ij} 's (call it \hat{b}_{ij}), keep adding and dropping b_{ij} 's which are connected directly or indirectly with \hat{b}_{ij} (without dropping \hat{b}_{ij}) in sofaras E can be maximised¹. Note that each time a

1. See the formal treatment in terms of an algorithm in Appendix 1.

supplier and/or a receiver industry is taken in (or out), n keeps rising (or falling). To exemplify n, three supplying industries and two receiving industries will make n equal to six. k, the size control para-meter, determines the size of the complex i.e. number of suppliers and receivers. A higher k will increase the size and lower k will diminish it. For practical purposes k can be assumed to have positive integer values only, and a final selection of k requires different experiments with k for satisfactory results.

(iii) Once the first complex is derived by maximization of E, the next highest b_{ij} is chosen as a starter while keeping all b_{ij} 's as they are and the process is repeated as per (ii) to obtain the second complex, and so on. Note that as more and more complexes are extracted only starting values of b_{ij} 's change while all b_{ij} 's are kept in full play so that any linkage, say b_{kl} , can be found in more than one complex. Obviously one can come across in this scheme a repetition of the same complex with different starters, b_{ij} 's, which may reasonably justify the uniqueness of that complex¹.

- 12 -

WE MELLING CONTRACTOR STRATES

Apart from exact repetition of complexes, one can arrive at 'overlapping' and 'nested' types too, whereby in the first case a subset of complex A is also a subset of complex B, and in the second, complex A is a complete subset of complex B.

The above procedure can be christened as 'forward step search' resulting in the formation of free complexes with specific statters, and adding or dropping takes place only in one step i.e. one row or column can be added or dropped. This scheme is followed because multistep additions or delections (many rows or columns) is computationally unmanageable when maximization of the objective function, E, is also a concurrent aim. It seems also plausible to have a 'backward step' search starting with the whole matrix of b_{ij}'s and maximising E, subject to a given k, to arrive at the first complex. But then the search for the second and subsquent complexes create additional difficulties as to the choice of b_{ij}'s that needs to be dropped to effect This difficulty has partly prevented the ausuch a program. thors from following the 'backward step approach' despite the general appeal of the backward search traditionally allowed in any reductionist procedure as in multivariate analyses.

The algorithm underlying the method suggested above is outlined in Appendix 1 & 2 with a list of statistical indicators that call for specific explanations of the findings of the study. Some final points seem in order. In deriving b_{ij} 's, where ith industry is taken to be identified as a supplier and jth industry as a receiver with b_{ij} 's signifying economic or technical linkages, we have followed a simple arithmetic mean (A.M) as a criterion rather than any other criteria of averaging,

- 13 -

namely for example, geometric mean (G.M.). The choice between A.M or G.M would largely depend on the pratical assessment of the data and on the considerations as to how stringent¹ one would like to be with respect to the joint relationship between a supplier and a receiver, given the fact that A.M.> G.M. and the difference between the two increasing with increasing asymmetry between a_{ij} and a_{ij}^{*} . Secondly, the purpose of k, size control parameter, is directed towards obtaining a variety of complexes of different sizes while maximising E. Obviously with $k = \alpha$ one finds the whole matrix of b_{ij} 's, that is to say the whole transactions matrix under analysis, becoming the one and only one complex. Conversely with k = zero only the highest b_{ij} makes a complex of one supplier and one receiver. Both cases are trivial. Generally an experiment with different values of k, say k = 2 and k = 5, will suggest that the dominant linkages with the first complex under a lower value of k will also be contained in the first complex under a larger value of k. In large matrices, however, subsequent complexes obtained under different values of k appear to change the structure of their membership. Finally, this study does not pretend to lay any claim to a 'global maximum' for any choice of a complex since this requires a multi-step additions or delections of rows

^{1.}Pratical considerations may lead to the choice of A.M. since I-0 data cannot be assumed to be perfect, nor nearly perfect. A.M. may also avoid some uncertainty in the pair-wise relations of the data much more effectively than G.M.

and columns which is not computationally feasible as the number of permutations of rows and/or columns for such an objective becomes astronomical with large matrices. Consequently our procedure is geared to discovering 'local Maxima' only.

Island Industrial Complex

Very often questions relating to the development of a particular industry plague researchers to look for a bunch of other industries that are directly or indirectly related (but closely) to the primary one. Unfortunately available methods incorporating the I-0 tables cannot effectively answer such questions since there exists no workable criterion to select such a bunch. Moreover for large I-0 tables eyeball search becomes inefficient and cumbersome. We have developed, therefore, the following method to meet this objective:

> (1) Starting with any industry, say m, inflate the b_{mj}'s and b_{im}'s by a weight factor, say w = 5 or 10. Keep now all other b_{ij}'s as they were before. (The weight factor is ap- plied to give dominance to the direct relation- ships of industry m as a supplier as well as a receiver).

(2) Maximize E now subject to a given k under the new matrix of b 's including industry m.

- 15 -

2. The Data

The data for the Canadian I-0 Tables are obtained on tape from the Input-Output Division of the Statistics Canada. The tables have been made available to us for two separate years, 1961 and 1966, and are both in producers' prices and are of 210 dimensions i.e. in square matrix forms. Gross outputs in current dollars for 210 industries are also obtained from the same source for the two years. Incidentally the I-O Table for 1961 which we have obtained from the Statistics Canada is revised version of an earlier 1961 table to accomodate changes in the industrial classification as well as in the national accounts of 1961 (as well as earlier and later years) that took place in the beginning of 1973. The classification of the first production-oriented 165 industries (of the total of 210 industries) actually used in this study is listed in Appendix 3. The remaining 45 service industries

is excluded from our analysis for reasons that will be explained shortly.

The I-O table (expressed in producers' prices) of the U.S.A. refers to 1963 and is of 87 dimensions and is taken from the Survey of Current Business, November, 1969. The classification of the first 64 production-oriented industries from these is also listed in Appendix 3. The remaining 23 services industries are excluded for reasons that will be explained shortly.

The Canadian and American classifications of industries donot agree with each other and no attempt has been made to put them on a comparable basis since in most cases (as in the past) comparisons remain odious despite the appeal of comparability, unless considerable aggregation of industries is deliberately chosen. The latter alternative is, of course, repugnant to the very objective of our search for complexes in large disaggregated tables, and hence not pursued.

The data of the I-O tables actually used in this study refer to the first 165 industries (of the total of 210 industries) of Canada and to the first 64 industries (of the total 87 industries) of the U.S.A. This has been necessitated by considerations bearing on the interdependence of productionoriented material goods only to the exclusion of goods of the

- 17 -

service type. The rationale for this choice is, first, based on the presumption that services are subordinate¹ to the production relations and, second, that the inclusion of service type of goods often brings in some indirect networks or relationships of industries for which meaningful interpretations are difficult to offer.

Finally, a word needs to be said about the intraindustrial transactions of the I-O tables. For the purposes of this study all intra-industrial transactions have been set to zero² even though for some few industries these transactions are considerable judging from their shares in gross outputs either as suppliers or receivers. The major reasons for following this step are: (1) we are interested in inter-industrial relations rather than intra-industrial relations, and (2) some attempts at capturing complexes with intra-industrial transactions (following our criterion of maximizing E) occasionally have shown some complexes which are much too much indirectly linked. It is conceded

- 1. It is not intended to imply that the production of material goods is always feasible without essential service inputs. What is implied is that the service inputs by virtue of their non-material nature require that their demands are conditional upon the existence of demands for material goods. It is, however, conceded that today much of this distinction between the material and the non-material characterization of inputs is open to question and the matter is far from being unanimous in terms of its propriety.
- 2. It is of some inportance to note here that while we zero the intra-industrial transactions we use the intra-industrial cells in the specification of n while maximizing E only if some suppliers and receivers belong to the same industries. This does not appear to be a major restriction since in actual cases such events occur only rarely.

that for small matrices i.e. where industrial classifications are aggregated, the right procedure would be to include the intra-industrial transactions.

3. The Empirical Results and Interpretations.

The results of the study with respect to the free complexes are reported in Tables 1, 2 and 3 at the end of the text where the first two tables refer to Canada, 1961 and 1966 and the last one to the U.S.A., 1963. The computer program has been set to obtain the first 100 complexes for both Canada and the U.S.A. as it is considered that further extractions would make interpretations difficult for complexes so obtained with gradually diminishing starting values of linkages since according to our method of extraction starting values cannot be dropped while search is being made for one-step maximization of E. Moreover, 100 complexes exhaust about 60% of the total dollar transactions, and about 47% for the total linkage coefficients (bij's) for Canada, 1961 and 1966. Similarly, for the U.S.A., 100 complexes exhaust about 68% of the total dollar transactions and about 59% of the total linkage coefficients. These reduction (or exhaustion) estimates, however, refer to the inter-industrial transactions only of the industries we have chosen (See Appendix 3). It is considered that the information contained in these tables is sufficient to explore many

- 19 -

interesting facets of inter-industrial relations hitherto uncovered. To read any table some explanations appear to be necessary to bring the picture in sharp relief.

Consider the complexes 2 and 4 in Table 1. The initial starting elements¹ (nuclei) of the two complexes are ,7990 (with industry 85 as a supplier and industry 86 as a receiver) and .6582 (with industry 4 as a supplier and industry 92 as a receiver) respectively. With the restriction that initial starting elements cannot be dropped in our program of optimization the composition of the two complexes has slightly changed. Whereas in complex 4 industry 4 has replaced industry 85 of complex 2 as a supplier and industry 92 (of complex 4) has replaced industry 6 (of complex 2) as a receiver, the other adjoining industries, namely 82, 84, 87 and 130, have remained the same core of suppliers. The result is that complex 4 overlaps complex 2 in four 'intersecting'elements which is also shown in the table. The types of intersection have been classified as 'independent', 'overlapping', 'nested' and 'repetitive'. Between any two complexes A and B, the 'overlapping' case arises when a subset of complex A is also subset of complex B, whereas the 'nested' case arises when complex A is a complete subset of complex B or vice-versa. The 'independent' and 'repetitive' cases are the polar cases which merit no further explanation.

1. These are marked with an asterisk sign.

- 20 -

Now in the above example how is it that complexes 2 and 4 with all the common suppliers like 82, 84, 87 and 130 could not collapse into one single complex? The explanation lies mainly in the choice of k (in our example k=10). A higher k (say, k=15) perhaps could have done the trick but it may also bring in elements with lower values of linkages which may not be very welcome if compactness (as roughly measured by CV, coefficient of variation) of a complex is also a desirable objective. In very many experiments with varying k we have observed that k=10 does appropriately measure up to our requirements, namely medium sized complexes, relatively low coefficient of variation and relatively few linkages of lower values. Hence for our purposes it is reasonable to suppose that the existence of 'overlapping' complexes should cause no concern. Finally for the tables the last column demonstrates the one-step selection of industries as they are added (-1) and dropped (1) to maximize E and it gives the sequential values of E in this process until it cannot be increased anymore.

The results may now be summarized as follows: (1) A large number of repetitive complexes appear in all three tables which makes it easier to evaluate only the 'independent', 'overlapping' and 'nested' types. The number of repetitions for Canada 1961 is 51, for Canada 1966 it is 42 and for the U.S.A. it is 37. As noted before a complex which is repeated many times is supposed to gain in credence as it becomes a unique complex insofaras it cannot be dismembered whatever may be the starting values.

- (2) Disregarding the 'repetitive' types, the remaining complexes still remain quite large in number which may require individual attention of interpretation or which can be collapsed into some ranking order such that the problem of search with a view to comparing between any two or many complexes can be minimized. The latter has been simplified by postulating a numerical indicator with a multiplicative factor $^{\perp}$ of E and g which is then organized in descending values (in absolute values as well as in rank). The first 20 complexes are then chosen and shown in Tables A, B and C. These are also given some appropriate names particularly from the point of view of receiving industries. Now in all these tables one further notices that overlapping occurs as between complexes having similar titles. Thus in Table A complexes 2, 18, 94, 89, 4, 10 and 45 overlap in varying degrees and similarly for others. Occasionally, as in Table B, one gets complexes having multiple ties over and above overlapping.
- 1. One can suggest also alternative formulations, namely E. m₁ instead of E.g. Since our objective is more directed toward linkage coefficients (which are reflected in g) rather than in total dollar transactions (embodied in m₁) we have thought that the inclusion of g is more appropriate.

- 22 -

Table A

SELECTED INDUSTRIAL COMPLEXES BY RANK FROM THE 100 COMPLEXES EXTRACTED FROM THE INPUT-OUTPUT TABLE, CANADA, 1961.

Rank	Complex No.	E.a	Name of the Complex
1	2	.5501	Steel & Rolling Mills
2	31	.5405	Residential & Non-Residential Construction
3	1.8.8	. 5.13.6	Sinter Plant & Blast Furnaces & Steel Mills
4	63	.4720	Residential, Non-Residential & other Engineering Construction
5	94	.4559	Coke Oven, Steel Mills & other Steel
6	89	.4539	Steel Mills & other Smelting & Refining
7	4	.4478	Steel Mills & other Smelting & Refining
8	77	.4118	Food & Beverage & Agriculture
· 9	99 .	.4008	Food & Beverage & Agriculture
10	51	.3951	Food & Beverage & Agriculture
11	10	.3922	Steel Mills & Steel Pipe & Tube Mills
12	21	.3789	Food & Beverage & Agriculture
13	7	.3788	Pulp and Paper
<u>1</u> 4	70	.3763	Sawmills, Veneer & Plywood & Pulp & Paper
15	67	.3662	Clothing & textiles
16	12	.3634	Clothing & textiles
17	45	.3590	Steel Mills, Ferro Alloy & Iron & Steel
18	37	.3546	Sawmills, Wood Pulp, Pulp & Paper
19	76	.3502	Residential, Non-Residential Construction & Sash and Door
20	84	.3141	Clothing & textiles and Fur Dressing

Source: Table 1.

N.B.: Complexes are arranged here in a descending ranking order based on the values of E.g and some abbreviated names have been given to complexes for easy recognition. Repetitive complexes are excluded. For a complete description, see Table 1.

- 23 -

Table B

SELECTED INDUSTRIAL COMPLEXES BY RANK FROM THE 100 COMPLEXES EXTRACTED FROM THE INPUT-OUTPUT TABLE, CANADA, 1966.

Rank	Complex No.	E.g	Name of the Complex.
1	1	.5961	Steel & Rolling Mills
2	.88	.4941	Sinter Plant, Blast Furnaces & Steel Mills
· 3	6	.4902	Steel Mills & Other Smelting & Refining
3	28	.4902	Sinter Plant, Blast Furnaces & Steel Mills
4	41	.4654	Sinter Plant, Blast Furnaces, Ferro Alloy & Iron & Steel
5	73	.4522	Steel Mills & Non-Residential Construction
5	74	.4522	Steel Mills & Non-Residential Construction
5	81	.4522	Steel Mills & Non-Residential Construction
6	7 6	.4505	Steel Mills & Non-Residential Construction
7	83	.4498	Steel Mills & Non-Residential Construction
8	90	.4429	Steel Mills & Non-Residential Construction
9	94	.4425	Steel Mills & Non-Residential Construction
10	95	.4406	Steel Mills & Non-Residential Construction
11	33 ·	.4397	Steel Mills & Non-Residential Construction
12	20	.4376	Sinter Plant & Blast Furnaces & Steel Mills & Iron & Steel
13	_ 27	.4346	Steel Mills, Non-Residential Construction & Gas & Oil Facility
14	14	.4338	Steel Mills & Iron & Steel
15	38	.4326	Saw Mills, Wood Pulp, Pulp & Paper
16	42	.4264	Construction, Residential & Non-Residential
17	35	.3909	Wood Pulp and Pulp & Paper
18	67	.3894	Veneer & Plywood, Wood Pulp, Pulp & Paper
19	4	.3512	Steel Mills
19	11	.3512	Steel Mills
20	7	.3454	Wood Pulp, Pulp & Paper

Source: Table 2.

N.B. : Complexes are arranged here in a descending ranking order based on the values of E.g and some abbreviated names have been given to complexes for easy recognition. Repetitive complexes are excluded. For a complete description, see Table 2.

- 24 -

Table C

SELECTED INDUSTRIAL COMPLEXES BY RANK FROM THE 100 COMPLEXES EXTRACTED FROM THE INPUT-OUTPUT TABLE, the U.S.A., 1963.

Rank	Complex No.	Ę.g	Name of the Complex
		·	
ļ	40	.5765	Agriculture - Food - Containers
2	21	.5260	Construction
3 '	- 11	•5138~~	Agriculture - Food
4	12	.4469	Agriculture - Food - Wood Products
5	65	.4396	Agri products - Food
6	59	.4289	Construction - Motor Vehicles - Equipments
7	17	.4246	Construction - Stone & Clay
8	56	.4203	Construction
9	31 ·	.4178	Food
10	74	.4090	Construction
11	76	.4077	Construction
12	14	.4067	Agriculture - Food
13	83	.4059	Construction
14	93	.4022	Construction
15	15	.4020	Agriculture - Food - Paper Containers
16	49 ·	.4015	Agriuclture - Forestry & Fishing
17	100	.3996	Construction
18	88	.3950	Agriculture - Forestry & Fishing - Paper
19	5	.3942	Construction
20	69	.3931	Agricultual Products - Food

Source: Table 3.

N.B.: Complexes are arranged here in a descending ranking order based on the values of E.g and some abbreviated names have been given to complexes for easy recognition. Repetitive complexes are excluded. For a complete description, see Table 3.

- 25 -

- (3) Tables A, B and C speak unequivocally for some dominant complexes existing in the Canadian and the United States economies. In both cases the common complexes are of the nature of construction and food types despite the asymmetry of classification of industries. The steel mills complex which is dominant in Canada (both for 1961 and 1966) is conspicuous by its absence in the U.S.A. One further notices from the detailed Tables 1 and 2 that the membership structure of the selected complexes of Tables A and B has not significantly changed in Canada between 1961 and 1966.
- (4)There are some complexes where a particular industry appears both as a supplier and as a receiver independent of destination or origin. Examples in Table 1 are complexes 2, 7, 18, 51, 56 and 84; in Table 2 these are complexes 1, 7, 16, 20, 28, 38, 41, 47, 50 and 84; in Table 3 these are complexes 3, 8, 10, 16, 20, 28, 65, 68, 73, 80, 87 and But there is hardly any complex where one can find 96. that suppliers and receivers have interchanged their roles i.e. an industry M supplying to industry K is reciprocated by industry K supplying to industry M. This asymmetry is very well pervasive and casts doubts on the findings of Simpson and Tsukui (1965) where exchanges within a block of industries are deemed to be in the nature of a two-way traffic.

Finally, 'island' industry complexes with given initial industries are reported in Tables D and E for Canada and the U.S.A. The weight factor chosen for these exercises is taken to be equal to ten to render sufficient strength to the initial industry both as a supplier and a receiver. The full display of the ensuing values of different indicators such as E_{1} , g_{1} , m_{1} and the sequential maximization of E as they are shown in Tables 1, 2 and 3 are not reported here to save Tables D and E are only illustrations without posing space. comparisons between complexes since the latter does not appear to be strictly relevant. Further, it is interesting to note that the structure of the island industry complexes has hardly changed in Canada for the two time periods, 1961 and 1966, except slightly for the initial industry 74.

- 27 -

TABLE D

ISLAND INDUSTRY COMPLEXES ARISING OUT OF SELECTED INITIAL INDUSTRIES, CANADA, 1961 AND 1966

Initial Industry No.	Structur Comp 19	e of the lex 61	Structur Comp 19	e of the lex 66
	Süpplier	Receiver	Supplier	Receiver
1	1	16	1	16
	1 1	17	1	. 17
	1	18	1	18
	1	· 22	1	23
	1	23	1 ·	29
	1	29	1	. 35
	1	35		
16	1	16	1	16
	1	40	1 [.]	40
	16	40	16	40
	29	16	2,9	16
	29	40	29	40
33	30	33	30	33
	78	33	78	33
	99	33	99	33
	134	33	134	33
47	47	44	47	44 /
	47	45	47	48
	47	51	47	50 <u>.</u>
	47	53	47	51
· · · · ·	47	59	47	53
	47	60	47	58
	47	61	47	59
			47	60
			47	61
	1			Ŧ

ic

Initial Industry No.	Structure of the Complex 1961		Structure of the Complex 1966				
	Supplier	Receiver	Supplier	Receiver			
73	2	73	2	73			
	2	74	2	74			
	72	73	72	73			
	72	74	72	74			
	73	74	73	74			
74	72	74	72	74			
	72	75	72	75			
	73	74	72	78			
	73	75	73	74			
	74	75	73	75			
			73	78			
			74	75			
			74	78			
85	82	85	82	85			
	82	86	82	86			
	84	85	84	85			
	84	86	84	86			
	85	86	85	86			
	87	85	87	· .85			
	87	86	87	86			
	130	85	130	85			
	130	86	130	86			
110	38	110	38	110			
	- 48	110	58	110			
	112	110	112	110 /			
· · · · · · · · · · · · · · · · · · ·	134	110	134	110			
137	9	137	9	137.			
146	146	38	146	1			
	146	39	146	38			
,	146	47	146	39			
	146	55	146	47			
	146	73	146	73			
Initial Industry No.	Structur Comp 19	e of the lex 61	Structure of the Complex 1961				
----------------------	------------------------	-----------------------	-------------------------------------	----------	--	--	--
	Supplier	Receiver	Supplier	Receiver			
146	146	137	146	137			
(contd)	146 139		146	139			
	146	140	146	140			
	146	141	146	141			
	146	143	146	143			
	146	144	146	144			
	14.6	147	146	147			
	146	0	146	0			

- 30 -

TABLE E

ISLAND INDUSTRY COMPLEXES ARISING OUT OF SELECTED INITIAL INDUSTRIES, the USA, 1963

1

Initial Industry No.	Structur Comp	e of the lex
	Supplier	Receiver
1	1	14
	2	14
	4	1
· · · · ·	4	2
	21	1
	21	2
	21	14
	35	1
	35	14
•	39	1
	39	2
	39	14
14	1	4
	1	14
	2	4
	2	14
	24	14
	39	14
27	4	· 1
	4	2 ·
	21	1
	21	2
	21	27
	27	1
	27	2

- 31 -

Initial Industry No.	Structur Comp	e of the lex
	Supplier	Receiver
37	5	27
	5	37
	10	27
	10	37
	31	27
	31	37
	37	
59	9	11
	9	59
	20	11
·	20	59
	. 36	11
	36	59
	40	11
	40	59
	55	11
	55	59
	59	

- 32 -

REFERENCES.

- H.B. Chenery and T. Watanabe: "International Comparisons of the Structure of Production", Econometrica, vol. 26 (1958), pp 487-521.
- 2. W.W. Leontief: "The Structure of Development", Scientific American, vol. 209, no. 3 (1963), pp 148-167.
- P.N. Rosenstein-Rodan: "Problems of Industrialization of Eastern and South-Eastern Europe", Economic Journal, vol. 53, June-Sept, 1943.
- 4. P.N. Rosenstein-Rodan: "Notes on the theory of the Big Push", Economic Development for Latin America edited by H.S. Ellis, International Economic Association Proceedings, London, MacMillan & Company, 1957.
- 5. R. Nurkse: "Problems of Capital Formation in Underdeveloped Countries", Oxford, 1953.
- 6. T. Scitovsky: "Two Concepts of External Economies", Journal of Political Economy, vol. 62, April 1954.
- 7. W.A. Lewis: "Theory of Economic Growth", George Allen & Unwin, London, 1956.
- 8. A.O. Hirschman: "The Strategy of Economic Development", Yale University Press, reprinted, 1964.
- 9. A. Lösch: "The Economies of Location", John Wiley and Sons Inc, New-York, 1952.
- 10. W. Isard: "The Location of Space Economy", Cambridge, Mass, the MIT Press, 1956.

- 11. W. Isard, E.N. Schooler and T. Vietorisz: "Industrial Complex Analysis and Regional Development", John Willey & Sons, New-York, 1959.
- 12. M.E. Streit: "Spatial Associations and Economic Linkages Between Industries", Journal of Regional Science, vol. 9, no. 2, August 1969.
- 13. C.E. Richter: "The Impact of Industrial Linkages on Geographic Association", Journal of Regional Science, vol. 9, no. 1, 1969.
- 14. E.M. Hoover: The Location of Economic Activity", McGraw-Hill, New-York, 1948, 19
- 15. E.L. Ullman: "Regional Development and the Geography of Concentration", in J. Friedman and W. Alonso, eds., Regional Development and Planning, Cambridge, Mass, the M.I.T. Press, 1964.
- 16. E. Helmstader: "The Triangular Form of the Input-Output Matrix and Its Possible Changes During the Process of Growth" (in German), in F. Newmark, ed., Strukturor and lungen einer Wachsenden Wirtschaft, Berlin, 1964.
- 17. B. Korte and W. Oberhoffer: "Triangularizing Input-Output Matrices and the Structure of Production", European Eco. Review, vol. 11, no. 4, Summer, 1971.
- 18. J. Lamel, J. Richter and W. Teufelsbauer: "Patterns of Industrial Structure and Economic Development -Triangularization of Input-Output Tables of ECE Countries", European Economic Review, vol. 3, 1972.
- 19. D. Simpson and J. Tsukui: "The Fundamental Structure of Input-Output Tables, An International Comparison", the Review of Economics and Statistics, vol. 47, 1965.

- 34 -

- 20. I.J. Good: "Some Applications of the Singular Decomposition of a Matrix", Techonometrics, vol. 11, no. 4, November 1969.
- 21. S. Czamanski: "Regional Science Techniques in Practice", D.C. Heath and Company, Toronto, 1972, ch. 5.
- 22. National Economics Division: "Input-Output Structure of the United States Economy: 1963", Survey of Current Business, vol. 49, pp 30-35, November 1969; also reprinted in J.W. Kendrick: Economic Accounts and Their Uses, McGraw-Hill Book Company, 1972, pp 62-73.

- 35 -

Characterization of Industrial Complexes from I-0 Table, Canada 1961.

(k = 10)

	Inter	-industrial Linkag	es (b _{ij} 's)		4	1								
Complex	Suppliers		Receivers		E	q	^m ı	m	Intersecting · Elements	Type of Intersection**	Seque and Exit	ential E t (+1) of	ntry (-1) f Industi) ries
NO.		137					(m ₂)	3	(Total elements)	;	in the	maximis	ation of	E E
1	9	.8674*			.0789	1.11	4.178	1.754	* [*] 0	Tadapandant	Sup	Rec	Е	±1
					(.0000)		(4.178)		' (1)	Independent	-	-	-	-
		85 86	· · · · · · · · · · · · · · · · · · ·											
2	82	.4166 .2919		```	.1463	3.76	6.013	2.525	- 0	Independent	82	-	.0909	-1
	84	.6253 -	,		(.9405)		(10.191)		(10)		-	88	.1144	-1
	85	7990*		· •				}			-	85	.1261	-1
	87	.4690 -				· . ·					84	-	.1391	-1
1	130	. 3238 –		i	ĺ				[87	-	.1415	-1
		•					· · · ·		· · · · · · · · · · · · · · · · · · ·		. –	88.	.1445	1

* Starting element

- ** This column is intended to describe the relevance of the present complex to the complexes obtained previously i.e. whether the present complex is independent of the earlier ones or whether it resembles them by characteristics like 'overlapping', 'nested' or 'repetitive' types.
- Starting element characterized by an asterik is not shown here since the element has to be retained anyway by the method we have followed.

N.B. For the notation See Appendix 2.

\$ 1

Inter-industrial Linkages (bij's)

Complex No.	Suppliers		•	Receivers	· .		- E (CV)	g	m ₁ (m ₂)	m 3	Intersecting Elements (Total elements)	.Type of .Intersection**	Seque and Exist in the	ential-E t (+1) o maxímis	ntry (-1) f Indust ation ⁰ o) ries f E
2							•	1	······································	· .			Sup	Rec	. Е	. ±1
(contd)	f 4						· ·					1 · · · · ·	130	<u> </u>	.1463	-1
	1	45	46	110		,	······							;	1	
3	48	.3449	.4338	.0677			.0949	1.95	2.143	.900	o	Independent	38	, -	.0630	1 -1
•	112	-	-	.6725 *			(.9934)		(12.334)	l	(6)		134		.0641	; -l
	1	1						1	:	1			48		.0644	; -1
	•) . •				X .		ł				i i	-	46	.0742	, -1
	•	į			•								134	-	0786	• 1 • •
	₽	P \$		•							•		- 38	45	.0949	, -1 , 1
	•	85	92				• <u> </u>				· · · · · · · · · · · · · · · · · · ·			1	1	:
• 4	1 4	.0010	.6582*	· · · ·			.1321	3.39	5.444	2.286	4	Overlapping on	5	; –	.0573	; -1
-	82	.4166					(.9585)	1	(15.339)		· (10)	Complex 2	130	1 -	.0718	; -1
	84	.6253	· _		,			}		t			-	85	.0786	; -1
	87	.4690	.0218			8							84	-	.1046	! -1
	130	.3238 ;	.1257					1:					87	-	.1187	· -1
	5							1					82	-	1205	
			-					<u> </u>	<u>i</u>] 				<u> </u>		· · ·
		83	92		1			· .	1				1	1		ł
5	4	-	.6582				.0982	1.77	3.303	1.387	1	Overlapping on		72	.0651	-1
	8	.6362*	.0808				(.8867)		(15.672)	q	(4)	Complex.4	-	92	.0663	1 -1
					· .				1	1			4	-	.0950	1
													-	: 72	.0982	: 1
	i	1		•		n gr i je s			1 	{; 			· .		1	
. •	A.	•				•	•	· ·				•**				:
	•		~	•			• •				· · · · · · · · · · · · · · · · · · ·	•				
	· • • •	•	•			. I.	•	•	U 4	· · ·	•	· ·				
-	•			•			•••			•			• .			

-

Inter-industrial Linkages (bij's)

mplex	Suppliers	Receivers	E (CV)	ġ	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	.Type of .Intersection**	, Sequ and Exi in the	ential-E t (+1) o maximis	ntry (-1 f Indust ation ⁰ o) ries f E	1 1 1
				i					Sup	Rec	E	±1	:
6	82 84 87 130	.4166 .6253* .4690 .3238	.1311 (.2384)	2.36	2.440 (15,672)	1.024	4 (4)	Nested on Complex 4	87 82 130	, – ; – ; –	.0912 .1162 .1311	-1 -1 -1	: : : : :
7	2 72 73	73 74 76 .4078 .3703 .6079* .5075 4741 -	.1246 (.9246)	3.04	10.663 (26.335)	4.477	0 (9)	Independent	0 0 73 2	76 73 - -	.0929 .1143 .1225 .1246	-1 -1 -1 -1 -1	1 5 1 1 1 1 1
8	3 . .44 .46 .51 .154	20 61 .5403*.0617 3099 4044 3583 5040	.1089 £.9877)	2.80	1.662 (27.998)	•698	0 (10)	Independent	0 154 46 51 44	61 	.0502 .0790 .0944 .1038 .1089	: -1 -1 -1 -1 -1 -1	
9	35	36 .5274	.0479 (.0032)	.68	.44 2 (28.440	.186	0.(1)	Independent	-	-	-	-	
10	82 84	85 88 .4166 .5105* .6253 -	1303	3.01	2.498 (28.498	1.049	4 (8)	Overlapping on Complex 6	- 84	85	.0773	-1 -1	

. سر

. -

.

- 3 -

Inter-industrial Linkages (bjj's)

omplex No.	Suppliers	85	88	keceiver	<u>(3</u>		E (CV)	g	. m1 (m2)	m3	Intersecting Elements (Total elements)	Type of	, Segu , and Ex;	uential : it (+1)	Entry (- of Indus	1) tries
		,							·····	·[, Incersection	, in the	: maximi:	sation	of E
10	87	.4690	-								1		, Sup	Rec	, E	. ±1
(centd) (130	.3238	-				1	1					į 87	i -	.1263	-1
		71	74	76			<u> </u>	<u> </u>			· · · · · ·	· ·	130	<u> </u>	1303	; -1
1	-		· · · · · · · · · · · · · · · · · · ·				- j			ļ			1	!	1	1
~+		· ····································	-	-			.1246	3.04	10.663	4.477	9	Repetitive	-	, 74	, 0929	: 1
	77.8		.60/9	.5075*			(.9246)	1	(28.498)		(9)	o£	-	' 73	.1143	; _1
ġ		-	•4/41	-						1		Complex 7	73	· -	.1225	-1
		<u> </u>					1		1				2	: <u>-</u>	.1246	; -1
		61		,			1				•	}			.	. —
12	44	.3099					.1253	2.90	1.777	. 746	,	i I		1.		•
	46	.4044					(.4403)		(29.161)	1	4	Overlapping on:	46		0757	1
	47	.1785		t				<u> </u>			(0)	Complex 8	51	-	.0974	; -1
,	49	.1987					1			-			44	-	.1126	1
	51	.3583					Î				•		49		.1184	. + 1
	54	.1662	•				1 :	.					47	: -	.1221	•-1 i
	60	.1358			4			:					54 1	-	.1247	-1
	154	.5040*	, ·				1 ¹			-			. 60	· -	.1253	:-1 (
		41	42	43										<u> </u>	} {	<u>}</u>
13	40	.4920*	.1929	.0809			1 0520					İ		i :		•
							1 67073	• 98	.298	125ء	,0 ,	Independent	-	42	.0571	1-1
							(10/5/)		(29.460)		(3)		- 1	43	.0589	-1
ļ						•						÷		•	1	;
Ì								ĺ				1	i	!		i i
					•									1		: :
i								1		1 <u>.</u>	,		;	4		· 1

- 4 -

- 5 -

Table 1 (cont'd)

Inter-industrial Linkages (bij's)

¥

No.	Suppliers	73	74	Receive 76	ers ·		E (CV).	ġ	^m 1 (m ₂)	m3	Intersecting Elements (Total elements)	.Type of .Intersection**	, Sequ , and Exi , in the	ential H t (+1) c maximis	Entry (-1 of Indust sation ⁰ o) [ries f Z
	1							1	:				, Sup	Rec	E	. ±1 !
14	2	, .4078	-				.1246	3.04	10.663	4.477	g	l Renetitive	72	·	. 0803	<u></u> '
1	72	3703	.6079	.5075			(.9246)		(29.460)		(9)	of	i _	1 76	1 1125	·
	73	-	.4741*	-			1					Complex 7		· 70	1 1225	, ,
	l L	1					•			·		Comptex /	1 2	! /3	1 1246	· · · ·
		85				· · · · · · · · · · · · · · · · · · ·	· · ·							•	,1240	<u> </u>
15	82	.4166			• • • • • • • • • • • • • • • • • • • •		L 1 . 1 3 1 1	2 36	2 440	1 004				:	5	1
1	84	.6253				<u>\</u>	(2384)	2.50	129 4601	1,024	4	Repetitive	i 84	•	.0912	· -1 ·
	. 87	.4690*				•			(2).400)		(4)	OE	82 130	-	1162	· -1 ·
	130	.3238									•	Complex 6	;	•	;	, -1 ,
1		159	161										<u>•</u>	: I		<u> </u>
16	89	- 0884	.4563*				.0793	2.24	(1,975	.829	0	Independent	, , 15	1 1 -	1	·
i	96	.1757	.0187				(.9709)		(31,435)		(12)	Independent	104	-	0525	· -1 ·
	97	.1621	.0062										1 -	! - ! .159	0555	· ···
	104	.1161	.1054						:	,			122	-155		· -
Î	107	.2559	.0001										1 107	-	.0094	-1
	133	.3592	.0004		;						1		107	-	.0752	-1
															.0772	
			7	•	•							· _	97	-	.0788	· · ·
		75	78	79	80		•		i				1			
17	74	.2945	.2557	.1562	.1580		. 0756	1 75	7 160	1 022		-				
1	81	-	.0482	.0045	.4432*	•	1.8546)	~•/5	122 0041	1.055	· (0)	Independent	74	-	.0501	-1
				-					(33.094)	ļ l	(8)		i –	78	.0646	, -1 ;
								i	t f				i –	75	.0750	-1
i	i							i	6	1		•	1			

1

1.20

	Inter	-industrial Linkages (bij's)	· · . 6	. 	6 - (,					
omplex No.	Suppliers	Receivers	E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	.Type of .Intersection**	, Sequ , and Exi , in the	ential 1 t (+1) c maximis	Intry (-1) of Industries Sation ⁰ of E
17 contd)	? † 								, Sup	Rec	. E . ±1
		84 85						t	, –	79	.0756 -1
18	6 82 83 84	.3871 .0226 .2523 .4166 .4350* .0089 6253	.1348 (.8745)	3.81	3.628 (35.083)	1.523	4 (12)	Overlapping on Complex 4	6 82 -	· · · · 88 · 85	.0685; -1 .0326; -1 .0991; -1 .070; -1
1	130	.0250 .3238							84 87 130	88	. 12081 .1251 · -1 .1308 . 1
19	48	45 46 52 53 60 70 .3449 .4338* .0887 .0736 .0772 .0952	.0696 (.7896)	1.43	.140 (35.123)	•059	2 (6)	Overlapping on Complex 3	-	45 70 52 60	.0649 -1 .0672 -1 .0688 -1 .0693 -1
20	22 50 105 140	1 .4299* .3496 .1332 .4176	.0950 (.3582)	1.71	1.920 (37.043)	.806	0 (4)	Independent	- 140 50 105	53 ~ ~. ~	.0696 -1 .0706 -1 .0921 -1 .0950 -1

v

....

Table 1 (cont'd)

.

Inter-industrial Linkages (bij's)

Complex	•	}		Recei	vers	• ·	· ·	E	1			Intersecting	Tune of	Sequ	ential	Entry (-)	1)
No.	Suppliers	16	17	18	23	29	35	(CV)	à	(m ₂)	^m 3	(Total elements)	.Intersection**	and Exi in the	it (+1) e maximi	of Indust sation ⁰ of	tries of E
														Sup	Rec	. E	. ±1
21	, ± (.3902	.2798	.3745	.2940	.4105	.4232*	.1358	2.79	8.580	3.602	0	Independent	-	, 29	,.0695	-1
	1							(**237)		(45.623)		(6)		-	; 16	.0941	; -1
	1										-			-	18	.1142	-1
	• · · ·													-	, 23	1262	-1
	,	1							1	<u> </u>	{			<u> </u>	, 1/ 1	1.1358	+ -1 T'
22	22	.4299						-0950	1 71	1 020	. 000	· · · ·			•.	1	: '
	50	.3496	·			•		(.3582)		45-623)		4 (4)	Repetitive :	22	-	0706	1 '
	105	.1332			•			•	1			(*)	OI Complex 30	50	, <u> </u>	.0921	; -1
	- 140	.4176*							:				COMPTEX 20	105		0950	1
		85		•					1		 				<u></u>		÷;
23	82	.4166*						.1311	2.36	2.440	1.024		Popodatata	• •	1	1	
	84	.6253				r		(.2384)		(45.623)		(4)	Acperitive	84	! .	1.0868	, -1
	87	.4690										(1)	Complex 6	130		1212	· -1 !
	130	.3238												200	-		
		16	17	18	23	29	35		1	1						<u>+</u>	·
24	1	.3902	.2798	.3745	.2940	.4105*	.4232	.1358	2.79	8.580	3.602	· 6	Repetitivo	_	25	0.605	,
								(.1531)		(45.623)		(6)	of	-	16	.0035	· -1 ·
							Ì			: /			Complex 21	-	18	.1142	-1
							· · ·]			· .				-	23	.1262	-1
				·		·····						· ·		-	17	.1358	, -1
		÷.,			· .					1					i		· · · ·
		l · .							1	1					:	1.	

• 3

- 7 -

ŧ

Table	1	(Cont.	αį
		-	

:

•	
,	
 • •	
•	
,	

۵. .

	Inter-	industria	l Linkag	es (bij'	s)				1	t. t	``	Intersecting	1	Seque	ential E	ntry (-1))
Complex				Receive	rs			E	q		^m 3	Elements (Total elements)	.Type OI .Intersection**	and Exit	: (+1) o maximis	ation of	fies f E
No.	Suppliers	73	74	76				(CV)	1	(^{III} 2) 1		(iotal olomotor)		Sup	Rec	E	. ±1
25	2 72 73	.4078* .3703 -	- .6079 .4741	- .5075 -				.1246 (.9246)	3.04	10.663 (45.623)	4.477	.9 (9)	Repetitive of Complex 7	72 - - 73	- 74 76 -	.0648 .0990 .1183 .1246	-1 -1 -1 -1 -1
26	44 46 47 49 51 54 60	61 .3099 .4044* .1786 .1987 .3583 .1662 .1358				· · ·	×.	.1253 (.4403)	2.90	1.777	.746	8 (8)	Repetitive of Complex 12	154 51 44 49 47 54 60		.0757 .0974 .1126 .1184 .1221 .1247 .1253	
27	154	.5040	17 .2798	18 .3745	23 .2940	29 .4105	35	.1358 (.1531)	279	8.580 (45.623)	3.602	6 (6)	Repetitive of Complex 21		35 29 18 23 17	.0678 .0941 .1142 .1262 .1358	
28	. 6 82	84 .3871* .2523	85 .0226 .4166		•		,	.1348 (.8745)	3.81	3.628	1.523	12 (12)	Repetitive of Complex 18	83 82	1 1	.0685	

- 8 -

į

 $\mathbf{s} \in \mathbb{C}$

. .

化化化物化 网络小黄属 计分子

		;
Inter-industrial	Linkages	(bi-1's)

__!

					:		:					
Complex	' Suppliers	Receivers	E		mı	m ₃	Intersecting Elements	.Type of	Sequ and Exi	ential-F	intry (-1 of Indust	.) ries
	· · · · · · · · · · · · · · · · · · ·	84 85	(CV)	1	(m ₂)		(Total elements)	.Intersection**	, in the	: maximis	sation ⁶ o	fE
	1	· · ·							Sup	Rec	, E	; ±1
28	, 83	.4350 .0089							-	, 88	.0991	-1
(centd)	84	6253	4					t	-	· 85	1070	• -1
	87	4690		1			·		84	; -	.1203	-1
	130	.0250 .3238		1				-	87	• -	.1251	1 -1
	, ,				1				-	88	.1308	1
	1 		ł	1	1				130	-	.1348	: -1
	1	16 17 18 23 29 35		1	<u> </u>			<u>.</u>	1	<u>!</u> :	<u></u>	;
29	, 1 , 1	.3902 .2798 .3745* .2940 .4105 .423	1359	2 70	0 500	2 600		1	i	•	•	•
	1		(.1531)	2.15	145 6221	3.602	6.	Repetitive	-	35	.0665	. -1
	f		(12002)		143.023		(6)	of	1 -	: 29	.0929	-1
	1		· ·				1	Complex 21	-	, 16	.1142	: -1
		· .		1				1	-	+ 23	.1262	· -1
··	. t	73 74 76				<u>.</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>		1 1/	.1328	; -1
												? ?
30	2	.4078	.1246	3.04	10.663	:4.477	9	Repetitive	- 1	74	.0815	-1
	72	.3/03* .60/9 .5075	(29246)	·	(45.623)		(9)	of	-	76	.1143	, -1
	/3	4/41		1				Complex 7	73	-	.1225	; -1
	<u> </u>		·		1				2	-	.1246 .	-1
	}	158 159				1				1	1	1
31	-55	.0790 .1368	.1081	5.00	2.892	1.204	4	Overlapping on	107	-	- 0513	1
	64	.2376 .0607	(.6011)		(47.780)		(26)	Complex 16	96	· -	.0608	-1
	77	.1857 .1104		1				-	97	-	.0681	: -1
	96	.0483 .1757							129	-	.0740	-1
• ·	ł	1	{		1		1				1	ł
			1			•		1	4		•	

. .

ينين مرج

٤

••••

. .

. . .

- 9 -

0

٠ł

!

::

Table 1 (cont'd)

ŧ

		•	
Inter-industrial	Linkages	(bit's)	

۵

Complex	· · · · · · · · · · · · · · · · · · ·	Receivers	E		m.		Intersecting	Tunn of	, Sequ	ential ·E	ntrv (-1	L) f
No.	Suppliers	158 159	(CV)	à	(m ₂)	^m 3	(Total elements)	Tutersection**	and Exi	t (+1) c	f Indust	ries
				<u> </u>		·	(,		1 III CIIE	Maximits		<u> </u>
31	97	0482 1521			[]				. Sup	Rec	. E	; ±1 !
(contd)	98	.0811 1564						х. Х. С.	98	, –	.0792	-1
•	102	.2631 .1342		ļ				•	55	! _	.0826	-1
	107	.0071 .2559		1					102		.0854	-1 !
	126	2667	• .						! -	158	.0905	· -1 ,
1	129	-2611 -1578		1		,			132	, -	.0978	-1
	132	-2857 .1001							126	; -	.1023	; -1 ;
	133	.0263 .3592*				、		• • •	64	-	.1053	1
	136	.1162 .1108 .							, 77	-	.1078	-1
							•		136	; -	.1081	1 ;
1		61						!	1		· · · · · · · · · · · · · · · · · · ·	······;
32	44	.3099	.1253	2.90	1.777	.746	Q	Repetitive	154	•	1	
	46 •	.4044	(.4403)		(47,780)		(8)	of	, 154		.0/19	1 .
1	47	.1736			, ,		. (6)	Compley 12	40	-	1 1105	-1 !
1	49	.1987						complex 12	44		.1126	1 -1
	51	.3583* '					· .	,	49	-	.1184	-1
	54	.1662							4/	-	.1221	-1
i	60	.1358						•	54	-	.1247	
	154	.5040							, 80	-	.1253	-1
	•	03 125					· · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	ļ	:
33	91	3575* 0672		• 1								1 i
	21	.5575 .0872	.0354	.55	.378	.158	0	Independent	-	135	.0354	-1
			(.6837)		(48.157)		(2)	•		ī		1 21
		· · · ·							;	· ·		· · ·
		•		- 1					t t	1	l	
	1		i	L L					5		!	÷

1.

- 10 -

- L

Table 1 (cont'd)

-		l	l		÷.	
	٠	~		•	-	

inter-industriai	Linkages	(b <u>i</u> j's)	

zmplex No.	' Suppliers	Receivers 94 95 149	E (CV)	g	m ₁ (m ₂)	^m 3	Intersecting Elements (Total elements)	.Type of .Intersection**	, Seg , and Ex	uential it (+1) e maximi	Entry (of Indu .sation ⁰
	92	.3502* .1305 .0709	0424		= 0.2				. Sup	Rec	E
4 9	, , 		(.6530)		[48.750)	.249	0 (3)	Independent	-	95 ، 10 ت ا	.0401
	ŧ ŧ	1		1		1		· · · · · · · · · · · · · · · · · · ·	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	1
35	22 50 105 140	.4299 .3496* .1332 .4176	.0950 (.3582)	1.71	1.920 (48.750)	.806	4 (4)	Repetitive of Complex 20	22 140 105		.0650 .0921 .0950
36	48	45 46 52 , 53 60 70 .3449* .4338 .0887 .0736 .0772 .0952	.0696 (.7896)	1.43	.140 (48.750)	.059	6 (6)	Repatitive of Complex 19	- -	46 70 52 60	.0649 .0672 .0588 .0593
37	2 72	62 73 74 76 .3376* .4078 3703 .6079 .5075	.1240 (.8238)	2.86	9.415 (50.180)	3.953	.6 (8)	Overlapping on Complex 7	- 72	73 - 74 76	.0696 .0621 .0797 .1077
38	86	<u>89 96 97 98 99 100 164</u> .3339*.0858.2358.0743.2263.1642.0780	.0705 (.5368)	1.54	2.360 52.540)	.991	0 (7)	Independent		97 99 100	.0475 .0512 .0686

1 5

	Inte	-industrial Linkages (bjj's)	ŕ	r'		4						
Complex No.	Suppliers	Receivers		g	^m 1 (m ₂).	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequential Entry (-1) and Exit (+1) of Industries in the maximisation of E			
				1 .		1			Sup	Rec	E	=1
38 (contd)						1 5 1			- 	95 164	.0697	-1
-		0E	+		· · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·		-	98	.0705	-1
39	82	.4166	.1311	2.36	2.440	1.024	4	Repetitive	. 84	:	.0791	-1
	84	.6253	(.2384)		(52.540)	•	(4)	of	87	- 1	.1091	-1
	87 130	.4690 .3238*						Complex 23	82	-	.1311	-1
		61			1	<u> </u>					<u> </u>	
40 ,	44 46	.3099* .4044	.1253	2.90	1.777	.746	8 (8)	Repetitive	154	-	.0678	-1
,	47	.1736						Complex 12	51	-	.1126	_1
5	49	.1987						compren 12	49	_ ·	.1184	-1
į	51	.3583		•		1			47	-	.1221	-1
•	54	.1662							54	-	.1247	-1
t	60	.1358							60	-	.1253	-1
	154	.5040										
		75 78 79 80					·			[
41 ,	74	.2945*.2557 .1562 .1580						Repetitive	_	78	.0459	-1
	81	0482 .0045 .4432	.0756	1.75	2.460	1.033	8	of	-	80	.0545	-1
			(.8546)		(52,540)		(8)	Complex 17	81	- 1	.0750	-1
	1		· ·	•				ŀ		70	0756	1,1

- 12 -

	Inter	-indust	rial Li	Inkages	(bij's)					j.	ŕ	-	-1	1					
ex	Suppliers		17	18	Receiv	rers	35			E (CV)	g	= ^m 1 (m ₂).	m3	Intersecting Elements	Type of Intersection**	Sequ and Exi in the	ential En t (+1) o: maximis:	ntry (-1 E Indust ation ⁰ c	.) :ries >f E
		10	÷,							<u>}</u>	<u> </u>			(Total elements)		Sup	Rec	E	±1
		2002	. 1708	7716	1010*	47.05	4993			1260	2 70	8 580	3 602		Teretitive		35	.0598	+
	1	.3902	.2790	.3743	.2940*	.4100	.4232 .	,	•	(.1531)	2.13	(52,540)	0.002	(6)	of	-	29	.0267	-1
							,	·							Complex 21	-	16	.1084	-1
											-		1				18	.1262	-1
								,	•	ļ		::	1			-	17	.1359	-1
		85	86									1	·	_	Repetitive	85	-	.0909	-1
	82	.4166	.2919*	•					•••	.1463	3.76	6.013	2.525	10	of	-	88	.1144	-1
	84	.6253	-		•					(.9405)		(52.540)		(10)	Complex 2	-	85	.1251	
	85	-	.7990													84		.1415	-1
	87	.4690	-				,				•					-	88	.1445	1
	130	.3238	-											ļ		130	-	.1463	-1
				. '	-			•	•						:			1	
					· · · · · · · · · · · · · · · · · · ·			;	<u></u>	[- <u> </u>	·	<u></u>		<u> </u>		+
		128								-				· · ·		125	-	.0460	-1
	63	.1752					,			.0995	2.30	1.375	.577	7	Complex 31	102	-	.0527	-1
	64 77	.2376		- '	•			,		(.2456)		(52.812)		(8)	Compact of	129	-	.0769	-1
	102	2637	•						•						1	64	-	.0876	-1
	126	.2667			•								-		•	77	1 7	.0937	-1
	129	.2611		•			•				•	,				63	-	.0985	-1
	132	-2857*	•					:								T3P	– .	.0395	-1
	136	.1162															<u> </u>		
		1						,						:					
		ł												No. 2010 Transfer Transfer (21)				ļ	
						•			•			*							:

- 13 -

Inter-industrial Linkages (bij's)

No.	Suppliers	85	87	88	Receiv	vers		· ·		E (CV)	g	^m 1 (m ₂).	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential F t (+1) c maximis	entry (- of Indus Sation ⁸	l) trie of I
.		4166		5105												Sup	Rec	E	±1
・	84	6253	.2833-	.5105			•	.1		.1213	2.96	2.485	.1.043	6	Overlapping on	-	88	.0661	1-1
1	87	4690	_	_			•			(.9523)		(52.869)		(9) ·	Complex 10	-	85	.0931	-1
	.,	.1090	_	-			•]		and	84	-	.1147	-1
					••	·									Complex 18	. 87	-	.1213	_]
		16	17	18	23	29	35										1	1	
6	1	.3902	.2798*	.3745	.2940	.4105	.4232			.1358	2.79	8.580	3.602	6 -	Repetitive	_	35	0526	
								••	×	(.1531)		(52.869)		(6)	of	-	29	0856	
		•											l i	• - •	Complex 21	-	16	.1074	
					•		N								1	-	18	.1252	-1
																-	23	.1358	-1
		128	159														1		
7	14	.1276	.0332	*						.0680	2.27	1.427	599	5	Overlapping on	74		0222	Ι.
	96	-	.1757						•	((_0146)		(53,227)		(16)	Complex 31	14	107	.0332	-1
	97	.0003	.1621			·		i				;		(10)		-	157	.0399	1-1
	98	-	.1564	;												_	160	0456	
	107	-	.2559		•		÷							••		-	162	.0464	
	124	.2711*	.0687	-	•									•		128	-	0485	1_1
	129	.0001	.1578					•	·		•			•			.159	0510	-1
	133	.0002	.3592		•											133	-	.0539	-1
	[• .					·.				-	127	.0357	
	1. I								_			ż				98	· •	.0579	-
								•								97	-	.0591	1-1
								,						• •	· · ·	-	157	.0609	1 1
-							•	•						2	- N	107	-	.0613	-1
1	1	· .						· · .	1	. I.	,	1	.	• • • •					1

- 14 -

\$ 1

÷

Table 1 (cont'd)

æ

.

1 3

at such a terre at the case of a second second

 $\mathbf{v} \in \mathbb{N}$

- 15 -

Inter-industrial Linkages (bij's)

cmplex No.	Suppliers	Receivers	E (CV)	g	m1 (m2).	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequand Exi in the	ential E t (+1) o maximis	ntry (-1 £ Indust ation ⁵ c) ries £ E
47									Sup	Rec	E	±1
ontd)		· ·		[ł	. .	· •	ų · į				
				1		1			-	162	.0636	1
	!			}	1			4 -	- /	160	.0645	1
					1				96	-	.0663	-1
]		1	· .	[]	129	-	.0672	-1
						}	1	•	128	-	.0580	11
		158								1		
45	63	.1752	.0995	2.30	1.375	.577	8	Penetitive	132	-	.0460	_1
	64	.2376	(.2456		(53.227)	,	(8)	of	102	l -	.0627	
	77	.1857	1					Complex 44	129	- 1	.0769	
-	102	.2631						1 COMPTER II	64	-	.0276	-1
	- 125	.2667*						1	77	- 1	.0937	-1
	129	.2611		· · ·				1	63	- 1	.0985	-1
	132	.2857			· · ·				136.	- 1	.0995	-1
	136	.1162			1 ·					1		
		159									[
49	63	.1752	-	2 20	1 276	577	· · ·	Penatitiva	132	_	.0457	
	64	.2376	(.2456)		(53 227)		(8)	Aspecicive of	126	-	.0627	
	77	.1857			(00100)			Complex 44	129		.0769	-1
1	102	.2631*						tompzen n	64	i	.0876	-1
	126	.2667			.				77	l - '	.0937	-1
	129 -	.2611							63	i – '	10985	-1
	132	.2857		•			· ·		136	i '	.0995	-1
	136	.1162								1	· ·	
					1 I				,			

·, · ·

Table 1 (cont'd)

					•														
	Inter	-indust	rial L	inkages	(bij's)					÷			· • · ·	1				
cmplex No.	Suppliers	89			Recei	vers			· · · · · · · · · · · · · · · · · · ·	(CV)	g	^m 1 (m ₂).	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) c maximis	ntry (-1 f Indust ation ⁶ o) ries f E
														i de la companya de la		Sup	Rec	E	±1
50	36 - 94	.3339	.2358	.2263	.1642	.0041		•	•	.0617	1.58	2.154	.904	4	Overlapping on	93	-	.0295	-1
	54	-	.0002	.0046	.0014	.2630	* .			(1.0329)		(53.463)		(10)	. Complex 38	-	98	.0343	-1
												1		*		86	- 1	.0350	-1
												::				F	89	.0470	-1
		•														-	99	.0538	-1
							-]	-	97	.0568	-1
			•		•	•			••		1					93	- 1	.0373	1
		•			•					1				·		-	100	.0596	-1
··		. 16	17	18	22	23	20				<u> </u>		ļ		£	-	98	.0617	1
51	, +					4.5	29			_			1				1		
27	20	.3902	.2798	.3745	.1305	.2940	.4105	.4232		.1132	3.49	9.268	3.891	6	Overlapping on	-	144	.0359	-1
	25	.1444	10001	.0017	.2620*	.0069	-	.0002	•.	(.8528)		(54.150)		(14)	Complex 21	-	16	.0443	-1
			•								1.			1	P	1	-	.0685	-1
								•							4	-	35	.0844	-1
							•]		1	·.	6	-	29	.0965	-1
				_				7							1	-	18	.1048	-2-
									••							-	23	.1086	-1
											·	1	[· .	.	. 17	.1110	-1
		150					<u> </u>				[· ·	<u> </u>	·	-	144	.1132	$\begin{bmatrix} 1 \\ - \end{bmatrix}$
	- +							·									[[
52	63	.1752								.0995	2.30	1.375	.577	. 8	Repetitive	132	- 1	.0456	-1
	64	.2376	•					•		(.2456)	•	(54.150)		(8)	of	126		.0626	-1
	77	.1857													Complex 44	102	-	.0769	-1
	· 1			•						1		ľ		I · · ·				1 1	ŧ

30

ĨF

ţ

• •	•	
•	,	
	•	
	•	

·• · • • •

i

Inter-industrial Linkages (bii's)

.1

-			İ	Ť.	; -	1	1	s •				
No.	Suppliers	Receivers	E · (CV)	a	^m 1 (m ₂).	^m 3	Intersecting Elements (Total élements)	Type of Intersection**	Seque and Exi in the	ential Ex t (+1) o: maximis:	ntry (-1 f Indust ation ⁶ o	.) ries f E
					1	<u> </u>		· · · ·	Sup	Rec	E	±1
52	102	.2631		1	ļ.	{ .			64		.0876	1_1
(contd)	126	.2667		1		•			77	-	.0937	
	129	.2611*			1	4			63	-	.0985	
	132	.2857							136	-	.0995	_1
	136	.1162			::					•		
		158 159					<u> </u>					
53	55	.0790 .1368	.1081	5.00	2 802	1 214	26	Repetitive	133		0512	1,1
1	64	.2376 .0607	(.6011)		(54, 150)	1.214	(26)	of	96		0600	-1
	77	.1857 .1104	,,	1			(20)	Complex 31	97	_	0621	
	96	.0483 .1757		[}		1	Journa of	129	_	0740	
	97	.0482 .1621		[}		1		98	_	0702	
	98	.0811 .1564							55		0226	
	102	.2631 .1342			· ·		· · ·		102		0254	
	107	.0071 .2559*								158	0005	
	126	.2667 .0653					· ·		132		0505	
	129	.2611 .1578					·, '		126	1 - '	1023	
1	132	.2957 .1001					4		64	·	1052	[,
	133	.0263 .3592							77	r _	1078	
	136	.1162 .1108					· · ·		136	- -	.1081	-1
		75 78 79 80										
54	74	.2945 .2557* .1562 .1580	. 0756	1 75	2.460	1 022	•	Demokra		- I		
[81	0482 .0045 ,4432	(.8546)		(54 150)	1.035	0 /g)	Repetitive	-	/5 00	.0459	
.			(10340)	•	(34.250)		(8)	or		80	.0545	-1
·		• •.	1				· :	Complex 17	81	-	.0750	-1
4	1			.	1		· · · ·	· •	-	79	.0756	-1

- 17 -

į.

No.	Suppliers	84	85		Recei	vers				E (CV)	g	^m 1 (m ₂).	^m 3	Intersecting Elements (Total elemen	ts)	Type of Intersection**	Sequ and Exi in the	ential H t ~(+1) c maximis	entry (~) of Indust sation ⁰	l) trie of E
									;					25			Sup	Rec	j e	±1
°°.	6	.3871	.0226					• .		.1348	3.81	3.628	1.523	12		Repetitive	-	88	-0636	-1
1	82		.4166				÷.			(.8745)		(54.150)]	(12)	·	of	-	85	.0907	-1
	83	.4350	.0089											1		Complex 18	84	- 1	.1128	-1
	87		1600											J		-	. 87	 	.1197	-1
	730	0250	3070						·								83		.1235	-1
	130	.0250	•1210												_		6	-	.1251	
																	-	83	.1308	1
		38 .	39	47	140	141	143	147	152								130	-	1.1348	<u> -1</u>
55	141	0196	0220	0010									ļ .	+	1			4		
	146	1050	.0229	.0215	.0002	-	.0761	.0397	.2471*	.0440	1.47	1.240	.520	0		Independent	-	143	.0269	-1
	140	* 70.04	.0/00	.0/10	.0932	.1245	.1146	.0825	.0456	(.8337)		(55.390)		(16)			145	÷ +	.0345	-1
				. :	•										•••		-	38	.0381	-1
ĺ			-											•			-	141	.0408	-1
1				•				. 1		} 1		· .					-	147	.0428	1-1
ł				•			•			1							-	39	.0435	-1
								ż	•				1		[-	140	.0438	1-1
		760			4	·····, ···						· · · · · · · · · · · · · · · · · · ·]		~ ·	47	.0440	1-1
1	1	430						····							.		•	[
17	63	.1752								.0995	2.30	1.375	.577	8	•	Repetitive	132	- 1	.0436	-1
	64	.2376*					•			(.2456)		(55.390)		(8)	.	of	126	- 1	.0608	-1
	77	.1857						•				•			1	Complex 44	102	-	.0752	-1
	102	.2631				,			-						ł		129	-	.0876	-1
	126	.2567				•		•			•			· ·			77	-	.0937	-1
	129	.2511	•											:		j	63	-	.0985	-1

- 18 -. •

		· · · · · · · · · · · · · · · · · · ·	<u></u>				• ـ	, est.	•	-		:
•	Tako	- industrial tinkason (b la)		- 19 -	:		• ·	-				
NO.	Suppliers	Receivers	E (CV)	g	^m 1 (m ₂).	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequand Exi in the	ential E t (+1) o: maximis:	ntry (-1 f Indust ation ⁵ o) ries f E
		· · · · · ·						,	Sup	Rec	E	±1
57 :::::)	132 136	.2857				•	•		136	-	.0995	-1
		89 96 97 98 99 100 164										
58	86	.3339 .0858 .2358* .0743 .2263 .1642 .0780 .	.0705	1.54	2.:360	.991	7	Repetitive	- -	89:	.0475	-1
			(.5368)		(55.390)		(7)	of Curreland 20	-	99	.0612	-1
		· · · · · · · · · · · · · · · · · · ·			· ·			Complex 38		96 100	.0696	-1
							· ·		-	164	-0702	-1
									-	98	.0705	-1
	-	118			4		•					
59	68 119	.0437 .2313*	.0229 (.6819)	.35	.280 (55.670)	.117	0 (2)	Independent	68	-	.0229	-1
		89 96 9 7 98 99 100 164 .		·	· ·							
60	86	.3339 .0858 .2358 .0743 .2263* .1642 .0780	.0705	1.54	2,360	.991	.7	Repetitive	-	89	.0467	-1
		,	(.5368)		(55.670)		· (7)	of _	-	97	.0612	-1
							••	Complex 38	-	100	.0686	-1
							•••		-	96 164	.0697	-1
	· · ·	· · · · · ·			· · · · · ·		• • • • •		-	98	.0705	-1
		49 61			· ·			· · ·				
61	44	.2116* .3099	.0997	.2.56	1.551	.651	5.	Overlapping on	-	61	.0435	-1
	46	.0003 .4044	(.8990)		(55.706)		(10)	Complex 12	154	-	.0733	-1
1	. 1		1 <u> </u>		ł , .			<mark>. </mark>	J	i I		1 1

....

ŧ

Table 1 (cont'd)

._**!**

	Inter	r-indust	rial Lin	nkages	(bij'	3)		•			÷.	ŕ	: -		1			•		
No.	Suppliers	49	61		Rece:	lvers			•		E (CV)	g	(m2)	^m 3	Intersecting Elements (Total elements	Type of Intersection**	Sequand Exi in the	ential E t (+1) o maximis	ntry (-1 f Indust ation ⁶ o	.) :ries :f E
					•												Sup	Rec	E	±1
61	47	.0275	.1786					. '	•					<u> </u> .			46	~	.0294	1-1
enta)	51	-	.3583				• •	r -				l		1			51	- 1	.0994	-1
	154		.5040														47	- 1	.0997	-1
		50	61										::	1						
62	44	.0277	.3099								.0966	2.98	1.667	.700	6	Overlapping on	_	57	.0322	-1
	46	.0001	.4044							、	(.9958)		(55.826)		(14)	Complex 12	44	-	.0437	-1
	47	.0208	.1786			, •				·· ``.				1		-	ļ _ 7	61	.0623	-1
	49	.0318.	.1987									2		1			154	-	.0790	-1
	51	-	.3583				•							ł			46	-	.0866	-1
*	58	.2074*	.0763					•									51	- 1	.0905	-1
	154		.5040									ł					-	57	.0944	1 1
				-	-							•					. 49	-	.0963	-1
										-			· · ·		•		47	-	.0966	-1
		158	159	·164				·	,	•										
63	64	.2376	.0607	.0207							.0894	5.28	3.674	1.542	20	Overlapping on	90	-	- 0266	-1
	77	.1857	.1104	.0136				'n			(.8501)		(56.906)		(36)	Complex 31	_	159	.0358	-1
	90	.0913	.0767	.1195													133	- 1	.0538	-1
	97	.0482	.1621	.1178		· ·						· .					97	-	.0634	-1
	98	.0811	.1564	.0558									·.		ŕ		107	- I	.0699	-1
	102	.2631	.1342	.0146					_								98	-	.0732	-1
	107	.0071	.2559	.0020			•		•				· ·] .	96	-	.0749	-1
	126	.2667	.0653	.0001					۰.						· ·		128	-	.0756	-1
	127	.0613	.1047	.1998 *				·				•			· · · .		129		.0762	-1
	-					•		States and a state of the second	5 M W		-	••	-	•	•	í	•	1	1	1

. N. 1.

- 20_-

ŧ

- 41

. .

Complex	Suppliers				Receivers	
NO.		158	159	164		

. .t

<u> </u>

	Inter	-indust	rial Li	inkages	(bij's)				÷	i . 1	:	i ·						
Complex No.	Suppliers	158	159	164	Recei	vers				E (CV)	g	[™] 1 ([™] 2).	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t √+1) o maximis	ntry (-1 f Indust ation ⁰ o) ries f E
									-1					ş		Sup	Rec	E	±1
63_	129	.2611	.1578	.0106				• .•					ŀ	·		-	158	.0768	-1
contd)	132	.2857	.1001	.0001		•							1		•	102	-	.0313	-1
	133	.0263	.3592	.0012		•				1						132	- 1	.0346	-1
									•				•			. 126	- 1	.0863	-1
									•							64	- 1	.0875	-1
																77	-	.0885	-1
						-			•••]						96	-	.0891	1
					•			. •								128	-	.0294	1
		61					`			1	1								
64	44	.3099			·		• • •	···		.1253	2.90	1.777	.746	8	Repetitive	154	- 1	.0586	-1
	46	.4044								(.4403)		(56.906)		(8)	of	46		.0852	-1
	47	.1786					;				}				Complex 12	51	- 1	.1047	-1
	49	.1987*		•					•••		}					44	<u>-</u>	.1184	-1
	51	.3583	•	:				ù				·· ·				47	-	.1221	-1
	54	.1662						•			l.					54	-	.1247	-1
	60	.1358						i								60	-	.1253	-1
	154	.5040	، سامیہ ا		. •				•				· .	·•					1
		38	39	136	140 .	141	143	146	147	1		·							
65	13 .	.0016	.0057	·.0779	.0791	-	.0142	.1973*	.0037	.0390	1.30	.,836	.351	6	Overlapping on	-	140	.0230	-1
	146	.1064	.0788	.0343	.0932	.1245	.1146	-	.0825	(.8831)	ľ	(57.002)		(16)	Complex 56	-	136	.0272	-1
								•					1			146	-	.0301	-1
											•				1 ·	-	143	.0339	-1
						•		•			[1	1	1	- 1	141	.0368	1-1

•			· ,		
, ··		· ·			Table 1 (cont'd)
• •••••	• • • • • • • • • • • • • • • • • • •	<u></u>	· · · · · · · · · · · · · · · · · · ·	• .	-

		•	-	- 22 -			:					
rplex No.	Inte: Suppliers	-industrial Linkages (bij's) Receivers	E (CV)	g	m	—	Intersecting	Type of	Sequ and Exi	ential F	Intry (-) of Indust	l) Ties
			(00)		(^m 2).	3	(Total elements)	Intersection**	in the	maximis	ation [®] o	EE
65,		• • • •							Sup	Rec	E	±1
ontd)					1	·			-	38	-0383	-1
		57 61		<u> </u>	<u> </u>	ļ	•			39	.0390	-1
66	4.4	.1970* .3099	1015				1		ſ	l -		
	46	.0001 .4044	(.8631)	2.01	1.294	.543	· 5	Overlapping on	-	61	.0422	-1
l	51	.0003 .3583				1	(10) -	Complex 12	46		.0885	-1
	58	.1791 .0763			· ·				51	- 1	.0986	-1
	T 2.4	5040				 			58		.1015	-1
-						'			ł			
67	44	.1120 .3099	.1090	3.36	1.932	.811	6	Overlapping on	47	-	.0301	-1
	46	.0137 .1344	(.8017)		(57.493)		(14)	Complex 12	-	61	.0407	-1
	47	.1645	{	•					154	· -	-0671	-1
	49	.0917 .1987		1			· · ·		40	_	.0832	
	51	.0492 .3583					• •		51	- 1	.1058	-1
		5040 -	· .				<u> </u>	• .	49	-	.1090	-1
62	10 [†]	41 42 43					· · ·	Repetitive			}	
	40	· · · · · · · · · · · · · · · · · · ·	.0589	0.98	.298	.125	• 3	o£	-	41	.0571	-1
			(.6/9/)		(57.493)		(3)	Complex 13	-	43	.0589	-1
		·					-					
	•											
1				. 1		·]	· ·	i i		1	}	1 1
-a - 5				• ·	۰.		•					
	, •		•				•	•	٠.			
						• f					•	

سب الممر م

	- 22

Inter-industrial	Linkages	(bii's)
------------------	----------	---------

_	······								ł	1	1 ~	1	1					
No.	Suppliers	25	26	27	Recei	vers 31			E (CV)	g	^m 1 (m ₂).	m ₃	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) o maximis	ntry (-1 f Indust ation ⁵ o) ries f E
							<u></u>		[Sup	Rec	E	±1
69	23	.0523	.1885*	.0031	.0326	-	•		· .0302	.97	.964	405	0	Independent	_	25	.0201	
•	28	.0412	.0489	.0663	.0373	.0935	· · ·		(.8712)		(58.457)		(15)	ingebengent	78	-	.0238	
	78	.0542	.0380	.0422	.0497	.0060									28	_	.0264	
															· _	30	.0285	-1
											::	1.			-	27	.0297 .	-1
																31	-0302	-1
		62	63 .	73	74	76							-	· .				
70	2	.3376	.1880*	.4078		-	•		t l				·	Overlapping on	-	73	.0496	-1
	72		-	.3703	.6079	.5075	•		.1210	3.11	9.688	4.067	8	Complex 37	-	62	.0718	-1
									(.9194)		(58.730)		(10)		72	1 -	.0815	-1
		•								•			•		-	74	.1062	-1
															-	76	.1210	-1
		158						· .										
71	63	1752							0005	2 30	1 275	577	0		122		0202	
+	64	.2376					,		(.2456)	2.50	(58,730)	.577	(8)	Repetitive	126		.0568	
	77	.1857*					4				(551150)		197	OI Complex 11	102	_	.0715	-1
	102	.2631		-	•								•	Complex 44	129		.0842	-1
	126	.2667													64 [·]	-	.0937	-1
	129	.2611			•								•		63	- 1	.0985	-1
	132	.2857		•			· .				·				136	-	.0995	-1
	136	.1162														1.		
															<u>_</u>			
						·							•					
			· .	•				•										
	-			~		•		•		•	•		•	•		•	r 1	

	Inter	-indust	rial Linkages	: (bij's)			ŕ I	•	-	1 · ·	I					
lex	Suppliers	57	61.	Receivers			E (CV)	g	^m 1 (m ₂).	^m 3	Intersecting Elements (Total elements	Type of Intersection**	Sequ and Exi in the	ential E t (+1) o maximis	ntry (-1) f Indust ation ⁶ o) rie f E
						······································	•		·	1			Sup	Rec	Ē	=1
-		1970	. 2000		· · ·		.1015	2.61	1.294		10	Demotration	_	50	.0322	-1
<i>z</i> .	44.	.1970	. 3099			•	(.8631)		(58.730)		(10)	Repetitive	44	- 1	.0437	-1
	51	0003			•	•						Complex 66	-	61	.0623	-1
	59	1791*	0763									COMPTEX 00	- 154		.0790	-1
	154	_	-5040				1						46	-	.0866	-1
										1	1		-	50	.0923	1
		Į								·	-	•	51	-	.1015	-1
		61		•	· · · · · · · · · · · · · · · · · · ·	· · ·				1						
				· · · · · · · · · · · · · · · · · · ·			1252	2 90	1 777	.746	8	Repetitive	154	-	.0569	-1
73	44	.3099					(4403)	2	(58,730)		(8)	of	46	-	.0836	-1
	46	.4044					(.4403)	·				Complex 12	51	-	.1032	-1
	47	.1786*]	[· .		44	-	.1170	-1
	49	.1987		•	,								49	-	.1221	-1
	51	.3583				2							54	-	.1247	-1
	54	.1002	•			r		ł	·				60	-	.1253	1-1
	154	5040			`								•			
	1.74				······						· · .		1			Τ
		128	122			· · · · · · · · · · · · · · · · · · ·	-		2 000	1 214	25	Repetitive	133	-	.0446	-1
74	55	.0790	.1368			• •	.1081	5.00	2.892	1.214	(26)	of	107	-	.0608	-1
	64	.2376	.0607				(.6011)	ļ	(58.,730)	1	(20)	Complex 31	97	- 1	.0681	-1
	77	.1857	.1104		•							Complex 51	129	-	.0740	-]
	96	.0483	.1757*										98	-	.0792	-3
	97	.0482	.1621								· · .		55	- 1	.0826	-1
	98	.0811	.1564			,					:			1		
	}					a Marian (company) a	1	1	1	1	1	· · · ·	1	1	1	1
a			•						•	• •	•					

ى دەرىيەر بار ، مەرىپىيە جۇرى .

- 24 -.

· · · · ·

Table 1 (cont'd)

ŧ

Inter-industrial Linkages (bi-is)

,

1				J = 1 = 1 J				Ê F	1 [']	•	-1	•					
Complex No.	Suppliers	158	159	Recei	ivers			E (CV)	g	^m 1 (m ₂).	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seçu and Exi in the	ential E t (+1) o maximis	ntry (-1 f Indust ation ⁵ o) ries f E
												4		Sup	Rec	E	±1
74	102	.2631	.1342			•	. •					· · · ·		102		025/	
(contd)	107	.0071	.2559			۰ ⁻	•			· ·	1			102	158	0504	
	126	.2667	.0653		•			1	1	· ·	1			132	150	0909	
	129	.2611	.1578							1				126		1022	
	132	.2857	.1001				•							54	- ·	1053	
	133	.0263	.3592							Ì.				77	_	1078	
	136	.1162	.1108				· · ·		· ·		1	-		135	-	.1081	1_1
		158		•		•	•										
75	63	.1752*				`		0995	2.30	1 375	577		D	1 2 2		0.204	
ļ	64	.2376						(.2456)	2.30	(58 730)	.3//	(2)	Repetitive	132		.0384	1-1
	77	.1857								(30.730).	1	(3)	or	100	-	.0560	-1
	102	.2631									ļ		Complex 44	102	i - 1	.0708	- 1
	126	.2667	•	•								•		129	-	.0835	
	129	.2611					3	1	•	· .		•		77.		.0531	
	132	.2857	4				•	[]						136	i I '	.0905	
	136	.1162	:			•						•.		130	_		
		64	158 15	59 -			• .					·			[\vdash
76	62	1701*	.0476 .03	813		<u></u>	· · · · · · · · · · · · · · · · · · ·	.0826	4.24	2.855	1.199		Overlapping on	-	65	.0210	-1
	63	.0548	.1752 .04	34				(.9851)		(59.551)	•	(30) '.	Complex 44	_	67	-0233	-1
	64 ·	-	.2376 .06	507						·.			and	_	158	.0251	-1
1	77	.0040	.1857 .11	104						•		,	Complex 74	132	1 - 1	.0354	-1
1	102	.0001	.2631 .13	42									compagn (1	126		.0411	-1
	107	-0002	.0071 .25	59		•	•		·					102	_	.0449	-1
	126	.0006	.2667 :06	53		•	1							-	67	.0507	1
1	1					· · · · · · · · · · · · · · · · · · ·	್ಷ ಮಾನ್ 🍙 🗸 🔸	إلىبيني ومسا	l	t	1			1	, 1	; 1	1 1

..25 .

· · · ·

Table 1 (cont'd)

i

•		
Inter-industrial	Linkages	(bij's)

Complex No.	Suppliers	64	158	159	Recei	vers		·····		Е (CѶ)	a	m1 (m2)	^m 3	Intersecting Elements	Type of	Sequ and Exi	ential E t (+1) o	ntry (-1 f Indust	l) tries
		<u> </u>					•				[<u> </u>	(Total elements)			INAXIMIS		, <u> </u>
76	129	_	.2611	.1578				•								Sup	Rec	Z	±1
contd)	132	-	.2857	.1001				• . •					1.		·	-	65	.0574	1
	133	.0002	.0263	.3592		•	1									129	-	.0648	-1
														(-	159	.0714	-1
												::	1.			133		.0775	-1
			·										· ·			77	-	.0797	-1
					•				``				· ·	-		64 62	-	-0814	-1
					· •	•			·· \			ļ ,	1		N	107	-	0222	
		16	17	18	22	23	,29	35	144				1					.0025	
77	1	. 3902	. 2798	3745	1305	2940	4105	1222		1110		0.000	-						
	29	.1444	.0007	-0017	-2620	0069	-	0002	169/*	1 20501	3.11	9.301	3.930	14	Overlapping on	- 1	22	.0359	-1
					12020					(.0500)		(39.044)	ł	(10)	Complex 51 i.e.	-	16	.0443	-1
				2 .			,								51 1s nested	1	-	.0585	-1
			•					c						•	on //	-	35	.0844	
			-	. `		•										-	29	1040	1-1
[`	•								_	- <u>-</u> 0	1026	
				-				5								-	17	.1110	
		56	67						t		•	· · ·							
78	44	1 (0) +			•									· · ·					
	46	•±001×	. 3099							.0978	2.51	1.180	.495	5	Overlapping on	-	61	.0398	-1
	49	0020	1987							(.9257)		(59.678)		(10)	Complex 12	154	-	.0701	-1
	51	-0009	-3583													46	-	.0868	-1
	154	-	.5040					· •			· .			•		51	-	.0971	-1
· · ·							•									49	-	.0978	
1	I		• '	•					:	.								1	

- .26 -

٠

. .1

plex	C	Receivers	E	1	· . m.,	1	Intersecting		G a			
•.	Suppliers	61 .	(CV)	<u>व</u>	* (m ₂).	^m 3 .	Elements (Total elements)	Type of Intersection**	and Exi in the	ential E it (+1) o maximis	ntry (-) f Indust ation ⁶ (1) :rie of E
		2000	1						Sup	Rec	E	=1
<i>"</i>	44	4044	.1253	2.90	1.777	.746	8	Repetitive	154	-	.0559	1-1
	40	1795	(.4403)		(59.678)	ŀ	(8)	` of	46	-	.0827	-1
	49	. 1987						Complex 12	51	-	.1024	-1
	51	-3583							44	-	.1162	-1
	54	.1652*				1			49	-	.1213	-1
	. 60	.1358	1			ļ	-		47	-	.1247	-1
	154	.5040			:	1			60	-	.1253	-1
		1 40				<u></u>						┢
0	16	.0019 .1650*	.0758	1.75	1.841	.773	3	Overlapping on	147		0167	
	22	.4299 .0004	(1.0885)		(59.803)		(8)	Complex 20	-		.0103	
	50	.3496 -				1		COMPACE IO	22		0420	
	140	.4176 .0004			1				140	<u> </u>	.0614	-1
ł		· · · · · · · · · · · · · · · · · · ·			1 ·	ļ			50	_	.0728	-1
		· · · · ·					· ·		147	· -	.0758]]
	-	60 61 ý					·	· · · · · · · · · · · · · · · · · · ·	— <u></u>	·		<u>+</u>
1	44	.1120 .3099	.1090	3.36	1.932	.811	14 .	Bapetitivo	45		0201	_,
	45	.1962 .0305	(18017)	•	(59.803)		(14)	of	-	61	0407	
	46	.0187 .4044			1 · · ·			Complex 67	154		.0571	
1	47	.1646* .1786							46		.0832	
	49	.0917 .1987			·				44 ·		.0960	-1
	51	.0492 .3583							51	-	.1058	'1
	154	5040 ,							49	-	.1090	-1
1	l		·		!					İ		-
			۰.	,					I			1
a • 7					ι.							
	· . ·		•					•			·.	
			••					· · ·	-			•

- 27 -

er-industrial Linkages (bi+'s)

-plex	C				Recei	vers			Е	_	mı	_	Intersecting	Type of	Seque	ential Ential Entire to (+1) of	ntry (-1) f Indust) ries
No.	Suppliers	89	96.	97	98 .	99	100	164	(CV)	g	(m ₂).	^m 3	(Total elements)	Intersection**	in the	maximis	ation ⁵ of	fE
								······································					÷		Sup	Rec	E	±1
82	86	.3339	.0858	.2358	.0743	.2263	.1642*	.0780.	.0705	1.54	2.360	991	7.	Repetitive	-	89	.0415	-1
•						•	· ·		(.5368)		(59.803)		(7) ·	of		97	.0565	-1
					•			·						Complex 38	- 1	99	.0686	-1
											ļ				-	96 .	.0697	-1
								· .	1				· ·			164	.0702 ·	-1
									· ·						<u> </u>	98	.0705	-1
		158	159					· · · · · · · · · · · · · · ·			·			×	-			
6 2	55	0780	1260		· · ·			· · · · · ·	1087	5.00	2.892	1.214	26	Repetitive	133	-	.0434	-1
22	53	.0750,	0607						(.6011)		(59,803)		(26)	of	107	-	.0598	-1
	77	1857	1104	•										Complex 31	96.	- 1	.0631	-1
	95	.0483	.1757]		1				129	-	.0740	-1
	97	.0482	.1621*								1				98	-	.0792	-1
	98	.0811	.1564	. *	•	•	,					· ·			55	-	.0226	-1
	102	.2631	.1342					ŝ	{					1	102	-	.0854	-1
	107	.0071	.255 9	•							1		· ·		-	158	.0905	-1
	126	.2667	.0653				•					1			132] -	.0978	-1
	129	.2611	.1578	-				\$				ł -			126	-	.1023	1-1
	132	.2857	.1001								· .				64	1 -	.1053	-1
	133	.0263	.3592								1				77	-	.1078	-1
	136 .	.1162	.1108								·.				136	-	.1081	-1
		44	61											•				1
9.4			- 3099						.1010	3.11	1.748	.734	7	Overlapping on	-	61	.0271	-1
U- T	46	.0010	.4044					•	(.9216)		(59.969)		(14)	Complex 12	154	-	.0592	-1
				_			•	•						Complex 12			1	

- 28 -

-			
		- Å'	

Inter-industrial Linkages (bij's)

Suppliers				Receivers		•	E .	1	m ₇	1	Intersecting	Mana of	l Secu	ential E	Entry (-	11
	44	61					(CV)	g	(m ₂)	^m 3	Elements (Total elements)	Intersection**	and Exit (+1) of Industrian the maximisation of			
47	.0871	1786									-		Sup	Rec	E	±1
49	.0514	.1987									• •		46	-	.0772	-1
51	.0062	.3583			•								51	- 1	8850.	-1
54	.1588*	.1662							· ·				44		.0954	-1
154	-	.5040											. 47	-	.0988	-1
	75				······					<u> </u>			49	-	.1010	-1
ļ		/0		80						· ·				4		T
74	.2945	.2557	.1562	.1580*			.0756	1.75	2.460	1.033	8	Repetitive	81	{ _	0501	
81	-	.0482	.0045	.4432			(.8546	>	(59.969)		(8)	of	-	78	0646	
					•		· ·		Ì	ľ		Complex 17	-	75	.0750	-1
							ł	1				-	-	79	.0756	-1
	158	159							1		<u>`</u>				<u>.</u>	+
55	.0790	.1368 [.]	•			·····		5 00	2 000	1				· · ·		
64	.2376	.0607					(6011	5.00	4.892	1.214	26	Repetitive o	133	-	.0431	-1
77	.1857	.1104 `				· .	(.0011	1	(59.909)		(26)	of	107	-	.0595	-1
96	.0483	.1757.				•						Complex 31	96	- .	.0678	-1
97	.0482	.1621 '				:							97	-	-0740	-1
98	.0811	.1564							· .				98	-	.0792	-1
102	.2631	.1342					·.						55	-	.0826	-1
107	.0071	.2559		:							•		102	-	.0854	-1
126 •	.2667	.0653					1	[-	128	.0905	-1
129	.2611	.1578*									· ·		132	~	-0978	-1
132	.2857	.1001					1						126	-	.1023	-1
133	.0263	.3592				•	1						. 64	-	1053	-1
136	.1162	.1108									.'		176	-	.1078	1 -1
-	Suppliers 47 49 51 54 154 74 81 55 64 77 96 97 98 102 107 126 129 132 133 136	Suppliers 44 47 .0871 49 .0514 51 .0062 54 .1588* 154 - 75 .2945 81 - 158 .0790 64 .2376 77 .1857 96 .0483 97 .0482 98 .0811 102 .2631 107 .0071 126 .2667 129 .2611 132 .2857 133 .0263 136 .1162	Suppliers 44 61 47 .0871 .1786 49 .0514 .1987 51 .0062 .3583 54 .1588* .1662 154 - .5040 75 78 74 .2945 .2557 81 - .0482 55 .0790 .1368 64 .2376 .0607 77 .1857 .1104 96 .0483 .1757 97 .0482 .1661 102 .2631 .1342 107 .0071 .2559 126 .2667 .0653 129 .2611 .1578* 132 .2657 .1001 133 .0263 .3592 136 .1162 .1108	Suppliers 44 61 47 .0871 .1786 49 .0514 .1987 51 .0062 .3583 54 .1588* .1662 154 - .5040 75 78 79 74 .2945 .2557 .1562 81 - .0482 .0045 55 .0790 .1368 64 .2376 .0607 77 .1557 .1104 96 .0483 .1757 97 .0482 .1621 98 .0811 .1564 102 .2631 .1342 107 .0071 .2559 126 .2667 .0653 129 .2611 .1578* 132 .2657 .1001 133 .0263 .3592 136 .1162 .1108	Note 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	Necesses 44 61 47 .0871 .1786 49 .0514 .1987 51 .0062 .3583 54 .1588* .1662 154 - .5040 74 .2945 .2557 .1562 .1580* 81 - .0482 .0045 .4432 158 159 . .4432 55 .0790 .1368 . 64 .2376 .0607 . 77 .1857 .1104 . 96 .0483 .1757 . 97 .0482 .1621 . 98 .0811 .1564 . 102 .2631 .1342 . 107 .0071 .2559 . 126 .2667 .0653 . 129 .2611 .1578* 132 .2857 .1001 . 133 .0263 .3592 136 .1162 .1108	Necesses 44 61 47 $.0871$ $.1786$ 49 $.0514$ $.1987$ 51 $.0062$ $.3583$ 54 $.1589*$ $.1662$ 154 - $.5040$ 74 $.2945$ $.2557$ $.1562$ $.1580*$ 81 - $.0482$ $.0045$ $.4432$ 158 159 55 $.0790$ $.1368$ 64 $.2376$ $.0607$ 77 $.1857$ $.1104$ 96 $.0433$ $.1757$ 97 $.0452$ $.1621$ 98 $.0811$ $.1564$ 102 $.2631$ $.1342$ 107 $.0071$ $.2559$ 126 $.2667$ $.0653$ 129 $.2611$ $.1578*$ 132 $.2657$ $.1001$ 133 $.0263$ $.3592$ 136 $.1162$ $.1108$	Suppliers Accelvers CV 44 61 (CV) 47 .0871 .1786 49 .0514 .1987 51 .0062 .3583 54 .1589* .1662 154 - .5040 74 .2945 .2557 .1562 .1580* 81 - .0482 .0045 .4432 .0756 81 - .0482 .0045 .4432 .0756 64 .2376 .0607 (.6011 (.6011 77 .1857 .1104 .6011 (.6011 96 .0483 .1757 .97 .0482 .1621 98 .0911 .1564 .122 .2631 .1342 107 .0071 .2559 .2667 .0653 .2857 126 .2667 .0653 .2857 .1001 .133 .0263 .3592 136 .1162 .1108 .1168 .1162 .1108	Suppliers $ -$	Suppliers $ -$ <th< td=""><td>Suppliers $x = 1$</td><td>Suppliers </td><td>Suppliers Intersecting (x) <thintersecting (x)</thintersecting </td><td>Suppliers Adverse for (π_2) π_3 $\pi_1^{\text{transmiss}}$ π_3 $\pi_1^{\text{transmiss}}$ $\pi_2^{\text{transmiss}}$ π_2</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<>	Suppliers $x = 1$	Suppliers	Suppliers Intersecting (x) Intersecting (x) <thintersecting (x)</thintersecting 	Suppliers Adverse for (π_2) π_3 $\pi_1^{\text{transmiss}}$ π_3 $\pi_1^{\text{transmiss}}$ $\pi_2^{\text{transmiss}}$ π_2	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

v

	•												•						
									-	30 -					•				
	Inter	-industr	ial Linka	ges (bij'	s)				_l.			7	•						
Complex	Suppliers	Receivers						E	а	mı		Intersecti	ng	Type of	Sequential Entry (-1) and Exit (+1) of Industries				
No.	Suppriers	158	159						(CV)	2	^{(m} 2 ⁾	3	(Total elemen	ments)	s) Intersection**	in the	maximis	ation ^o c	of E
												1				Sup	Rec	E	±1
S7	55	.0790	.1368					•	.1081	5.00	2.892	1.214	26		Repetitive	133	-	.0430	-1
	64	.2376	.0607						(.6011)		(59.969)		(26)	•	of	107	- 1	.0593	-1
	77	.1857	.1104							1		1			Complex 31	96	-	.0677	-1
	96	.0483	.1757										1			97	-	.0740	-1
	97	.0482	.1621								:		1			129		.0792	-1
	98	.0811	.1564*						1							55	-	.0826	-1
	102	.2631	.1342													102 ·	- 1	.0854	-1
	107	.0071	.2559		•	•										-	158	.0905	-1
	126	.2667	.0653						1							132	- 1	.0978	-1
	129	.2611	.1578			•		•				1				126	-	.1023	-1
	132	2857	1001]				,		64	- 1	.1053	-1
	1.52	.2057						-			1		1		1 •	77	·	.1078	1-1

	129	.2611	.1578							4					126	-	.1023	
	132	.2857	.1001												64	-	.1053	-1
	133	.0263	.3592												77	· - -	.1078	-1
	136	.1162	.1108	·、		,									136	-	.1031	-1
		75	78	79	80			•								-		
		2015	2557	1562*	1580				.0756	1.75	2,460	1.033	8	Repetitive	-	75	.0376	-1
20	91	.2945	0482	0045	4432				(.8546)		(59.969)		(8)	of	-	78	.0543	-1
	01		.0402				r							Complex 17	-	80	.0617	-1
			-	•	,									-	81	-	.0756	-1
		85	92														}	
89	4	.0010	.6582						.1268	3.58	5.743	2.411	10	Overlapping on	4	-	.0673	-1
	5	-	.1489*						(1.0477)		(60.268)		(12)	Complex 4	130	-	.0718	-1
	82	. 4166	-											or Complex 4 is	-	85	.0786	-1
	84	6253	-			•					1			nested on this	84	-	.1045	-1
	87	.4690	.0218					•						Complex	87	-	.1187	-1
	1 .	1	•						•	1	•	• :	•	•		-		• •
Table 1 (cont'd) :

ŧ

Inter-industrial Linkages (bij's)

Complex	Suppliers			F	leceiver	.s			E		- m.]. Intersecting		l Seau	ential F	ntra (_'	1 1 1
		85	92						(CV)	a	(m ₂)	^m 3	Elements (Total elements)	Intersection**	and Exi in the	t (+1) c maxímis	f Indust ation ⁵ (ries of E
89	130 -	3738	1257												Sup	Rec	E	±1
(contd)						••		•					-		82	-	.1268	-1
		72	83	92								1					<u> </u>	┼╌┨
90	4 8	.0003 .1445*	- .6362	.6582 .0808					.0950	1.95	3:419	1.435	4	Complex 4; Complex 4 is	-	83.	.0651	-1
													(0)	nested on this Complex	- 4	92 	.0663	-1
a.		10			22	23	29	35										+
31	29	.3902	.2798	.3745	.1305	.2940	.4105	.4232	.1132	3.49	9.268	3.891	14	Repetitive	2	-	.0445	-1
				.0017	.2020	.0069	. –	.0002	(.8528)		(60.383)		(14)	of	-	35	.0524	-1
													í í	Complex 51	-	29	-0855	-1
			•	•.			•								-	22	.0978	-1
													• •		-	18	.1069	-1
			•												-	23	.1108	-1
		59	61						++							17	.1132	-1
92	44	.0232	.3099						- 1002	3.09	1 715	720	~				1	
	46	.0048	.4044						(.9291)		(60,516)	./20		Overlapping on	-	61	.0265	-1
1	47	.1407*	.1786								(********		(17) .	Complex 12	154	-	.0588	-1
	49	.0288	.1987										· · ·		46	-	.0770	-1
	51	.0033	.3583												51		-0586	-1
	54	.0830	.1662											· · [44	-	.0964	-1
	154	-	.5040												40	-	.0989	
l			•										· ·			-	.1002	

- _31 -

.

۵

. .**i**

ł

	Inter	-industri	ial Lin	kages (bi	j's) .				i i		; <u> </u>	1	ŀ					
No.	Suppliers		159	Re	ceivers	<u> </u>		•	E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ential E t (+1) o maximis	ntry (-1 E Indust ation ⁶ o) ries f E
								<u>.</u>							Sup	Rec	E	±1
93	55	.0790	.1368*						.1081	5.00	2.892	1.214	26 •	Repetitive	133	-	.0413	-1
	64	.2376	.0607						(.6011)		(60.516)		(26)	of	107	-	.0572	-1
	77	.1857	.1104											Complex 31	96	-	.0563	-1
	96	.0483	.1757												- 97		.0726	-1
	97	.0482	.1621									•			129	-	.0780	-1
	98	.0811	.1564										· ,		98	-	.0826	-1
	102	.2631	.1342	·				· 🔨							102	-	.0854	-1
	107	.0071	.2559					``			1				-	158	.0905	-1
	126	.2667	.0653									1			132	-	.0978	-1
	129	.2611	.1578						·						126	- 1	.1023	-1
	132	.2857	.1001					•		1			· ·		64	-	.1053	-1
	133	.0263	.3592	•											77	-	.1078	-1
	136	.1162	.1108	~		*					·	·			136	-	.1081	-1
		83	85	88														
94	8	.6362	.0005	-				·.	.1270	3.59	2.799	1.175	7	Overlapping on	8	-	.0644	-1
·	82	.1364*	.4166	.5105	•				(1.1210)	•	(60.617)		(12)	Complex 45		88	.0917	-1
	84 ·	-	.6253	-			• •		}.						-	85	.1063	-1
	87	-	.4690							ļ					84		.1224	-1
								-							87	<u> </u>	.1270	-1
		61																
93	44	. 3099							.1253	2.90	1.777	.746	8	Repetitive	154	-	.0533	-1
	46	.4044						٠	(.4403)	i i	(60.617)		(8)	of	46	-	.0803	-1
	47	.1786	•				,			1			1. ·	Complex 12	51	-	.1002	-1
	49	.1987		·		•						1		Compact 12	44	-	.1142	-1

- 32 -

Table 1 (cont'd) - 33 -Inter-industrial Linkages (bij's)

--+

Complex No.	Suppliers			Receivers			E	· .	[m1		Intersecting	Type of	Sequ	ential E	ntry (-1	1)
		61					(CV)	g	(m ₂)	^m 3	Elements (Total elements)	Intersection**	and Exp in the	lt (+1) c e maximis	f Indust ation ⁵ c	ries of E
95	51	3583					1				2	:	Sup	Rec	E	=1
(contd)	54	.1662								ŀ ·	• •		49	-	.1194	-1
	60	.1358*									· ·	~	47	-	.1229	-1
	154	.5040	,	,									54	-	.1253	-1
		158	159							<u> </u>			-	·		
96	64	.2376	.0607				1 1001	4 70]		
Į	77	.1857	.1104					4.72	2.800	1.175	24	Repetitive	133		-0411	-1
ļ	95	.0483	.1757	•			(.0033)		(00.01/)		(24)	of	107	-	.0576	-1
	97	.0482	.1621		•							Complex 31	96	-	.0661	-1
	98	.0811	.1564				·				•		97	-	.0725	-1
	102	.2631	.1342*								,		129] -	.0778	-1
	107	.0071	.2559									•	-	158	.0863	-1
	126	.2667	.0653	•	1							· ·	132	-	.0952	-1
	129	.2611	.1578·								· ·		126	-	.1007	-1
	132	.2857	.1001										64	· -	.1041	-1
	133	.0263	.3592										77	-	.1070	-1
	135	.1162	.1108-		,								98	-	.1078	-1
		1				· · · · · ·							136	· -	.1081	-1
97	22	. 4299									.	ļ		· ·		
	50	-3496				ŀ	.0950	1.71	1.920	.806	4 ·	Repetitive	22		.0469	-1
	105	.1332*					(.3582)		(60.617)		(4)	of	140	-	.0754	-1
	140	.4176										Complex 20	50 .	-	.0950	-1
					<u></u>						· · · ·			· · · ·	•	
. 1				•	. ·	. 1		ļ			_	.				

a .	5		. •		
				Table 1 (contrat	,
.*	۰. م	• .	•	- 4)	,
•					

t

· · · ·

Inter-industrial Linkages (bij's)

-			•
-	34	÷	

- 0

. . .

Corplex No.	Suppliers	94	95	149	Receive	rs			E (CV)	ੌਬ	m1 (m2)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) o maximis	ntry (-1 f Indust ation ⁵ c	l) ries of E
															Sup	Rec	E	±1
98	92	.3502	.1305*	.0709		,			.0424 (.6530)	.71	.593 (60.617)	.249	3 (3)	Repetitive of Complex 34	-	94 149	.0401 .0424	-1
		16	17	18	22	23	29	35			<u>-</u>					1		1
99	l	.3902	.2798	.3745	.1305*	.2940	.4105	.4232	.1354 (.2915)	2.96	8:998 (60.617)	3.778	7 (7)	Overlapping on Complex 21 and		35 29 16	.0461 .0742 .0967	-1 -1 -1
														Complex 51	- - -	18 23 17	.1153 .1264 .1354	-1 -1 -1
100	18 112	19 .1304* -	110 • .0002 • .6725	·.			,		.0574 .(1.3821)	1.03	2.1 <u>.</u> 07 (60.693)	.885	1 (4)	Overlapping on Complex 3.	134 - 112 134	- 110 -	.0128 .0165 .0565 .0574	-1 -1 -1 1
						, ···							· · · · · · · · · · · · · · · · · · ·					
		•	· · · ·	/·	• •		•	•	1 • •	· · · · ·	ı		1	1	•	J		J .

- / ...

TABLE	2

Characterization of Industrial Complexes from I-0 Table, Canada 1966.

(k = 10)

Inter-industrial Linkages (b;;'s)

Complex No.	Suppliers		86	Receivers		E (CV)	g	. ^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exig in the	ential E t (+1) o maximis	ntry (-1 f Indust ation ⁰ o) ries f E
				· · · · · · · · · · · · · · · · · · ·	, 1					4		Sup	Rec	E	±l
1	82	.4006	.2615			.1513	3.94	6.636	2.727	0.		82	-	.0885	-1
	84	.6881	-			(.9435)		(6.636)		·(10)	Independent	-	83	.1120	-1
	85	-	.8006÷	•						1		-	85	.1230	-1
	87	.5334	**	, *								84	-	.1398	-1
	130	.3208	.0214									87	-	.1450	-1
				•								-	88	.1491	1
												130	-	.1513	-1
			: 		···· · · · · · · · · · · · · · · · · ·	• • • • • • • • •				•••••	• • • • • • • • • • • • • • • • • • • •		· • • • • • •		

Starting element

** This column is intended to describe the relevance of the present complex to the complexes obtained previously i.e. whether the present complex is independent of the earlier ones or whether it resembles them by characteristics like 'overlapping', 'nested' or 'repetitive' types.

Starting element characterized by an asterik is not shown here since the element has to be retained anyway by the method we have followed.

N.B. For the notation See Appendix 2.

· · ·		~
•	· · · · · · · · · · · · · · · · · · ·	مساريب پر
	•	, .

....

,	Inter	-industrial Li	nkages	(bij'B)					i i		4 ·]				Seque	ntial En	try (-1)	
Complex No.	Suppliers			Receive	ers				E (CV)	g ~	^m 1 (m ₂)	. ^m 3	Intersecting Elements (Total elements)	Type of Intersection**	and Exit in the	(+1) of maximisa	Industr tion .of	ies E
		72 83	124	146	• .		<u> </u>	<u></u>							Sup	Rec	Е	±l
2	. 8	.1244 .7831	* .0803	.0909		, •	· .	•	.0770 (1.1009)	1.40	.370 (7.006)	.152	0 · · (4)	Independent	- - -	72 146 124	.0756 .0768 .0770	-1 -1
3	9	137 .7655*					•	· · ·	.0696 (.0032)	1.00	: 3.698 (10.703)	1.520	0 (1)	Independent	- -	: 	-	-
4_	82 84 87	85 			•	· · · · · · · · · · · · · · · · · · ·			.1388 (.2869)	2.53	2.831 (10.703)	1.164	4 (4)	Nested on Complex I	87 82 130		.1018 .1243 .1388	-1 -1 -1
5	130 38 53 112 134	.3208 110 .0791 .0824 .6810* .1194				· · ·		•	.0687	1.25	3.542 (14.245)	1.456	0 (4)	Independent	134 58 ⁻ 38		.0667 .0679 .0687	-1 -1. -1
6	4 82 84 . 87	85 92 .0004 .632 .4006 - .6881 - .5334 .044	7*					· .	.1373 (.9534)	3.57	5.710 (17.125)	2.347	7 4 (10)	Overlapping on Complex 1	130 133 84	- 159 85 -	.D632 .0777 .0886 .0915 .1103	-1 -1 -1 -1 -1

130

.3208 .1260

} ţ 1 *

4

e banes

•	•	•				
		· ·				
		Table	2 (cont'd)	•		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Inter	-industrial Linkages (bij's)	i.	÷	· ·	4	i.	, , , , , , , , , , , , , , , , , , ,				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	omplex No.	Suppliers	Receivers	E (CV)	g –	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) o maximis	ntry (-) f Indust ation ⁰ c	l) tries of E
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			······································	1			1			Sup	Rec	E	=1
$ \begin{array}{c cont3 } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	6				-	1	}		· · · ·	B7	-	.1202	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(conto)			1						82		.1216	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								• •	. `	-,	159	1248	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+		73 74 76			·÷							+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.7	72	.5871 .34295081	.1289	2.68	8.982	3.691	0	Tadapandarah	72	_	. 0806	-1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		• 73	6248* ~	(.7524)		(26.106)		(6)	tugebengent		73	.1111	-1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						ļ ,				-	76	.1289	-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			73 74 76 .									1	T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	72	.5871* .3429 .5081	.1289	2.68	8.982	3.691	6	Repetitive	. – [.]	76	.0913	-1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		73	6248 -	(.7524)		(26.106)	}	(6)	Of Complex 7	-	74	.1106	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										73		.1289	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20			}				÷			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 '	3	.5772 *	.0525	.75	.516	.21,2	.0 *	Independent	·	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·	(.0032)		(26.622)		(1)		·	<u> </u>	<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			36							ł			
11 85 .1388 2.53 2.831 1.164 4 Nested on 84 - .1018 . 84 .6881 .6881 .2869 .289 .27.007 .134 .134 4 Nested on 84 - .1018 . 130 - .1388 <td>10</td> <td>35</td> <td>.5601*</td> <td>.0509</td> <td>73</td> <td>.385</td> <td>.158</td> <td>0 '</td> <td>Independent</td> <td>-</td> <td>- 1</td> <td> -</td> <td>- </td>	10	35	.5601*	.0509	73	.385	.158	0 '	Independent	-	- 1	-	-
B5 .1388 2.53 2.831 1.164 4 Nested on Complex 1 84 - .1018 84 .6881 .6881 .12869 (.2869) (27.007) (4) Nested on Complex 1 84 - .1018			· · · · · · · · · · · · · · · · · · ·	(.0032)		(27.007)							
11 82 .4006 .1388 2.53 2.831 1.164 4 Nested on 84 - .1018 - 84 .6881 (.2869) (27.007) (4) Complex 1 82 - .1248 - 130 - .1388 - .1388 - .1388 -			85].
84 .6881 (.2869) (27.007) (4) Complex 1 821248 - 1308 -	11	82	.4006	.1385	2.53	2,831	1.164	. 4	Nested on	84	-	.1018	-1
130 - 1358 -		84	.6881	(.2869)		(27,007)		(4)	Complex 1	82	-	.1248	-1
				ļ			ļ	· · · ·	l i	130	-	1388	[-]

·· • ·

-1 -1 -1 -1

	Inter	-industr:	ial Link	ages (bij's)			i.	· ·			· · ·					
Complex No.	Suppliers		•.	Receive	218		E (CV)	g .>	^m 1 (m ₂)	. ^m 3	Intersecting. Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ntial En (+1) of maximisa	try (-1) Industr tion ⁰ of	ries E E
	·	85		<u> </u>	·	<u></u>	·				**************************************	_	Sup	Rec	E	±1
11 (conté)	87 130	.5334* .3208			• • • •	•										
		41	61						•		•	Tadoaandant	}	42.5	0613	-1
12	40	.5213	.0698			•	.1004	2.87	1.487	611	0	Tugebeugeur		42 .	.0638	-1
	44	.0131	.2074				(1.0317)		(28.494)		(12)			61	.0642	-1
•	46	.0001	.3851							. ·			154	-	.0768	-1
	47	.0002	.2134					Į					46	-	.0809	-1
	51	.0110	.3059		•			1						43	.0881	1
•	154	-	.4822			· · .				l .		1		42	.0912	1
													51	-	.0986	-1
					,	4				1			44	-	.0998	-1
					•								47	-	-1004	<u> </u>
	1	73	74	76												
-13	72	.5871	.3429	.5081*			.1289	2.68	8.982	3.691	6	Repetitive	-	73	1106	
	73	-	.6248	-	· ·		(.7524)		(28,494)		(6)	Complex 7	-		1289	-1
										ļ						+
		85	88 ·			•							· ·	05	0755	
14	82	.4006	.5057	*	•		.1360	3:19	2.867	1.178	4	Nested on	84	-	.1139	-1
	84	.6881	-			•	(.8391	7	(28.529)		(8)	Complex 1	87	-	.1330	-1
	87	.5334	-					.				, ,	130	- 1	.1360	-1
-	130	.3208	-									· ·	1	1	1	1

Complex	Inter	-industrial Linkages (bij's) Receivers	E (CV)	đ _	(m ₂)	. ^m 3	Intersecting Elements	Type of Intersection**	Seque and Exist in the	intial Er : (+1) of maximis:	itry (-1) E Industr: ation ^g of
No.	Suppliers	61					(TOTAL ETEMOTICS)	:	Sup	Rec	E
15	44 46 47 49 51 54	.2074 .3851 .2134 .1553 .3059 .2028 .1613	.3174 (.4145)	2.75	1.546 (28.840)	-⊾636	5 (8)	Overlapping on Complex 12	46 51 47 44 54 60 49		.0723 .0902 .0990 .1063 .1123 .1152 .1174
15	154 44 46 47 43 51 54 154	.4822* 4661 .0125 .2074 3851 .0423 .2134 .4409* .0710 .0028 .3059 .0039 .2028 4822	.0990 (.9996	3.09	1.381 (28.938)	- 568	6 (14)	Overlapping on Complex 15	- - 154 - 46 - 47	45 70 52 61 - 52 - 70 -	.0562 .0603 .0629 .0634 .0717 .0746 .0798 .0860 .0884
									51 44 54	45	.0908 .0972 .0983 .0990
•	:							1			. .
e				 - -	76 	• • • • • • • • • • • • • • • • • • •	• 		•		•

- 5

Inter-industrial Linkages (bjj's)

4

			1			•					
Suppliers	Receivers	E (CV)	g -	^m 1 (m ₂)	. ^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ential Én : (+1) of maximisa	try (-1 Indust tion ⁰ o) ries f E
								Sup	Rec	Е	±1
13 22 50 140	.1402 .4203* .2749 .2193	.0754 (.3872)	1.37	1.725 (30.663)	.709	0 (4)	Independent	50 140 13	7 7 7	.0579 .0704 .0754	-1 -1 -1
	16 17 18 23 29 35			·	· · ·						
1 ·	.3824 .3314 .3159 .1755 .3720 .4057*	.1239 (.2288)	2.58	7.194 (37.856)	2.956	0 (6)	Independent	4	16 29 17	.0657 .0892 .1065	-1 -1 -1
			· · · · · · · · · · · · · · · · · · ·		· · · · ·			۲ ۲	18 23	.1205	-1
	85										
82 84 87 130	.4006* .6881 .5334 .3208	.1388 (.2869)	2.53	2.831 (37.856)	1.164	4 . (4) .	Repetitive of Complex 4	84 87 130	- - -	.0907 .1248 .1388	-1 -1 -1
· · · · · · · · · · · · · · · · · · ·	84 85 88				,,		·				
82 84 87	.3999* .4006 .5057 6881 - 5334 -	.1330 (.9377)	3.29	3.597 (38.655)	1.478	6 - (9)	Overlapping on Complex 14	- - 84 87	88 85 -	.0755 .1005 .1246 .1330	-1 -1 -1 -1
		·									1
	· · · · · · · · · · · · · · · · · · ·	<u>-</u>	- ~		· ·		•				
	<pre>K Suppliers 13 22 50 140 1 . 82 84 87 130 82 84 87 130 82 84 87 130 </pre>	e^{e} Receivers 13 .1402 22 .4203* 50 .2749 140 .2193 1 16 17 18 23 29 35 1 .3824 .3314 .3159 .1755 .3720 .4057* 1 .3824 .3314 .3159 .1755 .3720 .4057* 85	Receivers E 1 .0754 13 .1402 22 .4203* 50 .2749 140 .2193 1 .6 16 17 18 23 29 35 1 .3824 .3314 .3159 .1755 .3720 .4057* .3824 .3314 .3159 .1755 .3720 .4057* .1239 .22883 .4006* .1388 .22883 .1388 82 .4006* .1388 .2869) 37 .5334 .3208 .1338 82 .3999* .4006 .5057 .1330 84 85 88 .1330 84 85 88 .1330 84 - .55334 .1330 87 - .5334 .1330 84 - .5334 .1330 84 - .5334 .1330 87 - .5334 .	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{e}{suppliers} = \frac{e}{1} \frac{1}{1} \frac{1408}{1} \frac{1.37}{1.725} \frac{1.37}{1.725} \frac{1.725}{(30.663)} \frac{.0754}{(.3872)} \frac{1.37}{.1725} \frac{1.725}{(30.663)} \frac{.0754}{(.3872)} \frac{1.37}{.1725} \frac{1.725}{(30.663)} \frac{.1725}{.3824} \frac{.3314}{.3314} \frac{.3159}{.1755} \frac{.3720}{.4057^{*}} \frac{.4057^{*}}{.1238} \frac{.1239}{(.2288)} \frac{2.58}{.1239} \frac{7.194}{(.37.856)} \frac{.1238}{.1238} \frac{2.58}{.1238} \frac{7.194}{(.37.856)} \frac{.1388}{.1238} \frac{2.53}{.1238} \frac{2.831}{(.37.856)} \frac{.1388}{.130} \frac{.2.53}{.3208} \frac{.1330}{.130} \frac{.3208}{.1239} \frac{.1330}{.1330} \frac{.329}{.1330} \frac{.329}{.1330} \frac{.329}{.1330} \frac{.329}{.1330} \frac{.1330}{.1330} \frac{.29}{.1329} \frac{.597}{(.38.655)} \frac{.1330}{.1330} \frac{.1239}{.1329} \frac{.597}{(.38.655)} \frac{.1330}{.1330} \frac{.1329}{.1329} \frac{.597}{.1330} \frac{.1330}{.1330} \frac{.29}{.1329} \frac{.597}{.1336} \frac{.1330}{.1330} \frac{.29}{.1329} \frac{.597}{.1336} \frac{.1330}{.1330} \frac{.29}{.1329} \frac{.597}{.1330} \frac{.1330}{.1330} \frac{.29}{.1329} \frac{.597}{.1330} \frac{.1330}{.1330} \frac{.29}{.1330} \frac{.1329}{.1329} \frac{.597}{.1330} \frac{.1330}{.1330} \frac{.1239}{.1330} \frac{.1330}{.1330} \frac{.29}{.1330} \frac{.1399}{.130} \frac{.1399}{.130} \frac{.1399}{.130} \frac{.1399}{.100} \frac{.100}{.100} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	Inter-	industrial Linkages (bij's)		Е	, ţ	m,	ŀ	Intersecting	Type of	Sequer and Exit	itial Ent (+1) of	ry (-1) Industr	ies
Complex No.	Suppliers	Receivers		(CV)	g _	(m2)	^m 3	(Total elements)	Intersection**	in the r	Rec	E	±1
21	44	.2074 3851*	, •	.1174 (.4145)	2.75	1.546 (38.655)	.636	8 ··• • (8)	Repetitive of Complex 15	154 51 47	-	.0723 .0902 .0990	-1 -1 -1
	46 47 49 51	.2134 .1553 .3059	• •			÷	•.			44 54 . 60	-	.1063 .1123 .1152 .1174	-1 -1 -1 -1
•	54 60 154	.2028 .1613 .4822	X							43			
22	- 1	16 17 18 23 29 35 .3824*.3314 .3159 .1755 .3720 .405	7	.1239 (.2288)	2.58	7.194 (38.655)	2.956	5 (6)	Repetitive of Complex 18	- - -	35 29 17 18 23	.0657 .0892 .1065 .1205 .1239	-1 -1 -1 -1 -1
23	14 124	127 128 131 .0525 .1274 .1085 .1139 .3804* .0017		.0490 (.9152)	1.02	.478 (39.133)	.197	0 (6)	Independent	14 	 127 131	.0423 .0482 .0490	-1 -1 -1
24	92	94 95 121 149 3738*.1234 .0497 .0767		.0445 (.8244)	.81	.874 (40.008)	.359	0 (4)	Independent	-	95 149 121	.0414 .0441 .0445	

1

r.

- 7

Table 2 (cont'd)

- 8 -

Table 2 (contid)

Inter-industrial Linkages (bij's)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Incer	-111043CI	101 MI.		~1j ¢;				- i -		ا	7						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Complex	Suppliers		 17	18	Receiv	ers 29	35	,	E (CV)	g ~	(m2)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) o maximis	atry (-1 E Indust ation ⁰ o) r f
25 1 .3324 .3314 .3159 .1755 .3720* .4057 .1239 2.56 7.194 2.956 6 Repetitive of Complex 18 - 16 .0823 25 74 .2754 .2378 .1576 .0073 .0713* .0657 1.40 1.820 .748 0 Independent 74 - .0411 - .0575 .0675 .041 .1820 .748 0 Independent 74 - .0411 - .0575 .040 .1820 .748 0 Independent 74 - .0411 - .0575 .040 .1820 .748 0 Independent 74 - .0412 - .0575 .0501 .0595 .0575 </td <td>•:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sup</td> <td>Rec</td> <td>E</td> <td>Ĩ</td>	•:									· · · · ·						Sup	Rec	E	Ĩ
23 1 1.3624 1.313 1.113	-		2024	2214	2150	1765	2730*	4057	• •	1239	2 58	7,194	2.956	6	· · ·	-	35	.0648	Ì
26 75 78 80	. 25		.3024	.3314	.3135	.1/35	.5720	. 4057	-	(.2288)	2.30	(40.008)		{6} · ·	of	··	16.	.0892	
26 75 78 20 - 18 .1205 26 74 .2754 .2378 .1576 .0675 1.40 1.820 .748 0 Independent 74 - .0411 26 74 .2754 .2378 .1576 .0675 1.40 1.820 .748 0 Independent 74 - .0411 27 82 .4006 - .0073 .3713* .1092 3.98 3.565 1.465 4 0 0verlapping 15 - .0412 84 .6881 - - .1092 3.98 3.565 1.465 4 0							-								Complex 18	_·	17	1065	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	· .															}. −	18	.1205	I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•			•						•	-	:				-	23	.1239	ļ
25 74 .2754 .2378 .1576 .0675 1.40 1.820 .748 0 Independent 74 - .0411 27 82 .159 161 .0675 1.40 1.820 .748 0 Independent 74 - .0412 27 82 .4006 - .1092 3.98 3.565 1.465 4 Overlapping 15 - .0412 87 .5334 - - .1092 3.98 3.565 1.465 4 Overlapping 15 - .0412 89 .0007 .0544 .5684* .3688* .3565 1.465 4 Overlapping 15 - .0412 130 .3208 .3289 .0001 .3684* .3684* .3684* .3684 .3684 .3684 .3687 .3630 .288 .99 .0631 .09 .6639 .6639 .6639 .6639 .6639 .6639 .6639 .6639 .6639 .1062 .26421 .26421 .26639 .6639	· <u> </u>	· · · · · · · · · · · · · · · · · · ·	75	78	80	· · · · · · · · · · · · · · · · · · ·													
BI - .0373 .3713* (.7259) (41.828) .661 - - 75 .6575 27 82 .4006 - - .1092 3.98 3.565 1.465 4 Overlapping 15 - .0412 27 82 .4006 - - .1092 3.98 3.565 1.465 4 Overlapping 15 - .0421 84 .6821 - - .1092 3.98 3.565 1.465 4 Overlapping 15 - .0421 87 .5334 - - . .1092 3.98 3.565 1.465 4 Overlapping 15 - .0423 130 .3208 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003	25	. 74	. 2754	.2378	.1576					.0675	1.40	1.820	.748	0	Independent	74	-	.0441	
27 82 .4006 - - .1092 3.98 3.565 1.465 4 Overlapping on 15 - .0412 84 .6681 - - .1092 3.98 3.565 1.465 4 Overlapping on 15 - .0412 87 .5334 - - .1092 3.98 3.565 1.465 4 Overlapping on 15 - .0412 89 .0007 .0854 .3688* .3688* .369 .0001 133 - .0530 133 .3003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .003 .87 - .0530 133 .0003 .3293 .0003 .3293 .0003 .88 .0710 82 .0994 15 - .1092 1092 1092		81	-	.0373	.3713*					(.7259)		(41.828)		- (6)	· · ·	-	75	.0575	ĺ
27 22 .4006 - .0412 84 .6821 - - .0412 87 .5334 - - .0421 89 .0007 .0854 .3688* .3685 1.465 4 (18) .0011 .0421 130 .3208 .3289 .0001 .0654 .3688* .3665 1.465 4 .0016 - .9 .0421 130 .3208 .3289 .0001 .0630 .3209 .0011 .3208 .3289 .0001 .3208 .3289 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0003 .3293 .0013			·	·	:		• •			:						-	78	.0675	1
27 82 .4006 - .1092 3.98 3.565 1.465 4 Overlapping on Complex 1 15 - .0412 84 .6831 - .1092 (1.2838) . .405 4 Overlapping on Complex 1 - 9 .0421 87 .5334 - .			. 85	159	161	·	·····												
84 .6881 . (1.2888) (42.562) (18) . . 9 .0421 87 .5334 . . . 133 . . 159 .0423 89 .0007 .0854 .3688* . . . 133 .	. 27	82	.4006	_	-					.1092	3.98	3.565	1.465	4 '	Overlapping	15	-	.0412	1
87 .5334 - 159 .0423 89 .0007 .0854 .3688* 133 - .0530 130 .3208 .3289 .0001 130 - .0607 133 .0003 .3293 .0003 0 9 .0689 133 .0003 .3293 .0003 .0003 .3208 .3289 .0001 .0003 133 .0003 .3293 .0003 .0003 .0003 .0003 133 .0003 .3293 .0003 .0003 .0102 .0102 <t< td=""><td></td><td>84</td><td>.6831</td><td>-</td><td>_</td><td></td><td>•</td><td></td><td>•</td><td>(1,2888)</td><td></td><td>(42.562)</td><td>1</td><td>(18)</td><td>. on Complex 1</td><td>-</td><td>9</td><td>0421</td><td></td></t<>		84	.6831	-	_		•		•	(1,2888)		(42.562)	1	(18)	. on Complex 1	-	9	0421	
89 .0007 .0854 .3688* 133 - .0530 130 .3208 .3289 .0001 130 - .0607 133 .0003 .3293 .0003 .0003 .0003 .0003 .0003 133 .0003 .3293 .0003 .0003 .0003 .0003 .0003 .0003 .3293 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .3293 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .3293 .0003 .0003 .0003 .0003 .0003 .0003 .0004 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .		87	.5334	-	-			·			:		1		COMPTCA 1	-	159	.0423	
130 .3208 .3208 .3209 .0001 0 9 .0639 133 .0003 .3293 .0003 .0003 .0900 87 - .0900 87 - .0994 .15 - .1062 1092 - .1092 .1092 .1092	• •	89	.0007	.0854	.3688*	r					· ·	l				133	-	.0530	1
133 .0003 .3293 .0003 0 85 .0710 840990 871062 821092	÷ _	130	.3208	.3289	.0001				,							130	-	0690	
94 - .0900 87 - .0994 15 - .1062 82 - .1092	:	133	.0003	.3293	.0003						Į .	}	· ·			0	85	0710	
870994 151062 821092	·•								<i>.</i>			1	1			84	-	.0900	
151062 321092	•								2 C		ł					87	- .	.0994	
821092] •							}					1	15	-	.1062	
									۰.							82	-	.1092	·
	+	· · ·							,,		1	1					T		
	2		; ·								•		·						
	-				-					ł	I		1	1	ł	I	į .	ł	
					· "						••••		···	······					
	•				<u>``</u> .		٠							··-	· /				

•	Inter	-industri	al Linka	ages (bij	9)			в	1			Intersecting	Type of	Seque	ntial Er (41) of	itry (-1 f Indust	.) :r:
Complex	Suppliers	•		Rece	eivers			(CV)	a _	(m2)	^m 3	Elements (Total elements)	Intersection**	in the	maximis	ition ⁵ o	۶£ -
		84	85	·	<u>. </u>	· · ·								Sup	Rec	E	:
28	82 83 84 87 130	.3999 .3687* - - .0106	.4006 .0230 .6881 .5334 .3208	• •				1373 (.8654)	3. 57	3.791 (42.723)	1.558	(10)	Overlapping on Complex 1 and Complex 20	92 - - - - - - - - - - - - - - - - - - -	- 88 85 - 88	.0640 .0910 .1061 .1256 .1327 .1341 .1373	
						9 5	_										T
29	93	98 .1017	122					.0409 (.9155)	.75	.611 (43.334)	. 251	0 (4)	Independent	93 -	- 98	.0389 .0409	
	• 94	.0048	.3592*			· · · · · · · · · · · · · · · · · · ·			·								
30	72 73	73 .5871 -	74 .3429* .6248	.5081				.1289 (.7524)	2.68	8.982 (43.334)	3.691	6 (5)	Repetitive of Complex 7	73 - -	- 73 75	.0805 .1111 .1289	
	<u></u>					<u></u>				1							
31	91	93 .3323	135 • .0809		·····			.0344	.54	.360 (43.695)	.148	0 (2)	Independent	-	135	.0344	_
•	<u></u>				23 29	35		1		· ·			Repetitive		35	.0614	
32	1	.3824	.3314*	.3159 .	1755 .3720	0 .4057	· .	.1239 (.2288	2.58	7.194 (43.695)	2.956	6 (6)	of Complex 18	-	16 29 18	.0851 .1065 .1205	
•			-			•	•.				· ,		۱. • •	1	23	1239	

Table

2 (cont'd)

••	Inter	-industrial Linkages (Dij's)	ķ	.1 ·	-	[-		Seque	ential E	ntry (-1))
Complex	Suppliers	Receivers	E (CV)	, g , ,	^m 1 (m ₂)	. ^m 3	Elements (Total elements)	Type of Intersection**	and Exi in the	t (+1) o: maximis	f Industration [®] of	rie f E
-	· · ·	85 139							Sup	Rec	E	±1
. 33	82 84	.4006 - .6881 -	·.1301 (.9107)	3.38	3.040 (43.695)	1.249	10 · · (10)	Nested on Complex 27	130 - 84	 85 	.0548 .0699 .1042	-1 -1 -1
•	87 130 133	.5334 - .3202 .3289 .0003 .3293*			:				· 87 82	-	.1223	-1
34	82 · - 84 87 130	85 159 .4006 - * .6221 - .5334 - .3208 .3289* .0003 3293	.1301 (.9107)	3.38	3.040 (43.695)	1.249	10 (10)	Repetitive of Complex 33	133 - 84 87 82	 85 	.0548 .0699 .1042 .1223 .1301 .	-1 -1 -1 -1 -1
- 35	2 72 73	73 74 76 .3263* - - .5871 .3429 .5081 - .6248 -	.1257 (.9588	3.11	10.529 (45.242)	4.328	6 (9)	Nested on Complex 7	72 - - 73	- 76 74 -	.0761 .1015 .1103 .1257	-1 -1 -1 -1
- 36	82 84. 87	85 .4006 .6881 .5334 .3208*	.138	 2.53	2.831 (45.242)	1.164	4 (4)	Repetitive of Complex 4	84 87 82		.0841 .1186 .1388	-1 -1 -1
· · · · · · · · · · · · · · · · · · ·								۱. ۱.			1	

....

. - 10 -

Table 2 (cont'd)

- 11 -		
--------	--	--

' Intér-industrial Linkages (bij's)

Complex	Suppliers]	Receive	rs			E	g P	m1		Intersecting Elements	Type of	Seque	ential Ential Entire (+1) of	try (-1 f Indust) ries
	-	16	17	18	23	29	35		(CV)		(^m 2)	. 3	(Total elements)	Intersection**	in the	maximisa		
37	1	.3824	. 3314	.3159*	.1755	.3720	4057		.123	9 2.58 8)	7.194 (45.242)	2.956	6 · · · (6)	Repetitive of Complex 18	Sup - - -	Rec 35 16 . 29	E .0601 .0849 .1054	+1 -1 -1 -1
•								·	•		:				-	17 23	.1205 .1239	-1 -1
38 	2 72 73	62 .3146* - .0005	73. .3263 .5871 -	74 - .3429 .6248	76 - .5081 -				.122	9 3 . 52 9)	11.722 (46.435)	4.818	9 . (12)	Nested on Complex 35	- 72 - 73	73 - 76 74 -	.0534 .0877 .1085 .1155 .1229	-1 -1 -1 -1
• 39 •	44 46 47 49 51 - 54 60 154	61 .2074 .3851 .2134 .1553 .3059* .2028 .1613 .4822				•	; , , ,		.117 (.414	4 2.75	1.546 (46.435)	.636	8 (8)	Repetitive of Complex 15	154 46 47 44 54 60 49		.0657 .0902 .0990 .1063 .1123 .1152 .1174	-1 -1 -1 -1 -1 -1 -1
• • •					•	•	•	•	•	-						• •	,	,

	Inter	-industri	al Lin	kages ()	oij's)					• _ i				Intersecting	There of I	Seque	ntiál Er	itry (-1).
mplex	Suppliers				Receive	ers				E (CV)	ġ _`	"1 (m ₂)	^m 3	Elements: (Total elements)	Intersection**	and Exit in the	maximisa	tion ⁶ o	fies f E
No.	Suppress	89	96	97	98	99	100	104	112					(Iocur presenter)		Sup	Rec	E -	±1
								•						0 • •	·.		97	.0431	-1
		3021#	.0756	.2157	.0715	.2006	.1451	.0800	.0915	.0657	1.54	2,536	1.042	(9)	Independenc	_	99	.0553	-1
40	80			• ···						(.5350)		(48.971)		1		-	100	.0617	-1
						•											112	.0637	-1
							· ·		•			1 :				-	104	.0647	-1
													ľ			- ·	96	.0653	-1
											1		1			-	98	.0657	-1
						•			<u> </u>		ļ		┨────						
			85	87	88			ș.									88	.0652	-1
					5057					.1275	3.65	3.650	1.500	9	Nested on		85	.0910	-1
41	82	.3999	.4006	.2772*	.5051					(1.0734)		(49.204)		(12)	Complex 20	84		.1170	1-1
	· 84	-	.6881	-	-								1			87	- 1	.1265 '	-1
. ·	87	-	.5334	-			;				1					_	84	.1275	-1
																	<u> </u>		+-
										_									
		158	159							+	1 4 00	2 313	.951	2	Overlapping	64	· -	.0438	1-1
42	63	.1683	.0496							.1045	4.00	(51,129)		(20)	Complex 27	132	-	.0584	-1
	64	2495	.0767							(.5657	1			· ·		102	-	.0687	1-1
	77	.1561	.1292									1		•		129	-	.0771	1-1
	98	.0604	.1608								1					-	159.	.0855	
	102	.2035	.1351							1			1	• •		133		1.0935	
	126	.2762	* .0845	i i					· .		-				•	130		1026	·[
	129	.1943	.1544	ı											· ·	11		1041	1_1
	130	.0129	.3289)				•				1				57		.1045	-1
	132	.2329	.1027	1							.	I				، ^{ده} ا	1	1	1 -
	133	.0180	.3293	3						1	· · ·		-	• •			• ′	•	

- 12 -

- 13 -

: . 1	Inter	-industrial Linkages (bij's)	E	a _	^m 1 (m ₂)	^m 3	Intersecting Elements	Type of Intersection**	Seque and Exit in the	ntial En (+1) O maximis	try (-1 Indust tion ⁶ o) f E
Complex No.	Suppliers		(07)	· · ·			(Total elemente)		Sup	Rec	Е	. ±1
43	- 74 81	75 78 80 .2754* .2378 .1576 0373 .3713	.0675 (.7259)	1.40	1.820 (51.129)	.748	6 (6)	Repetitive of Complex 26	- - 81	78 80 -	.0428 .0516 .0675	-1 -1 -1
. 44	13 22	1 .1408 .4203 .2749*	.0754 (.3872	1.37	: 1.725 (51.129)	.709	4 [4]	Repetitive of Complex 17	22 140 13	-	.0579 .0704 .0754	-1 -1 -1
45	50 140 82 84 85 87 130	.2149 .2193 85 86 .4006 .2615* .6831 - 8006 .5334 - .3208 .0214	.1513 (.9435	3.94	6.636 (51.129)	2.727	10 (10)	Repetitive of Complex 1	85 - - 84 87 - 130	88 85 - - 88 -	.0885 .1120 .1230 .1398 .1450 .1491 .1513	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
45	63 64 77 98 102	158 159 .1683 .0496 .2495* .0767 .1661 .1292 .0604 .1608 .2035 .1351	.104	· 5 4.08 7)	2.313 (51.129)	.99	31 20 (20)	Repetitive of Complex 42	126 132 102 129 -		.0438 .0584 .0687 .0771 .0855 .0935	

「「「「「「「「」」」」

14	-	

. :	Inter-industrial Linkages (bij'5)									в	•	. m.		Intersecting	Type of	Seque and Exit	ntial En (+1) of	try (-1) Indust	ries
Complex	Suppliers			1	Receive	rs			· · · · · · · · · · · · · · · · · · ·	(CV)	g `	(m2)	. ^m 3	Elements	Intersection**	in the	maximisa	tion ⁰ of	E
No.		158	159										·	(Total elements)		Sup	Rec	Е	±1
													ļ ·			130	-	.1000	-1
	100	1948	1544									1			·	77	-	.1036	-1
· 45	129	0129	.3289						•							98	- ·	.1041	-1
. losate;	132	.2329	.1027													- 63 [·]	-	.1045	-1
•	133	.0180	.3293						•			<u> .</u>	<u> </u>					·	
<u> </u>		16	17.	18	22	29	35		A				·						
. ••		10				2720	4057			.1026	2.94	7.462	3.067	5	Overlapping	1	-	.0301	
: 47	1	.3824	.3314	.3159	+1140 2465#	. 3720	-		N	(.8622)		(51.731)		(12)	Complex 18		70	0773	_1
	· 29	.0376	-	.0015	.2405								ľ			-	29	.0894	-1
. •																	17	.0970	-1
•					•											_	18	.1026	-1
•			•				•			ļ	<u> </u>								+
	1	159	160			•	•							5		128		.0301	-1
	. 77	,1292	.0357							.0791	3.09	2.365	.972	(20)	Overlapping		159	.0386	-1
*, **	97	.1510	.0739							(.7845)		(53.478)			Complex 42	133	-	.0544	-1
• • .	98	.1608	.0739		•					1						130	~	.0666	-1
	123	.1610	.0062									1	· ·			98	-	.0717	1
••	127	.1126	.0661									· ·	1			97	-	.0754	-1
•	128	.1165	.1159													129		.0776	-1
· .	129	:1544	.0479													127		.0785	-1
	130	.3289	.0002						• •						•	123	•	.0788	-1
· •	133	.3293	.0005												•	77	-	.0791	-1
.;	138	,0626	.2457	*															
• •	"	1										· ·			, I., - ,	1	I	•.	1

	Inter	-industri	ial Lin)	kages (bij's)			i. i		i	,	, ·		-			
	Suppliers			Receivers			E (CV)	a _	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	and Exit in the	mtiai in ; (+1) of maximisa	Industr tion ⁰ of	ies E
		75	78	80		•							Sup	Rec	Е	±1
÷9	74 81	•.2754 -	.2378* .0373	.1576 .3713			.0675 (.7259)	1.40	1.820 (53.478)	.748	6 · · (6)	Repetitive of Complex 26	- - 81	75 80 -	.0428 .0516 .0675	-1 -1 -1
	·	45	46	61	<u> </u>				:				-	:	0500	
50	46 47 48 51 154	.0211 .0551 .2338* .0001 -	- .0423 .4409 .0028	.3851 .2134 .0710 .3059 .4822			.0902 (1.1402)	2.93	.993 (53.512)	.408	10 (15)	Overlapping on Complex 16	- - 154 - 46 - 47	46 70 52 61 - 52 - 70 -	.0562 .0608 .0629 .0634 .0717 .0746 .0798 .0860 .0884	-1 -1 -1 -1 -1 -1 1 -1 1
				······································		·							51		.0902	
51	63 64 77 98	158 .1683 .2495 .1661 .0604	.0496 .0767 .1292 .1608		,		.1045	4.08	2.313 (53.512)	.951	20 (20)	Repetitive of Complex 42	126 64 102 129	- - - 159	.0424 .0534 .0687 .0771 .0855	$ \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array} $
	102	.2035	.1351							·			133		. 0935	-1

.

Table 2 (cont'd)

.1000

.1036

.1041

-1 .-1 -1

+

-

133

130

77

98

- 15 -

. . . .

.Corg

102

126

129

130

132

.2762 .0845

.1948 .1544

.0129 .3289

.2329* .1027

-	. Inter	-industri	al Linka	ages (b	×j's)				ĺ	í	:	1	.	ŕ	_				
Cc-plex	Suppliers			I	Receiver	8		,		E (CV)	g `_	^m 1 (m ₂)	· ^m 3	Intersecting Elements (Total clements)	Type of Intersection**	Seque and Exit in the	maximisa	try [-1 f Indust: ation ⁶ o) rie: f E
•		158		•			<u> </u>	<u> </u>				· · ·		12		Sup	Rec	E	±1
. 51 (contd)	133	.0130	.3293			÷	-							• •		63	-	.1045	-1
		159	164															0200	
52 :	96 97	.1590 .1510	.0061			· .				.0775 (.8287)	2.82	:2.618 (54.451)	1.076	8 (18)	Overlapping on Complex 48	133	159 -	.0437	-1
	123 127	.1610	.0014										-			130 98	-	10706 10746 0763	-1 -1
	128	.1165	.0693					•								129 96	-	.076B	-1 -1
•	130 133	.3289 .3293	.0003													123	-	.0775	-1
. 53	13 22 50	1 .1403 .4203 .2749			<u> </u>					.0754 (.3872)	1.37	1.725 (54.451)	.709	4 (4)	Repetitive of Complex 17	22 50 13	-	.0533 .0704 .0754	-1
:		20	96	97	98	99	100	104	112	[1	1	-					
54	86	.3021	.0756	.2157	* .0715	.2006	.1451	.0800	.0915	.0657 (.5350)	1.54	2.536 (54.451)	1.042	2 9 (8)	Repetitive of Complex 40		89 99 100	.0431 .0553 .0617	-1 -1 -1
•																-	112	.0637	

- 16

•				- 17 -			o '					
Complex No.	Inter Suppliers	industrial Linkages (bij's) Receivers	E (CV)	g >	^m 1 (m ₂)	. ^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ntial Er : (+1) of maximis:	ntry (-1 E Indust ation ⁹ o	.) rie: f E
					· ·			•	Sup	Rec	E	<u> ±1</u>
54 Konstall									-	96. 98	.0653 .0657	- <u>1</u>
		41 42 61	•								0573	 _,
		5217 2146* .0698	.0905	2.59	656	.270	8	Overlapping on	-	41	.0638	-1
55	40 46 ·	.0001 .0004 .3851	(1.1889)		(54.471)		(12)	Complex 12	Ì	61	.0642	-1
	51	.0110 .0006 .3059						· · ·	154	-	.0768	-1
·.	154	4822				.			46	-	.0809	-1
•		• • • •				1.			-	43	.0891	
				·	ì				51	ļ	1.0905	
		61								1		
			.1174	2.75	1.546	.636	5 8	Repetitive	154	-	0831	
36	44	.2074	(.4145)		(54.471)		(8)	Complex 15	51		.0990	
	40	_2134*				1.			44	- 1	.1053	
• •	49	.1553					·		54	-	.1123	-
•	· 51	.3059							60) ·-	.1152	
	54	.2028		1	4				49	-	.1174	-
• •	61	.1613		1								
	154	.4822			<u> </u>					T		ĺ
•		112 123						-	68	· -	.0233	-
57	68	.0683 -	.0250	.52	461	18	(6)	Independent	120	-	.0242	-
• • • •	119	.2119* .0357	(1.0188	2	(54.932)	1			-	123	.0250	-
	120	.0349 .0500	ļ			1 -		1.	-		• .	

Table 2 (c

......

- 18 -

'Inter-industrial Linkages (bij's)

· ·	-plez Receivers									† I		·		Tabana dina .		Seque	ntial En	try (-1)	/ 1
"Complex	Suppliers				Receive	rs				E (CV)	g , ``	^m 1 (m ₂)	^m 3	Elements	Type of Intersection**	and Exit in the	(+1) of maximisa	Industration ⁰ of	:ies E E
	•	38	39	140	141	143	147	152						(Total elements)		Sup	Rec	Е	±l
•						0060	0260	2027*	*	.0447	1.40	1.152	.474	0			143	.0246	-1
. 58	141	.0179	.0255	-	-	.0000	1052	0449		(.7476)		(56.085)		(14)	Independent	146		.0329	-1
	146	.1105	.0776	.1000	.1337	. 1199	.1033	.0115								-	147	.0376	-1
										·						· _ }	141	.0408	-1
								· .	. •			; ; ;	f .		•	- 1	38	.0432	-1
<u>.</u>							•						•			-	140	.0441	-1
•	·	· ·	•						`							-	39	.0447	-1
• •								·····									•		1
								·		-	0 7 F	7 546	676	9	Repetitive	154	·	.0575	-1
· 59	44	.2074*								.11/4	2.75	1.540	.030	(0)	of	46	-	.0827	-1
:	. 46	.3851								(.4145)	j.	(56.085)	L •.	(8)	Complex 15	51	-	.0986	-1
• .	47	.2134			•							1				47	÷	.1063	-1
•.	49	.1553					. 6			1			1			54	~	.1123	-1
• •	51	.3059					•					1				60	-	.1152	-1
	54	.2028													ŀ	49 .	-	.1174	-1
	60	.1613	•				. •			1				• .					}
	154	.4822				•	1	·			<u> </u>	ļ		·					+-
	1	158	159												Penetitive	126	• 🔫	.0400	-1
	67	1683	.0496							.1045	4.08	2.313	.951	20 .	of	64	-	.0561	1-1
•	63	.2495	.0767		•				·	.5857		(56.085)		(20)	Complex 42	132	- 1	.0657	1-1
	77	-1661	.1292									•				129	-	.0771	-1
•	98	.0604	.1608						· .		1		1			- '	1,59	.0855	
:	102	.20351	* .1351										-		•	133	-	.0935	
	102	.2762	.0845					•					1.			130	1 -	1.1000	
	120	10/9	3544											10		77		.1030	1.
	. 129	-1940	.1344				•	·		1 .	· -	•	•	•	· · ·		· ·		

Inter-industrial Linkages (bij's) Seguential Entry (+1) and Exit (+1) of Industria in the maximisation⁶ of H Intersecting -Elements Е ^m1 (m₂) Type of . Complex Receivers т'э . g Suppliers (CV) Intersection** No. (Total elements) 159 158 Rec Е Sup ٠. .1041 98 -.3289 130 ..0129 60 63 _ .1045 .1027 .2329 132 (contd) z .0180 .3293 133 1 61 1. Repetitive of Complex 15 · 154 1.546 .636 8 ._-.0571 2.75 .1174 ÷., .2074 61 44 (56.085) (8) 46 • • .0823 (.4145) .3851 46 51 --0983 .2134 47 ----.1060 .1553 49 .1123 44 -- 51--°, 3059 .1152 60 _ 54 .2028* .1174 49 -,1613 60 154 .4822 112 100 104 98 99 89 96 97 .0419 1.54 2.536 1.042 8 89 .0800 .0915 .0657 .0715. .2006* .1451 Repetitivė 86 .3021 .0756 .2157 62 of Complex 40 · 97 .0553 (8) (.5350) (56.085) .0617 100 Ξ. 112 .0637 -104 .0647 96 .0653 ٠, 98 .0657

٠.

- 19 -

1

Inter-industrial Linkages	(bii	'8)
---------------------------	------	-----

	Turer			- 1	. 1	l.	1			Semie	ntial Fr	try (-1) 1
Complex	Suppliers	Receivers		E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements : (Total elements)	Type of Intersection**	and Exit in the	(+1) of maximisa	Indust tion ⁰ o	ries f E
·		57 01								Sup	Rec	E	±1
												0261	
53	44	.1178 .2074		.0908	2.84	1.436	,590	ь.	Overlapping		61	.0418	-1
	46	.0001 .3851		(.9734)		(56.238)		(14) 1	Complex 15	154	-	.0667	-1
	47	.0037 .2134	· ·						. •	46	_	.0807	-1
•	51	.0003 .3059		1						51	-	.0879	-1
	54	2028	· ·						2	47	-	.0393	-1
	58	.1960 * .0643								54	·	.0908	-1
:	154	4822	<u>.</u>						<u> </u>				+
		158 159						-			,		
• ••	62 -	- 1607-0496		.1045	4.08	2.313	.951	20	Repetitive	126	-	.0393	-1
	63	2405 0767		(.5857)		(56.238)	•	(20)	. of Complex 42	64	-	.0554	-1
								ş	dompicat in	132	-	.0681	-1
		0604 1608								102	-	.0771	-1
•	102	2035 1351								-	159	.0855	-1
•	102	2762 0845								133	-	.0935	-1
	120	1942* 1544	1				}		1	130	-	.1000	-1
• •	120	0129 3289	4							77	·	.1036	-1
•	132	.2329 .1027-			,	1				98	-	.1041	-1
	133	.0120 .3293								63	-	.1045	
<u></u>		<u>()</u>		1				·			<u>ا</u> .		
				2003	2 20	1 673	688	7	Overlapping	47		.0295	-1
• 65	44	.1055 .2074		.1001	3.39	156 606)		(16)	on	- 1	61	.0414	-1
•	45	.1931* .0131	•	(.8239)		(30.000)			Complex 15	154	-	.0664	-1
	46	.0321 .3851	· ·				l .			46		.0822	-1
• .	47	.1604 .2134			1			· ·		51	- 1	.0906	-1
	49	.0747 .1553	1		ļ	1	ł ·	1			ł	l	t

a han t Table 2 (cont'd)

Table 2 (cont d)

Inter-industrial	Linkages	(bij's)	
------------------	----------	---------	--

	111007	. 100000	Receivers							* 1	;	ŀ	Į	ľ	•	Secure	ential Er	ntrv (-1) /
Complex No.	Suppliers				Receive	18	<u> </u>	- <u>.</u>		E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	and Exit in the	t (+1) of maximisa	Indust tion ⁹ o	cies E E
	· · ·	60	<u>61</u>													Sup	Rec	E	±1
•													1			44	_	.0966	-1
65	51	.0270	.3059					•	•							54	-	.0988	-1
(conté)	54	.0440	.2028				· ·								1. N	49	_	.1001	-1
	154		.4822				۱ ۰۰۰ سمبی ۱			ļ			ļ						
		16	17	18	23	29	35					1				·			Ι.
55	1	.3824	.3314	.3159	.1755*	.3720	.4057			.1239	2.58	7.194	2.956	6	Repetitive		35	.0484	-1
		}					*	;		(.2288)	:	(56.606)		(6)	Complex 18	-	16	_0/41 0054	-1
							•	• .			•					-	29	.0934	
							•			1						-	- 19	1239	
							•			_							ļ		<u> </u>
		63	73	74	76							1	Ì				i		
										- 1166	3.34	10.793	4.436	9	Nested on	-	73	.0418	-1
67	2	.1754,	5071	-	-		1 ;			(1.1298		(56.869)		(12)	Complex 35	72	-	.0778	+1
	72		.5871	+3423 C2/9	. 5081								1		Compron of	-	76	.0998	-1
	13	.0005	-	.0240	_		,		•		Į.,					- '	- 74	.1078	-1
		1					•									73	-	.1166	-1
		1	26									1				1			
									<u> </u>	.0636	1.66	2.031	.835	4	Nested on	-	25	.0183	-1
68	13	.1408	-					,		(1.0812)	· · · ·	(57.176)		(10)	Complex 17	78	-	.0222	-1
2	22	.4203	.0033	•								· · · ·				-	30	-0249	-1
	23	.0425	.1/05	-		•				· ·	l					29		.0270	-1
	50	2149	0004	•				ι	•	ŀ						-	22	-0369	-1
	140	.2193	.0001				,	,		I	1					-	144	.0383	-1
•				•		•								- '		78	ľ -	.0389	
		1										4	1	1	1	1	1 1	1 0401	1 _ 3

- 22-

•	Inter	industrial Linkages (bij'8)	ŧ.	i					Segu	ential E	ntry (-1	.)
Complex	Suppliers	Receivers	E (CV)	g /	^m 1 (m ₂)	^m 3	Elements (Total elements)	Type of Intersection**	and Exi in the	t (+1) o maximis	f Indust ation ⁰ o	ries f E
· ·			<u> </u>		·				Sup ·	Rec	Е	±1
۰.						Ì	• •	-	22	-	.0467	-1
. 63	1								-	25	.0499	lı
(conti)		• • •								144'	.0516	1
							· .	•	50	- 1	.0543	-1
		· · · · ·		1.	1 :	į.			-	30	.0577	
· •				1					140	-	.0596	
			1	1					-	22	.0597	
•				ľ					29	-	-0635	
	l.		1		·			•	13	-	1.0000	
•					<u> </u>				<u> </u>			+-
<u></u>		158 159									0270	
			.1045	4.08	2.313	.951	20	Repetitive	126		0534	
. 69	63	1683* .0490	(.5857	7) .	(57.176)		(20)	of Complex 42	132		.0662	-1
	64		}						102	-	.0754	-1
	. //	.1651 .1603							129	1 -	.0328	-1
•	102	.2035 .1351			\				77	- 1	.0877	-1
· ·	126	.2762 .0845				· ·			- 1	159	.0927	-1
	129	.1942 .1544	į						133	-	.0989	-1
	130	.0129 .3289							130	- 1	.1040	-1
	132	.2329 .1027		1					98	-	.1045	-1
• •	133	.0180 .3293							+			
<u></u>												
<i>i</i> .						·		•				
••			1	l	1	1	ł	1	•	1	1	I
: '	I.	'		··· •	**		· · ·	•		•		
		• • •								•		
								/				
					•			• /			•	
-		· · · · · ·		•			•	/	•			
· ·		. 1 -						. /				
								. /				
								/				

23

Inter-industrial Linkages (bij's)

	Inter	industrial Linkages (bij's)		i i	i 7		le t		- .		····· / 1	、 i
: Itmple No.	Suppliers	Receivers	E (CV)	a	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	seque and Exit in the	mtial En : (+1) of maximisa	Indust (-1 ition ⁰ d) ries f E
		49 51							Sup	Rec	E	1±1
, 70	44 46	.1675* .2074 .0011 .3851	.0914 (.9386)	2.62	1.311 (57.203)	.539	6 • · · (12)	Nested on Complex 15	154	61	.0312	-1 -1
	47 51 54	.0414 .2134 3059 .0043 .2028						-	40 - 51. - 47	-	.0861 .0902	-1 -1
	154	4822		1				2	54	-	.0914	-1
71	63 64 77 98 102 126 129 130 132	- .4322 158 159 .1683 .0496 .2495 .0767 .1661* .1292 .0604 .1608 .2035 .1351 .2762 .0845 .1942 .1544 .0129 .3289 .2329 .1027 .0140 .3293	.1045	4.08	2.313 (57.203)	.951	20 (20)	Repetitive of Complex 42	126 64 132 102 - 129 133 130 98 63	- - 159 - - -	.0369 .0532 .0661 .0752 .0828 .0912 .0930 .1036 .1041 .1045	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
. 72	44 46 47 49 51 54	61 .2074 .3851 .2134 .1553 .3059 .2028	.1174 (.4145	2.75	1.546 (57.203)	.636	8 (8)	Repetitive of Complex 15	154 46 51 47 44 54	- - - -	.0536 .0791 .C953 .1032 .1097 .1152	-1 -1 -1 -1 -1 -1

:	Totor-industrial Linkages (bij's)						•'		i	, . 1.					
Complex No.	Suppliers			Receivers		E (CV)	g ,	. ^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ntial En (+1) of maximisa	try (-1) Indust tion ⁰ o) rie f E
	ŀ	61	<u></u>			<u> </u>	·					Sup	Rec	E	=1
72 (contd)	69 154	.1613* .4822										49		.1174	
73	82 24 87	85 .4006 .6881 .5334	159 		1	.1256	3.60	3:330 (57.206)	1.369	11 (12)	Overlapping on Complex 27	133 130 . - 84	- - 85 -	.0409 .0630 .0714 .1017	
	123 130 -133 -	.0018 .3208 .0003	.1610* .3289 .3293		*:						·	87 82		.1182 .1256	
74	82 84 87 98 130	85 -4005 .6881 .5334 .0018 .3208	159 - - .1608* .3289		· · · · · · · · · · · · · · · · · · ·	.1256 (.9926)	3.60	3.307 (57.209)	1.359	11 (12)	Overlapping on Complex 27	133 130 - 84 87 82	- - 85 - -	.0408 .0630 .0714 .1017 .1182 .1256	
. 75	44 45 46 47 49 51	60 .1055 .1931 .0321 .1604* .0747 .0270	61 .2074 .0131 .3851 .2134 .1553 .3059			.1001	3.39	1.673 (57.209)	.688	16 (16)	Repetitive of Complex 65	- 154 46 51 44 54	61 - - - -	.0311 .0611 .0796 .CS92 .0959 .0984	

24

1ab18 2 (cont d)

1722 L.St. 24

-	-

Inter-industrial Linkages (bjj's)

×		·	Receiv	vers		E		mı	ma	Intersecting Elements	Type of	Sequ and Exi	ential E .t (+1) c	intry (-) of Indusi	l) tri
Suppliers	60	61			•	(CV)		^{(m} 2'		(Total elements)	Intersection**	in the	maximis		- -
							-					Sup	Rec	E	=
	0440	2028										49	-	.0998	-
154	-	.4822										45	-	.1001	-
	85	159	······		<u></u>	•	1			•				ŀ	
				·····		.1255	3.59	3.197	1.314	11	Overlapping	133	-	.0407	-
82	.4006				•	(.9941		(57.209)	•	(12)	On Complex 27	130	-	.0629	-
84	.0001	-				,	1		•			- 1	85	.0712	-
. 06	0002	1590*			· · · ·	<						84	-	.1015	-
120	3208	. 3289		• • •								87	-	.1180	-
133	.0003	.3293	. '		· .						· · · · · · · · · · · · · · · · · · ·	82	-	.1255	
	75	78	80									Í			
76	2754	2378	1576*			.0675	1.40	1.820	.748	6	Repetitive	81	-	.0441	-
.91	-	.0373	.3713	1.	• •	(.725	s) ·	(57.209)		(6)	Of Complex 75	-	75	.0575	-
			•	•			1.1			·		-	78	.0675	
	61					,									1
4.4	2074	<u> </u>			1	,1174	2.75	1,546	.636	8	Repetitive	154	-	.0531	-
46	.3851				•.	(.414	5)	(57,209)		(8)	of Complex 15	46	-	.0787	-
47	.2134										COMPTER IS	51		.0949	-
.49	,1553*	ł			·							47	-	.1023	-
51	.3059	•										44	-	.1093	·-
54	.2028											54	-	.1148	-
60	,1613	,			·, ·					ie [™]		60		.1174	-
154	.4822								·		. *				
	ļ,				· ·			· ·		1		Ļ	.		ł
	x Suppliers 54 154 82 84 87 96 130 133 74 81 44 46 47 49 51 54 60 154	x Suppliers 60 54 0 54 0 154 - 85 82 .4006 84 .6881 87 .5334 96 .0008 130 .3208 133 .0003 75 74 .2754 81 - 51 .444 .2074 46 .3851 47 .2134 .49 .533 .3059 54 .2028 60 .1613 .154 .4822	x Suppliers 60 61 54 .0440 .2028 1544822 85 159 82 .4006 - 84 .6881 - 87 .5334 - 96 .0008 .1590* 130 .3208 .3289 133 .0003 .3293 75 78 74 .2754 .2378 810373 61 44 .2074 46 .3851 47 .2134 49 .1553* 51 .3059 54 .2028 60 .1613 . 154 .4822	X Suppliers Receif 60 61 54 .0440 .2028 154 - .4822 85 159 82 .4006 - 84 .6881 - 87 .5334 - 96 .0008 .1590* 130 .3202 .3289 133 .0003 .3293 75 78 80 74 .2754 .2378 .1576* 81 - .0373 .3713 61 . . . 44 .2074 .3851 47 .2134 . 49 .1553* . 51 .3059 . 54 .2028 . 60 .1613 . 154 .4822 .	X Receivers 54 .0440 .2028 154 - .4822 85 159 82 .4006 84 .6881 87 .5334 96 .0008 130 .3208 133 .0003 74 .2754 81 - 61 44 .2074 46 .3851 47 .2134 .49 .1553* 51 .3059 54 .2028 60 .1613	X Receivers 60 61 54 .0440 .2028 154 - .4822 85 159 82 .4006 84 .6881 87 .5334 96 .0008 130 .3208 3208 .3289 133 .0003 74 .2754 74 .2754 74 .2754 61 44 .2074 46 .3059 51 .3059 54 .2028 60 .1613 154 .4822	$ \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{1}{3} 1$	z Receivers E (CV) g 54 .0440 .2028 154 - .4822 85 159 32 .4006 85 159 32 .4006 85 159 32 .4006 96 .0008 130 .3208 3208 .3289 130 .3208 130 .3208 74 .2754 - .0675 81 - 0373 .3713 44 .2074 46 .3851 47 .2134 49 .1553* 51 .3059 54 .2028 60 .1613 154 .4822	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Normalize Receivers E g n_1 n_3 Intersecting Elements (Total elements) 54 .0440 .2028 - .4822 - .1255 3.59 3.197 1.314 11 82 .4006 - .1255 3.59 3.197 1.314 11 84 .6831 - .1255 3.59 3.197 1.314 (12) 96 .0005 .1590*	Suppliers Receivers E g m1 m3 Tetersecting Dimension (Total elements) Type of Intersection** 54 .0440 .2028 - .4822 - .4822 - .482 - .482 - .482 - .1255 3.59 3.197 1.314 11 Overlapping Or oppiox 27 84 .6831 - .1255 3.59 3.197 1.314 11 Overlapping Or oppiox 27 96 .0005 .1590* .1255 1.40 1.820 .748 6 6	Suppliers Receivers g m1 m2 Intersecting (m2) Type of m2 Type of Intersecting Suppliers Suppliers Type of Intersecting Suppliers Suppliers	Receivers E T m1 m2 m1 m3 Intersecting Intersecting (Total olements) Type of Intersecting (Total olements) and Exit (#1) and Exit (#1) 54 .0440 .2028	Supplier Beceivers E G N M M M Intersecting (N2) Type of maximization* Sequential Entry (1) of Indes Int the maximization* 54 .0440 .2028 -

- 26 -

3

Table 2 (cont'd) ---....

· ·	. Inter-industrial Linkages (bij's)				;	i .	} .				•	
Complex	Suppliers	Receivers	E (CV)	g.	^m 1 (m ₂)	^m 3	Intersecting: Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ential E t (+1) o maximis	ntry (-] f Indust ation ⁰ c	l) :ries of E
				-{	+		1 ² ,		Sup ·	Rec	E	=1
79	44 46 47	.1550* .2074 .0019 .3851 .0157 .2134	.0897 (.9682)	2.57	1.316 (57.242)	.541	6 • (12)	Overlapping on Complex 15	- 154 46	61 - -	.0302 .0603 .0770	-1 -1 -1
	51 54 154.	.0009 .3059 .0026 .2028 4822			2				51 47 54	- - -	.0855 .0864 .0397	-1 -1 -1
. 20	44 	50 61 .0051 .2074 .0005 .3851 .1549* .2134 .0296 .1553 - .3059 .0004 .2028	.0893	2.79	1.336 (57.273)	.549	7 (14)	Overlapping on Complex 15	 154 46 51 44 54	61 - - -	.0307 .0607 .0773 .0857 .0877 .0890	-1 -1 -1 -1 -1 -1 -1
21	154 82 84 87 129 130 133	4822 85. 159 .4006 .6821 - .5334 - .0021 .1544* .3202 .3289 .0003 .3293	.1256 (.9911	. 3.60	3.135 (57.277)	1.288	11 (12)	Overlapping on Complex 27	133 130 - 84 87 82		.0403 .0625 .0714 .1017 .1182 .1256	-1 -1 -1 -1 -1 -1 -1 -1 -1
•							·		•	- -		

٠

7 ·	Inter-industrial Linkages (bij's)				-	Í	,	f	·	• .	i Semi	ential E	ntrv (-1	.)					
C:-plex	Suppliers]	Receiver	<u>s</u>				E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	and Exi in the	t (+1) of maximis;	f Indust ation ⁵ o	ries f E
•		59	61													Sup	Rec	E	±1
32	44 46 47	.0249 .0082 .1533*	.2074 .3851 .2134			· ·				.0936 (.9089)	·2 . 92	1.416 (57.389)	.582	7 • · (14)	Overlapping on Complex 15	- 154 46 51	61 ' 	.0306 .0606 .0777 .0864	-1 -1 -1 -1
:	49 51 54	.0370 .0068 .0627 -	.1553 .3059 .2028 .4822				•	1				:				54 44 49		.0910 .0933 .0936	-1 -1 -1
83	82 84 87 97 130	85 .4006 .6881 .5334 .0035 .3208	159 - - .1510* .3289	 			, 1			.1253 (.9961)	3.59	3.501 (57.397)	1.439	11 (12)	Overlapping on Complex 27	133 130 - 84 87 82	85	.0400 .0622 .0709 .1012 .1178 .1253	-1 -1 -1 -1 -1 -1
24	133 . 1 18	.0003 16 .3824 .0008	.3293 17 .3314 .0006	18 .3159 -	19 .0069 .1462*	29 .3720 .0002	35 .405 -	7	-	.0892	2.55	6.964 (57.501)	2.862	2 5 (12)	Overläpping on Complex 18	29 - 1 - - -	- 22 16 35 29	.0144 .0304 .0342 .0536 .0647 .0718	-1 -1 -1 -1 -1 -1
•								· .	• •							29 - -	17 - 18 22	.0760 .0803 .0868 .0892	-1 1 -1 1
•)	1	•			•	• •	•	•		- 			·····		•	· · ·	•	,

- 27 -

· Table	2	(cont'd)
---------	---	----------

•		
Tuton inductrial	Linkages	(hii's)
10000-1000501104	Druwagee	12 I - I

•	Inter-industrial Linkages (bij's)						4		· -	1	ŀ		_			、			
· Itrplex	Suppliers				Receive	ers		104	112	E (CV)	a ,	^m 1 (m ₂)	. ^m 3	Intersecting Elements (Total elements)	Type of Intersection**	and Exit in the	maximis;	I Indust: ation [®] o	, ries f E
		89	96	97	98	99	100	104	112					-		Sup	Rec	E	±1
						•		•	•					. .			8.9	.0373	-1
. 25 .	86	.3021	.0756	.2157	.0715	.2006	.1451*	. 0800	.0915	.0657	1.54	2.536	1.042	8	of	_	97	.0510	-1
		•								(.5350)		(57.501)		(8)	. Complex 40	. –	.99	.0617	-1
															•		112	.0637	-1
								Ϋ			ļ	:	1.			-	104	.0647	-1
•															· ·	-	96	.0553	-1
· .			•						· 、		Į					-	98	.0657	-1
	<u> </u>	·							<u>`</u>			· · ·	<u> </u>				1		
		1					. <u></u>								•	22	· _	.0468	-1
25	13	.1408*	r				•	. 1		.0754	1.37	1.725	.709	4	Repetitive	50	- 1	.0643	-i
•	22	.4203			:			•		(.3872)		(57.501)	1 ·	(4)	Complex 17	140	- 1	.0754	-1
•.	50	.2749						•											
-	140	.2193		•			· · · · · · · · · · · · · · · · · · ·	. 1 									1		1
		159	162							- ·		i i			Overlanning	128 '	-	.0228	-1
37	96	.1590	,0301							.0753	2.74	2.592	1.065	8	on		159	.0304	-1
•	97	.1510	.0764			•	,			(.8060)	2	(58.419)		(18)	Complex 52	133	-	.0472	-1
	98	.1608	.0781										Î			130	-	.0603	-1
•	122	.0350	.1407	*					۰.	:					1	98	-	.0662	-1
	123	.1610	.0174					•	•							97	- ·	.0705	-1
· ·	128	.1165	.1335							1.	· ·	•				129	-	.0725	-1
(129	.1544	.0348													96	· -	.0742	-1
•	130	.3289	.0003				. <i>•</i>						ŀ			123	-	.0753	-1
	203	. 3293	.0005		·		•	<u></u>	·				<u> </u>		-		1	1	Τ.
•		1				·		4 C		1		1				۰. ۱			1

82

•	•												
2;1ex	Inter	-industrial Linkages (bij Rec	's) eivers	E (CV)	g	m ₁ (m ₂)	. ^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ntial En ; (+1) of maximisa	try (-1) Industr tion ^g of	ies E E
		84 85								Sup	Rec	E	±l
38	6 82 83	.1382* .0066 .3999 .4005 .3687 .0230		.1314 (.9598)	3.76	4.008 (58.635)	1.647	10 (12)	Nested on Complex 28	82 - - 84	 88 85 -	.0443 .0746 .0907 .1126	-1 -1 -1 -1
•	84 87 · 130	6281 5334 .0106 .3208								87 83 - 130	- 88 -	.1226 .1279 .1314	-1 1 -1
. 29	13 16 22 50 140	1 40 .1408 - .0024 .1380* .4203 .0004 .2749 - .2193 .0007		.0598 (1.1696	1.56	1.814 (58.725)	.746	4 (10)	Nested on Complex 17	147 - 22 50 140 . 13 147	- 1	.0152 .0168 .0410 .0517 .0576 .0587 .0598	-1 -1 -1 -1 -1 -1 1
 90	82 84 87 102	85 159 .4006 - .6881 - .5334 - .0002 .1351*		.1244 (1.0064	3.56	3.148 (58.725	1.294	11 (12)	Overlapping on Complex 27 and Complex 42	133 130 . - 84 87 82		.0387 .0610 .0697 .1001 .1168 .1244	-1 -1 -1 -1 -1 -1

- 29 -

2

-3208 .3289 .0003 .3293

130

133

	Inter	-industrial Linkages (bij's)		i	. –	Ì	ŀ					
: mplex No.	Suppliers	Receivers	E (CV)	a '	. (m ₂)	^m 3	Intersecting Elements	Type of Intersection**	Seque and Exit in the	ntial En : (+1) of maximisa	Industr tion ⁰ of	ies E
	· ·	73 74 76 141					(Total elements)		Sup	Rec	E	±1
91	72 73 146	.5871 .3429 .5081 - 62480197 .0481 .00681337*	.1032 (1.2776	2.96	9.364 (58.965)	3.848	7 (12)	Overlapping on Complex 7 and Complex 58		143 38 140 147	.0211 .0280 .0336 .0384	-1 -1 -1 -2
•					:					39 47 144 73	.0408 .0424 .0431	-1 -1 -1 -1
					· 、				72 - -	- 76 74	.0504 .0639 .0709	-1 -1 -1
									-	47 39 147	.0767 .0796 .081 <u>8</u>	1
									- 73 - -	140 38 143	.0844 .0893 .0956 .1032	1 -1 1 1
92	96 97 98 122	159 162 .1590 .0301 .1510 .0764 .1608 .0781 .0350 .1407	.0753 (.8060)	2.74	2.592 (58.965)	1.065	18 (13)	Repetitive of Complex 87	122 - 133 130 98	- 159 - -	.0228 .0304 .0472 .0603 .0662	-1 -1 -1 -1

- 30 -

· · · · · · · · · · · · · · · · · · ·								-						
Inter-industrial Linkages (bij's)					k _	i	· -	1	1.					
Cplex · ∷o.	Suppliers	Receivers				a	mı	ma	Intersecting Elements	Type of	Sequential Entry (-1) and Exit (+1) of Industries			
		- 159 162			(CV)	, ,	^{(m} 2 ⁾	3	(Total elements)	Intersection**	in the	maximis	ation ⁰ o	fE
· [·] ———	·			<u></u>				1			Sup	Rec	Е	=1
			,	•'							97 '	• •	.0705	-1
. 92	· 123	.1610 .0174			1		1		4		129	-	.0725	-1
. (contd)	128	.1165 .1335							· ·		96	- 1	.0742	-1
	129	.1544 .0348		,							123	- 1	.0753	-1
	130	.3289 .0003		•			:	1.					1	
	133	.3293 .0005												1
. ·		58 61				1			· .			1		
• . 93	44	.0674 .2074			.098	3 3.07	1.494	.614	7 .	Overlapping		61	.0279	-1
· -	46	.0325 .3851		• ·	(.815	5)	(59.155)	Į	(14)	Complex 15	154		1.0584	1-1
	47	.0541 .2134	÷.	•					· ·		46	} -	1.0772	1-1
	49 ·	.0550 .1553		05						1	51	-	.0886	-1
	51	.0546 .3059				1 .				4 · · ·	47	-	.0937	1-1
	54	.1326* .2028		· · ·				1		1	44	· –	.09/6	1-1
•	154	4822	•	1						1	49	ļ		
		85 159								1	1			

- 31 -

3.098 1.273 . 10 .1243 3.56 82 .4005 94 (12) (1.0070) (59.213) .6881 84 -.5334 ••• .. 87 ---.0025 .1307* 107 .3208 .3289 130

7

133

•

.0003 .3293

Overlapping on Complex 90

133

130

-

84

87

82

Table 2 (cont'd)

.0383

.0607

.0695

.1000

.1167

.1243

-

85

-

-

-

-1

-1

-1

-1

-1

-1

	Inter	Inter-industrial Linkages (bij's)			i	· -	İ	ŀ · ·		Commential Entry (-1)			
Complex No.	Suppliers	Receivers			g ,	m ₁ (m ₂)	^m 3	Intersecting Elements	Type of Intersection**	and Exit (+1) of Industries in the maximisation [®] of E			
		85 159		<u> </u>			<u> </u>	(Total elements)		Sup	Rec	E .	±1
95	77 [.] 82	.0002 .129 .4006 -	2*	.1241 (1.0096)	3.55	3.094 (59.213)	1.272	11 . í (12)	Overlapping on Complex 33	133	85	.0382 .0606 .0693	-1 -1 -1
•	84 87 130 133	.6881 - .5334 - .3202 .328 .0003 .329	9 ; 3			:			Complex 42	- 84 - 87 82 ⁻	-	.0998 .1165 .1241	-1 -1 -1
96	44 - 46 47 49 51 54 154	53 61 .0591 .207 .0155 .385 .1287* .213 .0676 .155 .0015 .305 .0027 .202 482	4 51 53 59 7 28 22	.0928 (.9183	2.90	1.430 (59.338)	•588	7 (14)	Overlapping 'on Complex 15	- 154 46 51 44 49 54	61 - - - - - -	.0285 .0589 .0765 .0851 .0899 .0919 .0928	-1 -1 -1 -1 -1 -1 -1 -1
97	14 124	127 128 .0525 .127 .1139 .380	3 131 · 74* .1085 · 04 .0017	.0490 (.9152	1.02	.478 (59.338)	.197	6 (6)	Repetitive of Complex 23	124 - -	- 127 131	.0423 .0482 .0490	-1 -1 -1
. 98	44 46 47 51	38 61 .1273*.200 .0001.389 .0178.21 .0001.300	74 51 34 59	.0883 (.9871	2.53	1.449 (59.503)	. 595	6 (12)	Overlapping on Complex 16	 154 46 51	61 - -	.0279 .0583 .0751 .0838	-1 -1 -1 -1

- 32 -
| Complex | Inter | -industrial Linkages (bij's)
Receivers | | E | g | | ^m 3 | Intersecting
Elements | Type of
Intersection** | Secut
and Exit
in the | ential Er
E (+1) O:
maximis | atry (-1
f Indust
ation ⁰ o | .)
rie:
f E |
|----------|-------------------------------------|--|-----|------------------|------|-------------------|----------------|--------------------------|---------------------------------|---|-----------------------------------|---|----------------------------------|
| No. | Suppliers | 38 61 | · | (07) | ; | | | (Total elements) | • | Sup | Rec | E | =
=1 |
| . 98 | 54 | 2028
0001 .4822 | | | | | | | | 47
54 | | .0370
.0383 | -1 |
| . 99 | 4
82
84
.87
130 | 85 92
.0004 .6327
.4006 -
.6881 -
.5334 .0440
.3208 .1260* | | .1373
(.9534) | 3.57 | 5.710
(59.503) | 2.347 | , 10
(10) , | Repetitive
of
Complex 6 | 4 [.]
-
133
-
84
87 | -
159
-
85
- | 0632
.0777
.0556
.0915
.110 <u>3</u>
.1202 | -1
-1
-1
-1
-1
-1 |
| •. | | | ••• | | | | | | | 82
-
133 | -
159
- | .1216
.1248
.1373 | -1
 1
 1 |
| 100 | . 44
46
47
51
54
154 | 44 61 - .2074 .0022 .3851 .0752 .2134 .0051 .3059 .1255* .2028 - .4822 | - | .0911
(.9315 | 2.61 | 1.408
(59.628) | .579 |) 6
(12)
- | Overlapping
on
Complex 16 | -
154
46
51
47
44 | 61
-
-
-
- | .0274
.0579
.0749
.0838
.0899
.0911 | -1
-1
-1
-1
-1
-1 |
| | | | | | | | | | | | | | |
| -
, . | | | • | | | | | | | • | | ,
, | |

TABLE 3

Characterization of Industrial Complexes from I-0 Table, U.S.A., 1963.

(k = 10)

•	Inter	-industrial Linkages (b _{ij} 's)	1	1								
Complex		Receivers	Е		^m 1		Intersecting	Type of	Seque	ential Entire (+1) of	ntry (-1 f Indust	.)
No.	Suppliers	31 .	(CV)	g	^{(m} 2)	^m 3	Elements (Total elements)	Intersection**	in the	maximis	ation ⁰ o	Æ
									Sup	Rec	E .	±1
1	8	.6247 *	.0568	2.39	4.615	1.558	0	Independent	-	-	-	—
			(.0000)		(4.615)		(1)	•				
		37	•					Tadoacadoat	7	-	.0443	-
2	5	. 4324*	.0443	2.03	.770	.260	0	Tugebengen c				
	7.	.0987	(.6284)		(5.385)		(2)					
		1 14 .						•				Γ
3	1	4153 *	.0749	4.58	14.999	5.065	0	Independent	39	<u>.</u>	•0626	<u> </u> -

* Starting element

** This column is intended to describe the relevance of the present complex to the complexes obtained previously i.e. whether the present complex is independent of the earlier ones or whether it resembles them by characteristics like 'overlapping', 'nested' or 'repetitive' types.

• Starting element characterized by an asterik is not shown here since the element has to be retained anyway by the method we have followed.

N.B. For the notation See Appendix 2.

in and the second second second second second second second second second second second second second second s

Table 3 (cont'd)

È

Inter-industrial	Linkages	(bii's)
------------------	----------	---------

Se loopbergers	Receivers	E		m		Intersecting	r E Trime of	Segu	ential E	ntry (-1	1)
	1 14	(CV)	प्र 	(m ₂)	^m 3	Elements (Total elements)	Intersection**	and Exi in the	t (+1) c maximis	f Indust ation ⁰ c	ries: f E
3 2	2978 1578							Sup	Rec	E	±1
(contd) 39	.0018 .3365	(.8045)	•	(20.384)		(6)		2	. =	.0696	-1
	28 34					······			1	.0749	<u> -1</u>
4 33	.0520 .4024*	.0387 (.7331)	1.77	.334 (20.718)	.113	0 (2)	Independent	-	28	.0387	-1
	11						·				
5 9	.1217	.0830	4.75	8.054	2.719	0	Tudenendent	36	-	.0615	-1
. 20	.1939	(.4108)		(28.772)		· (5)	and perment	20	-	.0717	-1
36	.3488							55	-	.0802	-1
40	.3893* -					·		9	-	.0830	-1
	16 17 27 32								<u>_</u>		ļ
6 10		1		•		•				-	
29	- * .3516* -	.0482	+3.32	2.000	.675	0	Independent	31	-	.0339	-1
20	.12/0 .1196 .03/3 .2316	(1.1053)		(30.772)		(8)	<u>ر ،</u>	28	-	.0342	-1
	· · · ·						· · · ·	-	32	0424	-1
						i		31	-	.0443	1
·			1			. '	, j	-	16	.0468	-1
·····								-	1.7	.0482	-1
	11			ļ		· · · ·					
7 9	.1217	.0830	4.75	8.054	2.719	5	Repetitive	40	-	0615	-1
20	.1939	(.4108	ľ	(30.772)		(5)	of	20	_	6717	_1
36	.3488*			,			Complex 5	55	_	.0802	-1
		•	. 1					9	-	-0B30	-1

- 2

-+ 0 - 3 :

- 3 -

a the second second second second second second second second second second second second second second second

Table 3 (cont'd)

Inter-industrial	Linkages	(bii's)
------------------	----------	---------

Complex No.	Suppliers	Receivers	(CV)	đ	m ₁ (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Secu and Exi in the	lential] t (+1) (maximi:	Entry (- of Indus sation [®]	1) trie of E
7 (contd)	40 55	.3893 .1908							Sup	Rec	E	<u>±1</u>
8	1 2 39	1 14 4153 .2928 .1528 .0018 .3365*	.0749 (.8045)	4.58	14.999 (30.772)	5.065	6 (6)	Nepetitive of Complex 3	1 2		.0626 .0696 .0749	-1
9	6 10	27 38 .0305 .3245* .3516 ~	.0505 (.9173)	2.70	.680 (31.231)	.230	1 (4)	Overlapping on Complex 6	-	27	.0296	-1
10 .	16 28	16 17 18 19 32 - .1130 .3231* .2435 .0160 .1276 .1198 .0372 .0066 .2316	.0609 (.8761)	4.66	5.078 (34.693)	1.715	3 (10)	Overlapping on Complex 6		19 17 - 32	.0472 .0523 .0527 .0606	-1 -1 -1 -1 -1
11	1 2. 4 39	1 2 14 - .0674 .4153 .2928 - .1528 .1339 .3164* - .0018 .0029 .3365	.0782 1.0484)	6.57	16.565 (36.259)	5.593	6 (12)	Nested on Complex 3	- 2 - 1 39 -	15 - 4 14 - - 4	.0609 .0375 .0531 .0563 .05°3 .0726 .0747 .0782	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
;			· · · · · · · · · · · ·	!	<u> </u>	!					1	

and the second second

and a second of the

Table 3 (cont'd)

		,	
	•	4	
	• 1 1	/1	
19404-184194419	LITKSCES.	1044181	

Complex No.	Suppliers				Receivers			·E	, ,	^m ı	<u> </u>	Intersecting	Type of	Sequ	ential H	Cntry (-)	1)
		1	14	20				(CV)	, y	(m ₂)	3	(Total elements)	Intersection**	in the	maximis	ation [®] c	of E
		-					•					•		Sup	Rec	E	±1
12 .	1	-	.4153	-				.0729	6.13	15.653	5.285	6 .	Nested on	~	14	.0328	-1
	2	.2928	.1528	.0111		· ·		(1.1456)		(36.912)		(12)	Complex 3	1	-	.0578	-1
	3	-	.0889	.3046*	•							•		39		.0715	-1
	39 [.]	.0018	.3365	-				· · ·						- 2	-	.0727	-1
							·.							-	1	.0729	-1
		51,	53	56									·		1		
13	57	.0569	.0306	.2969*	•			.0296	1.47	1.114	.376	0	Independent	-	51	.0295	-1
							·	(.9349)		(38.026)		(3)		-	53	.0296	-1
		· 1	4	14								· · · · · · · · · · · · · · · · · · ·					1
14	1	-	.0578	.4153		- <u>-</u>	•	.0749	5.43	15.348	5.182	6	Nacha 2 an	-	4	.0382	-1
	2	.2928*	.1653	.1528				(.9450)		(38.375)		(9)	Nested on	-	14	.0470	-1
	39	.0018	· - ·	.3365	•	•							Complex 3	1	-	.0677	-1
														39	-	.0749	-1
,		1	14	25			· ·					· .	i				
15	1		.4153′	-				.0692	5.81	16.333	5.515	. 6	Nocted	-	26	.0377	-1
• •	2	.2928	.1528				•	(1.1984)		(39.709)		(12)	Complex 3	-	14	.0379	-1
	24 ·	.0007	.0405	.2711*			· .						comptex 5	1	-	.0567	-1
	39	.0018	.3365	.0102										39	-	.0660	-1
					-				· ·				j	-	26	.0671	1
												, · · ·		. [.] 2	-	.0681	-1
														-,	1	.0692	-1
					•												
		· · ·			-	·. · · · · ·				<u> </u>	<u> </u>				ł	l	

- 5

Inter-industrial Linkages (bij's)

Comple: No.	Suppliers				Receiv	vers					E	<i>;</i>	mı		Intersecting Elements	Type of	Sequ and Exi	ential E	ntry (-) of Indus(l) tries
		16	17	18	19	32					(CV)		^{(m} 2 ⁾	3	(Total elements)	Intersection**	in the	maximis	ation [®] c	of∙E
															5		Sup	Rec	E	=1
16	16	-	.1130	.3231	.2435*	.0160		•			.0609	4.66	5.078	1.715	10	Repetitive	-	18	.0472	1-1
	28	.1276	.1198	.0372	.0066	.2316	•				(.8761)		(39.709)		(10)	of Complex 10	-	17	.0523	-1
	· ·					•	·							· ·		. Complex ID	28	-	.0527	-1
	1									ļ								32	.0506	-1
					<u>.</u>		-										-	16	.0609	-1
		11	36																	T
17	9	.1217	.2386*	2				•	•		.0745	5.70	8.456	2.855	5	Nested on	-	11	-0300	-1
	20	.1939	.0029							1	(.9409)		(40.112)		(10)	Complex 5	40	-	.0537	-1
	36	.3488	-				•				•				1 1		36	- 1	.0638	-1
	40	.3893	.0017														20	- 1	.0721	-1
	55	.1908	.0030									:					55	-	.0745	-1
		16	17 •	18	19	32	1		•											1
18.	16	-	.1130	.3231	.2435	.0160					.0609	4.66	5.078	1.,715	10	Repetitive	-	16	.0299	-1
	28	.1276	.1198	.0372	.0066	.2316*					(.8761)		(40.112)		(10)	of	17	- 1	.0373	-1
		•														Complex 10	-	17	.0401	-1
			-	-	•												-	19	.0412	-1
													1		,		16	} <u>-</u> `	.0506	-1
					•												-	1,8	.0593	-1
										.	· · · · · · · · ·						17	-	.0609	1
		11	39 4	0 41	. 42	44	45	49	59	61			· ·							
19	37	.0594	2232*.1	635 .12	269 .117	4 .0774	.0916	.0675	.1133	.0753	.0558	4.26	6.389	2.157	0	Independent	-	40	.0322	-1
											(.4297)		(46.501)	1	(10)		_	41	.0395	-1
. .																	-	42	.0451	-1

÷ 1

ومروجد فالهم 4. 18.

.0791

Table 3 (cont'd)

	Inter-industrial Linkages (bij's)						`t.	:		- •	•							
Complex No.	Suppliers				Receiv	ers.				E (CV)	gʻ	(m ₂)	^m 3	Intersecting Elements (Total clements)	Type of Intersection**	Seg and Ex in th	uential) it (+1) (e maximis	Entry (-1 of Indust sation ⁰ o
																Sup	Rec	E
19	·														· •	-	59	.0496
(contd)							•		•							-	45	.0522
						•					ļ		1.1		× .	<u>-</u>	44.	.0537
																· _	61	.0549
												•	·			-	49	.0556
														1		-	11	.0558
		13	39	40	59 ·	60		• ·										
20	37	.0148	.2232	.1635	.1133	.0174				.0411	4.71	5.555	1.876	3	0	F.C.		0.000
	41	.0063	.0147	.0258	.1554	.0264	•			(1.2416)		(48.952)		(20)	on	50	-	.0206
	50	.0039	-	.0022	.0974	.1495									Complex 19	50	60	.0210
	60	.2134*	.0026	.0023	.0006	-				1			:			50	-	.0280
							1									43	59	.0290
			• •													37		.0350
				•										1		-	30	0275
•							,		•							56		0400
	· ·		:				,		•			[-	40	0433
		11	12		••••••					1				1.				
21					1					┦				1.1	Nestod on	•	-	
21	9 20	.1217	.0705							.0791	6.65	9.610	3.245	5	Resceu on	9	-	.0222
	20	.1939	.0522							(.8068)		(50,509)	1 ·	(12)	comptex 5	-	30	.0361
	30	.0049	.1962*							ļ				· - ,		40	11	.0433
	40	- 3408	.0318						•							40 36	1]	0594
	40 55 (1908	.0400					•					1			-	26	0705
		.1500	.0343													20	-	.0758
										,		<u> </u>	1			55	-	.0791

	Inter	r-indust	rial Linkages (b	ij's)		_i	1 -	; -	- 1	· · ·					
Complex No.	Suppliers	11	21	eceivers		(CV)	g [:]	(m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential J t (+1) c maximis	ntry (-) of Indust ation ⁶ c	l) :rie of E
~~	20	1000	-	•	•			·		1		Sup	Rec	E	=1
22	20 36 40	.1939 .3488 .3893	- -		·	.0732	5.03	7.903 (50.583)	2.668	4 (8)	Overlapping on Complex 5	- 40 36	11 -	.0323 .0555 .0704	-1 -1 -1
		11			·····			<u> </u>	 			. 55	-	.0732	-1
23	9 20 36 40 55	.1217 .1939* .3488 .3893 .1908				.0830 (.4108)	4.75	8.054 (50.583)	2.719	5 (5)	Repetitive of Complex 5	40 . 36 55 9		.0486 .0717 .0802 .0830	-1 -1 -1 -1
24	9 20 36 40 55	11 .1217 .1939 .3488 .3893 .1908*	· ·			.0830 (.4108)	4.75	8.054 (50.583)	2.719	5 (5)	Repetitive of Complex 5 \ 	40 36 20 9		.0483 .0715 .0802 .0830	-1 -1 -1 -1 -1
25	1 24 39	14 .4153 .0405 .3365	25 26 .2711 .1810* .0102 .0002			.0660 (1.1182)	4.79	10.982 (51.820)	3.708	6 ! (9) !	Overlapping on Complex 15	- - 1 39	25 14 -	.0377 .0379 .0567 .0660	-1 -1 -1 -1
			•				:								

ويوسير والمالية ما

ï,

	Inte	r-industrial Linkages (bij's)		,	; -	ł	i					,
Complex No.	Suppliers	Receivers	e (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exi in the	ential E t (+1) o maximis	Intry (-) of Indust sation [®] (l) trie of E
							1		Sup	Rec	E	[±1
26	1 2 39	0578 .4153 .2928 .1653* .1528 .00183365	.0749 (.9450)	5.43	15.348 (51.820)	5.182	9 (9)	Repetitive of Complex 14	- - 1 39	1 14 	.0382 .0470 .0677 .0749	-1 -1 -1 -1
		11 39 40 41 42 44 45 49 59 61										+
27 •	37	.0594 .2232 .1635*.1269 .1174 .0774 .0916 .0675 .1133 £753	.0558 (.4297)	4.26	6.389 (51.820)	2.157	10 (10)	Repetitive of Complex 19		39 41 42 59	.0322 .0395 .0451 .0496	-1 -1 -1 -1
			·	•					-	45	.0522	-1
			`	>	·			-	- - - -	44 61 49 11	.0537 .0549 .0556 .0558	-1 -1 -1 -1
		<u>39 40 41 42 44 45 59</u>						·				
28	37 41	.2232 .1635 .1269 .1174 .0774 .0916 .1133 .0147 .02580221 .0229 .0105 .1554*	.0485 (.8058)	4.45	5.695 (51.950)	1.923	10 '' (14) '	Overlapping on Complex 19 and Complex 20	37 	- 39 40 42 41 45	.0224 .0362 .0435 .0464 .0481	-1 -1 -1 -1 -1 -1
									-	44 .	.0485	-1
			•							•		
		· · · · · ·		•			· .			•		

-

Table 3 (cont'd)

 $a_{ij}(r)$

1.1

9

Table 3 (cont'd)

:

÷

2.7

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ry (-1) Industrie tion ⁰ of E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E ±1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.0473 -1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.0696 -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.0749 [-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.0206 -1
$31 \begin{array}{ c c c c c c c c c c c c c c c c c c c$.0306 -1
31 1 .4153 .0802 5.21 12.366 4.176 4 Overlapping 1 - .0420 31 1 .4153 .0802 5.21 12.366 4.176 4 Overlapping 1 - .0461 2 .1528 .0889 .06857 (.6057) (.6057) (.6057) (.6057) (.6057) 0 0 39 - .0461 3 .0889 .1054 .1054 .054 .0744 0 .0744	.0350 -1
31 1 1	.0420 -1
31 14 - 42 .0451 31 1 .4153 .0802 5.21 12.366 4.176 4 Overlapping 1 - .0461 2 .1528 .0889 (.6057) (.6057) (.6057) (.6057) (.7) 0 0 39 - .0461 3 .0889 .1054 .1054 .1054 .0744 .0744	.0449 -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.0451 -1
31 1 .4153 .0802 5.21 12.366 4.176 4 Overlapping 1 - .0461 2 .1528 (.6057) (.6057) (.6057) (.52.891) (.7) 0 0 39 - .0634 3 .0089 .1054 .1054 .1054 .0104 .0104 .0104 .0104 .0104 .0104	
2 .1528 (.6057) (52.891) (7) 001 on on on complex 15 39 - .0684 3 .0889 .1054 .1054 2 - .0744	.0461 (-1
$\begin{array}{c cccc} 3 & .0889 \\ 21 & .1054 \end{array}$.0684 -1
21 .1054	.0744 -1
	.0780 -1
25 .1275	.0797 -1
39 .3365	.0802 -1
1 2 14	
32 10674 .4153 .0782 6.57 16.565 5.503 12 Repetitive	
2 .29281528 (1.0484) (52.891) (12) (Complex 11 2 .03/5	0521 1
4 .1339*.3164 -	.0568 -1
39 .0018 .0029 .3365	.0590 -1
10728	.0728 -1

.

Inter-industrial Linkages (bij's)

۰,

÷,

- ,			••			, .	: 		F	•	1	D .	· .	
÷	•	e	· · · · · · · · ·	and analysis of the	। 	, 	, ,				• •	•		<u>, s</u> e
			n meneri y aya an	- Vit ginaga tagagti	nang tutan	' ,i		a	1764kuunuu	Tab	le 3 (con	t'd)	, * ,	•.
	Tota	-inductrial Linkson	- that the	•		- 10 -	•	•						
Complex No.	Suppliers		Receivers	······	E (CV)	g	m ₁ . (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential H t (+1) c maximi:	Entry (-1 of Indust sation ^g c	.) Ties
32 (contd)		-	-	· · · · · · ·	•						Sup 39	Rec -	E	21
33	16 28	16 17 18 1130 .323 .1276* .1198 .037	19 32 1 .2435 .0160 2 .0066 .2316	•	.0609 (.8761)	4.66	5.078) (52.891)	1.715	10 (10) ·	Repetitive f Complex 10	- 17	32	.0299	-1
	•										- 16 - 17	1.9 - 18	.0401 .0412 .0506 .0593 .0609	-1 -1 -1 1
34	1 2 3 21 25 35 39	14 .4153 .1528 .0889 .1054 .1275* .1376 .3365			.0802 (.6057)	5.21	12.366 (52.891)	4.176	7 (7)	Repetitive of Complex 31	1 39 2 35 21 3		.0452 .0576 .0737 .0780 .0797 .0802	-1 -1 -1 -1 -1 -1 -1 -1
35	37	11 39 40 41 .0594 .2232 .1635 .12	42 44 45 69*.1174 .0774 .0916	49 59 61 .0675 .1133 .0753	.0558 (.4297)	4.26	6.389 (52.891)	2.157	10 (10)	Repetitive of Complex 19	- - -	39 40 42	.0292 .0395 .0451	-1 -1 -1
r • •	1 8 9	•					ì						•	•
					.1.0				21 	ja ja na na na na na na na na na na na na na n	•	۰.	t	1.3. <i>2.</i> IF

25

Table 3 (cont'd) - 11 -

	Inter	-industrial b	inkages (D13.2)		£ .	ľ	; -	÷.	i. S	· .				
Complex No.	Suppliers		Receivers		E (CV)	g :	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) c maximis	htry (-) 5 Indus ation ⁰	l) trie≤ of E
							}	-			Sup	Rec	E	=1
35	[•	1	}	1	[ļ .				59	1.0496	
contd))			ŀ					-	45	.0522	-1
			• •		1		j				·	44.	.0537	-1
				. *			ł	1	· ·		-	61	.0549	-1
		-		•				1			- '	49	.0556	-1
			. • •	· · · · · · · · · · · · · · · · · · ·					· · · · ·	}	-	1 11	.0558	-1
	· ·	1 14	33			1		1			i		1	1
36	1 1	4153	.0305		10657	5.52	16.870	5 676			_ !	<u>ا</u>	0.790	1 ,
	2	.2928 .1528	-	· · · · · · · · · · · · · · · · · · ·	(1.1870)		(54.702)	1	(12)	Nested on	2		0364	
	Í4	.0905	.1257*							Complex 3	_ /	4	.0428	_ 1
	39.	.0018 .3365	-		1	,	ŀ	Į	{ ·	•	-	14	.0455	-1
								ł	{		1	-	.0509	-1
									· .		39	- 1	.0646	-1
				,					(· · ·		-	4	.0657	1
		11	••				· ·					[<u>}</u>	++
37	9	.1217*	· · · · · · · · · · · · · · · · · · ·		0830	A 75	8 054	2 710	·	Provideday	10	· _	0475	
	20	.1939			(.4108)	4473	(54.702)	4.713	(5)	of -	40	<u> </u>	0553	
	36	.3488						{		Complex 5	20	i _	0753	
	40	.3893						1			55	· _	.0830	_,
	55	. 1908		•								ł		
				· .									<u> </u>	+
							•				•	l		
ł				,					• •		ļ	ł		
												ł	ł	
• •		· .	, ·		4	•			• •	·	- ···· · · ·		•	. ,
:		ŕ										*		
			· · ·	•						•				

Sec. 5 . 4 . . .

÷

and a speaker of the operation of the second s

Table 3 (cont'd)

	~	12	1
-		12	1

					-						_k		· -	7	1					
Complex No.	Suppliers	16	17	, ,	18	Rece:	lvers 32				E (CV)	g	^m 1 (^m 2)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential f t (+1) c maximis	Entry (-: of Indus: sation ⁰ o	l) tries of E
20	16			~ ~						1							Sup	Rec	E	±1
38	20	-	11. 11	.30	.3231	.2435	.0160	•		•	.0609	4.66	5.078	1.715	10	Repetitive	-	32	.0293	-1
	20	.1270	• • • •	.90*	.0372	.0066	.2316				(.8761)		(54.702)		(10)	of Complex 10	-	16	.0365	-1
										,			- •			COMPLEX IV	İ7	-	.0401	-1
																	• -	19	.0412	-1
						•						/			• •		16	- 1	.0506	-1
						•	•		÷						• •		-	18	.0593	-1
		11						, 	··· ·					· · · ·	····		17	-	.0609	1
		11	39	40	41	42	44	45	49	59 61		! :								
39	37	.0594	.2232	.16	35 .12	69 .11	74*.077	4 .0916	.0675	JI33 D75	3 .0558	4.26	6.389	2.157	10	Repetitive	-	39	.0284	-1
	.										(.4297)		(54.702)		(10)	·of	-	40	.0398	-1
											ł				. ·	Complex 19	-	41	.0451	-1
							•				· ·						-	59	.0496	-1
														1			-	45	.0522	-1
										•				1		ľ	-	44	.0537	-1
				;		•				•			. :	· ·	· ·	i i	-	61	.0549	-1
										• •				i	·· · · ·	``	-	49	.0556	-1
		1	2		14										· · · · · · · · · · · · · · · ·			11	.0558	1-1
40									· · · · · · · · · · · · · · · · · · ·		1.		1							
40	1 2	-	.06	74	4153						.0777	7.42	16.652	5.623	13	Overlapping	4	-	.0361	-1
	2	.2928	- 21.	c 1 .	1528						(1.0751)		(54.748)		(15)	on Complex 11	-	1	.0405	-1
	21		11.	734	-										·	and	. 2	-	.0538	-1
	20	-	•±±	, *CI	2265	•				•••				 ,		Complex 31	-	14	.0589	-1
	39	•0018	.00	29 .	.3305												1	-	.0728	-1
																	39	-	.0777	-1
, '	, 1		•							a	1	·		·	د			_		1 1

Inter-industrial Linkages (bj4's)

Inter-industrial Linkages (bij's)

			i.	1 7			.'	•				
Complex No.	Suppliers	Receivers 1 14 30	E (CV)	g	m ₁ (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential) t (+1) (maximi:	intry (-] of Indust sation ⁰ c	l) rie of E
41	1	4153 -	0631	5 30	75.445				Sup	Rec	E	±1
	2	.2928 .1528 -	(1.2527)	5.30	15.445	5.215	6	Nested on	-	29	.0165	-1
	27	.0028 .0089 .1161*	(2.2321)		(55.193)		(12)	Complex 3	39	- 1	.0218	-1
	39	.0018 .3365 .0603	·			•			-	14.	.0407	-1
					1	ļ			1	- 1	.0561	-1
							•		-	29	.0586	1 1
					Ì				2	- 1	.0605	-1
		11 39 40 41 40 44 45			· · · · · · · · · · · · · · · · · · ·				-	1	.0631	-1
42	27											
	57	.0594 .2232 .1635 .1269 .1174 .0774 .0916 .0675 .1133*.0753	.0558	4.26	6.389	2.157	10	Repetitive	_ ·	39	.0280	-1
			(.4297)		(55.193)		(10) .	of Complex 19		40	.0385	-1
						· ·	₹. ·	complex 19	-	41	.0448	-1
		. · · ·						~	-	42	.0496	-1
		· · · · ·							-	45	.0522	-1
									-	44	.0537	-1
1			· · [,	-	61	.0549	-1
[-		-	49	.0556	-1
		16 17 10 10							-	11	.0558	-1
	ļ	16 1/ 18 19 32		ł	}				•			
43	16	1130* .3231 .2435 .0160	.0609	4.66	5.078	1.715	10	Repetitivo	_	10	0262	l _1
	28	.1276 .1198 .0372 .0066 .2316	(.8761)		(55.193)		(10)	of	_	19	0523	
1			1				•••••	Complex 10	28		.0527	-1
				·						32	.0606	-1
1	· [·		· .		-	16.	.0609	-1
			·	·					1			į
<u>ب</u>			. !			I		l			1 }	i

- 13 -

.	Inter	-induštrial Linkages (bij's) Receivers	E	g	m_1	^m 3	Intersecting Elements	Type of Intersection**	Seque and Exit in the	ntial Ent (+1) of maximisat	ry (-1) Industri ion ^g of	ies E
No.	Suppliers		(07)				(Total elements)		Sup	Rec	E :	±l
44	1 2 3 21	.4153 .1528 .0889 .1054* .1275	.0802 (.6057)	5.21	12.366 (55.193)	4.176	7 (7)	Repetitive of Complex 31	1 39 2 35 25 3	-	.0434 .0659 .0721 .0765 .0797 .0802	-1 -1 -1 -1 -1 -1 -1
	25 35 	.1376 .3365		· · · ·				· · · · · · · · · · · · · · · · · · · ·			0212	
. 45	37 41 58	39 40 42 59 .2232 .1635 .1174 .1133 .0147 .0258 .0221 .1554 - .0006 .0036 .0988*	.0426 (.9419	3.58	4.845 (55.399)	1.636	8 (12)	Overlapping on Complex 30	41 37 - -	- 39 40 42	.0283 .0378 .0419 .0426	-1 -1 -1 -1
		37	.044	3 2.03	.770	.260	<u>2</u> (2)	Repetitive of Complex 2	5		.0443	-1
46	5	-0987*	.(.628		(3.5.077)			4 4 ·		· _	.0211	-1
47	37 41 50	39 40 42 59 60 .2232 .1635 .1174 .1133 .0174 .0147 .0258 .0221 .1554 .0264 - .0022 - .0974* .1495	.045 (.950	1 4.31 5)	5.353 (55.399)	1.801	7 15 (15)	Repetitive of Complex 30	41 	60 39 40 42	.0306 .0350 .0420 .0449 .0451	-1 -1 -1 -1 -1

- 14

Table 3 (cont'd)

:	Inte	r-indust	rial L	inkages	(bij's)	•		•		ť.	ŕ	; -		1					
Complex No.	Suppliers		21	22	Receiv	ers				E (CV)	g	^m 1 . (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) c maximis	ntry (-1) Indust ation ⁰ c) rie f E
																Sup	Rec	E	±1
48	20 36 40	.1939 .3488 .3893	.1943 _ _	.0965* - .0009		: .\	-			.0644 (1.0729)	4.67	7.644 (55.668)	2.581	6 (9)	Overlapping on Complex 22	- - 40 - 36	21 11 - -	.0242 .0373 .0547 .0644	-3 -3 -3 -3 -3
		1	4	14	15				•						•				
49	1 2 70	-	.0578 .1653	.4153	-	r				.0691 (1.1202)	5.81	15.877 (56.202)	5.361	9 (12)	Nested on Complex.14	- -	1 4	.0324 .0427	-1
	ود	.0016	-	.3305	.0024			•			•					- 1 39	· -	.0656	-1 -1 -1
		16	17	18	19	32		·····			<u> </u>	-	1			•		1	\Box
50	16 17 28	- .0893 .1276	.1130 - .1198	.3231 .0095 .0372	.2435 .0926* .0066	.0160 .0736 .2316		• <u>•</u> •••		.0593	5.67	5.680 (56.803)	1.918	10 (15)	Nested on Complex 10	16 - -	- 18 17	.0280 .0478 .0489	- 1 - 1 - 1
				·												28	- 32	.0498 .0576	-1
51	37	11 3	9 <u>4</u> 232.1	0 41 635 .126	42 9 .1174	44 <u>.</u> .0774	45	49 •0675	59 61 .1133 .075	.0558	4.26	6.389 (56.803)	2.157	10 (10)	Repetitive of Complex 19		39 40 41 42	.0262 .0368 .0432 .0482	-] -: -:
		1						•		1_	1	!	I	۱ <u></u>	1		4 · .	1	4

- 16 -

ć.

Table 3 (cont.d)

، آ

Complex No. Suppliers	Receivers	E (CV)	g	(m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Segu and Exi in the	ential E t (+1) o maximis	ntry (-1 f Indust ation ⁰ c	.) ries f E	
				· ·					Sup	Rec	E	±1
51			•				· . ·			59	.0522	-1
(contd)				1					-	44	.0537	-1
			l.		-	1		ł I	-	61	.0549	-1
		_	·	K .					· _	49	.0556	-1
						<u> </u>			-	11	.0558	-1
		1 14			Į.,					{		—
52	1	4153	.0716	4.93	16.670	5.629	8 :	Nested on	2	ł _	.0319	-1
	2	.2928 .1528	(.9686)	ſ	(56.803)		(8)	Complex 36	-	4	.0399	-1
	14	-0905* -		•				-	-	14	.0444	-1
	39	.0018 .3365						·	1	1 -	.0623	-1
			•.		1		. !	1	39	-	.0692	-1
		·			· ·		1960 - 1 ¹	~	-	4	.0715	1
	. •	16 17 [.] 18 19 32		,	•		·					
53	16	1130 .3231 .2435 .0160	.0593	5.67	5.680	1.918	15	Repetitive	28	-	.0181	-1
	17	.0893*0095 .0926 .0736	(.9690)	·	(56.803)	Į	(15)	Complex 50	-	32	.0373	-1
	28	.1276 .1198 .0372 .0066 .2316			1				-	17	.0401	-1
					•	·			-	19	.0412	-1
			•		[Į			16	-	.0506	-1
							,			18	.0593	-1
		1 14 20										
54	1	4153 - ,	.0729	6.13	15.653	5.285	12	Repetitive	1	-	.0420	-1
	2	.2928 .1528 .0111	(1.1456)		(56.803)		(12)	of	39	-	.0647	-1
	3	0889* .3046						Complex 12	-	÷	.0716	-1

Table 3 (cont'd)

	Inter	-indust	tial Li	nkages	(bij's))				<u>к</u> і		; -	Ţ.].	•				
Complex No.	Suppliers	1	14	20	Receiv	/ers				E (CV)	g.	m ₁ (m ₂)	^m 3.	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exis in the	ential En t (+1) of maximis	ntry (-1 f Indust ation ⁰ c	:) :rie of E
					. <u> </u>											Sup	Rec	E	±1
54 (contd)	39	.0018	.3365	-					۱ ^۰ .				·		· · ·	2	- 1	.0727 .0729	-1 -1
<u></u>		14	29											•		į f			
55	1 2 25	.4153 .1528 .1275	.0001 .0006 .0344		<u> </u>			•		.0627 (1.1156)	5.27	13.018 (57.524)	4.396	6 (12)	Overlapping on Complex 31 and Compley 41	- 39 -	30 - 14	.0165 .0218 .0407	-1 -1 -1
	27 35 39	.0089 .1376 .3365	.0819* .0368 .0468	•				Í			•					1 35 -	30	.0564	-1
•								·								25		.0627	-1
56	9 20 36 40 46 55	11 .1217 .1939 .3488 .3893 .0814*		/			·····	;	\	.0829 (.5081)	5.07	8.174 (57.645)	2.760	5 (6)	Nested on Complex 5	40 36 20 55 . 9	-	.0392 .0630 .0724 .0503 .0829	-1 -1 -1 -1 -1
57	20 36 40 53	11 .1939 .3488 .3893 .0285	54 .0017 .0086 .0054 .0784	#	· · · · · · · · · · · · · · · · · · ·				<u>.</u>	.0629 (1.1138)	4.81	8.255 (58.071)	2.788	4 (10)	Overlapping on Complex 5		52 - 39 40	.0111 .0152 .0273 .0342	-] -] -]

- 17 -

in the second second second second second second second second second second second second second second second

Table 3 (cont'd)

	Inte	-indust	tial Link	ages (bij's)		i		i	1.	•				
No.	Suppliers		54	Receivers	E (CV)	g	(m2)	^m 3	Intersecting Elements (Total élements)	Type of Intersection**	Sequ and Exi in the	ential) t (+1) (maximis	Entry (- of Indus sation ⁰	-1) strie of P
57	55	.1908	.0124						-		Sup	Rec	E	±1
(contd)						·					-	41	.0372	-1
			•	•	'	·						42	.0394	-1
											-	59.	.0410	-1
											-	45	.0418	-1
				• •						· ·	-	40	0423	
·				• .				Į			-	11	.0426	
	·			•							40	-	.0429	-1
											-	49	.0435	1
							1	i i			-	45	.0441	1
-	1											52	.0447	11
				1	, [•						36	-	.0452	~1
						1	· ·	{			-	59	.0467	1
											-	61	.0483	1
	1	-	· ·							۰ ۱	-	. 41	.0503	1
					•				1.		-	42	.0527	
				·							55	40	0556	
. [-				30	0583	1,
1							·				20	-	.0618	-1
			······ - ··						· .		37	-	.0629	11
														1
						•					, •			
			· .			ĺ	ĺ							
· ·	· •										1			
,		ŕ	•	• • • • • • • • •			··				••• •••			1
	, .		-											
;			-	- ,					•	:				
		•					÷.,		· · · ·	• •				
													•	

- 18 -

· · · · ·

- 19 -

Inter-industrial Linkages (bij's)

						-						f	2				•				
Complex	Suppliers					Receive	ers					Е	-	. m1		Intersecting	. Thurs a f	l Sear	uential 1	entry (-	.1.)
		11	39	40	41	42	44	45	49	59	61	(CV)	g	(m ₂)	^m 3	Elements (Total elements)	Intersection**	and Exi in the	t (+1) c maximis	of Indus sation ⁹	trie of E
58	37	.0594	.2232	.1635	.1269		.0774	*.0916	0675	1100	0757							Sup	Rec	E	±1
	-							.0910	.0075		•0755	.0558	4.26	6.389	2.157	10	Repetitive	-	39	.0251	-1
							• .		:		I	(.42577	•	(58.0/1)		(10)	of Complex 19		40 41 ·	.0357	-1
							•					Ì	ļ			ļ		ł –	42	.0472	-1
		•			•		· •	. •	٠			ł						-	59	.0514	-1
									. :									-	45	.0537	-1
	•															•		-	61	.0549	-1
		. :					•	۲.										-	49	.0556	-1
		11	5)											<u> </u>			-	11	.0558	-1
59	20		19 00	116						·									1		
	36	.348	8 .00)51					••	-		.0684	6.27	12.284	4.148	7	Overlapping	41	-	.0194	-1
	37	.059	.11	.33					· ·	-		(1.0348)		(59.259)		(14)	~ on	37	-	.0266	-1
	40	.389	3.00	16													Complex 5,	-	39	.0366	-1
	41	.012	2 .15	54												- · · · ·	and	-	40	.0427	-1
	42	.061	.8 .07	72*								•			}	20	Complex 20	-	42	.0433	-1
	55	.190	8.03	15								· ·			}	- ' i B '		-	41	.0436	-1
1												•		ļ		: ¢;				.0437	-1
									• •	·	ł	:		<u>}</u>				40	- 1	.0499	1-1
																		36	- 1	.0519	
									·							· · .		_	42	.0544	1
										,						· · ·		-	41	.0572	1
[•						·	•				•		-	40	.0583	11
																		55	· -	.0602	-1
	•							č:	•		1		·	I			1	1		1 1	1 !

۰**-**-

en la ser en la ser en la ser en la ser en la ser en la ser en la ser en la ser en la ser en la ser en la ser e

Table 3 (cont'd)

1.

	Inte	r-ind	estria	l Lin	kages	(bij's)					ĥ	i	· · ·	7	۱					
Complex No.	Suppliers					Receiv	ers				E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Segu and Exi in the	iential] it (+1) (> maximi:	Entry (-) of Indust sation ⁰ (1) :ri
																;	Sup	Rec	E	=
59										· ,							-	39	.0639	1
(contd)						•											20	-	.0670	-
						·····			· · ·						and a second second second		41		.0684	
		11	39.	40	41	42	44 .	. 45 .	. 49 .	596	1						ł	1	•	
60	37	.0594	.2232	2 .163	35 .12	69 .1174	.0774	.0916	.0675	.1133 .07	53 .0558	4.26	6.389	2.157	10	Repetitive	-	39	.0249	-
											(.4297)		(59.259)		(10)	of Complex 19	-	40	.0355	-
	• .														· · ·	i comprex 19	- 1	41	.0421	-
	ĺ												•	ľ		i	- 1	42	.0471	-
									•							Î	-	59	.0512	-
															j .		-	45	.0536	-
		1						,					J				-	44	.0549	-
-	[•												and the system of			49	.0555	
	· · · · · · · · · · · · · · · · · · ·		······		7.4	16								· · · · · · ·	••••	·		ļ	.0358	Ļ
4-						10 .					i							1		
61	1	-	•••	578	.4153	.0027				۰.	.0682	5.73	15.995	5.401	9	Nested on	-	1	.0306	
	2	.29	28 .1	1653	.1528	-0749*					(1.1400)	1	(59.906)		(12)	Complex 14	-	4	.0410	-:
	39	į .00	18 -	•	.3365	~						1	-				-	14	.0490	-
		•						,			;				, –		1	-	.0645	-
			· · · -		····-		,	•		• • • •	• • • •		· · · ·	· ·			39	-	.0682	
						•		·										1		
																		1		Į
		Ì								•						· [ļ
			•															ł		ł
1	! i	1	•	-	~										[· · · · · · · · · · · · · · · · · · ·		· • ·	1 1	ł
	1 .		•			,												•		
i.	ţ																			

- 20 -

in an an an

Table 3 (cont'd)

	Inter	-indust:	tial Li	nkages	(bij's)			,			. ·	· _		÷			• `		
Complex No.	Suppliers	16	17	18	Receiv 19	ers 32				E (CV)	g	. ^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential 1 t (+1) c maximis	ntry (-) of Indus ation ⁰ (L) trie of E
																Sup	Rec	E] ±1
62	16	-	.1130	.3231	.2435	.0160		,		.0593	5.67	5.680	1.918	15	Repetitive	28	-	.0254	-1
	17	.0893	-	.0095-	0926	.0736*				(.9690)		(59.906)		(15)	of Complex 50	-	16	.0373	-1
	28	.1276	.1198	.0372	.0066	.2316										-	17	.0401	-1
						•										+ -	19.	.0412	-1
	· ·				•		•							· ·		16	↓ - '	.0506	-1
	· · ·		·		· · · · ·			,					· .	····		-	1.8	.0593	-1
		39	40	41	42	45	52	. 59	61				-	."1#			1		
63	37	.2232	.1635	.1269	.1174	.0916	.0356	.1133	.0753	.0399	3.97	5.198 ,	1.755	7	Overlander	53	- 1	.0105	-1
	54	-	.0029	.0010	.0050	-	.0712*	.0026	.0088	(1.0364)		(60.193)		(16)	on .	-	54	.0146	-1
						÷						•			Complex 19	37	-	.0177	-1
																-	39	.0267	-1
				1											1	-	40	.0314	-1
																-	42	.0328	-1
•										1		1		· · ·		-	41	.0338	-1
				•						1	1					53		.0359	1
		·								· ·		1		1941 (13		-	59	.0379	-1
					•							1	. ·	. 9		-	54	-0392	
									•	. :		Í				-	45	0398	-1
		11	12												·	····		.0333	<u> </u>
c1 '			07054				·	·		1	1								
04	20	1030	-0705#	·						.0791	6.65	9.610	3.245	. 12	Repetitive		36	.0258	-1
	30	.0649	.1962	•					•	(.8068)		(60.193)		(12)	Complex 21	30 _.		.0361	-1
	36	.3488	.0318							1						-	11	.0433	-1

è

- 2

- 21 -

÷., •

Table 3 (cont'd)

- 22 -

Inter-industrial Linkages (b_{ij}'s)

Complex	Suppliers			Rec	eivers			E				Intersecting	Type of	Seque	ential E	ntry (-1 f Indust) Tie
No.		11	12					(CV)	y y	^{(m} 2)	^m 3	(Total elements)	Intersection**	in the	maximis	ation ⁰ o	fE
														Sup	Rec	E	±1
64	40	.3893	.0460											36	-	.0686	-1
(contd)	. 55	.1908	.0343								1				36	.0705	1
					,				·					20	- 1	.0758	-1
				•								··· ·· · · · · · · · · · · · ·		55		.0791	-1
		2	14~	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		• • •	· · · · · · · · · · · · · · · · · · ·			1							T
65	i	.0674	.4153	· · · · · · ·			· · · · · · · · · · · · · · · · · · ·	.0723	6.08	13.510	4.562	11	Overlapping	4	- 1	.0321	-1
	2	-	.1528					(1.0495)		(60.862)		(12)	on	21	-	.0386	-1
	4	.3164	-	·		Ν.							Complex 11,	1	-	.0407	1-1
	21	.1173	.1054						• •	· ·			Complex 40	-	14	.0611	-1
	27	.0683	.0089										and	39	-	.0719	-1
	39.	.0029	.3365							1 ¹			Complex 41	2	-	.0723	-]
		11	21	24	<i>.</i>												
66	20	.1939	.1943	.0680*				.0631	4.58	7.774	2.625	6	Overlapping		21	.0219	-1
	36	.3488	-	.0044				(1.1010)		(61.262)	1	(9)	on	-	11	.0351	-1
	40	.3893	- .	- .			•					÷ .	Complex 22	40	-	.0528	-1
			•								· · · · · · · ·			36	-	.0631	-1
		11 3	89 40	41 4	42 44	45	49 59 61	• ·				1 m. m.				ĺ	
67	37	.0594 .:	2232 .16	35 .1269 .:	1174 .07	74 .0916	.0675*.1133 .0753	.0558	4.26	6.389	2.157	10	Repetitive	-	39	.0242	-1
								(.4297)		(61.262)		(10)	of Complex 19	· -	40	.0349	-1
													COMPTEX 19	-	41	.0415	-1
							· ·							-	42	.0466	-1
										· ·				-	59	.0507	1-1
						:								-	45	.0531	-1
1								. 	· · · · · · · · · · · · · · · · · · ·	I	I	L	، منت بار منتقال الم	1	-	•	•

٠,

		- 111443 11		мадев	(D1] 5/				_i		: -	->	1.					
No.	Suppliers				Receiv	ers			E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements' (Total elements)	Type of Intersection**	Sequ and Exi in the	ential I it (+1) c maximis	Entry (-) of Indus sation ⁰ (l) trie of E
													1		Sup	Rec	E	±1
67			•											•	-	44	.0545	-1
conta)					•							ļ			-	61	.0556	-1
						<u>-</u>			ļ						-	11	.0558	-1
		39	40	41	42.	59·	•								•		1	1
68	19	-	.0002	-	.0002	.0675* ·			.0412	3.94	5.320	1.796	10	Overlapping	41	· ·	.0786	1_1
	37.	.2232	.1635	.1269	.1174	.1133			(1.0540)		(61.449)		(15)	on Complex 29	37	-	.0259	1 -1
	41	.0147	.0258	-	.0221	.1554		· .						COMPLEX 20	-	39	.0359	-1
										·					-	40	.0402	-1
													 		-	42	.0411	-1
												·	· ,		-	41	.0412	-1
		2	14											· · · · · · · · · · · · · · · · · · ·		<u> </u>		+
69	1	.0674*	.4153	· · · · · · · · · · · · · · · · · · ·			· · ·	······	0756	5 20	9 860	3 320	, o			1		
	4	.3164	-					a	(.8905)	5.20	(61,449)	3.323	/8)	Nested on	-	14	.0402	-1
	21	.1173	.1054								(01.1457		(0)	Complex 40	39	-	.0587	1 -1
	39	.0029	.3365								•				יי זכ	-	0756	1 -1
		11	42					•							**		.0738	+
								· · · · ·	-									
70	20	.1939	.0059						.0656	5.51	10.583	3.574	· ~6	Overlapping	37	-	.0154	-1
	36	.3488	.0078			•			(1.0702)		(62.479)		., (12) .	On Complex 19	-	39	.0297	-1
	37	.0594	.1174											and	-	40	.0400	-1
	38	.U531	.0674~	• .										Complex 59	-	41	.0448	-1
	40	. 3893	.0076		·											59	.0473	-1
	55	.1908.	.0013												-	11	.0481	-1
	l l						•				1				40	-	.0522	-1

*---(heat o)

- 23 -

د این در این می میشود به ا**کار در میشد. در در م**رکز این ا - 24 -

Table	3	(cont'd)
-------	---	----------

1

Inter-industrial	Linkages	(b(+'s)
THOUT THURD OF THE	nruvades	1017 87

																•				
	Inte	r-indu	stria	l Link	ages ()	⊃ij's)					k	i [.]			3.	a •				
No.	Suppliers]	Receive	25				E (CV)	g	^m 1 (m ₂)	m3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential) t {+1} { maximi:	Sntry (-) of Indust sation ⁶ c	l) tries of E
70									• :	•							Sup	Rec	E] ±1
(contd)										,						·	36	-	.0538	-1
							•					•		1		1	- 1	59	.0561	11
														•	· ·		-	41	.0581	1
										•							20	40	.0584	1
	•							-									-	-	0625	
									· ·			• •	• • •				55		.0656	
		39	40	41	42	44	45	46	. 59	61			1					<u> </u>		+
71	37	.2232	.1635	.1269	.1174	.0774	.0916	.0560	.1133	.0753	.0466	4.98	5.794	1.956	8	Orren lenstern				
	49	-	.0127	.0056	.0082	.0670	•.0580	.0403	.0321	.0352	(.7974)		(63.161)		(18)	on on	37	-	.0120	-1
									•					1	(20)	Complex 19	-	39	.0263	-1
											· ·						-	40	.0340	-1
					-	•			·			· ·					-	45	.0385	-1
		•													1		-	41	0447	
										•							-	42	.0457	
1				•••							<u> </u> .						-	61	.0464	-1
		14		0	<u></u>			. <u></u>	· ·	· · · ·		· · · · · ·					_ /	46	.0466	-1
				··									}	·	· · · · ·					<u> </u>
72	1	.41	53 -						•		.0643	4.91	12.558	4.240	5	Overlapping			0105	1.
	2 *	-15.	28 - 76 0	c70*							(1.0764)		(63.428)		(10)	on	11	1	0185	[- <u>1</u>
	35	334	5 .U	070				-			1					Complex 20 and	1	-	0275	
	41	023	16 7	6 F A				• .		· .						Complex 31	39	i -	.0630	-1
	71	• 02.		<u> </u>													2		.0643	-1
l										_								i I	.	
															······		•	··· ··	• • • • • • •	*

erk, r.a

- 25 -

Table 3 (cont'd)

.<u>.</u>. ...

••

Inter-industrial Linkages (bij's)

Complex	Suppliers		Receivers	E	·	[. m1]	Intersecting	Type of	Sequ	ential E	Sntry (-)	1)
No.		11 39 40	58	(CV)	g	(m ₂)	^m 3	Elements (Total elements)	Intersection**	and Exi in the	t (+1) c maximis	of Indust ation c	ries: f E
								19 ⁴		Sup	Rec	E	±1
	35 · 37	.3488 .0013 .0023	.0041	.0536	5,33	9.193	3.104	6	Overlapping	_	42	.0110	-1
	38	0533 0084 0609	.0148	1.4133)		(63.928)		(15)	On Complex 5	37	- 1	.0189	-1
	40	.3893 .0008' -					· .	j£ ⊊	Complex 19	· _	39	.0310	-1
. · ·				•			·		and	· -	40	.0400	-1
						·		1	Complex 70	-	41	.0443	-1
i	•••									-	59	.0466	-1
	•							2		-	11	.0474	-1
			N							40	-	.0497	-1
		• · ·				,				36	-	.0504	-1
								1		-	59	.0520	1
		,							•		41	.0532	1
		11						······			42	.0536	
. 74	q	1217		-			•	,					
	20	.1939		.0818	5.00	8.198	2.768	6,	Nested on	40.	-`	.0379	-1
	30	.0649*	· .	(.5307)		(63.928)		(6)	Complex 5	36	-	.0618	-1
· ·	36	.3488	·	:						20	· -	.0712	-1
	40	.3893						1.0		55	 .	.0792	-1
	55	.1908				1				9	-	.0318	-1
		16 17 20	30 22					*					
		20 17 23	30 32					•	Overlapping	-	32	.0247	-1
75	27	.0233 .0025 .0819	.1161 .0307	.0401	3.06	2.775)	.937	. 5	on Complex 10	-	16	.0326	-1
	28	.1276 .1198 .0036	.0643* .2316	(.8451)		(64.398)		(10)	compact 10	-	17	.0388	-1
	1	•			·					. 27		.0398	-1
. 1										-	29	-0401	-1

	20	
-	20	

. .

Table 3 (cont'd)

. •

+---

Inter-industrial Linkages (bij's)

÷

Complex	Suppliers	Receivers	E	·	ml		Intersecting	Type of	Sequ	ential E	ntry (-:	1)
		11 .	(CV)		^{(m} 2)	3	(Total elements)	Intersection**	in the	maximis	ation ⁵ c	ries of E
· ·				1					Sup	Rec	E	±1
10	9 20	.1217	.0817	4.99	8.244	2.784	5 ·	Nected on	40	-	.0377	1-1
	20	-1939	. (.5339)		(64.588)		(6)	Complex 5	36	- 1	.0616	-1
	40	- 3893	1					•	20	- 1	.0710	-1
	52	.0627*							55		-0790	-1
	55	.1908					í		9	- [·]	.0817	-1
		28 34			· · ·	ļ	····			 	 	
			 		ļ		•	Repetitive	. !			
	33	•U62U* ,4U24	.0387	1.77	.334	.113	2	of Complex 4	- 1	34	.0387	-1
		····	(.7331)		(64.588)							
		2 34										
78	4 •	.3164 – .	.0526	3.61	1.042	.352	3.	Overlanning	33	-	.0387	_,
	.21	.1173 .0401	(1.2309)		(64.803)		(8)	on	21	-	.0388	-1
	32	.0079 .0619*					1	Complex 4 and	-	2	.0393	-1
	33	4024	· .		1			Complex 40	. 4	-	-0526	-1
		11					•;	· · ·				1-1
79	9	.1217	.0816	4.99	. 8.512	2.874			40	· ·	0000	
	20	.1939	(.5351)		(64.803)		(6)	of	36	1 -	0615	
	36	.3489						Complex 76	20	,	.0710	
	40	.3893							55		.0790	_1
	42	.0618*					•		9		.0816	-1
	55	.1908	• • • • • • •	• • • •			• • • • • • • •	•	_	: · · [
			•									
									•	1	1	
۰ ۰	. 1		F.,.	• . !	i in a su anna a su a'	· · · 1	••••••••••••••••••••••••••••••••••••••	i !	I		i .	1

-1

-1

-1

-1

.0674

.0179

.0252

.0354

								¦.		i i	; -	1	ĵ.					
No.	Suppliers		40		Receive:	rs	•		E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) o maximis	ntry (-1 f Indust ation ⁵ o) ries f E
					•		•								Sup	Rec	E	±1
80	20	.1939	.0022				•		.0665	5.59	10.761	3.634	10	Overlapping	37	· -	.0187	-1
	- 36	.3438	.0023					10	(1.0724)		(64.813)		(12)	On Complex 70	i - '	39	.0326	-1
	37	.0594	.1635			•	• .			•				and	- 1	42	.0400	-1
	38	.0531	.0608*		•	·. •	:							Complex 19	; -	41	.0448	-1
	40 .	.3893	. –									l I			- '	59	.0473	-1
	55	.1908	• -			•	:								· - ·	11	.0481	-1
										•					40 .	-	.0522	-1
							· · ·				· ·		· · · ·		36	-	.0538	-1
	· ·					•							1 A.		, - * ,	59	.0561	11
							. ·									41	.0591	1
										-						42	.0596	1
					•				•			ļ			20	-	.0603	-1
												· ·			-	39	.0637	1
						•					· · · · · · · · · · · · · · · · · · ·	·	· · ·		55	-	.0665	-1
		1	4 .	14	30		•							•	1			
81	1 1	-	.0578	.4153	·				.0674	5.66	15.418	5.206	12	Overlapping	-	14	.0331	-1
	2	.2928	.1653	.1528	-			(1.1587)		(64.813)		(12)	Complex 14	1	- 1	-0580	-1
	39	.0018	-	.3365	.0603*			}	•		•			and Complex 41	2	- 1	- 0603	-1
	.										.			COMPTEX 41	-	1	.0663	-1
								ł					•	,	-	4	.0674	1 - 1

.0435

(.8559)

3.66

5.034

(65.225)

1.700

Inter-industrial Linkages (bij's):

41

.1269

.0101

40

.1635

.0052

39

.2232

.0009

42

.0174

45

.0289

.1174 .0916

59

.1133

.0595*

C

82

37

47

~ 27

•

6

(12)

Overlapping

on

Complex 19

٠

41

37

-

-

-

- 28 -

Table 3 (cont'd)

S. + 1. . . .

	Inte	r-industrial	(bij's)			- É	2	· .		:						
No.	Suppliers			Receiver	3	:	E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Segu and Exi in the	ential E t (+1) o maximis	ntry (-) f Indus sation ⁰ (l) tri of
, 82 (cost 3)								· ·					Sup	Rec	E	±
(conta)						·		1 . j					. - -	42 · 41	.0417	-
	•					• • •				,	• • • • • • • • • •		.41	45 	.0424 .0435	-
83	9 20 36 37	.1217 .1939 .3488 .0594*					.0815 (.5386)	4.98	9.053 (65.225)	3.057	6 (6)	Nested on Complex 5	40 - 36 20	-	.0374 .0613 .0708	
	40 55	.3893 .1908					•			1	1 1 1	. •	-55 - 9	-	.0758 .0815	-
84	37 49	39 40 .2232 .1635 0127	41 42 .1269 .117 .0056 .008	44 4 .0774 . 2 .0670 .	45 46 0916 .0560 0580*.0403	59 61 .1133 .0753 .0321 .0352	.0466 (.7974	4,98	5.794 (65.225)	1.956	18 (1\$)	Repetitive of Complex 71	37 -	- 39	.0125 .0266	-
		• .	·, ,					-						40 59 44 41	.0343 .0396 .0419 .0442	-
		•				·							-	42 61 46	-0457 -0464 :0466	
				, pa *		•	· · · ·		/ .	,	•	! '	· · · !		I <u>.</u>	1
			-	•	•		•		ž			•				

HEALINE REPORT OF A BAR

Table 3 (contra)

	Inter-industrial Linkages (bij's)								_i	:	<u> </u>	-						
Complex No.	Suppliers	- 1	Receivers							â :	m1 (m2)	^m 3	Intersecting Elements (Total clements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) o maximis	ntry (-1 f Indust ation ^g o) rie: f E
					•			•					4		Sup	Rec	E	±1
85	1 2 39	- .2928 .0018	.0578 .1653 -	* .4153 .1528 .3365					.0749 (.9450)	5.43	15.348 (65.225)	5.182	9 (9)	Repetitive of Complex 14		14	.0394 .0578 .0705 .0749	-1 -1 -1
		51	53	56										Repetitive		<u> </u>		
86	57	.0569*	.0306	.2969					.0296 (.9349)	1.47	1.114 (65.225)	.376	3 . (3)'.	of Complex 13	-	56 ∘. 53	.0295	-1 -1
		39	40	41	42	59							-		••	· ·		
87	32 37	.0018 .2232	.0014 .1635	.0098 .1269	.0132 .1174	.0563* .1133	-	•	.0418	3.99	5.650	1.908	10	Overlapping on	41	-	.0176	-1
	41 •	.0147	.0258	/	.0221	.1554								Complex 28	- -	39	.0250	-1
				,									, 		-	40 42	.0398 .0413	-1 -1
		1	4	14	24			1		•	· · ·	· · ·		· · ·		41	.0418	-1
88	1 2 25 39	- .2928 .0002 .0018	.0578 .1653 .0333 -	.4153 .1528 .1275 .3365	- - .0562* -		•		.0631 (1.2863)	6.26	16.109 (65.969)	5.439	10 (16)	Overlapping on Complex 15 and Complex 31	- 1 39 2 -	14 - 1. 4	.0153 .0428 .0585 .0605 .0629 .0631	-1 -1 -1 -1 -1
								• · · ·										

•

- 29 -

۰. ب

	Inte	r-ind	industrial Linkages (bij's)										_k. '	- 30 - 1	; -	7	1						
Complex No.	Suppliers			40	47	Re	ceive	rs			, 		1E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements	Type of	Sequ and Exi	ential I .t (+1) (Entry (- of Indus	1) tries	
<u></u>		<u> </u>	39	40	41	42	44	45	46	49	59.	61		 		ļ	(Total elements)	Intersection		maximis	Jacione		
														ł					Sup	Rec	E	±1	
89	37 	.0594	.2232	2 .1635	.1269	.1174	.0774	.091.6	.0560*	.0675	.1133	.0753	.0558	4.48	6.389	2.157	11	Repetitive	-	39	.0233	-1	
	·												(\$4545)		(65.969)		(11)	Complex 19		40	.0341	-1	
							•				:								-	41	.0407	-1	
											-									42	.0458	-1	
									· •				>				•			59	.0500	-1	
	•										•						· .		<u> </u>	45	0525	-1	
	•										•						,			61	0550	-1	
								•	``	:		• ,			Ì	1			4 <u>4</u> -	.49	.0556	-1	
																	·	· · ·	·	11	.0558	-1	
		16		27	32											1	· ·				+		
90	10			3516									- 0441	3.70	2 693	906	0	Overlapping	10				
	17	.08	93	-	.073	6							1.3031)	5.70	166.487)		(12)	on	28	-	.0339	-1	
	28	.12	76.	0375	.231	6							_				(Complex 9.	-	32	0424		
	31	.00	13 .	0556*	.001	5					. ·		· .					Complex 10 .	-	16	.0425		
						•					:						· ·	Complex 53	17	- 1	.0441	-1	
		11		52								•.	1		1		· .;					1-1	
91	20	.19	39 .	0014									.0619	4.73	8,173	2.760	5	Overlanding	_	54			
	36 •	.34	88 .	0046							:		(1.1371)		(66.673)		(10)	on	37	54	0152		
	40	.38	93.	0213														Complex 57	_	39	.0273		
	53	.02	85.	0550*							;								-	40	.0342	-1	
	55	.19	08 .	0046											· ·	1			-	41	.0372	-1	
						•					•								-	42.	.0394	-1	
												·							-	59	.0410	-1	
•				•								*						• • •	•••••	•	•		

1 -

	Inter	r-industrial Linkages (bij's)	Ĺ	- 31 -	. <u> </u>	φ.							
Complex No.	Suppliers	Receivers		E V) g	^m 1 (m ₂)	Intersecting Blements (Total elemen	Type of Intersection**	Sequer and Exit in the :	ntial Entry (+1) of In maximisatio	(-1) dustrie n ⁵ of E			
				:				Sup	Rec E	±1			
91				۰,				-	45 .04	18 -1			
(contd)								-	6I .04	23 -1			
						1		 - ≓ { [*]	49 .04	25 -1			
				· ·					11 .04	26 -1			
		· · · ·	2					40	04	29 -1			
	•								49 .04	35 1			
			•	4	×	.,		: -	45' - 04	41 1			
				i j					59 .04	45 1			
		· · ·		-			÷ .	36		50 -1			
							1		42 04	63 I I 70 I I			
			.] .				· · · · ·		54 .04				
					· · ·				42 05	70 I I 10 I I			
						· .	1		40 05				
						· .		20	05	45 -1			
							,	- I	39 .05	59 1			
		4			· [55	÷ .05	06 -1			
				-			<u> </u>	37	06.	19 1			
		11 39 40 41 42 43 44 45 49	59 61						,				
92	37	.0594 .2232 .1635 .1269 .1174 .0538* .0774 .0916 .0675	.1133 .0753 .0	557 4.47	6.500 2.	195 10	Overlapping	-	39 .02	31 -1			
			(.4	1574)	(66.783)	(11)	On Complex 19	_	40 .03	39 -1			
		•		· · ·				<u> </u>	41 .04	05 -1			
		·	· · ·			1 · · · · ·		-	42 .04	57 -1			
								-	59 .04	99 -1			
						l		I -	45 _05	23 -1			

	- Totor	-industrial Linkages (bii's)	· .	. <i>.</i>	• _							. •
Complex No.	Suppliers	Receivers	E (CV)	gʻ	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ntial En (+1) of maximisa	try (-1) Indust tion ⁰ or) ries f E
									Sup	Rec	Е	±l
92 (contd)				•			· · · ·		-	44 61 49 11	.0537 .0549 .0555 .0557	-1 -1 -1 -1
93	9 20 36 38 40	11 .1217 .1939 .3488 .0531* .3893 .1908	.0811 (.5479)	4.96	8.638 (66.783)	2.917	6 (6)	Nested on Complex 5	40 36 20 55 9		.0369 .0609 .0704 .0784 .0811	-1 -1 -1 -1 -1
94	9 20 30 36 40 55	11 12 .1217 .0705 .1939 .0522* .0649 .1962 .3488 .0318 .3893 .0460 .1908 .0343	.0791 (.8068)	6.65 ⁻	9.610 (66.783)	3.245	12 (12)	Repetitive of Complex 21	30 40 36 55 9	- 11 - - -	.0207 .0362 .0589 .0735 .0774 .0791	-1 -1 -1 -1 -1 -1
95	37	11 39 40 41 42 44 45 48 49 59 61 .0594 .2232 .1635 .1269 .1174 .0774 .0916 .0522* .0675 .1133 .0753	.0556 (.4595)	4.46	6,500 (66,942)	2.195	10 (11)	Overlapping on Complex 19	-	39 40 41 42	.0230 .0338 .0404 .0455	-1 -1 -1 -1

•

. .

- 32 -

Table 3 (cont'd)

٠,

to the second to

- 33 -

Table 3 (cont'd)

Inter-industriai L	inkages	(bii's)
--------------------	---------	---------

											-r	İ.	<u>+</u> .]	<u>}</u> .					
Complex No.	Suppliers		Receivers								E (CV)	5	(m2)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential E t (+1) c maximis	ntry (-) of Industation ⁰ (l) trie of E
																	Sup	Rec	E	±1
95 (contd)						-								1			-	59 45	.0493 .0522	
						· ·											 	44 61	.0536 .0548	-:
				<u>,</u>	•	•		:		.							<u>-</u>	49 11	.0554 .0556	-1
96	16 19 28	17 .1130 .0276 .1198	18 .3231 .0521* .0372	19 .2435 - .0066	32 .0160 .0012 .2316			• .			.0533 (1.0869)	4.48	4.744 (67.121)	1.602	8 (12)	Overlapping on Complex 10	.16 	19 17	.0313 .0442 .0475	
									•	~	, ·						28 -	- 32	.0486 .0533	-1
97	37	11 39 D594 .221	40 32 1635	41 42 1269 11	- -	45	47	49 1* 067	<u>59</u> 5 .113:	61 3.0753	.0556	4.46	6.598 (67.329)	2.228	10 (11)	Overlapping on Complex 19		39 40 41 42 59 45 44	.0229 .0338 .0404 .0455 .0498 .0522 .0536	-1 -1 -1 -1 -1 -1 -1 -1
		,						:		• ,							-	49 11	.0548 .0554 .0556	-1 -1 -1

and and the start for the start of the start

В линина.

Table 3 (cont'd)

	Inte	er-in	lustr	ial Li	nkages	(bij'	s)			•		_Ĺ	ł	; -	-,	1.	•••	.'			
Complex No.	Suppliers	5	39	40	41	Rece 42	vers · 44	45	59	61		E (CV)	g	^m 1 (m ₂)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Seque and Exit in the	ential E: t (+1) o maximis	ntry (-) f Indus ation ⁹ -0	l) tri of
98	37		.2232	.1635	.1269	.1174	.0774	.0916	.1133	.0753		-0450	4.47	5.392	1 821	-		Sup	Rec	E	<u>+</u>
	43		-	.0040	.0050	.0011	.0515	*.0401	.0387	.0401	-	(.8474)		(67.611)	1.021	(16)	Overlapping .on Complex 19	37	39	.0107	-
							-			•	•					•	- · ·		59	.0325	-
									r									-,_	45 42 -	.0413 .0419	-
																		41	41 . .	_0421 .0439	
		11	23	39	40	41	42 44	4 45	49	59	61	 			· ·				61	.0450	
99	37	. 059	4.050	7*2232	1635 1	1269 J	174.07	74 .091	6 0675	1133.	0753	.0555	4.46	6.474 (67.696)	2.186	10 (11)	Overlapping on	- -	39 40	.0228 .0336	
				•				• * •						•			Complex 19	- -	41 42	.0403 .0455	-;
												· · ·		-		. 5		- -	59 45	.0497 .0522	-: -:
		•						•			۰.							7 7	44 61	.0536	-
		 								·.						· · · · · · · · · · · · · · · · · · ·		··· <u>-</u> ···	11	.0555	
				•		•	•	•	•••		. *		4								
ŧ	- -	•		-		-		•			1703- 29 4 .			I	<u>!</u>	3	·			I	_!
	•															•	• •			•	

- 34 -

and an analysis of the second s

Table 3 (cont'd)

- 35 -

Inter-industrial Linkages (bij's)

1.2.2.1

でので、市場のなどの

Complex No.	Suppliers	Receivers	E (CV)	g g	m1 (m2)	^m 3	Intersecting Elements (Total elements)	Type of Intersection**	Sequ and Exi in the	ential Er t (+1) of maximis:	ntry (-1) f Industi ation ^g of) ries E E
100	9 20 23 36 40 55	.1217 .1939 .0492* .3488 .3893 .1908	.0809 (.5536)	4,.94	8.140 (67.782)	2.749	5 (6)	Nested on Complex 5	Sup 40 36 20 55 9	Rec	E .0365 .0606 .0701 .0781 .D809	±1 -1 -1 -1 -1 -1
	• •						-					
	· · · · · · · · · · · · · · · · · · ·			•			· • • • • • • • • • • • • • • • • • • •			•		·
APPENDIX 1 & 2

SEARCH ALGORITHM TO MAXIMIZE 'E' AND RELATED STATISTICAL INDICATORS

Search Algorithm¹

Let S and R be the sets of all N industries (N \leq P) as suppliers and receivers respectively and let S* and R* be the sets of respective suppliers and receivers constituting any artificial initial complex, E_p , not maximizing E.

Define
$$E_p = \frac{\sum \sum b_{ij}}{\frac{i \varepsilon S^* j \varepsilon R^*}{S^* n_{R^*} + k}} \dots (A.1)$$

where n_{S*} , n_{R*} are the number of industries in sets S* and R*, and k is a positive integer.

Obviously in conformity with the eqn (4) in the text,

 $n = n_{S*} n_{R*}$ (A.2)

Note that the numerator in (A.1) can start with only one element, say b_{ml} (which is presumably the highest in value of all b_{ij} 's) where m is the only one supplying industry and 1 is the only receiving industry with the result that n=1. Now industries are added to (or dropped from) sets S* and R* of (A.1) in single steps as long as the objective function, E, can be increased. The move at each step is determined by

(1) A computer program with respect to the alogorithm is written in FORTRAN IV and is available on request. the following:

(1) Evaluate the N quantities from the suppliers' side, E'_{s} , and the N quantities from the receivers' side, E'_{r} which are given by -

$$E'_{s} = \underbrace{E_{m} \pm \sum_{j \in \mathbb{R}^{*}} b_{sj}}_{m \pm n_{p*}} \qquad \dots \qquad (A.3)$$

$$E'_{r} = \frac{E_{p}m \pm i\varepsilon S *}{m \pm n_{S} *} \dots (A.4)$$

where $m = n_{S*} n_{R*} + k$ (A.5) and $\pm = -if s_{\varepsilon}S*$ (or $r_{\varepsilon}R*$) $= +if s_{\varepsilon}S*$ (or $r_{\varepsilon}R*$)

(2) Let E' be the maximum among all the E'_s and E'_r (N of each).

If E' \leq E the process is stopped: the complex is considered formed. If E' > E the indicated move is taken yielding E' as the value of the objective function for the modified complex i.e. adding or dropping a supplier or receiver to the initial complex. The new E' and E' values are obtained and the process is repeated until the function, E, cannot be further increased.

i,i

Appendix 2

Statistical Indicators

Free Complexes:

The following indicators and symbols are used to highlight the quantitative findings in Tables 1, 2 and 3.

- E_{v} = optimal average linkage value of complex x.
- $x = 1, 2, \ldots, z$.
 - = serial number of complexes as they arise in the process of extraction by the search procedure.

 $g_{x} = \left[\underbrace{\leq \leq}_{\text{complex x}} b_{ij} \middle/ \underbrace{\geq}_{i=1,j=1}^{N} b_{ij} \right] \times 100 = \underset{\text{tion by complex x.}}{\text{percentage reduction by complex x.}}$ $h_{x} = \underbrace{\leq \leq}_{\text{complex x}} b_{ij} = \text{sum of total linkages or coefficients}}_{\text{of complex x.}}$

$$cv_x = \sqrt{\leq \leq (b_{ij})^2 (h_x)^2} - 1$$

= coefficient of variation of complex x. $m_{1x} = \begin{bmatrix} \underbrace{s}_{i} & A_{ij} \\ complex & x \end{bmatrix} \begin{bmatrix} N & N \\ i & A_{ij} \\ i & i \end{bmatrix} \begin{bmatrix} A_{ij} \\ i & A_{ij} \end{bmatrix} X 100$

= percentage reduction in dollar terms by complex x in relation to the total dollar transactions of the

$$m_{2x} = \begin{bmatrix} x & A_{x} \\ x=1 \end{bmatrix} \begin{bmatrix} X & A_{x} \\ x=1 \end{bmatrix} \begin{bmatrix} X & A_{x} \\ x=1 \end{bmatrix} \begin{bmatrix} X & A_{x} \\ x=1 \end{bmatrix} \begin{bmatrix} X & 100 \\ x=1 \end{bmatrix}$$

cumulative percentage reduction in dollar terms/for all complexes preceding and upto xth complex with respect to the total dollar transactions of N x N matrix (here A_{ii}'s in each A_x are counted only once i.e. multiple counting of the same A_{ij} in various complex is avoided to adjust $\begin{array}{c} z\\ \leq A\\ x=1 \end{array}$ = 1).

$$m_{3x} = \underbrace{\xi \leq A_{ij}}_{\text{complex } x} \underbrace{\overset{N}{j=1}}_{j=1}^{V_{j}} V_{j}$$

= percentage reduction by complex x in respect of
 total gross outputs of N industries.

Appendix 3

CLASSIFICATION OF 165 INPUT-OUTPUT INDUSTRIES OF CANADA

Input-Output Industry No.	• Input-Output Industry Title
1	Agriculture
2	Forestry
3	Fishing, Hunting & Trapping
4	Base Metal & other Metal Mines
5	Uranium Mines
6	Iron Mines
7	Gold Mines
8	Coal Mines
9	Petroleum & Gas Wells
10	Asbestos Mines
11	Gypsum Mines
12	Salt Mines
13	Other Non-Metal Mines
14	Quarries & Sand Pits
15	Services Incidental to Mining
16	Slaughtering & Meat Processors
17 .	Poultry Processors
18	Dairy Factories
19	Process Cheese Mfgrs.
20	Fish Products Industry
21	Fruit & Vegetable Canners
22	Feed Mfgrs.
23	Flour Mills
24	Breakfast Cereal Mfgrs. /
25	Biscuit Mfgrs.
26	Bakeries
27	Confectionery Mfgrs.
28	Sugar Refineries

-

and the second second second second second second second second second second second second second second second

29	Vegetable Oil Mills
30	Miscellaneous Food Industries
31	Soft Drink Mfgrs.
32	Distilleries
33	Breweries
34	Wineries
35	Leaf Tobacco Processing
36	Tobacco Products Mfgrs.
37	Rubber Footwear Mfgrs.
.38	Tire & Tube Mfgrs.
39	Other Rubber Industries
40	Leather Tanneries
41	Shoe Factories
42	Leather Glove Factories
43	Small Leather Goods Mfgrs.
44	Cotton Yarn & Cloth Mills
45	Wool Yarn Mills
46	Wool Cloth Mills
47	Synthetic Textile Mills
48	Fibre Preparing Mills
49	Thread Mills
50	Cordage & Twine Industry
51	Narrow Fabric Mills
52	Pressed & Punched Felt Mills
53	Carpet, Mat & Rug Industry
54	Textile Dyeing & Finishing
55	Linoleum & Coated Fabrics Inc.
56	Canvas Products Industry
57	Cotton & Jute Bag Industry /
58	Miscellaneous Textile Inc.
59	Hosiery Mills
60	Other Knitting Mills
61	Clothing Industries

62	Sawmills
63	Veneer & Plywood Mills
64	Sash & Door & Planing Mills
65	Wooden Box Factories
66	Coffin & Casket Industry
67	Miscellaneous Wood Industries
68	Household Furniture Industry
69	Office Furniture Industry
70	Other Furniture Industries
71	Electric Lamp & Shade Industry
72	Pulp & Paper Dummy Ind.
73	Wood Pulp
74	Paper Producing
75	Paper Converting
76	Pulp & Paper Other Activities
77	Asphalt Roofing Mfgrs.
78	Paper Box & Bag Mfgrs.
79	Other Paper Converters
80	Printing & Publishing
81	Engraving, Stereotyping Ind.
82	Iron & Steel Dummy Inc.
83	Coke Ovens
84	Sinter Plant & Blast Furnaces
85	Steel Mills
86	Rolling Mills
87	Ferro Alloy Producers
88	Iron & Steel Other Activities
89	Steel Pipe & Tube Mills
90	Iron Foundries
91	Aluminum Smelting and Refining
92	Other Smelting and Refining
93	Aluminum Rolling & Extruding
94	Copper & Alloy Rolling

.

٠

95	Metal Casting & Extruding NES
96	Boiler & Plate Works
97	Fabricated Struct. Metal Ind.
98	Ornamental & Arch. Metal Ind.
99	Metal Stamp. Press. & Coat. Ind.
100	Wire & Wire Products Mfgrs.
101	Hardware Tool & Cutlery Mfgrs.
102	Heating Equipment Mfgrs.
103	Machine Shops
104	Misc. Metal Fabricating Ind.
105	Agricultural Implement Ind.
106	Misc. Machinery & Equip. Mfgrs
107	Comm. Refrig & Air Cond. Mfgrs
108	Office & Store Machinery Mfgrs
109	Aircraft & Parts Mfgrs.
110	Motor Vehicle Mfgrs.
111	Truck Body & Trailer Mfgrs.
112	Motor Veh. Pts & Access. Mfgrs
113	Railroad Rolling Stock Inc.
114	Shipbuilding & Repair
115	Misc. Transp. Equip. Ind.
116	Small Electrical Appliances
117	Major Appliances Elect. & Non.
118	Radio & Television Receivers
119	Communications Equipment Mfgrs.
120	Mfgrs of Elect. Inc. Equip.
121	Battery Mfgrs.
122	Mfgrs of Electric Wire & Cable
123	Mfgrs of Misc. Elect. Products
124	Cement Mfgrs
125	Lime Mfgrs.
126	Gypsum Products Mfgrs.
127	Concrete Products Mfgrs.
	· · · · · · · · · · · · · · · · · · ·

.

CHER SPANS

1688 B

· .

and the second state of the se

COLORED COLOR

526

128	Ready-Mix Concrete Mfgrs.
129	Clay Products Mfgrs.
130	Refractories Mfgrs.
131	Stone Products Mfgrs
132	Mineral Wool Mfgrs.
133	Asbestos Products Mfgrs.
134	Glass & Glass Products Mfgrs.
135	Abrasives Mfgrs.
136	Other Non-Metallic Prods. Ind.
137	Petroleum Refineries
138	Other Petrol & Coal Prod. Ind.
139	Explosives & Ammunition Mfgrs.
140	Mfgrs. of Mixed Fertilizers
141	Mfgrs. of Plast. & Synth. Res.
142	Mfgrs. of Pharm. & Medicines
143	Paint & Varnish Mfgrs.
144 .	Mfgrs. of Soap & Cleaning Comp
145	Mfgrs. of Toilet Preparations
146	Mfgrs. of Industrial Chemicals
147	Other Chemical Industries
148	Scient. & Prof. Equip. Mfgrs.
149	Jewelry & Silverware Mfgrs.
150	Broom Brush & Mop Industry
151	Venetian Blind Mfgrs.
152	Plastic Fabricators, Nes.
153	Sporting Goods & Toy Industry
154	Fur Dressing & Dying Industry
155	Signs & Displays Industry
156	Misc. Manufacturing Ind. Nes
157	Repair Construction
158	Residential Construction
159	Non-Residential Construction
160	Road Highway Airstrip Const.

•

.

•

161 Gas and Oil Facility Const.
162 Dams and Irrigation Projects
163 Railway Telephone Telegraph Con.
164 Other Engineering Construction
165 Construction other Activities.

CLASSIFICATION OF 64 INPUT-OUTPUT INDUSTRIES OF THE U.S.A.

Input-Output Industry No.	Input-Output Industry Title
· .	
l	Livestock & Livestock Products
2	Other Agricultural Products
3	Forestry & Fishery Products
4	Agricultural, Forestry & Fishery Services
5	Iron & Ferroalloy Ores Mining
6	Nonferrous Metal Ores Mining
7	Coal Mining
8	Crude Petroleum & Natural Gas
9	Stone and Clay Mining and Quarrying
10	Chemical & Fertilizer Mineral Mining
11	New Construction
12	Maintenance & Repair Construction
13	Ordnance & Accessories
14	Food & Kindred Products
15	Tobacco Manufactures
16	Broad & Narrow Fabrics, Yarn & Thread Mills
	the second second second second second second second second second second second second second second second s

•

	17	Miscellaneous Textile Goods & Floor Coverings
	18	Apparel
•	19	Miscellaneous Fabricated Textile Products
	20	Lumber & Wood Products, Except Containers
	21	Wooden Containers
	22	Household Furniture
	23	Other Furniture & Fixtures
	24	Paper & Allied Products, Except Containers
	25	Paperboard Containers & Boxes
	26	Printing & Publishing
	27	Chemicals & Selected Chemical Products
	28	Plastics & Synthetic Materials
	29	Drugs, Cleaning & Toilet Preparations
	30	Paints & Allied Products
	31	Petroleum Refining & Related Industries
	32	Rubber & Miscellaneous Plastics Products
	33	Leather Tanning & Industrial Leather Products
	34	Footwear & Other Leather Products
	35	Glass & Glass Products
	36	Stone & Clay Products
	37	Primary Iron & Steel Manufacturing
	38	Primary Nonferrous Metal Manufacturing
	39	Metal Containers
	40	Heating, Plumbing & Structural Metal Products
	41	Stampings, Screw Machine Products & Bolts
	42	Other Fabricated Metal Products

.

•

0.50

1.4.0

.

,

4	43	Engines & Turbines
4	14	Farm Machinery & Equipment
4	45	Construction, Mining & Oil Field Machinery
4	46	Materials Handling Machinery & Equipment
, 4	4 7	Metalworking Machinery & Equipment
4	48	Special Industry Machinery & Equipment
. 4	49	General Industrial Machinery & Equipment
<u>t</u>	50	Machine Shop Products
5	51	Office, Computing & Accounting Machines
1	52	Service Industry Machines
Ę	53	Electric Industrial Equipment & Apparatus
5	54	Household Appliances
ţ	55	Electric Lighting & Wiring Equipment
ŗ	56	Radio, Television & Communication Equipment
ŗ	57	Electronic Components & Accessories
5	58	Miscellaneous Electrical Machinery, Equipment & Supplies
5	59	Motor Vehicles & Equipment
(60	Aircraft & Parts
(51	Other Transportation Equipment
(52	Scientific & Controlling Instruments
(53	Optical, Ophthalmic & Photographic Equipment
(54	Miscellaneous Manufacturing

•.

.

•

.

Κ.

