MOSST
 Background Paper

```
3
Importation of Invisible
    Research and Development,
    1974-1976
July 1978
```


Ministère d'Etat
Sciences et Technologie Canada

3

Importation of Invisible Research and Development, 1974-1976

July 1978

TABLE OF CONTENTS

Page
I INTRODUCTION 1
II INVISIBLE TECHNOLOGICAL IN-FLOWS 1
III METHODOLOGY 2
IV ASSUMPTIONS OF THE MODEL 3
V GENERAL FINDINGS 4
VI INTERNATIONAL COMPARISONS 6
VI I CONCLUSIONS 8
VIII NOTES TO STATISTICAL TABLES 20

LIST OF TABLES

Page

1. General Findings - Invisible R\&D 5
2. International Comparison of Gross Expenditures on R\&D as a Percentage of Gross Domestic Product 9
3. International Comparison of Industrial R\&D Expenditures as a Proportion of Gross Domestic Product - 1973 10
4. Calculation of Invisible R\&D - 1976 11-13
5. Calculation of Invisible R\&D - 1975 14-16
6. Calculation of Invisible R\&D - 1974 17-19
7. Calculation of Multiplier to Universe 25-26
8. 1975 Payments to Non-Residents for Technology 29
9. 1974 Payments to Non-Residents for Technology 30

It has often been noted that Canada's R\&D performance is low in comparsion with that of other industrialized nations. At the same time it is commonly acknowledged that Canada's domestically-conducted R\&D does not begin to approximate its total source of new technology, inasmuch as, being largely foreign-owned, Canadian industry has ready access to R\&D imported from foreign parent companies. Significantly, much of this imported R\&D enters the country without being financially recorded, or it may be lumped together with other services under a rubric such as "management fees". This study was undertaken with a view to estimating these imports in an effort to make at least a partial reconciliation in the anomaly between Canada's low R\&D expenditures and the potentially large benefits from unrecorded R\&D.

An estimate of unrecorded $R \& D$ in-flows should prove helpful in the Ministry's work of planning policies and programs for the future, by making it possible to judge more accurately the aggregate level of R\&D which is currently supporting Canadian industry, Until now, only financially visible R\&D has been used in estimating the total base. Also, such an estimate should assist in formulating an informed reaction to changes in foreign (especially U.S.) technology-related policies or programs, such as the recent tax regulation requiring U.S. multinational companies to apportion $R \& D$ expenses to their foreign subsidiaries.

INVISIBLE TECHNOLOGICAL IN-FLOWS
The purpose of this study is to estimate the value of technology entering Canada without being shown explicitly in accounts which identify its technical nature, and therefore without being included as technology in statistical surveys. One must resort to indirect measurement by estimating the entire R\&D base made available to companies by foreign parents and deducting the visible payments. What remains is "invisible R\&D."

The estimation process used reasons that technology employed by Canadian subsidiaries is similar to that used by their parents which produce similar products. R\&D not performed in Canada to sustain sales in the face of competition must be imported and, of this, that which is not separately identified is invisible.

In mathematical terms, the model assumes the level of R\&D needed to support the subsidiary's sales is proportional to the $R \& D$ needed to support the parent's sales. This is termed "notional R\&D", abbreviated $R_{\text {not }}$, where:

$$
R_{\text {not }}=\frac{\text { annual } R \& D \text { of parent }}{\begin{array}{l}
\text { annual sales of } \\
\text { parent }
\end{array}} \begin{aligned}
& x \text { annual } \\
& \text { sales of } \\
& \text { subsidiary }
\end{aligned}
$$

From this quantity are subtracted the invisible sources of $R \& D$, namely:

$$
\begin{aligned}
& R_{c d n}= \begin{array}{c}
\text { actual } R \& D \text { performed or bought in } \\
\\
\\
\text { Canada by the subsidiary annually }
\end{array} \\
& R_{\text {pay }}=\quad \text { annual payments from a subsidiary } \\
& \text { to non-residents (including its } \\
& \text { parent) for technology or R\&D re- } \\
& \text { sults acquired. }
\end{aligned}
$$

Thus is obtained invisible $R \& D:$

$$
R_{\text {inv }}=R_{\text {not }}-R_{c d n}-R_{\text {pay }}
$$

METHODOLOGY

From the companies questioned about $R \& D$ policies by the Minister's letter of January 1977, and from other data readily available, were taken those foreign-owned companies for whose parents information could be gathered on sales and annual R\&D expenditures. Companies with U.S. parents were the most important source of information because of the disclosure policy of the iJ.S. Securities and Exchange Commission, with which American companies file a "lok Report" specifying R\&D expenditures. However, information was available for several non-American parents, although not with the same regularity, and these were also included.

The resulting companies were arranged according to SIC major groups, with exceptions explained in the notes accompanying Tables 4-6. Not all major groups in Canadian industry are represented because some comprise fewer foreign subsidiaries. R n ot was calculated for each company, and a total $\mathrm{R}_{\text {not }}$ summed for all companies in each group. This was extrapolated to the "universe" of foreign-controlled Canadian companies in that group by the ratio of annual sales of the universe
to total annual sales of the sample companies. (This ratio is termed the "Multiplier to Universe", denoted as "K". See pages 24-26.) From this resulted an estimate of total notional $R \& D$ in each of the industry groups.

Deducted from total group $R_{\text {not }}$ was total Canadian-performed $R \& D$ in the same industry groups, as supplied by the Science Statistics Centre of Statistics Canada (see page 27). Also deducted were the total payments to non-residents for technology ($\mathrm{R}_{\mathrm{pay}}$) in the same industry groups, as supplied by Business Finance of Statistics Canada, using CALURA data (see pages 28-29). The remaining amounts represent total invisible R\&D in the major industry groups.

These calculations were performed for the years 1974, 1975 and l976. Although the companies comprising each group are, in most cases, included in all three of the years studied, it should be noted that the group compositions for the Mining, and Food, Beverage, and Tobacco sectors change somewhat from one year to the next. This inconsistency is the result of information unavailablity for some companies in certain years. The group composition is outlined in the accompanying "Notes to Statistical Tables", under "Sample Canadian Companies", on page 21.

ASSUMPTIONS OF THE MODEL
The model assumes that both parent and subsidiary produce similar products using similar processes, and that R\&D performed by the parent is applicable to, and tends to flow to, the subsidiary. In some cases the assumption is not valid. This, then, results in an overestimate of the in-flow of invisible R\&D.

The sample in this study is based mainly on U.S.-controlled firms because of the scarcity of data for other foreign parents. Insofar as U.S. firms may perform larger amounts of R\&D than other parent companies, this may also result in an overestimate of the in-flow of invisible $R \& D$.

To the extent that technology's value is not truly apportionable on the basis of sales, the model understates the invisible R\&D. That is, a case can be made that the value of technology received by subsidiaries is not dependent on their sales; its value is the full amount of what the parent spent to develop it.

In executing the model, it has been impossible on occasion to obtain all data for the same year. Corporate sales in 1976, for example, are predominantly 1976 but with some 1975 figures. Parents' R\&D expenditures are predominantly for the year specified. Total Canadian $R \& D\left(R_{C d n}\right)$ is also for the year specified. Canadian payments to non-residents ($R_{\text {pay }}$)
are 1974 and 1975 . (Consideration was given to are 1974 and 1975. (Consideration was given to discarded because of the inaccuracy that would result from projecting all sectors equally with a single aggregate growth rate, and because of the unavailability of growth rates for each individual sector.) The result is to overestimate the value of invisible R\&D.

The performance of the model may also be affected by the number or nature of the sample companies used. In some sectors, the sample is a dominating portion of the sector and the extrapolation factor is small. This is true in Petroleum where the sample constitutes 80% of the industry group. However, in Mining in l976, for instance, the sample constitutes only 26% of the industry group.

It should be noted especially that the model does not imply that parent companies are conducting a "correct" amount of $R \& D$, nor that subsidiaries are receiving a "correct" amount. One should also note that, because corporations experience time lags in generating sales from completed R\&D, the model would take several years to detect a serious change in the flow of technology between a parent and its subsidiary.

GENERAL FINDINGS
The general findings and conclusions are shown in Table 1 following. Located after the conclusions are Tables 4-6, which summarize the collected data and the computations. They are accompanied by explanatory notes and lists of the sources used in compiling the information.

TABLE 1

general findings INVISIBLE R\&D
(\$ millions Cdn.)

	Industry Group	Total R not	-	$\begin{aligned} & \text { Total } \\ & \text { R } \\ & \operatorname{cdn} \end{aligned}$	-	$\begin{aligned} & \text { Total } \\ & R_{\text {pay }} \end{aligned}$	$=$	$\begin{aligned} & \text { Total } \\ & R_{\text {inv }} \end{aligned}$
1976	Mining	99.6		29.8		12.7		57.1
	Petroleun	55.6		47.0		17.2		(8.6)
	Food, Beverages, Tobacco	49.7		12.0		11.7		26.0
	Machinery, Transportation Equipment	521.9		28.7		71.9		421.3
	Electrical Products, Utilitics, Transportation	195.1		85.2		22.4		87.5
	Rubber, Plastics, Chemicals	177.2		65.2		53.6		58.4
	Metal Fabricating	45.6		3.9		12.6		29.1
	Paper \& Allied	34.2		9.3		7.7		17.2
		1,178.9		281.1		209.8		688.0
1975	Mining	96.4		37.1		12.7		46.6
	Petroleum	57.4		49.0		17.2		(8.8)
	Food, Beverages Tobacco	43.0		10.3		11.7		21.0
	Machinery, Transportation Equipment	484.9		17.4		71.9		395.6
	Electrical Products, vifilites, Transportation	178.1		86.9		22.4		68.8
	Rubber, Plastics, Chemicals	167.9		58.4		53.6		55.9
	Metal Fabricating	38.5		3.8		12.6		22.1
	Paper \& Allied	$\begin{array}{r} 28.6 \\ 1,094.8 \end{array}$		$\frac{10.9}{273.8}$		$\frac{7.7}{209.8}$		$\frac{10.0}{611.2}$
1974	Mining	80.3		29.7		11.7		38.9
	Petroleum	48.8		45.4		11.9		(8.5)
	Food, Beverages, Tobacco	37.8		8.5		8.2		21.1
	Machinery, Transportation Equipuent	496.3		22.7		56.3		417.3
	Electrical Products. Utilities, Transportation	171.4		65.6		26.9		78.9
	Rubber, Plastics, Chemicals	156.3		49.6		49.6		57.1
	Metal Fabricating	34.8		3.4		10.7		20.7
	Paper \& Allied	$\begin{array}{r}27.8 \\ \hline 1,053.5\end{array}$		\% 7.1		$\frac{9.7}{185.0}$		$\frac{11.0}{636.5}$
		$\underline{ }$		-		-		-

The trend of Invisible R\&D over three years is unsteady growth from $\$ 636.5$ million to $\$ 688.0$ million, with a drop in the middle year to $\$ 611.2$ million. Notional R\&D has grown steadily at a compound annual rate of 5.8 per cent, although the growth between 1974 and 1975 was not as great as between 1975 and 1976. In any case it is interesting to note that Invisible $R \& D$ is more than double the actual Canadian R\&D, although on account of Canadian $R \& D$ increasing at a compound annual rate of 10.1 per cent this ratio appears to be decreasing. That is, Invisible $R \& D$ is 2.74 times greater than Canadian R\&D in 1974, but in 1976 this drops to 2.45, implying that the proportion of Canada's industrial technology requirements being supplied without visible payment is decreasing.

INTERNATIONAL COMPARISONS
International comparisons of $R \& D$ activity normally are based on actually-expended funds, and hence tend to ignore technology flows that occur without explicit payment, but which contribute to a country's technological base nevertheless. Of course the omission holds true for all countries, but for Canada the invisible flows are probably of particular significance. This is because the unusually high degree of foreign ownership of Canadian industry contributes significantly to making Canada highly dependent on imported technology.

The technology in-flows which occur are often not subject to visible payment and, therefore, reduce the effectiveness of international comparisons in indicating the true picture of Canada's relative technology base.

Accordingly, in an attempt to set Canada in a more appropriate international context, Table 2 on page 9 shows a comparison of Canada's R\&D picture with that of other industrialized countries, both exclusive and inclusive of Canadian Invisible R\&D.

When viewed in the context of domestic and invisible R\&D combined, Canada's technology resources fit into a world-wide industrial picture at a level somewhat more commensurate with its other economic indicators than if one considers Canada's domestic R\&D alone. For example, the inclusion of invisible R\&D raises Canada's GERD as a percentage of GDP to 1.37 per cent, which is
above that of Australia (1.30 per cent) or the combined Scandinavian countries (1.33 per cent), regions that may be likened to Canada for the ir similarity of industrial beginnings and/or the similarity of their populations, terrain or climate.

It has been noted in other studies that manufacturing industries in Canada constitute a smaller proportion of national GDP than is the case in other industrialized countries. To remove the effect of this when discussing relative $R \& D$ performance, it is more appropriate to compare countries' industrial R\&D to the GDP of their manufacturing industries. Table 3 on page 10 makes this comparison, both including and excluding Canada's invisible R\&D (which has been estimated only for the manufacturing sector).

If one subtracts out the effect of Canada's relatively smaller industrial sector, and compares internationally the $R \& D$ resources of the business enterprise sector as a proportion of the sector's own GDP, Canada's position among industrialized nations improves significantly when invisible $R \& D$ is included. With it, Canafian business enterprises have access to R\&D equivalent to 4.28 per cent of their GDP, while for Australia the figure is 2.29 per cent and for the combined Scandinavian countries the figure is 2.92 per cent. In fact, only the U.K. (4.66 per cent) and the U.S.A. (6.45 per cent) exceed the Canadian figure.

However, it is obvious that an even better comparison would be one which included invisible R\&D for each of the countries concerned. We are now endeavouring to obtain data which would permit these estimations to be inade.

[^0]| INTERNATIONAL COMPARISON OF GROSS EXPENDITURE ON R\&D as a percentage of gross domestic pronuct | | |
| :---: | :---: | :---: |
| COUNTRY | | GERD as \% of GDP |
| Canada: | Excluding Invisible R\&D Including Invisible R\&D | $\begin{aligned} & 1.00 \\ & 1.37^{2} \end{aligned}$ |
| Australia | | 1. 30^{3} |
| Denmark | | 1.00^{3} |
| Finland | | $0.95{ }^{3}$ |
| Norway | | $1.11{ }^{3}$ |
| Sweden | | $1.73{ }^{3}$ |
| Total Scandinavia | | 1.33 |
| France | | 1.86 |
| Germany | | 2.16 |
| Japan | | $2.00{ }^{4}$ |
| USA | | 2.35 |

(1) Source: OECD/DSTI Science Resources Newsletter, No. 2, Spring 1977. Data is 1975, except as otherwise indicated.
(2) Derivation is as follows:
(\$ millions Cdn.)

1975 Canadian GERD	(i)
e. 1975 Canadian invisible $R \& D$	$=1,650$
1975 Canadian GDP ${ }^{(\text {ii })}$	$=165,000$
GERD as \% of GDP	$=\frac{1,650+611.2}{165,000} \times 100 \%=1.37 \%$

(i) Canadian GERD 1975 is from OECD/DSTI Science Resources Newsletters No. 1, Table 1, Page 6; and No. 2, Graph 1, Page 2.
(ii) Canadian GDP is from OECD/DSTI Science Resources Newsletter, No. 2, Table "GERD as a percentage of GDP", Page 1.
(3) GERD figures are 1973, from OECD International Statistical Year 1973, Vol. 5, publication DSTI/SPR/76.29, Page 34. Currency is U.S. dollars.
GDP figures are 1973, from U.N. Yearbook of National Accounts Statistics, Vol. III, 1974, International Tables, given in national currency. Conversion to U.S. currency is according to exchange rates given in OECD/DSTI Science Resources Newsletter, Vol.1, September 1976, Table 1, page 6. Exchange rates are 1973, except Norway (1972).
(4) Data is 1974

INTERNATIONAL COMPARISON OF INDUSTRIAL R\&D EXPENDITURES AS A PROPORTION OF GROSS DOMESTIC PRODUCT 1973

Total R\&D Performed ess Enter (\$U.S	Expenditures by the Busin- rise Sector(1) Millions)	R\&D Expenditures As a Percent of Total GDP ${ }^{(2)}$ \%	Ratio of Manufacturing Industries' GDP to Total GDP (3) \%	R\&D Spending as a proportion of Manufacturing Industries' GDP \%
Canada Excluding Invisible R\&D				
Canada Inc1uding Invisible R\&D	1,042 ${ }^{4}$	0.84	20	4.28
Australia	361	0.48	21	2.29
Denmark	123	0.47	26	1.81
Finland	87	0.51	27	1.89
Norway	82	0.43	22	1.95
Sweden	551	1.15	27	4.26
Total Scandinavia	843	0.76	26	2.92
France	2,586	1.09	35^{5}	3.14
Germany	4,400	1.28	40	3.19
Japan	4,757	1.20	38	3.16
U.K.	2,063	1.26	27	4.66
U.S.A.	20,921	1.61	25	6.45

(1) Source: OECD International Statistical Year 1973, Vo1. 5, publication DSTI/SPR/76.29, Page 40. Data is 1973.
(2) GDP figures are from U.N. Yearbook of National Accounts Statistics, Vol, III, International Tables, 1974. Data is 1973, except Australia, which is 1972. Exchange rates provided by U.N. Yearbook of Labour Statistics, 1975, Table 28.
(3) Source: U.N. Yearbook of National Accounts Statistics, Vol. III, Internaticnal Tables, 1974. Data is 1973, except Australia which is 1972.
(4) Base expenditure is 1973. Added to this is 1974 Invisible R\&D, which has been adjusted to approximate 1973 figure. The adjusting factor is $0.87=114.6 / 131.7$, namely the ratio of 1973 to 1974 Implicit Price Indexes of GNE, as given by the Bank of Canada Review, July 1977, Table 54. The resulting sum is converted to U.S. dollars at the 1973 exchange rate (from OECD/DSTI Science Resources Newsletter, No. 1, Table 1, page 6),
(5) Estimated from trend between 1960-69.

TABLE 4
CALCULATION OF INVISIBLE R\&D 1976
All Dollar Figures are ($\$ \mathrm{M} \mathrm{CLn}$.) All Data is 1976 Unless Otherwise Noted

TABLE 4 cont'd
All dollar figures are (\$M cin.) A11 data $1 \mathrm{~s} 197 \mathrm{c}_{\mathrm{o}}$ unless ocherwise noted.

(1) " $2+2$ ", Canadian Business, July 1977.
(2) "What 600 Companies Spend for Research," Business Week, 27 June 1977.
(3) Statistics Canada, unpublished Science Statistics Centre data. (See details in "Notes to Statistical Tables," attached).
(4) Statistics Canada, unpublished CALURA listing. (See derivation in "Notes to Statistical Tables", attached) Data is 1974
(5) Sumary sheet of companies receiving R\&D letter, prepared by MOSST. Data is 1974.
(6) Tie Financial Post Information Service. Data is 1975
(7) Corporate 10-K Report, filed with U.S. Securities \& Exchange Commission. Data is 1975.
(8) The Blue Book of Canadian Business, Canadian Newspaper Services International Ltd., Toronto, 1976
(9) Part owners of Quebec Iron \& Titanium are Kennecott Copper, USA (2/3), and New Jersey Zinc, USA (1/3). Financial statements of New Jersey Zinc are consolidated with its parent, Gulf \& Western (USA), for which no separate R\&D figure is available.
(10) Financial data based on exchange rate of $\$ 1.70$ (Can.) $= \pm 1.00$ (UK)
(11) Includes exploration and environmental expense.
(12) Includes exploration.
(13) Sales are net of non-operating revenue.
(14) R\&D not available for parent (Royal Dutch/Shell Group). American affillate taken as approximation.
(15) American Can Company of Canada.
(16) The Blue Book of Canadian Business, Canadian Newspaper Services International Ltd., Toronto, 1977.
(17) The Financial Post Survey of Industrials, 1977.
(18) Consumer and Corporate Affairs, Bureau of Corporate Affairs Bulletin, August 1977.
(19) "The Top 200 Industries", The Financial Post 300, Summer 1977.
(20) Weyerhaeuser Canada Limited.
(21) Estimated from trend between 1974 and 1975.

CALCULATION OF INVISIBLE R\&D 1975
All dollar figures are ($\$ \mathrm{M}$ Cdn.) All data is 1975 inless otherwise noted

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{inoustri: sector} \& \multicolumn{2}{|l|}{cavoins corpary} \& \multicolumn{4}{|l|}{pasent comenay} \& \multicolumn{7}{|c|}{calcilation or invisible pad}

\hline \& Nays \& \& NME \& nationality \& $$
\begin{aligned}
& \text { SALES } \\
& \text { (SM U.S.) }
\end{aligned}
$$ \& $$
\mathrm{RSD}_{(S \mathrm{US.S.})}
$$ \& $$
\begin{gathered}
\text { Intensity } \\
= \\
\hline
\end{gathered}
$$ \& \& $$
\begin{aligned}
& \text { Mulitipliter } \\
& \text { To }
\end{aligned}
$$ \& $$
\begin{array}{|l|}
\hline \text { TOTAL CDN. } \\
\text { NCTIONAL RAD } \\
\text { OF SEC:OK }
\end{array}
$$ \& actual canctian Red \& $$
\begin{gathered}
\text { IMPORTED } \\
\text { RSD }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { PaYMETTS } \\
& \text { to NOS:- } \\
& \text { RESIDET:S }
\end{aligned}
$$ \&

\hline \& \& $\mathrm{s}_{\mathrm{c}}{ }^{1}$ \& \& $\mathrm{s}_{\mathrm{p}}{ }^{2}$ \& $\mathrm{R}_{\mathrm{p}}{ }^{2}$ \& I $=\mathrm{R}_{\mathrm{p}} / \mathrm{S}_{\mathrm{p}}$ \& $\mathrm{R}_{\text {not }}=\mathrm{IxS}{ }_{c}$ \& K \& $\mathrm{FR}_{\text {not }}=\mathrm{KxR}$ nos \& ${ }^{R}{ }_{\text {cdn }}{ }^{3}$ \& $R_{\text {ImP }}-\pi_{\text {nd }}-R_{\text {cial }}$ \& $\mathrm{R}_{\text {Pay }}{ }^{4}$ \&

\hline \multirow[t]{9}{*}{-} \& -shestos Corn. \& ${ }^{85}$ \& $\begin{array}{ll}\text { General Sviamics } \\ \text { Johns-'anvilie } & \text { (US) } \\ \text { (US) }\end{array}$ \& 2.160 \& 20.9 \& \& \& \multirow[b]{14}{*}{4.00

1.22} \& \multirow[b]{9}{*}{96.4} \& \multirow[b]{9}{*}{37.1} \& \multirow[b]{9}{*}{59.3} \& \multirow[b]{9}{*}{12.7} \& \multirow[b]{9}{*}{46.6}

\hline \& Cda. Johns-Marville \& 223

429 \& Johns-i'anvilie (US) \& 1,107, \& 24.4 \& $$
2.20
$$ \& \[

4.92
\] \& \& \& \& \& \&

\hline \& Faiconrtide Mickei \& 429

98 \& $\}$ superior nil (t:s) \& 3827 \& $3.2{ }^{10}$ \& \[
0.81

\] \& \[

4.28
\] \& \& \& \& \& \&

\hline \& fudson gay nils cas ietl. Minerals 6 \& 229 \& | Continental 011 (US) |
| :--- |
| Tntl. Minezals a | \& 7.254 \& 37.8 \& 0.52 \& 1.19 \& \& \& \& \& \&

\hline \& Chenics

Ouebec Iron 8 \& ${ }^{135}$ \& | Chenical |
| :--- |
| (US) | \& 1.303 \& 10.7 \& 0.82 \& 1.14 \& \& \& \& \& \&

\hline \& Titanitu Qio Algow Mree \& $$
\begin{aligned}
& 200^{12} \\
& 367
\end{aligned}
$$ \& Kennecott Cooper (IIS) \& ${ }^{769}{ }_{2} 630^{6}$ \& 12.3 \& 1.60 \& 3.20 \& \& \& \& \& \&

\hline \& Qio Alpon Hises
Indal \& 367

219 \& Rio Tinto 2ine (UK) \& 2,630 ${ }^{6}$ \& $$
11.8^{5,11} \mid
$$ \& 0.45 \& 2.63 \& \& \& \& \& \&

\hline \& Sherriet-frordon |Cassiar Asbestos \& $\begin{array}{r}191 \\ \hline 83 \\ \hline 8 .\end{array}$ \& $\}$ Neumont MIning (US) \& 517^{7} \& 11. $2^{10,14}$ \& 2.17 \& 5.94 \& \& \& \& \& \&

\hline \& \& 2,239 \& \& \& \& \& 24.09 \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{Pecrolem} \& pp Camada
fun 012 canada \& 550
1,701 \& Pritish Petroieua
Culf
Cuti \& ${ }_{17,285}{ }^{6}$ \& $50.0{ }^{5}$ \& 0.29 \& 1.59
3.39 \& \& \multirow[t]{5}{*}{} \& \multirow[t]{5}{*}{} \& \multirow[t]{5}{*}{} \& \multirow[t]{5}{*}{} \& \multirow[t]{4}{*}{}

\hline \& Troerial cana \& 4,701 \& \& 14,268
44,865 \& 62.0
187.0 \& 0.29
0.42 \& 7.39
17.13 \& \& \& \& \& \&

\hline \& Shell Canada \& 1,868 \& Sheli 0id (us) ${ }^{14}$ \& 8,143 \& 76.2 \& 0.94 \& 17.48 \& \& \& \& \& \&

\hline \& Sun eli Canada \& 315 \& Sun Cil (us) \& 4,399 \& 23.5 \& 0.54 \& 1.69 \& \& \& \& \& \&

\hline \& Texaco Canada \& -865 \& тexaco (US) \& 24,508 \& 50.0 \& 0.20 \& $\frac{1.76}{4.04}$ \& \& \& \& \& \&

\hline \multirow[t]{12}{*}{Food. Beverages. Tołaceo} \& Aopden co. \& 150 \& Forden Inc. (us) \& 3,367 \& 13.6 \& 0.40 \& 0.61 \& \multirow[t]{11}{*}{} \& \multirow{11}{*}{57.4} \& \multirow{11}{*}{49.0} \& \multirow{11}{*}{8.4} \& \multirow{11}{*}{17.2} \& \multirow{11}{*}{(8.8)}

\hline \& Camobell ${ }^{\text {coup }}$ (
Camadian Carners \& 113
107 \& Canphell soup (LL)
nel loonce
(US) \& 1,546
1,297 \& 12.7 \& 0.82
0.70 \& 0.93 \& \& \& \& \& \&

\hline \& Careation \& 71 \& Carnacion (tis) \& 2,075 \& 6.6 \& 0.32 \& 0.23 \& \& \& \& \& \&

\hline \& Cintstie, Mround Co. \& ${ }_{2088}^{132}$ \& Sabisco (US) \& 1.971 \& 9.3 \& 0.47 \& 0.62 \& \& \& \& \& \&

\hline \& Consclidated Food \& $202{ }^{8}$ \& Consolidated Pood (US) \& 2.443 \& 5.1 \& 0.21 \& 0.42 \& \& \& \& \& \&

\hline \& Cenera! Foods \& 317 \& ceneral Foods (cs) \& 3,675 \& 31.3 \& 0.85 \& 2.70 \& \& \& \& \& \&

\hline \& \& 88
119 \& \& 2,309
1,663 \& 22.9
8.2 \& 0.99
0.49 \& 0.87
0.59 \& \& \& \& \& \&

\hline \& -eltog2-~1 iada \& 78 \& Kellogn Co (US) \& 1.214 \& 5.2 \& 0.43 \& 0.33 \& \& \& \& \& \&

\hline \& Kiaft \& 321

70 \& $\begin{array}{ll}\text { Kraftco } \\ \text { Quaker } \\ \text { Rats } & \text { (US) } \\ \text { (VS) }\end{array}$ \& | 4.357 |
| :--- |
| 1 | \& 10.9 \& 0.22 \& 0.72 \& \& \& \& \& \&

\hline \& (\%aker Oazs \& 70
165 \& $\begin{array}{ll}\text { Quaker nats } \\ \text { Ralston-Purins } & \text { (US) } \\ \text { (iS) }\end{array}$ \& 1,389
3.149 \& 16.9
11.3 \& 1.22
0.36 \& 0.85
0.60 \& \& \& \& \& \&

\hline \& stancaze srancs \& - 289 \& \multirow[t]{2}{*}{Ralston-puring
S $=$ andard
brands} \& \multirow[t]{2}{*}{2,945} \& \multirow[t]{2}{*}{9.0} \& \multirow[t]{2}{*}{0.46} \& 1.30
1.30 \& \& \& \& \& \&

\hline \& \& 2,214 \& \& \& \& \& 11.52 \& \multirow[t]{5}{*}{3.73} \& \multirow[t]{5}{*}{43.0} \& \multirow[t]{5}{*}{10.3} \& \multirow[t]{5}{*}{32.7} \& \multirow[t]{5}{*}{11.7} \& \multirow[t]{4}{*}{21.0}

\hline \multirow[t]{4}{*}{| yachinery. |
| :--- |
| Ezaspertarion |
| E!u: $p=e n t$ |} \& Chrysier Canada \& 2.474 \& Chrysier Corp. (US) \& ${ }^{11,598}$ \& 199.0 \& 1.72 \& 42.44 \& \& \& \& \& \&

\hline \& Ford Matior \& 4, 348
4.335 \& Ford Motor
Ceneral Motors
(US)
(US) \& 24,009

35.725 \& | 747.6 |
| :--- |
| 13.9 | \& 3.72

3.12
3.12 \& 135.38
135 \& \& \& \& \& \&

\hline \& tieneral wotore \& 4.335
735 \& $\begin{array}{ll}\text { General motors } \\ \text { Int. Harvester } & \text { (us) } \\ \text { (US) }\end{array}$ \& 35.725
5,246 \& 1.133 .9
130.5 \& 3.12
2.49 \& 135.16
18.28 \& \& \& \& \& \&

\hline \& Trate 8 thitnev \& - 272164 \& United Technolories (uS) \& 3,878 \& 323.7 \& 8.35 \& 22.70
-353.96 \& \& \& \& \& \&

\hline \multirow[t]{8}{*}{$$
\begin{aligned}
& \text { riectrical. } \\
& \text { "ty1ftes. } \\
& \text { frasportation }
\end{aligned}
$$} \& -vintion flectric \& 36^{5} \& Bendix Corp. (US) \& 2,590 \& 83.9 \& 3.24 \& 1.27 \& \multirow[t]{7}{*}{1.37} \& \multirow[t]{7}{*}{484.9} \& \multirow[t]{7}{*}{17.4} \& \multirow[t]{7}{*}{467.5} \& \multirow[t]{7}{*}{71.9} \& \multirow[t]{7}{*}{355.6}

\hline \& -nzo-Canadian Tel \& 445 \& \& \& \& \& \& \& \& \& \& \&

\hline \& S.c. Eelephore \& ${ }^{3615}$ \& $\}$ CTE (us) \& 5,948 \& 93.7 \& 1.58 \& 13.52 \& \& \& \& \& \&

\hline \& cot \& 822 \& General Electric (US) \& 13,399 \& 357.1 \& 2.67 \& 21.91 \& \& \& \& \& \&

\hline \& Poneyrell \& 115 \& Honeywel1
IRM \& 2,760
14,437 \& 164.2
946.0 \& 5.95 \& 6.84 \& \& \& \& \& \&

\hline \& Paveheon \& 12^{5} \& Paytheon (US) \& 2,245 \& 42.3 \& 1.88 \& 47.11
0.23 \& \& \& \& \& \&

\hline \& \& 452 \& \& 5, 5 , 1364 \& 1330.0 \& ${ }^{2.22}$ \& 10.02 \& \& \& \& \& \&

\hline \& \& 3,431 \& Philp Perroham (U) \& \& \& 0.66 \& $\frac{18}{193.54}$ \& 1.72 \& 178.1 \& 86.9 \& 91.2 \& 22.4 \& 68.3

\hline
\end{tabular}

TABLE 5 cont'd

All dollar figures are (\$M Cdn.) All data la 1975 unless otherwise noted.

TABLE 5 cont'd

(1) " $2+2$ ", Canadian Business, July 1976.
(2) "Where Private Industry Puts its Research Money," Business Week, 28 June 1976.
(3) Statistics Canada, unpublished Science Statistics Centre data. (See details in "Notes to Statistical Tables", attached.)
(4) Statistics Canada, unpublished CALURA listing. (See derivation in "Notes to Statistical Tables", attached. Data is 1974.
(5) The Financial Post Information Service.
(6) "Directory of the 500 Largest Industrial Corporations Outside the US," Fortune, August 1976.
(7) "Directory of the 500 Largest U.S. Industrial Corporations," Fortune, May 1976.
(8) Estimate. Based on mean of 1974 and 1976 sales.
(9) Sumary sheet of companies receiving R\&D letter, prepared by MOSST. Data is 1974.
(10) Corporate 10K Report filed with U.S. Securities \& Exchange Commission.
(11) Based on exchange rate for 1975 of $\$ 2.26$ (Cdn.) $=\ldots 1$ (UK). Source: Bank of Canada.
(12) The Blue Book of Canadian Business, Canadian Newspaper Services International Ltd., Toronto, 1976.
(13) R\&D for parent (Royal Dutch/Shell Group) not available. U.S. affiliate taken as approximation.
(14) Includes exploration
(15) American Can Company of Canada.
(16) The Financial Post Survey of Industrials. 1977.
(17) Weyerhaeuser Canada Limited.
(18) "What 600 Companies Spend for Research", Business Week, 27 June 1977. Figures are derived from 1976 figures and percentage change over $1 \frac{1975 .}{}$

TABLE 6
CALCULATION OF INVISIBLE R\&D 1974

TABLE 6 cont ${ }^{\text {d }}$

All dollar figures are ($\$ \mathrm{M}$ CCn.) All data 1 s 1974 undess otherwise noted.

(1) "The Top 200", Canadian Business, July 1975.
(2) "Where Private Industry Puts its Research Money," Business Week, 28 June 1976. Figures are derived from 1975 amounts and percentage change over 1974.
(3) Statistics Canada, unpublished Science Statistics Centre data. (See details in "Notes to Statistical Tables", attached.
(4) Statistica Canada, unpublished CALURA Iisting. (See derivation in "Notes to Statistical Tables", attached.)
(5) " $2+2$ ", Canadian Business, July 1976. Figure derived from 1975 amounts and percentage change over 1974.
(6) The Financial Post Information Service.
(7) "Directory of the 300 Largest Industrial Corporations Outside the U.S.," Fortune, August 1975.
(8) Summary sheet of companies receiving R\&D letter, prepared by MOSST.
(9) Corporate 10K Report, filed with U.S. Securities \& Exchange Commission.
(10) "Directory of the 500 Largest Industrial Corporations," Fortune, May 1975.
(II) Based on exchange rate for 1974 of $\$ 2.29$ (Cdn.) $=\mathrm{I} 1$ (UK).
(12) The Blue Book of Canadian Business, Canadian Newspaper Services International Ltd., Toronto, 1976.
(13) R\&D reported for 1974 in 1974 Annual Report is $\$ 47$ million, while in 1975 Annual Report the 1974 R\&D is stated to have been $\$ 40$ million. The mean of these figures is used.
(14) Includes exploration.
(15) R\&D figures for parent (Royal Dutch/Shell) not available. U.S. affiliate taken as approximation.
(16) American Can Company of Canada.
(17) Consumer and Corporate Affairs, Bureau of Corporate Affairs Bulletin, February 1976.
(18) The Financial Post Survey of Industrials 1977.
(19) International Paper Company, 1974 Annual Report.
(20) Weyerhaeuser Canada Limited.

VIII NOTES TO STATISTICAL TABLES

The following notes are arranged in the order in which they appear in the columns of the main tables on pages ll-19.

Page Description of Notes
21-23 Sample Canadian Companies
Calculation of Multipliers to
24

27

28

31 Universe

Calculation of Actual Canadian R\&D

Calculation of Payments to NonResidents

Correlation Between Statistical Aggregation Methods

Mining

Abestos Corp.	General Dynamics (US)	N / A
Canadian Johns-Manville	Johns-Manville (US)	100.0
Falconbridge Nickel Mines	Superior Oil (US)	15.0
McIntyre Mines	Superior Oil (US)	40.5^{2}
Hudson Bay Oil \& Gas	Continental Oil (US)	N / A
Quebec Iron \& Titanium	Kennecott Copper (US)	66.7^{3}
Rio Algom Mines	Rio Tinto Zinc (UK)	51.3
Indal	Rio Tinto Zinc (UK)	59.0
Sherritt-Gordon Mines	Newmont Mining (US)	39.7
Cassiar Asbestos	Newmont Mining (US)	N / A

Petroleum

BP Canada British Petroleum (IK) 65.5
Gulf Oil Canada
Imperial Oil
Shell Canada
Sun Oil Canada
Texaco Canada
Gulf Oil (US) 68.3
Exxon (US) 69.6
Royal Dutch/Shell Group (UK/Neth) 71.0
Sun Co. (US) 100.0
Texaco (US) 68.2
Food, Beverages, Tobacco

Borden Co.
Campbell Soup
Canadian Canners
Carnation
Christie, Brown, \& Co. Consolidated Foods
General Foods
General Mills
H.J. Heinz

Kellogg-Salada
Quaker Oats
Ralston-Purina
Standard Brands

Borden Inc. (US)
Campbell Soup (US)
Del Monte (US)
Carnation (US)
Nabisco (US)
Consolidated Foods (US)
General Foods (US)
General Mills (US)
H.J. Heinz (US)

Kellogg Co. (US)
Ouaker Oats (US)
Ralston-Purina (US)
Standard Brands (US)
100.0
100.0
99.2

N/A
100.0
100.0
100.0
100.0
100.0
100.0

N/A
100.0
100.0

Machinery Transportation Equipment
Chrysler Chrysler (US) 100.0
Food Motor
General Motors
International Harvester
Pratt \& Whitney
Food Motor (US) 88.1
General Motors (US) 100.0
International Harvester (US) 100.0
United Technologies (US) 100.0

Electrical, Utilities, Transportation

Aviation Electric	Bendix Corp. (US)	N / A
Anglo-Canadian Telephone	GTE	(US)
B.C. Telephone	GTE	(US)
GTE Lenkurt	GTE	(US)
CGE	General Electric (US)	N / A
Honeywell	Honeywell (US)	N / A
IBM Canada	IBM	91.9
Raytheon	Raytheon (US) (US)	N / A
Westinghouse	Westinghouse (US)	100.0
Westcoast Transmission	Philip Petroleum (US)	N / A

Rubber, Plastics, Chemicals

Bristol-Myers
CIL
Dow Chemical
du Pont
B.F. Goodrich

Goodyear
Lever Brothers
Merck, Sharpe, Dohme
Proctor \& Gamble
Sherwin-Williams
Union Carbide
Uniroyal

Metal Fabricating

American Can
Babcock \& Wilcox
Black \& Decker
Combustion Engineering -
Superheater
Continental Group Canada
Superheater
Continental Group Canada
Foster Wheeler
Gillette Canada
Horton CBI
Koppers International
Litton Systems Canada
Research Cottrell Canada
Stanley Works
Bristol-Myers (US) $\quad 100.0$

ICI (UK)
73.4

Dow Chemical (US) 100.0
du Pont (US) 74.9
B.F. Goodrich (US) 100.0

Goodyear (US) 88.0
Unilever (UK) 100.0
Merck (US)
Proctor \& Gamble (US)
N/A
100.0

Sherwin-Williams (US) 74.0^{3}
Union Carbide (US) 75.0
Uniroyal (US) 100.0

American Can (US) (US)	98.0_{4}^{4}
Babcock \& Wilcox (US) (US)	100.0_{4}^{4}
Black \& Decker Mfg. (US (US)	109.8_{4}^{4}
Combustion Engineering	
Continental Group (US)	100.0^{4}
Foster Wheeler (US)	100.0^{4}
Gillette (US)	97.5^{4}
Chicago Bridge \& Iron (US)	99.9_{4}^{4}
Koppers Co., Inc. (US)	99.9_{4}^{4}
Litton Industries (US)	100.0_{4}^{4}
Research-Cottrell (US)	100.0_{4}^{4}
The Stanley Works (US)	100.0^{4}

Paper \& Allied

Addressograph -
Multigraph Canada
Canadian International Paper
Crown Zellerbach
Dennison Mfg. Canada
Masonite Canada
Rayonier Canada
Scott Paper
Spruce Falls Power \& Paper
Weyerhaeuser Canada

Addressograph -	
\quad Multigraph (US)	100.0^{4}
International Paper (US)	100.0
Crown Zellerbach (US)	$88.0{ }^{4}$
Dennison Mfg. (US)	99.7^{4}
Masonite (US)	N / A
ITT (US)	99.9
Scott Paper (US)	54.6_{4}
Kimberly-Clark (US)	54.1_{4}^{4}
Weyerhaeuser (US)	100.0^{4}

Sources of Data
(1)"The Top 200 Industries, "The Financial Post 300, Summer, 1977.
(2)

Corporate $10-\mathrm{k}$ Report filed with U.S. Securities \& Exchange Commission
(3) The Blue Book of Canadian Business, Canadian Newspaper Services International
(4) Inter-Corporate Ownership 1975, Statistics Canada, Cat. No. 61-517 Occasional.

Notes on Composition of Industry Groups

Hudson Bay Oil \& Gas is included in "Mining" to reflect the company's concentration in petroleum exploration and extraction, not in refining and marketing. Business Finance (CALURA) and the Science Statistics Centre, both of Statistics Canada, include gas and oil wells with mining.

Utilities and Transportation are included with Electrical so that all subsidiaries of GTE (USA) can be aggregated in one industry grouping.

CALCULATION OF MULTIPLIERS TO UNIVERSE

For each year, the sample companies' notional R\&D (Rnot) is extrapolated to the total sector on the basis of sales. That is, it is assumed that the combined notional R\&D of all foreign-controlled companies in each industry sector is a multiple of the combined notional R\&D of the sample (Eoreigncontrolled) companies in that sector by a factor based on the ratio of sales. This factor is termed the "multiplier to universe" denoted as "K", and is determined by dividing the total sales of the sample companies into the total sales of all foreign-controlled companies in that sector. The former quantity is derived simply by summing the sample companies' sales figures. The latter quantity is taken from Statistics Canada CALURA figures.

At the time of this study, the most recent CALURA data available was 1974 and 1975, taken from CALURA Part 1 (corporations), 1974-75, page 148. To determine K values for 1976 , 1975 sales were determined for the companies used in the 1976 sample, and were divided into CALURA total sector sales for 1975.

Consideration was given to projecting the 1975 CALURA data to 1976, for comparison with the companies' 1976 sales, but this notion was discarded because of the inaccuracy that would result from projecting all sectors equally with a single aggregate growth rate, and because of the unavailability of growth rates for each individual sector.

What follows is the derivation of K for each of the years 1974, 1975 and 1976.

TABIEE 7
CALCULAIION OF MULITIPLIER TO UNIVERSE
(\$ mijllant (t!n.

sactor			Er lert d Cumpanter	1974 samb		1975 5		3976 Somyle	
Name	$\begin{aligned} & 1975 \\ & \text { sales } \end{aligned}$	$\begin{aligned} & 1974 \\ & 5: 1 c s \end{aligned}$	Panm	$\begin{aligned} & \text { (ompales' } \\ & 19 / 4 \text { Sales } \end{aligned}$	Mulifilier to dinjuetse	$\begin{aligned} & \text { Compantes' } \\ & 15 / 5 \text { sates } \end{aligned}$	$\begin{aligned} & \text { Multiplder } \\ & \text { to busverse } \end{aligned}$	$\begin{aligned} & \text { Cotin anfes' } \\ & 1976 \text { Sales } \end{aligned}$	Naltiflicr to Un!vets:
Manins:	9,042	7,774	Asbestas Corp. Cdn. Johm:- Hianville talconbride :1sckel Pinlutyre Menca Hustam Pay osl a Gas cham. Quebec Iron \& Titan 10, No $\mathrm{Al}_{\mathrm{gom}}$ Mines Jndal Sherritt-Cordon Mines Cnsstar Anbestos	108 192 458 54 183 72 200 391 188 193 54 2,093	3.71	85 223 429 98 229 135 200 367 219 191 83 2.259	4.00	85 223 429 98 229 - 200 367 219 191 83 2,124	4.26
Petrolcuta	11,475	30,020	Ef Canada Gulf oil Canada lmperíal Oil shell ofl Sun osi Texaco	$\begin{array}{r} 466 \\ 1,477 \\ 3,713 \\ 1,602 \\ 269 \\ 754 \\ \hline 8,261 \end{array}$	1.21	$\begin{array}{r} 550 \\ 1,701 \\ 4.110 \\ 1.868 \\ 315 \\ 865 \\ \hline 9,409 \end{array}$	1.22	$\begin{array}{r} 550 \\ 1,701 \\ 4,110 \\ 1,868 \\ 315 \\ 865 \\ \hline 9,409 \end{array}$	$1.2 .2$
Food, Heverages, Tobaceo	8,261	7,214	Borden Camprell Soup Canadian Canners Carnalion Christju Brown \& Co. Consolidated Foods Ceneral Foods Gencral Mijls H.J. Heinz Kcllage-Salada Kraft Quaker Oats Ralsiton-Purina Standard Brands	144 100 86 56 109 186 248 74 95 67 281 59 156 252 1.913	3.77	250 113 107 71 132 202 317 88 119 78 321 70 166 280 2,214	3.73	150 113 107 132 202 317 88 119 78 321 70 166 280 2,143	3.85
Machinery, Transportation Equipment	16,771	15,083	Chrysler Ford General Motors fnternational Harvester United Aircraft	$\begin{array}{r} 1,929 \\ 4,259 \\ 3,614 \\ 566 \\ \\ \hline 150 \\ \hline 10,518 \end{array}$	1.43	$\begin{array}{r} 2,474 \\ 4,438 \\ 4,335 \\ 735 \\ 272 \\ \hline 12,254 \end{array}$	1.37	$\begin{array}{r} 2,474 \\ 4,438 \\ 4,335 \\ 735 \\ 272 \\ \hline 12,254 \end{array}$	1.37
Elpctrical, vitlities, Transportation	5,904	5,168	Aviation Ejectric Anglo-Canadian Tel. B.C. Tolephone GTE Jenkurt Cot Honcywell IDM Canada Raytheon Westingitouse Westcoast Transmission	$\begin{array}{r} 29 \\ 374 \\ 303 \\ 37 \\ 710 \\ 101 \\ 668 \\ 9 \\ 403 \\ 267 \\ \hline 5.292 \\ \hline \end{array}$	$\text { נ. } 78$	$\begin{array}{r} 36 \\ 445 \\ 361 \\ 52 \\ 822 \\ 115 \\ 719 \\ 12 \\ 452 \\ 417 \\ \hline 3,431 \end{array}$	1.72	36 445 361 52 822 115 719 12 452 417 3.431	1.72
Rubler, Plostica, Chemicnls	6,343	5,691	Bristol-Myers C1L. Dow Chemfeal Duront R,F. Coodrich Coodycar F.W. Horner lever brotlers Merck, Sharpe, \& Dohme Nons:mito Calinds Provtor 8 Gandle Sterewn-Willitur Union Carbide Uniroynl	106 518 314 368 164 281 19 233 24 134 216 50 341 203 2.973	1.92	124 595 337 410 151 329 19 266 28 145 314 56 378 212 3.364	1.69	124 595 337 410 151 329 19 266 28 145 314 56 378 212 3,364	1.69

TABIE 7 cont'd

Sictur				197! smune:		1975 Sampl.		1936.6asie	
Name	$\begin{aligned} & 3975 \\ & \text { sales } \end{aligned}$	$\begin{aligned} & 1974 \\ & \text { s.3 } 6.5 \end{aligned}$	Natic	$\begin{aligned} & \text { Comprander } \\ & 1974 \text { saler } \end{aligned}$	Mulliplict (6) Infverse	$\begin{aligned} & \text { Companies' } \\ & 19 / 5 \sin 2 \mathrm{ses} \end{aligned}$	Multifiler to Unsurise	$\begin{aligned} & \text { Compandes' } \\ & 1976 \text { soles } \end{aligned}$	Hultipder to tonverse
Metal Fabricating	2,884	2,661	Anerican Can Babcock \& Wileox Black \& Jecker Combustion Enginecring - Superienter ContinentaI Group of Conada Foster Wiceler Gillette ranada Horton CBI Koppers Int. Litton Systems Research - Cottrell Canada Stanley Works	213 64 45 - - 40 32 29 24 44 7 19 517	5.15	230 103 54 82 264 47 42 22 24 52 22 21 963	2.99		3.15
Paper 8 Allied	3.385	3,561	Addressograph - Mujtigraph Cauada Canadian Int. Paper Crokil Zellerback Canada Deninson Mfg. Co. Canada Masonite Canada Rayonicr Canada Scott raper Spruce Falls Power 8 Paper Weyerhaeuser	29 720 343 40 142 74 $\frac{146}{1,494}$	2.38	33 735 296 16 45 105 85 80 123 1.518	2.23	$\begin{array}{r} 33 \\ 735 \\ 296 \\ - \\ 45 \\ 105 \\ 85 \\ 80 \\ 123 \\ \hline 1,502 \end{array}$	

CALCULATION OF ACTUAL CANADIAN R\&D

Data for this item has been furnished from unpublished Statistics Canada material by the Science Statistics Centre. It is aggregated by industry groups as follows:

Nominal Industry Sector(s)
Mining

Petroleum
Food, Bev., Tobacco
Machinery
Transportation Equipment
Electrical, Utilities, Transportation

Rubber, Plastics, Chenical Products

Science Statistics Centre Groupings Aggregated to Correspond to Nominal Industry Sectors

Mines
Gas \& Oil wells
Petroleum products
Food, beverages, and tobacco
Machinery and transport ation equipment

Electrical
Transportation \& other utilities

Rubber and plastic products Drugs and medicines Other chemical products

Metal Fabricating
Paper \& Allied
The types of payments included in this data are current and capital intramural, and current extramural within Canada, R\&D expenditures, excluding government grants and contracts, by foreign-controlled corporations. It should be remarked that capital intramural expenditures are included so that Canadian R\&D figures will have a comparable base to U.S. expenditures obtained from Securities and Exchange Commission data, which include capital equipment depreciation. (This data comprises the bulk of this study's information on parent companies' R\&D.) Similarly, government grants and contracts have been excluded from the Canadian figures because they are not included in the Securities and Exchange Commission material.

The data has been estimated by the Science Statistics Centre for 1974 and 1976 because some of the components are not captured for even-numbered years.

Payments to non-residents for imported technology are taken from unpublished CALURA listings of "Payments to Non-Residents," by 34 major industry groups by 27 types of payments. The payments aggregated to reflect payment for all types of technology are:

CALURA NO.
9
10
12
15
16

Type of Payment

Patents of Invention Industrial Design Other Royalties and similar Payments Scientific Research Product and Process Development Research

The industry groups aggregated for this study are:
CALURA Groups and SIC
Industry Sector (s) Classes (1960)

Mining	Total Mining (05l-099)
Petroleum	Petroleum \& Coal Products $(365-369)$
Food, Bev.,	Food (l01-139)
Tobacco	Beverages (141-147)
	Tobacco Products (161-169)
Machinery, Trans.	Machinery (311-318)
Equip.	Transportation Equipment
	(321-329)
Electrical,	Electrical Products (331-339)
Utilities,	Public Utilities (572-579)
Transportation	Transportation (501-519)
Rubber, Plastics,	Rubber Products (161-169)
Chemicals	Chemicals \& Chemical
Metal Fabricating	Products (371-379)
Paper \& Allied	Metal Fabricating (301-309)

The most recent CALURA material available at this writing is for 1975. Therefore, this has been used in the invisible R\&D calculations for 1976 and 1975, while 1974 CALURA data has been used in the calculations for 1974.

The derivation of payments to non-residents by foreign-controlled companies is shown on the following page.

$$
\begin{aligned}
& 1975 \text { Payments to Non-Residents for Technology } \\
& \text { (\$ millions Cdn.) }
\end{aligned}
$$

Sector	Payments by All Companies	-	```Payments by Canadian- = Controlled Companies```	Payments by ForeignControlled Companies
Mining	14.3		1.6	12.7
Petroleum	17.3		0.1	17.2
Food, Bev., Tobacco	14.4		2.7	11.7
Machinery, Transportation Equip.	74.8		2.9	71.9
Electrical, Utilities, Transportation	28.3		5.9	22.4
Rubber, Plastics, Chemicals	54.2		0.6	53.6
Metal Fabr.	13.5		0.9	12.6
Paper \& Allied	8.6		0.9	7.7
Total Payments	225.4		15.6	209.8

1974 Payments to Non-Residents for Technology (\$ millions Cdn.)

Sector	Payments by All Companies	-	Payments by CanadianControlled Companies	$=\quad \begin{aligned} & \text { Payments by } \\ & \text { Foreign- } \\ & \text { Controlled } \\ & \text { Companies } \\ & \hline \end{aligned}$
Mining	13.4		1.7	11.7
Petroleum	11.9		0.0	11.9
Food, Bev., Tobacco	10.5		2.3	8.2
Machinery, Transportation Equip.	58.3		2.0	56.3
Electrical, Utilities, Transportation	30.5		3.6	26.9
Rubber, Plastics, Chemicals	50.3		0.7	49.6
Metal Fabr.	11.6		0.9	10.7
Paper \& Allied	10.3		0.6	9.7
Total Payments	196.8		11.8	185.0

Quantity

Sector total sales * 1960
Actual Canadian R\&D 1970
Payments to Foreigners 1960
Notes on discrepancies between systems

Mining	No discrepancies
Petroleum	No discrepancies
Food, Bev., Tobacco	No discrepancies

Machinery 1960 category 339 ("Miscellaneous
Transportation
Equipment
Electrical
Utilities
Transportation
Rubber, Plastics No discrepancies
Chemical Products No descrepancies
Metal Fabricating No descrepancies
Paper \& Allied 1960 Category 271 ("Pulp \& Paper
Mills") was split in 1970, and part
of it placed into 1.970 Category
031 ("Logging"). Also, 1960 Cate-
gory 272 ("Asphalt Roofing Manufact-
urers") was split in 1970, and part
of it placed into 1970 Category
399 ("Miscellaneous Manufacturing").

* Used in computing the Multiplier to Universe, "K".

[^0]: In to-day's world every nation uses the results of science and technology performed elsewhere. However, the magnitude of the invisible in-flows of technology, as estimated in this study, indicates that Canada's dependence on the importation of technology is quite substantial and probably greater than for most industrialized nations. Imported R\&D cannot fully substitute for indigenous R\&D and Canada's great dependence on such imports creates a serious problem.

 We have had rather easy access to the accessories of modern life through the use of these technological in-flows but there are also invisible costs. Imported technology does not generally make Canadian industry internationally competitive. It increases our vulnerability to foreign decision-making, and it limits the opportunities for highly-trained Canadians. There are undoubtedly other costs.

 In the current paper an attempt has been made to quantify the invisible flow of technology. Clearly, the next step will be to explore more fully the invisible costs.

