DEPARTMENT OF MATHEMATICS

2 An Interim Report to the Ministry of State for Science and Technology
on
THE QUEEN'S MATHEMATICS DEPARTMENT POPULATION MODEL
by
J. Davis and J. Verner

Queen's University, Kingston, Ontario
Queen's Mathematical Preprints No. 1974-8

Queen's University

AT KINGSTON

 ONTARIO, CANADAAn Interim Report to the Ministry of State for Science and Technology
on
THE QUEEN'S MATHEMATICS DEPARTMENT POPULATION MODEL
by
J. Davis and J. Vernier Queen's University, Kingston, Ontario Queen's Mathematical Preprints No. 1974-8

Dr。A．R。 Demirdache，
Director，
Technological Forecasting and Technology Assessment Division， Ministry of State for Science
and Technology，
Ottawa，Canada。
Dear Dr。 Demirdache：
I have pleasure in forwarding to you herewith an Interim Report on the work undertaken by this Department in response to your request for input towards the Canadian contribution to the work of the International Institute for Applied Systems Analysis．

You will recall that you asked us to attempt to model the growth of population in Canada，by means of a model involving coupled systems and non－linear dif－ ferential equations．The importance of the Model derives from the fact that population studies are an indispen－ sable building block in any attempt to study national socio－economic problems with the accuracy necessary to form a basis for policy decisions．

The work on this Model has been carried out principally by Professors Jon Davis and James H．Verner of this Department．As you will see，they have broken new ground in applying relatively sophisticated methods which have not hitherto been deployed on population studies，and they have devised computer programmes to display the distribution of population in age and time in a very graphic manner．

I remind you that in the agreement between us， the right of publishing the details of the procedures contained in this Report in scientific journals has been reserved to Professors Davis and Verner．They would wish me to emphasize strongly their evaluation of the present work as being highly preliminary，and they would caution against any attempt to make exaggerated claims for their model in its present state。

Even so，I trust that you will agree with my view that they have demonstrated that there are extremely worthwhile possibilities in their method，which should be pursued vigorously．

> Yours faithfully,

```
A.J. Coleman, Head,
Department of Mathematics.
i.
```


Contents

	Letter of Transmittal	i。
	Abstract	iii．
Io	Introduction	p． 1
II。	Structure of the Model	p。 4
III。	Derivation of Model Equations	p． 8
IV。	Model Estimation Methods	p． 20
V。	Simulation Trial Examples	p． 26
VI。	Future Work	p． 32

Appendices

A． | Analytical Properties of the |
| :--- |
| Governing Equations | p． 36

B．Numerical Methods for Solution p． 44 of PDE／ODE System

C．
Numerical Methods for
p． 50 Coefficient Estimation

D。Computer Program Listingp． 59

Abstract

The Queen's Mathematics Department population model is a dynamic model for simulating the evolution of a population distribution as a function of age and income level.

The basic structure of the model is such that birth-rates may be generated within the model as endogenous variables. This allows the inclusion of feedback effects from the population distribution to birth and immigration rates, and so provides a capability for simulations valid over longer time intervals than are possible with exogenous birth and immigration rate variables。

The model has been constructed with two main issues in view. The first is that of compatability of this model with other models with which it might be combined. This requirement dictates a modular structure described in this report. The second issue is the problem of parameter estimation in the model. The model has been formulated in such a way that estimation is made possible。

Effective numerical algorithms for these estimations based on available data formats are also reported.

A description of work that remains to be done in order to complete development of the model is also included。

Models of population growth form an essential part of any attempt at large scale socio-economic modelling. The age and economic level structure of the population has a direct bearing on various government service requirements ranging from elementary schools to pension plans, as well as the economic base available to support such programs. For this reason, it is essential that population models capable of simulating behaviour over a reasonable length of time be investigated。

Traditional demographic methods project population estimates forward in time by means of an aggregation procedure, followed by a linear extrapolation procedure based essentially on a Markov-chain type of model. Such methods are reasonably accurate over the relatively short term; however, the model structure is such that the fertility curve (the agespecific distribution of the birth-rates) is treated as an "exogenous variable" which must be specified for each run. Some attempts (the so-called "cohort method") have been made to include in the model the observed fact that birth-rates do vary over time, but the problem of extrapolation birth-rates forward in time in order to increase the length of time that model
results are valid remains.

It is clear that many factors affect birth-rates: economic conditions, perceptions of future economic conditions, ecological concerns, a host of other factors affect birth-rates to a greater or lesser effect. It is also clear that present population structure affects in turn the economic climate, and the general environment. The present population is in turn the result of past birth-rates (and immigration)。 The conclusion of the above observations is that it is impossible to decouple the dynamics of the birthrates from those of the population structure without compromising the long term validity of the model simulation. In effect, there exists a feedback path from population structure to birth-rates which may not be ignored over the long term. (This does not imply that such decoupling, based on assumptions that certain factors "vary slowly with time", detracts from the usefulness of models intended for use over relatively short time periods)。

The model discussed in this report represents an approach to the problem of including the dynamic feedback effect mentioned above in a simulation model. More specifically, this report contains the results of some work on what we regard as the basic structural
elements and problems associated with models of this sort.

The structure and "philosophy" of the model is discussed more fully in Section II.

It was determined early in our investigation that partial differential equations were an appropriate component of the model - in fact, it is hard to consider the effect of the "baby boom" without coming to the conclusion that a wave equation occupies a central position in a model of population distribution。 In work on any dynamical model it is necessary to determine numerical values for parameters occurring in the model equations before any simulation may be carried out. At worst, these parameters may have to be guessed; obviously it is much more desirable that the parameters be estimated from historical records of the phenomenon being modelled, if possible. The latter procedure provides an indirect means of assessing the validity of the model.

In the case of models governed by partial differential equations this estimation problem is even more severe, as it is often necessary to estimate not just a finite set of parameters, but a function of one or more independent variables. Aspects of this probIem are reported in Section III and Appendix C.

Once parameters and functions have been estimated from the available data, it is possible to simulate the system on a digital computer. This, of course, involves the solution of coupled systems of ordinary and partial differential equations by numerical methods. It is necessary to investigate the effects of the numerical methods used on the accuracy of the results obtained, in order to ensure that the behaviour of the model is a result of the actual "dynamics" of the model itself, and not the result of instability caused by inaccurate numerical methods. The difficulty of this problem is again increased by the fact that partial differential equations are involved. The work in this area has been checked by use of certain exact solutions to the governing equations (Appendix A) and is described in Section V and Appendix B.

II. Structure of the Model

It is helpful in describing the structure of the model presented here to explain briefly the general philosophy of "modelling" that the authors of this report hold, and which has had a strong effect on the structure adopted for the model discussed here.

In the first place, we feel that a main product of any modelling and simulation effort should be
insight into the behaviour of the phenomena being modelled. Perhaps the worst fate that can befall any model is that it be used to generate one set of trajectories which are then canonized as "the predictions" of the model (or worse yet, of the computer used to generate the output). Rather, the use of a model should itself be a dynamic process. It is certain that better data regarding the variables involved in a model will become available in the future, and it. is only prudent that this data, if possible, be used to improve any "forecasts" made using the model.

It is also rather likely that there are alternative opinions regarding the actual structure of some sections of any given model. In this situation, it is essential that simulations be run incorporating these alternative opinions, rather than selecting one arbitrarily and incorporating it permanently into the model. It is only by simulating each of the reasonable alternatives (a matter of judgement is involved here) that any true insight into the behaviour of the system as a whole can be gained; this includes an appreciation of the range of results which might be expected under reasonable alternative models.

These considerations suggest at least that a useful model must have sufficient flexibility of structure
to accommodate changes of the sort mentioned above; In order to build flexibility of this sort into a model, it is necessary to identify a basic dynamical core around which the model may be constructed.

The basic core of the model in this paper consists of equations for the evolution of the population distribution, and for the evolution of the fertility curve over time。

As was mentioned in the previous section, it is clear that economic conditions interact with the current population distribution and other factors to produce the current instantaneous birth-rate. It is also clear that the exact nature of these interactions is complicated and probably poorly understood in total, although some progress in this direction may be made by various methods. On the other hand, the evolution of the population distribution may be described (see the following section) by a partial differential equation of the conservation law type. Also, by looking at birth-rate records, it is possible to argue that the evolution of the fertility curve is also adequately modelled by a relatively simple partial differential equation. Furhter, the structure of these sections of the model is independent of the details of economic and other interactions which combine to affect birth-rates.

These considerations have led us to the decision to base the framework of the model on the dynamics of the population distribution and of the fertility curve. This leads to an overall model structure which may be represented in the "block diagram" form illustrated in Figure 1。

Figure 1.

This block diagram includes a section labelled economic dynamics. It is judged that the exact form of this section will be the subject of some debate, and that repeated simulations with varying socio-economic models will be required. It is expected that models with a relatively long time horizon and moderately high level of aggregation will be found most appropriate. In particular, models of the "Candide" type with high levels of detail and relatively short (eg. ten year) time spans are not felt to be appropriate. As work up to the time of the writing of this report has been concentrated on problems associated with core section of the model, problems in this particular area require further study.

III。 Derivation of Equations of Dynamic Core

The core of the model consists of two partial differential equations: one for the evolution of the population density as a function of time, age, and income level, and one for the evolution of the fertility curve (i.e. the curve of age and income specific birth-rates). These two equations are coupled in a non-linear fashion, although the non-linearity appears only in the boundary conditions for the population equation. This fact is of considerable use in connection with the estimation problems discussed in the following section, and makes
the derivations presented below simpler than might otherwise be the case.
A. Population Distribution Evolution

The model presented below is formulated as a basically deterministic model, and processes are modelled as occurring continuously in time on a macroscopic level, even though on a microscopic level the events may occur at discrete intervals of time. In this connection, a first step is to recognize that an averaging process is taking place whenever what are essentially discrete events are "smeared out" and modelled continuously in time. This process is illustrated by the use of death-rates in population models, decay rates in radioactive decay problems, and, in the derivation below, of an economic mobility u. In these cases, the use of such rates essentially distinguishes between deterministic and stochastic modelling approaches.

The equation governing the population distribution may be derived readily from what are essentially counting or bookkeeping methods. This is most easily demonstrated by the derivation of a simple model of population as a function of age x, neglecting death-rates, immigration and any other variables. In
this case, the appropriate counting argument is
essentially that the number of people at age x at time t is the same as the number of people at age $x-\Delta t$ at a time Δt units earlier: In terms of population density p, this becomes

$$
\begin{array}{cc}
x+\frac{\Delta x}{2} & x+\frac{\Delta x}{2}-\Delta t \\
\int p(x, t) d x= & \int \\
x-\frac{\Delta x}{2} & x-\frac{\Delta x}{2}-\Delta t
\end{array}
$$

which for smooth densities p is essentially
or $\quad p(x, t)-p(x, t-\Delta t)=p(x-\Delta t, t-\Delta t)-p(x, t-\Delta t)$.

Dividing the above by Δt and letting $\Delta t \rightarrow 0$ results in the partial differential equation

$$
\frac{\partial p}{\partial t}=-\frac{\partial p}{\partial x}
$$

As is well known, the general form of solution to the above is $f=\varphi(t-x)$, with φ an arbitrary function which must be evaluated from the boundary conditions appropriate to the problem. The appropriate boundary condition is that

$$
p(x=0, t)=\beta(t)
$$

where $\beta(t)$ is the birth-rate of time t. That this is the appropriate boundary condition may be verified by noting that this gives the solution

$$
p(x, t)=\beta(t-x)
$$

which says essentially that the number of people at age x at time t is the number of people born at time $t-x$, i.e. x years before time t. This of course is entirely evident from the assumptions made above。

The model considered in this paper includes a partial differential equation for the population density $p(x, s, t)$ as a function of the three variables age x, income s, and time t. As will be shown below in Appendix A, it is unnecessary to specify at this point
the units involved in the income scale s, that is, whether s represents net income, disposable income, or some other measure. This is so because the form of the governing equation is invariant under a (nonlinear) change of income scale, so that the units involved become an issue only during the processing of data for estimation purposes. This fact is a pleasant surprise which naturally arises out of the structure of the model equations.

To derive an equation for the population density on a realistic basis, it is necessary to account for effects neglected in the simplified model above, in particular to introduce terms

$$
i(x, s, t)
$$

representing the immigration rate (as a function of age, income level, and time), and the death-rate

$$
r(x, s, t)
$$

It is also necessary to introduce a term which accounts for the change of income level of various segments of the population over time. To accomplish this,

$$
u(x, s, t)
$$

Even though income levels of individuals on a microscopic scale undergo changes at discrete instants of time, perhaps modelled by a Poisson process, on the macroscopic scale of its influence on the income distribution we model the effect as one of a continuous flow across income levels. With this effect in mind, a term of the form

$$
\mu(x, s, t) \cdot \Delta t
$$

has an interpretation as the fraction of people at income level and age x crossing through level s in the time interval from t to $t+\Delta t$ 。

With the above definition of terms, it is easy to use a "counting argument" entirely similar to the one above to arrive at an equation representing the evolution of population density. The result is
$\frac{\partial p}{\partial t}=-\frac{\partial p}{\partial x}-\frac{\partial}{\partial s}(\mu(x, s, t) p)-r(x, s, t) p+i(x, s, t)$

Just as in the above derivation, it can be seen that the appropriate boundary condition for this equation is again

$$
p(x=0)=\text { birth-rate }
$$

There is a technical problem associated with this boundary condition, since taken literally it demands the assignment of an income level to babies at birth. In fact, the model as formulated above is capable of propagating income level migration through childhood. It is clear that such a procedure makes little sense; however, the problem may be avoided rather easily by the following device. The income distribution at $x=0$ may be set equal to that at the age of entry into the labour market. If the economic mobility is equal to zero for values of age x less than the labour market entry age, then the income distribution will remain constant for ages less than entry at the values of the entry distribution. Income distribution data generated by simulation runs may then be considered only for ages greater than an age of entry into the labour market, and no further modification of the model is required. The income distribution at entry age must be generated as part of the economic section of the model, and this
effect comprises one of the feedback paths from the economic to population distribution sector shown on Figure 1。

Other effects of this sort, for example, an effect of p on the economic mobility μ, are implicitly contained in the time dependence of u. As will be seen below in the section dealing with estimation problems associated with the model, there are substantial theoretical and practical benefits which follow from modelling the income migration process as above. In particular, it is then possible to devise numerical methods to estimate u from observed population disttribution data.

B. Fertility Curve Dynamics

Although the observation that socio-economic conditions, social attitudes, and so on, exert an effect on birth-rates is a common one, there seems to have been little effort made to quantify these effects in a dynamic model. Undoubtedly, a major reason for this is that it appears impossible to "derive" such a set of relations in the sense of the derivation outlined above for the population density dynamicso

For this reason, we have decided to approach this
problem as one in system identification. That is, we attempt to formulate the problem in such a way that the problem is reduced to that of estimating a dynamical relationship between a relatively small number of variables. This in itself is a major reduction, since in principle a fertility curve is an element requiring an infinite number of numbers for its specification.

This first reduction may be obtained by examining typical historical records of the behaviour of fertility curves over time (See Figure 2). A first observation is that the curves are all of roughly the same shape. An examination of their differences shows that their peaks slide from age to age over time, and that the area under the curve, representing the total birth-rates to be expected from a uniformly distributed population, varies over time。

A simple partial differential equation capable of reproducing this observed behaviour has been adopted as the basis for the fertility curve dynamics. This is

$$
\frac{\partial f}{\partial t}=-a(t) \frac{\partial}{\partial x}(d(x) f)-b(t) f
$$

The first term in this equation produces the effect of the shifting peak, while integrating the
equation with respect to x shows that $b(t)$ is the percentage change of the area under the fertility curve per unit time. An equivalent interpretation is that it represents the percentage rate of change of average family size。

The justification of the representation of the fertility curve dynamics by the above equation may be carried on in several ways. In the first place, the interpretation given $b(t)$ guarantees the presence of the term $b(t) f$ in virtually any such equation. The appropriateness of the term representing the "shifts" may be supported on the basis of a time scale argument, combined with the fact that the model fits the observed data reasonably well. The "shifts" occur in the data on a time scale considerably faster than that of the dynamics of the population section of the model. In fact, the shifts appear correlated with variations in the economic climate, recessions, rising and falling unemployment, and the like. Since these effects are expected to be introduced into the model most likely on the basis of "standard" econometric and business cycle models, it is anticipated that it will be possible to include the function $a(t)$ and its dynamics in this section of the model. The dynamics of $a(t)$ are to be
identified by means of either the usual econometric model identification techniques, or more recent work in the area of control theory. Since this identification problem presupposes knowledge of the term $d(x)$, work in this area is dependent on solving the problem of estimating $d(x)$, and applying the algorithm for this purpose is described in the following section。

Comments similar to the above also apply to the problem of determining the dynamics governing the term $b(t), a l t h o u g h$ it is suspected that this will be even more difficult than the above process. This is so because $b(t)$ is dominated more by social attitudes, education, and other effects much less easy to quantify than economic ones. It is felt that this area represents an example of the need for alternative sub-models and repeated simulations discussed above in Section II in connection with the overall structure of the model. While the above discussion has been carried through as though the fertility curve were independent of income, an entirely similar derivation is possible on the basis of an income dependent fertility curve. If one also allows the possibility that the economic interactions occur unevenly across income levels, then the appropriate equation is

$$
\frac{\partial t}{\partial t}=-\frac{\partial}{\partial x}(a(x, s, t) f)-b(s, t) f
$$

Because of the meaning of a fertility curve (or surface, if s is included as an independent variable) as an age (and income) specific birth-rate, the formula for the total birth-rate is simply

$$
b(t)=\int f(x, s, t) p(x, s, t) d x d s \quad .
$$

No mention has been made in the above derivations of any geographical aspect of the problem. There are, however, some restrictions implicit in the derivations of the model equations. It is clear that certain of the quantitites involved in the above equations vary with geographical locality. From this, it is obvious that the model must be applied separately over geographical areas between which the relevant quantities vary. To obtain an overall model, then, internal migrations must then be included in the immigration rates of the models for each geographical region.

There is also implicit in the model derivation as assumption of a sufficiently large sample population, so that the modelling of the immigration, death, birth, and economic migration processes as continuous is valid.

The dynamical equations governing the core section of the model derived above involve various auxiliary functions, namely: death and immigration rates, an economic mobility function $\mu(x, s, t)$, and functions $a(t), b(t)$ and $d(x)$ determining the evolution of the fertility curve. Before it is possible to produce any simulation runs with the model, it is necessary to determine suitable estimates of these functions.

Generally speaking, this problem of parameter and function estimation is one of the most difficult ones involved in the construction of any model. Consideration of the conventional techniques of econometric modelling makes obvious the amount of effort which is expended in this area. In fact, with a certain amount of injustice one might view much econometric modelling as consisting of the development of schemes for the recursive estimation of parameters for short term (often linear) extrapolation models. This view ignores the effort involved in determining the extrapolation model whose parameters are to be estimated, but the fact remains that there continues to be much work on the development of regression - estimation methods in this area.

At practically the opposite end of this problem stand models of the sort proposed by Forrester and his
associates. One of the most consistent criticisms
levelled at Forrester's World and Urban Dynamics models is that practically no attempt has been made to estimate the parameters and functions involved in the models in any "realistic" fashion。

This apparent gulf between the Forrester models and conventional econometric models is, in our view, a large contributing factor to the hostile reaction Forrester's models have received in some quarters. It is also a gulf that is not easily overcome by philosophic discussions about differences of purpose between the two approaches.

In the case of the present model, it happens that considerable progress can be made in estimating the functions that are involved in the model of the core dynamics. Of course, this is not entirely unexpected, since an effort has been made to formulate the dynamics of the core in terms of variables which may be readily measured. Also, our definition of what constitutes the core dynamics of the model virtually assures that it must be possible to produce useful quantitative estimates of the functions involved.

The functions $r(s, s, t)$ and $i(x, s, t)$ in the population model are just death and immigration rates, so there is no problem in obtaining historical records of
these. Similarly, the function $b(t)$ may be readily determined on the basis of its interpretation in terms of area under the fertility curve。

This leaves just the terms $\mu(x, s, t)$ in the population equation and $a(t) d(x)$ in the fertility equation to be determined. It can be seen that each term enters its equation in an analogous way, so that an estimation method can be derived which can be used to estimate both the economic mobility $u(x, s, t)$ and the term $a(t) d(x)$ in the fertility equation.

It is shown in Appendix A that the form of the partial differential equations is such that an integrating factor may be introduced to reduce the problem to that of estimating $\mu(x, s, t)$ and $a(t) d(x)$ in the equations

$$
\begin{aligned}
& \frac{\partial \vec{p}}{\partial t}=-\frac{\partial \bar{p}}{\partial x}-\frac{\partial}{\partial s} \quad(\mu(x, s, t) \bar{p}) \\
& \frac{\partial \bar{f}}{\partial t}=-\frac{\partial}{\partial x}(a(t) d(x) \bar{f})
\end{aligned}
$$

In the modified population equation, integrate between the limits of s and infinity. There results

$$
\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right) \quad \int_{s}^{\infty} \overline{\mathrm{p}} \mathrm{ds}=\mu(\mathrm{x}, \mathrm{~s}, \mathrm{t}) \cdot \overline{\mathrm{p}}(\mathrm{x}, \mathrm{~s}, \mathrm{t})
$$

here $\quad \int_{s}^{\infty} \bar{p} d s$ has the interpretation of the number of people at age x, income s, and time t having an income greater than s. Solving this for μ gives

$$
\mu(x, s, t)=\frac{1}{\bar{p}(x, s, t)} \quad\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right) \int_{s}^{\infty} \bar{p}(x, s, t) d s
$$

This provides an estimate of μ wherever $\bar{p}(x, s, t) \neq 0$ 。 Since $\bar{p}(x, s, t) \neq 0$ except on the "tails of the distribution", the above formula may be used to determine μ throughout the age and income brackets containing the great bulk of the population. On the tails of distribution (e.g., at very high income levels) the interpretation of u makes it clear that μ must tend to zero, so that the fact that the above formula is less useful there is of little concern.

Carrying out exactly the same procedure with the modified fertility curve results in

$$
a(t) d(x)=\frac{1}{\bar{f}(x, t)} \frac{\lambda}{\partial t} \int_{x}^{\infty} \bar{f}(x, t) d x
$$

This determines $a(t) d(x)$ over those portions of the age scale which $\bar{f}(x, t) \neq 0$ o Again \vec{f} tends to zero only on the tails of the fertility distributione Recalling that the term $a(t) d(x)$ was introduced to account for changes in the age distribution of fertility we see that intuitively $a(t) d(x)$ reflects the effects of shifts in "planned births" for the most parto Since births arising in the extremes of the fertility distribution do not fall into that category, it is clear that $d(x)$ must approach zero at these extremes. Hence it is again true that the fact that the formula derived is less useful in regions where $\overrightarrow{\mathbf{f}}$ is close to zero is of small consequence.

$$
\text { Once } \mu(x, s, t) \text { and } a(t) d(x) \text { have been est- }
$$

imated, further estimation problems remain. One problem is that of determining numerically the values of a(t) alone for use in identifying the interactions between the economic sector and the fertility curve A second related problem is that of isolating the time dependence in $u(x, s, t)$ in such a way that a similar interaction analysis may be carried out. These problems are of a
somewhat more technical nature, so our work on them is reported in Appendix C below.

A further technical complication arises in connection with practical use of the estimation formulas above. This arises from the fact that the actual population density data is not available; rather figures are available for, say, the number of persons between ages 25 and 29 with income between eight and ten thousand dollars. This amounts to the data

$$
\int_{8,000}^{10,000} \int_{25}^{29} p(x, s, t) d x d s
$$

at a fixed value of t 。
We have expended a moderate amount of effort to develop accurate numerical algorithms with which $u(x, s, t)$ and $a(t) d(x)$ may be determined from aggregated data of the sort mentioned above. The method devised uses somewhat delicate application of numerical spline techniques. This work is also described in Appendix C。

Simulation runs have been made in order to test the algorithm for numerical solution of the coupled system of ordinary and partial differential equations which constitute the model

Since there is a rather large amount of numerical data associated with each simulation run，the results are produced by the simulation program in a visual as well as numerical format．This is accomplished through a plotting routine which constructs perspective drawings of the three dimensional surfaces generated by a sim－ ulation run。

The（steady state）age distribution which results from a constant birth－rate and an absence of immigration is illustrated in Figure 2．The age distribution which results in this case is of course determined solely by the death－rate。

The wave－like nature of the solutions of the gov－ erning equations may be clearly observed in a simulation which creates a rise in the fertility curce，starting from an initial condition of the steady state illust－ rated in Figure 3 ．Since the dynamics governing $a(t)$ and $b(t)$ have not yet been determined，a simulation has been carried out by introducing $b(t)$ as an exo－ genous variable；$a(t)$ was determined through the

dynamic equation

$$
\left(\frac{d}{d t}+1\right)^{2} a(t)=b(t)
$$

The functions $b(t)$ and $a(t)$ have been determined so that $\int_{0}^{T} a(t) d t=\int_{0}^{T} b(t) d t=0$, so that the fertility curve returns to its original value. This produces the response to Figure 4 in the fertility curve, which corresponds to a "baby boom" of duration approximately five years. The effect of this rise in the fertility curve on the age distribution is illustrated in Figure .

The varying total birth-rate may be clearly seen at the back edge of the figure; the secondary rise in the birth-rate which occurs as the original "offspring" of the boom pass through the childbearing ages is plainly visible. It is also easy to see the original boom passing as a wave through the age structure。

Both the wave nature of the solutions and the birth-rate variations which occur due to a nonuniform age distribution are illustrated in Figure 5. This output results from an initial age distribution which is significantly different from the steady-state distribution. Such a distribution might be viewed as

3.46	0.10
3.00	0.08
2.50	0.07
2.00	0.05
1.50	0.04
1.00	0.03
0.50	0.01
0.00	-0.00

EVOLUTION OF FERTILITY OVER 50 YEARS: WITH FERTILITY PROGRESSION Figure 3.

EVOLUTION OF POPULATION OVER 50 YERRS: WITH FERTILITY PROGRESSION Figure 4.

the result of variations in fertility and immigration which have occurred previous to the time interval covered by the simulation. In this simulation the fertility curve has been held constant, so that the birth-rate variations which occur are due to the varying number of people in the child-bearing age brackets.
VI. Future Work

As of the time of writing of this report, the model has progressed to the point that the basic structure has been established, and the crucial numerical problems associated with the model are well in hand. In particular, numerical methods have been devised for the simultaneous integration of the partial differential equations involved in the model core dynamics and the accuracy of the method has been tested by means of comparison with explicit special case solutions of the model equations obtained by analytical means. Also, a considerable amount of effort has been expended on the problem of devising efficient numerical procedures for extracting estimates of the functional coefficients of the partial differential equations from date available in the form of a histogram. This algorithm has been tested again by use of explicit solutions of the governing equations,
and has produced accurate results in the tests.
With these two obstacles removed, the next step in the development of the model is to begin the process of modelling the dynamics of the interaction between the parameters occurring in the core section of the model and various economic variables. The first step in this procedure is to apply the estimation algorithms to the actual historical data in order to determine the time history of $a(t), b(t)$ and the variations associated with the economic mobility u 。 Once these functions have been extracted from the data, various approaches to establishing the interaction can be started.

The problem of determining the interaction will first be treated by conventional time-series techniques, that is, correlation analysis based on the assumption of a Iinear dynamical system of finite dimension as the dynamical intermediary between the economic variables and those in the model core. More recent methods associated with input-output analysis of control systems and identification from operating records will also be tried if the time-series methods are found unsuitable. The relative effectiveness of these two techniques will probably depend on the "actual" location of the stochastic noise element in the real system, length of the operating records, and other factors which are difficult
to predict in advance. Non-linear regression methods and techniques of non-linear system identification are held in reserve in case the above methods prove incapable of modelling the interactions.

After a suitable dynamic model of the interaction effects has been determined, full scale model simulations may begin. This requires models to generate economic variables as mentioned above in Section $I I_{\text {, }}$ and it is currently planned to adapt standard economic models to this purpose. It is also expected that in this context stochastic as well as deterministic simulations will be carried out. This is desirable for two reasons: first, it is a means of assessing the sensitivity of the overall model; second, it is clearly more realistic to model economic behaviour to include random fluctuations if possible.

Finally, we mention that there is a considerable amount of additional work which should be carried out in connection with an investigation of this model. In this area, we mention here only two possibilities which might be considered. The first is described here only because of its possible relevance to the problem of interaction identification discussed above.

The model as it currently exists has been formulated on a "macroscopic" level, that is, the processes which transfer people from one level to another as well as birth and death processes have been modelled as occurring continuously in time. On the microscopic level of an individual, these processes obviously occur at discrete instants of time and are most suitably modelled as a stochastic process. Such modelling will involve the determination of the probability of the occurances of the various "elementary events" which occur on the microscopic level. In such a model, the various interaction effects which are to be estimated in the continuous model appear in the form of dependence of transition probabilities on the current state of the other variables involved in the model. On this level, there is then the possibility of estimating these transition probabilities and their dependence on the other model variablesg and thus modelling the interaction effects directly. Close examination of the resulting stochastic process model should then shed light on the form of the interaction in the continuous model formulation of the problem.

A second area where very useful work may be done is in the area of the construction of highly effecient numerical methods for the solution of the governing
equations. In our work so far relatively standard numerical techniques have been used for numerical integration of the evolution equations. It may be quite possible to make use of the special forms of the equations to construct more efficient methods. Some preliminary investigation indicates that methods based on Lie algebraic techniques hold promise in this regard. It will be especially important to the usefulness of the final simulation programs that program execution time be kept as low as possible in order that the required number of repeated simulations may be carried out at a reasonable cost.

Appendix A: Analytical Properties of the Governing Equations

In this Appendix we report some of the analytical properties of the partial differential equations governing the dynamics of the population distribution and the fertility curve. The study of these analytical properties in itself provides considerable insight into the problems of population dynamics, as well as providing material essential for the testing of the accuracy of numerical methods developed for use in the model.

It was mentioned in Section III that the population distribution equation enjoys an invariance property
which makes it unnecessary to specify in the model formulation the exact measure of income represented by the variable s 。

This can be readily demonstrated mathematically as follows. Suppose that instead of considering the distribution function $p(x, s, t)$ as a function of the income scale s , governed by

$$
\begin{aligned}
\frac{\partial p}{\partial t}(x, s, t)= & -\frac{\partial p}{\partial x}(x, s, t)-\frac{\partial}{\partial s}\left(\mu(x, s, t)_{p}(x, s, t)\right) \\
& +i(x, s, t)-r(x, s, t) p(x, s, t)
\end{aligned}
$$

we ask for the evolution of the distribution expressed as a function of the income measure σ. Here the new scale σ is related to the scale s according to

$$
\sigma=\varphi(s)
$$

where φ is a monotone, smooth (non-linear) function otherwise arbitrary.

By the Chain Rule,

$$
\frac{\partial}{\partial s}=\frac{\partial \sigma}{\partial s} \cdot \frac{\partial}{\partial \sigma}=\varphi^{\prime}(s) \frac{\partial}{\partial \sigma}
$$

so that the evolution equation for p becomes

$$
\frac{\partial}{\partial t} p\left(x, \varphi^{-1}(\sigma), t\right)=-\frac{\partial}{\partial x} p\left(x, \varphi^{-1}(\sigma), t\right)
$$

$$
-\varphi^{\prime}\left(\varphi^{-1}(\sigma)\right) \frac{\partial}{\partial \sigma}\left(\mu\left(x, \varphi^{y}\left(\varphi^{-1}(\sigma)\right), t\right)\right.
$$

$$
\left.p\left(x, \varphi^{-1}(\sigma), t\right)\right)+i-r \cdot p\left(x, \varphi^{-1}(\sigma), t\right)
$$

The Jacobian rule shows that the population density in terms of x, σ and t is given by

$$
\tilde{p}(x, \sigma, t)=\frac{1}{\varphi^{1}\left(\varphi^{-1}(\sigma)\right)} \mathrm{p}\left(x, \varphi^{-1}(\sigma), t\right)
$$

Rearranging the previous equation to introduce $\tilde{\mathrm{p}}$ gives

$$
\frac{\partial \tilde{p}}{\partial t}=-\frac{\partial \tilde{p}}{\partial x}-\frac{\partial}{\partial \sigma}(\tilde{\mu}(x, \sigma, t) \tilde{p})+\tilde{i}-\tilde{r} \tilde{p}
$$

$$
\text { with } \tilde{\mu}(x, \sigma, t)=\mu\left(x, \varphi^{-1}(\sigma), t\right) \cdot \varphi^{\prime}\left(\varphi^{-1}(\sigma)\right)
$$

$$
\begin{aligned}
& \tilde{\mathrm{I}}(\mathrm{x}, \sigma, \mathrm{t})=\frac{\mathrm{i}\left(\mathrm{x}_{0} \varphi^{-1}(\sigma), t\right)}{\varphi^{p}\left(\varphi^{-1}(\sigma)\right)} \\
& \tilde{\mathrm{r}}(\mathrm{x}, \sigma, t)=r\left(x, \varphi^{-1}(\sigma), t\right)
\end{aligned}
$$

This identifies the transformation law of the economic mobility, and shows the invariance of the governing equation under such a change of scale.

While the coupled system consisting of the population anf fertility evolution equation is a nonlinear one, the non-linear interaction occurs only in the calculation of the instantaneous birth-rate (so long as μ, $a(t)$ and $b(t)$ are treated as exogoneous variables)。 Since the birth-rate enters only as a boundary condition, it is possible to get useful results from explicit solutions of the equations.

Both the population and fertility equations fall into the class of evolution equations governed by first order partial differential equations. While the equations in general have variable coefficients, they are linear in the dependent variable; hence, in principle, the method of characteristics is applicable.

This observation does not dispose of the problem, however. A principal reason for carrying out the invest-
igation into the analytical properties of the equations is to obtain if possible explicit solutions to the equations. By explicit solutions, we mean solutions obtained in closed form analytically.

These solutions have been used to test the accuracy of the numerical methods used both to integrate the evolution equations and to estimate the functional coefficients of the equations $\mu(x, s, t)$ and $a(t) \circ d(x) \quad$. In the absence of explicit solutions, only lengthy (and expensive) trial runs with varying step sizes can be employed to attempt to estimate accuracy; with explicit solutions available, it is far easier to estimate the step sizes required for a given level of numerical accuracy。

The above remarks pertain to evaluation of the integration scheme; in the case of the estimation problem, the unavailability of explicit solutions would force one to the use of the integration routine to generate the data on which to test the estimation algorithm. In the case of inaccurate results, it then becomes tedious to determine whether the inaccuracy arises from the estimation scheme, or from the numerically generated data. It is this need for explicit solutions, at least in particular cases, that has led to the work reported
below. The method of characteristics in general produces a solution in implicit form; it is essentially impossible to carry out the required function inversions numerically with enough control on accuracy to make such implicit solutions useful for our purposes.

Fertility Equation

An explicit solution to the fertility equation may be obtained by the method of characteristics. For

$$
\frac{\partial f}{\partial t}=-\frac{\partial}{\partial x}(a(t) d(x) f)-b(t) f
$$

introduction of an integrating factor of $e^{\int_{0}^{t} b(t) d t}$ reduces the problem to

$$
\frac{\partial \bar{f}}{\partial t}=-\frac{\partial}{\partial x}(a(t) d(x) \bar{f})
$$

Solution of the above by the method of characteristics gives

$$
\begin{aligned}
\overline{\mathrm{f}}(\mathrm{x}, \mathrm{t})= & \left.\frac{1}{\mathrm{~d}(\mathrm{x})} \not \mathrm{h}^{-1}\left(\mathrm{~h}(\mathrm{x})-\int_{0}^{\mathrm{t}} \mathrm{a}(\mathrm{~s}) \mathrm{dx}\right)\right) \\
& \cdot d\left(\mathrm{~h}^{-1}\left(\mathrm{~h}(\mathrm{x})-\int_{0}^{\mathrm{t}} \mathrm{a}(\mathrm{~s}) \mathrm{ds}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
\text { with } h(x)-h\left(x_{0}\right)= & \int_{x_{0}}^{x} \frac{1}{d(x)} d x \\
& \text { and } \phi(x)=\bar{f}(x, 0)
\end{aligned}
$$

Population Equation

As may be seen from the above example, explicit solutions are generally very involved in form. For this reason, explicit solutions of the population equation will not be exhibited here. We remark that such solutions may be found; the case in which the death-rate varies linearly with age is one example of use in connection with the estimation problem for $\vec{\mu}^{\mu}$. (Results from this example allow the removal of the death-rate term from the governing equations by means of an integrating factor.)

The use of explicit solutions has some potential use beyond evaluation of numerical methods. This is in the area of decreasing the size and cutting down the execution time for the simulation of the model. This may become important in later phases of development of the model, and will have an effect on the frequency of use of the completed model.

The key to such reduction of time expenditure is the observation that an explicit solution reduces the problem of evolution over an arbitrary time interval to a single function evaluation。 This is to be contrasted with the repeated evaluations involved in a numerical integration。 of course, the full benefit of this discrepancy is available only if the interaction effects are specified exogenously. In the case of the full model, however, it seems likely that explicit solutions could be used together with extrapolation methods to improve simulation execution time.

This leads naturally to the question of which classes of coefficient functions tive rise to explicit solution formulae. Of particular interest is the problem of explicit solutions to models in which the coefficient functions appear in "separable form" (see Appendix B below), so that the equation has the form

$$
\frac{\partial p}{\partial t}=-\frac{\partial p}{\partial x}-\frac{\partial}{\partial s}\left(\sum_{i=1}^{N} \eta_{i}(t) v_{i}(x, s) p\right)-\varepsilon(t) r(x, s) p
$$

Progress in the direction of explicit solutions to the above equation may be made by recourse to the theory of Lie Algebras. In particular, if the Lie algebra generated by the partial differential operators on the
right side of the above equation is solvable, then
(global) explicit expressions are possible. Other conditions on the Lie algebra lead to (local) results which may prove useful。

Appendix B:

Numerical Methods for Partial and Ordinary Differential

Equations

In Section III of the report, the population and fertility are dynamically modelled by a pair of partial differential equations:

$$
\begin{gathered}
\frac{\partial p}{\partial t}=-\frac{\partial p}{\partial x}-\frac{\partial}{\partial s}(\mu(x, s, t) \cdot p)-r(x, s, t) p+i(x, s, t) \\
\frac{\partial f}{\partial t}=-a(t) \frac{\partial}{\partial x}(d(x) f)-b(t) f
\end{gathered}
$$

In Section IV, techniques for estimating the parameters $u(x, s, t), \quad a(t), d(x)$ are discussed and there, it is pointed out that full simulation of the overall model requires dynamic modelling of these functions using partial and/or ordinary differential equations.

Since this appendix deals with aspects of the
actual simulation of the model, it is assumed that ordinary differential equations for $a(t)$ and $b(t)$ have been obtained, estimated values of $d(x)$ and $u(x, s, t)$ have been obtained by use of the estimation procedures described elsewhere in this report, and that initial fertility and population distributions are known: $f(x, s, o)$ and $p(x, s, o)$ - Values of $p(x, s, t)$ and $f(x, s, t)$ are required, and these are simulated using numerical techniques. The techniques have been chosen in order to be consistent with the conservation law character of the governing equations, to attain a reasonable accuracy in the simulated values subject to restrictions on the size of data groupings which are expected in currently available data, and to balance these with economy of computation.

In the numerical simulation which has been carried out up to the time of writing of this report, the income level dependence of the population density has been suppressed. As well as yielding computational efficiencies during the development of the model, this procedure has made the analysis of numerical problems arising in the modelling considerably easier. The extension of the numerical methods developed so far to include the income variable s is expected to cause no significant dif-
ficulty, as the problems which arise should parallel those already encountered.

Numerical Integration of the Fertility Equation

The fertility equation has been transformed by an integration factor to

$$
\frac{\partial \vec{f}}{\partial x}(x, t)=-a(t) \frac{\partial}{\partial x}(d(x) \bar{f}(x, t))
$$

where

$$
f(x, t)=e^{-\int_{o}^{t} b(t) d t} \vec{f}(x, t)
$$

An approximation $F_{i j}$ to $\bar{f}(i h, j k)$ is obtained using

$$
\begin{aligned}
& F_{i j+1}= F_{i j}-\frac{k}{2 h} a_{j}\left(d_{i+1} F_{i+1 j}-d_{i-1} F_{i-1 j}\right) \\
&+\frac{1}{2}\left(\frac{k a{ }_{j}}{h}\right)\left[d_{i+\frac{1}{2}}\left(d_{i+1} F_{i+1}-d_{i} F_{i j}\right)\right. \\
&\left.-d_{i-\frac{1}{2}}\left(d_{i} F_{i}-d_{i-1} F_{i-1 j}\right)\right] \\
& \text { and } f(i h, j k) \quad i s \text { estimated by } F_{i j} \text { using numerical }
\end{aligned}
$$

integration for the integration factor (see below). This scheme is almost second order, and has two desirable properties: For $d(x)=d$ constant, it is numerically stable provided that the step size ratio is chosen to satisfy

$$
\frac{k}{h} \leq\left|\frac{1}{d \cdot a_{j}}\right|
$$

Also this scheme has the property that it removes a distortion of the fertility profile when the effect causing the distortion is removed. This property is exhibited in Figure 3.

The dynamical equations governing the variables $a(t)$ and $b(t)$ must of course be integrated simultaneously with the partial differential equations. Numerical approximations are currently calculated using a . modified Euler method over time steps of length k.

While this procedure may be easily replaced by a more accurate process, this method was selected in view of the decision to use simple routines initially as an aid to algorithmic development, and later to replace these by more sophisticated routines as dictated by accuracy and economy in large simulations.

Since dynamic modelling of $a(t)$ and $b(t)$ has not yet been carried out, the dynamics

$$
(D+1)^{2} a(t)=b(t)
$$

have been assumed in order to verify the integration methods. In this case

$$
\begin{aligned}
& \underline{a}(t *)=a(t)+h \underline{f}(\underline{a}(t)) \\
& \underline{a}(t+k)=\underline{a}(t)+\frac{h}{2}[f(\underline{a}(t))+f(\underline{a}(t *))]
\end{aligned}
$$

where

$$
\underline{f}\left[\begin{array}{r}
I a(t) \\
I a(t) \\
a(t) \\
a^{1}(t)
\end{array}\right]=\left[\begin{array}{l}
b(t) \\
a(t) \\
a^{1}(t) \\
b(t)-a(t)-2 a^{1}(t)
\end{array}\right]
$$

describes the modified Euler method.

Numerical Integration of the Population Equation

Initially only the age-time dynamics of population have been considered; hence the equation is

$$
\frac{\partial p}{\partial t}(x, t)=-\frac{\partial p}{\partial x}(x, t)-r(x, t) \cdot p(x, t)
$$

To solve this numerically, we approximate $p(x, t)$ by $P(x, t)$ where

$$
P(x+h, t+h)=(1-r(x, t)) P(x, t)
$$

The fertility is used to estimate the population birthrate

$$
p(o, t+h)=\int_{0}^{\infty} p(x, t) f(x, t) d x
$$

and this is approximated numerically by

$$
P(o, t+h)=\sum_{i=1}^{100} P(x, t) F\left(x, t+\frac{h}{2}\right)
$$

where $F\left(x, t+\frac{h}{2}\right)$ is obtained from the numerical approximations of the fertility curve.

The low accuracy method for simulating the population is reasonably accurate for that section of the profile where the death-rates are almost constant. It is expected that improvements will be possible after additional work. Improvements in the simple scheme used for estimating $P(o, x+h)$ would lead only to a change in scale of values, but not their dynamics.

In conclusion we point out that certain portions of the model are particularly sensitive to errors - that is small errors may lead to very inaccurate simulations of the dynamics, whereas other portions of the model are not so sensitive. For this reason, it is possible (and economically reasonable) to tailor the accuracy of the methods used to the sensitivity of that part of the model being simulated.

Appendix C: Numerical Determination of Partial
Differential Equation Coefficients

In Section IV it is shown that integration of the partial differential equations leads to analytic formulas for the estimation of $\mu(x, s, t)$ from the population equation, and $a(t) \cdot d(x)$ from the fertility equation. To use these formulas, available data must be used to estimate the quantities required. In particular, it is required that histogram data be used

1. to generate (continuous) density functions, that
2. partial derivatives of these density functions be estimated, and that
3. the required integrals be estimated.

The distributions involved appear to be very smooth, and as a result piecewise approximation by polynomials with continuous first derivatives is necessary; additional smoothness is desirable. The algorithm employed is described below for the problem of estimating the economic mobility $u(x, s, t)$ - The procedure for estimating the term $a(t) d(x)$ in the fertility equation is entirely similar。

1. A function which might be best described as a fourth-order spline (having three continuous derivatives) is determined so that its integrals over the appropriate intervals are equal to the given values from the histogram data.
2. Differentiation of the fourth-order spline with respect to the x-variable provides an estimate of $\frac{\partial p}{\partial x}$; determination of an additional cubic spline in the t-variable followed by a t-differentiation provides an estimate of $\frac{\partial p}{\partial t}$.
3. Finally, the required integral is estimated by integration of the result of 2 . above.

In the use of spline methods in approximation problems, it is necessary to provide additional boundary
conditions beyond the requirement that the spline interpolate the appropriate sample points. Unfortunately, in the present application, use of the so-called "natural boundary conditions" was found to give particularly poor estimates near the boundary of the region involved. Further, it was found that these errors were quite sensitive to the values assigned。

After considerable experimentation, it was determined that adequate results could be obtained through estimation of the third derivatives near the endpoints by third order finite differences, and use of this data to determine the boundary conditions. The scheme for approximating the distribution function requires the solution of a system of linear equations including three different types
(a) $r_{i}^{\prime \prime}-2 r_{i-1}^{\prime \prime}+r_{i-2}^{\prime \prime}-\frac{r_{i}^{\prime \prime \prime}}{2}-\frac{r_{i-1}^{\prime \prime \prime}}{2}=0 \quad i=2, \ldots, 100$
(b) $r_{i}-2 r_{i-1}+r_{i-2}-\frac{r_{i}^{\prime \prime}}{6}$

$$
-\frac{2}{3} r_{i-1}^{\prime \prime}-\frac{r_{i-2}^{\prime \prime}}{6}+\frac{r^{\prime \prime \prime}}{24}+\frac{r^{\prime \prime \prime}}{24}=0 \quad i=2, \ldots, 100
$$

(c) $\quad r_{i}+r_{i-1}-\frac{r_{i}^{\prime \prime}}{12}-\frac{r_{i-1}^{\prime \prime}}{12}+\frac{r_{i}^{\prime \prime \prime}}{60}=2 P_{i} \quad i=1, \ldots, 100$
where P_{i} is the number of persons between ages i and $i+1$, and the boundary conditions are

$$
r_{0}^{\prime \prime}=r_{100}^{\prime \prime}=0 \quad, \quad r_{0}^{\prime \prime \prime}=0 \Rightarrow-r_{0}^{\prime \prime}+r_{1}^{\prime \prime}-\frac{r_{1}^{\prime \prime \prime}}{2}=0
$$

$$
r_{0}^{\prime \prime}=0 \text {. }
$$

Here r_{i} is interpreted as the population distribution at age i years, and it is assumed that values P_{i} are available for $i=0,1, \ldots, 99$.

To solve this system, a reduction method for a sparse matrix is used, and the equations are ordered so that coefficients of moderate size are maintained on the diagonal. For a test distribution, the error in regenerating the histogram was less than 1 percent.

Spline Approximation

A standard analysis for cubic spline approximation represents this function in terms of estimates for the
second derivative at nodes. These are obtained as solutions of the system of equations

$$
\frac{h_{i} M_{i-1}}{h_{i}+h_{i+1}}+2 M_{i}+\frac{h_{i+1} M_{i+1}}{h_{i}+h_{i+1}}=6 \frac{\frac{r_{i+1}-r_{i}}{h_{i+1}}-\frac{r_{i}-r_{i-1}}{h_{i}}}{h_{i}+h_{i+1}}
$$

to interpolate $\left\{r_{i}\right\}$ with a spacing $\left\{h_{i}\right\} \quad$ (which for our model is either h or k constant, and boundary conditions used are

$$
\begin{aligned}
\frac{M_{1}-M_{o}}{h} & =\frac{1}{h^{3}}\left(-r_{o}+3 r_{1}-3 r_{2}+r_{3}\right) \\
\frac{M_{n}-M_{n-1}}{h} & =\frac{-1}{h^{3}}\left(-r_{n-3}+3 r_{n-2}-3 r_{n-1}+r_{n}\right)
\end{aligned}
$$

With this approximation, errors in $u(x, s, t)$ and $a(t)$ $d(x)$ obtained using the estimation procedures are less than 1 percent on the interior of the domain. Although errors are large where $P(x, s, t)$ is small, values of $\mu(x, s, t)$ there are not crucial (see Section IV).

Separability of Coefficient Functions

It was mentioned in Section III that one aspect of the structure of the model was that it was formulated in such a way as to make it possible to model the feedback effects on the core section of the model in terms of a finite number (even a small finite number) of functions of time. This was illustrated in Section III in the hypothesis that the effect of the rest of the world on the fertility curve could be adequately modelled by

$$
\frac{\partial f}{\partial t}=-a(t) \frac{\partial}{\partial x}(d(x) f)-b(t) f .
$$

In this formulation, the world affects f only through $a(t)$ and $b(t)$. However, it was also mentioned that

$$
\frac{\partial f}{\partial t}=-\frac{\partial}{\partial x}(a(x, s, t) f)-b(t, s) f
$$

might well represent a more realistic model, and it is easy to verify that the estimation procedure described in Section IV and Appendix C above will equally well produce an estimate of the coefficient function a($x, s, t)$. A problem that arises, then, is that of distinguishing between $a(x, s, t)$ and $a(t) \cdot d(x)$ at the
stage of the output of the estimation algorithm. From the point of view of subsequent modelling effort, it might well be hoped that the result had the form $a(t) d(x, s)$, or perhaps even $a(t) \cdot d(x) \cdot c(s)$.

A similar problem occurs in the case of estimation of $U(x, s, t)$, where the validity of a representation of the form

$$
\mu(x, s, t)=\eta_{1}(t) \nu_{1}(x, s)+\ldots+\eta_{N}(t) v_{N}(x, s)
$$

with N a "reasonably small" integer is at least a practical requirement for the success of any attempt to model the interaction affects.

Given the implicit smoothness assumptions on the coefficient functions of the model and the fact that the ranges of the x, s, and t variables involved are finite, there is no problem in applying standard approximation theorems to deduce that μ may be closely approximated by a function of the above form. (A similar remark obviously applies to $a(x, s, t)$. For convenience, we refer to the above form as a "separable representation for μ ".

Since we have shown above that separable representations exist, the only problems which remain are those
of the number N of terms to be expected in the representation, and the numerical determination of N and $\eta_{i}(t)$ from the available data.

Consideration of the effects that the t variation in μ (and a) is intended to model, and the probable variability of these effects across age and income brackets suggests strongly that N is small. It would be surprising if N were greater than 3 in the case of the estimation of $\mu(x, s, t)$, and it appears entirely possible that a single term will suffice in the case of the estimation of $a(x, s, t)$ -

It remains to show the feasibility of determining separability of the representation numerically. To distinguish a separable u from a non-separable one we proceed as follows:

A smooth function $\mu(x, s, t)$, defined for $s \in S, \quad t \in T, \quad x \in X$, with $S, T \quad X$ compact subsets of R^{\prime} defines the kernel of a compact linear operator L mapping from $L^{2}(X X S) \rightarrow L^{2}(T)$ according to the formula

$$
\operatorname{Lf}(t)=\iint_{X \times S} \mu(s, s, t) f(x, s) d x d s
$$

Now a separable μ is distinguished by the fact that the associated L is an operator of finite dimensional range, and this observation essentially solves the problem.

When $\mu(s, s, t)$ has been estimated numerically, μ is not obtained as a continuous function. What is obtained in fact is a set of sample values $\left\{\mu\left(x_{i}, s_{j}, t_{k}\right)\right\} \quad$ with $x_{i} \in \tilde{X}, s_{j} \in \tilde{S}, t_{k} \dot{\in} \tilde{T}$. Here $\tilde{X}, \tilde{S}, \tilde{T}$ are each Euclidean space of dimension equal to the number of sample points in each of the independent variables. The discrete analog of the definition of L is to use the above three dimensional array to define a linear mapping (matrix) $\tilde{L}: R^{\operatorname{dim}(\tilde{X} \times \tilde{S})} \rightarrow R^{\operatorname{dim} \tilde{T}}$.

The problem of finding the $\eta_{i}(t)$ is now equivalent to determining the range space of L, and N is simply the rank of \tilde{L}.

The problem is simplified still further by invoking the fact that

$$
\text { Range } \tilde{\mathrm{L}}=\text { Range } \tilde{\mathrm{L}} \tilde{\mathrm{~L}}^{*} \text {, }
$$

where $\tilde{\mathrm{L}}^{*}$ is the adjoint (actually transpose in this case) of the matrix \tilde{L}. This reduces the problem to
the entirely standard one of an eigenvector/eigenvalue analysis of a symmetric matrix, and hence effectively solves it.

Appendix D Computer Program Listing

In this appendix we list the computer programs developed up to the time of this report for use with the model. Included below are both the programs used for numerical integration of the governing evolution equations in simulation runs, and the programs designed to estimate model coefficients from the available data.

The programs listed here are written in FORTRAN. Given the relatively large arrays of data which must be handled in connection with this model, it is clear that FORTRAN is not the most convenient language in which to program the numerical algorithms required. With a view to future uses of the model, however, such factors as the wide availability of FORTRAN compilers, the existence of the I. B. M. CSMP (Continuous System Modelling Package) which is FORTRAN compatible, and of FORTRAN packages for the Calcomp plotter used to produce output data plots make FORTRAN a reasonable language choice.

Program I

Simulation of population and fertility propagation over time. Initial age-specific profiles of population, fertility and mortality, and dynamics for $a(t)$ and $d(x)$ are required. Here, the values for population are taken as the number of live individuals at age x in the population as given by the Commissioner's 1941 Standard Ordinary Mortality Table. Values for mortality are also taken from this table.

Values for the fertility are given by the artificial distribution.:

$$
f(x, o)=C e^{\quad-\frac{(x-24 \cdot 5)^{2}}{8}}
$$

where the constant C is chosen so that

$$
\int_{0}^{100} f(x, o) p(x, o) d x=p(0)
$$

Values of $d(x)$ are assumed from (the artificial distribution)

$$
d(x)=\frac{\left(1-e^{\left.-\frac{(x+1}{600}\right)^{2}}\right)}{1+e^{\frac{(x-24 \cdot 5)^{2}}{4}}}
$$

The parameter $a(t)$ is determined by numerical integration of the differential equation

$$
(D+1)^{2} a(t)=b(t)
$$

where

$$
\begin{aligned}
b(t) & =-\frac{\sin \left(e^{-|t-5|}-e^{-|t-10|}\right)}{15} & & 0 \leq t<15 \\
& =0 & & t>15
\end{aligned}
$$

\cdots	\$.JOB		ACCT-NUM, 'VERNER', ${ }^{\text {PIME }}=60$
	1		REAL X (100)
	2		TC=100
\sim	3		$\mathrm{IF}=0$
	4		no 9 IR $=1,10$
\cdots	5		CALL DATA (X,IR,IC,IF)
	6	9	continue
	7		STOP
	8		END
			GUERTUTINE DATA (X,IR,IC,IF)
-	10		REAL D(100), $\mathrm{F}(100), \mathrm{P}(100), \mathrm{X}(100), \mathrm{R}(100), \mathrm{US}(100), \mathrm{D} 5(100), \mathrm{Fl}(100)$
	11		REAL HH,KK, SUM,IV(10), DLY 10)
	12		REAL PLTPER, PRTPER, II
	13		INTEGER YRS, AGES, YUUNG,NN
-		C	
		C	SFT TFORM=0 IF YOU WANT PLOT, $=1$ IF YOU WANT PRINT
		c	
\smile	14		IFOR $4=1$
	15		$\mathrm{PL}=1=-5$
-	16		$\mathrm{PR}=\mathrm{Pl}_{1}$
	17		TIVT-IF-4
	18		TCM1-IC-1
	19		IF (IR.GT.1) GO TO 31
\checkmark		C	
		c	HH IC AGE STEP - KK IS time step
	20		READ (5.101) HH,KK
-	21	101	FORM. T (2F10.6)
		C	PLTPER IS PLOT INTERVAL - PRTPEK IS PRINT INTERVAL
	22		REAN(5,101) PLTPER,PRTPER
\checkmark		C	NDE TS THE NUMBER OF FIKST OROER ODE'S AFTER TRANSFORMATION
		C	IF NAE > 10 CHANGE REAL DIMENSION IN DATA AND SSTEP
		C	NN If THE NUMBER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES
-	23		REAO (5.103) NDE, NN
	24	103	FORM, T (214)
		C	put tnitial values of odes one to a card
	25		NO 97 $\mathrm{T}=1$ MDE
	26		REAO(5,107) DLY(I)
	27	107	FORMAT (F10.4)
	28	97	CONTINUE
		C	
	29		$P R=P D+K K$
	30		$T=0.0$
		c	
		C	real death rates
		C	Read pupulation density
		c	
		C	
	31		READ) 5,100) (R(I), $\mathrm{I}=1, \mathrm{IC})$
	32	100	FORA: T (5F10.6,30x)
	33		
-	34	104	FORRM: T (10F8.0)
		c	
	35		SUM $=0.0$
-	36		On on $\mathrm{I}=1, \mathrm{IC}$
	37		SUM $=$ SUM + P (I)
	38	99	CONTTNUE ..
\bigcirc	39		no 9a $\mathrm{I}=1, \mathrm{IC}$
	40		$\mathrm{P}(\mathrm{I})=P(\mathrm{I}) * 22000000 . / \mathrm{Sum}$
	41		$x(\mathrm{I})=\mathrm{P}(\mathrm{I})$

\smile	42	c^{98}	CONTTNUE
		C	PPPPPPPPPPPPPPPPPPFPPP
	43		IF (IFORM.NF.1) GOTO 61
-	44		TPG=.
	45		WRIT: 6,109$)$
	46	109	FORMAT (1., POPULATION FOR AGES 1 TO 20 IS')
\cdots	47		WRIT:- $(6,102) \quad(P(I), I=1,20)$
	48	102	FORMAT (5F10.0/)
	49		WRITr $(6,110)$
\checkmark	50	110	FOR"AT(', 'AT BEGINNING OF YEAR 0, AND:)
,	51		WRIT:゙ $(6,111)$
	52	111	
\cdots	53	61	CONT:NUE
		C	PP
	54		O
\checkmark	55		II =FLOAT (I)
	56		$\Gamma(\mathrm{I})=(1-\operatorname{ExD}(-11 * \mathrm{I} 1 / 600 \cdot)) /(1+((11-25.5) * * 2) / 4$.
	57	70	CONTINUE
\cdots	58		YOUA: $=0$
	59		
	60		SUM=Fl(1)*P(1)
	61		DO $14 \mathrm{I}=2 \cdot \mathrm{IC}$
	62		F1 (I) $=$ EXP ($-(.125 * H H *(I+Y O U N G-25.5)) * * 2)$
	63		SUM=SUM + F I (I) *P (I)
-	64		$D 5(I)=5^{*}(D(I)+D(I-1))$
	65	14	CONTINUE
	66		П05=.5* $3.7 \mathrm{D}(1)-\mathrm{D}$ (2))
\cdots	67		
	68		SUM $=0$ (I)/SUM
	69		DO I-I $=1, I C$
\cdots	70		$F 1(I)=F 1(I)$ HSUM
	71	15	CONTINUE
	72		$P A=K K / H H$
	73		PA1 $=0.0$
	74		$\bigcirc 2=0.0$
	75		$F A=1$
\smile	76		60 T 933
	77	31	CONTTNUE
	78		$P R=P ?+K K$
\cdots		r	
		C	UPDATE COEFFICIENTS OF FERTILITY. EQUATION
		C	
\checkmark	79		PAI $=$ M1. $\mathrm{Y}(2)$
	80		$P 2=01 Y(2) * D L Y(2)$ \%PA
	81		$F A=E \times P(-0 L Y(4))$
-		C	PPPDロPPP
	82		IF (PRTPER.GT.PR.OR.IFOKM.NE.1) GOTO 62
	83		WRIT: (6.106) T
\cdots	84	105	FORMAT (' AT TIME',F6.2)
	85		WRTTF(6,112) DLY(1)
	86	112	FORMAT (10', UELAY IN PEAK OF FERTILITY CURVE IS \%,F9.6)
-	87	62	CONTTNUE
		C	
		C	
\cdots		C	MULTIPLY FERTILITY BY INTEGRATING FACTOR
		C	
	88	33	CONT TNUE
\cdots	89		$S U^{M}=7.0$
	90		DO 4 ? $\mathrm{I}=1, \mathrm{IC}$
	91		SUM $=$ SUM + FI (I) :

```
                                F(I)=FA*Fl(I)
                                    CONTINUE
                                    PPPPDPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPRPPPRPPPPPP
        IF (PRTPER.GT.PR.OR.IFORM.NE.1) GOTO }6
        WRIT=(6,113) SUM
    113
        FORMAT(' ',' INTEGRAL OF NORMALIZED FERTILITY IS
        WRIT=(5,1114) FA
        FORM.T(: ',' FRACTION OF INITIAL FERTILITY IS
        2,F9.4)
        WRIT=(6,115)
    115 FORMAT('0','VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE')
        WRIT:(6,10Q) (F(I), I=21,30)
    108 FORM\T(5F10.6/)
    63 CONTINUE
```



```
C
                                    INCREMENT POPULATION BY ONE YEAR
```



```
    TINT-TINT+KK*?
        IF (HH.GT.TINT) GOTO 45
        SUM=`.
        SUM1-0.
        DO 44 I=1,ICM1
        J=IC-I
        SUM=SUM+P(J+1)*FF(J+1)
        P(J+1)=P(J)* (1-R(J))
        SUMl=SUM1+P(J+1)
        x(J+1)=P(J+1)
        CONTINUE
        SUM=SUM+D(1)*F(1)
        P(1)=SUM
        x(1)-P(1)
        SUM1-SUM1+P(1)
        TINT=-1E-4
        conttnue
```



```
        IF (ORTPFR.GT.PR.OR.IFORM.NE.1) GOTU 64
        WR1T=(6,116) SUM1
        116 FORMAT(OO,'TOTAL POPULATION IS ,gFl0.0)
        OR=+1F-5
        MRTTr(6,117)
```



```
            6 4 ~ C O N T I N U E ~
            C
            c
            PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
```



```
                INCREMENT FERTILITY BY ONE YEAR
```



```
            OO 34+I=1,IC
                IF (1E-20.GT.F1(I)) Fl(I)=0.0
                US(I)=0(I)*F1(I)
                CONTINUE
            UR=2.*US(1)-US(2)
            UT=2.*VS(IC)-US(IC-1)
            Fl(Ir.)=Fl(IC)-.5*PA*((PAl*(UT-US(IC-1)))-P2*(DT5*UT+D5(IC)*US
        2(IC-1)-(DT5+D5(IC))*US(IC)))
            Fl(1)=Fl(1)-.5*PA*((PAl*(US(2)-UQ))-P2*(D5(2)*US(2)+DQ5*UQ-(D5
        2(2)+2Q5) #US(1)))
            DO 35 I=2,ICM1
            Fl(I)=Fl(I)-.S*PA*((PAI*(US(I+1)-US(I-1)))-P2*(D5(I+1)*US
```

C

C
c
C
C
$2(I+1)+105(I) * U S(I-1)-(D 5(I+1)+D 5(I)) * U S(I)))$
CONTINUE
 SOLVE ODES FOK DELAY PARAMETERS AND INCREMENT TIME

DO 3 \& $I=1$, NDE IV(I) $=\mathrm{DLY}(\mathrm{I})$ CONTINUE
CALL SRUN(IV,DLY,T,KK,NDE,NN)
$P L=P L+K K$
IF (OLTPER.GT.PL) GOTO 31
C PPPPロPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPP
IF (TFORM.NE.I) GOTO 65
$I P G=T P G+1$
IF (IPG•NF.2) GOTO 79
IPG=n
WRIT $=(6,121)$
121 FORMAT(11')
79 CONTTNUE
WRIT $=(6,118)$
118 FORMAT(' ',VPOPULATION FOR AGES 1 TO 20 IS') WRITE $(6,102)$ (P(I), $I=1,20)$
WRIT-(6,119) IR
119 FORMAT(: ','AT BEGINNING OF YEAR',I8,',AND')
WRIT:- 6,120)

65 CONTINUE

SUGROUTINE BRUN(IV,Z,T,KK,NDE,NN)

c THIS SUBROUTINE GIVES A SIMULTANEOUS SIMULATION OF VALUES
$C \quad \quad \quad=(I A(T), A(T), A(T), I B(T), B(T)) A T \quad T+H$ FROM INITIAL VALUES IV
OF THE SAME VARIABLES AT T. FOR EACH DIFFERENT SIMULATION THE
SURRIUTINE SDE MUST BE REWRITTEN TO EVALUATE THE DERIVATIVES
D(I) AS A FUNCTION OF TIME T AND SOLUTION VALUES $Y(I)$

REAL IV(NDE), Z(NDE), T,TZ,KK,Kl
Kl=KK/FLOAT(NN)
$T 2=T$
$T=T+K K$
CONTINUE
CALL \$STED(IV,Z,T2,K],NDE)
$\mathrm{T} 2=\mathrm{T} \cdot \mathrm{T}+\mathrm{K} \mathrm{l}$
חo 2a I=1, MDE IV(I) $=\mathrm{Z}(\mathrm{I})$ cont tnue
IF (T.GT.T2+K1/2) GOTO 28
RFTURN
Fins)
SURROUTINE 4 STEP (IV,Z,T,KK,NDE)
REAL IV(NDE), Z(NDE),Z1(10),U(10),Dl(10), KK
CALL SDE (T,IV,NDE, U)
DO $11 \mathrm{I}=1$, NDE Z1(I) $=\mathrm{IV}(\mathrm{I})+\mathrm{KK}+\mathrm{n}(\mathrm{I})$ CONTINUE
$T \mathrm{~T}=\mathrm{T}+\mathrm{KK}$

	183		CALL SDE (TT, Z1, NDE, O1)
	184		DO l> $\mathrm{T}=1$, NOE
	185		$\mathrm{Z}(\mathrm{I})=\mathrm{IV}$ (I) +. 5 * KK* ($\mathrm{D}(\mathrm{I})+\mathrm{DI}(\mathrm{I})$)
	186	12	continue
	187		RETURN
	188		FND
	189		SUBR刀UTINE SDE (T, Y, NDE, D)
	190		REAL Y(NDE), D(NDE), KK
	191		$n(1)=Y(2)$
	192		$D(2)=Y(3)$
	193		$\mathrm{Tl}=0$.
-	194		IF (T.GT.15.) GOTO 78
	195		$T T 1=A B S(T-5$.
	196		TT2=ABS (T-10.)
	197		$\mathrm{T}_{1}=\left(-\operatorname{SIN}\left(\mathrm{FXP}^{\left(-T T_{1}\right)-E X P}\left(-\mathrm{T}_{2}\right)\right)\right.$)/15.
	198	78	CONTTNUE
	199		$\Pi(3)=15 . * T 1-Y(2)-2 . * Y(3)$
	200		$n(4)=T 1$
	201		$0(5)=0$.
	202		RETURN
	203		END
	SENTRY		

```
` POPULATION FOR AGES 1 TO 20 IS
    350170. 342263. 340289. 338880. 337734.
    336725. 335795. 334919. 334091. 333320.
    332613. 331958. 331324. 330688. 330033.
    329350. 328642. 327922. 327184. 326431.
` AT BEGINNING OF YEAB 0, AND
    AT TIME 0.75
    DELAY IN PEAK OF FErTILITY CURVE IS -0.000373
        INTEGRAL OF NORMALIZED FERTILITY IS 1.089507
        FRACTION OF INITIAL FFRTILITY IS 1.000501
 VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
        0.056025 0.063485 0.069726 0.074224 0.076578
-0.076574 0.074216 0.067721 0.063482 0.056023
    TOTAL POPULATION IS 22000110.
```



```
    POPULATION FOR AGES l TO 20 IS
        350215. 342263. 340289. 338880. 337734.
        336724. 335795. 334919. 334091. 333320.
        332613. 331959. 331324. 330688. 330033.
        329350. 329642. 327922. 327184. 326431.
    *AT BEGINNING OF YEA: 1,AND
    AT TIME J.75
    dELAY IN PEAK OF FE TILITY CURVE IS -0.004762
        INTEGRAL OF NORMALIZEN FERTILITY IS l.089505
                FRACTION OF INITIAL FERTILITY IS 1.002134
    VALUES OF FFRTILITY CURVE FOR AGES 2l TO 30 ARE
        0.056127 0.063609 0.069877 0.074401 0.076738
        0.076675 0.074285 0.069795 0.063563 0.056101
    TOTAL POPULATION IS 22000510.
```

```
    POPULATION FOR AGES 1 TO 20 IS
        350562. 342307. 340289. 338880. 337734.
        336725. 335795. 334919. 334092. 333320.
        332613. 331958. 331324. 330688. 330033.
        329350. 328642. 327922. 327184. 326431.
    AT BEGINNING OF YEAD 2,AND
    AT TIME 2.75
    DELAY IV PEAK OF FE:YTLITTY CURVE IS -0.020237
        INTEGRAL OF NORMALIZEN FERTILITY IS 1.089506
        FRACTION OF INITIAL FERTILITY IS 1.006584
    VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
        0.056417 0.063967 0.070328 0.074940}00.07721
        0.076924 0.074418}00.069958 0.063754 0.056301
```

 TOTAL POPULATION IS 22001840.

POPULATION FOR AGES 1 TO 20 IS
351507. 342646. 340332. 338880. 337734.
336724. 335795. 334919. 334091. 333320.
332613. 331958. 331324. 330687. 330033.
329350. 328642. 327922. 327184. 326432.
AT BEGINNING OF YEA? 3,AND
AT TIME 3.75
DELAY IN PEAK OF FEPTILITY CURVE IS -0.064413
INTEGRAL OF NORMALIZED FERTILITY IS 1.089506
FRACTION OF INITIAL FERTILITY IS 1.018705
VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
$0.057215 \quad 0.064960 \quad 0.071590 \quad 0.0764570 .078518$
$0.077577 \quad 0.074741 \quad 0.070374 \quad 0.064276 \quad 0.056834$
TOTAL POPULATIUN IS 22005710 .


```
AT BEGINNING OF YEA? \(4, A N D\)
```

AT TIME 4.75
DELAY IN PEAK OF FEDTILITY CURVE IS -0. 184397
INTEGRAL OF NORMALIZED FERTILITY IS 1.089502
FRACTION OF INITIAL FERTILITY IS 1.050882

| VALUES OF | FERTILITY | CURVE FUR | AGES 21 TO 30 ARE | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.059358 | 0.067649 | 0.075042 | 0.080616 | 0.082016 |
| 0.079207 | 0.075498 | 0.071418 | 0.065613 | 0.058225 |

 TOTAL POPULATION IS 22010510 •
 POPULATION FOR AGES 1 TO 20 IS
 361071. 346090. 341588. 339259. 337778.
 336725. 335795. 334919. 334091. 333320.
 332613. 331958. 331324. 330688. 330033.
 . 329349. 328642. 327922. 327184. 326432.
 AT BEGINNING OF YEA 5,AND
 AT TIME 5.75
 DELAY IV PEAK OF FERTILITY CURVE IS -0.480408
 INTEGRAL OF NORMALIZED FERTILITY IS 1.089503
 FRACTION OF INITIAL FERTILITY IS 1.098618
 VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
 \(0.0629640 .072470 \quad 0.081701 \quad 0.0899940 .088098\)
 \(0.0802920 .074753 \quad 0.071688 \quad 0.066822 \quad 0.059826\)
 TOTAL POPULATION IS 22043640 •
 | POPULATION | FOR AGES | 1 TO 20 | | |
| :---: | :---: | :---: | :---: | :---: |
| 377589。 | 352918． | 344093： | 340174. | 338112. |
| 336768。 | 335795. | 334919. | 334091. | 333320. |
| 332613。 | 331958. | 331324. | 330688. | 330033． |
| 329350 。 | 328641. | 327922. | 327184. | 326432. |

$\cdot A$
AT BEGIVNING OF YEA：？ G．AND
－AT TIME 6.75
－delay in peak of fevtility curve is－0．909306
INTEGRAL OF NORMALIZED FERTILITY IS 1.089499
FRACTION OF INITIAL FERTILITY IS 1.118620
－VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE $\begin{array}{lllll}0.065618 & 0.076765 & 0.088974 & 0.098260 & 0.092387\end{array}$
$-0.0769250 .0697610 .068678 \quad 0.065408 \quad 0.059325$
－total population is 22092090.

	POPULATION	FOR AGES	1 T0 20	IS	
	389333．	369063．	3508×1.	342608 •	339024.
－	337101.	335838．	334914.	334091.	333320.
	332613.	331958.	331324.	330688.	330033.
	329350．	328642.	327922.	327184.	326432.

AT BEGIVNING OF YEA：7，AND
AT TIME 7.75
delay iv peak of fertility curve is－1．27734己 INTEGRAL OF NORMALIZEN FERTILITY IS 1.089500 FRACTION OF INITIAL FERTILITY IS 1.121859

VALUES JF FERTILITY CURVF FOR AGES 21 TO 30 ARE $0.0672410 .079908 \quad 0.094899 \quad 0.10544100 .093917$ $0.072075 \quad 0.064586 \quad 0.0653810 .063390 \quad 0.058125$

TOTAL POPULATION IS 22123450．

DELAY IN PEAK OF FEDTILITY CURVE IS－-1.496449
INTEGRAL OF NORMALIZEN FERTILITY IS 1.089500
FRACTION OF INITIAL FERTILITY IS
1.111391
－VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE 0.067541000810960 .097754001086470 .093259
$0.067985 \quad 0.060862 \quad 0.062787 \quad 0.0615030 .056761$
－TOTAL POPULATION IG 22164480．

POPULATION	FOR AGES	1 TO 20	IS	
392049.	384229.	378346.	365415.	348248 ．
340489.	337077.	335293.	334134.	333320.
332613 。	331958	331324.	330687.	330033.
329350 。	328642.	327922.	327184.	326431

AT BEGIVNING OF YEA＇ン G．AND
AT TIME 9.75

DELAY IN PEAK OF FERTILITY CURVE IS -1.532525
INTEGRAL OF NORMALIZEO FERTILITY IS 1.089499
FRACTION OF INITIAL FERTILITY IS 1.078118
VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
$0.065753 \quad 0.079162 \quad 0.095780 \quad 0.106416 \quad 0.090456$
$\ldots 0.065073 \quad 0.058294 \quad 0.060436 \quad 0.059348 \quad 0.054862$

TOTAL POPULATION IS 22197900.


```
    POPULATION FOR AGFS I TO 20 IS
        385079. 383196. 382012. 376780. 364179.
        347206. 339549. 336197. 334465. 333362.
    332613. 331958. 331324. 330688. 330033.
    329350. 328642. 327922. 327184. 326431.
    * AT begivNING OF yEAO 10,AND
~
    CORE USAGE DBIECT CODE = 9856 BYTES,ARRAY AREA= 3400 BYTES,TOTAL AREA
```

DIAGNOSTICS COMPILE TIME=

NUMBER OF ERRORS $=$ 3. 98 SECDEXECUTION TIME= COST FOR THIS PROGRAM IS $\$ 1.42$

The above output simulates population and fertm ility over ten years with "Baby boom" dynamics - wide peak of intermediate height。 See Figures 3 and 4 in Section V.

Program Ib

This is a copy of the program which was used to plot the profile in Figure 6 .

SUBROUTINE DATA(X,IRgICgIF)

REAL $D(100) 9 F(100), P(100), X(100), R(100), U S(100), D 5(100), F 1(100)$
REAL HHOKKOSUMOIV(10) ODLY(10)
REAL PLTPER,PRTPER,II
IVTEGER YRS, AgES,YOUNGoNN

SET IFORM $=0$ IF YOU WANT PLOT, $=1$ IF YOU WANT PRINT

IFORM=1
IFORM $=0$
$P L=1 E-5$
$P R=P L$
$\operatorname{TINT}=1 \mathrm{~F}-4$
$\mathrm{CCMI=IC-1}$
IF (IRoGTol) GO TO 31
C RRRRRRRRRRRRRRQRRFRRR
C HH IS AGE STEP - KK IS TIME STEP
READ (59101) HHOKK
FORMAT (2F10.6)
PLTPER IS PLOT INTERVAL \rightarrow PRTPER IS PRINT INTERVAL
READ (5.101) PI TPER,PFTPER
$\checkmark C$ NDE IS THE NUMBER OF FIRST ORDER ODE'S AFTER TRANSFORMATION
C IF NDE > 10 CHANGE REAL DIMENSION IN DATA AND \$STEP
C NN IS THE NUMRER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES
READ (5.103) NDE, NN
103 FORMAT(2I4)
PUT INITIAL VALUES OF ODES ONE TO A CARD
DO $97 \mathrm{I}=19 \mathrm{NDE}$
READ (5.1ヵ7) DLY(I)
FORMAT(F10.4)
CONTINUE
RRRRRRRLRRRRRRRRRRKRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
$P R=P R+K K$
$T=0.0$
C
C
c
C
C
FORMAT (5F10.6.30X)
$\operatorname{READ}(5,104)(O(\mathrm{I}), I=1, I C)$
104 FORMAT(10F8.0)
RRRRRRRRRRRRRRRRRRRRFKRRR SUM $=0.0$
D0 $99 \mathrm{I}=1, \mathrm{IC}$
SUM $=$ SUM + D (I)
CONTINUE
DO $98 \mathrm{I}=\mathrm{l}, \mathrm{IC}$
$P(I)=P(I) * 22000000 . /$ SUM
$X(I)=P(I)$
CONTINUE
PPPRPPRPPPPPPPPPPP
IF (IFORM.NE.l) GOTO 61
$I P G=0$
WRITE(6,109)
109 FORMAT(10 ©POPULATION FOR AGES 1 TO 20 IS')
WRITE (6,102) ($P(I), I=1,20)$
102 FORMAT (5F10.01)
WRITE $(6,110)$
110 FORMAT(O 0 ,OAT BEGINNING OF YEAR 0 , AND')

CONTINUE
$Y O I J N G=0$
$F 1(1)=F X P\left(-\left(0125 * H H^{*}(Y O U N G=24,5)\right) * * 2\right)$ SUM $=F 1(1) \mathrm{HP}(1)$
DO $14 \mathrm{I}=2 . I \mathrm{C}$
FI（I）$=$ EX：$\left(-\left(0125 * H^{*}(I+Y O U N G-2505)\right) * * 2\right)$
SUM＝SUM＋匹1（I）＊P（I）
n5（I）＝ $5 *(\mathrm{D}(\mathrm{I})+\mathrm{O}(\mathrm{I}-1))$
CONTTNUE
$D Q 5=.5^{*}(3 . * D(1)-D(2))$
DT5 $=05^{*}(3 ; D(T C)-D(I C-1))$
SUM＝P（1）／SUM
DO $15 \mathrm{I}=1$ Q IC
$F I(I)=F 1(I) * \subseteq U M$
CONTINUE
$P A=K K / H H$
$P A 1=0$ 。 0
$P 2=0$ 。 0
FA $=1$
GO TO 33
CONTINUE
$P R=P R+K K$
 UPDATE CUEFFICIENTS OF FERTILITY EQUATION
 PAI＝OLY（え）
$P Z=D L Y(2) * D L Y(2) * P A$
$F A=E X P(-D L Y(4))$
 IF（PRTPER．GT。PR．OR．IFORM．NE I）GOTO 62
WRITE（69106）T
FORMAT（ \triangle T TMME：，F6．2）
WQTTE（69112）ILY（1）
112 FORMAT（00，ODFLAY IN PEAK OF FERTILITY CURVE IS •F9．6）
62 CONTINUF

 MULTIPLY FERTILITY BY $\operatorname{INTEGRATING~FACTOR~}$

CONTINUE
SUM $=0.0$
DO $42 \mathrm{I}=1 . \mathrm{IC}$
$S U M=S U^{M+=1}(I)$
$F(I)=F A * F 1(I)$
CONTINUE
PPPPPPPPPRPPROPPPPDPPPPPPPPPPPPPFPQPPPPPPPPPPPPPPPPPPPPPPPPPPPPP IF（PRTPER．GT．PR．OR．IFORM．NE．1）GOTO 63 WRTTE（6．113）SUM
FORMAT（O INTEGRAL OF NORMALIZEO FERTILITY IS
－9F9．6）
W2ITF（6．114）FA
114
FORMAT（O FRACTION OF INITIAL FERTILITY IS

FJRMAT（O＇，＇VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE＇） WRITE（folng）（F（I），l＝21，30）
FORMAT（SF10。6ノ）
CONTINUE

PPPPPPPPPPPPPDPPPPPPPPPPPPPPPQPPFPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP RETURN
EVI
SURROUTINF fiR：N（IV，Z，TgKK，NDE，NN）

THIS SUBROUTINE GIVES A SIMULTANEOUS SIMULATION OF VALUES $Z=(I A(T), A(T), A \cdot(T), I B(T), B(T)) A T \quad T+H$ FROM．INITIAL VALUES IV OF THE SAME VARIABLES AT TO FOR EACH DIFFERENT SIMULATION THE SUBROUTINF BNE MUST BE REWRTTTEN TO EVALUATE THE DERIVATIVES D（I）AS A FUMCTION OF TIME T AND SOLUTION VALUES Y（I）

REAL IV(NDF) 9 (NOE), TوT2,KKوK!
$K l=K K / F L O A T$ (NNI)
$T \geq=T$
$T=T \& K K$
CONTINUE
CALL \$STEP (IV.2,T2,Kl9NDE)
$T 2=T 2+K 1$
$0029 \mathrm{I}=\mathrm{I}, \mathrm{NDE}$
$\operatorname{IV}(I)=Z(T)$
CONTINUE
IF (T.GT.T2*KT/2) GOTO 28
RETURN
EVD
SURROUTINF SSTEP (IV,Z,T,KKgNDE)
REAL IV(NDE), 7 (NDE) $2 \mathrm{Z} 1(10), 0(10), 01(10)$, KK
CALL $\Psi D E(T, I V, N D E, D)$
DO $11 \mathrm{I}=1$, NDE
Z1(I) $=I V(I)+K K * 1)(I)$
11 CONTINUF
$T T=T+K K$
CALL SDE (TT, ZI, NDE,DI)
DO $12 I=1$, NDF
$Z(I)=I V(T)+.53 K K *(0(I)+D I(I))$
CONTINUE
RETURN
EVI
SURROUTINE BDF (T,Y,NDE,D)
REAL Y(NDE) $D(N D E), K K$
$D(1)=Y(2)$
$D(2)=Y(3)$
$T 1=0$ 。
IF (T.GTO15.) GOTO 78
$T T 1=A B S(T-50)$
$T T 2=A B S(T-10$.
$T 1=(-S I N(F \times P(-T T 1)-F \times P(-T T 2))) / 15$.
CONTINUE
$D(3)=15 . * T 1-Y(2)-2 . * Y(3)$
$D(4)=T 1$
$0(5)=0$ 。
RETURN
EVn
//GO。SYSIN DD *
EVOLUTION OF POPULATION OVER 50 YEARS: WITH FERTILITY PROGRESSION
$\begin{array}{ccccccccc}50 & 100 & 2 & 4 & 0 & 1 & 3\end{array}$
$30.0330 .0 \quad 4.0 \quad 20.0$
$1.0 \quad .25$
$\div 1.0 \quad 1.0$
51
0.0
0.0
－ 0.0
02
225
.00276
.0019
.00414
.00338
.00299

0021
.00247
.00231
.00212
.00215
$.00192 \quad .00198 \quad .00207$
.00243
.000288 $.00259 \quad .00268 \quad .00277$
.00356
.00311
$.00325 \quad .0034$
.00459
.00392
$.00412 \quad .00435$
.00618
.00515
$.00546 \quad 00581$
.00861
.00703
$.00751 \quad .00804$
.01232
.00991
$.01064 \quad .01145$
.01798
$01327 \quad 01430$
.01543 .01665
.02659
$.02878 \quad .03118$
$.02271 \quad 002457$
.03964
$.04296 \quad .04656$
$.03376 \quad .03658$
.0593
.06427
$.05046 \quad 00547$
.08864
.06966
.0755
.08181
.13185
.09602
$\begin{array}{rr}.0755 & 0.08181 \\ .11259 & 012186\end{array}$
.19413
$.1426 \quad .15416$
$.16657 \quad .17988$
$20099 \quad .20937 \quad .22563 \quad 0243 \quad .26144$
． 30173 ．32364 ．34666 ．371
$\begin{array}{lc}.39621 \\ 1023102.1000000 . & 54826 \\ 9.230 .990114\end{array}$
． 72467 1．0
9718040969890 。 968038 。 966179 。 9642660
951483。 949171 。 946789 。 944337 。
981102． 978
978541．976124．973869。

924609．921317．917280．914282．
941806.
939197.

960201． 9
958098．955942．953743．
936492．933692．930788．927763．
883342。877883．872．98．865967。
950515．906554．
902393．8
898007．893382
888504.

85464．852554．845214．837413．829114．820292。
810900。800910。790782．778981。766961。754191．740631．726241．710990．694843。 677771。659749．640761．620782．599824．577882．554975．531133．506403．480850。 454548．427593．400112．372240．344136．315982．287973．260322．233251．206989。 181765。157799．135297．114440．95378．78221．63036．49838．38593．29215． 21577。15514。10933。7327．4787．3011．1818．1005．454．125．
1.14
－ 11

HASPOII JOB STATISTICS－－
296 CARDS READ－－
0 LINES PRINTED

Estimation of $\mu(x, s, t)$: this program uses values of the population density to estimate $\mu(x, s, t)$ through differentiation of two cubic spline approximations and integration of a subsequent spline approximation.

As a test problem, a separable economic mobility was chosen

$$
\begin{gathered}
\mu(x, s, t)=\alpha(x) \beta(s), \\
\alpha(x)=\frac{(x+20)(80-x)}{10000}, \beta(s)=\frac{s+10}{200} .
\end{gathered}
$$

With an initial population density

$$
\mathrm{p}(\mathrm{x}, \mathrm{~s}, \mathrm{o})=\mathrm{p}_{0}(\mathrm{x}, \mathrm{~s}) \equiv \mathrm{e}^{-\frac{\mathrm{x}}{200}} \frac{\left(2 \mathrm{~s}^{3}-405 \mathrm{~s}^{2}+21000 \mathrm{~s}\right)}{540}
$$

the population density without deaths

$$
\begin{aligned}
& \stackrel{p}{p}(x, s, t)=\left[e^{\frac{w}{2000000}} p_{0}\left(x-t,(s+10) e^{\frac{w}{2000000}}-10\right)\right], \\
& w=-\frac{t^{3}}{3}+t^{2}(30 m x)+t(x-80)(x+20), \\
& \text { evolves, and with a death-rate of }
\end{aligned}
$$

$$
r(x, s, t)=(1 \ldots .01 t)(.0003 x+.0006)
$$

the density with deaths is

$$
\begin{gathered}
p(x, s, t)=\dddot{p}(x, s, t) e^{-R}, \\
R=\left(t-\frac{.01 t^{2}}{2}\right)(.0003 x+0006)-.0003\left(\frac{t^{2}}{2}-\frac{.01 t^{3}}{6}\right)
\end{gathered}
$$

C THTS PRUGRA: IS USED TO ESTIMATE THE ECONOMIC MORILIITY
C. DÄ̈4ッFTER 'AU. AGE-TIME-AND INCUME-SPECIFIC VALUES OF THE
C
C.
C
C
C
r
r
13
24
25
26
27
20
WいIT (ら.112)

A: \because T: (-a, \because)

r
C
C
C
C

DEFT F FUSCTLON SETA

r
r
POFTPFIHTHKINTPRINIUKINTPRINTPKINTPRINTPRINTPRINTPRINTPRINTPKIN

$x f=7$
$5 B=11$.
$T M=11$
$\therefore x=1$
$n c=1$
$\because T=?$

$\therefore \quad 1$ I $x=1$ ，$X E$
$x x=) x ;(1 x-1)$

「 PRIGTHRINTPRINTFKINTPKINTPRINTPKINTPR̈INTPRINTPRINTPRINTPRINTPRIN

r

RFTA（TS）$=(S 5+10) /$.200 ．
r
r
 $\because I T:(+1 r 1) S S$ 日BETA（IS）

11 MOMT：M以
DRINTPRI VTOKINTPRIWTOHINTORINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
r
r

\cap C $1 \supset 1, T=1, T M$
$T=1 T *(1, T-1)$
n: 1) $L X=1$ • $X E$
$x=i x<(1-x-1)$

$\left.m_{1}\right]=F *(-w)$
$4 ?=T *\left(\left(x+20_{0}\right) *\left(x-80_{0}\right)+T *\left(\left(30_{0}-x\right)+T / 3.\right)\right) *\left(-1_{0}\right)$
in $1>1 \leq=1, S M_{1}$
SS=? $\ddagger *(L S-1)$
$5=55+11_{0}$
$4=5 *-* *(4216000000$ o) -10 。
$Y=W *(211000+\infty *((-4050)+2030))$
$y=\left(w+1^{\wedge}\right) / 5$

CONTrMire

Sン TOF $\vdash(X, S g T)$ AGAINST X AND DIFFERENTIATE THE SPLINE

 $\therefore \cup(x \& S \& T) \quad$ IS DP／DX
in $2 \quad r x=19 x E$
$x=5 x \div(1 x-1)$
$K(1 \cdot r x)=x$
CONT HME
CALL CETHO（XE，A，H，K）
กO 21 TS＝1．SM
Mo 21 IT＝1，i：
1）： $20 \quad T X=1$ ，䏝
$K(2, T X)=P(T \wedge, I S, I T)$
22 RONT：MUE
CALL SS）LVF（a，K，H，XE，D，COF）

$x=\cap x:(T x-1)$

CONTTNUE
 $S \mathcal{I I N E} F(X, S, T)$ AGAINST T AND DIFFERENTIATE THE SPLINE ivid (x, S, T) IS 1$) \dot{S} / 0 X+D P / D T+R(X, S, T) * P(X, S, T)$

าก 3： $\mathrm{IT}=1, \mathrm{TM}$
$T=i T:(T T-1)$
$<(1+T)=T$
30 CuNT Nult
CABL CETUD（YA，A，H，K）
no 3 ；$[x=1 \cdot x E$
$x=1) x=(r x-1)$
N！ $31 \quad 15=1.3 M$
กn $3,2 T T=1 \cdot 1 \mathrm{w}$
$K(\supset, ~ T T)=っ(I x, I S, I T)$
3？COMT：NII
CALL SOLVE（A，K，H，T：V，D，CUF）
ク） $31 \mathrm{IT}=1,1 \mathrm{w}$
$T=D T:(T T-1)$
qU（IX，I,$~ I T)=M U(I X, I S, I T)+\operatorname{COF}(3, I T)+T *(2 . * \operatorname{COF}(2 \cdot I T)+$
C
C
110
C
$\stackrel{c}{c}$

CONTRNJF
$S O L N E$ OP/DX $+D H / O T+K(X, S, T)$ \#P (X, S, T) AGAINST S AND
I tegrate the shline from 5 to the maximum value of So
-U(x, 5,1$)$ IS END CUNDITIUN PLUS THIS INTEGRAL

חO 4. TS=1, Sim
$5=\pi 5 \div(5-1)$
$K(1 \circ T S)=S$
COVTrNut
CALL SETIP (SM, $4, \mathrm{H}, \mathrm{K})$
DO \& $4 X=1$, XE
กO 4 1 $1 \mathrm{~T}=1, \mathrm{TM}$
no $4>$ IS $=1, S M$
$K(2, r C)=M U(I X, I S, I T)$
cont muf:
CALL COLVE ($\mu, K, H, S M, O), C U F)$
MU(IX, SM, TT) $=$ O。
$5 \geq=12 * 5 .:$
S! $=5$ ア-i,
no 4: $15=$?, \sin
$51=51-15$
52=52-i.3
$I=5 \%+1-15$
$\because U(I \times, 1, I T)=\operatorname{HU}(I x, 1+1, I T)+(((S E * \operatorname{COF}(1, I) / 4 \cdot+\operatorname{CoF}(2, I) / 3) *$.

\& $\quad+\operatorname{CoF}(2,1) / 3.) * S 1+\operatorname{COF}(3,1) / 2.) * S 1+\operatorname{COF}(4, \mathrm{~J})) * S 1$
41 CONTMUE

C DQIVTPRINTPIINTPRINTPKINTPRINTPKINTPRINTPRINTPRINTPRINTPRINTPRIN
(i) $3 \ddot{\mathrm{~F}} \mathrm{KS}=1$, 3.4

つの ら5 к $T=1$, 7 "
$T T=1) T *(K T-1)$
กn $5^{n} k x=10 x t$
TF (つ(K人,KSoKT).EU.O。) GOTO 51
MU(KX,Kう,KT) $=($ GETA $(S M)$ *ALPHA $(K X)$ \#P $(K X, S M, K T)-M U(K X, K S, K T)) /$
\& $\quad(K \times, K \Xi, K T)$
G(iti) hz

5? runtrine
MU(KX,Kゝ,KT)=(MU(KX,KS,KT)/(BETA(KS)*ALPHA(KX))-1)*100.
50 revtrais
P\&I ITPRINTUKINTPKINTHRINTORINTPKINTPRINTPRINTPRINTPRINTPRINTPRIN
WEIT: (n.l13) SS,TT, (MU(KXoKS,KT), KX=1, XE)
113 FMマツ.T(1 1.2159° •, 7FY.?)
55 rointraje
© PRINTFRINTHAINTOKINTDRINTPKINTPKINTHRINTPRINTPRINTPRINTPRINTPKIN
c
PHAL $H(N), O(N), A(3, N), K(2, N), \operatorname{COF}(4, N)$
$\because(2)=(K(2,2)-K(2,1)) / H(2)$
N内1 $=\mathrm{N}-1$
ก○ $1 \supset I=$ の, NM1
$n(I+1)=(K(2, I+1)-K(2, I)) / H(I+1)$
P(I) $=5 \%(D(I+1)-B(I)) /(H(I+I)+H(I))$
CONT TNUF
$n(1)=-$. $^{*}\left(-K(2,1)+K(2,4)+3^{*}(K(2,2)-K(2,3))\right) /(H(2) * H(2))$
$\therefore($ 成 $)-2$.* $(-K(2, N)+K(2, N-3)+3 . *(K(2, N-1)-K(2, N-2))) /(H(N-1)$ **2)

\cdots	151		П) $13 \mathrm{I}=2 \cdot \mathrm{~N}$
	152		$\Gamma(I)=D(I)-A(3, I) * 1)(I-1)$
	153	13	CONTINUE
\sim	154		
	155		ก $1+1=2, \therefore$
\cdots	156		$J=A!+1-1$
.	157		$D(J)=(1)(J)-A(1, J)$ \% $C(J+1)) / A(2, J)$
	158	14	CONTINUE
	159		CALL POLLY (V, $\mathrm{V}, \mathrm{K}, \mathrm{H}, \mathrm{COF}$)
\checkmark	160		LF TUQN
\checkmark	161		Fr.0)
\cdots		C	
	162		SUGR)UTINF POLLY (NgiMgKghg COF)
\cdots		r	
V		C	
		C	THIS POUTINE CUMPUTES THE CUEFFICIENTS OF THE SPLINE POLYNOMIAL
-		C	ON F̈ACH SURINFERVAL
-		C	K IS ThE ARKAY UF UATA POTNIS
		C	4 I S THE VECTOR OF SUBINTERVAL LENGTHS
-		C	M IS THF SOIUTION VECTON TO THE EQUATIUN AM=0
-		C	
		r	
-	163		$2-n L \quad M(N), M(2, N) g H(N), \operatorname{CUF}(4, N)$
-	164		N:C $1=9-1$
	165		7i: $111=1, y^{4} 1$
\cdots	166		$\operatorname{rof}(1, I)=(M(I+1)-m(I)) /(6, x+1(I+1))$
-	167		
	169		Пワ=v($T+1) * K(1, I) * K(1, I)-M(1) * K(1, I+1) * K(1, I+1)$
\checkmark			$8+2.3<(2, T+1)-2 \cdot 3 K(2, T)$
\cdots	169		
1	170		$n \mathrm{n}=\mathrm{M}(\mathrm{I}) *(k(1,1+1) * * 3)-M(I+1) *(K(1, I) * * 3)+6.4 \mathrm{~K}(1, I+1) * K(2, I)$
\sim			
\sim			
*	171		
	172	11	contimur
-	173		in i: J=1*4
	174	16	
-	175		RFTust.
-	176		$E 1$
-	\$F.0jTPY		

ALOHAS	$0)$	IS	0.10000
aloual	10)	15	0.21000
ALDHA (20)	IS	0.24000
AL Phas	$30)$	19	0.25000
ALDHA	41)	15	$0 . ? 4000$
ALDHA	$50)$	I	0.21000
ALDHA (40)	IS	0.16000
betal	n)	TS	0.05000
betal	10)	15	0.10000
betal	20)	15	1). 15000
betal	30)	Is	0.20000
BETA	40)	IS	1. 25000
BETA	$50)$	IS	0.30000
RETAI	60)	IS	0.35000
betal	70)	15	0.40000
BETAI	80)	15	0.45000
betal	90)	15	0.50000
BETA(10	00)	is	1.55000

5	T	$x=0$	10	20	30	40	50	60
0	0	9. 00	0.00	0.00	0.00	0.00	0.00	0.00
0	2	403.75	35 ソ.05	75.85	115.51	170.63	160.18	803.37
0	4	-41.60	18.10	-20.49	27.85	-27.13	-15.8?	83.30
0	5	-0.03.99	-7.42	2.34	18.17	13.93	33.79	99.21
0	Q	-133.41	-1.23	16.02	-3.06	6.51	-2.07	100.96
0	10	-131.42	25.24	10.08	-3.89	-11.09	-1.89	107.53
0	12	-125.68	06.76	-4.47	0009	17.15	-8.16	95.22
0	14	-85.40	18.42	-1.00	5.88	8.73	-15.13	105.93
0	15	-95.43	18.09	6.82	7.75	10.38	-11.17	103.78
0	18	-237.34	27.41	-10.80	-3.91	10.89	-40.15	86.25
0	20	-343.99	18.83	-38.13	17.28	1.92	16.66	283.49
10	0	-0.70	-0.86	-0.28	-0.44	-0.51	-1.00	-1.71
10	2	0.36	0.43	0.08	0.17	0.22	0.15	0.75
10	4	-0.07	0.07	-0.03	0.07	-0.07	-0.05	0.23
10	¢	-0, ¢id	-0.02	-0.01	0.05	0.06	0.11	0.30
10	4	-0).44	0.00	0.06	0.01	0.05	-0.03	0.49
10	10	$-1) .5 .3$	0.15	0.06	0.00	-0.06	-0.04	0.74
10	12	-0.6is	0.43	-0.03	-0.03	0.13	-0.06	0.75
10	14	- 1.61	0.16	-0.41	0.07	0.07	-0.15	0.95
10	16	-i). Fl	0.18	0.14	0.11	0.13	-0.18	1.10
10	18	-1.37	0.28	-0.13	-0.06	0.17	-0.53	1.15
10	20	-1.89	$0 \cdot 24$	-0.37	$0 \cdot 30$	-0.02	0.29	3.78
20	0	-0.34	-0.37	-0.15	-0.22	-0.25	-0.4.5	-0.71
2.0	2	0.13	0.15	0.02	0.05	0.07	0.04	0.27
20	4	-0.0.03	0.04	-0.01	0.03	-0.02	-0.00	0.13
20	$\dot{6}$	-9.20	-0.01	-0.01	0.01	0.03	0.03	0.13
20	8	-0.19	0.01	0.02	0.01	0.01	-0.02	0.24
20	10	-0.22	0.07	0.02	0.01	-0.02	-0.02	0.34
20	12	-0.33	0.15	-0.02	-0.02	0.05	-0.02	0.33
20	14	-0.24	0.09	-0.01	0.02	0.02	-0.06	0.41
20	15	-0.32	0.11	-0.00	0.05	0.07	-0.11	0.51
20	$1{ }^{*}$	-0.6.74	0.13	-0.06	-0.02	0.08	-0.23	0.62
20	20	-0.79	0.14	-0.09	0.14	-0.06	0.12	1.60
30	0	-3.24	-0.25	-0.0.19	-0.14	-0.18	-0.29	-0.43
30	$?$	0.05	0.07	-0.01	$0 \cdot 0$?	0.04	0.01	0.15
30	4	-0.02	0.03	-0.01	0.02	-0.00	0.01	0.11
30	6	-0. 17	0.00	-0.61	0.00	0.01	0.01	0.08
30	is	-). 1 ?	0.01	0.01	0.02	0.00	-0.02	0.16
30	10	-1.12	0.05	0.02	0.01	-0.01	-0.02	0.24
30	12	-0.0.3	0.09	-0.02	-0.0?	0.03	-0.01	0.22
30	14	-1.22	0.06	-0.40)	0.01	0.00	-0.04	0.26
30	16	-6.24	0.09	-0.01	0.03	0.05	-0.09	0.36
30	18	-9.45	0.10	-0.04	-0.01	0.07	-0.14	0.46
30	70	-0. 5.54	0.0 O	0.01	0.09	-0.09	0.06	1.03
40	0	-i. 1 ln	-0.20	-0.06	-0.11	-0.14	-0.22	-0.30
40	?	0.00	0.05	-0.01	0.00	0.03	-0.00	0.10
40	4	-0.01	0.02	-0.01	0.02	0.01	0.00	0.11

90	0	-0.05	-0.05	0.00	-0.02	-0.01	-0.07	-0.06
90	2	-0.00	0.02	-0.00	-0.00	-0.01	-0.01	0.01
90	4	-0.01	0.01	-0.01	-0.00	$0 \cdot 00$	0.02	0.02
90	6	-1.03	0.01	-0.01	0.00	0.00	-0.02	$0 \cdot 04$
90	R	-9.03	0.01	-0.01	-0.01	-0.02	-0.02.	0.02
90	10	-0.10	0.01	0.00	$0 \cdot 01$	0.01	0.00	0.03
90	12	-0.17	0.05	0.00	0.00	-0.00	-0.01	0.09
90	14	-0.19	0.04	-0.01	-0.01	0.00	-0.01	0.10
90	16	-0.25	0.06	-0.02	$0 \cdot 02$	0.02	-0.03	0.12
90	18	-0.31	0.09	-0.02	0.01	-0.01	-0.05	$0 \cdot 18$
90	20	-9.35	0.03	-0.01	-0.01	-0.01	-0.01	0.23
100	0	-0.00	-ù. 00	-0.00	-0.00	-0.00	-0.00	-0.00
100	2	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
100	4	-0.10	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
100	5	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
100	4	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
100	10	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
100	12	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
100	14	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
100	16	-0.00	-0.00	-0.00	-0.00	-0.00	-0.0.0	-0.00
100	14	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
100	20	-i).00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00

Program III

Estimation of the parameters $a(t)$ and $d(x)$

 from values of the normalized fertility. The normalized fertility might be estimated from the fertility curve and the parameter $b(t)$ which represents the family size.Here we chose as a test case:

$$
\begin{aligned}
& d(x)=\frac{x}{100} \quad x=0,10, \ldots, 50 \\
& a(t)=1+.4 \sin \left(\frac{t}{6}\right) \quad t, 0,2, \ldots, 20
\end{aligned}
$$

ACCT-NUM,'VERNER',TIME $=60$ B(T) - THE FAMILY SIZE。 IS USED.

COMMON K, AgH9COF D
REAL AT (11), D(51), PROD(11,11)
REAL $A(3,51), H(51), \operatorname{COF}(4,51)$
REAL NU(51)

C
C
C
C
$\mathrm{NT}=11$
$N X=51$
CALL ANAL (NX,NT,FBAR,AT,D)
D2=D(2)
AT $2=A T(2)$
CALL OBS (NK,NT,FBAR,FBARST,G)
CALL TRANS (NX,NT,G,GT)
CALL MULT(11,51,GT,G,PROD)
CALL EIGEN(PROD,11,AT,ID) WRIT $=(6,104) \quad($ AT (I), $I=1,11)$
104 FORMAT(101,5F12.6) WRIT $=(6.115)$ WRITF(6,104) (O)(I), I=l,5l)

C
STOP

THIS PROGRAM ESTIMATES THE PARAMETERS $A(T)$ AND $D(X)$ FOR THE FERTILITY DIFFERENTIAL EQUATION. DATA IN THE FORM OF VALUES OF TUE NORMALIZED FERTILIYY ARE REQUIRED, AND THESE MAY bE ESTIMATED FROM VALUES OF THE FERTILITY CURVE AND THE PARAMETER

TO TEST THE PROGRAM A CLOSED FORM SOLUTION FOR A SPECIAL CASE

REAL FBAR(51,11), FBARST(51,11), K(2,51),G(51,11),GT(11,51),ID(51)
 obsepve that dynamic parameters are being used with common and AN ERROR MAY OCCUR AS A RESULT OF MIXED INDEXING - INSURE THAT columns are completely filled on use of a dynamic index

114 FORMAT('O',' A(T) OBTAINED FROM ll BY 11 MATRIX IS')

115 FORMAT('0', $D(X)$ OBTAINED AS (G(X,T),A(T))/(A(T),A(T))')
C PRIMTPRINTPRINTPRINTPKINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
(6,117)
FORMAT(101, $D(X)$ FROM THE CLOSED FORM IS')
WRITF(6,104) (D(I), $I=1,51)$
WRIT $=(6,105)$

C

SUBROUTINE OBS (NX,NT,FBAR,FBARST,G)

This routine compures the 'Observations' of the form
INTEGRAL FROM 0 TO X OF -D/DT(FBAR(X,T)) ALL DIVIDED BY FBAR (X, T) the array g stores the observations

COMMON K,A,H,COF,D
REAL $K(2,51), A(3,51), H(51), \operatorname{COF}(4,51), D(51)$
REAL FBAR $(N X, N T), F B A R S T(N X, N T), G(N X, N T)$
$\mathrm{nT}=$? .
DO $5 \mathrm{I}=1$, NT
$K\left(I^{\prime}, I\right)=D T^{*}(I-1$.
CALL SETUP (NT,A,H,K)
DO 25 IX=1,NX

DO 15 IT $=1$,NT
$K(2, I T)=F B A R(I X, I T)$
CALL SOLVE(A,K,H,NT,D,COF)
DO $24 \mathrm{~J}=1$, NT $T=D T^{*}(J-1$.
FBARST (IX, J) $=30 * \operatorname{COF}(1, J) * T * T+2 . * \operatorname{COF}(2, J) * T * \operatorname{COF}(3, J)$ CONTINUE
CONTINUE
DO $35 \mathrm{I}=1 \mathrm{I}, \mathrm{NX}$
$K(1, I)=I-1$.
CONTINUE
CALL SETUP (NX,AgH,K)
DO $55 \mathrm{IT}=1$, NT
DO 45 IX=1,NX

$$
K(2, I X)=F B A R S T(I X, I T)
$$

CALL SOLVE (A,K,H,NX,D,COF)
$G(1, I T)=0$.
$\mathrm{x}=0$ 。
NXM1 $=N X-1$
DD=0.
DO $55 \mathrm{~J}=1, \mathrm{NXMI}$
$D D=D 0-x^{* *}\left(\operatorname{CoF}(4, J)+x^{*}\left(\operatorname{CoF}(3, J) / 2 \cdot+X^{*}(\operatorname{COF}(2, J) / 30+\right.\right.$ $x * \operatorname{COF}(1, J) / 4$.$))$
$x=x+1$.
$D D=D D+X *(\operatorname{COF}(4, J)+X *(\operatorname{COF}(3, J) / 2 .+X *(\operatorname{COF}(2, J) / 3 \circ *$
2

RETURN

END
C

sUBRnUTINE SETUP(N,A,H,K)

THIS ROUTINE SETS UP A TRIDIAGONAL MATRIX A OF THE SPLINE EQUATION
IN A 3 BY N ARRAY - FIRST ROW IS SUPERDIAGONAL SECOND ROW IS DIAGONAL THIRD ROW IS SUBDIAGONAL
AND THEN DECOMPOSES A TO LU SO THAT
FIRST ROW IS SUPERDIAGONAL OF U, SECOND ROW IS DIAGONAL OF U
THIRD ROW IS SUBDIAGONAL OF L, DIAGONAL OF L IS UNITY

RFAL $A(3, N), H(N), K(2, N)$
NM $1=\mathrm{N}-1$
$H(2)=K(1,2)-K(1,1)$
DO $10 \mathrm{I}=2, \mathrm{NM} 1$

$$
H(I+1)=K(1, I+1)-K(1, I)
$$

$$
A(1, I)=H(I+1) /(H(I+1)+H(I))
$$

$$
A(2, I)=2.0
$$

$$
A(3, I)=1-A(1, I)
$$

CONTINUE
$A(1,1)=-2$.
$A(2,1)=2$.
$A(3,1)=0$.
$A(1,0)=0$.
$A(2,1)=2$.
$A(3, v)=-2$.
DO $11 I=2, N$
$A(3, I)=A(3, I) / A(2, I-1)$
$A(2, I)=A(2, I)-A(3, I) * A(1, I-1)$
CONTTNUE
RETURN
END
C

SUBROUTINE SOLVE(AgK,H,N,D,COF)

REAL $H(N), D(N), A(3, N), K(2, N), \operatorname{COF}(4, N)$
$D(2)=(K(2,2)-K(2,1)) / H(2)$
$\mathrm{NM} \mathrm{I}=\mathrm{N}-1$
DO $12 \mathrm{I}=2, \mathrm{NM} 1$
$D(I+1)=(K(2, I+1)-K(2, I)) / H(I+1)$
$D(I)=6 *(D(I+1)-D(I)) /(H(I+1)+H(I))$
CONTINUE
no $13 \mathrm{I}=2, \mathrm{~N}$
$D(I)=D(I)-A(3, I) * D(I-1)$
CONTINUE
$D(N)=0(N) / A(2, N)$
DO $14 \mathrm{I}=2, \mathrm{~N}$
$J=N+1-I$
$D(J)=(D(J)-A(1, J) \times D(J+1)) / A(2, J)$
CALL POLLY(N,D,K,H,COF)
RE.TURN
END

SUBROUTINE POLLY(N,M,K,H,COF)

REAL M(N),K(2,N),H(N),COF(4,N)
NMI $=\mathrm{N}-1$
DO $11 \mathrm{I}=1, \mathrm{NM} 1$
$\operatorname{COF}(1, I)=(M(I+1)-M(I)) /(6 . * H(I+1))$
$\operatorname{COF}(\supset, I)=(K(1, I+1) * M(I)-K(1, I) * M(I+1)) /(2 . * H(I+1))$
$D O=M(I+1) * K(1, I) * K(1, I)-M(I) * K(1, I * 1) * K(1, I+1)$
$\&+2 . * \mathrm{~K}(2, \mathrm{I}+1)-2.7 \mathrm{~K}(2, \mathrm{I})$
$\operatorname{COF}(3, I)=(D D /(2,3 H(I+1)))+H(I+1) *(M(I)-M(I+1)) / 6$.
 THIS ROUTINE CALCULATES THE SECOND ORDER FINITE DIFFERENCES OF THF SPLIVE, AND THEN SOLVES $A M=D$, (BY FORWARD AND BACKWARD SUBSTITUTION), PLACING M(VECTOR OF SECOND DERIVATIVES) IN D
END POINT CONDITIONS NOW USE THIRD ORDER FINITE DIFFERENCES TO EqTIMATE THIRD ORDER DERIVATIVES AT XO+H/2 AND KN $-H / 2$

$D(1)=-2 . *(-K(2,1)+K(2,4)+3 *(K(2,2)-K(2,3))) /(H(2) * H(2))$
$D(N)=-2 . *(-K(2, N)+K(2, N-3)+3 . *(K(2, N-1)-K(2, N-2))) /(H(N-1) * * 2)$


```
THIS ROUTINE COMPUTES THE COEFFICIENTS OF THE SPLINE POLYNOMIAL
    ON EACH SUBINTERVAL
K is the array of data points
H IS THE VECTOR OF SUBINTERVAL LENGTHS
M IS THE SOLUTION VECTOR TO THE EQUATION AM=D
```


$\cap D=M(I) *(K(1, I+1) * * 3)-M(I+1) *(K(1, I) * * 3)+6 . * K(1, I+1) * K(2, I)$
$\&-6 . * K(1, I) * K(2, I+1)+K(1, I) * M(I+1) *(H(I+1) * * 2)-K(1, I+1) * M(I) *$
\& ($H(I+1) * * 2)$
$\operatorname{COF}(4, I)=\mathrm{DD} /(\mathrm{H}(\mathrm{I}+1) * 6$.

151
11
CONTTNUE
DO $16 \mathrm{~J}=1,4$
16
$\operatorname{COF}(1, N)=\operatorname{COF}(\mathrm{J}, \mathrm{NMI})$
RETURN
EMD
C

156

157
158
159
160
161
162
163

164
C
C
C
C
C

C

176

177
178
179
180
181
182
183
184
185
186
SUBROUTINE TRANS (NX,NT,G,GT)
C

C

165
166
167
168
169
170
171
172
173
174
175
REAL G(NX,NT),GT(NT,NX)
DO 65 IX $=1$, NX
DO $65 \mathrm{IT}=1, \mathrm{NT}$
CONTINUE
RETURN
END

DO 67 IX $=1$, NA
DO $67 \mathrm{IT}=1, \mathrm{NA}$
DO $66 \mathrm{~K}=2$, NB

CONTINUE
RETURN
END

REAL PROD (NA,NA), EV(NA), NU(NA)
SUMI =0.
OO 77 IX=1,NA
SUM $=P R O D(I X, 1)$
0076 IT $=2, N A$
CONTINUE
$\mathrm{NU}(I X)=$ SUM
SUMI =SUMI + SUM
CONTINUE

THIS ROUTINE TRANSPOSES A MATRIX

$G T(I T, I X)=G(I X, I T)$

SUBROUTINE MULT (NA,NB,A,B,PROD)

THIS ROUTINE MULTIPLIES TWO MATRICES

REAL $A(N A, N B), B(N B, N A), P R O D(N A, N A)$
$\operatorname{SUM}=A(I X, 1) * B(1, I T)$
$S \cup M=S U M+A(I X, K) * B(K, I T)$
CONTINUE
$\operatorname{PROD}(I X, I T)=S U M$

SUBROUTINE EIGEN (PROD,NA,NU,EV)

THIS ROUTINE FINDS THE DOMINANT EIGENVECTOR OF THE NA BY NA MATRTX PROO AND PLACES IT IN EV WHICH IS NORMALIZED BY THE 1-NOQM. ITERATION RUNS UNTIL ROUNDING ERROR IS DOMINANT.

SUM $=$ SUM + PROD (IX,IT)

ERROR $=1$ 。
89 CONTINUE
SUMZ $=0$ ．
1）0 $87 \mathrm{IX}=1$ ，NA
SUM $=P R O D(I X, 1) * N U(1)$
DO $86 \mathrm{IT}=2$ ，NA
SUM＝SUM＋PROD（IX，IT）＊NU（IT）
CONT INUE
$F V(I X)=S U M / S U M I$
SUMZ $=$ SUM $2+E V(I X)$
CONTINUE
SUMI $=0$ 。
ROUN？$=.5^{4 E} E R R O R$
$E R R O R=0$ 。
DO 97 IX＝1，NA
SUM＝PROD（IX，1）HEV（1）
DO 96 IT＝2，NA SUM $=$ SUM + PROO（IX，IT）$H E V(I T)$ CONT INUE
$N \cup(I X)=$ SUM／SUMZ
SUMI $=$ SUMI $+N U(I X)$
$E R R O R=E R R O R+A B S(E V(I X)=N U(I X))$
CONTINUE
IF（FRROR．LT．BOUND）GOTO 89
RETURN
END
\＄ENTRY

A!I' rrum ime Llused fukM is

1.000000	1.130877	1.247348	1.336588	1.388775
1.398163	1.363718	1.289234	1.182909	1.056447
0.923773				

D(X) FROM THE CLOSED FORM IS

0.000000	0.002500	0.005000	0.007500	0.010000
0.012500	0.015000	0.017500	0.020000	0.022500
0.025000	0.027500	0.030000	0.032500	0.035000
0.037500	0.040000	0.042500	0.045000	0.047500
0.050000	0.052500	0.055000	0.057500	0.060000
0.062500	0.055000	0.067500	0.070000	0.072500
0.075000	0.077500	0.080000	0.082500	0.085000
0.087500	0.090000	0.092500	0.095000	0.097500
0.100000	0.102500	0.105000	0.107500	0.110000
0.112500	0.115000	0.117500	0.120000	0.122500

A(T) OBTAINED FROM 11 BY 11 MATRIX IS
$0.997756 \quad 1.120877 \quad 1.248731$ 1.339316 1.390486
$1.399143 \quad 1.365165 \quad 1.290611 \quad 1.183847 \quad 1.058285$
0.921801
$D(X) \quad$ OBTAINED AS $(G(X, T), A(T)) /(A(T), A(T))$

0.000000	0.002437	0.004990	0.007491	0.009990
0.012487	0.014985	0.017483	0.019980	0.022478
0.024975	0.027473	0.029970	0.032468	0.034965
0.037463	0.039960	0.042457	0.044955	0.047452
0.049950	0.052447	0.054945	0.057442	0.059939
0.062437	0.064934	0.067432	0.069929	0.072426
0.074924	0.077421	0.079918	0.082415	0.084913
0.087410	0.089907	0.092403	0.094899	0.097395

It is expected that available data will be in the form of a histogram: that is, for population the number of individuals between the ages of x and $x+h$ years is known. To generate a density function for this histogram, a fourth order spline approximation routine is used. To investigate the accuracy of the scheme, the histogram is regenerated by integrating the spline constructed.

BJUB
ACL 1－NUM，VERKNEK，1 1ME＝OU

REAL $A(303,9), P(100), Q(303), P O$
YNTEGER I，J，K，TN，TO，TT
INTEGER T3
C．KRRRQRRRRRRKRRKRRRRRRKRKKRRF
READ（5，100）TN
FORMAT（13）
$\operatorname{READ}(5,101)(\mathrm{P}(\mathrm{I}), \mathrm{I}=1 \mathrm{l} \mathrm{IN})$
101 FOR：A：T（10FB．0）
C RRRRRRRRRRRRRRRRRRRRRKRRRRRRRRRRRRKRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRF
C PRINTPRINTPRINTPRINTPKINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF WR $1 T=(6,106)$
106 FORMAT（110）
PRINT，THE GIVEN POPULATION IS：
PRINT，••
WRIT～（ $\mathrm{H}, \mathrm{l} 0 \mathrm{C}$ ）（ $\mathrm{P}(\mathrm{I}), \mathrm{I}=\mathrm{l}, \mathrm{IN}$ ）
102 FORMST（O＇OLOF8．0）
0
PRINTPRINTPKINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF TO＝0
T3＝3：（TN－TO＋1）
CALL ISPLIN（A，TO，TN，T3，P，Q）
CALL CHECK（P，Q，T3，TN）
$P(1)=Q(3)$
$p(2)=0(5)$

$$
1025 \mathrm{~T}=3, \mathrm{TN}
$$

$P(I)=Q(3 * I-2)$
CONTINUE
PLINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTI
PRINF．\quad •
PRTNT，＇
PRIVT，PTHE POPULATION DENSITY AT AGES 0，1020．0．099 ISO
PRIVT，＇
WRTTシ（n，102）（P（I），I＝1，TN）
WRIT：－$(6,106)$
C．DRINTPRINTPKINTPRINTPKINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTI
C PUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHI
（ WRIT－（7，101）（P（I），I＝1，TN）
C PUNCHPUNCHPUNCHPUNCHOUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHI GTOP
Fivi
SURR．JUTINE CHECK（P，Q，TB，TN）
C \quad \＃\＃
C THIS SUBROUTINE REGENERATES THE POPULATION HISTOGRAM FROM THE

INTEAF：T3，TN
REAL $\theta(T 3), R(T N)$
$P(1)=(Q(3)+Q(5)) / 2 .-(U(2)+Q(4)) / 24 .+Q(6) / 120$
$D(2)=(Q(7)+Q(5)) / 2 .-(Q(8)+Q(4)) / 24 .+Q(9) / 120$ 。
no 26 $I=3, T 4$
$H(I)=\left(Q\left(3^{*} I+1\right)+Q\left(3^{*} I-2\right)\right) / 2 \cdot-\left(Q\left(3^{*} I+2\right)+Q\left(3^{*} I-1\right)\right) / 240 * Q\left(3^{*} I * 3\right) / 120$ CONIINUE
PKINTPRINTPRINTPRINTPKINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT PKINT，＇＇
PRINT, '
PRINT, 'THF POPULATION REGENERATED FROM THE FOURTH ORDER SPLINE ISO
PRINT, ' '
WRITC(6,102) (P(I), I=1,TN)
102
FORMAT(0 •, 10FR.0)
PRINTPRINTPRINTPRINTPKINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF
RE.TURN
END
SUBR'UTINE CKEATE (A,TO,TN,T, $\mathrm{T}, \mathrm{P}, \mathrm{Q})$

c THIS ROUTINE CREATES THE INTSPLINE MATRIX FOR APPROXIMATING
C \quad DEVSITY FUNCTION GIVEN SUBINTERVAL INTEGRALS
c
c
THE IJNKNOWN VALUES $Q(I)$ ARE THE VALUES R4(0), R2(0)gR(0) QRZ(1) g
$R(1), R 4(1), R(2), R 2(2), R 4(2), \ldots 9 R(I), R 2(2) 9 R 4(I) 9000$
$R(T O), R 2(T O), R 4(T O)$ 。
ROUNIARY CONDITIONS ARE $R:(0)=R 0:(0)=R(100)=R 0 日(100)=0$

INTEGEL I, J,K,TN,TO,TT
INTERER T3
REAL A (T3.9), P(TN), Q(T3)
no $3 \mathrm{Br} \mathrm{I}=1,13$
C RRRPQRKKRRKKRRKRRRRRRKKKRRRRRRRRRRRRRRRKRRRRRRRRRRRRRRRRRRRRRRRRRRRFF
READ!5.103) D
103 FORM, T(F10.4)
©EAD(5,104) (A(T,J),J=1,9)
104 FORM. T(9F9.5)
no 3. J=1. ${ }^{\text {C }}$
$\Delta(1,1)=4(T, J) / 1)$
CONT INUE
RKKRPRZRRRRKKRKKRRRRRRKRKRRKRRF
TT=T:TO-1
no $3, ~ \mathrm{I}=4, \mathrm{~T}$
(ii) $31 J=1,9$
$A\left(2+3^{\#} I, J\right)=A(11, J)$
$A(3+3+I, J)=A(12, J)$
$A(4+3 * I, J)=A(13, J)$
CONTINUE:
$\mathrm{TT}=\mathrm{T}+\mathrm{l}$
READ (5.104) (A(3*TT+2,J), J=1,9)
PEA) (5, 104) (A (3*TT+3,J), J=1,9)
$\mathrm{NI}=\mathrm{T}(\mathrm{I}+$?
no 3 ? I = ill TT
$\theta(3 * T-1)=0$ 。
$\theta(3 * I)=0$.
$Q\left(3^{*}[+1)=2^{* P(1)}\right.$
CUNTINUE
0(1)-0.
$Q(2)=0$.
$Q(3)=2 * P(T O+1)$
9(4) - 0 .
$0(3 * T+2)=0$.
$0(3 * T T+3)=0$.
Rrtijun
FMi)
SUBRTMTINF ISPLIN(A,TU,TN,TB,P,Q)
(
THI $\begin{aligned} \text { foutiry: SULVES THE INTEGRAL SPLINE PROBLEM FOR A POPULATION }\end{aligned}$

INIEGFK TO, TN,I,J,K,TT
TNTERER T3
RFAL $\triangle(T 3,9), P(T N), Q(T 3)$
CALL_ CREATF (A,TO,TN,T3,P,Q)
กก $33 \quad I=1, T 3$
$0(I)=0(I) / A(I, 5)$
7) $34 \mathrm{~J}=6,9$
$A(I, J)=A(I, J) / A(I, 5)$
CONTTNUE
$\Delta(T,-)=1$
กП $32 k=1,4$
IF ($(1+K) \cdot G T \cdot T 3)$ GOTO 33
$Q(I+K)=Q(I+K)-4(I+K, 5-K)+2(I)$
$19035 \mathrm{~J}=2.5$
$A(I+K, 4-K+J)=A(I+K, 4-K+J)=A(I * K, 5-K) * A(I, 4+J)$
cont inue
$A(I+K, 5-K)=0$
CONT I NUE
C

RACKऽUBSTTTUTION

$\left.\mathrm{N}=3^{3} \mathrm{~s}^{(\mathrm{T}} \mathrm{N}-\mathrm{TO} \mathrm{O}+\hat{1}\right)$
$Q(N-1)=Q(N-1)-i(N) * A(N-1, G)$
$Q(N-7)=1(N-2)-(Q(N) * A(N-2,7)+Q(N-1) * A(N-2,6))$
$0(N-7)=(2(N-3)-(Q(N)+A(N-3,8)+Q(N-1) * A(N-3,7) \& Q(N-2) * A(N=3,6))$
1) 0 3K $I=5,4$
$K=N-I+1$
ค) 3 ($J=1,4$
$\theta(K)=Q(K)-A(K \cdot 5+J) \& Q(K+J)$
CONTINUE
RETHRA
ENO
\$ENTHY
1023102.1000000 971804． 969890 951483．949171． 924609．921317． 883342．877883． 810900．800910． 677771．659749． －454548．427593． 181765．157799。

994230 ． 958038. $94 \therefore 789$. 917880 ． 872098. 79n282． 54n761． 4101112． $13=297$ $1,833$.

940114．986767．983817．981102． （179． 964260.962270. 941800 ． 939197. 910515.906554. 914282． 865967. 778981． 859464. 766961. 599824. 344130 。 95378. 4787。
852554. 754191. 577882． 315982。
78221 ． 3011 。
981102.

960201 。 936442. 902393. 845214 。 740631。 554975. 287973． 63036. 1818．

978541 。 958098． 933692． 898007． 837413 。 726241。 531133． 260322．
49838. 1005 。
976124. 955942。
930788． 893382． 829114． 710990。 506403． 233251。 38593。 454 。

973869。 953743。 927763。 888504 。 820292. 694843 。 480850 。 206989。 29215。 125.
－the population regeneraten from the fourth order spline is
1023102.1000000 ． 971804．969890． 951483．949171． 924609．921317． 883342．877883． 810900．800910． 677771。659749． 454548。427593． 181765．157799． 21577．15514．1＂833．
940114. 966178. 9443.37. 914282. 865967. 778981． 620782. 372240 ． 114440 ． 7327.

986760． 983816. 964260.962270. 941800．939197． 910515．906554． 859404．852554． 765461． 754191. 599824．577882． 344136.315982.

95378．78221。
4787．3011．

981102．978541。 960201．958098． 936492．933692． 902393．898007． 845214。837413． 740631．726241。 554975．531133． 287973．260322．
63030．49838． 1818。1005。
976124. 955942。 930788。 893382。 8291140 710990． 506403。 233251。 38593。 454。

973869。 953743。 927763。 8885040 820292。 694843。 480850 。 206989。 29215。 125 。

THE POPULATIUN NENSTTY AT AGES 0，1，2，．．．99 IS

1038460．1008672． 972804．970830． 952623．950337． 92．6209．922987．
k 885972．880664． 815694．806008． 686464．668919． 467817．441169． 194185． 169555. 25119。18298。
995297. 962960. 947992. 910425. 875047. 795705. 65041% ． 412929. 14i？ 80. $1>960$ ．
992581. 967114. 945576. 916109. 869092. 784748 ． 630936. 386229. 124581. 8901.
988103. 965234. 943085. 912429. 862781. 773094. 010460. 358212． 104599.
5914.

985351 963284. 940516. 908568. 856079. 760704. 589017. 330052． 86475. 3786.

982383． 961243. 937861. 904509 。 848958. 747547. 566587. 301936. 70297． 2334.

979819。 959156 935108. 977299。 957028。 932259。 900240．895735． 841394．833348． 733577．718762． 543207．518911。 274070．246671。 56107。 43896 。 1363．688。

974970 。 954851。 929297. 890988。 824794. 703069 。 493758 。 219966。 33602。 262．

- COST FOR THIS PROGRAM IS \$ \quad - 1.19

