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Letter of Transmittal  

Dr. A.R. Demirdache, 
Director, 
Technological Forecasting 
and Technology Assessment Division, 

Ministry of State for Science 
and Technology, 

Ottawa, Canada. 

Dear Dr. Demirdache: 

I have pleasure in forwarding to you herewith an 
Interim Report on the work undertaken by this Department 
in response to your request for input towards the 
Canadian contribution to the work of the International 
Institute for Applied Systems Analysis. 

You will recall that you asked us to attempt to 
model the growth of population in Canada, by means of a 
model involving coupled systems and non-linear dif-
ferential equations. The importance of the Model derives 
from the fact that population studies are an indispen-
sable building block in any attempt to study national 
socio-economic problems with the accuracy necessary to 
form a basis for policy decisions. 

The work on this Model has been carried out 
principally by Professors Jon Davis and James H. Verner 
of this Department. As you will see, they have broken 
new ground in applying relatively sophisticated methods 
which have not hitherto been deployed on population 
studies, and they have devised computer programmes to 
,display the distribution of population in age and time 
in a very graphic manner. 

I remind you that in the agreement between us, 
the right of publishing the details of the procedures 
contained in this Report in scientific journals has been 
reserved to Professors Davis and Verner. They would 
wish me to emphasize strongly their evaluation of the 
present work as being highly preliminary, and they 
would caution against any attempt to make exaggerated 
claims for their model in its present state. 

Even so, I trust that you will agree with my 
view that they have demonstrated that there are extremely 
worthwhile possibilities in their method, which should be 
pursued vigorously. 

Yours faithfully, 

A. J. Coleman, Head, 
Department of Màthematics. 
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Abstract  

The Queen's Mathematics Department population 

model is a dynamic model for simulating the evolution of 

a population distribution as a function of age and 

income level. 

The basic structure of the model is such that 

birth-rates may be generated within the model as endo-

genous  variables. This allows the inclusion of feedback 

effects from the population distribution to birth and 

immigration rates, and so provides a capability for 

simulations valid over longer time intervals than are 

possible with exogenous birth and immigration rate 

variables. 

The model has been constructed with two main 

issues in view. The first is that of compatability of 

this model with other models with which it might be 

combined. This requirement dictates a modular structure 

described in this report. The second issue is the prob-

lem of parameter estimation in the model. The model has 

been formulated in such a way that estimation is made 

possible. 

Effective numerical algorithms for these est-

imations based on available data formats are also re-

ported. 

• 



A description of work that remains to be done in 

order to complete development of the model is also 

included. 

iv . 



Introduction 

Models of population growth form an essential 

part of any attempt at large scale socio-economic 

modelling. The age and economic level structure of 

the population has a direct bearing on various govern-

ment service requirements ranging from elementary 

schools to pension plans, as well as the economic base 

available to support such programs. For this reason, 

it is essential that population models capable of sim-

ulating behaviour over a reasonable length of time be 

investigated. 

Traditional demographic methods project pop-

ulation estimates forward in time by means of an 

aggregation procedure, followed by a linear extra-

polation procedure based essentially on a Markov-chain 

type of model. Such methods are reasonably accurate 

over the relatively short term; however, the model 

structure is such that the fertility curve (the age-

specific distribution of the birth-rates) is treated as 

an "exogenous variable" which must be specified for 

each run. Some attempts (the so-called "cohort 

method") have been made to include in the model the 

observed fact that birth-rates do vary over time, but — 

the problem of extrapolation birth-rates forward in 

time in order to increase the length of time that model 
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results are valid remains. 

It is clear that many  factors affect birth-rates: 

economic conditions, perceptions of future economic 

conditions, ecological concerns, a host of other 

factors affect birth-rates to a greater or lesser 

effect. It is also clear that present population 

structure affects in turn the economic climate, and 

the general environment. The present population is in 

turn the result of past birth-rates (and immigration). 

The conclusion of the above observations is that 

it is impossible to decouple the dynamics of the birth-

rates from those of the population structure without 

compromising the long term validity of the model sim-

ulation. In effect, there exists a feedback path from 

population structure to birth-rates which may not be 

ignored over the long term. (This does not imply that 

such decoupling„ based on assumptions that certain 

factors "vary slowly with time", detracts from the 

usefulness of models intended for use over relatively 

short time periods). 

The model discussed in this report represents an 

approach to the problem of including the dynamic feed-

back effect mentioned above in a simulation model. 

More specifically, this report contains the results of 

some work on what we regard as the basic structural 
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elements and problems associated with models of this 

sort. 

The structure and "philosophy" of the model is 

discussed more fully in Section II. 

It was determined early in our investigation that 

partial differential equations were an appropriate 

component of the model - in fact, it is hard to con-

sider the effect of the "baby boom" without coming to 

the conclusion that a wave equation occupies a central 

position in a model of population distribution. In 

work on any dynamical model it is necessary to deter-

mine numerical values for parameters occurring in the 

model equations before any simulation may be carried 

out. At worst, these parameters may have to be 

guessed; obviously it is much more desirable that the 

parameters be estimated from historical records of the 

phenomenon being modelled, if possible. The latter 

procedure provides an indirect means of assessing the 

validity of the model. 

In the case of models governed by partial dif-

• erential equations this estimation problem is even 

more severe, as it is often necessary to estimate not 

just a finite set of parameters, but a function of one 

or more independent variables. Aspects of this prob-

lem are reported in Section III and Appendix C. 



Once parameters and functions have been estimated 

from the available data, it is possible to simulate the 

system on a digital computer. This, of course, involves 

the solution of coupled systems of ordinary and partial 

differential equations by numerical methods. It is 

necessary to investigate the effects of the numerical 

methods used on the accuracy of the results obtained, 

in order to ensure that the behaviour of the model is 

a result of the actual "dynamics" of the model itself, 

and not the result of instability caused by inaccurate 

numerical methods. The difficulty of this problem is 

again increased by the fact that partial differential 

equations are involved. The work in this area has been 

checked by use of certain exact solutions to the gov-

erning equations (Appendix A) and is described in 

Section V and Appendix B. 

II. 	Structure of the Model  

It is helpful in describing the structure of the 

model presented here to explain briefly the general 

philosophy of "modelling" that the authors of this 

report hold, and which has had a strong effect on the 

structure adopted for the model discussed here. 

In the first place, we feel that a main product 

of any  modelling and simulation effort should be 



insight  into the behaviour of the phenomena being model-

led. Perhaps the worst fate that can befall any model 

is that it be used to generate one set of trajectories 

which are then canonized as "the predictions" of the 

model (or worse yet, of the computer used to generate 

the output). Rather, the use of a model should itself 

be a dynamic process. It is certain that better data 

regarding the variables involved in a model will become 

available in the future, and it is only prudent that this 

data, if possible, be used to improve any "forecasts" 

made using the model. 

It is also rather likely that there are alter-

native opinions regarding the actual structure  of some 

sections of any given model. In this situation, it is 

essential that simulations be run incorporating these 

alternative opinions, rather than selecting one arbit-

rarily and incorporating it permanently into the model. 

It is only by simulating each of the reasonable alter-

natives (a matter of judgement is involved here) that 

any true insight into the behaviour of the system as a 

whole can be gained; this includes an appreciation of 

the range of results which might be expected under 

reasonable alternative models. 

These considerations suggest at least that a use-

ful model must have sufficient flexibility of structure 



to accommodate changes of the sort mentioned above. In 

order to build flexibility of this sort into a model, it 

is necessary  to identify a basic dynamical core around 

which the model may be constructed. 

The basic core of the model in this paper consists 

of equations for the evolution of the population dist-

ribution, and for the evolution of the fertility curve 

over time. 

As was mentioned in the previous section, it is 

clear that economic conditions interact with the current 

population distribution and other factors to produce 

the current instantaneous birth-rate. It is also clear 

that the exact nature of these interactions is comp-

licated and probably poorly understood in total, 

although some progress in this direction may be made by 

various methods. On the other hand, the evolution of 

the population distribution may be described (see the 

following section) by a partial differential equation 

of the conservation law type. Also, by looking at 

birth-rate records, it is possible to argue that the 

evolution of the fertility curve is also adequately 

modelled by a relatively simple partial differential 

equation. Furhter, the structure of these sections of 

the model is independent of the details of economic and 

other interactions which combine to affect birth-rates. 
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These considerations have led us to the decision 

to base the framework of the model on the dynamics of 

the population distribution and of the fertility curve. 

This leads to an overall model structure which may be 

represented in the "block diagram" form illustrated in 

Figure 1. 
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This block diagram includes a section labelled 

economic dynamics. It is judged that the exact form of 

this section will be the subject of some debate, and 

that repeated simulations with varying socio-economic 

models will be required. It is expected that models 

with a relatively long time horizon and moderately high 

level of aggregation will be found most appropriate. In 

particular, models of the "Candide" type with high levels 

of detail and relatively short (eg. ten year) time spans 

are not felt to be appropriate. As work up to the time 

of the writing of this report has been concentrated on 

problems associated with core section of the model, 

problems in this particular area require further study. 

III. Derivation of Equations of Dynamic Core  

The core of the model consists of two partial dif-

ferential equations: one for the evolution of the pop-

ulation density as a function of time, age, and income 

level, and one for the evolution of the fertility curve 

(i.e. the curve of age and income specific birth-rates). 

These two equations are coupled in a non-linear fashion, 

although the non-linearity appears only  in the boundary 

conditions for the population equation. This fact is 

of considerable use in connection with the estimation 

problems discussed in the following section, and makes 



the derivations presented below simpler than might other- 

wise be the case. 

A. 	Population Distribution Evolution 

The model presented below is formulated as a 

basically deterministic model, and processes are model-

led as occurring continuously in time on a macroscopic 

level, even though on a microscopic level the events 

may occur at discrete intervals of time. In this con-

nection, a first step is to recognize that an averaging 

process is taking place whenever what are essentially 

discrete events are "smeared out" and modelled cont-

inuously in time. This process is illustrated by the 

use of death-rates in population models, decay rates in 

radioactive decay problems, and, in the derivation 

below, of an economic mobility u . In these  cases
, 

the use of such rates essentially distinguishes between 

deterministic and stochastic modelling approaches. 

The equation governing the population distribution 

may be derived readily from what are essentially count-

ing or bookkeeping methods. This is most easily demon-

strated by the derivation of a simple model of pop-

ulation as a function of age x 	neglecting  

death-rates, immigration and any other variables.  In 

this case, the appropriate counting argument is 



p(x,t-At)dx 
5 

essentially that the number of people at age x at 

time t is the same as the number of people at age 

x At at a time At units earlier: In terms of pop-

ulation density p , this becomes 

Ax 
X 	 AX 

2 

T p(x,t)dx = 

Px 	 Px X-- 

which for smooth densities p is essentially 

p(x,t) = p(x-At,t-At) 

or 	p(x 9 t) - p(x,t-At) = p(x-At,t-At) 	p(x,t-At) . 

Dividing the above by At and letting At -› 0 results 

in the partial differential equation 

In 
bt 	bx 



x years before time t • This of 5 - x i t> e• 

As is well known e  the general form of solution to 

the above is f = cp(t-x) 5 with cp an arbitrary 

function which must be evaluated from the boundary con-

ditions appropriate to the problem. The appropriate 

boundary condition is that 

p(x-0,t) =p(t) 

where p(t) is the birth-rate of time t . That this 

is the appropriate boundary condition may be verified 

by noting that this gives the solution 

p(xe t) = p(t-x) 

which says essentially that the number of people at age 

x at time t is the number of people born at time 

course is entirely evident from the assumptions made 

above. 

The model considered in this paper includes a 

partial differential equation for the population density 

p(x e s e t) as a function of the three variables age x 

income S 9  and time t • As will be shown below in 

Appendix Al  it is unnecessary to specify at this point 



the units involved in the income scale s , that is, 

whether s represents net income, disposable income, 

or some other measure. This is so because the form of -- 

the governing equation is invariant under a (non-

linear) change of income scale, so that the units 

involved become an issue only during the processing of 

data for estimation purposes. This fact is a pleasant 

surprise which naturally arises out of the structure of 

the model equations. 

To derive an equation for the population density 

on a realistic basis, it is necessary to account for 

effects neglected in the simplified model above, in 

particular to introduce terms 

representing the immigration rate (as a function of age, 

income level, and time), and the death-rate 

r(x,s,t) 

It is also necessary to introduce a term which 

accounts for the change of income level of various seg-

ments of the population over time. To accomplish this, 
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we introduce an eçonoLnicmolyilit function)  

u(x,s , t) 

Even though income levels of individuals on a micro-

scopic scale undergo changes at discrete instants of 

time, perhaps modelled by a Poisson process, on the 

macroscopic scale of its influence on the income dist-

ribution we model the effect as one of a continuous 

flow across income levels. With this effect in mind, a 

term of the form 

u(x,s,t) • At 

has an interpretation as the fraction of people at in-

come level and age x crossing through level s in the 

time interval from t to t + At . 

With the above definition of terms, it is easy to 

use a "counting argument" entirely similar to the one 

above to arrive at an equation representing the evol-

ution of population density. The result is 

_ 	( g (x '  s ' 
 Op) — r(x,s,t)p + i(x,s,t) ax 	as  



Just as in the above derivation, it can be seen 

that the appropriate boundary condition for this 

equation is again 

p(x0) = birth-rate. 

There is a technical problem associated with this boun-

dary condition, since taken literally it demands the 

assignment of an income level to babies at birth. In 

fact, the model as formulated above is capable of prop-

agating income level migration through childhood. It 

is clear that such a procedure makes little sense; 

however, the problem may be avoided rather easily by 

the following device. The income distribution at x = 0 

may be set equal to that at the age of entry into the 

labour market. If the economic mobility is equal to zero 

for values of age x less than the labour market entry 

age, then the income distribution will remain constant 

for ages less than entry at the values of the entry 

distribution. Income distribution data generated by sim-

ulation runs may then be considered only for ages 

greater than an age of entry into the labour market, and 

no further modification of the model is required. The 

income distribution at entry age must be generated as 

part of the economic section of the model, and this 



of p on the economic mobility g are implicitly 9 

effect comprises one of the feedback paths from the 

economic to population distribution sector shown on 

Figure 1. 

Other effects of this sort, for example, an effect 

contained in the time dependence of u 	. As will be 

seen below in the section dealing with estimation prob-

lems associated with the model, there are substantial 

theoretical and practical benefits which follow from 

modelling the income migration process as above. In 

particular, it is then possible to devise numerical 

methods to estimate u from observed population dist-

tribution data. 

B. 	Fertility_Curve Dynamics  

Although the observation that socio-economic 

conditions, social attitudes, and so on, exert an effect 

on birth-rates is a common one, there seems to have been 

little effort made to quantify these effects in a dyn-

amic model. Undoubtedly, a major reason for this is 

that it appears impossible to "derive" such a set of 

relations in the sense of the derivation outlined above 

for the population density dynamics. 

For this reason, we have decided to approach this 
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problem as one in system identification. That is, we 

attempt to formulate the problem in such a way that the 

problem is reduced to that of estimating a dynamical 

relationship between a relatively small number of 

variables. This in itself is a major reduction, since 

in principle a fertility curve is an element requiring 

an infinite number of numbers for its specification. 

This first reduction may be obtained by examining 

typical historical records of the behaviour of fertility 

curves over time (See Figure 2). A first observation is 

that the curves are all of roughly the same shape. An 

examination of their differences shows that their peaks 

slide from age to age over time, and that the area under 

the curve, representing the total birth-rates to be 

expected from a uniformly distributed population, varies 

over time. 

A simple partial differential equation capable of 

reproducing this observed behaviour has been adopted as 

the basis for the fertility curve dynamics. This is 

bf _ 
bt 

a(t) 	(d(x)f) - b(of 
Ox  

The first term in this equation produces the 

effect of the shifting peak, while integrating the 4 



equation with respect to x shows that b(t) is the 

percentage change of the area under the fertility curve 

per unit time. An e uivalent inter retation is that it  

averag-q. 

familx_size. 

The justification of the representation of the 

fertility curve dynamics by the above equation may be 

carried on in several ways. In the first place, the 

interpretation given b(t) guarantees the presence of 

the term b(t)f in virtually any such equation. The 

appropriateness of the term representing the "shifts" 

may be supported on the basis of a time scale argu-

ment, combined with the fact that the model fits the 

observed data reasonably well. The "shifts" occur in 

the data on a time scale considerably faster than that 

of the dynamics of the population section of the model. 

In fact, the shifts appear correlated with variations 

in the economic climate, recessions, rising and falling 

unemployment, and the like. Since these effects are 

expected to be introduced into the model most likely 

on the basis of "standard" econometric and business 

cycle models, it is anticipated that it will be possible 

to include the function a(t) and its dynamics in this 

section of the model. The dynamics of a(t) are to be 

4. 
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identified by means of either the usual econometric 

model identification techniques, or more recent work in 

the area of control theory. Since this identification 

problem presupposes knowledge of the term d(x) 9  work 

in this area is dependent on solving the problem of est-

imating d(x) 9 and applying the algorithm for this 

purpose is described in the following section. 

Comments similar to the above also apply to the 

problem of determining the dynamics governing the term 

b(t) 9 although it is suspected that this will be even 

more difficult than the above process. This is so 

because b(t) is dominated more by social attitudes, 

education, and other effects much less easy to quantify 

than economic ones. It is felt that this area represents 

an example of the need for alternative sub-models and 

repeated simulations discussed above in Section II in 

connection with the overall structure of the model. 

While the above discussion has been carried 

through as though the fertility curve were independent 

of income, an entirely similar derivation is possible on 

the basis of an income dependent fertility curve.  If 

one also allows the possibility that the economic inter-

actions occur unevenly across income levels, then the 

appropriate equation is 



bt 
bt 

o  (a(x" s t)f) 	b(s,t)f bx  

Because of the meaning of a fertility curve (or 

surface, if s is included as an independent variable) 

as an age (and income) specific birth-rate, the formula 

• for the total birth-rate is simply 

b(t) 	T f(x,s e t) p(x,s,t)dxds 

No mention has been made in the above derivations 

of any geographical aspect of the problem. There are, 

however, some restrictions implicit in the derivations of 

the model equations. It is clear that certain of the 

quantitites involved in the above equations vary with 

geographical locality. From this, it is obvious that 

the model must be applied separately over geographical 

areas between which the relevant quantities vary. To 

obtain an overall model, then, internal migrations must 

then be included in the immigration rates of the models 

for each geographical region. 

There is also implicit in the model derivation as 

assumption of a sufficiently large sample population, so 

that the modelling of the immigration, death, birth, and 

economic migration processes as continuous is valid. 



IV. 	Model Estimation Methods 

The dynamical equations governing the core section 

of the model derived above involve various auxiliary 

functions, namely: death and immigration rates, an 

economic mobility function p(xe s,t) and functions 

a(t) 	b(t) and d(x) determining the evolution of 

the fertility curve. Before it is possible to produce 

any simulation runs with the model, it is necessary to 

determine suitable estimates of these functions. 

Generally speaking, this problem of parameter and 

function estimation is one of the most difficult ones 

involved in the construction of any model. Consideration 

of the conventional techniques of econometric modelling 

makes obvious the amount of effort which is expended in 

• 	 this area. In fact, with a certain amount of injustice 

one might view much econometric modelling as consisting 

of the development of schemes for the recursive estim-

ation of parameters for short term (often linear) extra-

polation models. This view ignores the effort involved 

in determining the extrapolation model whose parameters 

are to be estimated, but the fact remains that there 

continues to be much work on the development of 

regression - estimation methods in this area. 

At practically the opposite end of this problem 

stand models of the sort proposed by Forrester and his 



associates. One of the most consistent criticisms 

levelled at Forrester's World and Urban Dynamics models 

is that practically no attempt has been made to estimate 

the parameters and functions involved in the models in 

any "realistic" fashion. 

This apparent gulf between the Forrester models 

and conventional econometric models is, in our view, a 

large contributing factor to the hostile reaction For-

rester's models have received in some quarters. It is 

also a gulf that is not easily overcome by philosophic 

discussions about differences of purpose between the two 

approaches. 

In the case of the present model, it happens that 

considerable progress can be made in estimating the 

functions that are involved in the model of the core 

dynamics. Of course, this is not entirely unexpected, 

since an effort has been made to formulate the dynamics 

of the core in terms of variables which may be readily 

measured. Also, our definition of what constitutes the 

core dynamics of the model virtually assures that it 

must be possible to produce useful quantitative est-

imates of the functions involved. 

The functions r(s,s,t) and i(x,s,t) in the pop-

ulation model are just death and immigration rates, so 

there is no problem in obtaining historical records of 



these. Similarly, the function b(t) may be readily 

determined on the basis of its interpretation in terms 

of area under the fertility curve. 

This leaves just the terms g(x,s,t) in the pop-

ulation equation and a(t) d(x) in the fertility 

equation to be determined. It can be seen that each 

terni  enters its equation in an analogous way, so that an 

estimation method can be derived which can be used to 

estimate both the economic mobility u(x„s„t) and the 

term a(t) d(x) in the fertility equation. 

It is shown in Appendix A that the form of the 

partial differential equations is such that an integrat-

ing factor may be introduced to reduce the problem to 

that of estimating g(x,s,t) and a(t) d(x) in the 

equations 

= 
bt 

là b 	
(u(x9s,05) 

bx 	Os 

àf _ 
bt 

(a(t)d(x)T) 
bx 

In the modified population equation, integrate 

between the limits of s and infinity. There results 



rco 	- ( 

s 	p ds 	11(x,s,t) 	-"p(x,s,t) ; bt 	bx 

re° - here Js p ds has the interpretation of the number 

of people at age x income s 	and time t 

having an income greater than s 	Solving this for 

g gives 

co 
0.(x 9 s 9 t) = F7717F- 5-. 	+ 7;-) Ss  5(x,s 9 t)ds 

This provides an estimate of u wherever 5(x,s,t)  #r 0 . 

- 
Since p(x,s 1 t) 	0 except on the "tails of the dist- 

ribution", the above formula may be used to determine 

g throughout the age and income brackets containing 

the great bulk of the population. On the tails of 

distribution (e.g., at very high income levels) the 

interpretation of u makes it clear that g must tend 

to zero, so that the fact that the above formula is less 

useful there is of little concern. 

Carrying out exactly the same procedure with the 

modified fertility curve results in 
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a(t) d( x ) , 	1 r(x,t) 	Ix  f(x,t)dx 

This determines a(t) d(x) over those portions of the 

age scale which i(x,t) 0 . Again 	tends to zero 

only on the tails of the fertility distribution. Recall-

ing that the term a(t) d(x) was introduced to account 

for changes in the age distribution of fertility we see 

that intuitively a(t) d(x) reflects the effects of 

shifts in "planned births" for the most part. Since 

births arising in the extremes of the fertility dist-

ribution do not fall into that category, it is clear 

that d(x) must approach zero at these extremes. Hence 

it is again true that the fact that the formula derived 

is less useful in regions where i is close to zero is 

of small consequence. 

Once 0.(x,s,t) and a(t) d(x) have been est-

imated, further estimation problems remain. One problem 

is that of determining numerically the values of a(t) 

alone for use in identifying the interactions between - 

the economic sector and the fertility curve. A second 

related problem is that of isolating the time dependence 

in u(x,s 5 t) in such a way that a similar interaction 

analysis may be carried out. These problems are of a 



somewhat more technical nature, so our work on them is 

reported in Appendix C below. 

A further technical complication arises in con-

nection with practical use of the estimation formulas 

above. This arises from the fact that the actual pop-

ulation density data is not available; rather figures 

are available for, say, the number of persons between 

ages 25 and 29 with income between eight and ten thou-

sand dollars. This amounts to the data 

10,000 	29 

ç p(x,s,t) dx ds 

8,000 	25 

at a fixed value of t 

We have expended a moderate amount of effort to 

develop accurate numerical algorithms with which 

u(x 5 s,t) and a(t) d(x) may be determined from aggreg-

ated data of the sort mentioned above. The method 

devised uses somewhat delicate application of numerical 

spline techniques. This work is also described in 

Appendix C. 
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Simulation runs have been made in order to test 

the algorithm for numerical solution of the coupled 

system of ordinary and partial differential equations 

which constitute the model 

Since there is a rather large amount of numerical 

data associated with each simulation run, the results 

are produced by the simulation program in a visual as 

well as numerical format. This is accomplished through 

a plotting routine which constructs perspective drawings 

of the three dimensional surfaces generated by a sim-

ulation run. 

The (steady state) age distribution which results 

from a constant birth-rate and an absence of immigration 

is illustrated in Figure 2. The age distribution which 

results in this case is of course determined solely by 

the death-rate. 

The wave-like nature of the solutions of the gov-

erning equations may be clearly observed in a simulation 

which creates a rise in the fertility curce, starting 

from an initial condition of the steady state illust-

rated in Figure 3. Since the dynamics governing a(t) 

and b(t) have not yet been determined, a simulation 

has been carried out by introducing b(t) as an exo-

genous variable; a(t) was determined through the 
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dynamic equation 

d 
dt ' 

) 2 
a(t) = b(t) 

The functions b(t) and a(t) have been determined so 

that So  a(t) dt = So  b(t) dt = 0 5  so that the fert- 

ility curve returns to its original value. This ' 

produces the response to Figure 4 in the fertility 

curve, which corresponds to a "baby boom" of duration 

approximately five years. The effect of this rise in 

the fertility curve on the age distribution is il-

lustrated in Figure . 

The varying total birth-rate may be clearly seen 

at the back edge of the figure; the secondary rise in 

the birth-rate which occurs as the original "offspring" 

of the boom pass through the childbearing ages is 

plainly visible. It is also easy to see the original 

boom passing as a wave through the age structure. 

Both the wave nature of the solutions and the 

birth-rate variations which occur due to a non-

uniform age distribution are illustrated in Figure 5. 

This output results from an initial age distribution 

which is significantly different from the steady-state 

distribution. Such a distribution might be viewed as 
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the result of variations in fertility and immigration 

which have occurred previous to the time interval covered 

by the simulation. In this simulation the fertility 

curve has been held constant, so that the birth-rate 

variations which occur are due to the varying number of 

people in the child-bearing age brackets. 

VI° Future Work 

As of the time of writing of this report, the model 

has progressed to the point that the basic structure has 

been established, and the crucial numerical problems as-

sociated with the model are well in hand. In particular, 

numerical methods have been devised for the simultaneous 

integration of the partial differential equations in-

volved in the model core dynamics and the accuracy of 

the method has been tested by means of comparison with 

explicit special case solutions of the model equations 

obtained by analytical means. Also, a considerable 

amount of effort has been expended on the problem of 

devising efficient numerical procedures for extracting 

estimates of the functional coefficients of the partial 

differential equations from date available in the form 

of a histogram. This algorithm has been tested again 

by use of explicit solutions of the governing equations, 

- 32 - 



and has produced accurate results in the tests. 

With these two obstacles removed, the next step 

in the development of the model is to begin the process 

of modelling the dynamics of the interaction between the 

parameters occurring in the core section of the model 

and various economic variables. The first step in this 

procedure is to apply the estimation algorithms to the 

actual historical data in order to determine the time 

history of a(t) 	b(t) and the variations associated 

with the economic mobility u . Once these functions 

have been extracted from the data, various approaches to 

establishing the interaction can be started. 

The problem of determining the interaction will 

first be treated by conventional time-series techniques, 

that is, correlation analysis based on the assumption of 

a linear dynamical system of finite dimension as the 

dynamical intermediary between the economic variables 

and those in the model core. More recent methods as-

sociated with input-output analysis of control systems 

and identification from operating records will also be 

tried if the time-series methods are found unsuitable. 

The relative effectiveness of these two techniques will 

probably depend on the "actual" location of the stoch-

astic noise element in the real system, length of the 

operating records, and other factors which are difficult 



to predict in advance. Non-linear regression methods and 

techniques of non-linear system identification are held 

in reserve in case the above methods prove incapable of 

modelling the interactions. 

After a suitable dynamic model of the interaction 

effects has been determined, full scale model sim-

ulations may begin. This requires models to generate 

economic variables as mentioned above in Section 11 5  and 

it is currently planned to adapt standard economic 

models to this purpose. It is also expected that in 

this context stochastic as well as deterministic sim-

ulations will be carried out. This is desirable for two 

reasons: first, it is a means of assessing the sen- ---- 

stx of the overall model; second, it is clearly 

more realistic to model economic behaviour to include 

random fluctuations if possible. 

Finally, we mention that there is a considerable 

amount of additional work which should be carried out 

in connection with an investigation of this model. In 

this area, we mention here only two possibilities which 

might be considered. The first is described here only 

because of its possible relevance to the problem of 

interaction identification discussed above. 



The model as it currently exists has been form-

ulated on a "macroscopic" level, that is, the processes 

which transfer people from one level to another as well 

as birth and death processes have been modelled as 

occurring continuously in time. On the microscopic 

level of an individual, these processes obviously occur 

at discrete instants of time and are most suitably 

modelled as a stochastic process. Such modelling will 

involve the determination of the probability of the 

occurances of the various "elementary events" which 

occur on the microscopic level. In such a model, the 

various interaction effects which are to be estimated in 

the continuous model appear in the form of dependence of 

transition probabilities on the current state of the 

other variables involved in the model. On this level, 

there is then the possibility of estimating these trans-

ition probabilities and their dependence on the other 

model variables 9  and thus modelling the interaction 

effects directly. Close examination of the resulting 

stochastic process model should then shed light on the 

form of the interaction in the continuous model form-

ulation of the problem. 

A second area where very useful work may be done 

is in the area of the construction of highly effecient 

numerical methods for the solution of the governing 



equations. In our work so far relatively standard 

numerical techniques have been used for numerical integ- 

, ration of the evolution equations. It may be quite 

possible to make use of the special forms of the 

equations to construct more efficient methods. Some 

preliminary investigation indicates that methods based 

on Lie algebraic techniques hold promise in this regard. 

It will be especially important to the usefulness of the 

final simulation programs that program execution time be 

kept as low as possible in order that the required number 

of repeated simulations may be carried out at a reason-

able cost. 

Ap_pendix A: 	Analytical Properties of the 
Governing Equations  

In this Appendix we report some of the analytical 

properties of the partial differential equations govern-

ing the dynamics of the population distribution and the 

fertility curve. The study of these analytical prop-

erties in itself provides considerable insight into the 

problems of population dynamics, as well as providing 

material essential for the testing of the accuracy of 

numerical methods developed for use in the model. 

It was mentioned in Section III that the population 

distribution equation enjoys an invariance property 



which makes it unnecessary to specify in the model form-

ulation the exact measure of income represented by the 

variable s 

This can be readily demonstrated mathematically as 

follows. Suppose that instead of considering the dist-

ribution function p(x,s,t) as a function of the income 

scale S 5  governed by 

12(x s t) = 	22-(x
5  s 5 	

(g(x5 s,t)p(x,s,t)) 

i(X,S,t) 	r(x e s,t) p(x,s,t) 

we ask for the evolution of the distribution expressed 

as a function of the income measure a • Here the new 

scale a is related to the scale s according to 

a = cp(s) 

where cp is a monotone, smooth (non-linear) function 

otherwise arbitrary. 

By the Chain Rule, 

t 
a = 



so that the evolution equation for p becomes 

f 	-1, 
P‘X,CP ta),t) 

a 	—1 
p(x,cp (0.) 90 ax 

—1 	 —1 
— 

P(x,cp-1 (c) e t))+  i  — r P(x9cP-1 (a),t) 

The Jacobian rule shows that the population 

density in terms of x a and t is given by 

P(x,c e t) = 

	

1 	 -1 

	

-1 	 P(X,A) (G),t) 

CP I  (CP 	(a)) 

Rearranging the previous equation to introduce '1'5 gives 

= _ 	- (11(x,c,05) + 	D 
at 	ax 	au 

with a(x,G,t) = g(x,cp-1 (a),t) • cp1
(

-1((5)) 



1( pc, a t ) 	pc, cip—±(211  

; (x,,t) 	r (x .e cp-1  i, 	cs 	 (0.),t) 

This identifies the transformation law of the economic 

mobility, and shows the invariance of the governing 

equation under such a change of scale. 

While the coupled system consisting of the pop-

ulation anf fertility evolution equation is a non-

linear one, the non-linear interaction occurs only in 

the calculation of the instantaneous birth-rate (so 

long as g , a(t) and b(t) are treated as exogoneous 

variables). Since the birth-rate enters only as a 

boundary condition, it is possible to get useful results 

from explicit solutions of the equations. 

Both the population and fertility equations fall 

into the class of evolution equations governed by first 

order partial differential equations. While the 

equations in general have variable coefficients, they are 

linear in the dependent variable; hence, in principle, 

the method of characteristics is applicable. 

This observation does not dispose of the problem, 

however. A principal reason for carrying out the invest- 
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igation into the analytical properties of the equations 

is to obtain if possible explicit  solutions to the 

equations. By explicit solutions, we mean solutions 

obtained in closed form analytically. 

These solutions have been used to test the accuracy 

of the numerical methods used both to integrate the evol-

ution equations and to estimate the functional co-

efficients of the equations g(x,s,t) and a(t)°d(x) 

In the absence of explicit solutions, only lengthy (and 

expensive) trial runs with varying step sizes can be 

employed to attempt to estimate accuracy; with explicit 

solutions available, it is far easier to estimate the 

step sizes required for a given level of numerical 

accuracy. 

The above remarks pertain to evaluation of the 

integration scheme; in the case of the estimation prob-

lem, the unavailability of explicit solutions would force 

one to the use of the integration routine to generate the 

data on which to test the estimation algorithm. In the 

case of inaccurate results, it then becomes tedious to 

determine whether the inaccuracy arises from the est-

imation scheme, or from the numerically generated data. 

It is this need for explicit solutions, at least in 

particular cases, that has led to the work reported 

■IMM, 4 0 



below. The method of characteristics in general prod-

uces a solution in _implicit  form; it is essentially im-

possible to carry out the required function inversions 

numerically with enough control on accuracy to make 

such implicit solutions useful for our purposes. 

EeEtilit1_LaulLLa5 

An explicit solution to the fertility equation 

may be obtained by the method of characteristics. For 

bf _ 
bt (a(t)d(x)f) 	b(t) f 

bx 

rtb(t)dt o 
introduction of an integrating factor of e 

reduces the problem to 

Of  _ 
at —  

(a(t)d(x)fl bx 

Solution of the above by the method of characteristics 

gives 

t 
È. (x 9 t) = 	(h-- (h(x)-P a(s)dx)) d(x) 	

‘j0 

o  d( h- (h(x)— r a(s)ds)) 
e0 



X 
 1 	dx with h(x) - h(x) = r ---- o J 	d(x) 	e 

X  

and fi(x) =(x,0) 

populanoM_Eqllation 

As may be seen from the above example, explicit 

solutions are generally very involved in form. For this 

reason, explicit solutions of the population equation 

will not be exhibited here. We remark that such sol-

utions may be found; the case in which the death-rate 

varies linearly with age is one example of use in con- 

nection with the estimation problem for g  • (Results 

from this example allow the removal of the death-rate 

term from the governing equations by means of an inte-

grating factor.) 

The use of explicit solutions has some potential 

use beyond evaluation of numerical methods. This is in 

the area of decreasing the size and cutting down the 

execution time for the simulation of the model. This 

may become important in later phases of development of 

the model, and will have an effect on the frequency of 

use of the completed model. 



The key to such reduction of time expenditure is 

the observation that an explicit solution reduces the 

problem of evolution over an arbitrary time interval to 

a single function evaluation. This is to be contrasted 

with the repeated evaluations involved in a numerical 

integration. Of course, the full benefit of this 

discrepancy is available only if the interaction effects 

are specified exogenously. In the case of the full 

model, however, it seems likely that explicit solutions 

could be used together with extrapolation methods to 

improve simulation execution time. 

This leads naturally to the question of which 

classes of coefficient functions tive rise to explicit 

solution formulae. Of particular interest is the prob-

lem of explicit solutions to models in which the co-

efficient functions appear in "separable form" (see 

Appendix B below), so that the equation has the form 

)0 
= - 	 ( 	ni(Ovi (x,$)p ) - F,(t) r(x,$) p 

Progress in the direction of explicit solutions to 

the above equation may be made by recourse to the theory 

of Lie Algebras. In particular, if the Lie algebra gen-

erated by the partial differential operators on the 



right side of the above equation is solvable, then 

(global) explicit expressions are possible. Other con-

ditions on the Lie algebra lead to (local) results which 

may prove useful. 

Appendix B: 

Numerical Methods for Partial and Ordinary Differential 

Equations  

In Section III of the report, the population and 

fertility are dynamically modelled by a pair of partial 

differential equations: 

(g(x
' 
 s t)ép) - r(x,s,t)p + i(x,s,t) 

bx Os  
bp 
bt 

Of _ 
bt 

a(t) 77,b (d(x)f) - b(t)f 

In Section IV, techniques for estimating the parameters 

u(x,s,t) 9 a(t) 9 d(x) are discussed and there, it 

is pointed out that full simulation of the overall model 

requires dynamic modelling of these functions using 

partial and/or ordinary differential equations. 



Since this appendix deals with aspects of the 

actual simulation of the model, it is assumed that ord-

inary differential equations for a(t) and b(t) have 

been obtained, estimated values of d(x) and u(x,s,t) 

have been obtained by use of the estimation procedures 

described elsewhere in this report, and that initial 

fertility and population distributions are known: 

f(x,s,o) and p(x,s,o) . Values of p(x,s,t) and 

f(x,s,t) are required, and these are simulated using 

numerical techniques. The techniques have been chosen 

in order to be consistent with the conservation law 

character of the governing equations, to attain a 

reasonable accuracy in the simulated values subject to 

restrictions on the size of data groupings which are 

expected in currently available data, and to balance 

these with economy of computation. 

In the numerical simulation which has been carried 

out up to the time of writing of this report, the income 

level dependence of the population density has been sup-

pressed. As well as yielding computational efficiencies 

during the development of the model, this procedure has 

made the analysis of numerical problems arising in the 

modelling considerably easier. The extension of the 

numerical methods developed so far to include the income 

variable  s is expected to cause no significant dif- 



ficulty, as the problems which arise should parallel 

those already encountered. 

Fertility  

The fertility equation has been transformed by an 

integration factor to 

(x,t) 	a(t) --b 	(d(x) .È. (x,t)) 
bx 	 b x 

where 

-1 b(t)dt - 
f(x,t) = e o 	f(x,t) 

An approximation F
ij 

to .È(ihjk) is obtained using 

Fij+1 - 
F.. - ij 	2h j 1+1 i+lj i-1 i-lj 

2 
ka 

+(—) Ed 	(d 	F. 	-d.F..) 2h 	1 i+1 i+lj 	ij 
i+- 

2 

- d 	(d.F.-d. 	F. 	.)] 1 	ii 
i 

 
-. 

and f(ih,jk) is estimated by F
ij 

using numerical 



integration for the integration factor (see below). This 

scheme is almost second order, and has two desirable 

properties: For d(x) = d constant, it is numerically 

stable provided that the step size ratio is chosen to 

satisfy 

E 5.. 
 

do  a. . 
k 	I 1 

I 	0  I 

Also this scheme has the property that it removes a 

distortion of the fertility profile when the effect 

causing the distortion is removed. This property is ex-

hibited in Figure 3. 

The dynamical equations governing the variables 

a(t) and b(t) must of course be integrated simult-

aneously with the partial differential equations. Num-

erical approximations are currently calculated using a . 

modified Euler method over time steps of length k . 

While this procedure may be easily replaced by a 

more accurate process, this method was selected in view 

of the decision to use simple routines initially as an 

aid to algorithmic development, and later to replace 

these by more sophisticated routines as dictated by 

accuracy and economy in large simulations. 

Since dynamic modelling of a(t) and b(t) has 

not yet been carried out, the dynamics 



b(t)i 	[(t) 

	

I a(t) 	a(t) 

	

a(t) 	a
1
(t 

	

I a(t) 	a(t) 

	

a(t) 	a
1
(t) 

a l (t)  
b(t) 

al(t) 	
b(t) 	a(t) - 2a 1 (t)] 

where 

(D41) 2  a(t) 	b(t) 

have been assumed in order to verify the integration 

methods. In this case 

a(t*) = a(t) + hf(a(t)) 

a(t+k) 	a(t) + 121- [f(a(t)) + f(a(t*))] 

describes the modified Euler method. 

Numerical Integration of the Population Equation 

Initially only the age-time dynamics of population 

have been considered; hence the equation is 

	

(X 	= — 	(X 	— r(X,0•13(X,0 • 
bt 	5 	 bX 



To solve this numerically, we approximate p(x,t) 

by P(x„t) where 

P(x+h„t+h) = (1-r(x„t)) P(x 5 t) 

The fertility is used to estimate the population birth- 

rate 

p(o,t+h) = S p(x,t) f(x,t) dx o  	, 

and this is approximated numerically by 

100 
P(o,t+h) = 	7 P(x,t) F(x,t4) 

i=1 

h 
where F(x'9  t+—) is obtained from the numerical  approx- 

imations of the fertility curve. 

The low accuracy method for simulating the pop-

ulation is reasonably accurate for that section of the 

profile where the death-rates are almost constant. It 

is expected that improvements will be possible after 

additional work. Improvements in the simple scheme 

used for estimating P(o,x+h) would lead only to a 

change in scale of values, but not their dynamics. 



In conclusion we point out that certain portions 

of the model are particularly sensitive to errors - that 

is small errors may lead to very inaccurate simulations 

of the dynamics, whereas other portions of the model are 

not so sensitive. For this reason, it is possible (and 

economically reasonable) to tailor the accuracy of the 

methods used to the sensitivity of that part of the 

model being simulated. 

Appendix  C: 	Numerical Determination of Partial  

Differential Equation Coefficients  

In Section IV it is shown that integration of the 

partial differential equations leads to analytic for-

mulas for the estimation of u(x,s,t) from the pop-

ulation equation, and a(t).d(x) from the fertility 

equation. To use these formulas, available data must be 

used to estimate the quantities required. In particular, 

it is required that histogram data be used 

l. to generate (continuous) density functions, 

that 

2 , partial derivatives of these density functions 

be estimated, and that 

3 . the required integrals be estimated. 



The distributions involved appear to be very smooth, and 

as a result piecewise approximation by polynomials with 

continuous first derivatives is necessary; additional 

smoothness is desirable. The algorithm employed is des-

cribed below for the problem of estimating the economic 

mobility u(x,s,t) . The procedure for estimating the 

terni a(t) d(x) in the fertility equation is entirely 

similar. 

1. A function which might be best described as a 

fourth-order spline (having three continuous 

derivatives) is determined so that its 

integrals over the appropriate intervals are 

equal to the given values from the histogram 

data. 

2. Differentiation of the fourth-order spline 

with respect to the x-variable provides an 

LE estimate of 	• determination of an ad- 
x ' 

ditional cubic spline in the t-variable fol-

lowed by a t-differentiation provides an 

estimate of 	. bt 

3. Finally, the required integral is estimated 

by integration of the result of 2. above. 

In the use of spline methods in approximation 

problems, it is necessary to provide additional boundary 



conditions beyond the requirement that the spline inter-

polate the appropriate sample points. Unfortunately, in 

the present application, use of the so-called "natural 

boundary conditions" was found to give particularly poor 

estimates near the boundary of the region involved. 

Further, it was found that these errors were quite sens-

itive to the values assigned. 

After considerable experimentation, it was deter-

mined that adequate results could be obtained through 

estimation of the third derivatives near the endpoints 

by third order finite differences, and use of this data 

to determine the boundary conditions. The scheme for 

approximating the distribution function requires the 

solution of a system of linear equations including three 

different types 

n n 	n ti  
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(c) 	r.  +r 	
1 

+ -1 	12 	12 	 = 2P. 	=1,...,100 i 	 60 

wher.e P. is the number of persons between ages i and 

i + 1 5  and the boundary conditions are 

t t 	n 
r
1 

n 	n 	 n t 	 n 	H r = 0 	r 	= 	-r 	
1 - ---- 0 

= r
100 	 e 	0 	0 	0 + r 	

2 

Here r. is interpreted as the population distribution 

at age ± years„ and it is assumed that values P. are 

available for i = 0,1,...,99 . 

To solve this system, a reduction method for a 

sparse matrix is used, and the equations are ordered so 

that coefficients of moderate size are maintained on the 

diagonal. For a test distribution, the error in re-

generating the histogram was less than 1 percent. 

Spline Approximation  

A standard analysis for cubic spline approximation 

represents this function in terms of estimates for the 



second derivative at nodes. These are obtained as sol- 

utions of the system of equations 

- r. 	r. - r. ri.  +1  
_---_---I L  ' 	i -1 

h.M. 	 h. M 	 h 	 h. _1_21=1 
+ 2M + 

.2.1-1  M. 	 i+1 	 i  - h. +h. 	i 	h+hi 	 ' . h
i + hi+1 1 i+1 	 i +1 	

6 
 

tointerpolate{r.with a spacing {h.} (which for 

our model is either h or k constant), and boundary 

conditions used are 

M
1
-M

o 
h 

1 (-1.„ +.3r1-3r2.+r3) 
h3 	o 

M-M 
n n-1 	-1 - — (-r +3r -3r +r ) h 

h3 	n-3 	n-2 	n-1 n 

With this approximation, errors in a(x l s,t) and a(t) 

d(x) obtained using the estimation procedures are less 

than 1 percent on the interior of the domain. Although 

errors are large where P(x,s,t) is small, values of 

u(x,s,t) there are not crucial (see Section IV). 
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Separability of Coefficient Functions  

It was mentioned in Section III that one aspect of 

the structure of the model was that it was formulated in 

such a way as to make it possible to model the feedback 

effects on the core section of the model in terms of a 

finite number (even a small finite number) of functions 

of time. This was illustrated in Section III in the 

hypothesis that the effect of the rest of the world on 

the fertility curve could be adequately modelled by 

bf _ 
bt - a(t) g-;  (d(x)f) 	b(Of . 

In this formulation, the world affects f only through 

a(t) and b(t) . However, it was also mentioned that 

bf 	- 	(a(x s t)f) 	b(t 1 s)f 
bt 	bx 

might well represent a more realistic model, and it is 

easy to verify that the estimation procedure described 

in Section IV and Appendix C above will equally well 

produce an estimate of the coefficient function 

a(x l s,t) . A problem that arises, then, is that of 

distinguishing between a(x l s,t) and a(t).d(x) at the 
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stage of the output of the estimation algorithm. From 

the point of view of subsequent modelling effort, it 

might well be hoped that the result had the form 

a(t) d(x,$) 	or perhaps even a(t).d(x).c(s) 

A similar problem occurs in the case of estimation 

of ti(x,s,t) 	where the validity of a representation 

of the form 

g(x,s,t) = ni (t) v1 (x, 5 ) +...+ n N(t) v N(x,$) , 

with N a "reasonably small" integer is at least a 

practical requirement for the success of any attempt to 

model the interaction affects. 

Given the implicit smoothness assumptions on the 

coefficient functions of the model and the fact that the 

ranges of the x 5 and t variables involved 5  

are finite, there is no problem in applying standard 

approximation theorems to deduce that g may be closely 

approximated by a function of the above form. (A 

similar remark obviously applies to a(x,s,t)). For 

convenience, we refer to the above form as a "separable 

representation for g ". 

Since we have shown above that separable repres-

entations exist, the only problems which remain are those 
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of the number N of terms to be expected in the repres-

entation, and the numerical determination of N and 

r1.(t) from the available data. 

Consideration of the effects that the t var-

iation in g (and a ) is intended to model, and the 

probable variability of these effects across age and 

income brackets suggests strongly that N is small. It 

would be surprising if N were greater than 3 in the 

case of the estimation of g(x,s,t) 5  and it appears 

entirely possible that a single term will suffice in the 

case of the estimation of a(x,s,t) 

It remains to show the feasibility of determining 

separability of the representation numerically. To 

distinguish a separable u from a non-separable one we 

proceed as follows: 

A smooth function g(x,s,t) 9  defined for 

sES 9 tET,xEX, withS, T e  

compact subsets of Rt defines the kernel of a compact 

linear operator L mapping from L
2
(XXS) 	L

2
(T) ac- 

cording to the formula 

Lf(t) = I 	g(s e s,t) f(x,'s) dxds 

XXS 



Now a separable  g is distinguished by the fact 

that the associated L is an operator of finite dimen-

sional range, and this observation essentially solves the 

problem. 

When g(s,s,t) has been estimated numerically, g 

is not obtained as a continuous function. What is ob-

tained in fact is a set of sample values 

{g(x.,s. Y tk )) 	with xi  E X 5  si  E S 5  tk  C T j 

Here X 5  S 5  T are each Euclidean space of dimen-

sion equal to the number of sample points in each of the 

independent variables. The discrete analog of the def-

inition of L is to use the above three dimensional 

array to define a linear mapping (matrix) 

rqd 	 4,1 

R 	 R 
dim()xS) 	dim T 

L  

Theproblemoffinding thel jt) is now equiv- 
i 

alent to determining the range space of L 	and N 

is simply the rank of L . 

The problem is simplified still further by invoking 

the fact that 

Range L = Range L L 

where L
* 
 is the adjoint (actually transpose in this 

case) of the matrix L • This reduces the problem to 



the entirely standard one of an eigenvector/eigenvalue 

analysis of a symmetric matrix, and hence effectively 

solves it. 

Appendix D 	Computer Program Listing 

In this appendix we list the computer programs 

developed up to the time of this report for use with 

the model. Included below are both the programs used 

for numerical integration of the governing evolution 

equations in simulation runs, and the programs designed 

to estimate model coefficients from the available data. 

The programs listed here are written in FORTRAN. 

Given the relatively large arrays of data which must be 

handled in connection with this model, it is clear that 

FORTRAN is not the most convenient language in which to 

program the numerical algorithms required. With a view 

to future uses of the model, however, suCh factors as 

the wide availability of FORTRAN compilers, the exist-

ence of the I.B.M. CSMP (Continuous System Modelling 

Package) which is FORTRAN compatible, and of FORTRAN 

packages for the Calcomp plotter used to produce output 

data plots make FORTRAN a reasonable language choice. 



Program I 

Simulation of population and fertility propagation 

over time. Initial age-specific profiles of population, 

fertility and mortality, and dynamics for a(t) and 

d(x) are required. Here, the values for population 

are taken as the number of live individuals at age x 

in the population as given by the Commissioner's 1941 

Standard Ordinary Mortality Table. Values for mort-

ality are also taken from this table. 

Values for the fertility are given by the 

artificial distribution,: 

(x, 0) 	e 

(x-24.5)
2 

8 

where the constant C is chosen so that 

100 
S 	f(x,o) p(x,o) dx =  po)  . 
0 

Values of d(x) are assumed from (the artificial 

distribution) 

d(x) = 

(x+1) 2  

(L..: 	) 
• 2 . 

(x-24.5) 
 1+e 4 
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The parameter a(t) is determined by numerical integ- 

ration of the differential equation 

(D+1) 2  a(t) = b(t) 

where 

b(t) = 	sin(e- I t-51 -e- I t-10 k 

	

) 	0 < t < 15 

1 5 

= 0 	 t > 15 



9 
10 
11 
12 
13 

C  

	

. 	$JOB  ACCT-NUM0VERNERI,TImE=60 

	

1 	 PEAL X(I00) 

	

2 	 TC=100 

	

3 	 IF=0 

	

4 	 nO 9  T 1 =1,10 

	

5 	 CALL DATA(x,IR,IC,IF) 

	

6 	9 	 CONTINUE 

	

7 	 STOP 

	

8 	 END 

qUBRqUTIN DATA(X.IR,IC,IF) 
REAL D(100)9F(100),P(100)+X(100),R(100),US(100),D5(100),F1(100) 
REAL HH,KK,SUM.IV(10).DLY(10) 
REAL PLTPER , PRIPER,I1 
INTE,FP YRS.AGES,YOUNG.NN 
**************************************************************** 
SET TFOPM=0 IF YOU WANT PLOT, .=1 IF YOU WANT PRINT 
**************************************************************** 

14 	 IFOR - i=1 
15 	 PL=1.7 -5 
16 	 PR=PI 
17 
1B. 	 ICM1-TC-1 
19 	 IF (IR.GT01) GO TO 31 

PRRRPPRRRPRRRPRRRRRRRRRRRRRRRRRRRkRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
C . 	HH lc AGE STEP 	KK IS TImE STEP 

20 	 READ(5.101) HH,KK 
21 	101 FOPm , T(2F10.6) 

PLTPFR IS PLOT INTERVAL - PRTPER IS PRINT INTERVAL 
22 	 REAn(S,101) PLTPER,PRTPER 

NDE TS THE NUmHER OF FIRST ORDER ODEIS AFTER TRANSFORMATION 
TF N7)E.  > 10 CHANGE REAL DIMENSION IN DATA AND $STEP 
NN lc THE NUMBER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES 

21 	 RE40(.103) NDE. NN 
24 	103 FOR1 , T(2I4) 

PUT TNITIAL VALUES OF ODES ONE TO A CARD 
25 	 no 9 -7  T=1,NDE 
26 	 PEAD(5,107) DLY(I) 
27 	107 	FORmAT(F10,4) 
28 	97 	 CONTINUE 

RPRRPRPRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
29 	 PR=PP+KK 
30 	 T=0.0 

**************************************************************** 
READ DEATH  PAIES  
READ POPULATION DENSITY 

**************************************************************** 
PPRPRRPRPRRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 

31 	 READ(5,100) (R(I),I=1,IC) 
32 	100 FOPmT(5F10.6,30X) 
33 	 PEA0(.104) ( 0 (I),I=1,IC) 
34 	104 FORm , T(10F8.0) 

PRRRRRPRRRRRRRRRRRRRRRRkRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
35 	 gUm:rzn.0 
36 	 DD QQ I=1,IC 
37 	 SUM=SUM+P(1) 
38 	99 	rONT , NUE 
39 	_ no  Q.  I=1,IC 
40 	 P(I)=P(I)*22000000./SUm 
41 	 X(I)=P(I) 
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42 	98 	CONTTNUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

43 	 IF(IFORM.NF.1) GOTO 61 
44 
45 	 WPIT(6,109) 
46 	109 FORMnT(Ilt, , POPULATION FOR AGES 1 TO 20 IS') 
47 	 WRIT:-  (6,102) (P(I),I=1,20) 
48 	102 FOP1 ,q(5F10.0/) 
49 	 WRIT; . (6,110) 
50 	110 FOR'IAT(I +OAT BEGINNING OF YEAR 	 09 AND') 
51 	 WRIT(6,111) 
52 	111  FORM A T('  
53 	61 	CONTTNUE 

ppppppPpPPpPPpPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
54 	 DO 7  I=1,IC 
55 	 I1=FLOAT(I) 
56 	 D(I)=(I—EXP( - 11*I1/600.))/(1+((I1-25.5)**2)/4.) 
57 	70 	 CONTINUE 
58 	 YOU•=0 
59 	 F1(1)=i-rXP(—(.125*HH*(YOuNG-24.5))**2) 
60 	 SUM=F1(1)*P(1) 
61 	 on  1.  I=2,IC 
62 	 F1(I)=EXP(—(.125*HH*(I+YOUNG-25.5))**2) 
63 	 SUM=SUM+F1(I)*P(I) 
64 	 D5(I)=.5*(D(I)+D(I - 1)) 
65 	14 	 CONTINUE 
66 	 0U5=.5*(3.*D(1)—D(2)) 
67 	 DT5=.5*(3.*O(IC)—D(TC-1)) 
68 	 SUM=D(1)/SUm 
69 	 DO 17--. I=1,IC 
70 	 F1(I)=F1(I)*SUM 
71 	15 	 CONTINUE 
72 	 PA=KK/HH 
73 	 PAl=n.0 
74 	 P2=0.0 
75 	 FA=1 
76 	 GO Tr) 33 
77 	31 	CONTTNUE 
78 	 PP=PP+KK **************************************************************** 

UPDATE COEFFICIENTS OF FERTILITY. EQUATION 
**************************************************************** 

79 	 PA1=7)LY(2) 
80 	 P2=01 Y(2)*DLY(2)*PA 
81 	 FA=EYP(—OLY(4)) 

pppoppppPpPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
82 	 IF (PRTPEP.GT.PR.OR.IFORM.NE .1) GOTO 62 
83 	 WPFU- (6,106) T 
84 	106 FORW‘T( 1  AT TIMEe,F6.2) 
85 	 WRITF(6,112) DLY(1) 
86 	112 FORMtT(tOtODELAY IN PEAK OF FERTILITY CURVE IS t9F9.6) 
87 	62 	CONTTNUE 

C 	ppppppipPpPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
**************************************************************** 

mULTIPLY FERTILITY BY INTEGRATING FACTOR 
**************************************************************** 

88 	33 	CONTrNUE 
89 	 SUM=0.0 
90 	 DO 42 1=1,1c 
91 	 SUM=SUM+FI(I) 
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92 	 F(I)=FA*F1(I) 

	

93 	42 	 CONTINUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

	

94 	 TF (PRTPER.GT.PR.OP.TFOPM.NE .1) GOTO 63 

	

95 	 wRIT -:(69113) sUM 

	

96 	113 FORMAT(' le l 	INTEGRAL OF NORMALIZED FERTILITY IS 	',F9.6) 

	

97 	 WRIT ,7 (69114) FA 

	

98 	114 FORM.^,T(' 	 FRACTION OF INITIAL FERTILITY IS 	 1 
2,F9.‘,) 

	

99 	 wgIT-- (69115) 

	

100 	115 FORmAT('0 1 0VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE') 

	

101 	 WRIT7- (69109) (F(I), 1=21,30) 

	

102 	108 FOP.MT(5F10.6/) 

	

103 	63 	CONTîNUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
**************************************************************** 

INCREMENT POPULATION BY ONE YEAR 
**************************************************************** 

	

104 	 TINT=TINT+KK*2 

	

105 	 IF (HH.GT.TINT) GOTO 45 

	

106 	 SUM= ,), 

	

107 	 SUm1-(:). 

	

108 	 DO 44 I=1,ICm1 

	

109 	 J=IC-I 

	

110 	 SUM=SUM+P(J+1)*F(J 4.1) 

	

111 	 P(J+1)=P(J)*(1-R(J)) 

	

112 	 SUM1=SUM1+P(J+1) 

	

113 	 X(J 4- 1)=P(J+1) 

	

114 	44 	 CONTINUE 

	

115 	 SUM=SUM+P(1)*F(1) 

	

116 	 P(1)=SUM 

	

117 	 X(1)P(1) 

	

118 	 SUMHSUM1+P(1) 

	

119 	 TINT-1E-4 

	

120 	45 	CONTMUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP ' 

	

121 	 IF (PRTPFR.GT.PR.OR.IFORM.NE .1) GOTO 64 

	

122 	 wRIT':(69116) SUM1 

	

123 	116 FORMAT('019 1 TOTAL POPULATION IS '9E10.0) 

	

124 	 09.=4-1F-S 

	

125 	 WPITr- (69117) 

	

126 	117 FoRMAT(10,0*****************************************************Î 
I************************ 1) 

	

127 	64 	CONT(NUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
**************************************************************** 

INCREMENT FERTILITY BY ONE YEAR 
**************************************************************** 

	

128 	 no 34 1=1,1 1.  

	

129 	 IF (1F - 20.GT.F1(I)) F1(I)=0.0 

	

130 	 US(I)=0(I)*F1(I) 

	

131 	34 	 CONTINUE 

	

132 	 UO=2.*US(1)-US(2) 

	

133 	 UT=2.*US(IC)-US(IC-1) 

	

134 	 F1(IC)=F1(IC)-.5*PA*((PA1*(UT-US(IC-1)))-P2*(DT5*UT+D5(IC)*US 
2(IC-1)-(DT54.D5(IC))*US(IC))) 

	

135 	 F1(1)=F1(1)-.5*PA*((PA1*(US(2)-UO))-P2*(D5(2)*US(2)+DQ5*UQ-(D5 
2(2)+05)*U 5 (1))) 

	

136 	 DO 3c; I=2,ICM1 

	

137 	 E1(I)=E1(I)-.5*PA*((PA1*(US(I+1)-US(I-1)))-P2*(D5(I+1)*US 
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2(I 4. 1)+05(I)*US(I-1)—(D5(I+1)+D5(I))*US(I))) 
138 	35 	 CONTINUE 

**************************************************************** 
SOLVE ODES FOR DELAY PARAMETERS AND INCREMENT TIME 

**************************************************************** 
139 	 DO 3A I=1,NDE 
140 	 iv(I)=DLy(I) 
141 	36 	 CONTINUE 
142 	 CALL $RUN(IV,DLY,T.KK,NDE,NN) 
143 	 PL=PL-FKK 
1/./. 	 IF (RLTPFR.GT.PL ) GOTO 31 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
145 	 IF (IFORM.NE.1) GOTO 65 
146 	 IPG=IRG+1 
147 	 IF (1PG.NF.2) GOTO 79 
148 	 IPG=q 
149 	 WRITz(6.121) 
150 	121 	FORMAT( 1 1') 
151 	79 	CONTTNUE 
152 	 WRITz(6,118) 
153 	118 FORMAT('  ',POPULATION FOR AGES 1 TO 20 IS') 
154 	 WRITF(6.102) (PM. 1=1,20) 
155 	 WPIT -7. (6,119) IR 
156 	119 FORMAT(' 'OAT BEGINNING OF YEARI,I89',AND') 
157 	 WRIT.7(6.120) 
158 	120 FORmAT(' 
159 	65 	CONTINUE 

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
160 	 RETUPN 
161 	 END 

162 	 SUBROUTINE $RUN(IV,Z,T.«.NDE,NN) 
**************************************************************** 
THIS SUBROUTINE GIVES A SIMULTANEOUS SIMULATION OF VALUES 
7=(1A(T),A(T),A , (T),I13(T),B(T)) AT 	T+H FROM INITIAL VALUES 	IV 
OF 1- -(E SAME VARIABLES AT T. FOR EACH DIFFERENT SIMULATION THE 
SURRoUTINE $DE MUST BE REWRITTEN TO EVALUATE THE DERIVATIVES 
D(I) AS A FUNCTION OF TIME T AND SOLUTION VALUES Y(I) 
**************************************************************** 

163 	 REAL IV(NDE),Z(NDE),T.T2,KK,K1 	• 
164 	 K1=KK/FLOAT(NN) 
165 	 T2=T 
166 	 T=T+KK 
167 	28 	CONTrNUE 
168 	 CALL $STEP(IV,Z,T2,K1.NDE) 
169 	 T2=T"el+K1 
170 	 no 2 I=1,NPE 
171 	 Iv(I)=Z(T) 
172 	29 	 CONTINUE 
173 	 IF (T.GT.T2+K1/2) GOTO 28 
174 	 RFTUPN 
175 	 END 

176 
177 
178 
179 
180 
181 	11 
182 

SUBROUTINE STEP(IV.7.T9KK.NDE) 
PEAL IV(NDE),Z(NDE)97_1(10),D(10),D1(10).KK 
CALL $DE(T,IV,NDE,D) 
DO 11 I=1,NDE 

-1_1(I)=IV(I)+KK*D(1) 
CONTINUE 

TT=T+KK 

— 65 — 



183 	 CALL $DE(TT,Z19NDE,D1) 
184 	 no 12 I=1,NDE 
185 	 Z(I)=IV(I)+.5*KK*(D(I)+D1(I)) 
186 	12 	CONTINUE 
187 	 RETURN 
188 	 END 

189 	SUBRoUTINE $DE(TeY,NDE,D) 
190 	 REAL Y(NDE),D(NDE),KK 
191 	D(1)=Y(2) 
192 	D(2)=Y(3) 
193 	T1=0. 
194 	IF (T.GT.15.) GOTO 78 
195 	TT1=1,8S(T-5.) 
196 	TT2=ABS(T-10.) 
197 	T1=(—SIN(EXP(—TT1)—EXP(—TT2)))/15, 
198 	78 	CONTTNUE 
199 	D(3)=..15.*T1—Y(2)-2.*Y(3) 
200 	D(4)=T1 
201 
202 	RETUPN 
203 	END 

$ENTRY 



POPULATION FOR AGES 1 TO 20 IS 

	

350170. 	342263. 	340289. 	338880. 	337734. 

	

336725. 	335795. 	334919. 	334091. 	333320. 

	

332613. 	331958. 	331324. 	330688. 	330033. 

	

329350. 	328642. 	327922. 	327184. 	326431. 

	

\- AT BEGINNING OF yEA 	 0. AND 

AT TIME 0.75 

DELAY IN PEAK OF FE0TILITY CURVE IS -0.000373 

	

INTEGRAL OF NORMI\LIZED FERTILITY IS 	1.089507 

	

FRACTION OF INITIAL FERTILITY IS 	 1.000501 

VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE 
- 0.056025 0.063485 0.069726 0.074224 0.076578 

0.076574 0.074216 0.069721 0.063482 0.056023 

TOTAL POPULATION IS 	22000110. 

****************************************************************************** 
POPULATION FORAGES  1 TO 20 IS 

3502150 	342263. 	340289. 	338880. 	337734. 

336724 , 	335795 , 	334919 , 	334091. 	333320. 

332613. 	331958. 	331324. 	330688. 	330033. 

- 329350. 	328642. 	327922. 	327184. 	326431. 

_ 1AT BEGINNING OF yEA'2 	',AND 

AT TImE 1.75 

- DFLAY IN PEAK OF FE)TILITY CURVE IS -0.004762 

	

INTEGRAL OF NORMr\LIZEn FERTILITY IS 	1.089505 

	

FRACTION OF INITIAL FERTILITY IS 	 1.002134 

VALUES OF FERTILITY CuRvE FOR AGES 21 TO 30 ARE 
0.056127 0.06360 9  0.069877 0.074401 0.076738 

0.076675 0.074285 0.069795 0.063563 0.056101 

TOTAL POPULATION IS 	22000510. 

- *****###***-›*********** * ** ***** ********** *************** *1-1****# ####### # *###*##* 



POPULATION FOR AGES 1 TO 20 IS 

	

350562. • 342307. 	340289. 	338880. 	337734 ,  

	

336725. 	335795, 	334919, 	334092. 	333320. 

	

332613. 	331958. 	331324. 	330688. 	330033. 

329350. 	328642. 	327922. 	327184. 	326431. 

'AT BEGINNING OF yEAg, 	2 1 AND 

- AT TIvIE 2.75 

DELAY IN PEAK OF FETILITY cURVE IS -0.020237 

	

INTEGRAL OF NoRmALIZEn FERTILITY IS 	1.089506 

	

FRACTION OF ImITIAL FERTILITY IS 	 1.006584 

VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE 
0.056417 0.063967 0.070328 0.074940 0.077210 

- 0.076924  0.074418  0.069958 0.063759 0.056301 

- TOTAL POPULATION IS 	22001840. 

****************************************************************************** 
POPULATION FORAGE 	1 TO 20 IS 

351507. 	342646. 	340332. 	338880. 	337734. 

	

336724, 	335795, 	334919. 	334091. 	333320 ,  

	

332613. 	331958. 	331324. 	330687. 	330033. 

• 329350. 	328642. 	327922. 	327184. 	326432. 

	

AT BEGINNING OF yEA 	3,AND 

AT TFYIE 3.75 

DELAY IN PEAK OF FEPTILITY CURVE IS -0.064413 

	

INTEGRAL OF NORMALIZED FERTILITY IS 	1.089506 

	

FRACTION OF INITIAL FERTILITY IS 	 1.018705 

VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE 
0.057215 0.064960 0.071590 0.076457 0.078518 

00077577 0.074741 0.070374 0.064276 0.056834 

TOTAL POPULATION IS 22005710. 

***#~1-11.********** ******************************* *** *****########*## ######*### 



POPULATION FOR  AGES 1 TO 20 IS 

	

354085. 	343570. 	340669. 	338923. 	337734. 

	

336724, 	335795. 	334919, 	334091. 	333320. 

	

„ 332613. 	331958. 	331324. 	330688. 	330033. 

	

329350. 	328642. 	327922. 	327184. 	326432. 

'AT BEGINNING OF YEA! 	49AND 

- AT TImE 4.75 

DELAY IN PEAK OF FE;?TILITY CURVE IS -o,184397 

	

INTEGRAL OF NORMMZED FERTILITY IS 	1.089502 

	

FRACTION OF INITIAL FERTILITY IS 	 1.050882 

-. VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE 
0.059358 0.067649 0.075042 0.080616 0.082016 

- 0.079207 0.075498 0.071418 0.065613 0.058225 

- TOTAL POPULATION 15 	22016510. 

****************************************************************************** 
- POPULATION FOR - AGFS 1 TO 2o IS 

361071. 	346090, 	341588. 	339259. 	337778. 

- 	336725, 	335795, 	334919, 	334091. 	333320. 

	

332613. 	331958. 	331324. 	330688. 	330033. 

• 329349. 	328642. 	327922. 	327184. 	326432. 

	

- AT BEGINNING OF yEA• 	5,AND 

AT TPAE 5.75 

DELAY IN PEAK oF FETILITY CuRVE IS -0.480408 

	

INTEGRAL OF NORNLIZFD FERTILITY IS 	1.089503 

	

FRACTION OF  I.1ITIAL FERTILITY IS 	 1.09861 

VALUES OF FERTILITY CuPvF FOR AGES 21 TO 30 ARE 
- 0.062964 0.072470 0-0 8 1 761 0.088994 0.088098 

0.080292 0.074753 0.071688 0.066822 0.059826 

TOTAL POPULATION IS 	22043640. 
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POPULATION FOR AGES 1 TO 20 IS 

	

377589. 	3529]8. 	344093: 	340174. 	338112. 

	

336768 , 	335795 , 	334919, 	334091, 	333320 ,  

	

332613. 	331958. 	'331324. 	330688. 	330033e 

329350. 	328641. 	327922. 	327184. 	326432. 

AT  BEGINNING OF YEAR 	6 9 AND 

AT TIME 6.75 

DELAY IN PEAK OF FE9TILITY CURVE IS -0.909306 

	

INTEGRAL OF NORMALIZED FERTILITY IS 	1.089499 

	

FRACTION OF INITIAL FERTILITY IS 	 1.118620 

VALUES DE FERTILITY CURVE FOR AGES 21 TO 30 ARE 
0.065618 0.076765 0.088974 0.098260 0.092387 

0.076925 0.069761 0.068678 0.065408 0.059325 

TOTAL POPULATION IS 	22082090. 

************#:****************************************************###********** 
POPULATION FORAGES  1 TO 20 IS 

389333. 	369063. 	350881. 	342668. 	339024. 

	

337101. 	335838 , 	334919. 	334091. 	333320. 

	

332613. 	331958. 	331324. 	330688. 	330033. 

	

329350, 	328642. 	327922. 	327184. 	326432. 

	

AT BEGINNING OF YEA 	79AND 

AT TIME 7,75 

DELAY IN PEAK OF FEDTILITY CURVE IS -1.277342 

	

INTEGRAL OF NORMALIZED FERTILITY IS 	1.089500 

	

FRACTION OF INITIAL FERTILITY IS 	 1.121859 

VALUES OF FERTILITY CURVF FOR AGES 21 TO 30 ARE 
0.067241 0.079908 0.094899 0.105441 0.093917 

0.0 72075 0.064586 0.065381 0.063390 0.058125 

TOTAL POPULATION IS 	22123950. 

*************** ************************************* *******###*#####**i~~4*# 



POPULATION FOR AGES 1 TO 20 IS 

	

393105. 	380542. 	366934. 	349429. 	341510e 

	

338010. 	336170. 	334962, 	334091. 	333320. 

	

332613. 	331958 9 	331324. 	330688. 	330033. 

329350. 	328642. 	327922. 	327184. 	326431. - 

- AT BEGINNING OF YEA -? 	8. AND  

AT  TIME 8.75 

DELAY IN PEAK OF FEQTILITY CURVE IS -1.496449 

	

INTEGRAL OF NORMALIZED FERTILITY IS 	1.089500 

	

FRACTION OF INITIAL FERTILITY IS 	 1.111391 

VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE 
0.067541 0.081096 0.097754 0.108647 0.093259 

0.067985 0.060862 0.062787 0.061503 00056761 

TOTAL POPULATION IS 	2216448 0 . 

****************************************************************************** 
POPULATION FORAGES  1 TO 20 IS 

392049. 	384229 , 	378346 , 	365415. 	348248. 

	

340489. 	337077. 	335293. 	334134. 	333320. 

	

332613. 	331958. 	331324. 	330687. 	330033. 

. 329350. 	328642. 	327922. 	327184. 	326431. 

AT BEGINNING OF yEA 	9,AND 
..... *Daum ............. 

AT TImE 9.75 

DELAY IN PEAK OF FE ■:?TILITY CURVE IS -1.532525 

	

INTEGRAL OF NORM.U_ILED FERTILITY IS 	1.089499 

	

FRACTION OF  INITI.AL FERTILITY IS 	 1.078118 

VALUES OF FERTILITY CuRvE FOR AGES 21 TO 30 ARE 
0.065753 0.079162 0.095780 0.106416 0.090456 

0.065073 0.058294 0.060436 0.059348 0.054862 

TOTAL POPULATION IS 	22197900. 

***********************************************###***********#########******** 



POPULATION FOR AGES 1 TO 20 IS 
3850790 	383196. 	382012o 	376780. 	364179. 

347206. 	339549. 	336197. 	334465. 	333362. 

332613. 	331958. 	331324. 	330688. 	330033e 

329350. 	328642. 	327922. 	327184. 	326431, 

AT BEGINNING OF yEA.;. 	10 9 AND 
..... 

CORE USAGE 	081ECT CODE= 	9856 BYTES9ARRAY AREA= 	3400 BYTES9TOTAL AREA 

— DIAGNOSTICS 	mUmdER OF ERRORS= 	09 NUMBER  OF  WARNINGS= 	09 NUMBEF 

COMPILE TIME= 	3.98 sFC9EXECUTION TImE= 	14.47 SEC9 	QUEEN'S WATFOR VERSIOP 

CosT FOR THIS PROGRAM IS $ 1042 	 RUN IN HSC 	MAR 199 1974 



The above output simulates population and fert- 

ility over ten years with "Baby boom" dynamics - wide 

peak of intermediate height. See Figures 3 and 4 in 

Section V. 

Program  lb  

This is a copy of the program which was used to 

plot the profile in Figure 6. 



\--$JOB STF559529'VER'1ER° 
/1 EXEC SYMVU9TIME=u: 
//COMP'0SYSIN DD * 

SUBROUTINE DATA(X9IR9IC9IF) 
REAL D(100)9F(100)9P(100)9X(100)9R(100)9US(100)9D5(100)9F1(100) 
REAL HH9KK9SUM9IV(10)9DLY(10) 
REAL PLTPER9PRTPER9I1 
IgTEGER YRS9A0ES9YOUNG9NN 
**************************************************************** 

SET IFOR1=0 IF YOU WANT PLOT9 	=1 IF YOCI WANT PRINT 

C 	**************************************************************** 
IFORM=1 
IFORM=0 
PL=1E-5 
PR=PL 
TINT=1E-4 
ICM1=IC-1 
IF (IR0GT01) 00 TO 31 
RRRRRRRRRRRRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
HH IS AGE STEP - KK IS TIME STEP 
READ(59101) HH9KK 

"- 101 FORMAT(2E10.6) 
PLTPER IS PLOT INTERVAL 	PRTPER IS PRINT INTERVAL 
READ(59101) P1TPER9PRTPER 
NDE IS THE NUmBER OF FIRST ORDER ODE°S AFTER TRANSFORMATION 
IF NDE > 10 CHANGE REAL DIMENSION IN DATA AND $STEP 
NN IS THE NUMBER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES 
READ(59103) NOE, NN 

103 FORMAT(2I4) 
PUT INITIAL VALUES OF ODES ONE TO A CARD 
DO 97 I=19NDE 

READ(5.1 ,17) DLY(I) • 
107 	"RMA T (F10 . 4)  
97 	 CONTINUE 

RRRRRRRRRPRRRRRRRkRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
PR.=PR->KK 
T=0.0 
**************************************************************** 

READ DEATH RATES 

	

`- C 	 '- EAD POPULATION DENSITY - OBTAINED FROM SPLINE 
**************************************************************** 

	

C 	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
READ(59100) (o(I),I=19IC) 

100 FORMAT(5F1006,30X) 
READ(59104) (P(I)9I=19IC) 

104 FORMAT(10F0) 
RRRRRRRRRRRRRRRRRPRRRRPRRRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
SUM=0.0 
DO 99 I=1,IC 

SUM=SUM+P(I) 
99 	CONTINUE 

—• 
DO 98 I=19IC 

P(I)=P(I)*22000000./SUM 
X(I)=P(I) 

98 	CONTINUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
IF(IFORM.NF011 GOTO 61 
IPG=0 
WRITE(69109) 

109 FORMAT(°1'9"P0PULATI0N FOR AGES 1 TO 20 IS') 
WRITE (69102) (P(I)91=1920) 

102 FORMAT(SF10.0/) 
WRITE(69110) 

110 FORMAT(' °OAT BEGINNING OF YEAR 	 0 9 AND') 



I 	 t's • 	 i•••• 	• 

61 	CONTINUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
DO 70 I=19IC 

I1=FLOAT(I) 
D(I)=- (1- ,tXP(-I1*11/6000))/(1 4-((I1-25.5)**2)/4.) 

70 	 CONTINUE 
YOUNG=0 9 
F1(1)=EXP(-(.125*HH*(YOUNG-2405))**2) 

SUM=F1(1)*P(1) 
DO 14 1=291C 

F 1 ( ) =EX (- ( .125*NH* ( I +YOUNG-25.5 ) )**2) 
SUM=SUM t7'1 ( I ) * P ( ) 
05(I)=.5*(D(1)+D(I-1)) 

14 	 CONTINUE 

DT5=05*(30*D(TC)-D(IC-1)) 
SUM=P(1)/SUm 
DO 15 I=19IC 

F1(I)=F1(I)*Um 
15 	 CONTINUE 

PA=KK/HM 
PA1=0.0 
P2=0.0 
FA=]  
GO TO 33 
CONTINUE 
PR=PR+KK 
**************************************************************** 

UPDATE COEFFICIENTS OF FERTILITY EQUATION 
**************************************************************** 
PA1=DLY(2) 
P2=0LY(2)*DLY(2)*PA 
FA=EXP(-DLY(4)) 

- C 	PPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
IF (PRTPER9GT0PR.OR0IFORM.NE01) GOTO 62 
WQITE(69106) T 

- 106 FORMAT(' AT TrmE',F6.2) 
WRITE(69I12) \_Y(1) 

112 FORMAT( 0 099 0 DELAY IN PEAK OF  FERTILITY CURVE IS '9F9.6) 
62 

	

	CONTINUE 
PPPPPPPIRPPPPPDPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
**************************************************************** 

C 	 MULTIPLY FERTILITi' BY - INTEGRATING FACTOR 
**************************************************************** 

'33 	CONTINUE 
SJM=0.0 
DO 42 I=1 9 IC 

SUM=SUM+1(I) 
F(I)=FA*E1(I) 

-42 	 CONTINUE 
C 	PPPPPPPPPPPPPDPPPPPPIRPPPPPPPPPPPPPIDPIRPPPPPPPIRPPIRPPPPPPPPPPPPPPPP 

IF (PRTPER.GT.PR.OR.IFORM9NE.1) GOTO 63 
WRITE(69113) -WM 

113 FORMAT(' 00 	INTEGRAL OF NORmALIZEO FERTILITY IS 	9 9F9.6) 
WRITE(69114) ,=- A. 

114 FORMAT(' '9' 	FRACTION OF INITIAL FERTILITY IS 
29E9.6) 

- WRITE(69115) 
115 F3RMAT('0 9 9°LUES OF FERTILITY CURVE FOR AGES 21 TO 30  ARE')  

wrnF(69108) (F(1), 1=21 9 30) 
-, 108 F9RmAT(sF1n.6/) 

63 	CONTINUE 
PPPPPPPPPPPPP .DPPRPPPFPPPPPPPPQPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

C 
	**************************************************************** 

31 

C 



TINT=TINT+KK*-) 
. IF (HH.GT .TINT) GOTO 45 
SUM=0. 
SUM1=0. 
DO 44 I=19ICM1 

J=IC—I 
SUM=SUM+D(J+1)*F(J4.1) 
P(J+1)=P(J)*(1—R(J)) 
SUM1=SUM1+P(J+1) 
X(J->1)=P(J+1) 

	

44 	 CONTINUE 
SUM=SUM+P(1)*7(1) 
P(1)=SUM 
X(1)=P(1) 
SUM1=SUm1+P(1) 
TINT=-1E-4 

	

45 	CONTINUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
IF (PRIPER0GT.PR0OR0IFORM0NE01) GOTO 64 
WRITE(69116) ej.J .M1 

116 FORMAT( 0 0 9 0TOTAL POPULATION IS 1 9E10 00) 
PR=4-1E - 5 

	

. 	WRITE(69117) 
117 EORMAT(en9.0****************************************************** 

I************************t) 

	

64 	CONTINUE 
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

C 	**************************************************************** 

INCREMENT FERTILITY BY ONE YEAR 
**************************************************************** 

DO 34 I=1.IC 
IF (1E-2r.GT.F1(I)) F1(I)=0.0 
US(I)=D(I)*F1(I) 

	

— 34 	 CONTINUE 
UQ=20*US())—Og(2) 
UT=20*US(IC)—US(IC-1) 
F1(IC)=F1(IC)—.5*PA*UPA1*(UT—US(IC - 1))) — P 2* (DT5*UT+D5 (IC )*US 
2(IC-1)—(DT5 4-Dg(IC))*US(IC))) 
F1(1)=F1(1)—.---;*PA*((PA1*(US(2)—M)—P2*(D5(2)*US(2)+DQ 5*UQ— (D 5 

 2(2)+DO5)*US(1))) 
DO 35 I=20IC-,1 

 Fl(I)=F1(I)-05*PA*((PA1*(US(I+1) —US(I - 1)) )—P 2* (D 5 (I+1 )*US 
2(I.e.1)->05(I)*WAII-1)—(D5(I4-1)+05(I))*US(I))) 

	

35 	 CONTINUE 
**************************************************************** 

C 	 SOLvE ODES FOR DELAY PARAMt:TERS AND INCREMENT TIME 
*************************************************************** 

DO 16 I=1.NDE 
IV(I)=DLY(I) 

	

36 	 CONTINUE 
CALL $RUN(IV9 ,-)LY,T9KK9NDE9NN) 
PL=PL+KK 
IF (PLIPER.GT.PL ) GOIO 31 
pPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
IF (IFORm.NE.1) GOTO 65 
IPG=IPG ,1-1 
IF (IPG.Nr.?) GoTo 79 
IPG=0 
WRITE(69121) 

121 	FORMAT(I1 0 ) 

	

— 79 	CONTINUE 
WRITE(69118) 

118 FORMAT('  ','POPULATION FOR AGES 1 TO 20 IS') 
WRIT(6.102) (P(I)9 1=1.20) 



I VINI 14 LJL. SJ  J. • 1 j, ,è >1..■ 	aI 

WRITE(6.120) 
120 	FORMAT(' fe9 	  t) 

65 	CONTINUE 
- C 

	

	PPPPPPPPPPPPPPPPRPRPPPPRPRPRRPPRPRPPPPPPPPPPPPPPPRPPPPPPPPPPPPPP 
. RETURN 

END 
SUBROUTINE 1iPqN(IV979T9KK9NDE9NN) 
**************************************************************** 
THIS SUBROUTINE GIVES A SIMULTANEOUS SIMULATION OF VALUES 

	

C 	Z=(IA(T)9A(T) 9 10(T),I8(T)96(T)) AT T-FH FROM INITIAL VALUES IV •C 

	

	
OF THE SAME VARIABLES AT T. FOR EACH DIFFERENT SIMULATION THE 
SUBROUTINE SnE MUST BE REwRITTEN TO EVALUATE THE DERIVATIVES 

	

- C 	D(I) AS A FW,ICTION OF TIME T AND SOLUTION VALUES Y(I) 
**************************************************************** 

REAL IV(NDE).7(NDE).T9T29KK9K1 
K1=KK/FLOAT(Nm) 
T2=T 
T=T+KK 

	

28 	CONTINUE 
CALL $STEP(IVqZ9T29K19NDE) 
T2=T24.K1 
DO 29 I=1,NDE 

IV(I)=Z(T) 

	

29 	 CONTINUE 
IF (T.GT0T2 -4- K1/2) GOIO 28 
RETURN 
Emn 
suRRouTINE $STEP(IV,Z9T9KK9NDE) 
REAL IV(NDE)97(NOE)97_1(10),D(10)9D1(10)9KK 
CALL $DE(T9IV 9 NDEID) 
DO 11 I=1.NDE 

71(I)=IV(I)+KK*0(I) 

	

11 	 CONTINUE 
TT=T-4-KK 

• CALL $DE(TT9719NDE,D1) 
DO 12 I=1.NDE 

Z(I)=IV(I)+.5*KK*(D(I)+DI(I)) 

	

12 	 CONTINUE 
RETURN 
END 
SUBROUTINE %DE(19Y9NDE9D) 
REAL Y(NOE),D(NDE),KK 
D(1)=Y(2) 
D(2)=Y(3) 
T1=0. 
IF (T0GT015.) GOTO 78 
TT1=ABS(T-5.) 
TT2=ABS(T-i0.) 
T1=(-SIN(EXP(-TT1)-EXP(-TT2)))/150 

	

78 	CONTINUE 
D(3)=150*T1-Y(2)-2.*Y(3) 
D(4)=T1 
D(5)=0. 
RFTURN 
Eqn 

//GO.SYSIN DD * 
EVOLUTION OF POPULATION OVER 50 YEARS: WITH FERTILITY PROGRESSION 

50 100 	2 	4 	0 	 1 	3 
30.0330,0 7.0 	4.0 	 20.0 

	

100 	.25 

	

1.0 	1.0 
5 	1 

0.0 
- 0.0 



vet, 
- 0.1 

.02258 

.00276 

.00197 

.00215 
00243 

,.00288 
.00356 
.00459 

.00861 

.01232 

.01798 

.02659 

.03964 

.0593 

.08864 

.13185 
0• 19413 
.28099 

.00577 

.00261 

.00191 

.00219 

.00251 

.00299 

.00373 

.00486 

.00659 

.00923 

.01327 

.01943 

.02878 
0 .04296 
.06427 
.09602 
.1426 
.20937 
.30173 

.00414 	.00338 	.00299 
,.00247 	.00231 	.00212 
.00192 	.00198 	.00207 
.00225 	.00230 	.00237 
.00259 	.00268 	.00277 
0 00311 	.00325 	.0034 
.00392 	0 00412 	.00435 
.00515 	0 00546 	.00581 
.00703 	0 00751 	.00804 
.00991 	0 01064 	.01145 
.01430 	.01543 	0 01665 
.021 	.02271 	002457 
0 03118 	.03376 	0 03658 
.04656 	.05046 	.0547 
.06966 	_ a755 	.08181 
.10399 	.11259 	0 12186 
.15416 	0 16657 	0 17988 
.22563 	0 243 	.26144 
.32364 	.34666 	.371 

0 39621 	.44719 	.54826 	0 72467 	1.0 
1• 023102 0 1000000. 994230 0 990114. 986767 ,  983817. 981102. 978541. 976124. 973869. 
971804, 969890 ,  968038 0  966179. 964266. 962270. 960201. 958098. 955942. 953743. 
951483. 949171. 946789 ,  944337 ,  941806. 939197, 936492. 933692. 930788, 9277630 

`- 924609. 921317 0  917R80 ,  914282 0  910515 0  906554. 902393, 898007. 893382 0  888504. 
883342 0  877883 ,  872r98 ,  865967 ,  859464, 852554. 845214. 837413, 829114. 8202920 
810900. 800910. 790 282. 778981, 766961, 754191. 740631. 726241. 710990. 694843e 

- 677771. 659749. 640761, 620782. 599824. 577882. 554975. 531133. 506403. 480850e 
454548. 427593 ,  400112 ,  372240. 344136. 315982. 287973. 260322. 2332510  206989e 

 181765. 157799. 135297. 114440. 95378, 78221. 63036. 49838. 38593. 29215. 
- 21577. 15514. 10833. 7327 , 	4787, 	3011. 	1818. 	1005. 	454. 	125, 

t" 
1/ 

******** JOB DELETEn BY HASP OR CANCELLED BY OPERATOR BEFORE EXECUTION ********* 

HASP-II JOB STATISTICS 	296 CARDS READ 0 LINES PRINTED 	 0 



Program II 

Estimation of g(x„s„t): this program uses values 

of the population density to estimate g(x,s 5 t) through 

differentiation of two cubic spline approximations and 

integration of a subsequent spline approximation. 

As a test problem, a separable economic mobility 

was chosen 

u(x,s,t) = a(x) p(s) 

Œ(x)  = 
10000 	e P(s) 	

s+M 
200 • 

With an initial population density 

200 (2s
3 
 -05s

2
+21000s)  

p(x5 s,o) = po (x e s) 	e 
540 

the population density without deaths 

*13 ( x s t ) = 
2000000 000000 

Ee 	 p (x-t
Y 
 (s+10)e2  

0 	
-10] 5  

t 3 
w= 	+ t 2 (30x) + t(x-80)(x+20) 5  

3 

evolves, and with a death-rate of 



r(x,s,t) = (1-.01t) ( 0 0003x+ 0 0006) 

the density with deaths is 

p(xe s,t) = 
-R 

R = 
t
2 

t 	
001t2 )( 

 0003+0006) 	.0003(-- 	
.01t3
-----). 

2 	 2 	6 



1 

3 
4 

7 

1 
11 

$ JOB  ACCT-NUMOVERNERI9TImE=60,PAGES=20 

**************************************************************** 
THIS PPOGQA IS USED TO ESTimATE THE ECONOMIC MOBILIITY . 
oL.p '10. AGE- TIME- AND INCOME-SPECIFIC VALUES OF THE 
POPUf ATTOm IPE REQUHED. 
vng 	T!'.ST IRUN wF ASSUME THAT 40 1 7115,T)=ALPHA(X)*BETA(S). 
FO P 	DATICULA FXAN.PLF THE EIGENVECTOR TECHNIQUE USED 
TO E- -z1. 1. .F. A(T) AND n(x) 	IN THE FERTILITY EQUATION COULD 

*************************************************************** 

▪ P(7911,11)9MU(7911911),ALPHA(7),BETA(11)9X9S9T 
FEAL  P(11)o , ,(3911),C(JF(4911) 
▪FAL  K(2911)90(11)9T0F99w19Y 
TNTE.r,g Dx9PS931- 9XE,SM9IM,XX,SSeTi 

S"=11 	 • 
Tm=11 
m( =1 - 

 nc.=1, 

 L'=2.7j -:-.:i-s182 -346 

***********i:**************************************************** 
FuNC1I0.q Au- HA 

************i:*************************************************** 

12  
13 	11? F . T( 1 1 1 , , 	THE ECONOMIC MOBILITY IS ALPHA(X)*BETA(S) WHEREA) 
14 	 ,:PTT - (91c(-) 
15 1n 6 	‘7--, T(*J 9 ) 
16 	 n: 1 -  IN=19xE 
17 	 xx=)x*(1X-1) 
18  

Rkql -rPINTPHINTPRINTPKINTPINTPKINTPINTPRINTPRINTPRINTRRINTPRIN 
19 	 XA,ALPHA(1x) 
20 	10Q 	r-,' ,)m , T(1 	ALPHA( 0 9I39 1 ) IS 	, ,F10.5) 
21 	ln 
22 	 .1 , 21 T': 

I-D-'1 ,0- DRI .,IT''' —'1NTPPINTPI-<INTPRINTPRINTPiqINTPINTPRINTPRINTPRINTPPIN 

*******,:******************************************************** 
OF El. 	F'UNCIION rjETA 
*************************************************************** 

23 	 IS=14s 0 - 
24  
25 	 PrTf\(1-7,) , (Ss+10.)/200. 

IDU,TPImTuINI- PINI-)INTPRINTPRINIPRINTPRINTRRINTPRINTPRINTPRIN 
2E 	 SS9BETACIS) 
27 	1(11 	 riFTA(#913, 1 ) IS 	',F10.5) 
2c) 	11 	rqW , NUi- 

0RUirPRI1T° 1.?INTPRINTPreINTPRINTPRINTPRINTPRINTRRINTPRINTRRINTPRIN 

*******************,:-*************************************** 
L- 1ND A,PLvfIC SOLUTION 10 TrIF  PUE  

- 81 - 



n,p/nx 	DP/OT = D/DS(mu*P) 
**************************************************************** 

29 	 qn 	LT=1,TM 
30 	 T=TLI-1) 
31 	 1) LX=10‘F 
32  
33 	 4=(en00J*)( + 0 0006)*(T-.005*1*1)-.0003*(T*T/2-(.005*1**3)/3) 
34  
35  
36 	 nn 1.) LS=1,sM 
37  
38 
39 	 41= 5 * - **(w2/2000000.)-10. 
40 	 y=w*/21a00.+ .a*((-405.)+20*4)) 	 • 
41  
42  
43 	12 	r.ONT , 1\41r- 

• 

P(X9S9T) AGAINST X AND DIFFERENTIATE THE SPLINE 
1 , ;u(Y,S,T) 	TS 	DP/Dx 

**************************************************************** 

44 	 2 .  fx=1,XF 
45 	 X=QX*(Tx-1) 
46 
47 	20 	CONT - NUL 
48 	 cen ':‘ETD 0 (xE,A,H,K) 
49 	 no 21 Ts=1. 	• 
50 	 nn 21 fT=1,i , i 
51 	 1 )f': 	TX=10E 
52 	 K(2.Tx.)=P(IA,IS,IT) 
53 	22 	coNTrNu 
54 	 CALL qDLvF(L1,K,H,XE,D,COF) 
55 	 no 2i Tx=1,), L. 
56  
57 	 mD(Ix,IS9I1)=C0F(3,IX)-4-x*(2.*COF(2,IX)+X*3.*COF(1,IX)) 
58 	21 	rONTTMUt 

**************************************************************** 
spL[NE H(X95,T) 	AGAINST T AND DIFFERENTIATE THE SPLINE 

	

mu(c,s,T) 	is 	oP/Dx+oP/o -r+R(x's,T)*P(x,s,T) 
**************************************************************** 

59 	 -(-) 3; IT=1,1m 
60 	 T=DT*(TT-1) 
61  
62 	30 	CO\IT'NU 
63 	 CALL sFTUP(Tm,A,H,K) 
64 	 nt) 3l  TX=1.x.p 
65 	 x= 1 )X'qTx,-1) 
66 	 n1) Si T5) . - M  
67 	 , n 3.) 11=1*lm 
68 	 K( 7 .1- T)=P(Ix,IS,IT) 
69 	3 2 	r(PITNIn 
70 	 CALL SOL‘/E(A,K,H,TM,D,CuF) 
71 	 r)0 31 IT=1,1m 
72 	 T=DT*(IT-1) 
7 3 	 •u(IY,It-,TT)=MU(IX,IS,IT)+COF(3,IT)+T*T2.*COF(2.IT)+ 



i■, T*3.*C0F(1,1T)) 4- (1.-.01*T)*(.0003*X+.0006)*P(IX,IS,IT) 
74 	31 	CONTENUE 

**************************************************************** 
S')LTNE 	DP/DX-FDP/1)14-q(X9S,T)*P(X9S9T) 	AGAINST S 	AND 
T1TEGRATn THE SPLINE FROM S TO THE MAXIMUM VALUE OF S. 

-U(x9S,f) IS  END  CONDITION PLUS THIS INTEGRAL 
**************************************************************** 

	

75 	 00 4. TS=19b 1  

	

76 	5 =nS':(TS-1) 

	

77 	 K(1TS)=S 

	

78 	40 	CONT'NUE 

	

79 	 CALL SF..T0P(M949 1-1 9K) 

	

80 	 00 41 TX=. 1q)ÇE 

	

81 	 nO 41 1I=1Ç1m 

	

82 	 rY0 42 IS=195M 

	

83 	 K(?,ES)=MU(1)' 9IS9IT) 

	

84 	42 	cONTfNuE 

	

.85 	 CALL gOLvE(4,K,H,SM900CUF) 

	

R6 	 mu(TY4SMOT)=00 
87 

	

88 	 S]=SD-r)S 

	

90 	 SI=S1-.)5 
91 
92 

	

93 	 LU(IX,i9IT)= 1 . 1 U(Ix.,1 4. ),11. )+MS2*COF(19I)14.4-COF(2,I)/3.)* 
>S, 	S2+CnF(39I)/2.)*52+COF(4,I))*S2-MS1*COF(19I)/4. 

+OnF(29I)/30)*S1+COF(39I)/2.)*S1+COF(49I))*S1 

	

94 	41 	CONTTNU1: 

PPI ,ITPRINTPINTPPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN 

	

95 	 .iLq1 - (611 1 ) 

	

96 	110 FO ■-"," ,1%T('1 1 , 	VALUES ARE 	ERROR IN MU, S AND T GIVEN, X ACROSS') 

	

97 	"RIT' (',l14)  

	

98 	114 	)4T('(J9, 	S 	T 	X= 	0 	10 	20 	30 
ti-C■ 	 LDO 	 60e) 

DRITPPINTP ,- INTPPINTPkINTPRINTPkimi- PRINTPRINTPRINTPRINTPRINTpRIN 

	

99 	 nO 	KS=1M 

	

100 	 41PIT(AQ1n6) 

	

101 	 SS=r)q*(KS-1) 

	

102 	 KT=1,1io 

	

103 	 TT=0T*(K1-1) 

	

104 	 nn 5, Kr.:10,17  

	

105 	 TF ( -)(K9KS,KT).FO.00) GOTO 51 

	

106 	 mU(K>:9KSIKT)=U-5ETA(Sm)*ALPHA(KX)*P(KX,SM,KT)-MU(KX,KS,KT))/ 
. 0 (1-(X.KS,KT) 

	

107 	 r,OTO 

	

108 	51 	1.!(Kr,.)KSIKT)=ALPHA(KX)*qETA(KS) 

	

109 	cz,'") 	coNITNUE 

	

110 	 mU(K'i , K59KI)=(MU(KX,KS,KT)/(BETA(\S)*ALPHA(KX))-1)*100. 

	

111 	50 	rrNrIfYr'r 

PkI .1 1-. PINTL)R1NTPPINTPRINTDRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN 

	

112 	 IvIL(h,1 -13) SS,TT,(MU(rXqKS,KT), KX=1,XE) 

	

113 	113 	rR"'T(/ 	 v,7F- 9.2.) 

	

114 	55 	(-017N0 
PRTNTPRINTPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTRRINTRRIN 

C  
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115 
116 	105 
117 
118  

4PIT - (6,105) 
FOt-?1 , 1*('1') 
LU . )P 
F. Nr) 

119 	 SUae,flUTINE SETUP(N9A9H9) 

*************************************************************** 

THIS PoUTINE SETS uP A FPIDIAGONAL mATRIX OF THE SPLINE EQUATION 
IN A 	HY  N  ARRAY - FIRST ROW IS SUPERDIAGONAL 

SECOND ROw IS DIAGONAL 
THIRD ROw IS SUHDIAGONAL 

THE'q DECOMPOSES 	ru  LU SU THAI 
FTRST RD* IS SuPEROIAGONAL OF U, SECOND ROW IS DIAGONAL OF U 

IRTRO PO!,: IS SU3DIAEONAL OF L9 ÙIAGONAL OF L IS UNITY 
**************************************************************** 

120 	 PFAL A(39N)9H(N)9K(29N) 
121 	 N 1 1=N-1 
122 	 L 1 (2)=K(19?) -K(191) 
123 	 nO 1; r=29NHI 
124 	 H(1+1)=K(19I+1)-K(191) 
125 	 A(1,I)=H(I4-1)/(H(I+1)+H(I)) 
126 	 e(2qI)=2 0 0 
127 	 A(39I)=1-A(19I) 
128 	10 	 CONTINUE 
129 	 A(1,1)=-2. 
130  
131 	 A(3g1)=. ü. 
132 	 n(1y )=0, 
133 	 A(24 )=2. 
134  
135 	 DO 11 1.=29N 
136 	 A(31I)=A(39I)/A(291-1) 
137 	 e(2,I)=A(29I)-A(3,1)*A(19I - 1) 
138 	11 	 CONTINUE 
139 	 RPTU.e, 
140 	 FLO 

141 	 SUBUTINF SOLVE(A9K9H9N9D9COE) 

**************************************************************** 

THIS POOTINE CALCuLATES THE SECOND uRDER FINITE DIFFERENCES  OF  
THE :PLINF9 AND THEN SOLVES AM=D, (HY FORWARD AND BACKWARD 
SuP,STITufT00), PLACING m(VECTOR OF SECOND DERIvATIVES) IN D 
EO DOTNT CONDITIONS  NO w USE THIRD ORDER FINITE DIFFERENCES 
Tn E.--:II-;ATE THE 'THIRD oRDER DERIVATIvES AT x04.H/2 AND XN-H/?. 
******************i:********************************************* 

142 	 PAL 14 (N)10(N),A(39N),K(;?,N),C0F(49N) 
143 	 r)(2)-z(K(292)-K(291))/H(2) 
144 	 Nm1=m-1 
145 	 nO 12 I=evN .1 1 
146 	 D(14-1)=(K(29I+1)-K(2,I))/H(1 4-1) 
147  
148 	12 	 CONTINuF 
149 	 1 (1) =-?,*(-K(291)+K(294)+3*(K(292)-K(293)))/(H(2)*H(2)) 
150  
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151 	 DO 11 I=2,N 
152 	 1)(I)=D(I)-A(39I)*O(I-1) 
153 	13 	CONTINUE 
154 	 n(N),,D(M/A(29N) 
155 	 nO  1 I=29N 
156 	 J=N+1-1 
157 	 D(J)=0)(o)-A(19J)*D(J+1))/A(29J) 
158 	14 	CoNIINoE 
159 	 CALL POLLY(N9D9K9H9COF) 
160 	 PF.TUQN 
161 	 FroD 

162 	 SUk/UTINI: POLLY(N9M9K9H9C0F) 

**************************************************************** 

THIS POOTINE COMPUTES ThE COEFFICIENTS OF THE SPLINE POLYNOMIAL 
1:- AC3I çuhINTEvAL 

IS THE ArAY OF DATA POTN15 
IS THti VFC1- 0 OF SU3INTEPVAL LENGTHS 

M  1 T ,1E SOLUTION VECTO TO THE EUUATION AM=D 
**************************************************************** 

163 	 M(N)9K(eN)911(N)9COF(49N) 
164 
165 	 11 	1----- 1 9 1 
166 	 rnE(1,I)=(M(1+1)—M(I))/(6.*H(I+1)) 
167 	 cC,E(D.I)=(K(19I+1)*M(I) -K(1 , I)*m(1+1))/(2.*H(1+1)) 
169 	 rn=''1 (T +1)*K(19I)*K(19I)-M(I)*K(1,I+1)*K(1,I4.1) 

169 	 CUF(qI)=(Do/(2.*H(1+1)))+H(I4-1)*(M(I)-M(I+1))/.6. 
170 	 n ,-).=f1(I)*(K(19I+1)**3)-m(I+1)*(K(191)**3)+6.*K(19I+1)*K(29I) 

is,*((1+1)**2) 
171 	 C;.F(,..T)=DO/(H(I.1.1)*b.) 
172 	11 
173 	 iv) 1 ,• J=1,4 
174 	lb 	Cr.'e7 (i.Y)=CGF(J,Nml) 
175 	 PF- Tocq. 
176 

(Pf.MIRY 



THE ECONOMIC mO8ILITY IS ALRHA(X)*BETA(S) wHERE 

ALDHA( 	0) IS 	0.16000 
ALDHA( 10) IS 	0.21000 
ALDHA( 20) IS 	0.24000 
ALDHA( 30) Ts 	0.25000 
ALDHA( 40) TS 	0.2400o 
ALPHA( q0) Is 	0.21000 
ALRHA( e.,0) IS 	U.16000 

BETA( 	0) Ts 	0.0E000 
BETA( 10) TS 	0.10000 
BETA( 20) TS 	0.15000 
BETA( 30) IS 	0.20000 
BETA( 40) IS 	0.25000 
BETA( So) TS 	0.30000 
BETA( 60) TS 	0.35000 
BETA( 70)  15 	0.40000 
BETA( 80) TS 	0.45000 
BETA( 9 (1 ) TS 	0. 5 0000 
BETA(100) IS 	0.55000 



VALUES ARE % ERROR IN MU,  5 AND T GIVEN , X ACROSS 

T 	X= 	0 	10 	20 	30 	40 	50 	60 

o 	0 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 
0 	2 	403.75 	359.65 	75.85 	115.51 	170.63 	160.18 	803.37 
0 	4 	-41.60 	18.10 	-20.49 	27.85 	-27.13 	*15.82 	83.30 
0 	6 	-203.99 	-7.42 	2.34 	18.17 	13.93 	33.79 	99.21 
0 	 -133,41 	-1.23 	16.22 	-3.06 	6.51 	-2.07 	100.96 
0 	10 	-131,42 	25.24 	10.08 	-3 (. 89 	*11.09 	*1.89 	107.53 
0 	12 	-125.68 	66.76 	-4.97 	0.09 	17.15 	*8.16 	95.22 
0 	14 	- 8 .40 	1.8.42 	-1.60 	5.88 	8.73 	-.15.13 	105.93 
0 	16 	-95.43 	18.09 	6.82 	7.75 	10.38 	.-11.17 	103.78 
0 	18 	-237.38 	27.41 	-".10.80 	.-3.91 	10.89 	*40.15 	86.25 
0 	20 	-343.99 	18.83 	*38.13 	17.28 	1.92 	16.66 	283.49 

10 	0 	-0.70 	-0.86 	-0.28 	*0.44 	*0.51 	-1.00 	..1.71 
10 	2 	0.36 	0.43 	0.08 	0.17 	0.22 	0.15 	0.75 
10 	4 	-0,07 	0.07 	-0.03 	0.07 	*0.07 	-0.05 	0.23 ,.._, 
10 	6 	-0„g 	-0.02 	-0.01 	0.05 	0.06 	0.11 	0.30 
10 	8 	-0,44 	0.00 	0.06 	0.01 	0.05 	-0.03 	0.49 
10 	10 	-0.53 	0.15 	0.06 	0.00 	-0.06 	.-0.04 	0.74 ._. 
10 	12 	-0. 6 	0.43 	-0.03 	-0.03 	0.13 	-.. 0.06 	0.75 
10 	14 	... 5 1 	0.16 	-0.01 	0.07 	0.07 	-0.15 	0.95 
10 	16 	-0.E1 	0.18 	0.04 	0.11 	0.13 	-0.18 	1.10 
10 	18 	-1.37 	0.28 	 -0.06 	0.17 	-0.53 	1.15 
10 	20 	-1,89 	0.24 	-0.37 	0.30 	-0.02 	0.29 	3.78 

20 	0 	-0.39 	-0.37 	-•0.15 	-0.22 	..0.25 	'.0.45 	-0.71 
20 	2 	0.13 	0.15 	0.02 	0.05 	0.07 	0.04 	0.27 
20 	4 	-0.03 	0.04 	-0.01 	0.03 	*0.02 	-0.00 	0.13 
20 	6 	-n.26 	-0.01 	-0.01 	0.01 	0.03 	0.03 	0.13 
20 	8 	-0.19 	0.01 	0.02 	0.01 	0.01 	-0.02 	0.24 
20 	10 	-0,22 	0.07 	0.02 	0.01 	-0.02 	*0.02 	0.34 
20 	12 	-0,33 	0.15 	-0.0 2 	-0.02 	0.05 	-0.02 	0.33 
20 	14 	-0,2e-( 	0.09 	-0.01 	0.02 	0.02 	-0.06 	0.41 
20 	16 	-0,32 	0.11 	*0.00 	0.05 	0.07 	-0.11 	0.51 
20 	1.›- 	-0„ 6 4 	0.13 	-0.06 	--0.02 	0.08 	*0.23 	0.62 
20 	20 	-0.79 	0.14 	-0.08 	0.14 	-0.06 	0.12 	1.60 

	

.30 	0 	-0,2 ,+ 	-0.25 	-0.09 	-0.14 	-0.18 	-0.29 	-0.43 

	

30 	2 	0.05 	0.07 	-0.01 	0.02 	0.04 	0.01 	0.15 

	

30 	4 	-0.0 2 	0.03 	-0.01 	0.0e 	-0.00 	0.01 	0.11 

	

30 	6 	-0.17 	0.00 	-0.01 	0.00 	0.01 	0.01 	0.08 

	

30 	 -0.1? 	0.01 	0.01 	0.02 	0.00 	-0.02 	0.16 

	

30 	10 	-0.1? 	0.05 	0.02 	0.01 	-0.01 	-0.02 	0.24 

	

30 	12 . 	-0,2"; 	0.09 	-0.02 	-0.0? 	0.03 	-0.01 	0.22 

	

30 	14 	-0.?? 	0.06 	-0.00 	0.01 	0.00 	-0.04 	0.26 

	

30 	16 	-C. 24 	0.09 	-0.01 	0.03 	0.05 	-0.0 9 	0.36 

	

30 	18 	-0,+5 	0.10 	-0.04 	-0.01 	0.07 	-0.14 	0.46 

	

30 	20 	-0,4 	0.08 	0.01 	0.09 	*0.09 	0.06 	1.03 

40 	0 	-0,16 	-0.20 	-0.06 	-0.11 	-0.14 	-0.22  
40 	2 	0,00 	0.05 	-0.01 	0.00 	0.03 	~0.00 	0.10 
40 	4 	-0,01 	0.02 	-0.01 	0.02 	0.01 	0.00 	0.11 



40 	6 	-0,13 	0.01 	-0.01 	0.00 	0.00 	-0.00 	0.06 
40 	8 	-0,08 	0.01 	0.00 • 	0.01 	-0.00 	-0.02 	0 0 11 
40 	10 	-0.0 8 	0.03 	0.01 	0.02 	-0.01 	-0.02 	0.21 
40 	12 	-0,22 	0.07 	-0.02 	-0.02 	0.02 	-0.00 	0.1 6  
40 	14 	-0.1 9 	0.04 	0.00 	0.01 	-0.01 	-0.03 	0.20 
40 	16 	-0.22 	0.08 	-0.01 	0.03 	0.04 	-0.08 	0.30 
40 	18 	-0.37 	0.09 	-0.04 	0.00 	0.07 	-0.11 	0.39 
40 	20 	-0.46 	0.06 	0.06 	0.07 	-0.11 	0.03 	0.79 

50 	0 	-0.14 	-0.17 	-0.05 	-0.11 	-0.09 	-0.19 	-0.23 
50 	2 	-0.02 	0.04 	-0.02 	0.01 	0.01 	-0.01 	0.07 - 
50 	4 	0.01 	0.02 	-0.01 	0.01 	0.00 	0.01 	0.10 
50 	6 	-0.11 	0.00 	-0.01 	-0.01 	0.00 	-0.01 	0.05 

- 	50 	8 	-0.06 	0.01 	-0.00 	0.01 	-0.01 	-0.03 	0 0 10 
50 	10 	-0.0 6 	0.02 	0.01 	0 eo2 	-0.00 	-0.01 	0.18 
50 	12 	-0.2? 	0.05 	-0.01 	-0.02 	0.02 	. 0.01 	0.13 50 	14 	-0.1P 	0.05 	-0.00 	0.00 	-0.01 	-0.02 	0.16 \...„ 
50 	16 	-0,22 	0.08 	-0.02 	0.02 	0.04 	-0.08 	0.26 
50 	18 	-0.36 	0 0 08 	-0.04 	0.01 	0.05 	-0.09 	0.37 
50 	20 	-0.39 	0.05 	0.07 	0.06 	-0.11 	0.03 	0.62 ..- 

60 	0 	-0.12 	-0.11 	-0.03 	-0.11 	-0.05 	-0.16 	-0.17 .._, 
60 	2 	-0.02 	0.02 	-0.03 	0.01 	-0.01 	-0.02 	0.05 
60 	4 	0.01 	0.02 	-0.01 	0.01 	-0.00 	0.03 	0.08 
60 	6 	-mq 	0.00 	-0.01 	-0.01 	0.01 	-0.01 	0.03 - 
60 	8 	-0,05 	0.01 	-0.01 	0.02 	-0.01 	-0.04 	0.09 
60 	10 	- 0.0''3 	0.02 	0.02 	0.03 	-0.00 	-0.02 	0.16 
60 	12 	-0.23 	0.04 	0.00 	-0.01 	0.01 	0.01 	0.12 - 
60 	14 	-0.19 	0.05 	-0.02 	-0.00 	-0.01 	0.00 	0.14 

	

, 	60 	16 	-0.23 	0.08 	-0.02 	0.02 	0.04 	-0.07 	0.23 

	

,., 	60 	18 	-0.37 	0.08 	-0.02 	0.01 	0.04 	-0.09 	0.36 
60 	20 	- 0.35 	0.05 	0.07 	0.08 	-0.10 	0.05 	0.51 

70 	0 	-0.10 	-0.09 	-0.03 	-0.07 	-0.02 	-0.14 	-0.12 
70 	2 	-0,01 	0.02 	-0.01 	0.01 	-0.01 	-0.00 	0.04 
70 	4 	 -().01 	0.01 	-0.01 	-0.00 	-0.00 	0.02 	0.05 - 
70 	A 	-0,07 	0.00 	-0.01 	-0.00 	0.01 	-0.02 	0.04 
70 	8 	-0,n'5 	0.01 	-0.01 	0.01 	-0.02 	-0.03 	0.07 
70 	10 	-0,09 	0.03 	-0.00 	0.02 	0.00 	-0.02 	0.12 - 
70 	12 	-0,21 	0.04 	0.00 	0.00 	0.01 	0.00 	0.13 
70 	14 	-0.21 	0.04 	-0.01 	-0.01 	-0.00 	-0.01 	0.15 
70 	16 	-0.27 	0.08 	-0.03 	0.02 	0.03 	-0.07 	0.22 - 
70 	18 	-0,37 	. 0.10 	-0.02 	0.01 	0.03 	-0.08 	0.33 
70 	20 	-0.34 	0.0 8 	0.05 	0.05 	-0.06 	0.03 	0.48 

	

80 	0 	-0.10 	-0.09 	-0.01 	-0.04. 	-0.00 	-0.12 	-0.08 

	

-80 	2 	-0.no 	0.03 	0.00 	0.01 	-0.02 	0.01 	0.04 

	

80 	4 	- 0. 0 2 	0.01 	-0.01 	-0.00 	0.01 	0.01 	0.02 

	

80 	6 	-0,04 	0.00 	-0.01 	-0.00 	0.00 	-0.03 	0.05 

	

80 	q 	--0,A 	0.01 	0.00 	-0.00 	-0.02 	-0.01 	0.06 

	

80 	10 	-0.13 	0.02 	-0.02 	0.01 	0.01 	-0.01 	0.08 

	

80 	12 	-0.1 	0.05 	-0.00 	0.00 	0.01 	-0.01 	0.14 

	

80 	14 	-0,22 	0.04 	-0.00 	-0.01 	0.01 	-0.02 	0.15 

	

80 	16 	-0.31 	0.08 	-0.03 	0.03 	0.02 	-0.05 	0.19 

	

80 	18 	-0.38 	0.11 	-0.02 	0.01 	0.00 	-0.07 	0.27 

	

80 	20 	-0.3 7 	0.09 	0.01 	-0.02 	-0.01 	-0.01 	0.44 
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- 0.07 
- 0.01 
0.02 

- 0.02 
- 0.02 
0.00 

- 0.01 
- 0.01 
-0.03 
-0.05 
-0.01 

-0.06 
0.01 
0.02 
0.04 

0.02 
0.03 

0.09 
0.10 
0.12 
0.18 
0.23 

Y 

90 	0 	-0.06 	-0.05 	0.00 	-0.02 	-0.01 
90 	2 	-0.00 	0.02 	-0.00 	-0.00 	-0.01 
90 	4 	-0.01 	0.01 	-0.01 	-0.00 	0.00 
90 	6 	-0.0 3 	0.01 	-0.01 	0.00 	0.00 
90 	,3 	- 0 .0 -3 	0.01 	-0.01 	-0.01 	-0.02 
90 	10 	-0.10 	0.01 	0.00 	0.01 	0.01 
90 	12 	-0.17 	0.05 	0.00 	0.00 	-0.00 
90 	14 	-0.19 	0.04 	-0.01 	-0.01 	0.00 
90 	16 	-0.2 6 	0.06 	-0.02 	0.0? 	6.02 
90 	18 	-0,31 	0.09 	-0.02 	0.01 	-0.01 
90 	20 	-0.35 	0.03 	-0.01 	-0.01 	-0.01 

100 	0 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 - 
100 	2 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	4 	- 0.00 	- 0.00 	- 0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	6 	-0. 0 0 	- 0 0 00 	-0.00 . -0.00 	-0.00 	-0.00 	-0.00 _ 
100 	 -0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	10 	-0,00 	-0,00 	-0 0 00 	-0.00 	-0.00 	-0.00 	-0.00 

-• 	100 	12 	-0,00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	14 	-0.n0 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	16 	- 0.00 	- 0.00 	- 0.00 	-0.00 	-0.00 	-0.00 	-0,00 
100 	1i-k 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 - 

100 	20 	-0,00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 



10216 bYTEtp,AAY PMEA= 	7332 BYTES,TOTAL ARE/ 1F- Cf COOt.= CORE USAGF 

DIAGNOSTICS 	°U:YnFs.: OF t..1:ROP$=  0, NOM6Ek OF WARNINGS= 	09 NUM6E 1  

. COMPILE  TIME 	4.78 SEC,t_XECUT1ON rimF= 	41.80 SEC, 	QUEEN'S WATEOR VERSIC 

COST FOR THIS PROGA" IS 3.21 	 RUN IN HSC 	MAP 26, 1974 



Program III 

Estimation of the parameters a(t) and d(x) 

from values of the normalized fertility. The normalized 

fertility might be estimated from the fertility curve 

and the parameter b(t) which represents the family 

size. 

Here we chose as a test case: 

d(x) = 100 	x = 0,  5 0 y ti • s y 

a(t) = 1+. 4sin( ) 	.= 0 e2, 	20 



$JOB 4CCT—NUMOVERNERI,TIME=60 

**************************************************************** 
THIS PROGRAM ESTIMATES THE PARAMETERS A(T) AND D(X) FOR THE 

O 	FERTILITY DIFFERENTIAL EQUATION. DATA IN THE FORM OF VALUES 
OF THE NORMALIZED FERTILITY ARE REQUIRED, AND THESE MAY BE 
ESTIMATED FROM VALUES OF THE FERTILITY CURVE AND THE PARAMETER 
B(T) — THE FAMILY SIZE. 
TO TFST THE PROGRAM A CLOSED FORM SOLUTION FOR A SPECIAL CASE 
IS USED. 
**************************************************************** 

	

1 	 COMMON K9A9H9C0F9D 

	

2 	 REAL FBAR(51911)9FBARST(51911)9K(2,51)9G(51911)9GT(11951)910(51) 

	

3 	 REAL AT(11)9D(51)9PROD(11911) 

	

4 	 REAL A(3951)9H(51)9C0F(4951) 

	

5 	 REAL NU(51) 
**************************************************************** 
OBSERVE THAT DYNAMIC PARAMETERS ARE BEING USED WITH COMMON AND 
AN ERROR MAY OCCUR AS A RESULT OF MIXED INDEXING — INSURE THAT 
COLUmNS ARE COMPLETELY FILLED ON USE OF A DYNAMIC INDEX 
**************************************************************** 

	

6 	 NT=11 

	

7 	 NX=51 

	

8 	 CALL ANAL(NX,NT9FBAR9AT,D) 

	

9 	 D2=D(2) 

	

10 	 AT2=AT(2) 

	

11 	 CALL OBS(NX9NT9FBAR9FBARST,G) 

	

12 	 CALL TRANS(NX9NT9G9GT) 

	

13 	 CALL MULT(119519GT9G9PROD) 

	

14 	 CALL EIGEN(PROD9119AT9ID) 
**************************************************************** 
TO ExHIBIT ERRORS IN THIS APPROACH WE CALCULATE A(1) EXACTLY 
AND MULTIPLY THE OTHER COMPONENTS BY THE APPROPRIATE FACTOR. 

C 	**************************************************************** 

	

15 	 AT2=AT2/AT(2) 

	

16 	 DO 82 IT=19NT 

	

17 	 AT(IT)=AT(IT)*AT2 

	

18 	82 	CONTINUE 

	

19 	 no  R  IX=1,NX 

	

20 	 SUM=AT(1)*G(IX91) 

	

21 	 SUM1=AT(1)*AT(1) 

	

22 	 DO 84 IT=2,NT 

	

23 	 SUM=SUM+AT(IT)*G(IX,IT) 

	

24 	 SUM1=SUM1+AT(IT)*AT(IT) 

	

25 	84 	 CONTINUE 

	

26 	 D(IX)=SUM/SUM1 

	

27 	85 	 CONTINUE 

PRINTPRINTPRINTPRINTRRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN 

	

28 	 WRITF(69114) 

	

29 	114 FORMAT( 1 0e0 A(T) OBTAINED FROM 11 BY 11 MATRIX IS') 

	

30 	 WRITIr(69104) (AT(I)9I=1911) 

	

31 	104 FORMT( 1 0 1 95F12.6) 

	

32 	 WRIr-7(6,115) 

	

33 	115 FORMAT(t(P9 1 	D(X) 	OBTAINED AS 	(G(X9T)9A(T))/(A(T)9A(T))') 

	

34 	 WRITF(6.104) (D(I)9I=1,51) 
PR I N T PR I NT PR J NT PR I NT PR I NT PR I NT PR I NT PR I NT PR I NT PR I NT PR I N T PR I  NIP  R I N  

35 	 STOP 
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36 	 END 

37 	 SUBROUTINE ANAL(NX9NT9FBAP,AT,D) 
38 	 PEAL FBAR(NX9NT),AT(NT)9D(NX) 

**************************************************************** 

SUPP ■ISE D(X)=X/100 
SUPPOSE A(T)=1e4SIN(T/6.) 
SUPPOSE FOBAR(X)=(1—COS(X/8))*X/100 
THEN THIS SUBROUTINE COMPUTES THE CORRESPONDING ANALYTIC SOLUTION 
TO r-IE FERTILITY PDE 

D(FBAR)/DT = —A(T)*D(D(X)*FBAR)/DX 
IF P ( T) < 0 THERE IS AN ADVANCE IN THE FERTILITY 
IF A(T) > 0 THERE IS A DELAY IN THE FERTILITY 
**************************************************************** 

39 	 DT=2, 
40 	 DO 8 IT=19NT 
41 	 T=DT*(IT-1) 
42 	 AT(IT)=1+04*SIN(T/6) 
43 	 W=(2.4+T-2.4*COS(T/60))/400e 
44 	 W=EXP(—W) 
45 	 DO 8 IX=19NX 
46 	 X=FLOAT(IX-1) 
47 	 D(IX)=X/400. 
48 	 FBAR(IX9IT)=.01*X*W*W*(1.—COS(X*W/8•)) 
49 	8 	 CONTINUE 

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN 
50 	 WRITc(69116) 
51 	116 FORMAT(e1e9 1  A(T) 	FROM THE CLOSED FORM ISe) 
52 	 WRIT':(69104) (AT(I)9I=1911) 
53 	104 FORMA,T('0'95FI2.6) 
54 	 WRITc(69117) 
55 	117 FORMAT(e0°9 1  D(X) FROM THE CLOSED FORM IS') 
56 	 WRITE(69104) (D(I)9I=1951) 
57 	 WRIT.--- (69105) 
58 	105 FORMnT( 1 0 1 ) 

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN 

59 	 RETUPN 
60 	 END 

61 	 SUBROUTINE OBS(NX9NT,FBAR,FBARST,G) 
**************************************************************** 
THIS ROUTINE COMPUTES THE 'OBSERVATIONS' OF THE FORM 

• C 	INTEGRAL FROM 0 TO X OF —D/DT(FBAR(X9T)) ALL DIVIDED BY FBAR(X91) 
THE ARRAY G STORES THE OBSERVATIONS 

************************************************************e*** 

62 	 COMMON K 9 A,H,C0F9D 
63 	 REAL K(2951),A(3951),H(51),COF(4951)9D(51) 
64 	 REAL FBAR(NX9NT),FBARST(NX9NT)9G(NX,NT) 
65 	 DT=2. 
66 	 DO 5 I=1,NT 
67 	5 	 K(1',I)=DT*(I-1.) 
68 	 CALL SETUP(NT9A9H00 
69 	 DO 2q IX=19NX 
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70 	 no 15 IT=1,NT 
71 	15 	 K(2,IT)=FBAR(IX,IT) 
72 	 CALL SOLVE(A,K,H,NT,D,C0F) 
73 	 DO 24 J=1,NT 
74 	 T=DT*(J-1.) 
75 	 FBARST(IX.J)=30*COF(1.J)*T*T+2.*C0F(2,J)*T+COF(39J) 
76 	24 	 CONTINUE 
77 	25 	CONTINUE 
78 	DO 35 I=1,NX 
79 	 K(1,I)=I-10 
80 	35 	CONTINUE 
81 	CALL SETUP(NX,A,H.K) 
82 	DO 55 IT=1,NT 
83 	 DO 45 IX=1.NX 
84 	45 	 K(2,IX)=FBARST(IX,IT) 
85 	 CALL SOLVE(A.K.H.NX,D.00F) 
86 	 G(1eIT)=0. 
87 	 • 	X=0. 
88 	 NXM1=NX-1 
89 	 DD=0. 
90 	 DO 55 J=1.NXM1 
91 	 DO=DD—X*(COF(49J)+X*(COF(39J)/2. 4- X*(COF(2.J)/3. 4,  

2 	 X*C0F(19J)/4.))) 
92 	 X=X+1. 
93 	 DD=DD-0(*(COF(49J)+X*(COF(39J)/2.+X*(COF(29J)/30 -› 

2 	 X*C0F(19J)/40))) 
94 	 G(J4-1.IT)=—DD/FBAR(J+19IT) 
95 	55 	 CONTINUE 
96 	RETURN 
97 	END 

98 	SUBRnUTINE SETUP(N,A,H,K) 

**************************************************************** 
THIS ROUTINE SETS UP A TRIDIAGONAL MATRIX A OF THE SPLINE EQUATION! 
IN A 3 BY N ARRAY — FIRST ROW IS SUPERDIAGONAL 

SECOND ROW IS DIAGONAL 
THIPD ROW IS SUBDIAGONAL 

AND THEN DECOMPOSES A TO LU SO THAT 
FIRST ROW IS SUPERDIAGONAL OF U, SECOND ROW IS DIAGONAL OF U 

THIRD ROW IS SUBDIAGONAL OF Le DIAGONAL OF L IS UNITY 
**************************************************************** 

	

99 	RFAL A(3.N),H(N),K(29N) 

	

100 	NM1 =N-1 

	

101 	H (2) .7...K (1,2) —K (1,1) 

	

102 	 00 1  I=29NM1 
— 	103 	 H(I+1)=K(1,I+1)—K(1,I) 

	

104 	 A(1,I)=H(I+1)/(H(I 4. 1)+H(I)) 

	

105 	 A(21I)=2.0 
— 	106 	 A(30)=1—A(1,I) 

	

107 	10 	CONTINUE 

	

108 	A(1,1)= - 2. 

	

109 	A(2,1)=2. 

	

110 	A(3,1)=0. 
111  

- 	112  
113  

	

114 	DO 11 I=2,N 
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115 
116 
117 
118 
119 

• 	120 

11  

A(391)=A(391)/A(2,1 - 1) 
A(29I)=A(29I)-A(39I)*A(10 - 1) 
CONTINUE 

RETURN 
END 

SUBROUTINE SOLVE(A9K9H9N9D9COF) 

**************************************************************** 

THIS ROUTINE CALCULATES THE SECOND ORDER FINITE DIFFERENCES OF THE 
SPLINE, AND THEN SOLVES AM=D 9 (BY FORWARD AND BACKWARD 
SUBSTITUTION), PLACING M(VECTOR OF SECOND DERIVATIVES) IN D 
END POINT CONDITIONS NOW USE THIRD ORDER FINITE DIFFERENcES 
TO FSTIMATE THIRD ORDER DERIVATIVES AT X0+H/2 AND )(NH/2 
**************************************************************** 

121 	 REAL H(N),D(N),A(3,N),K(2,N),C0F(49N) 
122 	 D(2)=(K(292)-K(2,1))/H(2) 
123 	 NM1=N-1 
124 	 DO 1? I=2,NM1 
125 	 D(I+1)=(K(29I+1)-K(2,I))/H(I+1) 
126 	 D(I)=6*(D(I+1)-D(I))/(H(I+1)+H(I)) 
127 	12 	 CONTINUE 
128 	 0(1) =-2.*(-K(291)+K(294)+3*(K(292) -K(293)))/(H(2)*H(2)) 
129 	 0(N).--:!-2.*(-K(29N)+K(29N - 3) 4.3.*(K(29N - 1) -K(2,N - 2)))/(H(N - 1) ** 2) 
130 	 no 13 
131 	 D(I)=D(I)-A(3,I)*D(I-1) 
132 	13 	 CONTINUE 
133 	 D(N)=D(N)/A(2,N) 
134 	 DO 14 I=2,N 
135 	 J=N+1-I 

' 	136 	 D(J)=(D(J)-A(19J)*D(J+1))/A(2,J) 
137 	14 	 CONTINUE 
138 	 CALL POLLY(N,D,K,H,C0E) 

4 

139 	 RETUPN 
140 	 END 

141 	 SUBROUTINE POLLY(N9M9K9H,COF) 

**************************************************************** 

THIS ROUTINE COMPUTES THE COEFFICIENTS OF THE SPLINE POLYNOMIAL 
ON EACH SUBINTERVAL 

K IS THE ARRAY OF DATA POINTS 
H IS THE VECTOR OF SUBINTERVAL LENGTHS 
M IS THE SOLUTION VECTOR TO THE EQUATION AM=D 
**************************************************************** 

142 	 REAL M(N),K(29N),H(N),COF(49N) 
143 	 NM1=N-1 
144 	 DO 11 I=1,NM1 
145 	 COF(1,1)=(M(I+1)-M(I))/(6.*H(I+1)) 
146 	 COE(?,I)=(K(19I+1)*M(I)-K(19I)*M(I+1))/(2.*H(I+1)) 
147 	 DD=M(I+1)*K(19I)*K(19I) -M(I)*K(19I 4. 1)*K(1 , I+1) 

&+2.*K(291+1)-2.*K(291-.) 
148 	 COE(19I)=(DO/(2.*H(I+1)))+H(I+1)*(M(I) -M(I+1))/6. 
149 	 DD=M(I)*(K(19I+1)**3)-M(I+1)*(K(19I)**3)+6.*K(19I+1)*K(29I) 

&-6.*K(19I)*K(29I+1)+K(1,I)*M(I+1)*(H(I+1)**2) -K(10 4. 1)*M(I)* 
&(H(I+1)**2) 
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150 	 COF(4,I)=DD/(H(I+1)*6.) 
151 	11 	CONTINUE 
152 	 DO 16 J=1,4 
153 	16 	COF(,),N)=C0F(J,NM1) 
154 	• RETURN 
155 	 EMD 

156 	 SUBROUTINE TRANS(NX,NT,G,GT) 

**************************************************************** 
THIS ROUTINE TRANSPOSES A MATRIX 
**************************************************************** 

157 	 REAL G(NX,NT),GT(NT,NX) 
158 	 DO 6S IX=1,NX 
159 	 DO 65 IT=1,NT 
160 	 GT(IT,IX)=G(IX,IT) 
161 	65 	 CONTINUE 
162 	 RETURN 
163 	 END 

	

164 	 SUBRoUTINE MULT(NA,NB,A,B,PROD) 

**************************************************************** 
THIS ROUTINE MULTIPLIES TWO MATRICES 
**************************************************************** 

	

165 	 REAL 	A(NA,NB),B(NB,NA),PROD(NA,NA) 

	

166 	 DO 67 IX=1,NA 

	

167 	 DO 67 Ir=1,NA 

	

168 	 SUM=A(IX,1)*8(1,IT) 

	

169 	 DO 66 K=2,NB 

	

170 	 SUM=SUM+A(IX,K)*B(K,IT) 

	

. 171 	66 	 CONTINUE 

	

172 	 PROD(IX,IT)=SUM 

	

173 	67 	 CONTINUE 

	

174 	 RETURN 

	

175 	 END 

176 	 SUBROUTINE EIGEN(PROD,NA,NU,EV) 

**************************************************************** 
THIS ROUTINE FINDS THE DOMINANTSIGENVECTOR OF THE NA BY NA 
MATRTX PROD AND PLACES IT IN EV WHICH IS NORMALIZED BY THE 
1-NORM, ITERATION RUNS UNTIL ROUNDING ERROR IS DOMINANT. 
**************************************************************** 

177 	 REAL PROD(NA9NA),EV(NA),NU(NA) 
178 
179 	 no 77 IX=1,NA 
180 	 SUM=PROD(IX,1) 
181 	 DO 76 1T=2,NA 
182 	S 	 SUM=SUM+PROD(IX,IT) 
183 	76 	 CONTINUE 
184 	 NU(IX)=SUM 
185 	 SUM1=SUM1+SUM 
186 	77 	 CONTINUE 

• 
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187 	 ERROR=1, 
188 	89 	CONTTNUE 
189 	 SUM2-:0. 

- 	190 	 no 87 Ix=1,NA 
191 	 sum.PR0mix,1)*Num 
192 	 DO 86 IT=2,NA 

- 	193 	 SUM=SUM+PROD(IX,IT)*NU(IT) 
194 	86' 	 CONTINUE 
195 	 FV(IX)=SUM/SUM1 
196 	 SUm2=SUN2+EV(IX) 

à 	197 	87 	 CONTINUE 
198 	 SUm1=0, 
199 	 R0UNn=,5*ERROR 
200 	 ERPOR=00 
201 	 DO 97 IX=1,NA 
202 	 SuN=PROD(IX,1)*EV(1) 
203 	 DO 96 IT=2,NA 
204 	 SUm=SUM+PROD(IX,II)*EV(IT) 

s- 	205 	96 	 CONTINUE 
206 	 NU(IX)=SUM/SUM2 
207 	 SUM1=SUM1+NU(IX) 

- 	208 	 ERRoR=ERROR+ABS(EV(IX)-NU(IX)) 
209 	97 	 CONTINUE 
210 	 IF (PRROR.LT.80UND) GOTO 89 
211 	 RETUPN 
212 	 END 

SENTRY 



F)%s, 	rNurl snr t, LUZ',MU ruKm 

10000000 	1.110877 	1.247348 	1.336588 	10388775 

1.398163 	1.3A3718 	1.289234 	1.182909 	1.056447 

0.923773 

D(X) FROM THE CLOSED FORM IS 

0 0 000000 	0.002500 	0.005000 	0.007500 	0.010000 Y 

0.012500 	0.015000 	0.017500 	0.020000 	0.022500 

0.025000 	0.077500 	0.030000 	0.032500 	0.035000 

0 9 037500 	0.040000 	0.042500 	0.045000 	0.047500 

0.050000 	0.052500 	0.055000 	0.057500 	0.060000 

0.062500 	0.0 4)5000 	0.067500 	0.070000 	0.072500 

0.075000 	0.077500 	0.080000 	0.082500 	0.085000 

09087500 	0.090000 	0.092500 	0.095000 	0.097500 

00100000 	0.102500 	0.105000 	0.107500 	0.110000 

0 9 112500 	0.115000 	0.117500 	0.120000 	0.122500 

0.125000 

Y 

A(T)  OBTAINED FROm 11 BY 11 MATRIX IS 
4  

	

0.997756 	1.110877 	1.248731 	1.339316 	1 9 390486 

	

1.399143 	1.365165 	1.290611 	1.183847 	10058285 

0.921801 

D(X) 	OBTAINED AS 	(rY(X9T)9A(T))/(A(T).A(T)) 

	

0.000000 	0.002437 	0.004990 	0.007491 	0.009990 

	

0.012487 	0.014985 	0.017483 	0.019980 	0.022478 

	

0.024975 	0.0 77473 	0.029970 	0.032468 	0.034965 

	

0.037463 	0.039960 	0.042457 	0.044955 	0.047452 

	

0.049950 	0.02447 	0.054945 	0.057442 	0.059939 

	

0.062437 	0.04934 	0.067432 	0.069929 	0.072426 

	

0.074924 	0.077421 	0.079918 	0.082415 	0.084913 

	

0.087410 	0.0119907 	0.092403 	0.094899 	0.097395 
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0.114861 	0.117357 0.119841 	0.122342 

OB.IECT CODE= 	12528 BYTES9ARRAY AREA 	12156 BYTES9TOTAL AREA . 

NUMBER OF ERRORS= 09 NUMBER OF WARNINGS= 	09 NUMBER 

4,75 SEC'EXECUTION TIME= 	2016, 	SEC9 	QUEENeS WATFOR VERSION 

COST FOR THIS PROGRAM IS $ 1.B3 	 RUN IN HSC 	MAR 219 1974 

0.099892 

0.112368 

0.124579 

CORE USAGE 

DIAGNOSTICS 

eOMPILE TIME= 

0.102386 	0.104882 	0.107379 	0.109874 

m. 
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Program IV 

It is expected that available data will be in the 

form of a histogram: that is, for population the number 

of individuals between the ages of x and x + h years 

is known. To generate a density function for this 

histogram, a fourth order spline approximation routine 

is used. To investigate the accuracy of the scheme, the 

histogram is regenerated by integrating the spline 

constructed. 
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1),JUti 	AULI-NUM,VNbK,11Mt=t)U 
*****************************************************************« 
THIS ROUTINE USES A POPULATION HISTOGRAM TO GENERATE A POPULATION 
DENSTTY FUNCTION USING A FOURTH ORDER SPLINE APPROXIMATION 
*****************************************************4************ 

1 	 REAL A(303,9),P(100),Q(3°3)9P0 
2 	 INTEGER I,J,K,TN,TO,TT 
3 	 INTEGER T3 

RRRRRPRRRRRRRRRRRRRRRPRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRP 
4 	 RE40(5,100) TN 
5 	100 FORMT(13) 
6 	 REAO(5,101) (P(I), I=19IN) 
7 	101 	FORT(10F8.0) 

PRRPRRRRRPRPkRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRF 
PPINTPRINTPRINTPRINTPPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF 

8 	 WPIT7(69106) 
9 	106 	FORMT( 9 1°) 

10 	 PRINT, 'THE GIVEN POPULATION IS 9  
11 	 PPINT9 
12 	 WPIT'- (69102) (P(I),I=191N) 
13 	102 	FORm'àT(e *010E8.0) 

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF 
14 	 To.n 
lq 	 T3=3*(Tm-To4.1) 
16 	 CALL ISPLIN(A91. 09TN,T39P,O) 
17 	 CALL CHECK(P9Q9139TN) 
18 	 P(1)=0(3) 
19 	 P(2)—:0(5) 
20 	 PO 25 1=3,TN 
21 	 P(I)Q(3I -2)  
22 	25 	 CONTINUE 

PPINTPRINTPPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT( 
• 	23 	 PPP:T. " 

24 	 PINr, „ 
25 	 PPINr, 9 TH  E POPULATION DENSITY AT AGES 0,19299,0999 IS 0  

1 	26 	 PPINr9 
27 	 WRITe((19102) (0(I),I=191N) 
28 	 WRIT: . (6,10(1) 

DRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF 
PUNC-1PUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCW 
WPTT — (7,101) (P(I),I=1,TN) 
PUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCW 

29 	 STOP 
30 	END  

31 	 SUR.IUTINE CHECK(P9Q9T3,TN) 
**** * ************************************************************1 
THIS SUBROUTINE REGENERATES THE POPULATION HISTOGRAM FROM THE 
DENSTTY FUNCTION BY EXACT INTEGRATION OF THE FOURTH ORDER SPLINE() 
HENCF THE ERRORS ARE THOSE SUFFERED AS A RESULT OF ROUND—OFF ERROF 
**** *************************************************************4 

— 	 32 	INTEnFP T3,IN 
33 	REAL  O(T3)P(TN) 
34 	P(1)-=FO(3)+U(5))/2.—(U(2)+0(4))/24.+Q(6)/120 
35  
36 	 DO  24 I=3,TN 
37 	 R(I)=M3*14-1)+0(3*I-2))/2,—(Q(3*I+2)+Q(3*I-1))/240 4-033)/120 
38 	26 	 CON I INUE 

PRINTPRINTPRINTPRINTPRINTRRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTr 
39 	 PRINT,' ' 
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83 

4. 

40 	 PRINT, ' 
41 	PRINT0THF POPULATION REGENERATED FROM THE FOURTH ORDER SPLINE ISg 
42 	 PRINT, 
43 	wRITc- (69102) (P(I),I=1,TN) 
44 	102 	FoRmfcr( o 0,i0Fpi.0) 

PRINTPRINTPRINTPRINTPRINTPR1NTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF 
45 	RE.TUce. 

7 	46 	 END 

47 	SUBRWTINF CREATE(A,TO,IN,139P9O) 
***************************************************************** 
THIS POUTINE CREATES THE INISPLINE MATRIX FOR APPROXIMATING 
A DE:\!SITY FUNCTION GIVEN SUUINTERVAL INTEGRALS 
THE ;)NKNOWN VALUES U(I) ARE THE VALUES R4(0),R2(0)9R(0)9R2(1)9 
R(1),R4(1),R(2),R2(2),R4(2)9...9R(I)ÇR2(2)9R4(1)9000 
R(T0),R?(T0),R4(TO)0 
ROUNnARY CONDITIONS ARE Rel(0)=R 099 (0)=R(100)=Rog(100)=0 
****************************************************************** 

46 	INTEnEP 19J,K,TN,TO,TT 
49 	INTEr:.ER T3 
50 	 REAL A(13,9),P(TN),Q(T3) 
51 	 nO 3r I=1,13 

RPRRPRRRPRRRRRRRRRRRRRRRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRF 
52 	 PEAD(5,103) D 
53 	103 FOPmT(F10.4) 
54 	 ;- E40(5,104) (A(I,J),J=1,9) 
55 	104 FORm. , T(9F8.) 
56 	nO 3. J=1,9 
57 A(1,))=4(T,J)/0 
58 	30 	 CONTINUE 

• C 	pRPqppifflRRRRRRRPRRRRRRKRRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRP 
59 	 TT=TI—T0-1 
60 	 nn 	I=4,Ti 
61 	 no 31 J=149 
62 	 4(2+3*I1J)=A(119J) 
63 	 A(3+3*19J)=A(12,j) 
64 	 A(4+3*I,J)=A(13,J) 
65 	31 	 CONTINUE 
66 	 TT=TT+1 
67 	PEAn(5,104) (A(3*TT+79,1),J=1,9) 
68 	PEAD(5,1i)4) (4(3*TI+39J),J=1,9) 
69 	N]=Tn+? 
70 	nO 32 I=.-1.rT 
71 	 3*I-1)=0. 
72 	 O(3*I)=0. 
73 	 0(3*1+1)=2*P(1) 
74 	32 	 CONTINUE 

75 
76 	 0(2)=0. 
77 	 0(3).:2*P(T0+1) 
78 	 0(4)-:0. 
79 	 Q(3*TT+2)=0. 
80  
81 	 RRTUPN 
82 	 Ers.11) 

SUHR:1UTINP ISPLIN(A,TU,FN,T -i,P,Q) 
*****************************************************************s 
THIs ROUTINE SOLVES THE INTEGRAL SPLINE PROBLEM FOR A POPULATION 
***************************************************************** 
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84 	IN1FnE 	f0 9IN919J9K 911 

	

85 	INTEgER  1 3 

	

86 	 PEAL A(T3,9),P(TN),Q(T3) 

	

87 	 CALL CREATE(A,TO,TN/139P,Q) 

	

88 	 no 31 I=1,T3 

	

89 	 om=o(1)/Ati95) 

	

90 	 00 34 

	

91 	 A(I,J)=A(I,J)/A (1 95) 

	

9? 	34 	 CONTINUE 

	

93 	 AtT,7)=1 

	

94 	 no 31 K=1,4 

	

95 	 IF((I.Fr).GT.T3) GOTO 33 
96  

	

97 	 nO 35 J=2,5 

	

98 	 A(j+K,4-K+J)=A(ii-K94 -K+J)-A(I«›K95-K)*A(194‹-J) 

	

99 	35 	 CONTINUE 

	

100 	 AtI4-K95-K)=0 

	

101 	33 	 CONTINUE 
*****************************************************************$ 
RACK5UBSTITUTION 
****************************************************************** 

	

102 	N=3*(TN-T0+1) 

	

103 	0(N-1)=Q(N-1)-t)(N)*A(N-1,6) 

	

104 	0(N-2.)=0(N-2)-(Q(N)*A(N-2,7)+Q(N-1)*A(N-296)) 
105  

	

106 	00 3A‘ 
107 

	

108 	 PO 36 J=1,4 

	

109 	 0(K)=0(K)-A(K+5+J)*Q(K+J) 

	

110 	36 	 CONTINUE  

	

111 	PFT0Rhi 

	

112 	 Ewn 

SENTi4Y 



983817. 981102. 9785410 
962270, 960201. 958098. 
939197 ,  936492, 933692, 
906554 ,  902393 ,  898007 , 

 852554,  845214 ,  837413. 
754191 ,  740631 ,  726241 , 

 517882,  554975, 531133. 
315982. 287973. 260322 ,  
78221. 63036. 49838 ,  
3011. 	1818. 	1005. 

9761240 973869. 
955942. 953743 0 

 9307880  927763 0 
 893382,  888504. 

829114. 820292 , 
 7109900  694843 , 
 506403. 480850. 

2332510 206989, 
38593e 29215. 

454, 	125. 

THE GIVEN POPULATIOq IS 

1023102.1000000. 994230. 990114. 986761 , 
 971804, 969890. 968038. 966179. 964266, 
 951483,  949171. 94A789 ,  944337. 941806 , 
 924609,  921317 ,  917880 ,  914282. 910515. 

, 883342. 877883 ,  872098 ,  865967 ,  859464 ,  
810900 ,  800910 ,  790282, 778981. 766961. 

, 677771. 659749. 640761 ,  620782. 599824. 
P 454548 ,  427593. 400112. 312240, 344136 ,  

181765 ,  157799 ,  135297. 114440. 95378 ,  
21577. 15514. 1833. 	7327. 	4187. 

- THE POPULATION  REGErIERATErY FROM THE FOURTH ORDER SPLINE IS 

1023102.1000000. 994230. 990114. 986766. 983816. 981102 ,  978541, 976124, 973869 ,  
- 971804 ,  969890. 96 8038. 966178 ,  964266 ,  962270 ,  960201, 9580980 955942 ,  953743 0  

951483 ,  949171 ,  946789 ,  944337 ,  941806 ,  939197 ,  936492, 933692 ,  9307880 927763 ,  
924609 ,  921317. 917880. 914282. 910515 ,  906554. 902393 ,  898007. 8933820 888504 ,  

- 883342 ,  877883. 87 -7098 ,  865967 ,  859464 ,  852554 ,  8452140 8374130 829114 ,  820292 ,  
810900. 800910. 79n282. 778981. 766961. 754191. 740631. 726241. 710990. 694843 ,  
677771. 659749. 640761. 620782. 599824. 577882. 554975 ,  5311330 5064030 480850. 

- 454548. 427593. 400112, 372240. 344136. 315982 ,  287973. 260322 ,  233251. 2069890 
181765, 157799. 13=,297. 114440. 95378. 78221, 63036 ,  49838. 385930 29215. 
21577 , 	15514 , 	1-833. 	7327. 	4787. 	3011. 	1818. 	10050 	454. 	125. 

THE POPULATION DENSTTY AT AGES 0,1,29...999 IS 

1038460.1008672. 99297. 992581. 988103. 985351. 982383. 979819. 977299. 974970, 
972804. 970830. 961960. 967114. 965234 ,  963284 ,  961243. 959156 ,  957028 ,  954851 ,  

- 952623. 950337 ,  947992 ,  945576. 943085 ,  940516. 937861. 935108, 9322590 9292970 
926209 ,  922987 ,  91Q625. 916109. 912429. 908568 ,  904509 ,  900240. 895735. 8909880 

i 885972, 880664. 87047 ,  869092 ,  862781. 856079. 8489580 8413940 8333480 824794. 
- 815694. 806008 , 7970.  784748. 773094. 760704 ,  747547. 733577. 718762. 703069 , 

 686464. 668919. 650419. 630936. 610466. 589017. 566587. 543207. 518911. 493758, 
 467817,  441169. 419 29. 386279. 358212. 330052. 301936. 274070. 246671. 2199660 

194185. 169555. 14288. 124581. 104599. 86475. 70297. 56107. 43896. 33602. 
25119. 	18298 , 	17960. 	8901. 	5914. 	3786. 	2334. 	1363. 	688, 	262, 



CORE USAGE 	OR IECT CODE= 	6336 BYTES.ARRAY AREA= 	12520 BYTES9TOTAL AREA 

DIAGNOSTICS 	qUMBEP OF ERROKs= 	0. NUMBER OF WARNINGS= 	09 NUMBEF 

COMPILE TIME= 	2.31 SFC.EXECUTION TIME= 	12.33 SEC, 	QUEENgS WATFOR VERSIOP 

RUN IN HSC 	MAR 199 1974 — COST FOR THIS PROGQAm Is S 	1.19 
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