





Letter of Transmittal

Dr. A.R. Demirdache,
Director,
Technological Forecasting
and Technology Assessment Division,
Ministry of State for Science
and Technology,
Ottawa, Canada.

Dear Dr., Demirdache:

I have pleasure in forwarding to you herewith an
Interim Report on the work undertaken by this Department
in response to your request for input towards the
Canadian contribution to the work of the International
Institute for Applied Systems Analysis.

You will recall that you asked us to attempt to
model the growth of population in Canada, by means of a
model involving coupled systems and non-linear dif-
ferential equations. The importance of the Model derives
from the fact that population studies are an indispen-
sable building block in any attempt to study national
socio~economic problems with the accuracy necessary to
form a basis for policy decisions.

The work on this Model has been carried out
principally by Professors Jon Davis and James H. Verner
of this Department. As you will see, they have broken
new ground in applying relatively sophisticated methods
which have not hitherto been deployed on population
studies, and they have devised computer programmes to
.display the distribution of population in age and time
in a very graphic manner.

I remind you that in the agreement between us,
the right of publishing the details of the procedures
contained in this Report in scientific journals has been
reserved to Professors Davis and Verner. They would
wish me to emphasize strongly their evaluation of the
present work as being highly preliminary, and they
would caution against any attempt to make exaggerated
claims for their model in its present state.

Even so, I trust that you will agree with my
view that they have demonstrated that there are extremely
worthwhile possibilities in their method, which should be
pursued vigorously.

Yours faithfully,

A.J. Coleman, Head,
Department of Mathematics.
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Abstract

The Queen's Mathematics Department population

N model is a dynamic model for simulating the evolution of

a population distribuﬁion as a function 6f age and
income level,

The basic structure of the modél is such that
birth-rates may be generated within the model as endo-
genous variables, This allows the inclusion of feedback
effects from the population distribution té birth and
immigration rates, and so provides a capabilit& for
simulations valid over longer time intervals than are
possible with exogenous birth and iémigratidn rate
variables,

The model has been constructed with two main
issues in view. The first is that of compatability of
this model with other models with which it might be
combined. This requiremént dictates a modular structure
described in this report. The second issue is the prob~
lem of parameter estimation in the model. The model has
been formulated in such-a way that estimation is made
possible.

Effective numerical algorithms for these est-
imations based on available data formats are also re-~

ported.

. iii.



A description of work that remains to be done in
order to complete development of the model is also

included,
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I Introduction

Models of population growth form an essential
part of any attempt at large scale socio-~economic
modelling, The age and economic level structure of
the population has a direct bearing on various govern-
ment service requirements ranging from elementary
schools to pension plans, as well as the economic base
available to support such programs. For this reason,
it is essential that population models capable. of sim-
ulating behaviour over a reasonable length of time be
investigated.,

Traditional demographic methods project pop-
ulation estimates forward in time by means of an
aggregation procedure, followed by a linear extra-
polation procedure based éssentially on a Markov-chain
type of model. Such methods are reasonably accurate
over the relatively short term; however, the model
structure is such that the fertility curve (the age-
specific distribution of the birth—rates) is treated as
an "exogenous variable' which must be specified for
each run. Some attempts (the so-called "cohort
method") have been made to include in the model the
observed fact that birth-rates do vary over time, but
the problem of extrapolation birth-rates forward in

time in order to increase the length of time that model




results are valid remains.

It is clear that many factors affect birth-~rates:
economic conditions, perceptions of future economic
conditions, ecological concerns, a host of other
factors affect birth-rates to a greater or lesser
effect. It is also clear that present population
structure affects in turn.the economic climate, and
the general environment. The present population is in
turn the result of past birth-rates (and immigration).

The conclusion of the above observations is that
it is impossible to découple the dynamics of the birth-
rates from those of the population structure without
compromising the long term validity of the model sim-
ulation. In effect, there exists a feedback path from
population structure to birth—ratés which may not be
ignored over the long term. (This does not imply that
such decoupling, based on assumptions that certain
factors "vary slowly with time", detracts from the
usefulness of models intended for use over relatively
short time periods).

The model discussed in this report represents an
approach to the problem of including the dynamic feed-
back effect mentioned above in a simulation model.
More specifically, this report contains the results of

some work on what we regard as the basic structural
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elements and problems associated with models of this
sort.

The structure and "philosophy!" of the model is
discussed more fully in Section II.

It was determined early in our investigation that
partial differential equations were an appropriate
éomponent of the model - in fact, it is hard to con-
sider the effect of the "baby boom" without coming to
the conclusion that a wave equation occupies a central
position in a model of poﬁulation distribution. In
work on any dynamical model it is necessary to deter-
mine numerical values for parameters occurring in the
model equations before any simulation may be carried
out. At worst, these parameters may have to be
guessed; obviously it is much more desirable that the
paraﬁeters be estimated from historical records of the
phenomenon being modelled, if possible. The latter
procedure provides an indirect means of assessing the
validity>of the model.

In the case of models governed by partial dif-
ferential equations this estimation problem is even
more severe, as it is often necessary to estimate not
just a finite set of parameters, but a function of one
or more independent variables. Aspects of this prob-

lem are reported in Section III and Appendix C.



Once parameters and functions have been estimated
from the available data, it is possible to simulate the
system on a digital computer. This, of course, involves
the solution of coupled systems of ordinary and partial
differential equations by numerical methods. It is
necessary to investigate the effects of the numerical
methods used on the accuracy of the results obtainéd,
in order to ensure that the behaviour of the model is
a result of the actual "dynamics" of the model itseif,
and not the result of instability caused by inaccurate
numerical methods. The difficulty of this problem is
again increased by the fact that partial differential
equations are involved. The work in this area has been
checked by use of certain exact solutions to the gov~
erning equations (Appendix A) and is described iﬁ

Section V and Appendix B.

II. Structure of the Model

It is helpful in describing the structure of the
model presented here to explain briefly the general
philosophy of "modelling" that the authors of this
report hold, and which has had a strong effect on the
structure adopted for the model discussed here.

| In the first place, we feei that a main product

of any modelling and simulation effort should be




insight into the behaviour of the phenomena being model-~
led. Perhaps the worst fate that can befall any model
is that it be used to generate one set of trajectories
which are then canonized as "the prediétions" of the
model (or worse yet, of the computer used to generate
the output). Rather, the use of a model should itself
be a dynamic process. Tt is certain that better data

regarding the variables involved in a model will become

available in the future, and it. is only prudent that this

data, if possible, be used to improve any "forecasts"
made using the model,
It is also rather likely that there are alter-~

native opinions regarding the actual structure of some

sections of any given model. In this situatioh, it is
essential that simulations be run incorporating these
alternative oﬁinions, rather than selecting one arbit-
rarily and incorporating it per@anently into the model.
It is only by simulating each of the reasonable alter-
natives (a matter of judgement is involved here) that
any true insight into the behaviour of the syétem as a
whole can be gained; this includes an appreciation of
the range of results which might be expected under
reasonable alternative models.

These considerations suggest at least that a use-~

ful model must have sufficient flexibility of structure




to accommodate changes of the sort mentioned above, In
order to build flexibility of this sort into a model, it
is necessary to identify a basic dynamical core around
which the model may be constructed.

The basic core of the model in this paper consists
of equatioﬁs for the evolution of the population dist-
ribution, and for the evolution of the fertility curve
over time,

As was mentioned in the previous section, it is
clear that economic conditions interact with the current
population distribution and other factors to produce
the current instantaneous birth-rate. It is also clear
that the exact nature of these interactions is comp-
licated and probably poorly understood in total,
although some progress in this direction may be made by
various methods. On the other hand, the evolution of
the population distribution may be described (see the
following section) by a partial differential equation
of the conservation law type. Also, by looking at
birth-rate records, it is possible to argue that the
evolution of the fertility curve is also adequately
modelled by a relatively simple partial differential
equation. Furhter, the structure of these sections of
the model is independent of the details of economic and

other interactions which combine to affect birth-rates.




These considerations have led us to the decision
to base the framework of the model on the dynamics of
the population distribution and of the fertility curve.
This leads to an overall model structure which may be
represented in the "block diagram! form illustrated in

Figure 1.
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This block diagram includes a section labelled
economic dynamics. It is judged that the exact form of
this section will be the subject of some debate, and
that repeated simulations with varyiﬁg socio-economic
models will be required. It is expected that models
with a relatively long time horizon and moderately high
level of aggregation will be found most appropriate. In
particular, models of the "Candide" type with high levels
of detail and relatively short (eg. ten year) time spans
are not felt to be appropriate. As work up to the time
of the writing of this report has been concentrated on
problems associated with core section of the model,

problems in this particular area require further study.

ITT, Derivation of Equations of Dynamic Core

The core of the model consisﬁs of two partial dif-
ferential equations: one for the evolution of the pop-
ulation density as a function of time, age, and income
level, and one for the evolution of the fertility curve
(i.e. the curve of age and income specific birth-rates).
These two equations are coupled in a non-linear faéhion,
although the non-linearity appears only in the boundary
conditions for the population equation. This fact is
of considerable use in connection with the estimation

problems discussed in the following section, and makes
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the derivations presented below simpler than might other-

wise be the cases

A, Population Distribution Evolution

The model presented below is formulated as a
basically deterministic model, and processes are model-
led as occurring continuously in time on a macroscopic
level, even though on a microscopic level the events
may occur at discrete intervals of time. In this con-
nection, a first step is to recognize Ehat an averaging
process is taking place whenever what are essentially
discrete events are ''smeared out'" and modelled cont- .
inuously in time. This process is illustrafed by the
use of death-rates in population models, decay rates in
radioactive decay problems, and, in the derivation
below, of an economic mobility u . In these cases,
the use of such rates essentially disﬁinguishes between
deterministic and stochastic modelling approaches.

The equation governing the population distribution
may be derived readily from what are essentially count-
ing or bookkeeping methods. This is most easily‘demon—
strated by the derivation of a simple model of pop-
ulation as a function of age x , neglecting

death-rates, immigration and any other variables. In

this case, the appropriate counting argument is



essentially that the number of people at age x at

time t is the same as the number of people at age

x - At at a time At units earlier: In terms of pop-

ulation density p , this becomes

Ax Ax
X 4 == ax
2 X+2 At
f p(x,t)dx = f p(x,t-At)dx ,
Ax Ax
K o — m—
2 X 5 At

which for smooth densities p is essentially

p(x,t) = p(x-At,t-At)

p(x=-At,t-At) - p(x,t-At) .

M

or  p(x,t) - plx,t-At)

Dividing the above by At and letting At -» 0O results

in the partial differential equation
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As is well known, the general form of solution to
the above is £ = @(t~x) , with ¢ an arbitrary
function which must be evaluated from the boundary con-

ditions appropriate to the problem. The appropriate

boundary condition is that

p(x=0,t) = g(t)

where g(t) is the birth-rate of time t . That this
is the appropriate boundary condition may be verified

by noting that this gives the solution
p(X’t) = B(t—X) s

which says essentially that the number of people at age
x at time t is the number of people born at time
t -x , i.e. x years before time +t . This of
course is entirely evident from the assumptions made
above.

The model considered in this paper includes a
partial differential equation for the population density
b(x,s,t) as a function of the three variables age x |,

income s , and time t . As will be shown below in

Appendix A, it is unnecessary to specify at this point
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the units involved in the income scale s , that is,
whether s represents net income, disposable income,
or some other measure. This is so because the form of
the governing equation is invariant under a (non-
linear) change of income scale, so that the units
involved become an issue only during the processing of
data for estimation purposes. This fact is a pleasant
surprise which naturally arises out of the structure of
the model equations. |

To derive an equation for the population density
on a realistic basis, it is necessary to account for
effects neglected in the simplified model above, in

particular to introduce terms

i(x,s,t)

representing the immigration rate (as a function of age,

income level, and time), and the death-rate

rix,s,t) .

It is also necessary to introduce a term which
accounts for the change of income level of various seg-

ments of the population over time. To accomplish this,
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we introduce an economic mobility function,

u(x,s,t) .

Even though income levels of individuals on a micro-
scopic scale undergo changes at discrete instants of
time, perhaps modelled by a Poisson process, on the
macroscopic scale of its influence on the income dist-
ribution we model the effect as one of a continuous
flow across income levels. With this effect in mind, a

term of the form
u(x,s,t) « At

has an interpretation as the fraction of people at in-
come level and age x crossing through level s in the
time interval from t +to t + At .

With the above definition of terms, it is easy to
use a "counting argument" entirely similar to the one
above to arrive at an equation representing the evol-

ution of population density. The result is

D o 2 i
a% = - -gg - gg‘ (U(X’S,t)p) - r‘(x,s,t)p + l(XJS’t)
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Just as in the above derivation, it can be seen

that the appropriate boundary condition for this

equation is again

p(x=0) = birth-rate.

There is a technical problem associated with this boun-
dary condition, since taken literally it demands the
assignment of an income level to babies at birth. In
fact, the model as formulated above is capable of prop-
agating income level migration through childhood. Tt

is clear that such a procedure makes little sense;
however, the problem may be avoided rather easily by

the following device. The income distribution at x = 0
may be set equal to that at the age of entry into the
labour market. If the economic mobility is equal to zero
for values of age x less than the labour market entry
age, then the income distribution will remain constant
for ages less than entry at the values of the entry
distribution. Income distribution data generated by sim-
ulation runs may then be considered only for ages

greater than an age of entry into the labour market, and
no further modification of the model is required. The
income distribution at entry age must be generated as

part of the economic section of the model, and this
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effect comprises one of the feedback paths from the
economic to population distribution sector shown on
Figure 1.

Other effects of this sort, for example, an effect
of p on the economic mobility W , are implicitly
contained in the time dependence of . As will be
seen below in the section dealing with estimation prob-
lems associated with the model, there are substantial
theoretical and practical benefits which follow from
modelling the income migration process as above. In
particular, it is then possible to devise numerical
methods to estimate from observed population dist-

tribution data,

B, Fertility Curve Dynamics

Although the observation that socio-economic
conditions, social attitudes, and so on, exert an effect
on birth-rates is a common one, there seems to have been
little effort made to quantify these effects in a dyn-
amic model. Undoubtedly, a major reason for this is
that it appears impossible to "derive" such a set of
relations in the sense of the derivation outlined above
for the population density dynamics.

For this reason, we have decided to approach this
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problem as one in system identification., That is, we
attempt to formulate the problem in such a way that the
problem is reduced to that of estimating a dynamical
relationship between a relatively small number of
variables. This in itself is a major reduction, since
in principle a fertility curve is an element requiring
an infinite number of numbers for its specification.

This first reduction may be obtained by examining
typical historical records of the behaviour of fertility
curves over time (See Figure 2). A first observation is
that the curves are all of roughly the same shape. An
examination of their differences shows that their peaks
slide from age to age over time, and that the area under
the curve, representing the total birth-rates to be
expected from a uniformly distributed population, varies
over time,

A simple partial differential equation capable of
reproducing this observed behaviour has been adopted as

the basis for the fertility curve dynamics. This is

(@4
b

|

= - a(t) &= (dx)E) - b(e)E .

(o4
o+

The first term in this equation produces the

effect of the shifting peak, while integrating the
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equation with respect to x shows that b(t) is the
percentage change of the area under the fertility curve

per unit time. An equivalent interpretation is that it

represents the percentage rate of change of average

family size.

The justification of the representation of the
fertility curve dynamics by the above equation may be
carried on in several ways. In the first place, the
interpretation given b(t) guarantees the presence of
the term b(t)f din virtually any such equation. The
appropriateness of the term representing the "shifts"
may be supported on the basis of a time scale argu-
ment, combined with the fact that the model fits the
observed data reasénably well, The "shifts" occur in
the data on a time scale considerably faster than that
of the dynamics of the population section of the model.
In fact, the shifts appear correlated with variations
in the economic climate, recessions, rising and falling
unemployment, and the like. Since these effects are
expected to be introduced into the model most likely
on the basis of "standard" econometric and business
cycle models, it is anticipated that it will be possible
to include the function a(t) and its dynamics in this

.section of the model. The dynamics of a(t) are to be
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identified by means of either the usual econometric
model identification techniques, or more recent work in
the area of control theory. Since this identification

problem presupposes knowledge of the term d(x) , work

in this area is dependent on solving the problem of est-
imating d(x) , and applying the algorithm for this
purpose is described in the following section.

Comments similar to the above also apply to the
problem of determining the dynamics governing the term
b(t) , although it is suspected that this will be even
more difficult than the above process. This is so
because b(t) is dominated more by social attitudes,
education, and other effects much less easy to quantify
than economic ones. It is felt that this area represents
an example of the need for alternative sub-models and
repeated simulations discussed above in Section II in
connection with the overall structure of the model.

While the above discussion has been carried
through as though the fertility curve were independent
of income, an entirely similar derivation is possible on

the basis of an income dependent fertility curve. If

one also allows the possibility that the economic inter-
actions occur unevenly across income levels, then the

appropriate equation is
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o logd
e

o
= - g;'(a(x,s,t)f) - b(s,t)f o

Because of the meaning of a fertility curve (or
surface, if s is included as an independent variable)
as an age (and income) specific birth-rate, the formula

for the total birth-rate is simply
b(t) = [ f(x,s,t) p(x,s,t)dxds

No mention has been made in the above derivations
of any geographicai aspect of the problem. There are,
however, some restrictions implicit in the derivations of
the model equations. It is clear that certain of the
quantitites involved in the above equations vary with
geographical locality. From this, it is obvious that
the model must be applied separately over geographical
areas between which the relevant quantities vary. To
obtain an overall model, then, internal migrations must
then be included in the immigration rates of the models
for each geographical region.

There is also implicit in the model derivation as
assumption of a sufficiently large sample population, so
that the modelling of the immigration, death, birth, and

economic migration processes as continuous is valid.
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IV, Model Estimation Methods

The dynamical equations governing the core section
of the model derived above involve various auxiliary
functions, namely: death and immigration rates, an
economic mobility function u(x,s,t) , and functions
a(t) , b(t) and d(x) determining the evolution of
the fertility curve. Before it is possible to produce
any simulation runs with the model, it is necessary to
determine suitable estimates of these functions,

Generally speaking, this problem of parameter and
function estimation is one of the most difficult ones
involved in the construction of any model. Consideration
of the conventional techniques of econometric modelling
makes obvious the amoun£ of effort which is expended in
this area. 1In fact, with a certain amount of injustice
one might view much econometric modelling as consisting
of the development of schemes for the recursive estim-
ation of parameters for short term (often linear) extra-
polation models. This view ignores the effort involved
in determining the extrapolation model whose parameters
are to be estimated, but the fact remains that there
continues to be much work on the development of
regression - estimation methods in this area.

At practically the opposite end of this problem

stand models of the sort proposed by Forrester and his
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associates. One of the most consistent criticisms
levelled at Forresterl!s World and Urban Dynamics models
is that practically no attempt has been made to estimate
the parameters and functions involvedbin the models in
any "realistic!" fashion.

This apparent gulf between the Forrester models
and conventional econometric models is, in our view, a
large contributing factor to the hostile reaction For-
rester's models have received in some quarters. It is
also a gulf that is not easily overcome by philosophic
discussions about differences of purpose between the two
approaches,

In the case of the present model, it happens that
considerable progress can be made in estimating the
functions that are involved in the model of the core
dynamics. Of course, this is not entirely unexpected,
since an effort has been made to formulate the dynamics
of the core in terms of variables which may be readily
measured, Also, our definition of what constitutes the
core dynamics of the model virtually assures that it
must be possible to produce useful quantitative est-
imates of the functions involved,

The functions r(s,s,t) and i(x,s,t) in the pop-
ulation model are just death and immigration rates, so

there is no problem in obtaining historical records of
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these., Similarly, the function b(t) may be readily
determined on the basis of its interpretation in terms
of area under the fertility curve.

This leaves just the terms u(x,s,t) in the pop-
ulation equation and a(t) d(x) in the fertility
equation to be determined. It can be seen that each
term enters its equation in an analogous way, so that an
estimation method can be derived which can be used to
estimate both the economic mobility u(x,s,t) and the
term a(t) d(x) din the fertility equation.

It is shown in Appendix A that the form of the
partial differential equations is such that an integrat-
ing factor may be introduced to reduce the problem to
that of estimating u(x,s,t) and a(t) d(x) in the

equations

dp dp D -

|
>F d -
T T T ix (a(t)d(x)f) o

In the modified population equation, integrate

between the limits of s and infinity. There results
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o) 2! 0 -

L 4 _ -

(bt bx) ,fs pds = u(x,s,t) - p(x,s,t) ;
here ﬁ: p ds has the interpretation of the number

of people at age x , dincome s , and time ¢

having an income greater than s . Solving this for

U gives
1 A o) 0 -
.U-(X,Sst) s(xg‘sgt) (At + 3% ) 'rs p(x,s,t)ds °

This provides an estimate of y wherever E(X,s,t) #0 .
Since E(x,s,t) # 0 except on the "tails of the dist-
ribution”, the above formula may be used to determine
M throughout the age and income brackets containing
the great bulk of the population. On the tails of
distribution (e.g., at very high income levels) the
interpretation of u makes it clear that Q must tend
to zero, so that the fact that the above formula is less
useful there is of little concern.

Carrying out exactly the same procedure with the

modified fertility curve results in
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(0o
J‘x f(x’t)dx e

This determines a(t) d(x) over those portions of the
age scale which f(x,t)%# 0 . Again f tends to zero
only on the tails of the fertility distribution. Recall-~
ing that the term a(t) d(x) was introduced to account
for changes in the age distribution of fertility we see
that intuitively a(t) d(x) reflects the effects of
shifts in "planned births" for the most part. Since
births arising in the extremes of the fertility dist-
ribution do not fall into that category, it is clear
that d(x) must approach zero at these extremes., Hence
it is again true that the fact that the formula derived
is less useful in regions where f is close to zero is
of small consequence.

Once u(x,s,t) and a(t) d(x) have been est-
imated; further estimation problems remain. One problem
is that of determining numerically the values of a(t)
alone for use in identifying the interactions between
the economic sector and the fertility curve. A second
related problem is that of isolating the time dependence
in u(x,s,t) in such a way that a similar interaction

analysis may be carried out. These problems are of a
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somewhat more technical nature, so our work on them is
reported in>Appendix C below.

A further technical complication arises in con-
nection with practical use of the estimation formulas
above, This arises from the fact that the actual pop-
ulation density data is not available; rather figures
are available for, say, the number of persons between
ages 25 and 29 with income between eight and ten thou-

sand dollars. This amounts to the data

10,000 29
p(x,s,t) dx ds

8,000 25

at a fixed value of t .

We have expended a moderate amount of effort to
develop accurate numerical algorithms with which
u(x,s,t) and a(t) d(x) may be determined from aggreg-
ated data of the sort mentioned above., The method
devised uses somewhat delicate application of numerical
spline techniques. This work is also described in

Appendix C,
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Ve Simulation Trial Examples

Simulation runs have been made in order to test
the algorithm for numerical solution of the coupled
system of ordinary and partial differential equations
which constitute the model

Since there is a rather large amount of numerical
data associated with each simulation run, the results
are produced by the simulation program in a visual as
well as numerical format. This is accomplished through
a plotting routine which constructs perspective drawings
of the three dimensional surfaces generated by a sim-
ulation run,

The (steady state) age distribution which results
from a constant birth~rate and an absence of immigration
is illustrated in Figure 2. The age distribution which
results in this case is of course determined solely by
the death-rate,

The wave-like nature of the solutions of the gov-~
erning equations may be clearly observed in a simulation
which creates a rise in the fertility curce, starting
from an initial condition of the steady state illust-
rated in Figure 3. Since the dynamics governing a(t)
and b(t) have not yet been determined, a simulation
has been carried out by introducing b(t) as an exo-

éenous variable; a(t) was determined through the
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dynamic equation
d 2
(EE + 1) a(t) = b(t)

The functions b(t) and a(t) have been determined so

that jg a(t) dt = jg b(t) dt = 0 , so that the fert-

ility curve returns to its original value. This -
produces the response to Figure 4 in the fertility
curve, which corresponds to a "baby boom" of duration
approximately five years. The effect of this rise in
the fertility curve on the age distribution is il-
lustrated in Figure .

The varying total birth-rate may be clearly seen
at the back edge of the figure; the secondary rise in
the birth-rate which occurs as the original "ofESpring"
of the boom pass through the childbearing ages is
plainly visible. It is also easy to see the original
boom passing as a wave through the age structureo.

Both the wave nature of the solutions and the
birth-rate variations which occur due to a non-
uniform age distribution are illustrated in Figure 5 .
This output results from an initial age distribution

which is significantly different from the steady-state

‘distribution. Such a distribution might be viewed as
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the result of variations in fertility and immigration
which have occurred previous to the time interval covered
by the simulation. In this simulation the fertility
curve has been held constant, so that the birth-rate
variations which occur are due to the varying numbgr of

people in the child-bearing age brackets.

VI. Future Work

As of the time of writing of this report, the model
has progressed to the point that the basic structure has
been established, and the crucial numerical problems as-
sociated with the model are well in hand. In particular,
numerical methods have been devised for the simultaneous
integration of the partial differential equations in-
volved in the model core dynamics and the accuracy of
the method has been tested by means of comparison with
explicit special case solutions of the model equations
obtained by analytical means. Also, a considerable
amount of effort has been expended on the problem of
devising efficient numerical procedures for extracting
estimates of the functional coefficients of the partial
differential equations from date available in the form
of a histogram. This algorithm has been tested again

by use of explicit solutions of the governing equations,



and has produced accurate results in the tests.

With these two obstacles removed, the next step
in the development of the model is to begin the process
of modelling the dynamics of the interaction between the
parameters occurring in the core section of the model
and various economic variables., The first step in this
procedure is to apply the estimation algorithms to the
actual historical data in order to determine the time
history of a(t) , b(t) and the variations associated
with the economic mobility u . Once these functions
have been extracted from the data, various approaches to
establishing the interaction can be started.

Thé ﬁroblem of determining the interaction will
first be treated by conventional time-series techniques,
that is, correlation analysis based on the assumption of
a linear dynamical system of finite dimension as the
dynamical intermediary between the economic variables
and those in the model core. More recent methods as-
sociated with input-output analysis of control systems
and identification from operating records will also be
tried if the time-series methods are found unsuitable.
The relative effectiveness of these two techniques will
probably depend on the "actual" location of the stoch-
asticinoise element in the real system, length of the

operating records, and other factors which are difficult
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to predict in advance. Non-linear regression methods and
techniques of non~linear system identification are held
in reserve in case the above methods prove incapable of
modelling the interactions,

After a suitable dynamic model of the interaction
effects has been determined, full scale model sim-
ulations may begin. This requires models to generate
economic variables as mentioned above in Section II, and
it is currently planned to adapt standard economic
models to this purpose., It is also expected that in

this context stochastic as well as deterministic sim-—

ulations will be carried out. This is desirable for two
reasons: first, it is a means of assessing the sen-
sitivity of the overall model; second, it is clearly
more realistic to model economic behaviour to include
random fluctuations if possible.

Finally, we mention that there is a considerable
amount of additional work which should be carried out
in connection with an investigation of this model, In
this area, we mention here only two possibilities which
might be considered. The first is described here only
because of its possible relevance to the problem of

interaction identification discussed above.
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The model as it currently exists has been form-
ulated on a "macroscopic" level, that is, the processes
which transfer people from one level to another as well
as birth and death processes have been modelled as
occurring continuously in time., On the microscopic
level of an individual, these processes obviously occur
at discrete instants of time and are most suitably
modelled as a stochastic process. Such modelling will
involve the determination of the probability of the
occurances of the various "elementary events" which
occur on the microscopic level. 1In such a model, the
various interaction effects which are to be estimated in
the continuous model appear in the form of dependence of
transition probabilities on the current state of the
other variables involved in the model. On this level,
there is then the possibility of estimating these trans-
ition probabilities and their dependence on the other
model variablesy; and thus modelling the interaction
effects directly. Close examination of the resulting
stochastic process model should then shed light on the
form of the interaction in the continuous model form-
ulation of the problem,

A second area where very useful work may be done
is in the area of the construction of highly effecient

numerical methods for the solution of the governing
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equations., In our work so far relatively standard
numerical techniques have been used for numerical integ-
ration of the evolution equations. It may be quite
possible to make use of the special forms of the
equations to construct more efficient methods. Some
preliminary investigation indicates that methods based
on Lie algebraic techniques hold promise in this regard.
It will be especially important to the usefulness of the
final simulation programs that program execution time be
kept as low as possible in order that the required number
of repeated simulations may be carried out at a reason-~

able costo.

Appendix A: Analytical Properties of the
Governing Equations

In this Appendix we report some of the analytical
properties of the partial differential equations govern-—
ing the dynamics of the population distribution and the
fertility curve. The study of these analytical prop-
erties in itself provides considerable insight into the
problems of population dynamics, as well as providing
material essential for the testing of the accuracy of
numerical methods developed for use in the model.

It was mentioned in Section III that the population

distribution equation enjoys an invariance property
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which makes it unnecessary to specify in the model form-
vlation the exact measufe of income represented by the
variable s o

This can be readily demonstrated mathematically as
follows. Suppose that instead of considering the dist-
ribution function p(x,s,t) as a function of the income

scale s , governed by

5 . .
g%(xys,t) = - %%(x,s,t) - %; (n(x,s,t)p(x,8,t))

+ i(x,s,t) - r(x,s,t) p(x,s,t)

we ask for the evolution of the distribution expressed
as a function of the income measure ¢ . Here the new

scale ¢ 1is related to the scale s according to

o = g(s)

where (¢ is a monotone, smooth (non-linear) function
otherwise arbitrary.

By the Chain Rule,

i_. = 'QQ N é_ = |(S) i_
os ds fe]¢) ® J0



so that the evolution equation for p becomes

d 1 ' d -1
3T POoe T(o),t) = - % Plx,0 T (0),t)

- 0t (67 (0)) 2= (uix0 (7 (o)), )"

p(x,m—l(c),t))+ i - P.P(x9@N1(g)9t)

The Jacobian rule shows that the population

density in terms of x , ¢ and t is given by

1 -1
ﬁ(x,o,t) = e p(X,w (U)st) °
o' (g (0))

Rearranging the previous equation to introduce P gives

3 - 22 _ 2. (y ) 4 F - P B

2t 5x " 3o (B(x0,8)p) + T - P

i -1 o™ (o))
with fi(x,0,t) = up(x,0 (0),t) * o' (e (o .
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i(x,0  (0),%)
o (o (c))

i(x,0,t)

F(x,0,6) = v(x,0 T(a),t) .

This identifies the transformation law of the economic
mobility, and shows the invariance of the governing
equation under such a change of scale.

While the coupled system consisting of the pop-
ulation anf fertility evolution equation is a non-
linear one, the non-linear interaction occurs only in
" the calculation of the instantaneous birth-rate (so
long as u , a(t) and b(t) are treated as exogoneous
variables ). Since the birth-~rate enters only as a
boundary condition, it is possible to get useful results
from explicit solutions of the equations.

Both the population and fertility equations fall
into the class of evolution equations governed by first
order partial differential equations. While the
equations in general have variable coefficients, they are
linear in the dependent variable; hence, in principle,
the method of characteristics is applicable,

This observation does not dispose of the problem;

however. A principal reason for carrying out the invest-



igation into the analytical properties of the equations
is to obtain if possible explicit solutions to the
equations. By prlicit solutions,‘we mean solutions
obtained in closed form analytically,

These solutions have been used to test the accurécy
of the numerical methods used both to integrate the evol~
ution equations and to estimate the functional co-
efficients of the equations u(x,s,t) and a(t)ed(x) .
In the absence of explicit solutions, only lengthy (and
expensive) trial runs with varying step sizes can be
employed to attempt to estimate accuracy; with explicit
solutions available, it is far easier to estimate the
step sizes required for a given level of numerical
accuracy.

The above remarks pertain to evaluation of the
integration scheme; in the case of the estimation prob-
lem, the unavailability of explicit solutions would force
one to the use of the integration routine to generate the
data on which to test the estimation algorithm. In the
case of inaccurate results, it then becomes tedious to
determine whether the inaccuracy arises from the est-
imation scheme, or from the numerically generated data.

It is this need for explicit solutions, at least in

particular cases, that has led to the work reported
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below. The method of characteristics in general prod-
uces a solution in implicit form; it is essentially im-
possible to carry out the required function inversions
numerically with enough control on accuracy to make

such implicit solutions useful for our purposes.

Fertility Equation

An explicit solution to the fertility equation

may be obtained by the method of characteristics. For

ol
4
I
I

(a(t)d(x)f) - b(t) £

g

jgb(t)dt
introduction of an integrating factor of e

reduces the problem to

= _g;(a(t)d(x)f) .

(o4 (o
e

Solution of the above by the method of characteristics

gives

= 1 -1 ' ©
f(x,t) = a(x) ﬁ (h (h(x)“f a(s)dx))
) -0

t
© d(h ™ (n(x) - [ a(s)as)) ,
0
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with h(x) - h(,%) = | 1 dx

and p(x) = £(x,0) ;

Population Equation

As may be seen from the above example, explicit
solutions are generally very involved in form. For this
reason, explicit solutions of the population equation
will not be exhibited here. We remark that such sol-
utions may be found; the case in which the death-rate
varies linearly with age is one example of use in con-
nection with the estimation problem for .E . (Results
from this example allow the removal of the death-rate
term from the governing equations by means of an inte-
grating factor, )

The use of explicit solutions has some potential
use beyond evaluation of numerical methods, This is in
the area of decreasing the size and cutting down the
execution time for the simulation of the model. This
may become important in later phases of development of
the model, and will have an effect on the frequency of

use of the completed model.
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The key to such reduction of time expenditure is
the observation that an explicit solution reduces the
problem of evolution over an arbitrary time interval to
a single function evaluation. This is to be contrasted
with the repeated evaluations involved in a numerical
integration. Of course, the full benefit of this
discrepancy is available only if the dinteraction effects
are specified exogenously. In the case of the full
model, however, it seems likely that explicit solutions
could be used together with extrapolation methods to
improve simulation execution time.

This leads naturally to the question of which
classes of coefficient functions tive rise to explicit
solution formulae. Of particular interest is the prob-
lem of explicit solutions to models in which the co-
efficient functions appear in "separable form" (see

Appendix B below), so that the equation has the form

ap - oap _ 2 N
= - - omy (e, (x,8)p | - £(t) r(x,s) p
i=1

Progress in the direction of explicit solutions to
the above equation may be made by recourse to the theory
of Lie Algebras. In particular, if the Lie algebra gen-

erated by the partial differential operators on the
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right side of the above equation is solvable, then

(global) explicit expressions are possible. Other con-
ditions on the Lie algebra lead to (local) results which

may prove useful,

Appendix B:

Numerical Methods for Partial and Ordinary Differential

Equations

In Section III of the report, the population and
fertility are dynamically modelled by a pair of partial

differential equations:

o
T
|

|

- %‘E‘ - g"‘; ((x,s,t)ep) - r(x,s,t)p + i(x,s,t)

o/
o+

o
(2]

l

= - a(t) 2—; (d(x)€) - b(t)f .

(o4
c+

In Section IV, techniques for estimating the parameters

u(x,s,t) , a(t) , d(x) are discussed and there, it

is pointed out that full simulation of the overall model
requires dynamic modelling of these functions using

partial and/or ordinary differential equations.
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Since this appendix deals with aspects of the
actual simulation of the model, it is assumed that ord-
inary differential equations for a(t) and b(t) have
been obtained, estimated values of d(x) and u(x,s,t)
have been obtained by use of the estimation procedures
described elsewhere in this report, and that initial
fertility and population distributions are known:
f(x,s,0) and p(x,s,0) . Values of p(x,s,t) and
f(x,s,t) are required, and these are simulated using
numerical techniques. The techniques have been chosen
in order to be consistent with the conservation law
character of the governing equations, to attain a
reasonable accuracy in the simulated values subject to
restrictions on the size of data groupings which are
expected in currently available data, and to balance
these with economy of computation.

In the numerical simulation which has been carried
out up to the time of writing of this report, the income
level dependence of the population density has been sup-~-
pressed. As well as yielding computational efficiencies
during the development of the model, this procedure has
made the analysis of numerical problems arising in the
modelling considerably easier. The extension of the
numerical methods developed so far to include the income

%ariable s 1is expected to cause no significant dif-
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ficulty, as the problems which arise should parallel

those already encountered.

Numerical Integration of the Fertility Equation

The fertility equation has been transformed by an

integration factor to

%"fz (x,£) = - a(t) %-; (a(x)E(x,t))
where
rtb(t)dt
£f(x,t) = e 'o F(x,t) .

An approximation Fij to f(ih,jk) is obtained using

)

Figran = Fiy 72w 25 %hafia%aaFiag

1 ka . 2
+ =(—1) [a _(d
2 h .1
: ity

)

i+1Fi+1j“diFij

- d g (diFi“di-lFi—lj)]
)

and f(ih, jk) is estimated by Fij using numerical
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integration for the integration factor (see below). This
scheme is almost second order, and has two desirable
properties: For d(x) = d constant, it is numerically
stable provided that the step size ratio is chosen to

satisfy

Also this scheme has the property that it removes a
distortion of the fertility profile when the effect
causing the distortion is removed. This property is ex-—
hibited in Figure 3.

The dynamical equations governing the variables
a(t) and b(t) must of course be integrated simult-
aneously with the partial differential equations. Num-
erical approximations are currently calculated using a .
modified Buler method over time steps of length k .,

While this procedure may be easily replaced by a
more accurate process, this method was selected in view
of the decision to use simple routines initially as an’
aid to algorithmic development, and later to replace
these by more sophisticated routines as dictated by
accuracy and economy in large simulations.

Since dynamic modelling of a(t) and b(t) has

not yet been carried out, the dynamics
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(0+1)% a(t) = b(t)

have been assumed in order to verify the integration

methods, In this case

a(t*) = a(t) + hi(a(t))
a(t+k) = a(t) + 2 [£(alt)) + £(a(t*)]
where I b(t) b(t)
I a(t) a(t)
£ =
a(t) al(t)
al(t){ b(t) - a(t) - 2a+(t)

describes the modified Euler method.

Numerical Integration of the Population Equation

Initially only the age~time dynamics of population

have been considered; hence the equation is

28 (x,6) = - 2 (x,¢) - r(x,¢)p(x,t) .
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To solve this numerically, we approximate p(x,t)

by P(x,t) where
P(x+h,t+h) = (1-r(x,t)) P(x,t) .

The fertility is used to estimate the population birth-

rate

p(o,t+h) = I p(x,t) f(x,t) dx ,
0

and this is approximated numerically by

100 n
P(o,t+h) = % P(x,t) F(x,t+5)
i=1

where F(x,t+§) is obtained from the numerical approx-
imations of the fertility curve.

The low accuracy method for simulating the pop-
ulation is reasonably accurate for that section of the
profile where the death-rates are almost constant. It
is expected that improvements will be possible after
additional work. Improvements in the simple scheme
used for estimating P(o,x+h) would lead only to a

change in scale of values, but not their dynamics.
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In conclusion we point out that certain portions
of the model are particularly sensitive to errors - that
is small errors may lead to very inaccurate simulations
of the dynamics, whereas other portions of the model are
not so sensitive. For this reason, it is possible (and
economically reasonable) to tailor the accuracy of the
methods used to the sensitivity of that part of the

model being simulated.

Appendix C: Numerical Determination of Partial

Differential Equation Coefficients

In Section IV it is shown that integration of the
partial differential equations leads to analytic for-
mulas for the estimation of u(x,s,t) from the pop-
ulation equation, and a(t).d(x) from the fertility
equation. To use these formulas, available data must be
used to estimate the quantities required. In particular,

it is required that histogram data be used

1. +to generate (continuous) density functions,
that

2. partial derivatives of these density functions
be estimated, and that

3. the required integrals be estimated.



The distributions involved appear to be very smooth, and
as a result piecewise approximation by polynomials with
continuous first derivatives is mnecessary; additional
smoothness is desirable. The algorithm employed is des-
cribed below for the problem of estimating the economic
mobility u(x,s,t) » The procedure for estimating the .
term a(t) d(x) in the fertility equation is entirely
similar,

1. A function which might be best described as a
fourth~order spline (having three continuous
derivatives) is determined so that its
integrals over the appropriate intervals are
equal to the given values from the histogram
data.

2. Differentiation of the fourth-order spline
with respect to the x-variable provides an
estimate of %5 3 determination of an ad-
ditional cubic spline in the t-variable fol-
lJowed by a t-differentiation provides an

- op
estimate of 5t °

3. Finally, the required integral is estimated

by integration of the result of 2. above.

In the use of spline methods in approximation

problems, it is necessary to provide additional boundary



conditions beyond the requirement that the spline inter-
polate the appropriate sample points. Unfortunately, in
the present application, use of the so-called "natural
boundary conditions" was found to give particularly poor
estimates near the boundary of the region involved.
Further, it was found that these errors were quite sens-
itive to the values assigned.

After considerable experimentation, it was deter-
mined that adequate results could be obtained through
estimation of the third derivatives near the endpoints
by third order finite differences, and use of this data
to determine the boundary conditions. The scheme for
approximating the distribution function requires the
solution of a system of linear equations including three

different types

n i i-1 .
no n - - = = 2. eeeql100
(a) rl Zri_1+ r. o= 3 5 0 i s ,
rh
i
(b) r, - Zri_l + r o "~ F
n non
5 m - non .
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I"l,' 1’"_' 1 1"."‘ l;
1 1~ 1 s
(e) vy +r, | -15- 5 T g5 = 2P, i =1,...,100

where Pi is the number of persons between ages i and

i+1 , and the boundary conditions are

Here r. is interpreted as the population distribution
at age i years, and it is assumed that values Pi are
available for i = 0,1,...,99 .

To solve this system, a reduction method for a
sparse matrix is used, and the equations are ordered so
that coefficients of moderate size are maintained on the
diagonal. For a test distribution, the error in re-

generating the histogram was less than 1 percent.

Spline Approximation

A standard analysis for cubic spline approximation

represents this function in terms of estimates for the



second derivative at nodes. These are obtained as sol-

utions of the system of equations

S S R T T I |
MM Ly DM o Man by
h,thin i hythy g ~hy theg

to interpolate {ri} with a spacing {hi} (which for
our model is either h or k constant), and boundary

conditions used are

o = h3 (—ro+3r1—3r2}r3)
M -M
n n-1 -1
h B —5 (-r —3+3rn—2-3rn-l+rn)

With this approximation, errors in u(x,s,t) and a(t)
d(x) obtained using the estimation procedures are less
than 1 percent on the interior of the domain. Although
errors are large where P(x,s,t) is small, values of

u(x,s,t) there are not crucial (see Section IV).




Separability of Coefficient Functions

Jt was mentioned in Section IITI that bne aspect of
the structure of the model was that it was formulated in
such a way as to make it possible to model the.feedback
effects on the core section of the model in terms of a
finite number (even a small finite number ) of functions
of time, This was illustrated in Section III in the
hypothesis that the effect of the rest of the world on

the fertility curve could be adequately modelled by

8f - | a(s) %; (d(x)f) - b(t)E .

(o3

In this formulation, the world affects f only through

a(t) and b(t) . However, it was also mentioned that

of
ot

= - %; (a(x,s,t)f) = b(t,s)f

might well represent a more realistic model, and it is
easy to verify that the estimation procedure described
in Section IV and Appendix C above will equally well
produce an estimate of the coefficient function
a(x,s,t) . A problem that arises, then, is that of

distinguishing between a(x,s,t) and a(t).d(x) at the



stage of the output of the estimation algorithm. From
the point of view of subsequent modelling effort, it
might well be hoped that the result had the form
a(t) d(x,s) , or perhaps even a(t)rd(x)rc(s) .

A similar problem occurs in the case of estimation
of n(x,s,t) , where the validity of a representation

of the form

u(x,s,ﬁ) = nl(t) Vl(X,S) +.::¥ nN(t) vN(x;s)' s

with N a "reasonably small'" integer is at least a
practical requirement for the success of any attempt to
model the interaction affects.

Given the implicit shoothness assumptions on the
coefficient functions of the model and the fact that the
ranges of the x , s , and t variables involved
are finite, there is no problem in applying standard
approximation theorems to deduce that |y may be closely
approximated by a function of the above form. (A
similar remark obviously applies to a(x,s,t)). For
convenience, we refer to the above form as a "separable
representation for p ",

Since we have shown above that separable repres-

entations exist, the only problems which remain are those
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of the number N of terms to be expected in the repres-
entation, and the numerical determination of N and
ni(t) from the available data.

Consideration of the effects that the t wvar-
iation in p (and a ) is intended to model, and the
probable variability of these effects across age and
income brackets suggests strongly that N is small. It
would be surprising if N were greater than 3 in the
case of the estimation of u(x,s,t) , and it appears
entirel& possible that a single term will suffice in the
case of the estimation of a(x,s,t) .

It remains to show the feasibility of determining
separability of the representation numerically. To
distinguish a separable 1 from a non-separable one we
proceed as follows:

A smooth function u(x,s,t) , defined for
s€s , t€eT , x€X , with 8 , T , X
compact subsets of R! defines the kernel of a compact
linear operator L mapping from LZ(XXS) - LZ(T) ac-

cording to the formula

LE(t) = f I u(s,s,t) f(x,s) dxds .
XXS



Now a separable -H is distinguished by the fact
that the associated L is an operator of finite dimen-
sional range, and this observation essentially solves the
problem.

When u(s,s,t) has been estimated numerically, p
is not obtained as a continuous function. Whaf is ob-

tained in fact is a set of sample values

~ ~

{u(xi,sj,tk)} , with x. € X , s €s , 6, €T .

~ ~ ~

Here X , S , T are each Euclidean space of dimen-
sion equal to the number of sample points in each of the
independent variables. The discrete analog of the def-
inition of L is to use the above three dimensional
array to define ?,%?EEE? mapping (matrix)

~

L

s (XX .
Rdlm(’.S) o Rd:l.m T

The problem of finding the ni(t) is now equiv-

alent to determining the range space of L , and N
is simply the rank of L .
The problem is simplified still further by invoking

the fact that

~
3*

Range L = Range L L s

~
3%

where L is the adjoint (actually transpose in this

case) of the matrix L ., This reduces the problem to
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the entirely standard one of an eigenvector/eigenvalue

analysis of a szmmetric matrix; and hence effectively

solves it.

Appendix D Computer Prggram'Listing

In this appendix we list the computer programs
developed up to the time of this report for use with
the model. Included below are both the programs used
for numerical integration of the governing evolution
equations in simulation runs; and the programs designed
to estimate model coefficients from the available data.

The programs listed here are written in FORTRAN.
Given the relatively large arrays of data which must be
handled in connection with this model, it is clear that
FORTRAN is not the most convenient langgage in which to
program the numerical algorithms required, With a view
to future uses of the model, however, such factors as
the wide availability of FORTRAN compilers, the exist-
ence of the I.B.M. CSMP (Continuous System Modelling
Package) which is FORTRAN compatible, and of FORTRAN
packages for the Calcomp plotter used to produce output.

data plots make FORTRAN a reasonable language choice.



Program I

Simulation of population and fertility propagation
over time. Initial age-specific profiles of populatién,
fertility and mortality, and dynamics for a(t) and
d(x) are required. Here, the values for population
are taken as the number of live individuals at age x
in the population as given by the Commissioner's 1941
Standard Ordinary Mortality Table., Values for mort-
ality are also taken from this table.

Values for the fertility are given by the‘
artificial distribution.

~'(X—24-5)2
- s
f(x,0) =Ce

where the constant C is chosen so that

100
I £(x,0) p(x,0) dx = p¥o) .
0 .

Values of d(x) are assumed from (the artificial

distribution)

_(x1)”
(1;é"600 ~)

(x=34. 5)2
l+e

d(x) =

- 60 -



The parameter a(t) is determined by numerical integ-

ration of the differential equation

(041) a(t) = b(t)
where
b(t) = - sin(e~lt_5l—e-lt—1ol) 0< t< 15
15
= 0 t > 15
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W N == OO

14
15
16
17
18

19

20
21

22

23

24

25
26
27
28

29
30

31
32
33
34

35
36
37
38
39
40
41

DNOCOUTPWN =

%408

[@Xe]

OO0

OO0 O

OO0 O,

101

103

107
97

100

104

99

ACCT-NUMy tVERNERY s TIME =60

REAL X(100)

TC=1n0

IF=n

DO 9 IR=1.10

CALL DATA(Xs IRy ICHIF)
CONT INUE

STOP

END

SUBRNUTINE DATA (XsTRsICsIF)

REAL D(lOO)oF(lOO),P(lOO)ox(100)9R(100)’US(IOO)’DS(100)9F1(100)
REAL HHsKKsSUMeIV (10) 9DLY (10)

REAL PLTPERsPRTPERsI1

INTEAER YRS AGESYOUNG s NN

35 45 35 38 36 30 35 5 36 38 35 31 3 48 36 55 36 3F 58 4 35 3 45 E 45 4 45 38 38 35 30 45 8 3E 40 3F $E 48 JH 4E 3E 35 3H 3 38 3 44 3 $E3E 3E 3 4 3 3E 3 3 JE 30 JEE IR

SET TFORM=0 IF YOU WANT PLOT, =1 IF YOU WANT PRINT
***%******************-n%****%*%%**%**%%%*******************#****
TFOR =1 - "

PL=17=5

PR=P

TINT=1%~u

ICM1-TC=1

IF (IR«6GT.1) GO TO 31 _
RRIRRPPRRRRRARRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
HH I< AGE STERP = KK IS TIME STEP

READ(S4101) HHyKK

FORMAT(2F16.8)

PLTPrR IS PLOT INTERVAL =~ PRTPER IS PRINT INTERVAL

READ(54101) PLTPERSPRTPER

NDE TS THE NUMBER OF FIKST ORDER ODE'S AFTER TRANSFORMATION

IF NDOE > 10 CHANGE REAL DIMENSION IN DATA AND S$SSTEP

NN I= THE NUMBER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES
READ (S ]103) NDEs NN

FORMAT(214)

PUT TNITIAL VALUES OF ODES ONE TO A CARD

DO 97 T=1MDE

FEAD(S4107) DLY (D)

FORMAT (F10e4)

CONTINUE
RRRRIARRRKRRIERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
PR=PP+KK
T=0.0
R R R IR RO EN R R L HHH#%%w**%%%%**%#**%-N-%%*#%sl-'Ll-************************

READ DEATH RATES
READ POPULATION DENSITY
L T R R R R R R R R R R R iR XV R R R R TR R R R TRt R Rt R E- i -1 - 2-F- - 2-F-2-2-2-2-2.2-L-F:X-2-3- L3
RRRRIRRRARRKRIARRRRRRRRRRRRIRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
READ (54100) (R(I)eI=1+1C) '
FOR4-T(5F10+6430X)
READ(Re1064) (P(1)eI=1s1C)
FORM-T(10F8,.,0)
RRRRRRRRRRRKRRRIRRRRRRERRIRKRRRRRRR]IRKRRRRRRRRRRRRRRRRRRRRRRRRRRR
SUM=n. 0
NO Qg I=],IC
SUM=SUM+P ()
CONT TNUE
PO 9a I=]l+IC

P(I)=P(I)%22000000./SUmM

X(1)=P(I)
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42

43
44
45
46
47
48
49
50
51
5¢
53

54
55
56
57
58
59
60
61
62
63
64
65

a7
68
69
70
71
72
73
T4
75
76
77
78

79
80
81

82
83
84
8%
86

87

88
89
90
91

D

OO0

98

109
102
110

111
61

70

14

15

31

106

112
62

33

CONT TNUE
PPPPPPPPPPPPPPPPRPIPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
IF(IFORMNF 1) GOTO 61

IRPG=",

WRIT+ (6s109)

FORMAT (Y19 YPORPULATION FOR AGES 1 TO 20 1S")

WRIT™ (64102) (P(1)sI=1e20)

FORMAT(5F10.0/)

WRIT (64110)

FOR“aT(* 15 'AT BEGINNING OF YEAR Os ANDY)
WRIT+ (65111)

FORMAT(Y Vg lome e e e r e e e ————— 1)

CONT TNUE

PPPPRPPPPPPPPPPPPPPPPRPRPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPP
DO 7~ I=141C
I1=FLOAT(I)
D) =(1=EXC(=11%#11/7600e))/(1+((11-25.5)%#%#2)/4.)
CONTINUE
YOuUrn=0
F1(I)=FXP(=(,125%HH¥* (YOUNR=24,5) ) ##2)
SUM=F1 (1) #*P (1)
NO 1o I=2.1C
F1OI)zEXp (= (.125%HH% (I+YOUNG=25.5) ) #t#2)
SUM=SUM+F 1 (I} #P (1)
DS (1) =a5% (D) +D(I-1))
COMT INUE
DUG= 5¥(3.,%¥D(1)~D(2))
DTS=,.5%(3.%¥D(IC)=-D(IC-1))
SUM=D (1) /SUM
NO 1= I=141C
F1(I)=F1(I)*SUM
CONTINUE
PA=KK/HH
PA1=O o0
P2=0.0
FA=1]
B0 Tn 33
CONT tNUE
PR=P +KK
3 36 38 3 3p 3 30 95 3b 26 3k 98 598 38 38 38 5E 7 3 38 38 S5 0 4 34 35 3F 38 34 3 3 3% 28 34 38 3b 3 36 36 3k 3% 3F 4 3 4F 3F 3k 3 3 3 35 3 3¢ 38 3 3b 3 3 3 3k 3

UPDATE COEFFICIENTS OF_FERTILITY EQUATION
3448 36 3 3t 36 35 35 35 30 38 3F 36 3h 34 38 2 3F 35 35 3% 3E 33 36 3¢ 36 3 3 3¢ 3 3 3E 3 3E 3E 35 3 3F 3 3 3 3 3 3E 3 3 3 3 3F 3 3F 3 3 3R 3¢ 3k 3
PA1=nlY (2) '
P2=D1 Y (2)3*DLY (2) #PA
FA=ExP (=pLY (4))
PPRPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
IF (PRTPER.GT4PR4ORIFORMeNES1) GOTO 62
WRIT(64106) T
FORMAT (' AT TIMEVY4F6.2)
WRITF (6s112) DLY (1)
FORMAT (t0ts'DELAY IN PEAK OF FERTILITY CURVE IS '9F9.6)
CONT tNUE
PPPPPPPPPRPRPPRPPPRPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
L N R R R R I R R sy Rt R T T L R R R R R R TR I R R R IR R E- P L FURLE . FIRTY BRIl R P R L ORIE R

MULTIPLY FERTILITY BY INTEGRATING FACTOR
3k 35 30 34 3L 48 35 4 38 36 3k 2k SF 36 36 31 36 20 35 38 3F 3 48 38 35 35 30 3F 38 36 35 38 3 2 34 2% 36 38 3 38 36 3F 3 3F 3F 3F 30 3 35 3 3F 3 30 38 3 3k IE b 3R iH it
CONT rNUE
SUHI:() o)
NO 42 I=141C
SUM=SUM+F 1 (1)
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92 F(I)=FA®F1(])

93 42 CONTINUE
C PPPPPPPPPPPPRPPRPPPPPRPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
94 TF (PRTPER«GT«PR«OR«IFORMNEL1) GOTO 63
85 WRIT~(64113) SUM )
96 113 FORMAT (Y v, INTEGRAL OF NORMALIZED FERTILITY IS 14F9.6)
97 WRIT-(6s114) FA
98 114 FORMAT (Y 1ot FRACTION OF INITIAL FERTILITY IS 1
29F9,.4)
99 WRIT-(6+115)
100 115 FORMAT('0'9'WALLUES OF FERTILITY CURVE FOR AGES 21 TOo 30 ARE")
101 WRIT=(64108) (F(I)s I=21s30)
102 108 FORMAT(SFID.6/)

103 63 CONT vNUE

C PPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
C *%*******%*%%******%*********%***************************%******
C INCREMENT POPULLATION BY ONE YEAR '
C 38 38 56 36 35 38 38 3F 3¢ 38 F 38 3b 34 25 2 3 30 3k 3b 31 3 3 33 38 25 35 3 34 3 3 3k 34 3E 3 3 3 34 3H3E 38 38 A 3F 3F 3 3 34 38 38 3F 36 38 3t 3F 8 3 3 e 3k 4 3
104 TINT=TINT+KK*p . ' ’
105 IF (HH.GT.TINT) GOTO 45
106 SUM=n,
107 SUM1-Q.
108 DO 44 I=1sICH]
109 J=1C-1
110 SUM=SUM+P (J+1) #F (J+1)
111 P(J+1)=P(J)#(1=R(J))
112 SUM1=SUM] +P (J+1)
113 X(J+1)=P (J+1)
114 44 CONT TNUE
115 SUM=GUM+P (1) 3#F (1)
116 P(1)=SUM
117 X(1)=P(1)
118 SUM1=SUM1+P (1)
119 TINT==1F =4
120 45 CONT TNUE
C PPPPDPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
121 IF (PRTPFRGT PR.OR«IFORM NEL1) GOTO 64
122 WRIT=(69116) SUMY
123 116 FORMAT('0v4'TOTAL POPULATION IS t4F10.0)
124 DR=+1F~H
125 WRTIT(69117)
126 117 FOQMAT('0'9'******************************************************
I***%**%***%**********%*%l)
127 64 CONT rNUE :
C PPPPPPPPRPPPPPPPPPRPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPP
C 35 3 3b 38 2% 30 38 3F 3t 3% 2 4 I 26 36 I 36 3t 3 20 3k 38 38 31 Ik b 3 3k 34 35 3 3k 38 3k 3k 3k 38 3 3k 3834 30 3k 2k 38 3F 35 3 3 3 38 38 3F 38 38 34 38 48 3¢ 3¢ 3E 3 3F
C INCREMENT FERTILITY BY ONE YEAR
C EIETX: R BT R R R R R R IR R R iR IR IR R IR R RIRIE PIRIL IR R L ERILiE-2 2 -2-2-2-2-F-2-2-2-2- R -2IL-2-2-1 L- X X 8-2 "4
128 DO 34 I=141C
129 IF (1E=20.GT.F1(I)) F1(I)=0.0
130 US(D) =0 (D) *F1 (1)
131 34 CONTINUE
132 uE=2,#*UsS (1) -Us(2)
133 UT=2_#US(IC)-US(IC=1)
134 F1(Ir)=F1(IC) = S#PA* ((PA1# (UT=US(IC=1)))=-P2#(DTS#UT+DS(IC) #US
2(IC=1)=(DTS+DS(IC))*US(IC)))
135 F1(1)=F1(1)=.5#PA*((PAL#*(US(2)=UQ))=-P2#(D5(2)%*US(2)+DQ5#*UQ-(DS
2(2)+20Q5)#US (1))
136 NO 35 I=p,ICM)
137 FLOI)=F1(I)=oS#PA¥ ((PAL#(US(I+1)=US(I~-1)))=P2#(DS(I+1)#US
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138

139
140
T141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161

162

163
164
165
166
167
16R
169
170
171
172
173
174
175

176
177
178
179
180
181
182

o0

DOOOOO0OD

35

36

121
79

118
119

120
65

28

29

11

2(I+1)+DS (D) #US(I=-1)~(D5(I+1) +DS5(1))#US(1)))
CONTINUE
383438 38 20 48 38 3 30 38 35 304 43 2040 30340 3030 40 46 30 30 38 35 34 30 303 3830 04 35 30 40 45 3030 36 335 36 36 38 35 20 6 24 46 35 46 30 38 45 4 26 35 3% 36 4

SOLVE ODES FOR DELAY PARAMETERS AND INCREMENT TIME

3 3630 34 36 34 34 3428 35 38 35 328 30 30 30 3F 45 30 36 30 30 30 36 30 34 38 35 3 3037 3 3 35 30 31 36 31 36 46 20 3 38 34 2 36 24 25 20 26 26 35 46 2630 236 35 45 3 34 36 3¢
Do 34 IZI’NDE

IV(I)=DLyYy (1)

CONT INUE
CALL SRUNC(IVeDLY 9 ToKKeNDE9NN)
PL=PL +KK
IF (PLTPFR.GTLPL) GOTO 31
PPPPDPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
IF (TFORMJNFE 1) GOTO 65
IPG=1PG+]
IF (1PG«NF.2) GOTO 79
IPG=n
WRIT=(64121)
FORMAT (1)
CONT TNUE
WRIT=(64+118)
FORMAT (' "4 YvPOPULATION FOR AGES 1 TO 20 1ISt')

WRITF (6+102) (P(I)s I=1420)
WRIT=-(64119) IR
FORMAT (* v9'AT BEGINNING OF YEAR'9IBs "4 AND?)
WRIT - (Ae120)
FORMAT(Y Ve lrmmcmc i rcrn e crac e c e a e —— -1)
CONT1NUE
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
RETURM
END

SUBRNUTINE $RUN(IVeZeTokKeNDE ¢NN)
ﬁ**%*********%************************************************%*
THIS SUBROUTINE GIVES A SIMULTANEOUS SIMULATION OF VALUES
Z=(IA(T) s A(T) AV (T) 9 IB(T) oB(T)) AT T+H FROM INITIAL VALUES 1V
OF T+4E SAME VARIABLES AT T. FOR EACH DIFFERENT SIMULATION THE
SURRNUTINE SDE MUST BE REWRITTEN TO EVALUATE THE DERIVATIVES
D(I) AS A FUNCTION OF TIME T AND SOLUTION VALUES Y(I)
3436 33k 3p 38 3 38 38 363t 4b 35 38 35 3 34 36 36 36 330 3 38 38 31 36 38 36 38 30 3 36 2 38 3 30 2 34 36 36 34 35 38 34 3E 34 34 35 35 35 36 36 3 38 1 35 36 36 2 45 W 3¢
REAL TV(NDE) 37 (NDE) s ToT2sKKsK1 '
K1=KK/FLOAT (NN)
T2=T
T=T+KK
CONT rNUE
CALL $STED(IVysZsT29K1 eNDE)
T2=Tr+K1
DO 2a T=1,NNE

Iv(I)=72(1)

CONTINUE
IF (T«GT.Tp+K1/2) GOTO 28
RFTURN
FND

SUBROUTINE $STEP(IVsZeTeKKNDE)
REAL IVINDE) 9Z(NDE) Z1(10)4(10)4D1(10) sKK
CALL SDEA(T+IVeNDEsD)
DO 11 I=1.MDE
Z1(I)=IV(I)+KK#D(])
CONT INUE
TT=T+KK



183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

12

78

SENTRY

CALL SDE(TTsZ1leNDEsD1)

NO 1> T=14NDE
Z(D)=IV(I)+ ,S¥KK#¥(D(T)+D1 (1))
CONTINUE

RETURN

END

SUBRNUTINE $SDE(TeYsNDESD)
REAL Y (NDE) +D (NDE) s KK
N(1)=Y(2)

D(2) =Y (3)

Tl=0,

IF (T«GT«15.) GOTO 78
TT1=4ABS(T=-5.)
TT2=aRS(T=10.)
T1=(=SIN(EXP(=TT1)=EXP(=TTP)))/15.
CONTTNUE

ND(3) 215.#T1=Y(2)=2.%Y (3)

N4 =T1
N(5)=0.
RETURN
END
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~ POPULATION FOR AGES 1 TO 20 IS _
350170, 342263, 340289, 338880 337734,

336725, 335795. 334919, 334091. 333320.
332613, 331958, 331324, 330688 330033,
329350. 328642, 327922 327184, 326431 .

N

AT BEGINNING OF YEA® 0s AND
AT TIME 0,75
DELAY IN PEAN OF FE@TILITY CURVE IS =~0.000373

INTEGRAL OF NORMALIZEND FERTILITY IS 1.089507
FRACTION OF INITIAL FERTILITY IS 1.000501

VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
0,056025 0.063485 (0069726 04074224 0.076578

0.076574 0.074216 0.069721 0.063482 0.056023

TOTAL POPULATION IS 22000110

LR RiR R iR R R E R R X LR R R R RN R R RIL R R R R R EPEL - R R R ST R RORRIETE- R RTRTY-X-F- R0 2- 8- %- LU- X FTETE. F- 8- PR FIE-F E- P 2 E-¥.3
~POPULATION FOR aGES 1 TO 20 IS )
- 350215. 342263 340289, 338880 337734,

336724, 335795, 334919, 334091, 333320,

332613. 331958,  331324.  330688.  330033.

329350.  328642.  327922. 327184.  326431.
AT BEGINNING OF YEA“ 19 AND

€3 05 Crp GTy ST e O W e GUR MOb may WEN R GAY gup Mae TS MO L, e M e MM EEN ERD s me G Gun W

AT TIME 1.75

~

DELAY IN PEAK OF FESTILITY CURVE IS =-0.004762
INTEGRAL OF NORMALIZEN FERTILITY IS 1.089505
FRACTION OF INITIAL FERTILITY IS 1.002134

VALUES OF FERTILITY CurRvE FOR AGES 21 TO 30 ARE
00056127 04063609 0069877 0074401 (076738

0076675 0074285 04069795 0.063563 (0056101

TOTAL POPULATION IS 22000510

T30 3h 4 28 38 3 3B 38 2E 38 38 303 36 48 3 41 35 4F 30 36 38 3E 35 34 38 3% 4130 41 46 38 30 38 3F 41 36 34 36 30 35 35 40 40 35 3E 3E 3E 41 42 35 36 30 35 36 30 3530 30 3 3R I aE E3h 3E3E IR iR Sk
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Nt

S~

A

pg

St

~r

POPULATION FOR AGES

350562.
336725,
. 332613.

329350,

"AT BEGINNING OF YEA®

" 342307,
335795,
331958.

328642,

€9 53 €5 @ S5 X BD - T €3 O G g S s S WD S o

AT TIME

DELAY IN PEAK OF FE-“TILITY CURVE IS

INTEGRAL OF NORMALIZED FERTILITY IS
FRACTION OF INITIAL FERTILITY IS

VALUES OF
0056417

0076924

TOTAL POP

348 3k 8 BE 38 3% 3140 30 38 38 38 3 3 Q4 35 30 30 35 38 3F 38 30 38 330 3E 34 34 3 3 34 34 3 30 36 3E 30 3 3 33 343 3 3 3E 30 38 38 38 38 3 34 36 336 3030 31 36 3 38 38 34 24 35 36 3 34 3 33 344 3¢

FERTILITY
0063967

0074418

ULATION IS

POPULATION FOR AGES

351507,
336724,
332613,
. 329350,

AT BEGINNING OF YEA®

342646
335795,
331958.

328642,

_ AT TIME

DELAY IN PEAK OF FEPTILITY CURVE IS

375

INTEGRAL OF NORMALIZED FERTILITY IS
FRACTION OF INITIAL FERTILITY IS

VALUES OF
0057215

0077577

TOTAL POPULATION

4k 3t 3638 3 35 3F 34 34 36 3F 30 23 38 3E 38 3% 35 2 38 3E 3E 38 3E 38 34 3048 34 38 38 3030 48 31 3E 48 30 38 38 3F b 38 35 3F 3 34 36 34 30 2 36 36 3E 30 38 34 3 34 34 34 38 34 36 38 3 34 3 I 33 S 34 3 2

FERTILITY
0064960

0074741

IS

1 TO 20 IS
340289, 338880. 337734,
334919, 334092, 333320,
331324, 330688. 330033,
327922. 327184%. 326431,
2 e AND
~0.020237
1,089506
CURvE FOR AGES 21 TO 30 ARE
0070328 0074940 0077210
06069958 (04063759 0.056301
22001840,
1 TO 206 IS
340332, 338880 337734,
334919, 334091, 333320.
331324, 330687. 330033,
327922, 327184, 326432,
34 AND
~“0.064413
1,089506
CURVE FOR AGES 21 TO 30 ARE
0071590 0076457 (0.078518
06070374 (0064276 (0.056834
22005710
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POPULATION FOR AGES 1 TO 20 IS
377589, 352918, 344093, 340174 338112,
336768, 335795, 334919, 334091, 333320,
332613, 331958. 331324, 330688 330033,
329350, 328641 . 327922, 327184, 326432
AT BEGINNING OF YEA®: 69 AND
AT TIME 6,75
DELAY IN PEAK OF FERTILITY CURVE IS =0.909306
INTEGRAL OF NORMALTZED FERTILITY IS 1.,089499
FRACTION OF INMITIAL FERTILITY IS 1.118620
" VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
0.065618 0076765 (0.088974 0.098260 0.092387
0.076925 0069761 0.068678 0.065408 0.059325
" TOTAL POPULATION IS 22082090

%&%%%%%******************%%***ﬂ**%*******%*****%****************%******%*%%###

POPULATION FOR AGES 1 TO 20 | )
389333, 369063, 3508231 . 342668, 339024
337101, 335838, 334919, 334091, 333320
332613, 331958, 331324, 330688, 330033,
. 329350 328642, 327922. 327184, 326432.
AT BEGINNING OF yvEA: 79 AND
AT TIME  7.7S
DELAY IN PEAK OF FECTILITY CURVE IS =-1.277342
INTEGRAL OF NORMALIZED FERTILITY IS 1,089500
FRACTION OF INnITIaL FERTILITY IS 1.121859
VALUES DF FERTILITY CURVF FOR AGES 21 To 30 ARE
0067241 0079908 (0.094899 (.105441 0093917
0072075 0064586 (0.065381 0.063390 0.058125
TOTAL POPULATION IS 22123950,

3b 45 36 34 35 2 34 3¢ 36 38 36 36 38 38 38 3¢ 35 3 30 36 3t 38 36 3k 36 3E A 35 38 36 3t 3% 3% 36 3F 38 38 I 35 36 38 98 30 34 4F 3 3 98 36 36 38 3¢ 35 3¢ 36 3F 3¢ 34 3t 3t 3t 34 3k 3t 34 34 38 3k 38 34 3h 3H 3L 33
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POPULATION FOR AGES 1 TO 20 IS
393105, 380542, 366934, 349429, 341510.

338010, 336170,  334962.  334091.  333320.

332613. 331958,  331324.  330688.  330033.

329350,  328642.  327922. 327184 326437
AT BEGIVNING OF YEA® 29 AND
AT TIWE 8075
DELAY IN PEAK OF FEOSTILITY CURVE IS ~1.496449

INTEGRAL OF NORM4LIZED FERTILITY IS 1.089500
FRACTION OF INITIAL FERTILITY IS 1.111391

VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
0067541 00081096 0.09775¢ 0,108647 0.093259

0067985 00060862 04062787 0.061503 0.056761

TOTAL POPULATION IS 22164480,
%%*%**%*%*****%%&%%%%****%%*%**%*%******%********%%%*********%**********%%%ﬁ%*
POPULATION FOR AGES 1 TO 20 IS

392049, 384229, 378346, 365415, 348248.

340489, 337077, 335293, 334134, 333320,

332613, 331958, 331324, 330687, 330033.

329350, 328642, 327922, 327184, 326431

T AT BEGINNING OF YEA® Y9 AND

DELAY IN PEAK OF FERTILITY CURVE IS =~1.532525
INTEGRAL OF NORMALIZED FERTILITY IS 1.,089499
FRACTION OF INITIAL FERTILITY IS 1.078118

VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE
0065753 00079162 0095780 00106416 0090456

0065073 0.058294 0.060436 0059348 (.054862

TOTAL POPULATION IS 22197900«

A 3% 48 38 38 3t 38 38 4k 4b 38 28 38 30 38 45 35 302 30 46 28 3038 38 38 38 30 38 30 35 38 30 3L 38 36 45 35 38 38 36 45 3 3834 38 36 3636 3 35 38 38 36 45 36 353 35 46 35 48 3 38 34 34 1626 3 34 3 26 35 45 36 48 38 48
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POPULATION FOR AGES 1 TO 20 IS
385079, 383196, 382012, 376780, 364179,

347206, 339549, 336197, 334465, 333362,
332613, 331958. 331324, 330688 330033,

329350, 328642, 327922, 327184, 326431.

S~

AT BEGINNING OF YEAw 105 AND
CORE USAGE DB IECT CODE= 9856 BYTESs ARRAY AREA= 3400 BYTES.TOTAL AREA
T DIAGNOSTICS NMUMBER OF ERRORS= 0s NUMBER OF WARNINGS= 0s NUMBEF
_ COMPILE TIME= 3,98 SECsEXECUTION TIME= 14.47 SECs QUEEN'S WATFOR VERSIO!
COST FOR THIS PROGRAM IS % 1o42 RUN IN HSC MAR 19, 1974

e



The above output simulates population and fert-
ility over ten years with "Baby boom" dynamics - wide
peak of intermediate height. See Figures 3 and 4 in

Section V.

Program Ib

This is a copy of the program which was used to

plot the profile in Figure 6,
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~ $J0B

STF55952s YVERWER?

/7 EXEC SYMVYUsTIME=x
//COMP.SYSIN DD #

p

109
102

o110

SUBROUTINE DATA(XsIRsICoIF)

REAL D(Y100)sF (100)9sP(100)9X(100)95R(100)sUS(100)9D5(100)sF1(100)
REAL HHsKKoSUMeIV (10} sDLY(10)

REAL PLTPER2PRTPERsI1

INTEGER YRS sAGES»YOUNG NN
ﬁ»%%***%****%%4&4&-***%*%%%%%***%***%H(-*%-N-')H!-***-N-*%*******%%***%**%***
SET IFORM=0 IF YOU WANT PLOT, =] IF YOU WANT PRINT
%*%%ﬂ»*%***#%**%******%%&%%&{9%%&4&%1?%*%%1—**%Ht*%**%*************%#%**%%
IFORM=1 s N \ AT
IFORM=0

PL=1E=5

PR=P|.

TINT=1FE=4

ICM1=IC-1

IF (IR.GT.1) GO TO 31
RRRRRRRRRRRRRERRKRRRRRRRRRRRRRRRARRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
HH IS AGE STEP = KK IS TIME STEP

READ(59101) HHeKK

FORMAT (2F10.6)

PLTPER IS PLOT INTERVAL <= PRTPER IS PRINT INTERVAL

READ(55101) Py TPERsPRTPER

NDE IS THE NUMBER OF FIRST ORDER ODE'S AFTER TRANSFORMATION

IF NDE > 10 CHANGE REAL DIMENSION IN DATA AND S$STEP

NN IS THE NUMRER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES
READ(59103) NNEs NN

FORMAT (214)

PUT INITIAL VALUES OF ODES ONF TO A CARD

DO 97 I=1.NDE

READ(S91n7) NLY(I)

FORMAT (F10e4)

CONTINUE
RRRRRRRRRRRRRRRRRKRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
PR=PR+KK
Tzo o)
*%i**%*if%**%**%**%%**%**%ﬂ-*****#*********************************

READ DEATH RATES
2EAD POPULATION DENSITY = OBTAINED FROM SPLINE
****#*****%****%*****%*#*%***-H»********%*************%*********%%
RRRRRRRRRRRRRRRRRRARRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
READ(S5:100) (R(I)4I=1,1IC)
FORMAT(5F10.6,30X)
READ(50104) (2(1)sIx=1lsIC)
FORMAT(10F8.0)
RRRRRRRRRRRRRRRRRRIRKRRRRRRRRRRRRRRRRRRRRRRRRRRARRRRRRRRRRRRRRRRR
SUM=0,0
DO 99 I=1,IC
SUM=SUM+P (1)
CONTINUE
DO 98 I=151IC

P(I)=P(I)#22000000./SUM
X(I) =P (1)

CONTINUE
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
IF (IFORMsNF.1) GOTO 61

1PG=0

WRITF(69109)

FORMAT ("1 °POPULATION FOR AGES 1 TO 20 IS")

WRITE (69102) (P(1)sl=1920)

FORMAT(5F10.0/)

WRTTE(69110)

FORMAT (" °49AT BEGINNING OF YEAR 0s ANDY)

— ae -



Nt

N

-

C

SOO0O0

T

D N

61

70

14

15

31

106

112
62

33

113

114

1156

108
63

[RVIS NN R - ERE - ——— .7

CONTINUF
PPPPPPPPPPPPPPPRPPPPPPPPPRPPPPPRPRPPPPRPPPPPPLPPPPPPPPPPPPPPPPPPPPPPP
DO 70 I=15IC
I1=FLOAT (1)
DAI)=(1=EXP(=11%11/6006))/7 {1+ ((11=25.5)%4#2) /4,)
CONT INUE
YOUNG=0
FL(1)2EXP (=(,125%HH* (YOUNG=24,5) ) ##2)
SUM=F1(1)#P (1)
DO 14 I=241C
FI1CI)=EX0{=(a129HH# (T+YOQUNG=25.5) ) ##2)
SUM=SUM+= Y (1) #P (1)
NS(I)=a52(D(I)+D(T1=1))
CONY TNUFE
DAS=,5%*(3,%D (1) =D(2))
DTS=.5# (3, #D(TC)=D(TIC=1))
SUM=P (1) /SUM
DD 15 I=1.IC
F1CI)=F1(I)*<sUM
CONTINUE
PA=KK/HH
PAI=0.0
P2=0.0
Fa=1
GO TO 33
CONT INUE
PR=PR+KK
45 35 95 34 48 36 35 36 3 26 30 35 35 3 3648 3% 35 48 3 3536 35 5620 AF 4 b 36 36 46 35 36 26 31 35 1 3636 3 36 4 3 36 36 3435 16 28 36 24 36 16 25 35 26 36 36 3648 36 38 45 ¢

UPDATE CUEFFICIENTS OF FERTILITY EQUATION
It 36 3¢ 38 38 304 38 3F 3F 36 30 3F 4 I 38 3F 36 35 38 3F 8 3 Se 38 38 36 3¢ 34 3 3E3F 3E 38 3E 35 3 38 36 2 3 3E 36 30 A 35 38 3 36 35 30 35 264 36 I 2 3 3 35 38 3
PA1=DLY (2)
P2=DLY(2)#DLY (2)#Pa
FA=EXP (=DLY (4))
PPPPPPPPPPPPPPPPPPPDPPPPPPDPPDPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
IF (PRTPER.GT,PR«ORIFORMsNE 1) GOTO 62
WRITE (69106) T
FORMAT (¥ AT TIME',F6.2)
WRTTE(As112) LY(1)
FORMAT (000 stDFLAY IN PEAK OF FERTILITY CURVE IS 14F9.6)
CONT INUF
PPPPPPPPPPPPROPPPPOPRPRPRPPPPPPPEPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPP
#%*%%%%*****%*i*4***ﬂﬂ**%%%%%*%%%%%%*%*%#*%*%*%*****************

MULTIPLY FERTILITY BY INTEGRATING FACTOR
3t 3 35 236 36 303 36 36 26 38 35 46 30 45 95 30 36 20 36 25 35 36 48 35 26 30 36 35 38 35 35 35 235 28 38 4 20 36 36 35 45 35 36 3 35 30 36 30 36 18 35 36 36 36 40 36 3 45 6 38 2 44 3¢
CONT INUE
SuUM=0,0
DO 42 I=1,1C

SUM=SyM+=-1 (1)

F(l)=Fasry (1)

CONT INUE
PPPPPPPPPPPRPRPPPPPPRPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
IF (PRTPER.GT,PR.OR.IFORMNES1) GOTO 63
WRITE(62113) ~UM

FORMAT (v 040 INTEGRAL OF NORMALIZED FERTILITY IS 19FQe6)
WRITE(Hella) #A

FORMAT (v ¢4 FRACTION OF INITIAL FERTILITY IS

29F9a6)

WRTTE(69115)

FORMAT (v vaALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE?')
WRITE (As108) (F (1), 1=21530)

FORMAT(SF1N.&7)

CONTINUE

PPPPPPPDPPPPPDPPPPPDrPPPDPPPPDHPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
%***********%5******%***%**w*%k*w**%*****%*%**************%*****

- s e - . oA B R T



= TINT=TINT+KIK*>
. IF (HH.GT.TINT) GOTO 45

SUM=0.,

SUM1=0,

DO 44 I=1,ICMy
J=I1C=1
SUM=SUM+n (J+1)#F (J+1)
PlJ+1) =P (J)#(1-R(J))
SUMI=SUMI+P (JU+1)

= X(J+1) =P (J+1)

L CONT TNUE
SUM=SUM+P (1) % (1)
P(1)=5UM
X(1)=P (1)

SUM1=SUML+P (1)
TINT==1E=4
45 CONTINUE
C PPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPP
IF (PRTPER,BT ,PR.ORcIFORMoNE.1) GOTO 64
WRITE(6+116) «lUM])
116 FORMAT(909¢,°TNTAL POPULATION 1S 94F10.0)
PR=+1F=5
: WRITE(H9117)
117 FORMAT(°D°«0*%*%%***%%*%***%*%%%******%************%*****#%%*****%
I**%**%****%******%%%%*%%9) )
64 CONTINUE
PPPPPPPPPPPPREPPPPPPPPLRPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
****%***%*%%**%%***%%**%*%***%***%*********%********************

INCREMENT FERTILITY B8Y ONE YEAR
****%*******%%**%%**%%%*****%%**********************************
D) 34 I=1.1IC

IF (16=2roeGToF1(I)) FI(I)=040
US(I)=R(T)*F1 (1)
T34 CONTTNUFE
UQ=p o #US (1) =Us (2)
UT=2,%US(1C)=11S(ICc~1)
F1(IC)=F1(IC) =eG#PA% ((PA1# (UT=US(IC=1)))=P2#(DTS*UT+D5(1C)#US
2(IC=1)=(DTS+D5(IC))#US(IC)))
F1(1)=F1(1)=o=#PA% ((PAT#(US(2)=-UQ))=P2#(D5(2)#US(2) +DA5#UQ~- (D5
2(2)+DAS)*US (1))
DO 35 I=p.ICwn
FI(I)=F1(T) =oG3Past ((PALH(US(TI+1)=US(I=1)))=P2¥(D5(I+1)*US
2(I+1)+D5 (D) #US(I=1)=(DS(I+1)+NS (1)) *US(I1)))
35 CONTINUE
***********%**%*%%*%%%****%%%%**%%%**%****%*********************

SOLVE ODES FOR DELAY PARAMETERS AND INCREMENT TIME
*%************%%%**%*%%**%*%****%%*%%%%****%%%*****%************
DO 36 I=1.MDE
IviDy=DLY (D)
36 CONTINUE
CALL SRUN(IVenLYesTeKKsNDEsNN)
e PL=PL+KK
IF (PLTPER.GT.PL) GOTO 31
C PPPPPPPPPPPPROFPPPPPIREPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
- IF (IFORMNF41) GOTO 65
IPG=1IPG+]
IF (IPG.NF.?) GOTO 79
e IPG=0
WRTITE (Ae121)
121 FORMAT(®1¢)
= 79  CONTINUE
WRITE(6:118)
118 FORMAT (" v,'PAPULATION FOR AGFS 1 TO 20 I1SY)
WRITFE (Ae102) (P(I)y I=1420)

OO0

OO0

R



N
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i

OOOCOOO0

28

29

11

12

78

PowrrNT ATy T Yy - I L' LIV Wy VLo Y LWL Ty T

WRITE (A 120)

FORMAT (1 94 ¥ memmm e e e e e ")

CONTINUE
PPPPPPPPPPPPPOPPPPPPRPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPRP
RETURN . A

END

SURROUTINE SR N(IVeZ e ToKKgNDEGNN)
5 46 38 35 26 35 36 36 38 36 35 35 35 3 3% 46 36 35 38 28 36 38 3% 36 48 3 36 3 46 35 38 38 36 38 338 3 35 36 34 38 3634 26 36 35 30 3 16 36 34 36 35 38 35 34 36 36 44 36 34 4 34 3¢
THIS SUBROUTINE GIVES A SIMULTANEOUS SIMULATION OF VALUES
Z=(TA(T) s A(T) AP (T) o IB(T)oB(T)) AT T+H FROM INITIAL VALUES 1V
OF THE SAME VARIABLES AT Te FOR EACH DIFFERENT SIMULATION THE
SUBROUTINFE $nEF MUST BE REWRITTEN TO EVALUATE THE DERIVATIVES
D(D) AS A FUMCTION OF TIME T AND SOLUTION VALUES Y(I)
38 3t 3t 45 35 28 35 3 38 34 3 38 38 28 26 3F 3F 36 3 35 98 3 38 38 36 b 30 36 3 36 30 38 38 38 30 3 3 30 38 3 3E 3 30 3 3034 3E 33 3E 38 3E 33 3R 4R 3 330 3¢
REAL IV(NDE) g7 (NDE) o ToT2eKKeK]
K1=KK/FLOAT (NN
T2=T
T=T+KK
CONTINUE
CALL $STEP (IVaZeT29K1eNDE)
T2=T2+K1
DO 29 I=1.NDE
Iv(l)=Z2(1)
CONT INUE
IF (ToGTT2+K1/2) GOTO 28
RETURN
END
SUBROUTINE $STEP(IVeZsTeKKeNDE)
REAL TV(NDE) s7(NDE) ¢Z1(10)sD(10)eD1(10) 9KK
CALL $DE(TsIV,NDELD)
DO 11 I=1.NDE
ZI(I)=IV(T)+KK¥D(T)
CONTINUE
TT=T+KK
CALL $DE(TTsZ1+NDESD1)
DO 12 I=1.NDE
ZAI)=IV(T) +S#KK#*(D(I)+D1(1))
CONTINUE
RETURN
END
SUBROUTINE $DF(TsYsNDED)
REAL Y (NDE) ¢D(NDE) ¢ KK
D(1)Y=Y(2)
D(2)=Y(3)
T1=0 -]
IF (T.GT+15.) GOTO 78
TT1=ABS(T=5,)
TT2=A8S(T=10,)
T1=(=SIN(FXP(=TT1)=EXP(=TT2))) /15,

" CONTINUE

D(3) =15, #¥T1=Y (2)=2,%Y(3)
D(4)=T1

D(5) =0,

RETURN

END

//GO.SYSIN DD #
FVOLUTION OF POPULATION OVFR 50 YEARS: WITH FERTILITY PROGRESSION

50 100 2 4 0 1 3
30,0330.,0 7.0 4.0 20.0
1.0 025
1,0 1.0
5 1
000
0.0



Yt

Qa‘

vevwv

0.1

002258
000276
200197
00215
00243
000288
000356
000459

. .00618

00861
001232
201798
002659
03964
00593
. 08864
013185
019413
028099
039621

1023102,

971804,
951483,
924609,
883342,
810900,
6777171,
454548,
181765,
21577,
i/*
’/

“waraadand OB

HASP=11 JOR

CANCELLED BY OPERATOR BEFORE EXECUTION #itdedtdrdtitits

200577 00414 00338
00261 00247 00231
,00191 .00192 00198
.00219 .00225 200230
00251 00259 00268
00299 .00311 .00325
,00373 00392 200412
00486 00515 00546
.00659 .00703 00751
,00923 200991 201064
201327 01430 201543
201943 021 02271
.02878 203118 03376
04296 04656 05046
06427 L06966 . 0755
.09602 .10399 011259
<1426 c15416 216657
220937 222563 0243
230173 32364 034666
44719 54826 . 72467
1000000, 994230,990114, 986767,
969890, 968038, 966179, 964266,
949171, 946789, 944337, 941806,
921317, 917880, 914282, 910515,
877883, 872098, 865967, 859464,
800910, 790282, 778981, 766961,
659749, 640761, 620782, 599824,
427593, 400112, 372240. 344136,
157799, 135297, 114440, 95378,
15514, 10833, 7327, 4787,
DELETEN BY HASP OR
STATISTICS =--

00299
,00212
00207
000237
200277
. 0034
00435
00581
00804
201145
001665
002457
, 03658
00547
,08181
12186
017988
026144
0371
1,0
983817a
962270.
939197,
906554,
852554,
754191
577882.
315982,
78221
3011,

296 CARDS READ =--

- 78 -

981102,
960201,
936492,
902393,
845214,
740631,
554975,
287973,
63036,
1818,

978541,
958098,
933692,
898007,
837413,
726241,
531133.
260322,
49838,
1005,

976124,
955942,
930788,
893382,
829114,
710990,
506403,
233251,
38593,
454,

97386%9,

953743,

927763,
888504,
820292,
694843,
4808500
206989,
29215,
125,

0 LINES PRINTED ==



Program IT

Estimation of u(x,s,t): this program.uses values
of the population density to estimate u(x,s,t) through
differentiation of two cubic spline approximations and
integration of a subsequent spline approximation.

As a test problem; a separable economic mobility

was chosen

ulx,s,t) = al(x) g(s)
_ (x4+20)(80~x) _ s410
alx) = 10000 » B(s) = =55 -
With an initial population density
= 3 2
_ B 200 (25°-40557421000s)
p(x,s,0) = po(x,s) = =70
the population density without deaths
e _—
- 2000000 2000000
p(x,s,t) =Tle po(x~t,(s+10)e -10)] ,
3

w = = §~ + t2(30nx) + t(x-80) (x+20)

3

9

evolves, and with a death-rate of

- 79 =



r(x,s,t) = (1-.01t) (.0003x+.0006)

the density with deaths is

o - ~R :
p(x,s,t) = plxys,t)e s
2 2 3
R =(t - LQ%En)(oooogx+booo6) - ,0003(5- - °O%t Yo

- 80 -



O D~ £ W)

bod et
-3

12
13
14
15
16
17

18

10
20
21
22

2E
27
20

2l

$408

DO D

YO N

112

10A

100
16

l1ivl
11

DY YD

ACCT-NUMs *VEHNER Y s TIME=604sPAGES=20

6 35 38 3 30 3F 55 35 38 46 3 26 30 35 35 38 38 36 35 36 36 36 35 37 38 35 35 3 35 35 38 398 3830 38 35 45 3535 95 3 31 38 36 38 3 6 38 35 45 35 35 38 36 45 36 34 45 3 38 36 38 3F
THTS PROGRAY IS USED TO ESTIMATE THE ECONOMIC MORILIITY

AR AFTER “Ue  AGE= TIME- AND INCUOME=SPECIFIC VALUES OF THE
PORPUC aTTOM arRE REQUIRED.

FORoA TeST RUN WE ASSUME THAT 4D 7#S5eT)=ALPHA(X) #BETA(S) ,

FOR THTS Pa<TIculbax FXAMPLF THE EIGENVECTOR TECHNIQUE USED

TO E2TTvaTs A(T) AND DOX) IN THE FERTILITY EQUATION COULD

HAVE WEer DnE ),

3535 40 36 36 38 2% 3 35 35 26 30 38 30 e b 46 38 35 3 38 36 3 3 35 36 46 35 36 35 35 3F 36 30 38 3 46 36 36 36 36 30 30 3% 3 45 36 36 38 35 36 3 35 24 38 36 3F 3 3 45 24 34 4 3¢

Qe P (Tellell)emi(79lloll) sALPHAC(T) oBETA(L11) 9XeSeT
REAL H(1i)en(3911)eCOF (4911)

PEAL M (2911)eD(11)sTOTosWwowloeyY

ITNTEAER DX eidSeDToXEoSMo TMeXXeSSeTT

Xr =7

SM=1

A7
T

n

L e i

o300
o~ 0N x
Honou

oo

A
S
L:)‘
X
i
X
et
asy
[\V
X
ol
7

3825 8 b g 20 4E 3T 3RS S8 3 S8 3F 3 35 38 3T 3 <F 30 38 3P SR 3F 30 37 3% 3F 38 9k 35 46 34 50 30 38 34 35 3% 3F 35 3k 38 38 38 3F 36 38 3F 38 b 48 2F 48 38 343 34 45 33 3

NEFTF FUNCTTION ALFHA
S5 98 30 97 58 20 30 9F 3 3 5k 0 40 58 38 3 37 3F 20 30 47 3 3E 30 20 55 S0 b 40 38 3030 38 30 30 3E IE 30 3F 26 38 25 35 38 3E 38 38 3F 35 20 2F 30 30 95 2H 20 $E 3F 46 Sp Sp 3 3k 5

Wl T (Ael112)

FAamaaT (v, THE cCONOMIC MORILITY IS ALPHA(X)#BETA(S) WHERE?®)
ATT (6 l10F) :

Foe a7 ()

SOl Ta=lexE

XX= 3% ([ X~])

Al Dwin ([""\):(AX*ZOQ)"?(“OU"XV)/100**4.

PRINTERINTPHINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
W JT (A1) XKo ALFPHA(IRA)

ENn e T (0 ALPAA(?9I341) TS 19F10.5)

CUmT e

LT (g ] )

DA TORT YT INTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN

3H 38 3k 38 3E AE b 3 S 9E SE 3 SE S8 3% 3k 56 ok 38 3% 30 8 38 38 30 38 3 28 38 3 3F 38 8 3% 3F 3 3F SE 34 3k 38 38 38 3 30 26 3F 3F 3 3E b 3F 3 38 3k 3 3 3E JE 4 I k30

NEF ¢ FUNCTLON sETA :
3B 3040 38 58 3 55 58 20 5 3% 58 5t 3 30 30 35 46 36 38 3030 3538 4 38 3638 3% SE 490 3k 56 338 35 9 36 3 30 38 46 38 38 3 36 3638 46 34 48 48 4% 38 3 36 26 3 3% 34 2% 38 3¢

SO iNnELene
Sz (T5~1)
RETAITS)=(S%+10.) 7200,

CITo(wel0l) 5SeBETA(IS)

Fivs i (0 BETA(teI3e1) IS "4F10.5)

CONT s NUE

PRIV TPRINTORINTPRINTPHINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN

P PRI IMTRRINTPRINT ORINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
B

43R SR 32 4k 36 5 54 4E S ar o 3t ok 3t 3¢ 3k 3F SE 40 46090 9 3 48 3 b 30 46 36 46 3k 3b 30 38 45 30 36 3% 36 36 35 36 46 3038 3 3 348 36 4 36 3 31 483 3 3k 46 3¢ 3%
ETah ANALYTLC SOLUTION 10 THE POE
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29
30
31

32
33
34
35
36
37
38
39
40
41
4p
43

44
45
46
47
4A
49
50
51
52
53
54
55
56
57
58

5q
60
61
62
63
64
65
66
67
68
69
70
71
72
73

DY D

_
4

e

2

DO YoM,

12

20

2

2l

30

32

N2/0x + DP/7UT = D/DS (MUEP) = Ritp
36 35 2 3t 38 35 40 3 48 38 36 37 55 50 3 38 36 50 30 30 35 40 345 58 30 35 30 3830 3530 330 $H 36 45 30 34 3030 3 30 3 34 3030 30 45 3 35 36 15 38 34 30 3 {30 23 338 38

Ao LT=14TM

T=aTs(LT=1)

N1 LLx=1oRE

X=X (LA=1)

A= (o R00S%X +,0006) ¥ (T=o005#T#T) =, 0003%(THT/2~(,005%T#*#3)/3)
W] = e (i)

WR2=TH ((X+206) ¥ (X=80) +T¥((30,=X)+T/3.))%(=1,)
NN 12 1.S=]1+5Mm

SR=2GH (LS~-1])

Q:SS*lUu

W=G3 w3 (w2/20000006)~100

YW (21000 a+vwit ((=a(Be) +2odtal))

wz(wWal174) /98
PULALSoLT) = (ustY/Sa0 )%t ((T=K)/200.) %W
AONT N

3EAE B SE 338 5645 36 51 309 50 30 30 34 36 90 36 645 ok SE AT 35 3 3 30 36 3 3038 3 48 30 36 36 3030 34 48 35 34 35 36 30 45 35 36 30 36 38 36 36 35 38 6 34 34 3 4 2
SOl INE P(XeSeT)  AGAINST X AND DIFFERENTIATE THE SPLINE

(Y eSeT) IS DP/DxX
b 38 40 S0 AF 35 3 3E S 2 S 30 b IE IR 3R S 3T AE 3E3E 3E AL 3 I 3E 3 3E 3 SE A L AE 3 38 3E 38 IE I 8 3L 3 3 IE I 3E 3 3E I 3 3 e I I IE 3 e 8 30

NG 20 Tx=]1eXE

X=X (1TX=1)

K(]aerX)=X

CONT )k

CALL CSETIHP(XEsAgHsK)

N 21 TS=1e5M

MO 2) TT=laie

N 29 TX=]eXE
K(2¢TX)=P(TA9ISSIT)

CONT tNUE

CALL SOLVE (aeKeHeXE 9D COF)
Ny 21 TX=jerp

X=NX t(TA=1)

MUCTx oIS T ) =COF (30IX) +X% (2e#COF (29 IX) +X#3,#COF(141IX))
CONT TNUE

S 30 403 48 3E 3630 40 6 1630 40 3 8 388 3 e 36 34 36 55 48 3% 46 38 30 36 03020 36 3026 36 348 3k 3136 3644 36 34 36 483 35 3648 3198 48 34 3 34 2840 38 3 314 3
S2LINE  P(XeSeT) AGAINST T AND DIFFERENTIATE THE SPLINE

MUX9SsT) IS OP/ZDX+DP/DT+R(X9SeT)HP (X 9S»T)
SE3E 38 3 15 6 30 3 30 3648 30 0 46 50 38 98 3F 36 3636 30 303 24 58 330 30 36 3430 36 3646 3034 34 36 36 3635 34 36 30 30 35 30 34 635 38 38 20 26 30 3026 30 30 36 3 3

M3y TT=ledm

T=0T=(1T-1)

K{lerT)=T

COMT rNUn

CALL SETURP(TYeAgHK)

N 37 TX=j «XE

X=X (TXx=1)

Ny 37 T5=] «0i

Y35 TT=1elw
K(2«TT) =P (IReISyIT)
CONT s N JE

CALL SNHLVE(f3KeHsTMe)9e CUF)
no 3 IT:IQIW

T=DTx(1T=1)

AUCTY e IS e TT) =MU(IXg ISeIT)+COF (3o IT) +TH (2.#COF(241T) +

- 82 -~



74

75
76
77
78
79
80
81
82
83
84
-85
Ré
87
ae
RY9
90
91
92
93

94

95
96
97
98

99
100
101
102
103
104
105
106

107
108
109
110
111

112
113
114

31

NNHODONDND

472

41
c
C

11N

114

r
C

113
55

ETH3,#COF (1o iT))+(le=o01¥T)#(L0003%X+a0006) %P (IX9IS,IT)

CONT TNUE

34330 38 403648 20 25 SE 4 26 3420 30 90 51 40 2009020 98 3830 38 46 35 90 095 496 3038 36 306 4046 04606 36 3 30 46 46 46 96 36 36 36 26 4046 96 25 96 36 3
SOLINE  DP/DX+0OP/DT+R(XsSeTI#P (X95sT)  AGAINST S AND
TATEGRATe THE SFLINE FROM S TO THE MAXIMUM VALUE OF S,

TUlXeSeT) 1S END CONDITION PLUS THIS INTEGRAL
SE4E 3 3 38 03040 3130 3k 33030 0 S5 40 204030 935 45 30 40 25 38 35 30 3036 38 3 3630 618 35 3 30 40 36 34 36 38 20 F 46 28 35 46 30 3¢ 36 36 36 35 28 26 46 96 4 2

NC 40 IS=14¢5M

S=NSx (Y5~1)

K(lesTS) =8

CONT *NUE

C/—\LL S'::T‘Jp('bf"is) fgH4eK)

DG4y TX=1eXE

NO w1 1T=1s1mM

N0 42 15=1¢9M

K(2¢TQ)=MU(TIXeISeIT)

CONT tNUF

CALL SOLVE (rgexXeHesSMeg CUF)

MU(TYeSMeTT)=n,

G2z )5%Q.

Sl=92-0%

NO g TS=245i1

SI=S1=-9%

S2=82=%

I=5va41=1%
PUCT R Lo IT) =t UCIX o L4 g IT) +(((S2HCOF (19 1)/ 4e+COF(241)/3.)%
SP2+COF (34 [)/72a) #52+COF (44 1) ) #S2=(((S1#COF(141) 74,
+COF(2e1)/3)%SI+CUF(391)/26)#S1+CUF (44971)) #S]

CONT T MUK

PRIMTPRINTPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTRPRIN
J T (A11D)
FOwaaT (9] ve % VALUES ARE % ERROR IN MUy S AND T GIVEN, X ACROSS®)
dRTT - (59114)
EORMaT (V)47 S T X= 0 10 20 30

) 50 A} 0)
PRINTPRINTPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN

N 53 KS=1esM

WRIT-(A1NG)

S5=i)q% (KS=1)

N B KT=1e1#

TT=0TH*(KT~1)

NO S KXz ¢ XF

TF (P (KAYKSsKT) sEWe,) GOTO 51

MUK e K29 XT) = (BETA(SM) FALPHA (KX) #P (KX eSMeKT) =«MU(KX9sKSoKT)) /

AD(KXaK39kT)

AOTO w2
(KX e KSeKT) =ALPHA(KX) #BETA(KS)
CONT T NUE
MU(KY ¢ KooK T) = (MU(KXaKSenT) Z(BETA(KS) FALPHA(KX) ) ~=1)%100.
PONT NS

PRI 4TPRINTORINTPRINTORINTORINTPRINTPR INTPRINTPRINTPRINTPRINTPR [N
WEIT. (As113) $59TTa (MUK XaKS9KT) s KX=1yXE)

FORWT (1 0421550 1,7FY,2) |

O T NUE

PRINTPRINTP~INTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPKIN
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115
116
117
118

116

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142
143
144
145
146
147
148
149
150

MO0 DD

OO0 T T

10

11

12

ARTT~(As 105)
Fox-4.T(v]10)
QTP
END

SUBRAUTINE SETUP (NsAgHeK)

38 38 38 3% 28 38 3 3k o& 36 3¢ 3T 30 38 36 30 30 30 38 38 30 30 3 3 30 30 30 0 30 38 30 9F 20 20 36 30 38 3 3 3E 36 34k 38 35 48 35 38 3F 36 3F 3E 48 38 36 35 3 38 30 98 36 SE e 3¢

THIS ROUTINE SETS UP A TRIDIAGONAL MATRIX OF THE SPLINE EQUATION
Thi A 3 BY N ARRAY = FIRST ROW IS SUPERDIAGONAL
SECOND ROw 15 DIAGONAL
THIRKD ROW IS SUBDIAGONAL
AM{Y THEN DECUMPOSES a TO LU SU THaT
FIRST ROw IS SUPERDIAGONAL OF Us SECOND ROW IS DIAGONAL OF U
THTRD ROx IS SUBDTIAGONAL UF Le DIAGUNAL OF L IS UNITY
36 38 3F 5 38 28 5 36 45 38 35 30 30 3% 35 3F 35 38 T8 48 36 30 20 3T 38 38 3F 0 3t 4 38 30 36 3 38 30 3 0 3E 3 3838 48 36 3 38 3E 36 3k 35 38 38 38 38 363 3638 30 36 3 e St

REDNL A(3eM)sH(N) 9K (2N)

Nwv]=w=-1

H(2)=K(1e2)=K(1lo1)

NO 1+ T=2eNH]
H(I+1)=K(ieI+1)=K(1lsT1)
ACLaI)=H(I+1)/(H(I+1)+H(Y))
A(2e1)=2.0
A(3sI)=1=A(191)

CONT TNUE

A(lel)=—2.

A(Z2¢)1) =2,

AN(3e l):()-

A(lse Y=u,

A(Ze )=Ze

NO 11 I=2«
A(3,1)=A(3s1)/7A8(291-1)

A (2eT)=A(2¢I)-A(391)%A(191I-1)
COMT INUE
RFET)90,

F i)

SUBERAUTINF SOLVE (A eKeHeNs Dy COF)

3836 38 36 34 35 38 30 30 56 36 38 35 35 30 36 4 5 46 48 363 S 30 35 16 38 36 4030 3 38 26 56 38 30 35 28 46 38 38 303 38 35 35 35 3 3 36 48 35 38 3% 35 35 35 38 36 4835 3¢ 3 3¢
THIS wOUTINE CALCULATES THE SECOND ORDER FINITE DIFFERENCES OF
THE «2PLINEs AND THEN SOLVES  AM=Dy (8Y FORWARD AND BACKWARD
SURSTTITUTION) 3 PLACING M(VECTOR Or SECOND DERIVATIVES) IN D

Fry ©0TNT CUNPPITIONS NOw USE THIRD ORDER FINITE DIFFERENCES

T ERTIYATE THE THIRD UKDER NDERIVATIVES AT XO+H/2 AND XN=H/?2.
336 35 35 36 36 36 40 36 35 358 36 58 30 38 38 30 55 36 38 38 35 3 3 36 48 3630 38 36 35 35 38 35 5H 30 36 6 3 3 3 3 3 36 35 36 30 34 30 38 34 36 3 38 3 3 36 30 3 30 3 343t

PEAL H(N) sD(N) sA(39N) oK (ZeN) o COF (449N)
N(2)=(K{2e2)=K(251))/H(2)
lezy*l
nO 12 I=geNMy
NI+1)=(K(2eI+1)=K(241))/H(I+1)
P =67 (D(I+1D)=D(D)) /7 (H(I+1)+H(I))
CONT TNUF
N(]) ==2# (=K (2el1)+K(294) +3%(K(242)=K(243)))/(H(2)¥H(2))
A(N) 2 =2 # (=K (2oeN) +K(2eN=3) +3#H (K(Z2gN=1) =K (29N=2)) )/ (H(N=]1) ¥32)
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151
152
153
154
155
156
157
158
159
160
161

162

163
164
165
166
167
1682

169
170

171
172
173
174
17%
176

TOHODODOOO0 NN

1

1

13

14

1

6

NO 13 I=2.N
NI =D(I)=A(3., 1)*D(I=1)
CONT TNUE '

NDIN)Y =D 7A(2y9N)

NY 1a T=2eM
J=Nai~1
DI = (U (D) =A(1leJ)HD(J+1))/A(2ed)
COonTINUE

CALL POLLY (NgDeKaHs COF)

RF TURN

Frap

SUSRIUTINF POLLY (NeMoeK oo COF)

SESE 28 3L 38 30 48 38 b Sk 36 38 3% SF 3t 36 38 3 38 28 38 3 38 3 36 35 38 35 35 38 36 3F 34 3k 45 3 30 38 30 36 3 3E 3t 4 3 3E 28 S8 36 3 36 34 3 34 3 36 30 3 3 34 L3 3

THIS ROUTINE COMPUTES ThE CUOEFFICIENTS OF THE SPLINE POLYNOMIAL
IN FACH SUBSINTERVAL

K Ig THE aAxR<AY OF DATA POTNITS

= IS THe VECTOR OF SUSINTERvAL LENGTHS

M TS THE SOLUTION VECTOR TO THE EQUATION AM=D

SE3E L IE 35 25 38 30 25 3¢ SF 38 3E 30 3T 3 S5 28 35 28 3E 58 58 30 30 30 38 38 36 38 40 38 3 4 3530 38 20 38 36 3 3b 38 3 3% 3 3F 3 38 38 48 5t b 3k 3 F S 33

WRENL O MIN) 9 (2eN) g H{N) o CUF (49N)

lezu—l

NGO1 T=leed

COF {1 eI)=(MI+1) =M (L)) /7 (Aa¥H(I+1))

COF(2e 1) = (K (1o I+1)#M(I)=K(LoI)#M(1+1))/ (2% H(I+]1))

DV (T+e)#K (Lo [)¥K (1o I)=M(I)HK (LI +1)¥K(1eI+1)

K+2 ¥ (2eT+1)=2%K(29T)

COF (e 1) =(DL/ (254 (1+1)))+H(T+1) 3 (M(I)~-M(I+1)) /6.

N (I H (M (LgT+1)#a3) =M (T+1) ¥ (K(1oI)¥#3)+6.#K (1o I+1)#K(2s1)
Rt o3t (1o T)¥R (2 I+1) +K (1eI)#M(T+1)# (H(L1+1)##2)~K(14I+1)#M(])
Rt (m (1 +7) %32)

COF (e T)=DD/(H(I+])¥#A,)

COMT T NUJE

Y ls Jzlea

CrE (1e™) =CUF (JUeNMT)

RE TN

o

KENTRY
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THE ECONOMIC ™MO3IILITY IS

AL PHA (
ALPHA (
ALPHA (
ALPHA (
AL PHA (
ALPHA (
BLPHA (

BETA(
BETA(
BETA(
BETA(
BETA(
BETA(
RETA (
BETA(
BETA(
BETA(
BETa (1

0
10)
20)
In)
40)
500
AQ)

n)

10)
20)
39)
40)
50)
60)
)
80)
90)
00)

Is
Is
Is
s
Is
Is
Is

TS
1%
s
[
TS
I
TS
TS
TS
5
TS

016000
0.21000
024000
0.22000
024000
021000
016000

0.05000
0.10U000
20000
025000
030000
0.35000
040000
J.45000
050000
11.65000

ALPHA (X) ¥BETA(S)
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VALUES ARE % ERROR TN MUs S AND T GIVEN, X ACROSS

S T X= 0 10 20 30 40 50 60

0 0 J,00 0.00 0,00 000 0.00 0.00 0-00

0 2 4n3,75 3oY. 05 7585 11551 170.63 160.18 803.37

0 4 ~41.60 18.10 =20 649 27485 -27.13 -15.82 83.30

0 A -RUB,QQ “79“2 2:34 18017 13093 33.79 99021

0 R -133@41 "le23 16022 -3006 6.51 -2007 100096

0 10 ~131.42 25624 10.08 =-3.89 «11e09 -1.89 107.53

0 12 ~125,68 06,76 497 0-.09 17.15 -8.16 95.22

0 14 ~=RA 40 18042 ~1.60 5.88 8.73 -=15.173 105,93

0 16 “95043 13,09 682 775 10,38 -11.17 103.78

0 18 -237.34 2le4l =10.80 -=3.91 10.89 ~40.15 86,25

0 20 ~343,99 18.83 ~38,13 1728 1.92 16.66 283.49
10 0 ~0.70 ~(.86 ={0.28 =00 b4 =051 -1.00 =171
10 2 0.36 0043 0-08 0el7 0.22 015 0,75
10 4 ~0,07 0,07 ~0,03 0.07 =0.07 =0.,05 0,23
10 A =, %y ~0.02 ~0.01 005 0,06 0a1l 0030
10 & ~-0,44 (.00 0.06 0,01 0.05 ~-0.,03 0049
10 10 -0,53 015 0,06 0.00 -0.06 004 0.74
10 12 -, 65 D43 -0.,03 -0.03 013 =-0.,06 0,75
10 14 ‘3.5] 0016 “OaUl 0007 0-07 -0015 OGQS
10 16 -1.61 0o18 Delit 0+11 0«13 =018 1«10
10 18 “1.37 0025 ‘0013 ‘OIOb 0017 -0053 lclg
10 20 ~-1,89 Uele ~0e37 030 =0.02 029 3.78
20 0 -0 R ~0e37 -0.15 ~Qe22 -0 e 2S5 ~0e4%5 -0.71
20 2 0.13 0415 0.02 0.05 Q.07 0.04 0e27
20 4 ~{,03 Uela -0.01 0.03 -0.02 ~0.00 0el3
20 6 ~0,26 =0.01 -0.01 0.01 0.03 0.073 0.13
20 ! -0,193 0.01 0a.02 0.01 0.01 -0.02 0.24
20 10 -0,22 0,07 0.02 0.01 -0.02 -0.02 0034
20 12 - ,37 0.15 -0s.02 -0.02 0.05 ~0.02 0.33
20 14 -.2"R 0.09 -0.01 0.02 0.02 =0.06 04l
20 16 -, 32 Jall =000 0.05 0.07 -0.11 0.51
20 1= - ,h4 0,13 ~-0.,086 ~0.02 0.08 =0,23 0.62
20 2n -0,79 Oela -0,08 014 -0,06 0.12 1.60
.30 0 ‘“,2% “0025 “0009 ‘0-14 -Olla -0029 —0.43
30 2 D05 007 001 De0? 0«04 0«01 015
30 % -0,02 0.03 -0.01 0eQ2 =000 0.01 011
30 A -0.,17 0«00 ~0.ul 0.0V NDe01 0.01 0.08
30 5 -H,.17 0s01 Uel1 0.02 0.00 -0.02 fel6
30 10 -il,17 Detb 0.02 001 -0.01 ~0.02 024
30 12 -, e 009 -0.0¢2 -0.07 0.03 =0.01 0.22
30 14 -0, 22 D06 0.0 0.01 0«00 -0.00 o226
30 16 =024 0e0Y -0.01 0.03 005 ~0.09 0e36
30 18 “Qo“q 0.10 =004 =001 0«07 =0e14 Dett6
36 70 =0, % V.08 OeUl 009 ~0.09 0.06 1.03
40 0 =,1A ~0e20 ~0.06 =0.11 =-0el4 —0.22 =00 30
40 2 0.0Q 0005 ’OoUl OOOO 0-03 _0.00 0010
40 4 -0,01 0e02 -0601 0.02 0.01 0.00 011
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40
40
40
40
40
40
40
40

60
60
60

60
60
60
60
60
60
60

70
70
70
70
70
70
70
70
T0
70
70

80
;8(1
80
a0
80
80
80
830
80
20
80

8
10
12
14
1R
20

—t
QX I EFE o

12
la
16
18
20

P v>

10

14
16
18
20

~0.13
~0.0%
=0.(GR
-N.272
-0,19
-N.22
-0,37
~0 .46

=-0,14
~-9.02

H.01
-0811
=0.06
“0.0h
-0.27
=0.1R
-0,22
-0 .36
=), 39

-0.1°7
=-0,02

0,01
-9,09
=-0,05
=0.05
-0.23
~1,19
-).23
-0,37
~.35

=-7.10
-),01
-0,.01
-0 ,07
-, 03
-(,09
=3.21
- ,721
-0.27
-0,37
-0, 34

=)L 1N
-0, 00
-N,0z
-0 o
-0, 0~
~1,173
-0.13
-0,22
-1 ,31
~-0,3a
-0.37

0.01
0.01
0.03
007
0.04
0,08
0.09
006

~0.17
Oela
0002
0-00
0«01
0.02
0-05
0,05
0.08
Hs05

~0.11
De02
0.02
0.00
0.01
0.02
Ue04
Ue0bH
0.08
0e08
0«08

=009
0.02
0.01
0.00
0.01
0,03
0.06
0.04
0.08

. 0.10

0.08

-0.09
Ve 3
0.01
U.00
0.01
Ue02
0e05
Ge0ua
0.08
0all
0,09

-0.01
Q.00
001

-0.02
0.00

""0001

"0.04
0,06

=005
“‘Oooa
~0.01
~0.01
=000

001
=001
=000
"'OOUE
"0004

0.07

~0.03
~0.03
-0.01
~0e01
~0.01

0.02

0.00
~-0.02
~0.02
-2

0.07

-0.,03
-0.01
"'0.0l
=001
0,01
~0.00

0.00
""0:0].
~0.03
~0.02

0eu5

—U.Ol

000
"“0.01
=0.u1

0.00
-0.02
~-0.00
=0.00
~-0.03
-0.02

0.01
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000
0a01
0«02
=002
001
003
000
0«07

~0e11
001
0001
=0.01
001
002
~0402
0400
002
0401
006

=0a11
0«01
0«01
=0+01
0.02
0.03
=001
=000
002
0eQ1l
008

"'0.07
0.01
~0.00
-0.00
0e01
0.02
0.00
-0e01
0072
0.01
00>

=004

0.01
"'0000
~0.00
-0.00

0-01

0.00
"OlOl

0.03

0.01
-0.02

0.00
~0.00
~0.01

0.02
-0001

004

0.07
~0e11

=009
0«01

000

000
=001
=~0«00

N.02
~0.01

0.04

0«05
~0s11

-0.05
-0e01
-0.00
0.01
~0e01
~000
Ue01
-0.01
DeO&
0«04
-0010.

-0.02
"'0.01
=000
0.01
—0.02
0.00
0.01
-0.00
0.03
0.03
"'0006

=000
~0e02
0«01
Ue00
~Ne02
0.01
0.01
0.01
0.02
0,00
-0.01

=0.00
~0.02
“0a02
=000
-0.03
-0.08
-0'11

0.03

~0e19
~0.01

0«01
=001
~0.03

“0e01

001
~0.02
-0.08
-0.09

003

~0.16
~0.02
0.03
=0.01
~0.04
~0.02
0.01
0.00
~0s07
-0.09
0.05

-0.14
-0.00

0.02
~0.02
"'0.03
-0.02

0.00
-0.01
~0.07
~0.,018

0.03

~0e12

0.01

D01
-0.03
-0.01
-0.01
~0.01
-0.02
0,05
-0.07
-0.01

0.06
011
D21
016
0220
0430
0.39
079

=0e23
0.07
010
005
0-10
NolB
0.13
0,16
0.26
0.737
062

=0e17
0,05
0,08
0.03
0.09
Deld
012
0o 14
023
036
051

-0.12
004
Ne05
004
0-07
ND.12
013
0«15
0.22
033
Ne&8

~0.08
0.04
0.02
0.05
D06
0,09
Oela
0.15
0.19
027
0ets



Q0
90
S0
90
90
90
90

390
90
Q0

100
100
100
100
100
100
100
100
100
100
100

O B iv O

-0.06
-0.00
=0,01
—-0,07
=-0,073
=0a.10
~“0a.17
0,19
=0 ,25
={,31
-7 .35

-6,00
-0,00
-0, 60
=0,00
-0,00
=-0,00
-0.00
=G,.N0
=-3,00
-0,00
...'_]’O(')

=-0.05
0.02
001
001
001
001
0.05
004
0‘06
0,09
0.03

~Uy.00
=000
=0,00
~0.00
=0.00
~0.00
~3.00
=0,00
-0,00
=-0.00
=0.,00

0.00
=000
"0001
=001
"Oo(‘l

000

000
~0s01
“0a0¢
~Q0.027
~0.01

"OQUO
""0.00
-0,00
"0000
-OOUO
=0.00
-0.00
~0.00
~0.,00
"'OQOO
-0000
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-0002
=000
=000
000
=001l
001
0«00
=001
002
0.01
=001

=000
=000
=000
=000
~0.00
~0,00
-0400
-0.00
"0.00
=000
-0.00

-0e01
=001
000
000
-0.02
0e01
=000
000
0002
"'.0-01
=0e01

-0.00
=000
=0,00
~0.00
-0.00
~-0,00
«“0.00
=-0,00
~0.00
"0.00
"0.00

=0.07
-0s401

0402
~0.02
=0.02

0«00
=001
=0.01
=003
=0.05
=~0.01

=0.00
=0.00
=0,00
=000
=0,00
-0.00
-0.,00
~0.00
-0.,00
=0.,00
=0.00

-0.06
001
0.02
004
002
0«03
009
010
De12
018
023

"OeOO
~0.00
-OOOO
~0.00
-0.00
=0.,00
=000
=0.,00
=0,00
=000
-0600



CORE USAGF

DIAGNOSTICS

—
. COMPILE TIME=

T, COST FOR THIS

PROFCT COuk= 10216 BEYTESARRAY AREA=

WUnF e OF cRRORS=

4,78 SEC.tXECUTIOUN TIME=

PROGIDAM S 3.21
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7332 BYTESs TOTAL ARE/
|

0Oe¢ NUMBER OF WARNINOGS= 09 NUMBE
41.80 SECy  QUEEN'S WATFOKR VERSI(

RUN IN HSC

MAR 26y 1974



Program IIT

Estimation of the parameters a(t) and d(x)
from values of the normalized fertility. The normalized
fertility might be estimated from the fertility curve
and the parameter b(t) which represents the family
size.,
Here we chose as a test case:
X

d(x) = 155 x = 0,10,54., 50

. t
a(t) 1+.4s1n(3) = 0525000520
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o

-y

U1 & W=

28
29
30
31
32
33
34

35

OO0 0O0 ooooo0o000000 %

FTO00

$J08B

82

84

85

114

104

115

ACCT-NUMy *VERNER 'y TIME=60

34 34 FE 3636 38 46 35 38 30 3 3F 3044 35 36 030 30 3830 30 363 3 34 36 38 34 30 336 330 48 3 30 33030 4 5 30 30 3030 40 30 30 3040 40 AT IR IR AR A AL

THIS PROGRAM ESTIMATES THE PARAMETERS A(T) AND D(X) FOR THE
FERTTILITY DIFFERENTIAL EQUATION. DATA IN THE FORM OF VALUES
OF TYE NORMALIZED FERTILITY ARE REQUIREDs AND THESE MAY BE
ESTIMATED FROM VALUES OF THE FERTILITY CURVE AND THE PARAMETER
B(T) - THE FAMILY SIZE.

TO TeST THE PROGRAM A CLOSED FORM SOLUTION FOR A SPECIAL CASE

1S USED.
36 35 25 35 35 3 35 45 25 3¢ 36 1 30 3 36 38 36 2 35 3 35 35 31 3 3F 35 38 35 26 36 34 330 36 3 35 38 48 35 3 35 38 34 34 55 I 3034 46 98 34 b 34 1140 2433 4N B

COMMON KsAsHoCOF oD
REAL FBAR(51911) oFBARST(51911)sK(2951)96G(51911)96T(11s51)5ID(51)
REAL AT (11)+D(51)9PROD(11,511)
REAL A(3+51)9H(51) 9COF (44571)
REAL NU(51)
*ﬂ*%****%**%**********%%*****%***************%***************%*%
OBSERVE THAT DYNAMIC PARAMETERS ARE BEING USED WITH COMMON AND
AN ERROR MAY OCCUR AS A RESULT OF MIXED INDEXING = INSURE THAT
COLUMNS ARE COMPLETELY FILLED ON USE OF A DYNAMIC INDEX
35 3% 38 35 45 38 45 3 35 38 35 3¢ 3 3 3F 36 3¢ 3 3 36 3 3E 3 36 3F 3% 36 3 38 38 36 3 36 3F 3530 35 36 40 46 3 3638 3h 3 3630 3634 38 36 20 38 36 3353 30 e dE
NT=11 )
NX=51
CALL ANAL (NXsNTsFBARsAT D)
D2=Dt2)
AT2=AT (2)
CALL OBS (NXsNTsFBARsFBARSTG)
CALL TRANS (NXsNT9GsGT)
CALL MULT(115519GT9+GsPROD)
CALL EIGEN(PRODs11sAToID)
36 36 35 35 35 38 35 35 38 48 3t 3¢ 36 3 35 35 35 3536 30 36 36 36 3038 38 36 3F 38 38 34 3E 48 38 35 3 3 38 30 3 48 35 35 3F 40 38 353 2 38 34 34 36 36 3F 3F 4 38 3630 30 3 4E S
TO EXHIBIT ERRORS IN THIS APPROACH WE CALCULATE A(1) EXACTLY
AND MULTIPLY THE OTHER COMPONENTS BY THE APPROPRIATE FACTOR.
35 38 35 35 35 48 25 35 35 35 35 35 3F 34 36 35 38 35 36 34 34 30 34 38 35 35 35 36 44 34 343 33 38 38 3 3835 35 30 2 30 35 330 36 T 238 336 3636 3444 3 303030 SR A0 303
AT2=AT2/AT (2)
DO 82 IT=1eNT
AT(IT)=AT(IT)*AT2
CONT INUE
NO 8= IX=1shX
SUM=AT (1) #G(IXs1)
SUMI=AT (1) #AT (1)
DO B4 IT=24NT
SUM=SUM+AT (IT) #G(IXs1IT)
SUM1=SUM1+AT (IT)#*AT(IT)
CONT INUE
D (IX)=SUM/SUM]
CONT INVE

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
WRIT=(64114)

FORMAT('0's* A(T) OBTAINED FROM 11 BY 11 MATRIX IS*)

WRIT= (64104) (AT(I)eI=1911)

FORMAT('0'95F12.6)

WRIT= (6+4115)

FORMAT(10's* D(X) OBTAINED AS (G(XsT)sA(T))/Z(A(T)»A(T)) ")
WRITF (64104) (D(I)sI=1s51)
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN

STOP
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g

36

37
38

39
40
4]
42
43
44
45
46
o7
48
49

50
51
52
53
54
55
56
57
58

59
60

61

OO0

ODOOOO00OO0OOO0O0

a

OO0O0O0

116
104

117

105

END

SUBRNUTINE ANAL (NXeNTsFBARsATsD)
REAL FBAR(NXgNT) ¢ AT(NT) 9D (NX)

*******%%*%*********************%******%***************#%%****%%

SUPPASE  D(X)=X/100
SUPPNSE  A(T)=1.%e4SIN(T/6.)
SUPPNSE FOBAR(X)=(1=COS(X/R))#X/100
THEN THIS SUBROUTINE COMPUTES THE CORRESPONDING ANALYTIC SOLUTION
TO TWE FERTILITY PDE
D(FBAR) /DT = =A(T)#D(D(X)*FBAR) /DX
IF ~(T) < 0 THERE IS AN ADVANCE IN THE FERTILITY

IF  &(T) > 0 THERE IS a DELAY IN THE FERTILITY
36 36 35 36 36 35 36 48 36 35 46 35 35 36 48 3 36 36 38 35 3538 35 35 38 383830 36 3 38 38 30 3 35 30 340 030 46 38 3 36 50 36 46 31 38 48 48 35 35 30 3030 30 30 203k 34 94 48 3¢

DT=2,
DO 8 IT=1oNT
T=DT#(IT~1)
AT(IT)=1+.4%SIN(T/6)
W=(204*T-204*COS(T/60))/4003
W=EXP (=W)
DO 8 IX=1sNX
X=FLOAT (IX-1)
DIIX)=X/400.
FBAR(IXeIT)=o01#X¥WitW* (1~COS(X#*W/8,))
CONTINUE

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
WRITC (65116)

FORMAT('1's' A(T) FROM THE CLOSED FORM ISt)

WRIT~(69104) (AT(I)eI=1e11)

FORMAT (10t 45F12.6)

WRIT= (64117)

FORMAT(10%*yt D(X) FROM THE CLOSED FORM ISt')

WRITE (69104) (D(I)sI=1951)

WRIT=(69105)

FORMAT('0 ")
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN

RETURN
END

SUBRNOUTINE OBS (NXsNTsFBARyFBARST$G)

36 35 3¢ 35 3t 38 35 2 35 38 34 3¢ 36 36 36 35 36 3b 35 36 35 3 3E 3 36 34 38 38 31 36 3& 35 38 3F 36 38 2 3k 3 38 283k 3% 3k 3b 38 363 3k 3 38 3 36 38 I 20 38 8 3E 38 36 3k 03
THIS ROUTINE COMPUTES THE YOBSERVATIONS' OF THE FORM

INTEGRAL FROM 0 TO X OF =D/DT(FBAR(XsT)) ALL DIVIDED BY FBAR(X,T)

THE ARRAY G STORES THE OBSERVATIONS
R e A A A b A

COMMON K 9AsHsCOF 9D

REAL K(2+51) 9A(3951) sH(51) 4COF (4951) sD(51)
REAL FBAR(NXsNT) 9FBARST (NX9NT) 9G (NXsyNT)
NT=2,
DO 5 T=1,NT

K(lsI)=DT#(I-1a)
CALL SETUP (NTsAsHeK)
NO 2g IX=1sNX
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70

72
73
T4
75
76
77
78

80
81
82
83
84
85
86
87
88
89
90
91

92
93

94
95
96
o7

o8

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

COOOO0O0O00OO00

15

24
25

35

45

55

10

DO 15 IT=1sNT
K(29 IT)=FBAR(IX,1IT)
CALL SOLVE(AsKeHaNT oD COF)
DO 24 J=19oNT
T=DT*(J=1.)
FBARST(IX9J) =3.#COF (1o N HTHT+2,%¥COF (29 J)#T+COF (35J)
CONT INUE
CONT INUE
DO 35 T=19NX
K(leI)=I=1o
CONTINUE
CALL SETUP (NXsAaHsK)
DO 55 IT=1sNT
DO 45 IX=1eNX
K(29IX)=FBARST(IXoIT)
CALL SOLVE (AsKeHINXsDsCOF)
G(lsIT)=0o
X=0eo
NXM1=NX-1
DD=0.
DO 55 J=1¢NXM]
DD=DD=X* (COF (44 J) +X*F (COF(39J) /24 +X¥(COF(2eJ) /3%
X*COF (19J) 74.)))
X=X+l.
DD=DD+X* (COF (49 ) +X# (COF (39J) /2. +X# (COF (ReJ) /3%

2 X¥COF (19J)/40)))
G(J+1sIT)==DD/FBAR(J+1,1IT)
CONTINUE

RETURN

END

SUBRNAUTINE SETUP (NsAgsHeK)

3538 36 A6 38 38 25 38 34 48 38 30 3048 38 20 38 35 48 3E 48 30 35 31 31 4838 F 3E 25 38 30 3835 36 31 35 38 3030 31 34 36 48 36 3 36 34 34 3 40 48 342k 3k 36 303 33003834

THIS ROUTINE SETS UP A TRIDIAGONAL MATRIX A OF THE SPLINE EQUATION
IN A 3 BY N ARRAY =~ FIRST ROW IS SUPERDIAGONAL
SECOND ROW Is DIAGONAL
THIRD ROW IS SUBDIAGONAL
AND THEN DECOMPOSES A TO LU SO THAT
FYRST ROW IS SUPERDIAGONAL OF Us SECOND ROW IS DIAGONAL OF U

THIRD ROW IS SUBDIAGONAL OF Le DIAGONAL OF L IS UNITY
3648 35 3020 45 9436 48 2035 35 8 36 20 48 2 38 35 3840 3 38 3548 b 46 35 20 20 138 30 3640 3 20 20 20 3036 30 0 48 35 3030 31 3H 620 4 36 41 30 3038 4 28 2 36 3

REAL A(3sN)sH(N) sK(29N)

NM1=N=~1

H(2)=K(1s2)=K(1s1)

NO 31n I=2e+NM]
H(I+1)=K(1leI+1)~K(1le1)
A(le D) =H(TI+1) Z(H(I+1) +H(I))

A(241)=240
A(3e1)=1=A(1s1)
CONTINUE

A(1§1)=-2.

A(291)=20

A(B’])':Oo

A(Le)=0,

A(2s) =2,

A(3en)==2,

DO 11 I=2eN
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115
116
117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142
143
144
145
146
147

148
146

OO OOOO0

OO0

11

12

13

14

A(3s1)=A(39I)/A(2+1-1)
A(291)=A(2e1)=A(39I)#A(1eI~1)
CONT INUE

RETURN

END

SUBRNUTINE SOLVE(AeKeHsNeDeCOF)

3b 35 3 34 38 38 36 36 34 3F 36 3t 38 30 35 30 35 3k 4 4 3% 3 3 30 3k 38 35 30 30 3 38 30 38 383 38 48 38 30 38 3k 34 3b 34 35 30 3b 3 38 30 4 3F 34 36 38 35 330 33 6 3 b 3¢

THIS ROUTINE CALCULATES THE SECOND ORDER FINITE DIFFERENCES OF THE

SPLINEs AND THEN SQLVES AM=D s (BY FORWARD AND BACKWARD
SUBSTITUTION) s PLACING M(yECTOR OF SECOND DERIVATIVES) IN D
END POINT CONDITIONS NOW USE THIRD ORDER FINITE DIFFERENCES

TO ESTIMATE THIRD ORDER DERIVATIVES AT X0+H/2 AND XN=H/2
36 3% 30 45 34 35 35 3 20 3 30 38 335 35 35 35 3E 38 3E 38 28 34 3E 38 3 38 3 35 38 36 30 35 36 35 3¢ 35 38 343k 33 34 30 34 36 36 36 30 3 AF 3 30 36 34 3030 3k 34 JE 2 dE 3t

REAL H(N) ¢DIN) s A(39N) 9K (2¢N) s COF (49 N)
D(2)=(K(2e2)=K(291))/H(2)
NM]=N=1
DO 172 I=2¢NM1
NDII+1)=(K(2eI+1)=K(241))/H(TI+1)
D(I) =6 (D(I+1)=-D(I)) /Z(H(I+1)+H(TI))
CONTINUE
D(1) ==2¢#(=K(291)+K(24) +3¥(K(2:2)=K(2:3)))/(H(2)¥%H(2))
Q(N):—Z.*(—K(ZvN)+K(29N“3)+3.*(K(29N“1)“K(29N'2)))/(H(N“l)**a)
NO 13 I=2N
D(I)=D(I)=A(3,1)¥D(I=1)
CONTINUE
DIN)=D(N) ZA (24N)
NO la I=24N
Jz=N+1-1
DN =D =A(Le ) ED(I+1))/A(2sJ)
CONTINUE
CALL POLLY (NsDeKeHsCoOF)
RETURN
END

SUBRNUTINE POLLY (NeMeKoeHye COF)

363448 38 35 36 34 3530 38 1530 3095 36 2138 240 35 35 45 35 3030 35 28 30 35 36 21 30 3530 38 35 30 36 35 36 36 35 34 34 30 38 3540 48 364 35 36 3 3H 0 4L 3090 38 3¢ 3438 3¢

THIS ROUTINE COMPUTES THE COEFFICIENTS OF THE SPLINE POLYNOMIAL
ON EACH SUBINTERVAL

K IS THE ARRAY OF DATA POINIS

H IS THE VECTOR OF SUBINTERVAL LENGTHS

M IS THE SOLUTION VECTOR TO THE EQUATION AM=D
243445 48 25 35 38 36 35 0 3 48 35 35 46 35 3448 30 35 30 30 3448 36 20 44 38 36 30 308 303 36 31 35 3030 00 41 40 303130 3038 030 35 20 40 3030 S 3R A0 303 43031 303t

REAL M(N) 9K {(2eN) s H(N) o COF (49N)

NMl=n=1

NO 11 I=1.NM1

COF (1¢I)=(M(T+1)=M(I))/(6,%#H{I+]1))

COF (PeI)=(K(1oI+1)#*M(I)=K(1oT)*M(I+1))/(2.%H(I+1))
NO=M(T+1)#K (1o II#K (Lo I)=M(I)#K (1o T+1)¥K(1eI+1)
R+2.#K(29I+1)=2.%¥K(2s7)

COF (R I)=(DD/ (2 #*¥H(I+1)))+H(I+1)#(M(I)=M(I+1)) /6,

NPD=M(I)# (K(LoI+1)##3)=M(I+1)#(K(1oI)##3)+6,#¥K(1eI+1)#K(251)
Embe#K (1o I)#K (29I +1)+K (1o I)#M(I+1)#(H(I+]1)##2)~K(1yI+]1)#M(I)*
E(H(T+1)#*#2)
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150
151
152
153
154
155

156

157
158
159
160
161
162
163

164

168
166
167
168
169
170
171
172
173
174
175

176

177
178
179
180
181
182
183
184
185
186

1

1

OO0O006

OO0

OO0

1
6

66

67

76

77

COF (6+1)=DD/ (H(I+1)¥*6.)
CONT TNUE
DO 1A J=1s4
COF (.JaN) =COF (JosNM1)
RETURN

EAD

SUBROUTINE TRANS (NXyNTeGsGT)

36 3¢ 3F 35 36 3E 38 38 3b 3 38 38 30 31 38 36 3 36 38 36 34 36 30 30 35 4o 1 30 38 3 3E 38 3036 30 38 36 38 3k 30 3F 3F 3 3F 36 38 34 34 28 38 38 38 38 48 35 20 28 36 30 3 35 3E 363

THIS ROUTINE TRANSPOSES A MATRIX
35 35 38 28 38 35 38 30 36 38 3F 36 35 38 38 35 36 38 38 3F 38 38 3F 37 38 38 30 38 38 3F 30 30 34 b 30 36 3E 36 38 38 36 36 36 3 36 3F 3638 2 I 3F 3 2 3 W W 3E 3 3E3E 5 2F 3k 3F

REAL G(NXeNT) ¢GT (NTsNX)
DO 65 IX=1sNX
PO 65 IT=1sNT
GT(ITeIX)=G(IXHIT)
CONTINUE
RETURN
END

SUBRNUTINE MULT (NA9NBsAsBsPROD)

36 38 38 38 3t 3t 35 30 3 30 38 3038 36 30 38 38 38 30 38 34 3 38 30 30 35 36 30 3 38 48 30 30 38 35 36 30 36 30 35 30 36 38 36 3 3k 28 b 38 36 38 38 34 36 103k e 30 2F 3k 3L 3E 2 3¢

THIS ROUTINE MULTIPLIES TwO MATRICES
363625 0 35 35 35 3 25 3¢ 35 30 3 35 46 3 3638 36 35 3638 3 38 3¢ 45 3% 38 25 353 38 35 20 30 36 38 38 346 3036 343 45 35 304140 20 30 30 40 31 4 4R 30363030 2400 3¢

REAL A(NAsNB) +B(NBsNA) 9y PROD (NAsNA)
DO A7 IX=1sNA
DO 67 IT=14NA
SUM=A(IXs1)¥B(1,1IT)
DO 66 K=24NB
SUM=SUM+A (IXsK) #B(KsIT)

CONTINUE
PROD(IXeIT)=5UM
CONTINUE
RETURN
END

SUBRNOUTINE EIGEN(PRODsNAgNUEV)

$E 48 3 3 35 36 36 35 48 3035 24 35 30 38 35 3 36 38 30 3030 30 96 35 0 3035 3138 38 3035 20 31 36 30 40 30 36 30 3548 38 35 48 6 300 36 36 3 36 30 10 30 462000 6 34 30 303
THIS ROUTINE FINDS THE DOMINANT EIGENVECTOR OF THE NA BY NA
MATRTX PROD AND PLACES IT IN EV WHICH IS NORMALIZED BY THE

1-NO®M, ITERATION RUNS UNTIL ROUNDING ERROR IS DOMINANT.
38 3% 3¢ 35 38 35 31 31 20 638 38 36 3030 3530 30 30 36 36 30 38 3636 4040 41 3530 038 30 3 36 35 38 3530 41 40 48 48 36 35 95 38 35 35 36 40 48 4 38 36 34 3040 41 0 30 30 40 3

REAL PROD (NAeNA) sEV (NA) o NU(NA)
SUM1=0.
DO 77 IX=14NA
SUM=PROD(IXs 1)
DO 76 1T=2sNA
SUM=SUM+PROD(IXsIT)
CONTINUE
NU (1X) =SUM
SUM1=SUM1 +SUM
CONTINUE
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187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

89

86

87

96

97

FENTRY

ERROQ=1:
CONT TNUE
SUM2-=0.
NO 87 TIX=1sNA
SUM=PROD(IX+1)¥NU(1)
NO 86 IT=2sNA
SUM=SUM+PROD (IXe IT)#NU(IT)
CONTINUE
EV(IX)=SUM/SUM]
SUM2=SUM2+EV (IX)
CONTINUE
SUM] =0,
ROUNN= ¢ S#ERROR
FRROR=0.
DO 97 IX=1,NA
SYM=PROND (IXe 1) #*EV (1)
DO 96 IT=2sNA
SUM=SUM+PROD (IXs IT)#EV(IT)
CONT INUE
NU (T X) =SUM/SUM2
SUM1=SUM1 +NU (IX)
ERROR=ERROR+ABS (EV (IX)=NU(IX))
CONTINUE
IF (FRROR.LT«30UND) GOTO 89
RETURN
END
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>

b

[ S

D (X)

ACT)

D(X)

e
1.000000
1.398163
0.923773
FROM
0,000000
0,012500
0025000
0,037500
0050000
0.062500
0.075000
04087500
0,100000
0.112500

0.125000

0,997756
1.,399143

0.921801

0.,000000
0.012487
0.024975
0037463
0,049950
0.062437
0.074924

0.087410

OBTAINED

OBTAINED AS

1.130877

1.343718

0.002500
0.015000
0027500
0040000
0.052500
04055000
02077500
0.090000
04102500

0115000

FROM 11
1.130877

1.365165

0.002437
0.014985
0027473
0+039960
0.052447
0064934
0.077421

0.0R9907

TR LLUDRD PUNRM LD

1.247348
1.289234

THE CLOSED FORM IS

0.005000
0.017500
0030000
0042500

0055000

0067500

BY

0080000
0.092500
0.105000
0117500

1.336588

1.182909

0,007500
0,020000
0.032500
0.045000
0.057500
0.070000
0.082500
0095000
0107500
0.120000

11 MATRIX IS

1.248731 .

1.290611

04004990
0.017483
0.029970
0042457
0054945
0067432
0.079918

0092403

1.339316

1.183847

(G(XeT) s A(T))/(A(T) 4A(T))

0.007491
0.019980
0.032468
0044955
0057442
0069929
0.082415

0.094899
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1388775

1.056447

0.,010000
0.022500
0.035000
0047500
0060000
0.072500
0085000
0.097500
0-.110000
0122500

1.390486

1058285

0.009990
0.022478
0034965
0.047452
0.,059939
0.072426
0.084913

0.097395



- 0.099892 0.102386 0.104882 0.107379 0.109874

00112368 0.114861 0117357 0.119841 00122342

0124579
" CORE USAGE 0B.1IECT CODE= 12528 BYTES,ARRAY AREA= 12156 BYTESsTOTAL AREA
DIAGNOSTICS NUMBER OF ERRORS= 0s NUMBER OF WARNINGS= 09 NUMBER
Y OMPILE TIME= 4,75 SECSEXECUTION TIME= 20,16 SECy QUEEN®*S WATFOR VERSION
COST FOR THIS PROGRAM IS % 183 RUN IN HSC MAR 21y 1974




Program IV

It is expected that available data will be in the
form of a histogram: that is, for population the number
of individuals between the ages of x and x + h vyears
is known. To generate a density function for this
histogram; a fourth order spline approximation routine
is used. To investigate the accuracy of the scheme, the
histogram is regenerated by integrating the spline

constructed.
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10

12
13

14
15

16
17

19
20
21
22

23
24
25
26
27
28

30

31

32
33
34
35
36
37
38

39

JLH

OO0 ¥

100

101

106

1n2

25

OO D

OO O0O0

26

AUL | «NUMy VERNERe | LME=DU

3438 35 3b 48 34 35 3¢ 38 30 35 35 35 38 3b 3% 3 4 36 36 35 35 38 3F 35 25 45 3 38 34 25 30 26 30 3¢ 36 3 36 3H 30 31 36 24 36 30 3 35 30 2845 30 36 36 35 38 3 440 2 30 35 38 38 3040 4
THIS ROUTINE USES A POPULATION HISTOGRAM TO GENERATE A POPULATION
DENSTTY FUNCTION USING A FOURTH ORDER SPLINE APPROXIMATION

H46 35 35 26 36 3t 35 45 38 34 35 38 46 36 4% 36 35 35 23F 35 3 48 35 34 45 38 35 58 26 36 30 4630 48 38 33040 36 45 35 3£ 38 26 35 3 38 31 24 40 35 3 48 35 30 48 36 30 48 36 98 38 30 48 3
REAL A(30399)9P(100)9Q(303)9P0

INTEGER ToJsKegTNgTOsTT

INTERER T3
RRRARPRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRAR]IRRRRRRRRF
READ(S,100) TN

FORMAT (I3

REAN(5¢101) (P(I)e I=1l9o1N)

FORMT(10FB.0)
RRRRRRRRRRRRERRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRF
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF
WRIT<(6s106)

FORMAT(%17)

PRINT, 'THE GIVEN POPULATION IS¢

PRINTs ¢ ¢

WRIT (6s102) (P(I)el=1lsiN)

FORMAT (' 1510F8.0)
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTI
TO=n

T3=3x(TN=TO+|)

CALL ISPLIN(ASTO9sTNeT39PsQ)

CALL CHECK(PsQsT3sTN)

P(1)=Q(3)

B(2)=0(5)

DO 25 T=3«10N

P(I)=Q(3%#I=2)

CONT INUE
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTY
PRINT. v 8
PRINVTe v ¥
PRINTs "THE POPULATION DENSITY AT AGES 0919290600999 IS¢
PRINGS ¥ 0
WRITC(hel02) (P(I)el=lyelN)

WRIT (H41086)
DRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTI
PUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHY
WRTIT=(7+101) (P(I)sI=1s1TN)
PUNCHPUNCHPUNCHPUNCHRPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHY
STOP

Fiyi

SUARNUTINMNE CHECK(PsQeT3eTN)

**‘;5"3'(*******ﬂ'ﬂ"ﬂ'**********‘***************************%****‘H’**?%%@ﬁ%{?*‘l

THIS SUBROUTINE REGENERATES THE POPULATION HISTOGRAM FROM THE

DENSTTY FUNCTION BY EXACT INTEGRATION OF THE FOURTH ORDER SPLINE.

HENCE THE FEFRORS ARE THOSE SUFFERED AS A RESULT OF ROyUND=OFF ERROI

**s?*{}wsr*******‘A‘#**‘N’**********‘%*****%******ﬂ***ﬂ**%ﬁ'*%%%**%*@?ﬂ’%%ﬁ'*"

INTEARFR T34TN :

REAL Q(T3)«P (TN)

P(1)=(Q(3)+0(5)) /2.~ (L (2)+Q(4))/24,+Q(6) /120

D(2) = (QI7)+Q(5)) /2.=(Q(B) +Q(4)) /24.+Q(9) /120,

NO 24 TI=3,THN

PO =(Q(3%T+1)+Q(3%T1=2)) /2= (Q(3#T+2)+Q(3%I=1)) /24.+Q(3%]1<¢3) /120
CONTINUE

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTI

PRINTy 0
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40
4]
42
43
iy

45
46

47

48
49
50
51

52
53
54

56
57
58

59
60
61

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80

81

87

83

DTOOOO00D

O

102

103

104

30

31

32

PRTIiNTe v ¥

PRINTs 'THF PORPULATION REGENERATED FROM THE FOURTH ORDER SPLINE 1S9
PRINT, *

WRITC (64102) (P(1)eI=1sTiN)

FORMAT (" 94 J0FR.0)
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTF
RETURN

END

SUBROUTINE CKREATE(A+TOsTNsT3sPoQ)
3636 35 36 35 35 36 36 38 36 38 30 35 3835 38 35 4537 35 35 38 35 46 3% 35 35 31 35 98 30 36 38 35 45 3 48 46 45 45 98 4540 35 48 40 38 35 46 3146 36 35 45 40 S 14 I 2B ML G AL S0
THIS ROUTINE CREATES THE INITSPLINE MATRIX FOR APPROXIMATING
A DENSITY FUNCTION GIVEN SUBINTERVAL INTEGRALS
THE JINKNOWN VALUES W(I) ARE THE VALUES R&(0)sR2(0)sR{0)eR2(1) >
RI1) «R4 (1) 9eR(2) sR2(2) sR4{2) 906+9R(I)sR2(2)9R4(1) 9000
R(TO) #sR2(TO) +R4(TO) ,
AOUNNARY CONDITIONS ARE Ret (Q)=R9 1 (0)=R(100)=R*?(100)=0
3036 20 3 34 SH3E I IE 3L I FE2E 3P M 46 30 R JE b 3E P AL P JE 3 R 5 3E I FE 3P 2 e e e e b db e b e de W I E H VIR A AE P PN AP FE AL B R
INTEGER TeJsKeTNeTOsTT T
INTERER T3
REAL A(T3+9) 3P (TN) s Q(T3)
NG 3r T=1413
RRRPORRHARRNKRRIRRRRRRRKRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRF
READIR.103) D
FORMAT(F10e4)
“EAD(5+9104) (A(TsJ)ed=]199)
FORM-T(9F 3.49)
NG 3. J=1e9
A(Ja ))=0(TeJ)/V)

CONT INLE
QRQRDNRRRQRHRRRRRRRRRRRHRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR@
TV=7 -~T0-1 |
NG 31 I=asT1 |

O 31 J=149 ‘

A(2+3%#T4J)=A(114J)
A(3+3%T4J)=A(124J)
A(4+3%T4J0)=A(134J)
CONT INUE

TT=T1+1

READ (S9104) (A(3%TT+29J) 9J=1,+9)

READ (S 104) (A(3%TT+39J) 9J=149)

NI=TO+2

N0 32 I=M1WTT

Q(3%T~1)=0.

Q(3%71)=0a

Q(3%T+])=2¥%P (1)

CUNT INUE
N{1)=0.

N(2)Y=0,

Q(3) =2%P(T0O+1)
Q(l{-) ‘700
N(3#TT+2)=0.
N(3*TT+3)=0.
RET N

Fian

SUBRAUTINF ISPLIN(AsTUs INeT3,P4Q)
3 3 3048 36 38 46 38 30 26 38 3 36 36 38 35 30 38 20 36 3040 3 3 30 36 38 30 3648 41 4% 30 3448 3 35 35 90 20 36 36 3020 40 440 3030 3540 20 30 4 40 40 30 40 4R GR SR b aH AR 2

THIS ROUTINE SOLVES THE INTEGRAL SPLINE PROBLEM FOR A POPULATION
38 45 48 46 38 36 48 3% 35 36 36 58 3 56 3t 38 38 SE 30 57 28 30 20 26 30 48 35 45 31 36 3530 40 35 30 36 4036 38 35 45 40 3538 30 98 30 38 36 35 30 3130 36 404040 30 20 3 AL 0t &
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¥y INTEAFR TO 9TNeTedeK oT1

8% INTERER T3
86 REAL A(T3+49) sP(TN) e Q(T3)
87 CALL. CREATE(A4TOyTNsT3¢PsQ)
B& N 33 T=1,T3
89 (D) =0CI)/A(T+5)
S0 N 34 J=6H49
9] A(LeJ)=A(IeJ)/A(]1s5)
97 34 CONT INUE
03 A{Te=) =]
94 NN 33 K=],4
95 TF((T+K) .GTLT3) GOTO 33
96 QUI+K) =Q(I+K) A (I +K ¢y 5=K) #Q (I)
97 N0 35 J=245
98 A(T+Kea=K+J)=A(1+Ks4=K+J)=A(I1¢KeS=K)#A (T9&eJ)
99 35 CONT INUE
100 A(T+Ko¢5=K) =0
101 33 CONT INUE
C S84 30 5B 3p 30 3 3 36 I8 38 Sk 3F 34 3 3% 38 b 5 30 30 40 30 0 38 30 48 3F JE 30 3L P 45 30 3E 30 IR 3E B3R 2 3P 3L Ab AE AL 2R 2 3 AP e SE I I AP IS W M P AL
C RACKSUBSTTTUTION
(: 383540 30 36 30 3E 3b 36 e db 3 S b JH 2 I 3 3 I I I A E 3 I A F L A S I L P 4L P e 3P 3E A 3L S W I W W I P W W S b
102 N=33%# (TN=TO+1)
103 Q(N=1)=Q(N=1) =W (N)*A(N=]9K)
104 Q(N=2) = (N=2) = (Q(N) A (N=247) +Q(N=1) #*A (N=296) )
108 Q(N=) =0 (N=3) = (Q(N) ¥4 (N=398) +Q(N=1)*¥A(N=357) ¢Q(N=2)#A(N=3¢6))
106 N0 36 I=%4N
107 K=N=T+]
108 N0 36 J=le4
109 Q(K)=Q(K)=A(KesS+J) #Q(K+J)
110 36 CONTINUE
111 RET M
112 END
FENTRY
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THE GIVFEN POPULATIOM

1023102.,1000000.

971804,
951483,
924609,
, 883342,
810900,
677771

P 454548,

—

181765,
21577,

9698H0,
949171,
921317,
877883,
800910,
659749,
427593,
157799,

15514,

IS

3994230,
9430738,
94‘\789@
917880,
BT2098,
79n282.,
6541761,
4”01120
135297,

1+A33,

990114,
966179,
944337,
914282,
R65967,
773981,
620782
372240
114640,

7327,

936767,
964266,
941806,
910515,
459464
766961,
599824,
344130,
95378,
4787,

9u3817,
962270,
939197,
906554,
852554,
754191,
577882,
315982,
78221,
3011,

THE POPULATION REGEWERATEN FrROM THE FOURTH ORDER

_1023102.1000000,

S

971804,
951483,
924609,
883342.
810900.
677771,
454548,
181765,

21577,

969890,
949171,
921317.
B77883.,
800910,
(59749,
427593,
157799,

15514,

894230,
961038,
GunT789,
917880,
872098,
790282«
6407610
4001126
1335297,

1"833~

THE POPULATION DENSTTY

1038460.1008672.

« 972804,
952623,
926209,

£ pg5972,
815694,
686464,
467817,
194185,

25119,

970830,
950337,
922987,
880664,
806008,
668919,
441169,
169555,

18298,

995297,
96396y,
947992,
919042%,
875047,
795705,
65n419.
4113929,
lan28d,

12960,

990114,
966178,
944337,
914282,
B65967,
T7898) .
620782.
372240,
114440

7327

AT AGES

962581 .
967114,
945576,
916109,
R69092,
T84748,
630936
386229,
124581.

HI01.

986766,
9642660,
941806,
910515,
859464,
766961,
589824,
344136,
95378,
4787,

felelee

98R8103.
965234,
943085,
912429,
He2781.
173094,
blnabo,
35R212.
1045969,

5914,

983816,
962270,
939197,
906554,
Bo2554,
754191,
577882
3159382,
18221,
3011,

ee 999

985351
963284,
940516,
908568,
856079,
760704
589017,
330052,
86475,
3786,
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IS

981102,
960201,
936492,
902393,
845214,
740631,
554975,
287973,
63036,
1818,

978541,
958098,
933692,
898007,
837413,
726241,
531133,
260322,
49838,
1005,

SPLINE IS

981102,
960201,
936492,
902393,
845214,
7406316
554975,
287973,
63036,
1818,

952383,
961243,
937861,
904509,
848958,
747547,
566587,
301936,
70297,
2334,

978541,
958098,
933692,
898007,
837413,
726241,
531133,
260322,
49838,
1005,

976819,
959156,
935108,
900240,
841394,
733577,
543207,
274070
56107,
1363,

976124,
955942,
930788,
893382,
829114,
710990,
506403,
233251,
38593,
454,

976124,
955942,
930788,
893382,
829114
7109900
506403,
233251,
38593,
4654,

977299,
957028,
932259,
895735,
833348,
718762,
518911
246671,
43896,
688,

973869,
953743,
927763,
888504,
820292,
694843,
480850,
206989,
29215,
125,

973869,
953743,
927763,
888504,
820292,
694863,
480850,
206989,
29215,
125,

974970,
954851,
929297,
890988,
824794,
703069,
493758,
219966,
33602,
262,




CORE USAGE QR IECT CODE= 6336 BYTESsARRAY AREA= 12520 BYTESSTOTAL AREA

DIAGNOSTICS NUMBER OF & RRORS= 0s NUMBER OF WARNINGS= 09 NUMBEF
" COMPILE TIME= 2.31 SECEXECUTION TIME= 1233 SEC» QUEEN®S WATFOR VERSIOM

T COST FOR THIS PROGRAM IS % 119 - RUN IN HSC MAR 195 1974
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