DEPARTMENT OF MATHEMATICS

An Interim Report to the Ministry of State for Science and Technology

on

THE QUEEN'S MATHEMATICS DEPARTMENT POPULATION MODEL

by

J. Davis and J. Verner Queen's University, Kingston, Ontario Queen's Mathematical Preprints No. 1974-8

Queen's University

AT KINGSTON ONTARIO, CANADA

HB 885 .D34 2 An Interim Report to the Ministry of State for Science and Technology

on

THE QUEEN'S MATHEMATICS DEPARTMENT POPULATION MODEL

by

J. Davis and J. Verner Queen's University, Kingston, Ontario Queen's Mathematical Preprints No. 1974-8

29282

MINIST MINIST BITEL	RY C	DE STATE D'ETAT
MAR	3	1976
SCIENCE AN	D T	ECHNO: OGY

HB 885 .D34 Dr. A.R. Demirdache, Director, Technological Forecasting and Technology Assessment Division, Ministry of State for Science and Technology, Ottawa, Canada.

Dear Dr. Demirdache:

I have pleasure in forwarding to you herewith an Interim Report on the work undertaken by this Department in response to your request for input towards the Canadian contribution to the work of the International Institute for Applied Systems Analysis.

You will recall that you asked us to attempt to model the growth of population in Canada, by means of a model involving coupled systems and non-linear differential equations. The importance of the Model derives from the fact that population studies are an indispensable building block in any attempt to study national socio-economic problems with the accuracy necessary to form a basis for policy decisions.

The work on this Model has been carried out principally by Professors Jon Davis and James H. Verner of this Department. As you will see, they have broken new ground in applying relatively sophisticated methods which have not hitherto been deployed on population studies, and they have devised computer programmes to display the distribution of population in age and time in a very graphic manner.

I remind you that in the agreement between us, the right of publishing the details of the procedures contained in this Report in scientific journals has been reserved to Professors Davis and Verner. They would wish me to emphasize strongly their evaluation of the present work as being highly preliminary, and they would caution against any attempt to make exaggerated claims for their model in its present state.

Even so, I trust that you will agree with my view that they have demonstrated that there are extremely worthwhile possibilities in their method, which should be pursued vigorously.

Yours faithfully,

A.J. Coleman, Head, Department of Mathematics.

i.

Contents

	Letter of Transmittal	i.	
	Abstract	iii.	
I.	Introduction	p.	1
II.	Structure of the Model	p۰	4
III.	Derivation of Model Equations	p۰	8
IV.	Model Estimation Methods	p•	20
V.	Simulation Trial Examples	p.	26
VI.	Future Work	p.	32

Appendices

Α.	Analytical Properties of the Governing Equations	p.	36
Во	Numerical Methods for Solution of PDE/ODE System	p.	44
С.	Numerical Methods for Coefficient Estimation	p.	50
D.	Computer Program Listing	p•	59

Abstract

The Queen's Mathematics Department population model is a dynamic model for simulating the evolution of a population distribution as a function of age and income level.

The basic structure of the model is such that birth-rates may be generated within the model as <u>endo-</u><u>genous</u> variables. This allows the inclusion of feedback effects from the population distribution to birth and immigration rates, and so provides a capability for simulations valid over longer time intervals than are possible with <u>exogenous</u> birth and immigration rate variables.

The model has been constructed with two main issues in view. The first is that of compatability of this model with other models with which it might be combined. This requirement dictates a modular structure described in this report. The second issue is the problem of parameter estimation in the model. The model has been formulated in such a way that estimation is made possible.

Effective numerical algorithms for these estimations based on available data formats are also reported.

iii.

A description of work that remains to be done in order to complete development of the model is also included.

I. Introduction

Models of population growth form an essential part of any attempt at large scale socio-economic modelling. The age and economic level structure of the population has a direct bearing on various government service requirements ranging from elementary schools to pension plans, as well as the economic base available to support such programs. For this reason, it is essential that population models capable of simulating behaviour over a reasonable length of time be investigated.

Traditional demographic methods project population estimates forward in time by means of an aggregation procedure, followed by a linear extrapolation procedure based essentially on a Markov-chain type of model. Such methods are reasonably accurate over the relatively short term; however, the model structure is such that the fertility curve (the agespecific distribution of the birth-rates) is treated as an "exogenous variable" which must be specified for Some attempts (the so-called "cohort each run. method") have been made to include in the model the observed fact that birth-rates do vary over time, but the problem of extrapolation birth-rates forward in time in order to increase the length of time that model

- 1 -

results are valid remains.

It is clear that <u>many</u> factors affect birth-rates: economic conditions, perceptions of future economic conditions, ecological concerns, a host of other factors affect birth-rates to a greater or lesser effect. It is also clear that present population structure affects in turn the economic climate, and the general environment. The present population is in turn the result of past birth-rates (and immigration).

The conclusion of the above observations is that it is impossible to decouple the dynamics of the birthrates from those of the population structure without compromising the long term validity of the model simulation. In effect, there exists a feedback path from population structure to birth-rates which may not be ignored over the long term. (This does not imply that such decoupling, based on assumptions that certain factors "vary slowly with time", detracts from the usefulness of models intended for use over relatively short time periods).

The model discussed in this report represents an approach to the problem of including the dynamic feedback effect mentioned above in a simulation model. More specifically, this report contains the results of some work on what we regard as the <u>basic</u> structural

- 2 -

elements and problems associated with models of this sort.

The structure and "philosophy" of the model is discussed more fully in Section II.

It was determined early in our investigation that partial differential equations were an appropriate component of the model - in fact, it is hard to consider the effect of the "baby boom" without coming to the conclusion that a wave equation occupies a central position in a model of population distribution. In work on any dynamical model it is necessary to determine numerical values for parameters occurring in the model equations before any simulation may be carried At worst, these parameters may have to be out. guessed; obviously it is much more desirable that the parameters be estimated from historical records of the phenomenon being modelled, if possible. The latter procedure provides an indirect means of assessing the validity of the model.

In the case of models governed by partial differential equations this estimation problem is even more severe, as it is often necessary to estimate not just a finite set of parameters, but a function of one or more independent variables. Aspects of this problem are reported in Section III and Appendix C.

- 3 -

Once parameters and functions have been estimated from the available data, it is possible to simulate the system on a digital computer. This, of course, involves the solution of coupled systems of ordinary and partial differential equations by numerical methods. It is necessary to investigate the effects of the numerical methods used on the accuracy of the results obtained, in order to ensure that the behaviour of the model is a result of the actual "dynamics" of the model itself, and not the result of instability caused by inaccurate numerical methods. The difficulty of this problem is again increased by the fact that partial differential equations are involved. The work in this area has been checked by use of certain exact solutions to the governing equations (Appendix A) and is described in Section V and Appendix B.

II. Structure of the Model

It is helpful in describing the structure of the model presented here to explain briefly the general philosophy of "modelling" that the authors of this report hold, and which has had a strong effect on the structure adopted for the model discussed here.

In the first place, we feel that a main product of <u>any</u> modelling and simulation effort should be

- 4 -

<u>insight</u> into the behaviour of the phenomena being modelled. Perhaps the worst fate that can befall any model is that it be used to generate one set of trajectories which are then canonized as "the predictions" of the model (or worse yet, of the computer used to generate the output). Rather, the use of a model should itself be a dynamic process. It is certain that better data regarding the variables involved in a model will become available in the future, and it is only prudent that this data, if possible, be used to improve any "forecasts" made using the model.

It is also rather likely that there are alternative opinions regarding the <u>actual structure</u> of some sections of any given model. In this situation, it is essential that simulations be run incorporating these alternative opinions, rather than selecting one arbitrarily and incorporating it permanently into the model. It is only by simulating each of the reasonable alternatives (a matter of judgement is involved here) that any true insight into the behaviour of the system as a whole can be gained; this includes an appreciation of the range of results which might be expected under reasonable alternative models.

These considerations suggest at least that a useful model must have sufficient flexibility of structure

- 5 -

to accommodate changes of the sort mentioned above. In order to build flexibility of this sort into a model, it is <u>necessary</u> to identify a basic dynamical core around which the model may be constructed.

The basic core of the model in this paper consists of equations for the evolution of the population distribution, and for the evolution of the fertility curve over time.

As was mentioned in the previous section, it is clear that economic conditions interact with the current population distribution and other factors to produce the current instantaneous birth-rate. It is also clear that the exact nature of these interactions is complicated and probably poorly understood in total, although some progress in this direction may be made by various methods. On the other hand, the evolution of the population distribution may be described (see the following section) by a partial differential equation of the conservation law type. Also, by looking at birth-rate records, it is possible to argue that the evolution of the fertility curve is also adequately modelled by a relatively simple partial differential equation. Furhter, the structure of these sections of the model is independent of the details of economic and other interactions which combine to affect birth-rates.

- 6 -

These considerations have led us to the decision to base the framework of the model on the dynamics of the population distribution and of the fertility curve. This leads to an overall model structure which may be represented in the "block diagram" form illustrated in Figure 1.

Figure 1.

- 7 -

This block diagram includes a section labelled economic dynamics. It is judged that the exact form of this section will be the subject of some debate, and that repeated simulations with varying socio-economic models will be required. It is expected that models with a relatively long time horizon and moderately high level of aggregation will be found most appropriate. In particular, models of the "Candide" type with high levels of detail and relatively short (eg. ten year) time spans are not felt to be appropriate. As work up to the time of the writing of this report has been concentrated on problems associated with core section of the model. problems in this particular area require further study.

III. Derivation of Equations of Dynamic Core

The core of the model consists of two partial differential equations: one for the evolution of the population density as a function of time, age, and income level, and one for the evolution of the fertility curve (i.e. the curve of age and income specific birth-rates). These two equations are coupled in a non-linear fashion, although the non-linearity appears <u>only</u> in the boundary conditions for the population equation. This fact is of considerable use in connection with the estimation problems discussed in the following section, and makes

- 8 -

the derivations presented below simpler than might otherwise be the case.

A. Population Distribution Evolution

The model presented below is formulated as a basically deterministic model, and processes are modelled as occurring continuously in time on a macroscopic level, even though on a microscopic level the events may occur at discrete intervals of time. In this connection, a first step is to recognize that an averaging process is taking place whenever what are essentially discrete events are "smeared out" and modelled continuously in time. This process is illustrated by the use of death-rates in population models, decay rates in radioactive decay problems, and, in the derivation below, of an economic mobility u . In these cases, the use of such rates essentially distinguishes between deterministic and stochastic modelling approaches.

The equation governing the population distribution may be derived readily from what are essentially counting or bookkeeping methods. This is most easily demonstrated by the derivation of a simple model of population as a function of age x, <u>neglecting</u> <u>death-rates</u>, <u>immigration and any other variables</u>. In this case, the appropriate counting argument is

- 9 -

essentially that the number of people at age x at time t is the same as the number of people at age $x - \Delta t$ at a time Δt units earlier: In terms of population density p , this becomes

-- -- -

$$x + \frac{\Delta x}{2} \qquad x + \frac{\Delta x}{2} - \Delta t$$

$$\int p(x,t) dx = \int p(x,t-\Delta t) dx$$

$$x - \frac{\Delta x}{2} \qquad x - \frac{\Delta x}{2} - \Delta t$$

which for smooth densities p is essentially

- --

$$p(x,t) = p(x-\Delta t, t-\Delta t)$$

or
$$p(x,t) - p(x,t-\Delta t) = p(x-\Delta t,t-\Delta t) - p(x,t-\Delta t)$$
.
Dividing the above by Δt and letting $\Delta t \rightarrow 0$ results

in the partial differential equation

$$\frac{\partial p}{\partial t} = - \frac{\partial p}{\partial x}$$

- 10 -

As is well known, the general form of solution to the above is $f = \varphi(t-x)$, with φ an arbitrary function which must be evaluated from the boundary conditions appropriate to the problem. The appropriate boundary condition is that

$$p(x=0,t) = \beta(t)$$

where $\beta(t)$ is the birth-rate of time t . That this is the appropriate boundary condition may be verified by noting that this gives the solution

 $p(x,t) = \beta(t-x)$,

which says essentially that the number of people at age x at time t is the number of people born at time t - x, i.e. x years before time t . This of course is entirely evident from the assumptions made above.

The model considered in this paper includes a partial differential equation for the population density p(x,s,t) as a function of the three variables age x, income s, and time t. As will be shown below in Appendix A, it is unnecessary to specify at this point the units involved in the income scale s , that is, whether s represents net income, disposable income, or some other measure. This is so because the <u>form</u> of the governing equation is invariant under a (nonlinear) change of income scale, so that the units involved become an issue only during the processing of data for estimation purposes. This fact is a pleasant surprise which naturally arises out of the structure of the model equations.

To derive an equation for the population density on a realistic basis, it is necessary to account for effects neglected in the simplified model above, in particular to introduce terms

i(x,s,t)

representing the immigration rate (as a function of age, income level, and time), and the death-rate

r(x,s,t) .

It is also necessary to introduce a term which accounts for the change of income level of various segments of the population over time. To accomplish this,

- 12 -

we introduce an economic mobility function,

Even though income levels of individuals on a microscopic scale undergo changes at discrete instants of time, perhaps modelled by a Poisson process, on the macroscopic scale of its influence on the income distribution we model the effect as one of a continuous flow across income levels. With this effect in mind, a term of the form

$$u(\mathbf{x},\mathbf{s},\mathbf{t}) \cdot \Delta \mathbf{t}$$

has an interpretation as the fraction of people at income level and age x crossing through level s in the time interval from t to $t + \Delta t$.

With the above definition of terms, it is easy to use a "counting argument" entirely similar to the one above to arrive at an equation representing the evolution of population density. The result is

$$\frac{\partial p}{\partial t} = -\frac{\partial p}{\partial x} - \frac{\partial}{\partial s} (\mu(x,s,t)p) - r(x,s,t)p + i(x,s,t)$$

- 13 -

Just as in the above derivation, it can be seen that the appropriate boundary condition for this equation is again

p(x=0) = birth-rate.

There is a technical problem associated with this boundary condition, since taken literally it demands the assignment of an income level to babies at birth. In fact, the model as formulated above is capable of propagating income level migration through childhood. \mathbf{It} is clear that such a procedure makes little sense; however, the problem may be avoided rather easily by the following device. The income distribution at x = 0may be set equal to that at the age of entry into the labour market. If the economic mobility is equal to zero for values of age x less than the labour market entry age, then the income distribution will remain constant for ages less than entry at the values of the entry distribution. Income distribution data generated by simulation runs may then be considered only for ages greater than an age of entry into the labour market, and no further modification of the model is required. The income distribution at entry age must be generated as part of the economic section of the model, and this

- 14 -

effect comprises one of the feedback paths from the economic to population distribution sector shown on Figure 1.

Other effects of this sort, for example, an effect p on the economic mobility u of , are implicitly contained in the time dependence of . As will be u seen below in the section dealing with estimation problems associated with the model, there are substantial theoretical and practical benefits which follow from modelling the income migration process as above. In particular, it is then possible to devise numerical methods to estimate u from observed population disttribution data.

B. Fertility Curve Dynamics

Although the observation that socio-economic conditions, social attitudes, and so on, exert an effect on birth-rates is a common one, there seems to have been little effort made to quantify these effects in a dynamic model. Undoubtedly, a major reason for this is that it appears impossible to "derive" such a set of relations in the sense of the derivation outlined above for the population density dynamics.

For this reason, we have decided to approach this

- 15 -

problem as one in system identification. That is, we attempt to formulate the problem in such a way that the problem is reduced to that of estimating a dynamical relationship between a relatively small number of variables. This in <u>itself</u> is a major reduction, since in principle a fertility curve is an element requiring an infinite number of numbers for its specification.

This first reduction may be obtained by examining typical historical records of the behaviour of fertility curves over time (See Figure 2). A first observation is that the curves are all of roughly the same shape. An examination of their differences shows that their peaks slide from age to age over time, and that the area under the curve, representing the total birth-rates to be expected from a uniformly distributed population, varies over time.

A simple partial differential equation capable of reproducing this observed behaviour has been adopted as the basis for the fertility curve dynamics. This is

$$\frac{\partial f}{\partial t} = -a(t) \frac{\partial}{\partial x} (d(x)f) - b(t)f \quad .$$

The first term in this equation produces the effect of the shifting peak, while integrating the

- 16 -

equation with respect to x shows that b(t) is the percentage change of the area under the fertility curve per unit time. <u>An equivalent interpretation is that it</u> <u>represents the percentage rate of change of average</u> <u>family size</u>.

The justification of the representation of the fertility curve dynamics by the above equation may be carried on in several ways. In the first place, the interpretation given b(t) guarantees the presence of the term b(t)f in virtually any such equation. The appropriateness of the term representing the "shifts" may be supported on the basis of a time scale argument, combined with the fact that the model fits the observed data reasonably well. The "shifts" occur in the data on a time scale considerably faster than that of the dynamics of the population section of the model. In fact, the shifts appear correlated with variations in the economic climate, recessions, rising and falling unemployment, and the like. Since these effects are expected to be introduced into the model most likely on the basis of "standard" econometric and business cycle models, it is anticipated that it will be possible to include the function a(t) and its dynamics in this section of the model. The dynamics of a(t) are to be

- 17 -

identified by means of either the usual econometric model identification techniques, or more recent work in the area of control theory. Since this identification problem presupposes knowledge of the term d(x), work in this area is dependent on solving the problem of estimating d(x), and applying the algorithm for this purpose is described in the following section.

Comments similar to the above also apply to the problem of determining the dynamics governing the term b(t) , although it is suspected that this will be even more difficult than the above process. This is so because b(t) is dominated more by social attitudes, education, and other effects much less easy to quantify than economic ones. It is felt that this area represents an example of the need for alternative sub-models and repeated simulations discussed above in Section II in connection with the overall structure of the model.

While the above discussion has been carried through as though the fertility curve were independent of income, an entirely similar derivation is possible on the basis of an <u>income dependent fertility curve</u>. If one also allows the possibility that the economic interactions occur unevenly across income levels, then the appropriate equation is

- 18 -

$$\frac{\partial t}{\partial t} = -\frac{\partial}{\partial x} (a(x,s,t)f) - b(s,t)f$$

Because of the meaning of a fertility curve (or surface, if s is included as an independent variable) as an age (and income) specific birth-rate, the formula for the total birth-rate is simply

$$b(t) = \int f(x,s,t) p(x,s,t) dx ds$$
.

No mention has been made in the above derivations of any geographical aspect of the problem. There are, however, some restrictions implicit in the derivations of the model equations. It is clear that certain of the quantitites involved in the above equations vary with geographical locality. From this, it is obvious that the model must be applied separately over geographical areas between which the relevant quantities vary. To obtain an overall model, then, internal migrations must then be included in the immigration rates of the models for each geographical region.

There is also implicit in the model derivation as assumption of a sufficiently large sample population, so that the modelling of the immigration, death, birth, and economic migration processes as continuous is valid.

- 19 -

IV. Model Estimation Methods

The dynamical equations governing the core section of the model derived above involve various auxiliary functions, namely: death and immigration rates, an economic mobility function $\mu(x,s,t)$, and functions a(t), b(t) and d(x) determining the evolution of the fertility curve. Before it is possible to produce any simulation runs with the model, it is necessary to determine suitable estimates of these functions.

Generally speaking, this problem of parameter and function estimation is one of the most difficult ones involved in the construction of any model. Consideration of the conventional techniques of econometric modelling makes obvious the amount of effort which is expended in this area. In fact, with a certain amount of injustice one might view much econometric modelling as consisting of the development of schemes for the recursive estimation of parameters for short term (often linear) extrapolation models. This view ignores the effort involved in determining the extrapolation model whose parameters are to be estimated, but the fact remains that there continues to be much work on the development of regression - estimation methods in this area.

At practically the opposite end of this problem stand models of the sort proposed by Forrester and his

- 20 -

associates. One of the most consistent criticisms levelled at Forrester's World and Urban Dynamics models is that practically no attempt has been made to estimate the parameters and functions involved in the models in any "realistic" fashion.

This apparent gulf between the Forrester models and conventional econometric models is, in our view, a large contributing factor to the hostile reaction Forrester's models have received in some quarters. It is also a gulf that is not easily overcome by philosophic discussions about differences of purpose between the two approaches.

In the case of the present model, it happens that considerable progress can be made in estimating the functions that are involved in the model of the core dynamics. Of course, this is not entirely unexpected, since an effort has been made to formulate the dynamics of the core in terms of variables which may be readily measured. Also, our definition of what constitutes the core dynamics of the model virtually assures that it must be possible to produce useful quantitative estimates of the functions involved.

The functions r(s,s,t) and i(x,s,t) in the population model are just death and immigration rates, so there is no problem in obtaining historical records of

- 21 -

these. Similarly, the function b(t) may be readily determined on the basis of its interpretation in terms of area under the fertility curve.

This leaves just the terms $\mu(x,s,t)$ in the population equation and a(t) d(x) in the fertility equation to be determined. It can be seen that each term enters its equation in an analogous way, so that an estimation method can be derived which can be used to estimate <u>both</u> the economic mobility u(x,s,t) and the term a(t) d(x) in the fertility equation.

It is shown in Appendix A that the form of the partial differential equations is such that an integrating factor may be introduced to reduce the problem to that of estimating $\mu(x,s,t)$ and a(t) d(x) in the equations

$$\frac{\partial \vec{p}}{\partial t} = -\frac{\partial \vec{p}}{\partial x} - \frac{\partial}{\partial s} \quad (u(x,s,t)\vec{p})$$

$$\frac{\partial \overline{f}}{\partial t} = - \frac{\partial}{\partial x} (a(t)d(x)\overline{f})$$
.

In the modified population equation, integrate between the limits of s and infinity. There results

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right) = \int_{s}^{\infty} \bar{p} \, ds = \mu(x, s, t) \cdot \bar{p}(x, s, t) ;$$

here $\int_{s}^{\infty} \bar{p} \, ds$ has the interpretation of the number of people at age x , income s , and time t having an income greater than s . Solving this for μ gives

$$\mu(\mathbf{x},\mathbf{s},\mathbf{t}) = \frac{1}{\overline{p}(\mathbf{x},\mathbf{s},\mathbf{t})} \quad (\frac{\partial}{\partial \mathbf{t}} + \frac{\partial}{\partial \mathbf{x}}) \int_{\mathbf{s}}^{\infty} \overline{p}(\mathbf{x},\mathbf{s},\mathbf{t}) d\mathbf{s} .$$

-.

This provides an estimate of μ wherever $\overline{p}(x,s,t) \neq 0$. Since $\widetilde{p}(x,s,t) \neq 0$ except on the "tails of the distribution", the above formula may be used to determine μ throughout the age and income brackets containing the great bulk of the population. On the tails of distribution (e.g., at very high income levels) the interpretation of μ makes it clear that μ must tend to zero, so that the fact that the above formula is less useful there is of little concern.

Carrying out exactly the same procedure with the modified fertility curve results in

- 23 -

$$a(t) d(x) = \frac{1}{\overline{f}(x,t)} \frac{\partial}{\partial t} \int_{x}^{\infty} \overline{f}(x,t) dx$$

This determines a(t) d(x) over those portions of the age scale which $\overline{f}(x,t) \neq 0$. Again \overline{f} tends to zero only on the tails of the fertility distribution. Recalling that the term a(t) d(x) was introduced to account for changes in the age distribution of fertility we see that intuitively a(t) d(x) reflects the effects of shifts in "planned births" for the most part. Since births arising in the extremes of the fertility distribution do not fall into that category, it is clear that d(x) must approach zero at these extremes. Hence it is again true that the fact that the formula derived is less useful in regions where \overline{f} is close to zero is of small consequence.

Once $\mu(x,s,t)$ and a(t) d(x) have been estimated, further estimation problems remain. One problem is that of determining numerically the values of a(t)<u>alone</u> for use in identifying the interactions between the economic sector and the fertility curve. A second related problem is that of isolating the time dependence in u(x,s,t) in such a way that a similar interaction analysis may be carried out. These problems are of a somewhat more technical nature, so our work on them is reported in Appendix C below.

A further technical complication arises in connection with practical use of the estimation formulas above. This arises from the fact that the actual population density data is not available; rather figures are available for, say, the number of persons between ages 25 and 29 with income between eight and ten thousand dollars. This amounts to the data

$$\int_{8,000}^{10,000} \int_{25}^{29} p(x,s,t) dx ds$$

at a fixed value of t .

We have expended a moderate amount of effort to develop accurate numerical algorithms with which u(x,s,t) and a(t) d(x) may be determined from aggregated data of the sort mentioned above. The method devised uses somewhat delicate application of numerical spline techniques. This work is also described in Appendix C.

- 25 -

V. Simulation Trial Examples

Simulation runs have been made in order to test the algorithm for numerical solution of the coupled system of ordinary and partial differential equations which constitute the model

Since there is a rather large amount of numerical data associated with each simulation run, the results are produced by the simulation program in a visual as well as numerical format. This is accomplished through a plotting routine which constructs perspective drawings of the three dimensional surfaces generated by a simulation run.

The (steady state) age distribution which results from a constant birth-rate and an absence of immigration is illustrated in Figure 2. The age distribution which results in this case is of course determined solely by the death-rate.

The wave-like nature of the solutions of the governing equations may be clearly observed in a simulation which creates a rise in the fertility curce, starting from an initial condition of the steady state illustrated in Figure 3. Since the dynamics governing a(t)and b(t) have not yet been determined, a simulation has been carried out by introducing b(t) as an exogenous variable; a(t) was determined through the

- 26 -

dynamic equation

$$\left(\frac{\mathrm{d}}{\mathrm{dt}}+1\right)^2$$
 a(t) = b(t) .

The functions b(t) and a(t) have been determined so that $\int_0^T a(t) dt = \int_0^T b(t) dt = 0$, so that the fertility curve returns to its original value. This produces the response to Figure 4 in the fertility curve, which corresponds to a "baby boom" of duration approximately five years. The effect of this rise in the fertility curve on the age distribution is illustrated in Figure .

The varying total birth-rate may be clearly seen at the back edge of the figure; the secondary rise in the birth-rate which occurs as the original "offspring" of the boom pass through the childbearing ages is plainly visible. It is also easy to see the original boom passing as a wave through the age structure.

Both the wave nature of the solutions and the birth-rate variations which occur due to a nonuniform age distribution are illustrated in Figure 5. This output results from an initial age distribution which is significantly different from the steady-state distribution. Such a distribution might be viewed as

- 28 -

- 29 -

the result of variations in fertility and immigration which have occurred previous to the time interval covered by the simulation. In this simulation the fertility curve has been held constant, so that the birth-rate variations which occur are due to the varying number of people in the child-bearing age brackets.

VI. Future Work

As of the time of writing of this report, the model has progressed to the point that the basic structure has been established, and the crucial numerical problems associated with the model are well in hand. In particular, numerical methods have been devised for the simultaneous integration of the partial differential equations involved in the model core dynamics and the accuracy of the method has been tested by means of comparison with explicit special case solutions of the model equations obtained by analytical means. Also, a considerable amount of effort has been expended on the problem of devising efficient numerical procedures for extracting estimates of the functional coefficients of the partial differential equations from date available in the form of a histogram. This algorithm has been tested again by use of explicit solutions of the governing equations,

- 32 -

and has produced accurate results in the tests.

With these two obstacles removed, the next step in the development of the model is to begin the process of modelling the dynamics of the interaction between the parameters occurring in the core section of the model and various economic variables. The first step in this procedure is to apply the estimation algorithms to the actual historical data in order to determine the time history of a(t), b(t) and the variations associated with the economic mobility u. Once these functions have been extracted from the data, various approaches to establishing the interaction can be started.

The problem of determining the interaction will first be treated by conventional time-series techniques, that is, correlation analysis based on the assumption of a linear dynamical system of finite dimension as the dynamical intermediary between the economic variables and those in the model core. More recent methods associated with input-output analysis of control systems and identification from operating records will also be tried if the time-series methods are found unsuitable. The relative effectiveness of these two techniques will probably depend on the "actual" location of the stochastic noise element in the real system, length of the operating records, and other factors which are difficult

- 33 -

to predict in advance. Non-linear regression methods and techniques of non-linear system identification are held in reserve in case the above methods prove incapable of modelling the interactions.

After a suitable dynamic model of the interaction effects has been determined, full scale model simulations may begin. This requires models to generate economic variables as mentioned above in Section II, and it is currently planned to adapt standard economic models to this purpose. It is also expected that in this context <u>stochastic</u> as well as deterministic simulations will be carried out. This is desirable for two reasons: first, it is a means of assessing the <u>sen-</u> <u>sitivity</u> of the overall model; second, it is clearly more realistic to model economic behaviour to include random fluctuations if possible.

Finally, we mention that there is a considerable amount of additional work which should be carried out in connection with an investigation of this model. In this area, we mention here only two possibilities which might be considered. The first is described here only because of its possible relevance to the problem of interaction identification discussed above.

- 34 -

The model as it currently exists has been formulated on a "macroscopic" level, that is, the processes which transfer people from one level to another as well as birth and death processes have been modelled as occurring continuously in time. On the microscopic level of an individual, these processes obviously occur at discrete instants of time and are most suitably modelled as a stochastic process. Such modelling will involve the determination of the probability of the occurances of the various "elementary events" which occur on the microscopic level. In such a model, the various interaction effects which are to be estimated in the continuous model appear in the form of dependence of transition probabilities on the current state of the other variables involved in the model. On this level, there is then the possibility of estimating these transition probabilities and their dependence on the other model variables, and thus modelling the interaction effects directly. Close examination of the resulting stochastic process model should then shed light on the form of the interaction in the continuous model formulation of the problem.

A second area where very useful work may be done is in the area of the construction of highly effecient numerical methods for the solution of the governing

- 35 -

equations. In our work so far relatively standard numerical techniques have been used for numerical integration of the evolution equations. It may be quite possible to make use of the special forms of the equations to construct more efficient methods. Some preliminary investigation indicates that methods based on Lie algebraic techniques hold promise in this regard. It will be especially important to the usefulness of the final simulation programs that program execution time be kept as low as possible in order that the required number of repeated simulations may be carried out at a reasonable cost.

<u>Appendix A:</u> Analytical Properties of the Governing Equations

In this Appendix we report some of the analytical properties of the partial differential equations governing the dynamics of the population distribution and the fertility curve. The study of these analytical properties in itself provides considerable insight into the problems of population dynamics, as well as providing material essential for the testing of the accuracy of numerical methods developed for use in the model.

It was mentioned in Section III that the population distribution equation enjoys an invariance property

- 36 -

which makes it unnecessary to specify in the model formulation the exact measure of income represented by the variable s .

This can be readily demonstrated mathematically as follows. Suppose that instead of considering the distribution function p(x,s,t) as a function of the income scale s , governed by

$$\frac{\partial p}{\partial t}(x,s,t) = -\frac{\partial p}{\partial x}(x,s,t) - \frac{\partial}{\partial s} (\mu(x,s,t)p(x,s,t))$$

$$+ i(x,s,t) - r(x,s,t) p(x,s,t)$$

we ask for the evolution of the distribution expressed as a function of the income measure σ . Here the new scale σ is related to the scale s according to

$$\sigma = \varphi(s)$$

where φ is a monotone, smooth (non-linear) function otherwise arbitrary.

By the Chain Rule,

$$\frac{\delta}{2} = \frac{\delta}{2} \cdot \frac{\delta}{2} \cdot \frac{\delta}{2} = \frac{\delta}{2} \cdot \frac{\delta}{2}$$

$$\frac{\partial}{\partial t} p(x, \varphi^{-1}(\sigma), t) = - \frac{\partial}{\partial x} p(x, \varphi^{-1}(\sigma), t)$$

$$- \varphi^{\dagger}(\varphi^{-1}(\sigma)) \frac{\partial}{\partial \sigma} (\mu(x,\varphi^{\dagger}(\varphi^{-1}(\sigma)),t))$$

$$p(x,\varphi^{-1}(\sigma),t))+i-rp(x,\varphi^{-1}(\sigma),t)$$
.

The Jacobian rule shows that the population density in terms of $\mathbf x$, σ and $\mathbf t$ is given by

$$\tilde{p}(x,\sigma,t) = \frac{1}{\varphi^{\dagger}(\varphi^{-1}(\sigma))} p(x,\varphi^{-1}(\sigma),t)$$

Rearranging the previous equation to introduce $~\widetilde{p}~$ gives

$$\frac{\partial \tilde{p}}{\partial t} = -\frac{\partial \tilde{p}}{\partial x} - \frac{\partial}{\partial \sigma} \quad (\tilde{\mu}(x,\sigma,t)\tilde{p}) + \tilde{i} - \tilde{r} \tilde{p}$$

with
$$\tilde{\mu}(x,\sigma,t) = \mu(x,\varphi^{-1}(\sigma),t) \cdot \varphi'(\varphi^{-1}(\sigma))$$

$$\tilde{i}(x,\sigma,t) = \frac{i(x,\phi^{-1}(\sigma),t)}{\phi'(\phi^{-1}(\sigma))}$$

$$\tilde{\mathbf{r}}(\mathbf{x},\sigma,\mathbf{t}) = \mathbf{r}(\mathbf{x},\varphi^{-1}(\sigma),\mathbf{t})$$
.

This identifies the transformation law of the economic mobility, and shows the invariance of the governing equation under such a change of scale.

While the coupled system consisting of the population and fertility evolution equation is a nonlinear one, the non-linear interaction occurs only in the calculation of the instantaneous birth-rate (so long as μ , a(t) and b(t) are treated as exogoneous variables). Since the birth-rate enters only as a boundary condition, it is possible to get useful results from explicit solutions of the equations.

Both the population and fertility equations fall into the class of evolution equations governed by first order partial differential equations. While the equations in general have variable coefficients, they are linear in the dependent variable; hence, in principle, the method of characteristics is applicable.

This observation does not dispose of the problem, however. A principal reason for carrying out the investigation into the analytical properties of the equations is to obtain if possible <u>explicit</u> solutions to the equations. By explicit solutions, we mean solutions obtained in closed form analytically.

These solutions have been used to test the accuracy of the numerical methods used both to integrate the evolution equations and to estimate the functional coefficients of the equations $\mu(x,s,t)$ and $a(t) \cdot d(x)$. In the absence of explicit solutions, only lengthy (and expensive) trial runs with varying step sizes can be employed to attempt to estimate accuracy; with explicit solutions available, it is far easier to estimate the step sizes required for a given level of numerical accuracy.

The above remarks pertain to evaluation of the integration scheme; in the case of the estimation problem, the unavailability of explicit solutions would force one to the use of the integration routine to generate the data on which to test the estimation algorithm. In the case of inaccurate results, it then becomes tedious to determine whether the inaccuracy arises from the estimation scheme, or from the numerically generated data.

It is this need for explicit solutions, at least in particular cases, that has led to the work reported

- 40 -

below. The method of characteristics in general produces a solution in <u>implicit</u> form; it is essentially impossible to carry out the required function inversions numerically with enough control on accuracy to make such implicit solutions useful for our purposes.

Fertility Equation

An explicit solution to the fertility equation may be obtained by the method of characteristics. For

$$\frac{\partial f}{\partial t} = - \frac{\partial}{\partial x} (a(t)d(x)f) - b(t) f$$

introduction of an integrating factor of $e^{\int_0^t b(t)dt}$ reduces the problem to

$$\frac{\partial \overline{f}}{\partial t} = -\frac{\partial}{\partial x} (a(t)d(x)\overline{f})$$

Solution of the above by the method of characteristics gives

$$\bar{f}(x,t) = \frac{1}{d(x)} \phi (h^{-1}(h(x) - \int_0^t a(s) dx))$$

$$\cdot d(h^{-1}(h(x) - \int_0^t a(s) ds)),$$

- 41 -

with $h(x) - h(x_0) = \int_{x_0}^{x} \frac{1}{d(x)} dx$,

and
$$\phi(\mathbf{x}) = \mathbf{f}(\mathbf{x}, 0)$$

Population Equation

As may be seen from the above example, explicit solutions are generally very involved in form. For this reason, explicit solutions of the population equation will not be exhibited here. We remark that such solutions may be found; the case in which the death-rate varies linearly with age is one example of use in connection with the estimation problem for $\dot{\mu}$. (Results from this example allow the removal of the death-rate term from the governing equations by means of an integrating factor.)

The use of explicit solutions has some potential use beyond evaluation of numerical methods. This is in the area of decreasing the size and cutting down the execution time for the simulation of the model. This may become important in later phases of development of the model, and will have an effect on the frequency of use of the completed model. The key to such reduction of time expenditure is the observation that an explicit solution reduces the problem of evolution over an <u>arbitrary</u> time interval to a <u>single</u> function evaluation. This is to be contrasted with the repeated evaluations involved in a numerical integration. Of course, the full benefit of this discrepancy is available only if the interaction effects are specified exogenously. In the case of the full model, however, it seems likely that explicit solutions could be used together with extrapolation methods to improve simulation execution time.

This leads naturally to the question of which classes of coefficient functions tive rise to explicit solution formulae. Of particular interest is the problem of explicit solutions to models in which the coefficient functions appear in "separable form" (see Appendix B below), so that the equation has the form

$$\frac{\partial p}{\partial t} = -\frac{\partial p}{\partial x} - \frac{\partial}{\partial s} \begin{pmatrix} N \\ \Sigma \\ i=1 \end{pmatrix} \eta_{i}(t)_{v_{i}}(x,s)p - \xi(t) r(x,s) p$$

Progress in the direction of explicit solutions to the above equation may be made by recourse to the theory of Lie Algebras. In particular, if the Lie algebra generated by the partial differential operators on the right side of the above equation is <u>solvable</u>, then (global) explicit expressions are possible. Other conditions on the Lie algebra lead to (local) results which may prove useful.

Appendix B:

Numerical Methods for Partial and Ordinary Differential

Equations

In Section III of the report, the population and fertility are dynamically modelled by a pair of partial differential equations:

$$\frac{\partial p}{\partial t} = -\frac{\partial p}{\partial x} - \frac{\partial}{\partial s} (\mu(x,s,t) \cdot p) - r(x,s,t)p + i(x,s,t)$$

$$\frac{\partial f}{\partial t} = -a(t) \frac{\partial}{\partial x} (d(x)f) - b(t)f$$

In Section IV, techniques for estimating the parameters u(x,s,t), a(t), d(x) are discussed and there, it is pointed out that full simulation of the overall model requires dynamic modelling of these functions using partial and/or ordinary differential equations.

Since this appendix deals with aspects of the actual simulation of the model, it is assumed that ordinary differential equations for a(t) and b(t) have been obtained, estimated values of d(x) and u(x,s,t)have been obtained by use of the estimation procedures described elsewhere in this report, and that initial fertility and population distributions are known: f(x,s,o) and p(x,s,o). Values of p(x,s,t) and f(x,s,t) are required, and these are simulated using numerical techniques. The techniques have been chosen in order to be consistent with the conservation law character of the governing equations, to attain a reasonable accuracy in the simulated values subject to restrictions on the size of data groupings which are expected in currently available data, and to balance these with economy of computation.

In the numerical simulation which has been carried out up to the time of writing of this report, the income level dependence of the population density has been suppressed. As well as yielding computational efficiencies during the development of the model, this procedure has made the analysis of numerical problems arising in the modelling considerably easier. The extension of the numerical methods developed so far to include the income variable s is expected to cause no significant dif-

- 45 -

ficulty, as the problems which arise should parallel those already encountered.

Numerical Integration of the Fertility Equation

The fertility equation has been transformed by an integration factor to

$$\frac{\partial \vec{f}}{\partial x}(x,t) = -a(t) \frac{\partial}{\partial x} (d(x)\vec{f}(x,t))$$

where

$$f(x,t) = e^{-\int_{0}^{t} b(t) dt} \overline{f}(x,t)$$

An approximation F_{ij} to $\overline{f}(ih, jk)$ is obtained using

$$F_{ij+1} = F_{ij} - \frac{k}{2h} a_{j} (d_{i+1}F_{i+1j} - d_{i-1}F_{i-1j})$$

$$+\frac{1}{2}\left(\frac{ka}{h}\right)^{2}\left[d_{i+1}\left(d_{i+1}F_{i+1}\right)^{-d}F_{i}F_{i}\right]$$

$$- d \left(d_{i}F_{i} - d_{i-1}F_{i-1j} \right) \right]$$

and f(ih, jk) is estimated by F using numerical

integration for the integration factor (see below). This scheme is almost second order, and has two desirable properties: For d(x) = d constant, it is numerically stable provided that the step size ratio is chosen to satisfy

$$\frac{\mathbf{k}}{\mathbf{h}} \leq \left| \frac{1}{\mathbf{d} \cdot \mathbf{a}_{\mathbf{j}}} \right|$$

Also this scheme has the property that it removes a distortion of the fertility profile when the effect causing the distortion is removed. This property is exhibited in Figure 3.

The dynamical equations governing the variables a(t) and b(t) must of course be integrated simultaneously with the partial differential equations. Numerical approximations are currently calculated using a. modified Euler method over time steps of length k.

While this procedure may be easily replaced by a more accurate process, this method was selected in view of the decision to use simple routines initially as an aid to algorithmic development, and later to replace these by more sophisticated routines as dictated by accuracy and economy in large simulations.

Since dynamic modelling of a(t) and b(t) has not yet been carried out, the dynamics

- 47 -

$$(D+1)^2 a(t) = b(t)$$

have been assumed in order to verify the integration methods. In this case

$$\underline{\mathbf{a}}(\mathbf{t}^*) = \mathbf{a}(\mathbf{t}) + \mathbf{h}\underline{\mathbf{f}}(\underline{\mathbf{a}}(\mathbf{t}))$$

$$\underline{\mathbf{a}}(t+k) = \underline{\mathbf{a}}(t) + \frac{\mathbf{h}}{2} \left[f(\underline{\mathbf{a}}(t)) + f(\underline{\mathbf{a}}(t^*)) \right]$$

where

$$\underline{f}$$

$$\begin{bmatrix} \mathbf{I} \ \mathbf{b}(\mathbf{t}) \\ \mathbf{I} \ \mathbf{a}(\mathbf{t}) \\ \mathbf{a}(\mathbf{t}) \\ \mathbf{a}^{1}(\mathbf{t}) \end{bmatrix} = \begin{bmatrix} \mathbf{b}(\mathbf{t}) \\ \mathbf{a}(\mathbf{t}) \\ \mathbf{a}^{1}(\mathbf{t}) \\ \mathbf{b}(\mathbf{t}) - \mathbf{a}(\mathbf{t}) - 2\mathbf{a}^{1}(\mathbf{t}) \end{bmatrix}$$

-m

describes the modified Euler method.

Numerical Integration of the Population Equation

Initially only the age-time dynamics of population have been considered; hence the equation is

$$\frac{\partial p}{\partial t}(x,t) = -\frac{\partial p}{\partial x}(x,t) - r(x,t).p(x,t)$$

To solve this numerically, we approximate p(x,t)by P(x,t) where

$$P(x+h,t+h) = (1-r(x,t)) P(x,t)$$

The fertility is used to estimate the population birthrate

$$p(o,t+h) = \int_{0}^{\infty} p(x,t) f(x,t) dx$$

9

and this is approximated numerically by

$$P(o,t+h) = \sum_{i=1}^{100} P(x,t) F(x,t+\frac{h}{2})$$

where $F(x,t+\frac{h}{2})$ is obtained from the numerical approximations of the fertility curve.

The low accuracy method for simulating the population is reasonably accurate for that section of the profile where the death-rates are almost constant. It is expected that improvements will be possible after additional work. Improvements in the simple scheme used for estimating P(o, x+h) would lead only to a change in scale of values, but not their dynamics. In conclusion we point out that certain portions of the model are particularly sensitive to errors - that is small errors may lead to very inaccurate simulations of the dynamics, whereas other portions of the model are not so sensitive. For this reason, it is possible (and economically reasonable) to tailor the accuracy of the methods used to the sensitivity of that part of the model being simulated.

Appendix C: <u>Numerical Determination of Partial</u> Differential Equation Coefficients

In Section IV it is shown that integration of the partial differential equations leads to analytic formulas for the estimation of $\mu(x,s,t)$ from the population equation, and $a(t) \cdot d(x)$ from the fertility equation. To use these formulas, available data must be used to estimate the quantities required. In particular, it is required that histogram data be used

- to generate (continuous) density functions, that
- 2. partial derivatives of these density functions be estimated, and that
- 3. the required integrals be estimated.

The distributions involved appear to be very smooth, and as a result piecewise approximation by polynomials with continuous first derivatives is necessary; additional smoothness is desirable. The algorithm employed is described below for the problem of estimating the economic mobility u(x,s,t) . The procedure for estimating the term a(t) d(x) in the fertility equation is entirely similar.

- A function which might be best described as a fourth-order spline (having three continuous derivatives) is determined so that its integrals over the appropriate intervals are equal to the given values from the histogram data.
- 2. Differentiation of the fourth-order spline with respect to the x-variable provides an estimate of $\frac{\partial p}{\partial x}$; determination of an additional cubic spline in the t-variable followed by a t-differentiation provides an estimate of $\frac{\partial p}{\partial t}$.

3. Finally, the required integral is estimated by integration of the result of 2. above.

In the use of spline methods in approximation problems, it is necessary to provide additional boundary

- 51 -

conditions beyond the requirement that the spline interpolate the appropriate sample points. Unfortunately, in the present application, use of the so-called "natural boundary conditions" was found to give particularly poor estimates near the boundary of the region involved. Further, it was found that these errors were quite sensitive to the values assigned.

After considerable experimentation, it was determined that adequate results could be obtained through estimation of the third derivatives near the endpoints by third order finite differences, and use of this data to determine the boundary conditions. The scheme for approximating the distribution function requires the solution of a system of linear equations including three different types

(a)
$$r_{i}^{"} - 2r_{i-1}^{"} + r_{i-2}^{"} - \frac{r_{i}}{2} - \frac{r_{i-1}}{2} = 0$$
 $i = 2, ..., 100$

(b)
$$r_{i} - 2r_{i-1} + r_{i-2} - \frac{r_{i}}{6}$$

$$-\frac{2}{3}r_{i-1}^{"}-\frac{r_{i-2}^{"}+r_{i-2}^{"}+r_{i-2}^{"}+r_{i-2}^{"}}{6}+\frac{r_{i-2}}{24}+\frac{r_{i-2}}{24}=0 \qquad i=2,\ldots,100$$

(c)
$$r_{i} + r_{i-1} - \frac{r_{i}''}{12} - \frac{r_{i-1}''}{12} + \frac{r_{i}''}{60} = 2P_{i}$$
 $i = 1, \dots, 100$

where P_i is the number of persons between ages i and i + 1, and the boundary conditions are

$$\mathbf{r}_{0}^{"} = \mathbf{r}_{100}^{"} = 0$$
, $\mathbf{r}_{0}^{""} = 0 \Rightarrow -\mathbf{r}_{0}^{"} + \mathbf{r}_{1}^{"} - \frac{\mathbf{r}_{1}}{2} = 0$

= 0

0

Here r_i is interpreted as the population distribution at age i years, and it is assumed that values P_i are available for $i = 0, 1, \dots, 99$.

To solve this system, a reduction method for a sparse matrix is used, and the equations are ordered so that coefficients of moderate size are maintained on the diagonal. For a test distribution, the error in regenerating the histogram was less than 1 percent.

Spline Approximation

A standard analysis for cubic spline approximation represents this function in terms of estimates for the

- 53 -

second derivative at nodes. These are obtained as solutions of the system of equations

$$\frac{h_{i}M_{i-1}}{h_{i}+h_{i+1}} + 2M_{i} + \frac{h_{i+1}M_{i+1}}{h_{i}+h_{i+1}} = 6 \frac{\frac{r_{i+1} - r_{i}}{h_{i+1}} - \frac{r_{i} - r_{i-1}}{h_{i}}}{\frac{i+1}{h_{i}+h_{i+1}}}$$

to interpolate $\{r_i\}$ with a spacing $\{h_i\}$ (which for our model is either h or k constant), and boundary conditions used are

$$\frac{M_1 - M_0}{h} = \frac{1}{h^3} (-r_0 + 3r_1 - 3r_2 + r_3)$$

$$\frac{\frac{M_{n}-M_{n-1}}{h}}{h} = \frac{-1}{h^{3}} (-r_{n-3}+3r_{n-2}-3r_{n-1}+r_{n})$$

With this approximation, errors in u(x,s,t) and a(t)d(x) obtained using the estimation procedures are less than 1 percent on the interior of the domain. Although errors are large where P(x,s,t) is small, values of u(x,s,t) there are not crucial (see Section IV).

- 54 -

Separability of Coefficient Functions

It was mentioned in Section III that one aspect of the structure of the model was that it was formulated in such a way as to make it possible to model the feedback effects on the core section of the model in terms of a finite number (even a <u>small</u> finite number) of functions of time. This was illustrated in Section III in the hypothesis that the effect of the rest of the world on the fertility curve could be adequately modelled by

$$\frac{\partial f}{\partial t} = -a(t) \frac{\partial}{\partial x} (d(x)f) - b(t)f$$

In this formulation, the world affects f only through a(t) and b(t). However, it was also mentioned that

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial x} (a(x,s,t)f) - b(t,s)f$$

might well represent a more realistic model, and it is easy to verify that the estimation procedure described in Section IV and Appendix C above will equally well produce an estimate of the coefficient function a(x,s,t). A problem that arises, then, is that of distinguishing between a(x,s,t) and $a(t) \cdot d(x)$ at the

- 55 -

stage of the output of the estimation algorithm. From the point of view of subsequent modelling effort, it might well be hoped that the result had the form a(t) d(x,s), or perhaps even $a(t) \cdot d(x) \cdot c(s)$.

A similar problem occurs in the case of estimation of u(x,s,t), where the validity of a representation of the form

$$\mu(x,s,t) = \eta_1(t) v_1(x,s) + \dots + \eta_N(t) v_N(x,s) ,$$

with N a "reasonably small" integer is at least a practical requirement for the success of any attempt to model the interaction affects.

Given the implicit smoothness assumptions on the coefficient functions of the model and the fact that the ranges of the x , s , and t variables involved are finite, there is no problem in applying standard approximation theorems to deduce that μ may be closely approximated by a function of the above form. (A similar remark obviously applies to a(x,s,t)). For convenience, we refer to the above form as a "separable representation for μ ".

Since we have shown above that separable representations exist, the only problems which remain are those

- 56 -

of the number N of terms to be expected in the representation, and the numerical determination of N and $\eta_i(t)$ from the available data.

Consideration of the effects that the t variation in μ (and a) is intended to model, and the probable variability of these effects across age and income brackets suggests strongly that N is small. It would be surprising if N were greater than 3 in the case of the estimation of $\mu(x,s,t)$, and it appears entirely possible that a single term will suffice in the case of the estimation of a(x,s,t).

It remains to show the feasibility of determining separability of the representation numerically. To distinguish a separable u from a non-separable one we proceed as follows:

A smooth function $\mu(x,s,t)$, defined for $s \in S$, $t \in T$, $x \in X$, with S, T, Xcompact subsets of R^1 defines the kernel of a compact linear operator L mapping from $L^2(X \times S) \rightarrow L^2(T)$ according to the formula

$$Lf(t) = \int \int \mu(s,s,t) f(x,s) dxds$$
.
XXS

- 57 -

Now a <u>separable</u> μ is distinguished by the fact that the associated L is an operator of finite dimensional range, and this observation essentially solves the problem.

When $\mu(s,s,t)$ has been estimated numerically, μ is not obtained as a continuous function. What is obtained in fact is a set of sample values $\{\mu(x_i,s_j,t_k)\}$, with $x_i \in \tilde{X}$, $s_j \in \tilde{S}$, $t_k \in \tilde{T}$. Here \tilde{X} , \tilde{S} , \tilde{T} are each Euclidean space of dimension equal to the number of sample points in each of the independent variables. The discrete analog of the definition of L is to use the above three dimensional array to define a linear mapping (matrix) \tilde{L} : $R^{\dim(\tilde{X} \times \tilde{S})} \rightarrow R^{\dim \tilde{T}}$.

The problem of finding the $\eta_i(t)$ is now equivalent to determining the range space of L, and N is simply the rank of L.

The problem is simplified still further by invoking the fact that

$\begin{array}{ccc} \sim & \sim & \sim & \sim \\ \text{Range } L & = & \text{Range } L & L \\ \end{array}$

where \tilde{L}^* is the adjoint (actually transpose in this case) of the matrix \tilde{L} . This reduces the problem to

- 58 -

the entirely standard one of an eigenvector/eigenvalue analysis of a <u>symmetric</u> matrix, and hence effectively solves it.

Appendix D Computer Program Listing

In this appendix we list the computer programs developed up to the time of this report for use with the model. Included below are both the programs used for numerical integration of the governing evolution equations in simulation runs, and the programs designed to estimate model coefficients from the available data.

The programs listed here are written in FORTRAN. Given the relatively large arrays of data which must be handled in connection with this model, it is clear that FORTRAN is not the most convenient language in which to program the numerical algorithms required. With a view to future uses of the model, however, such factors as the wide availability of FORTRAN compilers, the existence of the I.B.M. CSMP (Continuous System Modelling Package) which is FORTRAN compatible, and of FORTRAN packages for the Calcomp plotter used to produce output data plots make FORTRAN a reasonable language choice. Simulation of population and fertility propagation over time. Initial age-specific profiles of population, fertility and mortality, and dynamics for a(t) and d(x) are required. Here, the values for population are taken as the number of live individuals at age x in the population as given by the Commissioner's 1941 Standard Ordinary Mortality Table. Values for mortality are also taken from this table.

Values for the fertility are given by the artificial distribution:

$$f(x,o) = c e^{-\frac{(x-24.5)^2}{8}^2}$$

where the constant C is chosen so that

$$\int_{0}^{100} f(x,o) p(x,o) dx = p(0)$$

Values of d(x) are assumed from (the artificial distribution)

$$d(x) = \frac{(1-e^{-\frac{(x+1)^2}{600}})}{1+e^{\frac{(x-24\cdot 5)^2}{4}}}$$

The parameter a(t) is determined by numerical integration of the differential equation

$$(D+1)^2 a(t) = b(t)$$

where

٤

=

ŝ

$$b(t) = - \frac{\sin(e^{-|t-5|} - e^{-|t-10|})}{15} \qquad 0 \le t < 15$$

- 61 -

		\$JOB	ACCT-NUM, VERNER , TIME=60
	1		RFAL(100)
	2		
	2		
	5		
	*		DALA DATA (VIDICIE)
	5	0	
•	6	9	CONTINUE
	7		STOP
	8		END
,			
	9		SUBROUTINE DATA(X, IR, IC, IF)
	10		REAL D(100) +F(100) +P(100) +X(100) +R(100) +US(100) +D5(100) +F1(100)
•	11		REAL HH,KK,SUM,IV(10),DLY(10)
	12	•	REAL PLTPER.PRTPER.II
	13		INTEGER YRS, AGES, YUUNG, NN
•		С	***************************************
		Ċ	SET TEORMED IF YOU WANT PLOT, =1 IF YOU WANT PRINT
		С	******
,	14	Ŭ	TFOR:1=1
	15		PI = 1 = -5
	16		PR=PI
	17		TINT-IF-4
	10		
	10		τς (τρ στ 1) ου το οι
	19	<u>^</u>	- 10 VI VI-10 VI-VU-VI-VI-VI-VU-VU-VI-VU-VU-VU-VU-VU-VU-VU-VU-VU-VU-VU-VU-VU-
		C.	
	2.0	C	HH IS AGE STEP - KK IS TIME STEP
	20		
	21	101	
		C	PLIPER IS PLOT INTERVAL - PRIPER IS PRINT INTERVAL
	22		READ(5,101) PLTPER, PRTPER
		С	NDE IS THE NUMBER OF FIRST ORDER ODE'S AFTER TRANSFORMATION
		С	IF NOE > 10 CHANGE REAL DIMENSION IN DATA AND \$STEP
		С	NN IS THE NUMBER OF INTEGRALION STEPS IN KK FOR SOLVING THE ODES
	23		READ(5,103) NDE, NN
×	24	103	FORMAT(214)
-		С	PUT INITIAL VALUES OF ODES ONE TO A CARD
e e e e e e e e e e e e e e e e e e e	25		DO 97 I=1.MDE
	26		READ(5.107) DLY(I)
	27	107	FORMAT (F10.4)
•	28	97	CONTINUE
		C	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
	29	Ċ,	ΡΒ=ΡΘ+ΚΚ
	30		T=0.0
	50	c	
		C C	PEAD DEATH PATES
		C.	DEAD POPULATION DENSITY
		C C	
		C C	
	21	C	- DEADJE (100) - (0(1), 1-1, 1())
	20	100	$= \left[- \left[$
	32	100	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	33	104	REAU(591947 (P(1791=1910)
	ა4	104	- F VRM** F (1VF 0 + V)
		ι.	RKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
	35		
	36		$\frac{1}{1} \frac{1}{1} \frac{1}$
	37		5UM=5UM+P(1)
	38	99	
*	39	-	10 99 1=1•1C
	40		$P(I) = P(I) * 22000000 \cdot / SUM$
	41		X(1)=P(1)

	42	9 8	CONTINUE
		C	<u>Ϸ</u> <u></u>
	43		IF(IFORM.NE.1) GOTO 61
	44		IPG='.
	45		WRIT=(6,109)
	46	109	FORMAT('1', 'POPULATION FOR AGES 1 TO 20 IS')
~	47		WRIT= (6,102) (P(I),I=1,20)
*	48	102	FORMAT(5F10+0/)
	49		WRIT: (6,110)
-	50	110	FORMAT(! ! , 'AT BEGINNING OF YEAR (, AND !)
•	51		WRIT= (6,111)
	52	111	FORMAT(1 1, 1
~~	53	61	CONTINUE
	-	C	
	54		D0 70 I=1.IC
~	55		II=FLOAT(I)
	56		D(I) = (1 - FXP(-1) + I/(600)) / (1 + ((I) - 25 + 5) + 2) / (4)
	57	70	CONTINUE
~	58	10	YOUNE
	50		F1(1)-FXP(-(-125#HH#(Y0HNG=24 5))##2)
	60		SHM-F1(1) & P(1)
	61		
	62		UU 14 I+C IU F1(I)-HYD(-()2G3HH8(I+YOUNG-25,5))882)
	62		
	64		DS(I) = SP(D(I) + D(I + 1))
	04 6E	3.4	
	66	14	
	60		UUD⊐_D1(J+*U(1)=U(2)) DTE- E&(2 &0(1)=U(2))
	α <i>ι</i> (α		
	68		
	270		
	70		FI(I)=FI(I)*SUM
4	/1	15	CONTINUE
~	15		РА=КК/НН
	73		PA1=0.0
•	74		PS=0.0
	75		FA=1
-	76		GO TA 33
	77	31	CONTINUE
	78		PR=Pa+KK
		C	***************************************
		С	UPDATE COEFFICIENTS OF FERTILITY EQUATION
_		С	***************************************
-	79		PA1=D(Y(Z))
	80		P2=D1 Y (2) *DLY (2) *PA
	81		$FA = E \times P(-OLY(4))$
-		С	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
	82		IF (PRTPER.GT.PR.OR.IFORM.NE.1) GOTO 62
	83		WRIT=(6.106) T
	84	106	FORMAT(AT TIME +, F6.2)
	85		WRITE(6,112) DLY(1)
	86	112	FORMAT(!0!,!DELAY IN PEAK OF FERTILITY CURVE IS !,F9.6)
	87	62	CONTINUE
		С	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
		С	***************************************
***		С	MULTIPLY FERTILITY BY INTEGRATING FACTOR
		С	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	88	33	CONTINUE
- -	89		SUM=9.0
	90		D0 42 I=1,IC
	91		SUM=SUM+F1(I)
1			

.

92 F(I) = FA * F1(I)93 42 CONTINUE С 94 IF (PRTPER.GT.PR.OR.IFORM.NE.1) GOTO 63 95 WRIT=(6,113) SUM INTEGRAL OF NORMALIZED FERTILITY IS 96 113 FORMAT(... ••F9.6) 97 WRIT= (6,114) FA 114 FORMAT(1 ... FRACTION OF INITIAL FERTILITY IS 98 2.F9.5) 99 WRIT=(6,115) FORMAT('0', 'VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE!) 100 115 101 WRIT=(6,108) (F(I), I=21,30) 102 108 FORM + T(5F10 - 6/)CONTINUE 103 63 С С INCREMENT POPULATION BY ONE YEAR С С 104 TINT=TINT+KK*2 IF (HH.GT.TINT) GOTO 45 105 SUM=n. 106 107 SUM1-0. 108 DO 44 I=1.ICM1 109 J=IC-I SUM=SUM+P(J+1)*F(J+1) 110 111 P(J+1) = P(J) * (1-S(J))SUM1 = SUM1 + P(J+1)115 113 X(J+1) = P(J+1)114 44 CONTINUE 115 SUM = SUM + P(1) + F(1)P(1) = SUM 116 X(1) = P(1)117 118 SUM1 - SUM1 + P(1)119 TINT=-1E-4 45 120 CONTINUE С 121 IF (PRTPFR.GT.PR.OR.IFORM.NE.1) GOTU 64 122 WR1T=(6,116) SUM1 123 116 FORMAT(101, TOTAL POPULATION IS •,F10.0) 124 PR=+1F-5 125 WRIT(6, 117)126 117 127 64 CONTINUE C С C INCREMENT FERTILITY BY ONE YEAR С DO 34 I=1.IC 128 IF (1E-20.GT.F1(I)) F1(I)=0.0 129 130 US(I) = O(I) * F1(I)34 131 CONTINUE 132 UQ=2, *US(1)-US(2) 133 UT=2, US(IC) - US(IC-1)134 F1(Ic)=F1(IC)-.5*PA*((PA1*(UT-US(IC-1)))-P2*(DT5*UT+D5(IC)*US 2(IC-1) - (DT5+D5(IC)) + US(IC))135 F1(1) = F1(1) - .5*PA*((PA1*(US(2) - UQ)) - P2*(D5(2)*US(2) + DQ5*UQ-(D5))2(2) + nQ5) * US(1)))D0 35 I=2.ICM1 136 137 F1(I)=F1(I)-.5*PA*((PA1*(US(I+1)-US(I-1)))-P2*(D5(I+1)*US

\sim			2(1+1) + 05(1) + 05(1-1) = (05(1+1) + 05(1)) + 05(1) + 05(1) + 05(1)
	138	35	CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE
	100	~	
\sim		Č	
		Č	SULVE ODES FOR DELAY PARAMETERS AND INCREMENT TIME
		C	***************************************
<u> </u>	139		DO 3A I=1,NDE
-	140		IV(I) = DLY(I)
•	141	36	CONTINUE
	142		CALL SRUN(IV.DIY.T.KK.NOF.NN)
\smile	143		
¥	144		TE (DITPER GT DI) COTO 31
	Taa	C	
\sim	s / F	L	
	145		IF ([FORM.NE.]) G010 65
	146		IPG=IPG+1
. .	147		IF (IPG.NF.2) GOTO 79
~	148		IPG=1
	149		WRIT=(6+121)
	150	121	
\sim	150	70	
	151	19	
	152		WRII=(6,118)
	153	118	FORMAT(' ', 'POPULATION FOR AGES 1 TO 20 IS')
~~~	154		WRITE(6,102) (P(I), I=1,20)
	155		WRIT= (6.119) TR
	156	110	FORMAT(1 1 + 1 AT REGINNING OF YEAR+ TO + AND+)
<u> </u>	157	¥ 1 7	WIT-(4 10)
	157	1.00	
	158	150	FORMAI( ' ', '')
	159	65	CONTINUE
<b>.</b>		С	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
	160		RETURN
	161		FND
<u> </u>			
	160		
-	162	0	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN)
•	162	C	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
<b>.</b>	162	C C	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
<b>,</b>	162	C C C	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
, , ,	162	C C C C	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
, , , , , , , , , , , , , , , , , , ,	162		SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
, , , , , , , , , , , , , , , , , , ,	162		SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
, , , , , , , , , , , , , , , , , , ,	162		SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
• • •	162		SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
• • • • • • • • • • • • • • • • • • •	162		SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
• • •	162 163 164		SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
• • • • • • • • • • • • • • • • • • •	162 163 164 165		SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165		SUBROUTINE \$RUN(IV;Z,T,KK,NDE,NN) ***********************************
• • • •	162 163 164 165 166		SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167	C C C C C C 28	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168	C C C C C C 28	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169	C C C C C C 28	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169 170	C C C C C C 28	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169 170 171	C C C C C 28	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169 170 171	C C C C C C 28	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169 170 171 172	C C C C C C 28 29	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169 170 171 172 173	C C C C C C 28 29	SUBROUTINE &RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169 170 171 172 173 174	C C C C C C 28 29	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169 170 171 172 173 174 175	C C C C C C 28 29	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************</pre>
	162 163 164 165 166 167 168 169 170 171 172 173 174 175	C C C C C C 28 29	SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************
	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	C C C C C C 28 29	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************</pre>
	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	C C C C C C 28 29	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************</pre>
	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178	C C C C C C 28 29	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ###################################</pre>
	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178	C C C C C C 28 29	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************</pre>
	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179	C C C C C 28 29	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************</pre>
	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180	C C C C C C C C C C C C C C C C C C C	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************</pre>
	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181	C C C C C C 28 29	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************</pre>
	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182	C C C C C 28 29 11	<pre>SUBROUTINE \$RUN(IV,Z,T,KK,NDE,NN) ***********************************</pre>

~	183 184 185 186 187 188	12	CALL \$DE(TT,Z1,NDE,D1) DO 1> I=1,NDE Z(I)=IV(I)+.5*KK*(D(I)+D1(I)) CONTINUE RETURN END
• • •	189 190 191 192 193 194 195 196 197 198 199 200 201 202	78	SUBROUTINE \$DE(T,Y,NDE,D) REAL Y(NDE),D(NDE),KK n(1)=Y(2) D(2)=Y(3) T1=0. IF (T.GT.15.) GOTO 78 TT1=ABS(T-5.) TT2=ABS(T-10.) T1=(-SIN(EXP(-TT1)-EXP(-TT2)))/15. CONTTNUE D(3)=15.*T1-Y(2)-2.*Y(3) D(4)=T1 D(5)=0. RETURN
-	201 202 203		0(5)=0. RETURN END

\$ENTRY
✓ P0	PULATION 350170.	FOR AGES 342263.	1 TO 20 340289•	IS 338880•	337734.		
$\mathbf{\nabla}$	336725。	335795.	334919.	334091.	333320.		
_	332613。	331958.	331324.	330688.	330033.		
•	329350.	328642.	327922.	327184.	326431.		
AT	BEGINNIN	IG OF YEAD		0, AND			
AT	TIME 0.	75					
DE U	LAY IN PE INTEGRAL FRACT	AN OF FED OF NORMAL ION OF IN	TILITY CUR LIZED FERT ITIAL FERT	VE IS -0. ILITY IS ILITY IS	•000373 1•08	9507 1.000501	
_ VA 0	LUES OF F .056025	ERTILITY ( 0.063485	CURVE FOR . 0.069726	AGES 21 7 0.074224	TO 30 ARE 0.076578		
0	°076574	0.074216	0.069721	0.063482	0.056023		
_ TO	TAL POPUL	ATION IS	55000110	•			
** PO			************ 1 TO 20	*********	, ************	****	***
- F <b>U</b>	350215.	342263.	340289.	338880.	337734.		
U.	336724.	335795.	334919.	334091.	333320.		
~	332613.	331958.	331324.	330688.	330033.		
<u> </u>	329350.	328642.	327922.	327184.	326431.		
_ <b>'</b> A T	BEGINNIN	IG OF YEAV	1 • A	ND			
AT	TIME ].	<b>7</b> 5					
DE	LAY IN PE INTEGRAL FRACI	EAK OF FED OF NORMAN ION OF IN	TILITY CUR LIZEN FERT ITIAL FERT	VE IS -0. ILITY IS ILITY IS	•004762 1.08	9505 1•002134	
V A 0	LUES OF F 056127	ERTILITY 0•063609	CURVE FOR 0+069877	AGES 21 0•074401	TO 30 ARE 0•076738		
0	.076675	0.074285	0•069795	0.063563	0•056101		
то	TAL POPUL	ATION IS	22000510	•			
	*****	****	****	****	*****	****	****

~ ,

_	POPULATION 350562.	FOR AGES 342307.	1 TO 20 340289.	IS 338880•	337734.		
	336725.	335795.	334919.	334092.	333320.		
<u>`</u>	. 332613.	331958.	331324.	330688.	330033.		
$\cup$	329350.	328642.	327922.	327184.	326431.		
`	AT BEGINNI	NG OF YEAR	2,A	ND			
	AT TIME 2	•75					
	DELAY IN PI INTEGRAI FRAC	EAK OF FEQ L OF NORMA TION OF IN	TILITY CUR LIZED FERT ITIAL FERT	VE IS -0. ILITY IS ILITY IS	0202 <b>37</b> 1.089	9506 1•006584	
$\overline{}$	VALUES OF 0 0.056417	FERTILITY 0•063967	CURVE FOR 0.070328	AGES 21 T 0.074940	0 30 ARE 0.077210		
)	0 <b>.07</b> 6924	0:074418	0.069958	0.063759	0•056301		
~	TOTAL POPUL	LATION IS	22001840	•			
)	********** POPULATION 351507.	********** FOR AGES 342646•	*********** 1 TO 20 340332.	********** IS 338880•	************ 337734•	*****	***
$\smile$	336724.	335795.	334919.	334091.	333320.		
_	332613.	331958.	331324.	330687.	330033.		
	329350.	328642.	327922.	327184.	326432.		
$\rightarrow$	AT BEGINNI	NG OF YEAR	3,A	ND			
$\smile$	AT TIME 3	• 75					
)	DELAY IN PE INTEGRAL FRAC	EAK OF FEP L OF NORMA TION OF IN	TILITY CUR LIZED FERT ITIAL FERT	VE IS -0. ILITY IS ILITY IS	064413 1.089	9506 1.018705	
~	VALUES OF 0 0.057215	FERTILITY 0•064960	CURVE FOR 0+071590	AGES 21 T 0.076457	0 30 ARE 0•078518		
}	0.077577	0•074741	0•070374	0•064276	0•056834		
_	TOTAL POPUL	ATION IS	22005710	•			
	***	· ·	****	****	****	*****	***
)							
~,							

. _____

1

- 68 -

POPULATION 354085.	FOR AGES 343570.	1 TO 20 1 340669.	IS 338923.	337734.		
336724.	335795.	334919.	334091.	333320.		
. 332613.	331958.	331324.	330688.	330033.		
329350.	328642.	327922.	327184.	326432.		
AT BEGINNI	NG OF YEAR	4, AN	١D			
AT TIME 4	• 75					
DELAY IN P INTEGRA FRAC	EAK OF FER L OF NORMA TION OF IN	TILITY CURV LIZED FERTI ITIAL FERTI	E IS -0. LITY IS LITY IS	184397 1.08950	02 1.050882	
VALUES OF 0.059358	FERTILITY 0.067649	CURVE FOR A 0.075042	GES 21 T 0.080616	0 30 ARE 0.082016		
0.079207	0.075498	0.071418	0.065613	0.058225		
- TOTAL POPU	LATION IS	22016510.				
	**********	**************************************	******	*********	**********	*********
361071.	346090.	341588.	339259.	337778.		
336725.	335795.	334919.	334091.	333320.		
_ 332613.	331958.	331324.	330688.	330033.		
. 329349.	328642.	327922.	327184.	326432.		
AT BEGINNI	NG OF YEAD	5.AM	٩D			
AT TIME 5	• 75					
DELAY IN P INTEGRA FRAC	EAK OF FER L OF NORMA TION OF IN	TILITY CURV LIZED FERTI ITIAL FERTI	VE IS -0. LITY IS LITY IS	480408 1.08950	1.098618	1
VALUES OF 0.062964	FERTILITY 0.072470	CURVE FOR A 0.081761	GES 21 T 0.088994	0 30 ARE 0 • 0 880 98	13.	
0.080292	0.074753	0.071688	0.066822	0.059826	A CONTRACTOR	A
TOTAL POPU	LATION IS	22043640.		1	3	
******	****	****	******	********	V	*********
~. ·			- 69	-		
See. 1					- 934	,2
~					9.00	

	POPULATION 377589。	FOR AGES 352918•	1 TO 20 1 344093:	S 340174•	338112.		
~	336768.	335795,	334919.	334091.	333320.		
	332613。	331958.	331324.	330688.	330033.		
$\smile$	329350.	328641.	327922.	327184.	326432.		
	AT BEGINNIN	NG OF YEAR	6,AN	٩D			
$\sim$	AT TIME 6	<b>7</b> 5					
)	DELAY IN PE INTEGRAL FRACT	EAK OF FER _ OF NORMA FION OF IN	TILITY CURY LIZED FERT ITIAL FERT	/E IS -0. [LITY IS [LITY IS	909306 1.089	499 1.118620	
<u> </u>	VALUES OF F 0∘065618	FERTILITY 0.076765	CURVE FOR / 0.088974	AGES 21 T 0.098260	0 30 ARE 0•092387		
)	0.076925	0.069761	0.068678	0.065408	0.059325		
¢	TOTAL POPUL	ATION IS	22082090	3			
)	############# POPULATION 389333。	********** FOR`AGES 369063•	*********** 1 TO 20 1 350881•	********** [S 342668•	339024•	*****	*****
<u> </u>	337101.	335838.	334919.	334091.	333320.		
)	332613。	331958.	331324.	330688.	330033.		
	, 329350.	328642.	327922.	327184.	326432.		
~	AT BEGINNIN	IG OF YEAD	7,A*	1D			
)	AT TIME 70	,75					
)	DELAY IN PE Integral Fract	EAK OF FED OF NORMA IION OF IN	TILITY CURN LIZED FERTI ITIAL FERTI	/E IS -1. ILITY IS ILITY IS	277342 1.089	500 1.121859	
)	VALUES DF F 0°067241	FERTILITY 0•079908	CURVE FOR 4 0+094899	AGES 21 T 0•105441	0 30 ARE 0•093917		
>	0.072075	0.064586	0.065381	0.063390	0.058125		
	TOTAL POPUL	ATION IS	22123450				
	***	*****	***	*****	****	*****	******
<b>`</b> .							

-

•

<i></i>	POPULATION 393105.	FOR AGES 380542•	1 TO 20 366934.	IS 349429•	341510.		
	338010.	336170。	334962.	334091.	333320.		
ب •	332613。	331958.	331324.	330688。	330033.		
	329350。	328642.	327922.	327184.	326431.		
-	AT BEGINNI	NG OF YEA?	A e R	ND			
$\sim$	AT TIME 8	• 75					
<u> </u>	DELAY IN PI INTEGRAI FRAC	EAK OF FE© L OF NORMA TION OF IN	TILITY CUR LIZED FERT ITIAL FERT	VE IS -1. ILITY IS ILITY IS	496449 1.089	9500 1.111391	
)	VALUES OF 0 0.067541	FERTILITY 0.081096	CURVE FOR 0.097754	AGES 21 T 0°108647	0 30 ARE 0.093259		
$\sim$	0.067985	0.060862	0.062787	0.061503	0.056761		
)	TOTAL POPUL	ATION IS	22164480	•			
ý	********* POPULATION 392049。	*********** FOR AGES 384229.	********** 1 TO 20 378346.	********* IS 365415•	*********** 348248•	*****	****
<u> </u>	340489.	337077.	335293.	334134.	333320.		
	332613.	331958.	331324.	330687.	330033.		
	329350。	328642.	327922.	327184.	326431.		
÷	AT BEGINNIN	IG OF YEAV	9.A	ND			
¢	AT TIME 9.	,75					
}	DELAY IN PE INTEGRAL FRACT	AK OF FER OF NORMAL ION OF IN	TILITY CUR -IZED FERT ITIAL FERT	VE IS -1. ILITY IS ILITY IS	532 <b>525</b> 1.089	9499 1.078118	
ł	VALUES OF F 0°065753	FERTILITY ( 0.079162	CURVE FOR 0+095780	AGES 21 T 0•106416	0 30 ARE 0•090456		
j	0.065073	0.058294	0.060436	0.059348	0.054862		
J		ATION IS	22197900	•	***	****	**
		-					

<i>ک</i>								
	POPULATION 385079。	FOR AGES 383196.	1 TO 20 382012.	IS 376780°	364179.		•	
)	347206。	339549。	336197.	334465。	333362.			
$\smile$	. 332613.	331958.	331324.	330688。	330033.			
_	329350.	328642.	327922.	327184.	326431.			
	AT BEGINNIN	IG OF YEAG	109A	ND 12 50 12				
-	CORE USAGE	08 18	ECT CODE=	9856 BY	TES, ARRAY ARE	= 3400	0 BYTES∮T	OTAL AREA
)	DIAGNOSTICS	i nt	JMBER OF E	RRORS=	0, NUMBER C	F WARNING	€S=	0. NUMBER
Ļ	COMPILE TIM	IE= 3,0	98 SEC∘EXE	CUTION TIM	E= 14.47 SE	Co QUE	EN'S WATF	OR VERSION
Ŷ	COST FOR T	HIS PROGR	AM IS \$	1.42	RUN 1	N HSC	MAR 19	<b>9</b> 1974
÷								
>								
)								
<u> </u>								
~	•							
Ç								
)								
÷								
)								
}								
`.								
	Ø			- 72				

٦

The above output simulates population and fertility over ten years with "Baby boom" dynamics - wide peak of intermediate height. See Figures 3 and 4 in Section V.

## Program Ib

This is a copy of the program which was used to plot the profile in Figure 6.

```
STF55952, VERVERV
\sim $JOB
 // EXEC SYMVU, TIME=5
 //COMP.SYSIN DD *
      SUBROUTINE DATA(X, IR, IC, IF)
      REAL D(100) oF(100) oP(100) oX(100) oR(100) oUS(100) oD5(100) oF1(100)
      REAL HHOKKOSUMOIV(10) DLY(10)
      REAL PLTPER, PRTPER, I1
      INTEGER YRS, AGES, YOUNG, NN
      ¢
                             =1 IF YOU WANT PRINT
      SET IFORM=0 IF YOU WANT PLOT,
 С
      *****
 С
      IFORM=1
      IFORM=0
      PL=1E-5
      PR=PL
      TINT=1E-4
      ICM1=IC-1
      IF (IR.GT.1) GO TO 31
      С
                   KK IS TIME STEP
 C
      HH IS AGE STEP
                 -
      READ(5,101) HH,KK
      FORMAT(2F10.6)
  101
                        - PRTPER IS PRINT INTERVAL
      PLTPER IS PLOT INTERVAL
 С
      READ (5, 101) PI TPER, PRTPER
      NDE IS THE NUMBER OF FIRST ORDER ODE'S AFTER TRANSFORMATION
 С
      IF NDE > 10 CHANGE REAL DIMENSION IN DATA AND $STEP
 С
      NN IS THE NUMBER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES
 С
      READ(5,103) NDE, NN
      FORMAT(214)
  103
      PUT INITIAL VALUES OF ODES ONE TO A CARD
 C
      DO 97 1=1. NDE
          READ(5.107) DLY(I)
          FORMAT(F10.4)
  107
          CONTINUE
  97
      °,
      PR=PR+KK
      T=0.0
      ******
 С
                READ DEATH RATES
 С
                READ POPULATION DENSITY - OBTAINED FROM SPLINE
 С
      ****
 С
      С
      READ(5,100) (P(I),I=1,IC)
      FORMAT(5F10.6.30X)
  100
      RE4D(5,104) (P(I),I=1,IC)
  104
      FORMAT(10F8.0)
      С
      SUM=0.0
      DO 99 I=1,IC
          SUM=SUM+p(I)
      CONTINUE
  99
      DO 98 I=1,IC
          P(I)=P(I)*22000000./SUM
      X(I) = P(I)
  98
      CONTINUE
      С
      IF(IFORM.NE.1) GOTO 61
      IPG=0
      WRITE(6, 109)
                                      IS!)
      FORMAT("1", "POPULATION FOR AGES
                              1
                                 TO 20
  109
      WRITE (6,102) (P(I), I=1,20)
      FORMAT(5F10.0/)
  105
      WRITE(6,110)
                                       0, AND!)
      FORMAT( ", "AT BEGINNING OF YEAR
  110
```

```
61
    CONTINUE
    С
    DO 70 I=1, IC
        I1=FLOAT(I)
       D(1) = (1 - cxP(-1) + 1)/600.))/(1 + ((11 - 25.5) + 2)/4.)
       CONTINUE
70
    YOUNG=0
    F1(1)=EXP(-(_125*HH*(YOUNG-24,5))**2)
        SUM = F1(1) * P(1)
    DO 14 I=2.IC
       F1(I)=EX>(-(.125*HH*(I*YOUNG-25.5))**2)
       SUM=SUM+\pi_1(1)*P(1)
       D5(I) = 5*(D(I) + 0(I-1))
       CONTINUE
14
    DQ5=.5*(3.*D(1)-D(2))
    DT5=.5*(3.*D(TC)-D(IC-1))
    SUM=P(1)/SUM
    DO 15 I=1,IC
       F1(I)=F1(I)*SUM
15
       CONTINUE
    PA=KK/HH
    PA1=0.0
    P2=0.0
    FA=1
    GO TO 33
31
    CONTINUE
    PR=PR+KK
С
    ****
                 UPDATE CUEFFICIENTS OF FERTILITY FQUATION
С
    ***
С
    PA1=DLY(2)
    P2=DLY(2)*DLY(2)*PA
    FA = EXP(-DLY(4))
С
    IF (PRTPER.GT. PR.OR.IFORM.NE.)) GOTO 62
    WRITE(6,106) T
    FORMAT( AT TIME , F6.2)
106
    WRITE(6_{9}112) \Gamma LY(1)
112
    FORMAT("00", DELAY IN PEAK OF FERTILITY CURVE IS
                                      1,F9.6)
    CONTINUE
62
С
    ***
С
С
                 MULTIPLY FERTILITY BY INTEGRATING FACTOR
С
    ***
    CONTINUE
33
    SUM=0.0
    DO 42 I=1,IC
       SUM=SUM+=1(I)
       F(I) = FA*FI(I)
       CONTINUE
42
    IF (PRTPER.GT.PR.OR.IFORM.NE.1) GOTO 63
    WRITE(6,113) GUM
              INTEGRAL OF NORMALIZED FERTILITY IS
    FORMAT( ", "
                                            *,F9.6)
113
    WRITE(6 \circ 114) =A
    FORMAT ( " ","
                FRACTION OF INITIAL FERTILITY IS
114
   2,F9.6)
    WRITE(6, 115)
    FORMAT(101, 1VALUES OF FERTILITY CURVE FOR AGES 21 TO 30
                                             ARE!)
115
    WRITE(6,108) (F(I), 1=21,30)
    FORMAT(SF10.6/)
108
63
    CONTINUE
    С
    С
```

----

• ,

. . .

I VINHAIN

```
الا الله يو يو يا الد يو يا الدين يو يو يو يو يو يو يو يو
     TINT=TINT+KK*>
     IF (HH.GT.TINT) GOTO 45
     SUM=0.
     SUM1=0.
     DO 44 I=1,ICM1
         J = TC - T
         SUM = SUM + p(J+1) *F(J+1)
         P(J+1) = P(J) * (1 - R(J))
         SUM1=SUM1+P(J+1)
         X(J+1) = P(J+1)
 44
         CONTINUE
     SUM=SUM+P(1)*=(1)
     P(1) = SUM
     X(1) = P(1)
     SUM1=SUM1+P(1)
     TINT=-1E-4
 45
     CONTINUE
     С
     IF (PRTPER.GT.PR.OR.IFORM.NE.]) GOTO 64
     WRITE(6.116) <UM1
     FORMAT("0", "TOTAL POPULATION IS ",F10.0)
 116
     PR=+1F=5
     WRITE (6,117)
     117
    64
     CONTINUE
     С
     ***
С
                    INCREMENT FERTILITY BY ONE YEAR
С
     *****
С
     DO 34 I=1.IC
         IF (1E-2c GT F1(I)) F1(I)=0.0
t
         US(I) = D(T) * F_{1}(I)
         CONTINUE
 34
     UQ = 2.*US(1) - US(2)
     UT=2 *US(IC)-US(IC-1)
     F1(IC)=F1(IC)-.5*PA*((PA1*(UT-US(IC-1)))-P2*(DT5*UT+D5(IC)*US
    2(IC-1)-(DT5+D5(IC))*US(IC)))
     F1(1)=F1(1)-.=*PA*((PA1*(US(2)-UQ))-P2*(D5(2)*US(2)+DQ5*UQ-(D5
    2(2) + DQ5) + US(1))
     D0 35 I=2.ICM1
         F1(I) = F1(I) - .5*PA*((PA1*(US(I+1) - US(I-1))) - P2*(D5(I+1)*US)
     2(I + 1) + D5(I) + Uc(I - 1) - (D5(I + 1) + D5(I)) + US(I))
         CONTINUE
 35
     ****
C
             SOLVE ODES FOR DELAY PARAMETERS AND INCREMENT TIME
С
     **
С
     DO 36 I=1.NDE
         IV(I) = OLY(I)
         CONTINUE
 36
     CALL SRUN(IV, DLY, T, KK, NDE, NN)
     PL=PL+KK
     IF (PLTPER.GT.PL) GOTO 31
     С
     IF (IFORM.NE.1) GOTO 65
     IPG=IPG+1
     IF (IPG.NF.2) GOTO 79
     IPG=0
     WRITE(6,121)
     FORMAT(11)
 151
 79
     CONTINUE
     WRITE(6+118)
     FORMAT( . . POPULATION FOR AGES
                               1 TO 20
                                       IS!)
 118
         WRITE(6,102) (P(I), I=1,20)
```

```
TOULATT, A HE DESTINATION OF THEM STOR SHOULD
  111
      WRITE(6,120)
      FORMAT( ! ...
 150
      CONTINUE
 65
      С
      RETURN
      END
      SUBROUTINE SRIN(IV,Z,T,KK,NDE,NN)
      *****
      THIS SUBROUTINE GIVES A SIMULTANEOUS SIMULATION OF VALUES
 С
      Z = (IA(T) \circ A(T) \circ A(T) \circ IB(T) \circ B(T)) AT T+H FROM INITIAL VALUES IV
      OF THE SAME VARIABLES AT T.
                                  FOR EACH DIFFERENT SIMULATION THE
С
                  She MUST BE REWRITTEN TO EVALUATE THE DERIVATIVES
С
      SUBROUTINE
       D(T) AS A FUNCTION OF TIME T AND SOLUTION VALUES
                                                         Y(I)
С
      ***
С
      REAL IV(NDE),7(NDE), T, T2, KK, K1
      K1=KK/FLOAT(NNI)
      T2=T
      T = T + KK
 28
      CONTINUE
       CALL $STEP(IV,Z,T2,K1,NDE)
       T2=T2+K1
       DO 29 I=1,NDE
           IV(I) = Z(I)
  29
           CONTINUE
       IF (T.GT.T2*K1/2) GOIU 28
      RETURN
      END
      SUBROUTINE $STEP(IV,Z,T,KK,NDE)
      REAL IV(NDE),7(NDE),21(10),D(10),D1(10),KK
       CALL SDE(T, IV, NDE, D)
       DO 11 I=1.NDE
           Z1(I) = IV(I) + KK + D(I)
           CONTINUE
  11
       TT=T+KK
       CALL $DE(TT,Z1,NDE,D1)
       DO 12 I=1.NDE
           Z(I) = IV(T) + .5 * K K * (D(I) + D1(I))
           CONTINUE
  12
       RETURN
       END
       SUBROUTINE $DF(T,Y,NDE,D)
      REAL Y (NDE) .D (NDE) .KK
       D(1) = Y(2)
       D(2) = Y(3)
       T1=0.
       IF (T.GT.15.) GOTO 78
       TT_1 = ABS(T-5_{\circ})
       TT_2 = ABS(T_10)
       T_{1=}(-SIN(FXP(-TT1)-EXP(-TT2)))/15.
  78
       CONTINUE
       D(3) = 15 * T1 - Y(2) - 2 * Y(3)
       D(4) = T1
       D(5) = 0
       RETURN
       END
 //GO.SYSIN DD *
 EVOLUTION OF POPULATION OVER 50 YEARS: WITH FERTILITY PROGRESSION
                                                          3
                                                   1
   50 100
           5
                       0
               4
  30.0330.0 7.0
                                             20.0
                      4.0
           .25
 1.0
1.0
           1.0
        1
    5
 0.0
 0.0
```

										•
	0.1		· · .							
	°0558	.005//	.004	+14 •(	0338	.00299				
	°00519	.00261	.002	24/ (	0231	.00212				
	.00197	.00191	.001		0198	00207				
	°00512	.00219	.002	225 。(	0230	.00237				
	。00243	。00251	002	259 。(	0268	,00277				
	°00588	.00299	• • • • • • •	311 .(	0325	.0034				
	。00356	.00373	.003	392 °(	0412	00435				
	。00459	。0048 <i>6</i>	,005	515 。(	0546	.00581				
-	°00618	00659	00.007	703	0751	。00804				
•	。00861	。00 <b>9</b> 23	.009	991 。(	)1064	。0 <b>11</b> 45				
	°01535	.01327	° 014	•30 •(	)1543	<u>01665</u>				
<u> </u>	<b>01798</b>	.01943	.021	۰ (	)2271	。02457				
	°05620	.02878	.03]	. [18]	)3376	<b>0365</b> 8				
	。03964	°04296	o .046	556 。(	)5046	。0547				
~~	°0293	.06427	。069	966(	)755	08181				
	。08864	。09602	2 .103	399 .	11259	°15186				
	°13182	.1426	.154	416 。	16657	<u>,17988</u>				
$\bigcirc$	°19413	.20937	°55;	563 .2	243	°56144				
	°58033	.30173	<b>.</b> 323	364 。	34666	.371				
	°38651	.44719	,548	326 °	72467	1.0				
$\sim$	1023102.	,1000000.	994230,	,990114.	986767。	983817.	981102.	978541.	976124.	973869。
	971804。	969890。	968038.	966179。	964266.	962270.	960201.	958098.	955942.	953743。
	951483。	949171。	946789。	944337。	941806。	939197.	936492.	933692.	930788.	927763。
~	924609。	921317。	917880.	914282。	910515.	906554.	902393.	898007.	893382。	888504。
	883342。	877883。	872r98.	865967。	859464,	852554.	845214.	837413.	829114.	820292。
	810900。	800910.	790282.	778981.	766961.	754191.	740631.	726241.	710990.	694843。
$\sim$	677771。	659749.	640761.	620782.	599824.	577882.	554975.	531133.	506403.	480850。
	454548.	427593。	400112.	372240.	344136.	315982.	287973.	260322.	233251.	206989。
	181765。	157799.	135297.	114440.	95378.	78221.	63036.	49838.	38593.	29215.
<u> </u>	21577。	15514.	10833.	7327。	4787.	3011.	1818.	1005.	454.	125.
	/*									
	11									
~~										
<b>.</b> .	****	H JOB DEL	ETEN BY	HASP OR	CANCELLI	ED BY OPI	ERATOR BI	EFORE EXI	ECUTION 4	日本计计学学计计学
· • • • •										•

HASP-II JOB STATISTICS -- 296 CARDS READ -- 0 LINES PRINTED --

Ƴ.

0

- 78 -

Estimation of  $\mu(x,s,t)$ : this program uses values of the population density to estimate  $\mu(x,s,t)$  through differentiation of two cubic spline approximations and integration of a subsequent spline approximation.

As a test problem, a separable economic mobility was chosen

$$\mu(x,s,t) = \alpha(x) \beta(s) ,$$

$$\alpha(\mathbf{x}) = \frac{(\mathbf{x}+20)(80-\mathbf{x})}{10000}$$
,  $\beta(\mathbf{s}) = \frac{\mathbf{s}+10}{200}$ 

With an initial population density

$$p(x,s,o) = p_0(x,s) \equiv e^{-\frac{x}{200}} \frac{(2s^3 - 405s^2 + 21000s)}{540}$$

the population density without deaths

$$\bar{p}(x,s,t) = [e^{\frac{W}{2000000}} p_0(x-t,(s+10)e^{\frac{W}{2000000}}-10)],$$

$$w = - \frac{t^3}{3} + t^2(30-x) + t(x-80)(x+20)$$

evolves, and with a death-rate of

- 79 -

$$r(x,s,t) = (1-.01t) (.0003x+.0006)$$

the density with deaths is

r

÷

۲

.

$$p(x,s,t) = \overline{p}(x,s,t)e^{-R}$$
,

$$R = (t - \frac{.01t^2}{2})(.0003x + .0006) - .0003(\frac{t^2}{2} - \frac{.01t^3}{6}).$$

```
$108
        ACCT-NUM, VERNER , IIME=60, PAGES=20
        C,
   C
        THIS PROGRAM IS USED TO ESTIMATE THE ECONOMIC MOBILIITY
   С
        PARAMETER NU. AGE- TIME- AND INCOME-SPECIFIC VALUES OF THE
        POPULATION ARE REQUIRED.
   C
        FOR A TEST RUN WE ASSUME THAT 4017#S,T)=ALPHA(X)*BETA(S).
   C.
        FOR THIS PARTICULAR EXAMPLE THE EIGENVECTOR TECHNIQUE USED
   C.
   С
        TO ESTIMATE
                A(T) AND O(X)
                            IN THE FERTILITY EQUATION COULD
       HAVE REEN USED.
   С
   C
        C
        REAL P(7,11,11),MU(7,11,11),ALPHA(7),BETA(11),X,S,T
1
2
        PEAL = H(11) \circ H(3 \circ 11) \circ COF(4 \circ 11)
3
        PEAL E(2,11),00(11),TOF,00,0019Y
4
        INTEGER DX.DS.OT, XE, SM. TM. XX, SS.TT
5
        XF = 7
6
        SM=11
7
        TM=11
8
       ∴×=1 -
9
       \Pi S = 1
10
        DT=5.
11
        F=2.71-28182846
   C
   \widehat{}
        С
       DEFINE FUNCTION ALPHA
   C
        C
       WWIT (5-112)
15
        FORMAT(11...
                  THE ECONOMIC MOBILITY IS ALPHA(X)*BETA(S) WHERE*)
13
    115
14
        WRTT~(6,166)
15
    106
       F(1+1)T(101)
        DC 1: IX=1•XE
16
17
        XX = Y + (|X - |)
18
        ΔL<sup>D</sup>H*(IX)=(XX+20•)*(×0•-XX)/10•**4•
   C.
   \cap
       19
        W \rightarrow JT^{-}(A \bullet ) \cap L ) = XX \bullet ALPHA(IX)
    100
20
       FORM ( T ( )
                  ALPHA(", I3, ") IS ", F10.5)
21
    16
       CONTINUE
        101 T= (n, 1-4)
55
   C
        \cap
   C
   C
        Ç
       DEFINE FUNCTION BETA
   0
        \cap
23
        20 11 (S=1.5%
        55=05*(15-1)
24
25
        RETA(IS) = (SS+10.)/200.
   C
   (
       26
        491T=(6,101) SS,BETA(IS)
27
    101
       FORMT()
                  BETA(*,13,*) IS *,F10.5)
28
       CONTINUE
    11
   ſ
        \cap
       С
       FIND AVALYTIC SOLUTION TO THE PDE
```

```
(
                DP/DX + DP/DT = D/DS(MU*P) - R*P
     C
           C
29
           10 1> 1 T=1.TM
30
           T = 0T * (LT - 1)
31
           いい ] > LX=1. XE
35
           X = OX = (\lfloor X - \rfloor)
33
           W=(.n003*X +.0006)*(T-.005*T*T)-.0003*(T*T/2-(.005*T**3)/3)
34
           12]===**(-W)
35
           \forall 2 = 1 * ((X + 20)) * (X - 30) + 1 * ((30) - X) + 1 / 3)) * (-1)
36
           NO 12 LS=1.5M
37
           SS=0S*(LS-])
38
           5=55+10.
39
           w=S****(w2/2000000.)-10.
40
           Y=W*(21000.+***((-405.)+2.**))
41
           w = (w + 1^{\circ}) / S
42
           P(LX.LS,LT) = (**Y/540.)****((T-X)/200.)*W1
43
           CONTINUE
      12
     C
           ******
     (
     C
                      H(XoSoT)
                                         X AND DIFFERENTIATE THE SPLINE
              SOLTAF
                                 AGAINST
     C
                 NU(XoSoT)
                                 DP/Dx
                           TS
     C
           C
44
           00 21 TX=1.XE
45
           X=OX \leftrightarrow (TX-T)
           K(1 \cdot X) = X
46
47
      20
           CONTINUE
48
           CALL SETUP(XE,A,H,K)
49
           DD 21 IS=1.5M
50
           no St 11=1.10
51
           90 20 TX=],XE
52
           K(2 \bullet TX) = P(TX \bullet IS \bullet IT)
53
     22
           CONTINUE
54
           CALL SOLVE (4.K.H.XE.D.COF)
55
           DU 21 TX=1. XE
56
           X = \cap X \in (T X - 1)
57
           HU(Ix+IS+IF)=COF(3+IX)+X*(2+*COF(2+IX)+X*3+*COF(1+IX))
58
      21
           CONTINUE
     C
     С
           **************************************
     С
                                 AGAINST T AND DIFFERENTIATE THE SPLINE
              SPLINE P(X,S,T)
     C
                MU(X,S,T)
                          IS = \partial P / D X + \partial P / D T + R (X + S + T) + P (X + S + T)
           ***********************************
     С
     (
59
           00 31 JT=1, TM
60
           T=0T*(TT-1)
           (1 \cdot T) = T
61
      30
           CONTINUE
62
63
           CALL SETUP (TM.A.H.K)
64
           00 31 [X=1 . XE
65
           X = OX = (1X - 1)
66
           DU 31 TS=1.5M
67
           00 32 TT=[+]M
           K(2,TT) = P(IX,IS,IT)
68
69
      32
           CONTENUE
70
           CALL SOLVE (A,K,H,TM,D,CUF)
71
           DO 31 IT=1.1M
72
           T=DT*(TT-1)
73
           MU(IX,IS,IT)=MU(IX,IS,IT)+COF(3,IT)+T*(2.*COF(2.IT)+
```

÷	74	31	&T*3.*COF(1.IT))+(101*T)*(.0003*X+.0006)*P(IX,IS,IT) CONTINUE
) ) 7			**************************************
$\smile$	75	C	
<b>N</b>	76		S=DS+(TS+1)
<u> </u>	77		K(1,TS) = S
-	78	40	CONTINUE
	79		CALL SETUP (SM, A, H, K)
<u> </u>	80 81		$\frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}$
	82		00.47 + 1141310 00.42 + 15=1.5M
$\cup$	83		K(2,TS) = MU(IX,IS,IS)
	84	42	CONTINUE
	. 85		CALL SULVE (A, K, H, SM, D, CUF)
~	80		M()([YすらMす]])=()。 C 2- 10参S ::
	88		S1=S2-05
<u> </u>	89		DO 4: IS=2,5M
	90		S1=S1+·)S
	91		
~	93		1-04+(*15 201(IX+(+II)=00(IX+(+1+)+)+(((\$2*COF()+1)/A+*COF(2+1)/3+)*
			<pre>\$ \$2+COF(3,1)/2.)*\$2+COF(4,1))*\$2-(((\$1*COF(1,1)/4.</pre>
$\sim$			& +COF(2,I)/3.)*S]+COF(3,I)/2.)*S1+COF(4,I))*S1
	94	41	CONTINUE
3		C	PRIMIPRINTERINTERINTERINTERINTERINTERINTERINTE
$\rightarrow$	95		$4^{2}$ [1 ~ (6 • 119)
*	96	110	FORMAT("1"," VALUES ARE % ERROR IN MU, S AND T GIVEN, X ACROSS")
$\overline{}$	97	114	
	70	114	30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -
_		ſ	PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT
-		Ç	
	99		DO 55 KS=1.5M
$\smile$	100		のパージャを(大の) 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( う * 1 ( ) ) ) ) ) )))))))))))))))))))))))
	102		フローフラーマー・マーコア つじ 55 KT=1・1や
_	103		TT=0T*(KT-1)
	104		$DO = 5^{\circ} KX = 1^{\circ} XF$
	105		$IF = (\gamma (K_{A,y}K_{S,y}K_{T}) \bullet EQ_{\bullet} 0) \circ OOTO S1$
-	100		◎((KX)K)>(A)=(BE+A(SM)*ALPHA(KX)*P(KX)SM)K1)=MU(KX)KS)K1))/ 気P(KX_KS+KT)
	107		GOTO 52
_	108	51	$M_{11}(KX * KS * KT) = ALPHA(KX) * BETA(KS)$
	109	<u>52</u>	CONTINUE
	110	50	$MU(KX \bullet KS \bullet K1) = (MU(KX \bullet KS \bullet K1) / (BETA(KS) * ALPHA(KX)) - 1) * 100 \bullet$
	111	C	
		Ċ.	PKI 4TPKINTPKINTPKINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPR
-	112		WPIT(6+113) SS+TT+(MU(KX+KS+KT)+ KX=1+XE)
ط	113	113	F174W11(* **2159* ***/F9*2) C12-F=NDF
	714	C S	PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT

	115 116 117 118	- 105 C	4RTT=(6,105) FUR4-T(11) ST-)P END
4	119		SUBROUTINE SETUP(N,A,H,K)
			**************************************
			AND THEN DECOMPOSES & TO LU SU THAT FIRST ROW IS SUPERDIAGONAL OF U, SECOND ROW IS DIAGONAL OF U THIRD ROW IS SUBDIAGONAL OF L, DIAGONAL OF L IS UNITY ************************************
¥ ¢	$120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 139 \\ 140 $	10 11 C	RFAL A(3,N) + H(N) + K(2,N) $N = 1 = N = 1$ $H(2) = K(1,2) = K(1,2) = K(1,2)$ $N(1+1) = K(1,1+1) - K(1,1)$ $A(1+1) = H(1+1) / (H(1+1) + H(1))$ $A(2,1) = H(1+1) / (H(1+1) + H(1))$ $A(2,1) = 2,0$ $A(3,1) = 1 - A(1,1)$ $CONTINUE$ $A(1,1) = -2,$ $A(3,1) = 0,$ $A(3,1) = 0,$ $A(3,1) = 0,$ $A(3,1) = -2,$ $A(3$
	141		SUBPOUTINE SOLVE(A.K.H.N.D.COF) ************************************
>	142 143 144 145 146 147 148 149 150	12	$\begin{array}{l} PFAL \ \ H(N) \bullet O(N) \bullet A(3 \bullet N) \bullet K(2 \bullet N) \bullet COF(4 \bullet N) \\ O(2) = (K(2 \bullet 2) - K(2 \bullet 1)) / H(2) \\ NM1 = N + 1 \\ O(1) = 1 = 2 \bullet NM1 \\ \qquad $

`` `

			•
	151		DO 13 I=2.N
	152		D(I) = D(I) - A(3, I) + D(I - 1)
	153	13	CONTINUE
	154		$D(N) = D(N) \land A(2,N)$
	155		00 14 I=2.N
	156		J=N+1-1
•	157		D(J) = (D(J) - A(1, J) + D(J+1)) / A(2, J)
	158	14	CONTINUE
<i></i>	159		CALL POLLY (NODOKOHOCOF)
Ť	160		RETURN
	161	-	E M()
		C	
	162		SUBROUTINE POLLY (NoMoKoHoCOF)
	•	C	
		ſ	***************************************
		С	THIS POUTINE COMPUTES THE CUEFFICIENTS OF THE SPLINE POLYNOMIAL
_		С	ON EACH SUBINTERVAL
		С	K IS THE ARRAY OF DATA POINTS
		С	H IS THE VECTOR OF SUBINTERVAL LENGTHS
~		С	M IS THE SOLUTION VECTOR TO THE EQUATION AMED
		C	***************************************
		ſ	
-	163		REAL M(N) $K(2 $ $N) $ $H(N) $ $CUF(4 $ $N)$
	164		N(a) = N - I
	165		O(1) = 1, 4 = 1, 4 = 1
	166		$COF(1,I) = (M(I+1) - M(I)) / (6 \cdot H(I+1))$
	167		$C(F(2 \cdot I) = (K(1 \cdot I + 1) * M(1) - K(1 \cdot I) * M(1 + 1)) / (2 \cdot H(1 + 1))$
	168		$0^{-1} = \forall (1+1) * K (1, 1) * K (1, 1) - M (1) * K (1, 1+1) * K (1, 1+1)$
~			V+5°*<(5°I+1)+5°*K(5°I)
	169		$COL(3*1) = (DON(5*4(1+1))) + H(1+1)*(W(1)-W(1+1)) \times 0$
4	170		D(1) = M(1) * (K(1, 1+1) * (1+1) * (K(1, 1)) * (1+1) * (K(1, 1+1) * (1+1)) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) * (1+1) *
-			$\chi_{-r_0} * \kappa ([, 1]) * \kappa (2, 1+1) + \kappa (1, 1) * M (1+1) * (H (1+1) * * 2) - \kappa (1, 1+1) * M (1)$
÷	1/1	• •	((r ( + • I) = 907 (H ( I + 1) *6 • ) ○ DNT = NIN ²
<u> </u>	172	11	
	1/3	17	1997年17日 J年194 200年(1979年)
	1/4	ľρ	UNE CIRCIPALUE CURINELT DETINN
-	175		
	110		

&EV155

.

АГЪН	Δ( ())	IS	0.16000
ALPH	Δ( 10)	15	0.21000
ALPHA	A( 20)	IS	0.24000
АГън	A( 30)	15	0.25000
AL PH.	A( 40)	IS	0.24000
ΔЦРН	A ( 50)	IS.	0.21000
∆∟¤н,	A ( 60)	IS	0.16000
BETA	( ())	T S	0.05000
BETA	(10)	TS	0.10000
BETA	( 20)	1 S	0.15000
BETA	(30)	IS	0.50000
BETA	( 40)	15	0.25000
BETA	( 50)	15	0.30000
BETA	( 60)	TS	0.35000
BETA	(70)	15	0.40000
BETA	( 80)	TS -	0.45000
BETA	( 90)	TS .	0.50000
BETA	(100)	TS	0.55000

VALUES	ARE	%	ERPOR	TN	MU,	S	AND	T	GIVEN,	Х	ACROSS
--------	-----	---	-------	----	-----	---	-----	---	--------	---	--------

<i>_</i> ,	S	T	X =	0	10	20	30	40	50	60
 -  	0 0 0 0 0 0 0 0 0 0	0 2 4 5 8 10 12 14 16 18 20	40 -4 -20 -13 -13 -12 -8 -9 -23 -34	0.00 3.75 1.60 3.99 3.41 1.42 5.68 6.40 5.43 7.39 3.99	0.00 359.65 18.10 -7.42 -1.23 25.24 66.76 18.42 18.09 27.41 18.83	0.00 75.85 -20.49 2.34 16.22 10.08 -4.97 -1.60 6.82 -10.80 -38.13	0.00 115.51 27.85 18.17 -3.06 -3.89 0.09 5.88 7.75 -3.91 17.28	0.00 170.63 -27.13 13.93 6.51 -11.09 17.15 8.73 10.38 10.89 1.92	0.00 160.18 -15.82 33.79 -2.07 -1.89 -8.16 -15.13 -11.17 -40.15 16.66	0.00 803.37 83.30 99.21 100.96 107.53 95.22 105.93 103.78 86.25 283.49
  	1 0 10 10 10 10 10 10 10 10 10	0 2 4 5 4 10 12 14 16 18 20		0.70 0.36 0.07 0.59 0.44 0.53 0.65 0.51 0.61 1.37 1.89	-0.86 0.43 0.07 -0.02 0.00 0.15 0.43 0.16 0.18 0.28 0.28 0.24	$ \begin{array}{c} -0.28 \\ 0.08 \\ -0.03 \\ -0.01 \\ 0.06 \\ 0.06 \\ -0.03 \\ -0.01 \\ 0.04 \\ -0.13 \\ -0.37 \\ \end{array} $	$\begin{array}{c} -0.44 \\ 0.17 \\ 0.07 \\ 0.05 \\ 0.01 \\ 0.00 \\ -0.03 \\ 0.07 \\ 0.11 \\ -0.06 \\ 0.30 \end{array}$	-0.51 0.22 -0.07 0.06 0.05 -0.06 0.13 0.07 0.13 0.17 -0.02	$ \begin{array}{c} -1.00\\ 0.15\\ -0.05\\ 0.11\\ -0.03\\ -0.04\\ -0.06\\ -0.15\\ -0.18\\ -0.53\\ 0.29\end{array} $	-1.71 0.75 0.23 0.30 0.49 0.74 0.75 0.95 1.10 1.15 3.78
	20 20 20 20 20 20 20 20 20 20 20	0 2 4 6 8 10 12 14 16 12 20		0.39 0.13 0.03 0.25 0.19 0.22 0.33 0.28 0.33 0.28 0.32 0.44 0.79	$\begin{array}{c} -0.37 \\ 0.15 \\ 0.04 \\ -0.01 \\ 0.01 \\ 0.07 \\ 0.15 \\ 0.09 \\ 0.11 \\ 0.13 \\ 0.14 \end{array}$	$\begin{array}{c} -0.15\\ 0.02\\ -0.01\\ -0.01\\ 0.02\\ 0.02\\ -0.02\\ -0.02\\ -0.01\\ -0.06\\ -0.08\end{array}$	-0.22 0.05 0.03 0.01 0.01 0.01 -0.02 0.02 0.05 -0.02 0.14	-0.25 0.07 -0.02 0.03 0.01 -0.02 0.05 0.02 0.05 0.02 0.07 0.08 -0.06	$\begin{array}{c} -0.45 \\ 0.04 \\ -0.00 \\ 0.03 \\ -0.02 \\ -0.02 \\ -0.02 \\ -0.06 \\ -0.11 \\ -0.23 \\ 0.12 \end{array}$	-0.71 0.27 0.13 0.13 0.24 0.34 0.33 0.41 0.51 0.62 1.60
- - -	30 30 30 30 30 30 30 30 30 30 30	0 24 6 5 10 12 14 16 18 20		0.24 0.05 0.02 0.17 0.12 0.12 0.25 0.25 0.24 0.25 0.24 0.54	-0.25 0.07 0.03 0.00 0.01 0.05 0.09 0.06 0.09 0.06 0.09 0.10 0.08	$ \begin{array}{c} -0.09 \\ -0.01 \\ -0.01 \\ -0.01 \\ 0.02 \\ -0.02 \\ -0.02 \\ -0.01 \\ -0.04 \\ 0.01 \\ \end{array} $	$\begin{array}{c} -0 \cdot 14 \\ 0 \cdot 02 \\ 0 \cdot 02 \\ 0 \cdot 00 \\ 0 \cdot 02 \\ 0 \cdot 01 \\ -0 \cdot 02 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ -0 \cdot 01 \\ 0 \cdot 09 \end{array}$	$ \begin{array}{c} -0.18\\ 0.04\\ -0.00\\ 0.01\\ 0.00\\ -0.01\\ 0.03\\ 0.00\\ 0.05\\ 0.07\\ -0.09 \end{array} $	$\begin{array}{c} -0.29\\ 0.01\\ 0.01\\ 0.01\\ -0.02\\ -0.02\\ -0.01\\ -0.04\\ -0.09\\ -0.14\\ 0.06\end{array}$	-0.43 0.15 0.11 0.08 0.16 0.24 0.22 0.26 0.36 0.46 1.03
- <b>v</b>	40 40 40	0 2 4		$0.16 \\ 0.00 \\ 0.01$	-0.20 0.05 0.02	-0.06 -0.01 -0.01	-0.11 0.00 20.0	-0.14 0.03 0.01	0.00 -0.00 -0.55	-0.30 0.10 0.11

<u>`_</u> ·									
	40	6	-0 13	0.01	-0.01	0.00	0 00	0 00	0.04
	4.0	a a		0.01	-0.01	0.00	0.00	-0.00	0。()の
	40	с 	-0 ₋ 03	0.01	$0 \bullet 0 0$	0.01	-0.00	-0.02	0.11
$\sim$	40	10	-0.08	0.03	0.01	0.02	-0.01	-0.02	0.21
	40	12	-0.55	0.07	-0.02	-0.02	0.02	-0.00	0.16
	40	14	-0.19	0.04	0.00	0.01	-0.01	-0.03	0.010
`	40	16	-0.22	1 0 Q		0001		-0.03	0.20
$\mathbf{C}$	40	10	0.27			0003	0 • 0 4	-0.08	0.30
•	40	18		0.09	-0.04	0 • 0 0	0.07	-0.11	0.39
	40	50	-0,46	0.06	0.06	0.07	-0.11	0.03	0.79
ς							0 1	0.000	0012
- <b>-</b>									
۲	50	0			~				
	50	0	-(),14	-0.17	-0.05	-0.11	-0.09	-0.19	-0.23
$\sim$	50	S	-0.02	0.04	-0.02	$0 \cdot 0 1$	0.01	-0.01	0.07
	50	4	0.01	0.02	-0.01	0.01	0.00	0 01	0.00
	50	6	-0 11		-0001	0.01	0.00	0.01	0.10
	50	0	10.11	0.00	-0.01	-0.01	0.00	-0.01	0.05
$\smile$	20	8	-0 <b>.</b> 06	0 • 0 1	<b>~</b> ()。()()	$0 \bullet 01$	-0.01	-0.03	0.10
	0 ל	10	-0°04	0.02	0.01	0.05	-0.00	-0.01	0.18
	50	12	-0.22	0.05	-0.01	-0-02	0.02	0 01	0 10
	50	14	-018	0.05	-0.00	0 00	-0 01		0.13
$\sim$	50	1 K				0.00	-0.01	-0.02	016
	50	10	-0,00	0.08	-0.02	20•0	0•04	-0.08	0.26
	50	1 H	-0,36	0.08	-0.04	0 • 0 1	0.05	-0.09	0.37
$\sim$	50	50	-0.39	0.05	0.07	0.06	-0.11	0.03	0.62
						0 - 0	0.11	0003	0.002
	60	Ο	-0.12	-0 11	-0 02		0 0 <b>C</b>		
$\smile$	00	0	10.16	- U . 1 I	-0.03	-0.11	-0.05	-0.16	-0.17
	60	2	-0.02	0.02	-0.03	0.01	-0.01	-0.02	0.05
	60	4	0.01	20.0	-0.01	0.01	-0.00	0 03	
	60	6	-0.09	0.00	-0.01	-0 01	0 0 0		
$\smile$	60	g				-0.01	0.01	-0.01	0.03
	60	10	0,00	0.01	-0.01	0.02	-0.01	-0.04	0.09
	60	10	-() . () ->	0.02	0.02	0.03	-0.00	-0.02	0.16
<u> </u>	60	12	-0,23	0.04	0.00	-0.01	0.01	0.01	0.12
	60	14	-0.19	0-05	-0.02	-0.00	-0.01	0.00	0.14
	60	16		0.00		0.00	-0.01	0.00	0.14
4	00	10	-0.23	0.08	-0.02	0.02	0•04	-0.07	0.23
$\sim$	60	18	-0.37	0.08	-0.02	0.01	0.04	-0.09	0.36
	60	<u>50</u>	-0.35	0.05	0.07	0.08	-0.10	0.05	0.51
`							0010	0000	10001
<b>~</b> .	70	0	-0.10	-0.04	-0.03	-0 07	-0.02	0 1/	<u> </u>
	70	ň	2.07	0.07	-0.00	-0.07	-0.02	-0.14	-() • 12
	70	2	-0,01	0.02	-0.01	0.01	-0.01	-0.00	0.04
<u> </u>	10	4	-0.01	0.01	-0.01	-0.00	-0.00	50.0	0.05
	70	ń	-0.07	0.00	-0.01	-0.00	0.01	-0.02	
	70	я	-0 05	0 01	-0.01	0.01		0.02	
	70	10			-0.01	0.01	-0.02	-0.03	0.07
<b>•</b>	70	10	-0,09 -0,09	0.03	-0.00	0.02	0.00	-0.02	0.12
	70	12	-0.21	0.04	0.00	0.00	0.01	0.00	0.13
	70	] 4	-0.51	0.04	-0.01	-0.01	-0.00	-0.01	0.15
	70	16	-0 27	0.08	-0.03	0.02	0 03	-0.07	· 0 10
$\sim$	70	1.8	-0.27	0.10	0.00		0.03	-0.07	11022
	70	10		. 010	-0.02	$0 \bullet 0 1$	0.03	-0.08	0.33
	70	04	-()34	0.08	0.05	0.05	-0.06	0.03	0.48
$\smile$									
	80	0	-0.10	-0.09	-(1 - 0)	-0-04	-0.00	-0 13	-0 00
		2		0.00	0 00			V • 1 C	-0.08
$\sim$	0.0	r. 1	····	0.03	0.00	0.01	-0.05	0.01	0.04
	80	4	-0.05	0.01	-0.01	-0.00	0.01	0.01	0.02
	80	6	-0_(14	U.00	-0.Ul	-0.00	0.00	-0.03	0.05
<u> </u>	80	<u>q</u>	-0.06	0.01	0_00	-0-00	-0.02		
*	80	10	<u>د ا (ب</u> س	0 N J			0 0 1	-0.01	0.00
	00	10	1410 - 310	0.00	-0.02	0 • 0 I	0.01	-0.01	0.09
	0 U	14	-0.19	0.05	-0.00	0.00	0.01	-0.01	0.14
<i>~</i>	80	ί4	-0.55	0.04	-0.00	-0.01	0.01	-0.02	0.15
*	80	16	-0.31	0.08	-0.03	0.03	0.02	-0.05	<u>n 10</u>
	80	18	-0 - 2 -	0 11	-0.00				
	80	20						-0.07	0.21
`~ <b>.</b> .	00	ζ. U		0.09	0.01	-0.02	-0.01	-0.01	0.44
*									

.

	90	0	-0.06	-0.05	0.00	-0.02	-0.01	-0.07	-0.06
	90	2	-0.00	0.02	-0.00	-0.00	-0.01	-0.01	0.01
	90	4	-0.01	0.01	-0.01	-0.00	0.00	0.02	50.0
	90	6	-0,03	0.01	-0.01	0 • 0 0	0.00	-0.02	0.04
	90	Ŗ	-0.03	0.01	-0.01	-0.01	-0.02	-0.02	50.0
	90	10	-0.10	0.01	0.00	$0 \cdot 01$	0.01	0.00	0.03
•	90	12	-0.17	0.05	0.00	0.00	-0.00	-0.01	0.09
	90	14	-0.19	0.04	-0.01	-0.01	0.00	-0.01	0.10
	90	16	-0,25	0.06	-0.05	<u>5</u> 0•0	20.0	-0.03	0.12
•	90	18	-0,31	0.09	-0.02	0.01	-0.01	-0.05	0.18
	90	20	-0.35	0.03	-0.01	-0.01	-0.01	-0.01	0.23
	100	0	-0.00	-0 <b>.</b> 00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	2	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	4	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	5	-0,00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	Ĥ	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	10	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	12	-0,00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	14	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	16	-0,00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	18	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	100	20	-0,00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00

•

· · ·

89 -

•

CORE USAGE OR IFCT COUL = 10216 BYTES, ARRAY AREA = 7332 BYTES, TOTAL AREA DIAGNOSTICS OUTSER OF ERRORS = 0, NUMBER OF WARNINGS = 0, NUMBE COMPILE TIME = 4.78 SEC. EXECUTION TIME = 41.80 SEC, QUEEN'S WATFOR VERSION COST FOR THIS PROGRAM IS 3.21 RUN IN HSC MAR 26, 1974

Estimation of the parameters a(t) and d(x)from values of the normalized fertility. The normalized fertility might be estimated from the fertility curve and the parameter b(t) which represents the family size.

Here we chose as a test case:

$$d(x) = \frac{x}{100}$$
  $x = 0, 10, \dots, 50$ 

$$a(t) = 1 + 4\sin(\frac{t}{6})$$
  $t = 0, 2, ..., 20$ 

4

```
$J0B
        ACCT-NUM, VERNER , TIME=60
   С
        ******
   С
        THIS PROGRAM ESTIMATES THE PARAMETERS A(T)
   С
                                             AND D(X) FOR THE
        FERTILITY DIFFERENTIAL EQUATION. DATA IN THE FORM OF VALUES
   С
        OF THE NORMALIZED FERTILITY ARE REQUIRED, AND THESE MAY BE
   С
        ESTIMATED FROM VALUES OF THE FERTILITY CURVE AND THE PARAMETER
   С
   С
        B(T) - THE FAMILY SIZE.
        TO TEST THE PROGRAM A CLOSED FORM SOLUTION FOR A SPECIAL CASE
   С
   С
        IS USED.
        С
   С
        COMMON K, A, H, COF, D
1
        REAL FBAR(51,11),FBARST(51,11),K(2,51),G(51,11),GT(11,51),ID(51)
2
3
        REAL AT(11), D(51), PROD(11,1)
4
        REAL A(3,51),H(51),COF(4,51)
        REAL NU(51)
5
         *****
    С
    С
        OBSERVE THAT DYNAMIC PARAMETERS ARE BEING USED WITH COMMON AND
         AN ERROR MAY OCCUR AS A RESULT OF MIXED INDEXING - INSURE THAT
    С
        COLUMNS ARE COMPLETELY FILLED ON USE OF A DYNAMIC INDEX
    С
         *****
    С
        NT=11
6
7
        NX=51
         CALL ANAL (NX, NT, FBAR, AT, D)
8
9
        D2=D(2)
10
         AT2=AT(2)
11
         CALL OBS(NX,NT,FBAR,FBARST,G)
12
         CALL TRANS(NX,NT,G,GT)
13
         CALL MULT(11,51,GT,G,PROD)
14
         CALL EIGEN(PROD, 11, AT, ID)
         С
         TO EXHIBIT ERRORS IN THIS APPROACH WE CALCULATE A(1) EXACTLY
    С
         AND MULTIPLY THE OTHER COMPONENTS BY THE APPROPRIATE FACTOR.
    С
         ***
    C
         AT2=AT2/AT(2)
15
16
        DO 82 IT=1.NT
17
             AT(IT) = AT(IT) * AT2
18
    82
             CONTINUE
19
         DO 85 IX=1,NX
20
             SUM=AT(1)*G(IX,1)
             SUM1 = AT(1) * AT(1)
21
22
             DO 84 IT=2.NT
23
                 SUM=SUM+AT(IT)*G(IX,IT)
24
                 SUM1=SUM1+AT(IT)*AT(IT)
25
    84
                 CONTINUE
             D(IX) = SUM/SUM1
26
27
    85
             CONTINUE
    С
         С
28
         WRIT=(6,114)
29
         FORMAT('0',' A(T) OBTAINED FROM 11 BY 11
                                            MATRIX IS!)
     114
         WRIT=(6,104) (AT(I), I=1,11)
30
31
     104
        FORMAT( '0', 5F12.6)
32
         WRIT=(6+115)
                                    (G(X,T),A(T))/(A(T),A(T))
33
     115
         FORMAT( !O!,!
                    D(X)
                         OBTAINED AS
         WRITF(6,104) (D(I),I=1,51)
34
         C
    С
         STOP
35
```

```
END
36
    С
    С
          SUBROUTINE ANAL (NX, NT, FBAR, AT, D)
37
38
          REAL FBAR (NX, NT), AT (NT), D(NX)
    С
          *****
    С
    С
          SUPPOSE
                  D(X) = X / 100
    С
          SUPPOSE
                  A(T) = 1 \cdot \cdot \cdot 4SIN(T/6)
          SUPPOSE FOBAR(x) = (1-COS(x/8)) * x/100
    С
          THEN THIS SUBROUTINE COMPUTES THE CORRESPONDING ANALYTIC SOLUTION
    С
    С
          TO THE FERTILITY PDE
               D(FBAR)/DT = -A(T)*D(D(X)*FBAR)/DX
    С
                      THERE IS AN ADVANCE IN THE FERTILITY
    С
              \Lambda(T) < 0
          IF
                       THERE IS A DELAY IN THE FERTILITY
              \Lambda(\mathbf{T}) > 0
    С
          TF
          ******
    С
    C
39
          DT=2.
          DO 8 IT=1.NT
40
               T=DT*(IT-1)
41
               AT(IT) = 1 + 04 + SIN(T/6)
42
               W = (2.4 + T - 2.4 + COS(T/6.))/400.
43
               W = EXP(-W)
44
45
               DO 8 IX=1,NX
                   X = FLOAT(IX - 1)
46
47
                   D(IX) = X/400.
                   FBAR(IX,IT)=.01*X*W*W*(1-COS(X*W/8.))
48
                   CONTINUE
49
      8
    С
          C
50
          WRIT (6,116)
                             FROM THE CLOSED FORM IS!)
51
          FORMAT("1","
                       A(T)
      116
52
          WRIT=(6,104) (AT(I),I=1,11)
53
          FORMAT( *0 *, 5F12.6)
      104
54
          WRIT = (6, 117)
                       D(X)
                            FROM THE CLOSED FORM IS!)
55
      117
          FORMAT( 10 ...
          WRITF(6,104) (D(I),I=1,51)
56
          WRIT = (6, 105)
57
     105
58
          FORMAT(101)
          С
    С
59
          RETURN
60
          FND
    С
          SUBROUTINE OBS(NX,NT,FBAR,FBARST,G)
61
          体性纤维治疗性体体积结体的性体的性体的保持的结核的结核的特殊性性性体神经神经性体神经神经神经神经神经神经神经神经的非经非非非非非非非非非
     С
          THIS ROUTINE COMPUTES THE OBSERVATIONS OF THE FORM
     С
          INTEGRAL FROM () TO X OF -D/DT(FBAR(X,T)) ALL DIVIDED BY FBAR(X,T)
     С
           THE ARRAY G STORES THE OBSERVATIONS
     С
          ***
     С
          COMMON K,A,H,COF,D
65
          REAL K(2,51), A(3,51), H(51), COF(4,51), D(51)
63
64
          REAL FBAR (NX, NT), FBARST (NX, NT), G(NX, NT)
          nT=2.
65
66
          DO 5 I=1,NT
      5
               K(1', I) = DT*(I-1.)
67
          CALL SETUP(NT,A,H,K)
68
          DO 25 IX=1,NX
69
```

	70 71 72 73 74 75	15	DO 15 IT=1.NT K(2,IT)=FBAR(IX,IT) CALL SOLVE(A,K,H,NT,D,COF) DO 24 J=1.NT T=DT*(J=1.) FBARST(IX, I)=3.*COF(1.1)*T*T+2.*COF(2.1)*T*COF(3.1)
•	76 77 78	24 25	CONTINUE DO 35 I=1,NX
1	79 80 81 82	35	K(1,1)=I-1. CONTINUE CALL SETUP(NX,A,H,K) D0 55 IT=1,NT
	83 84 85 86	45	DO 45 IX=1+NX K(2+IX)=FBARST(IX+IT) CALL SOLVE(A+K++NX+D+COF) G(1+IT)=0+
e.	87 88 89 90		X=0. NXM1=NX-1 DD=0. DO 55 J=1.NXM1
	91 92		DD=DD-X*(COF(4,J)*X*(COF(3,J)/2.*X*(COF(2,J)/3.* X*COF(1,J)/4.)) X=X+1.
**	93 94 95	55	DD=DD+X*(COF(4,J)+X*(COF(3,J)/2.+X*(COF(2,J)/3.* 2 X*COF(1,J)/4.))) G(J+1,IT)=-DD/FBAR(J+1,IT) CONTINUE
	96 97	С	END
•	98	сс <b>сс</b> ссссс	SUBROUTINE SETUP(N,A,H,K) ************************************
	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	10	REAL A(3,N), H(N), K(2,N) NM1=N-1 H(2)=K(1,2)-K(1,1) DO 10 I=2,NM1 H(I+1)=K(1,I+1)-K(1,I) A(1,I)=H(I+1)/(H(I+1)+H(I)) A(2,I)=2.0 A(3,I)=1-A(1,I) CONTINUE A(1,1)==2. A(2,1)=2. A(2,1)=2. A(3,1)=0. A(1,N)=0. A(2,N)==2. DO 11 I=2,N

	115 116 117 118 119	11 C	A(3,I)=A(3,I)/A(2,I-1) A(2,I)=A(2,I)-A(3,I)*A(1,I-1) CONTINUE RETURN END
•	120		SUBROUTINE SOLVE(A,K,H,N,D,COF)
1		000000000	**************************************
	121 122 123 124	U	REAL $H(N), D(N), A(3,N), K(2,N), COF(4,N)$ D(2) = (K(2,2) - K(2,1)) / H(2) NM1 = N - 1 D(1 = 2, NM1 D(1 = 1) = (K(2, 1 + 1) - K(2, 1)) / H(1 + 1)
	125 126 127	12	D(I) = 6*(D(I+1) - D(I)) / (H(I+1) + H(I)) CONTINUE
-	128 129 130		$D(1) = -2 \cdot * (-K(2 \cdot 1) + K(2 \cdot 4) + 3 * (K(2 \cdot 2) - K(2 \cdot 3))) / (H(2) * H(2))$ $D(N) = -2 \cdot * (-K(2 \cdot N) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 1) - K(2 \cdot N - 2))) / (H(N - 1) * * 2)$ $D(1) = -2 \cdot * (-K(2 \cdot N) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 1) - K(2 \cdot N - 2))) / (H(N - 1) * * 2)$ $D(1) = -2 \cdot * (-K(2 \cdot N) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 1) - K(2 \cdot N - 2))) / (H(N - 1) * * 2)$ $D(1) = -2 \cdot * (-K(2 \cdot N - 3) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 1) - K(2 \cdot N - 2))) / (H(N - 1) * * 2)$ $D(1) = -2 \cdot * (-K(2 \cdot N - 3) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 1) - K(2 \cdot N - 2))) / (H(N - 1) * * 2)$ $D(1) = -2 \cdot * (-K(2 \cdot N - 3) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 1) - K(2 \cdot N - 2))) / (H(N - 1) * * 2)$ $D(1) = -2 \cdot * (-K(2 \cdot N - 3) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 1) - K(2 \cdot N - 2))) / (H(N - 1) * * 2)$ $D(1) = -2 \cdot * (-K(2 \cdot N - 3) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 1) - K(2 \cdot N - 2))) / (H(N - 1) * * 2)$ $D(1) = -2 \cdot * (-K(2 \cdot N - 3) + K(2 \cdot N - 3) + 3 \cdot * (K(2 \cdot N - 3)) + (K(2 \cdot N - 3)) / (H(N - 1) + 2))$ $D(1) = -2 \cdot * (-K(2 \cdot N - 3) + 2) + (K(2 \cdot N - 3)) + (K(2 \cdot N - 3)) / (H(N - 1) + 2) + (K(2 \cdot N - 3)) + (K(2 $
u.	131 132 133 134 135	13	D(I) = D(I) - A(3, I) + D(I - I) D(N) = D(N) / A(2,N) $D(I) = I = 2 \cdot N$ J = N + I - I
- -	136 137 138 139	14	D(J)=(D(J)-A(1,J)*D(J+1))/A(2,J) CONTINUE CALL POLLY(N,D,K,H,COF) RETURN
-	140	С	END
-	141	C	SUBROUTINE POLLY(N,M,K,H,COF)
			**************************************
r.	142 143 144 145	C	REAL M(N),K(2,N),H(N),COF(4,N) NM1=N-1 DO 11 I=1,NM1 COF(1,I)=(M(I+1)-M(I))/(6.*H(I+1))
<b></b>	146 147		COF(2,I) = (K(1,I+1)*M(I)-K(1,I)*M(I+1))/(2*H(I+1)) DD = M(I+1)*K(1,I)*K(1,I)-M(I)*K(1,I+1)*K(1,I+1) 8+2**K(2*I+1)-2**K(2*I)
	148 149		COF(3,I)=(DD/(2.*H(I+1)))+H(I+1)*(M(I)-M(I+1))/6. DD=M(I)*(K(1,I+1)**3)-M(I+1)*(K(1,I)**3)+6.*K(1,I+1)*K(2,I) &-6.*K(1,I)*K(2,I+1)+K(1,I)*M(I+1)*(H(I+1)**2)-K(1,I+1)*M(I)* &(H(I+1)**2)

	150		$COF(4 \cdot I) = DD/(H(I+1)*6 \cdot)$
	151	וו	
	101	* *	
× .	152		00 16 5=194
	153	16	COF(J,N) = COF(J,NM1)
	154		RETURN
	104		
× .	155		END
		С	
*			
	156		SUBROUTINE TRANS(NX,NT,G,GT)
<b>~</b>		С	
		C	***************************************
1		C C	
× .		C	THIS ROUTINE TRANSPOSES A MATRIX
<u> </u>		С	*****
		Ċ	· •
		C	
<b>、</b> .	157		REAL G(NX9NT)9GT(NT9NX)
~~~	158		DO 65 IX=1,NX
	150		
	137		
	100		$O + (1 + 9 \pm X) = O (1 \times 9 \pm T)$
	161	65	CONTINUE
	162		RETION
	102		
x	163		END
		С	
		-	
	164		CHERCHTINE MULTINA NO A D DECON
<u>.</u>	104		SUDGOUTINE MULI (NA)NB)A)B)MKUU)
*** *		С	
		C	******
		č	THIS DOUTINE MULTIPLIES THE MATRICES
<u> </u>		U L	THIS ROOTINE MOLTIPLIES TWO MATRICES
~		С	***************************************
		С	
	165	0	DEAL (NA - NO) - $D(NR - NA)$ (DOD (NA - NA)
<u> </u>	105		REAL A (NA) NO) S (ND) NA) PROD (NA) NA)
-	166		DO 67 IX=1.NA
	167		$DO 67 II = 1 \cdot NA$
	160		
_ *	108		
-	169		DU 66 K=29NB
	170		SUM=SUM+A(TX•K)*B(K•IT)
	171	66	CONTINUE
L *	111	00	
	112		PROD(IX)I)=SOM
	173	67	CONTINUE
	174		RETURN
\smile	1 1 77		
	175		ENU
		С	
<u> </u>	176		
	110	-	SUBRIDE FILE FICENTERNON NOTEN
		С	
		С	*****
<u> </u>		C	THIS ROUTINE EINDS THE DOMINANT FIGENVECTOD OF THE MARY MA
		č	MATER OF AND THE DUMINANI EIGENVECTOR OF THE NA DY NA
		C	MAIRIX PROD AND PLACES IT IN EV WHICH IS NORMALIZED BY THE
		С	1-NORM. ITERATION RUNS UNTIL ROUNDING ERROR IS DOMINANT.
<u> </u>		r	*********************************
		()	
		C	
	177		REAL PROD(NA, NA), EV (NA), NU (NA)
\sim	178		SUM1-0.
	170		
	112		$UV = I I = 10^{11} \text{A}$
	180		SUM=PROD(IX,1)
<u> </u>	181		DO 76 1T=2•NA
	102		
	196	· ·	
	183	76	CONTINUE
~	184		NU(IX) = SUM
*	195		SUM1=SUM1+SUM
•	100		
۱.	186	((CONTINUE
\sim			

	187		FRROR=1.
	188	89	CONTINUE
	189		SUM2=0.
*****	190		DO = 87 IX = 1 NA
	191		SUM=PROD(IX.1)*NU(1)
	192		DO 86 IT=2•NA
·	193		SUM=SUM+PROD(IX,IT)*NU(IT)
	194	86	CONTINUE
•	195	00	FV(TX) = SUM/SUM1
<u> </u>	196		SUM2=SUM2+FV(IX)
	197	87	CONTINUE
*	198	01	SUM1=0.
\sim	199		BOUND=.5*ERROR
	200		ERROR=0.
	201		DO 97 IX=1,NA
~	202		SUM=PROD(IX,1)*EV(1)
	203		DO 96 IT=2,NA
	204		SUM=SUM+PRO()(IX,IT)*EV(IT)
\smile	205	96	CONTINUE
	206		NU(IX)=SUM/SUM2
	207		SUM1=SUM1+NU(IX)
\sim	208		ERROR=ERROR+ABS(EV(IX)-NU(IX))
	209	97	CONTINUE
	210		IF (FRROR.LT.BOUND) GOTO 89
\smile	211		RETURN
	212		END

SENTRY

	ALL PROPER	TE VLUSED FU	KM 15		
	1.000000	1.130877	1.247348	1.336588	1.388775
	1.398163	1.363718	1.289234	1.182909	1.056447
	0.923773				
~	D(X) FROM T	HE CLOSED FO	RM IS		
1	0.000000	0.002500	0.005000	0.007500	0.010000
	0.012500	0.015000	0.017500	0.020000	0.022500
Ì	0.025000	0.027500	0.030000	0.032500	0.035000
	0 ₉ 037500	0.040000	0.042500	0.045000	0.047500
\sim	0.050000	0.052500	0.055000	0.057500	0.060000
· • • •	0.062500	0.055000	0.067500	0.070000	0.072500
	0.075000	0.077500	0.080000	0.082500	0.085000
~	0,087500	0.090000	0.092500	0.095000	0.097500
}	0.100000	0.102500	0.105000	0.107500	0.110000
	0.112500	0.115000	0.117500	0.120000	0.122500
~	0.125000				
>	¥				
	A(T) OBTAINE	D FROM 11 B	Y 11 MATRIX	IS	
$\overline{}$	0。997756	1.130877	1.248731	1.339316	1,390486
ý	1.399143	1.365165	1.290611	1.183847	1.058285
	0.921801				
ý	D(X) OBTAINE	ED AS (G(X)	T),A(T))/(A(T),Α(T))	
~	0 • 0 0 0 0 0 0	0.002437	0.004990	0.007491	0.009990
	0.012487	0.014985	0.017483	0.019980	0.022478
<u>``</u> .	0.024975	0.027473	0.029970	0.032468	0.034965
;	0.037463	0•039960	0.042457	0.044955	0.047452
	0。049950	0.052447	0.054945	0.057442	0.059939
~	0.062437	0•064934	0.067432	0.069929	0.072426
~-	0.074924	0.077421	0.079918	0.082415	0.084913
	▶ 0.087410	0.099907	0.092403	0.094899	0.097395

							· · · · · · · · · · · · · · · · · · ·
********	0.099892	0.102386	0.104882	0.107379	0.109874		`
	0.112368	0•114861	0.117357	0.119841	0.122342		
	0.124579						
· (CORE USAGE	OB. (ECT CO)	DE= 12528	BYTES,ARRAY	AREA= 1215	6 BYTES, TOTAL	AREA
، ا ب	DIAGNOSTICS	NUMBER	OF ERRORS=	0, NUMB	ER OF WARNIN	GS= 0,9	NUMBER
j	COMPILE TIME=	4,75 SEC	•EXECUTION	TIME= 20.1	6 SEC, QUE	EN'S WATFOR V	'ERSION
⁻							
	COST FOR THIS	PROGRAM IS	\$ 1.83	R	UN IN HSC	MAR 21, 1	974

~~---

- 99 -

•

It is expected that available data will be in the form of a histogram: that is, for population the number of individuals between the ages of x and x + h years is known. To generate a density function for this histogram, a fourth order spline approximation routine is used. To investigate the accuracy of the scheme, the histogram is regenerated by integrating the spline constructed.

```
$J0B
       AUUI-NUM, VERNER, LIME=00
       *******************
   С
       THIS ROUTINE USES A POPULATION HISTOGRAM TO GENERATE A POPULATION
   С
       DENSITY FUNCTION USING A FOURTH ORDER SPLINE APPROXIMATION
   С
       *****************
   С
       REAL A (303,9), P(100), Q(303), PO
1
       INTEGER I,J,K,TN,TO,TT
2
       INTEGER T3
3
       Ċ
       READ(5,100) TN
4
       FORM \wedge T(13)
5
    100
       READ (5,101) (P(I), I=1, TN)
6
    101
       FORMAT(10F8.0)
7
       С
       C
8
       WRIT = (6, 106)
9
       FORMAT(11)
    106
       PRINT. THE GIVEN POPULATION IS'
10
       PRINT, .
11
       WRIT-(6,102) (P(I),I=1,N)
12
       FORMAT(* *.10F8.0)
13
    102
       C
       T0=0
14
       T3=3*(TN-T0+1)
15
16
       CALL ISPLIN(A,TO,TN,T3,P,Q)
       CALL CHECK (P,Q,T3,TN)
17
18
       P(1) = Q(3)
       P(2) = Q(5)
19
          10 25 T=3.TN
20
          P(I) = Q(3*I-2)
21
22
    25
           CONTINUE
       C
53
       PRINT. .
24
       PRINT, II
                             AT AGES
                                             IS O
25
       PRINT, THE POPULATION DENSITY
                                    0,1,20,00,99
       PRINE, .
26
       WRITC(6,102) (P(I),I=1,TN)
27
28
       WRIT- (6.106)
       С
       С
       WPIT^{-}(7,101) (P(I), I=1, TN)
   C
       С
       STOP
59
30
       END
       SUPROUTINE CHECK (P,Q,T3,TN)
31
       *******************
   С
   С
       THIS SUBROUTINE REGENERATES THE POPULATION HISTOGRAM FROM THE
       DENSITY FUNCTION BY EXACT INTEGRATION OF THE FOURTH ORDER SPLINE.
   С
       HENCE THE EPRORS ARE THOSE SUFFERED AS A RESULT OF ROUND-OFF ERROL
   C
       **********************
   \cap
       INTEGER T3.TN
35
       REAL Q(T3),P(TN)
33
       P(1) = (Q(3) + U(5))/2 - (U(2) + Q(4))/24 + Q(6)/120
34
       P(2) = (Q(7) + Q(5))/2 - (Q(8) + Q(4))/24 + Q(9)/120
35
       DO 26 I=3,TN
36
        P(I) = (Q(3*I+1)+Q(3*I-2))/2 - (Q(3*I+2)+Q(3*I-1))/24 + Q(3*I+3)/120
37
           CONTINUE
38
    26
       С
39
       PRINT, .
```

```
40
         PRINT, 1
41
         PRINT, THF POPULATION REGENERATED FROM THE FOURTH ORDER SPLINE IS
42
         PRINT. ! !
43
         WRIT=(6,102) (P(I),I=1,TN)
         FORMAT( * +10F8.0)
44
     102
    С
         RETURN
45
         END
46
         SUBRIGHTINE CREATE (A, TO, TN, T3, P,Q)
47
         *****************
    C
    С
         THIS ROUTINE CREATES THE INISPLINE MATRIX FOR APPROXIMATING
    С
         A DEMSITY FUNCTION GIVEN SUBINTERVAL INTEGRALS
    C
         THE JNKNOWN VALUES Q(I) ARE THE VALUES R4(0),R2(0),R(0),R2(1),
    С
         R(1),R4(1),R(2),R2(2),R4(2),...,R(1),R2(2),R4(1),...
    С
         R(TO), R2(TO), R4(TO)
         BOUNDARY CONDITIONS ARE R !! (0) = R !! (0) = R (100) = R !! (100) = 0
    С
         经经济经济经济经济经济经济和经济和经济和保持和保持和保持和保持和保持和保持和保持和保持和保持和保持和保持和保持的保持的保持和
    C
48
         INTEGER I, J, K, TN, TO, TT
         INTEGER T3
49
         REAL A (T3,9), P(TN),Q(T3)
50
51
         D0 3r I=1.13
         C
52
         READ(5.103) D
53
     103
         FORMAT(F10.4)
54
             READ(5,104) (A(T,J),J=1,9)
55
     104
         FORMAT(9F8.5)
56
         DO 3. J=1.9
57
         A(I,J) = A(I,J)/J
             CONTINUE
58
     30
         C
59
         TT=T -T0-1
60
         DO 31 I=4.TI
61
             ∩0 31 J=1•9
65
                  A(2+3*I,J) = A(11,J)
63
                  A(3+3*I,J) = A(12,J)
                  A(4+3*I,J) = A(13,J)
64
65
     31
                  CONTINUE
66
         TT = TT + 1
67
         READ(5,104) (A(3*TT+2,J),J=1,9)
68
         READ(5,104) (4(3*TT+3,J),J=1,9)
69
         S+0T=11/
70
         00 32 I=N1.IT
71
             (2(3*I-1)=0.
72
             0(3*1)=0
             Q(3*[+1)=2*P(1))
73
74
     32
             CUNTINUE
         0(1) = 0.
75
76
         Q(2) = 0.
77
         Q(3) = 2*P(10+1)
78
         Q(4) = 0.
79
         Q(3*TT+2)=0.
80
         0(3*TT+3)=0.
         RETURN
81
         END
82
         SUBROUTINE ISPLIN(A.TU. IN.T3.P.Q)
83
         C
    Ċ.
         THIS ROUTINE SOLVES THE INTEGRAL SPLINE PROBLEM FOR A POPULATION
         ***
    C
```
	84		INTERFR TO OTNOIOJK OTT
	85		INTEGER 13
	86		$REAL = A(T3, 9) \cdot P(TN) \cdot Q(T3)$
	87		CALL CREATE ($A \cdot TO \cdot TN \cdot T3 \cdot P \cdot O$)
	88		$D(132) I = 1 \cdot I3$
	80		O(I) - O(I) / A(I - 5)
	90		n(1) = 3(1) + 3(1) + 3(1) = 3(1)
	90		$\Lambda(\mathbf{I}_{A}, \mathbf{I}) = \Lambda(\mathbf{I}_{A}, \mathbf{I}) \wedge (\mathbf{I}_{A}, \mathbf{E})$
7	00	34	
	0 2	J ~	
h	94		$\frac{117}{33} \times \frac{1}{10} 4$
	95		$\frac{1}{1} \left(\left(\left(\frac{1}{1} \right) \cdot \left(\frac{1}{2} \right) \cdot \left(\frac{1}{2} \right) - \left(\frac{1}{2} \right) \cdot \left(\frac{1}{2} \right) - \left(\frac{1}{2} \right) $
	96		Q(1+K) = Q(1+K) - A(1+K + G - K) + Q(1)
	97		10 35 J=2,5
	98	·~	A(I + K + 4 - K + J) = A(I + K + 4 - K + J) = A(I + K + J) = A(I + K + J) = A(I + K + J)
	99	35	CONTINUE
	100		A(I + K, 5 - K) = 0
	101	33	CONTINUE
		С	***********************************
		C	RACKSUBSTITUTION
		С	***************************************
	102		N=3*(TN-TO+1)
	103		Q(N-1) = Q(N-1) - Q(N) * A(N-1, 6)
	104		Q(N-2)=Q(N-2)-(Q(N)*A(N-2,7)+Q(N-1)*A(N-2,6))
	105		Q(N-3)=Q(N-3)-(Q(N)*A(N-3,8)+Q(N-1)*A(N-3,7)+Q(N-2)*A(N-3,6))
	106		10 36 I=5,N
	107		K=\-I+1
	108		DO 36 J=1,4
	109		Q(K)=Q(K)-A(K+5+J)*Q(K+J)
	110	36	CONTINUE
	111		RETURN
	112		END

\$ENTHY

THE GIVEN POPULATION IS

3

-	1023102.1	1000000.	994230.	990114.	986767。	983817.	981102。	978541。	976124。	973869。
	971804.	969890.	969038.	966179.	964266。	962270.	960201.	958098。	955942。	953743。
	951483.	949171.	944789.	944337.	941806.	939197.	936492。	933692。	930788。	927763。
-	924609。	921317。	917880.	914282.	910515.	906554。	902393。	898007。	893382。	888504。
J	883342。	877883.	872098.	865967。	859464。	852554。	845214。	837413。	829114。	820292。
	810900。	800910.	79n282.	778981.	766961.	754191.	740631。	726241。	710990。	694843.
- ,	677771。	659749.	640761.	620782.	599824.	577882.	554975.	531133。	506403。	480850。
P	454548.	427593.	400112.	372240.	344130.	315982。	287973.	260322。	233251。	206989。
	181765。	157799.	135297.	114440.	95378.	78221.	63036.	49838.	38593。	29215。
	21577。	15514.	1-833.	7327.	4787.	3011.	1818.	1005。	454。	125。

THE POPULATION REGENERATED FROM THE FOURTH ORDER SPLINE IS

	1023102.	1000000.	994230.	990114.	986766.	983816.	981102。	978541。	976124。	973869。
	971804。	969890.	968038.	966178.	964266。	962270。	960201.	958098。	955942。	953743。
	951483.	949171.	946789.	944337.	941806。	939197。	936492。	933692。	930788。	927763。
	924609。	921317.	917880.	914282.	910515.	906554。	902393.	898007。	893382。	888504。
\sim	883342.	877883.	872098.	865967.	859464.	852554.	845214。	837413。	829114。	820292。
	810900.	800910.	790282.	778981.	766961。	754191.	740631。	726241。	710990。	694843。
	677771。	659749.	640761.	620782.	599824.	577882.	554975。	531133。	506403。	480850。
\sim	454548。	42759 3 .	400112.	372240.	344136.	315982.	287973。	260322。	233251。	206989。
	181765.	157799。	135297.	114440•	95378.	78221.	63036.	49838。	38593。	29215。
	21577。	15514。	1°833.	7327.	4787.	3011.	1818。	1005。	454。	125。

THE POPULATION DENSITY AT AGES 0,1,2,...,99 IS

	1038460.	1008672.	995297.	992581.	988103.	985351.	982383.	979819。	977299。	974970。
_ [']	972804.	970830.	963960.	967114.	965234.	963284.	961243.	959156.	957028。	954851。
	952623.	950337.	947992.	945576.	943085.	940516.	937861.	935108。	932259。	929297。
	926209。	922987。	919625.	916109.	912429.	908568.	904509.	900240.	895735。	890988。
	885972.	880664。	875047.	869092.	862781.	856079.	848958.	841394.	833348。	824794。
	815694.	806008.	795705.	784748.	773094.	760704.	747547.	733577。	718762。	703069。
	686464.	668919.	650419.	630936.	610466.	589017.	566587.	543207.	518911.	493758。
	467817.	441169.	41 3929.	386229.	358212.	330052.	301936.	274070。	246671。	219966。
	194185。]69555.	146288.	124581.	104599.	86475。	70297。	56107。	43896。	33602。
	25119.	18298.	12960.	8901.	5914.	3786.	2334.	1363。	688。	262。

CORE USAGE OBJECT CODE= 6336 BYTES, ARRAY AREA= 12520 BYTES, TOTAL AREA DIAGNOSTICS NUMBER OF ERRORS= 0, NUMBER OF WARNINGS= 0, NUMBER COMPILE TIME= 2.31 SEC.EXECUTION TIME= 12.33 SEC, QUEEN'S WATFOR VERSION COST FOR THIS PROGRAM IS \$ 1.19 RUN IN HSC MAR 19, 1974

