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Letter of Transmittal

bDr. A.R. Demirdache,
Dircctor,
Technological Forccasting
and Technology Assessment Division,
Ministry of State for Science
and Technology,
270 Albert Strect,
Ottawa, Canada,
K1A 1A1.

Dear Dr. Demirdache:

I have pleasure in forwarding to you the final report prepared
by Dr. Jon Davis and Dr. James Verner of the Department of Mathematics,
Queen's University of the Population Model which was commissioned by
the Ministry.

Since the general philosophy of the Model was set forth in our
Interim Report of April 15, 1974, it was felt unnecessary to repeat
that in the introduction to the Final Report, but rather to append
the Interim Report as Appendix D .

I believe that you will agree with my judgement that the
present work opens up a new and potentially extremely important
approach to modelling the growth of populations. This task is an
indispcnsable step in any serious attempt to model national, socio-
economic problems.

I believe that you will wish to bring this Report to the
attention of the statistical services of the Government, with a
view to studying its implications for the form in which population
statistics should be collected and encoded, in order that there be
availablc the data necessary for realistic modelling of the pop-
ulation of Canada as a whole or of any of its regions.

I would remind you that according to the contract bectween
us, the right of publication of the details of the procedures
outlincd in this Report in scientific journals has been rescrved
to Professors Davis and Verner. This, of course, docs not preclude
the Ministry from distributing the whole Report in any way it wishes.
In particular, you may consider that it would be of interest to the
International Institute for Applicd Systems Analysis and to various
organs of the United Nations concerned with cconomic development as
related to population growth.

Yours faithfully,
\\ <\\ H . \1 ,

AJC:mh A¢'J. Coleman, Head,
: Department of Mathematics,

Qucents University.
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Abstract

This report discusses final development of the
Queen's Mathematics Department Population Model.
' The basic models and techniques presented in the
authors! interim report on this work have been extended, and
: the algorithms have been tested on the available real data.
Also reported here is the development of
methodology and software for the estimation of linear input-
output models which includes a provision for the modelling
of an unknown exogenous component in the observed output

records.
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Surface Plots

Certain results in this report are displayed
in the form of computer-drawn plots of surfaces in three-
dimensions. The variables involved increase in the directions

schematically indicated below:

The ranges of the "base variables" involved are
mentioned in the body of the text; the range of the "height

variable" appears beside each drawing.




TI. Introduction

This report considers further aspects.of the general
problems of the construction of dynamical population models
using methods described in the authors! Interim Report [ 3].

The basic structure of the models considered is
described at length in [3], and the various reasons for
adopting that structure are explained in that document as
well, Our subsequent experience has not led us to modify our
basic models, and the general numerical methods for estimation
proposed in [ 3] have required only minor modification for use
in practice. For these reasons, a lengthy review of the
material in [ 3] has been omitted in this report.

The main purpose in undertaking this project was to
attempt to produce a basic framework; and a set of adaptable,
useable numerical algorithms for use in simulation studies
involving population. A basic framework is presented in the
Interim Report; this report is largely devoted to the task
of making the work carried out more useful,

The models which have been considered in this work are
of a relatively ambitious nature. Simulations with these
models would allow study of detailed population distribution
problems. These potential benefits are not without cost,

however, as the methods used in this project may not be




familiar to all possible users of these results. Further, as
much as one might hope that the algorithms and associated
computer software developed in this project would be entirely
foolproof, this is not thé case. From our experience using
the algorithms reported here in connection with real data, it
appears that a certain amount of judgement is required on the
part of the user of these methods. The user must be aware of
the underlying assumptions of the model, and of the limit-
ations of the numerical methods employed in the software in
order to successfully interpret the results of computations.
It is our hope that this report will provide some insight in
this area, as well as serve as a "user's manual" for the soft-
ware included in the Appendix.

Chapter II of this report is devoted to the problem of

estimating the coefficients ai(t) , di(x) and b(t) idin the

X, b — Z a. b d. X f :C’ b - b(t) f(x’t)

adopted (See [3] and Chapter II) to describe the evolution of
the fertility curve over time. Data supplied by Statistics
Canada was utilized, and the numerical results obtained support

the utility of the model and associated estimation method.




In Chapter IIT we discuss problems arising in the

estimation of the coefficients in the partial differential

equation
op op _ 2 5
>t T ox ~ os (131 a;(t)d;(x,8)p ) - r(x,t) p + i

governing the evolution of the age and income dependent pop-
ulation distribution,

In the case of this estimation problem, the data which
we were able to obtain is much less extensive than would be
desirable. Problems arise both because of the limited number
of years for which data is available, and because of the level
of aggregation in the published data.

The results of numerical experiments on the effect of
aggregation on the accuracy of the estimation algorithm are
displayed, together with the results of computations using
data obtained from Revenue Canada publications.

As pointed out in [3], the next step after the
coefficients of the partial differential equation have been
estimated is to attempt to develop a model for the dynamical
behaviour of these coefficienté. Chapter IV consists of one
effort in this direction; we have attempted to model the
dynamical relationship between the fertility coefficients and

various economic time series.




Tt was anticipated in [3] that it would be possible
to apply more or less conventional time series identification
techniques (or at worst, perhaps non-linear regression
methods) to this problem. The available fertility data,
unfortunately, is such that it has been possible to compute
estimates for the fertility parameters only for a relatively
short period of time. The amount of available data simply
appears too small to allow conventional statistical analysis.
The situation is further complicated by the fact that one
suspects at least the possibility of a large exogenous
component (not "driven” by the economic factors) in the
fertility parameters. This might well make use of standard
approaches difficult even if a longer data run were available.

The approach that we have taken is to make an adapt-
ation and extension of certain techniques developed for
dinput-output identification of control systems to the present
problem. While the results of numerical experiments on the
available data may be described as inconclusive, it is hoped
that the method developed will prove useful in modelling
studies.

Finally, copies of the computer programs developed are
included in the Appendix, together with some comments relevant
to use of the programs. Considerable effort has been made

to provide clear documentation in the programs.




IT. Fertility Estimation

A General Observations

As mentioned above, for the purposes of this final
report, we assume that the reader is familiar with the
authors! interim report [3].

We recall the suggestion made in [ 3] that the dynam-.
ical behaviour of the fertility curve could be adequately

modelled by the relatively simple partial differential

equation

5 .
bfé: 8- = (a(t)d(x)E(x,t)) - b(t) £(x,t) .
It is more useful to hypothesize a slightly more

general model of the form

%—E—(x,t) - - %;( _% ai(t)di(x)f(x,t)) - b(t) £(x,t)
i=1
in order to include the possibility of more than two time
functions affecting the fertility curve behaviour.
(Calculations on the actual data, however, suggest that the
original simplified representation is adequate.)
Introduetion of an integrating factor and relatively

simple manipulations lead to an expression of the form




! 1 *oF
T oa.(t) d.(x) = - [ = (¢,t) ac
i=1 * 1 ?(x,t) ot ’

from which ai(t) , di(x) are determined. (See the attached
Appendix for more details.)

With real data, the expression on the right hand side
of the above must be evaluated by numerical means. The spline
routines utilized are described in the Appendix and the
interim report [3].

In connection with the use of the methods proposed,
two major issues arise. The first, and perhaps more
philosophical problem, is that of validation of the model
proposed above. As pointed out in [3], the function b(t) is
defined in such a way that the presence of the b(t) term in
the governing equation is essentially valid by the definition
of b(t) . The question of the term involving ai(t) and
di(x) is quite a different matter, however, since the
argument for this is essentially that the observed behaviour
suggests a governing partial differential equation of the
above form [12].

It is, of course, impossible'to supply "proof" of the
correctness of any hypothesized model. Essentially the only
criterion which may be applied is that of consistency with

the observed data.




One form of consistency, perhaps that which comes
first to mind, is the requirement that a simulation of the
fertility curve should reproduce the historical data to an
acceptable degree of accuracy. While this is a necessary
condition, one must demand more from the results of an
estimation in order to have confidence in the results.

A second form of consistency is the requirement that
the estimates be consistent not just "in the large" (as a
trial simulation shows), but that they be consistent with
subsets of the available data. Consistent results returned
from repeated calculations of this sort strongly suggest that
the results obtained "actually are present in the data.
Needless to say, reinforcement of this sort is not available
from a one-shol estimation procedure.

In the present situation, it is most natural to make
a sequence of estimates based essentially on data years tq
j+L , for varying starting date j (L here is the data
length required in the computational procedure). For the
problem of estimating

q
iil ai(t) di(x)
one ideally hopes to obtain "overlapping sections" of the

smooth time functions ai(t) from this procedure, and con-




sistent smooth age functions di(x) . The extent to which
this occurs in the actual data runs may be taken as an indic-
ation of the wvalidity of the model.

The second major issue that arises in connection with
use of the estimation procedure suggested in [ 3] is that of
use with real data. The algorithm has a firm theoretical

basis, and the numerical experiments with artifically

generated data reported in [3] show that the numerical
procedures have reasonable behaviour. The real data, however,
is subject to various (unknown) errors; this compounds the
problems arising from the likelihood that the model will not
provide an exact f£it for the physical situation.

Looking at the estimation formula above, one may
anticipate two major sources of trouble. 'The first is in the
differentiation with respect to time, a procedure bound to
accentuate errors, In fact, the integration serves in
practice to smooth these accentuated errors considerably. The
ma jor errors seem to occur at the ends of the time interval;
this is expected from the behaviour of the spline routine,

The second large source of error occurs at the ends of the age
interval. This is caused by the fact that ?(x,t) approaches

zero at the ends of the interval of interest, so that errors

in




dF
gt_ (gst) dg

are magnified considerably.

If we let M(x,t) represent the numerically calcu-

lated values of

X

1
- —— 3

Tf'(x,t) x

o
i

(¢,t) d¢ .

<

Then the situation may be summaried by writing

M(x,t) = g ai(t) di(x) + B(x,t) + N(x,t) .
i=1

In the above, B(x,t) represents the error due to the two
effects mentioned above; this implies that B(x,t) = 0 ,
except in the immediate neighbourhood of the éﬂggﬁ of the
region of interest. N(x,t) represents a (hopefully small)
modelling and numerical error, and is not restricted in
location and extent. In order to remove the error term
B(x,t) , we may simply multiply the above equation by a

function

Xp (t) %, (%)




(a product of characteristic functions) which is identically
equal to unity on the interior of the region of interest, but
equal to zero near the boundary of the region. This results

in

q .
M) g (8) X, 00 = B (g (Bag(6) (g (x)dg ) 4
o |

X1 (6) %, (x) N(x,6) .

This procedure is easily implemented numerically simply by
setting the "borders" of the matrix representing the function
M(x,t) to zero. The estimation procedure described in [3]
(based on eigenvalue procedures) may then be applied to the

bordered array to produce estimates of (Xl(t)ai(t)) and

(%, (x)d; (x)) .

The need for this technique is easily seen by an
attempt to run the estimation algorithm without the bordering
procedure, The algorithm is essentially based on calculation

of the eigenvalues and eigenvectors of the matrix

where M is the array of (sample values of) the function

M(x,t) above. The eigenvalue package employed returns results

-10~




ordered in magnitude; it is also easily seen that, if the

representation

M(x,t) = 'g ai(t) di(x)
=
is exact, then the eigenvalue associated with the eigenvector
ai(t) is simply diT di . (See the Appendix below. )

This means that running the algorithm on the "sliding
window" of data should automatically return the ai(t) s
di(x) functions in consistent order, namely in order of
decreasing norm of di(x) « This makes consistency of
repeated estimations very easy to see in plots of the calcul-
ated results,

The presence of large errors in the calculated value
of M(x,t) , namely the error B(x,t) , has a disastrous
effect on the above situation. B(x,t) may (and in practice
certainly does) contribute fairly large eigenvalues to the
symmetric matrix MMT « This destroys the consistent ordering
of the returned eigenvectors, as well as producing considerable
(and variable) distortion in the calculated values of the
"pegl" ai(t) , di(x) « In fact, it is the presence of calcul-
ated eigenvectors supported at the interval borders in pre-
liminary calculations which has suggested the bordering

procedure described above.

-1l




Use of the bordering procedure essentially introduces
enough regularity to make computations possible. The price
to be paid for this is that the caléulétions return estimates
only for the "bordered" functions xl(t) ai(t) and
Xz(x) di(x) . This leaves the coefficients unknown on the
border areas of the region. The lack of knowledge at the
borders of the age interval causes little difficulty; since
the fertility here is essentially zero,these values have little
effect on simulations.

Loss of the borders in the time direction is somewhat
more serious from the point of view of subsequent use of the
estimates. With the limited amount of data available and the
bordering losses, we obtain only a twelve year run of data
for the ai(t) . This small number of samples has made sub-
stantial difficulty in the problem of estimating a dynamical
model for the evolution of these coefficients. (See Chapter
IV below. )

There are other numerical problems (of smaller
importance) associated with these calculations. These are
described in the Appendix and on comment cards in the attached

programs.,

-12-




Numerical Results

oo

The sources and treatment of the data used for these
computations are described in the Appendix. The complete
computer programs and samples of the resulting output are also
included in the appendix. We reproduce below the graphical
summary of the computational results.

With use of the "sliding data window" and bordering
procedure described above, the available data is sufficient to
allow eight computations of estimated values of ai(t) and
di(x) . Computations were made based on a 10 x 10 matrix.
Greater or lesser consistency was obtained in the first four
eigenvectors from each calculation, so that results from lower
eigenvalues are suppressed in the output. The contribution
from these components is small, and the eigenvectors show wide
scatter. We attribute these to numerical and data error, and
model inaccuracy.

In the plots below, only the highest run number is
printed in case of coincident values, ‘It is readily seen that
the estimated values for the function al(t) show a high
degree of consistency, and that the variation in results
appears relatively small. (In these plots, "9 " represents
the numerical average of the available runs. This is taken as

the final estimate of the algorithm.)

-13-




The similar plots for az(t) s ag(t) , and a4(t)
show increasing scatter in the computed results. The plots
do secem to indicate, however, the systematic presence of
these higher order terms.

The computed results for the corresponding di(x)
show a similar degree of consistency, although a higher
degree of scatter seems to be present. This is proEably
attributable to the fact that the estimation algorithm "back

calculates" di(x) according to

While the eigenvector method used for calculating a,
apparently filters out errors in the calculated matrix M +to
some extent, no such effect is operating in the above comput-~
ation., One may therefore expect greater error in the calcul~
ation of di .

One might attempt to work with the adjoint of the

matrix M , in which case a parallel method should return

estimates of the di as eigenvectors. The resulting symmetric

matrix is of the same dimension as the age interval in this
case., As a result, the eigenvalue calculation is much more
difficult computationally, and more subject to ill-

conditioning problems.,

-14-
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The results of the above computations were checked
by simulation of the evolution of the fertility curve over
the years for which parameter esimates were calculated.

Simulations were run using

(1) a;(¢) d4;(x)
(ii) al(t)dl(x) + az(t)dz(x)
(iidi) al(t)dl(x) + az(t)dz(x) + az(t)dg(x)

(iv) al(t)dl(x) + az(t)dz(x) + ag(t)dg(x) +
a4(t)d4(x)

aé coefficients in the model. Complete numerical results are
presented in the Appendix, but a graphical presentation of
the result is given below. Also inciuded are plots of (i),
(ii), (diii) and (iv) (labelled "fertility parameters" in

the following plots).
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It appears
provides a good fit
that no significant

using more than one

oo
al=

(x,t) = -~

wl”

from the simulations that the model
for the observed data. It also appears
improvement in the results is gained by

component. This suggests that in fact

(aq(t)dy (x)£(x,8)) = b(t) £(x,¢)

provides an adequate model for the behaviour of the fertility

curve.




ITT. Estimation of Economic Mobility

=

ggpefal Remarks

Tt seems likely that results relating to the estim-
ation of economic mobility would be of more interest tﬁan the
results on fertility modelling reported in the previous
chapter., For this reason, it is unfortunate that the
numerical results we have obtained using available data are
in a sense less satisfactory than those of the previous case.

Since the modelling of the income distribution
requires use of a distribution over both age and income
variables, it is to be expected that the numerical problems
associated with the estimation procedure would be somewhat
more delicate than in the previous case involving distribution
only over age. One may expect the resulting algorithms to be
somewhat more sensitive to inaccurate data, and so to require
a relatively better data base for a comparable degree of
estimation accuracy.

Fairly detailed age-~income distribution data seems
to be available for recent census years. However, in order to
estimate and model the evolution of income distribution over
time, data on an annual basis is required. The only annual
data we have been able to obtain is that of reported income,
as available from the annual reports on taxation provided by

Revenue Canada.

- 34—




Aside from difficulties arising from changes in tax
law and reporting procedures, there are other problems as-
sociated with this data.

The first problem is that this information has
apparently only been collected since 1963. This short length
of available data has two effects. One is that the procedure
mentioned above involving making sequential estimates on the
basis of subsets of the available data is severely hampered,

as the length of the available data is sufficient to support

only one, or at most two estimates. (Sufficient data was

available for eight estimates of the fertility parameters.)
The length and uncertainty of the resulting estimates in turn
make the prospect of estimating a dynamical model for the
mobility parameters very dim indeed.

A second problem bearing on the use of the available
data is that of the level of aggregation in the reported data.
The data is essentially in histogram form, grouped into five
year age brackets, and income brackets of various lengths.
This data must be disaggregated on some basis in order to
obtain a smooth distribution to which the estimation algorithm
may be applied.

Initial runs using the real data produced evidence
of distortions arising as a result of the aggregation of the

data. This evidence includes an apparent oscillation of period




ten years present in some intermediate qomputed results., This
may well be due to the five year age aggregations in the data.

| In an attempt to gaugé the effect of the aggregation
level on the computed results, experiments were run using
differing levels of aggregation on simulated distribution
data. As reported below,'the experimental results indicate
that the level of aggregation in the available data is likely
to cause severe distortion in the computed estimates; the
level of aggregation may well be so high that it is impossible
to extract useful information regarding economic mobility

from the published data records.

|

Aggregation Experiments

In order to study the effects of data aggregation
on the estimation procedure, a numerical integration of the

model equation

3

d o) o} .
°P  _ _ 85 - 55’(121 ai(t)dl(xlS)p) - r(x,t)p

was carried out (See Appendix E).
It is easy to show using the representation of

economic mobility in the form
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wix,s,t) = .% ai(t) di(x,s)
i=1

that if both the time functions {ai(t)} and age-income
functions {di(x,s)} are orthogonal sets over their respect-
ive domains then (assuming {ai(t)} orthonormal) the eigen-
values of the symmetric matrix MTM occurring in the estim-
ation algorithm are just {Hdi(x,s)ﬂz} , with {ai(t)} being
the corresponding eigenvector set. Conversely, if one starts

with an arbitrary representation

q
wix,s,t) n Ei(t) Bi(x,s)
i=1

(with no orthogonality conditions), then the result of the
estimation algorithm is to produce the orthonormal basis
{ai(t)} for the subspace consisting of the span of {Ei(t)}
which has the property that the resulting {di(x,s)} in the
above representation are also orthogonal. These remarks
follow from Appendix C of the interim report [3], together
with a bit of elementary linear algebra.

The above facts are mentioned for the reason that
they must be kept in mind in the construction of simulation
examples. In effect, if one wishes to be able to recognize

the components {ai(t)} and {di(x,s)} in the computed

_..37_.




estimates generated from simulation data, these components
must be chosen a-priori to be orthogonal. If this is not
done, then the estimation algorithm will return the "ortho-
gonalized versions!" of the functions involved. (As a matter
of computational tactics, one may construct

_ q

wix,s,t) = .E 5i(t) Hi(x,s)
i=1

and use program 3.4 of Appendix E as a means of numerically
generating the orthogonal components. )

For the simulation used here, al(t) was ‘chosen
as a parabolic curve, az(t) Ias a sine function of period
ten years, and aB(t) as a sine function of period five
years. The {di(x,s)} were chosen orthogonal, and such
that a "reésonable" economic mobility function was produced.
It should be noted that the mobility function selected for
these experiments is considerably more realistic than the
example included as an algorithm test in the interim report
[3]. Magnitudes of the mobility in this experiment are
considerably larger, and were selected on the basis of
preliminary computations utiliéing,the available real data.

Below are reproduced plétsvof the time components

and age~-income components as reproduced from program 3.4
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Also shown is a copy of the program output page
giving numerical values of the eigenvalues of MTM , and
numerical values of the {ai(t)} . It is easily seen from
this output that the "parabolic" component is by far the

dominant effect in the simulated economic mobility.
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Using the economic mobility function, the equation
was integrated numerically. The grid used was fairly coarse
(see below), and the result of the computation was values of
the simulated population dénsitz at one year time intervals,
one year age increments, and one thousand dollar income
increments.

This simulated data was aggregated to three
different levels, referred to és low, intermediate and high.
Low aggregation is essentially at the level of the integration
grid, while high aggregation corresponds to the age and
income brackets used in the real data on reported income
obtained from the Revenue Canada publications. The brackets
are presented in the chart below. Note that while the
density and low aggregation appear to have essentially the
same age and income brackets, the data is treated differently.
Low aggregation data is generated by integrating the
splined simulated density, and then disaggregating using
fourth order splines as described din the Appendix to

generate a density estimate.
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Aggregation AggiIncqme Brackets

Level

Density (unaggregated)

Low Aggregation

Intermediate Aggregation

High Aggregation

Ageé
17, 18, 19,...
17, 18, 19,...
17, 20, 23,...65,
69, 73, 78
17, 25, 30, 35,
cess70, 78

Incomes($1000's)

o, 1

, 2, 3,...19

3

O, 1, 2, 3,..-18,
20

0, 1, 2,...18,
20

0, 2, 3, 4yeeee
10, 15, 20

The estimation procedure was run on the simulated

data at the four levels of aggregation described in the chart

above.

Since the algorithm used is basically similar to that

utilized for the estimation of the fertility curve dynamics

(Chapter III above), entirely similar considerations arise.

In particular, problems arising from errors and inaccuracies on

the borders of the regions involved require the use of a
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"bordering technique" parallel to the one adopted above. 1In
all runs, the data is bordered in the age and income direct-
ions so that only data from ages 26 to 48, and incomes $3000
to $11,000 are utilized in the estimation. The data in the
time direction was bordered by O; 1; and 2 years (on each
end), producing three estimates of the {ai(t)} for each
level of aggregation. In addition, surface plots of the age-
income components {di(x5s)} corresponding to the zero
bordering {ai(t)} were produced for each level of aggreg-
ation.

The estimation algorithm returns (estimates of) the
time components {ai(t)} in order of decreasing eigenvalue
magnitude. This should correspond to decreasing ”di(x,s)uz
in the simulated mobility. The following summary charts
give the "position of appearance" of the parabolic and single
frequency sine functions as a function of aggregation level

and time~bordering.
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The following plots consist of the estimated
{ai(t)} for each aggregation level, and the corresponding
age~income components {di(x,s)} as computed from the
estimation algorithm. These plots should be compared with

the original components of the economic mobility used in the .

simulation.,
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The above plots contain aAlarge amount of inform-
ation; we confine our remarks to the most significant aspects
of the computed results.

One effect clearly visible in the plots is the
presence of a "saw tooth!" component in the calculated age-
income components. This effect is essentially due to the
coarseness of the grid used for integrating the simulated
density function. This could be cut down by use of smaller
grid increments, with a corresponding increase in computing
time and cost. The problem is not helped, and is probably
aggravated by the fact that the initial distribution used
for the simulation is not a '"matural® initial condition for
the mobility function moved. This .could be overcome by
running the simulation for a long enough period to ensure that
the initial. distribution disappears.

The presence of these errors is not entirely harm-
ful, as it can simulate the inevitable data errors and mo del1-
ling inaccuracies of the real situation., Also, it is evident
that the integration process in the intermediate aggregation
has had a smoothing effect on these errors.

Given the relatively small component of sinusoidal
nature which is present in the mobility chosen for the sim-

ulation (See the eigenvalue calculations above), what is

perhaps somewhat surprising is that the algorithm is able to
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extract a sinusoid at all from the simuiated data: Note

that with two year borderings, the sine function appears as
second component in the density, low and intermediate
aggregation cases. The density calculation seems to be the
only one which returns a reasonable d(x,s) for the sinusoid
(but with noticeable sawtooth component).

Of much more practical interest is the fate of the
dominant, or parabolic component in the simulated mobility
at various levels of aggregation. As the results clearly
show; this parabolic component is present with all degrees of
bordering for the cases of the density, and low and inter-
mediate aggregation. In all three cases;'a reasonable
representation of the age-income component is returned
(essentially marred only by the integration error sawtooth
disturbance).

When the aggregation is increased to the level of
that present in the available data, however, the results are
drastically altered. There is a dominant time component
which persists through all levels of bordering, and which
seems entirely spurious. We attribute its presence entirely
to the level of aggregation., The "true" parabolic component
seems to occur as the second component, only at the zero-
bordering level, and there in a form distorted by the spurious

component. With some imagination, it is possible to see the
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corresponding age-income component as a distorted form of
the "true" age-income component.

We regard the above computational results as

strongly suggesting that the aggregation level of the age-

income data published in the annual reports of Revenue

Canada_is too high to allow determination of economic

~

mobility by use of the estimgtion methods developed in this

report.

[O

Real Data Computations

As mentioned above, the only annual income
distribution data which we were able to obtain consists of
the reported income figures from the annual reports of
Revenue Canada.

A potential problem which arises from the use of
this data is the fact that these reported income figures
include the effects of inflation on wage and salary rates.
While it was shown in the interim report that the form
of the governing equations for the age-income distribution
was invariant under an arbitrary monotone change of income
scale, the possible effect of inflation on an income measure
was not explicitly considered. In fact, derivation of the

governing equation in [ 3] was originally carried out on the
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basis of an implicit assumption of an income measure constant
over time.

However, one may consider the effect of using an
inflating incomé scale in a manner analogous to the derivation
in [ 3] regarding changes of income measure.

The simplest such change is given by defining
g = c(t) s

where s represents the original income measure (constant
dollars), c(t) represents the current consumer price
index (cumulative inflation factor), and so that o
represents income in Ycurrent" dollars.

One objection to the use of the above in connection
with the reported income statistics is tﬁat reported income
is made up of various components, all of which are unevenly
affected by inflation; moreover, the proportion of these
components in reported income varies across income brackets.
To take account of this possibility, we consider the effect

of a time-varying income scale change of the general form

o =73 (s,t) .
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This formulation allows the possibility of uneven inflationary
effects across income levels, and should be sufficient to
allow a transition from reported income to virtually any fixed
income measure. It is shown in Appendix A that the governing
equation of the distribution is not changed in form by ﬁhe
introduction of such a change in income measure, that is,

that there exists a well-defined economic mobility function
defined in terms of the income level ¢ . This exercise
shows that reported income data may be used with no change

in the model formulation; estimates of economic mobility
computed from this data simply refer to the income measure

o .

The above considerations effectively settle the
question of the usability of the type of data available for
the purposes of use in models of the sort considered; the
next issue is whether or not the form of the available data
is such that one may expect to extract useful model estimates.

The work reported in Section B above was undertaken
to test the effects of data aggregation procedures on the
validity of the computed estimates. The experiments run with
simulated data indicates, for that example, that fairly
reliable estimates may be extracted from data which is ag-
gregated to about one half of the extent to which the

available data has been aggregated. The results of the
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experimental run at high aggregation level do nothing to
encourage confidence in results from data at this level of
aggregation. 1In fact, the results indicate that spurious

results are possible in such a situation.

In spite of the above situation, the fact remains
that the highly aggregated real data is the 2212 data
available to usj; mnatural curiosity has forced us to run the
aggregated real data through the estimation algorithm. The
results are reproduced below in a format parallel to that

used for the aggregation experiments.
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.The computed results show the first two tine
components persistent under the borde;ing procedure.. The
plots of the age~income components also show extremely rough
results on the low end of the age sﬁan. (Plots start at
age 17; normally; even though the estimation data is bordered
to exclude the tails of the distribution.) Since these high
spikes dominate the scaling of the plot routine, the section
from ages 27 to 56 was replotted to brihg out greater detaii.

In view of the high data aggregation, it ié dif~
ficult to draw valid conclusions from the above results. The
results suggest the presence of systematic components in the
data; the results of our numerical experiments suggest that
the results computed above may not be an accurate represent-
ation of what systematic terms are present. The_only way to
resolve the question is to process a less highly aggregated
version of the data; we were not able to find a source of
such data and have no knowledge of whether or nét such data
may be obtained (at an acceptable cost).

Finally, the estimation program included in the
appendix is constructed to process sequential segments of the
data in a manner analogous to the fertility parameter estim-
ation package. The data we have obtained is of tob short a
duration to permit much work in this direction. With eleven
years of data available, we have made two consecutive ten

year runs; the results were inconclusive.
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Iv. Dynamic Interaction Models

i

A General Discussion

Once the coefficients of the partial differential
equations in the case of the model have been estimated, the
problem of determining‘a dynamical model for the evolution éf
these coefficients must be considered.

As mentioned in our interim report [3], it is.ciear
that the evolution of these coefficients is affected by both
economic levels and less easily quantifiable factors which
might be described as sociological effects. Since it is
evident that trying to model the latter must be a process
subject to a wide range of possible approaches, it is of
interest to seek some péssible means of separating the two
effects. The approach that has been adopted hgre is to attempt
this separation on the basis of "time scales". In view.of the
often-noted inertia in socialAaftitudes, it may be hoped that
the dependence of the coefficient time functions on these
factors is on a "much slower" time scale than the dependence on
the more variable economic levels.

The use of this distinction is suggested by two
sources. One is-the use of the "method of multiple time
scales", which has found success in numerous areas of applied
mathematics. Another source is the widespread practice in

econometric time~series work of "subtracting a trend line®"
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from the available data. The usual interpretation of this
procedure is that the trend represents an exogenous effect
not included in the model. As will be seen below, the method
proposed in a sense represents an alternative to this
procedure usable in the case of relatively short data runs.
.In fact, it was the scarcity of the available data which has
led us to attempt the approach below rather than to use con-
ventional time-series fitting pfograms.

It is of course difficult to define precisely the
meaning of the phrase "much slower" in the above, and one may
no doubt cite instances of "rapid change" in social attitudes.
In the practical use of the method described below; the allow-
able rate of change from exogenous effects is in effect
specified by the user of the package. Whethef or not the time
scales are widely separated is evident in the results of the
computation. One also expects that a model must be estimated
by use of a "sliding subset" of the available data (in a manner
analogous to the estimation procedures of sections IT and III
above). Periods of "rapid change" affecting the variables
being modelled would probably appear as rapid Vériation in the
estimated model coefficients.

The model and estimagtion procedure described in detail in -
Appendix B below is based on a linear model (stgte variable

model) of the general form
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xk+l = F xk + G uk

Y T H X

In the above, the input seqﬁence {uk} represents the econ-
omic time series driving the model; while the output sequence
{yk} represents the variable coefficient functions of the
partial differential equations in the model core. 1In the
usual control theory literature, it is assumed that the above

system represents a so~called minimal realization of the

system being mo@elled. This assumption means roughly that
there is no component of the output sequence which is un-
affected by the inputs. In the present case this assumption
wéuld rule out the presence of any exogenous component in the
observed values of {yk} , and in effect would preclude the
inclusion of other than economic effects on the core model
coefficients.

As shown below, it has been found possible to include
the possibility of exogenous effects in the model above, and
to weaken the requirement of minimaiity of the model. This .
modification makes it possible to fit models (based on the
idea of a time scale difference in the essential dynamics)
without resort to the necessity of introducing an ad-hoc

subtraction of a trend to account for exogenous effects.

The structure of the estimation algorithm described below is
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such that the exogenous component is implicitly detefmined by
the algorithm at the same time that the model parameters are
estimated.

The problem as formulated is that of finding an
appropriate linear time—invariant model. One may either
regard a linear model as appropriate for relatively small
values of the wvariables involved; or alternatively; one may
regard the fitting of a succession of linear models as a first
step in the process of determining a-possibly more realistic
non-linear model. One may always hope that a relatively simple
linear (or duasi-linear) model will turn out to be appropriate
in the situation under study. Common sense dictates that the
simplest possibilities be explored first; and this is the
approach which has been taken.

A detailed description of the model formulatiorn, and
derivation of the estimation procedures is somewhat technical
and is given below in Appendix B.

A serious issue in modelling the interaction effects
is the treatment of the stochastic elements of the data. The
presence of stochastic elements in the available economic-
indicator data is quite evident; in addition, the time
functions produced by the estimation algorithms described
above must contain errors as well, While it is felt that the

algorithms used for coefficient estimation have a "smoothing
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effect!", and that the level of noise on the final estimates
(for the fertility data processing) is not excessive, it
appears very difficult to produce quantitative estimafes of its
magnitude. The small amount of available data (relative to

the estimates being made) makes it virtually impossible to
formulate and estimate a statistical model of the disturbances{

While it is possible to formul;te statistical est-~
imation procedures in connection with models of the generalv
type described below, these procedures fall basically into
two types [19], [16]. The first are "correlation based"
techniques, which are essentially based on "large sample'
averaging procedures. The second type is a Bayesian or max-
imum likelihood estimator, the use of which requires a reliable
statistical model for the sampling distribution.

Both of these procedures seem inapplicable in the
present circumstance; the first because of the lack of a "large
sample" over which to average, and the second because of the
lack of sufficient data to estimate a useful sampling dist-
ribution.

The only remaining alternative appears to be the
formulation of the problem in a deterministic manner; and this
is what has been done below. Since a certain amount of noise
in the actual data is inevitable, it is essential that the

users of the package have a certain amount of appreciation for
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the effects of noise on the performance of the deterministic
estimator developed below. It is probably only with a reason-
able amount of numerical experience with the package that an
ability to "see a reasonable fit" in the résults can be dev-
eloped. We expect that éuccessful use of this package will
require considerable experimentation; and that the results
obtained will depend upon the experience and judgement of the
user of the programs.

One may hope that the data runs are relatively
noise free, although our experience indicates that this is not
the case in connection with the economic data.

As a means of combatting the noise, one may suppose
that the model to be fitted is of sufficiently large dimension
to provide "internal filtering" of the noise in the economic
indicator inputs. However, increasing the dimension of the
model increases the data requirement for each parameter est-
imation. This decreases the number of estimates possible from
the limited available data; the smaller number of estimates
severely limits the user's ability to see consistency in fits
produced from successive subsets of the data. Given. the
amount of presently available data, this does not appear to be
a useable alternative.

One may also attempt to reduce the noise in the data

by more or less ad-hoc methods. One such method is to replace




the economic series with "moving averages". This has an
interpretation similar to the large dimensional model ment-
ioned above. The essential difference is that the filtering
dynamics wéuld in this case be supplied by the user of the
program, while in the former case the filtering dynamics
would be estimated from the data. Since the data requirement
for the latter case is smaller, a larger number of estimates
can be made from the available data in this case. This
method may provide a way around the problem of a limited data
base, but would require considerable numerical experimentation.
There is no guarantee that a useful result could be obtained;
even if consistent fits were obtained, there is a danger of
lack of confidence in the results on the basis that nearly
anything may be fit with enough free parameters availaﬁle.
Another possible approach is to make an attempt to
"remove the noise" from the economic time series before their
use in agn estimation algorithm., One possible rationale of such
a procedure is to assume the existence of smooth "true" economic
fluctuations, and to regard the observed series as consisting
of the time series plus an additive noise term., If it is
supposed that the "true" smooth series are the appropriate
driving terms for this section of the model, then the smooth
series are the appropriate ones to use in the identification

procedure,
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A problem with this approach, obviously, is that of
extracting the "true" series from the noisy observations. It
is conceivable that a Kalman-Bucy algorithm might be useful
for this purpose; it is unclear, however, that the available
data is sufficient to determine the required statistical
parameters for this approach. Several runs (see below) have
been made with data smoothed using the ad-hoc device of a
least-squares polynomial fit based on a visual display of the
data involved. Needless to say, this device is somewhat
difficult to justify on a systematic basis. It also seems
difficult to support use of an alternative in the case of the
limited amount of available data.

A somewhat more mathematical treatment of the
approach adopted is given in Appendix B. It is probably the
case that the ability to successfully use the algorithms dev-
eloped is dependent on understanding the material in Appendix
B. The problems involved are not entirely elementary, and
require a fair grasp of linear algebra and the theory of dif-

ference equations on the part of the reader.




>

Tactical Use of the Algorithm

The problem of fitting linear models from input-
output data must be regarded as a process subject to the use
of a certain amount of judgement on the part of the individ-
uals attempéing the task., Using real data there will never
be an exact fit; and one must récognize both the uncertainties
in the estimation algorithm as well as the proposed subsequent
uses of the model in evaluating the results of computations
using real data.

At the heart of the estimation algorithms described
in Appendix B below (and, indeed, essentially all algorithms
for estimation of linear models) lies the numerical problem
of solving a system of linear equations. As is well known,

such a process may turn out to be numerically ill conditioned,

in the sense that small changes in problem parameters may
produce large variation of the computed answers.

The result given in Appendix B below essentially
guarantees that (almost always) it is possible to solve the
estimation equations for the estimated values of the model
parameters. The result does not ensure that the computation
is well-conditioned. Since the coefficient matrix involved is
constructed from the observed data sequence, it is possible
that the matrix occuring in a given computation ig ill

conditioned. The effect of this is to exaggerate errors
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(noise) in the data, and to produce inaccurate parameter
estimates. The least-square algorithms employed in the prog-
rams of the appendix are "flagged" to alert the user to
possible ill conditioning; it is still possible, however, for
the package to make computations which may be unacceptable
from this point of view. The user of the programs should be
aware of this possibility. More than this, a "feel" for the
conditioning of the computations is an invaluable asset in
evaluating the results of attempted model fits.

In this context, just as in the case of estimation
of the partial differential equation coefficients, one is
faced with the problem of confidence in the computed results.
One might take the whole of the available data, and perform a
one~time computation of the parameters based on the algorithms
described above. Of course, if the data were exact, the model
dimensions correct, the system truly linear, and the comput-
ation well conditioned, this would produce the correct answer.
Unfortunately, even if the model is incorrect, or the data
noisy, there is a danger that the algorithm may produce a -
reasonable set of (essentially useless) parameters.

To get around this problem, we adopt a procedure
analogous to that of the previous estimation problem. That is,

we make the estimates on the basis of a Subset of the available
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data are processed is then taken to be indicative of a
successful fit.

Of course, consistency in the results is somewhat
a matter of judgement, and is closély'coﬁneoted with the
issues of computational conditioning and data error discussed
above. Before one concludes that the situation is truly
desperaté, however; it may be menﬁioned that numerical exper-—
iments attempting to forge incorrect models on computer

generated data sets typically generate wiidlyrincohsistent

sequential estimations. It may weil be the case that while
one may never by sure that a hypothesized model is correct,
it is usually evident that a hypothesized model is incorrect.

" There is a further constraint on an identified model
in the present context arising from phyéical consideration.
Thié constraint is that the "driven part! of the model should
represent a stable system,i.e. that the eigenvalues of the

matrix A should be inside the unit disc of the complex

1
plane., If this is not the case, the "free response" of the
model will diverge; this is a situation not to be expected on
a "physical! basis. (The FORTRAN and APL versions of the
estimation program ESTIMATEA incorporate an eigenvalue cal-
culation along with the estimation. )

In the derivation of the estimation equations in

Appendix B, it is assumed that the system dimension n‘; and
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the characteristic polynomial corresponding to the exogenous
output data drift are supplied by the user of the program. In
principle, in the case of exact data; and a "true" linear
system, both of these may be calculated from the given data.

In practice with real data, these must essentially
be determined on a trial-and-error basis by the user of the
program. These parameters, as well as the time series chosen
as inputs, must be regarded as variables to be manipulated in
order to achieve a reasonable sequentially consistent fit.

In the deterministic case, the system dimension n
is essentially determined by the fact that the matrix inversion
required in the parameter estimation becomes impossible when
a model fit of dimension greater than n is attempted. In
the case of noisy data, ill conditioning may be indicative of
the same thing although large data errors may hide this.

As a matter of practical tactics, it is obviously
advisable to attempt to fit lower dimensional models first.
With a finite available observation record, this produces a
greater number of sequential estimates on which consistency
may be checked; since the linear system requiring solution is
essentially of dimension n(m+l) , with n the state |
dimension and m +the number of inputs, computations on lower
dimensional models are more likely to be well conditioned., It

is thus possible to have considerably more confidence in a
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low dimensional model than in one of higher dimension.

The choice of the dynamicdl character of the exogen-
ous drift is a matter requiring some judgement and experience.
In effecﬁ, the choice of the "drift dynamics" and the selection
of the time series to be used as inputs must be made together.
With some experience, it is possible to select likely combin-
ations on the basis of graphs of the input—output data. The
typical response characteristics of first and second order
difference equations are well known; this knowledge can be
used to advantage here. |

For example, inspection of data graphs may suggest
that the output to be modelled is tlie response of a single-
input second order system offset by a straight line. Sincé_l
the generation of an exogenous "straight line" requires two
dimensions, (see below) one would attempt a model fit of state
dimension four, with a single input and output. More comp-
licated situations undoubtedly involve more trial and error.

It may be mentioned that it is essenﬁially always
possible to achieve a consistent fit by this procedure (for
"smooth" output data) simply by supplying an exogenous drift
containing enough linearly independent time functions to fit
the observed output well. (Polynomials of sufficiently high
degree in principle would suffice.,) The identification scheme .
should then identify an essentially zero input matrix, and
attribute all of the observed output to the drift term. In a

qualitative sense, large dimension of the drift block required
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to obtain a fit may be taken as an indication that the whole
output is nearly exogenous, ie€. not due to the supposed input
series. As one may see, there is considerable leeway available
to the user of the program in this regard. The rationale of
this whole approach, however, demands "conservative! treatment
of the drift term.

Since the exogeneous drift is supposed to operate
on a slower time scale than the economic (or other) inter-
action effects being modelled, one should, in principle, try
slowly varying functions as the exogenous component. If it is
suspected on other grounds that a relatively rapidly varying
exogenous component is present in the data, however, this
suggests use of an exogenous drift of similar character. Such
decisions are essentially a matter of judgement, and it is
possible to give no precise rules in this regard.

The computer program ESTIMATEA requires as input the
q (non-leading) coefficients of the characteristic poly-
nomial of the exogenous drift matrix D . These coefficients
are chosen on the basis of the time functions allowed to be
present in the exogenous drift; the connection between allow-
able drift terms and required polynomial follows from the
theory of z-transforms [14].

In general, any (discrete) time function with
rational z-transform is allowable as an exogenous component.

If it is supposed that the drift is representable in the form




o

dk = % a.w&i) R

where +the unknown scalars {ai} are determined in the ident-
ification process) then the input to the program is the vector

of non-leading coefficients of the least common denominator

{ of the z-transforms {$(i)(z)} of the functions {wéi)} .

For reference, a chart of common drift forms is given below.
It should be emphasized that the algorithm requires only (a
guess of) the functional form of the exogenous term. The

coefficients a« , B , y » etc. are effectively computed by the

algorithm, and are not supplied by the program user.
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Drift Chart

Time Function Form

Description

constant:
linear "trend":
parabola:
sinusoid:
exponential:

trend 4+ sinusoid

general:

o

a + Bk
2
Q’.+Bk+'yk

o cos wk + B sin wk

a y

o + Bk + y sin(wk+8)

Program
Characteristic Polynomial Input
A-1 -1
(A-1)2 ~2 1
(A-1)3 -33-1

-2 cos w 1

(XZ—Z cos wi+l)

A=y

(r-1)2(1%-2 cos wAr+1)

- (242 cos w) (2+4 cos w) -(2+2 cos w) 1

l.ced of {cp(l)(K)}
23 +d ATt L ia a4 a ...d
q 1 "q "g-1"""1
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Real Data Experiments

We have run some experiments with the estimation
algorithm discussed above in an attempt to determine the
interaction between economic indicator levels and the
fertility equation coefficients estimated above. Since the
output generated by the estimation algorithm program is some-
what long, only abbreviated versions of the results may be
presented in this report. It is hoped, however, that these
examples will provide useful guidance for the users of the
algorithm.

As mentioned above, the fertility coefficients have
been estimated on a yearly basis; processing. the available
data provides estimates for the years 1958-1970. The available
data thus consists essentially of only thirteen consecutive
values for which one expects a consistent level of error,

Econometric time series data is commonly available
on a quarterly basis. The approach that has been taken here
is to assume smoothness (and a low level of error) in the
estimated fertility coefficients. A spline interpolation has
been used to generate values on a quarterly basis. FEconometric
data on a seasonally adjusted basis has been used wherever
available. The time series used together with a numerical code

utilized in the program are listed in the following table.




Number

o N O AW

10

11

12

13

Input SerieS'Table

Description

Industriai Wages
Manufactoring Wages
Housing Complétions
Personal Income
Disposable Income
Participation Rate, Total
Participation Rate, Females
Unemployment Rate
Industrial Production
Housing Completions -

Four Quarter Average
Housing Cdmpletions -

4th Degree Polynomial Fit
Participatioﬂ Rate -

4th Degree Polynomial Fit
Unemployment - 6th Degree

Polynomial Fit

The four identified fertility coefficient series

a quarterly basis) and the above econometric series are

displayed in graphical form below.
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It is evident from the plots above that the time
series one might judge the most likely candidates for the
series driving the fertility coefficients are also the series
with the highest apparent level of noise. All of the problems
mentioned above in the context of ﬁhe use of the proposed
algorithm with noisy data therefore arise. As a working
hypothesis, we suppose that the fertility céefficient series
determined above are essentialiy deterministic. Since the
series reproduce the observed behaviour with reasonable
accuracy, we also assume a relatively low level of error here.
(The available data makes error estimates essentially
impossible; there is little apparent alternative to this
assumption.) Since the coefficient b(t) ("rate of change of
average family size") is essentially directly measurable, this
series undoubtedly has the smallest error.

In the tables below we list the results of computer
runs made using b(t) and al(t) is output. Almost all of
the runs were made with use of either constant, linear, or
parabolic exogenous drift, and a variety of the techniques
mentioned above were employed in an attempt to get a reasonable

fit.
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State Dimension

~SHT-

Estimation Runs

b(t)

InEuts

4, 83 9, 10

7, 5, 3, 8

7, 5, 3,

5, 7, 8,

Drift

linear

parabolic

9

Result

Inconsistent F

Some consistency in F ,
just two columns of G .

Fairly consistent F ,
G .

smooth variation in

F somewhat wvariable

Fairly consistent F ;
second, third columns of G

fair.




-ovT-

State Dimension

Estimation Runs

a;(t)
Inputs Drift .
8" constant
13.(\‘ 1
127, 13" linear
8 constant
1" linear
127, 13 linear
7, 2, 9 linear

parabolic

Fair

Results
F , very inconsistent G
Some consistency in F , G

variable

Variable F , G .

F , G inconsistent
Occasional consisting in F

G wvariable

very inconsistent

Fair F ,

G .
Fair F , inconsistent G
Occasional consistency in

F , G wvariable

2



Dimension

~LYT-

10

Inputs Drift
7, 8 parabolic
10, 13% parobolic
12*, 13% parabolic
8 linear
7, 8 parabolic
10, 137 parabolic
10,-8, 0 parabolic
8 constant
8 constant

Results

Spotty consistency

variable G

Fair F ,

F , G both inconsistent
Inconsistent

Inconsistent

Scattered

Inconsistent

Possible consistency

Fairly inconsistent




In the above tables, % indicates time series
delayed by six quarters. Also, in the above (as well as in
the computer programs) F refers to the model coefficient
mgtrix, G to the input matrix, and ﬁ to the output matrix.

One surprise in the above is that the' b(t) estim-
ation seems better behaved than that of al(t) . This was
not anticipated by the authors.

The lack of consistent results for al(t) is some-
what discouraging, as one intuitively éxpects more economic
effect on the ai(t) than on b(t) .

It may be the case that use of a larger or more
rapidly varying exogenous drift would produce an acceptable
fit; on the other hand, it may be that the level of randomness
in economic time series makeé estimation on a deterministic
basis an impossibility. If this is the case, attempts to
estimate the interaction effects must await the accumulation

of considerably more data than is currently available,

Y
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V. Conclusions

As mentioned in our Interim Report [3], we regard
the process of model construction as one subject to a great
deal of experimentation. Our intentién in this project has
been to develop some techniques and models useful in such
experimentation. Further, we regard it as essential that the .
models constructed and employed be useable with available
data in order that model parameters may be estimated and model
accuracy verified. As should be evident from the above dis-
cussion, we have found that the utilization of the available
data required considerable effort. The required data base is
not easy to obtain, and the available records seem to cover a
far shorter time interval than is desirable. This problem is
particularly acute with regard to the income distribution data.
Here the increased numerical difficulties in the estimation
procedure demand detail (and accuracy) in the distribution
data, and the subsequent interaction modelling will no doubt
require data from a larger span of time than we have been
able to obtain.

The results of our work in modelling the behaviour
of the fertility curve seem fairly satisfactory. The algorithm
developed for estimating the partial differential equation
coefficients has produced consistent results, and simulation

using the estimated coefficients reproduces the observed data
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to an acceptable degree of accuracy. The data required for
the estimation procedures is available in sufficient detailj
the relatively short time span for which the detailed data is
available, however creates severe difficulties in the area of
modelling the dynamical behaviour of the coefficients.

From the point of view of subsequent use; the
estimation of the economic mobility function u(x,s,t) and
determination of its dynamical relation to other economic
factors is probably of more interest. Our experimentation
has shown that, while the fundamental methods of the estim-
ation problem for u(x,s,t) are similar to the methods used
for estimating the "shift dynamics" of the fertility curve,
the additional dimension involved causes the numerical dif-
ficulties to be somewhat more delicate. This is more the case
in estimation of the age~income dependent components of the
economic mobility; the algorithm appears quite robust as far
as estimation of the time dependent components is concerned.

Initial experience with use of the algorithm in
conjunction with real data led us to suspect that the level of
aggregation of the available data might be too great to allow
reliable mobility estimates to be made.

Subsequent experiments with varying aggregation
levels were made utilizing simulated data. The results show a

severe degradation in the reliability of the computed results




at the level of aggregation present in the real data; the
results also suggest that reliable estimates may be reéovered
from data aggregated to approximately half the extent of the
data we were able to obtain.

In our work in estimating the interaction effects
between economic factors and the estimated model coefficients,
great difficulties have been caused by the scarcity of the
available data. 1In fact, the income distribution data we
have obtained covers such a short period of time and has been
aggregated to such an extent that we have not attempted to
estimate a dynamical model of the economic mobility.

The problems which arise in this area are formidable,
Concisely stated, the process being modelled contains an
unknown exogenous component, the available data is corrupted
by noise of an unknown statistical nature, and the length of
the available data record is short. Our approach has been to
develop an algorithm capable of fittiﬁg models on the basis
of short data and with a variety of possible exogenous
components, This is based on a deterministic approach; the
potential user of the package must be familiar with the
effect of random data errors on the computed results in order
to make effective use of the routine. We hope that our
discussion of the ideas behind this approach and the details
of the model and algorithms involved will be of some assist-

ance in this regard.
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Appendix A: Model Invariance and Inflating Income Scales

As discussed above, the fact that reported income
data, subject to inflationary effects, appears to be the only
available annual income distribution data leads one to con-
sider the problem of estimating economic mobility on the basis
of this data. The original derivation of the model equation
for evolution of the distribution is easier to interpret on
the basis of a time-invariant income scale, although there is
no explicit assumption to this effect in the model derivation.
One is led, therefore, to consider the problem of determining
whether or not the available data ought to be deflated in some

fashion before an estimation attempt is made. This is not an

attractive prospect, for several reasons. One is that the effects of

inflation on reported income varies across income levels (in a
manner difficult to estimate). A second reason is that inflat-
ion affects wage and salary levels in various sectors of the
economy with differing amounts of delay (again a circumstance
difficult to quantify). These problems make it preferable, if
possible, to formulate the model in terms of some "current"
income measure. It turns out, as shown below, that the form

of the governing equations is retained even if the distribution
is referred to a "current!" income measure (such as "reported

income")., This may be shown as follows.
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Recall that the model equation derived in [3] in

terms of age - x , income s and time t is given by

!O

o) 0 .
=B - . 6‘% - (H(X,S,t)p) + 1(X,S,t) - 'Y(X!S!t)p .

log

S

where p is population density, i is (net) immigration; and
v(x,8,t) the death rate. p has the interpretation of the
number of people per unit age, per unit income interval; at
time t .

We now consider the effect of introducing a time-

variable change of income scale, of the general form

c = %(s,t) .
o may be interpreted as current income (or current disposable,
or reported, etc., income), while s represents a fixed income
scale.

This change includes as a special case, the change

which might be described as "uniform inflation", i.e.

o = c(t)s

as well as various models incorporating the non-uniformities

mentioned above,
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It is convenient to assume that ¥ has continuous

second partial derivatives, and that it is monotone in s

each fixed t , so that

o = % (s,t)

may be smoothly inverted to give

s = S(o,t)

(i.e. s in terms of 0) so that we have the identity

c = % (s(o,t),t) .

From the above identity follow the useful formulae

(e
™

0S 3

P

[}
I
ol
0]
o
ojo

(from differentiating the above partially with respect to

holding o constant) and

_ 2z, 23S
l_bs do '

(from differentiating partially with respect to o).

for




We now consider the change of independent variables
x , s, t to the variables & , ¢ , T éCCording to

T : (x,s,t) » (E,0,T7) , where

T =t
E = x
c = %(s,t) .

(1, represent again time and age). This induces a cor-

responding change of any function £ of (x,s,t) according to

§(§:03T) = f(x(g,0,7) , s(gaoﬁT) , t(E,0,1))

= f£(g,8(0,T),T) .

The "chain rule" for partial differentiation gives

bf'—'iog—z- gf_. -

ST = 5 > + p 1 + 0 .
o _ o . 23

ds 00 s +0+0

df _ f ,

5x = pg LtOtOo .
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Writing out the model partial derivativesg in terms of the new

variables (E,0,7) gives

2p Qﬁ{ﬁé}z_gﬁ_é___ﬁ_“ QEJ
0T + 00 o} DE Do leo) (bp) 0s
~yp +i .

The appropriate formula for the age~income density
in terms of the new variables (E,0) is determined by noting

that the expression

ff p(x,s,t) dx ds

B
represents the population with ages and incomes in the
arbitrary region B at time + . By the Jacobian rule for

change of wvariable in a double integral, this is the same as

\”‘ 5(5309t) I g(g,i; | dg do

TB

which, evaluating the Jacobian, is

J‘J\ 5(§,C,t) l %’? l d% do .

TB
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Using the identity above, this becomes

J"J"E—‘iﬁ:ﬁ—dgda

TB s

Since TB is an arbitrary region of the new variable space,

this identifies the appropriate density as

p(E,0,4)
22(s(d,t),'t)

p(g,0,t)

(The absolute value is dropped by the monotonicity assumption)

Multiplying the governing equation by

-1
22(5(0,7),7))

and re-arranging gives

o 1 = =~ o [os
57 oz P —pr[OGJ+
0s
)
b_[.b_z:..é__] =0 |t |
do Lot "2z 1 T P %o |Tom
0s s
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0s 0s
Using the fact that
2
2t . _ 38y _ _ @8
DT ot OT
— o o
0s

we see that the second and fourth terms cancel in the above,

and defining

p(E,o,T) =

(o4 o
@ |

as the "new" density, we see that

with
~ - o 0%
HwE,o,t) = W(gE,o,7) * 3= T 3% .

The above defines the appropriate mobility in terms of the
"current" income scale, and shows the invariance of the model
equations under such a change. As a practical matter; this

removes the necessity of deflating the available data




(available on a "current" basis) and prevents the addition

of additional errors from such processing.
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Appendix B: Mathematical Description -~ Linear Model

Estimation Algofithm

As mentioned above, an algorithm has been con-
structed for the estimation of linear model coefficients on
the basis of input-output data. There exists a considerable
amount of literature on this topic, covering both stochastic
and deterministic approaches. The work reported below is
based most closely on the references [16], [17] and [19],
but differs from this work in a way which has required some
modification and extension of the results in those references.

The main impediment to the use of [16], [17] and
[19] (as well as most other estimation algorithms known to
the authors) in the present case is that no provision is
made to handle systematically the presence of any exogenous
components in the output data record. These references are
concerned exclusively with the estimation of coefficients in
minimal realizations. As noted above, this restriction in
effect requires that all outputs be affected by the inputs.

The mathematical content of the following dis-
cussion consists essentially of linear algebra and difference
equations. The framework is essentially that of discrete-
time linear control theory.

Since the integration schemes used for the model

core essentially reduce to difference equations, and it is




discrete time data (typically yearly or quarterly values)

which is available,

it is natural to formulate the inter-

action section of the model in terms of difference equations,

The basic linear model may be described by the

system of equations

(1)
(k+1)

_(2)
(k+1)

- (1
Yj(k) <cj

(1)

In the above, =z
sional vector spaces
b, vectors, and c,

1 J
By choosing bases in

represented in terms

in the form

k+1

A z(l) + ; b. u, (k)
(k) di=1 *~ %

D z(z)(k)

),z(l)(k)> +-<c§2),2(2)(k)> .
J=1’ s o e
and z(z) are elements of finite dimen~

over R, A and D are linear mappings,
elements of an appropriate dual space.
the vector spaces, the system may be

of components with respect to the bases
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L)
k

) (1) (z)l _
Vi = [ C C X(z) = C Xk .
Kk

The physical interpretation placed on the above
model is as follows. The x is referred to as the state
vector. The first "half" of the state vector, x(l) ,
represents the part of the state driven by the input u , and
so carries the effect of the input on the output. The second

(2)

section of x , is entirely decoupled from the inputs;

3
we visualize this as representing a "drift term" present in the
observed output.

It is this component which accounts for the exo-
genous terms in the output. It is also the presence of this
term which makes it necessary to modify the results of the
references mentioned above, as the system model above is
clearly not controllable.

In the use of this algorithm, the matrix D is
essentially specified by the user. From the properties of
linear difference equations, it follows that arbitrary linear
combinations of polynomials, discrete exponential functions,
discrete sinusoids (among others) may be included as possible
exogenous (drift) terms in the model. As will be clear from

what follows, it is not necessary to pre-specify the mag-

nitudes of these terms; the estimation algorithm determines
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the magnitudes involved in the course of the computation. This
property of the approach may make stochastic versions of the
results obtained worth pursuit in connection with other applica-
tions, even though the available data limits their usefulness
here.

Before our assumptions for the estimation model are
listed, it may be worth emphasizing the fact that the state
vector in the above representation is far from unique. In fact,

a change of basis in the state space according to

leads to the system

41 Kk k

S Yk k

This "new" system in fact has the same input-output behaviour
as the original, and is indistinguisable on the basis of
input~output records. This invariance is basic in the theory

of linear systems, and is reguiarly exploited with the use of
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canonical forms to derive efficient estimation algorithms.
The standing assumptions which we make on the model

are:

1
1. That the triple [C7, A;, B;] is a minimal

1 -
realization of the transfer function C (Iz—Al) 1 B1 H

2. That the pair [C, [ g %] ] is observable;

A O]

0 D 1Ls non-

3. That the coefficient matrix [
derogatory, i.e. that the characteristic and minimal poly-

nomials are equal;

and 4. That the characteristic polynomial of the matrix

D is brown.

Assumptions 1 and 2 above are made with no loss
of generality in the ability to construct models of the sort
considered. The assumption 3 (also referred to as the
assumption that the system is cyclic) entails some loss of
generality, but includes a wide enough class of systems to
be useful in practice. Removal of assumption 3 forces the use
of more complicated canonical forms, and requires knowledge of
certain "structural indices" associated with the system being

modelled. While in principle these indices may be determined




from the available data, the tests involved require matrix
rank calculations. As a result, they are for practical
purposes unuseable in a situation of short, noisy data records.

A related issue is that of the determination of

the dimension of the state vector in the above model. In
principle, again, the system dimension may be determined
(J; estimated in a statistical manner) on the basis of rank
tests on the available data. In practice, with imperfect
measurements, the system order must in effect be guessed;
at any rate, it is assumed that at least a condidate for the
dimension of the model is available, Further discussion of this
practical point is given in Section B of Chapter IV above.
For the éake of reference, it is assumed that the
state dimension is N , that the output dimension is p ,
that the input dimension is m , and that dimension of the

drift matrix is d X 4 « We also adopt the notation defined

by

For completeness, we outline the basic derivation of the
parameter estimation equations. The basic techniques are quite

similar to those of the references [16] [17] and [19], although
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certain complications arise through our use of the exogenous

drift term in the model.

With the system equations written as

X1 = A¥ T By, v = Cxg

one may obtain by iterating the system equations the relation

where
yk -‘ uk
;k = s PlIk = I
l yk+n-—-l ) L uk+n_1\
1’ C ] ) -]
M = CA and R* = CB
[CAH'1 L cA™ 2. cB 0
Next,

select a processing matrix

P with the property that




>

is an invertible matrix. With the assumption that the system
model is cyclic, and that the system is observable, it follows

that defining the n x nm dimensional matrix P by

c(,' 0 E a‘
! .
0 a
P = 0 .
0]
LO o A

results in invertible matrix T for almost all choices of fhe
m—-dimensional vector g .

In effect, this replaces the given observed (vector)
outputs by a single linear combination (with coefficients defined
by o ) of the outputs. The assertion about the invertibility
of T is simply that the cyclic observable system is observable
from almost all linear combinations of outputs. It may be noted
that some choices of ¢ may produce better conditioned matrices
in the subsequent calculations than other choices, although
there seems to be no way to determine an a-priori optimal choice

Of O e
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I

With any choice of processing matrix P ; as long as
T =PM is non—Singular, the equations above may be manipulated

to yield

Py, 4y = AP Py, + [PR - Ap P R ] u, R

where Ap = TAT_l . With obvious notation, the above may
be written as
P T My R Yy
u .

k

It also follows that with a partition of the matrix Rp in the

form

the matrix TB may be recovered by

The relation

Py = [A
Viep ~ L D




involves only the (unknown) system parameters, and the (observed)
values of the inputs and outputs,'and may be used to determine
the system parameters.

One should note that solving the above equations for
Ap , Rp » and solving the analogous equation to determine the
output matrix C , (Assuming, as turns out to be true; that
the rank of the resulting coefficient matrix allows this) in
effect produces the realization triple [:CT-'1 s TAT-"1 ’ TB] 5
that is, it produces one of the equivalent realizations of the
input-output relation defined by thg model.

In the interest of simplifying computation as much
as possible, it if of course desirable that the above system
of equations involve as few unknown parameters as possible.
Since Ap is an n x n matrix, and Rp is of dimension

n X men , as many as nz(m+1) parameters might be involved.

In fact, with the choice of P = Sq , we have

and a direct calculation shows that
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0 1 0
0O 0 1
A = 0
P
0 0
Lpl n J

where the characteristic polynomial of A is given by

n n i-1
pA(x) =N = T p. A .
. i
i=1

A further direct calculation shows that

So that the estimation equations reduce to the system

y () =[p  r] v_(K)

u(k) .

K '
for the n(m+l) unknown parameters in p and r

Writing the above equation for (at least) n(m+l)
successive values of the time parameter k gives a system

of equations which we symbolically write as
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[ Dpata v Data | P

Further manipulations (see [19] for example) lead to a similar
system of equations (with the same coefficient matrix) for
the entries in the output matrix CT .

To this point, the formal manipulations leading to
the estimation equations are the same as employed in.[16];
[17] and [19]. These references rely on the assumption of
controllability of the model to obtain the crucial result that

the coefficient matrix
[Datay Datau]

has (almost surely) rank n(m+l) . 1In the present situation,

the fact that almost all g~vectors are cyclic vectors for the
matrix D , combined with the controllability assumption on the
"non~exogenous" block of the model allows one to extend the argument
in appendix A.2 of reference [16] to conclude that the coeffi~

cient matrix again (almost surely) has full rank.

-171-




While in the noise-free case it suffices to consider
data lengths of only n(m+l) , in the actual implementation
of the algorithm much more numerical stability results from
using longer data strings and least squares soiuﬁions for the
resulting system of equations. Essentially the situation is
that although almost all data segments provide a full rank
coefficient matrix, some data segments may (and do in practice)
produce ill~conditioned coefficient arrays.

We note that the above algorithm in effect identifies
the dynamics of the drift along with the forced component of
the model. It neither utilizes the fact that the characteristics
of the exogenous term are assumed known a-priori, nor does the
method enforce (or check) the supposition that the exogenous
terms are "decoupled" from the inputs. In the case of
(artificially generated) noise free data, these characteristics
automatically appear in the identified model. Iﬁ the case
of sparse or noisy data, however, there is the possibility that
this additional information relating to the structure of the
model may be utilized.

One modification which has been made to the above
algorithm is to introduce the fact that the characteristic
polynomial corresponding to the exogenous terms is assumed
to be supplied by the user of the algorithm. If this is the

case, then not all of the coefficients of the minimal




(=characteristic) polynomial of the full matrix A are in-
dependent. In fact if PA(x) , pa(X)v and pd(x) denote
the characteristic polynimials of the matrices A ,4Al y

and D respectively, we have that
p,(x) =p, (a) py(a) .

Writing out the above in terms of the polynomial

coefficients gives a relation of the form
p=b+1L a

where p is a vector constructed from the coefficients of the

characteristic polynomial of A , a thé same for A, , and

the vector b and matrix L are determined from the char-
acteristic polynomial of D . Substituion of the above

into the estimation equation gives

[Data *L Data ] a
vy u

= [\J-Datay'b] T

The above reduces the number of unknown parameters to

(n~q) + men , and so reduces the computational burden of the
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algorithm, Using the observation that postmultiplication

of Datay by L effectively removes the exogenous component
from the output data, one may check that (almost sureiy) the
modified coefficient matrix has full rank. The modified
estimation equations may then be solved for the coefficients
of pa(x) , the characteristic polynomial pA(x) may be
computed according to the above, and the calculation of the
input matrix TB proceeds as before.

While the above modification of the basic algorithm
should serve to improve the numerical conditioning of the
computations, there is still no guarantee that the estimates
satisfy the decoupling condition implicit in the original
system model. For that matter, we have yet to outline a
procedure by which the decoupling may be verified after the
computations have been made, even if the constraint is not
incorporated in the original algorithm,

It appears necessary to have a computation of the
characteristic polynomial pa(x) corresponding to the driven
components of the state in order to perform the decoupling
computations.

In order to verify the decoupling conditions, one
must obtain, in effect, a basis for the state space with
respect to which the coefficient matrix will appear in the

required block diagonal form. It is useful to keep in mind




that it must be possible to carry out the computations required
entirely on the basis of the available input-output record; so
that the required basis must in effect be implicitly rather than
explicitly constructed. Finally; recall that it has been shown
above that the characteristic polynomials pa(x) and pd(x)
are computable in terms of the available data under the
assumptions of the model.

On the assumption that pa(x) and pd(x) are
known (i.e. have been determined in a previous preliminary
calculation) a suitable basis may be determined as follows.

From the assumption that the coefficient matrix is
non-derogatory, it follows that the monic polynomials pa(x)
and pd(x) are relatively prime; and hence that there exist

polynomials r(A) and s()A) such that

r(A) py(d) +s(a) p(A) =1 .

The required polynomials are‘computable from the Euclidean
algorithm, or by direct solution of the resulting system
of linear equations.

A standard argument in the theory of matrix

canonical forms shows that the matrices

r(A) p,(a)
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and s(A) Pa(A)

represent projection operators onto the complementary subspaces
corresponding to the forced (i.e. Al block) aﬁd drift

(i.e. D block) portions of the state space. In order to -
construct the required form, we construct a basis in the

following way.

Define the vector ¢ by

c = (a'C)

The basis used is implicitly dependent on the choice of the
"selector coefficient" vector g . We construct (candidates

for) basis vectors in the dual of the state space by

w, = y(A') py(a)e

ln—q—l

o= v(A) pya’) A ¢

un—q+1 = s(A') pa(Al)c

19-1

u = s(A') pa(A') A c .




That the above actually are linearly independent follows from

and

2

the observation that {u,...u_ } and
1 n-q
{u

n~q+1"'un} lie in mutually disjoint subspaces,
the fact that A is assumed non-derogatory implies
that(for almost all choices of o ) that

' T 1 '
v A) pd(A Je and s(A ) pd(A Je are both

1
cyclic vectors for A .

With the above definition of the basis vectors, an

explicit calculation of the matrix representing A with respect

to the dual of the constructed basis shows that the matrix is

L N

which is in the desired black diagonal form,

In order to incorporate or check the decoupling

constraint, it is necessary to determine the matrix representing
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1

the change of basis from the basis used in the original
estimation algorithm to the block diagonal basis constructed
above. This can be determined by recalling that the matrix

T such that

while the matrix w producing the block diagonal form




can be written as

[, "
c p(A)
e p(A) A

T e —q—1
T = c p(A) A?e

1
c 0(A)

c'G(A) e A

.
.

’ S
co(a) ATt | ,

where p(A) = r(A) pd(A) , and o(A) = s(A) pa(A) .

By use of the Caley-~Hamilton theorem, the matrix

polynomials in ™ may be reduced to combinations of the

first n - 1 powers of the matrix A . Defining the scalars

p(i) and 0(2) by |
n-1 . . .
by p(l.)AJ = p(a) * AT (mod P,(A))
j=o Y
n-1 . . .
5 c(f) A3 = o(a) A* (mod P, (4))
j=o0 J

we see that with Q defined by
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- -
(1) (1)
PO .. n-1
(n-q) (n~-q)
Po . v n-1
0 =
(1) (1)
°% v On-1
(a) (@)
P00 e T

we have

Note that Q_l exists, since Q effects a change
of basis.

From the original model formulation, we see that the
condition that the exogenous drift subspace be decoupled from
the inputs translates simply into the condition that the last
q rows of the matrix mnB should vanish. Using the above

formula for 1w , we get the condition

1
wi OTB

]
=
.
It

l,...q
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with w; defined as a row vector with 1 in position
n~q+ i, zeroes elsewhere.

The above result may be used in two ways. The
first is as a check that the exogenous subspace ig decoaplea
after a computation has been performed. Since the estimatio?

algorithm described above produces (in the noise free case)

the matrices
ATt
TB

CT

the results do not display the decoupling. To check this,
one need only compute Q as described above, and form Q
timesthe (estimated) matrix TB . For consistency with the
model assumptions, this should return zeroes in the last ¢
rows. In the practical case where inaccurate data has been
processed, and in which one does not expect an exact model
fit in any case, the last q rows of the result should be
"relatively smalll'.

A second use for this result is to incorporate the
decoupling constraint in a "two stage" estimation algorithm.
As seen from the above; in the noise-free case Q may be

calculated from the available data. In the case of inaccurate
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data, one may still calculate an estimated value for Q ,
or a range of values consistent with the available data.

The condition
t
L QTB = 0

may be combined with the formula for TB , i.e.

TB =R + A R Fouee + AT R
n p n-1 P 1

where, recall, in general

Hence, we have




! -1 n~1 =1 _
wilOR 404 07TOR _,+...+0A 7T QTTOR ] = 0

which reduces to the condition

N|

where q is the column vector consisting of the last ¢

entries of

The above system of equations (g*m equations in all)
represents the decoupling constraint referred to the coordinate
system of the original estimation algorithm; and further;
expressed as a linear constraint on the intermediate parameter
vector r involved in the algorithm. If we represent the

above as a system of linear equations of the form
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Then the original estimation equations

[Data _* L Data ] a

= ~Dat b
Ly a_ ]

L

may be augmented to give the estimation equations incorporating

the decoupling constraint

Data « L Data | m a7 [ y - Data_ * b
y u y

! 0

v ==

Ol !

1 r

v - J b O p= °
qm J

There seems to be some numerical evidence to suggest
that in the original estimation algorithm, the computation of
the characteristic polynomial is more stable with regard to
data errors than is the calculation of the input matrix TB .
This is probably the case because calculation of TB essentially
involves powers of the estimated TAT'—1 matrix, compounding

errors in A with those in the parameter vector r . If this




is indeed the case, then there is reason to believe that the

two stage algorithm suggested, consisting of a calculation of

Q , followed by a re-~calculation of TAT“'1 and TB based on

the augmented system above,'will prove numerically more stable. |
The discussion above omits most of the detailed
calculations involved in the actual use of the algorithms
proposed. It is intended; however, to provide the reader
with enough information to understand the basic nature of the
method. Such understanding is probably essential in order to gain
a reasonable ability to make effective use of the algorithm with
the inevitable inaccuracies of real data.
The three basic algorithms outlined above (the

"straight estimation", the estimation incorporating a user-

supplied exogenous drift polynomial, and the "two stage"
algorithm incorporating the decoupling constraint) have been
implemented in the APL programming 1anguage; and are listed
for reference in the appendix as ESTIMATE, ESTIMATEA, and
ESTIMATEB. ESTIMATEA has been translated into FORTRAN

(also listed in the Appendix); and sample experiments using

ESTIMATEA have been run using real data. (See below).
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APPENDIX C: Remarks on Long-Term Sequential Estimation

As mentioned above, the structure of the estimation
algorithm for the determination of both the fertility par-
ameters and the economic mobility in such that orthogonal
components are returned by the computer output. That is,

if we represent the data matrix M in the form

(which includes both estimation algorithms), then the result
of the computations is to essentially select a basis with
respect to which both {ai} and {di} are orthogonal sets.

When the process of sequential estimation described
in Chapter II is carried out, processing the data beginning
at year T essentially involves the orthogonalization of the
functions {a,(T+t)} on the interval O<t<L . Here L is
the estimation data length. As a result, the computed basis
vectors vary with the starting timé T .

Strictly speaking, the results of the computations
for various starting times T ought to be referred to a
common (stationary) basis for comparison. As a practical
matter, however, with smooth time variation in the {ai(t)}

this effect of the "skewing!" of the coordinate system is
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slow, and largely swamped out by computational and model
errors. It is only in the case where a loné (relative to
the estimation length 1. ) run of data is available that
this effect becomes significant. In such a case the programs

should be modified accordingly.

-187-




APPENDIX D: Interim Report

The final report above has been written on
the assumption that readers are familiar with the contents-
of the interim report [3]. The final report makes numerous
references to and use of results and methodology presented
in [3].

In order to make the final report essentially

self contained, we include here a copy of the interim report.




An Interim Report to the Ministry of State
for Science and Technology

on

THE QUEEN'S MATHEMATICS DEPARTMENT
POPULATION MODEL

by
J. Davis and J. Verner
Queen's University, Kingston, Ontario
Queen's Mathematical Preprints No. 1974-8

April 15, 1974
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Abstract

The Queen's Mathematics Department population.
model is a dynamic model for simulating the evolution of
a population distribution as a function of age and
income level.

The basic structure of the model is such that
birth-rates may be generated within the model as endo-
genous variables. This allows the inclusion of feedback
effects from the population distribution to birth and
immigration rates, and so provides a capability for
simulations valid over longer time intervals than are
possible with exogenous-birth and immigration rate
variables.,

The model has been constructed with two main
issues in view. The first is that of compatability of
this model with other models with which it might be
combined. This requirement dictates a modular structure
described in this report. The second issue is the prob-
lem of parameter estimation in the model. The model has
been formulated in such a way that estimation is made
possible.

Effective numerical algorithms for these est-
imations based on available data formats are also re-

ported.
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A description of work that remains to be done in
order to complete development of the model is also

included.
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I Introduction

Models of population growth form an essential
part of any attempt at large scale socio-economic
modelling. The age and economic level structure of
the population has a direct bearing on various govern-
ment service requirements ranging from elementary
schools to pension plans, as well as the economic base
available to support such programs. For this reason,
it is essential that population models capable of sim-
ulating behaviour over a reasonable length of time be
investigated.

Traditional demographic methods project pop-
ulation estimates forward in time by means of an
aggregation procedure, followed by a linear extra-
polation procedure based essentially on a Markov-chain
type of model. Such methods are reasonably accurate
over the relatively short term; however, the model
structure is such that the fertility curve (the age-
specific distribution of the birth-rates) is treated as
an "exogenous variable" which must be specified for
each run. Some attempts (the so-called "cohort
method") have been made to include in the model the
observed fact that birth-rates do vary over time, but
the problem of extrapolation birth-rates forward in

time in order to increase the length of time that model
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results are valid remains.

It is clear that many factors affect birth-rates:
economic conditions, perceptions of future economic
conditions, ecological concerns, a host of other
factors affect birth~rates to a greater or lesser
effect. It is also clear that present population
structure affects in turn the economic climate, and
the general environment. The present population is in
turn the result of past birth-rates (and immigration).

The conclusion of the above observations is that
it is impossible to decouple the dynamics of the birth-
rates from those of the population structure without
compromising the long term validity of the model sim-
ulation. In effect, there exists a feedback path from
population structure to birth-rates which may not be
ignored over the long term. (This does not imply that
such decoupling, based on assumptions that certain
factors "vary slowly with time", detracts from the
usefulness of models intended for use over relatively
short time periods).

The model discussed in this report represents an
approach to the problem of including the dynamic feed-
back effect mentioned above in a simulation model.
More specifically, this report contains the results of

some work on what we regard as the basic structural
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elements and problems associated with models of this
sort,

The structure and "philosophy" of the model is
discussed more fully in Section 1II.

It was determined early in our investigation that
partial differential equations were an appropriate
component of the model - in fact, it is hard to con-
sider the effect of the "baby boom" without coming to
the conclusion that a wave equation occupies a central
position in a model of population distribution. In
work on any dynamical model it is necessary to deter-
mine numerical values for parameters occurring in the
model equations before any simulation may be carried
out. At worst, these parameters may have to be
guessed; obviously it is much more desirable that the
parameters be estimated from historical records of the
phenomenon being modelled, if possible. The latter
procedure provides an indirect means of assessing the
validity of the model.,

In the case of models governed by partial dif-
ferential equations this estimation problem is even
more severe, as it is often necessary to estimate not
just a finite set of parameters, but a function of one
or more independent variables. Aspects of this prob-

lem are reported in Section III and Appendix C.
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Once parameters and functions have been eétimated
from the available data, it is possible to simulate the
system on a digital computer. This, of course, involves
the solution of coupled systems of ordinary and partial
differential equations by numerical methods. It is
necessary to investigate the effects of the numerical
methods used on the accuracy of the results obtained,
in order to ensure that the behaviour of the model is
a result of the actual "dynamics" of the model itself,
and not the result of instability caused by inaccurate
numerical methods. The difficulty of this problem is
again increased by the fact that partial differential
equations are involved. The work in this area has been
checked by use of certain exact solutions to the gov-
erning equations (Appendix A) and is described in

Section V and Appendix B.

IT, Structure of the Model

It is helpful in describing the structure of the
model presented here to explain briefly the general
philosophy of "modelling" that the authors of this
report hold, and which has had a strong effect on the
structure adopted for the model discussed here.

In the first place, we feel that a main product

of any modelling and simulation effort should be
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insight into the behaviour of the phenomena being model -
led. Perhaps the worst fate that can befall any model
is that it be used to generate one set of trajectories
which are then canonized as '"the predictions" of the
model (or worse yet, of the computer used to generate
the output). Rather, the use of a model should itself
be a dynamic process. It is certain that better data
regarding the variables involved in a model will become
available in the future, and it is only prudent that this
data, if possible, be used to improve any "forecasts"
made using the model.

It is also rather likely that there are alter-

native opinions regarding the actual structure of some

sections of any given model. In this situation; it is
essential that simulations be run incorporating these
alternative opinions, rather than selecting one arbit-
rarily and incorporating it permanently into the model.
It is only by simulating each of the reasonable alter-
natives (a matter of judgement is involved here) that
any true insight into the behaviour of the syétem as a
whole can be gained; this includes an appreciation of
the range of results which might be expected under
reasonable alternative models.

These considerations suggest at least that a use-

ful model must have sufficient flexibility of structure
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to accommodate chgnges of the sort mgntioned above. 1In
order to build flexibility of this sort into a model, it
is necessary to identify a basic dynamical core around
which the model may be constructed.

The basic core of the model in this paper consists
of equations for the evolution of the population dist-
ribution, and for the evolution of the fertility éurve
over time.

As was mentioned in the previous section, it is
clear that economic conditions interact with the current
population distribution and other factors to produce
the current instantaneous birth-rate. It is also clear
that the exact nature of these interagtions is comp-—-
licated and probably poorly understoéd in total,
although some progress in this direction may be made by
various methods. On the other hand, tﬁe evolution of
the population distribution may be described (see the
following section) by a partial differential equation
of the conservation law type. Also, by looking at
birth-rate records, it is possible to argue that the
evolution of the fertility curve is also adequately
modelled by a relatively simple partial differential
equation. Furhter, the structure of these sections of
the model is independent of the details of economic and

other interactions which combine to affect birth-rates.
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These considerations have led us to the decision

to base the framework of the model on the dynamics of
the population distribution and of the feftility curve,
This leads to an overall model structure which may be

represented in the "block diagram" form illustrated in
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This block diagram includes a section labelled

economic dynamics. It is judged thatlthe exact form of
this section will be the subject of some debate, and
that repeated simulations with varying socio-economic
models will be required. It is expected that models
with a relatively long time horizon and moderately high
ievel of aggregation will be found most appropriate. In
particular, models of the "Candide" type with high levels
of detail and relatively short (eg. ten year) time spans
are not felt to be appropriate. As work up to the time
of the writing of this report has been concentrated on
problems associated with core section of the model,

problems in this particular area require further study.

ITI. Derivation of Equations of Dynamic Core

The core of the model consists of two partial dif-
ferential equations: one for the evolution of the pop-
ulation density as a function of time, age, and income
level, and one for the evolution of the fertility curve
(i.e. the curve of age and income specific birth-rates).
These two equations are coupled in a non-linear fashion,
although the non-linearity appears only in the boundary
conditions for the population equation. This fact is
of considerable use in connection with the estimation

\
problems discussed in the following section, and makes
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the derivations presented below simpler than might other-

wise be the case.

A, Population Distribution Evolution

The model presented below is formulated as a
basically deterministic model, and processes are model-
ied as occurring continuously in time on a macroscopic
level, even though on a microscopic level the events
may occur at discrete intervals of time. 1In this con-
nection, a first step is to recognize that an averaging
process is taking place whenever what are essentially
discrete events are "smeared out" and ﬁodelled cont~-
inuously in time. This process is illustrated by the
use of death~rates in population models, decay rates in
radioactive decay problems, and, in the derivation
below, of an economic mobility 1 . In these cases,
the use of such rates essentially distinguishes between
deterministic and stochastic modelling approaches.

The equation governing the population distribution
may be derived readily from what are essentially count-
ing or bookkeeping methods. This is most easily demon-
strated by the derivation of a simple model of pop~-

ulation as a function of age x , neglecting

death~rates, immigration and any other variables. In

this case, the appropriate counting argument is
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essentially that the number of people at age x

at

time +t dis the same as the number of people at age

x - At at a time At wunits earlier: In terms of pop-

ulation density p , +this becomes

Ax Ax
X At a%
2 x + 3 At
[ plx,t)ax = i px,t-At)dx
Ax Ax
W o — - -
) >4 2 At

which for smooth densities p is essentially

fl

p(x,t) p(x-At,t-At)

i

or p(x,t) - p(x,t-At)

L,

Dividing the above by At and letting At - O

in the partial differential equation
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As is well known, the general form of solution to
the above is f = @(t-x) , with ¢ an arbitrary
function which must be evaluated from the boundary con-
ditions appropriate to the problem. The appropriate

boundary condition is that

p(x=0,t) = p(t)

where pg(t) is the birth-rate of time t . That this
is the appropriate boundary condition may be verified

by noting that this gives the solution

p(x,t) = B(t-x) 9

which says essentially that the number of people at age
x at time t dis the number of people born at time

t - x , i.e. x years before time t . This of
course is entirely evident from the assumptions made
above.

The model considered in this paper includes a
partial differential equation for the population density
p(x,s,t) as a function of the three variables age x |,
income s , and time t . As will be shown below in

Appendix A, it is unnecessary to specify at this point
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the units involved in the income scale s , that is,

whether s represents net income, disposable income,
or some other measure. This is so because the form of
the governing equation is invariant under a (non-
linear) change of income scale, so that the units
involved become an issue only during the processing of
data for estimation purposes. This fact is a pleasant
surprise which naturally arises out of the structure of
the model equations.

To derive an equation for the population density
on a realistic basis, it is necessary to account for
effects neglected in the simplified mpdel above, in

particular to introduce terms

i(x,s,t)

representing the immigration rate (as a function of age,

income level, and time), and the death-rate

r(x,s,t) .

It is also necessary to introduce a term which
accounts for the change of income level of various seg-

ments of the population over time. To accomplish this,
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we introduce an economic mobility function,

u(x,s,t) .

Even though income levels of individuals on a micro-
scopic scale undergo changes at discrete instants of
time, perhaps modelled by a Poisson process, on the
macroscopic scale of its influence on the income dist-
ribution we model the effect as one of a continuous
flow across income levels. With this effect in mind, a

term of the form

u(x,s,t) * At

has an interpretation as the fraction of people at in-
come level and age x crossing through level s in the
time interval from t to +t + At .

With the above definition of terms, it is easy to
use a "‘counting argument" entirely similar to the one
above to arrive at an equation representing the evol«

ution of population density. The result is

s - =3 (n(x,s,t)p) - r(x,s,t)p + i(x,s,t)
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Just as in the above derivation, it can be seen

that the appropriate boundary condition for this

equation is again

p(x=0) = birth-rate.

There is a technical problem associated with this boun-
dary condition, since taken literally it demands the
assignment of an income level to babies at birth. In
fact, the model as formulated above is capable of prop-
agating income level migration through childhood. It

is clear that such a procedure makes little sense;
however, the problem may be avoided rather easily by

the following device. The income distribution at x = 0
may be set equal to that at the age of entry into the
labour market. If the economic mobility is equal to zero
for values of age x less than the labour market entry
agé, then the income distribution will remain constant
for ages less fhan entry at the values of the entry
distribution. Income distribution data generated by sim-
ulation runs may then be considered only for ages

greater than an age of entry into the labour market, and
no further modification of the model is required. The
income distribution at entry age must be generated as

part of the economic section of the model, and this

~206~




effect comprises one of the feedback paths from the
economic to population distribution sector shown on
Figure 1.

Other effects of this sort, for example, an effect
of p on the economic mobility y , are implicitly
contained in the time dependence of . As will be
seen below in the section dealing with estimation prob-
lems associated with the model, there are substantial
theoretical and practical benefits which follow from
modelling the income migration process as above. In
particular, it is then possible to devise numerical
methods to estimate from observed population dist-

tribution data,

B. Fertility Curve Dynamics

Although the observation that socio-economic
conditions, social attitudes, and so on, exert an effect
on birth-rates is a common one, there seems to have been
little effort made to quantify these effects in a dyn-
amic model. Undoubtedly, a major reason for this is
that it appears impossible to "derive" such a set of
relations in the sense of the derivation outlined above
for the population density dynamics.

For this reason, we have decided to approach this

-207-




problem as one in system identification. That is, we

attempt to formulate the problem in such a way that the
problem is reduced to that of estimating a dynamical
relationship between a relatively small number of
variables. This in itself is a major reduction, since
in principle a fertility curve is an element requiring
an infinite number of numbers for its specification.

This first reduction may be obtained by examining
typical historical records of the behaviour of fertility
curves over time (See Figure 2). A first observation is
that the curves are all of roughly the same shape. An
examination of their differences shows that their peaks
slide from age to age over time, and that the area under
the curve, representing the total birth-rates to be
expected from a uniformly distributed population, varies
over time,

A simple partial differential equation capable of
reproducing this observed behaviour has been adopted as

the basis for the fertility curve dynamics. This is

o
Fh

= -a(t) & (d=)f) - b(e)E .

o
c+

The first term in this equation produces the

effect of the shifting peak, while integrating the
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equation with respect to x shows that b(t) dis the
percentage change of the area under the fertility curve

per unit time. An equivalent interpretation is that it

represents the percentage rate of change of average

family size.

The justification of the representation of the
fertility curve dynamics by the above equation may be
carried on in several ways. In the first place, the
interpretation given b(t) guarantees the presence of
the term b(t)f in virtually any such equation. The
appropriateness of the term representing the "shifts"
may be supported on the basis of a time scale argu-
ment, combined with the fact that the model fits the
observed data reasonably well. The "shifts" occur in
the data on a time scale considerably faster than that
of the dynamics of the population section of the model.
In fact, the shifts appear correlated with variations
in the economic climate, fecessions, rising and fallipg
unemployment, and the like. Since these effects are
expected to be introduced into the model most likely
on the basis of "standard" econometric and business
cycle models, it is anticipated that it will be possible
to include the function a(t) and its dynamics in this

.section of the model. The dynamics of a(t) are to be
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identified by means of either the usual econometric
model identificatio£ techniques, or more recent work in
the area of control theory. Since this identifiéation
problem presupposes‘knowledge of the term d(x) , work
in this area is dependent on solving the problem of est-
imating d(x) , and applying the algorithm for this
purpose is described in the following section.

Comments similar to the above also apply to the
problem of determining the dynamics governing the term
b(t) , although it is suspected that this will be even
more difficult than the above process. This is so
because b(t) is dominated more by social attitudes,
education, and other effects much less easy to quantify
than economic ones. It is felt that this area represents
an example of the need for alternative sub~models and
repeated simulations discussed above in Section II in
gonnection with the overall structure of the model.
| While the above discussion has been carried
through as though the fertility curve were independent
of income, an entirely similar derivation is possible on

the basis of an income dependent fertility curve. If

one also allows the possibility that the economic inter-
actions occur unevenly across income levels, then the

appropriate equation is
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= %; (a(x,s,t)f) - b(s,t)f .

(o4 (o4
o |

Because of the meaning of a fertility curve (or
surface, if s is included as an independent variable)
as an age (and income) specific birth-rate, the formula

for the total birth-rate is simply

b(t) = [ £(x,s,t) p(x,s,t)dxds .

No mention has been made in the above derivations
of any geographical aspect of the problem. There are,
however, some restrictions implicit in the derivations of
the model equations. It is clear that certain of the
quantitites involved in the above equations vary with
geographical locality. From this, it is obvious that
the model must be applied separately over geographical
areas between which the relevant quantities wvary. To
obtain an overall model, then, internal migrations must
then be included in the immigration rates of the models
for each geographical region.

There is also implicit in the model derivation as
assumption of a sufficiently large sample population, so
that the modelling of the immigration, death, birth, and

economic migration processes as continuous is valid.
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IVe Model Estimation Methods

The dynamical equations governing the core section
of the model derived above involve various auxiliary
functions, namely: death and immigration rates, an
economic mobility function u(x,s,t) , and functions
a(t) , b(t) and d(x) determining the evolution of
the fertility curve. Before it is pqssible to produce
any simulation runs with the model, it is necessary to
determine suitable estimates of these functions.

Generally speaking, this problem of parameter and
function estimation is one of the most difficult ones
involved in the construction of any model. Consideration
of the conventional techniques of econometric modelling
makes obvious the amount of effort which is expended in
this area. 1In fact, with a certain amount of injustice
one might view much econometric modelling as consisting
of the development of schemes for the recursive estim-
ation of parameters for short term (often linear) extra-
polation models. This view ignores the effort involved
in determinﬁng the extrapolation model whose parameters
are to be estimated, but the fact remains that there
continues to be much work on the development of
regression - estimation methods in this area.

At practically the opposite end of this problem

stand models of the sort proposed by Forrester and his
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associates. One of the most consistent criticisms
levelled at Forrester's World and Urban Dynamics models
is that practically no attempt has been made to estimate
the parameters and functions involved in the models in
any "realistic" fashion.

This apparent gulf between the Forrester models
and conventional econometric models is, in our view, a
large contributing factor to the hostilevreaction For-
rester's models have received in some quarters, It is
also a gulf that is not easily overcome by philosophic
discussions about differences of purpose between the two
approaches.

In the case of the present model, it happens that
considerable progress can be made in estimating the
functions that are involved in the model of the core
dynamics. Of course, this is not entirely unexpected,
since an effort has been made to formulate the dynamics
of the core in terms of variables which may be readily.
measured. Also, our definition of wgat constitutes the
core dynamics of the model virtually assures that it
must be possible to produce useful quantitative est-
imates of the functions involved,

The functions r(s,s,t) and i(x,s,t) in the pop-
ulation model are just death and immigration rates, so

there is no problem in obtaining historical records of
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these. Similarly, the function b(t) may be readily®
determined on the basis of its interpretation in terms
of area under the fertility curve.

This leaves just the terms ﬁ(x,s;t) in the pop-
ulation equation and a(t) d(x) in the fertility
equation to be determined. It can be seen that each
term enters its equation in an analogous way, so that an
estimation method can be derived which can be used to
estimate both the economic mobility u(x,s,t) and the
term a(t) d(x) din the fertility equation.

It is shown in Appendix A that the form of the
partial differential equations is such that an integrat-
ing factor may be introduced to reduce the problem to
that of estimating wu(x,s,t) and a(t) d(x) in the

equations

22 = -2 (u(x,s,t)P)
%-;- = -g—x(a(t)d(xm .

In the modified population equation, integrate

between the limits of s and infinity. There results
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here rn p ds has the interpretation of the number

of people at age x , income s , and time t
having an income greater than s . Solving this for

W gives

1 - D D ®
t = = - . — o — .
u(x,s,t) 5{¥;§;§5A (At = ) Is p(x,s,t)ds

=

This provides an estimate of |y wherever E(x,s,t) #0 .
Since p(x,s,t) # 0 except on the "tails of the dist-
ribution', +the above formula may be used to determine
{4  throughout the age and income brackets containing
the great bulk of the population. On the tails of
distribution (e.g., at very high income levels) the
interpretation of 11 makes it clear that Y must tend
to zero, so that the fact that the above formula is less
useful there is of little concern.

Carrying out exactly the same procedure with the

modified fertility curve results in
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Iz ?(x,t)dx .

This determines a(t) d(x) over those portions of the
age scale which f(x,t)# 0 . Again f tends to zero
only on the tails of the fertility distribution. Recall-
ing that the term a(t) d(x) was introduced to account
for changes in the age distribution of fertility we see
that intuitively a(t) d(x) reflects the effects of
shifts in "planned births" for the most part. Since
births arising in the extremes of the fertility dist-
ribution do not fall into that category, it is clear
that d(x) must approach zero at these extremes. Hence
it is again true that the fact that the formula derived
is less useful in regions where f is close to zero is
of small consequence.

Once u(x,s,t) and a(t) d(x) have been est-
imated, further estimation problems remain. One problem
is that of determining numerically the values of a(t)
alone for use in identifying the interactions between
the economic sector and the fertility curve. A second
related problem is that of isolating the time dependence
in u(x,s,t) in such a way that a similar interaction

analysis may be carried out. These problems are of a
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somewhat more technical nature, so our work on them is
reported in Appendix C below.

A further technical complication arises in con-
nection with practical use of the estimation formulas
above. This arises from the fact that the actual pop-
ulation density data is not available; rather figures
are available for, say, the number of persons between
ages 25 and 29 with income between eight and ten thou-

sand dollars. This amounts to the data

10, 000 29
p(x,s,t) dx ds

8,000 25

at a fixed value of t .

We have expended a moderate amount of effort to
develop accurate numerical algorithms with which
u(x,s,t) and a(t) d(x) may be determined from aggreg-
ated data of the sort mentioned above. The method
devised uses somewhat delicate application of numerical
spline techniques. This work is also described in

Appendix C.
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V. Simulation Trial Examples

Simulation runs have been made in order to test
the algorithm for numerical solution of the coupled
system of ordinary and partial differential equations
which constitute the model

Since there is a rather large amount of numerical
data associated with each simulation run, the results
are produced by the simulation program in a visual as
well as numerical format. This is accomplished through
a plotting routine which constructs perspective drawings
of the three dimensional surfaces generated by a sim-
ulation run.

The (steady state) age distribution which results
from a constant birth-rate and an absence of immigration
is illustrated in Figure 2. The age distribution which
results in this case is of course determined solely by
the death-rate.

The wave-like nature of the solutions of the gov-
erning equations may be clearly observed in a simulation
which creates a rise in the fertility curce, starting
from an initial condition of the steady state illust-
rated in Figure 3. Since the dynamics governing a(t)
and b(t) have not yet been determined, a simulation
has been carried out by introducing b(t) as an exo-

genous variable; a(t) was determined through the
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dynamic equation

The functions b(t) and a(t) have been determined so

that [o a(t) db = [ b(t) d6 = 0 , so that the fert-

ility curve returns to its original value. This
produces the response to Figure 4 in the fertility
curve, which corresponds to a "baby boom" of duration
approximately five years. The effect of this rise in
the fertility curve on the age distribution is il-~
lustrated in Figure .

The varying total birth-rate may be clearly seen
at the back edge of the figure; the secondary rise in
the birth~-rate which occurs as the original "offspring"
of the boom pass through the childbearing ages is
plainly visible. It is also easy to see the original
boom passing as a wave through the age structure,

Both the wave nature of the solutions and the
birth-rate variations which occur due to a non-
uniform age distribution are illustrated in Figure 5.
This output results from an initial age distribution
which is significantly different from the steady-state

distribution. Such a distribution might be viewed as
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the result of variations in fertility and immigration
which have occurred previous to the time interval covered
by the simulation. In this simulation the fertility
curve has been held constant, so that the birth-rate
variations which occur are due to the varying number of

people in the child-bearing age brackets.

VI, Future Work

As of the time of writing of this report, the model
has progressed to the point that the basic structure has
been established, and the crucial numerical problems as-
sociated with the model are well in hand. In particular,
numerical methods have been devised for the simultaneous
integration of the partial differential equations in-~
volved in the model core dynamics and the accuracy of
the method has been tested by means of comparison with
explicit special case solutions of the model equations
obtained by analytical means. Also, a considerable
amount of effort has been expended on the problem of
devising efficient numerical procedures for extracting
estimates of the functional coefficients of the partial
differential equations from date available in the form
of a histogram. This algorithm has been tested again

by use of explicit solutions of the governing equations,
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and has produced accurate results in the tests.

With these two obstacles removed, the next step
in the development of the model is to begin the process
of modelling the dynamics of the intéraction between the
parameters occurring in the core secfion of the model
and various economic variables. The first step in this
procedure is to apply the estimation algorithms to the
actual historical data in order to deéetermine the time
history of a{t) , b(t) and the variations associated
with the economic mobility u .« Once these functions

have been extracted from the data, various approaches to

establishing the interaction can be started.

N

The problem of determining the. interaction will
first be treated by conventional time-series techniques,
that is, correlation analysis based on the assumption of
a linear dynamical system of finite dimension as the
dynamical intermediary between the economic variables
and those in the model core. More recent methods as~
sociated with input-output analysis of control systems
and identification from operating records will also be
tried if the time-series methods are found unsuitable.
The relative effectiveness of these two techniques will
probably depend on the "actual' location of the stoch-
astic noise element in the real system, length of the

operating records, and other factors which are difficult
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to predict in advance. Non-linear regression methods and
techniques of non-linear system identification are held
in reserve in case the above methods prove incapable of
modelling the interactions.

After a suitable dynamic model of the interaction
effects has been determined, full scale model sim-
ulations may begin., This requires models to generate
economic variables as mentioned above in Section II, and
it is currently planned to adapt standard economic
models to this purpose. It is als§ expected that in

this context stochastic as well as deterministic sim-

ulations will be carried out. This is desirable for two
reasons: first, it is a means of assessing the sen-
sitivity of the overall model; second, it is clearly
more realistic to model economic behaviour to include
random fluctuations if possible.

Finally, we mention that there is a considerable
amount of additional work which should be carried out
in connection with an investigation of this model. 1In
this area, we mention here only two possibilities which
might be considered. The first is described here only
because of its possible relevance to the problem of

interaction identification discussed above.
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The model as it currently exists has been form-
ulated on a "macroscopic! 1evel; that is, the processes
which transfer people from one level to another as well
as birth and death processes have been modelled as
occurring continuously in time. On the microscopic
level of an individual, these processes obviously occur
at discrete instants of time and are most suitably
modelled as a stochastic process. Such modelling will
involve the determination of the probability of the
occurances of the various "elementagy events!" which
occur on the microscopic level. In such a model, the
various interaction effects which are to be estimated din
the continuous model appear in the form of dependence of
transition probabilities on the current state of the
other variables involved in the model. On this level,
there is then the possibility of estimating these trans-
ition probabilities and their dependence on tﬁe other
model variables, and thus modelling the interaction
effects directly. Close examination 6f the resulting
stochastic process model should then shed light on the
form of the interaction in the continuous model form-
vlation of the problem.

A second area where very useful work may be done
is in the area of the construction of highly effecient

numerical methods for the solution of the governing
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equations. In our work so far relatively standard
numerical techniques have been used for numerical integ-
ration of the evolution eduations. It may be quite
possible to make use of the special forms of the
equations to construct more efficient methods. Some
preliminary investigation indicates that methods bgsed
on Lie algebraic techniques hold promise in this regard.
Tt will be especially important to the usefulness of the
final simulation programs that program execution time be
kept as low as possible in order that the required number
of repeated simulations may be carried out at a reason-

able cost.

Appendix A: Analytical Properties of the
Governing Equations

In this Appendix we report some of the analytical
properties of the partial differential equations govern-
ing the dynamics of the population distribution and the
fertility curve. The study of these analytical prop=
erties in itself provides considerable insight into the
problems of population dynamics, as well as providing
material essential for the testing of the accuracy of
numerical methods developed for use in the model.

It was mentioned in Section III that the population

distribution equation enjoys an invariance property
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which makes it unnecessary to Speéify in the model form-

ulation the exact measure of income represented by the
variable s . .

This can be readily demonstrated méthematically as
follows. ‘Suppose that instead of considering the dist-

ribution function p(x,s,t) as a function of the income

scale s , pgoverned by

d Sy 3 d
2(x5,t) = - Llx,s,t) - = (ulx,s,)p(x,5,t))
+ i(x,s,t) - r(x,s,t) p(x,s,t)

we ask for the evolution of the distribution expressed
as a-‘function of the income measure o . Here the new

scale ¢ is related to the scale s according to

o = op(s)

where ¢ is a monotone, smooth (non-linear) function
otherwise arbitrary.

By the Chain Rule,

Y
Q

OII))
[}
QO
0] .
[o24 e X
Q

I

' 3
o' (s) 33
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so that the evolution equation for p becomes

2 P50 (0),8) = - 2= p(x,07 (o), t)

- 0t (07H(0)) = (ulx,0t (o7 (o)), )"

(%07 (0),8))+ & = £ o0, (0),b)

The Jacobian rule shows that the population

density in terms of x , ¢ and t is given by

1 -1
p(x,0,t) = ——= p(x,0 (o0),t) .
’ o (6 (o))

Rearranging the previous equation to introduce P gives

°p _ _ 3B _ 3 N <) b oo

St Sx 3o (U,(X,O',t)p) 1 rp

. . ~1 AR ))
with {(x,0,t) = u(x,0 (o),t) * o' (p (o .
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i(§,®~1(c),t)
ro-1
v (p (o))

i(x,0,t) =

#(x,0,8) = rlx,0  (0),t) .

This identifies the transformation law of the economic
mobility, and shows the invariance of the governing
equation under such a change of scale.

While the coupled system consisting of the pop-
ulation anf fertility evolution equation is a non-
linear one, the non-~linear interaction occurs only in
the calculation of the instantaneous birth—rate (so
long as u , a(t) and b(t) are treated as exogoneous
variables). Since the birth-rate enters only as a
boundary condition, it is possible to get useful results
from explicit solutions of the equations.

Both the population and fertility equations fall
into the class of evolution equations governed by first
order partial differential equations. While the
equations in general have variable coefficients, they are
linear in the dependent variablé; hence, in principle,
the method of characteristics is applicable,

This observation does not dispose of the problem,

however. A principal reason for carrying out the invest-
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igation into the analytical properties of the equations
is to obtain if possible explicit solutions to the
equatioﬁs. By explicit solutions, we mean solutions
obtained in closed form analytically.

These solutions have been used to test the accuracy
of the numerical methods used both to integrate the evol-~
ution equations and to estimate the functional co-~
efficients of the equations u(x,s,t) and a(t)ed(x) .
In the absence of explicit solutions, only lengthy (and
expensive) trial runs with varying step sizes can be
employed to attempt to estimate accuracy; with explicit
solutions available, it is far easier to estimate the
step sizes required for a given level of numerical
accuracys

The above remarks pertain to evaluation of the
integration scheme; in the case of the estimation prob-
lem, the unavailability of explicit solutions would force
one to the use of the integration routine to generate the
data on which to test the estimation algorithm. 1In the
case of inaccurate results, it then becomes tedioﬁs fo
determine whether the inaccuracy arises from the est-
imation scheme, or from the numerically generated data.

It is this need for explicit solutions, at least in

particular cases, that has led to the work reported i !
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below. The method of characteristics in general prod-
uces a solution in imElicit form; it is essentially im-
possible to carry out the required function inversions
numerically with enough control on accuracy to make

such implicit solutions useful for our purposes.

Fertility Equation

An explicit solution to the fertility equation

may be obtained by the method of characteristics. For

£

o

= - %; (a(t)d(x)E) - b(t) £

o
o+

'jgb(t)dt
introduction of an integrating factor of e

reduces the problem to

Il

(a(t)a(x)E) .

o
e
e

Solution of the above by the method of characteristics

gives

= 1 -lv t
Bot) = iy # (07 ()] a(s)ax))

t
. d(h“l(h(x)-~ [ a(s)ds)) ,
0
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with h(x) - h(x ) = |[ 1 dx

and f(x) = F(x,0) .

Population Equation

As may be seen from the above example, explicit
solutions are generally very involved in form. For this
reason, explicit solutions of the population equation
will not be exhibited here. We remark that such sol-
utions may be found; the case in which the death-rate
varies linearly with age is one example of use in con-
nection with the estimation problem for y . (Results
from this example allow the removal of the death-rate
term from the governing equations by means of an inte-
grating factor.)

The use of.explicit solutions has some potential
use beyond evaluation of numerical methods. This is in
the area of decreasing the size and cutting down the
execution time for the simulation of the model. This
may become important in later phases of development of
the model, and will have an effect on the frequency of

use of the completed model.
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The key to such reduction of time expenditure is

the observation that an explicit solution reduces the

:

problem of evolution over an arbitrary time interval to

a single function evaluation. This is to be contrasted
with the repeated evaluations involved in a numerical
integration. Of course, the full benefit of this
discrepancy is available only if the interaction effects
are specified exogenously. In the case of the full
model, however, it seems likely that explicit solutions
.could be used together with extrapolation methods to
improve simulation execution time.

This leads naturally to the question of which
classes of coefficient functions tive rise to explicit
solution formulae. Of particular interest is the prob-
lem of explicit solutions to models in which the co-
efficient functions appear in "separable form" (see

Appendix B below), so that the equation has the form

N

B %g izl ni(t)vi(X,S)p - E(t) r(x,s) p

ks
ks

Progress in the direction of explicit solutions to
the above equation may be made by recourse to the theory
of Lie Algebras. In particular, if the Lie algebra gen-

erated by the partial differential operators on the
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right side of the above equation is solvable, then

(global) explicit expressions are poésible. Other con-
ditions on the Lie algebra lead to (local) results which

may prove useful.

Appendix B:

Numerical Methods for Partial and Ordinary Differential

Equations

In Section III of the report, the population and
fertility are dynamically modelled by a pair of partial

differential equations:

2k
I

S ,
- gﬁ- - 55 (u(x,8,8)5p) = r(x,s,t)p + i(x,s,t)

o
Hh

= — a(t) %; (d(x)f) - b(t)E .

(o4
o+

In Section IV, techniques for estimating the parameters
u(x,s,t) , a(t) , d(x) are discussed and there, it
is pointed out that full simulation of the overall model
requires dynamic modelling of these functions using

partial and/or ordinary differential equations.
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Since this appendix deals with aspects of the
actual simulation of the model, it is assumed that ord-
inary differential equations for a(t) and b(t) have
been obtained, estimated values of d(x) and @(x,s,t)
have been obtained by use of the estimation procedures
described elsewhere in this report,' and that initial
fertility and population distributions are known:
f(x,s,0) and p(x,s,o0) . Values of p(x,s,t) and
f(x,s,t) are required, and these are simulated using
numerical techniques. The techniques have been chosen
in order to be consistent with the conservation law
character of the governing equations, to attain a
reasonable accuracy in the simulated values subject to
restrictions on the size of data groupings which are
expected in currently available data, and to balance
these with economy of computation.

In the numerical simulation which has been carried
out up to the time of writing of this report, the income
level dependence of the population density has been sup-
pressed. As well as yielding computational efficiencies
during the development of the model, this procedure has
made the analysis of numerical problems arising in the
modelling considerably easier. The extension of the
numerical methods developed so far to include the income

Qariable s 1is expected to cause no significant dif-
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ficulty, as the problems which arise should parallel

those already encountered.

~Numerical Integration of the Fertility Equation

The fertility equation has been transformed by an

integration factor to

5 (x,8) = - a(t) L (d(=x)E(x,+))
where
t
f(x,t) = emrob(t)dt f(x,t) .

An approximation Fij to ?(ih,jk) is obtained using

—F,, -2, (d

Figrr = Fi5 ~ 2w 2504 0F 500 7% aFioa )

2
1 ka .
+ 557 L 4 (d; GF, g -dFy5)
ity
- d g (dF,-d; g F; 455)]

iy

and f(ih,jk) is estimated by Fij using numerical
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integration for the integration factor (see below). This

scheme is almost second order, and has two desirable
properties: For d(x) = d constant, it is numerically
stable provided that the step size ratio is chosen to

satisfy

Kk I 1
=< g
h = 3

Also this scheme has the property that it removes a
distortion of the fertility profile when the effect
causing the distortion is removed. This property is ex-
hibited in Figure 3.

The dynamical equations governing the variables
a(t) and b(t) must of course be integrated simult~
aneously with the partial differential equations. Num-
erical approximations are currently calculated using a .
modified Euler method over time steps of length Lk .

While this procedure may be easily replaced by a
more accurate process, this method was selected in view
of the decision to use simple routines initially as an
aid to algorithmic development, and later to replace
these by more sophisticated routines as dictated by
accuracy and economy in large simulations.

Since dynamic modelling of a(t) and b(t) has

not yet been carried out, the dynamics
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(0+1)% a(t) = b(t)

have been assumed in order to verify the integration

methods. In this case

joi]
~
d.
K
A
I

a(t) + hf(a(t))

a(t+) = a(t) + 2[£(a(s)) + £(alex))]

- - - .
where I b(t) b(t)
I a(t) a(t)
£ =
a(t) al(t)
al(t){ b(t) - a(t) - 2a1(t)
. i n _

describes the modified Fuler method.

Numerical Integration of the Population Equation

Initially only the age-~time dynamics of population

have been considered; hence the equation is

%% (x,t) = - %& (x,t) - r(x,t).p(x,t) .




To solve this numerically, we approximate p(x,t)

by P(x,t) where
P(x+h,t+h) = (1l-r(x,t)) P(x,t) .

The fertility is used to estimate the population birth-

rate

(0]

p(o,t+h) = [ p(x,t) £(x,t) dx ,
0

and this is approximated numerically by

100 h
P(o,t+h) = 5 P(x,t) F(x,t+5)
i=1

where F(x,t+§) is obtained from the numerical approx-
imations of the fertility curve.

The low accuracy method for simulating the pop¥
ulation is reasonably accurate for that section of the
profile where the death-rates are almost constant. It
is expected that improvements will be possible after
additional work. Improvements in the simple scheme
used for estimating P(o,x+h) would lead only to a

change in scale of values, but not their dynamics.
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In conclusion we point out that certain portions
of the model are particularly sensitive to errors - that
is small errorsAmay lead to very inaccurate simulations
of the dynamics, whereas other portions of the model are
not so sensitive. For this reason, it is possible (and
economically reasonable) to tailor the accuracy of the
methods used to the sensitivity of that part of the

model being simulated.

Appendix C: Numerical Determination of Partial

Differential Equation Coefficients

In Section Iv it is shown that integration of the
partial differential equations leads to analytic for-
mulas for the estimation of u(x,s,t) from the pop-
ulation equation, and a(t).d(x) from the fertility
equation. To use these formulas, available data must be
used to estimate the quantities required. In particular,

it is required that histogram data be used

1. +to generate (continuous) density functions,
that

2. partial derivatives of these density functions
be estimated, and that

3. +the required integrals be estimated.
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The distributions involved appear to be very smooth, and

as a result piecewise approximation by polynomials with

continuous first derivatives is necessary; additional

smoothness is desirable. The algorithm employed is des-

cribed below for the problem of estimating the economic

mobility

u(x,s,t) . The procedure for estimating the

term a(t) d(x) in the fertility equation is entirely

similar.

1.

A function which might be best described as a
fourth-order spline (having three continuous
derivatives) is determined so that its .
integrals over the appropriate intervals afe
equal to the given values from the histogram
data.

Differentiation of the fourth-order spline
with respect to the x-variable provides an
estimate of %& ; determination of an ad-
ditional cubic spline in the t-variable fol-

lowed by a t-differentiation provides an

- d2p
estimate of 5t °

Finally, the required integral is estimated

by integration of the result of 2. above.

In the use of spline methods in approximation

problems,

it is necessary to provide additional boundary
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conditions beyond the requirement that the spline inter-
polate the appropriate sample points. Unfortunately, in
the present application, use of the so-called "natural
boundary conditions'" was found to give particularly poor
estimates near the boundary of the region involved.
Further, it was found that these errors were quite sens-
itive to the values assigned.

After considerable experimentation, it was deter-
mined that adequate results could be obtained through
estimation of the third derivatives near the endpoints
by third order finite differences, and use of this data
to determine the boundary conditions. The scheme for
approximating the distribution function requires the
solution of a system of linear equations including three

different types

r r
i i i-1 .
no_ " - - = = 2,000,100

(a) r Zri_1+ r. ," 3 5 0 i , s
!
i
- + - —

(b) r.-2r, , tr, o, Z
o M r? non non
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i -1 Ty
() ry+r; 4 -75 -5+ = 2P, i =1,...,100

where Pi is the number of persons between ages i and

i +1 , and the boundary conditions are

Here r, is dinterpreted as the populatioﬁ distribution
at age i years, and it is assumed that values Pi are
available for i = 0,1,444,99 .

To solve this system, a reduction method for a
sparse matrix is used, and the equations are ordered so
that coefficients of moderate size are maintained on the
diagonal. For a test distribution, the error in re-

generating the histogram was less than 1 percent.

Spline Approximation

A standard analysis for cubic‘spline approximation

represents this function in terms of estimates for the
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second derivative at nodes. These are obtained as sol-

utions of the system of equations

Titl Yoo Ti T Tia
i T R B P 6 _an by
Bythig Poohgthig byt

to interpolate {ri} with a spacing {hi} (which for
our model is either h or k constant), and boundary

conditions used are

M, ~M
o)

1Mo 1
o = h3 (~ro+3rl—3r2&r3)
M M
‘n-1 =1
h. B h3 (~rn—3+3rn—2—3rn—l+rn)

With this approximation, errors in u(x,s,t) and a(t)
d(x) obta%ged using the estimation procedures aré less
than 1 percent on the interior of the domain. Although
errors are large where P(x,s,t) is small, values of

u(x,s,t) there are not crucial (see Section IV).
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Separability of Coefficient Functions

It was mentioned in Section III that one aspect of
the structure of the model was that it was formulated in
such a way as to make it possible to model the feedback
effects on the core section of the model in terms of a
finite number (even a small finite number) of functions
of time., This was illustrated in Section III in the
hypothesis that the effect of the rest of the world on

the fertility curve could be adequately modelled by

o
L]

o
o+

= - a(t) g’—x (d(x)E) - b(t)E .

In this formulation, the world affects f only through

a(t) and b(t) . However, it was also mentioned that

£

(o4

~ - g—x (a(x,s,t)f) - b(t,s)E

o
o+

might well represent a more realistic model, and it is
easy to verify that the estimation procedure described
in Section IV and Appendix C above will equally well
produce an estimate of the coefficient function
a(x,s,t) . A problem that arises, then, is that of

distinguishing between a(x,s,t) and a(t).d(x) at the
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stage of the output of the estimation algorithm. From
the point of view of subsequent modelling effort, it
might well be hoped that the result had the form
a(t) d(x,s) , or perhaps even a(t)ed(x)ec(s) .

A similar problem occurs in the case of estimation
of u(x,s,t) , where the validity of a representation

of the form

(x,s,t) = g (6) vy (x8) Foeat m(6) vi(x,s)

with N a "reasonably small" integer is at least a
practical requirement for the success of any attempt to
model the interaction affects.

Given the implicit smoothness assumptions on the
coefficient functions of the model and the fact that the,
ranges of the x , s , and t wvariables involved
are finite, there is no problem in applying standard
approximation theorems to deduce that yu may be closely
approximated by a function of the above form. (A
similar remark obviously applies to a(x,s,t)). For
convenience, we refer to the above form as a "separable
representation for u ".

Since we have shown above that separable repres-—

entations exist, the only problems which remain are those
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of the number N of terms to be expected in the repres-
entation, and the numerical determination of N and
ﬂi(t) from the available data.

Consideration of the effects that the t var-
iation in y (and a ) is intended to model, and the
probable variability of these efféects across age and
income brackets suggests strongly that N dis small. It
would be surprising if N were greater than 3 din the
case of the estimation of u(x,s,t) , and it appears
entirely possible that a single term will suffice in the
case of the estimation of a(x,s,t) .

It remains to show the feasibility of determining
separability of the representation numerically. To
distinguish a separable 1 from a non-separable one we
proceed as follows:

A smooth function u(x,s,t) ; defined for
se€s , teT , x¢€X with S |

T X

b 2 2

compact subsets of R' defines the kernel of a compact
linear operator L mapping from LZ(XXS) - LZ(T) ac-

cording to the formula

LE(t) = [ [ u(s,s,t) f(x,s) dxds .
XX8
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Now a separable u is distinguished by the fact
that the associated 1 is an operator of finite dimen-
sional range, and this observation essentially solves the
problem.

When u(s,s,t) has been estimated numerically,
is not obtained as a continuous function. What is ob-

tained in fact is a set of sample values

~ ~ ~

{u(xi,sj,tk)} , with x, € X , s €s , t, €T .

~ ~ ~

Here X , S , T are each Euclidean space of dimen-
sion equal to the number of sample points in each of the
independent variables. The discrete analog of the def-
inition of L is to use the above three dimensional

array to define a linear mapping (matrix)

~ o~

im(XXS i
Rdim( ) . Rdlm T

~

L

The problem of finding the ni(t) is now equiv-

alent to determining the range space of 1L , and N
is simply the rank of L .
The problem is simplified still further by invoking

the fact that

Range I = Range L L

where 1~ is the adjoint (actually transpose in this

case) of the matrix L . This reduces the problem to
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the entirely standard one of an eigenvector/eigenvalue
analysis of a symmetric matrix, and hence effectively

solves it.

Appendix D Computer Program Listing

In this appendix we list the computer programs
developed up to the time of this report for use with
the model. Included below are both the programs used
for numerical integration of the governing evolution
equations in simulation runs; and the programs designed
to estimate model coefficients from the available data.

The programs listed here are written in FORTRAN.
Given the relatively large arrays of data which must be
handled in connection with this model, it is clear that
FORTRAN is not the most convenient language in which to
program the numerical algorithms required. With a view
to future uses of the model, however, such factors as
the wide availability of FORTRAN compilers, the exist-
ence of the TI.B.M. CSMP (Continuous System Modelling
Package) which is FORTRAN compatible, and of FORTRAN
packages for the Calcomp plotter used to produce output

data plots make FORTRAN a reasonable language choice.
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Program I

Simulation of population and fertility propagation
over time. Initial age-specific profiles of population,
fertility and mortality, and dynamics for a(t) and
d(x) are required. Here, the values for population
are taken as the number of live individuals at age X
in the population as given by the Commissioner's 1941
Standard Ordinary Mortality Table. Values for mort-
ality are also taken from this table.

Values for the fertility are given by the
artificial distribution:

(x~24.5)2
e s
f(x,o) =€ e

where the constant C is chosen so that

100
I f(x,0) p(x,0) dx = p¥o) .
0

Values of d(x) are assumed from (the artificial

distribution)
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The parameter a(t) is determined by numerical integ-

ration of the differential equation

(p+1)% a(t) = b(t)

where

i

~e-5]_ -] e-10}

b(t) - sin(e 0< t<15

15

= 0 t > 15

_253_




DN W N -

11
12
13

14
15

16
17
18

19

20
21

22

23

24

25
26
27
28

29
30

31
32
33
34

35
36
37
3&
39
40
4]

%

OO0

OO

OO0 o]

OO ONOD

JOR

101

103

107
97

100

104

99

ACCT -MNiJite vWERNER vy [ [ME =60

REAL o x(lon)

1C=1nce

1F=n

N3 IR=le1n

Call. DATA(XysIweICsIF)
CONT TNUE

STOP

FMn

SUBRNAUTIHE aTA(Xe IR ICsIF)

REAL NCLION) «F(100) 9P (100) «aX(100)«R(100)sUS(100)9eDS(100)9F1(100)
REAL HHoeKKeSUM« IV (10) eDLY (16)

REAL PLTPERRIPERSTL

INTFAF YRSeAGFS«YOUNG o NIN

3045 3F 96 3 36 36 35 36 3 38 56 3E 3k 3% 3¢ 46 36 3% 46 3 20 35 38 36 36 35 30 38 35 34 36 38 35 36 36 35 36 5 36 45 35 35 36 36 36 36 3 36 46 38 36 38 36 38 3648 35 46 34 46 35 48 3¢
SFT tFOM=p IF YOU WANT PLOT, =1 IF YOU WANT PRINT

3536 9k 3F 2% 38 38 4% Sk 34 36 3r S0 3 20 20 4% 9 30 30 3F 3k SE 38 38 35 9% 3E 3b 3F 3b 3F 3k 4F 38 3¢ 36 b 3b 38 35 38 3 b 3F 26 3k 3F 38 3F 3b 36 3b 36 3 36 E 3 20 4 24 2 H 24
TFOR =]

PlL=1 =

PR=F

TINT~-1F ~a

TC{-AI_T(‘_l

IF (TR.GTLY1) GO TO 31
RRERMDRIIZI<KIZRINIRRRKRRKRRRKRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRR
HH Tc AGF STEw =~ KK Is TIME STEP

REAN(S4101) HH4eKK

FORY T(2F luwen)

PLTP-R 1S PLOT INTERVAL = PRTPER IS PRINT INTERVAL

REAN(G4101) PLIPER«PRTPER

NDE 18 THE NUMSER OF FIRST ORDER ODE?'S AFTER TRANSFORMATION

TF NNE > 10 CHANGE ~REAL DIMENSION IN DATA AND $STEP

NN I< THE NUMBER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES
REZDIS41003) Nijte NN

FORMLT(2T4)

PUT NITTAL VALUES OF QUES ONE TO A CARD

NO 97 T=1ev0E

BEAND(Re107) DLY (D)

FORMAT(F lue4)

CONTTNUE
RRHRONRRRIFRHHNRRRENRKRRRERRRERRRRRRRRRRRRKRRRRRRRRRRRRRRRRRRRRRRRR
PR=PL+KK
T=0.n
36 38 36 35 3t 48 38 3 58 38 38 26 3k 38 28 3F 30 38 3F 38 38 36 3F 3F 5 45 38 30 38 38 38 3 3k 38 3 3b 3k 38 3 35 36 38 3 48 3F 36 38 3 38 38 3F 34 4 3F 3F 36 338 3 4 dE b 3

READ DEATH RATES
READ POPULLATTION DENSITY - )
28 55 26 98 36 38 2E 35 36 30 36 41 3 3F 30 3% 3 36 28 3 3k 30 3k 37 3 35 3k 3 36 38 3E 38 3¢ 3k 6 3% 40 36 36 3F 38 3 38 38 35 I 3 38 35 38 3 38 38 30 3 23 38 3B E 3 33
RRRRDRRARIRIC (R KRRRRERERRRRKRRRRRRRRRRKRRRRRRRRRRRRRRRRRRRRRRRRR
PEAN (R4 100) (W (])eI=141C)
FOR 'V T(SF 1064 30X)
REA) (Selta) (2(1)el=1e1IC)
FOw s TLLOFAL0)
RRFMRIRRKERRRHRRRRRRRRRRRRKRRRRRRRRARKRKRRRRRRRRRRRRRRRRRRRRRRRRR
SUM=n 4N
N Qg T=].1C
CQM=SyUMER (1)
CONT rNUF
NO 9 I=le18
P(T)=P(1)#22000000«/St)
X(I)=P (1)

—-254-




42

43
4t
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
6e
63
64
65

66

67
68
69
70
71
72
73
T4
75
76
17
78

79
80
81

82
83
84
85
8¢
87

88
89
90
91

9

109
102
110

111
61

70

14

15

3]

~
1]

104

112
A2

DD

33

CONT N
PRPPPOPPLLEDPLEDPPRERRPLPPHPPPRPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
TE(IFOR T NFL1) GOTO A

TG,

WRTT - (AalnG)

FORMAT (1 vevpe)PULATION FUR AGES 1 TO 20 1SY)

Wi 1T (~ald2) (P(T)eI=]e20)

FORY T (5F10a0/)

WETT (hgl o)

FOR AT (Y vevAT BEGINNING OF YEAR Os AND?Y)
WRTT (Aeal111)
EOD TaT (1 1 gt crem e e e e e ot o e = e = = e o o e e e e e o 1)

CONT chIE
PRPRDRPPLLORPRRPPRPPPPPEPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
DY 7~ T=1e17

T1=FL.0a1(])

NN = (1=EXP(=11%117A00a)) /7 (1+((11-25.5)%#%2)/4,)

COMNT TS
YOl =n
F1U1)=5XP (= (41 25%HH¥ (YOURNG=24,5) ) ##2)

SUM=F 1 (1)#P (1)
Nt i I=2.10

FL1OI) =X (= (o 1 25%HHSE (I +YOUNG=25.5) ) #3#2)

SiUM=SU+F 1 (1) #2(])

NS () =ed3# (D(I)+D(I~}1))

CONT TNUE
NUS= , S¥ (3, (1)=D(2))
NTS=, 8% (34D (IC)=D(IC=1))
SUM=> (1) /SUwm
N o 1r I=1e10

FLOT)=F1(T)#*5Um

CONT INUF
RPA=KK /HH
Pal=~.,n
Dp=N 0
FaA=}
ne T 33
CONT ~pjjt
DR=D32+KK
38 3% 3 38 3 3 236 4% Sb 3¢ 38 35 36 58 SE 36 3B 3F 3¢ 3¢ 3 3 30 3 3 45 SF AF 4 38 3E 38 38 3¢ 3F 38 36 38 35 31 35 35 3F 3% 38 3F 38 3 3 35 38 35 3k 46 3 35 3F 36 36 30 3 43t 4

UPDATE CUEFFICIENTS OF FERTILITY EQUATION
348 3E 3F 56 3 45 3k 38 38 3F 4% 3F b 3 3b 3 S 3k 38 98 3F 38 v 3F 35 36 38 38 3k 36 3F 38 30 3 48 3 38 3% I 4k 38 3 4F 38 36 3t 3F 3 3 3F 3h 3 3b 30 3F 3 3 3% 3k 3k 3 3k 3¢
PAal=l.Y(2) '
B2 Y (2)#DLY (2) #¥PA
FasesP(=nLY (4))
PRPRDPRPPPRPPPEPERPPPRPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
TF (ORTPFRGGTPReOR [FORMJNES]1) GOTO 62
WRIT (AW L0AR) T
FOrt«T(r AT TLAF Y FAL2)
WY TTo (ARel12) LY (1)
FORMAT (eneyruclay IN PEAK OF FERTILITY CURVE IS 1sF9.6)
CONT -~ NUE
PPROLDPRIFPRPULLPRPPPRRPPRDRPPPPPPRPPPPPPRPPPPPRPPPPPPPPRPPPPPPRPPPPRPPP
3535 36 35 3p 36 4F 35 38 4 35 55 3 3r 30 38 36 36 36 36 38 3¢ 28 37 36 47 3 46 35 20 36 38 3E 38 3E 3E 3F 3F 3F 36 34 3F 3F 38 38 41 38 38 3b 34 34 3t 34 48 3F 3¢ 3F 363k 38 34 3 4k 3
MULTIPLY FERTILITY BY INTEGRATING FACTOR

36 38 30 3F 28 35 3b 3E 48 35 3% <8 9 3k F 38 3F 38 37 3k 38 46 35 55 90 35 3k 38 38 3E 38 38 3k 3E 38 3¢ 3E 36 3 3k 3 3 3F 38 3F 3 36 3F 3 3 3t 3 34 3+ 3 3k 3 3E 3k 3¢ 3E3E 3 3E
CONT sNUIF
QUM:") « N
NO g2 T=]a1°

SUM=SUM+F j (1)

_255-




92
93

94
95
96
97
98

99
100
101
102
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
11R
119
120

121
122
123
124
128
125

127

128
129
130
131
132
133
134

135

13¢6
137

I I T W'

44

114

117

64

F OO =FAasF (1)

CONT TN
PPRERPRPPPRREPERPPPPPRPPRPPPPPPPPRPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPP
TF (ORTPER.OTPR.URS TFORMGNE 1) GOTO 63
WRTT = (he113) SuU“

FORMAT (v ¥4t INTEGRAL OF NORMALIZED FERTILITY IS ',F9.6).
dRIT - (Hella) FA

FORM-T (v 14 FRAaCTION OF INITIAL FERTILITY IS
2eFQ, =)

WRIT  (Hel]l%)

FORMAT (Yo v ety UES OF FERTILITY CURVE FOR AGES 21 TOo 30 AREY)

WETT " (A~e1n®) (F(I)e I1=21430)

FOwrn T (SF 10 ah/)

CONT v NUF

PPPPDPPEPORHPPPRPPPRRPPPPRRRPRPRPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPP

3698 35 98 3L 4L b Sk 2F Sk *"***k%w*k%**%%****%*******************************
INCREMENT POPULATION BY ONE YEAR

b 28 48 3 35 48 98 3k 3 3k Sk Gk *%é%%********%**%****%************%*****************

TITMUT =TT NT +Kn¥p

TF (HLGGT,TIT) GOTO 4%

Qliviz oy,

SYDLLE P A

N0 aq T=1e171]
d=10=1

Sife=Sij i+ (J+1)3#E (J+1)
B+ = () FL==00))
QUi =SuiMm) +2 (J+ 1)
(Jel)=0(J+]1)
COWTTN0E
SURzCH A+ ()¢ (1)
P(1) .S
¥ (1) - ()
SuUMT -SUvMI+R (1)
TINT -=1F =4
COAT rME
PREPDERPRPPLRLOPPPRPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPR
TF (ORTPFRL LT «PRJOURGTFORMNES]) GOTO 64
NH]Tﬂ(ﬁvllﬁ) %UMI
EORM-T (0t TOTAL PURPULATION IS "9F10.0)
DWRW=4 16 =y
WETT (Ael)}7)
FOoawea T (V000 ¢ €t 4 3640 3¢ 3 48 40 30403038 30 38 35 35 38 38 3040 38 36 30 31 28 20 46 35 30 41 38 4130 35 36 36 38 30 34 35 45 3030 3130 40 4838 38 3304
T 3636 98 38 35 38 3% 3 3¢ 48 3 3530 36 3k 3r b 40 sk b e ARty )
COMT I NUF
PRPPOPSHLLREHPPEPRPRPPPPPHPPREPPPPPPPPPPPPPPPPPPPPRPPPPPPRPPPPPPPPPP
36 38 35 35 48 35 4% 37 3¢ 3% 3% 50 3¢ 38 47 3F 3 56 35 30 40 30 3E A5 3% 38 38 36 3¢ 47 31 38 2 36 36 38 3535 36 36 30 34 38 3F 3136 34 6 38 3F 48 30 36 38 36 20 363 34 48 30 3 33k
INCREMENT FERTILITY BY ONE YEAR
S 4% 3E 4P 35 48 3 57 36 SE3F 5F 3% 56 % 3% 36 38 30 38 38 38 3% 3 38 35 46 3% 37 31 38 3F 3F 46 38 38 36 58 35 35 3 35 3E 38 35 34 34 30 3 34 36 34 3F 3 3k 4 3E 3 4E 48 30 483 3F
NGo30 T=1610
TF (15=20«GTF1(I)) F1(I)=0.0
US(T) = (1) *¥F 1 (1)
COnT TNUE
HO=2 #S (1) =UsS(2)
UT=2 , #S(IC)=uS(IC~-1)
FI(TIm)=F i (TU) = S#0AF ((PA] R (UT=US(TC=1)))=P2#(DTS#UT+DS(IC) #US
21C=1)=(DTS+LS(IC)Y ) *US(ICY))
F1OI)y=F1(])=eus#PAR((PAT# (1)S(2)=UQ) ) =P2#(D5(2) #US(2) +DQS#UQ~ (DS
2(2)+05)%5(0]1)))
NO 33 T=pa10 M
FLOD)=F (1) =an#Pa ((PALF(US(I+1)=US(I=1)))=P2¥(DS(I+])#US
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~

138

139
140
141
142
143
144

145
146
147
148
149
150
151
162
153
154
155
156
157
158
159

160
161

162

163
164
165
166
167
168
169
170
171
172
173
174
175

1764
177
178
179
180
181
1R2

C
C
C

TTOOODON

35

36

121
79

117

120
65

28

11

2L+ D)+ () FUS(I-1)=(D5(1+1) +D5 (1)) #US(I1)))

COMT TN
33 S 3 S S e S R e SR e SR e T S e 3 A e A 3 3R 3P L3 3E 3 2E I R AE 3 e 4 2 I A I 3R
SOLVE ODES FOr DELAY PARAMETERS AND INCREMENT TIME
E R R A R R A B e K R R A - TR R R R R R R R IRt PR R PV L FTY L T Ry T g L R R P I g R 1]
DN 3e T=14"0F
Tv () =ty (1)
COST T
Crlll $2UNCIVeDLY s TaKK o NDE o NN)
PlL=vl +KK
TF (21 TPER LT PLY) GOTO 3]
PEPODPLPLEDPRPPPPPPPPPPRPPPRPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
IF (TFDvveN= 1) GO 65
TPG= PG+
TF (1PG"F ar) 6GOTO 79
1P0=
ARTIT . (hel121)
FOwa-7(0v]v)
CONT TIMUF
We i T s ({Ael =)
FOrupaaTy v, v0PULATION FOR AGES 1 TO 20 1ISv)
CRIT (A [N2) (P(I)s I=1420)
ARIT (Aa]llw) Ix
FdwaaT (v 44 AT REGINNING OF YEAR'«IBetsaANDY)
dYTT s {Ae]P0)
FOR 1V TY 1y me e r e e e e e eccc e — — - - ')
COMT I NUFE -
PRPRORP2PIPLPPPPPPRPRPPEPPPPPPPPPRPPPRPPPRPPPPPPPPPPPPPPPPPPPPPPP
RE 1)
Fied

SUA2ATINE SUN(IVeZe TarkoNDE9NN)
%*%*%%%%%%*%%%%%%*%**%#*%%***%##*%******%*******%************%**
THIS SURSQUTNINE GIVES A STMULTANEOUS SIMULATION OF VALUES
72T AT) «A{T) a0 (T) o IB(T) «B(T)Y) AT T+ FROM INITIAL VALUES 1V
OF TF SavE varIagBLes a1 T, FOR EACH DIFFERENT SIMULATION THE
SURRAUT TN vDE UST BE REWRTITIEN TO EVALUATE THE DERIVATIVES
D(T) AS A FUNCTTION OF TIME T AND SOLUTION VALUES Y (I)
34 203 35 31 A 4B 4 45 35 38 T 30 5L 4F 38 Sk 36 3k 40 3k 38 38 5E 48 3 58 3F 35 40 3F 35 38 38 38 4 35 30 30 3 30 34 34 3 35 3 3F 30 38 35 F 3E 36 3F 3P b b 3P 3 b E b 3 3t
RFEFAL TVINDE) o/ (NDE) o T« T2eKKeK]
Kl=xKx/ZFLOaAT (N)
T2=T
T=1+xk
CONT PN
CHlll SSTFoltVe/eT2ex1aNDE)
T2=12+K}
DO 20 Tz ¢ Mk

Iv(I)=/(1)

CONTT e
TF (TeOGToT2+n1/2) GOTY 2R
RE T
Fioy

SURRAUTTIME YSTERP (TVe7 e ToRKeNDE)
REALL TVINDE) « Z(NDE) 971 (10)s0(10)9)1(10) oKK
Colll *Dp (Te1VenDF o2)
NG 1Y T=]axte
Z1CI)=1v (D) +rK¥E0 (1)
CONT TNur
TT=T KK
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183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
2ne
203

12

78

SENTRY

CaLl. $DE(TTaZ1eNDEWDL)

NG 12 T=1eME .
7 1) =Ty (1) +5¥KK*¥ ((T)+D1(1))
CONT [NMUF

QF Ty

Fab

SUHSIUTINE SHDE(TeYonNDE o)
LEAL Y (NDE)Y «1J(NDE) o KK
A1) =Y (2)

N(2)=Y (3)

Tl=0,

IF (TeGlelne) GOTO 78
TT1=RS(T~5¢)
TT2="RS(T=-10.)
T1=(=STVWFXP(=TT])=EXP(=TT2))) /15
CONT =NUE

N(3) 215,%T1=Y(2)=2.%¥Y (3)
D4)-T1

N (Q) ‘-‘n *

QE'TUQF.!

EHD
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POPULATION FOR AGFS 1 TO 20 IS
350170. 342263, 340289, 338880 337734,
336725, 335795, 334916, 334091. 333320,
332613. 331958, 331324, 330688, 330033.
329350. 328642 327%22. 327184 326431,
AT BEGINNING OF YEA Ny AND
AT TIME .75
DELAY IN PEAK OF FEOTILITY CURVE IS =~0.000373
INTEGRAL OF NORMALIZEN FERTILITY IS 1.089507
FRACTION OF INITIaL FFERTILITY 1S 1.000501
VALUES OF FERTILITY CuUrRVE FOR AGES 21 T0 30 ARE
0.056025 0.063485 0.,069726 04074224 0.076578
0076574 0.074216 04069721 04063482 0.056023
TOTAL POPULATION IS 22000110.

34 45 40 3+ 30 3% 3t 3t 3% 3 34 34 38 3F 3 34 37 4k 3k g5 30 36 3E 48 30 38 3 3 38 36 30 35 38 38 36 38 3 38 30 b 3438 38 3F 34 3k 34 35 30 36 3F 3k 37 38 30 36 3k St 38 3t 3F $b S b $b 36 45 35 40 30 3 3 3E 3 4 SR SH 4

POPULATION FOR AGFS 1 TO 20 IS
350215. 342263, 340289, 338880 337734
336724, 3357495, 334919, 334091, 333320.
332613, 331951, 331324, 330688, 330033
329350. 328BA42. 327922, 327184, 326431
AT BEGINNING OF vEA. 1+AND
AT TIME 1.75%
DELAY IN PEAK OF FETILITY CURVE IS =(.004762
INTEGRAL OF NORMALIZEN FERTILITY IS 1.089505
FRACTION OF InITIap FERTILITY IS 1.002134
VALUES OF FFRTILITY CuUrvF FOR AGES 21 TO 30 ARE
0056127 0063609 00A9BTT Q4074401 0076738
De076675 0074285 0e069795 04063563 0.056101
TOTAL POPULATION IS 22000510

36 34 3t 3t 38 30 3% 3+ 34 3% 38 38 3 3F 58 3k 48 38 24 g 34 36 3F 57 3¢ 31 38 3 46 3F 36 36 38 3k 38 38 3F 3E 3T 35 3k 36 3 3% 3 38 3% 3F 36 3¢ 36 38 2 35 35 3F 38 38 37 36 36 38 3F 35 b 38 36 3 36 $b 34 3 30 30 34 4 2 36
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POPULATION FOR AGES 1 TH 20
350562, 342307, 340289, 338880, 337734
336725, 335795, 334919, 334092, 333320,
3326113. 331958, 331324, 330A88. 330033,
329350, 328A42 ., 427972 327184 326431.

AT BEGINNING OF yFau P AND

AT TIME Pe 15

DELAY IN PEAK OF FE-TILITY CURVE IS =0,020237

INTEGRAL OF NORMALIZE"D FERTILITY IS 1,089506
FRACTION OF TIITIapL FerRTILITY IS 1.006584
VALUES NF FERTILITY CHURVE FOR AGES 21 TO 30 ARE
0056417 0063967 0.070328 0074940 0.077210
06076924 0074418 0.0699958 (0.063759 0.056301
TOTAL POPULATION IS 22001840,

*********************’.Hl--iH(“lHl-%%**%-lt-)t-)?******************%*********#*****‘*********

" POPULATION FOR AGFS 1 T0O 26 IS
351507, 342646, 34073372, 338880 337734,
336724, 335795, 334919, 334091, 333320,
332613. 331958, 331324, 330687. 330033,
329350, 328642, 327922 327184, 326432,
" AT BEGINNING OF YEA: 39 AND
AT TIVE 3.75
DELAY IN PEAK OF FESTILITY CURVE IS <=0.064413
INTEGRAL OF WNORMALIZFEN FERTILITY 1S 1.089506
FRACTION OF IwITIAL FERTILITY IS 1.018705
VALUES JOF FERTILITY CURVF FuR AGES 21 TO 30 ARE
06057215 0064960 04071590 06076457 (Qe078518
0077577 0074741 04070374 04064276 0.056834
TOTAL POPULATION 1S5S 22005710

*%***%%*&*%%**%*%*%%*%*%%*%%%%****%#%**%******%******%**%**%****%*************
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POPULATION FOR aGFS 1 TO £a IS
354085, 343570, 360669, 338923, 337734,

336724, 335795, 334919, 334091, 333320,
332613, 331958, 331324, 330688, 330033,
329350, 32RA42. 3279722, 327184, 326432,
AT BEGINNING UF YE4 » oy AND
AT TIME 4.75
DELAY IN PEAK OF FF.TILITY CURVE IS =0,184397
' INTEGRAL OF NORMALTZEDY vERTILITY IS 1.089502
FRACTION OF T=ITIAL FERTILITY 1S 1.050882

VALUES OF FERTILITY CitwvFE FuR AGES 21 TO 30  ARE
0.059358 0067063 0075042 04080616 0.082016

0079207 04075498 nN.071418 04065613 0.058225

TOTAL POPULATION 153 22016510,
3 38 3b 34 3 35 38 34 48 38 9 30 3E 3P 36 030 Ak 5 30 3 0 2 AL A b GE e A I3 e T 2 2 e R I SE I AE It I b3 I I BB
POPULATION FOR AGFS 1 Tu 2 IS

361071 346090, 3415138, 339259. 337778,

336725, 3357495, 3349149, 334091, 333320,

332613. 33195K, 331374, 330688. 330033,

329349, 328A42, 327922, 327184. 326432,
AT BEGINNING OF YEA T e AN
AT TIME 6.75
DELAY IN PEAK OF FFRTILTTY CURVE IS ~Ue4R0408

INTEGRAL OF NORMALTZEOD FERTILITY 1S 1,089503
FRACTION OF I-ITIap FERTILITY IS 1.0985618

VALUYES OF FERTILITY CHRyF Fur AGES 21 170 30 ARE
0062964 0072470 0021761 0082994 (0.0880943

0080292 0074753 0.071688 0.066822 0059826

TOTAL POPULATION IS APNG3R40 .,

3t 35 3% 34 38 38 36 38 3F 35 3¢ 3B 38 26 3 2f b 38 3 5 32 30 40 35 A A AT 403 E 3 SE SR AE SR b I3 AT 3b 2 2 3 2 AR S AE A eI IE I 3E P 3L IE SH A 34 442 A SE b b 3 34
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POPULATION FOR AGFS 1 TO 20 1S
377589, 3572918. 3aatyi, 340174 33811°2.

336768, 335795, 334919, 334091, 333320,

332613,  331954.  331324.  3306H8.  330033.

329350.  328541.  327922.  327184. 326432,
AT BEGINNING OF vEA: ~ o AND

CDELAY IN PEAK OF FESTILITY CURVE IS =0.909306
INTEGRAL OF NORMALTZED FERTILITY IS 1.089499
FRACTION OF InmITIaL FERTILITY IS 1.118620

" VALUES OF FERTILITY CyUrRVF FOR AGES 21 TN 30 ARE
0.065618 0.076765 (0.088974 0.098260 0092387

0.076925 0.069761 0.068674 0.065408 0059325

TOTAL POPULATION IS 22022090

3h 3b o 34 38 38 3b 3F 44 38 38 3030 38 3 45 8 38 3F 36 38 30 36 3E 38 48 3 40 36 48 3F 36 4 3E 3k 3k 3b 3 4 30 31 54 38 10 38 3 35 38 30 48 38 35 3138 38 38 38 36 3 3 3F 3F 34 3 3b 34 34 3¢ 3 3% 3k 3E 34 34 34 3 34 3

" POPULATION FOR AGFS 1 TO 26 IS
389333, 369063, 35085, 342668, 339024

337101, 335838, 334919, 334091, 333320,
332613. 331958, 331324, 330688, 330033,
32935n. 328642, 327922, 327184, 326432,
" AT BEGINNING OF YFA. 7 9 AND
AT TIME 7.75%
DELAY IN PEAK OF FEOTILITY CURVE [S =14277342
INTEGRAL OF NORMALTIZEDN FERTILITY IS 1.089500
FRACTION OF ImITIaL FERTILITY IS - 14121859

VALUES 9F FERTILITY CHRVE Fur AGES 21 To 30 ARE
06067241 0079903 0eQ04nY9 0105441 0.093917

0072075 0064586 0.065381 0.063390 0.058125

TOTAL POPULATION IS 22124950

34 3% 3 34 38 3 38 35 34 38 38 30 38 38 3F 38 3 38 3k 20 48 3830 3F 3F 45 38 30 38 30 30 36 A A 36 38 3 38 6 3F 3E 304 38 38 3 3 6 38 38 3F 38 36 3 3k 3E 3F 3 34 3% 3% 3t 35 3 34 36 3+ 3¢ 34 40 3F 3 34 3 34 34 3 3¢




POPULATION FOR aGFS 1T TO 20 15
393105. 3808472, JARAG3u, 349429. 341510,
338010, 336170, J3a9n?, 334091, 333320,
332613. 331095%K, 331374, 3306HA. 330033,
329350. 323642, 307922 327184, 326431 .

AT BEGINNING OF yvEa. Yo iAnNI)

AT TINE 8.7

DELAY IN PEAK OF FE-TILITY CUrVE IS  =1.490449

INTEGRAL OF NORMsL LZEN FERTILITY 15 1.089500

FRACTIONM OF ImITLlal FERTILITY 15 1.111391

VALUES OF FERTILITY CURVE FUR AGES 21 TO 30 ARE
04067541 0081096 0.097754 0¢108647 0.093259
1067985 0060462 0062787 0.061503 06056761

TOTAL POPULATION T< 2P1AalgHn,

35 35 38 28 3 3¢ 3F 3b 38 3¢ 35 36 3 38 38 QE 4F G0 38 26 3F 46 08 3 30 3F 45 38 3F 48 3% 58 98 6 38 3E 3k 3 3 3F 3k 3 3F 38 36 3 3 36 38 38 38 38 3k 54 35 35 38 3 3k 3F 3 3F 3 3 3 36 3+ 36 3F 3¢ 3 35 3¢ 3 3 34 38 3¢
POPULATION FOR AGFES 1 TO zo IS

392049, 3X4226G, 378346, 365415 348248,
340489, 337077, 435293, 334134, 333320,
3326173, 331858, 331374, 330687, 330033,
32935n, 328A42., 327922, 3271854, 326431,

AT BEGINNING OF vyba4-. e AND

AT TIME 9.75

DELAY IN PEAK OF FFoTILITY CURVE 1S  =1.532525

INTEGRAL OF NORMALIZEN FERTILITY IS 1,089499
FRACTTION OF TeiITIaL FERTILITY IS 1.078118

VALUES OF FERTILITY CurvF FOr AGES 21 TO 30 ARE
0065753 (Qe079162 (0.N957H0 Qelh4ld 0090456
0065073 (00587294 0 0AN4T3A 0.059348 (Q.054862

TOTAL POPULATION TS 2P197900

34 3% 4F 35 35 35 3% 35 3 3¢ 35 3 2F 3 3F 35 95 36 2F 28 3% 38 5F 38 37 3F S0 31 36 5 5P 38 3E $F SE 36 5% 3 9% 3% 38 3F 3 48 30 38 3F 36 38 38 3F b 36 28 41 38 4 38 3 3 3+ 45 35 3F 3F 3¢ dF 3% 3F 3t 3F 3 3k b 3k 3k 33




POPULATION FOR AGFS 1 TO v IS
385079, 383196, AR?PI 2. 376780, 364179.

347206, 339549, 336197, 334465, 333362,
3326173, 331955, 331324, 330688, 330033,

329350. 328h42, 327922 327184, 326431 .

AT BEGINNING OF y&a - 179 AND

CORE USAGF R FCT CObb= YRLE BYTES.ARRAY AREA= . 3400 BYTESSTOTAL AREA

DIAGNOSTICS wUwgE < OF ERRUKS= 0s NUMBER OF WARNINGS= 0s NUMBE
COMPILE TIME= 3,95 SFCEXECUTION Tlve= l4o.47 SECS QUEEN'S WATFOR VERSIQ
COST FOR THIS PROGRAW 1S + lets? RUN IN HSC MAR 19, 1974




The above output simulates population and fert-
ility over ten years with "Baby boom" dynamics - wide
peak of intermediate height. See Figures 3 and 4 in

Section V.

Program Ib

This is a copy of the program which was used to

plot the profile in Figure 6.




$J08

STF559574 1VEQ (FR1

// EXEC SYMVU,TTwF =
//COMP,SYSTN 0D #*

101

OO0

103

107
97

OO0

100

104

99

o

109
102

110

SURROUTINE NDATA(Xa1~eICeIF)
REAL NDCINO)Y aF(109) o~ (100) «X(100)eR(100)US(100)s05(100)9F1(100)
REAL HHKK«SIMe IV (1I0) 93LY(10)
REAL PLTPFR«PRTPERT |
INTFGER YRS« 24 ES YO mizeNN
****%*****s‘H(--)(--:z--)i--)(-i'c%%-)i--;:-%‘c-:(-%(-i:'*3’“%*%%%(-'lH(-*%***************%************
SFT IFORM=n T= YOU A&MNT PLUT, =1 JF YOU wWANT PRINT
***%*%%****%’.}-!1»’.':-:1»-.‘:—-::—-2&-2:‘-:t--i&-)'c-)!-i‘c-i(-1‘?*-2?-)1-%**%-)Hl-**%*%*****ﬂ*******%******##%
IFORM=1 ‘
IFORM=N
PL=1E-5
PR=PL
TINT=1F=-4
ICM1=1C~1
IF (IR GT.1) ~C T 23
RRRRRRRRRPRR IDDWHE ekt ¢ RN H I RRRRRRRRRRRRRRERKRKRRRRRRRRRRRRRRR
HH IS AGE STFr =~ K& IS Tidag STer
READ(54101) HwaKs
FORMAT (2F 10 e 2
PLTPFER IS PLOT I~NT#ERVAL - PRIPER IS PRINT INTERVAL
REAN(Se101) Ly TRERGPTPER
NDE IS THF NU ‘HEx OF FIRST UORDER ODE'S AFTER TRANSFORMATION
IF NDE > 10 CiaNtE ~Eal DIMENSION IN DATA AND $STEP
NN IS THE NUMOYER OF INTEGRATION STFPS IN Kk FOR SOLVING THE ODES
READ(Ke107) “inkE 4 NN
FORMAT (21 4)
PUT INITIAL VvaLUES OF QUES ONEF TO A CARD
DO 97 T=1M0F

READ(R1 7) v v(l)

FORMAT(F10 )

CONT INUIF
RRRRRRRRRIWRRDFIR R A 2k R KRR R KR RRKRRRRRRRRIERRRRRRRRRRRRRRRRR
PR=PR+KK
T=0e0
36 34 35 3 3¢ b 3k 38 3k 34 3¢ 3F 3k 2 3¢ .hH 36 35 36 35 35 3F 98 3% 3b 30 4 48 Sk b 3¢ 36 35 26 3F 38 3F 3¢ 25 S8 28 38 36 {F 28 3¢ 36 3¢ ¢ 3k b 3 3¢ 3¢ 3 3 4 2% 3 3¢ 38 3¢

FEAD DEATH <RA4TES
SEAD POPULATION DENSITY = OBTAINED FROM SPLINE

36 35 3F 36 3¢ 35 35 3 31 35 38 3 35 3 I 36 3% 3% % 45 38 35 48 3F 3F 6 28 56 3F 2k 3¢ 38 3¢ 38 31 38 3¢ 3¢ 3t 38 3F 3¢ 34 34 3% 3 3434 2 26 6 3 3 3 6 b4k 3 3
RRRRRRRRRRERRRRRKRRRNKRRRRRKERIRRKRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
READ(S100) (2(T)al=141C)
FORMAT(BF 10emh.30X)
READ(B«104) (5(T)el=)aIC)
FORMAT (10F %, 0)
RRRRRRREKRNWHLE 2L DL i AR HKRRKRRERRRKRRRRERRRRRIRRRRRRRRRRRRRRRR
SUM=0.0
D2 99 I=1.]1C

SUM=SUM+> ()
CONTINUF
DO 9r I=l.]IC

P =P (1)#22000000,75Uw
X(I)=P(1)
CONTINUF
PPPPPPRPROPPPIRLERRDRE PRPRPPPPPPPPPPRPPPPPPPPPPRPPPPPPPPPPPPPPPPPR
IF(IFORMNF LY GOTO n)
I26=0
WRITE(heln9)
FORMAT (Y1 vatPnPU aTTUN FUOR AGES 1 o 20 1SY)
WRITFE (Ae102) (2(T)el=1s2U)
FORMAT (SF 10,1 /)
WRTTF (Ael]n)
FDRMAT(' Vot oy e TN il OF YR D AMDIE)




111

61

70

14

15

114

115

108
A3

LI A o Gt ¥ S U I v e T T - T T T s e - ——— 4

CONT INUF _
PPPPPPRPRIFPPPPLIPPPRDHHpORRR PR PP RPRPPRPPRPRPPPPRPPPPPPPPRPPRPPPPPP
DO 70 I=1.1IC

I1=F1.0aT )

DD =(1="XR(=T1¥%11/600e))/(1+((11=25.92)%%2)/4,)

CONT TNUE
Y NING=0
FL(D)=2F XP (= (. 129%Hu% (YO NG=24,5) )i 2)

StUm=F 1 (1)#=(1)
DO 14 T=2.1C

FLOI)2F X v (= (@ 1 PR HAS ([ +YOUNMG=2545) ) %4 2)

SUM=SUM+-1 (1) #w (])

NS(T)=ex=(D(T)+1.(T=1))

CONT ThuU+
DAS=o B A H¥D () =in(2))

DTSz 8GR (3, %¥0(1C) =D (T U=~]))
SIM=P (1) /75U
DY 15 I=)eIC

F1OI)=F1 1)<y

CONT TNU¥
PA=KK/HH
PA1=0.0
022000
FA=]
6D TO 33
CONT INUE
PR=PR+KK :
3k 3h 3t 48 $h 38 35 b 3k 38 3E 38 IF 30 2095 30 56 9 e 9 SE 3R LS 4 SE 3 e It T3 0 30 46 SE 3 36 LA SE L R 3R 3E dE L E b 3E e S de dp b bt S dr S b SE 24 48

UrDATE CUEFFICIENTS OF FERTILITY EQUATION
3t 4F 3 38 3% 36 31 36 31 3 3 48 48 28 3 34 35 35 38 3 35 38 3 e 38 45 38 38 37 3k 36 530 3F 38 35 55 45 38 3 3 45 3038 3 3648 35 3 48 3 45 45 25 36 46 3 45 2 4 3 2 40 36
PA1=DLY (2)
P2=DLY (2)#DLyY (2)#2A
FA=EXP (=DLY (%))
PPPPPPPRPRPPRPOEIEDDN . DRPRPPRPPRPPRPORPPRPPPPPPPPPRPPPPPPPPPPPPRPPR
IF (PRTPFR.GT PR«UNWLIFORY4NEL]) GUTO &2
WRITE(Beln6) T
FORMAT (Y AT Trvmi v Fh.2)
WRITE(Ha112) LY (1)
FORMAT (10Dl AY TN PEAR OF FERIILITY CURVE IS 14FQ.8)
CONTINUF
PPPPPPPPPPPRPOIDEIRP IR IR R PRPRRERPPRRPPRRPRRPPPPPEPPRPPPPPPPPPPPP
34 35 3¢ 30 38 3 b b 38 30 BF F 36 36 3F 37 30 38 3 3 wp 58 e 3F 3 38 3 Sk St Ak 3k 3 34 3k 38 3F b Ak 3F b b 38 3 38 3b 38 38 b I 3k 3k 3k 3h 3 38 36 36 35 36 35 3 3830
MUILTIPLY FERTILITY BY INTEGRATING FACTOR
36 36 35 36 38 38 6 3E IF 3 S 38 P 28 38 35 3 2 3 36 30 31 AR 48 5 b 34 38 37 3F SF 3k 3 40 3P 3F 98 35 38 30 4F 3 b 38 38 38 56 38 3E 38 b b 38 36 36 3638 3 36 38 38 34 34 3¢
CONT INUF
SJIM=0.90
DO a2 I=1.1C

SyM=SyUM+= 1 (1)

FOI)=FA%*e] (1)

CONT TNUE
PRPPPPPPRPPPPDERHPOIIVHPRRPRRURPPHRORPRPPPRPPRPPRPPPPPPPPPPPPPPPPPP
IF (PRTPFR.OT PR.ORGIFORMNESL ) GOTO 63
WRTITE (Ae]13) UM

FORMAT (v vy INTFG=AL OF NORMAL [ZED FERTILITY IS 19F9e6)
WRTITF (Aellau) =ha
FORMAT (Y v FRaCTION OF INITIAL FERTILITY IS

29Fq06)

WRTTE (He]1K)

FORMAT (v v vy sl t)i€ Ok FERTTILITY CURVE FOR AGES 21 TO 30 AREY)
WRITF (A1) (F(I)y 1=214730)

FORMAT (=F1Nan7)

CONT ITNUE
PPPRPPPURPRPLILLE b2 e e s LR L p PO R PDPRPPPRREPPEPPPPPPPPPPPPPPPPPP
35 36 3b 36 3 3k 28 3E 3F 38 30 3 3% xS SE Sk A b o0 98 9F o 3% 30 P 309k Sk e 3 90 48 36 S8 r 38 b 38 35 3F 36 JE 3k 38 38 db b 3F 38 48 38 35 3F 3k 38 3% 3636 38 3k 3 3¢




OO0

44

a5

116

117

64

35

121
79

118

TINT=TINT +KK3 o
IF (HH.GT.TIMNT) GOTO oY%
SUM=0.
SUMI=0.
DO a4 I=1.1CH"
J=1C-1
SUM=SUM+ 5 (J+1) #F (J+1)
PlJ+1) =P () #(1==(J))
SUML=SUM] +P (J+1)
X(J+1)=R(J+1)
CONT TNUF
SUM=SUM+P (1) % - (1)
P(1)=5UA
X(1)=P(1)
SUM1=SUM14+P (1)
TINT==1E=¢4
CONT INUE
PPPPPPPPPPPPPRPPRELRPEPPPPRPPPPPPPPRRPPRPPPPPPPPPPPPPPPPPPPPPPPPP
IF (PRTPEFR.OGT.PR.ORIFORMaNES]) GOTO 64 ‘
WRITFE (Ae116) =UV)
FORMAT (1Qv e TATal POPULATION IS 1v.F10.0)
PR=+1F=-5%
WRTITE (As117)
FOQMAT(lﬂ|.'%**%*****%*%*%****%*%***************%***%*************
T 3 3 36 30 30 38 38 38 30 3030 383k 0 3 30T S R ke gt 0 )
CONTINUE
PPPPPPPPREPRPLIPLPE PR RPPREPRPRRPRPPPPPPPPPPPPPPPPPPPPPPPPPPPP
35 35 3¢ 45 3F 3F 20 38 3F 38 35 3F 35 36 58 35 48 3 3F 36 ar 35 56 3F 48 36 38 3% 36 34 38 38 3835 45 36 31 4845 38 36 25 48 18 38 18 30 36 35 36 48 3E 3k 3F b 3k 4P 3E 3E Sk b4 3

TNCREMENT FERTILITY BY ONE YEAR
35 3 4F 45 45 18 36 35 3F 48 45 35 35 35 3F 45 3 3% 38 38 35 35 38 2F 35 4% 38 38 38 36 38 3 30 30 45 25 38 35 36 36 338 38 38 36 30 30 3148 3F 46 46 3F 240 36 30 30 340 SE 2 3k 8
DD 34 I=1.1IC '
IF (1F=2-.8T.F1(1)) F1l(I)=0e0
DS(I) =R (1) *F1 (1)
CONT TNUF
UQ=p.#¥US (1) =-us (2)
UT=2.,#US(IC) =S (IC~-1)
Fl(IC)=F1(IC)«.%*PA*((PAl*(UT—US(IC—l)))-PE*(DTS*UT+DS(IC)*US
2(IC=1)=(DTS+D5(IC)Y)=US(IC)))
FI1(1)=F1(])=~ox#tPa%((PA]H# (US(2)=UW))=P2#(D5(2)+*US(2)+DA5*UQ=-(DS
2(2)+DAK)IFUS (1))
DO 35 I=p.IC"
F1(I)=F1(T) = na% ((PAL* (US(I+1)=US(I-1)))=P2%(D5(I+1)*US
2(I+1)+DS (D) *US(I=D) = (05 (1+1)+NS (L)) #US(I)))
CONT INUE
35 3b 46 4F 45 3 36 3 38 45 46 25 35 36 35 35 35 48 3% 36 50 3F 36 56 35 38 35 48 3E 48 35 35 30 30 48 36 3¢ 38 36 36 3F 26 35 38 30 46 4F 45 35 37 38 38 46 36 3F 36 3 36 30 b Sh 40 3 3t
SOLVE ODFS FOx DELAY PARAMETERS AND INCREMENT TIME
15 46 3F 25 24 45 3 3 3 36 35 35 3% 3¢ 9F 36 58 4% 2 35 0% 58 26 40 36 35 3 38 30 36 3F 48 3¢ 38 38 46 35 3 Sb3F 3b 4F 38 3 3 35 46 45 36 38 3 38 34 38 36 46 36 36 38 36 38 26 34 3k
DO 36 I=1,MDE
IvIiI)y=DLvy (1)
CONT INUE
CALL SRUN(TVellLYosTaKK¢NDE o NN)
pszL+KK
IF (PLTPFR.GT.PL) GOIU 31
PPPPPRPPPPPPPOPPRPPRILRPPPLPRPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
IF (IFORMNF 1) GOTO 65
[PG=IPG+]
IF (IPG.NFE,.2) GOTO 74
I1”2G=0
WRITF (A«121)
FORMAT (*1v)
CONTINUE
WRTTE (Ae11%8)
FORMAT (v v ¥PABILAT T FU= aGFs 1 TU 20 18Y)
WRITE(~a102) (2(])s I=lalw)




OO0OOO00O00

1y UK LA A R LR BA RN ARG IRV ¢ TU RN vy vy Ty Ty
WRITE (As120)

120 FORMAT (1 1 4 ¥ e e e e e ')

65 CONTINUE

C PPPPPPEPPPPPPPPPPRPRLPPRPPREPRPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPRP

RETURN
END
SURROYTINFE HR N(Ty e7 o T KK gNDE 4NN)
3¢ 3t 36 45 38 36 4 3 35 38 36 3H 38 35 38 46 9F 38 38 3 30 4F 37 45 38 35 38 48 36 38 35 3 30 3F 36 3¢ 3F 38 38 35 3 35 3b 36 3 35 3E 38 38 3F 3¢ 3 3 3t 38 38 3 36 38 3 34 4k 34 3¢
THIS SUSROUTIWF GIVES & SIMULTANEOUS SIMULATION OF VALUES
Z=(TA(T)YaA(T)YaAY(T) s IH(T)ar3(T)) AT T+4H FROM INITIAL VALUES 1V
OF THE SAME vaRTARLES~ AT Te FOR EACH DIFFERENT SIMULATION THE
SUBROUTINF  $nfF  MUST RE REWRITTEN TO EVALUATE THE DERIVATIVES
D(1) AS A FUNCTION OF TIME T oND SOLUTTION VALUES Y(I)
36 3 38 36 38 3t 38 38 28 58 35 3 36 24 A% F S5 36 I8 38 55 38 30 38 38 3 38 4E 35 S8 3 3F 3E 3 36 3 36 3¢ 38 3 36 3F 38 38 3k 3E 3k 45 4 3k 3F 38 3¢ 3 36 34 3E 34 45 20 3E 8 34 3¢
REAL IVINDF) a7 (NNE) « Iy TE2eKK 9K
K1=KK/FLOAT (NN)
T2=T
T=T+KK
28 CONT INUE
CALL $STEP (IVe7aT2ex1eMNIE)
T2=T2+K1
DO 29 I=1.MNDE
Ivii)=2(1)
29 CONT TNUFE
IF (TJGTT2+Ki/2) GOIU 28
RETURN
END
SURROUTINF FSTEP (TV s/ +TexKaNDE)
REAL TVINDE) «7(NUE) «/1(10)sD(10)eDI(10) oKK
CALL $DE(TIVNDESD)
DO 11 I=1.MDE
Z1(T)y=TV (1) +KK#3(T)
11 CONT TNUE
TT=T+KK
CALL $DE(TTe771eNDEIDT)
DO 12 I=1eNDFE
ZI) =TV (1) +488KK® (O(T)+D1 (D))
12 CONT INUF
RETURN
END
SURROUTINE $SNDE (TaeY o MDE $D)
REAL Y (NDE) « D (NDE) o KK
D(1)=Y(2)
N(2)=Y (3)
Tl=0.
IF (T.GTel5.) GOTD 78
TT1=ABS(T-5,)
TTR=ARS (T=10.)
T1=(=SIN(FXP(=TTL)=FXP(=TT2))) /15,
78 CONTINUE
D(3)=15,#*T1=Y(2)=2,%Y (3)
D(4)=T1
D(R)Y =D
RETURN
END
//G0.SYSIN DN 3¢

FVOLUTION OF RPOPULATTION OVER 50 YEAWS: WITH FERTILITY PROGRESSION

50 100 2 4 0 1 3
30.0330.,0 7.0 4.0 20.0
1.0 25
1.0 1.0
5 1

0.0
0.0




Ve U

0.1

02258 L00577 LN0ula 00338 .00299

.00276 00261, L0047 00231 .00212

.00197 L00191 OU19? 00198 L,00207

.00215 L00219 00228 00230 00237

.00243 00251 LN0259 .002618 LON277

.00288 00299 L0031 00325 L0034

.00356 L00373 L003462 00412 ,00435

.00459 L0048A L00515 L 00546 L00581

.00618 L00659 L00703 L00751 00804

.00861 .00923 L0099 ] 01064 .01145

01232 01327 L01430 01543 .01665

«01798 01943 el 02271 . 02457

.02659 .02878 L03118 03376 .03658

. 03964 04296 L0ah56 L0504nh L0547

.0593 L0427 L0696A L0755 C,08181

.08864 L.096072 . 10399 .11259 .12186

.1318%5 . 1426 J1o4a16 . 16657 .17988

.19413 L 20937 22563 $ 243 26144

.28099 30173 L 323A4 . 34666 371

.39621 L46T19 .5aR26 72467 1.0

1023102.1000000., 994230,990]114, 986767, 983817. 981102, 978541, 976124, 973869,
971804. 969890, 94RN3R, FAB1TY,., 964266. 962270. 960201, 958098, 955942, 953743,
951483, 949171, 945789, 944337, 941306, 939Y197. 936492, 933692, 930788, 927763.
924609, 921317, 9171380, 914282, 910515, 906554, 902393, 898007, 893382, 888504,
883342, B87T7883, 87298, KALIRT, HSHY464, BH2554, 845214, 837413, 829114, B20292.
810900. B00910., 790282, 77H981, 766961, 754191, 740631, 726241, 710990, 694843,
67777T1. 659749, 641761, 621TR2, 599324, S5T1882. 554975, 531133, 506403, 480850.
454548, 427593, 40011°2. 372240. 344136, 315982, 287973, 260322, 233251, 206989,
181765, 157799. 135297, 114440, 95378, 78221, 63036, 49838, 38593, 29215.
21577. 15514. 10333, 7327, 4787, 3011 1818, 1005. 454, 125,

/3

//

st JOB DELETEN 8y HASP OR CANCELLED BY OPERATOR BEFORE EXECUTION #itstitititsad
HASP=II JOR STATISTICS -- 26hA CARDS READ -=-

0 LINES PRINTED -- 0




Program IT

Estimation of Q(x;s;t): this program uses values
of the population density to estimate 'H(x;s;t) through
differentiation of two cubic spline approximations arnd
integration of a subsequent spline approximation.

As a test problem, a separable economic mobility

was chosen

u(x,s,t) = a(x) g(s) ,
_ (x4+20)(80~x) _ sH10
o(x) 10000 » B(s) = 55 -
With an initial population density
= 3 9
T 200 (2s°-405s°421000s
p(x,s,0) = pylx,s) = e (25 -4 5540 )
the population density without deaths
—_— —_
- 2000000 2000000
p(x,s,t) =[e Py (x~t, (s+10)e -10)] ,
3 2 .
W= - + t7(30-x) + t(x-80)(x+20) |, 6

evolves, and with a death~rate of

-27]1-




r(x,s,t) = (1~.01%t) (.0003x4.0006)

the density with deaths is

R

P(x,'sy't) = B(x;'s’t)e“ "
9 : 2 3
R = (6 - ;%L)(,ooogx+.oooé) - .0003('3— - "““‘"oét )e

-272~




JOB  ACCT-NUMs Y"WERNER Y9 TIME=60,4PAGES=20

3t 35 30 3F 3p 38 38 38 30 30 3F I8 35 38 38 3k 3k 4 30 b 3030 38 38 30 30 38 30 35 3F 3b 0 3t 3b 3k 10 10 3k 30 38 30 20 3 38 30 3¢ 3F 18 36 3F 3F 28 30 3 38 6 30 4 30 3b 48 45 0 3

THIS PROGRAM IS USED TO ESTIMATE THE ECONOMIC MORILIITY
PARAMETER MU, AGE= TIME- AND INCOME-SPECIFIC VALUES OF THE
POPUI ATIOM ARE REQUIRED

FOR A TEST RUN WE ASSUME THAT  4DY7#SeT)=ALPHA(X) #*BETA(S),

FOR THIS PARTIcULAR FXAMPLE THE EIGENVECTOR TECHNIQUE USED

TO F<TIMATS  a(T) AND D(X) IN THE FERTILITY EQUATION COULD

HAVE BFE USED. .

34 2 36 6 36 0 36 26 3 38 3b 38 36 36 38 30 38 30 0 30 28 38 30 38 38 30 48 3 36 38 38 30 38 35 38 3 28 38 38 3¢ 3E 3b 3k b 38 30 3 36 38 20 40 3 2 35 40 #3038 30 3b $R 34 3b SE

DOHOOO OO DD S

1 REAL P(7911911)eMU(Tol11911) sALPHA(T) oBETA(L1) 9X9SsT
é REAL H(11)eA(391]1)9COF(4911)
3 QEAL K(2911)eD(11)9TOToWwywWloY
4 INTEGER DXsDSeDT o XE9eSMeTMeXXeSSeTT
5 XE=7
é SM=11
7 TM=11
8 szlﬂ
9 NS=1n
10 nT=2,
11 F=2,7]1R28182846
C
(& 34 37 3% 3b 3b 3 38 3F S8 3 35 b I8 35 26 30 36 30 3 3F 35 38 3 3% 3 35 2b 38 3 36 3b 3E 1k 3b 38 36 3E 3F 3F b 3k 3k 30 3 3F 48 S 38 38 30 4 3 3 38 38 3E 3 3 4F 38 38 b 4H 3T
C NEFIVE FUNCTION ALPHA _
C IE 35 35 3F 35 36 3 38 35 2% 36 38 35 48 58 36 8 35 30 38 35 3t 3F 3 3 48 38 38 38 3b b 5F b 4k 45 3b bk 48 0 38 SF 30 38 30 10 38 3F 30 38 46 46 35 3 30 10 30 30 b AF dh 0 30
c i
12 WRIT (Ae112)
13 112 FORMAT (VY] Vv THE ECONOMIC MOBILITY IS ALPHA(X)®*#BETA(S) WHERE?Y)
14 WRIT-(Hhs106)
15 106 FORMAT(QVY)
16 NO 1na TX=1+XE
17 XX=DX3# (IX=1)
18 ALPHA (IX) = (XX+20e) ¥ (B0 e=XX)/10e%¥4,
C
C PPINTPRINTHHINTPRINTPHINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
19 WRIT (A+]00) XXeALPHA(IX)
20 100 FORMAT (! ALPHA(Y91340) IS 19F10.5)
21 10 COWT riNUFE
22 WRTT: (me106)
C DRIQ*DPIMTDHINTPRINTDRINTDRINTPRIVTPRINTPRINTPRINTPRINTPRINTPRIu
e
C
C 34 35 3b 35 36 38 Sh 36 28 46 4 38 30 38 38 3k 3% 3F 38 3h 3F 3¢ 3F 3t 3b 3b 3 3k b 3h 3¢ 3 ¢ 36 4b 3k 3¢ 38 38 36 3h b oF 3 3 36 26 36 3 3 3b 3 46 36 3h I 3h 3¢ 3k b 34 34 4 3
Cc PDEFTVE FUNCTION BETA '
C 38 36 5E 9 3¢ 38 5 3F 36 48 3F 38 3 3¢ 3¢ 38 4t 3 3 3k 38 A 48 3¢ 3¢ 34 4b b 3k 34 38 30 36 36 38 36 3 3b b db 3k b 38 3k 38 36 3 3F 38 38 3¢ 3k 6 30 3 30 36 36 b 3 b 0
c : .
23 NO 11 T8=]ebvm
24 SS=QE (185=1)
25 RETACTS)=(SS+10.)72000
G
C PRIMTPRINTDRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRI
26 WRITE(Ae1N1) SS«BETA(IS) ‘
27 101 FORAAT (0 BETA(Y913s%) IS '4F10.5)
2R 11 CONT tNUE
C PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRI!
C
(o %%%****%%**%%***%%*%*%%**%%%*********ﬁ*%*%***%Q*********%****%%%
C FIND ANALVTIC SOLUTION TO THE PDE

27s-




29
30

32
33
34
35
36
37
38
39
40
41

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

OO

DN D

2

ODOOOO0O0

12

2

21

30

pR/DY + DP/DT = D/DS(MU#P) = R¥*P
56 35 36 38 3 48 36 4F 45 38 35 37 37 30 10 3648 40 4040 46 35 3 30 31 6 36 4 45 31 38 20 3030 SE 0 3 E 0L S48 30 3H 203 41 331 30 13033 0 A A

NO 12 LT=1sTM

T=0Tu (LT=1)

N 12 Lx=lerk

X=X~ (I_&=1)

W= (eN003%X +.0006) ¥ (T=a005*T#T)=,0003* (THT/2=(,005%#T#%3)/3)
WY =F#d (=)
w?:T%((x+20.)*(X-HO.)+T*((30.-X)+T/3.))*(‘1-)
NO 12 I.S=1+5M

SE=Ngk (L.S-1)

S=S5S+«l0.

W=Sr 3 (w2/20000006) =10 :

YWt (21000 a+wit ((=408,) +2.80))

W= (Ww+1Ny) /S
D(LXyLSgLT) = (lstY/540,)%E# ((T=X)/200.) %Wl
AONT T NUE

**********%**%*%***ﬁ*%*%***************%*****%************%%****

SPLINE P (XeSsT) AGAINST X AND DIFFERENTIATE THE SPLINE

MU(XaSeT) IS DP/DX
3645 34 48 31 35 3 36 46 25 96 9F 48 21 46 9E E A0 35 35 34 35 3830 35 3 FAE 40 20 002 30 31 SE AL 220 3040 33001820 30203 3020 3033033 A3

nn 2n ITX=1eXE

X=0Xs (IX=-1) .

K(leTX)=X

CONT rNJE

CALL SETUP(XE+AsHeK)

NO 21 T9=1.5M

no 21 IT=1e1M

NN 22 TX=]9XE
K(2eTX)=P(TIXeISsIT)

CONT TNUFE

CALL SOLVE (asKeHs XE 9D COF)
NO 21 TX=1exrcC

X=NX+ (TX=-1)
MU(IXoISeIT)=COF (39IX) +X3% (2e#COF (24IX) +X#34#COF (191IX))
CONT TNUE

%**********%%*****%%************************%**************%****

SPLINE  H{(XeSeT) AGAINST T AND DIFFERENTIATE THE SPLINE
MUCXeSaT) IS DP/ZDX+DP/DT+R(X9SeT)#P (XeSeT)
%******%***%**********************%*********%****************%*#

NO 3y JT=1sTHM

T=DT#(1T7=1)

K(1etT)=T

COMNT yNUK

CALL SFEFTURP(TYeAsHK)

NO 37 TX=]19XE

X:WX%(IX—])

NO 31 T5=1«5M4

NO 372 IT=1e1M

K(PaTT)=P (IXeISsIT)

CONT rNUE

CALL SOLVE(A4KsHeTMeNs COF)
DO 37 IT=1e1M

T=DTs=(17-1)

MUCTY e IS s TT) =MU(IXe IS IT)+COF(39IT) +TH(2.%#COF (241I7)+

'-2744




e

74

75
16
77
78
79
80
A1
82
83
84
8s
RE

ae
R9
9n
91
ge
33

94

95
96
97
9e

99
100
101
102
103
104
105
106

107
108
100

111

DO D

C
C

C
C

31

47

41

11n

114

AT#3,500r (11 T) )+ (1a=eQ01%T)#H(L0003%X+0006) %P (IXeISeIT)
CONT v~ e -

$E 330 35 04 32 30 E E 35 34 35 38 503k 58 ¢ 3% 3 30 30 3 55 38 30 48 38 $F 36 38 20 36 26 36 3 38 35 41 328 2 3640 46 3 26 2846 38 SE 36 36 34 3 45 3 363634 3 36 38 385k
S Tar DP/DXFIR/DT+HR(Xe 59 T)#P (X956 T) AGAINST S AND
TaTRoe A Te Tre SPLINE FROM S Tu TrkE MAXIMUM VALUE OF  S.

Ulaene ) dn ENU CONDITIOUN PLUS THIS INTEGRAL
3830 3% 35 38 3% 3035 1 55 3 90 $F 98 37 36 Sk 4E b 3 2040 41 30 3k 46 3830 38 38 30 3 38 45 35 30 36 38 38 46 364 636 3k 30 30 38 38 2 46 30 28 35 3 336 404038 46 34 34 38

Y Y TRz e

S=MGn (To )

K(l « TS) =S

CONT &0

CALL Se1 P (isvigaeHeK)
Ny TAaz| e &)

DO a1l Tzl

w2 5= enw
K(Zy1€) =Ml (1X9ISy1T)
CONT 1IN I

CALLL SOLVF (2 sk qeHeSMy D CUF)
MU(TveS 2eTT)=n,

Q2= y8%q

CSlz=so-in
N gy TSP eSS
S1=S1~ .»

S2=G 5~y
I=S «1-1S
PUCT e e LTI =) (iR e 1+ 4 1T) +(((S2¥COF (191)/6e+COF (241)/34) 1
5 SA+TOF(341)/26)#52+4COF (44 1)) #S2=-(((S1%#COF(1e1)/4.
N FOOF (20 ) /3,)#STV+COF (3+1) /24 ) #S1+CUF (44]1) ) #*51
CONT yiNUE

PRTITPRINTIPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
de fT (Ae1170) .

FOWwMmaT (v ) vyt ValLUES ARE % ERROR IN MUs S AND T GIVEN, X ACROSSY)
JLTT - (Ay114)

FOAD 1T (v g1 S F X= U 10 20 30
N G4 =N} A V)

PRIVTERINTP INTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN

N AT T ey

d2T T - (AealnA)

S8=0gw (2 G- 1)

) wT KTz

TT=0T# (¥ T-1)

N 5 K X=] ¢ 0k

TF (D {rdeKsSax]) o¥iee) LUTO 51

MU (K e a2 aXT) = (nFTA(SY) FALPHA(KX) #P (KX e SMeKT) =MU(KXsKSeKT) )/
VO (KK LKk T)

STy w2
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SECUND ROw 1S HDIAGONAL
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Program IIT

Estimation of the parameters a(t) and d(x)
from values of the normalized fertility. The normalized
fertility might be estimated from the fertility curve
and the parameter b(t) which reéresents the family
size.
Here we chose as a test case:
X

d(x) = T00 x = 0,100,443, 50

i

a(t) 1H.4sin(@ ) - €,%,052, 204,20
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OO0
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82

84

85

114
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115

ACCT-NUMy * VERNER ' s TIME=60

***%%*ﬁ*-Nv%**********%*******************************************

THIS PROGRAM ESTIMATES THE PARAMETERS A(T) AND D(X) FOR THE
FERTTILITY DIFFERENTIAL EQUATION. DATA IN THE FORM OF VALUES
OF TWE NORMALIZED FERTILITY ARE REQUIREDs AND THESE MAY BE
ESTIMATED FROM VALUES OF THE FERTILITY CURVE AND THE PARAMETER
B(T) - THE FAMILY SIZE. '

TO TeEST THFE PROGRAM A CLOSED FORM SOLUTION FOR A SPECIAL CASE

IS USED.
3435 3% 34 35 36 35 3¢ 3 36 3 34 38 34 36 35 3 b 38 35 3 3F 35 3F 3¢ 38 38 3 35 46 3E 330 38 26 35 36 35 36 38 34 38 34 3¢ 3 3F $h 28 36 3434 3 30 34 3 3 333 S 3H 3 3

COMMON KsAsH9COF 9D
REAL FBAR(S51911) oFBARST(51911) 9K (2451)9G(51e11)96T(11e51),41ID(S51)
REAL AT(11)+D(51) ¢PROD(11,411)
REAL A(3¢51) ¢H(51)4COF (4,51)
REAL Nu(s}1)
3 3 36 35 45 35 35 3b 34 26 3F 30 3438 3b 3E 34 3 3 3E 3F 3 330 3¢ 3 48 3 34 2 35 3 35 35 35 3h 35 3F 3E 3F 3 3 36 3b 35 4 36 3E 3F 3b 3418 36 3 3F 8 3k 3k 3P 3k 3 3k 3t
OBSERVE THAT DYNAMIC PARAMETERS-ARE BEING USED WITH COMMON AND
AN ERROR MAY OCCUR AS A RESULT OF MIXED INDEXING = INSURE THAT
COLU“NS ARE COMPLETELY FILLED ON USE OF A DYNAMIC INDEX .
38 36 3 3¢ 45 2 3 3F 38 36 3 36 40 36 34 35 3 30 38 338 3F 3F 3F 35 3 26 4 3b 3b 35 35 3t 3 38 36 38 3F 35 38 3% 35 34 3F 3F 3 3 3 334 3 344k 3F 3 3 33434 330 3 343
NT=11
NX=51
CALL ANAL (NXoNT9sFBAReATHID)
D2=012)
AT2=AT (2)
CALL OBS(NXsNTsFBARsFBARSTSG)
CALL TRANS (NXeNT9GeGT)
CALL MULT(11+51eGT9GsPROD)
CALL EIGEN(PRODs11sATsID)
35 35 45 3E 38 35 45 36 3¢ 4 35 48 30 35 3t 3F 36 b 34 46 3¢ 3 3F b 3t 38 38 30 35 3F 35 3 30 33t 3F 38 35 3E 3k 3h 34 36 3E 3F 3 38 48 36 35 3 3 3b 30 3E 363 48 3 35 36 38 3 3T
TO EXHISBIT ERRORS IN THIS APPROACH WE CALCULATE A(1) EXACTLY
AND MULTIPLY THE OTHER COMPONENTS BY THE APPROPRIATE FACTOR,
36 36 3 35 34 38 31 3 35 3 3 10 30 35 3F 3 35 3 34 36 35 3b 3 3t 3F 3 4 30 35 35 31 3 3¢ 34 30 3F 38 3 3F 3E 3 34 34 3F 3F 46 3 36 38 3F 3 3F 3b 3¢ 3B 36 3 3E gt dr kL it
AT2=AT2/AT (2)
N0 82 IT=1.NT
AT(IT)Y=AT(IT)*AT2
CONT INUE
NO R’ TX=] eNX
SOM=AT (1) #G(IXe1)
SUML=AT (1) ®*AT (1)
SUM=SUM+AT (IT) #G(IXsIT)
SUM1=SUM1+AT(IT)#AT(IT)
CONT INUE
N(IX)=5UM/SUM]
CONT TNUE

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
WRIT=(6.114)

FORMAT (0« ' A(T) OBTAINED FROM 11 BY 11 MATRIX ISt)

WRITE (64104) (AT(I)sI=1911)

FORMAT(101'45F12.6)

WRIT~(64115) '
FORMAT (L0 D (X) OBTAINED AS (G(XeT)eA(T))/Z(A(T) o A(T)) ")
WRITF(64104) (D(I)eI=1951) '
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN

STNP
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69

OO0 OO00

O

116
104

117

105

END

SUBRNUTINE ANAL (NXeNT+FBARGAT,D)
REAL FBAR (NXgNT) ¢ AT (NT) oD (NKX)

1 3¢ 4t 38 3t 330 38 36 38 3F 3¢ 38 36 3k 38 34 34 30 b 4 3k 38 3h 3t 3 2 6 3b 3b 3F 36 3b 638 3 3030 3 3 36 3h 3 3 3 36 3 36 30 34 3 b 2 3b 3034 b 3k 3k 4 38 34 34 W
SUPPASE  NI(X)=X/100 )
SUPPNSE  A(1)=1e+e4STN(T/6.)
SUPPNSE FORAR(X)=(1=COS(X/R))#X/100
THEN THIS SUSROUTINE COMPUTES THE CORRESPONDING ANALYTIC SOLUTION
TO THF FERTILITY PDE ,
D(FBAR) /DT = =A(T)*D(D(X)*FBAR) /DX
IF  «(T) < o THERE IS AN ADVANCE IN THE FERTIL1TY
IF  «(T) > 0 THERE IS a DELAY IN THE FERTILITY

3648 36 3% 46 28 48 30 35 3 38 36 34 34 35 3 30 35 3 3 38 3 38 30 3 36 30 3 30 34 46 36 36 38 26 3 38 3630 35 3 38 648 48 30 36 38 30 4838 36 38 438 30 S0 38 33 AE

DT=2,
DO 3 IT=1«NT
T=DT#(1I7-1)
AT(IT)=1+.4%SIN(T/6)
W=(2e4+T=24%C0O0S(T/64)) /400,
W=EXP (=W)
DO 8 TX=1¢NX
X=FLOAT (IX-1)
DOIX)=X/400.
FBAR(IXoIT)=a Q1 #X*WHW# (1=COS (X#W/84))
CONTINUE

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN
WRIT- (69116)

FORMAT(v1's' A(T) FROM THE CLOSED FORM IStv)

WRIT~(649104) (AT(I)+I=1s11)

FORMAT (10 "95F12.6)

WRIT (64117)

FORMAT('Q'er D(X) FROM THE CLOSED FORM ISt)

WRITF (64104) (D(T)eI=1951)

WRIT (64105)

FORMAT('0Y)
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN

RETURN
END

SUBROUTINE OBS (NX+NTsFBARyFBARST +G)
36 34 36 2 35 2 36 36 35 36 35 38 30 35 3 36 3F 36 3k 26 38 38 31 38 3 36 36 b 3638 3 3k 3 38 36 3E 6 36 3 36 264 38 3 34 30 38 6 38 26 48 36 3636 30 3 3E 343 H Er e It
THIS ROUTINE COMPUTES THE 'OBSERVATIONS' OF THE FORM
INTESRAL FROM 0 TO X OF =D/DT(FBAR(XsT)) ALL DIVIDED BY FBAR(XsT)
THE ARRAY G STORES THE OBSERVATIONS.
3% 38 35 36 35 36 38 35 45 35 38 40 30 38 47 35 3 38 3 3k S 38 36 38 38 35 38 30 36 36 3F 3 38 3 38 30 38 2 38 2F 3 3E 4 3 38 36 35 38 38 36 3k 20 34 3t 3F 3E 3 03 E3E S
COMMON K oA sy COF oD
REAL K(2+51) 9A(3+51) sH(51) sCOF (4951) 9D (51)
REAL FBAR (NXsNT) sFBARST (NXsNT) +G (NXsNT)
NT=p,
NO 5 T=1eNT
K(leT1)=DTH*(I=14)
CALL SETUP (NTsAsHsK)
NO 25 IX=1sNX
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70

72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93

94
95
96
97

oe

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

OO0 0O0000D

15

24
25

35

45

10

N0 15 1T=1eNT
K(2+IT)=FBAR(1X,IT)
CALL SOLVE(AsKeHeNT4DsCOF)
PO 24 J=1¢NT
T=D0T#(J-1.)
FRARST(IXeJ) =34#¥COF (Lo J)HTHT+2,#COF (24 J)#T+COF (34 )
CONTINUE
CONT INUE
DO 3u T=leN2
K(lsI)=I-1w
CONT TMUE
CALL SETUP(NXeAgHsK)
NO 55 TT=1eNT
NO &5 TX=1e¢NX
K(24IX)=FBARST(IXsIT)
CALL SOLVE (AsKsHeNX9eDs COF)
G(lsIT)=00
X=(o
NXMY=NX=~1
NN=0,
NO B85 J=1eNxM1
DO=DD=X®(COF (G J) +X¥ (COF (39 J) /P e+ X# (COF (24J)/ 36+
X#COF(19Jd)744.)))
sz"’lo ‘
DD=DD+X* (COF (49 J) +X# (COF (39 J) /24 +X# (COF (PeJ) /3 +

2 X#¥COF(19J)/744)))

G(J+1+IT)==DD/FBAR(J+141IT)
CONT INUE

RETURM

END

SUBRNUTINE SETUP (NsAyHgK)

36 b 38 38 3¢ 36 3 38 36 3h 36 4E 30 20 35 b 34 3h 30 3E 34 3t 3h 3h 3h 3 34 38 3E 3¢ 3 3F 38 3E 3b 4E 3b 38 3630 38 3E 34 38 34 36 34 36 3E 38 3H 3 B 36 38 3 33 3 AL AL 3 3

THIS ROUTINE SETS UP A TRIDIAGONAL MATRIX A OF THE SPLINE EQUATION
IN A 3 #8Y N ARRAY = FTRST ROW IS SUPERDIAGONAL
SECOND ROW IS DIAGONAL
THIRD ROW IS SUBDIAGONAL
AND THEN DECOMPOSES A TO LU SO THAT
FIRST ROW IS SUPERDIAGONAL OF U, SECOND ROW IS DIAGONAL OF U

THIRD ROW IS SUBDIAGONAL OF Le DIAGONAL OF L IS UNITY
3438 35 3F 4 46 38 36 36 36 36 48 35 36 35 38 30 30 30 36 30 30 330 30 3140 2 28 30 30434 26 3035 31 3430 303 30 48 3030 36 31 34 3 20 30 2 3 3 34 38 36 3 30 3 4 dr 36 3

REAL A(3eN)sH(N) 9K (24N)

NM]=N=-1

H(2) =K(1,2)=K(141)

NO 1n I=p«Nw}
H(I+1)=K(lgI+1)=-K(1lel)
A(Le D) =H(I+D) /(H(I+1) +H(I))
A{(Z241)=240
A(34T)=1-A(141)
CONTTNUE

A(lel)==2.

A(291)=2'

A(3¢1)=0,

Alls) =0,

A(2y V) =2,

A(3¢9)==2.

PO 171 T=2.N
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115
116
117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142
143
144
145
146
147

148
149

DOOOO0OO0O00O0

ioEoNoNoReo N QRO Re

11

12

13

14

A(3¢T)=A(341)/A(251~1)
A(2eT)=A(291)=A(39I)#A(1sI~-1)
CONT TNUE

RFTURN

END

SUBRNOUTINE SOLVE (AyKeHeNsDsCOF)

*%**ﬁ*%%%**#**%%**%*%%****%*#**%*****************%%%*******%***%
THIS RQUTINE CALCULATES THE SECOND ORDER FINITE DIFFERENCES OF THF
SPLIVE« AND THEN SOLVES AM=D o (BY FORWARD AND BACKWARD
SURSTITUTION) s PLACING M{VECTOR OF SECOND DERIvATIVES) IN D
END POINT CONDITIONS NOW USE THIRD ORDER FINITE DIFFERENCES
TO FeTIYMATE THIRD ORDER DERIVATIVES AT X0+H/2 AND XN+w/2

%***%*%**%*%%****%%*********#%**%***#**#%***********************

REAL HI(N) ¢D(N) o A(39N) 9K (2 N);COF(49N)
N(2)=(K(242)=K(2+1))/H(2)
NM] =%=]
N0 12 I=2¢NM1
N{I+1)=(K(2sI+1)=K(251))/H(I+]1)
DD =6%#(D(I+1)=DA{I)) Z(H(I+1)+H(T))
CONT TNUE
N(]) ==2 % (=K (2s1)+K(204) +3¥ (K(292)=K(243)))/(H(2)#H(2))
NN ==2.3 (=K (RaN) +K (2eN=3) +3,# (K(2¢N=1) =K (29N=2) ) )/ (H(N=1)3#%2)
NO 13 T=24N
NI =D(I)=A(3:s 1) #¥D(I=1)
CONTINUE
DIN)Y=D(N)/A(24N)
N0 la I=2«N
J=N+1=-1
DN =(N(I)=A(Le D) D (J+1) ) /A(29))
CONT TNUE
CALL POLLY (NgDeKsHsCNF)
RETURN
END

SURRNUTINE POLLY (NeMyKoeHy COF)

3548 36 3 45 36 36 4 3 38 26 48 362638 46 36 3036 26 36 46 36 36 35 36 25 35 2036 2036 40 28 36 36 3645 3 36 35 35 30 38 30 30 30 64 35 34 45 30 36 44 48 30 30 240 31 36 36 38

THIS ROUTINE COMPUTES THE COEFFICIENTS OF THE SPLINE POLYNOMIAL
ON FACH SUBINTERVAL

K IS THE ARRAY OF DATA POINIS

H IS THE VECTOR OF SUBINTERVAL LENGTHS

M IS THE SOLUTION VECTOR TO THE EQUATION AM=D
36 3836 3 3 35 26 35 48 36 1 4F 0 35 3 38 3648 35 45 36 31 30 3t 38 35 35 36 48 36 34 4% 28 3528 35 38 30 36 36 35 35 35 30 35 46 35 3 30 34 36 36 36 46 36 48 38 38 36 3 3k 4k 4

REAL M({N) oK (24N) 9H(N) »COF (49N)

NM] =nj=]

NO 11 I=1sNM]

COF(1eT)=(M(I+1)=M(D)) /7 (6,3H(I+]1))

COF(2eT)=(K (Lo I+1)#M(I) =K (1o I)¥M(L+1))/(2.%H(1+]))
NDO=M(T+1)#K (1o 1) #K (1) =M(I)#K(1oI+1)#¥K(1eoI+1)
B42.¥K (2a]+1)=2.%K(2e7)

COF(Re D)= DD/ (2e#H(I+1))) +H(T+1)# (M(T)=M(T+1)) /6,
PO=M(I)#(K(1oaI#1)##3)=M(I+1)#(K(1oI)##3)+6 ,HK(1e]+1)#K(2s1)
Bwo# (1o ])#K (29 I+ 1) +K (1o 1) #M(I+1)#(H(I+1)3##2)=K(1oI+1)#M ()3

S&(H(I+])#3%#2)
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150
151
152
153
154
155

156

157
158
159
160
161
162
163

164

165
166
167
168
169
170
171
172
173
174
175

176

177
178
179
180
181
182
183
184
185
186

1

1

DO O

OO0 0

o

DI OOO0O0

1

6

66

67

76

177

COF (aa1)=DD/7 (H(I+1)%#6,)
CONT TNUE
NC 1A J=ls4
COF ( 1oN)=COF {JeNM1)
RETURN

ED

SUBRNUTINF TRANS (NXyNTsGeGT)

3638 3k 3 38 46 3 3 4 3 38 35 38 45 38 3538 b 38 38 35 38 38 3E 3F 34 35 36 35 36 30 36 35 34 34 34 30 3k 38 38 3E 35 3T 3 30 30 3020 28 35 20 34 4 36 3 3 A0 4R3I JE 3

THIS ROUTINE TRANSPOSES A MATRIX
1648 3 36 25 46 25 38 6 46 35 8 3648 48 3 36 36 35 35 35 334 35 36 35 38 3 30 30 230 30 20 44 36 3535 30 35 38 38 34 36 34 38 36 45 45 3048 3 30 4EIE I SE I 3L S de A

REAL G(NXoNT) ¢ GT (NTsNX)
NO 6% TX=1elIX
NO 65 TIT1=1sNT
GT(ITeIX)=G(IXeIT)
CONT INUE
RE TURN
END

SUBRNUTINFE MULT (NAsNByAsBsPROD)

36 35 35 45 38 28 34 35 35 38 3F 34 3F SF 38 38 35 30 36 36 30 3 3 35 34 3 36 3 30 3 A0 2 28 46 30 4 38 3 30 38 3F 3b 30 3 28 38 38 38 3F 3E 3k 38 36 3F 34 36 36 3 38 3 2k 2 33t

THIS ROUTINE MULTIPLIES TwO MATRICES
3 3548 4k 3¢ 6 35 48 35 45 26 38 35 36 35 30 36 36 36 36 36 35 38 2 46 260 36 30 30 3338 35 36 30 40 20 2038 38 2038 35 36 30 40 30 36 30 34 36 3031 34 30 S AL e 3t

REAL A(NAsNB) s B(NByNA) 9 PROD (NASNA)
NO A7 TX=1«NA
DO 67 1T=1sNA
SUM=A(IXs1)#B(14IT)
DU 66 K=2¢NB
SUM=SUM+A (TXsK)#B(Ks IT)

CONT INUE
PROD(IXsIT) =SUM
CONT INUE
RFETUPN
END

SURRNUTINE EIGEN (PRODsNAsNUEV)

24 38 3 38 35 38 3t 3836 3 30504 38 38 3030 3 30 36 4030 38 35 34 36 35 3 S0 36 46 30 36 3 3 34 38 36 38 36 3048 3 3 35 34 35 3834 30 30 3040 40 04 S0 30 e 40 3k
THIS ROUTINE FINDS THE DOMINANT EIGENVECTOR OF THE NA BY NA
MATRTX PROD AND PLACES 1T IN EV WHICH IS NORMALIZED BY THE

1=NO®M.  ITERATION RUNS UNTIL ROUNDING ERROR IS DOMINANT.,.
36 4R34 3¢ 36 3¢ 3k 35 3 46 3 36 45 35 38 3t 34 38 38 45 3 30 3036 40 20 36 23040 51 35 36 38 38 38 3638 35 38 28 38 36 38 4630 0 20 30 36 30 38 330 S 3400 31 3 3E

REAL PROD (NAsNA) o EV (NA) sNUJ(NA)
suUml=0,
NO 77 TX=1+NA
SUM=PRUOND(IXe1)
DO 76 1T=24NA
SUM=SUM+PROD (IX4IT)
CONT INUE
NU (1 X) =5UmM
SUM]1=SUM] +SUM
CONTINUE
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187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
2le

86

87

96

97

FENTRY

FRROR=1,
CONT rNUE
gUMZ~:0 .
NO 87 IX=1e9A
SUM=PRON (IXe 1) #¥NU(1)
NO 86 I[T=2¢NA
SUM=SUM+PROD (IX4IT)*NU(CIT)
CUNT INUE
FV(TX)=SUM/SUM]1
SUM2=SUM2+EV (IX)
CONTINUE
SUM1=0,
ROUMN= s H#ERROR
FRROR=0a
DO 97 Tx=1sMNA
SUM=PRUND (IX4 1) *EV (1)
NO 96 TT=24NA
SUM=SUM+PROD (IX« IT)HEV(IT)
CONT INUE
NU (1T X)=SuM/SUM2
SUMI=SUM]I+NU (IX)
EFRROR=ERROR+ABS(EV(IX)=NU(IX))
CONT INUE
1F (FRROR.LT.30UND) GOTO R9
RETUGN
END
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A(T)

D(X)

ACT)

D(X)

FROM THF CLNSED FOwM IS

1.336588

1.182%09

0.007500
0.020000
0.032500
04045000
04057500
0.070000
00082500
0095000
0.107500

0120000

1.339316

1.183847

yALT))/Z(A(T) «A(T))

06007491
0.019980
0.032468
06044955
0.057442
0069929

0.082415

1.000000 1.130877 1.247348
1.398163 1.343718 1.289234
0.923773

FROM THE CLOSED FORM IS
0.000000 0.002500 0.005000
0.012500 0.015000 0017500
0.025000 0027500 04030000
0.037500 04040000 0042500
0.050000 0052500 0055000
04062500 0.045000 0.067500
0.075000 0077500 0080000
0.087500 0090000 0092500
0.100000 04102500 04105000
0.112500 0+115000 04117500
0.125000

OBTAINED FROw 11 BY 11 MATRIX IS
0.997756 1.130877 1.248731
1.399143 1.345165 1.290611
0.921801

OBTAINED AS (G(X,T)
0.000000 0.0nR437 0004990
0.012487 0.01498% 0.017483
0.024975 04027473 0.029970
0.037463 0.039960 0e042457
0.049950 0.052447 0.054945
0+062437 0e0A4934 0.067432
0.074924 0.077421 0.079918
0087410 0.0R9907 0092403

0.094899
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1.388775

1.056447

0.010000
0.022500
0.035000
0.047500
0.060000
0.072500
0.085000
0.097500
0110000
0122500

1.390486

1.058285

0.009990
0.022478
0.034965
0047452
0.059939
0072426
0.084913

0.097395




0.099892 0.102386 0.104882 0.107379 0.109874

0.112368 0.114861 06117357 0.119841 0.122342

0.124579
CORE USAGE 0B tFCT CODE= 12528 BYTES.ARRAY AREA= 12156 BYTES.TOTAL AREA
jDIAGNOSTICS MUMBER OF ERRORS= 0s NUMBER OF WARNINGS= 0+ NUMBER
COMPILE TIME= 4,75 SEC+EXECUTION TIME= 20.16 SEC, QUEEN'S WATFOR VERSION
COST FOR THIS PROGRAM IS % 1.R3 RUN IN HSC MAR 2ls 1974
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Program IV

It is expected that available data will be in the
form of a histogram: that is, for population the number
of individuals between the ages of x and x + h years
is known. To generate a density function for this
histogram, a fourth order spline approkimation routine
is used. To investigate the accuracy of the scheme, the
histogram is regenerated by integrating the spline ‘

constructed.
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-1 L

{

W N =

~N o U &

29
30

31

32
33
34
35

37
38

39

$J0B

OO0O0

100

101

106

102

25

OO0

DO0O0O0

26

ACCT-NUMgVERNERS TIME=60
R R R Rt R R R R R R R R e R A R R R R g PR IR R R R R RR LR E-F- R R R Y- R P - XX 022 3 -3- F-F- F-X- X- F-X.
THIS ROUTINE USES A POPULATION HISTOGRAM TO GENERATE A POPULATION
DENSTTY FUNCTION USING A FOURTH ORDER SPLINE APPROXIMATION
**%**%*************%#****%***%*****%**%%%%*****************#*****
REAL A(303+9)+P(100)+Q(303) PO

INTEGER TeJeKeTNyTOWTT

INTERER T3
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
READ(S54100) TN

FORMAT(I3)

REAN(S4101) (P(I)s I=1sTN)

FORMAT(10FR.O)
RRRRIRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
PRINTPRINTPRINTPRINTPRIVTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT
WRITE (69 106)

FORMAT (*1

PRINT, 'THF GIVEN POPULATION ISt

PRINTS v ¥

WRITr (69102) (P(I)eI=1sTN)

FORMAT (" 'e10F8.,0)
PRIMTPRINTPHINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT
TO=0

T3=3% (TN=TO+])

CALL ISPLIN(A;TOQTN’T3’P9Q)
CALL CHECK(P+QsT3sTN)
P(1)=Q(3)

P(2) =0(%)

DD 25 T=3+TN

PI)=Q(3%#I=-2)

CONT INUE
PRINTPRINTPRINTPRINTRPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT
PRINT, t
PR[NTQ L
PRINT« 'THE POPULATION DENSITY AT AGES 09192%e¢4999 IS?
PRINT, v ¢
WRITE (A9102) (P(I)eI=1sTN)

WRIT - (64106)

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT
PUNCHPUNCHPUNCHPUNCHRPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCH
WRTITE(7+101) (P(I)sI=1sTN) '
PUNCHHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCH
STOP
END

SURRNUTINE CHECK(P+QeT3sTN)

%**%%***#%*******%**%*#**********%*%*********************#******ﬁ

THIS SUBROUTINE REGENERATES THE POPULATION HISTOGRAM FROM THE

DENSTTY FUNCTION BY EXACT INTEGRATION OF THE FOURTH ORDER SPLINEﬂ

HENCF THE FRRORS ARE THOSE SUFFERED AS A RESULT OF ROUND=OFF ERRO

35 30 38 38 35 45 38 SE 30 3F 38 3 b 38 35 3 28 2k 36 3E 38 3 38 3F 3 3b 3k b 3 38 38 3 38 3% 3F 38 30 30 30 3 38 38 38 3F 34 3 38 3E¢h 36 36 ¢ b3 Sh b Sk 3k S ¢h

INTEAGFR T3,TN ' '

REAL Q(T3) P (TN)

PL1)=(Q(3)+W(5))/2.=(Q(2) +Q (&) ) /24,+Q0(6)/120

P(2) = (Q() +Q(5)) /2. (Q(B) +Q (&) ) /24.+Q(9) /120,

NO 24 TI=3«TH )

PlI)=(Q(3%T+1)+Q(3#1=2))/2e=(Q(3#[+2)+Q(3%*I=1))/24.+Q(3%I+3)/120
CONT INUE

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT

PRINTy v 0
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40
41
42
43
44

45
46

47

48
49
50
51
52
53
54

56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81

CP)

83

DOOHOOHOOD

102

103

104

30

31

32

PRIiyTs v

PRINTe*THF POPULATION REGENERATED FROM THE FOURTH ORDER SPLINE IS
PRINT, v ¢

WRIT-(Ae]102) (P(I)eIz=1eiTN)

FORMAT (Y v410F8.0)
PRIMTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTY
RE TURN '
END

SUBRNUT INF CREATE(AsTOsTNeT39P9Q)
36 36 3% 48 38 10 38 38 3¢ 48 38 48 3 36 38 36 38 38 36 48 36 35 38 30 3F 3¢ 34 36 3 3F 35 B 38 36 36 36 30 38 34 3 36 48 36 36 36 30 30 38 26 36 36 36 36 46 3636 34 36 3436 36 38 3 48 34
THIS ROQUTINE CREATES THE INTSPLINE MATRIX FOR APPROXIMATING
A DESSTTY FUNCTION GIVEN SUBINTERVAL INTEGRALS
THE INKNOWN VALUES Q(I) ARE THE VALUES R4(0)9sR2(0)sR(0)sR2(1)
R(1)4R4(1)aR(2) 9R2(2) sR4(2) 940etR(I)9R2(2)9R4(I) 9 0aue
R(TD) oRZ(TO) 4+R4(TO) & _
RBOUNMNARY CONDITIONS ARE Rev(Q)=R**1(0)=R(100)=R*'?1(100)=0
35 35 2 36 38 38 38 35 4 36 36 56 3 38 35 36 3¢ 37 35 3536 36 35 31 38 30 35 40 3 35 36 35 25 41 35 40 330 40 36 30 38 30 35 30 35 3030 38 30 38 36 3 38 38 36 35 3540 38 38 3 38 3 44
INTEGRER ToeJsKeTNeTOsTT i
INTEAEw T3
REAL A(T349) 3P (TN)Q(T3)
NG 3~ I=1413
RRRERPRERRRRPRIYKRRRRRRRRKREKRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRI
READI§4103) D :
FORMAT(F1DLa)
REAND(54104) (A(TeJd)eJd=199)
FORM-~T (YF H,%)
N0 3 0 J=1e9
A(Te 1)=A(Te.N/D
CONT TNLE
RERRPHRHRRRHRRRRRRRRRRRKRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
TT=T=T0-1
nO ER T:L’.QII
DO 31 J=1e9
A(Z2+3%T4J)=A(11sJ)
A(3+3%TeJ)=A(124J)
Alg+3T4J)=A(134J)
CONT TNUE
TT=TT+1
PEAY(Belna) (A(3%TT+24J) 9J=149)
READ (S INU) (A(3#TT+34J) s J=199)
NTI=To+2
NO 32 [=0i]1«1T
O(3%T~-1)=0,
N(3#T)=0o
Q(3%T+])=2#P (1)
CONTINUE
N(1)-0.
N2 =0,
Q(3) =2%P(TO+1)
N(4) =0
N(3#TT+2) =0,
N(3#*TT+3) =0,
RET N
F_-"“ll

SURRUTTNS TSRPLIN(AneTUsTINeTIeP4Q)
35 5k 38 30 36 35 35 3% 30 3F 96 4v 3 5 3 58 35 SF 38 38 36 38 2% 38 5% 35 3¢ 3b 34 48 38 36 3t 3% 38 38 3k 3 35 36 38 31 3k 38 3 48 36 Bh 38 3k 34 3k 36 3t 36 3k 3b 2k 36 36 36 30 30

THIS #OUTTHF SOLVES THE INTEGRAL SPLINE PROBLEM FOR A POPULATION
2535 36 36 36 48 45 4F 3535 5% 15 4630 9 34 38 5630 3435 48 35 30 2 4 38 38 340 34 3k 4048 38 48 36 38 35 35 36 20 30 46 35 30 35 3636 38 36 34 30 35 38 45 38 30 203 0 40 30 303t
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¢t T

84
/5
86
87
88
89
90
91
9?
93
94
95
96
97
9Aa
99
100
101

102
103
104
108
106
107
108
109
110
111
112

ITNTEAFR TO «TtieIledeK oT1
TNTESER T3
REAL A(T349) P (TN) 9 Q(T3)
CALL CREATF(AGTOsTNsT34FP4sQ)
Ny 33 T=16T3
DI =00L)/7a(1+3)
N 3 =R Q
A(Te J)=A(IeJ)/7A(Is5)
34 CONT TNUE
A{Te=)=1
NO 33 K= ,4
IFE((T+K) 3T« T3) GO0 33
DL+ ) =Q(L+K) =a([+K 4 G5=K) #Q(])
Y 38 J=2e5
A(1+Kaa=K+ ) mA(T+Ke4=K+J) =A(T+KsS5=K) #A (T v 4+J)
35 CONT INUE
A{T+Ke5=-K) =0
33 CONT TNUE
3435 30 38 45 36 5 3F 35 36 2F 56 38 38 3 38 36 3F 5k 46 3846 3136 34 36 35 36 30 35 34 3 3 38 3 36 3 35 44 3 36 38 30 30 34 3 3 30 30 30 4b 3 45 36 36 35 3 2048 3 3 30 23
RACKSUASTTTUTTON
34 36 30 35 34 38 S SE 45 3% 5F 5k 3F 4 oF 3F 38 30 3T 3E 5L 30 36 30 30 3p 36 3 3E 36 3P 3 16 24 3E 3L 3E I L Ip A b W IE P b PN
N=3# ¢TM~TO+ 1)
Q(N=71) =0 (N=1)=Q(N)*A(N=] o)
QIN=2) = (N=2) = (W (N)*a(N=247) +Q(N=1)¥A(N=246))
QM=) =W (N=3) = (R (N)FA(N=348) +Q(N=1)#FA(N=397) +Q(N=2) #A(N=-3+6))
N0 34 T=44M
K=aN=T+1}
O 36 U=le4
QUK)=Q(K)=A(Ke5+J)#Q (K+))
3A CONT TNUE
RETjen
END

OO0

SENTRY
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THE GIVEN POPULATIOw

1023102.1000000,

971804,
951483,
924609,
883342,
810900,
677771,
454548,
181765,

21577,

94989n,
949171,
921317,
877883,
800910,
658749,
427593,
157799,

15514,

Is

9694230.
942034,
944789,
917880,
R75098,
79n282,
6441 761 .
4nnllle.
13=297.,

1 " R33¢

G0Y0]11%.
966179.
944337,
914282,
HHB9I6T,
718981,
620782
372240,
114440 .

7327

Y8ATHT .
9647266,
9414800,
910515,
859464,
766961,
599824,
34413060,
953706,

4787,

983817,
962270,
939197,
906554,
R52554
754191,
577882,
315982,
18221.
3011.

THE POPULATION REGEWERATEDN FrOM THE FOURTH ORDER

971804,
951483,
924600,
R83342.
677771,
454548,
181765,

21577.

_1023102.1000000,

969890,
949171,
921317.
B77883,
800910
659749,
427593,
157799,

15514,

994230,
96103183,
GuqnT89,
917880,
87>n98,
790282,
400112,
133297,

1” 8330

THE POPULATION DENSTTY

1038460.1008672,

972804,
952623,
926209,
RB5972.
B15694,
686464,
467817,
194185,

25119,

970830,
950337,
922987,
880664,
806008.
£68919,
441169,
169555,

18298,

995297,
96296y,
Q47992
91ahz2YyY,
BT=047,
795705,
651419,
411929,
](4“"1?8}30

129A0 .

9901164,
966178,
944337,
914282,
KROEB9AT,
77549481,
68{)762-
372240
114440

7327‘

AT AGES

062581 .
Q67114
945576,
916199,
R69092.,
784748,
630930,
3K6229,
124581 .

a901.

986766,
964266,
941806,
910515
259464,
7166961,
599824,
344136,
95378,
4787,

ele29e

988103,
965234,
943085,
I12429,
B62781.
773094,
6ln466,
358212,
104599,

5914,

—296;v

983816,
962270,
939197,
606554,
892554,
754191,
577882,
31598<,
8221,
3011.

00099

985351.
963284,
940516,
908568,
896079,
760704
589017,
330052.
86475,
3786.

IS

981102
960201,
936492,
902393,
Ba5214,
140631,
554975,
287973,
63036,
1818,

978541,
958098,
933692,
898007,
837413,
726241,
531133,
260322,
49838,
1005

SPLINE IS

981102,
960201.
936492,
902393,
B45214.
740631
554975,
287973,
63U 36
1818,

582383,
961243,
937861,
904509,
848958,
147547,
566587,
301936,
70297,
2334,

978541,
958098,
933692,
898007,
837413,
726241,
531133,
260322,
49838,
1005,

979819.
959156,
935108,
900240,
841394,
733577,
543207.
274070
56107,
1363,

976124,
955942,
930788,
893382,
829114,
710990,
506403,
233251.
38593.
454,

976124,
955942,
930788,
893382,
829114.
710990
506403,
233251.
38593.
454,

977299.
957028,
932259,
895735,
833348,
718762,
518911.
246671,

43896,

688,

973869,
953743,
927763,
888504,
820292,
694843,
480850,
206989,
29215.
125.

973869,
953743,
927763,
888504,
820292,
694843,
480850,
206989,
29215.
125.

974970,
954851,

929297,

890988,
824794,
703069.
493758,
219966,
33602.
262




CORE USAGE NRIFCT COoDE= 6336 bYTES.ARRAY AREA= 12520 BYTES.TOTAL AREA

DIAGNOSTICS MUMBER UF £RRORS= 0s NUMBER OF WARNINGS= 0s NUMBE
- COMPILE TIME= 2.31 SFCSEXECUTION TIME= 12433 SEC» QUEEN'S WATFOR VERSIO
COST FOR THIS PROGRAM IS % 1619 RUN IN HSC MAR 19, 1974
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