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Letter of Transmittal  

Dr. A.R. Demirdache, 
Director, 
Technological Forecasting 
and Technology Assessment Division, 

Ministry of State for Science 
and Technology, 

270 Albert Street, 
Ottawa, Canada, 
KlA 1A1. 

Dear Dr. Demirdache: 

have pleasure in forwarding to you the final report prepared 

by Dr. Jon Davis and Dr. James Verner of the Department of Mathematics, 

Queen's University of the Population Model which was commissioned by 

the Ministry. 

• Since the general philosophy of the Model was set forth in our 

Interim Report of April 15, 1974, it was felt unnecessary to repeat 
that in the introduction to the Final Report, but rather to append 

the Interim Report as Appendix D . 

I believe that you will agree with my judgement that the 

present work opens up a new and potentially extremely important 

approach to modelling the growth of populations. This task is an 

indispensable step in any serious attempt to model national, socio-

economic problems. 

I believe that you will wish to bring this Report to the 
attention of the statistical services of the Government, with a 

view to studying its implications for the form in which population 

statistics should be collected and encoded, in order that there be 

available the data necessary for realistic modelling of the pop-

ulation of Canada as a whole or of any of its regions. 

I would remind you that according to the contract between 

us, the right of publication of the details of the procedures 

outlined in this Report in scientiric journals has been reserved 

to ProCessors Davis and Verner. This, of course, does not preclude 
the Ministry rrom distributing the whole Report in any way it wishes. 

In particular, you may consider that it would be of interest to the 

International Institute for Applied Systems Analysis and to various 

organs of the United Nations concerned with economic development as 

related to population growth. 

AJC:mh 

Yours faithfully, 

- 

A tiJ. Coleman, Head, 
Department of Mathematics, 

Queen's University. 



Abstract 

Th 1s report discusses final development of the 

Queen's Mathema -Ucs Department Population Model. 

The basic models and techniques presented in the 

authors' interim report on this work have been extended, and 

the algorithms have been tested on the available real data. 

Also reported here is the development of 

methodology and software for the estimation of linear input-

output models which includes a provision for the modelling 

of an unknown exogenous component in the observed output 

records. 
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Surface Plots 

Certain results in this report are displaYed 

in the form of computer-drawn plots of surfaces in three-

dimensions. The variables involVed increase  in the directions 

schematically indicated below: 

The ranges of the "base variables!! involved are 

mentioned in the body of the text; the range of the flheight 

variable!' appears beside each drawing. 
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I. 	Introduction 

This report considers further aspects of the general 

problems of the construction of dynamical population models 

using methods described in the authors' Interim Report [3]. 

The basic structure of the models considered is 

described at length in [3], and the various reasons for 

adopting that structure are explained in that document as 

well. Our subsequent experience has not led us to modify our 

basic models, and the general numerical methods for estimation 

proposed in [3] have required only minor modification for use 

in practice. For these reasons, a lengthy review of the 

material in [3] has been omitted in this report. 

The main purpose in undertaking this project was to 

attempt to produce a basic framework, and a set of adaptable, 

useable numerical algorithms for use in simulation studies 

involving population. A basic framework is presented in the 

Interim Report; this report is largely devoted to the task 

of making the work carried out more useful. 

The models which have been considered in this work are 

of a relatively ambitious nature. Simulations with these 

models would allow study of detailed population distribution 

problems. These potential benefits are not without cost, 

however, as the methods used in this project may not be 



familiar to all possible users of these results. Further, as 

much as one might hope that the algorithms and associated 

computer software developed in this project would be entirely 

foolproof, this is not the case. From our experience using 

the algorithms reported here in connection with real data, it 

appears that a certain amount of judgement is required on the 

part of the user of these methods. The user must be aware of 

the underlying assumptions of the model, and of the limit-

ations of the numerical methods employed in the software in 

order to successfully interpret the results of computations. 

It is our hope that this report will provide some insight in 

this area, as well as serve as a "userls manual" for the soft-

ware included in the Appendix. 

Chapter II of this report is devoted to the problem of 

estimatingthecoefficientsa i (t),d..(x) and b(t) in the 

model 

Of 
--( E a i (t)di (x)f(x,t)) 	b(t) f(x,t) 

bt 1 	 bx 
i=1 

adopted (See [3] and Chapter II) to describe the evolution of 

the fertility curve over time. Data supplied by Statistics 

Canada was utilized, and the numerical results obtained support 

the utility of the model and associated estimation method. 
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In Chapter III we discuss probleMs arising in the 

estimation of the coefficients in the partial differential 

equation 

- 
bt 

La bx  - 77  ( E a i (t)di (x,$)p ) - r(x,t) p + i 
i=1 

governing the evolution of the age and income dependent pop-

ulation distribution. 

In the case of this estimation problem, the data which 

we were able to obtain is much less extensive than would be 

desirable. Problems arise both because of the limited number 

of years for which data is available, and because of the level 

of aggregation in the published data. 

The results of numerical experiments on the effect of 

aggregation on the accuracy of the estimation algorithm are 

displayed, together with the results of computations using 

data obtained from Revenue Canada publications. 

As pointed out in [3], the next step after  the 

coefficients of the partial differential equation have been 

estimated is to attempt to develop a model for the dynamical 

behaviour of these coefficients. Chapter IV consists of one 

effort in this direction; we have attempted to model the 

dynamical relationship between the fertility coefficients and 

various economic time series. 

-3- 



It was anticipated in [3] that it would be possible 

to apply more or less conventional time series identification 

techniques (or at worst, perhaps non-linear regression 

methods) to this problem. The available fertility data, 

unfortunately, is such that it has been possible to compute 

estimates for the fertility parameters only for a relatively 

short period of time. The amount of available data simply 

appears too small to allow conventional statistical analysis. 

The situation is further complicated by the fact that one 

suspects at least the possibility of a large exogenous 

component (not "driven" by the economic factors) in the 

fertility parameters. This might well make use of standard 

approaches difficult even if a longer data run were available. 

The approach that we have taken is to make an adapt-

ation and extension of certain techniques developed for 

input-output identification of control systems to the present 

problem. While the results of numerical experiments on the 

available data may be described as inconclusive, it is hoped 

that the method developed will prove useful in modelling 

studies. 

Finally, copies of the computer programs developed are 

included in the Appendix, together with some comments relevant 

to use of the programs. Considerable effort has been made 

to provide clear documentation in the programs. 

-4- 



Fertility Estimation 

A General Observations  

As mentioned above, for the purposes of this final 

report, we assume that the reader is familiar with the 

authors' interim report [3]. 

We recall the suggestion made in [3] that the dynam7 _ 

ical behaviour of the fertility curve could be adequately 

modelled by the relatively simple partial differential 

equation 

pf(x,t)  = 
ôt  

- 77  (a(t)d(x)f(x,t)) 	b(t) f(x,t) . 

It is more useful to hypothesize a slightly more 

general model of the form 

M-(x,t) = 	 E a i (t)di (x)f(x,t) 	b(t) f(x,t) 5 bt 	 bx -■ =-1 

in order to include the possibility of more than two time 

functions affecting the fertility curve behaviour. 

(Calculations on the actual data, however, suggest that the 

original simplified representation is adequate.) 

Introduction of an integrating factor and relatively 

simple manipulations lead to an expression of the form 

- 5- 



x bf  
E a.(t) di (x) = 	 S 	(C

' 	
(IC 

bt i=1 I 	 î 1 (x,t) 	x 

fromwhicha i (t),(1.(x) are determined. (See the attached 

Appendix for more details.) 

With real data, the expression on the right hand side 

of the above must be evaluated by numerical means. The spline 

routines utilized are described in the Appendix and the 

interim report [3]. 

In connection with the use of the methods proposed, 

two major issues arise. The first, and perhaps more 

philosophical problem, is that of validation of the model 

proposed above. As pointed out in [3], the function b(t) is 

defined  in such a way that the presence of the b(t) term in 

the governing equation is essentially valid by the definition 

of b(t) . The question of the term involving a
i
(t) and 

d.(x) is quite a different matter, however, since the 

argument for this is essentially that the observed behaviour 

suggests a governing partial differential equation of the 

above form [12]. 

It is, of course, impossible to supply "proof" of the 

correctness of any hypothesized model. Essentially the only 

criterion which may be applied is that of consistency with 

the observed data. 
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One form of consistency, perhaps that which comes 

first to mind, is the requirement that a simulation of the 

fertility curve should reproduce the historical data to an 

acceptable degree of accuracy. While this is a necessary 

condition, one must demand more from the results of an 

estimation in order to have confidence in the results. 

A second form of consistency is the requirement that 

the estimates be consistent not just "in the large" (as a 

trial simulation shows), but that they be consistent with 

subsets  of the available data. Consistent results returned 

from repeated calculations of this sort strongly suggest that 

the results obtained "actually are present in the data". 

Needless to say, reinforcement of this sort is not available 

from a one-shot estimation procedure. 

In the present situation, it is most natural to make 

a sequence of estimates based essentially on data years j to 

j + L , for varying starting date j (L here is the data 

length required in the computational procedure). For the 

problem of estimating 

a.(t) di (x) 
i=l 

one ideally hopes to obtain "overlapping sections" of the 

smoothtimefunctions.a.(t) from this procedure, and con- 
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sistentsmoothagefunctionsd.(x) 	The extent to which 
1 

this occurs in the actual data runs may be taken as an indic-

ation of the validity of the model. 

The second major issue that arises in connection with 

use of the estimation procedure suggested in [3] is that of 

use with real data. The algorithm has a firm theoretical 

basis, and the numerical experiments with artifically  

generated  data reported in [3] show that the numerical 

procedures have reasonable behaviour. The real data, however, 

is subject to various (unknown) errors; this compounds the 

problems arising from the likelihood that the model will not 

provide an exact fit for the physical situation. 

Looking at the estimation formula above, one may 

anticipate two major sources of trouble. The first is in the 

differentiation with respect to time, a procedure bound to 

accentuate errors. In fact, the integration serves in 

practice to smooth these accentuated errors considerably. The 

major errors seem to occur at the ends of the time interval; 

this is expected from the behaviour of the spline routine. 

The second large source of error occurs at the ends of the age 

interval. This is caused by the fact that i(x,t) approaches 

zero at the ends of the interval of interest 7  so that errors 

in 
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x _ 
tc . 	 ( ç

5 
 t) dc 

ôt  

are magnified considerably. 

If we let M(x,t) represent the numerically calcu-

lated values of 

X ô p 

7(1 	
(c,t) d 

x,t) 	
Sx 7-t 	c 	. 

Then the situation may be summaried by writing 

M(x,t) = 	E a 1 (t) di (x) + B(x,t) + N(x,t) . 
i=1 

In the above, B(x 5 t) represents the error due to the two 

effects mentioned above; this implies that B(x,t) = 0 

except in the immediate neighbourhood of the edges  of the 

region of interest. N(x,t) represents a (hopefully small) 

modelling and numerical error, and is not restricted in 

location and extent. In order to remove the error term 

B(x,t) 3  we may simply multiply the above equation by a 

function 

X1 (t) x2
(x) 
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(a product of characteristic functions) which is identically 

equal to unity on the interior of the region of interest, but 

equal to zero near the boundary of the region. This results 

in 

E (x1 (t)a(t) (x2
(x)d

i
(x) + 

i=1 

X1 (t) X2 (x) N(x,t) 

This procedure is easily implemented numerically simply by 

setting the "bordere of the matrix representing the function 

M(x,t) to zero. The estimation procedure described in [3] 

(based on eigenvalue procedures) may then be applied to the 

bordered array to produce estimates of ( 1 (t)a i (t)) and 

(x2  (x)d. (x)) 

The need for this technique is easily seen by an 

attempt to run the estimation algorithm without the bordering 

procedure. The algorithm is essentially based on calculation 

of the eigenvalues and eigenvectors of the matrix 

M M 

where M is the array of (sample values of) the function 

M(x,t) above. The eigenvalue package employed'returns results 
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ordered in magnitude; it is also easily seen that, if the 

representation 

M(x,t) = 	a.(t) di (x) 
1=1 1  

is exact, then the eigenvalue associated with the eigenvector 

a i (t)issimplyd. T d. . (See the Appendix below.) 

This means that running the algorithm on the "sliding 

) 

d(x) functions in consistent order, namely in order of 

decreasingnormofd.(x) . This makes consistency of 

repeated estimations very easy to see in plots of the calcul-

ated results. 

The presence of large errors in the calculated value 

.of M(x 1 t) , namely the error B(x,t) 5  has a disastrous 

effect on the above situation. B(x,t) may (and in practice 

certainly does) contribute fairly large eigenvalues to the 

symmetric matrix MM
T 

. This destroys the consistent ordering 

of the returned eigenvectors, as well as producing considerable 

(and variable) distortion in the calculated values of the 

I1]real" a1(t) 7 d(x) . In fact, it is the presence of calcul 

ated eigenvectors supported at the interval borders in pre-

liminary calculations which has suggested the bordering 

procedure described above. 

-11-- 



Use of the bordering procedure essentially introduces 

enough regularity to make computations possible. The price 

to be paid for this is that the calculations return estimates 

cnllYforthenb°r"red"uncticnl"_(0") 
and 

x2 (x) d.(x) . This leaves the coefficients unknown on the 

border areas of the region. The lack of knowledge at the 

borders of the age interval causes little difficulty; since 

the fertility here is essentially zero,.these values have little 

effect on simulations. 

Loss of the borders in the time direction is somewhat 

more serious from the point of view of subsequent use of the 

estimates. With the limited amount of data available and the 

bordering losses, we obtain only a twelve year run of data 

for the  ai(t)  . This small number of samples has made sub- 

stantial difficulty in the problem of estimating a dynamical 

model for the evolution of these coefficients. (See Chapter 

IV below.) 

There are other numerical problems (of smaller 

importance) associated with these calculations. These are 

described in the Appendix and on comment cards in the attached 

programs. 
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Numerical Res -Lilts  

The sources and treatment of the data used for these 

computations are described in the Appendix. The complete 

computer programs and samples of the resulting output are also 

included in the appendix. We reproduce below the graphical 

summary of the computational results. 

With use of the "sliding data window" and bordering 

procedure described above, the available data is sufficient to 

allow eight computations of estimated values of a i (t) 
and 

d.(x) . Computations were made based on a 10 x 10 matrix. 

Greater or lesser consistency was obtained in the first four 

eigenvectors from each calculation, so that results from lower 

eigenvalues are suppressed in the output. The contribution 

from these components is small, and the eigenvectors show wide 

scatter. We attribute these to numerical and data error, and 

model inaccuracy. 

In the plots below, only the highest run number is 

printed in case of coincident values. It is readily seen that 

the estimated values for the function a
1
(t) show a high 

degree of consistency, and that the variation in results 

appears relatively small. (In these plots,  1 t 9 " represents 

the numerical average of the available runs. This is taken as 

the final estimate of the algorithm.) 
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The similar plots for a
2
(0 , a

3
(0 , and a

4
(0 

show increasing scatter in the computed results. The plots 

do seem to indicate, however, the systematic presence of 

these higher order terms. 

The computed results for the corresponding di (x) 

show a similar degree of consistency, although a higher 

degree of scatter seems to be present. This is probably 

attributable to the fact that the estimation algorithm "back 

calculates"d.(x) according to 

d. -  Ma. 

While the eigenvector method used for calculating a i  

apparently filters out errors in the calculated matrix M to 

some extent, no such effect is operating in the above comput-

ation. One may therefore expect greater error in the calcul-

ation of d. . 
1 

One might attempt to work with the adjoint of the 

matrix M , in which case a parallel method should return 

estimatesofthed.as eigenvectors. The resulting symmetric 

matrix is of the same dimension as the age interval in this 

case. As a result, the eigenvalue calculation is much more 

difficult computationally, and more subject to ill-

conditioning problems. 
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The results of the above computations were checked 

by simulation of the evolution of the fertility curve over 

the years for which parameter esimates were calculated. 

Simulations were run using 

(i) al(t) 
di(x) 

(ii) a l (t)di (x) + a 2 (t)d2 (x) 

(iii) a l (t)di (x) + a 2 (t)d2 (x) + a 3 (t)d3 (x) 

(iv) a1 (t)d1 (x) + a 2 (t)d2 (x) + a 3 (t)d3 (x) + 

a 4 (t)d4 (x) 

as coefficients in the model. Complete numerical results are 

presented in the Appendix, but a graphical presentation of 

the result is given below. Also included are plots of (i), 

(ii), (iii) and (iv) (labelled "fertility parameters" in 

the following plots). 
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It appears from the simulations that the model 

provides a good fit for the observed data. It also appears 

that no significant improvement in the results is gained by 

using more than one component. This suggests that in fact 

Vi (x,t) 	 (a/ (t)di (x)f(x,t)) - b(t) f(x,t) 

provides an adequate model for the behaviour of the fertility 

curve. 



Estimation of Economic Mobility 

A 	Gener'al Remarks 

It seems likely that results relating to the estim-

ation of economic mobility would be of more interest than the 

results on fertility modelling reported in the previous 

chapter. For this reason, it is unfortunate that the 

numerical results we have obtained using available data are 

in a sense less satisfactory than those of the previous case. 

Since the modelling of the income distribution 

requires use of a distribution over both age and income 

variables, it is to be expected that the numerical problems 

associated with the estimation procedure would be somewhat 

more delicate than in the previous case involving distribution 

only over age. One may expect the resulting algorithms to be 

somewhat more sensitive to inaccurate data, and so to require 

a relatively better data base for a comparable degree of 

estimation accuracy. 

Fairly detailed age-income distribution data seems 

to be available for recent census years. However, in order to 

estimate and model the evolution  of income distribution over 

time, data on an annual basis is required. The only annual 

data we have been able to obtain is that of reported income, 

as available from the annual reports on taxation provided by 

Revenue Canada. 
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Aside from difficulties arising from changes in tax 

law and reporting procedures, there are other problems as-

sociated with this data. 

The first problem is that this information has 

apparently only been collected since 1963. This short length 

of available data has two effects. One is that the procedure 

mentioned above involving making sequential estimates on the 

basis of subsets of the available data is severely hampered, 

as the length of the available data is sufficient to support 

only one, or at most two estimates. (Sufficient data was 

available for eight estimates of the fertility parameters.) 

The length and uncertainty of the resulting estimates in turn 

make the prospect of estimating a dynamical model for the 

mobility parameters very dim indeed. 

A second problem bearing on the use of the available 

data is that of the level of aggregation in the reported data. 

The data is essentially in histogram form, grouped into five 

year age brackets, and income brackets of various lengths. 

This data must be disaggregated on some basis in order to 

obtain a smooth distribution to which the estimation algorithm 

may be applied. 

Initial runs using the real data produced evidence 

of distortions arising as a result of the aggregation of the 

data. This evidence includes an apparent oscillation of period 



3 
b bx 	ôs  ( E a i (t)di(xis)p) 

i=1 

L)..2 
- r(x .,t)p 

ten years present in some intermediate computed results. This 

may well be due to the five year age aggregations in the data. 

In an attempt to gauge the effect of the aggregation 

level on the computed results, experiments were run using 

differing levels of aggregation on simulated distribution 

data. As reported below, the experimental results indicate 

that the level of aggregation in the available data is likely 

to cause severe distortion in the computed estimates; the 

level of aggregation may well be so high that it is impossible 

to extract useful information regarding economic mobility 

from the published data records. 

Aggregation Experiments  

In order to study the effects of data aggregation 

on the estimation procedure, a numerical integration of the 

model equation 

was carried out (See Appendix E). 

It is easy to show using the representation of 

economic mobility in the form 
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g(x,s,t) = 	s a i (t) di (x,$) 
i=1 

thatifboththetimefunctions{a.(t)} and age-income 

functions {d.(x s)} are orthogonal sets over their respect- 

ivedomainsthen(assuming{a.(t)) orthonormal) the eigen- 
i 

values of the symmetric matrix M
T
M occurring in the estim- 

ationalgorithmarejustOd. 	 )1 being 

the corresponding eigenvector set. Conversely, if one starts 

with an arbitrary representation 

g(x,s,t) 	E à.(t)a.(x,$) 
i=1 " 

(with no orthogonality conditions), then the result of the 

estimation algorithm is to produce the orthonormal basis 

{a.(t)} for the subspace consisting of the span of {à..(t)} 

whichhasthepropertythattheresulting{d.(x, s )} in the 

above representation are also orthogonal. These remarks 

follow from Appendix C of the interim report [3], together 

with a bit of elementary linear algebra. 

The above facts are mentioned for the reason that 

they must be kept in mind in the construction of simulation 

examples. In effect, if one wishes to be able to recognize 

thecomponents{a.(t)} and {d.(x,$)} in the computed 



estimates generated from simulation data, these components 

must be chosen a-priori to be orthogonal. If this is not __— 

done, then the estimation algorithm will return the "ortho-

gonalized versions" of the functions involved. (As a matter 

of computational tactics, one may construct 

E 	.(t) Ui (x,$) 
i=l 

and use program 3.4 of Appendix E as a means of numerically 

generating the orthogonal components.) 

For the simulation used here, a
1 (t) was'chosen 

as a parabolic curve, a 2 (t) as a sine function of period 

ten years, and a
3
(0 as a sine function of period five 

years.  The {d..(x,$)} were chosen orthogonal, and such 

that a "reasonable" economic mobility function was produced. 

It should be noted that the mobility function selected for 

these experiments is considerably more realistic than the 

example included as an algorithm test in the interim report 

[3]. Magnitudes of the mobility in this experiment are 

considerably larger, and were selected on the basis of 

preliminary computations utilizing the available real data. 

Below are reproduced plots of the time components 

and age-income components as reproduced from program 3.4 
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Also shown is a copy of the program output page 

giving numerical values of the eigenvalues of M
T
M , and 

numericalvaluesofthe{a.(0) • It is easily seen from 

this output that the "parabolic" component is by far the 

dominant effect in the simulated economic mobility. 
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Using the economic mobility function, the equation 

was integrated numerically. The grid used was fairly coarse 

(see below), and the result of the computation was values of 

the simulated population density at one year time intervals, 

one year age increments, and one thousand dollar income 

increments. 

This simulated data was aggregated to three 

different levels, referred to as low, intermediate and high. 

Low aggregation is essentially at the level of the integration 

grid, while high aggregation corresponds to the age and 

income brackets used in the real data on reported income 

obtained from the Revenue Canada publications. The brackets 

are presented in the chart below. Note that while the 

density and low aggregation appear to have essentially the 

same age and income brackets, the data is treated differently. 

Low aggregation data is generated by integrating the 

splined simulated density, and then disaggregating using 

fourth order splines as described in the 	Appendix to 

generate a density estimate. 
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Level  Ages 	 Incomes($1000's)  

Aggregation Leie Income Brackets  

Density (unaggregated) 	17, 18, 19,... 	0, 1, 2, 3 5 ...19 

Low Aggregation 	 17 1  18, 19,... 	0 5 1 5 2 ,  3 5"" 18 
20 

Intermediate Aggregation 	17, 20 1  23,...65, 0, 1, 2,...18, 
69, 73, 78 	20 

High Aggregation 	 17, 25, 30, 35, 	0, 2, 3, 4 5 .... 
....70, 78 	10, 15, 20 

The estimation procedure was run on the simulated 

data at the four levels of aggregation described in the chart 

above. 

Since the algorithm used is basically similar to that 

utilized for the estimation of the fertility curve dynamics 

(Chapter III above), entirely similar considerations arise. 

In particular, problems arising from errors and inaccuracies on 

the borders  of the regions involved require the use of a 
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"bordering technique" parallel to the one adopted above. In 

all runs, the data is bordered in the age and income direct-

ions so that only data from ages 26 to 48, and incomes $3000 

to *11,000 are utilized in the estimation. The data in the 

time direction was bordered by 0; 1, and 2 years (on each 

end),producingthreeestimatesofthe{a.(t)} for each 

level of aggregation. In addition, surface plots of the age-

incomecmponents{d.(x, s )} corresponding to the zero 

bordering {a.(t)} were produced for each level of aggreg-i 

ation. 

The estimation algorithm returns (estimates of) the 

timecomponents{a.(t)} in order of decreasing eigenvalue 

. H2 
magnitude. This should correspond to decreasing Ild.(x,$)u - 

in the simulated mobility. The following summary charts 

give the "position of appearance" of the parabolic and single 

frequency sine functions as a function of aggregation level 

and time-bordering. 
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Aggregation 

density 

Bordering Years 

1 	 1 1 

Position of Parabolic Mode  

low 	 1 	 1 	 1 

intermediate 	 1 	 1 	 1 

high 	 2 

* distorted with no bordering, deteriorates with bordering. 



Aggregation Bordering Years 

3 2 3 density 

Position of Sinusoidal Mode  

0 1 	 2 

2 low 	 3 	 3 

intermediate 	 4 	 3 	 2 

high 	 3? 



The following plots consist of the estimated 

{a . (t )} for each aggregation level, and the corresponding 

age-incomecomponents{djx, s )} as computed from the 

estimation algorithm. These plots should be compared with 

the original components of the economic mobility used in the 

simulation. 
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The above plots contain a large amount of inform-

ation; we confine our remarks to the most significant aspects 

of the computed results. 

One effect clearly visible in the plots is the 

presence of a "saw tooth" component in the calculated age-

income components. This effect is essentially due to the 

coarseness of the grid used for integrating the simulated 

density function. This could be cut down by use of smaller 

grid increments, with a corresponding increase in computing 

time and cost. The problem is not helped, and is probably 

aggravated by the fact that the initial distribution used 

for the simulation is not a "natural" initial condition for 

the mobility function moved. This could be overcome by 

running the simulation for a long enough period to ensure that 

the initial-distribution disappears. 

The presence of these errors is not entirely harm-

ful, as it can simulate the inevitable data errors and model-

ling inaccuracies of the real situation. Also, it is evident 

that the integration process in the intermediate aggregation 

has had a smoothing effect on these errors. 

Given the relatively small component of sinusoidal 

nature which is present in the mobility chosen for the sim-

ulation (See the eigenvalue calculations above), what is 

perhaps somewhat surprising is that the algorithm is able to 



extract a sinusoid at all from the simulated data. Note 

that with two year borderings, the sine function appears as 

second component in the density, low and intermediate 

aggregation cases. The density calculation seems to be the 

only one which returns a reasonable d(x,$) for the sinusoid 

(but with noticeable sawtooth component). 

Of much more practical interest is the fate of the 

dominant, or parabolic component in the simulated mobility 

at various levels of aggregation. As the results clearly 

show, this parabolic component is present with all degrees of 

bordering for the cases of the density, and low and inter-

mediate aggregation. In all three cases, a reasonable 

representation of the age-income component is returned 

(essentially marred only by the integration error sawtooth 

disturbance). 

When the aggregation is increased to the level of 

that present in the available data, however, the results are 

drastically altered. There is a dominant time component 

which persists through all levels of bordering, and which 

seems entirely spurious. We attribute its presence entirely 

to the level of aggregation. The "true" parabolic component 

seems to occur as the second component, only at the zero- 

bordering level, and there in a form distorted by the spurious 

component. With some imagination, it is possible to see the 
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corresponding age-income component as a distorted form of 

the "true" age-income component. 

We regard the above computational results as 

strongly suggesting that the aggregation level of the age-

income data published in the  annual reports of Revenue 

Canada is too high to allow determination of economic 

mobility by use of the estimation methods developed  in  this 

report. 

Real Data Computations  

As mentioned above, the only annual income 

distribution data which we were able to obtain consists of 

the reported income figures from the annual reports of 

Revenue Canada. 

A potential problem which arises from the use of 

this data is the fact that these reported income figures 

include the effects of inflation on wage and salary rates. 

While it was shown in the interim report that the form 

of the governing equations for the age-income distribution 

was invariant  under an arbitrary monotone change of income 

scale, the possible effect of inflation on an income measure 

was not explicitly considered. In fact, derivation of the 

governing equation in [3] was originally carried out on the 
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basis of an implicit assumption of an income measure constant 

over time. 

However, one may consider the effect of using an 

inflating income scale in a manner analogous to the derivation 

in [3] regarding changes of income measure. 

The simplest such change is given by defining 

••=, C(t) S 

where s represents the original income measure (constant 

dollars), c(t) represents the current consumer price 

index (cumulative inflation factor), and so that a 

represents income in "current" dollars. 

One objection to the use of the above in connection 

with the reported income statistics is that reported income 

is made up of various components, all of which are unevenly 

affected by inflation; moreover, the proportion of these 

components in reported income varies across income brackets. 

To take account of this possibility, we consider the effect 

of a time-varying income scale change of the general form 

t (s,t) . 
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This formulation allows the possibility of uneven inflationary 

effects across income levels, and should be sufficient to 

allow a transition from reported income to virtually any fixed 

income measure. It is shown in Appendix A that the governing 

equation of the distribution is not changed in form by the 

introduction of such a change in income measure, that is, 

that there exists a well-defined economic mobility function 

defined in terms of the income level a . This exercise 

shows that reported income data may be used with no change 

in the model formulation; estimates of economic mobility 

computed from this data simply refer to the income measure 

The above considerations effectively settle the 

question of the usability of the type  of data available for 

the purposes of use in models of the sort considered; the 

next issue is whether or not the form of the available data _— 

is such that one may expect to extract useful model estimates. 

The work reported in Section B above was undertaken 

to test the effects of data aggregation procedures on the 

validity of the computed estimates. The experiments run with 

simulated data indicates, for that example, that fairly 

reliable estimates may be extracted from data which is ag-

gregated to about one half of the extent to which the 

available data has been aggregated. The results of the 



experimental run at high aggregation level do nothing to 

encourage confidence in results from data at this level of 

aggregation. In fact, the results indicate that spurious 

results are possible in such a situation. 

In spite of the above situation, the fact remains 

that the highly aggregated real data is the only  data 

available to us; natural curiosity has forced us to run the 

aggregated real data through the estimation algorithm. The 

results are reproduced below in a format parallel to that 

used for the aggregation experiments. 
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The computed results show thé first two time 

components persistent under the bordering procedure. The 

plots of the age-income components also show extremely rough 

results on the low end of the age span. (Plots start at 

age 17, normally, even though the estimation data is bordered 

to exclude the tails of the distribution.) Since these high 

spikes dominate the scaling of the plot routine, the section 

from ages 27 to 56 was replotted to bring out greater detail. 

In view of the high data aggregation, it is dif-

ficult to draw valid conclusions from the above results. The 

results suggest the presence of systematic components in the 

data; the results of our numerical experiments suggest that 

the results computed above may not be an accurate represent- 

ation of what systematic terms are present. The only way to 

resolve the question is to process a less highly aggregated 

version of the data; we were not able to find a source of 

such data and have no knowledge of whether or not such data 

may be obtained (at an acceptable cost). 

Finally, the estimation program included in the 

appendix is constructed to process sequential segments of the 

data in a manner analogous to the fertility parameter estim-

ation package. The data we have obtained is of too short a 

duration to permit much work in this direction. With eleven 

years of data available, we have made two consecutive ten 

year runs; the results were inconclusive. 



IV. 	Dynamic Interaction Models 

A 	General Discussion 

Once the coefficients of the partial differential 

equations in the case of the model have been estimated, the 

problem of determining a dynamical model for the evolution of 

these coefficients must be considered. 

As mentioned in our interim report [3], it is clear 

that the evolution of these coefficients is affected by both 

economic levels and less easily quantifiable factors which 

might be described as sociological effects. Since it is 

evident that trying to model the latter must be a process 

subject to a wide range of possible approaches, it is of 

interest to seek some possible means of separating the two 

effects. The approach that has been adopted here is to attempt 

this separation on the basis of "time scales". In view of the 

often-noted inertia in social attitudes, it may be hoped that 

the dependence of the coefficient time functions on these 

factors is on a "much slower" time scale than the dependence on 

the more variable economic levels. 

The use of this distinction is suggested by two 

sources. One is the use of the "method of multiple time 

scales", which has found success in numerous areas of applied 

mathematics. Another source is the widespread practice in 

econometric time-series work of "subtracting a trend line" 



from the available data. The usual interpretation of this 

procedure is that the trend represents an exogenous effect 

not included in the model. As will be seen below, the method 

proposed in a sense represents an alternative to this 

procedure usable in the case of relatively short data runs. 

In fact, it was the scarcity of the available data which has 

led us to attempt the approach below rather than to use con-

ventional time-series fitting programs. 

It is of course difficult to define precisely the 

meaning of the phrase "much slower" in the above, and one may 

no doubt cite instances of "rapid change" in social attitudes. 

In the practical use of the method described below, the allow-

able rate of change from exogenous effects is in effect 

specified by the user of the package. Whether or not the time 

scales are widely separated is evident in the results of the 

computation. One also expects that a model must be estimated 

by use of a "sliding subset" of the available data (in a manner 

analogous to the estimation procedures of sections II and III 

above). Periods of "rapid change" affecting the variables 

being modelled would probably appear as rapid variation in the 

estimated model coefficients. 

The model and estimation procedure described in detail in 

Appendix B below is based on a linear model (state variable 

model) of the general form 



x
k+1 

= F x
k 
+ G uk 

Yk = H xk 

In the above, the input sequence {uk
} represents the econ-

omic time series driving the model; while the output sequence 

{yh) represents the variable coefficient functions of the - 

partial differential equations in the model core. In the 

usual control theory literature, it is assumed that the above 

system represents a so-called minimal realization  of the 

system being modelled. This assumption means roughly that 

there is no component of the output sequence which is un-

affected by the inputs. In the present case this assumption 

would rule out the presence of any exogenous component in the 

observed values of {y ' 
and in effect would preciude the 

inclusion of other than economic effects on the core model 

coefficients. 

As shown below, it has been found possible to include 

the possibility of exogenous effects in the model above, and 

to weaken the requirement of minimality of the model. This . 

modification makes it possible to fit models (based on the 

idea of a time scale difference in the essential dynamics) 

without resort to the necessity of introducing an ad-hoc 

subtraction of a trend to account for exogenous effects. 

The structure of the estimation algorithm described below is 



such that the exogenous component is implicitly determined by 

the algorithm at the same time that the model parameters are 

estimated. 

The problem as formulated is that of finding an 

appropriate linear time-invariant model. One may either 

regard a linear model as appropriate for relatively small 

values of the variables involved, or alternatively, one may 

regard the fitting of a succession of linear models as a first 

step in the process of determining a possibly more realistic 

non-linear model. One may always hope that a relatively simple 

linear (or quasi-linear) model will turn out to be appropriate 

in the situation under study. Common sense dictates that the 

simplest possibilities be explored first, and this is the 

approach which has been taken. 

A detailed description of the model  formulation, and 

derivation of the estimation procedures is somewhat technical 

and is given below in Appendix B. 

A serious issue in modelling the interaction effects 

is the treatment of the stochastic elements of the data. The 

presence of stochastic elements in the available economic 

indicator data is quite evident; in addition, the time 	• 

functions produced by the estimation algorithms described 

above must contain errors as well. While it is felt that the 

algorithms used for coefficient estimation have a usmoothing 



effect", and that the level of noise on the final estimates 

(for the fertility data processing) is not excessive, it 

appears very difficult to produce quantitative estimates of its 

magnitude. The small amount of available data (relative to 

the estimates being made) makes it virtually impossible to 

formulate and estimate a statistical model of the disturbances. 

While it is possible to formulate statistical est-

imation procedures in connection with models of the general 

type described below, these procedures fall basically into 

two types [19], [16]. The first are "correlation based" 

techniques, which are essentially based on "large sample" 

averaging procedures. The second type is a Bayesian or max- 

imum likelihood estimator, the use of which requires a reliable 

statistical model for the sampling distribution. 

Both of these procedures seem inapplicable in the 

present circumstance; the first because of the lack of a "large 

sample" over which to average, and the second because of the 

lack of sufficient data to estimate a useful sampling dist-

ribution. 

The only remaining alternative appears to be the 

formulation of the problem in a deterministic manner, and this 

is what has been done below. Since a certain amount of noise 

in the actual data is inevitable, it is essential that the 

users of the package have a certain amount of appreciation for 



the effects of noise on the performance of the deterministic 

estimator developed below. It is probably only with a reason-

able amount of numerical experience with the package that an 

ability to "see a reasonable fit" in the results can be dev-

eloped. We expect that successful use of this package will 

require considerable experimentation, and that the results 

obtained will depend upon the experience and judgement of the 

user of the programs. 

One may hope that the data runs are relatively 

noise free, although our experience indicates that this is not 

the case in connection with the economic data. 

As a means of combatting the noise, one may suppose 

that the model to be fitted is of sufficiently large dimension 

to provide "internal filtering" of the noise in the economic 

indicator inputs. However, increasing the dimension of the 

model increases the data requirement for each parameter est-

imation. This decreases the number of estimates possible from 

the limited available data; the smaller number of estimates 

severely limits the user's ability to see consistency in fits 

produced from successive subsets of the data. Given the 

amount of presently available data, this does not appear to be 

a useable alternative. 

One may also attempt to reduce the noise in the data 

by more or less ad-hoc methods. One such method is to replace 



the economic series with "moving averages". This has an 

interpretation similar to the large dimensional model ment-

ioned above. The essential difference is that the filtering 

dynamics would in this case be supplied by the user of the 

program, while in the former case the filtering dynamics 

would be estimated from the data. Since the data requirement 

for the latter case is smaller, a larger number of estimates 

cati  be made from the available data in this case. This 

method may provide a way around the problem of a limited data 

base, but would require considerable numerical experimentation. 

There is no guarantee that a useful result could be obtained; 

even if consistent fits were obtained, there is a danger of 

lack of confidence in the results on the basis that nearly 

anything may be fit with enough free parameters available. 

Another possible approach is to make an attempt to 

H remove the noise" from the economic time series before their 

use in an estimation algorithm. One possible rationale of such 

a procedure is to assume the existence of smooth "true" economic 

fluctuations, and to regard the observed series as consisting 

of the time series plus an additive noise term. If it is 

supposed that the "true" smooth series are the appropriate 

driving terms for this section of the model, then the smooth 

series are the appropriate ones to use in the identification 

procedure. 



A problem with this approach, obviously, is that of 

extracting the "truen series from the noisy observations. It 

is conceivable that a Kalman-Bucy algorithm might be useful 

for this purpose; it is unclear, however, that the available 

data is sufficient to determine the required statistical 

parameters for this approach. Several runs (see below) have 

been made with data smoothed using the ad-hoc device of a 

least-squares polynomial fit based on a visual display of the 

data involved. Needless to say, this device is somewhat 

difficult to justify on a systematic basis. It also seems 

difficult to support use of an alternative in the case of the 

limited amount of available data. 

A somewhat more mathematical treatment of the 

approach adopted is given in Appendix B. It is probably the 

case that the ability to successfully use the algorithms dev-

eloped is dependent on understanding the material in Appendix 

B. The problems involved are not entirely elementary, and 

require a fair grasp of linear algebra and the theory of dif-

ference equations on the part of the reader. 



Tactical Use of the Algorithm  

The problem of fitting linear models from input-

output data must be regarded as a process subject to the use 

of a certain amount of judgement  on the part of the individ-

uals attempting the task. Using real data there will never 

be an exact fit, and one must recognize both the uncertainties 

in the estimation algorithm as well as the proposed subsequent 

uses of the model in evaluating the results of computations 

using real data. 

At the heart of the estimation algorithms described 

in Appendix B below (and, indeed, essentially all algorithms 

for estimation of linear models) lies the numerical problem 

of solving a system of linear equations. As is well known, 

such a process may turn out to be numerically ill conditioned, 

in the sense that small changes in problem parameters may 

produce large variation of the computed answers. 

The result given in Appendix B below essentially 

guarantees that (almost always) it is possible to solve the 

estimation equations for the estimated values of the model 

parameters. The result does not ensure that the computation 

is well-conditioned. Since the coefficient matrix involved is 

constructed from the observed data sequence, it is possible 

that the matrix occuring in a given computation is ill 

conditioned. The effect of this is to exaggerate errors 



(noise) in the data, and to produce inaccurate parameter 

estimates. The least-square algorithms employed in the prog-

rams of the appendix are "flagged" to alert the user to 

possible ill conditioning; it is still possible, however, for 

the package to make computations which may be unacceptable 

from this point of view. The user of the programs should be 

aware of this possibility. More than this, a "feel" for the 

conditioning of the computations is an invaluable asset in 

evaluating the results of attempted model fits. 

In this context, just as in the case of estimation 

of the partial differential equation coefficients, one is 

faced with the problem of confidence in the computed results. 

One might take the whole of the available data, and perform a 

one-time computation of the parameters based on the algorithms 

described above. Of course, if the data were exact, the model 

dimensions correct, the system truly linear, and the comput-

ation well conditioned, this would produce the correct answer. 

Unfortunately, even if the model is incorrect, or the data 

noisy, there is a danger that the algorithm may produce a. 

reasonable set of (essentially useless) parameters. 

To get around this problem, we adopt a procedure 

analogous to that of the previous estimation problem. That is 

we make the estimates on the basis of a subset  of the available 

data; consistency  in the results as sequential subsets  of the 



data are processed is then taken to be indicative of a 

successful fit. 

Of course, consistency in the results is somewhat 

a matter of judgement, and is closely connected with the 

issues of computational conditioning and data error discussed 

above. Before one concludes that the situation is truly 

desperate, however, it may be mentioned that numerical exper-

iments attempting to force incorrect models on computer 

generated data sets typically generate wildly inconsistent  

sequential estimations. It may well be the case that while 

one may never by Sure that a hypothesized model is correct, 

it is usually evident that a hypothesized model is incorrect. 

There is a further constraint on an identified model 

in the present context arising from physical consideration. 

This constraint is that the "driven part" of the model should 

represent a stable system,i.e. that the eigenvalues of the 

matrix AI 
should be inside the unit disc of the complex 

plane. If this is not the case, the "free response" of the 

model will diverge; this is a situation not to be expected on 

a "physical" basis. (The FORTRAN and APL versions of the 

estimation program ESTIMATEA incorporate an eigenvalue cal-

culation along with the estimation.) 

In the derivation of the estimation equations in 

Appendix B1  it is assumed that the system dimension n , and 



the characteristic polynomial corresponding to the exogenous 

output data drift are supplied by the user of the program. In 

principle, in the case of exact data, and a ntrue" linear 

system, both of these may be calculated from the given data. 

In practice with real data, these must essentially 

be determined on a trial-and-error basis by the user of the 

program. These parameters, as well as the time series chosen 

as inputs, must be regarded as variables to be manipulated in 

order to achieve a reasonable sequentially consistent fit. 

In the deterministic case, the system dimension n 

is essentially determined by the fact that the matrix inversion 

required in the parameter estimation becomes impossible when 

a model fit of dimension greater than n is attempted. In 

the case of noisy data, ill conditioning may be indicative of 

the same thing although large data errors may hide this. 

As a matter of practical tactics, it is obviously 

advisable to attempt to fit lower dimensional models first. 

With a finite available observation record, this produces a 

greater number of sequential estimates on which consistency 

may be checked; since the linear system requiring solution is 

essentially of dimension n(m+1) , with n the state 

dimension and m the number of inputs, computations on lower 

dimensional models are more likely to be well conditioned. It 

is thus possible to have considerably more confidence in a 



low dimensional model than in one of higher dimension. 

The choice of the dynamical character of the exogen-

ous drift is a matter requiring some judgement and experience. 

In effect, the choice  of the  "drift dynamics" and the selection 

of the time ;.eries to be used as inputs must be made together. 

With some experience, it is possible to select likely combin- 

ations on the basis of graphs of the input-output data. The 

typical response characteristics of first and second order 

difference equations are well known; this knowledge can be 

used to advantage here. 

For example, inspection of data graphs may suggest 

that the output to be modelled is the response of a single-

input second order system offset by a straight line. Since 

the generation of an exogenous "straight line" requires two 

dimensions, (see below) one would attempt a model fit of state 

dimension four, with a single input and output. More comp-

licated situations undoubtedly involve more trial and error. 

It may be mentioned that it is essentially always 

possible to achieve a consistent fit by this procedure (for 

"smooth" output data) simply by supplying an exogenous drift 

containing enough linearly independent time functions to fit 

the observed output well. (Polynomials of sufficiently high 

degree in principle would suffice.) The identification scheme 

should then identify an essentially zero input matrix, and 

attribute all of the observed output to the drift term. In a 

qualitative sense, large dimension of the drift block required 



to obtain a fit may be taken as an indication that the whole 

output is nearly exogenous,i.e. not due to the supposed input 

series. As one may see, there is considerable leeway available 

to the user of the program in this regard. The rationale of 

this whole approach, however, demands'nconservativen treatment 

of the drift term. 

Since the exogeneous drift is supposed to operate 

on a slower time scale than the economic (or other) inter-

action effects being modelled, one should, in principle, try 

slowly varying functions as the exogenous component. If it is 

suspected on other grounds that a relatively rapidly varying 

exogenous component is present in the data, however, this 

suggests use of an exogenous drift of similar character. Such 

decisions are essentially a matter of judgement, and it is 

possible to give no precise rules in this regard. 

The computer program ESTIMATEA requires as input the 

q (non-leading) coefficients of the characteristic poly-

nomial of the exogenous drift matrix D  • These coefficients 

are chosen on the basis of the time functions allowed to be 

present in the exogenous drift; the connection between allow-

able drift terms and required polynomial follows from the 

theory of z-transforms [14]. 

In general, any (discrete) time function with 

rational z-transform is allowable as an exogenous component. 

If it is supposed that the drift is representable in the form 



rn  
(i) 

di< = 	E a. gic  
i=1 

wheretheunknownscalars{a. }are determined in the ident- i 

ification process) then the input to the program is the vector 

of non-leading coefficients of the least common denominator 

fpf the z-transforms {e(i) (z)} of the functions {cpok  (i)1 

For reference, a chart of common drift forms is given below. 

It should be emphasized that the algorithm requires only (a 

guess of) the functional form of the exogenous term. The 

coefficients a,p,y,etc. are effectively computed by the 

algorithm, and are not supplied by the program user. 



Drift Chart  

Program 
Description 	 Time Function Form 	 Characteristic Polynomial 	Input  

constant: 	 a 	 X-1 	 -1 

linear "trend": 	 a + 5k 	 (X-1) 2 	 -2 1 

parabola: 	 a + 5k + yk 2 
(X-1) 3 	 -3 3 -1 

1 
1-1 
tv 	 sinusoid: 	 a cos wk + 5 sin wk 	 (.

2
-2 cos wX+1) 	-2 cos w 1 C) 

: 

n a y exponential: 	 k-y 	 -Y 

trend + sinusoid 

general: 

a + 5k + y sin(wk+0) 

(i) 
2  ai cP(k) i=1 

(X-1) 2 (k 2-2 cos wX+1) 

- (2+2 cos w) (2+4 cos w) -(2+2 cos w) 1 

1.c.d of  

= 	+ d
q-1 

+...+ dl 
d
q 

d
q-1

..d
1 1:1 



Real Data Experiments  

We have run some experiments with the estimation 

algorithm discussed above in an attempt to determine the 

interaction between economic indicator levels and the 

fertility equation coefficients estimated above. Since the 

output generated by the estimation algorithm program is some-

what long, only abbreviated versions of the results may be 

presented in this report. It is hoped, however, that these 

examples will provide useful guidance for the users of the 

algorithm. 

As mentioned above, the fertility coefficients have 

been estimated on a yearly basis .; processing the available 

data provides estimates for the years 1958-1970. The available 

data thus consists essentially of only thirteen consecutive 

values for which one expects a consistent level of error. 

Econometric time series data is commonly available 

on a quarterly basis. The approach that has been taken here 

is to assume smoothness (and a low level of error) in the 

estimated fertility coefficients. A spline interpolation has 

been used to generate values on a quarterly basis. Econometric 

data on a seasonally adjusted basis has been used wherever 

available. The time series used together with a numerical code 

utilized in the program are listed in the following table. 



Input Series Table  

Number 	 Description  

1 	 Industrial Wages 

2 	 Manufactoring Wages 

3 	 Housing  Complétions  

4 	 Personal Income 

Disposable Income 

6 	 Participation Rate, Total 

7 	 Participation Rate, Females 

8 	 Unemployment Rate 

9 	 Industrial Production 

10 	 Housing Completions - 

Four Quarter Average 

11 	 Housing Completions - 

4th Degree Polynomial Fit 

12 	 Participation Rate - 

4th Degree Polynomial Fit 

• 
13 	 Unemployment - 6th Degree 

Polynomial Fit 

The four identified fertility coefficient series (on 

a quarterly basis) and the above econometric series are 

displayed in graphical form below. 
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It is evident from the plots above that the time 

series one might judge the most likely candidates for the 

series driving the fertility coefficients are also the series 

with the highest apparent level of noise. All of the problems 

mentioned above in the context of the use of the proposed 

algorithm with noisy data therefore arise. As a working 

hypothesis, we suppose that the fertility coefficient series 

determined above are essentially deterministic. Since the 

series reproduce the observed behaviour with reasonable 

accuracy, we also assume a relatively low level of error here. 

(The available data makes error estimates essentially 

impossible; there is little apparent alternative to this 

assumption.) Since the coefficient b(t) ("rate of change of 

average family size") is essentially directly measurable, this 

series undoubtedly has the smallest error. 

In the tables below we list the results of computer 

runs made using b(t) and a 1 (t) is output. Almost all of 

the runs were made with use of either constant, linear, or 

parabolic exogenous drift, and a variety of the techniques 

mentioned above were employed in an attempt to get a reasonable 

fit. 
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5 7, 5, 3, 8 

6 5 

1 1 5 Fairly consistent F , 
smooth variation in G . 

7, 5, 3, 8 

F somewhat variable 

Fairly consistent F ; 
second, third columns of G 
fair. 

6 	 3, 

5 

It 

11 

b(t) Estimation Runs  

State Dimension 	Inputs 	 Drift 	 Result 

5 	 4, 8, 9, 10 	 linear 	 Inconsistent F 

1 1 parabolic 

5 	 6 5 8 5 9 3 1 	 11 	 Some consistency in F 
just two columns of G . 



3 	 13 Some consistency in F , G 

a
1 
 (t) Estimation Runs  

State Dimension 	Inputs 	 Drift 	 Results  

3 	 8" 	 constant 	 Fair F 5  very inconsistent G 

variable 

3 	 12 " , 
	* 

13 e 	 linear 	 Variable F e  G . 

4 	 8 	 constant 	 F , G inconsistent 

4 	 1 	 linear 	 Occasional consisting in F 
G variable 

4 	 12 " ,  13
* 
	linear 	 Fair F e  very inconsistent 

G .  

4 	 7, 2, 9 	linear 	 Fair F 5  inconsistent G . 

5 	 13
* 
	 parabolic 	 Occasional consistency in 

F , G variable 



Dimension 	 Inputs 	Drift 	 Results  

5 	 7,  8 	 parabolic 	 Spotty consistency 

5 	 10, 13 	parobolic 	 Fair F , variable G 

5 	 12 	13 parabolic 	 F  3  G both inconsistent 

6 	 8 	 linear 	 Inconsistent 

6 	 7, 8 	 parabolic 	 Inconsistent 

6 	 10, 13 	parabolic 	 Scattered 

6 	 10, 8, 9 	parabolic 	 Inconsistent 

9 	 8 	 constant 	 Possible consistency 

10 	 8 	 constant 	 Fairly inconsistent 



* In the above tables, indicates time series 

delayed by six quarters. Also, in the above (as well as in 

the computer programs) F refers to the model coefficient 

matrix, G to the input matrix, and H to the output matrix. 

One surprise in the above is that the b(t) estim-

ation seems better behaved than that of a 1 (t) . This was 

not anticipated by the authors. 

The lack of consistent results for a
1
(t) is some-

what discouraging, as one intuitively expects more economic 

effect on the a i (t) than on b(t) 

It may be the case that use of a larger or more 

rapidly varying exogenous drift would produce an acceptable 

fit; on the other hand, it may be that the level of randomness 

in economic time series makes estimation on a deterministic 

basis an impossibility. If this is the case, attempts to 

estimate the interaction effects must await the accumulation 

of considerably more data than is currently available. 
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V. 	Conclusions  

As mentioned in our Interim Report [3], we regard 

the process of model construction as one subject to a great 

deal of experimentation. Our intention in this project has 

been to develop some techniques and models useful in such 

experimentation. Further, we regard it as essential that the - 

models constructed and employed be useable with available 

data in order that model parameters may be estimated and model 

accuracy verified. As should be evident from the above dis-

cussion, we have found that the utilization of the available 

data required considerable effort. The required data base is 

not easy to obtain, and the available records seem to cover a 

far shorter time interval than is desirable. This problem is 

particularly acute with regard to the income distribution data. 

Here the increased numerical difficulties in the estimation 

procedure demand detail (and accuracy) in the distribution 

data, and the subsequent interaction modelling will no doubt 

require data from a larger span of time than we have been 

able to obtain. 

The results of our work in modelling the behaviour 

of the fertility curve seem fairly satisfactory. The algorithm 

developed for estimating the partial differential equation 

coefficients has produced consistent results, and simulation 

using the estimated coefficients reproduces the observed data 
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to an acceptable degree of accuracy. The data required for 

the estimation procedures is available in sufficient detail; 

the relatively short time span for which the detailed data is 

available, however creates severe difficulties in the area of 

modelling the dynamical behaviour of the coefficients. 

From the point of view of subsequent use, the 

estimation of the economic mobility function 0.(x,s,t) and 

determination of its dynamical relation to other economic 

factors is probably of more interest. Our experimentation 

has shown that, while the fundamental methods of the estim-

ation problem for u(x,s,t) are similar to the methods used 

for estimating the "shift dynamics" of the fertility curve, 

the additional dimension involved causes the numerical dif- 

ficulties to be somewhat more delicate. This is more the case 

in estimation of the age-income dependent components of the 

economic mobility; the algorithm appears quite robust as far 

as estimation of the time dependent components is concerned. 

Initial experience with use of the algorithm in 

conjunction with real data led us to suspect that the level of 

aggregation of the available data might be too great to allow 

reliable mobility estimates to be made. 

Subsequent experiments with varying aggregation 

levels were made utilizing simulated data. The results show a 

severe degradation in the reliability of the computed results 



at the level of aggregation present in the real data; the 

results also suggest that reliable estimates may be recovered 

from data aggregated to approximately half the extent of the 

data we were able to obtain. 

In our work in estimating the interaction effects 

between economic factors and the estimated model coefficients, 

great difficulties have been caused by the scarcity of the 

available data. In fact, the income distribution data we 

have obtained covers such a short period of time and has been 

aggregated to such an extent that we have not attempted to 

estimate a dynamical model of the economic mobility. 

The problems which arise in this area are formidable. 

Concisely stated, the process being modelled contains an 

unknown exogenous component, the available data is corrupted 

by noise of an unknown statistical nature, and the length of 

the available data record is short. Our approach has been to 

develop an algorithm capable of fitting models on the basis 

of short data and with a variety of possible exogenous 

components. This is based on a deterministic approach; the 

potential user of the package must be familiar with the 

effect of random data errors on the computed results in order 

to make effective use of the routine. We hope that our 

discussion of the ideas behind this approach and the details 

of the model and algorithms involved will be of some assist-

ance in this regard. 



Appendix A: 	Model Invariance and Inflatin. Income Scales 

As discussed above, the fact that reported income 

data, subject to inflationary effects, appears to be the only 

available annual income distribution data leads one to con-

sider the problem of estimating economic mobility on the basis 

of this data. The original derivation of the model equation 

for evolution of the distribution is easier to interpret on 

the basis of a time-invariant income scale, although there is 

no explicit assumption to this effect in the model derivation. 

One is led, therefore, to consider the problem of determining 

whether or not the available data ought to be deflated in some 

fashion before an estimation attempt is made. This is not an 

attractive prospect, for several reasons. One is that the effects of 

inflation on reported income varies across income levels (in a 

manner difficult to estimate). A second reason is that inflat-

ion affects wage and salary levels in various sectors of the 

economy with differing amounts of delay (again a circumstance 

difficult to quantify). These problems make it preferable, if 

possible, to formulate the model in terms of some "current" 

income measure. It turns out, as shown below, that the form 

of the governing equations is retained even if the distribution 

is referred to a "current" income measure (such as "reported 

income"). This may be shown as follows. 



Recall that the model equation derived in [3] in 

terms of age .x 5  income s and time t is given by 

= 	- 
 bx 	
(g(x,s,t)p) + i(x,s,t) 	y(x,s,t)p . 

bt 	 bs 

where p is population density, i is (net) immigration, and 

y(x,s,t) the death rate. p has the interpretation of the 

number of people per unit age, per unit income interval, at 

time t . 

We now consider the effect of introducing a time- 

variable change of income scale, of the general form 

o.  = 	(S,t) 

u may be interpreted as current income (or current disposable, 

or reported, etc. income), while s represents a fixed income 

scale. 

This change includes as a special case, the change 

which might be described as "uniform inflation", i.e. 

OE = CMS 

as well as various models incorporating the non-uniformities 

mentioned above. 
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It is convenient to assume that 2 has continuous 

second partial derivatives, and that it is monotone in s for 

each fixed t , so that 

a - E (s l t) 

may be smoothly inverted to give 

s =  

(i.e. s in terms of (3) so that we have the identity 

a - E (S(cy,t),t) 	. 

From the above identity follow the useful formulae 

0 bE 	OS 	bE . -- • -_ + — 
bs 	bt 	bt 

(from differentiating the above partially with respect to t 

holding a constant) and 

_ bE 	OS 
Os  . bu 

e 

1 

(from differentiating partially with respect to (7). 
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We now consider the change of independent variables 

xs t to the variables § 	T àccording to › 	› 	 e  e e 

T : (x e s e t) -, (g e a e T) 9  where 

T = t 

= X 

a — 	(s,t) • 

(T,g represent agàin time and age). This induces a cor-

responding change of any function f of (xe s e t) according to 

r(g 9 U 9 T) = f(X(§ 9 G 9 T) 	S(g 9 a 9 T) 3  t(g3a9T)) 

The "chain rule" for partial differentiation gives 

bf _ bT 	bE 
9  bt 	ba E7 4-  7 	• + o 7 . 	. 

bf = b .È 	às 

bs 	
ba  • 7;  + o + 0 

bf = , 

bx 	bg • J- m 0 	0 
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Writing out the model partial derivativei in terms of the new 

variables ( 5 a,T) gives 

g 	psi 	u s] 
uT 	Ou 	 ba 	bOE 

y  p 

The appropriate formula for the age-income density 

in terms of the new variables ( 5 0- ) is determined by noting 

that the expression 

SS p(x,s,t) dx ds 

represents the population with ages and incomes in the 

arbitrary region B at time t . By the Jacobian rule for 

change of variable in a double integral, this is the same as 

SS 5(5cs,t) 	
è(x,$)  
b( 5 0-) I g da 

TB 

which, evaluating the Jacobian, is 

IS 17;(§,G,t)  I d g du 	. 

TB 
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Using the identity above, this becomes 

ss 	dg  da  
TB le 

Since TB is an arbitrary region of the new variable space, 

this identifies the appropriate density as 

bE 
7z(S(cr,t),t) 

(The absolute value is dropped by the monotonicity assumption). 

Multiplying the governing equation by 

-1 
bE 
77(Sa e T),T)) 

and re-arranging gives 

1 — 	 rosi 
P  — P77-1:7ji 

Os 

OE 

1-;  F 	 77 OE 7 [77  ÔE  
O Os 	 s  

	

i_ 1 
 bE P 	ba 	Os • 	bE 

1 	- 	b I 7  a z  
Os . 	 Os 

lea 
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— 
r - 
bE P  
Os 	 Os 

Using the fact that 

bE 
Ot bS 	 bS 

= 	 — - (--) 	- (7—) 
OE 	 bt 	 uT a 	 CY 
Os 

we see that the second and fourth terms cancel in the above, 

and defining 

D( § ,o ,T ) 

as the "new" density, we see that 

b_à b = _ 
?) 

- 
77 

Ga (g,u,T)D) - 	D + aT 

with 

• 
	az 
bs 	at 

The above defines the appropriate mobility in terms of the 

current" income scale and shows the invariance of the model 

equations under such a change. As a practical matter, this 

removes the necessity of deflating the available data 

p 
OE 
Os  

= 
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(available on a "current" basis) and prevents the addition 

of additional errors from 8uch processing. 
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Appendix B: 	Mathematical Description - Linear Model  

Estimation Algol4thm  

As mentioned above, an algorithm has been con- 

structed for the estimation of linear model coefficients on 

the basis of input-output data. There exists a considerable 

amount of literature on this topic, covering both stochastic 

and deterministic approaches. The work reported below is 

based most closely on the references [16], [17] and [19], 

but differs from this work in a way which has required some 

modification and extension of the results in those references. 

The main impediment to the use of [16], [17] and 

[19] (as well as most other estimation algorithms known to 

the authors) in the present case is that no provision is 

made to handle systematically the presence of any exogenous 

components in the output data record. These references are 

concerned exclusively with the estimation of coefficients in 

minimal realizations. As noted above, this restriction in 

effect requires that all outputs be affected by the inputs. 

The mathematical content of the following dis-

cussion consists essentially of linear algebra and difference 

equations. The frameWork is essentially that of discrete-

time linear control theory. 

Since the integration schemes used for the model 

core essentially reduce to difference equations, and it is 



Al  

0 

0 

xk  + 	I 	1 u
k 

discrete time data (typically yearly or quarterly values) 

which is available, it is natural to forMulate the inter-

action section of the model ih terms oÉ difference equations. 

The basic linear model may be described by the 

system of equations 

z (1) 	 (1) 	"1  
=Az 	+Eb. u.(k) 

(k+1) 	(k) 	=1 	1  

z (2 ) 	= D z
(2)

(k) 
(k+1) 

(1) 
Jj, 	

<c(1)
j 5 z 	(k)> 	<c ( 2 ) (2) 

5Z 	(k)> . 

j = 1 5  

and z
(2) 

In the above, z
(1) 

are elements of finite dimen- 

sional vector spaces over R , A and D are linear mappings, 

b. -vectors, and c. elements of an appropriate dual space. 

By choosing bases in the vector spaces, the system may be 

represented in terms of components with respect to the bases 

in the form 

xk+1 = 



The first "half" of the state vector, x (1) vector. 

and 

(1) 

y 	= I C (1) 	C(2) 1 xk-  (2) 	C 
x 

 

The physical interpretation placed on the above 

model is as follows. The x is referred to as the state 

represents the part of the state driven by the input u 

so carries the effect of the input on the output. The second 

section of x x(2) 
is entirely decoupled from the inputs; 

we visualize this as representing a "drift term" present in the 

observed output. 

It is this component which accounts for the exo-

genous terms in the output. It is also the presence of this 

term which makes it necessary to modify the results of the 

references mentioned above, as the system model above is 

clearly not controllable. 

In the use of this algorithm, the matrix D is 

essentially specified by the user. From the properties of 

linear difference equations, it follows that arbitrary linear 

combinations of polynomials, discrete exponential functions, 

discrete sinusoids (among others) may be included as possible 

exogenous (drift) terms in the model. As will be clear from 

what follows, it is not necessary to pre-specify the mag-

nitudes of these terms; the estimation algorithm determines 



the magnitudes involved in the course of the computation. This 

property of the approach may make stochastic versions of the 

results obtained worth pursuit in connection with other applica-

tions, even though the available data limits their usefulness 

here. 

Before our assumptions for the estimation model are 

listed, it may be worth emphasizing the fact that the state 

vector in the above representation is far from unique. In fact, 

a change of basis in the state space according to 

x = Px 

leads to the system 

[ Ai 	

I -\ 

k+1 
= P 

-1  

+ P 
Bi  

0 	

uk X 	
D1 
 P x  

-1 
yk  = C P xk  

This "new" system in fact has the same input-output behaviour 

as the original, and is indistinguisable on the basis of 

input-output records. This invariance is basic in the theory 

of linear systems, and is regularly exploited with the use of 
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canonical forms to derive efficient estimation algorithms. 

The standing assumptions which we make on the model 

are: 

1. That the triple [C1 , A1 5  B1] is a minimal  

- 
realization  of the transfer function C (Iz-A )

1 
 B1  

1 

A 0 
2. That the pair [C, L0 D1 
	

is observable; 
 

A 0, 
3. That the coefficient matrix [ 0 D

j is non- 

derogatory, i.e. that the characteristic and minimal poly- 

nomials are equal; 

4. That the characteristic polynomial of the matrix 

D is brown. 

Assumptions 1 and 2 above are made with no loss 

of generality in the ability to construct models of the sort 

considered. The assumption 3 (also referred to as the 

assumption that the system is cyclic) entails some loss of 

generality, but includes a wide enough class of systems to 

be useful in practice. Removal of assumption 3 forces the use 

of more complicated canonical forms, and requires knowledge of 

certain "structural indices" associated with the system being 

modelled. While in principle these indices may be determined 

and 
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from the available data, the tests involved require matrix 

rank calculations. As a result, they are for practical 

purposes unuseable in a situation of short, noisy data records. 

A related issue is that of the determination of 

the dimension of the state vector in the above model. In 

principle, again, the system dimension may be determined 

(or estimated in a statistical manner) on the basis of rank 

tests on the available data. In practice, with imperfect 

measurements, the system order must in effect be guessed; 

at any rate, it is assumed that at least a condidate for the 

dimension of the model is available. Further discussion of this 

practical point is given in Section B of Chapter IV above. 

For the sake of reference, it is assumed that the 

state dimension is N , that the output dimension is p 

that the input dimension is m and that dimension of the 

drift matrix is q x q • We also adopt the notation defined 

by 

0 

1 	B =I 
 il 

A= 	

Ao1 	

0 

For completeness, we outline the basic derivation of the 

parameter estimation equations. The basic techniques are quite 

similar to those of the references [16] [17] and [19], although 
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Yk  

, Yk  
u
k I k 

u 
le

.  

• 

CA 
• • 

CA
n-1  

and R CB 

CA
n-2

B •• CB 	0 

M 

certain complications arise through our use of the exogenous 

drift term in the model. 

With the system equations written as 

x
k+1 = Ax + Bu k  , yk  = Cxk  

one may obtain by iterating the system equations the relation 

* — 
yk = MXk + R uk 

where 

Yk+n -1 

0 

Next, select a processing matrix P with the property that 
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0 

o 

P 

o 

o 

a 

a 

0 

0 

0 

A 
T= PM 

is an invertible matrix. 	With the assumption that the system 

model is cyclic, and that the system is observable, it follows 

that defining the n x nm dimensional matrix P by 

results in invertible matrix T for almost all choices of the 

m-dimensional vector a . 

In effect, this replaces the given observed (vector) 

outputs by a single linear combination (with coefficients defined 

by a ) of the outputs. The assertion about the invertibility 

of T is simply that the cyclic observable system is observable 

from almost all linear combinations of outputs. It may be noted 

that some choices of a may produce better conditioned matrices 

in the subsequent calculations than other choices, although 

there seems to be no way to determine.an a-priori optimal choice 

of a . 
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With any choice of processing matrix as long as 

T = PM is non-singular, the equations above may be manipulated 

to yield 

Py
k+1 

Ap P y
k 

+ [PR Ap P 	uk 

where Ap = TAT
-1 

. With obvious notation, the above may 

be written as 

R] 	Py k 

— 

PYk+1 = [A  

It also follows that with a partition of the matrix R in the 

form 

R = [Rn I Rn -1 	
... I R

1 
 ] 

the matrix TB may be recovered by 

n-1 
TB = Rn 

+A 
p 

R
n-1 

+ ...+ Ap R1  

The relation 

Pv 

 

— 
=[A 	R] 	I Py 1 - k+1 

uk 

u
k 

— 
u
k 
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involves only the (unknown) system parameters, and the (observed) 

values of the inputs and outputs, and may be used to determine 

the system parameters. 

One should note that solving the above equations for 

A , R , and solving the analogous equation to determine the 
P 	P 

output matrix C j  (Assuming, as turns out to be true, that 

the rank of the resulting coefficient matrix allows this) in 

, -1 
TAT

-1  
effect produces the realization triple [CT 	 5 TB] ; 

that is, it produces one of the equivalent realizations of the 

input-output relation defined by the model. 

In the interest of simplifying computation as much 

as possible, it if of course desirable that the above system 

of equations involve as few unknown parameters as possible. 

Since A is an n x n matrix, and R is of dimension 

n x m.n , as many as n2 (m+1) parameters might be involved. 

In fact, with the choice of P Sa we have 

.11 

a C 

T =- 
a CA 

n-1 
a CA 

gide 

and a direct calculation shows that 
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A =  

O 1  

O 01 

0 
O 0 	1 

pl 	Pn 

0 

where the characteristic polynomial of A is given by 

PA (X) = 7‘. 11  - E p. Xi-1  
i=1 

A further direct calculation shows that 

0 
R = 

ri 

So that the estimation equations reduce to the system 

a  ' EP 	rt ] 	I -37a (k)1 Y (k+n)  

for the n(m+1) unknown parameters in p and r . 

Writing the above equation for. (at least) n(m+1) 

successive values of the time parameter k gives a system 

of equations which we symbolically write as 

U(k) u(k) I 



Y 
Data u] 

rr 

[Data 

Further manipulations (see [19] for example) lead to a similar 

system of equations (with the same coefficient matrix) for 

the entries in the output matrix CT . 

To this point, the formal manipulations leading to 

the estimation equations are the same as employed in [16], 

[17] and [19]. These references rely on the assumption of 

controllability of the model to obtain the crucial result that 

the coefficient matrix 

[Data 	Datau Y 

has (almost surely) rank n(m+1) . In the present situation, 

the fact that almost all q-vectors are cyclic vectors for the 

matrix D , combined with the controllability assumption on the 

"non-exogenous" block of the model allows one to extend the argument 

in appendix A.2 of reference [16] to conclude that the coeffi- 

cient matrix again (almost surely) has full rank. 



While in the noise-free case it suffices to consider 

data lengths of only n(m+1) , in the actual implementation 

of the algorithm much more numerical stability results from 

using longer data strings and least squares solutions for the 

resulting system of equations. Essentially the situation is , 

that although almost all data segments provide a full rank 

coefficient matrix, some data segments may (and do in practice) 

produce ill-conditioned coefficient arrays. 

We note that the above algorithm in effect identifies 

the dynamics of the drift along with the forced component of 

the model. It neither utilizes the fact that the characteristics 

of the exogenous term are assumed known a-priori, nor does the 

method enforce (or check) the supposition that the exogenous 

terms are ndecoupled" from the inputs. In the case of 

(artificially generated) noise free data, these characteristics 

automatically appear in the identified model. In the case 

of sparse or noisy data, however, there is the possibility that 

this additional information relating to the structure of the 

model may be utilized. 

One modification which has been made to the above 

algorithm is to introduce the fact that the characteristic 

polynomial corresponding to the exogenous terms is assumed 

to be supplied by the user of the algorithm. If this is the 

case then not all of the coefficients of the minimal 



(=characteristic) polynomial of the full matrix A are in-

dependent. In fact if  PA(x) 5  pa
(X) and p

d
(%) denote 

the characteristic polynimials of the matrices A 5  Al 5  

and D respectively, we have that 

PA (%) -  

Writing out the above in terms of the polynomial 

coefficients gives a relation of the form 

p =b+La 

where p is a vector constructed from the coefficients of the 

characteristic polynomial of A 5  a the same for Al  5.  and 

the vector b and matrix L are determined from the char-

acteristic polynomial of D . Substituion of the above 

into the estimation equation gives 

Y 
 [Data 1, Datau] la 

= [ 41-Datay.b] 

. 

The above reduces the number of unknown parameters to 

(n-q) + m•n 5  and so reduces the computational burden of the 
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algorithm. Using the observation that postmultiplication 

of Data by L effectively removes the exogenous component 
Y 

from the output data, one may check that (almost surely) the 

modified coefficient matrix has full rank. The modified 

estimation equations may then be solved for the coefficients 

of p
a
(X) e  the characteristic polynomial p

A
(X) may be 

computed according to the above, and the calculation of the 

input matrix TB proceeds as before. 

While the above modification of the basic algorithm 

should serve to improve the numerical conditioning of the 

computations, there is still no guarantee that the estimates 

satisfy the decoupling condition implicit in the original 

system model. For that matter, we have yet to outline a 

procedure by which the decoupling may be verified after the 

computations have been made, even if the constraint is not 

incorporated in the original algorithm. 

It appears necessary to have a computation of the 

characteristic polynomial p
a
(X) corresponding to the driven 

components of the state in order to perform the decoupling 

computations. 

In order to verify the decoupling conditions, one 

must obtain, in effect, a basis for the state space with 

respect to which the coefficient matrix will appear in the 

required block diagonal form. It is useful to keep in mind 
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that it must be possible to carry out the computations required 

entirely on the basis of the available input-output record, so 

that the required basis must in effect be implicitly rather than 

explicitly constructed. Finally, recall that it has been shown 

above that the characteristic polynomials  p(X)  and pd 

are computable in terms of the available data under the 

assumptions of the model. 

On the assumption that p a (X) and  Pd(X)  are 

known (i.e. have been determined in a previous preliminary 

calculation) a suitable basis may be determined as follows. 

From the assumption that the coefficient matrix is 

non-derogatory, it follows that the monic polynomials  

and  Pd(X)  are relatively prime, and hence that there exist 

polynomials r(%) and s(%) sucil that 

r(%) P d(%) + s(%) Pa (%) = 1 . 

The required polynomials are computable from the Euclidean 

algorithm, or by direct solution  of the resulting system 

of linear equations. 

A standard argument in the theory of matrix 

canonical forms shows that the matrices 

r(A) p d(A) 
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s(A) Pa(A) 

represent projection operators onto the complementary subspaces 

corresponding to the forced (i.e. A
1 block) and drift 

(i.e. D block) portions of the state space. In order to 

construct the required form, we construct a basis in the 

following way. 

Define the vector c by 

c 	(a C) 

The basis used is implicitly dependent on the choice of the 

"selector coefficient" vector a  • We construct (candidates 

for) basis vectors in the dual  of the state space by 

ul 	Y ( A' )  Pd ( A t ) c 

t ,n-q-1 
 u

n-q 
= y(A ) pd (A ) A 

un-q+1 = s(A ) pa (A )c 

1 q-1 
un = s(A ) pa (A ) A 

and 
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1 
0 

1 

9 d d
i  se • • 

That the above actually are linearly independent follows from 

1. the observation that -(u1...0n-q and 

..0n} 
lie in mutually disjoint subspaces, 

{un-q+l e  

and 

2. the fact that A is assumed non-derogatory implies 

that(for almost all choices of a ) that 

 1 	 1 	 1 

y 
A t )   p d(A )c and s(A ) p d (A )c are both 

t 
cyclic vectors for A . 

With the above definition of the basis vectors, an 

explicit calculation of the matrix representing A with respect 

to the dual of the constructed basis shows that the matrix is 

0 1  

1 

a l 
• • • a

n-q 

0 

01  

001 

i•• 

which is in the desired black diagonal form. 

In order to incorporate or check the decoupling 

constraint, it is necessary to determine the matrix representing 
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T 

lob 

• 

c A
11-1 c A .1I An-1  

d 

«ad* 

the change of basis from the basis used in the original 

estimation algorithm to the block diagonal basis constructed 

above. This can be determined by recalling that the matrix 

T such that 

TAT
-1 
 = 

 

Pn 

1 1 

in the original algorithm is just 

P1 

0 0 1 

[ 0 1 

0 0 1 

1 

while the matrix 1. r producing the block diagonal form 

Ire 

01  

0 01  
-1 rrArr a

1 	a
n-q 

0 

0 101  

001 

d
l  
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can be written as 

c p(A) 

c p(A) A 

cp(A) A
n-q-1 

c a(A) 

c a(A) • A 

c cr (A ) 5 

where p(A) = r(A) p d(A) 	and a(A) = s(A) Pa(A)  . 

By use of the Caley-Hamilton theorem, the matrix 

polynomials in u may be reduced to combinations of the 

first n 1 powers of the matrix A . Defining the scalars 

(i) 	(i) p. 	and a. 	by 

n-1 
(i) j E p . A 	p(A) • A

i-1 
(mod PA (A)) 

j=0 

n-1 ( i ) 

 E 	

j  = a(A) Ai-1(mod pA(A)) 
j0 	j  A  

we see that with Q defined by 
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(1) 
PO 	-•• 	Pn-1

(1)  

6 • • • 

(.1) 
PO 	-•• 	

(1) 
n-1 

(n-q) (n- 

Q 

■1•1 

a 0 	• e  • 
( 1 ) 

(n-q) 

a 
n 

(1) 
-1 

(q) 	
an-1

(q) 

Pn-1 Pn-1 

an« 

we have 

r = QT 	. 

Note that Q-1 exists e since Q effects a change 

of basis. 

From the original model formulation, we see that the 

condition that the exogenous drift subspace be decoupled from 

the inputs translates simply into the condition that the last 

q rows of the matrix rB should vanish. Using the above 

formula for u , we get the condition 

w. QTB 	0 I= 1,...q 



with w. defined as a row vector with 1 in position 

n q + i „ zeroes elsewhere. 

The aboVe result may be used in two ways. The 

first is as a check that the exogenous subspace is decoupled 

after a computation has been performed. Since the estimation 

algorithm described above produces (in the noise free case) 

the matrices 

TAT
-1  

TB 

CT
-1  

the results do not display the decoupling. To check this, 

one need only compute Q as described above, and form Q 

timesthe (estimated) matrix TB  • For consistency with the 

model assumptions, this should return zeroes in the last q 

rows. In the practical case where inaccurate data has been 

processed, and in which one does not expect an exact model 

fit in any case, the last q rows of the result should be 

"relatively small". 

A second use for this result is to incorporate the 

decoupling constraint in a "two stage" estimation algorithm. 

As seen from the above, in the noise-free case Q may be 

calculated from the available data. In the case of inaccurate 



data, one may still calculate an estimated value for Q 5  

or a range of values consistent with the available data. 

The condition 

w, QTB = 0 

may be combined with the formula for TB 5  i.e. 

+ 	+A  p 	
n-1 TB = Rn + ARn-1 1 

where, recall, in general 

= ER_ R1 ] 1 

and for the specific choice P = Sa 

roi  

R = 0 	

[ 
r
n 	r

n-1 	
I 

r
1 

Hence, we have 

w.Q[R +A R 	n 

	

n p n -1 -".-1-Ap 	R1] = 



w.EQR +QA Q
-1

QR 1  + +QA
n-1  n- K 

21--1j 
1  = 0 

n p 	n- 	P  

which reduces to the condition 

01  
n-1 	0 0 1 

1 	r 
j
= 0 

n- 
j=0 	dl 	

dq 

where 4 is the column vector consisting of the last q 

entries of 

0 

Q 01 . 

1 

The above system of equations (em equations in all) 

represents the decoupling constraint referred to the coordinate 

system of the original estimation algorithm, and further, 

expressed as a linear constraint on the intermediate parameter 

vector r involved in the algorithm. If we represent the 

above as a system of linear equations of the form 

i = 1,...m 6q . 0 

-18 3- 



IMP 

a 

0 0 
•IM» 

y - Data • b 
Y 

0 0 V j 

Data • L 	Datau 

V
1 

0 
V 

 qm 

110 

Then the original estimation equations 

[Data 	L 
Y 	

Datau] a 

= h.-Data b] 

•  

may be augmented to give the estimation equations incorporatlna 

the decoupling constraint 

There seems to be some numerical evidence to suggest 

that in the original estimation algorithm, the computation of 

the characteristic polynomial is more stable with regard to 

data errors than is the calculation of the input matrix TB . 

This is probably the case because calculation of TB essentially 

involves powers  of the estimated TAT
-1 

matrix, compounding 

errors in A with those in the parameter vector r • If this 
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is indeed the case, then there is reason to believe that the 

two stage algorithm suggested, consisting of a calculation of 

Q 5  followed by a re-calculation of TAT
-1 

and TB based on 

the augmented system above, will prove numerically more stable. 

The discussion above omits most of the detailed 

calculations involved in the actual use of the algorithms 

proposed. It is intended, however, to provide the rea der 

 with enough information to understand the basic nature of the 

method. Such understanding is probably essential in order to gain 

a reasonable ability to make effective use of the algorithm with 

the inevitable inaccuracies of real data. 

The three basic algorithms outlined above (the 

"straight estimation", the estimation incorporating a user-

supplied exogenous drift polynomial, and the "two stage" 

algorithm incorporating the decoupling constraint) have been 

implemented in the APL programming language, and are listed 

for reference in the appendix as ESTIMATE, ESTIMATEA, and 

ESTIMATEB. ESTIMATEA has been translated into FORTRAN 

(also listed in the Appendix), and sample experiments using 

ESTIMATEA have been run using real data. (See below). 
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APPENDIX C: Remarks on Long-Term Sequential Estimation  

As mentioned above, the structure of the estimation 

algorithm for the determination of both the fertility par-

ameters and the economic mobility in such that orthogonal 

components are returned by the computer output. That is, 

if we represent the data matrix M in the form 

M =7, d. a. 

(which includes both estimation algorithms), then the result _— 

of the computations is to essentially select a basis with 

respecttowhichboth{a.}and {d.} are orthogonal sets. 

When the process of sequential estimation described 

in Chapter II is carried out, processing the data beginning 

at year T essentially involves the orthOgonalization of the 

functions {a.(T+t)} on the interval 0<t<L . Here L is 

the estimation data length. As a result, the computed basis 

vectors vary with the starting time T 

Strictly speaking, the results of the computations 

for various starting times T ought to be referred to a 

common (stationary) basis for comparison. As a practical 

matterelloweverewithsmoothtimevariationinthe{a.(t ) } 

this effect of the nskewingn of the coordinate system is 
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slow, and largely swamped out by computational and model 

errors. It is only in the case where a long (relative to 

the estimation length L ) run of data is available that 

this effect becomes significant. In such a case the programs 

should be modified accordingly. 
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APPENDIX D: 	Interim Report  

The final report above has been written on 

the assumption that readers are familiar with the contents 

of the interim report [3]. The final report makes numerous 

references to and use of results and methodology presented 

in [3]. 

In order to make the final report essentially 

self contained, we include here a copy of the interim report. 
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An Interim Report to the Ministry of State 
for Science and Technology 

on 

THE QUEEN'S MATHEMATICS DEPARTMENT 
POPULATION MODEL 

by 

J. Davis and J. Verner 

Queen's University, Kingston, Ontario 

Queen's Mathematical Preprints No. 1974-8 

April 15, 1974 
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Abstract  

The Queen's Mathematics Department population 

model is a dynamic model for simulating the evolution of 

a population distribution as a function of age and 

income level. 

The basic structure of the model is such that 

birth-rates may be generated within the model as endo-

genous  variables. This allows the inclusion of feedback 

effects from the population distribution to birth and 

immigration rates, and so provides a capability for 

simulations valid over longer time intervals than are 

possible with exogenous birth and immigration rate 

variables. 

The model has been constructed with two main 

issues in view. The first is that of compatability of 

this model with other models with which it might be 

combined. This requirement dictates a modular structure 

described in this report. The second issue is the prob-

lem of parameter estimation in the model. The model has 

been formulated in such a way that estimation is made 

possible. 

Effective numerical algorithms for these est-

imations based on available data formats are also re-

ported. 



A description of work that remains to be done in 

order to complete development of the model is also 

included. 
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Introduction  

Models of population growth form an essential 

part of any attempt at large scale socio-economic 

modelling. The age and economic level structure of 

the population has a direct bearing on various govern-

ment service requirements ranging from elementary 

schools to pension plans, as well as the economic base 

available to support such programs. For this reason, 

it is essential that population models capable of sim-

ulating behaviour over a reasonable length of time be 

investigated. 

Traditional demographic methods project pop-

ulation estimates forward in time by means of an 

aggregation procedure, followed by a linear extra-

polation procedure based essentially on a Markov-chain 

type of model. Such methods are reasonably accurate 

over the relatively short term; however, the model 

structure is such that the fertility curve (the age-

specific distribution of the birth-rates) is treated as 

an "exogenous variable" which must be specified for 

each run. Some attempts (the so-called "cohort 

method") have been made to include in the model the 

observed fact that birth-rates do vary over time, but,  

the problem of extrapolation birth-rates forward in 

time in order to increase the length of time that model 
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results are valid remains. 

It is clear that many  factors affect birth-rates: 

economic conditions, perceptions of future economic 

conditions, ecological concerns, a host of other 

• factors affect birth-rates to a greater or lesser 

effect. It is also clear that present population 

structure affects in turn the economic climate, and 

the general environment. The present population is in 

turn the result of past birth-rates (and immigration). 

The conclusion of the above observations is that 

it is impossible to decouple the dynamics of the birth-

rates from those of the population structure without 

compromising the long term validity of the model sim-

ulation. In effect, there exists a feedback path from 

population structure to birth-rates which may not be 

ignored over the long term. (This does not imply that 

such decoupling, based on assumptions that certain 

factors "vary slowly with time", detracts from the 

usefulness of models intended for use over relatively 

short time periods). 

The model discussed in this report represents an 

approach to the problem of including the dynamic feed-

back effect mentioned above in a simulation model. 

More specifically, this report contains the results of 

some work on what we regard as the basic structural 
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elements and problems associated with models of this 

sort. 

The structure and "philosophy" of the model is 

discussed more fully in Section II. 

It was determined early in our investigation that 

partial differential equations were an appropriate 

component of the model - in fact, it is hard to con-

sider the effect of the "baby boom" without coming to 

the conclusion that a wave equation occupies a central 

position in a model of population distribution. In 

work on any dynamical model it is necessary to deter-

mine numerical values for parameters occurring in the 

model equations before any simulation may be carried 

out. At worst, these parameters may have to be 

guessed; obviously it is much more desirable that the 

parameters be estimated from historical records of the 

phenomenon being modelled, if possible. The latter 

procedure provides an indirect means of assessing the 

validity of the model. 

In the case of models governed by partial dif-

ferential equations this estimation problem is even 

more severe, as it is often necessary to estimate not 

just a finite set of parameters, but a function of one 

or more independent variables. Aspects of this prob-

lem are reported in Section III and Appendix C. 
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Once parameters and functions have been estimated 

from the available data, it is possible to simulate the 

system on a digital computer. This, of course, involves 

the solution of coupled systems of ordinary and partial 

differential equations by numerical methods. It is 

necessary to investigate the effectS of the numerical 

methods used on the accuracy of the results obtained, 

in order to ensure that the behaviour of the model is 

a result of the actual "dynamics" of the model itself, 

and not the result of instability caused by inaccurate 

numerical methods. The difficulty of this problem is 

again increased by the fact that partial differential 

equations are involved. The work in this area has been 

checked by use of certain exact solutions to the gov-

erning equations (Appendix A) and is described in 

Section V and Appendix B. 

II. 	Structure of the Model  

It is helpful in describing the structure of the 

model presented here to explain briefly the general 

philosophy of "modelling" that the authors of this 

report hold, and which has had a strong effect on the 

structure adopted for the model discussed here. 

In the first place, we feel that a main product 

of any, modelling and simulation effort should be 
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insight  into the behaviour of the phenomena being model-

led. Perhaps the worst fate that can befall any model 

is that it be used to generate one set of trajectories 

which are then canonized as "the predictions" of the 

model (or worse yet, of the computer used to generate 

the output). Rather, the use of a model should itself 

be a dynamic process. It is certain that better data 

regarding the variables involved in a model will become 

available in the future, and it is only prudent that this 

data, if possible, be used to improve any "forecasts" 

made using the model. 

It is also rather likely that there are alter-

native opinions regarding the actual structure of some 

sections of any given model. In this situation, it is 

essential that simulations be run incorporating these 

alternative opinions, rather than selecting one arbit-

rarily and incorporating it permanently into the model. 

It is only by simulating each of the reasonable alter-

natives (a matter of judgement is involved here) that 

any true insight into the behaviour of the system as a 

whole can be gained; this includes an appreciation of 

the range of results which might be expected under 

reasonable alternative models. 

These considerations suggest at least that a use-

fui  model must have sufficient flexibility of structure 
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to accommodate changes of the sort mentioned above. In 

order to build flexibility of this sort into a model, it 

is necessary to identify a basic dynamical core around 

which the model may be constructed. 

The basic core of the model in this paper consists 

of equations for the evolution of the population dist-

ribution, and for the evolution of the fertility curve 

over time. 

As was mentioned in the previous section, it is 

clear that economic conditions interact with the current 

population distribution and other factors to produce 

the current instantaneous birth-rate. It is also clear 

that the exact nature of these interactions is comp-

licated and probably poorly understood in total, 

although some progress in this direction may be made by 

various methods. On the other hand, the evolution of 

the population distribution may be described (see the 

following section) by a partial differential equation 

of the conservation law type. Also, by looking at 

birth-rate records, it is possible to argue that the 

evolution of the fertility curve is also adequately 

modelled by a relatively simple partial differential 

equation. Furhter, the structure of these sections of 

the model is independent of the details of economic and 

other interactions which combine to affect birth-rates. 
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birth-rate population 
distribution 
dynamics 

These considerations have led us to the decision 

to base the framework of the model on the dynamics of 

the population distribution and of the fertility curve. 

This leads to an overall model structure which may be 

represented in the "block diagram" form illustrated in 

Figure 1. 

1 

interaction 
effects 

CORE 

fertility 
curve 
dynamics 

population 

distribution 

fertility 

profile 

inter 
action 
effects 

t 	
socio-economic 

levels 
inputs 

economic 
dynamics 

Figure 1.  
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This block diagram includes a section labelled 

economic dynamics. It is judged that the exact form of 

this section will be the subject of some debate, and 

that repeated simulations with varying socio-economic 

models will be required. It is expected that models 

with a relatively long time horizon and moderately high 

level of aggregation will be found most appropriate. In 

particular, models of the "Candide" type with high levels 

of detail and relatively short (eg. ten year) time spans 

are not felt to be appropriate. As work up to the time 

of the writing of this report has been concentrated on 

problems associated with core section of the model, 

problems in this particular area require further study. 

III. Derivation of Equations of Dynamic Core  

The core of the model consists of two partial dif-

ferential equations: one for the evolution of the pop-

ulation density as a function of time, age, and income 

level, and one for the evolution of the fertility curve 

(i.e. the curve of age and income specific birth-rates). 

These two equations are coupled in a non-linear fashion, 

although the non-linearity appears only  in the boundary 

conditions for the population equation. This fact is 

of considerable use in connection with the estimation 

problems discussed in the following section, and makes 
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the derivations presented below simpler than might other- 

wise be the case. 

A. 	population Distribution Evolution 

The model presented below is formulated as a 

basically deterministic model, and processes are model-

led as occurring continuously in time on a macroscopic 

level, even though on a microscopic level the events 

may occur at discrete intervals of time. In this con-

nection, a first step is to recognize that an averaging 

process is taking place whenever what are essentially 

discrete events are "smeared out" and modelled cont-

inuously in time. This process is illustrated by the 

use of death-rates in population models, decay rates in 

radioactive decay problems, and, in the derivation 

below, of an economic mobility u . In these cases 

the use of such rates essentially distinguishes between 

deterministic and stochastic modelling approaches. 

The equation governing the population distribution 

may be derived readily from what are essentially count-

ing or bookkeeping methods. This is most easily demon-

strated by the derivation of a simple model of pop-

ulation as a function of age x , neglecting  

death-rates, immigration and any other variables. In 

this case, the appropriate counting argument is 
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x + 
2 

Px 
x  - 2 

àx 
+ 	- At 2 

p(x,t)dx = 

Ax 
- At  

•p(x,t-At)dx 

essentially that the number of people at age x at 

time t is the same as the number of people at age 

x At at a time At units earlier: In terms of pop-

ulation density p 	this becomes 

which for smooth densities p is essentially 

p(x,t) = p(x-At,t-At) 

or 	p(x,t) 	p(xe t-At) = p(x-At,t-At) - p(x,t-At) . 

Dividing the above by At and letting At 0 results 

in the partial differential equation 

_ 
at 	— ax 
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- x 

As is well known, the general form of solution to 

the above is f = cp(t-x) 9  with cp an arbitrary 

function which must be evaluated from the boundary con-

ditions appropriate to the problem. The appropriate 

boundary condition is that 

p(x-o,t) = p(t) 

where p(t) is the birth-rate of time t • That this 

is the appropriate boundary condition may be verified 

by noting that this gives the solution 

p(x,t) = p(t-x) 

which says essentially that the number of people at age 

x at time t is the number of people born at time 

i.e. x years before time t . This of 

course is entirely evident from the assumptions made 

above. 

The model considered in this paper includes a 

partial differential equation for the population density 

p(x l s,t) as a function of the three variables age x 

income s , and time t • As will be shown below in 

Appendix A, it is unnecessary to specify at this point 

5 

5 
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the units involved in the income scale s 	that is, 

whether s represents net income, disposable income, 

or some other measure. This is so beéause the form of __— 

the governing equation is invariant under a (non-

linear) change of income scale, so that the units 

involved become an issue only during the processing of 

data for estimation purposes. This fact is a pleasant 

surprise which naturally arises out of the structure of 

the model equations. 

To derive an equation for the population density 

on a realistic basis, it is necessary to account for 

effects neglected in the simplified mode/ above, in 

particular to introduce terms 

i(x,s,t) 

representing the immigration rate (as a function of age, 

income level, and time), and the death-rate 

r(x,s,t) 	• 

It is also necessary to introduce a term which 

accounts for the change of income level of various seg-

ments of the population over time. To accomplish this, 
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we introduce an economic mobility function, 

u(x,s,t) 

Even though income levels of individuals on a micro-

scopic scale undergo changes at discrete instants of 

time, perhaps modelled by a Poisson process, on the 

macroscopic scale of its influence on the income dist-

ribution we model the effect as one of a continuous 

flow across income levels. With this effect in mind, a 

term of the form 

u(x,s,t) • At 

has an interpretation as the fraction of people at in-

come level and age x crossing through level s in the 

time interval from t to t + At . 

With the above definition of terms, it is easy to 

use a "counting argument" entirely similar to the one 

above to arrive at an equation representing the evol.+ 

ution of population density. The result is 

_ àn _ 	(g(x
" 
s t)p) - r(x,s,t)p + i(x,s,t) at 
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Just as in the above derivation, it can be seen 

that the appropriate boundary condition for this 

equation is again 

p(x0) = birth-rate. 

There is a technical problem associated with this boun-

dary condition, since taken literally it demands the 

assignment of an income level to babies at birth. In 

fact, the model as formulated above is capable of prop-

agating income level migration through childhood. It 

is clear that such a procedure makes little sense; 

however, the problem may be avoided rather easily by 

the following device. The income distribution at x = 0 

may be set equal to that at the age of entry into the 

labour market. If the economic mobility is equal to zero 

for values of age x less than the labour market entry 

age, then the income distribution will remain constant 

for ages less than entry at the values of the entry 

distribution. Income distribution data generated by sim-

ulation runs may then be considered only for ages 

greater than an age of entry into the labour market, and 

no further modification of the model is required. The 

income distribution at entry age must be generated as 

part of the economic section of the model, and this 
1 
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of p on the economic mobility g are implicitly 5 

effect comprises one of the feedback paths from the 

economic to population distribution sector shown on 

Figure 1. 

Other effects of this sort, for example, an effect 

contained in the time dependence of u 	• As will be 

seen below in the section dealing with estimation prob-

lems associated with the model, there are substantial 

theoretical and practical benefits which follow from 

modelling the income migration process as above. In 

particular, it is then possible to devise numerical 

methods to estimate u from observed population dist-

tribution data. 

B. 	Fertility Curve Dynamics  

Although the observation that socio-economic 

conditions, social attitudes, and so on, exert an effect 

on birth-rates is a common one, there seems to have been 

little effort made to quantify these effects in a dyn-

amic model. Undoubtedly, a major reason for this is 

that it appears impossible to "derive" such a set of 

relations in the sense of the derivation outlined above 

for the population density dynamics. 

For this reason, we have decided to approach this 
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problem as one in system identification. That is, we 

attempt to formulate the problem in such a way that the 

problem is reduced to that of estimating a dynamical 

relationship between a relatively small number of 

variables. This in itself  is a major reduction, since 

in principle a fertility curve is an element requiring 

an infinite number of numbers for its specification. 

This first reduction may be obtained by examining 

typical historical records of the behaviour of fertility 

curves over time (See Figure 2). A first observation is 

that the curves are all of roughly the same shape. An 

examination of their differences shows that their peaks 

slide from age to age over time, and that the area under 

the curve, representing the total birth-rates to be 

expected from a uniformly distributed population, varies 

over time. 

A simple partial differential equation capable of 

reproducing this observed behaviour has been adopted as 

the basis for the fertility curve dynamics. This is 

f _ 
ot - a (t ) Db-7-c  ( d(x )f ) 	b (t )f 	. 

The first term in this equation produces the 

qffect of the shifting peak, while integrating the 
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equation with respect to x shows that b(t) is the 

percentage change of the area under the fertility curve 

per unit time. An e.uivalent inter.retation is that it 

£nts  the  percentage  rate of change .of average  

family  size.  

The justification of the representation of the 

fertility curve dynamics by the above equation may be 

carried on in several ways. In the first place, the 

interpretation given b(t) guarantees the presence of 

the term b(t)f in virtually any such equation. The 

appropriateness of the term representing the "shifts" 

may be supported on the basis of a time scale argu-

ment, combined with the fact that the model fits the 

observed data reasonably well. The "shifts" occur in 

the data on a time scale considerably faster than that 

of the dynamics of the population section of the model. 

In fact, the shifts appear correlated with variations 

in the economic climate, recessions, rising and falling 

unemployment, and the like. Since these effects are 

expected to be introduced into the model most likely 

on the basis of "standard" econometric and business 

cycle models, it is anticipated that it will be possible 

to include the function a(t) and its dynamics in this 

section of the model. The dynamics of a(t) are to be 
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identified by means of either the usual econometric 

model identification techniques, or more recent work in 

the area of control theory. Since this identification 

problem presupposes knowledge of the term d(x) 	work 

in this area is dependent on solving the problem of est-

imating d(x) 5 and applying the algorithm for this 

purpose is described in the following section. 

Comments similar to the above also apply to the 

problem of determining the dynamics governing the term 

b(t) 5 although it is suspected that this will be even 

more difficult than the above process. This is so 

because b(t) is dominated more by social attitudes, 

education, and other effects much less easy to quantify 

than economic ones. It is felt that this area represents 

an example of the need for alternative sub-models and 

repeated simulations discussed above in Section II in 

connection with the overall structure of the model. 

While the above discussion has been carried 

through as though the fertility curve were independent 

of income, an entirely similar derivation is possible on 

the basis of an income dependent fertility curve.  If 

one also allows the possibility that the economic inter-

actions occur unevenly across income levels, then the 

appropriate equation is 
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bt _ 
bt 

(a(x s t)f) - b(s,t)f bx 

Because of the meaning of a fertility curve (or 

surface, if s is included as an independent variable) 

as an age (and income) specific birth-rate, the formula 

for the total birth-rate is simply 

b(t) = 	T f(x,s,t) p(x,s,t)dxds 

No mention has been made in the above derivations 

of any geographical aspect of the problem. There are, 

however, some restrictions implicit in the derivations of 

the model equations. It is clear that certain of the 

quantitites involved in the above equations vary with 

geographical locality. From this, it is obvious that 

the model must be applied separately over geographical 

areas between which the relevant quantities vary. To 

obtain an overall model, then, internal migrations must 

then be included in the immigration rates of the models 

for each geographical region. 

There is also implicit in the model derivation as 

assumption of a sufficiently large sample population, so 

that the modelling of the immigration, death, birth, and 

economic migration processes as continuous is valid. 
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IV. 	Model Estimation Methods  

The dynaMical equatiOns governing the core section 

of the model derived above involve various auxiliary 

functions, namely: .  death and immigration rates, an 

economic mobility function g(x,s,t) and functions 

a(t) , b(t) and d(x) determining the evolution of 

the fertility curve. Before it is possible to produce 

any simulation runs with the model, it is necessary to 

determine suitable estimates of thesé functions. 

Generally speaking, this problem of parameter and 

function estimation is one of the most difficult ones 

involved in the construction of any model. Consideration 

of the conventional techniques of econometric modelling 

makes obvious the amount of effort which is expended in 

this area. In fact, with a certain amount of injustice 

one might view much econometric modelling as consisting 

of the development of schemes for the recursive estim-

ation of parameters for short term (often linear) extra-

polation models. This view ignores the effort involved 

in determining the extrapolation model whose parameters 

are to be estimated, but the fact remains that there 

continues to be much work on the development of 

regression - estimation methods in this area. 

At practically the opposite end of this problem 

stand models of the sort proposed by Forrester and his 
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associates. One of the most consistent criticisms 

levelled at Forrester's World and Urban Dynamics models 

is that practically no attempt has been made to estimate 

the parameters and functions involved in the models in 

any "realistic" fashion. 

This apparent gulf between the Forrester models 

and conventional econometric models is, in our view, a 

large contributing factor to the hostile reaction For-

rester's models have received in some quarters. It is 

also a gulf that is not easily overcome by philosophic 

discussions about differences of purpose between the two 

approaches. 

In the case of the present model, it happens that 

considerable progress can be made in estimating the 

functions that are involved in the model of the core 

dynamics. Of course, this is not entirely unexpected, 

since an effort has been made to formulate the dynamics 

of the core in terms of variables which may be readily 

measured. Also, our definition of what constitutes the 

core dynamics of the model virtually assures that it 

must be possible to produce useful quantitative est-

imates of the functions involved. 

The functions r(s,s,t) and i(x,s,t) in the pop-

ulation model are just death and immigration rates, so 

there is no problem in obtaining historical records of 
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these. Similarly, the function b(t) may be readily' 

determined on the basis of its interpretation in terms 

of area under the fertility curve. 

This leaves just the terms g(x,s,t) in the pop-

ulation equation and a(t) d(x) in the fertility 

equation to be determined. It can be seen that each 

term enters its equation in an analogous way, so that an 

estimation method can be derived which can be used to 

estimate both the economic mobility u(x,s,t) and the 

term a(t) d(x) in the fertility equation. 

It is shown in Appendix A .-that the form of the 

partial differential equations is such that an integrat-

ing factor may be introduced to reduce the problem to 

that of estimating g(x,s,t) and a(t) d(x) in the 

equations 

_ 	(u(x,s,05) bx 	as 

O  - 	(a(t)d(x)fl 	. bx 

In the modified population equation, integrate 

between the limits of s and infinity. There results 

—214— 



7 	 + --) p(x,s,t)ds . 
, s 

s - 
u(x,s,t) 

- 

bx 	Js 	p ds = g(x,s,t) • P(x,s,t) ; 

here e Js p ds has the interpretation of the number 

of people at age x 5 5 income s 	and time t 

having an income greater than s . Solving this for 

g gives 

This  provides an estimate of 0. wherever 5(x,s,t)  j  0 . 

Since p(x,s,t) 	0 except on the "tails of the dist- 

ribution", the above formula may be used to determine 

g throughout the age and income brackets containing 

the great bulk of the population. On the tails of 

distribution (e.g., at very high income levels) the 

interpretation of u makes it clear that g must tend 

to zero, so that the fact that the above formula is less 

useful there is of little concern. 

Carrying out exactly the same procedure with the 

modified fertility curve results in 
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1 _ ro  _ 
p ( x, t) 	, x  f( x,octx a(t) d(x) 

This determines a(t) d(x) over those portions of the 

age scale which Ê- (x,tW 0 . Again P tends to zero 

only on the tails of the fertility distribution. Recall-

ing that the term a(t) d(x) was introduced to account 

for changes in the age distribution of fertility we see 

that intuitively a(t) d(x) reflects the effects of 

shifts in "planned births" for the most part. Since 

births arising in the extremes of the fertility dist-

ribution do not fall into that category, it is clear 

that d(x) must approach zero at these extremes. Hence 

it is again true that the fact that the formula derived 

is less useful in regions where T is close to zero is 

of small consequence. 

Once u(x,s,t) and a(t) d(x) have been est-

imated, further estimation problems remain. One problem 

is that of determining numerically the values of a(t) 

alone  for use in identifying the interactions between 

the economic sector and the fertility curve. A second 

related problem is that of isolating the time dependence 

in u(x,s,t) in such a way that a similar interaction 

analysis may be carried out. These problems are of a 
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somewhat more technical nature so our work on them is 

reported in Appendix C below. 

A further technical complication arises in con-

nection with practical use of the estimation formulas 

above. This arises from the fact that the actual pop-

ulation density data is not available; rather figures 

are available for, say, the number of persons between 

ages 25 and 29 with income between eight and ten thou-

sand dollars. This amounts to the data 

c  10,000 	f 29 

p(x,s,t) dx ds 

t/  8,000 	] 25 

at a fixed value of t . 

We have expended a moderate amount of effort to 

develop accurate numerical algorithms with which 

u(x,s,t) and a(t) d(x) may be determined from aggreg-

ated data of the sort mentioned above. The method 

devised uses somewhat delicate application of numerical 

spline techniques. This work is also described in 

Appendix C. 
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V. 	Simulation Trial Examples  

Simulation runs have been made in order to test 

the algorithm for numerical solution of the coupled 

system of ordinary and partial differential equations 

which constitute the model 

Since there is a rather large amount of numerical 

data associated with each simulation run, the results 

are produced by the simulation program in a visual as 

well as numerical format. This is accomplished through 

a plotting routine which constructs perspective drawings 

of the three dimensional surfaces generated by a sim-

ulation run. 

The (steady state) age distribution which results 

from a constant birth-rate and an absence of immigration 

is illustrated in Figure 2. The age distribution which 

results in this case is of course determined solely by 

the death-rate. 

The wave-like nature of the solutions of the gov-

erning equations may be clearly observed in a simulation 

which creates a rise in the fertility curce, starting 

from an initial condition of the steady state illust-

rated in Figure 3. Since the dynamics governing a(t) 

and b(t) have not yet been determined, a simulation 

has been carried out by introducing b(t) as an exo-

genous variable; a(t) was determined through the 

-218- 



3.46 

3.00 

2.S0 

2.00 

LSO 

1.00 

0.50 	SCS73.38 

0.00 	j 42.7b 

EVOLUTION OF POPULATION OVER 50 YEARS: consrAter PROFILE 

Figure 2.  



0.00 

2.50 	4. 

2.00 

1.50 

1.00 

0.50 5067R.38 

42.7b 

3.46 

3.00 

EVOLUTION OF POPULATION OVER 50 YEARS: CONarAter PRogt.LE 

Figure  2.  



dynamic equation 

( d _i_ 1 
 dt ' 

The functions b(t) and a(t) have been determined so 

) 2 

T 	, , 
that f a(t) dt = f

T 
b(t) dt = 0 , 

0 	 0 so that the fert- 

ility curve returns to its original value. This 

produces the response to Figure 4 in the fertility 

curve, which corresponds to a "baby boom" of duration 

approximately five years. The effect of this rise in 

the fertility curve on the age distribution is il-

lustrated in Figure . 

The varying total birth-rate may be clearly seen 

at the back edge of the figure; the secondary rise in 

the birth-rate which occurs as the original "offspring" 

of the boom pass through the childbearing ages is 

plainly visible. It is also easy to see the original 

boom passing as a wave through the age structure. 

Both the wave nature of the solutions and the 

birth-rate variations which occur due to a non-

uniform age distribution are illustrated in Figure 5. 

This output results from an initial age distribution 

which is significantly different from the steady-state 

distribution. Such a distribution might be viewed as 
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the result of variations in fertility and immigration 

which have occurred previous to the time interval covered 

by the simulation. In this simulation the fertility 

curve has been held constant, so that the birth-rate 

variations which occur are due to the varying number of 

people in the child-bearing age brackets. 

VI. Future Work 

As of the time of writing of this report, the model 

has progressed to the point that the basic structure has 

been established, and the crucial numerical problems as-

sociated with the model are well in hand. In particular, 

numerical methods have been devised for the simultaneous 

integration of the partial differential equations in-

volved in the model core dynamics and the accuracy of 

the method has been tested by means of comparison with 

explicit special case solutions of the model equations 

obtained by analytical means. Also, a considerable 

amount of effort has been expended on the problem of 

devising efficient numerical procedures for extracting 

estimates of the functional coefficients of the partial 

differential equations from date available in the form 

of a histogram. This algorithm has been tested again 

by use of explicit solutions of the governing equations, 



and has produced accurate results in the tests. 

With these two obstacles removed, the next step 

in the development of the model is to begin the process 

of modelling the dynamics of the interaction between the 

parameters occurring in the core section of the model 

and various economic variables. The first step in this 

procedure is to apply the estimation algorithms to the 

actual historical data in order to  détermine the time 

history of a(t) 	b(t) and the variations associated 

with the economic mobility u • Once these functions 

have been extracted from the data, various approaches to 

establishing the interaction can be started. 

The problem of determining the interaction will 

first be treated by conventional time-series techniques, 

that is, correlation analysis based on the assumption of 

a linear dynamical system of finite dimension as the 

dynamical ilitermediary between the economic variables 

and those in the model core. More recent methods as-

sociated with input-output analysis of control systems 

and identification from operating records will also be 

tried if the time-series methods are found unsuitable. 

The relative effectiveness of these two techniques will 

probably depend on the "actual" location of the stoch-

astic noise element in the real system, length of the 

operating records, and other factors which are difficult 



to predict in advance. Non-linear regression methods and 

techniques of non-linear system identification are held 

in reserve in case the above methods prove incapable of 

modelling the interactions. 

After a suitable dynamic model of the interaction 

effects has been determined, full scale model sim-

ulations may begin. This requires models to generate 

economic variables as mentioned above in Section II , and 

it is currently planned to adapt standard economic 

models to this purpose. It is also expected that in 

this context stochastic  as well as deterministic sim-

ulations will be carried out. This is desirable for two 

reasons: first, it is a means of assessing the sen- - 

sitivity  of the overall model; second, it is clearly 

more realistic to model economic behaviour to include 

random fluctuations if possible. 

Finally, we mention that there is a considerable 

amount of additional work which should be carried out 

in connection with an investigation of this model. In 

this area, we mention here only two possibilities which 

might be considered. The first is described here only 

because of its possible relevance to the problem of 

interaction identification discussed above. 



The model as it currently exists has been form-

ulated on a "macroscopic" level, that is, the processes 

which transfer people from one level to another as well 

as birth and death processes have been modelled as 

occurring continuously in time. On the microscopic 

level of an individual, these processes obviously occur 

at discrete instants of time and are most suitably 

modelled as a stochastic process. Such modelling will 

involve the determination of the probability of the 

occurances of the various "elementary events" which 

occur on the microscopic level. In such a model, the 

various interaction effects which are to be estimated in 

the continuous model appear in the form of dependence of 

transition probabilities on the current state of the 

other variables involved in the model. On this level, 

there is then the possibility of estimating these trans-

ition probabilities and their dependence on the other 

model variables, and thus modelling the interaction 

effects directly. Close examination of the resulting 

stochastic process model should then shed light on the 

form of the interaction in the continuous model form-

ulation of the problem. 

A second area where very useful work may be done 

is in the area of the construction of highly effecient 

numerical methods for the solution of the governing 



equations. In our work so far relatively standard 

numerical techniques have been used for numerical integ-

ration of the evolution equations. It may be quite 

possible to make use of the special forms of the 

equatiOns to construct more efficient methods. Some 

preliminary investigation indicates that methods based 

on Lie algebraic techniques hold promise in this regard. 

It will be especially important to the usefulness of the 

final simulation programs that program execution time be 

kept as low as possible in order that the required number 

of repeated simulations may be carried out at a reason-

able cost. 

Appendix A: 	Analytical Properties of the 
Governing Equations 

In this Appendix we report some of the analytical 

properties of the partial differential equations govern-

ing the dynamics of the population distribution and the 

fertility curve. The study of these analytical prop-

erties in itself provides considerable insight into the 

problems of population dynamics, as well as providing 

material essential for the testing of the accuracy of 

numerical methods developed for use in the model. 

It was mentioned in Section III that the population 

distribution equation enjoys an invariance property 



which makes it unnecessary to speCify in the model form-

ulation the exact measure of income represented by the 

variable s . 

This can be readily demonstrated mathematically as 

follows. 'Suppose that instead of considering the dist-

ribution function p(x,s,t) as a function of the income 

scale s , governed by 

= - 12 (X S 0 - --• ( 1,1(X S 0 ( 	0) 5 5 	p X, S 5 5  5 	 5 5  

+ i(X5 S 5 0 - r(x,s,t) p(x,s,t) 

we ask for the evolution of the distribution expressed 

as a function of the income measure a • Here the new 

'scale a is related to the scale s according to 

a = cp(s) 

where cp is a monotone, smooth (non-linear) function 

otherwise arbitrary. 

By the Chain Rule, 

• C).  

= 	• 	 cf)!  ` s 	cr 
- 

) s 



P(x e c,t) = P(x,c1)-1 (c),t) -1 
(G)) 

1 

so that the evolution equation for p becomes 

P Oc3 ci) 	( ), t - 	p(xl cp
-1

(a),t) 

P '(p-1 ( c) ) 	(4(xecp' (cp-1 ( a ) ) ,t) .  

P(x,cP-1. (0'),t))+  i  — r.r) x,cp
-l (c),t ) 

The Jacobian rule shows that the population 

density in terms of x 5  a and t is given by 

Rearranging the previous equation to introduce '15 gives 

_ 	_(— 
77 	g(x,a,0 1-5) +  1  — 

with a(x,a,t) = g(x 5 c1D-1 (a),t) • cpt(cp-l (a)) 	. 

= 



-1 
i(x co (a),t)  1(x,a,t) — 

cp (cp—  (G)) 

?(x,c,t) = r(x,cp -1 (a),t) 	. 

This identifies the transformation law of the economic 

mobility, and shows the invariance of the governing 

equation under such a change of scale. 

While the coupled system consisting of the pop-

ulation anf fertility evolution equation is a non-

linear one, the non-linear interaction occurs only in 

the calculation of the instantaneous birth-rate (so 

long as g 	a(t) and b(t) are treated as exogoneous 

variables). Since the birth-rate enters only as a 

boundary condition, it is possible to get useful results 

from explicit solutions of the equations. 

Both the population and fertility equations fall 

into the class of evolution equations governed by first 

order partial differential equations. While the 

equations in general have variable coefficients, they are 

linear in the dependent variable; hence, in principle, 

the method of characteristics is applicable. 

This observation does not dispose of the problem, 

however. A principal reason for carrying out the invest- 



igation into the analytical properties of the equations 

is to obtain if possible explicit  solutions to the 

equatioàs. Bir explicit solutions, we mean solutions 

obtained in closed form analytically. 

These solutions have been used to test the accuracy 

of the numerical methods used both to integrate the evol-

ution equations and to estimate the functional co-

efficients of the equations 11(x,s,t) and a(t).d(x) 

In the absence of explicit solutions, only lengthy (and 

expensive) trial runs with varying step sizes can be 

employed to attempt to estimate accuracy; with explicit 

solutions available, it is far easier to estimate the 

step sizes required for a given level of numerical 

accuracy. 

The above remarks pertain to evaluation of the 

integration scheme; in the case of the estimation prob-

lem, the unavailability of explicit solutions would force 

one to the use of the integration routine to generate the 

data on which to test the estimation algorithm. In the 

case of inaccurate results, it then becomes tedious to 

determine whether the inaccuracy arises from the est-

imation scheme, or from the numerically generated data. 

It is this need for explicit solutions, at least in 

particular cases, that has led to the work reported 1,1 



d(x) 	" (h ( x ) -1 a(s)dx)) 
0 

F(3ç,t) - oS  (h-1 

below. The method of characteristics in general prod-

uces a solution in implicit  form; it is essentially im-

possible to carry out the required function inversions 

numerically with enough control on accuracy to make 

such implicit solutions useful for our purposes. 

Fertility Equation 

An explicit solution to the fertility equation 

may be obtained by the method of characteristics. For 

bf _ 
bt 

(a(t)d(x)f) - b(t) f 
bx 

ob(t)dt 
introduction of an integrating factor of 

reduces the problem to 

= - 	(a(t)d(x)) 	. 
bt 	b x 

Solution of the above by the method of characteristics 

gives 

d(h-  (h(x) 	f a(s)ds)) 5  
0 
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with h(x) 	h(x(0 ) 
X 
 1 

x 
d(x) 

dx 

and 0(x) - 	 . 

Population Equation 

As may be seen from the above example, explicit 

solutions are generally very involved in form. For this 

reason, explicit solutions of the population equation 

will not be exhibited here. We remark that such sol-

utions may be found; the case in which the death-rate 

varies linearly with age is one example of use in con- 

nection with the estimation problem for g . (Results 

from this example allow the removal of the death-rate 

term from the governing equations by means of an inte-

grating factor.) 

The use of explicit solutions has some potential 

use beyond evaluation of numerical methods. This is in 

the area of decreasing the size and cutting down the 

execution time for the simulation of the model. This 

may become important in later phases of development of 

the model, and will have an effect on the frequency of 

use of the completed model. 
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The key to such reduction of time expenditure is 

the observation that an explicit solution reduces the 

problem of evolution over an arbitrary time interval to 

a single  function evaluation. This is to be contrasted 

with the repeated evaluations involved in a numerical 

integration. Of course, the full benefit of this 

discrepancy is available only if the interaction effects 

are specified exogenously. In the case of the full 

model, however, it seems likely that explicit solutions 

could be used together with extrapolation methods to 

improve simulation execution time. 

This leads naturally to the question of which 

classes of coefficient functions tive rise to explicit 

solution formulae. Of particular interest is the prob-

lem of explicit solutions to models in which the co-

efficient functions appear in "separable form" (see 

Appendix B below), so that the equation has the form 

e -
x  - 	( 	ni(t)vi (x,$)p) - (t) r(x,$) p 

i-1 

Progress in the direction of explicit solutions to 

the above equation may be made by recourse to the theory 

of Lie Algebras. In particular, if the Lie algebra gen-

erated by the partial differential operators on the 
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right side of the above equation is solvable, then 

(global) explicit expressions are possible. Other con-

ditions on the Lie algebra lead to (local) results which 

may prove useful. 

Appendix B: 

Numerical Methods for Partial and Ordinary Differential  

Equations  

In Section III of the report, the population and 

fertility are dynamically modelled by a pair of partial 

differential equations: 

- 	 - L— (i(x,s e t)gp) - r(x,s,t)p + i(x,s,t) bx Os bt 

Of _ 
bt 

a(t) b7  (d(x)f) 	b(t)f 

In Section IV, techniques for estimating the parameters 

u(x e s,t) 	a(t) 	d(x) are discussed and there, it 

is pointed out that full simulation of the overall model 

requires dynamic modelling of these functions using 

partial and/or ordinary differential equations. 
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Since this appendix deals with aspects of the 

actual simulation of the model, it is assumed that ord-

inary differential equations for a(t) and b(t) have 

been obtained, estimated values of d(x) and u(x,s,t) 

have been obtained by use of the estimation procedures 

described elsewhere in this report, and that initial 

fertility and population distributions are known: 

f(x,s,o) and p(x,s,o) . Values of p(x,s,t) and 

f(x,s,t) are required, and these are simulated using 

numerical techniques. The techniques have been chosen 

in order to be consistent with the conservation law 

character of the governing equations, to attain a 

reasonable accuracy in the simulated values subject to 

restrictions on the size of data groupings which are 

expected in currently available data, and to balance 

these with economy of computation. 

In the numerical simulation which has been carried 

out up to the time of writing of this report, the income 

level dependence of the population density has been sup-

pressed. As well as yielding computational efficiencies 

during the development of the model, this procedure has 

made the analysis of numerical problems arising in the 

modelling considerably easier. The extension of the 

numerical methods developed so far to include the income 

variable s is expected to cause no significant dif- 
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ficulty, as the problems which arise should parallel 

those already encountered. 

Numerical Intearation of the Fertility Equation 

The fertility equation has been transformed by an 

integration factor to 

(x,t) = - a(t) 	(d(x)f(x,t)) 
b x 	 b x 

where 

-rtb(t)dt = 
f(x,t) = e o 	t(xe t) 	. 

An approximation F.. to f(ih,jk) is obtained using 

= F. 	- 	a.(d 	F 	-d. 	F. 	.) F i. j+1 	ij 	2h j i+1 i+lj 	i-lj 

2 
ka. 
 j  + 	) Ed 	(d 	F. 	-d.F..) 2 h 

	

	1 i+1 i+lj  i ij 
i+— 2 

- d 	(d F -d. 	F. 	.)] 1 	i i i-1 i-lj 

and f(ih jk) is estimated by F
ij 

using numerical 
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integration for the integràtion factor (see below). This 

scheme is almost second order, and has two desirable 

properties: For d(x) = d constant, it is numerically 

stable provided that the step size ratio is chosen to 

satisfy 

5_ ch a . 

k 	I 1 	I 

I 	3 I  

Also this scheme has the property that it removes a 

distortion of the fertility profile when the effect 

causing the distortion is removed. This property is ex-

hibited in Figure 3. 

The dynamical equations governing the variables 

a(t) and b(t) must of course be integrated simult-

aneously with the partial differential equations. Num-

erical approximations are currently calculated using a 

modified Euler method over time steps of length k . 

While this procedure may be easily replaced by a 

more accurate process, this method was selected in view 

of the decision to use simple routines initially as an 

aid to algorithmic development, and later to replace 

these by more sophisticated routines as dictated by 

accuracy and economy in large simulations. 

Since dynamic modelling of a(t) and b(t) has 

not yet been carried out, the dynamics 

-239-- 



where 

(D+1) 2  a(t) = b(t) 

have been assumed in order to verify the integration 

methods. In this case 

a(t*) = a(t) + hf(a(t)) 

a(t+k) = a(t) + -[f(a(t)) + f(a(t*))] 

.1••••11 

I b(t) 

I a(t) 

a(t) 

a l (t)  

b(t) 

a(t) 

a l (t)  

b(t) - a(t) 	2a1 (t) 

.■••11 

11•••• •■•• 

describes the modified Euler method. 

Numerical Integration of the Population Equation  

Initially only the age-time dynamics of population 

have been considered; hence the equation is 

(x t) = - 	(x t) - r(x,t).p(x,t) • 
ô t 	' 	 bx 



To solve this numerically, we approximate p(x,t) 

by P(x,t) where 

P(x+h,t+h) = (1-r(x,t)) P(x,t) 	. 

The fertility is used to estimate the population birth- 

rate 

p(o,t+h) =p(x,t) f(x,t) dx e 
 0 

and this is approximated numerically by 

100 
P(o,t+h) = 	7 P(x e t) F(Dc e t4) 

i=1 

h 
where F(x.'  t+—) is obtained from the numerical  approx- 

imations of the fertility curve. 

The low accuracy method for simulating the pop-

ulation is reasonably accurate for that section of the 

profile where the death-rates are almost constant. It 

is expected that improvements will be possible after 

additional work. Improvements in the simple scheme 

used for estimating P(o,x+h) would lead only to a 

çhange in scale of values, but not their dynamics. 



In conclusion we point out that certain portions 

of the model are particularly sensitive to errors - that 

is small errors may lead to very inaccurate simulations 

of the dynamics, whereas other portions of the model are 

not so sensitive. For this reasori, it is possible (and 

economically reasonable) to tailor the accuracy of the 

methods used to the sensitivity of that part of the 

model being simulated. 

Appendix C: 	Numerical Determination of Partial  

Differential Equation Coefficients  

In Section IV it is shown that integration of the 

partial differential equations leads to analytic for-

mulas for the estimation of u(x,s,t) from the pop-

ulation equation, and a(t).d(x) from the fertility 

equation. To use these formulas, available data must be 

used to estimate the quantities required. In particular, 

it is required that histogram data be used 

1. to generate (continuous) density functions, 

that 

2. partial derivatives of these density functions 

be estimated, and that 

3. the required integrals be estimated. 



The distributions involved appear to be very smooth, and 

as a result piecewise approximation by polynomials with 

continuous first derivatives is necessary; additional 

smoothness is desirable. The algorithm employed is des-

cribed below for the problem of estimating the economic 

Mobility 11(x 5 s,t) . The procedure for estimating the 

term a(t) d(x) in the fertility equation is entirely 

similar. 

1. A function which might be best described as a 

fourth-order spline (having three continuous 

derivatives) is determined so that its , 

integrals over the appropriate intervals ai-e 

equal to the given values from the histogram 

data. 

2. Differentiation of the fourth-order spline 

with respect to the x-variable provides an 

estimateofln.determination of an ad-bx ' 

ditional cubic spline in the t-variable fol-

lowed by a t-differentiation provides an 

estimate of  
bt 

3. Finally, the required integral is estimated 

by integration of the result of 2. above. 

In the use of spline methods in approximation 

problems, it is necessary to provide additional boundary 
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conditions beyond the requirement that the spline inter-

polate the appropriate sample points. Unfortunately, in 

the present application, use of the so-called "natural 

boundary conditions" was found to give particularly poor 

estimates near the boundary of the region involved. 

Further, it was found that these errors were quite sens-

itive to the values assigned. 

After considerable experimentation,t it was deter-

mined that adequate results could be obtained through 

estimation of the third derivatives near the endpoints 

by third order finite differences, and use of this data 

to determine the boundary conditions. The scheme for 

approximating the distribution function requires the 

solution of a system of linear equations including three 

different types 

n n 	n n 
r. 	r. 

i-1 
(a) r" - 2r" + ri-2 	

— = o 	= 2 5 ••• 3  100 
1 	 i-1 

r t 

( p) r. 	2r. 	
+ r. 
 i 
	- _2 	-6-  
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0 
;"Ju 

ro  0 

H 

0 = r
100 

II 	 r
1 H = 0 -r + r

1 - 
2 

II 	II 

0 0 

u r. 	r" 	r." " 
i (c) 	r + ri-1 	 = 2P. 	i - 1/ - 12 	60 	1 

where. P. is the number of persons between ages i and 2 

i + 1 , and the boundary conditions are 

Here r. is interpreted as the population distribution 

at age i years, and it is assumed that values Pi  are 

available for i = 0,1 1 àii„99 . 

To solve this system, a reduction method for a 

sparse matrix is used, and the equations are ordered so 

that coefficients of moderate size are maintained on the 

diagonal. For a test distribution, the error in re-

generating the histogram was less than 1 percent. 

Spline Approximation  

A standard analysis for cubic spline approximation 

represents this function in terms of estimates for the 
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second derivative at nodes. These are obtained as sol- 

utions of the system of equations 

r. 	- r. 	r. - r .1. • 	a_ 	i-1 	- _ 	 
h.M. 	 h 	M. 	 11 	 h. i  1-1 	 1.41  1+1 	 -i+1 	 1  + 2M. + 	 - 6 	, 
h.+h. 	1 	h.+h 

a. 	
". . h. + h

i+1 i 1+1 	 i+1 	 i 

tointerpolate{r.} with a spacing {h.} (which for 1.  

our model is either h or k constant), and boundary 

conditions used are 

M-M 
10 

h 
_  L (_r .4.31,_-3r2.+r3) 
h3 " 

MM  
n n-1 	-1 

- — (-r n3 +3r 
 n2

-3r  n1 +r n ) h 
h3 	
---  

With this approximation, errors in u(x,s,t) and a(t) 

d(x) obtained using the estimation procedures are less 

than 1 percent on the interior of the domain. Although 

errors are large where P(x,s,t) is small, values of 

p.(x,s,t) there are not crucial (see Section IV). 
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Separability of Coefficient Functions  

It was mentioned in Section III that one aspect of 

the structure of the model was that it was formulated in 

such a way as to make it possible to model the feedback 

effects on the core section of the model in terms of a 

finite number (even a small  finite number) of functions 

of time. This was illustrated in Section III in the 

hypothesis that the effect of the rest of the world on 

the fertility curve could be adequately modelled by 

bf _ 
bt 

- a(t) Pt77  (d(x)f) 	b(t)f . 

In this formulation, the world affects f only through 

a(t) and b(t) 	However, it was also mentioned that 

bf _ 
bt 

- 	(a(x
" 
s t)f) 	b(t,$)f 

bx  

might well represent a more realistic model, and it is 

easy to verify that the estimation procedure described 

in Section IV and Appendix C above will equally well 

produce an estimate of the coefficient function 

a(x,s,t) . A problem that arises, then, is that of 

distinguishing between a(x,s,t) and a(t).d(x) at the 
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stage of the output of the estimation algorithm. From 

the point of view of subsequent modelling effort, it 

might well be hoped that the result had the form 

a(t) d(x,$) 5 or perhaps even a(t)•d(x)ec(s) 

A similar problem occurs in the case of estimation 

of u(x,s,t) 	where the validity of a representation 

of the form 

g(x,s,t) = ni (t) v i (x,$) +...+ nN(t) v m.(x,$) 

with N a "reasonably small" integer is at least a 

practical requirement for the success of any attempt to 

model the interaction affects. 

Given the implicit smoothness assumptions on the 

coefficient functions of the model and the fact that  the  

ranges of the x and t variables involved 

are finite, there is no problem in applying standard 

approximation theorems to deduce that g may be closely 

approximated by a function of the above form. (A 

similar remark obviously applies to a(x,s e t)). For 

convenience, we refer to the above form as a "separable 

representation for g ". 

Since we have shown above that separable repres-

entations exist, the only problems which remain are those 
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of the number N of terms to be expected in the représ-

entation, and the numerical determination of N and 

11.(t) from the available data. 

Consideration of the effects that the t var-

iation in u (and a ) is intended to model, and the 

probable variability of these effécts across age and 

income brackets suggests strongly that N is small. It 

would be surprising if N were greater than 3 in the 

case of the estimation of u(x,s,t) 5  and it appears 

entirely possible that a single term will suffice in the 

case of the estimation of a(x,s,t) 

It remains to show the feasibility of determining 

separability of the representation numerically. To 

distinguish a separable u from a non-separable one we 

proceed as follows: 

A smooth function u(x,s,t) 5 defined for 

sES„ tET, xEX 1 withS, T, X 

compact subsets of RI defines the kernel of a compact 

linear operator L mapping from L
2
(XXS) 	L

2
(T) ac- 

cording to the formula 

Lf(t) =  S  r p(s,s,t) f(x,$) dxds 

XXS 
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esf 

■■•■• 

Now a separable  g is distinguished by the fact 

that the associated L is an operator of finite dimen-

sional range, and this observation essentially solves the 

problem. 

When g(s,s,t) has been estimated numerically, g 

is not obtained as a continuous function. What is ob-

tained in fact is a set of sample values 

{1-1-(X.,S.,t k»,INTielx.EX 5 	SES 5 	tk E T . 2 	 2 

Here X , S 5  T are each Euclidean space of dimen-

sion equal to the number of sample points in each of the 

independent variables. The discrete analog of the def-

inition of L is to use the above three dimensional 

array to define a linear mapping (matrix) 

L : R
dim(XxS) 	

R
dim T 

The pœoblem of finding the ,n . et) is now equiv- 
■•■■I 

alent to determining the range space of L , and N 

is simply the rank of L . 

The problem is simplified still further by invoking 

the fact that 

Range L = Range L L 

where L is the adjoint (actually transpose in this 
411 

case) of the matrix L • This reduces the problem to 



the entirely standard one of an eigenvector/eigenvalue 

analysis of a symmetric matrix, and hence effectively 

solves it. 

Appendix D 	Computer Program Listing 

In this appendix we list the computer programs 

developed up to the time of this report for use with 

the model. Included below are both the programs used 

for numerical integration of the governing evolution 

equations in simulation runs, and the programs designed 

to estimate model coefficients from the available data. 

The programs listed here are written in FORTRAN. 

Given the relatively large arrays of data which must be 

handled in connection with this model, it is clear that 

FORTRAN is not the most convenient language in which to 

program the numerical algorithms required. With a view 

to future uses of the model however e such factors as 

the wide availability of FORTRAN compilers, the exist-

ence of the I.B.M. CSMP (Continuous System Modelling 

Package) which is FORTRAN compatible, and of FORTRAN 

packages for the Calcomp plotter used to produce output 

data plots make FORTRAN a reasonable language choice. 



Program I 

Simulation of population and fertility propagation 

over time. Initial age-specific profiles of population, 

fertility and mortality, and dynamics for a(t) and 

d(x) are required. Here, the values for population 

are taken as the number of live individuals at age x 

in the population as given by the Commissioner's 1941 

Standard Ordinary Mortality Table. Values for mort-

ality are also taken from this table. 

Values for the fertility are given by the 

artificial distribution: 

f ( x, 0 ) rr.C e  

(x-24.5)
2 

 
- 	8 

where the constant C is chosen so that 

100 
S 	f(x,o) p(x,o) dx = e(o) 
O   

Values of d(x) are assumed from (the artificial 

distribution) 

(x+1) 2  

(1-e
- 600 

d(x) = 
(x-24.5)

2 
 

1+e 4 



The parameter a(t) is determined by numerical integ- 

ration of the differential equation 

(D+1) 2  a(t) = b(t) 

where 

b(t) = - sin(e-1t-51 -e- I t-10 k 0 < t < 15 

1 5 

= o 	 t > 15 
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1 
2 
3 
4 

$J0i71 	4CCT-MU1,IV!-.RNEP1,1ImE=e , 0 
ogAt 	x(10n) 
TC=.1nn 
TF=q 
DO .) 

5 	raLL DAFA(xlIq9IC,IF) 
CONTTNUL 

7 	.STOP 
Fpn 

9 	 gli6PnUTIHF DATA(X,IR,IC,IF) 
10 	 9FAL n(100),F(100),P(100),X(100),R(100),US(100),D5(100),F1(100) 
11 	 REAL pH,KKIUM,IV(10),DLY(10) 
12 	 REAL pLTPER,PRIPER,I1 
13 	 TNTF-,Vp YRS,e:GFS,YOUNG,NN 

**************************************************************** 
SET  TFOmm:n IF YOU WANT PLOT, 	=1 IF YOU WANT PRINT 
*************************************************************** 

14 	 ITOP1=1 

16 	 PR=P1 
17 	 TINT-F-4 
1P 	 TCml-TC-1 
19 	 IF (TR.NT.1) GO T() 31 

pRpRooRR9RR,94RPRkRPRRRPPRRPRPPRRHRPRPRRRRRRRRRRRRRRRRRRRRRRRR 
HH lc !m:IF SiFP 	KK IS TImE STEP 

20 	 REA0(5,101) 1 -4 1-1,KK 
21 	101 	FOW,1  T(2F1u.b) 

PLTPR IS PLOT INTERVAL - PRTPEP IS PRINT INTERVAL 
22 	 RFAn(5,101) PLiPER,PRIPEP 

NDE rq THE iquv.iER OF EIKsj ORDER ODE'S AFTER TRANSFORMATION 
IF  NE > 10 CHANGE REAL DIMENSION IN DATA AND $STEP 
NN  I  THF W(AER OF INTEGRATION STEPS IN KK FOR SOLVING THE ODES 

21 	 PEA1)(ci,11 -i1) 	NN 
24 	103 	F0R'4 , T(2T4) 

PUT TNITIAL VALUES OF ODES ONE TO A CARD 
25 	 no 97 I=14E. 
26 	 RE:(s,107) DLY 
27 	107 	FORr(F10.4) 
28 	97 	CONTTNOF 

PRRRF)9RR ,RPRPRt-fflkRRkRRRPNRRHRPRRRRRRRRPRRRRRRRRRRRRRRRRRRRRRRRRR 

29 	 pR=Rp+KK 

30 	 T=0.n 
*****************(F********************************************** 

RFAD DEATH  RAIES  
READ POPULATION DENSITY - 

C 	*************************************************************** 

PP9PQRPqRRI:/KR-RRRRRRRRRRRPqRRRRRRPRRRRPRRRRPRRRRRRRRRRRRRRRRRRRRR 

31 	 PFAi)(111)n) 	(P(I),I=1,IC) 
32 	100 	FOr-" . T(')F10.b,30X) 
33 	 REA.)1041 (P(I),I=1,IC) 
34 	104 	FO 4 '° , T(10F;4.0) 

9RPRRPRP.PPRKRRi-<RHRRRRRPRRRRRRPRRRRRRkRkRRRRRRRRRRRRRPRRRRRRRRR 
35 	 = .0 
36 	nn ()C) j=t,Ic 

37 	 • ÇI)M=SuPl+P( ) 
99 	rONTrNUF 

39 	 nn 	I=L+1- (: • 
40 	 P(I)=P(I)*22000000./SUm 
41 
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54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
.66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
76 

•••••■ 

• 

7() 

15 

I) 
xP(-11*I1/600.))/(1+((I1-25.5)**2)/4.) 

25*H H*(Y0 uN(- 24.5 ) ) * *2 ) 
)*P ( 1) 

(— ( .125 * Hh*( I +YOUNG-2 5. 5) ) **2) 
1(I )* P( I) 
(0 (1 )+0 ( I- 1 ) ) 

)-0(e›.)) 
C)-q)(Ir-1)) 

I )*SUm 

42 	9P 	cONTtmqL 
ppppoppQpopiipppPIDPI-)PPPPPPPPPPPPPPPPPPPPPPPPPIDPPpprppppPPPpppppipP 

43 	 TF(I7OP.MF.1) G010 61 
44 	 T P 
45 
46 	109 	FokmT( 1 1 1 . 1 P0)'UL1\FI0N i'tm A (, ES 	1 	TO 20 	IS 1 ) 
47 	 41wIT 	( ,-.1jeq (P(I),I:=1.20) 
48 	102 	F 0 L 1 (1:10.(1/) 
49 	 IIT  (h,110) 
50 	110 	F0'.,.T( 1  I.IAT BEGINNIN (  OF YEAR 	 0 , AND')  
51 	 tAPTT ( 6 .111) 
52 	111 	FU,? ,, T('   1) 
53 	61 	cONTUr' 

PPDPPPPP 0 ;-)pPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPP .  
0,, 	7, 

YOH - I 
F1(1) 

nn 

nu5=. 
nT5=, 

Oo 

PA=KK 

f=1.1( 

i- )(1)=(1—F_ 
rONITNUÇ.r. 
=r) 

xP(—(.1 

1=2.1», 
F1(1)=-:xp 
SUM=SU ,A+F 
P5(1)=.5* 
r0:1TTNuE 
5*( 3.* , )( 1 
c*( -3. *O (j  
(1) /Sum 
I=1. Tr 

Fl ( I ) =F1( 
rONTINuE 
/H1-1 

p?r-n.0 
re,=1 
r;r: iq 33 

31 	rONT-Nip, 
pp=o-D+KK, 
**************************************************************** 

UPuATE COEFFICIENTS OF FERTILITY EQUATION 
**************************************************************** 

79 	 Pal= dy(2) 
80 	 p2=;)1Y(2)*OLY(2)*P4 
81 	 FA=F:P( — PLY(4)) 

pppDippppipppppopppppppppPpaPPPPPIDPIDPIDPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

82 	 TF ( 3RTP 1:P.GT.PR.OR.IFORM.NE.1) GOTO 62 
83 	 ,APIT - (6.1n6) T 

84 	1fl 	Forl. ,1'T( 1  AT 
85 	 'ftluTT'. 7 (6.112) 2)LY(1) 
86 	112 FOLelT(Int/tuFLAY IN PEAK OF FERTILITY CURVE IS 	1 .F9.6) 
87 	62 	CONT - NUI: 

pppopppppuPpwiJPPPppPoPPPPPPPPPPPPPPPPPPPPPPPPPIDPPPPPPPPPPPPPPPPP 

muLT1PLY FERTILITY 1.3Y INTEGRATING FACTOR 
**************************************************************** 

88 	33 	COmrrmuF 
89 	 qu1=q,n 
90 	 nn 47)  1=1,T( 
91 	 SuM=SW,l+FI(I) 

********************** *************************************##*** 
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92 	 ( ) =F- ,\* g.  
93 	42 	 c0:\!TINUF 

ppppnpPrJpppppppppppoppppPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

	

94 	 IF (oRTPt'S.iyI.PR.OR.IFO)<m.NE.1) GOTO 63 

	

95 	 wPIT7(6,113) 

	

96 	111 FOPPIT( 1 1 . 1 	INTEGRAL OF NORMALIZED FERTILITY IS 	v,F9.6) 

	

97 	 '4RIT - U1,11£4) 

	

9 5 	114 FOR'-T(1 I.* 	FRACTION OF INITIAL FERTILITY IS 
2.Fq.-) 

	

99 	 wq1- 1- :(i).11L) 

	

100 	11 5  FoRm4T(vnI.IvALUE'S OF 1-: - RTILITY CUR .VE  FOR AGES 21 TO 30 	ARE')  

	

101 	 PP TT - ((, • 11:1 0 ) 	(r7  (I), 1=21 , :3)) 

	

102 	10 	Fo-T(F- 1(1.h/) 

	

103 	63 	COPJTÏNUE 
PPPPDPPPP-)PPPPPPPPLIPPRPPRRPPPPRPPPPPPPPPPPPPPPPPPPPPPPBPPPPPPP 
**************************************************************** 

INCREMENE POPULATION BY ONE YEAR 
**************************************************************** 

	

104 	TINT,TTH1+K*? 

	

105 	 IF (.11-4 . (1 .1- I'i) G010 45 
106 

	

107 	SUml-C. 

	

109 	 nn 
109 
110 

	

111 	 P(J+1)=P(J)*(I-R(J)) 

	

112 	 SU1=LaimI+ 0 (J+1) 
113  

	

114 	44 	(-OH
115 	Sot,z..-zu1. , (1)*(1) 

	

116 	P (1) 	J • 

	

117 	)( (1) 

	

11P 	 Stp,i1 	 ( 

	

119 	T .UiT 	- 4 

	

120 	45 	CO'JTFPUL 
PPPPDPPRPPPPPp4>ppiDFDPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

	

121 	 TF (›RTP 7-R.(T.PR.OR.IFORM.NE .1) GOT° 64 
122 

	

123 	11 6  u'OM , T(u) , ,ITOFAL ROQULATION IS 	19E10.0) 

	

124 	 Dp=4.1L - n 

	

125 	wPrT - (6.117) 

	

126 	117 rt-T(ept.t***************************************************** 
I************************1) 

	

127 	64 	C0 111- )PUF 
PPPPDPPRP 0PRPPPPPRPPPPRPPPPPPPPPPPPPPPPPPPPPRPPPPPRPPPPPPPPPPRP 
************************************************************** 

INCREMENT FENTILIIY BY ONE YEAR 
**************************************************************** 

128 	 nn 3.1 I=1.1 (  
129 	 IF (1F - 2n.GT.F1(J)) F(I)=o.0 
130 	 OS(T)=Y(I)*F1(I) 
131 	34 	 COoinquE 
132 	 um=2.*U(-,(1)-US(2) 
133 	 UT=2,*US(IC)-US(IC-1) 
134 	Fl(Irqr-*F1(IC)-.6*PA*((PA1*(UT-US(TC-1)))-P2*(DT5*UT+D5(IC)*US 

2( 1 c...1)-(nru=;+115(1C))*US(1C))) 
135 	F1(1)=F1(1)-.S*PA*(PA1*(05(2)-UO))-B2*(05(2)*US(2)+1)05*UQ-(D5 

2(p)9)*os(1))) 
136 	 no 3..; 1=?.1(. 
137 	 F1(1)=F1(1)-.5*PA*(PA1*(US(I+1)-OS(I-1))) -P2*(D5(I 4. 1)*US 
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174 
175 

176 
177 
178 
179 
180 
181 
1 8 2 

11 

	

2 ( 1+1 ) 4- 1)  ( I ) 	( I-1) - (1.)D ( 1+1) +05 ( I ) ) *US ( I ) ) ) 
138 	35 	CUJ  T! 

**************************************************************** 
SoLVE 00E 1/4) ruFe DELAY PARAMETERS AND INCREmENT TImE 

**************************************************************** 
139 	 )(.) 	 F 
140 	 Iv(I)=i'Ly(1) 
141 	36 	rO.1 THuir 
142 	CPLL 	iN(1v,DLY,T,KK ■ NpE,NN) 
143 	PL=-1.4.KK 
144 	 IF ( -) 1 TPFP.i. , T.PL) GOT° 31 

ppopppop;_, opppPPPPPpPpPPPpPPPPPPPPPPPPPPPRPPPRPRPPPPPPPPPPRPIDPPIDP 
145 	 IF (IF (» -J.N.1) G010 65 
146 	 TPG=IP(;+1 
147 	 IF (TPC,.-u.) GOTO 79 
14P 
149 	„:;flr_ 4"121) 
150 	121 Poo-1(g') 
151 	7Y 	CONTTNUF 
152 
153 	11A Fo ,?T( 1  l'wPoPuLATIoN FOP AGES 	1 TO 20 	Is') 
154 	 (P(I), 1=1,20) 
1 55 	.OPIT - ( 0.1.11L, ) 	U- 
156 	119 FOPAAT(' ',yeti-  BEGINNING OF YEARI+1809ANDI) 
157 	 aQj T .• (6. 1 2») 
158 	12n 	FOR 	T ( 	•   I) 
159 	65 	cOlF , NUF 	 • 

p „) .poDppppppppppi-, ppppppppppRRRPPRPPPPPPRRRPPRPPFDPIDRRIDPPIDPPPPPR 
160 
161 

162 	 ' ,-Wq(1V9Z.r.r\K,NOE,NN) 
**************************************************************** 
THIL; qUBOUFINE GIVES  A S1mULTANEOUS SIMULATION OF VALUES 
7=(T , (T).A(1),At(T),IH(1),H(T)) AT 	I+H 	FROM INITIAL VALUES 	IV 
OF TF  L11MF  vARIAL3LEs 1 T. FOR EACH DIFFERENT SIMULATION THE 

'hDL luST HL RFeRITIFN TO EVALUATE THE DERIVATIVES 
D(I) 	AS A FoNCEION OF limF T AND SOLUTION VALUES Y(I) 
**********,:**************************************************** 

163 	 RF AL IV(NDE),/(NDE),f.Td,KK,K1 
164 	 K1=KKVFLoAT(NN) 
165 	 T2=-. T 
166 	 T=I+KK 
167 	28 	C0'.!Irt\:Ui: 
168 	 CàLL 4, Ri( ) V,/,129K1.NDE) 

169 	 T .,?=1*-)+K1 
170 	 no 2, 1--- 1,h 
171 	 1\1(I)=/( 1) 
172 	2 	 T T 
173 	 TF (T.GT.T?+-1/?) (10ro d8 

PFTU.) 
FP,:) 

sUBP.)011F-  IL, TEP(IV,7,1- .KK,NDE) 
PFr,L IV(NnE)+Z(NDE)971(10),D(10)901(10),KK 
CAU_L I- 0r(I.1V,NDF,o) 
DC)  11 I=1,,oir 

71(1)-11i(I)+1)(1) 
coqiuqw-, 

 TT=TKK 
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CALL (4,0(TT.L1 ,,NDE,D1) 
,10 	T=1.m0E 

7(I)=I ,f(1)+.5*KK*(1)(7)+D1(I)) 
12 	 (;)T [\(J.:  

QFTu=?t, 

189 	 tit,h-H?lUTIE '1, UE(TeY,NDE,D) 
190 	 PEAL Y(NDI-7),U(NDE),KK 
191  
192 	 n(2).7Y(3) 
193  
194 	 IF (T.G1.15.) GOTO 78 
195 	 TT1=PS(T- 15.) 
1 9 6 	 TT2='PS(T-1G.) 
1 9 7 	 T1=(—S(FXP(—TT1)—EXP( —TT2)))/15. 
198 	78 	CONT - NUE 
199 	 D(3),..15.*T1—Y(2)-2.*Y(3) 
200 	 n(4).-,.T1 
201 	 n(0. 
202 	 PETUF,, H 
203 

$ENTqY 

183 
184 
185 
186 
187 
188 



- POPULATION FOR AGES 1 TO 20 IS 
350170. 	342263. 	340289, 	338880. 	337734. 

- 336725. 	335795. 	334919, 	334091, 	333320, 

	

332613. 	331958. 	331324. 	330688. 	330033. 

	

329350. 	328642. 	327922. 	327184. 	326431. 

- AT BEGINNING OF YEA 	 09 AND 

AT TIME 0.7 5  

DELAY 	PEAK uF FETILITY CURVE IS -0.000373 

	

INTEGRAL OF NOR(1 ,\LIZEn FERTILITY IS 	1.089507 

	

FRACTION OF INITIAL FERTILITY IS 	 1.000501 

_VALUES OF FERTILITY CuRVE  FOR  AGES 21 TO 30 ARE 

0,076574 0.074216 0.069721 0.063482 0.056023 

TOTAL POPULATION IS 	22000110. 

****************************************************************************** 
POPULATION FOR  AGES 1 TO 20 IS 

350215. 	342263- 	340289, 	338880. 	337734. 

' 	336724, 	335795, 	314919, 	334091. 	333320. 

	

332613. 	331958. 	331324. 	330688. 	330033. 

- 	329350. 	328642. 	327922 , 	327184. 	326431. 

AT BEGINNING OF yEA , 	1,ANO 

AT TImE 1.75 

- DELAY IN PEAK OF FE)TILITY CURVE IS -0.004762 

	

INTEGRAL OF NOPMfd_IZEn Ff-RTILITY IS 	1.089505 

	

FRACTION OF INITIAL FERTILITY IS 	 1.002134 

VALUES OF FERTILITY CuRvE F. OP AGES 21 TO 30  ARE  
0.056127 0.06360 9  0.069877 0.074401 04, 076738 

0.076675 0.074285 0.06g795 0.063563 0.056101 

0.056025 0.063485 0.069726 0.074224 0.076578 

TOTAL POPULATION IS 22 00 0 5 1 0. 
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POPULATION FOR AGP: ,-; 	1 Tq 2n 	is 

	

350562. 	342307. 	340289, 	338880. 	337734. 

	

336725, 	335795, 	334919 , 	334092. 	333320, 

	

332613. 	331958. 	331324. 	330688. 	330033. 

	

329350. 	328642. 	327922. 	327184. 	326431. 

	

AT BEGINNING OF yFfit 	ri,AND 

- AT TIgE 2.7L3 

DELAY IN PEAK OF FE-q. IL1TY cURVE IS - 0.020237 

	

INTEGRAL OF NOR1AL17Er) FERTILITY IS 	1.089506 
FRACTION OF 	 Ft:.RTILITY IS 	 1.006584 

VALUES OF FERTILITY Cu'rkvE FOR AGES 21 TO 30 ARE 
0.056417 0.061967 0.070328 0.074940 0.077210 

- 0.076924 0.074418 0.069958 0.063759 0.056301 

- TOTAL POPULATION IS 	22001-1/40. 

*********************************************************************41.******** 
POPULATION FOR  AGES 1 TO 2n IS 

351507. 	342646. 	340332. 	338880. 	337734. 

	

336724, 	335795, 	334q19, 

	

332613. 	331958. 	331324. 

329350. 	328642. 	327922. 

- AT BEGINNING OF  yEAr 	3,AND 

	

334091. 	333320. 

	

3306 8 7. 	330033. 

	

327184. 	326432. 

AT TImE 3.75 

DELAY IN PEAK OF FFPTILITY CU - VE IS -0.064413 

	

INTEGRAL OF NORMALIZfl FERTILITY IS 	1.089506 

	

FRACTION OF IudiriAL 1-ERTILITY IS 	 1.018705 

VALUES 3F FERTILITY CuRvF FuR AGES 21 TO 30 ARE 
0.057215 0.064960 0.071590 0.076451 0.078518 

0.077577 0.074741 0.070374 0.064276 0.056834 

TOTAL POPULATION IS 220 0L, 110. 



POPULATION FOP AGES 1 TO 20 IS 

	

354085. 	343570. 	340669. 	338923. 	337734. 

	

336724. 	335795. 	334q19, 	334091. 	333320 , 

	

332613. 	331958. 	331324. 	330688. 	330033. 

	

329350. 	328642. 	327 922. 	327184. 	326432. 

AT BEGINNING  OF yEA , 	4. AN!) 

- AT TIvIE 4.75 

DELAY  IN  PEAK OF FF?T1LITY CUPVE IS -h.184397 

	

INTEGRAL OF NOPI , LILF -) 1-ERTILI1Y Is 	1.089502 

	

FRACTION OF •HITIAL Fi-PTILITY IS 	 1.050882 

VALUES OF FEPTILITY  C;'‹vg-  FuP AGES 21 T2 30 ARE 
0.059358 0.0b7(14•9 0.07042 0.080616 09082016 

0.079207 0.075498 0.071418 0.065613 0.058225 

- TOTAL POPULATION IS 2 2 01 6, 10. 

****************************************************************************** 
- POPULATION FOP  GFS 	Tu 2t ,  IS 

361071. 	346090. 	•41588. 	339259 - 	337778. 

- 	336725, 	3357y5 • 	334919, 	334091. 	333320, 

	

332613. 	331958. 	331324. 	330688. 	330033. 

329349. 	328642. 	327922. 	327184. 	326432. 

AT BEGINNING OF YEA 

AT TIPIE 5.75 

DELAY IN PEAK OF FFJTILITY coPvE IS . - 0.480408 

	

INTEGRAL OF NORM ,\LIZE 1 ) FEPTILITY IS 	1.089503 

	

FRACTION OF PITILW FERTILIFY IS 	 1.098618 

VALUES OF FEPFILITY CuPvr: F-oP AGEs 21 To 30 ARE 
0.062964 0.072470 0-01761 0.08 8994 0.088098 

0.080292 0.074753 0.071888 0.066822 0.059826 

TOTAL POPULATION  JR 22043F-‘4 0 •  

*********** ************ * * * ******** ******** ********* * ** * *** #####*### # ## *####### 
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POPULATION FOR "“3FS 1 TO ?.) IS 

	

377589. 	3529)8. 	344093. 	340174. 	338112. 

	

336768. 	335795. 	334919. 	334091. 	333320. 

	

332613. 	33195m. 	331324. 	330688. 	330033. 

	

329350. 	328541. 	327922. 	327184. 	326432. 

AT BEGIVNING OF yE/U 

AT TIME 6.7'3 

DELAY IN PEAK OF FEJTTLITy cURVE IS - 0.909306 

	

INTEGRAL OF NORMALTZU) FE;-<TILITY 15 	 1.089499 

	

FRACTION OF INITIAL FERTILITY IS 	 1.118620 

- VALUES OF FERTILITY CURVE FOR AGES 21 TO 30 ARE 
0.065618 0.076765 0. ( 88974 0.098260 0.092387 

- 0.076925 0.069761 0.068678 0.065408 0.059325 

- TOTAL POPULATION 1 ,-; 22020:90. 

****************************************************************************** 
POPULATION FOR AGES 1 TO 20 IS 

389333. 	369063. 	350m ,i). 	342668. 	339024. 

	

337101. 	335838. 	334919. 	334091. 	333320. 

	

332613. 	331958. 	331324. 	330688. 	330033. 

	

329350. 	328542. 	327922. 	327184. 	326432. 

AT BEGI\INING OF yE. ,\, 	 7,AND 

AT TPAE 7.75 

DELAY IN PEAK OF FETILITY oi_mVE IS -1. 277342 

	

INTEGRAL OF NOPPILI7Fo FERTILITY IS 	 1.089500 

	

FRACTION OF ImITIAL FETILITY IS 	 • 1.121859 

VALUES OF FERTILITY CURVF Fow AGES 21 To 30 ARE 
- 0.067241 0.07990M 0.0Q4h99 0.105441 0.093917 

0.072075 0.0645 86 0.055381 0.063390 0.058125 

TOTAL POPULATION Pz, 2212390. 

*####### *.* ********* ************ ****************************M***## #*######### 



POPULATION FOR AGFL; 1 T9 i?n IS 
393105. 	3 ,- 0 54?. 	366 9 34. 	349429. 	341510. 

338010. 	33617 0 . 	3349r) 7 • 	334091. 	333320. 

- 332613. 	331958. 	3113?4. 	330688. 	330033. 

3 2 9350. 	32864'2. 	327922. 	327184. 	326431. 

AT BEGINNING OF YEA.  

- AT TIvIE 8.75 

DELAY IN PEAK OF FF• , TTLITY Cliwe,_ IS -1.496449 
INTEGRAL OF NOPÀLIZEn F_PTILITY IS 1.089500 

FRACTION OF INITIAL FEPTILITY IS 	 1.111391 

- VALUES 3E FEwTILITY Ciikvçr 	AGEb 21 TO 30 APE 
0.067541 0.081096 0.097754 0.108647 0.093259 

0.067985 0.060862 0.06?787 0.061503 0.056761 

- TOTAL POPULATION  Jk  

****************************************************************************** 

	

- POPULATION FOR  AGP-_ (; 	1 TO ïr" 	IS 
392049. 	3›.442P9. 	3 7 34t-). 	3654(5. 	348248. 

- 340489. 	337077. 	335293. 	334134. 	333320. 

332613. 	331958. 	$ 31324. 	330687. 	330033. 

329350. 	3242. 	3279?2. 	327 1 -i4. 	326431. 

- AT BEGINNING OF 	 ,4,10 

AT TIvIE 9.75 

DELAY IN PEAK OF FF-)TILITY CURVE IS -i.532525 

	

INTEGRAL OF NORm^L1LEp FERTILITY IS 	 1.089499 

	

FRACTION OF IIITIAL FEqTILITY IS 	 1.078118 

VALUES DF FFPTILITY CuRA/P FoR AGEb 21 TO 30 ARE 

0.065753 0.0 79 1 6 2 0.0 9 5780 0.106416 0.090456 

0.065073 0.0587-94 0.060436 0.059348 0.054862 

TOTAL POPULATION Is 22197900. 

***31 4**### ###************* *********** ***** *********** ************#### #*####**# 
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n8 IFCT CnuE= 

,01.1. -111E4 (")i- ERR)KS= 

I 

	

POPULATION FOR ,\Gg- L; 	1 TO  c I IS 

	

385079. 	38319h. 	3 4 2112. 	376780. 	364179. 

	

347206. 	33949. 	3361Y7. 	33446'D. 	333362. 

	

332613. 	33195m. 	331324. 	3306m8. 	330033. 

	

329350. 	328642. 	32722. 	327184. 	326431. 

	

AT BEGIVNING OF yEA 	 r;,ANn 

CORE USAGF 

— DIAGNOSTICS 

COMPILE TImE= 

8YTES,ARRAY AREA= , 3400 BYTESeTOTAL AREA 

0, NUmdER OF WARNINGS= 	0, NUmBE 

C'ExECuTION 1- 1 11F= 	14.47 SEC, 	QUEEN'S WATFOR VERSIO 

COST FOR THIS PROGpA , ! IS 1.42 	 RUN IN HSC 	MAR 19, 1974 



The above output simulates population and fert-

ility over ten years with "Baby boom" dynamics - wide 

peak of intermediate height. See Figures 3 and 4 in 

Section V. 

Program  lb  

This is a copy of the program which was used to 

plot the profile in Figure 6. 
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c 

c 
C 

- 101 
C 

c 

r.-n-rRt-eRPRU-<RRRRRPRRRRRkkRPRRRRRRRRRRRRR 
11r. Sir  

PRIPFR 15 PRINT INTERVAL 

UkDE.P. ODE , 
 MENc,ION IN 

ATION 5TEPS 

S AFTER TRANSFORMATION 
DAIA AND $S1EP 
IN  K FOR SOLVING THE ODES 

$J0B STF5595?, , VER 
// EXEC SYMVU,T!m;:= 
//COMP.SYSTN OD * 

suBROUTImF DATA(\41-,IC,IF) 
REM_ 0(100),E(10),»(100),x(100),R(100),US(100),D5(100),F1(100) 
REAL HH.KK,L;U1,Iv(In), , )LY(10) 
RIAL PLTPER,P;)TPFk' , T1 
IqTEGFR 
**************************************************************** 

SET IFORm=p I:-  You AANT  PLOT, 	.--71 IF YOu WANT PRINT 
**************************************************************** 

IFORM=1 
IFORm= 0  
RL=1F - 
PR=PL 
TINT=1"' 4 

 ICM1=IC-1 
IF (IR.GT.1) 	P) ?; 
RRIRRRRPRRPPRRpPor mRw. 

HH IS AGE STfl 	 Is T 
READ(5 , 101) '1L-1 , KK 
FORMAT(2F10.‹-» 
RLTPFR IS PLOT INTivt, L - 
READ(5.101) DITDER,PI“PER 
NDE IS THE Nu 	OF FIRST 
IF NDE > ln CIANNE 	DI 
NN IS THE NUm , F-› OF Imlï:GR 
READUR,I(n) 

103 FORMAT(214) 
PUT INITIAL V^1W-f.c,  OF OuES ONE TO A (ARD 
DO 97 I=I.Nn.F 

READ(L;.1 7) pn, (7) 

107 	 FOR ,AAT(F1(. ,4) 
— 97 	 CONTINUE 

RIRRRRPRRRppRRRpik.----,kRI-eRkRRPI-‹41-2RRRRRPRP.PHRRRPRRRRRIRRRRRR 

PR=PR+KK 
T=0.0 
**************************************************************** 

gq-7A0 DE.ATH  RATES 
' , FAD DOPuLATION DENSITY - ObTAINED FROM SPLINE 

*************************************************************** 
RRRRRRRRRRPRRPRRk<RRRRRPPRRRRPRKRPRRRRRPRPRRRPRRRRRRRRRRRRRRRRR 
READ(5.100) ( ,=(I),I=1,1C) 

100 	FORMAT(L3F10.h.30xJ 
RFaD(c).1n4) 	(')(T) • Uz ). , IC) 

— 104 FrWmAT(10Fh.0) 
RRRRPRRRRRPRRoP RR-o-eRRPRR»PkgRRRPRRRRRPRRRRPRRRRRRRRRRR 
SOm=0.0 
DD 99 I=1.Ir 

S1Jm=SUm-1-(i) 
99 	CONTINUE 

DO 9R I=I,IC 
P(I)=P(I)*?1_0001 , 00./Su ,  

X(I)=P(I) 
— 9p 	CONTINUE 

PPPPPPPPRPRPPPPRiDuPFpopp ,y1DPPPPRPPPPPPPPPPPPPPPRPPPPPPPPppprzppp 
IF(IFOR 1 .NF'.1) C, OTO -1 

WRITEP1,10q) 
109 	FORMAT('1'. 12 PULaTIO 	FOR A(lES 	I 	IO 2 )) 	IS') 

WRITE (,102) 	(-)(I),1=1,21.) 
102 	FDRmAT(.;Fin.!) , ) 

wRTTF(,1)n) 

- 110 	FORMAT (V OF yci o, 09 e(J)I) 



111 	 . • • 

61 	CONTINU 
pppppppypppppripppppp ,, ppppppt-yppppliPppipPPPPPPPPPPPPPPPPPPPPpPpppp 
DO 70 I=1.IC 

I1=FLOAI(I) 
1 )(1)=(1 -7-- Y ) (- I1*11/600.))/(l+((11-25.5)**2)/4.) 

70 	 CONTINUE 
YOHNG=0 
F1(1)=FXP(-(.12S*1-04*(YOU-24.5))**2) 

SOm=F1(1)*:-)(1) 
DO 14 T=2.IC 

FI(I)= , (-(.U."-*HH*(I+YOUig(,-25.5))**2) 
sum=sum+ - 1(1)*(1) 

14 	CONTIMU ,=_ 
n5=»5*(3.*D( )-())) 
DTS=.5*(3.*0(fC)-1)(1C-1)) 
SJM=P(1)/YJm 
DO 15 I=I.IC 

FI(I)=F1(I)* 
15 	CONTTNUF 

PA=KK/HH 
PA1=0.0 
P2=0.0 
FA] 
GO TO 33 

31 	CONTINUE 
PR=PR+KK 

- C 	*************************************************************** 
UvDAFE  COEFFICIENTS OF FERTILITY EQUATION 

*************************************************************** 

PA1=DLY(2) 
P2=DLY(2)*DLY(?)*PA 
FA=EXP(-DLYU0) 

- C 	pppppppPppppPIDP;)pPE)o-HDplipliPPQPPPpPPPPPPPPPPPPPIDPPPPPPPPPPPPPIDPID 
IF (PRTIDER.GT.PW.OR.I)R ,!.NE.1) GUTO 62 
WRITE(6.1n6) T 

- 	106 	FORMAT(' AT Ic\IF , .F6.2) 
WRITE(6 , 112) 	(1) 

112 FORmAT('OlonclaY TI PFAK OF FERIILIFY CURVE IS 19F9.6) 
- 62 

	

	CONTINUE 
pppiDPIDpppppiD 0 :)p,DPp.DP.PpPPPPPPPPPPPPPPPPRRPPPRPPPPPPPPPPPPPPPP 

C 	*****************************it********************************* 
C 	 moLTIPLY FERTILITY BY INTEGRATING FACTOR 
C 	**************************************************************** 
33 	CONTINUE 

SJM=0.0 
DO 42 I=1,IC 

SuM=Sum(i) 
F(I)=FA*ri(I) 

42 	CONTINUE  
PPFDPPPPPPPPPPDPPPPPIDIDPPPRPoPPPPDPPPPPPPPPPPRPPPPPPPPPPPPPPPPP 
IF (PRTPER.GT.PR .i)R.IFORm.Ni-:.1) GOTO 63 
WRITE(.113) 

113 FaRMAT( 1  I,' 	INTEGAL OF NORMALI7E0 FERTILITY IS 	t9F9.6) 
w ITF(6.114) 

114 FORmAT(' tqf 	F4 iàCf1ON OF INITIAL FERTILITY IS 
2,Fq.61) 
W ITE(6,11 1 ;) 

115 FOPMAT(I)t.IVLu'i7cz • 	FFRIILITY CURVE FOR AGES 21 TO 30 	ARE') 
wRTTP7u-,in;4 (F(1), i ,-.1, 3q) 

108 FDPmAT( , Fin., , ) 
63 

	

	CONTINOF. 
pppippipPoPPPPu -IL- ,---L--;-R ,) ,DPI-PPIDi;)PRPRPPPPPPPIDPPPPIDPPPPPPPpPP 
********************,:*******ie*************************** 



..... 

TINT=TINT+K*) 
IF (HH.GT .TIT) ci0T0 45 
SJM=0. 
SUM1=0. 
DO 44 I=1,1C 1 1 

SUM=SUM-F -,(J+1)*E(J+1) 

SUM1=SUM1+D(J+1) 
X(J+1)=':D(J+1) 

44 	 cONTTNUFT 
SUM=SUm+P(1)* - (1) 
P(1)SUA 
X(1)=P(1) 
SUM1=SUM1+P(1) 
TINT=-1E-4 

45 	CONTINUE 
PPPPPPPPPPPPPPPPPIPPP9PPPPPPPPPPPPPPPPIPPPPPPPPPPPPPPPPPI PPPPPPPP 
IF (PRTPER.(,T.PP.0q.IFOPM.NE .1) GOTO 64 
WRITF(6,116) 

116 FORMAT( 1 0'.'TT4L POPULATION IS 	1.F10.0) 
PR=+ 1F - 5 
WRITE(69117) 

117 FORMAT(Inl.1****************************************************** 
I************************1) 

64 	CONTINUE 
pPpPPPPPPPPPP.DPPPP-PPPPPPPPPPPPPDPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 

1NCEMENT FER1ILIFY BY ONE YEAR 
**************************************************************** 

DO 34 I=1,IC 
IF (1r.7-2-.Gr.F1(I)) E1(I)=0.0 
US(I)=fl(T)*F1(I) 

34 	 CONTTNUF. 
UD=?.*US(1)-Us(?) 
UT=2.*US(IC)-0S(IC-1) 
Fl(IC)=F1(IC)-.5*PA*(0DA1*(UT-US(IC-1))) -P2*(DT5*UT+D5(IC)*US 
2(TC-1)-(DT5+D5(I (2 ))*US(IC))) 
F1(1)=F1(1)-.:;. *PA*((PA1*(US(2)-(M)-P2*(D5(2)*US(2)+DQ5*UG)-(D5 

2(2)+DO5)*HS(1))) 
DO 35 I=P.IC.: 1  

F1(I)=F1(I)-.5*:-)A*((PA1*(0S(I+1)-US(I - 1)))P2*(D5(I+1)*US 
2(I+1)+D5(I)*IK(I-1)-(5(14-1)+n5(1))*US(I))) 

35 	CONTINU' 
**************************************************************** 

C 	 SOLvF ODES FO ,‹ DELAY PARAMLTERS AND INCREMENT TIME 
*************************************************************** 
DO 16 I=1,NOF 

IV(I)=DLi(1) 
36 	CONTINUE 

CALL $RUN(IV,;)LY,T,KK,NDE,NN) 
PL=PL+KK 
IF (PLTPFP.GT.PL ) G010 31 
PPPPPPPPPPPPPDPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 
IF (IFORm.NF.1) GoTo 
IPG=IPG+1 
IF (IPG.Nr.2) GOTO 7q 
IPG=0 
WPITF(6.121) 

121 	FORMAT('1 1 ) 
79 	CONTINUE 

IARTTE(6*118) 
118 	FORMAT(' 1 .#Pr)PULATT11 EUP n(71 . 	1 TU 20 	IS') 

WR[Tc(e.-.1 	(J(1), 	1=1,c)u) 



tUt.<1 ■ • 	.q•m% 	 ur 	 vi 

WRITE( 6 ,120) 
120 	FORMAT(' 1. 1 	  1) 
65 	CONTINUE 

	

C 	PPRPRPRPPippippippppppPppPpRRoPPPPPPRpRI-pppRpRppPRPppppppplapppppppp 
RETURN 
Evn 
SURROUTINE i, R.IN(IV/7eT,KK.NDEON) 
**************************************************************** 
THIS SUaROUTIE GIVES A SIMULTANEoUS SIMULATION OF VALUES 

	

C 	Z=UA(T)+A(T),A 1 (T)4IH(f).H(T)) 4T 	I+H FROM INITIAL VALUES 	IV 
OF THE SAME VARIALE's AT T. FOR EACH DIFFERENT SIMULATION THE 
SUBPOUTINF $ ,-)F musT RE REWRITTEN TU EVALUATE THE DERIVATIVES 

	

— C 	D(I) 	AS A FurTION OF TIME T JANn SOLUTION VALUES Y(I) 
**************************************************************** 
REAL IV(NnE).7(N 0E).[9T29KK,K1 
K1=KK/FLOAT(N) 
T2=T 
T=T+KK 

— 28 	CONTINUE 
CALL bSIEP(IV,7.T29KI,NJE) 
T2=T2+K1 
DO 29 

Iv(I)=Z(T) 
29 	 CONTINUE 

IF (T.GT.T2+Ki/2) G010 28 
RETURN 
Eln 
5JRROuTINF - 51- E- P(TV,/,T,KK,NDE) 
REAL IV(NDE)47(NOE),/1(10),O(10).D1(1())9KK 
CALL tsIDE(T.IV,NDE,n) 
DO 11 I=14''I1)E 

71(T)=IV(I)+KK*0(I) 
11 	CONTINUE 

TT=T+KK 
CALL $DE(TT,71/NDE,D1) 
DO 12 I=1.NDF 

Z(I)=IV(T)+. 5.*KK*(i)(I)+1)1(I)) 
12 	CONTINUE 

RETURN 
Eqn 
SURROUTINF 1.)Df:(T9Y9N 1)E,D) 
REAL Y(NOE)gn(NDF.),KK 
D(1)=Y(2) 
D(2)=Y(3) 
Tl=n. 
IF (T.GT.11.) GOr) 
TT1=ARS( 1"›.) 
TT2=AHS(T-1( .) 
T1=(-SIN(FxR(-TT1)-xP(-TT2)))/15. 

	

78 	CONTINUE 
O(1)=15.*T1-Y(?)-?.*Y(3) 
D(4)=T1 
D(q)=0. 
RETURN 
Eqn 

//GO.SYSIN DO * 
EVOLUTION OF POPUL A TION  oe:R 50 YEARS: WITH FERTILITY PROGRESSION 

- 	50 100 	2 	4 	 1 	3 
30.0330.0 	7.0 	4.0 	 20 •0 

	

1.0 	.25 

	

- 1.0 	1.0 
5 	1 



V • 

I 	0.1 
I 	.02258 	.00577 	.00414 	.00338 	.00299 
I 	.00276 	.0026 1. 	.00247 	.00231 	.00212 

	

.00197 	.00191 	.0019? 	.00198 	.00207 

	

.00215 	.00219 	.002pu, 	.00230 	.00237 

	

.00243 	.00251 	.00259 	.00268 	.00277 ,... 
1 	.00288 	.00299 	.00311 	.00325 	.0034 

	

.00356 	.00373 	• 00392 	.00412 	.00435 

	

.00459 	.00486 	.00515 	.00546 	.00581 

	

:-- .00618 	• 0065Q 	.00703 	.00751 	.00804 

	

.00861 	.00923 	.00991 	.01064 	.01145 

	

.01232 	.01327 	.01430 	.01543 	.01665 _ 

	

.01798 	.01943 	.021 	.02271 	.02457 

	

.02659 	.02878 	.03118 	.03376 	.03658 

	

.03964 	.04296 	.04656 	.05046 	.0547 _ 

	

.0593 	.06427 	.06966 	.0755 	.08181 

	

.08864 	.09602 	.1039Q 	.11259 	.12186 

	

.13185 	.1426 	.15416 	.16657 	.17988 

	

- .19413 	.20937 	.22563 	.243 	.26144 

	

.28099 	.30173 	.32364 	.34666 	.371 

	

.39621 	.44719 	.54826 	.72467 	1.0 
1023102.1000000. 99230.99 0 114. 986767. 983817. 981102. 978541. 976124. 973869. 
971804. 969890. 968(138. 966179. 964266. 962270. 960201. 958098. 955942. 953743. 
951483. 949171. 94157Rq.  Q44337. Q41806. 93 9 197. 936492. 933692. 930788. 927763. 

- 924609. 921317. 91788.0. 914282. 910515. 906554. 902393. 898007. 893382. 888504. 
883342. 877883.  8729.  H65967 , 859464. 852554. 845214. 837413. 829114. 820292. 
810900. 800910. 790 , 82. 778981. 766961. 754191. 740631. 726241. 710990. 694843. 

- 677771. 659749. 640761. 620782. 599•24. 577882. 554975. 531133. 506403. 480850. 
454548. 427593. 400112. 372240. 344136. 315982. 287973. 260322. 233251. 206989. 
181765. 157799. 13c-3297. 114440. 95378. 78221. 63036. 49838. 38593. 29215. 

- 21577. 	15514. 	103. 7327. 	4787. 	3011. 	1818. 	1005. 	454. 	125. 
/* 
// 

******** JOB DELETEn E3Y HASP 'JR CANCELLED bY OPERATOR BEFORE EXECUTION ********* 

HASP-II JOR STATISTICS -- 	256  CARDS READ  -- O  LINES P.RINTED 	 0 



Program II 

Estimation of g(xe s„t): this program uses values 

of the population density to estimate g(x,s,t) through 

differentiation of two cubic spline approximations and 

integration of a subsequent spline approximation. 

As a test problem, a separable economic mobility 

was chosen 

u(x,s,t) = a(x) p(s) , 

a(x) 	41-20)(80.-CO  
10000 	

5 p(s) 	s+10 
200 • 

With an initial population density 

200 (2s
3 
 -405s

2
+21000s)  

p(x,s,o) = po (x,$) 	e 
540 

the population density without deaths 

2000000 000000 
-10 )] e 5(x,s,t) = Ee 	 p

0 
 (x-t,(s+10)e 2  

t 3  
w = - 	+ t

2
(30-x) + t(x-80)(x+20) y  

3 

evolves, and with a death-rate of 



r(x,s,t) = (1-.01t) (.0003x+.0006) 

the density with deaths is 

p(x,s,t) = 1";(x;s 5 t)e-R  

.01t
2 2 	

.01t3 
R = (t - 	

2 
-----)(.0003x+.0006) - .0003(

2 	6 J * 

-27 2- 



$JOB ACCT-NUMOVERNERI,TIME=609PAGES=20 

**************************************************************** 
THIS PROGRAM IS USED TO ESTIMATE THE ECONOMIC MOBILIITY 
PARAmETER MU. AGE- TIME- AND INCOME-SPECIFIC VALUES OF THE  
POPUtATIO ARE REQUIRED. 
FOR 	TEST RUN wE ASSUME THAT 4D 0 7#S,T)=ALPHA(X)*BET4(S). 
FOR THI3 0 ARTICULAk EXAMPLE THE EIGENVECTOR TECHNIQUE USED 
TO F'zTImATE A(T) AND D(X) 	IN THE FERTILITY EQUATION COULD 
HAVE  HF- E' USED. 
**************************************************************** 

	

1 	 PEAL P(7911,11).MU(7911911),ALPHA(7)9bETA(11),X,S,T 

	

2 	 PEAL H(11).A(3,11),COF(4,11) 

	

3 	 PEAL K(2111),D(11),TOT,W,W19Y 

	

4 	 INTEGER Dx.DS901- eXE,SM,IM9XX,SSeTT 

	

5 	 XE=7 

	

6 	 SM=11 

	

7 	 TM=11 

	

8 	 DX=1r1 

	

9 	 DS=1 ,1 

	

10 	 DT=2. 

	

11 	 F=2.71828182846 

**************************************************************** 
DEFI ,dE FuNclION ALPHA 
**************************************************************** 

	

12 	 WRIT'r(h.112) 

	

13 	112 FORMT( 1 1 1 0 THE ECONOMIC MOBILITY IS ALPHA(X)*BETA(S) WHERE') 

	

14 	 WPIT - (6,106) 

	

15 	106 FORM,T( , 01) 

	

16 	 DO  l.  IX=1,XE 

	

17 	 xx.0x*(Ix-1) 

	

18 	 ALRHA(IX)=(XX+20.)*(80.-XX)/10.**4. 

PRINTRRINTRNINTPRINTPi<INTPRINTPkINTPRINTPRINTPRINTPRINTPRINTPRIN 

	

19 	 wPIT'7(A+100) XX,ALPHA(IX) 

	

20 	100 rORMT(' 	ALPHA(f,I30) IS 	'9E10.5) 

	

21 	10 	CONTTNUE 

	

22 	 ,qpTr(r,,106) 
PRIqrPRINTPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTpRII\ 

**************************************************************** 
DEFIqE FUNCTION BETA 
**************************************************************** 

23 	 nn  ii  IS=1,•)m 
24 	 SS=0q*(IS-1) 
25 	 PRTACTS)1=(SS+10.)/200. 

PRINTPRINTPRINTPRINTRRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRI 
26 	 wRITP(r, .101/ SS,BETA(IS) 
27 	101 	FOR1T( 1 	6ETA( 1 .13, 1 ) IS 	, ,F10.5) 
2P 	11 	CONTrNW: 

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRU 

********************g***********************”****************i 
g'IND ANALvTIC SOLUTION TO THE PDE 



DP/DY + DP/DT = D/DS(MU*P) - R*P 
**************************************************************** 

C  
29 	 0 0 I? LT=1/IM 
30 	 T=DT*(LT-1) 	 • 
31 	 no 1) L=19)■ E 
32 	 x=i1X-(Lx-1) 
33 	 W=(.0003*X +.0006)*(T-.005*T*T) -'.0003*(T*T/2 - (.005* T** 3)/3) 
34 	 W1=E**( - W) 
35 	 wp=f*((x+20.)*(X-80.)+7*((30,-X)+7/3.))*( - 1.) 
36 	 no  12 LS=1/Sm 
37 	 SS=OS*(LS-1) 
38 	 S=SS*10/ 
39 	 w=S* ,- **(2/G000000.)-10. 	• 
40 	 y=W*(21000.+w*((-405.)+2.*v1)) 
41  
42 	 P(LX,LS/LT)=( 1m*Y/S40.)***((T-X)/200/)*W1 
43 	12 	CONTTNUt: 

**************************************************************** 

SPLINE H(X/S/T) 	AGAINST )( AND DIFFERENTIATE THE SPLINE 
mu(x/S/T) 	IS DP/Dx 

**************************************************************** 

44 	 nO 	Ix=1/XE 
45 	 X=0X*(Ix-1). 
46 	 K(1/Tx)=X 
47 	20 	CON7rNUE 
48 	 CALL SETUP(xE/A/H/K) 
49 	 nO 21 IS=1/Sm 
50 	 nO 21 IT=1/fm 
51 	 no 22 TX=1,XE 
52 	 K(2,TX)=P(TX,IS,IT) 
53 	22 	CONTTNU 
54 	 CALL SOLVE(49K,H,XE,D,COF) 
55 	 nO 21 Ix=1/)ÇL 
56 	 x=nx*(rx-1) 
57 	 MU(I)c/IS/I7)=C0F(3/IX)+x*(2.*COF(2/IX)+X*3.*COF(1/IX)) 
58 	21 	CONTTNUE 

**************************************************************** 

SPLINE P(X/S/T) AGAINST T AND DIFFERENTIATE THE SPLINE 
m(M/S/T) 	IS DPIDX+DP/DT+R(X/S/T)*P(X/S/T) 

**************************************************************** 

59 	 DO 3 •  IT=1/Tm 
60 	 T=DT*(IT-1) 
61 	 K (1 /17)=T 
62 	30 	CONTINUP'_ 
63 	 CAJ_L qFTUP(T1,A,H,K) 
64 	 nO 31 TX=1,XE 
65 	 X=nX*(IX-1) 
66 	 nO 31 IS=1.Sm 
67 	 n0 32 IT=1/1M 
68 	 K(2/TT)=P(Ix/IS/IT) 
69 	32 	CON7rNUE 
70 	 CALL SOLVE(A,K,H,TM909CUF) 
71 	 DO 31 IT=191M 
72 	 T=DT*(IT-1) 
73 	 MU(IY,I,IT)=MU(IX,IS,IT)+COF(39IT)+T*(2.*C0F(2.IT ) + 



R.T*3.*uir (1 ,11)).(1.-so1*T)*(.0003*x+.(joo6)*P(Ixeis,IT) 
74 	11 	ro's!T7 

****4*********************************************************** 
OP/DX+OP/ni+P(X,S,T)*P(X95.1) 	AGAINST S AND 

1 	T IHE SPLINE FROm S 	fU IHE MAXIMUM VALUE OF  S.  
ENu CONDITIuN PLUS  THIS INTEGRAL 

************************************************************** 

75 	 nr 4 	1- 7-- 1,s- ■ 

76  
77 
78 	40 	CONi** 
79 	 CALL 	112 ,A,P,K) 
80 	 nc. 41 	T)■ =1,x1; 
81 	 nO 41  
82 	 -)u 4? r-)=.1. ,1 
83 	 K( 2 ,Tc)mU(Ix,IS,IT) 
84 	4 2 	roNTIN , J !: 
85 	 CALL c-:0Lvi.:- (,K,H,Sm10,CuE) 
86 	 mo ( N, ,z.1.1- T)=;). 
87  
88 
89 	 no 
90 	51=51-  
91  
92 	T= 	+1-IS 
93 	 uU(IL,1,IT)=mU(Ix.,1+1,1T)+MS2*COF(1,1)14.+COF(2,1)/3.)* 

s.)+c(iE (3, I) /2.) ->52 4- C9F--  (4, 	) *52- 	(Sl*COF (1, I) /4. 
+ruF(2.1)/3.)*S1 4-ChF(39I)/2.)*S1+CoF(49I))*S1 

94 	41 	CONTTNw: 

PPIqFPRINIRRINTPRINTPRINTPRINTPRINTPRINTPRINTRRINTRRINTRRINTPRIN 
Q5 	 ( ,;".111) 
96 	11(1 	 VmLUES  ARE  96 EPROR IN MU, S AND T GIVEN, X ACROSS.) 
97 	 0141T - ( 4, 1114) 
9P 	114 	rn;---'1T( 1 (0, , 	s 	r 	X= 	o 	10 	20 	30 

>s, 

	

	 60 1 ) 
PPL“poINTP ,-INFPPINTPINTPI-uNTPRINTPRINTPRINTPRINTPRINTPRINTPPIN 

99 
100 
101 
102 
103 	 Tls =1- *(vT-1) 
104 	 nn 
105 	 TF 	 bOTO 51 
106 	 mo(K , ,KH,KT)=(r5FTA(Sm)*ALPHA(KX)*R(KX,SM,KT)-MU(KX,KS,KT))/ 

107 	 ,> 
108 	1 1 , (Kx,KS,KT)=ALRHA(Kx)*ATA(K5) 
109 	2 	cON1{KP.M- 
110 	 mu(Kk.Ks,KI)=(mU(KX,KS,KT)/(8ETA(S)*ALPHA(KX))-1)*100. 
111 	t--; n 	cC , NTINN ,' 

D ,< 1 1 1- PR1.,:TPINT. PPINTPKINTDPINTRRINTRPINTRPINTPRINTPRINTRRINTPRIN 
112 	 iv 1-ITY(‘-,113) L.;s,T1 - ,(mU(r<x.KS,K1- ), KX=I,XF) 
113 	113 	P.Y;Y.T(# 	 leiE4.?) 
114 	55 	rG• 

Pi-q11PRITR-<tNroRINTPRIN-rPRINTPKINTPRINTPRINTPRINTRRINTPRINTPku,. 



115 
116 
117 
1IP 

1()'5 

141 

142 
143 
144 
145 
14E 

 147 
14P 
149 
150 

12 

4 -11 
1 1 t) 

119 	 -:TUP('\19A.1.F\) 

*************************************************************** 

7 ,4 1S OuTlq .  SETS uP 4 FkIDIAGONAL MAFPIX OF THE SPLINE EUOATION 
• L\RHAY - FIRST Rftoi iS SUPERDIAGONAL 

SECOND ,-Ww IS DIAGONAL 
rHp-<r) 1-20 	IS sUHDIAGONAL 

,\N) 	 lo 	LU 	SU  1Ha1 
.-)oPE2-'uluGDNAL OF O.,  SECOND  POW IS DIAGONAL ()F-  U 

1 4 T 1--) 	is 71U-i0I4b ,.Y\JAL uF Le )1.AGONAL OF L IS UNITY 
*************************************************************** 

120 	 AL A ( 	 (2.N) 
121 	 Nv17= :-1 
1?.?  
123 	 no 
124  
125 	 A(1.1)=H(1+1)/(H(1+1)+H(I)) 
126  
127 	 4(i.I)=1- 4 (1.1) 
12 5 	in 	r 	I 
129 	 "1(1.1)=—). 
130 
131 	 A(3.i)=.2. 
132 	 A(1,, 

133 	 A (2.. ) 

134 	 11( .3.■ ' 
135 	 11 
13e, 	 4(J,T)=A(3,1)/Ace.,1-1) 
137 	 t.(,:.,T)=A(,),I)—A(3,1)*A(1,I-1) 
13P 	11 
139 
140 

SUH.:.'nl.11- 1 	 ( 	 D, COE) 

**********************************.*************************** 

TO1H oOTT'JL.  CALCULATL:b THE SECOND uRDER FINITE DIFFERENCES OF 
S")LVFS el=U, 	(bY FDPWARD AND BACKWAPD 

,(oIcTok  OF  .iECOND DERIVATIVES) IN D 
COIIIONS  NO'  iSL THIR0 0 1-<OEP FINITE DIFFERENCES 

Tc) 	 pi ts 	 r)Eivrivhs AÏ 	X0+h/i? 	AN!) XN- H/.". 
*********************************************************** 

1--) L H(H), 2)(N),4(39N)9K(É!,N),C0F(49N) 

r.c) 12 f=cf.,Wq. 

li(I)=1*( ,)(1+1)-:)(I))/(H(I+1)+H(I)) 
CO ,'IfT1UP 

n(1) =-e.*(-K(241)+K(2,4)+3*(K(212) - K(243)))/(H(2)*H(2)) 
•)(q)-- 2 .*(-“, (2.N)+K(7.9N-3)+3.*(K ( ?,N - 1) -K(29N - 2)))/(H(Nr1) ** 2) 
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171 
172 
173 
174 
175 
176 

1 1 

1 h 

151 	 ;1(. ■ 

152  
153 	13 
154 
155 
156 
157 	 :)(J)=UY(J) - A(1 , J )* U(J+ 1 ))/A( 2, J) 
156 1 4 	 C;"); 
159 	 ('ALL P')LLy("0, 1 ),,H,C0F) 
160 
161 

162 	 1-'0LLY(N,m1K,n,r0F) 

**********,:************************************************** 

C.JAHoIEL; FnE COEFFICIENTS  OF  rHE sPLINE POLYNOMIAL 

K 	T ,* 	-Lor ,JF 0AI",  POTNIS 
vt-AL10, oR -11.J1F ,?v,81._ LF0IGTH; 

m 	 --;0!Ur1"W\I 	 TO THE EQUATION  AM[)  
********************-*************************************** 

163 	 io().)›.■ (-',.1),H(N),CoF(4,N) 
164 
165 	 l 	1= 	'1 1 
166 	 ( 1- (1.1)=((1+1)-m(I))/(6.*H(I 4-1)) 
167 	 r'4:(:).1)=1.e(1,1+1)*(1) -K(1,I)*m(1+1))/(2.*H(I+1)) 
169 	 fl . '= 1 (1. +1)*K(1.,1)*K(1,1)-M(1)*K(19I+1)*K(19I+1) 

N+2".?,1+1)-.*K.(2,1") 
169 	 Cur:(.1)=(D1)/(,?„*H(1+1)))+H(I+1)*(m(I)-M(I+1))/6. 
170 I)*(v(1,I+1)**3)-m(1+1)*(K(1,I)**3)+6.*K(19I+1)*K(29I )  

,S,-h.* ,,- (1,T)*!..,(2.1+1)+K(1,I)*M(I+1)*(H(1+1)**2)-K(14I+1)*M(I) 
&*(.--.(1+«i)**2) 

1" : - F('.1)=n0/(H(I+1)*'- , .) 

( 	I 	'!) 	 ) 

I 0 

$EM1 ,-‘)Y 
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14LHHA(x)*HtTA(:- ) wHERE THE ECONOmIC mOI!,IAY I- 

u.P , o00 
U..e.'10 (j0 
O .?44-00:) 
O .--1000 
q . -) 4000 
•,'100j 

ALDHA( 1c- 

AL'-4A(  10) 	Pz. 
ALDHe( ?n) 
ALDHA( 30) u, 
ALcq-tA( 44-n) 	I`,  
ALDHA( ")(q 
ALD1-iA( 60) ILD 

BETA( 	n) 	T(-; 

BETA( 10) TL,  
BETA( 20) IS 
BETA( 30) Is 
BETA( 4 11 ) p, 
BETA( cw) 
RETA( 60) Tt-
BETA(  711) 

BETA(  RI)) 
BETA( Q0) 

BETA(100) 

'1.10,;00 

1..-YJ‘00 

',„40 , )00 
•  

.:.4(U00 
J.4500 
0.-0u00 



VALUES ARF 	h'') 	NL f /71IVEN, X ACHOSS 

T 	x, 	 10 	20 	30 	40 	50 

0 	0 	0.0 ,-) 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 
0 	2 	403.7 8 	369.65 	/5.85 	115.51 	170.63 	160.18 	803.37 
0 	4 	- 41.60 	1?- .10 	- 20.49 	27.85 	-27.13 	-15.82' 	83.30 0 	41 	- e) 03”Q C) 	-7.42 	2.34 	18.17 	13.93 	33.79 	99.21 
0 	 -133.41 	-1.23 	16.22 	-3.06 	6.51 	-2.07 	100.96 
0 	10 	-131. 4 2 	-3.24 	10.08 	-3 . 89 	-11.09 	'1.89 	107.53 
0 	12 	-125,68 	n6.76 	-4.97 	0.09 	17.15 	-8.16 	95.22 
0 	14 	- 86.4 	1.-i.4 	-1.60 	5.88 	8.73 	-15.13 	105.93 
0 	16 	-9 5 ,43 	18.09 	6.82 	7.75 	10.38 	-11.17 	103.78 
0 	18 	-237.38 	27.41 	-10.80 	-3.91 	10.89 	-40.15 	86.25 
0 	20 	-343,94 	18.83 	-38.13 	17.28 	1.92 	16.66 	283.49 

10 	0 	-0.70 	-0.86 	-0.28 	-0.44 	-0.51 	-1.00 	-1.71 
10 	2 	0;3h 	0.43 	0.08 	0.17 	0.22 	0.15 	0.75 
10 	4 	-0.07 	0.07 	-0.03 	0.07 	-0.07 	-0.05 	0.23 
10 	6 	- 0,L.A 	- 0.0? 	-0.01 	0.05 	0.06 	0.11 	0.30 
10 	q 	-0.44 	1.00 	0.06 	0.01 	0.05. 	-0.03 	0.49 
10 	10 	- , I.; 3 	0.15 	0.0h. 	0.00 	-0.06 	-0.04 	0.74 
10 	12 	-a,6--, 	(..-4.3 	- 0.03 	-0.03 	0.13 	-0.06 	0.75 
10 	14 	-0. 1-1 	0.16 	-0.01 	0.07 	0.07 	-0.15 	0.95 
10 	16 	-;l.r1 	0.18 	0.04 	0.11 	0.13 	-0.18 	1.10 
10 	18 	-1.37 	ii.28 	-0.13 	-0.06 	0.17 	-0.53 	1.15 
lo 	2 0 	--1,---9 	oe?,4 	-0.37 	0.30 	-0.02 	0.29 	3.78 

20 	0 	--q.-1.4 	-0.i7 	-0.15 	-0.22 	-0.25 	-0.45 	-0.71 
20 	2 	0 .13 	0.1S 	0.02 	0.05 	0.07 	0.04 	0.27 ._._ 
20 	4 	-0. 0 3 	0.04 	-0.01 	0.03 	-0.02 	-0.00 	0.13 
20 	6 	- 0.2h 	-0.01 	-0.01 	0.01 	0.03 	0.03 	0.13 
20 	8 	- 0.1q 	0.01 	0.02 	0.01 	0.01 	-0.02 	0.24 ,.._ 
20 	10 	-0.22 	0.07 	0.02 	0.01 	-0.02 	- 0.02 	0.34 
20 	12 	-0,3*.% 	0.15 	-0.02 	-0.02 	0.05 	-0.02 	0.33 
20 	14 	-0,2 	0.09 	-0.01 	0.02 	0.02 	-0.06 	0.41 - 
20 	16 	-0,32 	0.11 	-0.00 	0.05 	0.07 	-0.11 	0.51 
2o 	18 	- U, 6 4 	0.13 	-0.06 	-0.02 	0.08 	-0.23 	0.62 
20 	20 	- o 7t-) 	0.14 	-0.08 	0.14 	-0.06 	0.12 	1.60 - 	 . 

30 	0 	-0,?4 	-0.25 	-0.0 9 	-0.14 	-0.1 	-0.2Q 	- 0 .43 .._ 
30 	2 	(1.c., 	0.07 	- 0.01 	0.02 	0.04 	0.01 	0.15 
30 	4 	-.0,) 	0.03 	-0.01 	0.02 	-0.00 	0.01 	0.11 
30 	h 	-0.17 	0.00 	-0.01 	0.00 	0.01 	0.01 	0.08 - 
30 	..; 	- 0 .12 	0.01 	0.01 	0.02 	0.00 	-0.02 	0.16 
30 	10 	-0.12 	0.05 	0.02 	0.01 	-0.01 	-0.02 	0.24 
30 	12 	-(1,) 	0.09 	-0.02 	-0.02 	0.03 	-0.01 	0.22 - 
30 	14 	-1,?;) 	0.06 	-0.00 	0.01 	0.00 	-0.04 	0.26 
30 	16 	-0.24 	0.09 	-0.01 	0.03 	0.05 	-0.0Q 	0.36 
30 	1R 	-0.45 	0.10 	-0.04 	-0.01 	0.07 	-0.14 	0.46 - 
30 	20 	-0, 54 	0.08 	0.01 	0.09 	-0.09 	0.06 	1.03 

40 	0 	-0,16 	-0.20 	-0.06 	-0.11 	-0.14 	-0.22 	- 0.30 
40 	? 	 0 ,00 	0.0% 	- 0.01 	0.00 	0.03 	-0.00 	0.10 
40 	4 	-0.01 	0.0e 	- 0.01 	0.02 	0.01 	0.00 	0.11 

6 0 
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„.. 

40 	6 	-j-, 	0.01 	-0.01 	0.00 	0.00 	-0.00 	0. 11 6 
40 	4 	 - '.s, (" 	(). 01 	0.00 	0.01 	-0.00 	-0.02 	o.Il 
40 	10 	-0.(.-, 	0.03 	0 . 0 1 	0.0? 	-0.01 	-0.02  
40 	12 	- 0 .? ,-> 	0.07 	-0. 11 e 	-0.02 	0.02 	-0.00 	0.16 
40 	14 	- 1 .1-, 	0.04 	 0.00 	0.01 	-0.01 	-0.03 	0.20 
40 	1 6 	-0.? ) 	0. 0 -i 	-0.01 	0.03 	0.04 	-0.08 	0.30 
40 	1 8 	-(,„ 3 7 	0.0-, 	-0.04 	0.00 	0.07 	-0.11 	0.19 
40 	20 	-0„4t-, 	0.0-) 	0.06 	0.07 	-0.11 	0.01 	0.79 

50 	0 	-,I*1., 	-0.17 	-0.0-i 	-0.11 	-0.09 	-0.19 	-0.?3 
50 	2 	-0,0,' 	0.04 	-0.02 	0.01 	0.01 	-0.01 	0.07 
50 	4 	 0 .01 	0.02 	-0.01 	0.01 	0.00 	0.01 	0.10 
50 	6 	- 1.11 	0.00 	-0.01 	-0.01 	0.00 	-0.01 	0.0 
50 	8 	- 0. 0H 	0.01 	- 0. ()0 	0.01 	-0.01 	• - 0.03 	0.10 
50 	10 	-(1,0- 	0.0e_ 	0.01 	 0.02 	-0.00 	-0.01 	0.18 
50 	12 	- 12--' 	06,0 	- 0.01 	- 0.02 	0.02 	0.01 	0.13 
50 	14 	-0.1- 	0.)5 	-0.00 	0.00 	-0.01 	-0.02 	0.16 
50 	1 ,-) 	-0, 2 ? 	0.0e. 	-0.02 	0.02 	0.04 	-0.08 	0.26 
50 	18 	-1,3 ,1 	0.0 ,, 	-0.04 	0.01 	0.05 	-0.09 	0.17 
50 	?0 	-0.3' ,i 	a.OH 	0.07 	0.06 	-0.11 	0.01 	0.62 

60 	0 	-01 7 	- 0.11 	-0.03 	-0.11 	-0.05 	-0.16 	-0.17 _.• 
60 	2 

	

_ 	 -1 .0;:' 	0.0? 	-0.03 	0.01 	. - 0.01 	-0.0? 	0.05 
60 	4 	 ,1.01 	 ().() 	 - 0.01 	0.01 	-0.00 	0.01 	0.08 
60 	6 	--;) 0 ,:l 	).00 	-0.01 	-0.01 	0.01 	-0.01 	0.03 ,.._ 
60 	q 	-0,c--- 	 01 	-0.01 	0.02 	-0.01 	-0.04 	0.09 
60 	10 	--')P-:, 	0 .uc 	0.0 2 	0.03 	-0.00 	-0.02 	0.16 
60 	12 	-'),24 	0.04 	 0.00 	-0.01 	0.01 	0.01 	0.12 _. 
60 	14 	-0 ,1', 	0.05 	-0.02 	-0.00 	-0.01 	0.00 	0.14 
60 	16 	-0,23 	0.0w, 	-0.0d 	0.0 2 	0.04 	-0.07 	0.23 
60 	18 	-.1,. --e7 	f.I.OP 	-0.02 	0.01 	0.04 	-0.09 	0.16 ..._. 
60 	20 	-0.3-; 	;,',.0'..-, 	0.07 	0.0 8 	- 0.10 	0.0 5 	o. 5 1 

70 	0 	-0.1 0 	-0.09 	-0.03 	-0.07 	-0.02 	-0.14 	-0.1? 
70 	? 	-!-,»7;i 	0.02 	-0.01 	0.01 	-0.01 	-0.00 	0.04 
70 	4 	 -0,01 	0.01 	-0.01 	-0.00 	-0.00 	0.02 	0.05 
70 	6 	- 	 0.00 	-0.01 	-0.00 	0.01 	-0.02 	0.04 
70 	P 	-....P-, 	0.01 	-0.01 	0.01 	-0.02 	-0.03 	0.07 
70 	10 	-0,0-. 	0.03 	-0.00 	0.02 	0.00 	-0.02 	(1 .12 
70 	12 	-0,21 	0.04 	0.00 	0.00 	0.01 	0.00 	0.13 
70 	14 -1  

- '),e.  t 	, 0.04 	-0.01 	-0.01 	-0.00 	-0.01 	0.15 
70 	IN 	-0.2 7 	0.0h; 	-0.03 	0.02 	0.03 	-0.07 	0.?? 
70 	18 	-0.:0 	0.10 	-0.02 	0.01 	0.03 	-0.08 	0.13 
70 	20 	-0,14 	0.0., 	U.U5 	0.0-D 	-0.06 	0.01 	0.48 

80 	(-) 	- 0. :) 	-0.04 	-0.01 	-0.04 	-0.00 	-0.1 2 	-0.0 
80 	2 	- 10fl 	0.03 	0.00 	0.01 	-0.02 	0.01 	0.04 

9 0 	4 	-0.,02 	0.01 	-0.01 	-0.00 	0.01 	0.01 	0.02 
80 	6 	-n,u4 	0.00 	-0.01 	-0.00 	0.00 	-0.03 	0.05 
80 	 -).,e., 	 0.01 	0.00 	-0.00 	-0.02 	-0.01 	0 • 06 
80 	10 	-- 1 .:1 	0.uc.' 	-0.02 	0.01 	0.01 	-0.01 	0.08 
80 	1? 	- 0 „19 	0.0.) 	-0.00 	0.00 	o.ol 	-0.01 	0.14 
80 	14 	- 0 ,2 2. 	0.04 	-0.00 	-0.01 	0.01 	-0.0? 	0.15 
80 	16 	-011 	0.08 	-0.03 	0.03 	0.02 	-0.0 5 	0.1 9  
80 	18 	-0. -3, 	0.11 	-0.02 	0.01 	0.00 	-0.07 	0.27 
80 	20 	-0.3 7 	0.0 9 	0.01 	-0.02 	-0.01 	-0.01 	0.44 
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-1,01 

▪ 7 

 -0 
• Tj  -(} 

0.02 

0.01 
0.01 

.%.01 

o.O e' 

O.U.3 

90 	0 

90 

90 	4 
90 

90 

9 0 	10 

90 	12 
90 	14 
90 	It 
90 

90 	20 

	

0.00 	-0.02 	-0.01 	-0.07 	-0.06 
- 0.00 	-0.00 	-0.01 	-0.01 	0.01 

	

-0.01 	-0.00 	0.00 	0.02 	0.0 2  

	

- 0.01 	0.00 	0.00 	-0.02 	0. 0 4 

	

-0.01 	-0.01 	-0.02 	-0.0? 	0.0? 

	

0.00 	0.01 	0.01 	0.00 	0.03 

	

0.00 	0.00 	-0.00 	-0.01 	0.09 

	

-0.01 	-0.01 	0.00 	-0.01 	0.10 

	

- 0.0e 	0.0 ,-) 	0.02 	-0.03 	0.1? 

	

-0.0? 	0.01 	-0.01 	-0.05 	0.1. 
- 0.01 	-0.01 	-0.01 	-0.01 	0.23 

100 	0 	-,ri u 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	2 	-00 1 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	4 	- .. (..) 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	0,1 	 -i„00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	,. 	-.).00 	--- .00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	10 	-0,n0 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	12 	- , ),0q 	- 0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	14 	-u.,-,) 	- 0.00 	-0.00 	-0.00 	-0.00 	- - 0.00 	-0.00 
100 	1€ 	---1.n.) 	- ii.ou 	-J.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	1 ;-k 	 -0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
100 	20 	 -0.00 	-0.00 	-0.00 	-0.00 	-0.00 	-0.00 
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Program III 

Estimation of the parameters a(t) and d(x) 

from values of the nornialized fertility. The normalized 

fertility might be estimated from the fertility curve 

and the parameter b(t) which represents the family 

size. 

Here we chose as a test case: 

d(x ) = 1 00 	
x = 0, 169. .U 1,50 

a (t) = 1+. itsin( ) - t 	We, 20 
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.JOB  ACCT—NUMOVERNERt.TIME=60 

**************************************************************** 
THIS PROGRAM ESTIMATES THE PARAMETERS A(T) AND D(X) FOR THE 
FERTILITY DIFFERENTIAL EQUATION. DATA IN THE FORM OF VALUES 
OF TLIE NORMALIZED FERTILITY ARE REQUIRED, AND THESE MAY BE 
ESTImATED FROM VALUES OF THE FERTILITY CURVE AND THE PARAMETER 

— THE FAMILY SIZE. 
TO  TEST  THE PROGRAM A CLOSED FORM SOLUTION FOR A SPECIAL CASE 
TS USED. 
**************************************************************** 

1 	COMMON K.A.H.00F.D 
2 	REAL FBAR(51.11).EBARST(51.11),K(2.51).G(51.11).GT(11.51).1D(51) 
3 	REAL AT(11).0(51).PROD(11.11) 
4 	REAL A (3,51) .H(51) .00F(4.51) 
5 	REAL NU(51) 

**************************************************************** 
OBSEPVE THAT DYNAMIC PARAMETERS ARE BEING USED WITH COMMON AND 
AN EQROR MAY OCCUR AS A RESULT OF MIXED INDEXING — INSURE THAT 
COLUmNS APE COMPLETELY FILLED ON USE OF A DYNAMIC INDEX 
**************************************************************** 

6 	 NT=11 
7 	 NXe-51 
8 	 CALL ANAL(NX.NT.FBAR.AT .D) 
9 	 D2=0(2) 

10 	 AT2=AT(2) 
11 	 CALL OBS(NX.NT.EBAR.EBARST.G) 
12 	 CALL TRANS(NX,NT.G.GT) 
13 	CALL MULT(11.51.GT.G,PROD) 
14 	CALL EIGEN(PROD.11,AT.ID) 

**************************************************************** 
TO EXHIBIT ERRORS IN THIS APPROACH WE CALCULATE A(1) EXACTLY 
AND MULTIPLY THE OTHER COMPONENTS BY THE APPROPRIATE FACTOR. 
**************************************************************** 

15 	AT2=AT2/AT(2) 
16 	no BP IT=1.PT 
17 	 AT(IT)=AT(IT)*AT2 
18 	82 	CONTTNUP 
19 	 no ;,,; ix=1.mX 
20 	 SUM=AT(1)*G(IX.1) 
21 	 SUMI=AT(I)*AT(1) 
22 	 no s'i/.1- 1T=2,NT 
23 	 SUM=SUM+AT(IT)*G(IX.IT) 
24 	 SUM1=SUM1+AT(IT)*AT(II) 
25 	84 	 CONTINUE 
26 	 n(Ix)=SUM/SUM1 
27 	85 	CONTINUE 

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTRRINTPRINTPRIN 
28 	WPIT7-- (6.)14) 
29 	114 FORMAT( 1 0t0 A(T) 	OBTAINED FROM 11 BY 11 MATRIX IS.) 
30 	WRITc(6.104) (AT(I),I=1.11) 
31 	104 FORm!0- (#0 1 95F12.6) 
32 	WRIT — (6.115) 
33 	115 FOR1?‘T( 1.0$0 	D(X) 	OBTAINED AS 	(G(X.T).A(T))/(A(T).A(T))e) 
34 	WRITP(6.104) (O(I).1=1.51) 

PRINTPRINTPRINTPRINT 0 RINTPRINTPRINTPRINTPRINTPRINTPRINTRRINTPRIN 

35 	STOP 
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59 
60 

36 	 END 

37 	 SUBP(IUTINE ANAL(NX,NT,F8AP,AT,D) 
38 	 PEAL FRAP(NxeNT),AT(NT),D(NX) 

**************************************************************** 
SUPPSE 0(X)=X/100 
SUPPrISE 	A(1)=1.+.4STN(I/6.) 
SUPPnSE FOBAR(X)=(1-COS(X/8))*X/100 
THEN THIS sut=ipoUTINE comPUTES THE cORREsPoNDING ANALYTIC SOLUTION 
TO -PE FERTILITY PDE 

D(FBAR)/DT = -A(T)*D(D(X)*FBAR)/DX 
IF n.(T) < 	THERE IS AN ADVANCE IN THE FERTILITY 
IF 	(T) > 0 THERE IS A DELAY IN THE FERTILITY 
**************************************************************** 

39 	 nT=2, 
40 	 DO 	IT=1INT 
41 	 T=DT*(IT-1) 
42 	 AT(IT)=I+.4*SIN(T/6) 
43 	 W=(2.4+T-2.4*COS(T/6.))/400. 
44 	 W=EXP(-1g) 
45 	 DO 8 TX=1,NX 
46 	 X=FLOAT(IX-1) 
47 	 n(IX)=X/400/ 
48 	 FBAR(IX,IT)=.01*X*W*W*(1-COS(X*W/8.)) 
49 	R 	 CONTINUE 

PRINTPRINTRRINTPRINTRRINTPRINTPRINTRRINTPRINTPRINTPRINTRRINTPRIN 
50 	 WRIT':- (61116) 
51 	116 FORMT( 1 1 1 , 1  A(T) 	FROM THE CLOSED FORM ISI) 
52 	 WRIT -:(69104) (AT(I),I=1,11) 
53 	104 FORMT( 1 0'95F12.6) 
54 	 WRIr:(6/117) 
55 	117 FORM“( 1 ) 1 , 1  D(X) FROM THE CLOSED FORM IS') 
56 	 WRITF(6+104) (D(I),I=1,51) 
57 	 WRIT(6,105) 
58 	105 FORMT( 1 0 1 ) 

PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRIN 

RETURN 
END 

61 	 SUBROUTINE OBS(NX.NT,FBAR,FBARST,G) 
**************************************************************** 

THIS POUTINE COMPUTES THE 'OBSERVATIONS' OF THE FOPm 
INTEr,RAL FROM 0 TO X OF -D/UT(FBAR(x,T)) ALL DIVIDED BY FBAR(X,T) 
THE  ARRAY G STORES THE OBSERVATIONS. 

**************************************************************** 
62 	 commnN K,A,H9C0F90 
63 	 REAL K(2,51),A(3951),H(51),C0F(4,51)90(51) 
64 	 REAL FHA 1R(NX,NT)9FBARST(NX,NT),G(NX,NT) 
65 
66 	 no 5 I=1,NT 
67 	5 	 K(1,I)=1)T*(I-1.) 
68 	 CALL SETUR(NT,A,H,K) 
69 	 DO 2q IX=1,NX 
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70 	 •no 15 IT=1,NT 
71 	15 	 K(2,IT)=F8AP(IX,IT) 
72 	 CALL SOLVE(A9K9HINTID,C0F) 
73 	 DO 24 J=1,NT 
74 	 T=OT*(J-1.) 
75 	 FHAPST(IX9J)=3.*C0F(19J)*T*T+2.*COF(29J)*T+C0F(39J) 
76 	24 	 CONTINUE 
77 	25 	CONTINUE 
78 	DO 35 I=1 9 mx 
79 	 K(19I)=I-1. 
80 	35 	CONTINUE 
81 	CALL SETUP(Nx9A,H9K) 
82 	DO 5 ,5 IT=19WT 
83 	 no 45  IX=1,NX 
84 	45 	 K(2,IX)=FBAPST(TX9IT) 
85 	 CALL SOLVE(A9K9H9NX9D,COF) 
86 	 G(1,IT)=0. 
87 	 X=0. 
88 	 NXN1=NX-1 
89  
90 	 no 55 J=1,NIXM1 
91 	 DD=00—x*(COF(49J)+X*(COF(39J)/2.+X*(COF(21„)/3.+ 

2 	 X*COF(19J)/4.))) 
92 	 X=X+I. 
93 	 OD=DD+X*(COF(49J)+X*(COF(39J)/2.+X*(COF(29J)/3.+ 

2 	 X*COF(1eJ)/4.))) 
94 	 G(J 4-19IT)=—DO/F8AR(J+19IT) 
95 	55 	 CONTINUE 
96 	RETURN 
97 	END 

	

98 	SUBPr1UTINE SETUP(N,A,H,K) 

**************************************************************** 
THIS ROUTINE SETS UP A TRIDIAGONAL MATRIX A OF THE SPLINE EQUATION 
TN A 3 :t1' N ARRAY — FTRST ROW IS SUPERDIAG0NAL 

SECOND ROW IS DIAGONAL 
THIRD  RO  W IS SUHDIAGONAL 

AND THEN DECOMPOSES A TO LU SO THAT 
FTRST ROW IS SUPERDIAGONAL OF U, SECOND ROW IS DIAGONAL OF U 

THIPD POW IS SUBDIAGONAL OF L9 DIAGONAL OF L IS UNITY 
**************************************************************** 

	

99 	REAL A(39N)9H(N)9K(29N) 

	

100 	NM1=N-1 

	

101 	H(2)=K(1,2) —K(191) 

	

102 	 no ln I=2 , Nm1 

	

103 	 H (J+1)=K(19I+1)—K(19I) 

	

104 	 A(19I)=H(I+1)/(H(I+1)+H(1)) 
105  

	

106 	 A(31I)=1—A(19I) 

	

107 	10 	CONTINUE 

	

108 	A(1.1)=-2. 

	

109 	A(291)=2. 

	

110 	A(391)=0. 
111  

	

112 	A(29.1)=2. 
113  

	

114 	DO 11 I=2'1 
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115 	 A(3,I)=A(3,I)/A(20-1) 
116 	 A(2,I)=A(2,I)-A(3,I)*A(1,I-1) 
117 	11 	CONTINUE 
118 	 RFTUPN 
119 	 EN n 

120 	 SUBRnUTINE SOLVE(A,K,H,N,DICOF) 

**************************************************************** 
THIS ROUTINE CALCULATES THE SECOND ORDER FINITE DIFFERENCES oF TH 
SPLINE. AND THEN SOLVES AM=D 9 (BY FoRWARD AND BACKwARD 
SUBSTITUTION), PLACING M(vFCTOR OF SECOND DERIvATIVES) IN D 
END POINT CONDITIONS NOW USE THIRD ORDER FINITE DIFFERENCES 
TO Ec,TImATE THIRD ORDER DERIVATIVES AT X0+H/2 AND XN+H/2 
*************************************************************** 

C 
121 	PEAL H(N),D(N),A(3,N),K(2,N),COF(4,N) 
122 	n(2)-z(K(2,2)-K(2,1))/H(2) 
123 	NM1=1-1 
124 	 no 12 12,N1 
125 	 n(I+1)=(K(2,I+1)-K(2,I))/H(I+1) 
126 	 n(I)=6*(o (1 +1)-n(I))/(H(I+1)+H(I)) 
127 	12 	 CONTINUE 
128 	n(1) =-2.*(-K(2,1)+K(2,4)+3*(K(2,2)-K(2,3)))/(H(2)*H(2)) 
129  
130 	 nO 11 T=2,N 
131 	 D(I)=D(I)-A(3,I)*D(I-1) 
132 	13 	 CONTINUE 

133 	 0 (N)=0(N)/A(2,N) 
134 	 DO 14 I=2,N 
135 	 J=N+1 - I 
136 	 D(J)=(0(J)-A(1,J)*D(J+1))/A(2,J) 
137 	14 	 CONTINUE 

138 	CALL POLLY(N,D,K,H,C0F) 
139 	 RETURN 
140 	 END 

141 	 sURRnUTINF POLLY(N,M,K,H,C0F) 

**************************************************************** 
THIS ROUTINE , COMPUTES THE COEFFICIENTS OF THE SPLINF POLYNOMIAL 

ON EACH SUBINTERVAL 
K IS THE ARPAY OF DATA POINTS 
H IS THE VEC1OR OF SUBINTERVAL LENGTHS 
M IS THE SOLUTION VECTOR TO THE EQUATION AM=D 
**************************************************************** 

142 	 PEAL M(N),K(2,N),H(N),C0F(4,N) 
143 	 Nm1=N-1 
144 	 nO 11 I=1,*'1 
145 	 COF(1,I)=(m(I+1)-M(I))/(6.*H(I+1)) 
146 	CDF(;),I)=(K(1,I+1)*m(I)-K(1,I)*M(1+1))/(2.*H(I+1)) 
147 	 DD=M(I+1)*K(1,I)*K(1,I) -M(I)*K(1,I+1)*K(1,I+1) 

148 	 COF,I)=MD/(2.*H(I+1)))+H(I+1)*(m(I)-M(I+1))/6. 
149 	nn=M(I)*(K(I,I+1)**3)-M(I+1)*(K(1,I)**3)+6.*K(1,I+1)*K(2,1) 

.St(H(I+1)**2) 
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150 	 COF(I)=DD/(H(I+1)*6.) 
151 	11 	CONTTNuE 
152 	 no 16 J=1.4 
153 	16 	COF(J,N)=C0F(J,Nm1) 
154 	 RETUQN 
155 	 E ,JD 

156 	 SUHRoUTINF TRANS(NX.NT.G.GT) 

**************************************************************** 
THIS  ROUTINE TRANSPOSES A mATR1X 
**************************************************************** 

157 
158 
159 
160 
161 	65 
162 
163 

164 

REAL G(Nx,NT).GT(NT.NX) 
DO 6 ,7-: Ix=1.NX 

DO 65 IT=1.NT 
GT(IT.IX)=G(IX.IT) 
CONTINUE 

RETLPN 
END 

SUBRnUTINF mULT(NA,NR.A.B,PROD) 

**************************************************************** 
THIS ROUTINE MULTIPLIES TwO MATRICES 
**************************************************************** 

165 	 REAL 	A(NA.N8).B(NB.NA),PROD(NA,NA) 
166 	 no 67 IX=1.NA 
167 	 DO 67 If=1,NA 
168 	 SUM=A(IX.1)*8(1,IT) 
169 	 DU 66 K=2.NH 
170 	 SUM=SUM+A(IX.K)*H(K,IT) 
171 	66 	 CONTINUE 
172 	 ppoD(IX.IT)=SUM 
173 	67 	 CONTINUE 
174 	 RFTuPN 
175 	 END  

C  

176 	 SURRnUTINE EIGEN(PROD.NA,NU.FV) 

**************************************************************** 
THIS ROUTINE FINDS THE DOmINANT'EIGENVECTOR OF THE NA 8Y NA 
MATRTX PR00 AND PLACES IT IN EV wHICH IS NoRmALIZED BY THE 
1 - NOQm. ITERATION RUNS UNTIL ROUNDING ERROR IS DOMINANT. 
**************************************************************** 

177 	 PEAL PROD(NA.NA).EV(NA).NU(NA) 
178 
179 	 no 77 Ix...1.1A 
180 	 Sum=PRO0(1x,1) 
181 	 DO  7.  11=2,NA 
182 	 SUm=SUM+PROD(IXIIT) 
183 	76 	 CONTINUE 
184 	 NU(Ix)=SUm 
185 	 SUM1=SUN1+SUM 
186 	77 	CONTINUE  
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187 	 FRRoP=1. 
188 	89 	CONTTNUE 
189 	 Som2.-0. 
190 	 nO Si  IX=1, , 4A 
191 	 SUM=PROn(IX,1)*NU(1) 
192 	 no 86 1T=2,NA 
193 	 SUM=SUM+PROO(IX,IT)*NU(IT) 
194 	86 	 CONTINUE 
195 	 FV(TX)=SUM/SUM1 

196 	 SUM2=SUM2+EV(IX) 
197 	87 	 CONTINUE 
198 	 SUM1=0. 
199 	 ROUW)=.5*ERROR 
200 	 ER.1q0p=0. 
201 	 DO 97 IX=1,isqA 
202 	 gum=PROO(IX,1)*EV(1) 
203 	 no 96 IT=2,NA 
204 	 SUM=SUM+PROMIX.IT)*EV(IT) 
205 	96 	 CONTINUE 
206 	 NU(IX)=SUM/SUM2 
207 	 SUM1=SUM1+NU(IX) 
208 	 ERROR=ERRUR+AbS(EV(IX)-NU(IX)) 
209 	97 	 CONTINUE 
210 	 IF ( 12- RROR.LT.'3OUND) GOTO 89 
211 	 RETUQN 

212 	 END 

$ENTRy 
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A(T) 	FROM THE CLnSED F0i44 IS 	. 

	

1.000000 	1.10877 	1.247348 	1.336588 	1.388775 

	

1.398163 	1.363718 	1.289234 	1.182909 	1.056447 

0.923773 

D(X) FROM THE CLOSED FOPM IS 

	

0.000000 	0.002500 	0.005000 	0.007500 	0.010000 

	

0.012500 	0.015000 	0.017500 	0.020000 	0.022500 

	

0.025000 	0.077500 	0.030000 	0.032500 	0.035000 

	

0.037500 	0.040000 	0.042500 	0.045000 	0.047500 

	

0.050000 	0.02500 	0.055000 	0.057500 	0.060000 

	

0.062500 	0.065000 	0.067500 	0.070000 	0.072500 

	

0.075000 	0.077500 	0.080000 	0.082500 	0.085000 

	

0.087500 	0.0q0000 	0.092500 	0.095000 	0.097500 

	

0.100000 	0.102500 	0.105000 	0.107500 	0.110000 

	

0.112500 	0.115000 	0.117500 	0.120000 	0.122500 

0.125000 

A(T) 	OBTAINED FROm 11 BY 11 MATRIX IS 

0.997756 	1.10877 	1.248731 	1.339316 	1.390486 

1.399143 	1.365165 	1.290611 	1.183847 	1.058285 

0.921801 

D(X) 	OBTAINED AS 	(G(X,T),A(T))/(A(T),A(T)) 

0.000000 	0.002437 	0,004990 	0.007491 	0.009990 

0.012487 	0.014985 	0.017483 	0.019980 	0.022478 

0.024975 	0.027473 	0.029970 	0.032468 	0.034965 

0.037463 	0.039960 	0.042457 	0.044955 	0.047452 

0.049950 	0.052447 	0.054945 	0.057442 	0.059939 

0.062437 	0.0e,4q34 	0.067432 	0.069929 	0.072426 

0.074924 	0.077421 	0.079918 	0.082415 	0.084913 

0.087410 	0.0q9907 	0.092403 	0.094899 	0.097395 
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0.102386 	0.104882 

0.11486 1 	0. 117 3 57 

OBOE- CT CODE= 	12528 BYTES,ARRAY AREA= 	12156  BYTES TOTAL  AREA 

mUmBER OF ERRORS-z 

4 • 75 SEC,EXECUTION TIME  

0.107379 	0.109874 

0.119841 	0.122342 

0, NUMBER OF WARNINGS= 	0, NUMBER 

20.16 SEC, 	QUEEN'S WATFOR VERSION 

0.099892 

0.112368 

0.124579 

CORE USAGE 

DIAGNOSTICS 

COMPILE TIME= 

COST FOR THIS PROGRAM IS 1 1.83 	 RUN IN HSC 	MAR 21, 1974 

-291- 



Program IV 

It is expected that available data will be in the 

form of a histogram: that is, for population the number 

of individuals between the ages of x and x + h years 

is known. To generate a density function for this 

histogram, a fourth order spline approximation routine 

is used. To investigate the accuracy of the scheme, the 

histogram is regenerated by integrating the spline 

constructed. 

-292- 



$ JOB  ACCT—NUm,VERNER,TIME=60 
*****************************************************************. 
THIS ROUTINE USES A POPULATION HISTOGRAM TO GENERATE A POPULATION 
DENSTTY FUNCTION USING A FOURTH ORDER SPLINE APPROXIMATION 
*****************************************************************. 
REAL A(303,9),R(100),Q(303),P0 

	

2 	INTEGER I,J,K,TN,TO,TT 

	

3 	 INTEGER T3 
RPRRPPRRRRRRRRRRRRRRRkRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRI 

	

4 	 READ(5,100) TN 

	

5 	100 FORMàT(I3) 

	

6 	 REA1)(5,101) (P (fl , I=1sTN) 

	

7 	101 FORT(10F8.0) 
RRRRPRRRRPRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT 

	

8 	 WRITe7(6,106) 

	

9 	106 FORmAT('1') 

	

10 	 PRINT, 'THE GIVEN POPULATION IS' 
11 	 PRINT, 1 

	

12 	 WRITr(6,102) ( ) (1)91=191'N) 

	

13 	102 FORMàT(' 1 ,10F8.0) 
PRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT, 

	

14 	 TO=0 

	

15 	 T3=3*(TN—T0+1) 

	

16 	 CALL ISPLIN(A9TOsTNsT3,P,O) 

	

17 	 CALL CHECK(PsOsT3s7N) 

	

18 	 P(1)O(3) 

	

19 	 P(2),0(5) 

	

20 	 DO 25 T=3,TN 
21 	 R(I)=O(3*I-2) 

	

22 	25 	CONTINUE 
PPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT 

	

23 	 PRINT, • ' 

	

24 	 PRINT, 

	

25 	 PRINT. 'THE-  POPULATION DENSITY AT AGES 091,2s...199 IS' 

	

26 	 PRINT, 	1  

	

27 	 WRITr(6,102) (P(I),I=1,TN) 

	

28 	 WPIT(6,106) 
PRINTPRINTPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT 
PUNCi-IPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCHPUNCI 
WRIT7(7,101) (P(I),I=1,TN) 
PUNOHPUNOHPUNOHPUNCHPUNCHPUNCHPUNCHPUNCHPUNOHPUNCHPUNCHPUNCHPUNCH 

	

29 	 STOP 

	

30 	END  

31 	 SUPRi)UTINE CHECK(P,Q,T3,TN) 
***************************************************************** 
THIS SUBROUTINE REGENERATES THE POPULATION HISTOGRAM FROM THE 
DENSTTY FUNCTION BY EXACT INTEGRATION OF THE FOURTH ORDER SPLINE. 
HENCF THE EPRORS ARE THOSE SUFFERED AS A RESULT OF ROUND —OFF  ERROI ***************************************************************** 

32 	 INTEGER T3,TN 
33 	 REAL 0(1. 3).P(TN) 
34 	 P(1),(0(3)+U(5))/2.—(Q(2)+Q(4))/24.+Q(6)/120 
35 	 13 (2),(0(7)+U(5))/2.—(Q(8)+Q(4))/24.+Q(9)/120. 
36 	 00 2A I=3,TN 
37 	 P(I)=M3*I+1)+O(3*I-2))/2.—(0(3*I+2)+Q(3*I-1))/24.+Q(3*I+3)/120 
38 	26 	 CONTINUE 

PPINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINTPRINT 
39 	 PRINT,' v 
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40 	 PRIi4re ' 
41 	 ppINT,ITHF POPULATION REGENERATED FROm THE FOURTH ORDER SPLINE  IS  
42 	 PRINT, 	$ 
43 	 wPIT.:- (6,10?) (R(I),I=191N) 
44 	102 FoRm“( 1  tq10F8.0) 

PRINTPRINTPRINTPRINTPRINTPRINTPRINTRRINTPRINTPRINTPRINTPRINTPRINT$ 
45 	 RETUqP 
46 	 END 

47 	 SUBR1UTINF CREATE(A,TOON,T3,P,U) 
*****************************************************************q 

THIS ROUTINE CREATES THE INFSPLINE MATRIX FOR APPROXIMATING 
A DEqSITY FUNCTION GIVEN SUBINTERVAL INTEGRALS 
THE )NKNOWN VALUES U(I) ARE THE VALUES  R4(0),R2(G),R(0),R2(1), 
R(1),R4(1),R(2),R2(2),R4(2)9."9R(I),R2(2),R4(I),... 
P(TO),R?(T0),R4(T0). 
ROUNn.ARY CONDITIONS ARE Ret(0)=R 111 (0)=R(100)=R"(100)=0 
***************************************************************** 

46 	 INTEGER IeJ,KeTNITO,TT 
49 	 INTEGEP  1 3 
50 	 REAL A(T3,9),P(TN),0(1 . 3) 
51 	 DO 	1=1,13 

RPt-&PRPPIRPRi-<PRRRPRRRPkRKRRRPRRRRRPRRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRi 
52 	 READ(5,103) P 
53 	10 3 Fop , T(F10.4) 
54 	 -'EAn(c),104) (A( 1 ,J),J=1,9) 
55 	104 	FOR1 , T(91.5) 
56 	 no 3 J=1 , :4  
57  
58 	30 	 CONTINUE 

PPRRPRPRPRRHkPRRRPRRPRRRRRPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR' 
59 	 TT=T"—T0-1 
60 	 no 31 T=4.11 
61 	 DO 31  
62 	 A(2+3*I,J)=A(11,J) 
63  
64 	 A(4+3*I,J)=A(13,J) 
65 	31 	 rONITNUE 
66 
67 	 0 EAP(5,1.,-)4) (A(3*TT+2,J),J=1,9) 
68 	 REAP(5.1:)4) (03*T1+3,J),J=1,9) 
69 	 N1=Tr1+? 
70 	 DO  3) 1==1.II 
71 	 Q(3*T-1)=0. 
72 	 0(3*T)=0. 
73 	 Q(3 * 1 4. 1)=2 * P(I) 
74 	32 	 CONTINUE 
75 	 0(1)-,0. 
76 	 0 (2),,O. 
77 	 0(3)2*P(T0+1) 
78 	 0(4)-,0. 
79  
80  
81 	 PFTW:;''j 
82 	 F"\, " 

83 	 ISPLIN(A91091N91. 39P,U) 
****************************************************###********-›* 
TH1-) ',-;00TI.IF SoLvES THE INTEGRAL SPLINE PROBLEm  FOR A POPULATION 
************************************************************** 
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84. 	 INTFF ,- . TU 	Ti,  I,JK  ,T1 

	

85 	 U\II- Er;F:i TT  

	

86 	 PE:AL A(I3.q),P(TN),U(T3) 

	

87 	 CALL CPv_ATF(A,TO,TN,T3,P,Q) 

	

88 	 no 31 I=[, 1 3 
89  

	

90 	 ‘)O 3 ,4  

	

91 	 A ( I,J)=A(I,J)/A(19.5) 

	

92 	34 	 CONTTNuE 

	

93 	 A(I,7)=1 

	

94 	 no - 	K=1,4 

	

9 5 	 IF- ((I4-).(;T.T3) GOTO 33 

	

96 	 0(1+K)r-O(I+K)-(I-e-K,-K)*U(I) 

	

97 	 ') 3R ,..1=5 

	

9R 	 A(I+K,4-K+J)=A(1+K94-K+J) -A(I+K,5-K)*A(194+J) 

	

99 	35 	 (ONT [NUE  
100  

	

101 	33 	 cOUToE.. 

RACKçUr3L,TITUIToN 
*****************************************************************. 

	

102 	 N=3*(ra-T0 4- 1) 

	

103 	 0(N...1)=Q(N-1)-(J(N ) ' A(N-1,e, ) 
104  

	

105 	 0(N...) -.nw(m-3)-(U(N)*A(N-3.8)+ 0 (N-1)*A(N-3,7)+Q(N-2)*A(N-396)) 

	

106 	 u0 34, I=R, 

	

107 	 K=N-T+1 

	

108 	 no  3 J=I,4 

	

109 	 o(K)=U(K)-A(K+54-J)*Q(K+J) 

	

110 	36 	 CONTINUE 

	

111 	 RFTuRN 

	

112 	ENI)  

$ENTPY 

■■■• 
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THE GIVEN POPULATIOq Is 

- 1023102.1000000. 994230. 990114. 986767. 983817. 981102. 978541. 976124. 973869. 
971804. 96989 0 . 96038. 966179. 964266. 962270. 960201. 958098. 955942. 953743. 
951483. 949171, 94A789 ,  944337, 941806. 939197, 936492. 933692. 930788, 927763, 

- 924609. 921317, 917880, 914282 ,  910515, 906554 ,  902393, 898007. 893382, 888504, 
883342, 877883, 87)098, 865967, 859464, 852554, 845214, 837413, 829114, 820292, 
810900, 800910. 790282 ,  778981. 766961, 754191. 740631. 726241, 710990, 694843, 

- 677771. 659749. 64;)761 ,  620782. 599824 ,  577882. 554975. 531133 ,  506403. 480850 ,  
454548. 427593. 400112. 372240. 344136. 315982. 287973. 260322. 233251. 206989. 
181765. 157799. 135297. 114440. 9537,5. 78221. 63036. 49838. 38593. 29215. 
21577. 	15514. 	1-833. 	7327. 	4787. 	3011. 	1818. 	1005. 	454. 	125. 

THE POPULATION REGEIdERATEn FROM THE FOURTH ORDER SPLINE IS 

' 1023102.1000000, 994230. 990114. 986766. 983816. 981102. 978541. 976124. 973869, 
971804. 969890 ,  968038 ,  966178. 964266, 962270. 960201. 958098, 955942. 953743, 
951483. 949171. 94e,789, 944337 •  941806. 939197. 936492. 933692 ,  930788 ,  927763, 
924609. 921317. 917880. 914282. 910515. 906554. 902393. 898007. 893382. 888504. 
883342. 877883. 87 .›098. 865967, 459464.  852554. 845214. 837413. 829114. 820292. 
810900. 800910. 790282. 778981. 766961. 754191. 740631. 726241. 710990. 694843. 
677771. 659749. 640761, 620782. 599824. 577882. 554975. 531133. 506403. 480850. 

- 454548. 427593. 400112. 372240. 344136. 315982. 287973. 260322. 233251. 206989, 

	

181765. 157799. 135297. 114440. 9537b. 	/8221. 63036. 49838. 38593. 2 9215. 
21577. 	15514. 	1 , 833. 	7327. 	4787. 	3011. 	1818. 	1005. 	454. 	125. 

THE POPULATION DENSTTY AT AGES 0,1,29...999 IS 

1038460.1008672. 995297. 992581. 988103. 985351. 982383. 979819. 977299. 974970« 
972804, 970830. 96q960 ,  967114. 965234 ,  963284. 961243. 959156, 957028, 954851« 
952623. 950337, 947992. 945576 ,  943085. 940516, 937861. 935108, 932259..929297 
926209. 922987 , 9162. 9 1619.  912429. 908568 ,  904509. 900240, 895735, 890988, 
885972. 880664. 875047. 869092. 862781. 856079. 848958. 841394. 833348. 824794« 
815694. 806008. 795705. 784748. 773094. 760704. 747547. 733577. 718762. 703069« 
686464. 668919. 65n419. 630936. 610466. 589017. 566587,  543207. 518911. 4937584 
467817. 441169. 411929. 386229. 358212. 330052. 301936. 274070. 246671. 219966: 
194185. 169555. 146288. 124581 ,  104599. 86475. 70297. 56107. 43896. 33602 
25119. 18298. 17960. 8901. 5914. 3786 ,  2334. 1363. 688. 262: 
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..,„ 

CORE USAGE 	OR IFCT COOE= 	6336 bYTES,ARRAY AREA= 	12520 BYTES.TOTAL AREA 

DIAGNOSTICS 	,I1y-I173EP OF ùl:fflks= 	0+ NUmBER OF WARNINGS= 	of NUMBEI 

H COMPILE TIME= 	2.31 sFC.EXECUTION TIME= 	12.33 SEC , 	QUEEN'S WATFOR VERSICP 

COST FOR THIS PROGQnm IS $ 	1.19 	 RUN IN HSC 	MAR 19. 1974 
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