Alternative fuel

cost study

ALTERNATIVE FUEL COST STUDY

by \quad e

R.Fs, NU Corporation Ltd.

 1011~PRPince of Wales Drive awottawa, OntarioTel: 613-224-8460

Padgett Process Services Ltd.
71 Jenny Wren Way

```
o
```

Willowdale, Ontario
Tel: 416-494-5136

A
William Gto Matthews Associates Ltd. 265 Carling Ave. 4. Suite 205 Ottawa, Ontario
Tel: 613-234-4925

1. INTRODUCTION 1-1
SEETION SO: SUMMARY
2.1 CTMVES 2-1
2.2 LWMTATIONS AND ASSUMPTIONS 2-1
2.3 THe 解THODOLOGY 2-2
2.3. 1 Definition of Life-Cycle Cost 2-2
2. 3 . 2 Elements of the Life-Cycle Cost (LCC) 2-3
2.3.3 Scope of Developed Database 2-4
2.3.4 Data Assembly 2-5
2.3:5 Life-Cycle Cost Worksheets 2-6
3. 3.5 Resource Utilization Efficiency 2-7
2.4 PGTENTIAL APPLICATIONS OF THE METHODOLOGY 2-8
4. ANAL YSIS OF RESULTS OF THE METHODOLOGY 2-9
SECTION 3 HETHODOLOGY
 3-1
F Fig. 3. Alternative Fuels Life-Cycle Costs Matrix 3-2

CONTENTS CONTINUED

3.2 MAJOR ELEMENTS OF LIFE CYCLE COST 3-3
Fig. 3.2 Major Elements of Life-Cycle Cost 3-4
3.3 PLANT GATE COSTS 3-5
3.3.1 Gasoline and Diesel 3-6
3.3.2 Oxinol and Ethanol Blends 3-7
3.3.3 Propane 3-8
3.3.4 Methanol 3-8
3.3.5 Ethanol 3-8
3.3.6 LNG 3-8
3.4 DISTRIBUTION COSTS 3-9
3.4.1 Road Costs 3-9
3.4.2 Rail Costs 3-14
3.4.3 Pipeline Costs 3-16
3.4.4 Barge and Marine Tanker Costs 3-17
Fig. 3.4.1 Fuel Distribution Costs by Road Tanker 3-10
Table 3.4.1 Basls for Fig. 3.4.1 3-12
Fig. 3.4.2 1983 Posted Rail Tariffs for LPG and Conventional Fuels 3-15
Table 3.4.2a 0 il Products Pipeline Economics Model 3-18
Table 3.4.2b 0 il Products Pipeline Economics Model 3-19
3.5 TERMINAL COSTS 3-20
3.5.1 Conventional Fuels 3-20
3.5.2 Propane 3-21
3.5.3 Methanol 3-23
3.5.4 Methanol and Ethanol Blends 3-24

CONTENTS CONTINUED

3.6 REFUELLING STATION COSTS 3-25
Fig. 3.6.1 Refuelling Station Investment Cost Bases 3-26
Table 3.6.1 Refuelling Station Operating Cost Bases 3-28
3.7 FUEL TAXES 3-30
3.8 VEHICLE FIXED COSTS 3-31
3.8.1 License and Insurance Cost 3-32
3.8.2 Annual Cost of Investment 3-32
3.8.3 Annual Cost of Financing 3-32
3.8.4 Other Fixed Costs 3-33
3.9 VEHICLE VARIABLE COSTS 3-34
3.10: RESOURCE UTILIZATION 3-34
SECTION 4 - LIFE-CYCLE COSTS BY VEHICLE TYPE
4.1 VEHICLE-RELATED COSTS 4-1
4.2 COMMENTARY ON VEHICLE-RELATED ELEMENTS OF LIFE-CYCLE COSTS 4-2
4.2.1 Engine Types Available 4-2
4.2.2 Diesel/Gasoline Engine/Fuel Comparison 4-8
4.2.3 Gasoline and Diesel Blends with Alternative Fuels 4-15
4.2.4 High Level Methanol Blends 4-17
4.2.5 Methanol Fuel 4-20
4.2.6 Propane and Natural Gas 4-23

CONTENTS CONTINUED

Fig. 4.2.1a Engines for Transport 4-3
Fig. 4.2.1b Heat Engine Research 4-5
Table 4.2.1 Properties of Alternative Fuels 4-6
Fig. 4.2.1c Effect of Compression Ratio on Fuel Economy and Engine Power Output in Internal Combustion Engine 4-7
Fig. 4.2.2a Gasoline Engines, Fuel Economy Options 1983-1990 and Beyond 4-11
Fig. 4.2.2b Light Duty Diesel Engines Fuel Economy Options 1983-1990 and Beyond 4-12
Fig. 4.2.2c Fuel Economy Vehicle Weight Relationship (Gasoline Engines) 4-13
Table 4.2.2 Intercity Bus - Fuel, Filled Tank Volumes and Weights 4-14
5. INTERMODAL AND INTERFUEL COMPARISONS
5.1 INTERMODAL COMPARISONS AND INTRAMODAL FUEL COMPARISONS 5-1
Fig. 5.1a Summary of Cost/Resource Consumption Factor: Passenger Transport Mode 5-2
Fig. 5.1b Cost/Resource Consumption Factor: Freight Transpor† Mode 5-3
SECTION 6 - RESOURCE UTILIZATION
6.1 LIMITS TO RESOURCE UTILIZATION ANALYSIS 6-1

CONTENTS CONTINUED

Table 6.1 Summary of Life-Cycle Costs and Resource Utilization Efficiency Factors 6-2
6.2 COMPARISONS OF RESOURCE CONSUMPTION FACTOR 6-4
6.2.1 Intermodal Comparisons 6-4
6.2.2 Interfuel Comparisons 6-5
SECTION 7 - REFERENCES
General/Fuels/Fuel Economy 7-1
Alcohol Fuels 7-5
Autos, Taxis 7-10
Buses 7-12
Diesel 7-14
Engines 7-15
LPG/Propane 7-16
Methodology 7-17
Natural Gas 7-18
Trucks 7-21
APPENDICES
A. LIFE-CYCLE COST (LCC) WORKSHEETS
Alternative Fuels Life-Cycle Costs Matrix A-1
Alternative Fuels Life-Cycle Costs Summary Sheets A-2

CONTENTS CONTINUED

B. NOTES ON LCC WORKSHEETS

Comparison of Reference Vehicle Classes B-1
Comparison of Base Case Fuel Consumptions by Vehicle Type B-2
Comparison of Vehicle Conversion Costs (in Constant 1983 \$) B-3
Comparison of Miscellaneous Materials \&
Maintenance Costs B-4
Comparison of Fleet Annual Garage/Terminal
Costs Per Vehicle B-5
Comparison of License \& Insurance Costs B-6
Summary of Life-Cycle Costs B-7
Methodology Used in Alternative Fuels Life-Cycle Costs Summary Sheets B-8
Sensitivity Analysis of Vehicle Annual
Variable Costs (VC) \& Life-Cycle Costs (LCC) B-9
C. FUEL PLANT GATE COST WORKSHEETS
D. NOTES ON PLANT GATE COST WORKSHEETS
E. COMMODITY PRICES IN $4 Q 83$
Major Resource Costs E-1
Other Commodities E-3
F. FACTORS FOR CONVERSION OF BRITISH TO SI UNITS

G. GLOSSARY OF TERMS

Miscellaneous G-1
Properties G-1
Materials G-2

1. Introduction 1-1

The OPEC oil embargo of 1973 and two major increases in the price of internationally-traded crude oil in the decade stimulated investigation of the supply of alternatives to petroleum-based fuels which, together with oil conservation practices, have recently succeeded in capping the price of oil and even temporarily reversing the price trend. The current international surplus of oil producing capacity still leaves most countries in the industrialized world dependent upon imports of oil which beyond the late 1980's must increasingly be drawn from OPEC sources. A consensus view is that world dependence on OPEC supplies will increase from the current 40% of demand to $54-55 \%$ of demand by the year 2000, once again expanding the consuming nations' vulnerability to supply disruptions and price shocks.

In Canada, the constraints to self-sufficiency lie not with the volume of the oil resource available but to the quality of that resource and the high cost of oil recovery from the Arctic and offshore from these areas and from the intractable heavy oil and tar-sands bitumens which form the majority of Canada's oil endowment.

In contrast, Canada's surplus gas resources and gas liquids associated with that gas are ready to exploit directly as heating and transport fuels, or for conversion to liquid fuels such as methanol. Biomass and coal resources are also abundant and widely distributed in Canada, and technologies for their low cost conversion to transport fuels are under investigation. Unfortunately for Canada, the non-petroleum alternative fuels and the hydrocarbons available from the more intractable resources are not yet sufficiently price-effective or well-known to users to permit large scale substitution of oil by these alternatives. Canada's prospects, even to the year 2000, are that significant imports of crude oil will continue at high cost.

One of the factors contributing to this continued dependence on
oil is a lack of targets for the economic exploitation of the alternatives and a lack of knowledge on the economics of these alternatives and the comparative economics of their use compared to the conventional petroleum-based fuels.

The Transportation Energy Division of the Coal and Alternative Energy Branch of the department of Energy, Mines and Resources has attempted to close the information gap by the publication of a number of analyses of the costs, markets and impediments to the use of alternative fuels in the transport sector. One of these studies, "Alternative Fuels Production Costs", prepared for EMR by the R.F. Webb Corporation and Padgett Process Services Ltd. (Report TE82-7, dated February 1983) developed a database on the capital and production costs for 45 alternative fuels and processes and a computer-based analytical technique for projecting future costs at any given location in Canada and for comparing the plant gate or ex-refinery costs of the alternatives with conventional petroleum-based fuels.

Under the auspices of the Ministry of State for science and Technology (MOSST) and EMR an extension of the alternative fuel cost analysis methodology has now been explored in which the end users' costs of alternative fuel systems can be examined and compared with the end users' costs with conventional fuels and vehicles. The work reported here involves the incorporation of the established alternative fuel cost analysis methodology into a new system which also considers the cost of transporting, storing and distributing transport fuels lcapital and operating cost components are defined), fuel taxes and tax concessions on alternative fuels, the cost of the alternative fuel vehicle cor conversion cost) with and without tax concessions and grants for conversion, and the variable and fixed cost of owning and operating the vehicle over the expected lifetime. The transport industry uses the concept of life-cycle cost to encompass all elements of cost encountered over the lifetime of a vehicle and life-cycle costing is a frequently used technique for examining the absolute and relative cost of owning
and operating different classes of vehicles, or the relative cost of different transport fuels. A frequently used example will involve the comparison of gasoline and diesel vehicles.

The preliminary investigation reported here develops and then uses a large database on fuel and vehicle costs to explore the utility of a new economic analysis tool for use by system designers in industry and government in their evaluation of the many contributions of alternative fuels and engines available in Canada. The analytical tool provides a means to express and compare life-cycle costs, annual costs, cost/passenger kilometer or cost/tonne kilometer of conventional and alternative fuel-based transport systems. It also provides a means to examine and compare the detalls of operating and ownership costs such as the cost of fuel, maintenance, or other variable costs and the cost of financing the vehicle and other elements of fixed costs. The format of the analytical displays of life-cycle cost developed in this preliminary investigation facilitates the manipulation of transport cost data and the comparison of fuels, vehicles, payload levels, vehicle financing methods and other interacting cost variables. The analytical process can be accelerated by the use of a microcomputer and typical "spread-sheet" software but is not restricted to computer users.

The investigators are grateful to Mr. R. Clayton (Policy Advisor, Government Branch, MOSST) and Mr. J. Legg lof EMR's Office of Energy Research and Development) for their constructive criticism and patience.
page
2.1 Objectives 2-1
2.2 Limitations and Assumptions 2-1
2.3 The Methodology 2-2
2.4 Potential Applications of the Methodology 2-8
2.5 Analysis of Results of the Methodology 2-9

2.1 OBJECTIVES

The principal objectives of the investigation are:

- To prepare a methodology for the comparative evaluation of life-cycle costs (LCC) of alternative and conventionally fuelled vehicles
. To test the methodology.

2.2 LIMITATIONS AND ASSUMPTIONS

The cost-related database assembled for this study has been drawn from a varlety of reference sources in which some areas are relatively well-documented (e.g. conventional vehicle cost and performance datal, and others le.g. fuel plant/terminal/refuelling station throughputs/costs, fleet garage costs, alternative fuels performances), are less well documented. The individual data obtained from these sources has been evaluated and then incorporated into the database when it appeared to give end results le.g. wholesale/retail fuel prices, alternative fuel consumptions) which were consistent with, or a reasonable extrapolation from, current $4 Q 83$ practice.

However, while every effort has been made to use a representative set of data for each vehicle/fuel case selected, the range of possible variations in return on investment, fuels throughput, fuel transportation distances, vehicle fuel consumption within each cost element selected (the fuel plant, fuel transportation, terminal, refuelling station and vehicle service modulel will result in a range of vehicle life-cycle costs scattered around the value presented in this study. The generalized methodology used to develop these life-cycle costs will, however, allow the user to input his own values for any of the key cost parameters in each cost element of the system so as to arrive at costs specific to each investigator's own area of interest.

The database used to illustrate the life-cycle cost methodology was developed for a $4 Q 83$ time-frame and a Toronto location, but in most respects (excluding terminal-retail outlet costs) would also be applicable to other S. Ontario locations. An expanded database can provide the same level of information for other locations in Canada with the general framework established. The effects of time in terms of fuel costs, engine conversion costs and efficiency have been accounted for in the sensitivity analyses given in Appendix B and in the discussion presented in Section 4.

As currently structured, the methodology presented here facilitates life-cycle cost comparisons between engine/fuel combinations for a given vehicle type and end use. The methodology should only be used with caution at this stage of development to make broader comparisons, such as those between the costs of different vehicle types and end uses (e.g. public bus versus private autol, since items such as driver cost, garaging, ticket marketing costs and government subsidies are not dealt with in the same degree of detail as the items which relate specifically to alternative fuels.

2.3 THE METHODOLOGY

2.3.1 Definition of Life-Cycle Cost

It was determined that the most appropriate means of comparing passenger and freight transport costs was on a cost per passenger kilometer (passenger modes) and cost per tonne kilometer (freight) basis.
2.3.2 Elements of the Life-Cycle Cost (LCC) (p. 3-4)

The Varlable Cost Component

Fuel Cost Subcomponent of Variable Cost

This includes the following:

- Fuel Plant Gate Cost (or ex-refinery costs)
- Distribution Cost (road, pipeline, barge, truck)
- Fuel Terminal Cost (investment, administration, maintenance, labour)
- Refuelling Station Cost (investment, labour, maintenance)
- Fuel Taxes lfederal and provincial taxes minus grants, tax concessions.

Other Variable Cost Subcomponents

- Driver associated costs
- Maintenance of vehicle costs
- Miscellaneous vehicle materials (tires, oil, etc.) costs.

The Fixed Cost Component

This is the set of Fixed Costs associated with the vehicle ownership and garaging and includes:
Fleet Garage/Terminal Costs (investment, labour, administration,
maintenance, but excludes vehicle maintenance and refuelling
station cost components)
Fixed Vehicle Costs (licence, insurance, investment, financing
less grants, vehicle sales and tax concessions)
The total of the annual variable and fixed costs provides the
annual cost of ownership and operation of the vehicle during its period of service with the fleet, or in private ownership. The LCC can be calculated from this annual cost using payload and annual kilometerage data.

2.3.3 Scope of Developed Database

The following vehicle and fuel types were selected to form the basis for developing life-cycle costs for a broad and representative range of the prevailing and "under development" transportation system. The methodology presented here will also allow for the inclusion of any other vehicle/alternative or conventional fuel type combination that is of interest.

Vehicle Types

The database and derived cost elements used in the current investigation were confined to the following set of passenger vehicle types (characterized in Appendix B "Notes on LCC Worksheets"):

```
- commuter automoblle (example: Honda CRX)
- standard automobile (4 cylinder, example: Ford Fairmont Futura)
- taxi (6 cylinder automobile, example: Pontiac Parisienne)
- school bus (example: International Harvester)
. city (urban) bus (example: GM "New Look")
- interurban bus or coach (example: Prévost Marathon)
- passenger truck or van (example: Dodge Plck-up, D150 RAM)
```

and a set of freight-carrying vehicle types:

- Ilght duty urban truck (example: Ford F150 Pick-up)
- medium duty urban-interurban truck (example: International
Harvester Loadmaster)
- heavy duty interurban truck (examples: Ford and Cummins engine)

For the present investigation of the LCC methodology only the following fuels or combinations were considered in selected vehicles:

- leaded regular gasoline ("LR gasoline"))
- diesel fuel
- compressed natural gas (CNG) used alone or in conjunction with LR gasoline
- compressed natural gas (CNG) as dual fuel with LR gasoline (70\%, 30\% respectively)
- liquid natural gas (LNG)
- propane, used alone
- propane, used concurrently with diesel ($80 \%, 20 \%$ respectively)
- methyl alcohol used alone
- methyl alcohol (4.75\%) as a blend with t-butanol (4.75\%) and LR gasoline (90.5\% $(=0 \times$ inol)
- methyl alcohol (90\%) as a blend with LR gasoline (10\%)
- methyl alcohol fortified with cetane enhancer DII-3 to produce a "synthetic diesel fuel"
- ethanol (10v\%) as a blend with LR gasoline (=Gasohol).

2.3.4 Data Assembly

The data on each element of the operating and ownership charges was assembled for a typical set of vehicles operated on a typical set of fuels. The data was taken from the extensive literature lpertinent references cited are given in Section 7) and from interviews with fleet managers and the staff of certain transport associations in Canada and the U.S., such as the Canadian Trucking Association and the American Bus Association. The information gaps were filled by calculation and extrapolation from the assembled data and, where merited, averaged by selection of common data from several sources and elimination of poorly substantiated or extravagent claims (for example, certain of the fuel economy claims that were eliminated were judged to be promotional in
intent and content).

The averaged data on operation and ownership for the vehicle-fuel combinatlons is summarized in the tables given in Appendix B (vehicle classes; base case fuel consumption by vehicle type; comparison of vehicle conversion costs; comparison of miscellaneous materials and maintenance costs; comparison of fleet annual garage/terminal costs per vehicle; comparison of licence and insurance costs; summary of LCC; methodology used in alternative fuel life-cycle cost summary sheets; and sensitivity analysis of vehicle annual variable costs and life-cycle costs).

2.3.5 Life-Cycle Cost Worksheets

The process used in the calculation of life-cycle costs is detailed in Section 3 "Methodology". Each of the 64 vehicle fuel combinations examined (see p. 3-2 for the matrix of these examples) was characterized in a common worksheet format. The set of worksheets are assembled as Appendix A of this report ("Life-Cycle Cost Worksheets").

The details of the fuel cost at the plant (or refinery gatel followed the format and methodology developed in an earlier study ("Alternative Fuels Production Costs", Report TE82-7, EMR, 1983) which was updated, reworked for the specific cases under current investigation and summarized for the present purpose in Appendix C l"Fuel Plant Gate Cost Worksheets") and Appendix D ("Notes on Plant Gate Cost Worksheets").

To simplify the worksheets and the task of developing and verifying the methodology only data relevant to the fourth quarter 1983 in Ontario are presented. The commodity prices used are summarized in Appendix E ("Commodity Prices in 4Q83"). As with the prior investigation of "Alternative Fuels Production Costs", cost data from other locations can be substituted for the given $4 Q 1983$ Ontario set in
the worksheets and data extrapolated into the future using models for projections) of the rate of growth of costs.

The sensitivity analysis component of this methodology lsee Appendix $B 9$ and the interpretation of the sensitivity analysis given in Section 4) illustrates for certain of the vehicle/fuel combinations, the effect of different locations and time frames by determining the effect on the variable and life-cycle costs of the following changes:

- cost changes associated with advances in technology to 1990
- cost changes assoclated with deletion of fuel tax and vehicle subsidies
- cost reduction in fuel (price change or fuel economy improvements) - cost changes associated with a break-even operation policy at the fuel plant or refinery
- cost changes associated with increased intensity of vehicle use (system efficiency).

2.3.6 Resource Utilization Efficiency

Although fuel costs at the pump in the examples analysed varied from only 4% of life-cycle costs (CNG in a commuter automobile) to 27\% (gasollne in taxi service), and although pump fuel costs are determined more by the combined effect of taxes, refining, transportation and distribution costs than by the fundamental resource cost, it is of interest to determine the efficiency of utilization of the primary resource loil, gas, wood, coal, blomass) in the transport chain.

The parameter used in this study to measure resource utilization efficiency has the following definition: payload x fuel plant conversion efficiency $(\mathscr{L}) \div$ vehicle fuel consumption (GJ/km). It is therefore expressed as either passenger km/GJ resource for passenger vehicles or tonne km/GJ resource for freight vehicles. Section 6 discusses the approximations inherent in this definition.

Each worksheet (in Appendix A) contains an entry which reports the efficiency of conversion of the natural resource to the refined or blended transport fuel, the fuel consumption per driven vehicle kilometer (as $G J / k m$) and the average vehicle payload (as number of passengers or tonnes of freight per tripl.

The data on resource efficiency and resource utilization are displayed in summary form in Figures 5.1a and 5.1b.

2.4 POTENTIAL APPLICATIONS OF THE METHODOLOGY

a. The provision of a new assembly (database) on vehicle-fuel and highway transport system costs for reference purposes.
b. The provision of a standardized routine lthe LCC worksheet and other worksheets) for the assembly of cost information in highway transport systems; this facilitates comparisons between fuels, engines, vehicles and methods of operation at a given time and location.
c. The ability to vary the input values to the worksheets to reflect local costs and management strategies, different timeframes and the effect of improved vehicle or fuel technologies.
d. The provision of a basic framework which could be expanded to provide:

- greater detall and sophistication on costs le.g. DCF analysis)
- an expanded set of examples in the highway sector lother fuels, engines, practices)
- information on cost and efficiency in other systems: highway and of f-highway (rail, air, pipelines)
- a rapid cost enquiry system for exploration of the effects of changes to any input variables on vehicle life-cycle cost and system efficiency. This could facilitate planning for the selection among policy options lsuch as changes in taxation, vehicle ridership levels, fuel freight costs) and investigation of
the cost effects of major perturbations (such as effect of a sharp Increase in the price of oil or gas, changes in leaded gasoline, or pollution legislation) or technical developments (to facilitate choice among competing technologies and R\&D proposals). This cost enquiry system would be economic to operate if used in a microcomputer-spread sheet software environment.
- an energy (or resourcel efficiency audit system.

2.5 ANALYSIS OF RESULTS OF THE METHODOLOGY

Interfuel Comparisons (Cost and Efficiency)

Section 4, "Life-Cycle Costs by Vehicle Type" provides detailed information on the effect of fuel choice on life-cycle costs in each transport service environment. Comparisons are provided between the costs when operating appropriately-engined private automobiles, taxis, trucks and buses on:

- gasoline or diesel fuel
- blends of gasoline or diesel fuel with alternative fuels compared to gasoline and diesel
- alcohol fuels compared to hydrocarbon fuels
- propane and natural gas compared to gasoline, diesel, and each other in monofuel and dual fuel operating regimes
with changes in subsidies, relative fuel cost and technology discussed.

The concluslons of the detailed enquiries are summarized in Figures 5.1a and 5.1b, where two aggregate numbers - life-cycle cost and .. resource efficiency - have been used to characterize each vehicle/fuel combination for passenger and freight services. The overview of costs with different fuels provided by Figures 5.1 a and 5.1 b have been used (see Section 5) to identify the highest and lowest cost fuels for each
type of service under the 4 Q1983 Ontario conditions. Clearly, the ranking of fuels for each service will vary with location (tax changes may not be the most significant variant between locations) and time (technology is developing more rapidly for some fuel options than others). Figures 5.1a and 5.1b summarize information on resource efficiency for each fuel/vehicle combination, and a resource efficiency ranking for the options can be assembled, similar to that noted above for ranking of the options by cost. Other relationships can be explored and displayed using information provided in the worksheets and other appendices, such as the effect of tax concessions on life-cycle and variable costs, or the incremental benefit of improved payloads.

Intermodal Comparisons

The methodology and the results displayed in Figures 5.1a and 5.1b permit some comparisons to be made between the costs of providing transportation services by different modes. The data reveal the lack of cost competition between the high convenience taxi and light duty commuter automobile and public transportation (irrespective of the fuel chosen), and the life-cycle cost competition that exists between the more intensively used personal automobile and the city bus and intercity coach where change in fuel type could change the competitive cost position. Similar comparisons show that at the average loadings reported, buses have a resource efficiency superior to that of the mid-size passenger automobile and far superior to that of the taxi. The small commuter automobile, in contrast, can be as resource-efficient as the city bus.

In the case of freight transport, the heavy duty truck has extraordinarlly low life-cycle costs and high resource efficiency which are little altered by the choice of fuel. The mid-size truck has lower costs than the light duty truck but the superior resource efficiency of the mid-size truck compared to the light truck can be compromised by an inappropriate choice of fuel.
page
3.1 General 3-1
3.2 Major Elements of Life_Cycle Cost 3-3
3.3 Plant Gate Costs 3-5
3.4 Distribution Costs 3-9
3.5 Terminal Costs 3-20
3.6 Refuelling Station Costs 3-25
3.7 Fuel Taxes 3-30
3.8 Vehicle Fixed Costs 3-31
3.9 Vehicle Variable Costs 3-34
3.10 Resource Utilization 3-34

3.1 GENERAL

The methodology presented in this section can be used to develop life-cycle costs (LCC) for any vehicle, fuel, time frame and geographic location. For testing purposes the methodology was used to derive the LCC of a limited number of vehicles and fuels for a 4083 time frame and a Toronto-based vehicle location. Figure 3.1 summarizes the matrix of cases that was developed for this study.

In essence the methodology consists of first identifying the major cost elements that make up the total vehicle LCC and secondy, identifying and quantifying the many smaller items that constitute each major element of LCC. This quantified cost and cost. related data, although limited to particular fuels, time frame, vehicle types, location etc., is itself a part of the methodology, since it represents a valid database from which deviations may be extrapolated. Appendices A \& B contain LCC worksheets and back up data for each of the LCC cases examined and therefore represent a summary of both the methodology and database.

One of the prime objectives of the methodology is to provide a means of comparing the benefits of alternative fuels based on a given vehicle type, time frame, location, etc. As such, the focus of the methodology has been to analyze the cost components of the fuel rather than the vehicle. (Note that the breakdown of garage costs for certain buses and trucks would involve a large number of additional cost elements and make the analysis exceedingly complexl.

Cost data used in building up the various LCC cases was based on 4Q83 actual market prices where possible. The depressed state of the economy at that time resulted generally in modest to low profit margins. This is consistent with the approach taken in this study with respect to an owner's expected return on invested capital, namely that a "reasonable" or modest return on investment is compatible with the

Fig. 3.1. Alternative Fuels Life-Cycle Costs Matrix

CASE
KEF *
COHATER ALTO Alto
TAXI
EXS SCHOOL

SI EMGINE
CI EMGIE
hetail furf FLEET PIAf

CASE ; REF

EaS UREAN EUS INTMEAN TKLCN FSHER TRUCK UKEAN Truck INTARE-3 TRICK INTAKP-G
casoline DIESEL
DIESEL/C3
LIM
CNG
fropate
HEOH 100%
HEDHCETATAE
HECH REEMD
ETOH EAEND
SI EMGIME
CI EMGINE
fetall fuge fleet piaf

 $\times \times$
x $\times 1 \times \mathrm{x} \times$

x \times x
\times
y x x x x x x x

343435363738394041424344454647484950515253545556575859606162636465

x x x
*
xxxyxyxx

x
$1 \times$ x
I
x
x \times
I
I
x
x
x x
$\times 1 \times 1$
:
$\times 1$

.
"cost" item in "life-cycle costs". For cost items involving long term investments, a pretax return of 20% on the $4 Q 83$ replacement cost of the item was used when the return could not be readily determined from 4Q83 market cost data. Investment in the vehicles themselves was treated differently, depending on whether they were operated for domestic or business purposes: for domestic vehicles (autos and passenger trucks) no return on investment was included, while business vehicles had an ROI included in their fixed cost element. Natural resource and other commodity costs used in developing fuel plant gate costs were based on 4 Q83 market prices which are listed in Appendix E.

Although the database developed in this study and presented in the Appendices A through D has been derived where possible from actual market data, the prime purpose of the methodology is to indicate how life cycle costs can be developed, rather than to provide definitive costs, and specific examples. The reader may readily substitute his own data to arrive at the LCC applicable to his own requirements and locations.

3.2 MAJOR ELEMENTS OF LIFE-CYCLE COST

Figure 3.2 illustrates the major cost elements that are used to build up the total venicle life-cycle cost. As described in 3.1, since the emphasis of the present study is to compare benefits of one fuel versus another, most of the cost analysis has been devoted to fuel rather than vehicle-related cost elements. For this reason a detailed breakdown of basic vehicle costs, for example, or fleet garage/terminal costs, has not been undertaken.

Each major cost element identified in the Figure is built up from its constituent sub-component costs. For example, total distribution costs are built up from the sum of rail, road, pipeline and barge shipping costs incurred from fuel plant gate to refuelling station.

In certain cases a major cost element is in fact a composite of several separate cost elements of the same type. For example, some alternative fuels such as oxinol blend (gasoline, methanol and butanol mixture) are manufactured in several process plants; the oxinol blend constituents are manufactured in refining, methanol and butanol plants. The plant gate cost of this fuel is therefore a blend of all three plant gate costs. CNG, on the other hand, involves no process manufacturing facility since all that is required is compression of the primary resource itself at the refuelling station location.

Similarly, certain fuel infrastructure systems involved several fuel terminals. For example, the bulk of western Canadian propane delivered to Toronto passes through terminals located at Edmonton and Sarnia (as NG condensatel and Toronto (as propanel before reaching the refuelling station. In other cases it is possible that no terminal is required. This may occur for LNG fuel when fleet demand is sufficient to justify a dedicated LNG plant (see urban bus-LNG cases).

The life-cycle cost worksheets presented in Appendix A are formatted in a generalized way so as to summarize major cost elements and their sub component costs for any fuel/vehicle combination and to develop a life-cycle cost according to the flow path shown in figure 3.2. The methodology employed to generate each major cost element is discussed in detail below.

3.3 PLANT GATE COSTS

Appendix C presents worksheets that furnish plant gate costs for the fuels considered in this study. Worksheets for all the alternative fuels were produced by running the EMR "Alternative Fuels Economics Model" program AFEM (available from EMRI using updated commodity, capital costs, etc. Worksheets for conventional fuels li.e. LR gasoline and diesell were obtained using an in-house refinery program and
detailed refinery printouts are shown in Appendix D to supplement each refinery case worksheet.

The cost of commodities, used as input to the AFEM program, are of course dependent on plant location and have been taken where possible from actual market prices. Their values are summarized in Appendix E.

Selections of plant location and size (capacity) can involve many complex factors but for the purposes of this study they have been based on a preliminary assessment of minimum product cost. For example, methanol produced from natural gas in Toronto at $\$ 4.7 / \mathrm{GJ}$ is estimated to cost about $7.8 \notin / l i t r e$ more than in Edmonton where gas cost is about \$2/GJ. The bulk methanol shipping cost by rail to Toronto in $4 Q 83$ was only about $4.4 \not / 1 i t r e$ and therefore an Edmonton plant location was selected. The 2000 Te/d selected methanol plant capacity is "world scale" and therefore achieves most of the benefits of economy of scale.

The following discussion highlights some key aspects of the fuel plant gate costs.

3.3.1 Gasoline and Diesel

Contract and retail prices of refinery fuels at a typical refinery plant gate in S. Ontario, $4 Q 83$ were derived from Energy Pricing News and EMR Statistics Handbook respectively by substracting the appropriate amounts for taxes, distribution and marketing costs and retailer margin. Using a typical 80,000 BCPD capacity fuels refinery model 1 see Appendices C and D) operating at about 70% throughput and producing a $4 Q 83$ product slate per Statscan's Supply and Disposition of Petroleum Products data (Cat\#45-004), a pretax ROI of 14.7% and -7% on replacement cost of investment was calculated for retail and contract sales respectively. Since the refinery sold to retail and wholesale customers simultaneously, the actual pretax ROI was in fact somewhere between these two values, and assuming a two thirds retail, one third wholesale
split, the calculated ROI for the refinery in $4 Q 83$ would have been about 7.5\% overall. This low return was a reflection of the particularly poor state of the gasoline market at that time.

3.3.2 Oxinol and Ethanol Blends

The 0xinol blend used in this study comprises a $9.5 \mathrm{v} \%$ blend of the Oxinol (50:50 methanol:butanol) in LR gasoline. The ethanol blend comprises $10 \mathrm{v} \%$ ethanol in LR gasoline. It is assumed that these components will be shipped to the refinery for blending and that their cost to the refiner is plant gate (Edmonton) plus rail shipping costs to Ontario.

Since these blending components contribute to both octane and RVP of the gasoline pool, the refinery model was run to determine the optimum operation to suit each blend. In general terms gasoline butane content, reformer throughput and severity were reduced while maintaining the same $B P D$ of blended gasolines and lead content 10.4 g Pb/litrel. Oxinol and ethanol incremental costs were spread amongst all refinery products so as to keep the same product plant gate price ratios as before.

The same ROI as for conventional fuels operations lretail and wholesale cases) was used and a comparison between conventional and derived blended fuel plant gate costs is shown below:

		$\frac{\text { Retail }}{}$	Wholesale
Oxinol blend	$\$ / G J(\$ / 1 i t r e)$	$8.67(28.6)$	$7.42(24.5)$
Ethanol blend	$\$ / G J(\$ / 1 i t r e)$	$9.01(29.7)$	$7.73(25.5)$
Base case LR gasoline	$\$ / G J(\$ / 1 i t r e)$	$8.4(28.6)$	$7.17(24.4)$

If the Oxinol or ethanol costs had been born by the gasoline product only, then blend plant gate costs would of course be higher. However, the cost of production of individual refinery products is not normally
known or used by refiners to set product prices: he latter are normally. determined by the marketplace. Product prices were maintained in the same ratio as in the base case, i.e. conventional fuels, refinery.

3.3.3 Propane

This plant is modelled on a large natural gas liquids stradde plant located in. Empress, Alta. which produces ethane, propane, butanes and $C 5$ condensate. Product prlces reflect Alberta $4 Q 8 j^{3}$ market conditions and are consistent with a pretax ROI of 20% on replacement cost of plant investment.

3.3.4 Methanol

$4 Q 83$ plant gate costs of $\$ 7.91 / G J$ (14.3申/litre) based on a 2000 Te/d.Edmonton natural gas-fed plant are equivalent to a 10% pretax return on the replacement cost of plant investment. Again, the depressed state of the methanol market is reflected in this number. In fact, the prevailing lower selling price of export sales, which is not accounted for in the above analysis, would have generated a still lower ROI.

3.3.5 Ethanol

A 1075 Te/d Edmonton plant based on ethylene feedstock and a pretax ROI of 20% of replacement cost of investment was used. A plant gate cost of $\$ 18.5 / G J(43.8 \notin / / i t r e)$ was calculated.

3.3.6 LNG

A $1000 \mathrm{GJ} / \mathrm{d}$ plant located in Toronto was used together with a 20% ROI to obtain the plant gate cost of $\$ 10.3 / \mathrm{GJ}$. Such a plant could serve a large LNG dedicated fleet or be the equivalent of a small scale "LNG refinery".

3.4 DISTRIBUTION COSTS

Distribution costs are incurred in moving fuels from plant gate to distribution terminals and from there to the refuelling station. Although distribution costs are also incurred in shipping resource and other commodities to the fuels plant for use in the manufacturing process, these costs are incorporated into the commodity prices which are inputted to the AFEM program (see 3.3).

The modes of distribution used for fuels distribution in Canada are pipeline, marine, rail and road tanker, arranged in order of increasing cost (long hauls only). There is no significant use of marine transport at present to supply the Toronto market. These distribution modes are discussed below.

3.4.1 Road Costs

Conventional fuels, i.e. gasolines and diesel, are generally distributed in 60 cu.m. capacity tandem tankers for long distance/high volume and $30 \mathrm{cu} . \mathrm{m}$. tankers for shorter distance/lower volumes. Available tanker capacity may be divided into compartments so as to carry several grades of fuel at the same time. Conventional fuels are generally distributed to the Toronto vicinity by pipeline. Road tankers are used to deliver from receiving terminals to refuelling stations: the small 30 cu.m. tankers are generally used in this service. Most propane fuel reaches the Toronto market from Sarnia (Dome plant) via tandem road tankers carrying about $50 \mathrm{cu} . \mathrm{m}$. of the fuel lmore ullage is required than for conventional fuels cf. $60 \mathrm{cu} . \mathrm{m} .1$ for delivery to Toronto-based terminals. Smaller $13 \mathrm{cu} . \mathrm{m}$. (bobtail) tankers distribute the propane to refuelling stations within the city.

Figure 3.4.1 indicates the road distribution costs for propane and conventional fuels based on a "single drop" disposition of tanker payload at the delivery point.

Fig. 3.4.1 Fuel Distribution Costs by Road Tanker

PROPANE

CONVENTIONAL FUELS

Table 3.4.1 gives examples of the methodology employed in arriving at the conventional fuels distribution costs for large capacity long distance and smaller capacity shorter distance trucks. The methodology is consistent with that presented for alternative fuels in general and which is the subject of this report.

Methanol is generally delivered to the Toronto vicinity from western Canadal by rail and distributed from receiving terminals using 25 and 40 cu.m. compartmented road tankers (containing also other chemicals in addition to the methanoll.

For the purposes of this study, LNG and methanol rich (90\%+1 fuels are assumed to have the same distribution costs as propane and lean (10%) blends of methanol and ethanol in gasoline are assumed to have the same distribution costs as conventional fuels.

Partial drops are assumed to be 50% more costly than single drops and to be necessary whenever refuelling station average volumetric inventory is less than tanker capacity. Volumetric inventory is 7 times average throughput per calendar day for conventional fuels and methanol/ethanol blends (these latter are treated as completely substitutable with gasolinel and 4 times average throughput for all other fuels. Road distribution costs are not applicable to CNG fuel.

In general the large $(60 \mathrm{cu} . \mathrm{m})$ tankers are used for distribution between plant gate and terminals and between primary and secondary terminals. The smaller 13-30 cu.m. tankers are used for distribution between terminal and refuelling stations. For propane which is transported in bulk carriers 245 km from Dome's Sarnia receiving terminal and fractionation facility to Toronto-located secondary terminals, Fig. 3.4 indicates a distribution cost of $1.15 \notin / 1 i t r e$ and this number is in good agreement with Superior Propane's* estimated best rate of $1.04 \neq 1 i t r e$ for this trip.
[* private communication with Superior]

1. Example for $60 \mathrm{cu} . \mathrm{m}$. Tandem Fleet Road Tanker (conventional fuels, single drop)

One way trip distance (D) $=400 \mathrm{~km}$
Avg. speed and turnarounds $=70 \mathrm{~km} / \mathrm{hr}$
Total turnaround time $=4$ hrs
Vehicle utilization factor $=70 \%$
Payload per trip $\quad=60,000$ litres
Round trip time $\quad=(2)(400) /(70)+4 \quad=15.4 \mathrm{hrs}$
No. trips/yr (N) $=(.7)(8736) /(15.4)=397$
Total vehicle lifetime $(2)=880000 \mathrm{~km}$
Total vehicle km/yr $=(397)(400)(2) \quad=317600$
Total vehicle lifetime $\quad=880000 / 317,600 \quad=2.77 \mathrm{yrs}$
Total operating time/yr $=(.7)(8736)=6115 \mathrm{hrs}$

Total fuel cost/yr (2) $=(317600)(41.64 / 100)(52 / 100)=\$ 68770$
Misc. material cost/yr (2) $=(317600)(32 / 1000)=10163$
Maintenance cost/yr (2) $=(317600)(62 / 1000)=19691$
Driver costs/yr (3) $=(6115)(17)=103955$
Cost of investment/yr (2) $=91500 / 2.77=33032$
Cost of financing/yr (2) $=(.3)(33032)=9910$
Garage costlyr (2) $=46000$
Licence \& insurance/yr (2) $=\underline{7094}$
Total cost/yr
\$298615

Total cost/trip $=298615 / 397=\$ 752$
Distribution cost ($\downarrow / 1 \mathrm{itre})(\mathrm{C})=(752)(100) / 60000=1.25 \$ / 1 \mathrm{itre}$
(11) When $D=0, N=(.7)(8736) / 4=1529$,
$C=(100)(103955+33032+9910+46000+7094) / 1529 / 60000=0.218 \Phi /$ itre (i.e.
value of intercept in fig 3.4)
(2) Based on ref case \#10a
(3) Based on $\$ 17 / \mathrm{hr}$
2. Example for $30 \mathrm{cu} . \mathrm{m}$. Fleet Road Tanker Conventional fuels/single drop) (2)

One way trip distnace (0) $=100 \mathrm{~km}(1)$	
Avg speed excl turnarounds $=40 \mathrm{~km} / \mathrm{hr}$	
Total turnaround time $=3$ hrs	
Vehicle utilization factor $=70 \%$	
Payload per trip	$=30,0001 \mathrm{itres}$
Round trip time	$=(2)(100) /(40)+3=8 \mathrm{hrs}$
No. trips/yr. (N)	$=1.71(8736) / 8=764$
Total vehicle lifetime	$=560,000$
Total vehicle km/yr	$=(764)(100)(2)=152,800$
Total vehicle lifetime	$=560,000 / 152,800=3.66 \mathrm{yr}$
Total operating time/yr	$=(.7)(8736)=6115 \mathrm{hrs}$
Total fuel cost/yr	$=(152,800)(41.64 / 100)(38.5 / 100)=\$ 24,496$
Misc material cost/yr	$=(152,800)(33 / 1000)=5,042$
Maintenance cost/yr	$=(152,800)(100 / 1000)=15,280$
Driver costs/yr	$=(6115)(15)=91,725$
Cost of investment/yr	$=75,000 / 3.66=20,492$
Cost of financing/yr	$=(20,492)(.3)=6,148$
Garage cost/yr	$=26,000$
License + insurance/yr	$=4,500$
Total cost/yr (C)	$=\$ 193,683$
Total cost/trip	$=193,683 / 764 \quad=\$ 253.5$
Distribution cost ($\$ / 1 \mathrm{itre})=(253.5)(100) / 30,000=0.85 \$ / 1 \mathrm{itre}$	

(1.) When $D=0, N=2038, C=(100)(91725+20492+6148+26000+4500) / 2038 / 3000=$. $24 \$ /$ litre (i.e. value of intercept in Fig. 3.4).
(2) This vehicle type is intermediate between the class 3 (ref case 9c) and class 8 (ref. case $10 a$) trucks considered in this study (see Appendix A).

A value of 20 km has been assumed for the average distance between a Toronto- located fuels terminal and its satellite refuelling stations (both fleet and retail) and for all fuels this leg of the distribution network is provided by the smaller (13-30 cu.m.) road tankers.

3.4.2 Rail Costs

Figure 3.4.2 presents smoothed curves of posted freight tariffs for LPG, i.e. propane and butane and for conventional fuels as a function of one way distance assuming use of $C P$ Rail's tank cars. Bulk contract rates might be $20-25 \%$ lower than the posted rates for these commodities. It can be seen that intra-regional distribution costs are significantly higher than inter-regional costs (the inter-regional boundary is defined by Thunder Bay).

In the case of methanol, which is normally shipped to Ontario in large quantities by rail from western Canada, the rate for delivery to that market is considerably less (about 40% lower) than for propane and conventional fuels. For example, a typical bulk contract rate from Edmonton to Toronto was about $\$ 54 /$ Te (4.3¢/litre) versus $\$ 115 / \mathrm{Te}$ (posted) or about $\$ 90 /$ Te (contract) for propane and conventional fuels. This cost advantage for methanol does not hold for the smaller markets located further east as suggested by the posted rate for Moncton, N.B. shown on Fig. 3.4.2.

As mentioned above, the bulk contract rate for propane delivery from Edmonton to Toronto is about $\$ 90 /$ Te or $4.57 \phi / 1 i t r e$. The sum of propane gathering costs in Alberta (1.12 $/ 1$ itre) plus Edmonton/Sarnia pipeline costs ($0.77 \$ / 1 i t r e)$ plus primary (Dome, Sarnia) terminal costs (1.74\&/1itre) plus Sarnia/Toronto road distribution costs (1.15¢/1itre) comes to a similar cost of $4.78 \not / / 1 i t r e$ so that the incentive to ship directly by rail to Toronto is small.

Fig. 3.4.2 also shows for comparative purposes the costs of

CATEGORIES FOR LPG AND CONVENTIONAL FUELS:

A: W. Coast to/from Calgary/Edmonton $\left(\$ / T e=.046(\mathrm{~km})-4.64 E-6(\mathrm{~km})^{2}+20\right)$
B: INTER-REGIONAL i.e. distribution between Western and Eastern regions (inter-regional boundary located at Thunder Bay)
C: INTRA-REGIONAL I.e. distribution within Western and Eastern regions excluding Category $A .(\$ / T e=.032(\mathrm{~km})+10)$
NOTES:
(1) Per tariff 103-U: Canadian Freight Association and CP Rail loulk contract rates are about 20-25\% less).

* Methanol tariff (a) Kitimat-Moncton posted price (b) EdmontonToronto bulk contract price.
distribution of gasoline and propane via tandem road tanker. Because rail tariff is on a weight basis compared to volume for road tanker, commodities such as propane with low specific gravity are favoured for rail distribution. Gasoline distribution by road may be more economic than by rail lat bulk contract ratesl up to about 1500 km for inter-regional transfers.

3.4.3 Pipeline Costs

Only existing applications of inaplace pipelines are considered in this analysis of distribution costs since it is unlikely that any new pipeline or reapplication of existing pipelines could be justified until a substantial market penetration of alternative fuels has been achieved. An exception to this might be the conversion of existing SarnialToronto pipelines to handle propane service or of the Cochin pipeline to allow extension of propane handing facilities between Milford, Ind. and Windsor. The following pipeline tariffs have been used in this study in the development of LCC worksheets.

Fuel	Pipeline	Source/Destination	Tariff
Propane/butane/crude	IPPL	Edmonton-Sarnia	0.74¢/1itre
Diesel/gasoline	Trans-Northern	Nanticoke-Toronto	0.30\$/1itre
Natural gas	Trans-Canada	Alberta-Toronto	\$0.94/GJ

The Nanticoke location has been selected as the location for a typical fuels refinery because its distance by pipeline from the Toronto market (refinery-terminal distance is 150 km) is about average for the Sarnia, Nanticoke, Trafalgar refineries serving the area. All of these refineries ship product to Toronto via pipelines IS un 0 il and Imperial Oil pipelines from Sarnia and Trans-Northern from Nanticokel and the tariff structure for Trans-Northern should be fairly representative of all three pipelines, namely $\$ / 1 \mathrm{itre}=0.076+.00148(\mathrm{~km})$ ir.

* Source: Trans-Northern, private communication. Adjusted to 4Q83.

Tables $3.4 .2(a$ and $b)$ illustrate simplified economic models of the Trans-Northern pipeline system "as is" and "as new" respectively. A 55\% utilization factor has been used based on estimated pipeline capacity and the pipeline distribution cost is inversely proportional to this factor. If the Trans-Northern pipeline had been built and put into operation at the 55% utilization rate in $4 Q 83$ it is estimated that the tariff rate would be about $70-90 \%$ higher than for the existing system but still be competitive with distribution costs by large road tanker.

The pipeline distribution costs for crude oil and natural gas have been factored into the Toronto-based commodity costs for these iteris given in Appendix E.

3.4.4 Barge and Marine Tanker Costs

Although no significant marine movement of conventional or alternative fuels is employed or anticipated for deliveries to the Toronto market, this is a major distribution mode for the Maritimes, West Coast and Western Arctic regions and to a lesser extent for the Great Lakes and St. Lawrence region. The scope of this study involves the Toronto market only and therefore marine costs have not been considered. However, marine shipping costs (escalated to 4Q83) published: by 10 L for Toronto-ifiontreal (500 km @ $1.2 \phi / 1 i t r e$) and Montreal-Quebec $\mathrm{City}(250 \mathrm{~km}$ (S) $0.5 \phi / 1 \mathrm{itre})$ suggest that this mode can be 20-40\% lower than road costs for certain routes.

* Third submission to Restrictive Trade Practices Commission, 1983.

STATIS: NEN PIFELINE 4R 1983
LOCATION: SOUTHEFN ONTARIOSFECIFICATION: $800 \mathrm{KH} \times 250$ m plus 8 terminals
CAF'ACITY m3/calernjar day 9450
ORIGINAL INMESTMENT SM年 200
KEOUIRED RETURN ON IM $\%$ 17
ANTICIFATED THOUKHFUT (\% CAFACITY) 55
ANTICIFATED AVG DIST TRANSFORTED k. 800
ANTICIPATED OIL FIPED K.M. $33(10) 6 / \mathrm{yr}$ 1518
ARMMAL COSTS:
friEtax andlal return on Imyestment 34
MAINTENANCE 2.1
GENERAL \& ADMIN 4.9
OIL TRANSFORT COSTS E .0028 \$/k.M.m3 $=$ 4.25
LIFTING/DELIVEFY CO
TOTAL ANONLAL COSTS .76 \$/M3 = 1.44 46.69
REQNIRED TAFIFF STRUCTURE (c/1) $=.076$ $+$
$.0029815096(\mathrm{k} \cdot \mathrm{H})$
TOTAL ANTICIFATED FRETAX REVEME:
REVENUE FROM $\quad 5198 \mathrm{M} 3 /$ /OY TRANSFORTED $800 \mathrm{KM}=\$ \mathrm{MM} / \mathrm{yr} \quad 46.69$
TARIFF FOR TRANSPORTING OIL VARYING DISTANCES:
DISTANCE kM TARIFF cerits/litre

100	0.37
200	0.67
300	0.97
400	1.27
500	1.57

For the conventional and alternative fuels considered in this study for use in the Toronto market there is, in general, only one terminal required between the fuel plant gate and refuelling stations. In the case of propane and conventional fuels, the Toronto-based terminals may distribute to smaller secondary terminals but these are located outside the Toronto market and are therefore not considered in the present study. The existing propane distribution system involves a primary terminal located in Sarnia and a secondary terminal in Toronto. LNG does not require a terminal for product distribution since the LNG plant throughput is small enough in relation to assumed refuelling station demands that distribution can be direct from the plant gate to refuelling stations. CNG does not require a terminal. Each fuel's terminal cost model used in the methodology is discussed below lnote that all rates are on a calendar day basis).

3.5.1 Conventional Fuels

Each of the major Canadian oil marketing companies has a primary product distribution terminal located in the Toronto area. Typically a major part of the output from the S. Ontario refineries reaches these Toronto terminals via pipeline for distribution to refuelling stations and private brand retailers' terminals within the area or to secondary terminals located outside the area. The approach used in this study addresses only the flow of product direct from primary terminal to refuelling station's (which may be fleet or retail operations).

For the purposes of modelling a conventional fuels terminal, its operating and investment costs are apportioned (see LCC worksheets in Appendix Al to the three major transportation fuels as follows:

LR gasoline	37%
UR gasoline	38%
Diesel	25%

Total throughput of all fuels is assumed to be about $2890 \mathrm{cu} . \mathrm{m} . / \mathrm{day}$ split in the above proportions. Total investment is based on a 4Q83 replacement cost of $\$ 23 \mathrm{MM}$ for the fixed portion, i.e. land and facilities, and $\$ 10 \mathrm{MM}$ for working capital, of which $\$ 9 \mathrm{MM}$ is associated with inventory (equivalent to 10 days throughput).

Total labour costs exclude marketing services and road tanker maintenance (this latter item is included in distribution costs) and are based on round-the-clock terminal operation and 10 men/shift plus daytime staff and supervision.

Marketing costs are intended to cover all sales activities, including direct transfers from refinery to customer, associated with gasoline and diesel. A cost of $1.0 \phi / 1 i t r e$ has been assigned to this activity when applied to retail sales only. For wholesale, i.e. contract sales, the marketing costs are assumed to be negligible.

Maintenance covers mainly snow removal, security, road and equipment repairs; "other costs" include insurance, property tax; utilities consists mainly of electric power to heating, pumps, lighting, etc. Total maintenance and utilities are assumed to be $\$ 300 / \mathrm{d}$ and "other costs" are taken as 2% of fixed investment.

3.5.2 Propane

Propane is piped to Sarnia from Edmonton in the form of natural gas condensate comprising propane, butane and pentanes plus. Dome's fractionation plant in Sarnia is capable of separating about 7160 cu.m./d of propane and a value of 90% of this plant capacity has been assumed for daily throughput. For the purposes of the present
methodology the Sarnia plant is categorized as a primary distribution terminal since the propane has already been produced in an upstream gas processing plant(s) located in Alberta. Ref. case $2 e$ LCC worksheet (included in Appendix $A l$ presents the costing model bases for both the primary and secondary terminals, the latter being modelled on Superior Propane's Toronto terminal.

Because only 42% of the Dome plant product, on an energy basis, is propane (46\% on volume basis) the operating and investment costs were apportioned to propane on that basis. Total $4 Q 83$ replacement value of the plant was estimated at $\$ 25 \mathrm{MM}$ of which the propane portion was \$10.5MM. Working capital associated with propane inventory, assumed to be equivalent to 20 days throughput, is about $\$ 19.5 \mathrm{M} / \mathrm{M}$.

Marketing costs have been assigned to both primary and secondary terminals in order to bring total terminal costs on a $\neq 1 \mathrm{itre}$ basis into line with costs reported or derived from the literature and propane marketing sources*. Marketing costs associated with sales from the secondary terminal are reduced by 50% for bulk sales, e.g. to fleet operators.

The estimated $4 Q 83$ replacement cost of investment for the secondary terminal is $\$ 3.5$ min for land and fixed capital and $\$ 0.5$ min for working capital including inventory. A secondary terminal throughput of 300 cu.m./d has been assumed and this is consistent with a well-established wholesale and retail customer market. A new secondary terminal operator entering the Toronto market would likely build facilities to initially handle about $100 \mathrm{cu} . \mathrm{m} . / \mathrm{d}$ and terminal costs per litre of propane would then be higher (due to economy of scale, fixed labour costs, etc).
7. 4 Q83 wholesale price in Toronto from Superior Propane marketing sources. Wholesale price in Sarnia from EPN, Nov.'83. Fractionation plant costs from ENR report on Propane Vehicle Carburetion Market Development, 1980-83, p.13.

Utilities, maintenance, labour and other costs have been estimated for primary and secondary terminals based on an analysis of the types of operations involved and scale of operations and are shown on the propane-based LCC worksheets in Appendix A, e.g. ref. case 2 e .

3.5.3 Methanol

Existing methanol primary terminals are operated in the Toronto area by several methanol producers such as Celanese, Ocelot and AGC. These terminals all receive methanol by rail from western Canada and typically distribute the product by compartmented road tanker (carrying also other chemical products handled by the terminall to various non-fuel end use customers.

It is envisaged that, if a methanol fuel market becomes established in the Toronto area, methanol will likely be shipped (a) by rail directly into existing conventional fuel terminals for the fuel cases: 90% methanol, 100% methanol and methanol + cetane enhancer considered in this study, or (b) shipped by rail to S. Ontario refineries for low methanol blends using, for example, Oxinol isee 3.5.4. for latter discussion). For the former three fuel types the conventional fuels primary terminal would be converted as an "add-on" to the existing fuels handing facilities with relatively low additional investment and operating costs during the early (low throughput) market penetration period. Incremental terminal investment is assumed to increase linearly with terminal throughput as this alternative fuels market increases, i.e. no economies of scale are allowed. Incremental terminal operating costs at low throughput benefit from the fact that no additional labour is required but include a marketing cost. Reference cases 2f, $3 \mathrm{i}, 3 \mathrm{j}, 8 \mathrm{e}, 8 \mathrm{f}, 9 \mathrm{e}$ and 9 f in Appendix A illustrate the costing model basis for the low market penetration case when terminal throughput is limited to about $25 \mathrm{cu} . \mathrm{m} . / \mathrm{d}$ of these methanol or methanol-rich fuels. For the case of more substantial market penetration a throughput of 250 cu.m./d has been assumed, as illustrated by ref. cases $5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{~g}, 6 \mathrm{c}$,
$6 \mathrm{~d}, 8 \mathrm{~g}, 9 \mathrm{~g}$ and 10 d . In these cases the primary terminal throughput of these fuels ($250 \mathrm{cu} . \mathrm{m} . / \mathrm{d}$) is a substantial percentage of total terminal fuels throughput and therefore additional labour costs have been allocated. Marketing costs have been reduced to zero for these high throughput cases where a substantial proportion of sales are likely to bulk contract sales to fleet operators.

3.5.4 Methanol and Ethanol Blends

These consist of low blends, i.e. about $10 \mathrm{v} \%$ or less of the alcohol in gasoline and the blending is assumed to have been performed in the refinery because of its impact on gasoline RVP, octane and on refinery operations in general (see 3.3.1). These blended gasolines (both leaded and unleaded) are shipped to the primary terminal in the same way and at the same cost as the conventional gasoline fuels and this also holds true for terminal operations and costs. 1 t has been assumed that if these alcohol blends are introduced by the refiner, then all of the gasoline produced will contain the alcohol blend so that no additional tankage lother than methanol storage and blending in the refinery) is required.

Terminal throughput on a GJ/d basis of leaded regular (LR) gasoline is the same for alcohol blended and unblended fuels. Only LR gasoline and diesel conventional fuels have been considered in the LCC worksheet examples.

The small initial costs of cleaning and drying tanks plus costs of maintaining a water-free environment have been neglected in the costing model for these cases.

Refuelling station costs for alternative fuels are strongly dependent on station costs of conventional fuels. This is because alternative fuels refuelling facilities are likely to be introduced by either adding on (AO) to an existing station or by converting (C) the existing, conventional fuel facilities to the new fuel. The former option is considered most likely for retail and the latter for fleet refuelling stations and this pattern has been adopted in the costing. methodology incorporated in LCC worksheets. New refuelling station stand-alone (SA) facilities using alternative fuels only, have not been considered in this study but costs are likely to be similar to converted station costs.

The cost of land for conventional fuels retail outlets is high (about 50% of total investment) due to the need for prime locations and because of the high cost of land in Toronto. In the case of fleet stations, land is included in garage costs lsee "other fixed costs" on LCC worksheets). Figure 3.6.1 summarizes the basis for refuelling station investment costs, excluding land, for the various alternative fuels considered in this study.

Table 3.6.1 summarizes the basis used to develop station operating costs. The costing model used to represent a conventional retail refuelling station marketing gasolines and diesel has been simplified so that total fuels throughput $(a l l$ throughputs are given on a calendar day basis) is expressed in terms of the fuel under consideration in the vehicle LCC analysis (see Appendix A worksheets for examples).

Refuelling station costs are virtually independent of throughput so that for an existing station the cost/litre is inversely proportional to throughput. The major oil companies are continuously reviewing their retail outlets so as to maintain acceptable throughputs and station costs by disposition and acquisition of properties. A throughput of

Fig. 3.6.1 Refuelling Station Investment Cost Bases

STATION THROUGHPUT (std $\mathrm{m}^{3} /$ calendar day)

INSTALLED COST OF REFUELLING FACILITIES EXCL. LAND (\$MM)

BASIS FOR CURVES:
Methanol/Ethanol blends (C): No change necessary to tankage volume. Gasoline + alcohol blends substituted for gasoline. Small cost required to convert existing station to clean tanks, add dry protection and adjust meters.

LNG (AO or C): Same costs/GJ as for CNG station (ref "Evaluation of Alternative Fuels for Urban Mass Transit Buses": Feb. 1983, Booz, Allen \& Hamilton Inc., p.IV-12). Case 5 c is exception since no LNG storage required (see worksheet, note 7).

G\&D (SA): Based on actual cost of 2 bay, 6 dispenser, self-service installation in mid-1983 built for anticipated 8-10 cu.m./calendar day of total G+D in E. Toronto with 150 cu.m. total storage capacity (land cost $\$ 260000$). Some allowance made for economy of seale.

Propane (AO or C): Same cost as for G\&D(SA). Propane tanks and dispensers are more expensive than G\&D but extra cost is largely offset by savings due to (AO) or (C) status, i.e. no cost for civil work. Methanol-rich blends (AO): Same cost as for G\&D (SA), i.e. cost of additional tanks and dispensers same as for G\&D (this group includes 100\% methanoll.

Methanol-rich blends (C): Incremental cost equal to 60\% G\&D cost on same GJ/d basis to account for additional tankage lthis group includes 100\% methanoll.

CNG (AO or C): Based on FAST FILL, 15 psig suction pressure, compressor capacity equal to 3-4 times std cu. m./calendar day throughput. Ref. sources "Market Potential for CNG", Canadian Resourcecon, Oct. 1982 \& "Natural Gas - An Alternative Transport Fuel", Oct. 83, EMR.

Construction status:
$S A=$ original facility construction dedicated to fuel under consideration
$A O=$ retainment of orlginal conventional fuelling capacity plus add-on alternative fuel capacity
$C=$ conversion of original conventional fuelling capacity (in GJ/d) to alternative fuel capacity.

Table 3.6.1 Refuelling Station Operating Cost Bases

1. LABOUR COSTS
(a) Retail outlets: G\&D, MeOH/EtOH blends

16 hrs/day, $\$ 6.5 / \mathrm{hr}, 25 \%$ burdens and benefits
(b) Retail outlets: other fuels

All alternative fuels facillties are added on to existing outlet. Existing labour, services alternative fuels facility at no charge to keep costs low and encourage market penetration.
(c) Fleet outlets: all fuels

2. MAINTENANCE COSTS (Snow removal, road maintenance, etc)

1\% of total investment (excluding land cost) per year except for CNG which uses 2.5% per year.
3. UTILITIES COST (@ $3.2 \notin / \mathrm{kwh})$

```
Liquid fuels 0.3 kwh/GJ fuel (1q/GJ fuel)
CNG fuel 7.5 kwh/GJ fuel (24q/GJ fuel)
```

4. OTHER COSTS (insurance, property tax, etc.)

2\% of total installed cost except, for retall propane case only,
 expected ROI than 20% assumed for other cases.
about $10 \mathrm{cu} . \mathrm{m} . / \mathrm{d}$ of conventional fuels is considered to be better than average for a Toronto location and has been used in the present study as representative of a typical retail station. This throughput is equivalent to $356 \mathrm{GJ} / \mathrm{d}$ or $395 \mathrm{GJ} / \mathrm{d}$ when expressed as LR gasoline or diesel equivalents respectively.

New alternative fuel retailing facilities are considered to be built as an add-on to an existing conventional fuels retail outlet. A $50 \mathrm{GJ} / \mathrm{d}$ throughput has been assumed for all retalled alternative fuels (cf 33 GJ/d present throughput for CNG retail outlets operated by Shell-CNG Fuel Systems in Torontol. Throughputs of fuels handled by fleet refuelling stations are a function of fleet size, vehicle type, service and average distance travelled. Fleet station throughputs assumed in this study are listed below:

Fleet station fuel consumptions

| | $\frac{\text { GJ/d }}{}$ | Litres/day |
| :--- | ---: | ---: | :--- |
| Taxi | 150 | 4410 (gasoline) |
| School bus | 50 | 1470 (gasoline) |
| Urban bus | 700 | 18330 (diesel) |
| Interurban bus | 700 | 18330 (diesel) |
| Urban truck | 30 | 882 (gasoline) |
| Interurban truck (class 3) | 50 | 1470 (diesel) |
| Interurban truck (class 8) | 700 | 18330 (diesel) |

Although labour costs represent a significant portion of conventional fuels retail outlet costs, for the "add-on" alternative fuels facilities considered in this study it has been assumed that existing labour will service the new facility at no charge to the alternative fuels retail price, thereby keeping costs low and encouraging market penetration.

3.7 FUEL TAXES

Little methodology is involved in the determination of fuel taxes since they are set by government regulation. They are, however, a major element of conventional fuel costs and would likely become a major element of alternative fuels costs if the latter displaced a significant portion of the conventional fuels market.

Taxes levied at the resource production level upstream of the manufacturing plant gate are included in the resource costs which are inputted to the "Alternative Fuel Economics Model" (AFEM) program used in this study to calculate plant gate costs. These resource costs are listed in Appendix E. The following taxes were applicable in 4083 in Toronto to the fuels considered in the present study:

Fuel Type	Federal T	(f/litre)	Ontario Provincial
	Sales	Other	Tax ($\ddagger / 1 i+r$)
Gasoline	note (5)	1.5 (3)	7.6
Diesel	"	0	9.6
LNG	0	0	0
CNG	0	0	0
Propane	. 07	. 74 (4)	0
MeOH 90\%	note (5)	0	0
MeOH 100\%	"	0	0
MeOH blend (1)	"	0	(.905)(7.6)
EtOH blend (2)	"	0	(.90)(7.6)

(1) containing $90.5 \mathrm{v} \%$ gasoline, $4.25 \mathrm{v} \%$ methanol, 4.25% butanol
(2) containing 90 v \% gasoline, $10 \mathrm{v} \%$ ethanol
(3) excise tax rebatable to business users only
:(4) . $36 \notin / 1 i t r e \operatorname{COSC}, .38 \not / / 1 i t r e$ NGGLT*, added to plant gate price
(5) 9\% of pretax price of fuel at pump.

* set at zero in 1984

The annual "cost" of vehicle investment is assumed for present purposes to be the total initial investment divided by the number of years of vehicle lifetime. Total initial investment is the sum of base vehicle cost plus conversion cost plus sales tax less any applicable grants and tax concessions associated with the use of alternative fuels. Appendix B includes tables comparing base vehicle costs and estimated present and future conversion costs for various vehicles/fuel combinations. Ontario provincial sales tax rebates are applicable to all alternative- fuelled vehicles. Federal grants for the vehicle/fuel combinations under consideration are shown below for 4Q83:
Fuel Type

Vehicle Category
Federal Grants (\$)

Propane/Diesel	buses only considered here	400	
CNG	all	500	
Duel CNG/Gasoline	all	0	(1)
Propane	commercial vehicles	400	(2)
LNG	buses only considered here	500	
MeOH rich fuels	all	0	
E†OH \& MeOH blends	all	0	
(1) 400 in 1984			

3.8 VEHICLE FIXED COSTS

Fixed costs are defined as those costs which are associated with fixed investments relating to the vehicle, garage, terminal facilities (excluding refuelling facilities) etc. and to operating costs that are not directly related to vehicle kilometrage per year. Fixed costs finclude the following:

License and insurance cos \dagger
Annual cost of investment
Annual cos \dagger of financing
Other flixed costs.

These items are discussed below in more detall.

3.8.1 License and Insurance Cost

A comparison of license and insurance costs for all the vehicles and services studied is shown in Appendix B. Of note is the low cost of insurance for buses and to a lesser extent for heavy duty inter-urban trucks. These costs, which are derived from the listed references, are believed to be low on account of the operating companies assuming part of the insurance liability. A value of $5-7 \%$ of base vehicle cost may cover total insurance costs. The lower insurance cost allocated here would be compensated by a higher garage/maintenance cost.

3.8.2 Annual Cost of Investment

The methodology used in this study to develop vehicle life cycle costs does not use a DCF analysis of the effect of money devaluation with time lalthough it is recommended for future refinement and sophistication of the methodology presented herel. In this methodology the annual cost of vehicle investment is simply the original investment value divided by the vehicle lifetime in years.

3.8.3 Annual Cost of Financing

Vehicle investments are assumed to be funded as 80% debt, 20% equity. The debt portion is assumed to be financed over a 4 year term at 15% interest compounded semi-annually. On this basis approximately $\$ 30$ must be paid in interest charges on every $\$ 80$ borrowed initially so that financing costs represent 30% of the original investment. This
financing cost is spread over the total vehicle lifetime to obtain the annual cost. The discounting of money value with time (DCF method) has not been considered in the present study. In addition, a constant financing term has been employed to simplify methodology, rather than using vehicle lifetime. Incorporation of a DCF approach and variable financing term is recommended for refinement of the methodology presented here.

3.8.4 Other Fixed Costs

"Other fixed costs" refers to costs associated with vehicle fleet operation and include the following items:

ROI and/or rental cost of:
administration and sales offlces investment
non-maintenance equipment investment
garage investment (excluding vehicle maintenance and refuelling operations)
terminal investment (buses only)
cost of:
dispatch operations (taxis only)
†icket sales operations (buses only)
administrative staff
cost of facilities maintenance.

Appendix B includes a comparison of annual garage/terminal costs per vehicle. Although these costs make a significant contribution to vehicle life cycle costs, they are independent of fuel type. A more detailed breakdown of the costs would not be helpful in evaluating the effect of alternative fuels on various vehicle classes and services.

3.9 VEHICLE VARIABLE COSTS

Variable costs are defined as those costs which are directly related to vehicle kilometrage per year. These costs relate to: fuel; †ires; miscellaneous materlals, such as lube oil, windscreen washer fluid, antifreeze, etc., but excluding maintenance materials; driver costs per hour, including burdens and benefits plus any other driver-related costs and expenses; and vehicle maintenance costs. Appendix B includes a comparative table which summarizes miscellaneous materials and maintenance costs for each vehicle class and fuel type.

Vehicle lifetime is calculated from total vehicle kilometrage divided by $\mathrm{km} / \mathrm{yr}$. Values for each vehicle type are shown on the LCC worksheets in Appendix A and represent a "base case" only; the number of kilometers per year is of course highly dependent on vehicle service. Total vehicle kilometrage is largely determined by the vehicle type. The cut-off has been taken as the industry (service) average. Maintenance costs are consistent with engine replacement and other schedules.

Annual fuel costs are computed from the fuel usage in litres/l00km, kilometrage/yr and fuel cost at pump in cents/litre. Appendix B includes a comparative table summarizing current and estimated future (1990) values for fuel consumption by vehicle and fuel type.

3.10 RESOURCE UTILIZATION

Each LCC worksheet in Appendix A contains a value for overall resource utilization expressed as either passenger kilometers per GJ of resource or tonne kilometers per GJ of resource. Although this data appears to be outside the scope of the present study on alternative fuels transportation costs, it does in fact impact on the "cost effectiveness" of fuels in a broader national sense, and has therefore been included.

Resource utilization data has been calculated by dividing the product of payload (either passengers or tonnes) and fuel plant process fractional efficiency by vehicle fuel consumption (in GJ fuel/km). This methodology does not take account of energy consumed in distribution, but since this is relatively small in relation to manufacturing plant and vehicle energy consumption, the approximation is believed to be justifiable.

The resource utilization factor for various fuel/vehicle/service combinations is discussed in Section 6.

SECTION 4 - LIFE-CYCLE COSTS BY VEHICLE TYPE

page
4.1 Vehicle-Related Costs 4-1
4.2 Commentary on Vehicle-Related Elements of 4-2Life-Cycle Costs

Individual owners and fleet vehicle operators have a broad choice of fuels, engines and vehicle configurations avallable to meet their transport requirements. The wider avallability of alternative fuels and the outcome of current research on engines will multiply the choice. Routines for the analysis of vehicle life-cycle costs can be of assistance to users in their selection from the many competing options. As currently structured the methodology of this investigation facilitates life-cycle cost comparisons of engine/fuel combinations within a given operating environment. The methodology should not be used at this stage of development to compare costs in different environments - such as the cost of bus transport versus private automobile use - since items such as driver costs, the cost of the garaging and transportation service sales costs apply to commercial but not private transport and it is difficult to compare costs of subsidized public transport (city buses) with its profit-oriented service equivalent (taxis).

With this proviso established we can proceed with an examination of the factors affecting operating cost and capital-related and fixed cost elements of life-cycle costs.

Vehicle Operating Costs are highly dependent upon:
a. the efficiency of the combustion process: very dependent on engine type
b. the efficiency of conversion of engine power to vehicle performance related to vehicle loading factors (payload), empty vehicle weight, vehicle aerodynamics, drive-train efficiencies :- (design and engine drive-train matching), tire-related energy losses
c. the after-tax cost of the transport fuel used (retail or fleet cost, which will include refuelling costs)
d. other operating expenses including consumables such as lubrication oil, spark plugs, maintenance labour and materials
e. where applicable, other costs such as driver costs (commercial vehiclesl, tolls, parking costs.

Vehicle Capital and Fixed Cost elements of the life-cycle costs are principally dependent upon:
f. annual cost of vehicle ownership (annualized cost of the after tax Investment plus financing charges)
g. vehicle license and insurance costs
h. for commercial vehicles only: the cost of sales services, cost of financing and maintaining the garage and terminals, fuelling facilities are included in life-cycle costs.

4.2 COMMENTARY ON VEHICLE-RELATED ELEMENTS OF LIFE-CYCLE COSTS

4.2.1 Engine Types Available

Figure 4.2.1a illustrates the principal types of heat engines las distinct from electric engines) which are potential contenders for highway transport. Of these only the internal combustion types: the spark ignition (Otto) engine and the compression ignition (Diesel) engine are of current significance. The external combustion engines the Rankine (steam) engine, the Stirling engine and various gas turbine (Brayton) engines have been known for decades but are unlikely to be used on highways until it becomes necessary to use fuels that are not suitable for the diesel or gasoline engine (such as coal, hydrogen) or to have engines which tolerate a varlety of fuels, or when pollution standards are so stringent as to make these low pollution emission level engines competitive with highly modified otto and diesel engines. Of the external combustion engines, the gas turbine may be the first to be used since it has been adopted as the power pack for the Abraham's tank

Figure 4.2.1a Engines for Transport

	engine efficiencies (percent)			POWERIMASS		
		$25 \text { LOAD PERENT }$	$\begin{aligned} & 10 \text { PERCENT } \\ & \text { LOAD } \end{aligned}$	KKLOWATt/ KLLOGRAM	Ssio	cost
SPARK-IGNITION (OTTO) ENGINE	$\frac{30}{26 \%}$	\% 27	[24	[818	acceptable with CONTAOLS: LIKELY to degenerate	VEAY LOW
COMPRESSIONIGNTION (DIESEL) ENGINE (DIESEL) ENGINE	\% 36	$\sqrt{35}$. ${ }_{\text {. }}^{\text {. }}$	HIGH IN NITROGEN OXIDES (NOX)	moderate
vapor-cycle (RANKINE) ENGINE	\% 30	\% 26	\% 4	$\frac{.5}{\text { \% }}$	VEAY GOOD: NOT LIKELY TO degenerate	HIGH
STIRLING-CYCLE engine				. 8.5	VEAY GOOD: NOT LIKELY TO degenerate	High
open braytoncycle engine (GAS tuabine)	44 ${ }^{45}$	30 10	25 8	(\%6	VERY GOOD: NOT LIKELY TO cegenerate	moderate: POTENTALLLY LOW (CERAMIC)
CLOSED bRAYTON.CYCLE engine	$\sqrt{36}$	$\frac{36}{22}$	34 20		VERY GOOD. NOT LIKELY TO degenerate	VERY HIGH

KEY:

engine efficiency attainable WITH PRESENT TECHNOLOGY \square Engine efficiency attalnable IN ADVANCED ENGINES BY 1990

Source: Wilson, David G., "Alternative Automobile Engines," Scientific American, Vol. 239, No. 1, July 1978, p. 48.
and track tested for use in heavy duty trucks.

However, in the period to 1990 and most probably to 2000 and beyond, otto and Diesel engines will continue to dominate road transport. Diesels and Otto engines can still be substantially improved with respect to power output (power/kilogram of engine) and fuel efficiency: this, coupled with requirements to reduce toxic emissions and noise, explains the emphasis still placed on research into these engines. See Figure 4.2.1b for a summary of GM's engine research. No property, cost or pollution emission advantage has been brought to light which would justify the early development of alternative fuels in highway engines other than the Otto or Diesel engines, or simple hybrids of these engine types, such as direct fuel injection in the gasoline engine (derived from diesel practice) and glow-plug assisted combustion in diesel engines.

The alternative fuels now undergoing market development (propane, CNG, methanol, ethanol, LNG) are all high octane fuels (see Table 4.2.1) suitable for use alone or with gasoline in spark-ignition engines. They offer the prospect of high efficiency in the combustion process when advantage can be taken of the high octane value to increase the compression ratio of the engine beyond the 8.5 to $9: 1$ compression ratios encountered with modern gasoline engines (a 1% to 2.5% gain in fuel economy normally accompanies an increase of 1 in the compression ratio in the gasoline range - see Figure 4.2.1c). With natural gas and methanol used alone as fuels, their exceptional octane values permit compression ratios in the 14:1 range to be used when engine efficiencies close to those of the diesel engine can be attained at full load conditions.

The use of high octane alternative fuels in compression ignition engines requires formulation with additives and/or significant engine modifications. However, there is a substantial incentive to develop this route to diesel fuel substitutions since diesel fuel supply,

Table 4.2.1 Properties of Alternative Fuels

COMPRESSION RATIO

Source: Ethyl Corporation
:-
quality and price problems are forecast for the future. The demand for diesel fuel is projected to grow faster than for gasoline at a time when lower quality crude oil and the greater use of synthetic tar sands-derived crudes will reduce the ignition quality (cetane index) of the diesel fuel provided and require the installation of additional refining equipment to upgrade the diesel pool to acceptable quality levels. The concern over the cost of engine modification necessary to meet emerging exhaust emission control standards for particulates and nitrogen oxides is another driving factor behind the development of alternatives to diesel fuel.

4.2.2 Diesel/Gasoline Engine/Fuel Comparison

The competition between diesel fuel and gasoline lies in the middle size vehicle range. Large heavy duty intercity trucks and buses and heavy duty city buses require a level of engine reliability (service factor) that has not been available in large gasoline engines. Further, large gasoline engines have high fuel consumption and short lives compared to diesel-fuelled compression ignition engines. The major U.S. manufacturers of large gasoline engines (International Harvester, Ford) have announced their termination of large gasoline engine manufacture. At the small vehicle end of the spectrum the high speed engines required are best serviced by the Otto engine since the added initial cost and added weight of the diesel engine cannot be recovered from the fuel cost savings involved. For example, in Case 1 a (Appendix A) a small "commuter" automobile at current gasoline costs may incur fuel costs
 the initial cost for a diesel-engined automobile. Experience in N. America with small diesels is that no saving in maintenance costs is available compared to the gasoline fuel-engine option.

The annual fuel cost saving for a standard automobile (Cases 2 a , 2b) equipped with a diesel engine can be in the range of $18-20 \%$ ($\$ 150 /$ year at present costs for a vehicle with $18,000 \mathrm{~km} / \mathrm{ye}$ ar use)
compared to the gasoline equivalent due to the lower volumetric fuel consumption 16.821 itres $/ 100 \mathrm{~km}$ diesel versus 8.61 itres $/ 100 \mathrm{~km}$ or 21% for the gasoline automobile in our "averaged example"). The lower fuel consumption in the diesel case reflects not only the higher energy efficiency of the high compression diesel engine compared to the gasoline engine (12% in our example), but also the higher energy content of the higher density diesel fuel (diesel heating value and density typically: $38.2 \mathrm{MJ} / 1 \mathrm{itre}$ and $0.829 \mathrm{~kg} / \mathrm{litre}$; gasoline $34.0 \mathrm{MJ} / \mathrm{litre}$ and $0.718 \mathrm{~kg} / \mathrm{litre}$). The effect of added initial vehicle costs for the diesel automobile - $\$ 975$ including tax - almost eliminates the gain derived from the lower fuel cost compared to the gasoline vehicle. Annual costs for the particular N. American diesel and gasoline automobiles are almost identical.

In the case of a small urban truck (Cases 8a, $8 b$) typically operating $19,350 \mathrm{~km} /$ year, fuel savings of 50% ($\$ 490 /$ year) and maintenance savings of $\$ 135 /$ year over the 8 year vehicle life compensate for the $\$ 1860$ added initial cost of the diesel-engined truck. More intensive vehicle use and vehicles with bigger engines lintercity trucks and typical heavy duty city, intercity and school buses) show correspondingly larger cost savings from diesel use. Savings between diesel and gasoline are increased when diesel fuel is substituted for unleaded gasoline which on average cost $2.3 \neq 1$ itre more than the leaded grade in the 4 th Quarter 1983 (a 4.7% differential).

The trend to lead-incompatible gasoline engines (with lead-sensitive catalytic converter systems) and legislation to reduce the allowable levels of lead additives in leaded grades will increase the impact of the diesel-gasoline price differential in the future. By 1990 it may well be that no lead is permitted in highway grades of gasoline and the increased costs of unleaded gasoline, if passed on to commercial fleets, will accelerate the shift to diesel or other alternatives to gasoline.

Turning to the future, the fuel efficiency of both gasoline and diesel engines and vehicles will increase. The exhibit "Comparison of Base Fuel Consumptions by Vehicle Type" given in Appendix B shows the magnitude of the energy efficiency changes which are expected to be implemented by 1990. Gasoline engine efficiencies are projected to increase by $5-12 \%$ over 4 th Quarter 1983 levels, with the large engines enjoying the largest improvement. This improvement in gasoline engine efficiency will occur while diesel engines are also being improved, but the impact of the concurrent search for reduced particulates, reduced NOX and reduced noise in diesel engines is expected to restrict the commercially implemented diesel fuel economy improvement to an average of about 6\%.

The engine and vehicle technologies which will form the basis for these fuel economics are summarized in Figures 4.2,2a 4.2.2b. The effect of vehicle weight reduction on fuel consumption illustrated in Figure $4.2 .2 c$ has already been exploited in automobiles by the manufacturers with light-weight construction laluminum and plastics replacing steel in remodelled vehicles); the engine developments will be slower to implement.

The effect of vehicle downsizing and weight reduction can have an impact on the cost and feasibility of conversion from high energy density gasoline or diesel to alternatives. All of the alternatives under review here require larger storage volumes than gasoline or diesel if vehicle range is to be maintained. In addition, propane and CNG must be contained in heavy and bulky pressure storage vessels, LNG in bulky cryogenic insulation. The volume of fuel storage limits the fuel economy possible through downsizing; the added weight of the alternative fuel storage systems also compromises the fuel economy. These effects ere illustrated for the case of an intercity bus in Table 4.2.2. This Table also shows the energy savings possible through engine upgrading in a conventional diesel-fuelled intercity bus.

Figure 4.2.2b Light Duty Diesel Engines Fuel Economy Options 1983-1990 and Beyond

Figure 4.2.2c Fuel Economy Vehicle Weight Relationship (Gasoline Engines)

Source: Brean, D.J.S., The Economics of Gasoline Demand: Implications for Demand Management through Federal Tax Policy, Inst. for Policy Analysis, U. of Toronto, prepd for EMR Transportation Energy Div., Rept. \#TE83-18, Feb. 1983.

BASIS: 600 mile autonomy with all fuels	FUEL			FUEL \& TANK		ENGINE			
	$\begin{aligned} & \text { ENERGY } \\ & \text { (GJ) } \end{aligned}$	$\begin{gathered} \text { VOLUME } \\ 111 \\ \hline \end{gathered}$	$\begin{array}{r} \text { WEIGHT } \\ \quad 1 \mathrm{kgI} \\ \hline \end{array}$	$\begin{aligned} & \text { VOLUME } \\ & 111 \\ & \hline \end{aligned}$	WEIGHT (kg\|	$\begin{aligned} & \text { VOLUME } \\ & 111 \\ & \hline \end{aligned}$	WEIGHT (kg)	TYPE	
5.5 mpg requires $110 \mathrm{gallon} \operatorname{limp} .1$	19.4	500	425	550	475	1140	920	GM6V92TH	
2. *2 diesel in typical 4-stroke diesel 6 mpg requires 100 gal ion 11 mp .1	17.6	455	385	500	435	$\begin{aligned} & 1450 \\ & 1575 \\ & 1400 \end{aligned}$	$\begin{gathered} 1230 * \\ 1184 * \\ 900 \end{gathered}$	Cummins E350 and similar	
3. Methanol with cetane enhancers in existing diesel 44 stroke; similar change for 2 strokel	18.9	1050	840	1150	930	As in	2. +15	s and 10 kg	
4. Ethanol with cetane improvers in 4-stroke diesel	18.9	800	635	950	700	As in	3.		
5. Methanal in spark-modified diesel engine (4-stroke)	18.0	1000	800	1100	880	As in	3.		
6. Propane in spark-modified diesel engine (4-stroke)	17.8	750	385	1100	815121	As in	3.		
7. Liquid natural gas (LNG) in spark-modified 4-stroke diesel	18.0	850	360	1200131	750	As in			
8. CNG lat 3000psig cylinder pressurel NOT PRACTICAL FOR 600 mILE RANGE	18.0	-	-	3200	4100	Nor pr	oven yet		
SUMMARY									
DIESEL FUEL FOR 2-Stroke				550	475	CONCLUSION: ALTERNATIVE FUELS NEED maXimum TWICE VOLUME AND TWICE WEIGHT OF 2 diesel			
MAXIMUM FOR METHANOL, ETHANOL, PROPANE OR LNG (ROUNDED)				$\underline{1150}$	950	IN FUEL SYSTEM			

NOTES: (11) Items marked \# include accessories

121 Propane tanks allow for 80% fill. Can be one tank $76.2 \mathrm{~cm} 00 \times 220 \mathrm{~cm}$ (including rounded ends) or two smaller tanks.

(3) Reduced by 1986 to 1150 litres.

Source: R.F. Webb Corp.

4.2.3 Gasoline and Diesel Blends with Alternative Fuels

A theoretically attractive way to introduce alternative fuels is to blend them with conventional fuels. In practice such blending is possible only with synthetic gasolines and diesels (which are high cost products compared to those derived from crude olll and between dry alcohols and gasoline.

Ethyl alcohol-gasoline blends with and without added lead to improve octane levels are available in the U.S. and in the Winnipeg area of Manitoba as gasohol - a composition with 10% dry ethanol in 90% by volume of gasoline. There is some controversy over the interpretation of fleet tests with gasohol due in part to the variety of gasollnes used to formulate the gasohol (leaded and unleaded and varying in base gasoline energy content), in part to the small changes in consumption being measured under difficult to control conditions, and in part to the wide variations in engines across the various tests and times of the tests.

Older work often indicated a significant gain in energy efficiency, sometimes even a gain in volumetric efficiency but much of that gain can be traced to the use of an engine set to rich fuel-air ratios las was the practice in the early 1970's) which could be "leaned/out" lequivalent to added air) by the oxygenated fuel. Engines close to the knock limit would have responded to the octane improvement brought about by the 10% alcohol addition. Modern automobiles are lean burning and do not show energy efficiency gains from the further leaning involved in the use of alcohol. The Otto-engined taxi, standard automobile and light truck examples (Cases $2 \mathrm{~h}, 3 \mathrm{~m}, 8 \mathrm{j}$) show equivalent energy consumption/km of service and a 3.3-3.4\% increase in volume of ;gasohol consumed over gasoline (in both cases leaded gasoline was used). The fuel costs in Ontario in 1983 for all three classes of vehicle were slightly higher for gasohol than gasoline (no road fuel tax paid on the ethanol portion of the blend is offset by higher cost of the blend in

Ontariol and the other variable and fixed costs are unchanged. A 7\% reduction in the cost of gasohol is required to break even with gasoline in these Ontario applications: substantial cost reduction or subsidy will be required in the ethyl alcohol portion of the gasohol blend.

Blends of gasoline and methanol need fortification with additives such as butyl alcohol to prevent phase separation of the gasoline blend under practical moist fuel storage conditions lsome highly aromatic gasolines are compatible with dry methanol even without the additive but dryness does not prevail in commercial fuel situations).

One formulation investigated in the present study was a refinery produced blend of methanol (4.75% volume) and t-butanol (4.75\% volume) in gasoline (90.5\% volume), which was adjusted for specification vapour pressure by "backing out" butane to compensate for the increased fuel blend volatility with methanol and then brought to regular grade octane specification by addition of lead tetraethyl lsee Appendix C for refinery plant gate cost worksheet on this casel.

The cost effect of these formulations is to produce a composition with lower retail cost in Ontario than gasohol $1 \$ 8.67 / G J$ compared to \$9.01/GJ for gasoholl but still higher than regular leaded gasoline ($\$ 8.40 / G \mathrm{~J}$) when the methanol is costed at $18.6 \$ / 1 \mathrm{itre}$ FOB refinery plant gate (see Appendix E). No cost-saving benefit is available under these circumstances but may be attained if:

1. the blends were to enjoy provincial tax exempt status
2. the blend is to compete as a premium (high octane) unleaded grade of gasoline
3. very low returns on fuel grade methanol were taken by producers with access to very low cost natural gas.
F-

The benefits of methanol blending may be more significant to refiners rather than vehicle users when high volumes of unleaded
gasoline are required from the refineries without increasing refinery process severity and oil consumption.

In the cases of low alcohol content gasoline blends the future engine technology developments will be available to gasoline as well and no significant improvement in the relative life cycle costs with the alternative blends is expected in the future to 1990 from this source.

4.2.4 High Level Methanol Blends

Methanol can be used without additives as a fuel for both spark-ignition engines and modified compression ignition engines. The high octane value and high latent heat of vapourization of the fuel explains its well-known use in high compression ratio, high specific power output engines for racing cars where cooling by the vapourization of the methanol in the fuel-rich mixture permits a reduction in the size of the engine and cooling system. These attributes can be advantageously employed in commercial methanol engines equipped with spark ignition, but the fuel-rich operation is replaced by a more economic lean-burn operation to take advantage of another outstanding property of methanol - its ability to ignite at very low fuel-to-alr ratios compared to gasoline. With appropriate equipment a methanol engine can be operated with good fuel economy lat high air-to-fuel ratios) at low power (an attribute of diesel engines) and also at high power (an attribute of gasoline engines, since diesels with their constant air and variable fuel intake design inject excess fuel at high power which carbonizes to form unacceptable levels of black smoke, whereas a carburetted gasoline engine or methanol engine ingests air to match the fuel intakel. A methanol spark-ignition engine with this fuel quality control and quantity control system has been demonstrated in ecity buses by Daimler-Benz.

The use of 100% methanol in spark-ignition engines is not convenient since the high heat of vapourization of methanol gives cold
start problems. Methanol fuel is therefore formulated with low boiling gasolines to improve the cold start capability - this is the basis of "M90" - 90% volume percent methanol with gasoline or isopentane (10\% volume) added. The added hydrocarbon also Improves storage safety.

Case $2 f$ (Appendix A) summarizes the life-cycle costs of a 4-cylinder automobile operated on M90. At prices derived for 4th Quarter 1983 In Ontario (20q/litre for M90 FOB primary terminal) and with the provincial road fuel tax waived on the methanol portion there is a very small annual saving on fuel costs. But the cost of converting the vehicle to methanol by the manufacturer la larger methanol-resistant fuel tank, some upgrading of plastic fuel lines and gaskets to provide methanol resistance) is passed on and not fully recovered by the waiver of 7% sales tax on the vehicle. The net effect in this case is a relatively insignificant saving in total life-cycle costs from the conversion from regular leaded gasoline to M90. For the average vehicle savings would be increased to the $\$ 100 /$ year range if $M 90$ were to replace unleaded regular gasoline, and to the $\$ 180-200 / y e a r$ range if the methanol-fuelled vehicle were assembled to compete with one operated on high octane (premium) unleaded gasoline. Costs would be more favourable if vehicles converted to M90 were to receive federal grants (\$400, \$500) given to propane or CNG conversions.

The case of conversion of taxi to M90 is complicated by the fact that commercial users of gasoline can claim back the federal excise tax
 reduces the attractiveness of 490 . In the 6-cylinder taxi example lase 3j) with annual fuel use of 16,000 litres, a fuel cost penalty for M90 of $\$ 940 / y e a r$ is incurred in the conversion from leaded regular gasolines, and M90 costs are very similar to those for M10, despite the thigher road tax saving on the M90 grade.

A reduction in the price of methanol to the M90 blender-refiner is required for $M 90$ to be strongly competitive with regular leaded
gasoline, but is not required if M90 has only to compete with unleaded gasolines as a result of lead phase-out legislation or imposition in Canada of exhaust emission standards which dictate the use of catalytic converters and unleaded gasolines.

For the future it is expected that the margin between M90 and gasoline will grow as lead legislation tightens and engine efficiencies are improved through the adoption of high compression ratio engines. M90 has the octane number required to tolerate the higher compression engines. A 3-4\% gain by M90 over that achieved by gasoline to the year 1990 is therefore projected in the display "Comparison of Base Fuel Consumptions by Vehicle Type" (in Appendix B). The M90 premium vehicle cost will also be reduced: by 1990 this is expected to reduce the life-cycle cost of a taxi by 6.5% compared to only a 3.5% reduction for gasoline and low alcohol level gasolines lexpressed in terms of constant 1983 dollars) gained from improved vehicle technology.

The use of M90 in a city bus with a spark-ignition engine is shown to be uneconomic (see Case 5e) compared to other options, but this is not unexpected since gasoline engines have been almost totally displaced in this application by diesel-fuelled compression ignition engines due to the high fuel consumption, high maintenance cost and short life of the high speed, heavy duty gasoline engine.

An M90-fuelled city bus would have annual costs some $\$ 6400-6500$ higher than the average $\$ 96,200$ annual cost of a conventional diesel fuel city bus. Another engine technology is required if M90 is to be used in large heavy duty engines such as those in city buses, intercity buses and heavy duty trucks. The economics of the use of M90 in medium duty urban trucks is similar to the taxi case: there is no cost Fadvantage for M90 compared to leaded regular gasoline, but the $\$ 100 /$ year disadvantage in fuel cost (with a methanol plant gate [Alta.] cost of 14.3\&/litre in the M90 blend case) could be reversed, given stringent lead legislation and a phase out of leaded gasoline, engine efficiency
improvements through use of the high octane rating of M90 and extension of federal government grants now given to purchasers and convertors of propane and CNG vehicles to include methanol vehicles.

The high cost of ethanol in Canada precludes its use as an alternative alcohol for M90-type applications.

4.2.5 Methanol Fuel

General Motors has demonstrated the use of 100% methanol in a 2-cycle diesel engine modified to include a glow-plug, retention of a portion of the combustion product to increase engine temperature and an increase in the compression ratio - all designed to assist the compression ignition of the methanol-air mixture. The present analysis has assumed that this technology can be extended from its demonstration in a city bus to the 2-cycle engines used in urban and intercity trucks.

Another way of accomplishing methanol ignition in a diesel engine is to add ignition Improvers such as cyclo-hexyl nitrate and octyl nitrate. These are already used to improve the ignition quality of diesel fuels but for methanol massive doses of these relatively expensive additives (typically $\$ 4 /$ litre cost) must be used. Even if it is assumed that it will be possible to reduce the level of octane extender from currently demonstrated 10-12 volume per cent levels to 5\% by volume, a high cost (\$21/GJ FOB primary terminal) low density fuel (18.5MJ/litre versus $38.2 \mathrm{MJ} / 1 \mathrm{l}$ tre for diesel) is produced which, even with Ontario road fuel tax remission, more than doubles the fuel cost relative to diesel (\$6.9/GJ FOB terminal). Cetane-fortified methanol may therefore be considered as an emergency fuel not as an economic alternative for diesel fuel. A modest improvement in cost may be possible in the future from new additives but cetane-improved methanol fuel is a misapplication of the fuel. Also the use of cetane improvers to effect such a large change in cetane number ($30+$ cetane units) is an uneconomic use of the improvers. Improver technology is well suited to
the upgrading of diesel fuel, for example, to meet winter cold start requirements by improving ignition quality, or to bring specific refinery batches of diesel fuel up to specification. Cetane improvements of $30+$ units require new engine as well as new fuel technology.

The use of 100% methanol without the high cost of cetane improvement may be difficult to extend to current 4-stroke diesel engines but can be considered for modified current designs of 2-stroke engines and future $4-s t r o k e$ engines in which high engine temperatures are maintained (the "adiabatic" diesel engines).

The 2-stroke version in a typical Ontario city bus (Case 5f) would have fuel costs about $\$ 2500$ higher than for diesel fuel, even after allowing for the road fuel tax rebate: this is only partly ameliorated by the $\$ 700 / y e a r$ reduction in fixed costs which arise from the 7% sales tax remission $(\$ 11,550)$ on the $\$ 155,000$ or so original vehicle cost. A 16\% reduction in methanol fuel costs lto a delivered price of 19.7f/litrel would permit methanol to compete with diesel fuel in this application. Some gain in efficiency of methanol use in compression ignition engines is forecast to 1990 but will not be much greater than the 6\% improvement which is seen to lie ahead to 1990 in the conventional diesel fleet. The competition of methanol with diesel as a fuel for compression ignition engines therefore lies in reducing the terminal and refuelling station costs associated with the larger volume of methanol needed compared to diesel (2.1:1 by volume), the higher cost of in-vehicle fuel storage tanks compared to diesel, but most of all from changes in the relative price of methanol and diesel (which can be expected if a future supply shortage of conventional "straight run" diesel fuel occurs: see 4.2.1). In Ontario this implies retention of the road fuel tax exemption on methanol fuel.

The operation of a Class 8 intercity truck with the 100% methanol 2-stroke technology (Case 10c in Appendix A) parallels that of the city
bus: methanol at $23.39 ¢ / l i t r e$ or $\$ 12.93 / G J$ delivered based on 14.3q/litre methanol at the Alberta plant gate increases annual cost of operation and ownership after allowance is made for the added net capital charges land after the Ontarlo tax concessions) from $\$ 166,500 / y e a r$ in the diesel case to $\$ 172,500$, increasing the costs/tonne kilometre of freight carried from $4.5 \notin$ to $4.66 ¢$.

The 3.5-4\% annual cost penalty for methanol compared to diesel fuel could be eliminated by a $3.1 \neq 1 \mathrm{litre}$ (13\%) reduction in the delivered cost of methanol (to about $20 \notin / 1 i t r e$). The 100% methanol technology is clearly superior to the cetane blending route. In the cases considered an intercity truck operated on the cetane enhanced methanol fuel would cost $\$ 42,000 /$ year more than the 100% methanol equivalent, incurring a freight cost penalty of over 1.1申/tonne-kilometer.

In the case of the Ontario-based small urban truck (see Cases 8a,b,e,f,g,h) the life-cycle cost comparisons are heavily weighted with driver costs and annual fixed costs which obscure the controllable variable costs or those which are subject to some choice in engine and fuel options. The various engine/fuel technologies examined provide the following for the small urban truck:

As shown above, if the methanol in the compression ignition engine case reported could be improved to the same energy consumption level as diesel las achieved by $G M$ with the larger city bus enginel that regime would be lower in fuel cost than the gasoline spark-ignition system and identical in life-cycle cost.

In the case of the (Class 3) urban/interurban truck, the high capital charges for the diesel vehicle compared to the gasoline alternative balance the fuel savings at the low average annual mileage typical for this vehicle class $(22,400 \mathrm{~km} / \mathrm{year})$. A "current technology" compression ignition methanol engine results in about 2% higher annual (i.e. fixed and variable) costs than the diesel equivalent (which is about $\$ 42,000 /$ year or $\$ 2.57 /$ tonnes kilometer - see Cases 9 c and 9 f respectively in Appendix Al.

Development of an improved technology compression ignition 100% methanol engine with the same energy efficiency as the diesel, together with a modest 20% increase in the price of diesel (relative to untaxed methanoll would make that methanol option competitive.

4.2.6 Propane and Natural Gas

Propane and natural gas (CNG or LNG) are currently used in road transport in systems which convert the stored liquid forms (propane/LNG) and the stored gaseous form (CNG) into low pressure gas. Thereafter there are two principal ways of using the gas:

1. As a monofuel or sole fuel in spark-ignition (otto cycle) engines (the spark engine may be converted from a gasoline engine or from a diesel engine by addition of a spark systeml.
2. In dual fuel modes:
a. where gas is used alternatively with gasoline, i.e. vehicle operates on gas or gasoline but not on both simultaneously and uses a spark ignition engine
b. where gas is inducted into a diesel engine with the gas/air mixture ignited by the injection of diesel fuel (usually a minimum of 20% by volumel, which acts as a "pilot" spark source.

Injection of liquid propane or liquid natural gas into spark-ignition engines is being researched, but is not commercially avallable.

The monofuel systems are capable of being optimized for the gaseous fuel, which explains the recent introduction of diesel engine-derived large propane and gas engines with optimized compression ratios which will extend the use of propane and natural gas from the current small vehicle applications (automobiles, small and medium trucks and school buses) to large buses (city and intercity) and heavy duty trucks.

The dual fuel alternating fuel mode is useful where range on the gaseous fuel (especially CNG) is insufficient or where too few refuelling stations are avallable in a territory. The dual fuel (concurrent fuelling) system with diesel used as a pilot is rather complex with two fuel injection and storage systems, but is reported to provide the highest fuel combustion efficiency for reasons not yet fully explained. The dual diesel-gas fuel system also does not suffer from the throttle losses associated with carburetted spark-ignition engines.

The conversion of a small commuter vehicle from gasoline to monofuel CNG and propane has been examined (cases $1 a, b, c$). The lowest annual cost and life-cycle cost is shown by the commuter vehicle equipped to burn natural gas. In Ontario, with the federal grant for =conversion and the Ontario remission of road fuel tax and vehicle sales tax, the commuter automobile annual costs are reduced by $3 \% ~(\$ 54)$ compared to the $\$ 1770$ annual cost of operating the vehicle with regular leaded gasoline. Propane conversion of the small gasoline vehicle
cannot be justified at the typical pump prices which prevailed in 4 th Quarter 1983 in Ontario (propane 25.9\$/litre, gasoline 47.4\$/1itre) since, despite a saving of $\$ 41 / y e a r$ on propane fuel, the fixed cost component of annual and life-cycle costs is increased by the conversion to a greater extent.

In the case of the small fuel-efficient automobiles (such as the Honda CRX used in this examplel fuel is such a small portion of the life-cycle cost (8.3% with gasoline, 6% with propane, and 4% with CNG) that further technology change to improve fuel efficiency provides only a modest return in life-cycle cost savings, and work to improve the annual costs of alternative fuels is less productive than work to reduce the cost of the basic gasoline-fuelled automobile and the costs of conversion to CNG or propane. These cost considerations mean that even if these commuter vehicles must be converted to premium-priced unleaded gasoline, the $3 \& / l i t r e$ or so cost increase will not persuade owners to convert to CNG or propane. The most significant item here is the promise of the convenience that home fuelling will bring when inexpensive home compressors for gas and improved in-vehicle storage tanks for CNG are available.

The typical 4-cylinder passenger automobile (such as the Ford Fairmont futura used as an example) provides a more promising opportunity for alternative fuels, since gasoline costs are about 27% of life-cycle costs and fuel consumption at 8.6 litres/100 kilometers is significant. In the average example chosen the annual gasoline fuel cost was about $\$ 750$; other costs, including maintenance and vehicle financing, would typically increase annual ownership and operating costs to the $\$ 2770$ range. The fuel economy of a diesel-engined N. American automobile in this class would reduce fuel costs, relative to a .gasoline-fuelled vehicle, by about $\$ 140 /$ year (a 19% reduction), but the higher initial cost of the vehicle would almost eliminate any annual or life-cycle cost savings.

With 1983 technology and the Ontario fuel cost and tax remission program in place, fuel costs can be substantially reduced by conversion from gasoline to propane, and even more so in the conversion to CNG. In the automobile example given $(18,300 \mathrm{~km} /$ year) annual CNG costs at $\$ 340$ would be less than half the cost of gasoline, and that for propane ($\$ 540$ year) about 72%. The life-cycle costs of automobiles on CNG or propane are also lower than those for the gasoline and diesel automobiles, and the advantage increases rapidly with more intensive vehicle use (increased annual mileagel providing (in the case of CNG) the advantage of the CNG fuel cost is not lost by the need to maintain vehicle range by conversion from a monofuel (all CNG) fuel system to a dual fuel system operated for a significant proportion of mileage on gasoline.

Technical improvements to 1990 are expected to further improve the comparative advantage of the CNG and propane automobiles compared to gasoline. The high fixed cost component of the life-cycle cost (77\%) of the CNG automobile, is due in part to the costs of in-vehicle fuel storage cylinders. This is an obvious target for future improvements in life-cycle costs. A further reason for the high fixed cost component of the life-cycle cost is the very low operating cost element.

Vehicles operated on either CNG or propane in Ontario owe much of their life-cycle cost savings to tax incentives: removal of the current incentives would increase the varlable cost of the CNG vehicle by 34%; that of the propane automobile by 25% : the life-cycle cost increases would be 13.5% and 12.2% respectively. Without these subsidies the costs for the 1983 CNG automobile example would still have been marginally lower than those for gasoline, but the life-cycle costs for the propane vehicle would have been about 5% higher than for gasoline. -With improved technology and a faster increase in gasoline than propane prices, it is expected that propane will eventually be cost-competitive with gasoline, even without subsidies.

LNG, when purchased at retail outlets, would have been much less attractive than CNG or propane at 1983 costs in Ontario; a saving of only $\$ 50 / y e a r$ on fuel cost compared to gasoline, but higher initial vehicle cost (even after the rebate of the 7% Ontario sales tax) would have increased annual costs by $\$ 290$ and operating costs by $1.2 \notin /$ passenger kilometer.

Notwithstanding allowances for fuel boil-off losses, annual LNG fuel costs are marginally lower (in the case examined) than those for gasoline, or gasoline-alcohol blends in the range 90-10\% alcohol. But the high cost of specially-fabricated cryogenic storage increases initial vehicle and fixed costs to such a degree that the LNG option is found to be the most expensive. The sensitivity analysis and technology forecast (Appendix B) indicate that LNG may remain uncompetitive as a fuel for small to medium-sized automobiles throughout the remainder of the decade. LNG has its place in fleets of large heavy-duty vehicles (such as trucks and buses) fuelled at a central facility.

Large 6-cylinder automobiles used intensively in applications such as taxi service offer excellent opportunities for life-cycle cost savings through conversion to gaseous fuels. In the base case of the gasoline-fuelled taxi with a fuel economy of 13.4 litres/100 kilometers annually operated over $120,000 \mathrm{kilometers}$, annual fuel costs in Ontarlo were estimated at $\$ 6580-11.6 \%$ of total annual cost. The lowest fuel costs in this application are incurred when $C N G$ is used as the sole fuel. While on this fuel, annual fuel costs are at the low rate of $\$ 3500-4000 / y e a r$ (depending upon the fleet ownership of gas compression and refuelling facilities or purchase of fuel from a public facilityl. However, the taxi application is not suited yet to a monofuel CNG operation, due to limitations in the vehicle range between refuelling points, and a dual fuel gasoline-CNG system is required to provide for completion of a duty cycle on gasoline and avoidance of service revenue loss through vehicle returns to the fuelling centre and the time loss in the frequent refuelling step. Under these dual fuel circumstances, the
vehicle is not operated at optimum efficiency and fuel costs are intermediate between those of CNG (\$3500-4000/year) and gasoline $1 \$ 6580$ for a fleet refuelled at a company-owned service station and about $\$ 7400$ for purchases made at a retail service station).

In the case of the monofuel CNG taxi, the added cost of the fuel tanks and conversion (after the tax concessions and grants) would range from about \$2000-4000/vehicle (depending on the ownership of the fleet fuelling facility). Despite the fact that the fuel cost is only 12% or so of the total life-cycle cost, the savings from conversion to CNG are significant when it is realized that most of the non-fuel related costs are fixed (vehicle, garage costs), or semi-variable (driver costs, for example).

In practice, the fuel savings from conversion to $C N G$ cannot all be realized at this time, since present technology for the storage of CNG in the vehicle limits the vehicle range requiring that the capacity for operating on gasoline be retained. Under these circumstances with a 30% gasoline 70% CNG operation, the fuel costs rlse not only due to the use of more expensive gasoline but also because, unlike the monfuel CNG case, the combustion chamber cannot be optimized to take advantage of the high octane value of CNG. This dual fuel mode still provides lower costs than a gasoline operation, but the monofuel goal remains as a further cost-reducing step to be accomplished in the future.

A comparlson of life-cycle costs and total annual costs for a gasoline, and dual fuel gasoline/CNG taxi in Ontario 1983 are:

Fuel type (outlet)	Case \#	Cost/\$ per passenger \qquad kilometer	Annual cost \dagger (Dollars)
Gasoline			
(retail fleet)	3a, 3b	56.6-55.8	57,500-56,700
Dual Fuel			
(retail fleet)	$3 \mathrm{e}, 3 \mathrm{f}$	55.6-55.7	55,600-55,700

Based on the Ontario $4 Q 1983$ prices and incentives, the annual cost for the use of propane in taxi service is lower than that for the 70/30, CNG/gasoline or gasoline options, and in Ontarlo was the lowest cost practical option in 1983.

In the case of propane, the highest savings are realized when a propane fuelling facility is installed at a large taxi fleet service centre: the cost of the facility is often borne by the fuel supplier, or passed on in the form of a modest added charge for fuel. In the cases assumed here (see Cases $3 g$ and $3 h$ in Appendix A) the added saving for self-fuelling would be in the range of $\$ 200 /$ vehicle per year.

The effect of changes in the tax and grant incentives from the levels prevailing in Ontario in the 4 th Quarter of 1983 for a fleet garage-fuelled taxi may be summarized as follows:

CNG/dual fuel taxi. The elimination of the vehicle sales tax rebate and the introduction of an Ontario fuel sales tax at a 20% ad valorem level (same rate as for gasoline) would increase the annual cost of operating and owning a "standard dual fuel CNG/gasoline taxi-cab" by about $\$ 850 / y e a r$ and increase the life-cycle cost of operation by 0.9\$/passenger kilometer. Since the use of CNG/gasoline is already less costly than gasoline used alone, the reduced conversion costs and improved technology available in the future for the CNG vehicle are expected to make the tax rebates less necessary.

In contrast, the use of LNG in taxi service was found to be significantly more expensive ($\$ 1475 /$ year) than gasoline throughout the period to 1990. However, if the taxi fleet were sufficiently large (very few in fact are) to justify a captive LNG plant (in this study the minimum economic capacity was taken to be $1000 \mathrm{GJ} /$ day - see Case 5 c) located at the refuelling terminal, then a saving of about $6 \notin / 1 i t r e$ in the pump cost of LNG could be realized. This would result in an operating cost reduction of $\$ 1480$ year to give a life-cycle cost of

56\$/passenger km, which is almost the same as the gasoline-fuelled case. Fuelling at the equivalent of a retail LNG outlet (Case $3 c$) would bring about an increase in the cost of LNG fuel; the annual fuel costs.for a typical taxi would be $\$ 500 / y e a r$ higher than vehicles fuelled with gasoline at a company-owned and operated gasoline pump (Case 3b).

Propane offered the most advantageous life-cycle cost to a taxi owner In Ontario in 1983. For fleet fuelling at a company-owned pump the advantage in fuel costs for propane compared to gasoline is shown to be about $\$ 1250 /$ year and the total annual cost advantage, including conversion costs and all taxes and grants avallable is about $\$ 1100 / y e a r$ for each taxi. Elimination of the vehicle cost-related incentives 17% provincial sales tax and $\$ 400$ federal grant), but not the ontario fuel tax incentive, would increase the annual cost of operation and ownership by $\$ 805$ and the life-cycle cost by $0.8 \notin /$ passenger kilometer (1.5\%). If, in addition, the fuel tax were imposed on propane and maintained on gasoline at the 20% ad valorem rate, the annual increase in ownership and operating costs of $\$ 1870$, compared to the actual 1983 situation for propane, would make the propane-converted taxi more expensive to own and operate than the gasoline-fuelled taxi. The cost penalty would be reduced but not eliminated by the anticipated improvements in propane vehicle efficiency and conversion costs (factory-fitted vehicle cost) available by 1990. If the propane-fuelled taxi is to compete with the gasoline-fuelled taxi without the benefit of tax concessions and grants, then the price of taxed propane at the fleet pump should not exceed
 provincial road tax would need to be $21.1 \neq / 1 i t r e-82 \%$ of the published untaxed propane price and 51.5\% of the price per litre of leaded regular gasoline. When the taxi must be operated on unleaded gasoline and a penalty of about $2.5 \$ /$ litre absorbed, then the breakeven price for propane competing with $43.5 \not \subset / 1 i t r e ~ g a s o l i n e ~ w o u l d ~ b e ~ a b o u t ~ 22.4 \nmid / 1 i t r e ~$ for the "average" taxi cab.

As shown in the "Summary of Life-Cycle Costs" (Appendix B), the alcohol-gasoline blends are more expensive options than CNG or propane, but those based on blending methanol with gasoline may be competitive with straight gasoline in taxi service.

In school bus service propane and CNG are attractive alternatives to gasoline ldiesel school buses were not included in this investigation), despite the fact that fuel costs in a gasoline-fuelled school bus are only 19\% of total annual costs, substitution of propane for gasoline and use of the tax advantages reduces the cost/student kilometer from 4.6ϕ to 4.4ϕ and annual costs by about $\$ 780$ (a 3.5% saving) mainly attributed to the $\$ 715$ or so reduction in annual fuel cost. The monofuel CNG school bus has double the cost savings at $\$ 1500 /$ school bus/year, due to the $\$ 1415$ or so reduction in fuel cost and the vehicle grant and sales tax saving on the vehicle partially offsetting the $\$ 2250$ vehicle conversion cost for CNG. The monofuel school bus has the lowest life-cycle cost of operation of all options at 4.29申/student kilometer. In many cases the gasoline operation of the bus will be retained and reduces the CNG cost advantage, but improvements in storage and engine technology by 1990 are expected to reduce fuel costs by 9% compared to gasoline. Conversion costs lsee Appendix B "Comparison of Vehicle Conversion Costs") for CNG school buses are projected to decrease from the $\$ 2250$ level in 1983 to $\$ 1625$ (in 1983 dollars) by 1995, when factory-fitted fuel tanks and original CNG engines will be available. In 1983 the conversions were not made by the original vehicle manufacturers.

Urban buses have been operated for many years with propane fuel, but until 1983 the engines used for conversion were gasoline-type engines. Recent technology uses a diesel engine block converted to Faccept "100\% propane" (by addition of spark systems) or dual fuel ldiesel pllot fuel injected to ignite a propane-air mixture in a compression-ignition enginel. These englnes provide high propane economy and can be adapted to use CNG and LNG.

The dual fuel diesel/propane system has been reported to have a higher thermal (total fuel energy) economy than diesel or propane fuel used alone, but for the present analysis it is assumed that the energy efficiency is identical to the diesel fuel case. The annual fuel costs in the case (see Case 5b in Appendix A for detalls) where 80% propane is substituted for diesel is reduced by $\$ 2200$ compared to the diesel-only cost of $\$ 13,526$; concessions on the Ontario sales tax and the federal propane conversion grant together more than offset the $\$ 3900$ vehicle conversion cost (tanks for propane and a propane air mixer - carburetor) giving a total annual cost savings for the dual fuel case of $\$ 2200$ per year, which is reflected in a reduction in the cost per passenger kilometer from 11.4ϕ to 11.2ϕ. The cost of fuel is reduced in this case from 14% of total cost to 12% by the use of propane.

In the 1983 Ontario case examined, the conversion from diesel to propane used in a spark-ignition system provided an annual saving in fuel costs of about $\$ 1300$, but total costs were not reduced by the conversion. New technology for the spark-ignition propane engine is now available. This is expected to reduce the 1983-based costs for propane in a spark-ignition converted diesel engine to slightly below the costs for diesel fuel by an improvement in the fuel consumption of the bus on propane from 92.4 litres $/ 100 \mathrm{~km}$ to 85.9 litres/100 km (i.e. from a ratio of propane-to-diesel fuel consumption of 1.7 to an improved 1.6 ratio: the theoretical ratio being 1.5 litres of propane to displace each litre of diesel fuel).

It should be noted that propane prices to large fleets may be substantially lower than those taken in the example where aggressive development of this market is undertaken by the propane suppliers.
$\therefore \quad$ LNG (see Case $5 c$ in Appendix A) is an option which can provide life-cycle costs very similar to those for propane in large city bus fleets fuelled at a central location. Annual LNG costs at about $\$ 12,000$ per bus in our typical example are $\$ 200$ less than propane, but $\$ 1500$
less than diesel. The high cost of LNG storage vessels and gas loss by evaporation will be reduced in future vehicle designs and the current (1983) modest additional cost for LNG versus diesel (11.5\$/passenger kilometer versus $11.4 \not /$ passenger kilometer for diesel, a difference of about $\$ 750 /$ year per bus) is likely to be converted into a cost savings for LNG by 1990, but only if fuel and vehicle tax savings continue for the alternative fuel.

Intercity buses and coaches require a range between fuelling of at least 600 km , and vehicle redesign to accommodate the increased volume of alternative fuel needed, without undue sacrifice of valuable cargo and luggage space. Case $6 b$ examines the substitution of a spark-ignition engine and propane storage for the conventional compression ignition diesel-fuelled engine lthe most frequently used 2-stroke engines from General Motors are used in the base diesel Case 6a).

At a cost of propane of $22.06 \not / / l i t r e$ and with taxed diesel at 41.64ф/litre, annual kilometers at 160,000 and the demonstrated 1.7 volumetric fuel consumption ratio for propane (spark ignition) to diesel in a compression ignition engine, fuel savings of about $\$ 2750$ year accrue to propane use, but are lost to increased $(+\$ 5400)$ maintenance charges. The added cost of the propane vehicle is more than offset by the grants and sales tax concessions available in Ontario, but in the example chosen, the net effect is that the annual added cost of owning and operating the propane intercity bus is about $\$ 1400$ per year 1 a 6.7% increasel.

The cost of diesel fuel would need to increase by only $2.07 \$ / 1$ itre (5\%), or the price of propane to decrease by $1.2 \phi / 11$ tre to effect a breakeven between diesel and propane use under 1983 Ontario conditions with intercity coaches. This is likely to occur in the future when the cost advantage of the propane coach could be further improved by engine design to improve propane fuel economy and to reduce the burden of
maintenance cost.

Light trucks for urban service (such as the Ford $F 150$ or Dodge pick-up D150 RAMI are excellent candidates for the application of gaseous fuels as an alternative to gasoline and diesel under the tax incentive situation in Ontario. In the examples (Cases $8 a, b, c, d$ given in Appendix A) a low mileage application was taken (19,350 km/year). In these cases CNG and propane conversions are cost-effective compared to the use of gasoline, and even the purchase of a diesel-engined truck. The lowest fuel cost in this set is diesel fuel, which is consumed at a rate only 73% of that of gasoline and provides annual saving of over \$500 (33\%) compared to gasoline, but despite lower maintenance costs for the diesel engine, all but $\$ 200$ of the diesel advantage is lost due to the higher initial cost of the diesel-powered truck (\$2000 premium). The after-tax and after-grant net cost premium for the propane and CNG vehicles compared to gasoline engined vehicles is only $\$ 300$ and $\$ 450$ respectively.

The CNG truck gave annual costs almost indistinguishable from the diesel case and the propane case:

Life-cycle operating cost comparison	
(cents/tonne kilometer)	
Gasoline (regular)	381.8
Diesel	376.4
Propane	375.0
CNG	375.9

$\therefore \quad$ Elimination of the subsidies on CNG or propane systems would increase life-cycle costs (see Appendix B "Sensitivity Analysis") by 2.7 and 2.4% respectively and elminate their cost advantage in comparison with diesel or gasoline vehicles, even if the gasoline used were to bear
the premium for the unleaded grade. A 25\% increase in annual kilometerage (see "Sensitivity Analysis" in Appendix B) equally favours diesel, CNG and propane affecting a 16.4% reduction in the cost/tonne kilometer (to about $314 \not /$ /tonne kilometer).

The large Class 3 truck used in urban and interurban services (exemplified by the International Harvester Loadmaster-type vehicle) is in a state of fast technological evolution, with diesel, CNG and propane conversions rapidly reducing the proportion of gasoline-powered vehicles in new truck sales. Typically (see "Comparison of Reference Vehicle Classes" in Appendix B) these vehicles have 8 -cylinder gasoline engines in the $185-200 \mathrm{HP}$ range and maximum payload of 1.25 tonnes. The power requirements are similar to those needed to power city buses.

The propane-powered truck compares favourably in cost with the diesel and gasoline versions, even when annual kilometerage is limited, as in this example to $22,400 \mathrm{~km}$ la one shift per day urban truck operation) but the advantage over gasoline increases substantially when the vehicle is used more intensively.

In the low duty $22,400 \mathrm{~km} /$ year service, the propane fuel costs are about $\$ 600$ year (18.5%) lower than for leaded regular gasoline and the total annual advantage about the same, since the net acquisition cost of the propane truck after grants and sales tax remission is only $\$ 50$ higher than the unconverted gasoline truck.

Under comparable fuelling conditions (company-owned pump) using 1983 tax incentives and fuel prices, the propane truck provides cost savings of about $3.5 \not /$ /tonne-kilometer compared to the gasoline truck and the diesel truck. Improved technology is expected to reduce propane fuel consumption by 1990 by 10-12\% compared to 1983 levels, which will provide further cost savings of $\$ 235 /$ year when propane replaces gasoline. The savings will be increased by a further $\$ 160$ when the gasoline truck must use unleaded gasoline, achieving about a $\$ 1000 /$ year
fuel saving in the propane case.

The heavy duty truck fleets are dominated by high horsepower diesel engines which normally operate on \#2 diesel fuel, have an empty vehicle weight of 14 tonnes or so, and can hold up to 36 tonnes of freight. On diesel fuel in highway service, they provide fuel economy (52 litres $/ 100 \mathrm{~km}$) about equal to that of the typical city bus and fuel costs are typically about 23% of annual costs. At 1983 costs the typical heavy duty rig would require expenditure on diesel fuel of $\$ 38,100$ per year out of a total cost of $\$ 166,500$. In the examples given in Appendix A (Case 1Ob) we have examined the technology where 80% of the diesel fuel is replaced by propane with retention of the compression ignition system. The annual fuel cost in this dual fuel case is reduced by $\$ 6220$ or so (16%) over the pure diesel case and the 1983 remission of provincial sales tax on the vehlcle is large enough to reduce the total net vehicle acquisition cost by $\$ 1505$. These two cost-saving factors are only somewhat reduced by the additional maintenance costs involved for the two-fuel truck: the net outcome being that the dual fuel truck provides freight service at a cost of $4.33 \notin /$ tonne-kilometer compared to cost of $4.5 \phi / t$ tonne-kilometer on diesel fuel alone. This dual fuel operation is the lowest cost of the cases examined for the heavy duty truck.

page

5.1 Intermodal Comparisons and Intramodal Fuel 5-1

Comparisons

5.1 INTERMODAL COMPARISONS AND INTRAMODAL FUEL COMPARISONS

The discussion of fuel costs and life-cycle costs by vehicle type in Section 4 illustrates the ability of the life-cycle cost methodology to examine the effect of fuel substitutions within a given class of vehicle or service. It also lllustrates the wide varlation in the contribution the fuel and fuelling system costs make to life-cycle costs. However, even in cases where the fuel cost component is small compared to fixed costs or non fuel-related variable costs, the cost saving opportunity for fuel substitution and fuel economy should not be discounted, since it may be the only cost item that can be attacked. The strength of the life-cycle cost methodology developed in this investigation is that it permits these factors to be explored by providing a generalized framework from which each vehicle owner or fleet manager can develop his or her own cost comparisons.

The extension of the methodology to comparison of life-cycle and even fuel costs between modes is not so rewarding, since much more fine detail is required than can be handled in this exercise to compare, for example, the cost per passenger kilometer of owning and operating an automobile compared to riding a combination of city buses and intercity coaches to achieve the same "mileage". Load factors, the convenience factor, the value of the automobile owner's time and the shared cost of the bus driver and, above all, different subsidies and tax rates mean that even case-by-case investigations are complex, and generalized cases are always incomplete and may be misleading. The wide variation in life-cycle costs calculated here for the different passenger and freight transport modes at average vehicle loadings and average fuel economy are illustrated in Figures 5.1a and 5.1b respectively.
$=\quad$ Each value of life-cycle cost can be varied by changing these load and fuel economy factors, financing methods, or by changing driver costs and sales servicing costs. Figures 5.1a and 5.1 b are more useful in showing the effect of fuel variations within each class of

Figure 5.1a Summary of Cost/Resource Consumption Factor:

Passenger Transport Mode

7 Passenger Truck

Figure 5.1b Cost/Resource Consumption Factor:

Freight Transport Mode

vehicle-service (intramodal fuel comparison) and in identifying the lowest and highest fuel cost options at a particular location and time: taking the passenger transportation set of Figure 5.1a, for example, we can sort our limited set of fuels examined in each case into those which gave the highest or the lowest cost/passenger km in one type of vehicle and service in Ontario $4 Q 1983$ as follows:

High-Low Passenger Service Cost

	Highest Cost	Lowest Cost
Commuter automobile	Propane Examined	Option Examined
Standard automobile	LNG	CNG
Taxi	LNG	CNG
School bus	Gropane	
Urban bus	Cetane improved methanol	Propane/diesel dual fuel
Interurban bus	Cetane improved methanol	

The freight transport set gives the following highest and lowest cost fuel-engine options for 4 Q 1983 in Ontario:

High-Low Freight Transport Cost

Highest Cost
 Option Examined

Light urban truck Cetane improved methanol
Lowest Cost
Option Examined
Propane
Class 3 truck, urban/interurban

Cetane improved methanol
Propane
Class 8 intercity
truck Cetane improved methanol Propane/diesel dual fuel

Figures 5.1a and 5.1b also illustrate in some examples the effect on life-cycle cost of refuelling at a fleet-owned pump, compared to
retail purchase of fuel. Taxis and trucks frequently use both sources of fuel.
page
6.1 Limits to Resource Utilization Analysis 6-1
6.2 Comparisons of Resource Efficiencies 6-4

In examining the energy efficiency or resource utilization in a transport system, it is possible to trace energy use or energy losses right through the energy chain starting with the efficiency of recovery of the resource, tracing through the efficiencles of resource transportation, refining to fuels, the efficiency of the fuel transport, storage and dispensing system, until at the vehicle level one examines the vehicle efficiency lcombustion efficiency, efficiency of the components such as drive-train, tires and even the energy content involved in the materials used to build the vehiclel and then the end-use efficiency (loading, routing, unproductive movements). While these factors are considered in the cost detalls of the life-cycle cost, many of them are small contributors to the total energy use. The key factors concerning energy or resource utilization are: the efficiency of producing the fuel from the resource at the refinery or chemical (fuel) plant (the plant conversion efficiency), the fuel consumption of the vehicle (GJ of fuel/kilometer) and the payload factor (passengers or tonnes carried). The equations involved are:

Resource Utilization Efficlency(Passenger [or tonne]-kilometer/GJ)=
Payload x Refinery (or Plant) Conversion Efficiency Vehicle Fuel Consumption
and Resource Consumption Factor (GJ/Passenger [or tonne]-kilometer) =
$\frac{1}{\text { Resource Utilization }}=\frac{\text { Vehicle Fuel Consumption }}{\text { Payload } \times \text { Refinery Conversion Efficiency }}$

Table 6.1 summarizes the resource utilization factors calculated for each fuel/vehicle combination (further detail on each case is given sin the cases of Appendix A).

REF \#	VEHICLE TYPE	FUEL TYPE	FLEET OUTLET R=retail F=fleet	LIFE CYCLE COSTS (cents) psngr.km)	RESOURCE UTILIZATION EFFICIENCY (Psngr.km/GJ)
18	Computer	Gasoline	R	26.7	537
10	auta	CNG	R	25.9	583
1 c	\cdots	Propane	R	26.8	618
23	Standard	Casoline	R	11.6	381
2b	auto	Diesel	R	11.5	428
2 c	-	LNG	R	12.8	363
2d	-	CNG	R	10.2	412
2 e	\cdots	Propane	R	10.9	412
29	\cdots	MeOH 90x	R	11.5	290
29	\cdots	MeOH blend	R	11.6	383
2h	-	EtOH blend	R	11.7	385
3a	Taxi	Casoline	R	56.6	245
3b	*	Casoline	F	55.8	245
3 c	-	LNG	R	58.9	235
3d	-	LNC	F	57.3	240
3 e	-	CNG (E)	R	55.6	258
37	\cdots	CNG (5)	F	55.7	258
39	\cdots	Propane	R	54.9	264
3 H	-	Propane	F	54.7	264
$3 i$	"	MeOH 90\%	R	56.5	186
3J	-	MeOH 90x	F	56.7	186
3k	-	HeOH blend	R	56.7	246
31	"	MeOH blend	F	55.8	246
3n	-	EtOH blend	R	56.9	247
$3 n$	-	EtOH blend	F	56.0	247
4 a	School	Gasoline	F	4.60	1247
46	bus	CNG	F	4.29	1348
4 c	\cdots	Propane	F	4.44	1348
9d	\cdots	MeOH blend	F	4.62	1254
4	\cdots	EtOH blend	F	4.64	1258
5	Urban	Diesel	F	11.4	585
5	bus	C3/diesel	F	11.2	619
5 c	*	LNG	F	11.5	523
Ed	\cdots	Propane	F	11.5	551
5 s	-	MeOH 90X	F	12.2	374
5	\cdots	MeOH 100 X	F	11.6	413
59	\cdots	$\mathrm{HeOH}+\mathrm{Cet}$	F	13.5	408
6a	Inter-	Diesel	F	6.84	1019
60	urban	Propane	F	6.88	958
6 c	bus	MeOH 90\%	F	7.25	681
od	\cdots	Meth + Cet	F	7.99	711
73	Psngr Trk.	Gasoline	R	9.30	394

REF *	VEHICLE TYPE	FUEL TYPE	FLEET OUTLET R=retall F=fleet	LIFE CYCLE COSTS (cents/ psngr.km)	RESOURCE UTILIZATION EFFICIENCY (Psngr.km/GJ)
88	Urban	Gasoline	R	382	45.7
86	truck	Diesel	R	376	62.7
8 c	\cdots	CNG	F	376	49.4
80	$\stackrel{\sim}{*}$	Propane	R	375	50.4
8 e	$\stackrel{ }{*}$	MeOH 90\%	F	385	34.8
81	"	MeOH 100%	F	388	35.7
B9	$\stackrel{ }{*}$	$\mathrm{HeOH}+\mathrm{Cet}$	F	406	35.7
8 h	"	MeOH blend	F	382	46.0
8i	$\stackrel{ }{+}$	EtOH blend	R	381	46.1
8.	\cdots	EtOH blend	F	383	46.1
9 a			R	258	56.0
96	urban	Gasoline	F	257	56.0
96	truck	Diesel	F	357	66.3
90	class 3	Propane	F	253	61.7
98	"	MeOH 100 z	R	259	43.7
97	"	MeOH 100 z	F	262	43.7
99.	"	Meth + Cet	F	276	43.7
9 h	"	MeOH blend	F	258	56.2
10 a	Inter-	Diesel	F	4.50	915
10 b	urban	c3/diesel	F	4.33	968
10 c	truck	MeOH 1007	F	4.66	646
10 d	class 8	Meth + Cet	F	5.80	638

Figures 5.1a and 5.1b were previously examined for life-cycle costs but the same figures illustrate the values and variations of the resource consumption factor for each fuel-vehicle combinatlon examined.

6.2 COMPARISONS OF RESOURCE CONSUMPTION FACTOR

6.2.1 Intermodal Comparisons

The spread of resource consumption factors (GJ/1000 passenger km) between different transport service modes is wide, ranging in our examples from less than 1 GJ/1000 passenger $k m$ for a school bus or intercity bus to a relatively energy-wasteful (4-5 GJ/1000 passenger km) taxi. The bus cases clearly indicate the impact of multi-passenger vehicle capacity on energy consumption and the low payloads and energy-for-convenience trade-off involved in taxi service and operation of personal automobiles. In Case 7a of Figure 5.1a - the passenger van - efficiency is similar to that of the standard automoblle: this vehicle is almost identical with the small urban gasoline-fuelled truck used for freight transport comparisons (Case 8a of Figure 5.1b and Appendix Al.

The freight transport cases illustrated in Figure 5.10 show the large differences in resource consumption that exist between the 3 classes of truck investigated, irrespective of the fuel considered. The resource utilization efficiency part of the methodology can be used to obtain new correlations between these classes of vehicle. For example, in the diesel-engined truck series useful comparisons can be made of the empty vehicle weight, the maximum and average load on the one hand and fuel economy and resource utilization on the other.
=- Using data from both Figure 5.1b and from "Comparlson of Reference Vehicle Classes" (Appendix B) we have the following series for comparison:

Diesel Trucks (1983 data)	Class 8 Truck	Class 3 Truck	Class 1 Truck
Average vehicle resource			
consumption, GJ/1000tonne km	1.1	15.1	16.0
Average diesel fuel economy,			
litres/100 km	52.0	24.75	10.4
Vehicle weight empty, tonnes	14.0	3.3	2.2
Maximum payload, tonnes	36.0	1.25	0.5
Average payload, tonnes	21.0	0.725	0.29
Vehicle, horsepower	350	205	130

It should be noted that the fuel economy in vehicles is changing rapidly and the data quoted represent the values reported for average fleets in 1983. New vehicles may have substantially better fuel economy but this does not greatly affect the interfuel and intermodal comparisons.

6.2.2 Interfuel Comparisons

Within each vehicle category the fuel type has a second order effect on resource consumption. For all vehicle classes surveyed, resource consumption followed the pattern listed below in order of decreasing consumptions:

MeOH - 90\%
MeOH - Cetane
MeOH - 100\%
LNG
Gasoline
MeOH blend
EtOH blend
CNG
Propane
Diesel
Propane-Diesel

The resource utilization efficiency data developed using the methodology can be used to select the high or low resource efficiency candidates among the fuels chosen within each vehicle and service class. In the passenger transportation set the fuels with the highest and lowest resource utilization identified in the present examples are:

Resource Utilization Efficiency
Highest Efficiency Fuel Lowest Efficiency Fuel

Commuter automobile	Propane	Gasoline
Standard automobile	Diesel	Methanol 90% Gasoline 10\%
Taxi	Propane	Methanol 90% Gasoline 10\%
School bus	Propane	Methanol 90% Gasoline 10\%
Urban bus	Propane/Diesel dual fuel	LNG
Interurban bus (coach)	Diesel	Methanol 90% Gasoline 10\%

The freight transportation set similarly provides the following high and low resource efficiency examples for comparison:

Resource Utilization Efficiency
Highest Efficiency Fuel Lowest Efficiency Fuel

Light urban truck	Diesel	Methanol 90\% Gasoline 10\%
Class 3 truck		
urban/interurban	Diesel	Methanol
Class 8 intercity truck	Diesel	Methanol with cetane improver

The methanol resource efficiency is low compared to other systems, due to the low efficiency of conversion of natural gas to methanol - 61\% process efficiency is typical for modern methanol plants.

Clearly the lowest life-cycle cost examples are not always the most resource-efficient. The coincidence of lowest cost and lowest resource utilization occurs in the present set of examples only with the
taxi-propane, school bus-propane and urban bus-propane diesel dual fuel combinations.

SECTION 7 - REFERENCES

page
General/Fuels/Fuel Economy 7-1
Alcohol Fuels 7-5
Autos, Taxis 7-10
Buses 7-12
Diesel 7-14
Engines 7-15
LPG/Propane 7-16
Methodology 7-17
Natural Gas 7-18
Trucks 7-21

1. American Public Transit Assn., Transit Fact Book 1981, Washington, D.C., 1981.
2. Atkinson, S., Rising Gasoline Prices and Federal Automobile Efficiency Standards: Their Impact on Consumer Choice, API Research Study $\# 023$, American Petroleum Inst., Washington, D.C, Oct. 1981.
3. Bailey, Brent K., Russell, John A., "Emergency Transportation Fuels: Properties and Performance," SAE Technical Paper \#810444, Alternative Fuels, SAE SP-480, SAE, Warrendale, Pa., p. 213-235.
4. Brean, D.J.S., The Economics of Gasoline Demand: Implications for Demand Management Through Federal Tax Policy, Rept. \#TE83-18, Transportation Energy Div., Energy, Mines and Resources Canada, Ottawa, Feb. 1983.
5. Canadian Enerdata Ltd., Canadian Energy Trends, Canadian Enerdata Ltd., willowdale, Ont.
6. Canadian Resourcecon Ltd., Summary Report - Economic Assessment of Alternative Transportation Fuels in Ontario, prepared for Ont. Min. of Energy, Nov. 1983.
7. Chen, D.Z., Gurkan, I., Sheffield, J.W., Veziroglu, T.N., "Effective Cost of Fuels: Comparison of Hydrogen with Fossil Fuels," Hydrogen Energy Progress IV, Vol 4, proceed. of the World Hydrogen Energy Conf. IV, Pasadena, Calif., June 13-17, 19882, Pergammon Press, New York, 1982, p. 1523-1537.
8. Constable, G.A. ICanadian Resourcecon Ltd.), "Alternative Transportation Fuels: An Economic Comparison," presented to the

Canadian Society for Chemical Engineering Alternative Transportation Fuels Seminar, Calgary, Alta., Mar, 17, 1982.
9. Downs, D., French, C.C.J., (Ricardo Consulting Engineers Ltd.), "Development of Alternative Engines and Their Fuel Requirements," Proceedings of the. Tenth World Petroleum Congress, Vol. 5 Conservation, Environment, Safety and Training, Heyden and Son Inc., Philadelphia, Pa., 1980, p. 285-294.
10. E235 AEF Study Team, Institute for Energy Studies, Stanford Univ., Alternative Energy Futures - An Assessment of U.S. Options to 2025, Stanford Univ., July 1979.
11. Elsbett, L., Elsbett, G., Elsbett, K., Behrens, M., "Alternative Fuels on a Small High Speed Turbocharged D.l. Diesel Engine," SAE Tech. Paper \#830556.
12. Energy Pricing News, Corpus Information Services; Don Mills, Ont.
13. Energy Statistics 8ranch, Energy, Mines and Resources Canada, Energy Statistics Handbook, Ottawa.
14. "Ford Rationale for Alternate Fuels and Engines," Motor Truck, Jan. 1982, P. 17.
15. Fuel Alternatives for Spark Ignition and Diesel Engines, SAE SP-548, SAE, Warrendalle, Pa.; Aug. 1983.
16. Goodger, E.M., Alternative Fuels for Transport, Vol. 1, Alternative Fuel Technology Series, Cranfield Press, Bedford, England, Nov. 1981.
17. Gotzman, P:, George, L., "Alternate Transportation Fuel Study," National Energy Board, Ottawa, May 1982.
18. Gray, Charles L., Jr., von Hippel, Frank, "The Fuel Economy of Light Vehicles," Scientific American, May 1981, p. 48-59.
19. Highway Users Federation, "State Motor Fuel Tax Rates," Washington, D.C., Jan. 1, 1984.
20. Kant, F.H., Cahn, R.P., Cunningham, A.R., Farmer, M.H. et al, (Exxon Research and Engineering Co.l, Feasibility Study of Alternative Fuels for Automotive Transportation, Vol. 11 - Technical Section, prepared for US EPA, Rept. EPA-460/3-74-009-b, June 1974.
21. Kobrin, P., Fuel Switching, Gasoline Price Controls, and the Leaded-Unleaded Gasoline Price Differential, API Critique \#006, American Petroleum Inst., Washington, D.C., Dec. 27, 1978.
22. Kulp, G. Holcomb, M.C., Transportation Energy Data Book, Sixth Edition, Oak Ridge National Lab., ORNL-5883 Special, Noyes Data Corp., Park Ridge, New Jersey, 1982.
23. Lowther, H.V., Maxwell, W.L., Rogers, T.W., "lmproving the Fuel Saving Benefits of Synthetic Engine Oils," SAE Tech. Paper \#830166
24. McAlister, R.E., "Fuel Property Effects Upon Internal Combustion," Fuel Alcohol USA, Feb. 1982, p. 8-11.
25. Motor Vehicle Manufacturers Assn. of the USA, MVMA Motor Vehicle Facts and Figures '83, MVMA, Detroit, 1983.
26. Murrell, J.D., Loos, S., Heavenrich, R., Cheng, J., LeBaron, E., "Light Duty Automotive Fuel Economy... Trends Through 1983," SAE Tech. Paper \#830544.
27. Needham, J.R., Norris-Jones, S.R., Cooper, B.M., "An Evaluation of Unthrottled Combustion System Options for Future Fuels," SAE Tech. Paper \#830374.
28. "Pipeline Economics," Oil and Gas Journal, Nov. 28, 1983, p. 71-151.
29. "Posted Prices - Selected Transportation Fuels," Gulf Canada Ltd., June 1, 1982.
30. Reilly-Roe, Peter (Transportation Energy Div., EMR), Canada's Automobile Fuel Consumption Policies and Programs, Rept. \#TE-81-41, Transportation Energy Div., Energy Mines and Resources Canada, Ottawa.
31. Shackson, Richard H., Leach, H. James, Maintaining Automotive Mobility: Using Fuel Economy and Synthetic Fuels to Compete with OPEC Oil, Final Report, Energy Productivity Center, Mellon Inst., Arlington, Va., Mar. 1, 1982.
32. Statistics Canada, Road Motor Vehicles - Registrations, Cat. \#53-219, Dept. of Supply and Services, 1981.
33. Sung, N.W., Patterson, D.J., "Theoretical Limits of Engine Economy with Alternative Automotive Fuels," Energy Research, Vol. 7, 1983, p. 121-127.
34. Transportation Energy Div., EMR, Review of Current Energy Taxation in Canada, Rept. \#TE83-19, Transportation Energy Div., EMR, Ottawa, Jan. 1984.
35. "Trucks and Buses: The Future is Now," Fleet Owner, July 1982, p. 62-69.
36. Urban Transportation Development Corp., Technical and Cost Study of Alternative Fuels Utilization in Diesel Engines in Transit Applications - Draft, Vol. 1: Final Report, prepared for Ont. Min. of Energy, Feb. 4, 1983.

ALCOHOL FUELS
37. Alson, Jeff, "Emissions and Efficiency Characteristics of Methanol-Fueled Engines and Vehicles," Nonpetroleum Vehicular Fuels Ill, Symp. papers, Inst. of Gas Technology, Arlington, Va., Oct. 12-14, 1982, IGT, Chicago, III., Jan. 1983, p. 399-431.
38. Aerospace Corp., Project for Reliability Fleet Testing of Alcohol/Gasoline Blends - Technical Programs Report, prepared for US Dept. of Energy, Contract DE-ACO3-79CS50023, July 1983.
39. Atkinson, R. Dwight, Distribution of Methanol as a Transportation Fuel, Environmental Protection Agency, June 1982.
40. AtIantic Richfield Co., notes on presentation to Transportation Energy Div., EMR, Dec. 17, 1982.
41. Benn, F.R., Edowor, J.O., McAuliffe, C.A., Production and Utilization of Synthetic Fuels - An Energy Economics Study, Applied Science Pub. Ltd., John Wiley and Sons Ltd., London, 1981.
42. Borman, G.L., Foster, D.E., Meyers, P.S. et al. Alcohol as a Fuel for Farm and Construction Equipment, prepared for US Dept. of Energy, June 1982.
43. Clark, C.F., Ushiba, K.K., Methanol Fuel - Its Manufacture and Utilization, Stanford Research Inst., Menlo Park, Calif., Mar. 1977.
44. Clarke, P.J., "Front-End Volatility Requirements of Late Model Cars at Intermediate Ambient Temperatures," SAE Tech. Paper *830595.
45. Duhl, Robert W., Thakker, B.R., "Coproduction of Alcohol Blends Methanol's Opportunity for Vehicular Fueling;" Nonpetroleum Vehicular.

Fuels 111, p. 227-238.
46. Durst, T., Dagun, P. (Dept. of Chemistry, Univ. of Ottawal, Physical Properties and Phase Separation of Alcohol-Gasoline Blends, prepared for Transportation Energy Div., EMR, Rept. Te-83-6, Jan. 1983, revised May 1983.
47. Ecklund, E. Eugene, Bechtold, Richard L., Timbario. Thomas J., McCallum, Peter W., "Alcohol Fuel Use in Diesel Transportation Vehicles," Nonpetroleum Vehicular Fuels 111, p. 261-313.
48. Emert, George H., Katzen, Raphael, Frederickson, Ralph E., et al. "Update on the 50 T/D Celluslose-to-Ethanol Plant," Proceedings of the Ninth Cellulose Conference Part 11, Symp. on Cellulose and Wood as Future Chemical Feedstocks and Sources of Energy, and General Papers, A. Sarko, ed., John Wiley and Sons Ltd., New York, 1983.
49. Finegold, Joseph G., Karpuk, Michael E., McKinnon, J. Thomas, "Demonstration of Dissociated Methanol as an Automotive Fuel:System Design," IV international Symposium on Alcohol Fuels Technology, Guaruja, Brazil, 1980, Pap. B-11, p. 289-291.
50. Finegold, Joseph G., McKinnon, J. Thomas, Karpuk, Michael E., "Reformed Methanol," Nonpetroleum Vehicular Fuels 111, p. 197-210.
51. Gray, Charles Jr., "A Governmental View of Oxygenates for Use as Motor Fuels and Motor Fuel Components," 1983 Proceedings - Refining Department, Vol. 62, American Petroleum Inst., 48th Midyear Meeting, Los Angeles, Calif., May 9-12, 1983, p. 210-222.
52. Green, Roger K., "Conversion of Spark Ignition Engines for Use on Methanol Fuel," VInt. Symp. on Alc. Fuels Tech., 1982, Paper C1-7, p. 2-37-2-43.
53. Gülder, O.L., "Performance and Exhaust Emissions of a Multicylinder S.l. Engine Fueled with Methanol and Gasoline," Energy to the 21st Century, Vol. 1. Proceed. of the 15th Intersociety Energy Conversion Engineering Conf., Seattle, Wash., Aug. 18-22, 1980, p. 698-703.
54. Hirota, Toshio, "Study of the Methanol-Reformed Gas Engine," Japanese Society of Automotive Engineering Review, Mar. 1981, p. 7-13.
55. Jones, Randy, Characterization of a Heavy-Duty Diesel Engine Modified for Operation on Neat Methanol, US EPA Standards Development and Support Branch, Emission Control Technology Div., Office of Mobile Source Air Pollution Control, Office of Air, Noise and Radiation, US EPA, Rept. PB82-265372, June 1982.
56. Kaneko, Y., Horie. O., Tsukamoto. T., Ando. H., Shiraishi, K., "Thermal Efficiency of Spark-1gnited Alcohol Engine," V Int. Symp. on Alc. Fuels Tech., 1982, Paper C1-10, p. 2-61-2-68.
57. Krumm, H., Foerster, W., Reglitzky, A.A., Coy, R.C., Bell, A.G., "Lubrication of Spark Ignition Engines Running on Alcohol Containing Fuels," V int. Symp. on Alc. Fuels Tech., 1982, Paper C3-3, p. 2-427-2-434.
58. Mathur, H.B., Gajendra Babu, M.K., Subba Reddy, "Combustion and Exhaust Emission Characteristics of a Methanol Fueled Spark Ignition Engine," V int. Symp. on Alc. Fuels Tech., 1982, Paper C1-14, p. 2-93-2-100.
59. Meckel, H., Paulsen, R., "Large-Scale Test with One Thousand M-15 and M-100 Cars in the Federal Republic of Germany - Organisation and First Results," V Int. Symp. on Alc. Fuels Tech., 1982, Auckland, New Zealand, 1982, Paper C4-8, p. 3-41-3-58.
60. Meekhof, Ronald L., Tyner, Wallace E., Holland, Forrest D., "U.S. Agricultural Policy and Gasohol: A Policy Simulation," American Journal of Agricultural Economics, Aug. 1980.
61. Mueller Associates Inc., Status of Alcohol Fuels Utilization Technology for Highway Transportation: A 1981 Perspective, Vol 1.Spark Ignition Engines (May 1982), Vol. 2 - Compression Ignition Engines (Nov. 1982), prepared for US Dept. of Energy, 1982.
62. Nebolon, J., Chan, K.C., Browning, L., Pefley. R.K., "Multi-point Injection of Alcohol Vapour as a Cold Starting Aid for Neat Alcohol Fueled Vehicles," V Int. Symp. on Alc. Fuels Tech., 1982, Paper C1-5, p. 2-29-2-36.
63. Nichols, R.J., Wineland, R.J., "Techniques for Cold-Start of Alcohol Powered Vehicles," V Int. Symp. on Alc. Fuels Tech., 1982, Paper C1-17, p. 2-118-2-125.
64. Ontario Ministry of Energy, "Gasohol and Other Alcohol Fuels".
65. Owens, E.C., Marbach, H.W. Jr., Frame, E.A., Ryan, T.W.lll, Effects of Alcohol Fuels on Engine Wear - Interim Report. prepared for US Army Mobility Equipment Research and Development Command and US Dept. of Energy, Oct. 1980.
66. Pischinger, Franz F., Burghardt, Peter, Havenith, Cornelius, Weidmann, Kurt, "Investigation on a Passenger Swirl-Chamber Diesel Engine Using Different Alcohol Fuels," SAE Tech. Paper \#830552.
67. Pischinger, Franz F., Havenith, Cornelius, "The Suitability of Different Alcohol-Fuels for Diesel Engines by Using the Direct-Injection Method," IV Int. Symp. on Alc. Fuels Tech., 1980, Paper B-57, p. 619-625.
68. Preuss, A.W., "Energy Efficiency of Oxygenates from Their Production to Their Engine Use," SAE Tech. Paper \#830384.
69. Quadflieg, H., "M 100-Research and Fleet Tests in the German Federal Alcohol Fuels Project," V Int. Symp. on Alc. Fuels Tech., 1982, Paper C4-12, P. 3-75-3-82.
70. Saidaminor, S.S., "The Effects of Fuel Structure on the Autoignition of Fuel-Air Mixtures," SAE Tech. Paper \#800046.
71. Sperling, Daniel, "Implementing a Methanol Fuel Path," 61st Annual Meeting of Transportation Research Board, Washington, D.C., Jan. 18-22, 1982.
72. Swain, M.R., Maxwell, R.L., Swain. M.N., et al, Alternative Fuels Performance and Emissions Characteristics, prepared for US Dept. of Energy, Contract \#DE-ASO5-80CS50028, June 1982.
73. Swedish Commission for Oil Substitution, Introduction of Alternative Motor Fuels, Dsl1980:20, Liberforlag, 1980.
74. Takagi, Y., Nakajima, Y., Muranaka, S., Ohkawa, K., "Characteristics of Fuel Economy and Output in Methanol Fueled Turbocharged S.I. Engine," SAE Tech. Paper $\$ 830123$.
75. Wolff, H-C., Smith, D., Fry. P., "Motor Oil Development for Methanol Engines, VInt. Symp. on Alc. Fuels Tech., 1982, Paper C3-8, p. 2-467-2-474.

AUTOS, TAXIS
76. "10 Best Cars," Car and Oriver, Jan. 1984, p. 32-37.
77. "10 Best Cars," Car and Driver, Jan. 1983, p. 30-36.
78. "1984 Mileage Ratings," Consumers' Research Magazine, Nov. 1983, p. 22-34.
79. Air Pollution Control Directorate, Environmental Protection Service, Environment Canada, Canadian Taxi Survey, Economic and Technical Review Report EPS3-AP-74-4, Sept. 1974.
80. Armstrong, B.D., "The Influence of Cool Engines on Car Fuel Consumption," Digest SR 822, Transportation Road Research Laboratory, Berkshire, England, 1983.
81. "Auto Source '83," Canadian Consumer, Apr. 1983, p. 5-66.
82. Behrin, Ervin, "An Analysis and Comparison of Automotive Propulsion Systems," SAE Tech. Paper \#830116.
83. Canadian Automobile Assn., "1983 Car Costs," CAA, 1983.
84. Ceppos, R., "Top Ten Fuelers, 1984," Car and Driver, Jan. 1984, p. 27.
85. Information and Liaison Section, Transportation Energy Div., EMR, Fuel Consumption and Associated Trends in New Automobiles, 1975-80, EMR, Ottawa, July 1982.
86. "Latest Mileage Ratings," Consumers' Research Magazine, Dec. 1982, p. 16-21.
87. Patterson, P.D., Westbrook, F.W., "Impact of Consumer and Manufacturer Decisions on New Car Fuel Economy," SAE Tech. Paper $\$ 830545$.
88. "Road Test Review," Car and Driver, Jan. 1984, p. 28.
89. Transport Canada, Fuel Consumption Guide, Dept. of Supply and Services Canada, 1983.
90. Transportation Energy Div., EMR, The Canadian Vanpooling Guidebook, Dept. of Supply and Services, Ottawa, 1982.
91. American Bus Assn., Bus Facts, 1982 Edition, Am. Bus Assn., Washington, D.C., Sept. 1982.
92. Booz, Allen, and Hamilton, Inc., Evaluation of Alternative Fuels for Urban Mass Transit Buses, prepared for the Port Authority of Allegheny County, Pittsburgh, Pennsylvania, Feb. 1983.
93. Collins, John M., Unzelman, G.H., "Ignition, Cold Flow Improvers Additives Offer Options to Boost Diesel Cetane," Oil and Gas Journal, June 13, 1983, P. 127-130.
94. Francis, G.A., "Transit Bus Fuel Economy Research, " SAE Tech. Paper \#831185.
95. Khan, Ata M. (Carleton Univ.), Intercity Passenger Transportation, Energy Consumption Characteristics, Science Council of Canada, Opportunities in Canadian Transportation Working Paper No. 3.
96. Metro, Jan.-Feb. 1984.
97. Prévost Car Inc., Alternative Fuel Interurban Coach Feasibility Study, prepared for Transportation Energy Div., EMR, 20 Nov. 1983.
98. "School Bus Fleet Fact Book," School Bus, Dec.-Jan. 1984.
99. Statistics Canada, Passenger Bus and Urban Transit Statistics 1981, Stats. Can. Cat. \#53-215, Dept. of Supply and Services, Sept. 1983.
100. Toepel, R.R., Bennethum, J.E., Heruth, R.E., "Development of Detroit Diesel Allison 6V-92TA Methanol Fueled Coach Engine," SAE Tech. Paper \#831744.
101. Urban Transportation Development Corp. Ltd., Technical and Cost Study of Alternative Fuels Utilization in Diesel Engines in Transit Applications, Vol. I: Final Report, prepared for Ontario Ministry of Energy, Feb. 4, 1983.
102. Waddell, C., "Transit Operators on Twisting Route to Better Revenues and More Riders," Financial Post, Jan. 7, 1984, p. 33-34.

DIESEL
103. "1983 Diesel Engines for Truck, Bus, Tractor or Industrial Use," Truck and Off-Highway Industries, Nov.IDec. 1982, p. 12-54.
104. "Automotive Engineer Diesel Engine Survey," Automotive Engineer.
105. Mercier, G., "The Future of Management," paper presented at XVIII World Congress of the International Road Transport Union, Montreal, May 20-25, 1982.
106. O'Neal, G.B., "The Diesel-Gas Dual-Fuel Engine," Nonpetroleum Vehicular Fuels III, Inst. of Gas Tech., Arlington, Va., Oct. 12-14, 1982; IGT, Chicago, III., Jan. 1983, P. 355-371.
107. Shang, Shan-dsui, Zhang, Lian-fan, Xu, Huan-Zhang, Chou, Guo-quiang, "The Combustion and Emissions of Coal-Oil Mixture with Water (COM) as as Alternative Fuel for Diesel Engines," SAE Tech. Paper \#831361.
108. Technology Panel, Diesel Impacts Study Committee, U.S. National Research Council, Diesel Technology, National Academy Press, Washington, D.C., 1982.
109. Webb Corp. Ltd., R.F., Truck and Diesel Engine Developments To 1990, report issued to Transportation Energy Div., EMR, Ottawa..
110. Baranescu, George, "Some Charactersitics of Spark Assisted Direct Injection Engine," SAE Tech. Paper \#830589.
111. American Gas Assn. Policy Evaluation and Analysis Group, The Outlook for Propane in Non-Feedstock Markets in the U.S., AGA, Arlington, Va., June 1983.
112. Frend, M.A., "The Significance of LPG in European Vehicular Transportation," Nonpetroleum Vehicular Fuels 11 , Inst. of Gas Tech., Detroit, June 15-17, 1981, IGT, Chicago, 111., 1981.
113. Heenan, John S. (Transportation Energy Div., EMR), Propane - The Modern Automotive Fuel, Transportation Energy Div. Report TE-82-16, EMR, Ottawa, Oct. 1983.
114. Hendren, F., Emissions, Fuel Consumption and Performance from LPG (Propane) Vehicles, Transportation Energy Div. Report TE-83-03, EMR, Ottawa, June 9, 1983.
115. Hendren, F., "Propane Power for Light Duty Vehicles: An Overview," SAE Tech. Paper $\# 830383$.
116. Urban, R., "Economic, Commercial and Technical Status of the Art of LPG as Transportation Fuel," Nonpetroleum Vehicular Fuels III, p. 39-98.
117. Varde, K.S., "Propane Fumigation in a Direct Injection Type Diesel Engine," SAE Tech. Paper \#831354.
118. Webb Corp. Ltd., R.F., An Investigation of Propane as a Motor Vehicle Fuel in Canada, prepared for Strategic Studies Branch, Transport Canada, Ottawa, Feb. 1982.
119. Bush, Martin J., "Matrix Energy Analysis," International Journal of Energy Systems, Vol. 1, No. 2, 1981, p. 153-156.
120. Chen, D.Z., Gurkan. I., Sheffield, J.W., Veziroglu, T.N., "Effective Cost of Fuels: Comparison of Hydrogen with Fossil Fuels," Hydrogen Energy Progress IV, Proceedings of the World Hydrogen Energy Conf. IV, Pasadena, Calif., June 13-17, 1982, T.N. Veziroglu, W.D. van Vorst, J.H. Kelly, eds., Pergammon Press, New York, 1982.
121. Dickson, R.L., Sweeney, M.P., "Critical Factors in the Commercialization of Synthetic Fuels," American Chemical Society, 1978.
122. Donakowski, T.D., Daniels, E.J., Lansing, F.L., Charng, T., "The Effect of Price Uncertainties on the Fuel Selection Decision: The User's Dilemma," Nonpetroleum Vehicular Fuels III, Inst. of Gas Tech., Arlington, Va., Oct. 12-14, 1982, IGT, Chicago, lll., Jan. 1983.
123. Johnson, R.T., "Energy and Synthetic Fuels for Transportation: A Summary," SAE Paper \#740599.
124. Luten, Daniel B., "The Economic Geography of Energy," Scientific American, Sept. 1971, p. 165-173.
125. Stamets, Leigh, Price, Robert, "Technology Impacts on California Car and Truck Fuel Demand," SAE Tech. Paper \#831174.
126. Stebar, R.F., Daniel, W.A., Sapre, A.R., Peters, B.D., "Matching Future Automotive Fuels and Engines for Optimum Energy Efficiency," Future Automotive Fuels, Colucci, J.M., Gallopoulos, eds., New York, 1977, p. 108-117.

NATURAL GAS

127. "1983 LNG World Overview," Hydrocarbon Processing, June 1983, p. $140 \mathrm{P}-140 \mathrm{~T}$.
128. Affleck, W.S., Harrow, G.A., Mills, W.D., "Converting a Small Car to LNG: What Are the Problems and What Can it Do for Economy and Emissions?," SAE Paper \#760376.
129. American Gas Assn., An Analysis of the Retrofit Market for Compressed Natural Gas Fleet Vehicles, Hayes/Hill Inc., June 1983.
130. American Gas Assn., "An Economic, Efficiency, and Environmental Comparison of Alternative Vehicular Fuels: 1982 Update," May 5, 1982.
131. American Gas Assn., Compressed Natural Gas (CNG): A Vehicle Fuel for Utility Company Fleets - The Pros and Cons, AGA Operating Section Report, AGA, Arlington, Va., Feb. 1982.
132. Beech Aircraft Corp., "Important Answers to Questions Concerning America's Need for Energy Independence Through Liquefied Natural Gas".
133. Boyd, Robert K., Simpson, C. Kyle, Whitman, J. Philip, "Methane for Fleet Vehicles: Recognizing 1 ts Potential as a Premium Transportation Fuel," AGA Monthly (American Gas Assn.), Oct. 1980, p. 23-25.
134. DiNapoli, R.N., "LNG Costs Reflect Changes in Economy and Technology," Oil and Gas Journal, Apr. 4, 1983, p. 138-143.
135. Elliott, D., Topaloglu, T., "Technological Issues in the Development of Alternative Transportation Fuels," Ont. Ministry of Transportation and Communications.
136. Energy, Mines and Resources Canada, Natural Gas - An Alternative Transportation Fuel, Dept. of Supply and Services.
137. Fischer, Felix L., "Introduction of a Commercial System for Liquid Methane Vehicles," Nonpetroleum Vehicular Fuels 111, Inst. of Gas Tech., Arlington, Va., Oct. 12-14, 1982, IGT, Chicago, IIl., 1983., p. 125-142.
138. "Gaseous Transportation Fuels: A Study," Automotive Engineering, Aug. 1982, p. 64-69.
139. Golovoy, Amos, Braslaw. Jacob, "On-Board Storage and Home Refuelling Options for Natural Gas Vehicles," SAE Tech. Paper \#830382.
140. Golovoy, Amos, Nichols, Roberta J., "Natural-Gas-Powered Vehicles," Chemtech, June 1983, p. 359-363.
141. Goninan, William G., "Use of Natural Gas as a Primary Vehicular Fuel for a Public Utility Fleet," SAE Paper \#750074.
142. Hathaway, Paul L., "Early Experience with LNG Vehicle Operations." Nonpetroleum Vehicular Fuels 111, p. 461-468.
143. Hederman, William F. Jr., "Assessing a Potential Source of Non-petroleum Vehicular Fuel: Alaska Natural Gas," Nonpetroleum Vehicular Fuels 111, p. 315-335.
144. Jennings, Frederick A., Studhalter, Walter R., "The Importance of Gaseous Fueled Vehicles," SAE Paper \#730804.
145. FJoyce, Thomas J. (T. Joyce Assoc. Inc.), Assessment of Research and Development Needs for Methane Fueled Engine Systems, Final Report (Aug. 1981-Mar. 1982), prepared for Gas Research Inst., Mar. 1982.
146. Karim, Ghazi A., "Some Considerations of the Use of Natural Gas in Diesel Engines," Nonpetroleum Vehicular Fuels 111, p. 337-351.
147. "Methane Transportation Research Development and Demonstration Act," Hearing Before the Subcommittee on Transportation, Aviation and Communications. Committee on Science and Technology, U.S. House of Representatives, 96 th Congress, 2nd Session, H.R. 6889, June 11, 1980, U.S. Government Printing Office, Washington, D.C., 1980.
148. Moulin, P., Chatelin, B., Rischaud, J.F., "Gas-Based Vehicle Fuels: AN Emerging Option for Developing Countries," Nonpetroleum Vehicular Fuels 111, p. 99-107.
149. "Natural Gas for Vehicles Offers Dramatic Cost Savings," Bus and Truck Transport, Sept. 1983, p. 2-5.
150. Norton, Tim, "Feasibility of LNG and CNG in Diesel Engine Applications," prepared for Transportation Energy Div., EMR, Ottawa.
151. Proceedings of the Alternative Fuels Contractors' Coordination Meeting Workshop - Windsor - June 7-8, 1983, Transportation Energy Div. Report TE-83-15, EMR, Ottawa, Sept. 1983.
152. Schlesinger, Benjamin, Hay, Nelson E., "Economic Comparisons of Methane and Alternative Vehicular Fuels," Nonpetroleum Vehicular Fuels 11, Inst. of Gas Tech., Detroit, June 15-17, 1981, p. 15-39.
153. Transportation Energy Div., EMR., Compressed Natural Gas Market Segments, Transportation Energy Div. Report TE-83-8, EAR, Ottawa, Mar. 1983. --
154. Whitlock, David J., "A Fleet Of Twenty CNG Cars and Trucks in Upstate New York: Ten Months' Experience," Nonpetroleum Vehicular Fuels 111 , p. 447-459.
155. Abruzzese, L., "Private Truck Council Survey Reflects Increased Operating Costs; Results Questionable Due To Limited Response," Commercial Carrier Journal, Nov. 1982, p. 16,18.
156. Bhattacharyya, S.K., Truck Fuel Consumption in Canada, Transportation Energy Div. Report TE-82-6, prepared for Transportation Energy Div., EMR, Ottawa, Nov. 1982.
157. Deirelein, B., "Before You Make the Move to Doubles," Fleet Owner, Jan. 1984, p. 72-73.
158. Energy Ontario Trucksave, How Some Drivers Get Better Fuel Economy, Transportation Energy Management Program (TEMP), Government of Ontario, Queen's Park, Ont.
159. Energy Ontario Trucksave, Truckers Guide to Energy Conservation, Ont. Ministry of Transportation and Communications and Ont. Min. of Energy, Governement of Ontario, Queen's Park, Ont.
160. Friesen, J., "How To Buy a Truck," Western Trucking, Nov. 1981, p. 26-62.
161. Garfinkel, D., " IH Will Market Iveco Light-Duty Trucks," Fleet Owner, Feb. 1982, p. 25-26.
162. Hovey and Assoc. Ltd., Study of Energy Conservation Potential of Diesel Powered Trucks in Canada, Ottawa.
163. Iveco Trucks of North America Inc., "Iveco Test Report - Report \#3 Fuel Economy Comparison Iveco 5.5 Diesel Manual vs. Automatic," ITONA, Blue Bell, Pa., 1983.
164. Klymchuck, Andrew B., "Private Trucking - First Draft," Bureau of Competition Policy, Consumer and Corporate Affairs Canada, Ottawa, Nov. 1979.
165. McNeal, Hildebrand and Assoc., "Western Canadian Origin and Destination Survey," prepared for Transport Canada, 1974.
166. Modern Bulk Transporter, Jan. 1984.
167. Modern Bulk Transporter, Oct. 1983.
168. Skoulas, Nicholas, Transport Costs and Their Implications for Price Competitiveness in Canadian Goods-Producing Industries, Bureau of Competition Policy, Consumer and Corporate Affairs Canada, Ottawa, Feb. 1980.
169. Statistics Canada, For-hire Trucking Survey 1980, Stats. Can. Cat. \#53-224, Dept. of Supply and Services, Sept. 1982.
170. Statistics Canada, Motor Carriers - Freight and Household Goods Movers 1981, Stats. Can. Cat. \#53-222, Dept. of Supply and Services.
171. Truck News, Dec. 20, 1983.
172. "Trucks," Fleet Owner, Oct. 1983, p. 112-152.
173. "Updating the Mid-Range Diesel Market," Diesel Equipment Superintendent, Oct. 1980, p. 48-62.

APPENDIX A - LIFE-CYCLE COST (LCC) WORKSHEETS
APPENDIX B - NOTES ON LCC WORKSHEETS
appendix C - FUEL PLANT gate cost worksheets
APPENDIX D - NOTES ON PLANT GATE COST WORKSHEETS
APPENDIX E - COMMODITY PRICES IN 4 Q83
APPENDIX F - FACTORS FOR CONVERSION OF BRITISH TO SI UNITS
APPENDIX G - GLOSSARY OF TERMS

Alternative Fuels Life-Cycle Costs Matrix A-1
Alternative Fuels Life-Cycle Costs Summary Sheets A-2

3858

CASE
FEF

COMPUTER AUTO AITO TAXI EUS SCHOOL

\ddagger

CASE

EXS UFEAN
EUS INT/LKEAN
TRUCK FSNCR
TRUCK UKEAN
TKUCK: INT/AKS-3
TFUCK INT/LFE-8
GASOLINE
DIESE
DIESE/C3
LNG
CHE
FROFAME
MEOH 9O\%
MECH 100\%
MEOHCETAME
MEOH PLEAD
ETOH PLENO

RETAL FUAP
FLEET FUPP
x x x \times x X $\times 1$

X X X X X X X X
x $\times \mathrm{x}$ x x
x x

X

I
x

I
I
z x

MOTES: is signifies cases imolving dual fuel operation (CNG 70\%, Gasoline 30\%) and two worksheets are used per case. \#\# signifies cases imolving doal fuel operation (Propane 80\%, Diesel 20\%) and two worksheets are used per case.

CASE DEFINITITON (1)

MATRIX REF \#:		MATRIX CASE\#:	1
FUEL:	CASOLINE(RL)	EMCINE TYFE:	SI
SERVICE:	AUTO (COMM)	Flaf STATION:	RETAIL
LOCATION:	TORONTO	TIME FRAME:	40 1983

ECONOHIC CRITERIA \& FUEL PROFFRTIES

| \% FioI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| \% int, on 80% vehicle imestment | 15 |
| Fuel derisity (Te/m3) | .718 |
| Ful higher heating value (GJ/m3)(5) | 34 |

FLANT GATE COST:

Frimary resoutce	Cruse
Resource cost (\$/G)	5.88
Flant location	S.Ontario
Froduct rate (G / d) (6)	78295
Froduct name	Gasoline(RL)
Process efficiency (\%)	85,88
Product cost (2) (\$/GJ)	8.4
Frodict cost (cents/1)	28.56

TERFINAL COSTS	PRIIARY	SECONDARY
Throughput ($\mathrm{m} 3 / \mathrm{d}$) (6)	1068	0
Throughput (GJ / d) (6)	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investment \$(10)6	12.3	0
Investment cost \$/d	6739	0
Utility cost $\$ / \mathbf{d}$	110	0
Maintree cost \$/d	110	0
Labour cost \$/d	1706	0
Other costs \$/d	484	0
Marketirg costs \$/d	10672	0
Termiral costs \$/GJ	. 54	0
Terninal costs cents/1	1,83	0

FUEL COST AT FUPT:
Fretax fuel/Fed sal tx (c/1) 35.17 3.16
Fed exc/Frov tax (cent5/1) $1.5 \quad 7.6$
Total fuel tax (c/l \& \$/G) 12.26
Tot fuel cost (c/l \& \$/GJ) 47.43
OVERALL FESOURCE UTILTZATION:
F5ngr.k.m/GJ \& Te.km/GJ: 537
VEHICLE AMRNAL FIXED COSTS:
License \mathbb{R} Insurarice cost $(\$ / y) \quad 735$
Annual cost of irwestment ($\$ / y$) 626
Anrual cost of finaricing ($\$ / y$) 187
Other fixed costs ($\$ / y$) (4)
$=$ Total fixed costs $(\$ / y) \quad 1548$

TOTAL OISTRIEUION COSTS:
Facility location kn from upstrm poirit
\$/GN shipped by barge
\$/GJ shipped by pipe
\$/GJ shipped by rail
\$/GN shipped by rosd
Total distr cost ($\$ / \mathrm{G}$)
Total distr cost (cents/l)

PRI TERHINAL SEC TERHINGL Toronto 0
150

REF STATION Toronto 20 0 0 0 .11 .11 .37

REFLELLING STATION COSTS:
Fleet or retail Retail

Throughput GJ/d \& m3/d $356 \quad 10.47$
Avg inventory (days thrpot) 7
Construction status (3)
SA
Orig irvest base stn $\$(10) 6$ (7) .51
New irwestment $\$(10) 6$
Irvestment costs ($\$ / \mathbf{d}$) 279
Haintenarice costs ($\$ / \mathrm{d}$) 7
Labour costs ($\$ / \mathbf{d}$) 130
Other cost5 ($\$ / d$) 14
Utility costs ($\$ / \mathrm{D}_{1}$) 4
Statn cost5 ($\$ / G / \&$ cents/1) $1.21 \quad 4.11$
VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{k} . \mathrm{H} \& \mathrm{GJ} / \mathrm{kH}_{\mathrm{H}}$) $4.7 \quad .001598$
Vehicle life (kM \& yrs) $92400 \quad 14$
Fayload (psrgrs \& Te) 1
Ease cost ($\$$) \& tak ($\$$) $8156 \quad 614$
Conversion type $\&$ cost ($\$$) 0
Grants \& tax concessions (\$) 0
Total net irvestment ($\$$) 8770
VEHICLE ANHUAL VAFIAEAE COSTS (AVERAGE):
Total fiel costs ($\$ / \mathrm{y}$) 147
Misc matls ($\$ / 10001 / 4 \& \$ / y$) 5.3
Driver costs incl ouhd ($\$ / \mathrm{y}$) 0
Maint $\operatorname{cost}(\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}) \quad 6.1 \quad 40$
Total variable costs ($\$ / \mathrm{y}$) 221
(1) Ref. source: 1-10, 12-34, 76-90.
(2) See AFEN printont for details.
(3) Converted (C), Add-on (AD) or Stard-alone (SA).
(4) Associater with fleet garagirg, sales ardid arministration, etc. (5) All GJ wits are higher heating values
(6) Regular leared gasoline only. (7) Includes $\$ 260000$ lard cost.

CASE DEFINITION (1)

matkix ref \#: 16		MATRIX CASE\#:	2
FUEL:	CM	EngIE TYFE:	SI
SERVICE:	AUTO (COH4)	FIRP STAITON:	fETAR
LOCATION:	toronto	TINE FRAFE:	401983

ECONOHIC CRITERIA \& FUEL PROFERTIES

| χ foI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| χ int. on 80% vehicle investment | 15 |
| Fuel density (Te/m3) | .114 |
| Fuel higher heating value (GJ/m3) (5) (7) | 6.04 |

flant gate cost:

Prinary resource	Nat. Gas
Fiesource cost (\$/GJ)	4.7
Plant location (2)	Toronto
Froduct rate (N / d)	(2)
Froduct name	CNG
Frocess efficiercy (z)	92.8
Resource cost (\$/G)	4.7
Fesource cost (c/l) (7)	2.83

TEFYINAL COSTS	Frimary	SECOMDARY
Throughput (N / d)	-	0
Storage capacity (days)	0	0
Construction status (3)	0	0
Irvestment \$(10)6	0	0
Investment cost $\$ / \mathbf{d}$	0	0
Utility cost \$/d	0	0
Misintrice cost \$/8	0	0
Labour cost \$/d	0	0
Other costs \$/8	0	0
Marketiris costs \$/d	0	0
Termiral costs \$/GJ	0	0
Termirial costs cents/l	0	0

FuEL COST AT FIAF:

Fretax fuel/Fed sal tx (c/l) 3.86 0
Fed exc/Frov tax (cents/1) 0 0
Total fuel tax ($\mathrm{c} / 1 \mathrm{I} \$ / \mathrm{GJ}$) 0 0
Tot fivel cost (c / l \& $\$ / \mathrm{G}$) $3.86 \quad 6.39$
OUEFALL RESOURCE UTILIZATION:
Fingr.km/GJ \& Te.km/GJ: 583 0
VEHICLE ANNUAL FIXED COSTS:
Licerise \& Irsurarice cost ($\$ / \mathrm{y}$)
735
Arrual cost of irvestment ($\$ / \mathrm{y}$) 646
Arrual cost of finarcirig ($\$ / 4$) 193
Other fixed costs ($3 / 4$) (4) 0
Total fixed costs ($\$ / \mathrm{y}$) 1574

TOTAL DISTRIEAION COSTS: PRI TERMINAL SEC TERKINGL REE STATION

Facility location	0	0	0
ka fron upstra point	0	0	0
\$/GJ shipped by barge	0	0	0
\$/GJ shipped by pipe	0	0	0
\$/GJ shipped by rail	0	0	0
\$/GJ shipped by road	0	0	0
Total distr cost (\$/GJ)	0	0	0
Total distr cost (cerit5/l)	0	0	0

SECOMOARY REFUELLING STATION COSTS:(6)
Fleet or retail Fetail
Throughput $\mathrm{GJ} / \mathrm{d} \& \mathrm{~m} 3 / \mathrm{d}(7) \quad 50 \quad 8.27$
Avg inveritory (diass thrput) negl
Construction status (3) AO
Orig irvest base $5 \operatorname{tn} \$(10) 60$
New irivestmerit \$(10)6 -11
Irer inv costs ($\$ /(\mathrm{d}) \quad 60$
Irice maint costs ($\$ / d$) 8
Irrer labour costs ($\$ / \alpha$) 0
Iricr other costs ($\$ /(\mathrm{d}) \quad 6$
Irer utility costs ($\$ / d$) 12
Statn costs ($\$ / \mathrm{GJ} \&$ cerits/1) 1.711 .03
vehicle data:
Fuel usage ($1 / 100 \mathrm{~km}$ \& G / km) 26.31 . 001589124
Vehicle life (kM \& yrs) $92400 \quad 19$
Fizyload (psrgrs \& Te) 1 0
Eiase cost ($\$$) \& tay ($\$$) 8156
Corversion type \& costs ($\$$) $\mathrm{K} \quad 1400$
Grants \& tak corcessions (\$) 500 614
Total net investment ($\$$) 9056
UEHICLE ANNLAL VAFIAEEE COSTS (ANERAGE):
Total fiel costs ($\$ / \mathrm{y}$) 67
Misc matls ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}$) $5.3 \quad 34$
Driver costs ircl outh ($\$ / y$) 0
Maint cost ($\$ / 1000 \mathrm{k}$. $8(\$ / \mathrm{y}$) 6.1
Total variable costs ($\$ / \mathrm{y}$) 141

```
= 25.9 certs/Psrgr.km
= 0 cents/Te.kM
```

(1) Kief. sources: 1-10, 12-34, 76-90, 129-131, 133, 135-141, 143-154.
(2) Flafit is located at retail outlet. (3) Converted (C), Addon (AO) or Stand-alone (SA).
(4) Associated with fleet garaging, sales and aministration, etc. (5) All $G d$ units are higher heatirg values
(6) Excluring NG feed cost. (7) At 16.5 Hfo fiel tark pressire.

CASE DEFINITION (1)

MATEIX REF		HATRIX CASE\#:	3
FUEE:	Fropare	ENGINE TYFE:	SI
SERUICE:	AUTO (COHM)	FURP STATION:	kETAIL
LOCAIION:	TORONTO	TIME FRAME:	401983

ECONOHIC CFITERIA \& FIEL PROFERTIES

| X ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| X init, on 80% vehicle irvestment | 15 |
| Fuel dersity (Te/m3) | .508 |
| Fuel higher heating value (GJ/m3)(5) | 25.59 |

FUEL COST AT FUAf:
Fretax fuel/Fed sal t\% (c/l) 25.08
Fed exc/Frov tax (cents/l) .74
Total fiel tax ($c / 1 \& \$ / \Omega J$) .81
Tot fuel cost (c/l \& $\$ / \mathrm{G}) \quad 25,89$
ONEFALL RESOURCE UTILIIATION:
Fsigr.k.M/GJ \& Te,km/GJ: 618
0
VEHICLE ARANIAL FIXED COSTS:
Licerise \& Irruirance cost ($\$ / y$) 735
Armusl cost of investment ($\$ / y$)
Arrial cost of firarcires ($\$ / y$)
Other fiyed costs ($\$ / y$) (4)
$=$ Total fived costs (\$/y) 1594
AVEFAGE VEHICLE LJFE CYCLE COST OF OPERATION
AVERAGE VEHICLE LIFE CYCLE COST OF OFFFATION
$0 \quad$ Vehicle life (K.M \& yrs) 92400
.31 Fizyload (psigrs \& Te) 1
$10.11 \quad$ Base cost ($\$$) 8 tax ($\$$) 8156
Corversion type \& cost ($\$$) F 1100
Grants \& tak coricessions (\$) $0 \quad 614$
Total net irvestmerit ($\$$) 9256
vehicle ammal variafle costs (average):
Total fivel costa ($\$ / y$) 106
Misc matls ($\$ / 1000 \mathrm{k} \cdot \mathrm{H}$ \& $\$ / \mathrm{y}$) 5.3 34
Driver costs ircl outh ($\$ / y$) 0
Maint cost ($\$ / 1000 \mathrm{kn} \$ \$ / y$) 6.1
Total variable costs ($\$ / \mathrm{y}$) 180

$$
\begin{array}{cc}
= & 26.8 \text { cents } / \mathrm{psrgr}, \mathrm{kn} \\
= & 0 \text { cerits } / \mathrm{Te} . \mathrm{kn}
\end{array}
$$

(1) Fief. sources: 1-10, 12-34, 76-90, 111-118.
(2) See ArEK printout for details. (3) Converted (C), Adsfon (AO) or Starn'alone (SA).
(4) Associated with fleet garaqirg, sales and arministration, etc, (5) All GJ wiits are higher heating values
(6) Propare only (7) Gathering costs in Alherta are shown as road cost.

CASE DEFINITION (1)

HATRIX REF	2a	MATRIX CASE\#:	4
FIEL:	CASOLIME(RU)	ENGIE TYFE:	SI
SERVICE:	AUTO (STD)	PLPP STATION:	FETAIL
LDCATION:	TORONTO	TIPE FRAME:	40 1983

ECOMOHIC CRITERIA \& FLEL FFOFERTIES
Z ROI ori 4883 planit replacement value 20
z irit, or 80% vehicle irwestment 15
Fuel density ($\mathrm{Te} / \mathrm{M3}$) 718
Fuel higher heating value ($\mathbf{N} / \mathbf{m 3}$)(5) 34

PLANT GATE CQST:	
Primary resource	Criode
Fesource cost (\$/G)	5.88
Flant location	S.Ontario
Froduct rate ($\mathrm{C} / \mathrm{/}$) (6)	78295
Froduct name	Gasolire(FL)
Frocess efficiercy (\%)	85.88
Froduct cost (2) (\$/GJ)	8.4
Froduct cost (cents/l)	28.56

TERMINAL COSTS	FRIMAFY	SECDADARY
Throughpiri (m3/d) (6)	1068	0
Throughput (CJ / d) (6)	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investment \$(10)6	12.3	0
- Irwestment cost \$/d	6739	0
Utility cost \$/d	110	0
Maintrice cost \$/d	110	0
Labour cost \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/6	10672	0
Termiral costs \$/GJ	. 54	0
Termiral costs cents/l	1.83	0

FUEL COST AT FIPIF:
Pretax fuel/Fed sal t\% (c/1) 35.31 3.17
Fen e:c/Frou tax (cent5/1) $1.5 \quad 7.6$
Totel fluel tax (c/1 \& \$/GJ) 12.27 3.6
Tot finel cost ($c / 1 \& \$ / G) \quad 47.58 \quad 13.99$
ONEFALL RESOURCE UTILIZATION:
Fsrogr.k.m/GJ \& Te.km/GJ: 381
VEHTCLE ANMLAL FIXED COSTS:
License a Irisirance cost ($\$ / \mathrm{y}$) 735
Arrual cost of irvestment $(\$ / y) \quad 815$
Arrual cost of firarcirg $(\$ / y) 244$
Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fixed costs ($\$ / \mathrm{s}$)

TOTAL DISTRIEAION COSTS:
Facility location
k. from upstrm point
\$/EN shipped by barge
\$/GJ shipped by pipe
\$/G shipped by rail
\$/Gd shipped by road
Total distr cost ($\$ / \mathrm{G}$)
Total distr cost (cents/1)

FRI TERMIMAL	SEC TERNIMA	KEF STATION
TOranto	0	TOronto
150	0	20
0	0	0
.09	0	0
0	0	0
0	0	.11
.09	0	.11
.3	0	.37

REFLELLING STATION COSTS:

AVEFAGE VEHTCLE LIFE CYCLE COST OF OFERATION $=11.6$ cerits/psngr.k.m
AVEFFGE VEHICLE LIFE CYCLE COST OF OFERATION
$=$
0 cents/Te.kM
(1) Ref. sources: 1-10, 12-34, 76-90.
(2) See AFEM printout for details.
(3) Coriverted (C), Adtor, (AO) or Stant-alone (SA).
(4) Associated with fleet garagirg, sales ard admiristration, etc. (5) All GJ urits are higher heatirg values
(6) Regular leaded gasolire only.
(7) Ircludes $\$ 260000$ larn cost.

CASE DEFINITION (1)

MATFIX REF		MATRIX CASE\#:	5
FIEL:	OIESEL	ENGINE TYPE:	CI
SERUICE:	AUTO (STD)	FUMF' STATION:	RETAIL
LOCATION:	TOROMTO	TITE FRAME:	401983

ECONOMIC CFITERIA \& FLEL FKOFERTIES

\% FOI on 4083 plarit replacement value	20
\% int. on 80% vehicle irmestment	15
Fuel density (Te/m3)	.829
Fivel higher heatirg value (GJ/m3)(5)	38.18

FLANT CATE COST:

Primary resource	Cruse
Fiesource cost (\$/G)	5.88
Plant location	5.0ntario
Frordect rate ($\mathrm{CJ} / \mathrm{S}^{\text {) }}$ (6)	61074
Frodict name	Diesel
Frocess efficiercy (\%)	85.88
Produnt cost (2) (\$/GJ)	7.64
Froduct cost (cents/l)	29.16

TERMTNAL COSTS	FRIMARY	SECORDAFY
Throughput ($43 / \mathrm{d}$) (6)	720	0
	27489	0
Storage capacity (days)	20	0
Conistruction status (3)	SA	0
Investment \$(10)6	8.3	0
Investment cost $\$ / 1 / 8$	4547	0
Utility cost s/d	74	0
Msintree cost \$/d	74	0
Labour cost $\$ / \mathrm{d}$	1150	0
Other costs \$/d	326	0
Marketirg costs \$/d	7195	0
Terminal costs \$/Gd	. 48	0
Termirial costs cents/l	1.83	0

Fretax fuel/Fed sal te (c / l) 35.82
Fer exc/Frov tak (cents/1) 0
Total fiel $\operatorname{tax}(\mathrm{c} / 18 \$ / \mathrm{N}) 12.82$
Tot fuel cost ($\mathrm{c} / 1$ \& \$/GJ) 48.64
OUERALL RESOURCE UTILIZATION :

UEHTCLE ANMUAL FIXED COSTS:
License \& Insurarice cost $(\$ / y)$
Anrual cost of investment ($\$ / y$)
Arrual cost of firaricires $(\$ / y)$
Other fixed costs ($\$ / 4$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

TOTAL DISTRIESITON COSTS:
Facility location
km from upstrm point
\$/WJ shipped by barge
\$/G shipped by pipe
\$/GJ shipped by rail
\$/GJ shipperd by rood
Total distr cost ($\$ / \mathbf{G}$)
Total distr cost (cents/l)

FRI TEFHIMAL	SEC TERTINAL	REF STATION
TORONTO	0	Toronto
150	0	20
0	0	0
.083	0	0
0	0	0
0	0	.095
.083	0	.095
.31	0	.36

FEFUELLING STATION COSTS:
Fleet or retail Retail
Throughput GJ/O \& M3/S 39510.34
Avg inveritory (days thrput) 7
Construction staturs (3) SA
Orig invest base stri $\$(10) 6$ (7) . 51
New irvestment $\$(10) 6$
Irvestment costs ($\$ / \mathbf{\delta}) \quad 279$
Maintenarice costs ($\$ / \Omega$) 7
Lahour costs (\$/ه) 130
Other costs ($\$ / \sigma$) 14
Utility costs ($\$ / 0$) 4
Statn costs ($\$ /[J / \&$ cents/1) 1.09 . 4.16
VEHICLE DATA:
3.22 Fuel usage ($1 / 100 \mathrm{k} . \mathrm{M}$ \& $\mathrm{GJ} / \mathrm{K.M}$) 6.82°. 002603876
$9.6 \quad$ Vehicle life (k.m \& yrs) $183000 \quad 10$
3.35 Fayload (psnors \& Te) 1.31
12.73 Eiase cost ($\$$) 8 tax ($\$$) 8555 645

Conversion type $\& \operatorname{cost}(\$) 0$
Grants \& ta: corncessions ($\$$) 0
Total net irvestment ($\$$) 9200
VEHICLE ANMIAL VARIAELE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 606
Hise matls ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}) \quad 5.7 \quad 104$
Driver costs incl owhd $(\$ / y) \quad 0$
Mairit cost ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) $6.2 \quad 113$
Total variable costs ($\$ / y$) 823
AUERAGE VEHICLE LIFE CYCLE COST OF OPERATION $=\quad 11.5$ cents/psrigr.k.k
AVEFAGE VEHICLE LIFE CYCLE COST OF OPERATION
(1) Ref. source: 1-34, 76-90.
(2) See AFEM printout for setails.
(3) Converter (C), Andton (AO) or Stand-alone (SA).
(9) Associated with fleet garaoing, sales ard administration, etc.
(5) All GJ units are higher heating values
(6) Diesel only.
(7) Inclupes $\$ 260000$ land cost.

CASE DEFINTITON (1)

MATEIX REF \#: 28		HATKIX CASE\#:	
FUEL:	LNG	ENGINE TYPE:	SI
SERUICE:	AUTO (STD)	Futi Station:	RETAIL
LOCATION:	TOKONTO	TIFE FRAFE:	401983

ECONOHIC CRITERIA \& FUEL FROFERTIES

| $\%$ ROI on 4083 plant replacemerit value | 20 |
| :--- | :--- | :--- |
| $\%$ int. ori 80% vehicle investment | 15 |
| Fivel density (Te/M3) | (425 |
| Fivel higher heatirg value $(G / / M 3)(5)$ | 22.16 |

PLANT GATE COST:

Primary resorfce	Nat. Gas
Resontre cost ($\$ / \mathrm{GJ}$)	4.7

(a)

Plant locstion
Frodicet rate (G / d)
Froruct name
Frocess efficiency (\%)
Product cost (2) ($\$ /(\mathrm{F})$
Frownet cost (cent5/1) 22.78

TERHINAL COSTS	Primariy
Throughput (n3/d)	0
Throughput (GJ/d)	0
Storage capacity (rizys)	0
Construction status (3)	0
Irvestmerit \$(10)6	0
Irvestment cost \$/d	0
Utility cost, $9 / 8$	0
Maintrice cost s/d	0
Labour cost $\quad \$ / \mathrm{d}$	0
Other costs \$/d	0
Marketirs costs \$/d	0
Termiral costs \$/EN	0
Terminal costs cents/1	0

fuel cost at flaf:
Fretax fuel/Fed sal tx ($\mathrm{c} / 1$) 28.16
Fed exc/Frov tax (cent5/1) 0
Total fuel $\mathrm{tax}_{\mathrm{a}}(\mathrm{c} / 18 \mathrm{~s} / \mathrm{GN}) 0$
Tot fuel cost ($\mathrm{c} / 1 \mathrm{l}$ \& s / GJ) 28.16
ONERALL RESOUFCE UTILIZATION:
FErigr,km/GJ \& Te,km/GJ: 363
vehicle anmal fixed costs:
License \& Insurarice cost ($\$ / \mathrm{y}$)
Anrual cost of investment ($\$ / \mathbf{y}$)
Armal cost of firarcirg ($\$ / y$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
$=-$ Total fixed costs (\$/y)

TOTAL DISTRIEATON COSTS: FRI TERKINAL SEC TERHINAL REF STATION

Facility location	0	0	Toronto
ken frow Lpstra point	0	0	20
$\$ / G J$ shipped by barge	0	0	0
$\$ / G J$ shipped by pipe	0	0	0
$\$ / G N$ shipped by rail	0	0	0
$\$ / G J$ shipped by rosd	0	0	.66
Total distr cost ($\$ / G$ N)	0	0	.66
Total distr cost (cents/l)	0	0	1.46

SECDNDAFY
Fleet or retail Ketail
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d} \quad 50 \quad 2.25$
Avg inventory (days thrput) 4
Construction status (3) AD
Orig invest base stri $\$(10) 6 \quad 0$
New investmerit $\$(10) 6$. 14
Ircerem irn costs ($\$ / \mathrm{d}$) 76
Ircer. maint costs ($\$ / \mathrm{d}$) 4
Incr labour costs ($\$ / d$) 0
Irer other costs ($\$ / \mathrm{d}$) 8
Irer utility costs ($\$ / \mathrm{d}$) 1
Statri costs ($\$ / \mathrm{GJ} \& \operatorname{cents/1)} 1.77 \quad 3.92$
vertcle data:

Fiel usaoe ($1 / 100 \mathrm{~km}$ \& $\mathrm{G} / \mathrm{/kM}$)	13.59	.003011544
Vehicle life (k.m 8 yrs)	183000	10
Fayload (psrigs \& Te)	1.3	0
Ease cost (\$) 8 tax ($\$$)	7580	570
Conversior type \& cost (\$)	Fx	3200
Grants \& taw concessiors (5)	0	570
Total net irvestment (\$)		10780

vehicle anmal variaete costs (averace):
735 Total fuel costs ($\$ / \mathrm{y}$) 699
1078 Misc matls ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}) 5.7104$
323 Driver costs ircl orth ($\$ / \mathrm{y}$) 0
Maint cost $(\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}) 6.6 \quad 120$
Total variable costs (\$/y) 923

AUEFAGE LEHICLE LIFE CYCLE COST OF OFERATION $=\quad 12.8$ cerits/psrigr.kn
AUEFAGE VEHTCLE LIFE CYCLE COST OF OFERATION $=00$ cents/Te,kM
(1) Ref. sarces: $1-10,12-34,76-90,127,128,130,132-152 .$.
(2) See AFEH printart for detzils. (3) Converted (C), Add-on (AO) or Stard-alore (SA).
(4) Associated with fleet garaging, sales and administration, etc. (5) All GJ urits are higher heating values

CASE DEFINTIION (1)

MATRIX REF		MATRIX CASE\#:	7
FLEL:	CNG	ENGINE TYFE:	SI
SERUICE:	AUTO (STD)	FlPP STATION:	RETAII
LOCATION:	TOFONTO	TIE FRAKE:	401983

ECONOHIC CRITERIA \& FUEL PROPERTIES

Z FOI on 4083 plant replacemerit value	20
Z int. on 80% vehicle investment	15
Fuel density (Te/n3)	.114
Fuel higher heating value $(G J / H 3)(5)(7)$	6.04

PLANT CATE COST:

Primary resonrce	Nat, Gas
Resource cost ($\$ / \mathrm{GJ})$	4.7

(
Plant location (2)
Prodict rate (G / d)
Frosuct name
Frocess efficiency (\%)
Resource cost (\$/GJ)
Resource cost (c/l)(7)
4.7

Toronto
(2)

CNG
92.8
4.7
2.83

TOTAL DISTRIE:ITON COSTS: Facility location $\quad 0 \quad 0 \quad 0 \quad 0$ k.n from upstrm point \$/EN shipped by barge \$/G shipped by pipe \$/EJ shipped by rail \$/Gd shipped by road Total distr cost ($\$ /[\mathrm{G}$) Total distr cost (cents/l)

FRI TERMTMAL SEC TERMTMAL

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

TERMINAL COSTS	FRIMARY	SECOMDARY
Throughput ($\mathrm{m} 3 / \mathrm{d}$)	0	0
Throughput (G / d)	0	0
Storage capacity (days)	0	0
Construction statis (3)	0	0
Investment $\$(10) 6$	0	0
Irvestment cost $\$ / d$	0	0
Utility cost $\$ / d$	0	0
Maintrice cost $\$ / d$	0	0
Labnur cost $\$ / d$	0	0
Other costs $\$ / d$	0	0
Marketinq costs $\$ / d$	0	0
Terminal costs $\$ /[J$	0	0
Termirial costs cents/1	0	0

FIEL COST AT PLAF:
Frotax fuel/Fed sal tix (c/1) 3.860
Fed exc/Frov tax (cents/l) 0 . 0
Totel fuel tex (c/l \& $\$ / \mathrm{C}_{\mathrm{N}}$) 0
Tot fuel cost (c/1 \& \$/G) 3.88 6.39
OVEFALL RESOLPCE UTILIZATION :
PErgr.kM/GJ \& Te.km/GJ: 412
0
VEHICLE AMMKAL FIXED COSTS:
License \& Insurarice cost ($\$ / \mathrm{y}$)
Armial cost of irvestment ($\$ / y$)
888
Arrual cost of finarcing ($\$ / y$) 266
Other fined costs ($\$ / y$) (4)
Total fived costs ($\$ / y$)
0
1889

FEFPELING STATION CDSTS:
Fleet or retail Retail
Throughput $G / / d \& 43 / d \quad 50 \quad 8.27$
Ave irwentory (days thrput) negl
Construction staturs (3) AO
Orig invest base stri $\$(10) 6$
New investment $\$(10) 6$. 11
Ircrem jnv costs ($\$ / \mathrm{d}$) 60
Iricr. maint costs ($\$ / \mathbf{1}$) 8
Iricr labour costs ($\$ / \mathrm{d}$) 0
Iricr other costs ($\$ / d$) 6
Irer utility costs ($\$ / \alpha$) 12
Statn costs ($\$ /[/ 18$ cents/1) $1.71 \quad 1.03$
VEHTCLE DATA:

Fuel ussge ($1 / 100 \mathrm{~km}$ \& $\mathrm{CJ} / \mathrm{km}$)	48.41	. 002923964
Vehicle life (kM \& yrs)	183000	10
F'zyloar (psrors \& Te)	1.3	0
Ease cost ($\$$) \& tax ($\$$)	7580	570
Coriversion type \& cost ($\$$)	R	1800
Grants \& tax corressions (\$)	500	570
Total net investment (8880

Total ret investmerit ($\$$) 8880
VEHICLE ANMAL VARIAELE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 341
Misc matls ($\$ / 1000 \mathrm{~km} \$ \$ / \mathrm{y}$) $5.7 \quad 104$
Driver costs ircl outh ($\$ / \mathrm{y}$) 0
Maint cost ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}$) 6.6120
Total variable cost. ($\$ / \mathrm{y}$) 565

AJEFAGE YEHICLE LIFE CYCLE COST OF OFERATION $=\quad 10.2$ cents/psngr.kM
AVERACE VEHICLE LIFE CYOLE COST OF OFERATION
$=$ 0 cents/Te.k.k
(1) Ref. sorrces: 1-10, 12-34, 76-90, 129-131, 133, 135-141, 143-154.
(2) Plant is located at retail outlet, (3) Corverted (C), Ans-on (AD) or Stanj-alore (SA).
(4) Associated with fleet gar zging, sales and administration, etc. (5) All G irits are higher heating values
(6) Excluding $N G$ feod cost. (7) At 16.5 ifa firel tark pressure.

CASE DEFINITION (1)

MATRIX REF $\ddagger: 2 \mathrm{l}$		MATRIX CASE\#:	8
FUEL:	Propane	ENGINE TYFE:	SI
SERVICE:	AUTO (STD)	FIRP STATION:	RETAIL
LOCATION:	TORONTO	TIME FRATE:	4 C 1983

ECONDMIC CRITERIA \& FLEL FROFERTIES

| \% ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| $\%$ int. on 80% vehicle irmestment | 15 |
| Fuel density (To/m3) | .508 |
| Fuel higher heating value (GJ/m3) (5) | 25.59 |

PLANT GATE COST:

Primary resource	Raw nat gas
Resource cost (\$/G)	2
Plant location	Edmontion
Pronect rate (GJ/d)(6)	46308
Product name	Proparse
Frocess efficiercy (\%)	92.8
Froduct cost (\$/GJ)(2)	4.24
Proniut cost (cenits/1)	10.85

TOTAL DISTRIEATION COSTS:
Facility location kn from upstrm point \$/GJ shipped by barge \$/al shipped by pipe \$/GJ shipped by rail \$/Gl shipped by road Total distr cost (\$/GJ)
Total distr cost (cents/l)

PRI TERMIMAL	SEC TERHIMAL	REF STATION
Sarnia (7)	Toronito	Toronto
3095	245	20
0	0	0
.3	0	0
0	0	0
.44	.45	.57
.74	.45	.57
1.89	1.15	1.45

TEFMINAL COSTS	PRIMARY	SECCONAFY
Throwehput (m3/d) (6)	6443	300
Throughput ($\mathrm{N} / \mathrm{/d}$) (6)	164876	7677
Stor3ge capacity (days)	20	10
Coristruction status (3)	SA	SA
Investment \$(10)6	30	4
Irvestment cost \$/d	16438	2191
Utility cost \$/d	20700	100
Maintnce cost \$/d	1644	219
Labour cost \$/d	2730	500
Other costs \$/d	1644	219
Marketing costs \$/d	70600	8000
Terminal costs \$/G	. 68	1.46
Terminal costs cents/1	1.74	3.73

FEFIELLING STATION COSTS:

FLEL COST AT FURF:
Fretax fuel/Fed sal tx (c/1) 25.08
Fed exc/Frou tax (cents/1) .74
Total fuel tax (c/l $8 \$ / G)$) 81 .31
Tot fuel cost, ($c / 1 \& \$ / G J$) $25.89 \quad 10.11$
ONERALL RESOURCE UTILIZATION:
F'sngr.k.m/GJ \& Te.k.m/GJ: 4120
VEHICLE AMNUAL FIXED COSTS:
Licerise \& Insurarce cost ($\$ / y$) 735
Arrual cost of investment ($\$ / y$)
858
257
0
1850

Fleet or retail	Retail
Throurghut GJ/d \& m3/d 50	1.95
Avg inveritory (days thrpit)	4
Construction status (3)	AD
Orig irvest base stri \$(10)6	0
New investment \$(10)6	. 07
Increm inv costs ($\$ / \mathbf{d}$)	38
Iricr, maint costs ($\$ / \mathrm{d})$	2
Irier labour costs ($\$ / \mathbf{/ d}$)	0
Irer other costs ($\$ / \mathbf{d}$)	43
Irer utility costs ($\$ / \mathrm{d}$)	1
Statn costs (\$/GJ \& cents/1) 1.67	4.27

Increm inv costs ($\$ / \mathbf{d}$) 38
Iricr, maint costs $(\$ / d) \quad 2$
Irice labour costs ($\$ / \mathbf{d}$) 0
Irier other costs ($\$ / d$) 43
Irer utility costs ($\$ / \mathrm{d}$) 1
Statn costs ($\$ / \mathrm{G} / \&$ cents/1) $1.67 \quad 4.27$
VERICLE DATA:
Fivel usage ($1 / 100 \mathrm{kM}$ \& GJ/k.m) $11.43 \quad .002924937$
Vehicle life (k.m \& yrs) $183000 \quad 10$
Fiayload (psrgrs \& Te) 1.30
Eiase cost ($\$$) \& tax ($\$$) 7580
Conversiori type \& cost ($\$$) \quad i 1400
Grarits \& tax concessioris (\$) $400 \quad 570$
Total net irvestment ($\$$) 8580
VEHICLF AMANAL VAFIAELE COSTS (AVERAGE):
Total fuel costs ($\$ / y$)
Misc matls (\$/1000k.m \& \$/y) 5.7104
Driver costs incl outhr ($\$ / y$)
Maint cost ($\$ / 1000 \mathrm{~km} \$ \$ / \mathrm{y}$) 6.6
0

Total variable costs $(\$ / y)$. 76

AVERAGE VEMICLE LIFE CYCLE COST OF OFERATION $=\quad 10.9$ cents/psrigr.k.m
AUERACE VEHICLE LIFE CYCLE COST OF OPERATION
(1) Ref. sources: 1-10, 12-34, 76-90, 111-118.
(2) See AFEM printout for details. (3) Corverted (C), Addoni (AO) or Stand-alone (SA),
(4) Associated with fleet garagirg, sales and administration, etc. (5) All GI units are higher heating values
(6) Propane orily. (7) Gathering costs in Alberta ard breakout tark/term costs at U.S border are included in road costs 35.36 and . $08 \$ / \mathrm{al}$ respectively.

CASE DEFINITION (1)

MATRIX FEF		HATRIX CASE\#:	9
Fen:	MEDH(90\%)(8)	EMGINE TYFE:	SI
SERVICE:	AlTO (STD)	FUAP STATION:	KETAIL
LOCATION:	TORONTO	TIME FRAME:	401983

ECOMOMIC CRITERIA \& FLEL FROPERTIES

2 ROI on 4083 plant replacement value	20
$\%$ int, on 80% vehicle investment	15
Fuel density (Te/m3) (B)	.788
Fuel higher heatirg value $(G) / \mathrm{m} 3)(8)(5)$	19.67

	FLANT CATE COST:		
Frim resrce	Nat gas	Crude	-
Resrce \$/GJ	2	5.88	-
Location	Edmeritori	S. Ont.	-
Prod GJ/d	45414	83741	-
Prod nime	Methenol	Gasoline(kL)	Elers(8)
Proceff \%	61.1	85.88	65.38
Prod \$/[N (2)	7.909	8.4	8
Frood cent5/1	14.3	28.56	15.73

TERTINAL COSTS	fritmary	SECONO
Throughput (m3/d) (7)	25	0
Throughpit (G / $/ d$ (7)	491	0
Avg invertory (days thrput)		0
Construction status (3)	AO	0
Incer investrit \$(10)6	. 2	0
Iricr irvst cost $\$ / \mathbf{d}$	109	0
Incer util cost $\$ / \mathrm{d}$	0	0
Incer maint cost \$/8	5	0
Irce labor cost $\$ / 8$	0	0
Irice other costs $\$ / 8$	11	0
Irier metg costs $\$ / \mathrm{d}$	140	0
Terminal costs s/GN	. 53	0
Terminal costs cents/l	1.04	0
FLEL CEST AT FIMf:		
Fretax fuel/Fed sal tw (c/l)	23.97	2.15
Fers exc/frou tax (cerits/l)	0	0
Total fuel tax ($¢ / 1$ \& $\$ / \mathrm{G})$	2.15	1.09
Tot fiel cost ($\mathrm{c} / 1 \mathrm{l}$ \$/GJ)	26.12	13.27
OVEFALL RESOURCE UTILIZATION:		
Fignigr Mm/GJ \& Te.km/GJ:	290	0
VEHICLE ANMUAL FIXED COSTS:		
Licerise \& Insurnace cost ($\$ / 4$		735
Arrusl cost of investment ($\$ / 4$		838
Afrovel cost of firarcing ($5 /$		251
Other fixed costs ($\$ / 4$) (4)		0
Total fixed costs ($\$ / \mathrm{y}$)		1824

FLEL COST AT FIAF:
Fretax fuel/Fed sal t: (c/1) 23.97 2.15
Fer exc/frou tox (cerits/l) 0
Total fivel $t_{\text {as }}(\mathrm{c} / 18 \$ / \mathrm{G}) \quad 2.15 \quad 1.09$
Tot fiel cost ($\mathrm{c} / 18 \mathrm{l} / \mathrm{G}$) $26.12 \quad 13.27$
OVERALL RESOLRCE UTILIZATION:
F'shigr, ikm/GJ\& Te.km/GJ: 290
VEHTCLE ANMAL FIXED COSTS:
Licerse \& Insurance cost ($\$ / \mathrm{y}$)
Arrusl cost of investment ($\$ / 4$)
Arroul cost of firiarcing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
$=\quad$ Total fiked costs ($\$ / \mathrm{y}$)

TOTA. DISTRIEUTION COSTS:
Facility location ke from upstra point \$/EJ shipped by pipe (6)
$\$ /\left[\begin{array}{l}\text { d } \\ \text { shipped by pail (} 6 \text {) }\end{array}\right.$ \$/Gd shipped by road 0 Total distr cost ($\$ /$ /al $)$ Total distr cost (cents/l)

FRI TERMIMAL SEC TERHINAL REE STATION
Tororito 0 Toronto
2850 \& $150 \quad 0 \quad 20$
-
2.17
o
2.18
3.95

20
0
0
0
.54
.54
1.06

AVEFACE VEHICLE LIFE CYCLE COST OF DFERATION
AVEFAGE UEHTCLE LIFE CYCLE COST OF OFERATION
(1) Ref. source: 1-10, 12-34, 37-47, 49-59, 61-90 .
(2) See AFEK priritout for details.
(3) Converted (C), Adston (AO) or Stend-alone (SA).
(4) Associated with fleet garagirq, soles and administration, etc. (5) All GJ luits are higher heating values
(6) 102 gasoline pipelire tariff (.31c/1) 890 MeOH rail tariff ($4.35 \mathrm{c} / 1$).
(7). 90\% hell blend w/gasoline.
(8) Cold start formulation of 90 vz Methanol, 100% gasolire (latter blerded at corveritional fiels termiral).

CASE DEFINITION (1)

ECONOHIC CRITERIA \& FUEL proferties

$z \mathrm{KOI}$ on 4083 plant replacement value	20
\% int. or, 80\% vehicle investment	15
Fuel density (Te / m) (8)	. 724
Fiel higher heatirg value ($\mathrm{N} / \mathrm{M} 3$) (8)(5)	32.99

FLANT GATE COST:
Frimary resources
Resrce cost $5 / G /(6)$
Flant location
Froduct rate GI/d (8)
Froduct name
Frocess eific. (\%) (7)
$\begin{array}{ll}\text { Froduct cost (} \$ / G J)(2) & 8.67 \\ \text { Froduct cost (cents/1) } & 28.6\end{array}$

TERYTNAL COSTS	FRIMAFY	SECONDARY
Throughput, (m3/d) (8)	1098	0
Throughput (C / d) (8)	36233	0
Avg inventory (days tirput)	20	0
Construction status (3)	C	0
Investment \$(10)6	12.3	0
Investment cost \$/d	6739	0
Utility cost s / d	110	0
Maintenarce cost \$/d	110	0
Labour cost \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/d	10672	0
Termirial costs \$/GJ	. 547	0
Terminal costs cerits/l	1.8	0

Fuen cost at fump:

Fretax fuel/Fed sal tix (c/l) 35.11 Fed exc/Frov tax (cents/l) 1.5 Total fiel tax (c/1 \& \$/G) 11.53 Tot fiel cost (c/1 \& \$/G) 46.64

DVERALL RESOURCE UTILIZATION:
FFrigr.kM/GI \& Te,km/GJ: 383
vehicle ankual fixed costs:
Licerise \& Insurarme cost ($5 / \mathrm{y}$)
Anrwel cost of irwestment ($\$ / \mathrm{y}$)
Arrual cost of firarcijre ($\$ / \mathrm{s}$)
Other fined costs ($\$ / y$) (4)
Total fi:ed costs ($\$ / \mathrm{y}$)

SECONOARY

735
815
249
0
1794

$$
14.13
$$

0

TOTAL DISTRIEUION COSTS:
Facility location kn from upstrm point
\$/GJ shipped by barge
\$/G shipped by pipe
\$/GN shipped by rail
s/Cl shipped by road
Total distr cost ($\$ / \mathbf{G})$
Total distr cost (cents/1)

Fri terhinal sec terkinal kef station
Toronto 0 Toronto
$150 \quad 0 \quad 20$
$0 \quad 0$
$0 \quad 0$
$0 \quad 0$
.0930 .
$.093 \quad 0 \quad .11$
.3

0 0 0 .11 .11
.36
herueliing station casts:

Fleet or retail		Retail
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d}$	356	10.79
Avg inventory (days thrput)		7
Construction status (3)		C
Oric invest base stri \$(10)6		. 51
New irwestment \$(10)6		. 01
Irivestment costs (\$/ $\$$)		284
Maintenarice costs ($\$ / \mathrm{d}$)		7
Labour costs ($\$ / \mathrm{d}$)		130
Other costs (\$/d)		14
Utility costs (\$/ $\mathbf{S}^{\text {) }}$		4
Statis costs (\$/CJ \& cents/l)	1.23	4.05
VEHICLE DATA:		
Fuel usage ($1 / 100 \mathrm{~km} \mathrm{\&} \mathrm{G/k/k)}$	8.863	. 0029239037
Vehicle life (kM 8 yrs)	183000	10
Fayload (psrmes \& Te)	1.3	0
Elase cost (\$) \& tax (\$) 7	7580	570
Conversion type \& cost (\$)		0
Grants \& tax concessions (\$) 0		0
Total net irwestment (\$)		8150
VEHICI.E AMMIAL VAFIAELE COSTS (AUERACE):		
Total fuel costs ($\$ / \mathrm{y}$)		756
Misc matls ($\$ / 1000 \mathrm{~km}$ \& \$/y) 5	5.7	104
Driver costs incl outd ($\$ / \mathrm{y}$)		0
Majrit cost (\$/1000kn \& \$/y) 6	6.6	120
Total variable costs ($1 / 4$)		980

> AVEFAEE IEHICLE LJFE CYCLE COST OF OFERATION $\quad=\quad . \quad 11.6$ cents/psrar.k. A'IVEAGE UEHTCLE LIFE CYCLE COST OF OFERATION $=\quad 0$ cents/Te.km
3.15 Fuel u5sge ($1 / 100 \mathrm{~km}$ \& G / km) 8.863 . 0029239037
6.88 Vehicle life (k.m \& yrs) $183000 \quad 10$
3.99 Fayload (psrmes \& Te) 1.3 0
(1) Ref. source: 1-10, 12-34, 37-47, 49-59, 61-90.
(2) See AFEM printout for details. (3) Corverted (C), Add-on (AO) or Stard-alone (SA).
(4) Associated with fleet garaqirg, sales ard adoministration, etc, (5) All GJ units are higher heating values
(6) HeOH cost is Edmenter plant gate($\$ 7,91 / \mathrm{N})+52.40 / \mathrm{GN}$ rail tariff to refirery. (7) B7Z(refinery), biZ(alc. prod'n) e ZGJ.
(8) 4. Tovz methariol, 4.75 vK t butanol $\$ 90.5 \mathrm{~s} \%$ leaded gasoline blended at rofirery to leaded regular specificatiors.

CASE DEFINITION (1)

MATRIX REF $\ddagger: 2 \mathrm{lh}$		MATRIX CASE \ddagger :	11
Ful:	ETOH ELEMD (8)	ENGINE TYPE:	SI
SERVICE:	ATTO (STD)	PUMP STATION:	RETAII
LOCATION:	TORONTO	TIME FRAME:	401983

ECONOMIC CRITEFIA \& FLEL PROFERTIES

7 KOI on 4083 plant replacement value	20
7 int. on 80% vehicle irvestment	15
Finel density (Te/m3) (8)	.725
Fuel higher heating value ($\mathrm{G} / \mathrm{m} 3)(8)(5)$	32.91

PLANT SATE COST:

ces	Cruse/Ethanol
Resrce cost \$/GJ (6)	5.88/20.32
Plant location	S.Ontario
Prodect rate GJ/d (8)	75844
Product пime	Gasohol
Process effic. (\%) (7)	86,63
Froduct cost (\$/GJ)(2)	9,01
Product cost (cents/l)	29.65

TEKMINAL COSTS	FFITMAR	SECONDARY
Throughput ($M 3 / \mathrm{s}$) (8)	1103	0
Throughput ($G / / \sigma^{\prime}$) (8)	36299	0
Avg inventory (dias thrput)	20	0
Construction status (3)	C	0
Investment \$(10)6	12.3	0
Irvestment cost $\$ /{ }^{\circ}$	6739	0
Utility costs $\$ / \mathrm{d}$	110	0
Mainteriance cost \$/d	110	0
Lahour costs s/d	1706	0
Other costs \$ $\$ / 8$	484	0
Marketing costs \$/d	10672	0
Terminal costs \$/GJ	. 54	0
Terminal costs cents/l	1.77	0

Five cost at finf:
Fretax fuel/Fer sal tx (c/1) $36.12 \quad 3.25$
Fed exc/Frou tax (cents/l) 1.5
Total fuel tex (c / l \& $\$ / \mathrm{s} \mathrm{l}) \quad 11.59$
Tot fiel cost ($\mathrm{c} / 18 \mathrm{~s} / \mathrm{6J}$) $\quad 47.71 \quad 14.49$
OUEFALL FESOURE UTILIZATION :
Fsngr,km/GJ \& Te,kM/EJ: 385
VEHICLE ANMMAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$)
Armulal cost of investment ($\$ / \mathrm{y}$)
Annual cost of finaricing ($\$ / \mathrm{y}$)
Dther fixed costs ($\$ / 4$) (4)
Total fixed costs ($\$ / y$)

TOTAL DISTRIEAITON COSTS:
Facility location km from Inpstrm poirit \$/GJ shipped by barge \$/GN shipped by pipe \$/GJ shipped by rail \$/EJ shipped by road Total distr cost ($\$ / \mathrm{G}$) Total distr cost (cerits/1)

FRI TERMIMAL	SEC TEFMINAL	REF STATION
Toronito	0	Toronto
150	0	20
0	0	0
0	0	0
0	0	0
.093	0	.11
.093	0	.11
.3	0	.36

ferfeling station costs:

Fleet or retail	Retail
Throughput GJ/d $8 \mathrm{M} / \mathrm{d}$ (356	10.81
Avg inventory (days thrput)	7
Coristruction status (3)	¢
Orig invest base str \$(10)6 (9)	. 51
New irvestment \$(10)6	. 01
Irwestment costs ($\$ / \mathrm{d}$)	284
Mainteriarce costs ($\$ / \mathbf{d}$)	7
Labour costs ($\$ / \mathrm{d}$)	130
Other costs ($5 / \mathrm{d}$)	14
Utility costs ($\mathrm{s} / \mathrm{/}$)	4
Statn costs (\$/GJ \& cents/1) 1,23	4.04

vertcle data:

alerage vericle life cycle cost of operation
AUERAFE vehicle life cycle cost of oferation

Fuel usage ($1 / 100 \mathrm{~km}$ \& G / km)	8.88	. 002922408
Vehicle life (km \& yrs)	183000	10
Fayload (psmgrs \& Te)	1.3	0
Ease cost (\$) \& tax (\ddagger)	7580	570
Conversion type 8 cost ($\$$)		0
Grants \& tax coricessioris (s)	0	0
Total ret investment (s)		8150
VEHICLE ANMMAL VARIAELE COSTS (AUERAGE):		
Total fiel costs ($\$ / \mathrm{y}$)		774
Misc matls ($\$ / 1000 \mathrm{~km} 8 \mathrm{~m} / \mathrm{y}$)	5.7	104
Driver costs incl auth ($5 / \mathrm{s}$)		0
Mrint cost ($\$ / 1000 \mathrm{~km}$ a $\$ / \mathrm{y}$)	6.6	120
Total varisble costs ($\$ / \mathrm{y}$)		998

$=$	11.7 cerits/Psrar.k.
$=$	0 cents $/$ Te.k.

(1) Ref. source : $1-10,12-34,42,44,46-48,51,56,57,60-68,70,72,73,76-90$.
(2) See AFEM printort for details. (3) Converted (C), Add-on (AD) or Stand-alone (SA).
(4) Associated with fleet garaqirg, sales and administration, etc. (5) All GJ units are higher heating values
(6) EtOH cost is Edmenton plant gate(18.49/GJ) + $\$ 1.83 / \mathrm{GJ}$ rail tariff to refirery. (7) 874 (refirery), 5% (EtOH prod'ri) e Z CJ .
(8) 100% ethariol : $90 \mathrm{v} \%$ leased qasolire blended at refinery to leaded reqular specifications. (9) Ircludes $\$ 260000$ lard cost.

CASE DEFINITION (1)

MATRIX FHF $\ddagger: 3 a$	MATRIX CASE;: 12	
FLEL:	GASOLINE(FL)	ENGINE TYFE: SI
SEKVICE:	TAXI	FUPP STATION: RETAIL
LOCATION:	TOKONTO	TIME FRAHE: 401983

ECOMOHIC CRTTERIA \& FUEL PROFERTIES
\% ROI on 4083 plant replacement value 20
Z int, on 80% vehicle investment
Fuel density ($\mathrm{Te} / \mathrm{m} 3$) 15
Fuel higher heating value ($\mathrm{GJ} / \mathrm{m} 3$) (5) $\quad 34$

FLANT GATE COST:

Primery resource	Crude
Fiesource cost ($\$ / \mathrm{G}$)	5.88
Plant location	S.Ontario
Prounct rate (G/d) (6)	78295
Froduct riame	Gasoline(fl)
Frocess efficiency (\%)	85.88
Froduct cost (2) (\$/GJ)	8.4
Froduct cost (cents/1)	28.56

TEFMINAL COSTS	Primary	SECONDAFY
Throughput (m3/d) (6)	1068	0
Throughput (G / / ${ }^{\text {a }}$ ((6)	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Irvestmerit \$(10)6	12.3	0
Irvestment cost $\$ / \mathrm{d}$	6739	0
Utility cost \$/d	110	0
Maintrice cost \$/d	110	0
Labour cost \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/d	10672	0
Termiral costs \$/GJ	. 54	0
Terminal costs cents/l	1.83	0

FKI TERMINAL	SEC TERMINAL	REF STATION
TOROnto	0	Toronito
150	0	20
0	0	0
.09	0	0
0	0	0
0	0	.11
.09	0	.11
.3	0	.37

FUEL COST AT FURF:
Fretax fuel/Fed sal t: (c/l) 35.17
REFUELLINE STATION COSTS:

Fleet or retail	Retail
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d} \quad 356$	10.47
Avg irveritory (days thrput)	7
Construction status (3)	SA
Orig irwest base stri \$(10)6 (7)	. 51
New investment \$(10)6	0
Investment costs (\$/d)	279
Mainterarice costs ($\$ / \delta$)	7
Labour costs (\$/d)	130
Other costs ($\$ / \mathrm{d}$)	14
Utility costs ($\$ / 8)$	4
Statri costs ($\$ / \mathrm{G}$ / 8 cents/1) 1.21	4.11

Fed exc/Frov tam (cerits/1) $0 \quad 7.6$
7.6 Fiel .004556

Total fuel tax (c/1 \& \$/GJ) 10.76
Tot fuel cost (c/1 \& \$/GJ) 45.93
3.16
13.5

OVERALL RESOUKCE UTILIZATION:
Finor,km/GJ \& Te,kM/GJ: 245
0
VEHICLE ANNUAL FIXED COSTS:
License \& Insuranice cost ($\$ / 4$) 3375
Arrasal cost of investment ($\$ / y$) 5500
Arrual cost of finarcirn ($\$ / y$)
1650
8500
Other fixed costs ($\$ / y$) (4)
$=$ Total fiked costs $(\$ / y) \quad 19025$
AVEFACE VEHICLE IN-FFVEMLE-SEFVICE FACTOR
65%
ANEFAGE VEHICLE LIFE CYCLE COST OF OFERATION
AVEFAGE VEHICLE LIFE CYCLE COST OF OPERATION

TOTAL DISTRIEUTION COSTS:
Facility location kM from upstrm point \$/GJ shipped by barge \$/GJ shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road Total distr cost ($\$ / \mathrm{G}$) Total distr cost (cents/l)

VEHICLE DATA:

Fiel	13.4	. 004556
Vehicle life ($\mathrm{K} \cdot \mathrm{M}$ \& yrs)	240000	2
F'ayload (psnors \& Te)	1.3	0
Euse cost (\$) \& tak (\$)	10230	770
Coriversior tupe \& cost (\$)		0
Grants \& tax concessions (\$)	0	0
Total reet investment (\$)		11000

VEHICLE AMMUAL VARIAELE COSTS (AUERAGE):
Total fuel costs ($\$ / 4$) 7380
Misc matls ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}) 26 \quad 3120$
Driver costs ircl outd ($\$ / y$) 24500
Mairit cost ($\$ / 1000 \mathrm{k} / \mathrm{M} \$ \$ / \mathrm{y}) 293480$
Total variable costs ($\$ / y$) 38480

$=$	65%
$=$	56.6 cents/psrigr.kM
$=$	0 cents/Te.kM

(1) Ref. sources: 1-10, 12-34, 76-90.
(2) See AFEM printort for details.
(3) Corverted (C), Ads-on (AO) or Stard-alore (SA).
(4) Associated with garagirg; dispatch, adain, and vehicle ROI (5) All GJ units are higher heatiry values
(6) Regular leaded gasolire only.
(7) Includes $\$ 260000$ land cost.

CASE DEFINITION (1)

MATRIX REF	\#: 3	MATRIX CASE\#:	13
Flel:	CASOLINE(RL)	ENGIME TYPE:	SI
SERVICE:	TAXI	PUMP STATION:	FLEET
LOCATICN:	TOFONTO	TIFE FRAME:	401983

ECONDMIC CRITERIA \& FUEL FROPERTIES

\% KOI on 4083 plant replacement value	20
χ int. on 80% vehicle investment	15
Fuel derisity ($\mathrm{Te} / \mathrm{m} 3$)	.718
Fuel higher heating value ($\mathrm{GJ} / \mathrm{m} 3$)(5)	34

FUEL COST AT FUMF:
Fretax fuel/Fed sal tx (c/1) $30.61 \quad 2.75$
Fed exc/Fpav tax (cents/1) $0 \quad 7.6$
Total fuel tax ($c / 18 \$ / G)$ 10.35 3.04
Tot fuel cost ($c / 1 \& \$ / G J$) $40.96 \quad 12.04$
OUEFALL FESOUFCE UTHITZATION :
Fisrigr.k.k/GJ \& Te.km/GJ: 245
VEHICLE ARMUAL FIXED COSTS:
Licerise \& Irsurarice cost ($\$ / \mathrm{y}$)
Arrial cost of irvestment ($\$ / y$)
Arroual cost of firiaricing ($\$ / y$)
Other fixed cost.5 (\$/y) (4)
$=-$ Total fixed costs ($\$ / y$)

FLANT CATE COST:
Primary resource Crude
Resource cost ($\$ / \mathrm{GJ}$)
Plant location
Product rate (G / d) (6)
Froduct riame
Process efficiency (\%)
Prodict cost (2) ($\$ / G /$)
$\begin{array}{ll}\text { Prodert cost (} 2 /(\$ / G) & 7.17 \\ \text { Fronts } / 1 \text {) } & 24.37\end{array}$

TEMTMAL COSTS	FRIMARY	SECON
Throughput ($\mathrm{M} 3 / \mathrm{d}$) (6)	1068	0
Throughput (G / d) (6)	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Irwestmerit \$(10)6	12.3	0
Irvestment cost \$/d	6739	0
Utility cost \$/d	110	0
Maintrice cost \$/d	110	0
Labour cost \$/d	1706	0
Other costs $\quad \$ / d$	484	0
Marketing costs \$/d	0	0
Terminal costs \$/GJ	+25	0
Terminal costs cerits/1	. 85	0

TOTAL OISIRIFITION COSTS:
Facility location Toronta
km from upstrm point
\$/CN shipped by barge 0
\$/GJ shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road
Total distr cost ($\$ /[\mathrm{CJ}$)
Total distr cost (cents/l)
SECOMDARY
FEFUELLING STATION COSTS:

Fleet or retail		Fleet
Throughput GJ/d 8 M $3 / \mathrm{d}$	150	4.41
Avg irventory (dass thrput)		7
Construction statis (3)		SA
Orig invest base stri \$(10)6	(7)	. 125
New investment \$(10)6		0
Irvestment costs ($\$ / 0$)		68
Maintenarce costs ($\$ / \mathrm{d}$)		3
Labour costs ($\$ / \mathrm{d}$)		130
Other costs (\$/d)		7
Utility costr (\$/5)		2
Statricosts (\$/GJ \& cents/l)	1.39	4.72

VEHTCLE DATA:
Fuel usage ($1 / 100 \mathrm{~km} \& \mathrm{GJ} / \mathrm{km}$) $13.4 \quad .00456$
Vehicle life (k. \& yrs) $240000 \quad 2$
Fiaylaad (psrgrs \& Te) 1.30
Elase cost ($\$$) \& tax ($\$$) 10230
Conversion type $\&$ cost ($\$$) 0
Grants \& tain concessions ($\$$) 0
Total ret irwestment ($\$$) 11000
VEHICLE AMNUAL MARIAELE COSTS (AUERACE):
Total fuel costs ($\$ / \mathrm{y}$) 6582
Misc matls ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) 26
Driver costs ircl ovhs ($\$ / y$) 24500
Haint cost ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}) 293480$
Total variable costs ($\$ / y$) 37682
AUEFACE VEHICLE IN-FEEVEME-SERVICE FACTOR
$=$
65%
AVEFACE WEHICLE LIFE CYCLE COST OF OFERATION
AVEFAGE VEHICLE LIFE CYCLE COST OF OFERATION
55.8 cents/psngr.kn
$=\quad 55.8$ cents/psngr.k.
$=0$ cents/Te.km
(1) Ref. solrces: 1-10, 12-34, 76-90.
(2) See AFEM priritort for details. (3) Converted (C), Add-on (AD) or Stard-alore (SA),
(4) Associated with garagirg, dispatch, adain, and vahicle Rol
(5) All GJ units are higher heating values
(6) Regular leared gasoline only.
(7) Land cost is omitted here but ircluded with garage costs (see note 4).

CASE DEFINITION (1)

MATRIX REF		MATRIX CASE\#:	14
FVEL:	LMS	ENGINE TYFE:	SI
SERVICE:	TAXI	PUNP STATION:	RETAL
LOCATION:	TORONTO	TIFE FRAKE:	401983

ECONOMIC CRITERIA \& FUEL PROFERTIES

Z	ROI on 4093 plant replacement value
Z int. on 80% vehicle irvestment	20
Fuel density (Te/m3)	15
Fuel higher heating value $(G / / m 3)(5)$.425
	22.16

PLANT GATE COST:	
Primary resource	Nat. Gas
Resorrce cost ($\$ / G J$)	4.7
Plant location	Toronto
Product rate ($(\mathrm{J} / \mathrm{d})$	1000
Froduct name	LNG
Process efficiency (Z)	84.3
Froduct cost (2) (GJ/d)	10.28
Froduct cost (cents/1)	22.78

TOTAL DISTRIE	BUITN COSTS:	FRI TERKINAL	SEC TERUINAL	Ref STATION
Facility loca	ation	0	0	Toronto
kn from upstr	rM poirit	0	0	20
\$/GJ shipped	by barge	0	0	0
\$/GJ shipped	by pipe	0	0	0
\$/GJ shipperd	by rail	0	0	0
\$/G shipped by road		0	0	. 66
Total distr cost ($5 / \mathrm{G}$)		0	0	. 66
Total distr cost (cents/l)		0	0	1.46
SECOMDARY				
0	REFUELING ST	ATION COSTS:		
0	Fleet or reta			Retail
0	Throushpuit G	/ 1 m3/ ${ }^{\text {d }}$	50	2.25
0	Avg inventory	(days thrput)		4
0	Corrstruction	status (3)		AO
0	Orig irvest b	ase 5 tn \$(10)6		0
0	New irwestment	$t \$(10) 6$. 14
0	Iricrem irve cos	sts ($\$ / \mathrm{d}$)		76
0	Iracr, maint cos	costs ($(\$ / d)$		4
0	Iricer labour cost	osts ($\$ / \mathrm{d})$		0
0	Incer other cos	sts ($\$ / \mathrm{d})$		8
0	Incr utility	costs (\$/d)		1
0	Statn costs (/GI \& cents/l)	1.77	3.92

VEHICLE DATA:

Fuel usage ($1 / 100 \mathrm{k} \cdot \mathrm{m}$ \& GJ/k.) $20.97 \quad .004646952$
Fretax fuel/Fed sal tx (c/1) $28.16 \quad 0$
Fed exc/Frov tax (cents/l) 0
Total fuel tax (c/1 \& \$/GJ) 0
Tot fuel cost ($\mathrm{c} / 1$ \& $\$ / \mathrm{GJ}$) 28.16
DVERALL RESOURCE UTILIZATION:
F'grigr.kM/GJ\& Te.kM/GJ: 235
0

VEHICLE ANMUAL FIXED COSTS:
License \& Insuranice cost ($\$ / \mathrm{y}$) 3375
Anrual cost of irvestment $(\$ / y) \quad 6865$
Arrual cost of finaricing ($\$ / y$) 2059
Other fixed costs ($\$ / y$) (4)
$=-$ Total fixed costs ($\$ / y$)

8500
20799

AUEFACE VEHICLE IN-FEVEME-SERVICE FACTOR
$=\quad 64 \%$

AUERAGE VEHICLE LIFE CYCLE COST OF OFERATION
$=$
AVEFAGE VEHICLE LIFE CYCLE COST OF OFERATION =
(1) Ref. soxrces: $1-10,12-34,76-90,127,128,130,132-152$.
(2) See AfEM printort for details.
(3) Converted (C), Adston
(AO) or Stanst-alone (SA).
(4) Associated with geraging, dispatch, admin. and vaicle ROI
(5) All G units are higher heating values

CASE DEFINITION (1)

MATRIX REF \ddagger : 3d		MATRIX CASE\#:	15
FUEL:	LNG	ENGIE TYPE:	SI
SERUICE:	TAXI	PUPP STATION:	FLEET
LOCATION:	TORONTO	TITE FRAIE:	401983

ECONOMIC CRITERIA \& FUEL PROPERTIES

7 ROI on 4083 plant replacement value	20
7 int, on 80% vehicle investment	15
Fuel density (Te/m3)	.425
Fuel higher heating value ($G / \mathrm{m} 3$)(5)	22.16

FLANT GATE COST:
Primary resontce
Resource cost ($\$ / \mathrm{G}$)
Plant location
Prodect rate ($G / / d$)
Product riane
Process efficiency ($\%$) 84.3
Froduct cost (2) (GJ/d) 8.44
Froduct cost (cents/1) 18.7
TEFYINAL COSTS
Throughput ($M 3 / d$)
Throughput (GJ/d)
Storage capacity (dzys)
Construction status (3)
Investment \$(10)6
Investrent cost $\$ / \mathrm{d}$
Utility cost $\$ / \mathrm{d}$
Maintrice cost \$/d
Labour cost $\$ / d$
Other costs $\$ / \delta$
Marketing costs $\$ / \mathbf{d}$
Terminal costs \$/G
Terminal costs cents/l
Nat. Gas
4.7
Toronto
1000
LMG
84.3
8.44
18.7

TOTAL DISTRIEUTON COSTS: Facility location kn from ustrif point \$/G shipped by barge \$/Gd shipped by pipe \$/GJ shipped by rail \$/CN shipped by road Total distr cost (\$/GJ) Total distr cost (cents/1)

FRI TERMIMAL SEC TERHINAL
0

0 0 , 0 0 0 0 0
0
66 SECONDARY0 0 Throughput $G J / d \& \mathrm{~m} / \mathrm{d}$ Avg inventory (days thrput) Construction status (3) Oris invest base stn $\$(10) 6$
New investment \$(10)6
Ircrem inv costs ($\$ / \mathrm{d}$) 219
Incr. Maint costs $(\$ / d)$
Incr labour costs ($\$ / \mathbf{d}$) 130
Iner other costs $(\$ / d)$
Incr utility costs ($\$ / \mathbf{d}$)
Statn costs ($\$ / 6 \mathrm{~d}$ \& cents/1) $2.55 \quad 5.65$
FUEI COST AT F118F:
Fretax fuel/Fed sal tw (c/1) 25.81
Fed exc/frov tax (cerits/l) 0
Total fuel tax (c / l \& $\$ / \mathrm{G}$) 0
Tot fuel cost $(c / 18 \$ / 51) \quad 25.81$
OVERALL RESOURCE UTIIIZATION :
Fengr.km/GJ \& Te.km/aj: 240
VEHICLE AAMHAL FIXED CDSTS:
License \& Insurance cost ($\$ / \mathrm{y}$) 3375
Arruel cost of investrant ($\$ / \mathrm{y}$) 6865
Anual cost of firarcing ($\$ / \mathrm{y}$) 2059
Other fixed costs ($\$ / 4$) (4) 8500
Total fixed costs ($\$ / \mathrm{y}$) 20799
vehicle data:

Fuel usage ($1 / 100 \mathrm{~km}$ \& GJ/Km)	20.56	. 004556096
Vehicle life (km \& sts)	240000	2
Paylogo (psrigrs \& Te)	1.3	0
Ease cost (\$) 8 tak (\ddagger)	10230	770
Conversion thpe \& cost ($\$$)	R	3500
Grants \& tax concessions (\$)	0	770
Total ret investment (\$)		13730

VEhicle arpual variaele costs (average):
Total fuel costs ($\$ / \mathrm{y}$) 6363

Misc matle ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{s}$) $26 \quad 3120$
Driver costs inel outh ($\$ / 4$) 24500
Maint cost ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}$) $29 \quad 3480$
Total variable costs (\$/y) 37463

AMEFAGE VEHICLE IN-FEVEME-SEFVICE FACTOR 65%
AMEFAGE VEHICLE LIFE CYCLE COST DF OFERATION
$=\quad 65 \%$

AUEFAGE VEHICLE LIFE CYCLE COST OF OPEFATION
(1) Ref. sources: $1-10,12-34,76-90,127,128,130,132-152$.
(2) See AFEH printact for details.
(3) Corverted (C), Adrlon
(4) Associated with garaging, dispatch, adain, and vehicle RoI
(AO) or Starn-alone (SA).
(6) Land cost is omitted but ircluded in garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF	3e/1	MATRIX CASE\#:	
Flel:	CNS (8)	EMGINE TYFE:	SI
SERUICE:	TAXI	FIAP STATION:	RETAIL
LOCATION:	TORONTO	THME FRAME:	401983

ECONOHIC CRITERIA \& FLEL PROFERTIES

Z ROI on 4083 plant replacement value	20
\% int. ori 80% vehicle irmestment	15
Fivel density ($\mathrm{Te} / \mathrm{m} 3$)	. 114
Fuel higher heating value ($\mathrm{G} / \mathrm{m} 3$)(5)(7)	6.04

FLARTI CATE COST:

Primbry resource	Nat. G3s
Resource cost (\$/GJ)	4.7
Plant location (2)	Toronto
Froduct rate (G/d)	(2)
Prosuct riame	CNG
Process efficiency (\%)	92.8
Resource cost (\$/G)	4.7
Resorrce cost (c/l)(7)	2,83

TEWHTNAL COSTS	FRIMARY
Throushput ($m 3 / 1$)	0
Throushput (GJ/d)	0
Storage capacity (days)	0
Construction status (3)	0
Investment \$(10)6	0
Investment cost \$/d	0
Utility cost \$/d	0
Mzintree cost \$/d	0
Lebour cost \$/d	0
Other costs \$/d	0
Morketing costs \$/in	0
Terminal costs \$/Gl	0
Terminal costs cents/1	0

FUEL COST AT FIMPP:
Fretax fuel/Fed sal tw (c/1) 3.86
Fed exc/Prov tak (certs/l)
Totel fivel tas ($\mathrm{c} / 18 \mathrm{l}$ \$/G) 0
Tot fuel cost (c / l \& $\$ / \mathrm{S}$) 3.96
DUERALL FESOUFCE UTILIZATION:
Pengr.km/GJ \& Te.km/GJ : 264
vehtile anmual fixed costs:
License \& Insurarce cost ($\$ / 3$)
Annual cost of investment ($\$ / \mathrm{y}$)
Arrubl cost of finaming ($\$ / \mathrm{y}$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

TOTAL DISTRIEAITON COSTS: FRI TERMINAL SEC TERYINAL

Facility location	0	0	0
km from t.pstre point	0	0	0
\$/G shipped by barge	0	0	0
\$/GJ shipped by pipe	0	0	0
\$/Gd shipped by rail	0	0	0
\$/Gd shipped by road	0	0	0
Total distr cost (\$/GJ)	0	0	0
Total distr cost (cerits/l)	0	0	0

SECONDARY

hefuelling station costs (cng):
Fleet or retail Retail
Througheut $G J / \mathrm{d}^{2} 8 \mathrm{~m} / \mathrm{d} \quad 50 \quad 8.27$
Avg inventory (dizys thrput) negl
Construction status (3) AO
Orig invest base $5 \operatorname{tn} \$(10) 6 \quad 0$
New investment \$(10)6 .11
Increm irw costs ($\$ / \mathrm{d}$) 60
Irer. maint costs ($\$ / \mathbf{d}$) 8
Irer labour costs ($\$ / \mathrm{d}$) 0
Incer other costs ($\$ / \mathrm{d}$) 6
Irer utility costs ($\$ / \mathrm{d}$) 12
Statricosts ($\$ / \mathrm{GJ} \&$ cent5/1) 1.711 .03
vehtcle data:

Fuel usage ($1 / 100 \mathrm{~km}$ \& $\mathrm{GJ} / \mathrm{Km}$)	T. 43	.004555972
Venicle life (k.m \& yrs)	240000	2
Foyload (psriges \& $\mathrm{Te}^{\text {) }}$	1.3	0
Eiase cost (\$) \& tex (\$)	10230	770
Conversion thpe \& cost (\$)	R	2000
Grants \& tax concessiors (\$)	0	770
Total net irvestment (\$)		12230

UEHICLE AMNUAL VAFIAELE COSTS (AUERAGE):
Total fiel costs ($\$ / \mathrm{y}$) 3493
Misc matls ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}$) $26 \quad 3120$
Driver costs incl owhd ($\$ / 4$) 24500
Maint cost ($\$ / 1000 \mathrm{kM}$ \& $\$ / \mathrm{y}) 29 \quad 3480$
Total variable costs (\$/y) 34593

```
= 64%
= 54.4 cenits/psrngr.k.m
```

64%
54.4 cents/psigr.k.

0 cents/Te.kM
AUERAGE VEHICLE LIFE CYCLE COST OF OFERATION
AVERAGE VEHICLE LIFE CYCLE COST OF OFERATION

AVERAGE VEHICLE IN-fiEVEME-SEFVICE FACTOR

3375
6115
1834
8500
19824
(1) Ref. 50urces: 1-10, 12-34, 76-90, 129-131, 133, 135-141, 143-154.
(2) Plant is located at retail outlet. (3) Converted (C), Add-on (AO) or Stard-3lone (SA).
(4) Associated with garasirg, dispatch, admin, and vehicle ROI
(5) All CJ units are higher heating values
(6) Excludirg NG feed cost. (7) At 16.5 HPa fuel tank. pressure.
(B) Dual CNG(70\%)/Gasolire(30\%) fuel. This sheet reflects CNG mode of operation (see page reft $3 \mathrm{e} / 2$ for gasoline node).

CASE DEF.NITION (1)

MATKIX FEF \ddagger :		MATRIX CASE\#:	16
FUFEL:	CNG (7)	ENGINE TYFE:	SI
SERUICE:	TAXI	FUTF STATION:	RETAIL
LOCATION:	TOFONTO	TIME FRAIE:	401983

ECONOMIC CRITERIA \& FUEL FROFERTIES

\% FOI on 4083 plant replacement value	20
$\%$ int, ori 80% vehicle investment	15
Fuel density (Te/m3)	.718
Fuel higher heating value $(\mathrm{G} / \mathrm{m} 3)(5)$	34

FLANT CATE CDST:	
Frimary resource	Crude
Fesource cost (\$/GJ)	5.88
Flant location	S.Ontario
Froduct rate (GJ/d) (6)	78295
Frodict riame	Gasoline(fL)
Frocess efficiericy (\%)	85,88
Froduct cost (2) (\$/GJ)	8.4
Froduct cost (cents/1)	28.56

TERTINAL COSTS	FRIMAFY	SECO
Throughput (m3/6) (6)	1068	0
Throughput (GJ/6) (6)	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investment \$(10)6	12.3	0
Invest/merit cost \$/d	6739	0
Utility cost $\$ / d$	110	0
Maintrice cost \$/d	110	0
Labour cost \$/d	1706	0
Dther costs \$/d	484	0
Marketing costs \$/d	10672	0
Terminal costs \$/GJ	. 54	0
Terminal costs cents/l	1.83	0

Fretax fuel/Fers sal to (c/1) 35.17 3.16
Fed exc/Frov tax (cerits/l) 0
Total fiuel tay ($c / 18 \$ / G 1$) 10.76
Tot fuel cost (c/1 \& \$/GI) $45.93 \quad 13.5$
OUERALL RESOUFCE UTILIZATION :
F'rigram/GJ \& Te.k.M/GJ: 2450

VEHICLE ANMLAL FIXED COSTS:
License \& Insurance cost ($\$ / y$)
Arriual cost of investmerit ($\$ / \mathrm{y}$)
Arrual cost of financing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
$=-$ Total fixed costs ($\$ / 4$) 19824

TOTAL DISTFIEUION COSTS:	FRI TERMINAL	SEC TERMINAL	FEF STATION
Facility location	Toronito	0	Toronto
KM from upstrm point	150	0	20
$\$ / G J$ shipped by barge	0	0	0
$\$ / G J$ shipped by pipe	.09	0	0
$\$ / G J$ shipped by rail	0	0	0
\$/GJ shipped by roas	0	0	.11
Totel distr cost ($\$ / G J$)	.09	0	.11
Total distr cost (cenits/l)	.3	0	.37

AVEFAGE VEHICLE IN-FEUENE-SEFUICE FACTOF
AVERGGE VEHICLE LIFE CYCLE COST OF OFERATION =
AVEFRGE VEHICLE LIFE CYCLE COST OF OPERATION =

REFUELLING STATION COSTS (GASOLINE):
Fleet or retail Fetail
Throughput $\mathrm{GJ} / \mathrm{d} 8 \mathrm{~m} / \mathrm{d} \quad 356 \quad 10.47$
Avg inveritory (days thrput) 7
Construction staturs (3) SA
Orig invest base stri \$(10)6 .51
New irvestmerit \$(10)6 0
Investment costs ($\$ / \mathbf{\sigma}$) 279
Maintenarce costs ($\$ / \alpha$) 7
Labour costs (\$/5) 130
Other costs ($\$ / 0$) 14
Utility costs ($\$ / 8$) 4
Statri costs ($\$ / 6 \mathrm{~J} 8$ cents/1) 1.21 4.11

VEHICLE DATA:

VEHICLE AMANIAL VAFIAELE COSTS (AVEFAGE):
Total fuel costs ($\$ / \mathrm{y}$) 7380
Misc matls ($\$ / 1000 \mathrm{k} . \mathrm{m}$ \& $\$ / \mathrm{y}$) 26
Driver costs ircl ouhd ($\$ / y$) 24500
Mairit cost (\$/1000km \& \$/y) 29380
Total variable costs ($\$ / \mathrm{y}$) 38480
(1) Ref, sources: 1-10, 12-34, 76-90, 129-131, 133, 135-141, 143-154.
(2) See AFEM printourt for details, (3) Cormerted (C), Add-on (AO) or Starm-alore (SA).
(4) Associated with garaging, dispatch. admin; and vehicle ROI (5) All GI urnts are higher heatirn values
(6) Regular leaded qasolire only,
(7) Dual CNG(70\%)/Gasolire(30\%) fuel. This sheet reflects gasolire mode operationt

CASE DEFINITION (1)

MATRIX REF $\#: 3 T / 1$	MATRIX CASE\#: 17	
FUEL:	CNG (8)	ENGINE TYFE: SI
SERVILE:	TAXI	PUYP STATION: FLEET
LOCATION:	TORONTO	TINE FRAYE: 40 1983

ECONOMIC CRITERIA \& FUE PROPERTIES
Z ROI on 4883 plant replacement value 20
Z int. on 80% vehicle imvestment
Fuel density ($\mathrm{Te} / \mathrm{m} 3$)
15
$\begin{array}{ll}\text { Fuel higher heating value }(G / V / m 3)(5)(7) & 6.04\end{array}$
6.09

PLANT GATE COST:

Prinary resource	Nat.
Resource cost (\$/6J)	4.7
Plant location (2)	Tororit
Product rate (G / d)	(2)
Froduct naxe	CNG
Process efficiency (\%)	92.8
Resource cost (\$/G)	4.7
Resource cost (c/l)(7)	2.83

TERMINAL COSTS	PRIPARY
Throughput (m3/d)	0
Throughput (G / d)	0
Storage capacity (days)	0
Construction status (3)	0
Investment \$(10)6	0
Investruent cost \$/ $/$	0
Utility cost \$/	0
Maintrice cost \$/d	0
Labour cost \$/d	0
Other costs \$/d	0
Harketing costs \$/d	0
Terminal costs \$/Gل	0
Terminal costs cents/l	0

FULI COST AT PUAP:
$\begin{array}{lll}\text { Pretax fuel/Fed sal tx (c/1) } & 4.46 & 0 \\ \text { Fed exc/Frov tax (cent } 5 / 1) & 0 & 0 \\ \text { Total fuel tax (c/1 \& } \$ /(\Omega) & 0 & 0 \\ \text { Tot fuel cost }(c / 1 \& \$ / G J) & 4.46 & 7.38\end{array}$

OVERALL RESOUFCE UTILITATION:

Psngr.km/GJ \& Te,km/GJ: 264
VEHICLE AMMLAL FIXED COSTS:
License \& Insurance cost ($\$ / y$)
Annual cost of investment $(\$ / y)$
Arnual cost of financirrg ($\$ / \mathrm{y}$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fixed costs ($\$ / y$)

| TOTAL DISTRIEATION COSTS: | PRI TERYITWL | SEC TERKINKL | REF |
| :--- | :---: | :---: | :---: | :---: |
| Facility location | 0 | 0 | 0 |
| kn fron upstrm point | 0 | 0 | 0 |
| \$/GJ shipped by barge | 0 | 0 | 0 |
| \$/GJ shipped by pipe | 0 | 0 | 0 |
| \$/GJ shipped by rail | 0 | 0 | 0 |
| \$/Gl shipped by road | 0 | 0 | 0 |
| Total distr cost (\$/GJ) | 0 | 0 | 0 |
| Total distr cost (cent5/1) | 0 | 0 | 0 |

SECTRDARY

REFUELING STATION COSTS (CNG):
Fleet or retail Flegt
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d} \quad 150 \quad 24.83$
Avs inventory (days thrput) negl
Construction status (3)
Orig invest base stn $\$(10) 6$ (9) .11
New investment $\$(10) 6$
.25
Increm inv costs ($\$ / \mathbf{d}$) 197
Incr, maint costs ($\$ / 0$) 25
Iner labour costs ($\$ / \delta$) 130
Incr other costs $(\$ / \delta) \quad 20$
Incr utility costs ($\$ / \sigma$) 36
Statn costs (\$/GJ \& cent5/1) $2.71 \quad 1.63$
VEHICLE DATA:

Fuel usage ($1 / 100 \mathrm{~km} 8 \mathrm{GJ} / \mathrm{km}$)	75.43	. 004555972
Vahicle life (km \& yrs)	240000	2
Payload (peners \& Te)	1.3	0
Base cost (\$) \& tax (\$)	10230	770
Conversion tupe \& cost (\$)	R	2000
Grants 8 tax concrssions (\$) 0	0	770
Total net irwestment (\$)		12330

VEHICLE AMMLL VARIARLE COSTS (AVERACE):
Total fuel costs ($\$ / y$) 4034

Hisc matls ($\$ / 1000 \mathrm{~km} 8 \$ / \mathrm{y}) 26 \quad 3120$
Driver costs incl owhd ($\$ / \mathrm{y})$
Maint cost ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) 29$
Total variable costs ($\$ / \mathrm{y}$) 35134
(1) Ref. sources: $1-10,12-34,76-90,129-131,133,135-141,143-154$.
(2) Plant is located at retail outlet. (3) Corverted (C), Adoton (AD) or Stand-alone (SA).
(4) Associated with garaging, dispatch; adein., and vehicle ROI
(5) All GJ units are higher heating values
(6) Excluding MG feed cost. (7) At 16.5 MPa fuel tank pressure.
(B) Dual CNG(70Z)/Gasoline(30Z) fuel. Sheet reflects CNG mode of operation (see also page ref 3f/2). (9) Land is included in garaging costs (see note 4).

CASE DEFINITION (1)

matrix ref \#		MATRIX CASE\#:	
FIEL:	CNE (8)	EGGIE TMFE:	
SEKUICE:	TAXI	PUPP STATION:	FLET
LOCATION:	TORONTO	THE FRAF:	401983

ECONOHIC CRITERIA \& FUEL PROPERTIES

2 ROI on 4883 plant replacement value	20
2 int, on 80% vehicle investment	15
Fuel density (Te/m3)	.718
Fuel higher heating value $(G / \mathrm{M} 3)(5)$	34

PLANT CATE COST:

Primary resource	Crude
Resource cost ($\$ / \mathrm{GJ}$)	5.88
Plant location	S,Ontario
Product rate (C / d ((6)	78295
Product nawe	Casoline(RL)
Process efficiency (z)	85. 88
Product cost (2) (\$/(N)	7.17
Proouct cost (cents/1)	24.37

IERHINAL COSTS	PrITHARY	SECONOARY
Throughput (m3/d) (6)	1068	0
	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investment \$(10)6	12.3	0
Investrent cost \$/d	6739	0
Utility cost \$ $\$ / \mathbf{d}$	110	0
Maintree cost \$/d	110	0
Lebour cost \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/d	0	0
Terminal costs \$/G	. 25	0
Terninal costs cents/l	. 85	0

FUEL COST AT PLAP:
Pretax fuel/Fed sal tx (c/1) 30.41
Fed exc/Prov tax (cents/l) 0
Total fuel tax (c/18\$/GJ) 10.33
Tot fuel cost ($c / 18 \$ / \mathrm{GJ}$) 40.74
OVERALL RESOURCE UTILIZATION :
Psngrikn/GJ \& Te,kn/GJ: 245
VEhICLE AMMAL FIXED COSTS:
License \& Insurance cost ($\mathbf{\$ / y}$) 3375
Arrual cost of imestment ($\$ / \mathrm{y}$)
Arnual cost of financing ($9 / 4$)
Other fiked costs ($\$ / \mathrm{y}$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

TOTAL DISTRIEATION COSTS:
Facility location kn from upstrn point
\$/Gl shipped by barge
\$/Gd shipped by pipe
\$/G shipped by rail
s/a shipped by road
Total distr cost ($5 /(\mathrm{N})$
Total distr cost (cents/1)

FRI TERHINAL	SEC TERMIMAL	REF STAT
Toronto	0	Toranto
150	0	20
0	0	0
.09	0	0
0	0	0
0	0	.11
.09	0	.11
.3	0	.37

REFUELIMG STATION COSTS (GASOLIE):

VEHICLE DATA:

Fuel usage ($1 / 100 \mathrm{~km}$ \& $\mathrm{GJ} / \mathrm{km}$)	13.4	.004556
Vehicle life (kn 8 yrs)	240000	2
Payload (psrigrs \& Te)	1.3	0
Base cost (\$) 8 tax (\$)	10230	770
Conversion type \& cost (\$)	F	2000
Grants \& tax concessions (\$)	0	770
Total net investment (\$)		12230

vericle amul variaele costs (average):
Total fuel costs ($\$ / \mathrm{y}$) 6549
Hisc matls ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) 26
Driver costs incl outh ($\$ / 4$) 24500
Maint cost $(\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) 29 \quad 3480$
Total variable costs ($\$ / \mathrm{y}$) 37649
AVERACE VEHTCLE IN-REVENE-SERUICE FACTOR
$=\quad 64 \%$

AVERAGE VEHTCLE LIFE CYCLE COST OF OfERATION
$=\quad 57.4$ cents/psrgr.kn
average vehtile life cycle cost of oferation
(1) Ref, sources: 1-10, 12-34, 76-90, 120-131, 133, 135-141, 143-154.
(2) See AFEH printout for details. (3) Converted (C), Addon (AO) or Stand-alone (SA).
(4) Associated with garaging, dispatch, adain, and vehicle ROI
(5) All GJ units are higher heating values
(6) Regular leaded gasoline only, (7) Land cost is owitted here but included with garage costs (see note 4),
(8) Dual CNG(70X)/Casoline(30z) fuel. This sheet reflects gasoline node of operation (5ee also page ref\# $3 f / 1$).

CASE DEFINITION (1)

MATRIX REF \#: 39		MATRIX CASE\%:	18
FUEL:	FROFAME	ENGINE TYPE:	SI
SERVICE:	TAXI	FUPP STATION:	RETAIL
LOCATION:	TORTWTO	THE FRATE:	401983

ECONOIIC CRITERIA \& FUL PROPERTIES

\% ROI on 4083 plant replacement value	20
$\%$ int, on 80% vehicle inwestment	15
Fuel dersity (Te/m3)	.508
Fuel higher heating value ($\mathrm{N} / \mathrm{m} 3$) (5)	25.59

PLANT CATE COST:
Primary resource
Resource cost ($\$ /$ J $)$
Plant location
Product rate (CJ / d) (6)
Product name
Process efficiency ($\%$)
Product cost ($\$ / G J$) (2)
Product cost (cents/1)

TERTINAL COSTS

Teriunt cosis	RIKA
Throughput ($\mathrm{m} 3 / \mathrm{d}$) (6)	6443
Throughput (Gd/d) (6)	164876
Storage capacity (days)	20
Construction status (3)	SA
Inverstment \$ $\$ 10) 6$	30
Investruent cost \$/d	16438
Utility cost \$/d	20700
Heintrace cost \$/d	1644
Latrour cost \$/d	2730
Other costs \$/d	1644
Marketing costs \$/d	70600
Terminal costs \$/GJ	. 68
Terminal costs cents/1	1.74

FUEL COST AT PMAF:
Pretax fuel/Fed 5al ty (c/1) 25.08
Fed exc/Frov tax (cents/1) . 74
Total fuel tax (c/l \& \$/G) , 81
Tot fuel cost (c/l \& \$/GJ) 25.89
OVERALI RESOARCE UTIITZATION:
Psngr.kn/GJ 8 Te.kni/Gl: 264
VEHICLE AMANAL FIXED COSTS:
License \& Insurance cost ($\$ / y$)
Arrual cost of investment ($\$ / y$)
Anrual cost of financirs ($\$ / y$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fixed costs (\$/y)

TOTAL DISTRIPSION COSTS:
Facility location
kn from upstrm point
\$/GJ shipped by barge
\$/GJ shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road
Total distr cost (\$/GJ)
Total distr cost (cents/l)
PRI TERYTINA SEC TERMTNAL

Sarnia (7)	Toronto	Tororito
3095	245	20
0	0	0
.3	0	0
0	0	0
.44	.45	.57
.74	.45	.57
1.89	1.15	1.45

SECDNDARY
300
7677
10
5A
4
2191
100
219
500
219
8000
1.46
3.73

.07

0
.31
10.11

0

3375
5615
1684
8500
19174

REFUELING STATION COSTS:

Fleet or retail	Retail
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d}$	1.95
Avg inventory (days thrput)	4
Construction status (3)	A0
Orig invest base stn \$(10)6	0
New investment \$(10)6	. 07
Incren inv costs ($\$ / \mathrm{d}$)	38
Incr, maint costs ($\$ / \mathrm{d}$)	2
Iner lethour costs ($\$ / \mathrm{d}$)	0
Incr other costs ($\$ / \mathrm{d}$)	43
Incr utility costs ($\$ / \mathbf{d}$)	1
Statn costs (\$/6J 8 cent5/1) 1.67	4.27

VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{kM} 8 \mathrm{GJ} / \mathrm{kH}$) $17.8 \quad .00455502$
Vehicle life (km 8 yrs) $240000 \quad 2$
Payload (psngrs \& Te) 1.3 . 0
Bise cost ($\$$) \& tax ($\$$) $10230 \quad 770$
Conversion type \& cost ($\$$) F 1400
Grants \& tax concessions (\$) $400 \quad 770$
Total net investment ($\$$) 11230
VEMCLE AMATL VARIARLE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 5526
Misc matls ($\$ / 1000 \mathrm{~km} 8 \$ / \mathrm{y}$) $26 \quad 3120$
Driver costs incl outd ($\$ / y$) 24500
Maint cost ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) 293480$
Total variable costs (\$/y) 36626

$=\quad 65 \%$
 65%

$=$
$=$
54.9 cents/psngr.kn

0 cents/Te.kM

AVERAGE VEHTCLE IN-REVEME-SERUICE FACTDR

AUERACE VEHICLE LIFE CYCLE COST OF OPERATION
AUERAGE VEHICLE LIFE CYMLE COST OF OPERATION
(1) Ref, sources: $1-10,12-34,76-90,111-118$.
(2) See AFEM printout for details, (3) Converted (C), Add-on (AD) or Stand-alone (SA),
(4) Associated with garaging, dispatch, admim, and vehicle ROI (5) All GJ units are higher heating values
(6) Propane only. (7) Gathering costs in Alberta are shown as road cost
in road costs 35.36 and .08 \$/GJ respectively.

$$
A-21
$$

CASE DEFDITION (1)

MATRIX REF	3h	MATRIX CASE ${ }^{\text {P }}$	19
FUEL:	PROPAME	ERGINE TYPE:	SI
SERUICE:	TAXI	PIPP STATION:	FLEET
LOCATION:	TORONTO	TDE FRAIE:	401983

ECONOYIC CRITERIA \& FLH PROPERTIES

| Z ROI on $4 C 83$ plant replacement value | 20 |
| :--- | :--- | :--- |
| Z int. on $80 Z$ vehicle investment | 15 |
| Fuel density (Te/m3) | .508 |
| Fuel higher heating value (CN/M3) (5) | 25.59 |

FLANT CATE COST:
Primary resource
Resource cost ($\$ / \mathrm{N}$)
Plant location
Product rate ($G / / 0$) (6)
Product name
Process efficiency ($\%$)
Product cost ($\$ / \mathrm{GJ})(2)$
Product cost (cents/1)

TOTAL DISTRIEAIION COSTS:

Raw nat gas	Facility location
2	kn fron upstrm point
Edmonton	$\$ / G J$ shipped by barge
46308	$\$ / G J$ shipped by pipe
Propane	$\$ / G J$ shipped by rail
92.8	$\$ / G J$ shipped by road
4.24	Total distr cost (\$/GJ)
10.85	Total distr cost (cents/1)

PRI TERHINAL	SEC TERHINAL	REF STATION
SBrnia (7)	Toronto	Toronto
3095	245	20
0	0	0
.3	0	0
0	0	0
.44	.45	.38
.74	.45	.38
1.89	1.15	.97

TERYINAL COSTS	PRIMARY	SECONDAR
Throughput ($\mathrm{m} 3 / \sigma$) (6)	6443	300
Throughput ($\mathrm{N} / \mathrm{/}$) (6)	164876	7677
Storage capacity (days)	20	10
Construction status (3)	SA	SA
Investrent \$(10)6	30	4
Investment cost $\$ / 8$	16438	2191
Utility cost $\$ / \mathbf{d}$	20700	100
Haintree cost $\$ / d$	1644	219
Labour cost \$/d	2730	500
Other costs \$/d	1644	219
Harketirg costs \$/d	70600	4000
Terminal costs \$/GJ	. 68	. 94
Terminal costs cents/l	1.74	2.4

FLEL COST AT PIMP:
Pretax fuel/Fed 5al tx (c/1) 24.11
Fed exc/Prov tox (cent5/1) . 74
Total fuel tax (c/1 \& \$/GJ) . 81
Tot fuel cost (c/l $8 \$ / 6 \mathrm{~J}$) 24.92
OVERALI RESORRCE UTILIZATION :
Psingr.km/GJ \& Te.km/GJ: 264
VEHICLE ANMUAL FIXED COSTS:
Licerise \& Insurance cost ($\$ / \mathrm{y}$)
Arnual cost of investment ($\$ / \mathrm{y}$)
3375
Armul cost of finaricing ($\$ / \mathrm{y}$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fixed costs ($\$ / \mathrm{y}$)
AVERAGE VEHICLE IH-PEVEME-SERVICE FACTOR
5615
1684
8500
19174
REFUELING STATION COSTS:

Fleet or retail	Fleet
Throughout GJ/d $8 \mathrm{~m} / \mathrm{d}$ (150	5.86
Avg inventory (days thrput)	4
Construction status (3)	C
Oric invest base stn \$(10)6 (8)	. 11
New imvestment \$(10)6	. 16
Increm inv costs ($\$ / \mathrm{d}$)	147
Incr: maint costs ($\$ / \mathbf{/}$)	7
Iner labour costs ($\$ / \mathrm{d}$)	130
Iner other costs ($\$ / \mathbf{/}$)	15
Incr utility costs ($\$ / \mathrm{d}$)	2
Statn costs (\$/EJ \& cents/l) 2	5.11

VEHICLE DATA:

Fuel ussge (1/100kM \& GJ/kM)	17.8	.00455502
Vehicle life (kM \& yrs)	240000	2
Payload (psngrs \& Te)	1.3	0
Ease cost ($\$$) 8 tax ($\$$)	10230	770
Conversion type cost ($\$$)	F	1400
Grants \& tax concessions ($\$$) 400	770	
Total net investment ($\$$)		11230

VEHICLE AMOLAL VARIARELE COSTS (AVERACE):
Total fuel costs ($\$ / \mathrm{y}$) 5318
Misc matls ($\$ / 1000 \mathrm{k}$ M \& $\$ / \mathrm{y}$) 26
Oriver costs ircl ouhd ($\$ / \mathrm{y}$) 24500
Maint cost ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}) 293480$
Total variable costs (\$/y) 36418

AVERAGE VEHICLE LIFE CYCLE COST OF OFERATIDN

$=\quad 65 \%$
averace vehicle life cyale cost of operation
$=\quad 54.7$ cent5/Psrar.kM
$=\quad 0$ cents/Te.kA
(1) Ref, sources: 1-10, 12-34, 76-90, 111-118.
(2) See AFEr printout for details. (3) Converted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with garaging, dispatch, admin., and vehicle ROI (5) All C (units are higher heating values
(6) Propare only.
(7) Gathering costs in Alberta are shown as road cost in road costs 35.36 and .08 \$/GN respectively.
(8) Land included in garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF		MATRIX CASE\%:	20
FUEL:	MEOH(90\%) (8)	ENGIME TYPE:	SI
SERVICE:	TAXI	PLAPP STATION:	RETAIL
LDCATION:	TOFONTO	TITE FRAE:	401983

ECONONIC CRITERIA \& FLE PROPERTIES

Z ROI on 4883 plant replacement value	20
Z int. on 80% vehicle investment	15
Fuel density ($\mathrm{Te} / \mathrm{M} 3)(8)$.788
Fuel higher heating value $(\mathrm{CJ} / \mathrm{m} 3)(8)(5)$	19.67

	PLANT CATE COST:		-
Prim resrce	Nat 9a5	Crude	
Resrce \$/GJ	2	5.89	
Location	Edmonton	S. Ont.	-
Prod Ex/d	45414	83741	-
Prod name	Hethanol	Gasoline(RL)	Blend(8)
Proc Eff 7	61.1	85,88	65.38
Prod \$/GJ (2)	7.909	8.4	8
Prod cents/l	14.3	28.56	15.73

TERMINAL COSTS	PRITARY	SECONDARY
Throughput (n3/d) (7)	25	0
Throughput (GJ/d (7)	491	0
Avs inventory (days thrput)	26	0
Construction status (3)	AD	0
Incr investnt \$(10)6	. 2	0
Incr inust cost \$/d	109	0
Incr util cost \$/d	0	0
Incr maint cost \$/\%	5	0
Iner labor cost \$/d	0	0
Iner other costs \$/d	11	0
Iner mets costs \$/d	140	0
Terminal costs \$/GJ	. 53	0
Terminal costs cents/l	1.04	0

PEFIELLING STATION COSTS:	
Fleet or retail	Retail
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d}$	2.54
Avg inventory (days thrput)	4
Construction status (3)	AD
Orig invest base stn \$(10)6	0
New investment \$(10)6	. 075
Increm inv costs (\$/d)	41
Incr, maint costs ($\$ / \delta$)	2
Incr labour costs ($\$ / \delta$)	0
Incr other costs ($\$ / \mathrm{d}$)	4
Utility costs ($\$ / \mathrm{d}$)	1
Statn costs (\$/GJ \& cent5/1) . 95	1.86

FLEL COST AT PURP:
Pretax Puel/Fed 531 tx (c/1) 23.97

```
2.15
```

Fed exc/Prov tax (cents/1) 0
Total fuel tax (c/l \& \$/G) 2,15
Tot fuel cost (c/1 \& $\$ / G J$) 26.12

TDTAL DISTRIEATION COSTS:
Facility location kn from upstrm point \$/GJ shipped by barge
\$/G shipped by pipe (6) \$/al shipped by rail (6) \$/Gd shipped by road 0 Total distr cost ($\$ / \mathbf{N}$) Total distr cost (cents/1) 0 .01

PRI TERNTIAL SEC TERMTHAL REF STATION Toronto 0 Toronto 2850 \& 150 2.17 2.18 4.28

OUERALL RESAREE UTILTZATION:
Psngr.kM/GJ \& Te,km/GJ: 186
0
1.09
13.27

0

3375
5515
1654
8500
19044
VEHICLE AMMLAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$)
Arnusl cost of investment ($\$ / y$)
0
1.09
13.27

0

3375
5515
1654
8500
19044
Arrual cost of finaricing ($\$ / y$)
0
1.09
13.27

0

3375
5515
1654
8500
19044
Other fixed costs ($\$ / y$) (4) 8500
0
1.09
13.27

0

3375
5515
1654
8500
19044
VEHICLE DATA:

Fuel usage ($1 / 100 \mathrm{~km}$ \& $\mathrm{GJ} / \mathrm{km}$)	23.16	. 004555572
Vehicle life (km \& yr)	240000	2
Payload (psngrs \& Te)	1.3	0
Rase cost (\$) \& tax (\$)	10230	770
Corversiori type \& cost (\$)	RX	800
Grants \& tax corresssiorrs (\$) 0	0	770
Total net investment (\$)		11030
VEHICLE AMARLAL UARIABLE COSTS (AVERAEE):		
Total fuel costs ($\$ / \mathrm{y}$)		7254
Hisc matls (\$/1000kn \& \$/y)	26	3120
Driver costs incl ouhd (\$/y)		24500
Maint cost ($\$ / 1000 \mathrm{kn} 8 \$ / \mathrm{y}$) 29	29	3480
Total variable costs ($\$ / \mathrm{y}$)		38354

AVERACE VEHICLE IN-REVEME-SERVICE FACTOR
 AVERAGE YEHICLE LIFE CYCLE COST OF DPERATION
 AVERAGE VEHTCLE LIFE CYCLE COST OF OPERATION

$=\quad 65 \%$
$=$
56.5 cents/psingr.kM
$=\quad 0$ cent $5 / \mathrm{Te}, \mathrm{kM}_{\mathrm{M}}$
(1) Ref. source: 1-10, 12-34, 37-47, 49-59, 61-90.
(2) See AFEM printaxt for details. (3) Converted (C), Addon (AO) or Standolone (SA),
(4) Associated with garaging, dispatch, adain, and vehicle Rol (5) All GJ units are higher heating values
(6) 10% gasoline pipeline tariff $(, 31 \mathrm{c} / \mathrm{l})$ \& $90 \% \mathrm{MeOH}$ rail tariff ($4.35 \mathrm{c} / \mathrm{l}$).
(7) 90\% KeOH blend w/gasoline.
(8) Cold start formulation of 90v\% Methanol, 10v\% gasoline (latter blended at conventional fuels terninal).

CASE DEFINTTION (1)

MATRIX REF		HATRIX CASE \ddagger	21
FUEL:	HEOH(90\%) (8)	ENGINE TYPE:	SI
SERUICE:	TAXI	PUPP STATION:	FLEET
LDCATIDN:	TOROKTO	TITE FRATE:	401983

ECOMONIC CRITERIA \& FUZ PROPERTIES

\% ROI on 4083 plant replacement value	20
χ int. on 80% vehicle investment	15
Fuel dersity ($\mathrm{Te} / \mathrm{m} 3$) (8)	. 788
Fuel higher heating value (GU/m3)(8)(5)	19.67

	PLANT GATE COST:		
Prin resrce	Nat gas	Crude	-
Resrce \$/GJ	2	5.88	-
Location	Edmonton	S. Ont.	-
Prod GJ/d	45414	83741	-
Prod name	Hethanol	Gasoline(RL)	Blend(8)
Proce Eff \%	61.1	85.88	65,38
Prod \$/GJ (2)	7.909	7.17	7.78
Prod cents/1	14.3	24.37	15,31

| TOTAL DISTRIBPITON COSTS: | PRI TERHIMAL | SEC | TERHITHAL |
| :--- | :--- | :--- | :--- | REF STATION

TERMINAL COSTS	PRTYARY	SECDRDARY			
Throughput (n3/d) (7)	25	0	REFUELING STATION COSTS:		
Throushput ($\mathrm{G} / \mathrm{/}$ (7)	491	0	Fleet or retail		Fleet
Avg inventory (days thrput)	26	0	Throushput ca/d \& m3/d	150	7.62
Construction status (3)	AD	0	Ave inventory (days thrput)		4
Incr investnt \$(10)6	. 2	0	Construction status (3)		C
Ince irwst cost \$/\%	109	0	Orig invest base stn \$(10)6	(9)	. 11
Incr util cost \$/d	0	0	New investment \$(10)6		. 066
Incer maint cost \$/8	5	0	Increm inv costs ($\$ / 8$)		96
Ince labor cost \$/\%	0	0	Incr, maint costs ($\$ / 0$)		5
Iner other costs \$/ $/ 0$	11	0	Incr labour costs ($\$ / 8$)		130
Incr metg costs \$/d	140	0	Incr other costs ($\$ / d)$		10
Terminal costs \$/G	. 53	0	Utility costs (\$/d)		2
Terminal costs cents/l	1.04	0	Statn cost5 (\$/GJ 8 cent5/1)	1.61	3.16
FIEI COST AT Pupr:			Vericle data:		
Pretax fuel/Fed sal tx ($6 / 1$)	24.85	2.23	Fuel usage ($1 / 100 \mathrm{~km}$ \& $\mathrm{GJ} / \mathrm{km}$)	23.16	. 00485572
Fed exe/Prov tax (cents/l)	0	0	Vehicle life (ks \& sts)	240000	2
Total fuel tax (c/l 8 / /GJ)	2.23	1.13	Payload (psrigrs \& Te)	1.3	0
Tot fuel cost ($c / 1$ \& $\$ / G J$)	27.08	13.76	Base cost ($\$$) \& tax ($\$$)	10230	770
			Conversior type 8 cost ($\$$)	Rx	800
OUERAL RESOLKCE UTHITZATION	:		Erants 8 tax concessiorrs (\$)	0	770
Psngr,k.m/GJ \& Te,kn/GJ:	186	0	Total net investment (\$)		11030

VEHICLE AMMUAL FIXED COSTS:

Licerise \& Insurarce cost ($\$ / \mathrm{y}$) 3375
Arrual cost of investment $(\$ / y) \quad 5515$
Annual cost of financing $(\$ / y)$
Other fixed costs (\$/y) (4)
Total fixed costs ($\$ / y$)

1654
B500
19044

REFLEIING STATION COSTS:

Avg inventory (days thrput) 4
Construction status (3) C
New investment $\$(10) 6 \quad .066$
Increm inv costs ($\$ / \delta$) 96
Incr, maint costs ($\$ / \delta$) 5
Iner labour costs ($\$ / d$) 130
Incr other costs ($\$ / d$) 10
Utility costs ($\$ / \mathrm{d}$) 2
Statn cost5 ($\$ / \mathrm{G} \mathrm{J} 8$ cents/1) $1.61 \quad 3.16$
VEHICLE DATA:

AVERAGE VEHICLE IH-PEVEME-SERVICE FACTOR =
VEHICLE ANHLAL VARIAELE COSTS (AVERAGE):
Total fuel costs ($\$ / y$) 7522
Hise matls ($\$ / 1000 \mathrm{~km}$ \& \$/y) 263120
Oriver costs incl ouhd ($\$ / y$) 24500
Maint cost ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) \quad 29 \quad 3480$
Total variable costs ($\$ / y$) 38622

ANERACE VEHICLE IH-PEVEME-SERUICE FACTOR	$=$	65%
AVERACE VEHICLE LIFE CYCLE COST OF OPERATION	$=$	56.7 cents/psngr,kn
AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION	$=$	0 cents/Te.kn

(1) Ref. source: 1-10, 12-34, 37-47, 49-59, 61-90.
(2) See AFEM printout for details.
(3) Converted (C), Addon (AD) or Stard-alone (SA).
(4) Associated with garaging, dispatch, admin, and vehicle Rol
(5) All $G J$ units are higher heating values
(6) 10% gasoline pipeline tariff (.31c/l) \& 90% MeOH rail tariff ($4,35 \mathrm{c} / 1$).
(7) 90\% MeOH blend w/gasoline.
(8) Cold start formulation of 900% Hethanol, 100% gasoline (latter blended at conventional fuels terminal).
(9) Land included with garaging costs (see note 4).

CASE DEFINTIION (1)

M	F : 3	MATRIX CASE;	22
fuel:	HEOH EQEND (B)	ENGIE TYFE:	SI
SERVICE:	TAXI	Fup Station:	RETA
DCATION:	Toronto	TIE FRAFE:	401

ECONONIC CRITERIA \& FUL PROPERTIES

4083	20
\% int. on 80% vehicle investment	15
Fuel density ($\mathrm{Te} / \mathrm{n3}$) (8)	. 72
Fuel higher heating value ($\mathrm{G} / \mathrm{n} 3$) (8)	32.9

PLANT CATE COST:

Primary resources	Crude/meCH/ExOH
Resrce cost \$/EJ (6)	5.88/10.31/12.62
Plant location	S.Ontario
Product rate G/(0 (8)	80185
Product панe	Oxinol blerd
Process effic. (\%) (7)	86.3
Product cost (\$/6)(2)	8.67
Product cost (cents/1)	28.6

TERHINHL COSTS	PrIMARY	SECOMOARY
Throughput (m3/d) (8)	1098	0
Throughput (G/dd) (8)	36223	0
Avg inventory (days thrput)	20	0
Construction status (3)	C	0
Investrent \$(10)6	12.3	0
Investment cost \$/d	6739	0
Utility cost \$/d	110	0
Maintenance cost \$/d	110	0
Labour cost \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/d	10672	0
Terminal costs \$/Gd	. 547	0
Terminal costs cents/l	1.8	0

FUEI COST AT PLAP:
Pretax fuel/Fed sal tx (c/1) 3.11
Fed exc/Frou tax (cents/1) 0
Total fuel tax ($c / 18 \$ /(G)$) 10.03
Tot fiel cost (c/1 \& \$/GJ) 45.14
OUERAL RESORCE UTIIIZATION:
Psrgr,km/GJ \& Te.kh/GJ: 246
VEHICLE AMYAL FIXED COSTS:
License \& Insurance cost ($\$ / y$)
Arrual cost of investrent ($\$ / y$)
Annual cost of financing ($\$ / \mathbf{y}$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

0

3375
5500
1650
8500
19025

TOTAL DISTRIBUION COSTS:
Facility location kH frow upstra point
\$/GJ shipped by barge
\$/GN shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road
Total distr cost ($\$ / \mathrm{G})$
Total distr cost (cents/l)

PRI TEFHTHAL	SEC TERHTIALL	REF STATIOH
TORONTO	0	Toronto
150	0	20
0	0	0
0	0	0
0	0	0
.093	0	.11
.093	0	.11
.3	0	.36

REFUELING STATION COSTS:

Fleet or retail		Retai]
Throushput Ga/d 8 m $3 / \mathrm{d}$	356	10.79
Avg inventory (days thrput)		7
Construction status (3)		c
Orig invest base stn \$(10)6		. 51
New investment \$(10)6		. 01
Investrent costs (s / d)		284
Hainterance costs ($\$ / \mathrm{d}$)		7
Labour costs (\$/d)		130
Other costs ($\$ / 8)$		14
Utility costs ($\$ / \mathrm{d}$)		4
Statn costs (\$/G/ \& cents/l)	1.23	4.05
vehicle data:		
Fuel ussge ($1 / 100 \mathrm{kn}$ \& G / kn)	13.81	. 004555919
Vehicle life (kn \& yrs)	240000	2
Paylozd (psngrs 8 Te) 1	1.3	0
Ease cost (\$) 8 tzx ($\$$) 1	10230	770
Conversion type 8 costs (s)		0
Grants 8 tax concessions (\$) 0		0
Total net investment ($\$$)		11000
VEhticle AnM	lavera	
Total fuel costs ($\$ / \mathrm{y}$)		7478
Hisc matls ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}$) 26	26	3120
Driver costs incl outh ($\$ / \mathrm{y}$)		24500
Hrint cost ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) 2	29	3480
Total variable costs ($5 / \mathrm{y}$)		38578

AUERAGE VEHTCLE IN-REVEME-SERUICE FACTOR
$=$
AMERAGE VEHICLE LIFE CYCLE COST OF OPERATION
AVERACE VEHICLE LIFE CYCLE COST OF OPERATION
(1) Ref. source: 1-10, 12-34, 37-47, 49-59, 61-90.
(2) See AFEK printout for details. (3) Converted (C), Addion (AD) or Standtalone (SA).
(4) Associated with garaging, dispatch, adein., and velicle RoI
(5) All GJ units are higher heating values

(8) 4.75 vZ nethanol, 4.75 vZ t butanol 890.5 vK leaded gasoline blended at refinery to leaded regular specifications.

CASE DEFINITION (1)

MATRIX ReF \ddagger : 31		MATRIX CASE\#:	
Fuel:	HEOH ELEND (8)	ENGTE TYPE:	SI
SERUICE:	taxi	PUAP STATION:	FLEET
LOCATION:	: TOROWTO	THE FRAFE:	401983

ECOMOHIC CRITERIA \& FLE PROFERTIES

| Z ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| Y int. on 80% vehicle investment | 15 |
| Fuel density (Te/n3) (8) | .724 |
| Fuel higher heating value ($(\mathbf{N} / \mathrm{n} 3)(B)(5)$ | 32.99 |

PLANT GATE COST:

Primary resources	Crude/teot/BuOH
Resrce cost \$/GJ (6)	5.88/10.31/12.62
Plant location	S.Ontario
Product rate GJ/d (8)	80185
Product name (8)	Oxinol blend
Process effic. (\%) (7)	86.3
Product cost (\$/G)(2)	7.42
Product cost (cents/1)	24.47

TOTAL DISTRIEATIN COSTS:
Facility location
kn Prow upstrm point
\$/GJ shipped by barge
\$/GN shipped by pipe
\$/GN shipped by rail
\$/G shipped by road
Total distr cost ($\$ / \mathrm{GN}$)
Total distr cost (cents/1)

PRI TERHINGL SEC TERHIDAL KEF STATION

Toronto	0	Torento
150	0	20
0	0	0
0	0	0
0	0	0
.093	0	.11
.093	0	.11
.3	0	.36

TERKIDAL COSTS	FRISARY	SECON
Througheut (m3/d) (8)	1098	0
Througheut (G / d) (8)	36223	0
Avg inventory (days thrput)	20	0
Construction status (3)	C	0
Investmerit \$(10)6	12.3	0
Investment cost \$/d	6739	0
Utility cost \$/d	110	0
Maintenarce cost \$/d	110	0
Labour cost \$/d	1706	0
Other costs \$/d	489	0
Harketing costs \$/d	0	0
Terminal costs \$/GJ	. 252	0
Terminal costs cents/1	. 83	0

FIEL cost at plap:
Pretax fuel/Fed sal t: (c/1) $30.41 \quad 2.73$
Fed exc/Prov tax (cents/1) $0 \quad 6.88$
Total fiel tax (c/1\&\$/G) $9.61 \quad 2.91$
Tot fuel cost (c/18\$/G) $\quad 40.02 \quad 12.13$
OUERALL RESOURCE UTILIZATION:
Pengr.kn/GJ \& Te.kn/GJ: 246
VEHICLE AMMAL FIXED COSTS:
License \& Insur arce cost ($\$ / y$) $\quad 3375$
Arnual cost of invertment ($\$ / \mathrm{y}) \quad 5500$
Arrwal cost of financing ($\$ / \mathrm{y}$)
Other fixed costs ($(\$ / y)$ (4)
Total fixed costs ($\$ / \mathrm{y}$)
REFUELING STATION COSTS:

Fleet or retail	Fleet
Throughput GJ/d $8 \mathrm{~m} / \mathrm{d}$ d 150	4.54
Aug inventory (days thrput)	7
Construction status (3)	c
Oris invest base stris(10)6 (9)	. 11
New investment \$(10)6	. 006
Investment costs ($\$ / \mathrm{d}$)	63
Maintenarce costs (\$/d)	3
Labour costs ($\$ / \mathrm{d}$)	130
Other costs ($\$ / \mathrm{d}$)	6
Utility costs ($\$ / \mathbf{d}$)	2
Statn costs ($\$ / \mathrm{A} / 8$ cents/l) 1.35	4.45
vehicle data:	
Fwel usage ($1 / 100 \mathrm{~km}$ \& $\mathrm{GJ} / \mathrm{Km}$) 13.81	.004555919
Vehicle life (kM \& yrs) 240000	2
Payload (psngrs \& Te) 1.3	0
Rase cost (\$) \& tax (\$) 10230	770
Conversion tupe \& cost (\$)	0
Grants 8 tax concessiors (\$) 0	0
Total net investment (\$)	11000

vehicle manlal variarle costs (averace):
Total fuel costs ($\$ / \mathrm{y}$) 6631
Misc matls ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}$) $26 \quad 3120$
Driver costs incl ouhd ($\$ / 4$) 24500
$8500 \quad$ Maint cost $(\$ / 1000 \mathrm{kH}$ \& $\$ / \mathrm{s}) \quad 29 \quad 3480$
19025 Total variable costs (\$/y) 37731
65%
55.8 cents/psngr, kn

0 cents/Te.kM
(1) Ref. source: 1-10, 12-34, 37-47, 49-59, 61-90.
(2) See AFEM printout for details.
(3) Corwerted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with garaging, dispatch, adnin, and vehicle ROI
(5) All GJ units are higher heating values

(8) 4.75 VZ methanol, 4.75 VZ t butanol $\$ 90.5 \mathrm{VZ}$ leaded gasoline blended at refinery to leaded regular specifications.
(9) Land is included with garaging costs (see note 4).

CASE DEFINTIION (1)

MATRIX RE	\#	MATRIX CASEI:	24
FUEL:	ETOH ELEND (8)	ENGINE TYFE:	SI
SERUICE:	TAXI	PLAP STATION:	RETAIL
LOCATION:	TORDNTO	TITE FRATE:	401983

ECONOHIC CRITERIA 8 FUE PRCPERTIES

| Z ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| Z int. on 80% vehicle investment | 15 |
| Fuel density (Te/n3) (8) | .725 |
| Fuel higher heating value $(\mathbb{N} / \mathrm{n} 3)(8)(5)$ | 32.91 |

PLANT GATE COST:

ry resources	Crude/Etha
Resrce cost \$/(NJ (6)	5.88/20.32
Plant location	S.Ontario
Product rate [J/d (8)	75844
Product nane	Casohol
Process effic.(\%) (7)	86.63
Product cost (\$/GN)(2)	9.01
Product cost (cents/1)	29.65

TERHITSLL COSTS	PRIFARY	SECONDARY
Throughput (m3/d) (8)	1103	0
Throughput ($G /$ /d) (8)	36299	θ
Avg invertory (days thrput)	20	0
Construction status (3)	c	0
Investmerit \$(10)6	12.3	0
Irwestment cost \$/d	6739	0
Utility costs \$/d	110	0
Misintenarce cost \$/d	110	0
Labour costs \$/d	1706	0
Other costs \$/d	484	0
Harketing costs \$/d	10672	0
Terminal costs \$/Gd	. 54	0
Terainal costs cents/l	1.77	0

TOTAL DISTR
Facility loc
KM from upstri
\$/GJ shipped
\$/NJ shipped
\$/GN shipped
\$/G shipper
Total distr
Total distr
SECONDARY
0
0
0
0
0
0
0
0
0
0
0

Pretax fuel/Fed sal tx (c/1)	36.12	3.25
Fed excc/Prov tax (cents $/ 1)$	0	6.84
Total fuel tax $(c / 18 \$ / G J)$	10.09	3.06
Tot fuel cost $(c / 1 \$ \$ / \mathrm{CN})$	46.21	14.04

OVERALL RESOLKCE UTILTIATION:
Psmgr,kM/GJ \& Te.kM/GJ: 247
vehicle manal FIXED costs:

License \& Insurance cost $(\$ / y)$	3375
Annual cost of investiment $(\$ / y)$	5500
Anval cost of finarcing $(\$ / y)$	1650
Other fixed costs $(\$ / y)(4)$	8500
Total fixed costs $(\$ / y)$	19025

AVERACE VEHICLE IH-REVEME-SERUICE FACTOR
ANERAGE VEHICLE LIFE CYCLE COST OF OPERATION
averace vehicle life cycie cost of oferation

Refuelling station costs:	
Fleet or retail	Retail
Throughput GJ/d $8 \mathrm{m3} / \mathrm{d}$	10.81
Avg inventory (days thrput)	7
Constructior, status (3)	C
Orig invest base stn \$(10)6	. 51
New investment \$(10)6	. 01
Investment costs (\$/d)	284
Maintenance costs ($\$ / \mathrm{d}$)	7
Labour costs (\$/d)	130
Other costs (\$/d)	14
Utility costs (\$/d)	4
Statn costs (\$/GJ 8 cents/1) 1.23	4,04

(1) Ref. source: $1-10,12-34,38,41,42,44,46-48,51,56,57,60-68,70,72,73,76-90$.
(2) See ArEh printout for details. (3) Converted (C), Add-on (AD) or Standalone (SA).
(4) Associated with garaging, dispatch, whin, and vehicle ROI (5) All GJ units are higher heating values

(8) 10v\% ethanol \& 900\% leaded gasoline blended at refinery to leaded regular specifications.
A-27

CASE DEFINITION (1)

HATRIX REF \#: 3 \%		HATRIX CASE\%:	25
FlEL: E	ETOH PLEND (B)	ENGINE TYFE:	SI
SERVICE:	TAXI	PLAP STATION:	FLEET
LOCATION:	TOROWTO	TDE FRAE:	401983

ECONDMIC CRITERIA \& FLEL PRDPERTIES

Z ROI on 4083 plant replacement value	20
Z int, on 80% vehicle investment	15
Fuel density (Te/m3) (B)	. 725
Fuel higher heating value ($\mathrm{CJ} / \mathrm{m3}$)(B)(5)	32.91

PLANT GATE COST:

Prinary resources	Crude/Ethanol
Resrce cost $\$ / G J(6)$	$5.88 / 20.32$
Plant location	$5.0 n$ nario
Product rate GJ/d (8)	75844
Product nane	Casohol
Process effic, ($\%$) (7)	86,63
Product cost $(\$ / G J)(2)$	7.73
Product cost (cents/l)	25.43

TERTINAL COSTS PRIFARY SECONDAFY

Throughput ($\mathrm{m} 3 / \mathrm{d}$) (8)	1103
Throughput (CJ / d) (8)	36299

Avg invertory (days thrput)
Construction status (3)

Investment $\$(10) 6$	12.3	0
Investment cost $\$ / 0$	6739	0
Utility costs $\$ / d$	110	0
Haintenarce cost $\$ / 0$	110	0
Labour costs $\$ / d$	1706	0
Other costs $\$ / d$	484	0
Marketing costs $\$ / d$	0	0
Terminal costs $\$ /[J$.25	0
Terminal costs cents/l	.82	0

FUEE COST AT PUMP:
Pretax Puel/Fed sal tx (c/1) $31.35 \quad 2.82$
Fed exc/Prov tax (cents/l) $0 \quad 6.84$
Total fuel tax (c/1 \& \$/G) $9.66 \quad 2.93$
Tot fuel cost ($\mathrm{c} / 18 \$ / \mathrm{G}$) $41.01 \quad 12.46$
ONERALL RESOURCE UTILTZATION:
Psnigr,km/GJ \& Te.kn/GJ: 247
VEHICLE AMANAL FIXED COSTS:
License 8 Insurance cost ($\$ / y$)
Annual cost of investment ($\$ / y$)
Arrual cost of financing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / y$)

TOTAL DISTRIEATON COSTS:
Facility location
kn from upstra point
\$/G shipped by barge
\$/GJ shipped by pipe
\$/GJ shipped by rail
\$/Gd shipped by road
Total distr cost (\$/GJ)
Total distr cost (cents/l)

PRI TERYITHAL	SEC TERMINAL	REF STATI
TOROnto	0	Toronto
150	0	20
0	0	0
0	0	0
0	0	0
.093	0	.11
.093	0	.11
.3	0	.36

REFLELITG STATION COSTS:

Fleet or retail		Fleet
Throughput $\mathrm{GJ} / \mathrm{d} 8 \mathrm{~m} 3 / \mathrm{d}$	150	4,55
Avg inventory (days thrput)		7
Construction status (3)		C
Orig invest base stn \$(10)6	(9)	. 11
New investment \$(10)6		. 006
Investment costs ($\$ / \mathbf{d}$)		63
Maintenarice costs (\$/ס)		3
Labour costs (\$/d)		130
Other costs ($\$ / \mathrm{d}$)		6
Utility costs ($\$ / \mathrm{d})$		2
Stats costs (\$/GJ \& cents/l)	1.35	4.44

VERICLE DATA:
Fuel usoge ($1 / 100 \mathrm{~km}$ \& GJ/kn) 13.84 .004554744
Vehicle life (kn \& yrs) 2400002
Fayload (pangrs 8 Te) $1.3 \quad 0$
Base cost ($\$$) 8 tax ($\$$) $10230 \quad 770$
Comersion type $\&$ cost ($\$$) 0
Grants \& tak concessions (\$) 0
Total net investment ($\$$) 11000
VEHICLE AMNAL VARIAEIE COSTS (ANERACE):
Total fuel costs ($\$ / \mathrm{y}$) 6810
Hisc matls ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}) 26 \quad 3120$
Driver costs incl ouhd ($\$ / y$) 24500
Maint cost $(\$ / 1000 \mathrm{~km} \$ \$ / \mathrm{y}) 293480$
Total variable costs ($\$ / y$) 37910

\therefore AVERACE VEHICLE IN-fEUERLE-SERUICE FACTOR
 AVERACE VEHICLE LIFE CYCLE COST OF OPERATION
 AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION

$=65 \%$
$=\quad 56$ cents/psngr.km
(1) Ref. source: $1-10,12-34,38,41,42,44,46-48,51,56,57,60-68,70,72,73,76-90$.
(2) See AFEM printout for details. (3) Converter (C). Adrton (A0) or Stardoalone (SA).
(4) Associated with garaging, dispatch, adain, and vehicle ROI (5) All GJ units are higher heating values
(6) EtOH cost is Edmonton plant gate (18,49/GJ) + \$1,83/GJ rail tariff to refinery, (7) B7\%(refinery), 59\% (EtOH prod'n) 8 ZGN.
(B) 10v\% ethanol 8900% leaded gasoline blended at refinery to leaded regular specifications.
(9) Land is included in garaging costs (see note 4).

CASE CEFINTIION (1)

MATRIX REF		MATRIX CASE\#:	
Fuel:	CASOLINE(RL)	EMGINE TYPE:	SI
SEENICE:	SCHL ELS	PIRP STATION:	FLEET
LOCATION:	TORONTO	TIME FRAF:	401983

ECONOHIC CRIERIA \& FUEI PFOPERTIES

\mathbf{Z} ROI on 4083 plant replacement value	20
\mathbf{Z} int, on 80% vehicle investment	15
Fuel density ($\mathrm{Te} / \mathrm{m} 3$)	.718
Fuel higher heating value (GJ/M3)(5)	34

PLANT CATE COST:	
Primary resource	Cruse
Resource cost (\$/GJ)	5.88
Plant location	S.Onterio
Product rate (GJ/d) (6)	78295
Product neme	Gasolire(RL)
Process efficiency (χ)	85.88
Frowict cost (2) (\$/GJ)	7.17
Product cost (cents/1)	24.37

TEFMINAL COSTS	FRIMARY
Throughput (m3/d) (6)	1068
Throughpit (GJ / d) (6)	36312
Storage capacity (days)	20
Construction status (3)	SA
Investment \$(10)6	12.3
Investment cost \$/d	6739
Utility cost \$/d	110
Maintrice cost \$/d	110
Labour cost \$/d	1706
Other costs \$/d	484
Marketirg costs \$/d	0
Terminal costs \$/GJ	. 25
Terminal costs cenits/1	. 85

FUEL COST AT FLAP:
Fretax fuel/Fed sal tx (c/l) 33.2
Fed exc/Frov tax (cent5/1) 0

2.98	Fuel usage ($1 / 100 \mathrm{kM}$ \& G//k.m)	50.6	. 017204
7.6	Vehicle life (ky \& yrs)	192000	10
3.11	Fibylozd (psngrs \& Te)	25	0
12.87	Base cost (\$) \& tax (\$)	3115	2345
	Conversion type \& cost (\$)		0
	Grants 8 tax concessiors (\$)	0	0
0	Total net investment (\$)		33500

VEMICLE AKRUAL FIXED COSTS:
Licerse \& Insirmace cost $(\$ / y) 730$
Arrwal cost of investment ($\$ / \mathrm{y}$)
3350
Arrual cost of finarcing $(\$ / y)$
1005
Other fixed costs ($\$ / y$) (4) 4665
Total fised costs ($\$ / \mathrm{y}$) 9750
(1) Ref. sources: 1, 3-10, 12-17, 19-36, 91, 94, 96, 98, 99.
(2) See AFEM printout for details,
(3) Comwerted (C), Adt-on (AO) or Stard-alone (SA),
(4) Associated with garagirig, administration, etc.
(5) All GJ units are higher heating values
(6) Regular leaded gasoline only.
(7) Land cost is omitted here but included with garage costs (see note 4).

CASE DEFINITION (1)

HATRIX REF \ddagger : 40		HATRIX CASE\#:	27
FLEL:	CNG (8)	ENGINE TYFE:	SI
SERVICE:	SCAL BILS	PLPP STATION:	FLEET
LOCATION:	TOFONTO	TIME FRAME:	401983

ECONONIC CRITERIA \& FUE PROPERTIES

Z ROI on 4083 plant replacement value	20
Z int. on 80% vehicle investment	15
Fuel density (Te/r3)	.114
Fuel higher heating value $(\mathrm{GJ} / \mathrm{H} 3)(5)(7)$	6.04

PLANT GATE COST:

Prinary resource	Nat. Gas
Resource cost ($\$ / G J$)	4.7
Plant location (2)	Toronto
Product rate (GJ/ δ)	(2)
Product name	CNG
Frocess efficiency ($\%$)	92.8
Resource cost ($\$ / G J)$	4.7
Resource cost (c/l)(7)	2.83

TERKIMAL COSTS	FRIMARY	SECOMDARY
Throughput ($\mathrm{m} 3 / \mathrm{d}$)	0	0
Throughput (G / d)	0	0
Storage capacity (days)	0	0
Construction status (3)	0	0
Investment \$(10)6	0	0
Investment cost \$/\%	0	0
Utility cost $\quad 1 / \delta$	0	0
Heintnce cost \$/\%	0	0
Labour cost \$/d	0	0
Other costs \$/d	0	0
Marketing costs \$/d	0	0
Terminal costs \$/GJ	0	0
Terminal costs cents/l	0	0

FIEL COST AT PURP:
Pretax fuel/Fed sal tx (c/l) 5.19
Fed exc/Frov tax (cents/l)
Total fuel tax (c/1 \& \$/GJ) 0
Tot fuel cost (c/18 \$/GJ) 5.19
OVEFALL FESOUKCE UTILIZATION:
PEngr.k.m/GJ \& Te.k.m/GJ: 1348
VEHICLE AMRUAL FIXED COSTS:
License \& Insurance cost (\$/y)
Anrual cost of investment ($\$ / y$)
Arnual cost of firaricing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

SECDNDARY

TOTAL DISTRIEUTON COSTS:
FRI TERTINA
Facility location 00
kn from upstrm point
\$/GJ shipped by barge
\$/GJ shipped by pipe
\$/Gl shipped by rail
\$/GJ shipped by road Total distr cost (\$/GJ)
Total distr cost (cents/l)

0
0 0 0×10
0 O

REFUELING STATION COSTS:
Fleet or retail Fleet
Throughput GJ/d $8 \mathrm{~m} 3 / \sigma \quad 50 \quad 8.2 \overline{ }$
Avg inventory (days thrput) negl
Construction staturs (3)
Drig invest base stn \$(10)6 (9)
Hew investment \$(10)6
C
.06
Increm inv costs ($\$ / \mathrm{d}$) 93
Incr. maint costs ($\$ / \overline{0}$) 12
Incr labour costs ($\$ / \beta$) 70
Incr other costs ($\$ / \delta$) 9
Iner utility costs ($\$ / \delta$) 12
Statrı costs ($\$ /$ GJ 8 cents/l) $3.91 \quad 2.36$
VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{k} . \mathrm{M}$ \& GJ/K.M) 284.8 . 01720192
Vehicle life (k.m \& yrs) $192000 \quad 10$
Payloas (psrgrs \& Te) 25 . 0
Base cost (\$) \& tax (\$) 31155
Conversion type \& cost (\$) R 2250
Grants 8 tam concessions ($\$ 5002345$
Total net imestment (\$) 32905
VEHICLE AMNAL VARIAEAE COSTS (AVERACE):
Total fuel costs ($\$ / y$)
2837
Hisc matls ($\$ / 1000 \mathrm{~F} \boldsymbol{\mu}$ \& \$/y) 34652
Driver costs incl owhd (\$/y) 4990
Maint cost ($\$ / 1000 \mathrm{k} . \mathrm{m}$ \& $\$ / \mathrm{y}$) 12976
Total variable costs (\$/y) 10955

AUERAEE VEHICLE LIFE CYCLE COST OF OPERATION = 4.29 cents/psngr.kM
AUERACE VEHTCLE LIFE CYCLE COST OF OFERATION = 0 cents/Te.kM
(1) Ref. sources: $1,3-10,12-17,19-36,91,94,96,98,99,129-131,133,135-141,143-154$.
(2) Plarit is located at retail outlet. (3) Converted (C), Adston (AD) or Stand-alore (SA).
(4) Associated with garaging and adiministration.
(6) Excluding MG feed cost. (7) At 16.5 HPa fuel tank. pressure,
(9) Land is inclujed in garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF 7: 4 c		MATRIX CASE\%	28
FuEl:	PROPAE	ENGINE TYFE:	
SERUICE:	SCH EUS	FUTP STATION:	FLEE
LOCATION:	TORONTO	TIP PRAFE:	4019

ECONOHIC CRITERIA \& FUEL PROPERTIES

Z ROI on $4 R 83$ plant replacement value	20
χ int, on 80% vehicle investment	15
Fuel density (Te/H3)	.508
Fuel higher heating value ($(\mathrm{N} / \mathrm{m} 3)(5)$	25.59

FLANT CATE COST:
Primary resource
Resource cost ($\$ /$ /N)
Plant location
Product rate $(\mathrm{G} / \mathrm{d})(6)$
Product name
Process efficiency (α)
Proouct cost ($\$ / \mathrm{G})$ (2)
Product cost (cents/1)

SECCNDARY

TERYINAL COSTS	PRIMARY
Throughput (m / d) (6)	7269
Throughput (N / d) (6)	186013
Storase capacity (days)	20
Construction status (3)	SA
Investment \$(10)6	30
Investrent cost \$/d	16438
Utility cost \$/d	20700
Maintree cost \$/d	1644
Labour cost \$/d	2730
Other costs \$/d	1649
Marketing costs \$/d	70600
Terminal costs \$/Gd	. 61
Terminal costs cents/1	1.56

Fule cost at pinf:
Pretax fuel/Fed sal tis (c/l) 26.62
Fed exc/Frov tax (cent5/1) . 74
Total fiel tax (c / l \& $\$ / \mathrm{G})$) . 81
Tot fiel cost ($c / 1$ \& $\$ / G N$) 27.43
OVEFALL RESOKRE UTILIZATION:
FsngrikM/GJ \& Te.kn/GJ: 1348
VEhICLE AMRAL FIXED COSTS:
License \& Inswance cost ($\$ / 3$)
Annulal cost of investment ($\$ / \mathrm{y}$)
Arroval cost of finarcing ($\$ / \mathrm{y}$)
Other fived costs ($\$ / \mathrm{y}$) (4)
\Rightarrow Total fixed costs ($\$ / \mathrm{y}$) 9678
300
7677
10
5A
4
2191
100
219
500
219
4000
.94
2.4
.07
0
.31
10.71

AMERAGE VEHICLE LIFE CYCIE COST OF OFERATION
AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION

TOTAL DISTRIE:HON COSTS:
Raw nat gas
2
Edmonton 46308 Propane 92.8 $4.24 \quad$ Total distr cost ($\$ / \mathrm{G}$) 10.85 Total distr cost (cents/1)
PRI TEFHINAL SEC TERKINAL

REF STATION Sarnia (7) Toronto Toronto
$3095 \quad 245 \quad 20$
000

.3	0	0
0	0	0

.74 . 45 . 38
1.89 i.15 .97
refueling station costs:

Fleet or retail		Fleet
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d}$	50	1.95
Avg invertory (days thrput)		
Construction status (3)		C
Orig invest base stn \$(10)6	(8)	.06
Hew investmerit \$(10)6		. 07
Increm inv costs ($\$ / \mathrm{d}$)		71
Incer. Mairit costs (\$/d)		4
Incer labour costs ($\$ / 8$)		70
Incr other costs ($\$ / 6$)		7
Incer utility costs ($\$ / 8$)		1
Statn costs (\$/GJ \& cents/l)	3.05	7.8

VEHICLE DATA:

Fuel usage ($1 / 100 \mathrm{~km}$ \& $\mathrm{GJ} / \mathrm{km}$)	67.23	. 017204157
Vehicle life (k, \& yrs)	192000	10
Payload (psngrs \& Te)	25	0
Rase cost (\$) \& tax (\$)	31155	2345
Conversion type \& cost (\$)	F	2200
Grants \& tar concessiors (\$)	400	2345
Total net investment (\$)		32955

Vehtcle ampal variaele costs (average):
Total fuel costs ($\$ / \mathrm{y}$) 3537
Misc matls ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}$) $34 \quad 652$
Driver costs incl outh ($\$ / \mathrm{y}$) 4990
Haint cost ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}$) $129 \quad 2476$
Total variable costs ($\$ / \mathrm{y}$)
11655
(1) Ref. sources: $1,3-10,12-17,19-47,49-59,61-75,91,94,96,98,99,111-118$.
(2) See AfEh printout for details. (3) Corverted (C), Addon (AD) or Stand-alone (SA).
(4) Associated with garaging and administration.
(5) All GJ units are higher heating values
(6) Propane orily.
(7) Gathering costs in Alberta are shown as road cost in road costs 35.36 and . 08 \$/GJ respectively.
(8) Land included in garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF if: 40		HATRIX CASE\#:	29
FUEL:	IEOH ELEND (8)	ENSINE TYFE:	SI
SEFVICE:	SCHL EAS	FUPP STATION:	FLET
LOCAIION:	TORONTO	TIE FRAME:	401983

ECONOHIC CRITERIA \& FLEI PROPERTIES

| Z ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| Z int. on 80% vahicle investment | 15 |
| Fuel density ($\mathrm{Te} / \mathrm{m} 3$) (8) | .724 |
| Fuel higher heatirig value (GJ/m3)(8)(5) | 32.99 |

PLANT GATE COST:

Primary resources	Crude/MeOM/BuOH
Resrce cost \$/GJ (6)	5,88/10.31/12.62
Plant locition	S.Ontario
Product rate G//d (8)	80185
Prorbict nave (8)	Oxinol blend
Process epfic. (\%) (7)	86.3
Product cost (\$/G) (2)	7.42
Product cost (cents/1)	24,47

TERHINAL COSTS	PRIMARY	SECOMDARY
Throughput (m3/d) (8)	1098	0
Throughput (GJ / d) (8)	36223	0
Avg imveritory (days thrput)	20	0
Construction status (3)	C	0
Investment \$ $\$ 10) 6$	12.3	0
Irvestment cost \$/d	6739	0
Utility cost \$/d	110	0
Mainterarice cost $\$ / \mathbf{d}$	110	0
Labour cost \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/ $/$	0	0
Terminal costs \$/G	. 252	0
Terminal costs cenits/l	. 83	0

FLEL COST AT PIAF:
Pretax fuel/Fed sal to (c/l) 33.31
Fed exc/Frov tax (cents/1) 0
Total fuel tax (c/l \& \$/GJ) 9.87
Tot fuel cost ($c / 1 \& \$ / G)$ 43.18
OVERALL RESOLRCE UTILIZATION:
PSrigr.km/GJ \& Te.k.m/GJ: 1254
VEHICLE AMALAL FIXED COSTS:
License \& Insurance cost ($\$ / y$)
Arrual cost of investment $(\$ / y)$
Arrual cost of finarcing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / y$)

TOTAL DISTRIE:ITON COSTS:
Facility location k.m from upstrm point
\$/G shipped by barge
\$/Gl shipped by pipe
\$/G shipped by rail 0
\$/G shipped by road $0.093 \quad .11$

Total distr cost ($\$ / G \mathrm{~J}$)
Total distr cost (cents/l)

FRI TERMINAL	SEC TERHINAL	REF STATION
TOROnto	0	TOronto
150	0	20
0	0	0
0	0	0
0	0	0
.093	0	.11
.093	0	.11
.3	0	.36

REFUEIING STATION COSTS:

Fleet or retail	Fleat
Throughput GJ/d \& m $/ \mathrm{d}$ (50	1.51
Avg inventory (days thrput)	7
Construction status (3)	C
Orig invest base stn \$(10)6 (9)	. 06
New investment \$(10)6	.005
Investment costs (\$/d)	35
Maintenance costs ($\$ / \mathrm{d}$)	2
Labour costs (\$/d)	70
Other costs (\$/ ${ }^{\text {d }}$)	4
Utility costs ($\$ / \mathbf{/}$)	1
Statn costs (\$/GJ \& cents/l) 2.23	7.35

VEHICLE DATA:
Fivel usage ($1 / 100 \mathrm{kH} \& \mathrm{GJ} / \mathrm{kM}$) $52.15 \quad .017204285$
$6.88 \quad$ Vehicle life (k.m \& yrs) 192000
$2.99 \quad$ Fayload (psngrs \& Te) 250
13.08 Elase cost ($\$$) \& $t_{3 x}(\$) \quad 311550345$

Vehicle retrofit cost ($\$$) 0
Grants \& ta\% concessions ($\$$) 0
Total ret investment ($\$$) 33500
VEHICLE AMAUAL UARIARLE COSTS (AVERACE):
Total fuel costs ($\$ / y$) 4320
Kisc matls ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}$) $34 \quad 652$
Driver costs incl ovid ($\$ / \mathbf{y}$) 4990
Mairt cost ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) 129 \quad 2476$
Total variable costs ($\$ / y$) 12438
AVERAGE VEHICLE LIFE CYCLE COST OF DPERATION
$=\quad 4.62$ cents $/$ psngr.kM
AVERAGE VEHICLE LIFE CYCLE COST OF DPERATION
(1) Ref. source: $1,3-10,12-17,19-47,49-59,61-90,91,94,96,98,99$.
(2) See AFEM printout for details, (3) Converted (C), Add-an (AD) or Stand-alone (SA),
(4) Associated with fleet garaging, sales and adininistration, etc. (5) All Gl units are higher heating valves

(8) $4.75 \mathrm{w} \%$ methanol, $4.750 \% \mathrm{t}$ butanol $\$ 90.5 \mathrm{vZ}$ leaded gasoline blended at refinery to leaded reqular specifications.
(9) Land is included with garaging costs (see note 4).

CASE DEFINTIION (1)

MATRIX REF \#; 4e		MATRIX CASE*:	30
FIE:	ETOH BLEND (8)	EMGINE TYFE:	SI
SERVICE:	SCHL EUS	FUPP STATION:	FLEET
LOCATION:	TORONTO	TIME FRAFE:	401983

ECONOMIC CRITERIA \& FUEI PROPERTIES

\% ROI on 4083 plant replacement value	20
\% int, on 80% vehicle investment	15
Fuel density ($\mathrm{Te} / \mathrm{m} 3)(8)$.725
Fuel higher heating value $(\mathrm{CJ} / \mathrm{H} 3)(8)(5)$	32.91

PLANT GATE COST:

Primary resources	Crude/Etharol
Resrce cost $\$ / G J$ (6)	$5.88 / 20.32$
Plant locatiorr	S.0ntario
Product rate GJ/d (B)	75844
Product name	Gasohol
Process effic. (\%) (7)	86.63
Product cost ($\$ / G J$)(2)	7.73
Product cost (cents/l)	25.43

TERVINAL COSTS	PRISARY	SECOADARY
Throughput (m3/d) (8)	1103	0
Throughput ($\mathrm{N} / \mathrm{/d}$) (8)	36799	0
Avg inventory (days thrput)	20	0
Construction status (3)	C	0
Investment \$(10)6	12.3	0
Investment cost \$/d	6739	0
Utility costs \$/d	110	0
Haintenance cost \$/d	110	0
Labour costs \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/d	0	0
Terminal costs \$/GJ	. 25	0
Terminal costs cents/l	. 82	0

FLEL COST AT PLAP:
Pretas fuel/Fed sal tw (c/l) 34.24
Fed exc/Frov tax (cents/1) 0
Total fuel tax (c/l \& \$/G) 9,92
Tot fuel cost (c/l \& \$/GJ) 44,16
ONERALL RESOURCE UTIITZATION:
Psigr.km/GJ \& Te.kn/GJ: 1258
VEHTCLE AMMUAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$)
Arrual cost of investment $(\$ / y)$
Anrual cost of financing ($\$ / y$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
$=-\quad$ Total lixed costs ($\$ / y$)

730
3350
1005
4665
9750
TOTAL DISTRIEATION COSTS:
Facility location
KM fron upstrm point
\$/GJ shipped by barge
\$/GJ shipped by pipe
\$/G shipped by rail
\$/GJ shipped by road
Total distr cost (\$/GJ)
Total distr cost (cents/1)

FRI TERIINAL	SEC TERAINAL	REF STATION
Toronto	0	Toronto
150	0	20
0	0	0
0	0	0
0	0	0
.093	0	.11
.093	0	.11
.3	0	.36

REFUELLING STATION COSTS:

Fleet or retail		Fleet
Throughput $G J / d \& \mathrm{~m} 3 / d$	50	1.51
Avg inventory (days thrput)		7
Construction status (3)		C
Orig invest base stn $\$(10) 6$	(9)	.06

New irvestment $\$(10) 6 \quad .005$

Investment costs ($\$ / d$) 35
Maintenance costs ($\$ / \mathbf{d}$) 2
Labour costs ($\$ / \mathrm{d}$) 70
Other costs ($\$ / \alpha$) 4
Utility costs ($\$ / \mathbf{d}$) 1
Statn costs (\$/GJ \& cents/l) $2.23 \quad 7.33$

VEHICLE DATA:

3.08	Fuel usage ($1 / 100 \mathrm{~km}$ \& $\mathrm{G} / \mathrm{K} / \mathrm{m}$)	52.28	. 017205348
6.84	Vehicle life (k, \& yrs)	192000	10
3.01	Payload (pstrgrs 8 Te)	25	0
13.41	Ease cost (\$) \& tax (\$)	31155	2345
	Corversion type 8 costs (\$)		0
	Grants \& tax concessiorrs (\$)	0	0

AUERAEE VEHTCLE LIFE CYCIE COST OF OPERATIDN $=\quad 4.64$ cents/psngr.km
AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION
(1) Ref. source: $1,3-10,12-17,19-36,38,41,42,44,46-48,51,56,57,60-68,70,72,73,91,94,96,98,99$.
(2) See AFEK printout for details, (3) Converted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with garaging, dispatch \& adimin., etc.
(5) All $G J$ units are higher heating values
(6) EtOH cost is Edmonton plant gate(18.49/GJ) + \$1,83/GJ rail tariff to refinery. (7) 87\%(refinery), 59\%(EtOH proo'n) e Z N,
(8) 10v\% ethanol $\& 90 \mathrm{w} \%$ leaded gasolire blended at refinery to leaded reqular specifications.
(9) Land is included in garaging costs (see note 4),

CASE DEFINTITON (1)

MATRIX REF \#:	53	MATRIX CASE\#:	31
FUEL:	OIESEL	ENGINE TYPE:	CI
SERVICE:	BUS (LRRAN)	PUPP STATION:	FLEET
LDCATION:	TORCNTO	TITE FRAME:	推 1983

ECONOHIC CRITERIA \& FUE PROPERTIES

2 ROI on 4083 plant replacement value	20
7 int. on 80% vehicle investment	15
Fuel dersity (Te/ $/ 3)$.829
Fuel higher heating value $(G / / H 3)(5)$	38.18

PLANT GATE COST:

Prinary resocirce	Crude
Resoryce cost (\$/GJ)	5.88
Plant location	S.Ontario
Product rate (GJ/d) (6)	61074
Product nase	Diesel
Process efficiency (\%)	86.51
Product cost (2)(\$/GJ)	6.79
Product cost (cents/l)	25.92

TERYITHL COSTS
Throughput (m3/d) (6)
Throughput ($G / / d$) (6)
Storage capacity (days)
Construction status (3)
Investmerit \$(10)6
Investinent cost $\$ / \mathbf{d}$
Utility cost $\$ / \mathrm{d}$
Hisintnce cost $\$ / d$
Labour cost $\$ / \mathrm{d}$
Other costs $\$ / d$
Harketing costs $\$ / \mathbf{d}$
Terninal costs $\$ / G J$
Terminal costs cents/l
FIEL COST AT PAAP:
Pretax fuel/Fed sal tx (c/1)
Fed exc/Prov tax (cent5/l) 0
Total fuel tax (c/1 \& \$/GJ) 12.24
Tot fuel cost ($\mathrm{c} / 1 \mathrm{\&}$ \$/GN) 41.64
OVERALL RESOUFCE UTIITZATION:
Psngr.kM/GJ \& Te.kM/GJ: 5 SR
VEHICLE ANMAL FIXED COSTS:
License \& Insurance cost (\$/y) 2480
Annual cost of investment ($\$ / \mathrm{y}$) 9166
Annual cost of firancing ($\$ / \mathrm{y}$) 2749
Other fixed costs ($\$ / 4$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

TOTAL DISTRIBUTION COSTS: Facility location Toronto kH fron upstrm point 3/GJ shipped by barge s/GN shipped by pipe \$/GJ shipped by rail \$/Gd shipped by rood Total distr cost (\$/G) Total distr cost (cents/l)

PRI TERHINAL SEC TERHINAL

Toronto	0	Toronto
150	0	20
0	0	0
.083	0	0
0	0	0
0	0	.095
.083	0	.095
.31	0	.36

SECDNUARY
refueling station costs:

Fleet or retail		Fleet
Throughput, GJ/d $8 \mathrm{~m} 3 / \mathrm{d}$	700	18.33
Avg inventory (dass thrput)		7

Construction status (3) SA
Oris invest base $\operatorname{stn} \$(10) 6$ (7) .37
Hew imestment $\$(10) 6$
Investiment costs ($\$ / \mathbf{d}$) 202
Haintenance costs ($\$ / \mathrm{d}$) 10
Lebour costs ($\$ / \mathrm{d}$) 130
Other costs $(\$ / d) \quad 20$
Utility costs ($\$ / \mathrm{d}$) 7
Statn costs ($\$ / \mathrm{GJ} \& \operatorname{cents/1)} .521 .98$
Vehtilie data:
2.64 Fuel usage ($1 / 100 \mathrm{kH} \& \mathrm{GN} / \mathrm{km}$) 54.17 . 020682106
$9.6 \quad$ Vehicle life (kn 8 yrs) $1080000 \quad 18$
3.2 Payloar (psngrs \& Te) 140
10.9 Rase cost ($\$$) \& tax ($\$$) $153450 \quad 11550$

Conversion tspe \& cost ($\$$) 0
Grants 8 tax concessiors ($\$$) 0
Total net investment ($\$$) 165000
VEHTCLE AMNGL VARIARLE COSTS (AVERAGE):
Total fuel costs $(\$ / y) \quad 13526$
Misc matls ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) 60 \quad 3600$
Oriver costs incl ouhd ($\$ / \mathrm{y}$) 36655
Haint cost ($\$ / 1000 \mathrm{kH} \& \$ / \mathrm{y}$) 24414640
$27795 \quad$ Total variable costs $(\$ / 4) \quad 184296$
AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION
AUERACE VEHTCLE LIFE CYCLE COST OF OFERATION
(1) Ref. 500rce: 1, 3-17, 91-97, 99-109.
(2) See AFEH printout for details.
(3) Converted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with fleet garaging and adninistration.
(5) All GJ units are higher heating values
(6) Diesel only.
(7) Land is included with garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF	50/1	MATRIX CASE\%:	32
Flet:	C3/DIESE1 (9)	EMGINE TYPE:	CI
SERVICE:	BUS (LREAN)	PUPP STATION:	FLEET
LOCATION:	TORONTD	TITE FRAYE:	421983

ECONONIC CRITERIA \& FLEL PROPERTIES

| \% ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| χ int, on 80% vehicle investment | 15 |
| Fuel dersity (Te/m3) (6) | .508 |
| Fuel higher heatins value ($\mathrm{N} / \mathrm{m} 3$) (5) (6) | 25.59 |

PLANT GATE COST:
Primary resource
Resource cost (\$/G)
Plant location
Product rate ($G / / d$)(6)
Product name
Process efficiency ($\%$)
Product cost ($\$ / \mathrm{GJ}$)(2)
Product cost (cent5/1)

TERTIDSL COSTS

Throughput ($\mathrm{m} 3 / \mathrm{d}$) (6)
Throwhput (G / d) (6)
Storage capacity (days)
Construction status (3)
Investment \$(10)6
Investrment cost $\$ / d$
Utility cost $\$ / d$
Haintrice cost $5 / d$
Labour cost $\quad \$ / d \quad 2730$
Other costs $\$ / \mathrm{d} \quad 1644$
Marketing costs $\$ / \mathrm{d} \quad 70600$
Terminal costs $\$ /[\mathrm{G}$
Terninal costs cents/l
1.56
FRIMARY
7269
186013
20
SA
30
16438
20700
1644
2730
1644
70600
.61
1.56

TOTAL DISTRIEUTON COSTS:
Rew nat gas
${ }^{2}$ Edmonton
46308
Propane
92.8
4.24
10.85

Facility location
kn from upstra point
\$/GJ shipped by barge
$\$ / G$ shipped by pipe
\$/G shipped by rail
\$/G shipped by road
Total distr cost ($\$ / \mathrm{GJ}$)
Total distr cost (cents/1)

PRI TERKITGL SEC TERKINHL REF STATION Sarnia (7) Toronto Toronto

3095	245	20
0	0	0
.3	0	0
0	0	0
.44	.45	.38
.74	.45	.38
1.89	1.15	.97

SECONDARY

300
7677
10
SA
4
2191
100
219
500
219
4000
.94
2.4

REFLELITMG STATION COSTS (PROPANE):

Fleet or retail		Fleet
Throughput G/d $8 \mathrm{~m} 3 / \mathrm{d}$	560	21,88
Ava inventory (days thrput)		4
Construction status (3)		A0
Orig invest base stn \$(10)6	(8)	0
New investment \$ $\$ 10) 6$. 41
Incren inv costs ($\$ / \mathrm{O}^{\text {) }}$		224
Incr, maint costs ($\$ / \mathbf{d}$)		11
Incer labour costs (\$/d)		130
Incer other costs ($\$ / \delta$)		22
Incr utility costs ($\$ / \mathbf{\delta}$)		
Statn costs ($\mathrm{s} / \mathrm{G} / 8 \mathrm{cents} / 1$) .		1.79

FKHPAE COST AT PAAP:

Pretax fuel/Fed sal tx (c/1)	20.61	. 07
Fed exc/Prov tax (cents/1)	. 74	0
Total fiel tax ($\mathrm{c} / 18$ \$/G)	. 81	. 31
Tot fivel cost (c/1 8 \$/G)	21.42	8.37
DIESEL COST (c/1 8 \$/G)	46.38	12.14
DLAL FUEL COST ($\mathrm{c} / 18 \mathrm{~s} / \mathrm{GN}$)	24.99	9.12
PSHER,KM/GJ \& Te.KH/GJ	619	0

VEHICLE AMNAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathbf{y}$)
Arnual cost of investment ($\$ / y$)

Annual cost of financing ($\$ / \mathrm{y}$)

Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

average vehicle life cycle cost of operation

87192615Vehtal datai (dual fuel basis)
Fuel usage ($1 / 100 \mathrm{~km} 8 \mathrm{GJ} / \mathrm{km}$) 75.48 . 02068152
Vehicle life (kn 8 yrs) 108000018
Paylosd (psngrs \& Te) 14 0
Base cost ($\$$) 8 tax ($\$$) $153450 \quad 11550$
Conversion type cost ($\$$) Rx 3900

Grants \& tar concessions ($\$ 400 \quad 11550$
Total net investment ($\$$) 156950
VEHICLE AMMNAL MARIARLE COSTS (AVERAGE):
Total fivel costs ($\$ / \mathrm{y}$) 11316
Hisc matls ($\$ / 1000 \mathrm{~km} 8 \$ / \mathrm{y}) 60 \quad 3600$
Driver costs incl axhd ($\$ / 4$) 36655
Haint cost $(\$ / 1000 \mathrm{~km} \& \mathrm{~s} / \mathrm{y}) 254 \quad 15240$
Total variable costs ($\$ / 4$) 68811

$$
=\quad 11.19 \text { cents/psngr.kM }
$$

$$
\text { AUERACE VEHICLE LIFE CYCLE COST OF OPERATION } \quad=\quad 0 \text { cents/Te.kn }
$$

(1) Ref, sources: 1, 3-17, 91-97, 99-109.
(2) See AFEK printout for details.
(3) Converted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with garaging, dispatch \& adnin., etc.
(5) All GJ units are higher heating values
(6) Propane only.
(7) Gathering costs in Alberta are shown as road cost
in road costs as ,36 and . 08 \$/GJ respectively. (8) Land included in garaging costs (see note 4).
(9) Dual Propane(80\%)/Diesel(20Z) fuel, This sheet incorporates diesel puep cost frow sheet Ref $\ddagger 50 / 2$.

CASE DEFINTITON (1)

MATRIX REF \#:	50/2	MATRIX CASE \ddagger	32
FUE:	C3/DIESEL (8)	ENGINE TYPE:	CI
SERUICE:	EuS (LRBAN)	PIPP STATION:	FLEET
LOCATION:	TORONTO	TIE FRAYE:	401983

ECONOMIC CRITERIA \& FUE PFOPERTIES

| Z ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| Z int, on 80% vehicle investment | 15 |
| Fuel dersity $(\mathrm{Te} / \mathrm{ma})$ | .829 |
| Fuel higher heating value $(G / \mathrm{m} 3)(5)$ | 38.18 |

PLANT GATE COST:

Prinary resource	Crude
Resource cost ($\$ / G J$)	5.88
Plant location	S.Ontario
Product rate (GJ/ $/$) (6)	61074
Product nane	Diesel
Process efficiency ($(\%)$	86.51
Product cost (2) $\$ / G J)$	6.79
Prodect cost (cents/1)	25.92

TOTAL DISTRIBUION COSTS:
Facility location kn from upstrm point \$/GJ shipped by barge \$/G shipped by pipe \$/GJ shipped by rail \$/GJ shipped by road Total distr cost (\$/GJ) Total distr cost (cents/l)

PRI TERTINAL	SEC TERTINAL	REF STATI
TOROnto	0	TOronto
150	0	20
0	0	0
.083	0	0
0	0	0
0	0	.095
.083	0	.895
.31	0	.36

TERIINAL COSTS PRIHARY SECONDARY

REFUELING STATION COSTS (DIESE):

Throughput ($\mathrm{M} 3 / \mathrm{d}$) (6)	720	0
Throughput (CJ / d) (6)	27489	0
Storage capacity (dass)	20	0
Construction status (3)	$S A$	0
Investment $\$(10) 6$	8.3	0
Investment cost $\$ / d$	4547	0
Utility cost $\$ / d$	74	0
Haintnce cost $\$ / d$	74	0
Labour cost $\$ / d$	1150	0
Other costs $\$ / d$	326	0
Mrketing costs $\$ / d$	0	0
Terminal costs $\$ / G J$.22	0
Terminal costs cents/l	.83	0

Fleet or retail		Fleet
Throughput $G / / \mathrm{d} \& \mathrm{~m} 3 / \delta$	140	3.66
Avg inventory (days thrput)		7
Construction status (3)		SA

Orig invest base stn \$(10)6 (7) . 37
New investment $\$(10) 6$
Investrient costs ($\$ / 0$) 202
Maintenarce costs ($\$ / \mathrm{d}$) 10
Labour costs ($\$ / d$) 0
Other costs $(\$ / d) 20$
Utility costs ($\$ / \mathrm{d}$) 1
Statn costs ($\$ /$ GJ \& cents/1) $1.66 \quad 6.33$

FLEL COST AT PUAP:
Pretax fuel/Fed sal tx (c/l) 33.75
Fed exc/Prov tax (cents/l) 0
Total fuel tax ($c / 18 \$ / G J$) 12.63
Tot fuel cost (c/l $8 \$ / \mathrm{GJ}$) $46.38 \quad 12.14$
OVERALL RESORKCE UTILIZATION:
Pongr.km/GJ \& Te.kn/GJ: 0
VEHICLE DATA:
$3.03 \quad$ Fuel usage $(1 / 100 \mathrm{kn}$ \& $\mathrm{GJ} / \mathrm{km}) 00$
9.6 Vehicle life (kM \& sts) 0 0
3.3 Payload (pengrs \& Te) 0
12.14 Ease cost (\$) \& tax (\$) 0

Conversion tspe $\&$ cost ($\$$) 00
Grants 8 tak concessions ($\$ 000$
Total net irvestmert ($\$ 000$
VEhicle AMALAL MAFIARLE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 0
Misc matls ($\$ / 1000 \mathrm{~km} 8 \$ / \mathrm{y}$) 00
Driver costs incl owhd ($\$ / y$) 0
Maint cost ($\$ / 1000 \mathrm{kn} \$ \$ / \mathrm{y}) 00$
Total variable costs (\$/y) 0

```
= Ocents/P5rgr.kM
= 0 cents/Te.kM
```

(1) Ref. source: 1, 3-17, 91-97, 99-109.
(2) See AFEK printout for details. (3) Converted (C), Addon (AO) or Stand-alone (SA),
(4) Associated with fleet garaging and administration.
(5) All GJ units are higher heating values
(6) Diesel only.
(7) Land is included with garaging costs (see note 4). This refuelling outlet was originally built to dispense $700 \mathrm{GJ} / \mathrm{d}$ diesel fuel.
(8) Dual Propane (80\%)/Diesel (20\%) fuel. This sheet is used to obtain diesel pump price to be used on sheets ref $56 / 1810 \mathrm{~b}$,

CASE DEFINTITON (1)

MATRIX REF		HATRIX CASE\#:	33
FUEL:	LHG	EGITE TYPE:	SI
SERUICE:	EUS (LIREAN)	PUPP STATION:	FLEET
LOCATION:	TORRNTO	TIE FRAE:	401983

ECOHONIC CRITERIA \& FUE PRDFERTIES

Z ROI on 4083 plant replacement value	20
Z int on 80% vehicle investment	15
Fuel density (Te/m3)	.425
Fuel higher heating value (GJ/m3)(5).	22.16

PLANT CATE COST: Prinary resource
Resource cost ($\$ / G J$)
Plant location Toronto Product rate (G S $/ d$) Product name LNG Process efficiency (\%) Product cost (2) (GN/d) Product cost (cents/l)
Nat. Gas
4.7
Toronto
1000
LNG
84.3
8.44
18.7

TOTAL DISTRIRAION COSTS:	FRI TERHINAL	SEC TERNINAL	REF STATION
Facility location	0	0	Toronto
KA from upstry point	0	0	20
\$/GJ shipped by barge	0	0	0
\$/GJ shipped by pipe	0	0	0
\$/GJ shipped by rail	0	0	0
\$/GJ shipped by road	0	0	0
Total distr cost (\$/GJ)	0	0	0
Total distr cost (cents/1)	0	0	0

TERMINAL COSTS	PRIPARY	SECONDARY			
Throughput ($\mathrm{m} 3 / \mathrm{d}$)	0	0	FEFUELITNG STATION COSTS:		
Throughput (C / d)	0	0	Fleet or retail		Flegt
Storage capacity (days)	0	0	Throushpuit GJ/d 8 m3/d	1000	45.12
Construction status (3)	0	0	Avg inventory (days thrput)	(7)	0
Investiment \$(10)6	0	0	Construction status (3)		C
Investment cost \$/0	0	0	Orig invest base stn \$(10)6	(6)	. 37
Utility cost \$/	0	0	New investment \$(10)6		. 1
Kaintnce cost \$/ס	0	0	Increm inv costs ($\$ / 8$)		257
Lsbour cost \$/d	0	0	Incr, maint costs (\$/d)		13
Other costs \$/0	0	0	Irer labour costs ($\$ / 0$)		130
Marketing costs \$/d	0	0	Iner other costs ($\$ / \delta$)		26
Terminal costs \$/GJ	0	0	Iner utility costs ($\$ / \mathrm{d}$)		10
Termiral costs cents/1	0	0	Statn costs (\$/GJ \& cents/l)		. 95
FLEL COST AT PUPF:			VEHICLE DATA:		
Pretax fuel/Fers 5al tx (c/l)	19.65	0	Fuel usage ($1 / 100 \mathrm{~km} 8 \mathrm{GJ} / \mathrm{km}$)	101.7	.02253672
Fed exc/Prov tax (cents/l)	0	0	Vehicle life (kn 8 yrs)	1080000	18
Total fuel tax (c/1 \% \$/GJ)	0	0	Payload (psrgrs 8 Te)	14	0
Tot fuel cost (c/18\$/G)	19.65	8.86	Base cost ($\$$) 8 tax ($\$$)	153450	11550
			Conversion type 8 cost (\$)	R	9800
ONERALL RESOURCE UTILIZATION			Grants \& tax coricessions (\$)	500	11550
Psongr .k.m/GJ \& Te,km/GJ :	523	0	Total ret investment (\$)		162750
VEHICLE AMAUAL FIXED COSTS:			YEHICLE ARALAL YARIAELE COSTS	(AVERA	
License 8 Insurance cost ($\$ / 4$)		2480	Total fuel costs (\$/y)		11990
Arnual cost of investment ($\$$		9041	Hisc matls (\$/1000kM 8 \$/y)	60	3600
Armal cost of financing ($\$$		2712	Driver costs incl ound ($\$ / \mathrm{y}$)		36655
Other fixed costs (\$/y) (4)		13400	Haint cost (\$/1000km 8 \$/y)	285	17100
Total fixed costs (\$/y)		27633	Total varizble costs (\$/y)		69335
AUERAGE VEHICLE LIFE CYCLE COST OF OPERATIONAURRAGE VEHICLE LIFE CYCLE COST OF OPERATION			11.54 cents/psngr.km		

(1) Ref. sources: $1,3-17,19-36,91,92,94-97,99-102,127,128,130,132-152$.
(2) See AFEM printout for details.
(3) Converted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with garaging, dispatch $\&$ adinin., etc.
(5) All GJ units are higher heating values
(6) Land cost is omitted but incuded in garaging costs (see note 4).
(7) LMG. Plant is adjacent to garage/refuelling stn.

CASE DEFINITION (1)

MATRIX REF	50	MATRIX CASE\%:	34
FIEL:	PROPAIE	ENGINE TYPE:	SI
SERUICE:	BUS (LIRAN)	PUPP STATION:	FLEET
LOCATION:	TORONTO	TIE FRAIE:	401983

ECONOHIC CRITERIA \& FLE PROPERTIES

\% ROI on 4083 plant replacement value	20
\% int. on 80% vehicle investment	15
Fuel density (Te/m3)	.508
Fuel higher heating value (GV/m3) (5)	25.59

PLANT GATE COST:	
Primary resource	Raw nat gas
Resource cost (\$/G)	2
Plant location	Edronton
Product rate (G / d) (6)	46308
Product rizme	Propane
Process efficiency (\%)	92.8
Product cost (\$/G) (2)	4.24
Prodict cost (cents/1)	10.85

TERMINAL COSTS	PRIMARY
Throughput (m3/0) (6)	7269
Throughput ($\mathrm{GJ} / \mathrm{\delta}$) (6)	186013
Storage capacity (dajs)	20
Construction staturs (3)	SA
Investruent \$(10)6	30
Investmerit cost \$/ס	16438
Utility cost \$/d	20700
Maintnce cost \$/d	1644
Lebour cost \$/d	2730
Dther costs \$/d	1644
Harketing costs \$/d	70600
Terminal costs \$/GJ	. 61
Terminal costs cents/l	1.56

TOTAL DISTRIBUION COSTS: PRI TERHITAL SEC TERAINAL REF STATION
Facility location Sarnia (7) Toronto Toronto
kn from upstrm point
\$/GJ shipped by barge
\$/GJ shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road
Total distr cost (\$/GJ)
Total distr cost (cents/1)
SECDNDARY
300
7677
10
SA
4
2191
100
219
500
219
4000
.94
2.4

REFUELITN STATION COSTS:
Fleet or retail Fleet
Throughput GJ/ $88 \mathrm{M} 3 / \mathrm{d} \quad 700 \quad 27.35$
Avs inventory (doss thrput) 4
Construction status (3)
Orig invest base stn $\$(10) 6$
(8)

C
New investment \$(10)6
Increm inv costs ($\$ / \delta$) 463
Incr, maint costs ($\$ / \delta$) 23
Incr labour costs ($\$ / d$) 130
Ince other costs $(\$ / d)$
Iner utility costs ($\$ / d$) 7
Statn costs ($\$ /$ GJ \& cents/1) . $95 \quad 2.43$

FUEL COST AT PYMA;
Pretas fuel/Fed sal tx (c/1) 21.25
Fed exc/Frov tax (cents/1) . 74
Total fuel tax (c/1 \& \$/GJ) . 81 .31
Tot fuel cost (c/18\$/GJ) 22.06 8.62
OVEFALL RESOURCE UTIITZATION:
PSngr.kM/GJ \& Te.k.M/GJ: 551
0

VEHICLE AMMAL FIXED COSTS:
$\begin{array}{ll}\text { License \& Insurance cost }(\$ / y) & 2480 \\ \text { Armual cost of investment }(\$ / y) & 8663 \\ \text { Arnual cost of financing }(\$ / y) & 2598 \\ \text { Other fixed costs }(\$ / y)(4) & 13400 \\ \text { Total fixed costs }(\$ / y) & 27141\end{array}$
AUERAGE VEHICLE LIFE CYCLE COST OF OPERATION
VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{kn} 8 \mathrm{GL} / \mathrm{kA}$) $92.14 \quad .02358826$
Vehicle life (kA \& yrs) $1080000 \quad 18$
Payload (psingrs \& Te) 14
Ebse cost (\$) \& tax (\$) $153450 \quad 11550$
Corversiori type \& cost (\$) Fx 2900
Grants \& tax concessiors (\$) $400 \quad 11550$
Total net investment (\$) 155950
VEHICLE AAMUAL MARIAELE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 12194
Hisc matls ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) $60 \quad 3600$
Driver costs incl ovhd ($\$ / y$) 36655
Mrint cost ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) $285 \quad 17100$
Total variable costs ($\$ / y$) 69549

AUERACE VEHICLE LIFE CYCLE COST OF OFERATIDN
$=\quad 11.5$ cents/pangr.kn
$=0$ cents/Te.k...
(1) Ref. sources: 1, 3-17, 19-36, 91, 92, 94-97, 99-109, 111-118.
(2) See AFEM printout for details, (3) Converted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with garaging, dispatch \& admin., etc. (5) All GJ units are higher heating values
(6) Propane only.
(7) Gathering costs in Alberta and breakout tank/term costs at U.S border are included in road costs as . 36 and . $08 \$ / \mathrm{GJ}$ respectively. (8) Land included in garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX KEF	50	MATRIX CASE:	35
FUEL:	HEOH(90\%) (8)	ENGTIE TYPE:	SI
SERVICE:	EUS (LRPAN)	PUPP STATION:	FLEET
LOCATION:	TORONTO	TIE FRATE:	401983

ECONOMIC CRITERIA 8 FUE PROFERTIES

| $\%$ ROI on 4883 plant replacement value | 20 |
| :--- | :--- | :--- |
| $\%$ int, on 80% vehicle investment | 15 |
| Fuel dersity ($\mathrm{Te} / \mathrm{M} 3$) (B) | .788 |
| Fuel higher heating value $(G / m 3)(8)(5)$ | 19.67 |

PLANT GATE COST:

Prin resrce	Nat gas	Crude	-
Resrce $\$ / G J$	2	5.88	-
Location	Edmonton	5,0 Ont.	-
Prod GJ/d	45414	83741	-
Prod name	Methanol	Gasoline(RL)	Blend(8)
Proc Eff Z	61.1	85.88	65.38
Prod $\$ / G J(2)$	7.909	7.17	7.78
Prod cents/l	14.3	24.37	15.31

TOTAL DISTRIEIION COSTS:

Facility location

kn from upstrm point
\$/GJ shipped by barge
\$/GJ shipped by pipe (6)
\$/GJ shipped by rail (6)
\$/GN shipped by road Total distr cost (\$/GJ) Total distr cost (cents/l)

PRI TEPHTHAL SEC TEFHIHAL

PRI TERHTHAL	SEC TEFHIAL	REF STAT
Toronto	0	Tororito
28508150	0	20
0	0	0
.01	0	0
2.17	0	0
0	0	.54
2.18	0	.54
4.28	0	1.06

SECONDARY

TERTHMAL COSTS	PrIMARY	SECPADARY
Throughput ($\mathrm{m} / \mathrm{/d}$) (7)	250	0
Throughput ($5 / / /$ (7)	4917	0
Avg inventory (dass thrput)	26	0
Construction status (3)	A0	0
Incr investrit \$(10)6	2	0
Incr inust cost \$/ס	1095	0
Incr util cost $\$ / \mathbf{d}$	14	0
Incr maint cost \$/\%	14	0
Incr labor cost \$/\%	220	0
Incr other costs \$/ $\%$	60	0
Iner witg costs \$/d	0	0
Terminal costs \$/GJ	. 28	0
Terminal costs cents/l	. 55	0

FLEL COST AT PUAF:
Pretax fuel/Fed sal tx (c/1) 27.61
Fed exc/Frov tax (cents/1) 0
Total fuel tax ($c / 18 \$ / \mathrm{N})$) 2.03
Tot fuel cost ($c / 1$ \& $\$ / G J$) 24.64
OVERALL RESOURCE UTILTZATION:
Psngr.kM/GJ 8 Te,kM/GJ: 374
VEHICLE AMALL FIXED COSTS:

Licerse \& Insurance cost $(\$ / y)$	2480
Annual cost of investment $(\$ / y)$	8630
Arnual cost of firancing $(\$ / y)$	2589
Other fixed costs $(\$ / y)(4)$	13400
Total fixed costs $(\$ / y)$	27099

REFIEILING STATION COSTS:

Fleet or retail	Fleet
Throughpert GJ/d 8 m3/d 700	35.58
Avg inventory (days thrput)	4
Construction status (3)	A0
Orig invest base stn \$(10)6 (9)	. 37
New investment \$(10)6	. 222
Increm inv costs ($\$ / \mathrm{d}$)	324
Incr, maint costs ($\$ / 6$)	16
Incr labour costs ($\$ / \overline{\text { a }}$)	130
Iner other costs ($\$ / \mathbf{\delta}$)	32
Utility costs (\$/\%)	7
Statn costs ($\$ / \mathrm{G}$ \& cents/1) . 72	1.41

VEHICIE DATA:

Fuel usage ($1 / 100 \mathrm{kn} 8 \mathrm{GJ} / \mathrm{km}$)	124.1	. 02441047
Vehicle life (kM \& yrs)	1080000	18
Payload (psngrs 8 Te)	14	0
Brase cost (\$) \& tax (\$)	153450	11550
Conversion type \& cost (\$)	Fx	1900
Grants \& tax concessiors ($\$$)	0	11550
Total net investment (\$)		155350

VEHICLE AMNUAL GARIAELE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 18337
Hisc matls ($\$ / 1000 \mathrm{k} . \mathrm{M}$ \& $\$ / \mathrm{y}$) $60 \quad 3600$
Driver costs incl outh ($\$ / y$) 36655
Hisint cost ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}) \quad 285 \quad 17100$
Total variable costs ($\$ / \mathrm{y}$) 75692

$$
\begin{array}{llr}
\text { AVERAGE YEHICLE LIFE CYCLE COST OF OFERATION } & = & 12.23 \text { cents/psngr,km } \\
\text { AVERACE VEHICLE LIFE CYCLE COST OF OPERATION } & = & 0 \text { cents/Te,km }
\end{array}
$$

(1) Ref. source: 1, 3-17, 19-47, 49-59, 61-75, 91, 92, 94-97, 99-102.
(2) See AFEM printout for details. (3) Converted (C), Add-on (AO) or Stard-alone (SA),
(4) Associated with garaging, dispatch \& admin., etc, (5) All GJ (rits are higher heating values
(6) 10% gasoline pipeline tariff (.31c/l) $890 \% \mathrm{HeOH}$ rail tariff ($4.35 \mathrm{c} / \mathrm{l}$). (7) $90 \% \mathrm{KeOH}$ blend w/gasoline.
(8) Cold start formulation of 900% Methanol, 100% gasoline (latter blended at corventional fuels terminal).
(9) Land included with garaging costs (see note 4),

CASE DEFINITION (1)

HATRIX REF \ddagger : $5 t$		MATRIX CASEE:	
FUEL:	IECH (100X)	ENGIE TYPE:	CI
SERUICE:	Eas (LIEAN)	FUPP STATION:	FLEET
LOCATION:	TORONTO	TITE FRAE:	401983

ECONOHIC CRITERIA \& FLE PROPERTIES

\% ROI on 4083 plant replacement value	20
z int; on 80% vehicle investrent	15
Fuel dersity ($\mathrm{Te} / \mathrm{m} 3$)	. 796
Fuel higher heating value (GJ/n3)	18.08

PLANT CATE COST:

Primary resource	Nat Cas
Resource cost (\$/GJ)	2
Plant location	Edinonton
Product rate (G/d)	45414
Product name	Hethanol
Process Efficiency ($\%$)	61.1
Product cost (\$/G) (2)	7.909
Product cost (cents/1)	14.3

TERNINAL COSTS
Throughput (m / d) (6)
Throughput ($G /(d)$ (6)
Avg irventory (days thrput)
Construction status (3) AO
Incer investnt $\$(10) 6$
Ince invst cost $\$ / \mathrm{d}$
Iner util cost $\$ / d$
Iner maint cost $\$ / d$
Incr labor cost $\$ / d$
Incr other costs $\$ / \sigma$
Iner ${ }^{*}+\mathrm{tg}$ costs $\$ / d$
Terminal costs $\$ / \mathrm{N}$
Terminal costs cents/l
fuel cost at pupp:
Pretax fuel/Fed sal tx (c/l) 21.46
Fed exc/Prov tax (cents/1) 0
Total fuel tax (c/l 8 \$/GN) 1,93
Tot fuel cost ($\mathrm{c} / 18 \$ / \mathrm{GJ}$) $\quad 23.39$
OVERALI RESOURCE UTILTEATION:
Psngr.kM/EN \& Te,kM/GJ: 413
vehtice anual fixed costs:
License \& Insur ance cost ($\$ / 4$) 2480
Arrual cost of investment ($\$ / \mathrm{y}$) 8625
Anrual cost of financing ($\$ / \mathrm{y}$) 2587
Other fixed costs ($\$ / \mathrm{y}$) (4) 13400
Total fixed costs ($\$ / \mathrm{y}$) 27092
TOTAL DISTR
Facility loc
KM from upst
\$/GJ shipped
\$/GJ shipped
\$/GJ shipped
\$/GJ shipped
Total distr
Total distr
SECOMARY
0
0
0
0
0
0
0
0
0
0
0

PRI TERMIMAL	SEC TEFSTIGL	REF STATION
Toronto	0	Toronto
2850	0	20
0	0	0
0	0	0
2.4	0	0
0	0	.54
2.4	0	.54
4.33	0	.97

REFUELIING STATION COSTS:	
Fleet or retail	Fleet
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d} 700$	38.71
Ave inventory (days thrput)	4
Construction status (3)	C
Orig invest base stn \$(10)6 (7)	. 37
New investment \$ 1076	. 222
Increm inv costs (\$/d)	324
Incr, maint costs ($\$ / \mathbf{d}$)	16
Incr labour costs ($\$ / \mathrm{d}$)	130
Incr other costs ($\$ /(\mathrm{d})$	32
Utility costs ($\$ / \delta$)	7
Statn costs (\$/GJ \& cents/1) . 72	1.3

AUERAEE UEHICLE LIFE CYCLE COST OF DPERATION = $\quad 11.6$ cents/psngr.kn AUERACE VEHILE LIFE CYCLE COST OF OPERATION = 0 cent5/Te,kM

(1) Ref. source: $1,3-17,19-47,49-59,61-75,91,92,94-97,99-102$.
(2) See AFEM printout for details. (3) Converted (C), Addon (AO) or Stand-alone (SA).
(4) Associated uith fleet garaging, sales and administration, etc. (5) All GJ inits are higher heating values
(6) 100 Z methanol, (7) Land is included with garaging costs (see note 4).

CASE DEFINTTION (1)

MATRIX REF	59	MATRIX CASE\#:	37
FUEL:	HEOH+CET(8)	ENGINE TYFE:	CI
SERVICE:	EUS (UREAN)	PUPP STATION:	FLEET
LOCATION:	TOKONTO	TIME FRAME:	401983

ECONOMIC CRITERIA 8 Fll PROPERTIES

| \% ROI on 4 R8B3 plant replacement value | 20 |
| :--- | :--- | :--- |
| $\%$ int, on 80% vehicle investment | 15 |
| Fuel density (Te/m3) (8) | .804 |
| Fuel higher heating value (GJ/m3)(8)(5) | 18.52 |

	PLANT GATE COST:		
Prin resrce	Nat gas		-
Resrce \$/GJ	2		-
Location	Edmonton	Toronto	-
Prod GJ/d	45414		-
Prod name	Hethanol	DII-3	Blend (8)
Proc Eff $\%$	61.1	60	61
Prod \$/GJ (2)	7.909	160	18.93
Prod cents/1	14.3	429	35.05

TERKINAL COSTS	PRINARY	SECOMDARY
Throughput (n3/0) (7)	250	0
Throughput (GJ/d (7)	4630	0
Avg irventory (days thrput)	26	0
Construction status (3)	C	0
Incr investnt \$(10)6	2	0
Iner inust cost $\$ / \mathrm{d}$	1095	0
Incr util cost \$/d	14	0
Incr naint cost \$/d	14	0
Incer lator cost \$/d	220	0
Incr other costs \$/d	60	0
Incer matg costs \$/d	0	0
Terminal costs \$/GJ	. 3	0
Terninal costs cents/1	. 55	0

REFUELING STATION CDSTS:	
Fleet or retail	Fleet
Throughput Gl/d 8 A3/ه 700	37.79
Avg inventory (days thrput)	4
Construction status (3)	C
Orig invest base stn \$(10)6 (9)	. 37
New invertment $\$(10) 6$. 222
Increm inv costs ($\$ / \mathrm{d}$)	324
Incr. maint costs ($\$ / \mathrm{d}$)	16
Incr labour costs ($\$ / \mathrm{d}$)	130
Incr other costs ($\$ / \mathrm{d}$)	32
Utility costs (\$/d)	7
Statn costs (\$/GJ \& cents/]) .72	1.33

FIEL cost at puap:

Pretax fuel/Fed sal te (c/1) 42,17	3.79	Fuel usage ($1 / 100 \mathrm{~km}$ \& GJ/km) 112.8	. 02089056
Fed exc/Frov tax (cents/l) 0	0	Vehicle life (k.m \& yrs) 1080000	18
Total fivel tak (c/1 \& \$/GJ) 3.79	2.04	Payload (psingrs \& Te) 14	0
Tot fuel cost (c/l \& \$/GJ) 45.96	24.81	Ease cost (\$) \& t3\% ($\$$) 153450	11550
		Comversion type $\&$ cost ($\$$) R	900
OVERALL RESOURCE UTILIZATION:		Grants \& tax concessiors (\$) 0	11550
Psngr.kM/GJ \& Te,km/GJ: 408	0	Total net investrent (\$)	154350
VEHICLE AMASAL FIXED COSTS:		VEHICLE AMALAL VAFIAEAE COSTS (AVERAGE):	
License \& Insurance cost ($\$ / \mathrm{y}$)	2480	Total fuel costs ($\$ / \mathrm{y}$)	31097
Annual cost of investment ($\$ / \mathrm{y}$)	8575	Hisc matls ($\$ / 1000 \mathrm{~km}$ \& \$/y) 60	3600
Anrual cost of finaricing (\$/y)	2572	Driver costs incl ownd ($\$ / \mathrm{y}$)	36655
Other fixed costs (\$/y) (4)	13400	Haint cost ($\$ / 1000 \mathrm{~km}$ \& \$/y) 244	14640
Total fixed costs ($\$ / \mathrm{s}$)	27027	Total variable costs ($\$ / 4$)	85992
AVERACE VEHICLE LIFE CYCLE COST OF AUERACE VEMICLE LIFE CYCLE COST OF		13.45 cents/psrgr.kn 0 cents/Te.k.h	

(1) Ref. source: $1,3-17,19-47,49-59,61-75,91,92,94-97,99-102$.
(2) See AFEK printout for details. (3) Converted (C), Ado-on (AD) or Stand-alone (SA).
(4) Associated with garaging, dispatch 8 admin., etc.
(5) All GJ units are higher heating values
(6) 95% of methanol rail tariff from Edmonton. Plant gate cost of OII-3 ircludes 13cents/] truck cost fr. S, Carolina,
(8) Blend of 950% metharol and 5 FK DII-3 cetane entancer (blended in conventional fuels terminal)
(9) Land included with garaging costs (see note 4),

CASE DEFINITION (1)

MATRIX FEF	63	HATRIX CASEł:	38
FIEL:	DIESE1	ENGINE TYFE:	CI
SERUICE:	EUS(INT/NAE)	PUAF STATION:	FLEET
LOCATION:	TORONTO	TITE FRAME:	401983

ECONOHIC CRITERIA \& FUL PROPERTIES

K ROI on 4083 plant replacement value	20
X int. on 80% vehicle imestment	15
Fuel density (Te/M3)	.829
Fuel higher heating value ($(\mathbf{N} / \mathrm{H} 3)(5)$	38.18

PLANT GATE COST:

Primary resource	Crude
Resource cost ($\$ / G J$)	5.88
Plant location	S.Ontario
Product rate (GJ/d) (6)	61074
Product name	Diesel
Process efficiency (\%)	86.51
Product cost (2) ($\$ / G J$)	6.79
Product cost (cents/1)	25.92

TERIINAL COSTS	PRIMARY	SECONDARY
Throughput ($\mathrm{m} 3 / \mathrm{d}$) (6)	720	0
Throughput (G / d) (6)	27489	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investment \$ \$(10)6	8.3	0
Investment cost \$/d	4547	0
Utility cost $\$ / \mathbf{d}$	74	0
Maintnce cost \$/d	74	0
Labrur cost \$/d	1150	0
Other costs \$/d	326	0
Marketing costs \$/d	0	0
Terminal costs \$/WJ	. 22	0
Terminal costs cerits/l	. 83	0

FMEL COST AT PUAP:
Pretax fuel/Fed sal tx (c/1) 29.4 Fed exc/Prov tax (cents/1) 0 Total fuel tax (c/1 \& \$/GN) 12.24
Tot fuel cost (c/1 \& \$/GJ) 41.64
OVERALI RESOURCE UTILTZATION:
Psngr,kM/GJ \& Te,kn/GJ: 1019
VEHICLE ANNLAL FIXED COSTS:
License \& Insurance cost ($\$ / y$)
Armual cost of investruent ($\$ / y$)
Armual cost of financing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
F. Total fixed costs ($\$ / y$)
TOTAL DISTRIEITION COSTS:
Facility location
kn fron upstrm point
\$/Gd shipped by barge
\$/GU shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road
Total distr cost (\$/GJ)
Total distr cost (cents/l)

PRI TERHIMAL	SEC TERMINAL	REF STATION
TOTOnto	0	TOROnto
150	0	20
0	0	0
.083	0	0
0	0	0
0	0	.095
.083	0	.095
.31	0	.36

REFLELIING STATION COSTS:

Fleet or retail	Fleet
Throughput GJ/d \& m $/ \mathbf{/ d} 700$	18,33
Avg inventory (days thrput)	7
Construction status (3)	5A
Orig invest base stn \$(10)6 (7)	. 37
New irvestment \$(10)6	0
Investment costs ($\$ / \mathrm{d}$)	202
Maintenance costs (\$/d)	10
Lebour costs (\$/d)	130
Other costs (\$/d)	20
Utility costs ($\$ / \mathbf{/}$)	7
Statn costs (\$/CJ \& cents/l) . 52	1.98

VEHICLE DATA:
2.64 Fuel usage ($1 / 100 \mathrm{kn} \& \mathrm{GJ} / \mathrm{km}$) 41.58 . 015875244
9.6 Vehicle life (kn \& yrs) 1770000 11
3.2 Payload (psigrs \& Te) 18.70
10.9 Ease cost ($\$$) \& tax ($\$$) 18833514175

Conversion type $\&$ cost ($\$$) 0
Grants \& tax concessions (\$) $0 \quad 0$
Total net investment (\$) 202500
VEHICLE ARHUAL YARIAELE COSTS (AUERACE):
Total fuel costs ($\$ / \mathrm{y}$) 27843
Mise matls ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}$) 193057
Driver costs incl outd ($\$ / \mathrm{y}$) 50830
Maint cost ($\$ / 1000 \mathrm{~km} \$ \$ / \mathrm{y}) \quad 202 \quad 32503$
Total variable costs ($\$ / \mathrm{y}$) 114233

$$
\begin{array}{lll}
\text { AVERACE VEHICLE LIFE CYCLE COST OF OPERATION } & = & 6.84 \text { cents/p5ngr.km } \\
\text { AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION } & = & 0 \text { cents/Te.kM }
\end{array}
$$

(1) Ref. source: $1,3-17,19-36,91,92,94-97,99-102$.
(2) See AFEM printout for details. \quad (3) Converted (C), Add-on (AD) or Standalone (SA),
(4) Associated with garaging, admin., and vehicle ROI. (5) All GJ units are higher heating values
(6) Diesel only, (7) Lard is ircluded with garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF	60	MATRIX CASE\#:	39
FIEL:	PRTPAME	ERGIME TYPE:	SI
SEEVICE:	BUS(INT/LPB)	PLPP STAIIDN:	FLEET
LOCATICN:	TORDNTO	TIPE FRAE:	401983

ECONOMIC CRITERIA \& FUEL PROPERTIES

| Z ROI on 4083 plant replacenent value | 20 |
| :--- | :--- | :--- |
| Z int, on 80% vehicle investment | 15 |
| Fuel density (Te/M3) | .508 |
| Fuel higher heating value ($(a / m 3)(5)$ | 25.59 |

PLANT GATE COST:
Primary resource Raw nat gas
Resource cost ($\$ / \mathrm{G}$)
Plant location
Product iate (G / d) (6)
Product nawe
Process efficiency (Z)
Product cost ($\$ / \mathrm{GJ}$) (2)
Product cost (cent5/1)

TERHTMAL COSTS

Throughput ($\mathrm{m} 3 / \mathrm{d}$) (6)
Throughput (G / σ) (6)
Storage capacity (days)
Construction status (3)
Investment \$(10)6
Investment cost $\$ / \mathbf{d}$
Utility cost $\$ / d \quad 20700$
Maintnce cost \$/d 1644
Labour cost $\$ / \mathbf{d} 2730$
Other costs $\quad \$ / d \quad 1644$

Marketing costs \$/d 70600
Terminal costs \$/GJ
Terminal costs cent5/l
5A

TOTAL DISTRIB:ION COSTS:
Facility location kn from upstrm poirit \$/Gj shipped by barge \$/GJ shipped by pipe \$/GN shipped by rail \$/Gd shipped by road Total distr cost ($\$ / \mathbf{W}$) Tatal distr cost (cents/l)

PRI TEFHINAL SEC TERKINAL

PRI TEFHINAL	SEC TERNINAL	REF STATIO
Sarris (7)	TOROnto	TOronto
3095	245	20
0	0	0
.3	0	0
0	0	0
.44	.45	.38
.74	.45	.38
1.89	1.15	.97

SECOMDARY

300
7677
10

4
2191
100
219
500
219
4000
.94
2.4

FUEL COST AT PIRP:
Pretan fuel/Fed sal tx (c/l) 21.25
Fed exc/Prov tax (cents/1) 74
Total fuel tax (c/l \& \$/GJ) . 81
Tot fuel cost (c/1 \& \$/GJ) 22.06
DVERALL FESOURCE UTILTIATION:
Psngr.km/GJ \& Te.km/GJ: 958
VEHICLE AMANAL FIXED COSTS:
Licerse 8 Insurance cost ($\$ / y$)
Arrual cost of investment ($5 / \mathrm{y}$)
Arrual cost of financing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
Total fised costs ($\$ / y$)
0
.31
8.62

0

REFUELING STATION COSTS:
Fleet or retail
Throughput GJ/d $8 \mathrm{~m} / \mathrm{d} \quad 700 \quad 27.35$
Avg inventory (days thrput) 4
Corrstruction status (3)
Orig invest base stn $\$(10)$
(8)

C
.37
New investment $\$(10) 6 \quad .475$
Increm inv costs ($\$ / 8$) 463
Incr, maint costs ($\$ / \mathbf{0}$) 23
Incr labour costs ($\$ / d$) 130
Incr ather costs ($\$ / \mathrm{d}$) 46
Incr utility costs ($\$ / \mathbf{}$) 7
Statn costs (\$/G) \& cent5/1) .95 2.43
VEHICIE DATA:
.07 Fuel usage $\{1 / 100 \mathrm{~km} \& \mathrm{GJ} / \mathrm{km}) 70.72$. 018097248

AVERACE VEHICLE LIFE CYCLE COST OF OPERATION $=\quad 6.88$ cents/psngr.kM
AUERAEE VEHICLE LIFE CYCLE COST OF OFERATION $=0$ cent5/Te.kM
(1) Ref. sources: 1, 3-17, 19-36, 91, 92, 94-97, 99-102, 111-118.
(2) See AFEM printout for details. (3) Converted (C), Addon (AD) or Stard-alone (SA).
(4) Associated with garaging, admin., and vehicle ROI.
(5) All GJ units are higher heating values
(6) Propane orily.
(7) Gathering costs in Alherta are shown 35 road cost
in road costs as . 36 and . 08 \$/GJ respectively. (8) Land included in garaging costs (see note 4).

CASE DEFINTITON (1)

MATRIX R FF	6 c	MATRIX CASE\#:	40
FIEP:	HECH(90\%)(8)	EMGINE TYPE:	SI
SERUICE:	RUS(INT/RRB)	PUP STATION:	FLEET
LOCATION:	TORONTO	TIE FRAFE:	401983

ECONOHIC CRITERIA \& FUL PROPERTIES

\% ROI on 4083 plant replacement value	20
\% int. on 80% vehicle investrent	15
Fuel derisity ($\mathrm{Te} / \mathrm{n} 3$) (8)	. 788
Fuel higher heating value (GU/m3)(8)(5)	19.67

	PLAMT GATE COST:		-
Prim resrce	Nat gas	Crude	
Resrce \$/Gl	2	5.88	-
Location	Edmonton	5, Ont.	-
Prod GJ/d	45414	83741	-
Prod nate	Methanol	Casoline(RL)	Blerd(8)
Procetf \%	61.1	85.88	65.38
Prod \$/Gl (2)	7.909	7,17	7.78
Prod cents/l	14.3	24.37	15.31

TOTAL DISTRIEHION COSTS: Facility location kn from upstrm point \$/EJ shipped by barge
\$/GJ shipped by pipe (6) \$/GN shipped by rail (6) \$/GJ shipped by road Total distr cost (S / GJ) Total distr cost (cents/1)

PRI TERHTHLL SEC TERHINGL KEF STATIOM

Toronto	0	Toronto
$2850 \$ 150$	0	20
0	0	0
.01	0	0
2.17	0	0
0	0	.54
2.18	0	.54
4.28	0	1.06

secaraary

TERHINAL COSTS	PRISARY	SECONEARY
Throughput ($\mathrm{m} / \mathrm{/d}$) (7)	250	0
Throughput (GJ/d (7)	4917	0
Avg inventory (days thrput)	26	0
Construction status (3)	A0	0
Incer investnt \$(10)6	2	0
Incr invst cost $\$ / \mathrm{d}$	1095	0
Irer util cost \$/d	14	0
Incr maint cost \$/d	14	0
Iner labor cost $\$ / \delta$	220	0
Ince other costs \$/d	60	0
Iner metg costs \$/\%	0	0
Terminal costs \$/GJ	. 28	0
Termiral costs cents/l	. 5	0

FIEL COST AT PIAP:
Pretax fuel/Fed sal tx (c/l) 27.61 2.03
Fed exc/Prov tax (cents/1) 0 0
Total fuel tax ($\mathrm{c} / 18$ \$/G) 2.03
Tot fuel cost (c/1 \& \$/GJ) 24.64
OMERALL RESOUFCE UTILIZATION:
Psngrikn/GJ \& Te,kn/GJ: 681
vehicle armal fixed costs:
License \& Insurance cost ($\$ / \mathrm{y}$)
Arrubl cost of investment ($\$ / \mathrm{s}$)
Arrual cost of financing ($\$ / \mathrm{y}$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

REFUELING STATION COSTS:
Fleet or retail Fleet
Throughput GJ/d8 m3/d $700 \quad 35.58$
Avg inventory (days thrput) 4
Construction status (3) AO
Orig invest base stn $\$(10) 6$ (9) , 37
New investment $\$(10) 6 \quad .222$
Incren inv costs ($\$ / d$) 324
Incr, maint costs $(\$ / \delta) \quad 16$
Iner labour costs ($\$ / \mathrm{d}$) 130
Incr other costs $(\$ / d)$
Utility costs ($\$ / d / d) 7$
Statn costs (\$/GJ \& cents/1) .72 1.41
vericle data:
Fwel uszge ($1 / 100 \mathrm{~km} 8 \mathrm{GJ} / \mathrm{kH}$) $91.2 \quad .01793904$
Vehicle life (kM \& yrs) $1770000 \quad 11$
Payload (psngrs 8 Te) 18.7 0
Rase cost ($\$$) 8 tax ($\$$) $188325 \quad 14175$
Conversion type \& cost ($\$$) FX 2190
Grants 8 tax concessions ($\$ 0$) 014175
Total net investment (\$) 190515
VEHICLE ARHALL MARIABLE COSTS (ANERAGE):
Total fuel costs $(\$ / \mathrm{y}) \quad 36139$
Hisc matls ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) $19 \quad 3057$
Oriver costs incl outd ($\$ / \mathrm{y}$) 50830
Haint cost ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}$) 236
Total variable costs ($\$ / 4$) 128000
(1) Ref. source: 1, 3-17, 19-47, 49-59, 61-75, 91, 92, 94-97, 99-102.
(2) See AFEH printout for details. (3) Converted (C), Add-on (AD) or Stand-alore (SA).
(4) Associated with garaging, adnin., and vehicle ROI. (5) All GJ inits are higher heating values
(6) 10% gasoline pipeline tariff ($.31 \mathrm{c} / 1$) $890 \% \mathrm{HeCH}$ rail tariff ($4.35 \mathrm{c} / 1$). (7) 90% HeOH blend w/gasoline.
(8) Cold start formulation of 900% Kethanol, 10uZ gasoline (latter blended at conventional fuels terminal).
(9) Land included with garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF \#: 60		MATRIX CASE\#:	
FUEL:	MEOH+CET(8)	EMGIDE TYPE:	CI
SERUICE:	BUS(INT/RE)	flap station:	FLET
LOCATION:	TORONTO	THE FRAFE:	401983

ECONOHIC CRITERIA \& FUEL PROPERTIES

\% ROI on 4083 plant replacevent value	20
Z int, on 80% vehicle investrent	15
Fuel density ($\mathrm{Te} / \mathrm{m} 3$) (8)	. 804
Fuel higher heating value (GN/R3)(8)(5)	18.52

Prin restce Resrce $\$ / \mathrm{G}$	Plant cate costa		
	Nat gas		-
	2		-
Location	Edronton	Toronto	-
Prod cald	45414		-
Prod name	Hetharol	DII-3	Blend(8)
Proc Eff $\%$	61.1	60	61
Prod \$/al (2)	7.909	160	18.93
Prod cents/1	14.3	429	35.05

TERKINAL COSTS	Pritary	SECO
Throughput (n3/d) (7)	250	0
Throughput (S / d (7)	4630	0
Avg inventory (dass thrput)	26	0
Construction status (3)	C	0
Incer investnt \$(10)6	2	0
Iner inust cost \$/d	1095	0
Incr util cost \$/d	14	0
Incr maint cost \$/d	14	0
Incr labor cost \$/d	220	0
Incer other costs \$/d	60	0
Incr witg costs $\$ / \delta$	0	0
Terminal costs \$/GJ	. 3	0
Terninal costs cents/l	. 55	0

FUEL COST AT PUPF:
Pretax fuel/Fed sal tx (c/l) 42.17 3.79
Fed exc/Prov tax (cent5/1) 0
Total fixel tax ($\mathrm{c} / 18 \$ / \mathrm{GJ}$) $3.79 \quad 2.04$
Tot fyel cost ($\mathrm{c} / \mathrm{l} 8 \mathrm{\$} / \mathrm{sJ}$) $\quad 45.96 \quad 24.81$
OVERALL GESOUKCE UTIL TZATION:
Psngr.km/G/ \& Te.km/GJ: 711
VEhICLE ARMUAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$)
Annual cost of investrent ($\$ / \mathrm{y}$)
Annual cost of financing ($\$ / y$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fixed costs ($\$ / 4$)

TERHINAL COSTS
Throughput (n3/d) (7)
Avg inventory (days thrput)
Incer investnt $\$(10) 6$
Iner inust cost $\$ / \mathbf{d}$
In mint cost
Ince labor cost $\$ / d$
Incr witg costs $\$ / \delta$
Termal costs
Terminal costs cent5/1

ECONDARY

0

TOTAL DISTRIEUION COSTS: Facility location en from upstrm point
/G/ shipped by barge \$/GN shipped by pipe \$/G shipped by rail (6) \$/G shipped by road Total distr cost (\$/G) Total distr cost (cents/l)

FRI TEFHITHL SEC TERFINAL Toronto 0 2850 0002.29

0
2.29
4.24

0 0 T
0

0
0
0
0

054

STATION Toronto 20 0 0 0 . 54 1

AUERAGE VEHICLE LIFE CYCLE COST OF OPERATION
AUERACE VEHICLE LIFE CYCLE COST OF OFERATION
ferueling station costs:
Fleet or retail Fleet

Throughput GU/d \& $\mathrm{M} 3 / \mathrm{d} \quad 700 \quad 37.79$
Avg inventory (doss thrput) 4
Construction status (3) [
Orig invest base stn $\$(10) 6$ (9) . 37
New investment $\$(10) 6$. 222
Increm inv costs ($\$ / \mathrm{d}$) 324
Irer, maint costs ($\$ / d$) 16
Incr labour costs ($\$ / \mathbf{d}$) 130
Incr other costs ($\$ / d$) 32
Utility costs ($\$ /(\mathrm{d})$
Statn costs (\$/GJ \& cent5/1) .72 1.33
VEHICLE DATA:
Fivel usage ($1 / 100 \mathrm{~km} \& \mathrm{GJ} / \mathrm{kn}$) 86.58 . 016034616
Vehicle life (kn \& yrs) $1770000 \quad 11$
Payload (psngrs \& Te) 18.7 0
E85e cost ($\$$) \& tax ($\$$) $188325 \quad 14175$
Conversiori type \& cost (\$) R 900
Grants \& tax corces5iors ($\$$) $0 \quad 14175$
Total net investment ($\$$) 189225
VEhICLE AMMAL MARIAELE COSTS (Averiage):
Total fiel costs ($\$ / \mathrm{y}$)
64012
Hisc matls ($\$ / 1000 \mathrm{~kg}$ \& $\$ / \mathrm{y}$) $19 \quad 3057$
Driver costs incl outhd ($\$ / 4$) 50830
Heint cost ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{s}$) $202 \quad 32503$
Total variable costs ($\$ / \mathrm{y}$)
150402
(1) Ref. source: 1, 3-17, 19-47, 49-59, 61-75, 91-97, 99-102.
(2) See AFEM printout for details,
(3) Cormerted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated uith garaging, aduin., and vehicle ROI,
(5) All GJ units are higher heating values
(6) 95 K of nethanol rail tariff from Edmonton. Plant gate cost of DII-3 includes 13 ents $/ 1$ truck cost fr. S. Carolina,
(8) Blend of $95 \mathrm{~V} \%$ nethanol and 5 vZ DII-3 cetane enhancer (blended in conventioral fuels terninal)
(9) Land included with garaging costs (see note 4).

CASE DEFINTITON (1)

MATRIX REF \#: 7a		MATRIX CASE\#:	42
FUEL:	CASOLTE (RL)	EMCIE TYFE:	SI
SERVICE:	TRUCK (PSNCR)	FUPP STATION:	RETAII
LOCATION:	TORONTO	TIIE FRAFE:	401983

ECONOHIC CRITERIA \& FUE PROFERTIES

Z ROI on 4883 plant replacement value	20
Z int, on 80% vehicle investment	15
Fuel dersity (Te/m3)	.718
Fuel higher heating value $(G / / m 3)(5)$	34

(1) Ref, source: 3-35, 155-173.
(2) See AFEM printourt for details, (3) Converted (C), Add-on (AD) or Stand-alone (SA),
(4) Associated with garaging and adinistration. (5) All GJ units are higher heating values
(6) Regular leaded gasoline only.
(7) Includes $\$ 260000$ land cost.

CASE DEFINTIION (1)

MATRIX REF \ddagger		MATRIX CASEP:	43
FUE:	CASOCDE (RL)	ERGIE TYPE:	SI
SERVICE:	TRICK(LREAN)	PUPP STATION:	RETAIL
LOCATION:	TORDNTO	TIFE FRAE:	421983

ECONONIC CRITERIA \& FLEL PROPERTIES

\% ROI on $4 R 83$ plant replacement value	20
$\%$ int, on 80% vehicle irvestment	15
Fuel density (Te/m3)	.718
Fuel higher heating value $(G J / m 3)(5)$	34

PLANT GATE COST
Primary resource Crude
Resource cost ($\$ /[\mathrm{N}$)
Plant location
Product rate (Cl / d) (6)
Prorkuct name
Process efficiency ($\%$)
Product cost (2) (\$/G)
Product cost (cents/1)

Crude
5.88
S.Ontario 78295 Gasoline(fL)
85.88
8.4
28.56

TOTAL DISTRIEUTON COSTS: Facility location kn from upstrm point \$/[al shipped by barge \$/GJ shipped by pipe \$/GJ shipped by rail \$/al shipped by road Total distr cost ($\$ / \mathrm{N}$) Total distr cost (cents/])
 Toronto

| Toronto | |
| :---: | :---: | :---: |
| 150 | 0 |

REF STATION Toronto 20

0
0
0
.11
.11
.37

TERHIKL COSTS	PRIARY	SECONDARY
Throughput (m3/d) (6)	1068	0
Throughput (C / d) (6)	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investrent \$(10)6	12.3	0
Investrent cost \$/d	6739	0
Utility cost \$/d	110	0
Hisintnce cost \$/d	110	0
Labour cost $\$ / d$	1706	0
Other costs $\quad \$ / d$	484	0
Harketing costs \$/d	10672	0
Terminal costs \$/G	. 54	0
Terminal costs cents/l	1.83	0

FUEL COST AT PLHP:
Pretax fuel/Fed sal tx (c/1) 35.17 3.16
3.16

Fed exc/Prov tax (cents/1) 1.5
Total fluel tax (c/l \& \$/GJ) 12.26
Tot puel cost ($\alpha / 18 \$ / \sigma$) $47.43 \quad 13,95$
OVERALL RESOURCE UTILIZATION:
Psngr,km/GJ \& Te.km/GJ: 0 45.7
VEHICLE ANKNAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$)
1295
Arrual cost of investment ($\$ / \mathrm{y}$)
1250
Annual cost of firtancing ($\$ / \mathrm{y}$) 375
Other fixed costs ($\$ / \mathrm{y}$) (4) 4000
$=-$ Total fixed costs $(\$ / y) 6920$
AVERAGE VEHTCLE LIFE CYCLE COST OF OFERATION
AUERACE VEHICLE LIFE CYCLE COST OF OPERATION

REFUELITNG STATION COSTS:
Fleet or retsil Retai]
Throughput GJ/d $8 \mathrm{~m} / \mathrm{d} \quad 356 \quad 10.47$
Avg inventory (days thrput) 7
Construction status (3) SA
Orig invest base stn \$(10)6 (7) .51
New investment $\$(10) 6$
Investment costs ($\$ / \mathrm{d}$) 279
Maintenance costs ($\$ / d$) 7
Labour costs ($\$ / d$) 130
Other costs ($\$ / d$) 14
Utility costs ($\$ / 0$) 4
Statn costs (\$/G1 \& cent5/1) 1.21 4.11
VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{kn}$ \& $\mathrm{GJ} / \mathrm{kn}$) 16 . 00544
Vehicle life (kM \& yTs) $154800 \quad 8$
Peyload (psngrs \& Te) 0 . 29
Base cost ($\$$) \& tax ($\$$) 9300
Conversion type $\&$ cost ($\$$) 0
Grants \& tax corcessions ($\$$) 00
Total net irvestmerit (\$) 10000
VEHICLE AMNALL UARIAEAE COSTS (AVERAGE):
Total fuel costs ($\$ / y$) 1468
Misc matls ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) \quad 8.7 \quad 168$
Driver costs incl ovitr ($\$ / \mathrm{y}$) 12000
Maint cost $(\$ / 1000 \mathrm{kn} \$ \$ / \mathrm{y}) 45870$
Total variable costs ($\$ / \mathrm{y}$) 14506
(1) Ref, source: 3-35, 155-173.
(2) See AFEK printout for details. (3) Converted (C), Add-on (AO) or Stardoalone (SA),
(4) Associated with garaging, adimin., and vehicle ROI,
(5) All GJ units are higher heating values
(6) Regular leaded gasolire only.
(7) Includes $\$ 260000$ land cost.

CASE DEFINITION (1)

MATRIX REF \ddagger	86	MATRIX CASEI:	44
FUEL:	DIESER	ENGINE TYFE:	CI
SERVICE:	TRICK(LIREAN)	PUPP STATION:	RETAII
LOCATION:	TORONTO	TIHE FRATE:	401983

ECOHONIC CRITERIA \& FUE PRDPERTIES

Z ROI on 4083 plant replacement value	20
Z int, on 80% vehicle investment	15
Fuel density (Te/n3)	.829
Fuel higher heating value (GU/ $/ 3)(5)$	38.18

PLANT GATE COST:	
Primary resource	Crude
Resource cost (\$/GJ)	5.88
Plant location	S.Ontario
Proojet rate (G/d) (6)	61074
Product name	Diesel
Process efficiency (\%)	85.88
Product cost (2) (\$/G)	7.64
Product cost (cent5/1)	29,16

TOTAL DISTRIPAION COSTS:
Facility location kn from upstrm point \$/GJ shipped by barge \$/GJ shipped by pipe
\$/G shipped by rail
\$/GJ shipped by road Total distr cost ($\$ / \mathrm{T}_{\mathrm{N}}$)
Total distr cost (cents/l)

PRI TERHINAL	SEC TERHINAL	REF STATION
TOROnto	0	Toronto
150	0	20
0	0	0
.083	0	0
0	0	0
0	0	.095
.083	0	.095
.31	0	.36

TERMINAL COSTS	FRISARY	SECPA
Throughput ($\mathrm{H} 3 / \mathrm{d}$) (6)	720	0
Throughput ($G J /{ }^{\text {d }}$) (6)	27489	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investment \$(10)6	8.3	0
Investment cost \$/0	4547	0
Utility cost \$/d	74	0
Haintnce cost \$/0	74	0
Labour cost \$/d	1150	0
Other costs \$/d	326	0
Karketing costs \$/d	7195	0
Terminal costs \$/GJ	. 48	0
Terminsl costs cents/l	1,83	0

FUEL COST AT PIAP:
Pretax fuel/Fed sal tx (c/1) 35.82
9.6 Vehicle life (km \& yrs) 154800

Fed exc/Prov tax (cents/1) 0
Total fuel tak (c/l \& \$/GJ) 12.82
Tot fivel cost (c/1 \& \$/GJ) 48.64
3.35
12.73

OVERAL RESOARCE UTLITATION:
Psmgr.kM/GJ \& Te.kn/GJ: 0
62.7

VEHICLE AMNUAL FIXED COSTS:
License \& Insurance cost (\$/y) 1295
Arrual cost of investment ($\$ / y$) 1500
Arrual cost of financing ($\$ / 4$) 450
450
4000
Other fixed costs ($\$ / y$) (4)
4000
7245
AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION
AUERAGE VEHICLE LIFE CYCLE COST OF OPERATION
(1) Ref. source: 3-35, 155-173.
(2) See AFEN printout for details,
(3) Converted (C), Adóon (AD) or Stand-alone (SA).
(4) Associated with garaging, admin., and vehicle ROI,
(6) Diesel only. (7) Includes $\$ 260000$ land cost.

REFUELIING STATION COSTS:

Fleet or retail		Retail
Throughput GJ/d $8 \mathrm{~ms} / \mathrm{d}$	395	10.34
Avg inventory (days thrput)		7
Construction status (3)		SA
Orig invest base stn \$(10)6	(7)	. 51
New irvestment \$(10)6		0
Investmerit costs ($\$ / \mathrm{d}$)		279
Maintenance costs ($\$ / \delta$)		7
Lebour costs (\$/d)		130
Other costs ($(\$ / d)$		14
Utility costs ($\$ / \mathrm{d}$)		4
Statn costs (\$/GJ \& cents/l)	1.09	4.16
VEHICLE DATA:		
Fuel uszge ($1 / 100 \mathrm{~km}$ \& $\mathrm{GJ} / \mathrm{km}$)	10.4	. 00397072
Vehicle life (kM \& yrs)	154800	8
Payload (psngrs 8 Te)	0	. 29
Ease cost (\$) \& tax (\$)	11160	840
Conversion type \& cost (\$)		0
Grants \& tax concessiors (\$)	0	0
Total net investment (\$)		12000

VEHICLE AMAMAL VARIAELE COSTS (AVERACE):
Total fuel costs ($\$ / \mathrm{y}$) 978
Kisc matls ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}$) $8.7 \quad 168$
Driver costs incl owhd ($\$ / y$) 12000
Maint cost ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}) \quad 38 \quad 735$
Total variable costs ($\$ / y$) 13881

```
= 0 cents/p5ngr.k...
= 376.4 cents/Te,kn
```

CASE DEFINITION (1)

HATRIX REF \#:	8 C	MATRIX CASE\%:	45
FUEL:	Can	ERGINE TYPE:	SI
SERVICE:	TRUCK(UREAN)	PLPP STATION:	FLEET
LDCATION:	TORONTO	TIFE FRAME:	421983

ECONOYIC CRITERIA \& FUEL PROPERTIES

Z ROI on $4 R 83$ plant replacement value	20
\% int. on 80% vehicle investment	15
Fuel density (Te/m3)	.114
Fuel higher heating value $(G J / H 3)(5)(7)$	6.04

Plant cate cost:	
Primary resource	Nat. Gas
Resource cost (\$/GJ)	4.7
Plant location (2)	Toronto
Product rate ($G / / \mathrm{d}$)	(2)
Product nawe	CNG
Process efficiency (\%)	92.8
Resource cost (\$/GJ)	4.7
Resource cost (c/l)(7)	2.83

TERHINAL COSTS

Throughput (m3/d)
Throughput ($G J / \delta$)
Storage capacity (days)
Construction status (3)
Investment $\$(10) 6$
Investiment cost $\$ / d$
Utility cost $\quad \$ / d$
Maintnce cost $\$ / d$
Labour cost $\$ / d$
Other costs $\$ / \delta$
Marketing costs $\$ / \mathbf{d}$
Terminal costs $\$ / \mathrm{G}$
Terminal costs cents/1
PRTHARY

FUEL COST AT PUAF:
Pretax fuel/Fed sal tx (c/l) 6.120
Fed exc/Prov tax (cents/l) 0
Total fuel tax ($\mathrm{c} / 18 \$ / \mathrm{G}$) 0
Tot fuel cost (c/l $8 \$ / G J) 6.12$
OVERALI RESOMRCE UTILTIATION :
Psngr.kn/GJ \& Te,km/GJ: 0
VEHICLE AMNUAL FIXED COSTS:
License \& Insurance cost (\$/y) 1295
Arrual cost of investment ($\$ / y$)
Annual cost of financing ($\$ / y$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fiked costs ($\$ / y$)
AVERAEE VEHICLE LIFE CYCLE COST OF OPERATION
AVERAEE VEHICLE LIFE CYCLE COST OF OPERATION

TOTAL DISTRIEUION COSTS: PRI TERMIMAL SEC TERUINAL REF STATION
Facility location 000
kn from upstrm point.
\$/N shipped by barge
\$/GJ shipped by pipe
\$/Gd shipped by rail
\$/GJ shipped by road Total distr cost ($\$ / G /$) Total distr cost (cents/l)

SECONDARY

REFIELITMG STATION COSTS:

Fleet or retail		Fleet
Throughput $G J / \sigma \& \mathrm{~m} 3 / \mathrm{d}$	30	4.96
Avg imentory (dess thrput)	negl	

Construction status (3) C
Orig invest base stn $\$(10) 6$ (9) . 04
New investment $\$(10) 6 \quad .09$
Incren inv costs ($\$ / 0$) 71
Incr , maint costs ($\$ / d$) 9
Incr labour costs ($\$ / \mathrm{d}$) 70
Iner other costs $(\$ / \alpha) \quad 7$
Iner utility costs ($\$ / \mathbf{d}$) 7
Statn costs ($\$ / \mathbf{N}$ \& cents/1) $5.46 \quad 3.29$
VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{k} . \mathrm{H}$ \& GJ/k.h) 90.07 . 005440228
Vehicle life (kM \& yrs) $154800 \quad 8$
Payload (psngrs \& Te) 0 . 29
Base cost ($\$$) \& tax ($\$$) 9300
Conversion type \& cost (\$) R 1650
Grants \& tax concessiors ($\$$) $500 \quad 700$
Total net investment (\$) 10450
VEHICLE AMANAL VARTAELE COSTS (AVERACE):
Total fuel costs ($\$ / \mathrm{y}$) 1066
Hisc matls ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}$) 8.7168
Oriver costs incl ouhd ($\$ / \mathrm{y}$) 12000
Maint cost ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) 45 \quad 870$
Total variable costs (\$/y) 14104
$\begin{array}{lr}= & 0 \text { cent5/Psngr.kM } \\ = & 375.9 \text { cents } / \text { Te.k.M }\end{array}$
(1) Ref. source: 3-35, 89, 120-131, 133, 135-141, 143-173.
(2) Plant is located at retail outlet. (3) Converted (C), Adoton (AD) or Stand-alone (SA).
(4) Associated with garaging, admin,, and vehicle ROI.
(5) All GJ units are higher heating values
(6) Excluding $N G$ feed cost. (7) At 16.5 MPa fuel tark pressure.
(B) Land is included in garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF		MATRIX CASE\#:	46
FUEL:	Fropare	EMCINE TYFE:	SI
SERVICE:	TRLCK (UREAN)	PLUP STATION:	RETAII
LOCATION:	TORONTO	TIME FRAYE:	401983

ECONOHIC CRITERIA \& FUL PROFERTIES

\% ROI on 4083 plant replacement value	20
z int. on 80% vehicle imvestment	15
Fuel density ($\mathrm{Te} / \mathrm{m} 3$)	. 508
Fuel higher heating value (G//m3) (5)	25.59

(1) Ref, source: 3-35, 111-118, 155-173.
(2) See AFEH printout for details.
(3) Corverted (C), Add-on (AD) or Standi-alone (SA).
(4) Associated with garaging, admin., and vehicle ROI. (5) All GJ units are higher heating values
(6) Propane only, (7) Gathering costs in Alberta are shouri as road cost in road costs as .36 and .08 \$/GJ respectively.

CASE DEFINTITON (1)

matrix ref \#: 8 e		MATRIX CASE:	
FuEl:	HEOH(90\%) (8)	EMGIME TYPE:	SI
SERUICE:	TTUCK(LIREAN)	PUPP STATION:	FleEt
LOCAITON:	TCRONTO	THFE FRATE:	401983

ECONOMIC CRITERIA \& FUE PROPERTIES

Z ROI on 4083 plant replacement value	20
Z int. on 80% vehicle investment	15
Fuel density ($\mathrm{Te} / \mathrm{m} 3$) (8)	.788
Fuel higher heating value $(G / m 3)(8)(5)$	19.67

(1) Ref. source: 3-35, 47, 49-59, 61-75, 155-173.
(2) See AFEM printout for details, (3) Converted (C), Ado-an (AD) or Stard-alone (SA).
(4) Associated with garaging, admin+, and vehicle ROI.
(5) All GJ units are higher heating values
(6) 10% gasoline pipeline tariff (.31c/l) 890% HeCH rail tariff ($4.35 \mathrm{c} / \mathrm{l}$), (7) 90% heOH blend w/gasoline,
(8) Cold start formulation of $90 v \%$ Methanol, $10 v \%$ gasolire (latter blended at comentional fuels terminal).
(9) Land included with garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX REF \ddagger :		MATRIX CASE\#:	48
FIEL:	HEDH(100\%)	ENGINE TYFE:	CI
SERVICE:	TRUCK(LIREAN)	PLPP STATION:	FLEET
LOCATION:	TORONTO	TIFE FRAYE:	401983

ECONOHIC CRITERIA \& FLEI PRDPERTIES

\% ROI on $40 B 3$ plant replacement value	20
$\%$ int, on 80% vehicle investment	15
Fuel density (Te/m3)	.796
Fuel higher heating value ($\mathrm{G} / \mathrm{m} 3$)	18.08

PLANT GATE COST:	
Primary resource	Nat Gas
Resource cost ($\$ / G J$)	2
Plant location	Edmonton
Product rate (GJ/d)	45414
Product name	Methanol
Process Efficiency (\%)	61.1
Product cost ($\$ / G J$)(2)	7.909
Product cost (cents/l)	14.3

TOTAL DISTRIEUTON COSTS:	PRI TERHINAL	SEC TERYINAL	REF STATI
Facility location	Toronto	0	Toronto
kn from upstrm point	2850	0	20
\$/GN shipped by barge	0	0	0
\$/EN shipped by pipe	0	0	0
\$/GJ shipped by rail	2.4	0	0
\$/GJ shipped by road	0	0	. 54
Total distr cost (\$/EN)	2.4	0	. 54
Total distr cost (cents/l)	4.33	0	. 97

TERYINAL COSTS	PRIHARY	SECO
Throughput (m3/d) (6)	25	0
Throushput (GJ/d) (6)	452	0
Avg inventory (days thrput)	26	0
Construction status (3)	AD	0
Ircer investnt \$(10)6	. 2	0
Incr inwst cost \$/d	109	0
Incr util cost \$/d	0	0
Incr maint cost $\$ / \mathbf{d}$	5	0
Incr labor cost $\$ / \mathbf{d}$	0	0
Incr other costs \$/d	11	0
Incr mktg costs \$/d	140	0
Terminal costs \$/GJ	. 58	0
Termiral costs cents/l	1.04	0

REFUELING STATION COSTS:

Fleet or retail	Fleet
Throughput [J/d \& M3/d 30	1,65
Avg inventory (days thrput)	4
Construction status (3)	C
Oric invest base stn \$ 10) 6 (7)	. 04
New imvestment \$(10)6	. 024
Increm inv costs (\$/0)	35
Iner, maint costs ($\$ / 8$)	2
Incr latrour costs ($\$ / /$)	70
Incr other costs ($\$ / \mathrm{d}$)	4
Utility costs ($\$ / \mathrm{d}$)	. 3
Statn costs (\$/GJ \& cents/1) 3.7	6.68

FIEL COST AT PUNP:

Fretax fuel/Fed sal tx (c/1) 27.32
Fed exc/Prov tax (cents/1) 0
Total fivel tax ($\mathrm{c} / 18 \$ / \mathrm{G} \mathrm{J}$) 2,45
$\begin{array}{llll}\text { Tot fivel cost }(\mathrm{c} / 18 \$ / G \mathrm{~J}) & 29.77 & 16.46\end{array}$
OVERALL FESSOIRCE UTILIZATION :
Psrigr.kM/GJ\& Te.kM/GJ: 0
35.7

VEHICLE ANRNAN FIXED COSTS:
License \& Insurance cost ($\$ / y$)
Anrual cost of investrment ($\$ / y$)
1295
Arnual cost of financing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
1545
\therefore Total fined costs (\$/y) 7303
AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION
AUERAGE VEHICLE LIFE CYCLE COST OF OFERATION
$=\quad 0$ cents/psngrik.m
(1) Ref. source: 3-35, 47, 49-59, 61-75, 155-173.
(2) See AFEM printout for details.
(3) Converted (C), Aditon (AD) or Stand-alone (SA),
(4) Associated with garaging, administration and vehicle ROI. (5) All GJ (nits are higher heating values
(6) 100% metharol.
(7) Lard included with garaging costs (see note 4).

$$
A-52
$$

CASE DEFINTITION (1)

MATRIX REF \ddagger : 89		HATRIX CASEF:	49
FLEL:	HEOHCET(8)	EGIE TYPE:	CI
SERVICE:	TRUCK (LIEEAN)	PLAP STATION:	FLEET
LDCATIDN:	TORONTO	TITE FRAYE:	40 1983

ECONOHIC CRIIERIA \& FUE PROPERTIES

\% ROI on 4083 plant replacement value	20
\% int. on 80% vehicle investment	15
Fuel density (Te/n3) (8)	.804
Fuel higher heating value $(G / / 43)(8)(5)$	18.52

FLAMT GATE COST:

Prin resrce	Nat gas		-
Resrce \$/G	2		-
Location	Edroriton	Toronto	-
Prod GJ/d	45414		-
Prod name	Hethanol	DII-3	Blend (8)
Proceff \%	61.1	60	61
Prod \$/G」 (2)	7.909	160	18.93
Prood cents/1	14.3	429	35.05

TERMINAL COSTS	PRIHARY	SECO
Throughput ($\mathrm{m} 3 / \mathrm{d}$) (7)	250	0
Throughput (N / d (7)	4630	0
Avg irwentory (days thrput)	26	0
Construction status (3)	C	0
Incr inwestnt \$(10)6	2	0
Iner inust cost \$/d	1095	0
Incr util cost \$/d	14	0
Incr maint cost \$/d	14	0
Incr labor cost $\$ / d$	270	0
Incr other costs $\$ / \mathrm{d}$	60	0
Iner mktg costs \$/ ${ }^{\text {d }}$	0	0
Terminal costs \$/GJ	. 3	0
Terminal costs cents/】	. 55	0

FUEL CDST AT PMAP:
Pretax fuel/Fed sal tx (c/l) $47.69 \quad 4.29$
Ferd exc/Prov tax (cents/1) 0
Total fuel tax (c/1 \& \$/GN) 4.29
Tot fuel cost (c/1 \& \$/G) 51.98
OUEFALL RESOUKCE UTILIZATION:
F'sngr.kM/GJ \& Te,km/GJ: 0
VEHICLE ANAUAL FIXED COSTS:
Licerise \& Insurance cost ($\$ / \mathrm{y}$)
Arrual cost of inverstment ($\$ / y$)
Armal cost of financing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / y$)

TOTAL DISTRIBUION COSTS:
Facility location kM from upstrm point
\$/GJ shipped by barge
\$/GJ shipped by pipe \$/G shipped by rail (6)
$\$ / G J$ shipped by road . 0
Total distr cost (\$/G)
Total distr cost (cents/1)

PRI TERHINAL SEC TERKIMAL Toronto 0
2850
$0 \quad 0$
00
000
2.2900 20

0
0

REF STATION
Toronto
$0 \quad 0 \quad .5$
2.290 .54
4.240

SECCNDARY
REFUE ITNG STATION COSTS:

Fleet or retail	Fleet
Throughput GJ/d \& A3/d 30	1.61
Avg inventory (days thrput)	4
Construction status (3)	C
Orig invest base stn \$(10)6 (9)	. 04
New investment \$(10)6	. 024
Incren inv costs ($\$ / \mathrm{d}$)	35
Incr, maint costs (\$/d)	2
Incer labour costs ($\$ / / \mathrm{d}$)	70
Incr other costs ($\$ / \mathrm{d}$)	4
Utility costs ($\$ / \mathrm{d}$)	. 3
Statn costs (\$/GJ \& cent5/1) 3.7	6.85

VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{~km}$ \& Gl/km) 26.73 . 004950396
Vehicle life (kM \& yTs) 154800 8
Payload (pangrs \& Te) 0 . 29
Rase cost ($\$$) \& tax ($\$$) 11160840
Conversion type $\&$ cost ($\$$) F 560
Grants \& tax corcessions (\$) $0 \quad 840$
Total net investment ($\$$) 11720
VEHICLE AMALAL VARIARLE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 2687
Mise matls ($\$ / 1000 \mathrm{~km} 8 \$ / \mathrm{y}) \quad 8.7 \quad 168$
Driver costs incl outd ($\$ / y$) 12000
Maint cost ($\$ / 1000 \mathrm{kH} \& \$ / \mathrm{y}$) $38 \quad 735$
Total variable costs ($\$ / \mathrm{y}$) 15590

```
= 0 cents/psngr.kn
= 406 cents/Te.k.M
```

AVERACE VEHICLE LIFE CYCLE COST OF OPERATION $=\quad 0$ cents/psngr,kn
AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION = 406 cents/Te.kM
(1) Ref , source: 3-35, 47, 49-59, 61-75, 155-173.
(2) See AFER printout for details.
(3) Converted (C), Addion (AO) or Stand-alone (SA).
(4) Associated with garaging, admin., and vehicle ROI.
(5) All GJ units are higher heating values
(6) 95% of methanol rail tariff from Edronton. Plant gate cost of DII-3 includes 13cents/l truck cost fr. .S. Carolina.
(8) Blend of 950% metharol and 5 VK OII-3 cetane entrancer (blended in conventional fuels termiral)
(9) Land included with garaging costs (spe note 4).

CASE DEFINTION (1)

MATRIX REF \#: 8h		MATRIX CASE*:	50
Flen:	IECH BLEND (8)	ENGINE TYPE:	SI
SERUICE:	TRUCK(LTEAN)	PUPP STATION:	FLEET
LOCATION:	TORONTO	TIE FRAME:	401983

ECONOKIC CRITERIA \& FLEI PROPERTIES

| \% ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| 7 int. on 80% vehicle investrent | 15 |
| Fuel dersity (Te/m3) (8) | .724 |
| Fuel higher heating value ($\mathrm{GL} / \mathrm{m} 3)(8)(5)$ | 32.99 |

PLANT CATE COST:
Primary resources
Resrce cost \$/G (6)
Plant location Product rate G/d (8)
Product nane (B)
Frocess effic. (z) (7)
Proouct cost ($\$ / \mathrm{G})$ (2)
Froduct cost (cents/l)

TOTAL DISTRIBUION COSTS:
Facility location
KM irom upstrm point
\$/GJ shipped by barge
\$/GN shipped by pipe
\$/GN shipped by rail
\$/GJ shipped by road
Total distr cost (\$/GJ)
Total distr cost (cents/l)

FRI TERHINAL	SEC TERTINAL	REF STATION
TOROnto	0	Toronto
150	0	20
0	0	0
0	0	0
0	0	0
.093	0	.11
.093	0	.11
.3	0	.36

TERHINAL COSTS	PRIMARY	Secondafiy
Throughput (m3/d) (8)	1098	0
Throughput (GJ/d) (8)	36223	0
Avg irwentory (days thrput)	20	0
Construction status (3)	[0
Investment \$(10)6	12.3	0
Investmerit cost \$/d	6739	0
Utility cost \$/d	110	0
haintenance cost \$/d	110	0
Letrour cost \$/d	1706	0
Other costs \$/d	484	0
Harketing costs \$/d	10672	0
Terminal costs \$/GJ	. 547	0
Terminal costs cents/1	1,8	0

FUEL COST AT PUMP:
Pretax fuel/Fed sal tx (c/1) 37.61
Fed exc/Prov tax (cents/1) $0 \quad 6.88$

Total fuel tax ($c / 18 \$ / G J$) 10.26

VEHICLE AANHAL FIXED COSTS:
License \& Insurance cost (\$/y) 1295

Anrual cost of investment $(\$ / y) \quad 1250$
Armual cost of Pinancing ($\$ / y$)
Other fixed costs ($\$ / \mathrm{y}$) (4)
3/5
Total fixed costs $(\$ / y) \quad 6920$
AUERAGE VEHICLE LIFE CYCLE COST OF OPERATION
AUERAGE VEHICLE LIFE CYCLE COST OF OFERATION
(1) Ref, source: 3-35, 47, 49-59, 61-75, 155-173.
(2) See AFEM printout for details.
(3) Converted (C), Add-on (AD) or Stand-alone (SA).
(4) Associated with garaging, adinin., and vehicle ROI.
(5) All GJ units are higher heating values
(6) HeOH cost is Edwonton plant gate ($\$ 7.91 / \mathrm{FJ})+\$ 2.40 / \mathrm{JJ}$ rail tariff to refinery, (7) 87X(refinery), 61Z(alc, prod'n) e zGJ.
(8) $4.75 v \%$ methanol, $4.75 \mathrm{v} \mathrm{\%} t$ butanol $\& 90.5 v \%$ leaded gasoline blended at refinery to leaded regular specifications,
(9) Land is included with garaging costs (see note 4),

CASE DEFINITION (1)

HATRIX REF i: 8 Bi		MATRIX CASEき:	51
FUEL:	ETOH R\&END (8)	ENGINE TYFE:	5 I
SERVICE:	TRUCK (LREAN)	PUPP STATION:	RETAIL
LOCATION:	TORONTO	TIFE FRAFE:	4Q 1983

ECONDKIC CRIERIA \& FUE PRRPERTIES

| Z ROI on $4 R 83$ plant replacement value | 20 |
| :--- | :--- | :--- |
| Z int, on 80% vehicle investment | 15 |
| Fuel dersity (Te/M3) (8) | .725 |
| Fuel higher heating value ($G /(\mathrm{H} 3)(8)(5)$ | 32.91 |

PLANT GATE COST:

Prinary resources	Crude/Ethanol
Resrce cost $\$ / G J$ (6)	$5.88 / 20.32$
Plant location	5.0 Ontario
Product rate GJ/d (8)	75844
Product name	Gaschol
Process effic. (Z) (7)	86.63
Product cost ($\$ / G J)(2)$	9.01
Product cost (cents/l)	29.65

TERKITHL COSTS	PRIMARY	SECON
Throughput (m3/d) (8)	1103	0
Throughput (G / d) (8)	36299	0
Avg inventory (days thrput)	20	0
Construction status (3)	C	0
Investmerit \$(10)6	12.3	0
Investmerit cost $\$ / 0$	6739	0
Utility costs \$/	110	0
Haintenance cost \$ $/ 6$	110	0
Labour costs \$/0	1706	0
Other costs \$/8	484	0
Hark.eting costs \$/d	10672	0
Terminal costs \$/GJ	. 54	0
Terminal costs cents/l	1.77	0

FVEL COST AT PRPF:
Pretax fuel/Fed sal to (c/l) 36.12 3.25
Fed exc/Prov tax (cents/l) $0 \quad 6.84$
Total fuel tax (c/l \& \$/G) $10.09 \quad 3.06$
Tot fuel cost (c/1 \& \$/GJ) 46.21 14.04
OVERAL RESOUKCE UTILIZATION :
Psngr.k.m/GJ \& Te,kn/GJ: 0 46.1
VEHICLE AMALAL FIXED COSTS:
License \& Insurance cost (\$/y) 1295
Arrual cost of investment $(\$ / y) \quad 1250$
Arrual cost of financing ($\$ / y$) 375
Other fixed costs ($\$ / y$) (4) 4000
Total fixed costs ($\$ / \mathrm{y}$) 6920

TOTAL DISTRIFAION COSTS:	FRI TERHINAL	SEC TERMINAL	REF STATION
Facility location	TOronto	0	Toronto
kn from upstrm point	150	0	20
\$/GJ shipped by barge	0	0	0
$\$ / G J$ shipped by pipe	0	0	0
\$/GJ shipped by rail	0	0	0
\$/GJ shipped by rosd	.093	0	.11
Total distr cost (\$/GJ)	.093	0	.11
Total distr cost (cents/l)	.3	0	.36

REFUELITN STATION COSTS:

Fleet or retail		Retail
Throughput $G / / d \& \mathrm{H} 3 / \mathrm{d}$	356	10.81
Avg inventory (days thrput)	7	
Construction status (3)		7

Orio invest base stn $\$(10) 6$
New investment $\$(10) 6 \quad .01$
Investment costs ($\$ / \mathbf{d}$) 284
Maintenarice costs ($\$ / \alpha$) 7
Labour costs ($\$ / \mathbf{d}) \quad 130$
Other costs ($\$ / \delta$) 14
Utility costs ($\$ / \mathrm{O}_{\mathrm{d}}$) 4
Statn costs ($\$ / \mathbf{G} / \&$ cent5/1) $1.23 \quad 4.04$
VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{~km} \& \mathrm{GJ} / \mathrm{km}$) 16.53 . 005440023

AVERAGE VEHICLE LIFE CYCLE COST OF GFERATION
AVEFAGE VEHICLE LIFE CYCLE COST OF OFERATION
(1) Ref, source: $3-35,38,41,42,44,46-48,51,56,57,60-68,70,72,73,155-173$.
(2) See AFEA printout for details.
(3) Converted (C), Add-on (AD) or Standtalone (SA).
(4) Associated with garaging, admin, , and vehicle ROI.
(5) All GJ units are higher heating values
(6) EtOH cost is Edmonton plant gate (18, 49/GJ) + $\$ 1,83 / G 1$ rail tariff to refinery, (7) 87% (refinery), $59 \%(E t O H$ prod' n) e zind.
(8) 100% ethanol $\& 900 \%$ leaded gasoline blerded at refirery to leaded regular specifications.

CASE DEFTNITION (1)

MATRIX REF \&: 8 j	MATRIX CASE; 52	
FIEL: ETOH ELEND (B)	ENGINE TYPE: SI	
SERUICE;	TRUCK(UREAN)	PLIF STATION: FLEET
LOCATION:	TORONTO	TITE FRATE: 401983

ECOMOMIC CRITERIA \& FLEL PROPERTIES

Z ROI on $4 R 33$ plant replacement value	20
χ int. on $80 Z$ vehicle investment	15
Fuel dersity (Te/m3) (8)	.725
Fuel higher heating value $(G J / m 3)(8)(5)$	32.91

PLANT GATE COST:
$\begin{array}{lc}\text { Primary resources } & \text { Crude/Ethanol } \\ \text { Resrce cost } \$ / G J(6) & 5.88 / 20.32 \\ \text { Planit location } & 5.0 \text { ntario } \\ \text { Product rate GJ/d (8) } & 75844 \\ \text { Product name } & \text { Gasohol } \\ \text { Process effic. (\%) (7) } & 86.63 \\ \text { Product cost (} \$ / G J)(2) & 7.73 \\ \text { Product cost (cents/l) } & 25.43\end{array}$

TERTINAL COSTS	FRISARY	SECONDARY
Throughput (m3/d) (8)	1103	0
Throughput ($G / 1 / d$) (8)	36299	0
Avg inventory (days thrput)	20	0
Construction status (3)	C	0
Investrent \$(10)6	12.3	0
Investment cost \$/d	6739	0
Utility costs \$/d	110	0
Maintenance cost \$/d	110	0
Labour costs \$/d	1706	0
Other costs $\quad 3 / 0$	484	0
Karketing costs \$/d	10672	0
Terminal costs \$/GJ	. 54	0
Terninal costs cents/l	1.77	0

FLEL COST AT PUAF:
Pretax fuel/Fed sal tis (c/l) $38.52 \quad 3.46$
Fed exc/Prov tax (cents/1) $0 \quad 6.84$
Total fuel tax (c/l\& \$/GN) $10.3 \quad 3.12$
Tot fuel cost (c/1 \& \$/GJ) 48.82 14.83
OVERALL RESOURCE UTILIZATION:
Psngr.k.M/GJ \& Te,kM/GJ: 0
VEHICLE AMMUAL FIXED COSTS:
License 8 Insurarce cost ($\$ / 4$) 1295
Annual cost of investruent ($\$ / y$)
Anrubl cost of financing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / \mathrm{y}$)

TOTAL DISTRIEATION COSTS:
Facility location kM from upstrm point \$/GJ shipped by barge \$/GJ shipped by pipe \$/GJ shipped by rail \$/GJ shipped by road Total distr cost ($\$ / \mathbf{N}$) Total distr cost (cents/l)

FRI TERHINAL SEC TERHINAL Toronto 0 1500
feF STATION Toronto 20 0 0
0 0 O 0 0
.0930
.11
$.093 \quad 0 \quad .11$
.3
.3
0
.11
.36

AUERACE VEHICLE LIFE CYCLE COST OF OPERATION
AUERACE VEHICLE LIFE CYCLE COST OF OFERATION

REFIELLING STATION COSTS:
Fleet or retail Fleet

Throughput GJ/d 8 M3/d $30 \quad .91$
Avg inwentory (days thrput) 7
Construction status (3) C
Orig invest base $5 \operatorname{tn} \$(10) 6$ (9)
Hew investrment $\$(10) 6 \quad .004$
Investment costs ($\$ / \mathrm{d}$) 24
Maintenance costs ($\$ / \mathrm{d}$) 1
Lathour costs ($\$ /(d) 70$
Other costs ($\$ / \mathrm{d}$) 2
Utility costs ($\$ / \mathrm{d}$) $\quad 3$
Statn costs ($\$ / \mathrm{GJ} 8$ cents/1) 3.2410 .66
VEHICLE DATA:
Fuel usege ($1 / 100 \mathrm{~km} 8 \mathrm{GJ} / \mathrm{km}$) 16.53 . 005440023
Vehicle life ($\mathrm{k} \cdot \mathrm{M} \& \mathrm{yrs}$) $154800 \quad 8$
Payloas (psngrs \& Te) 0 . 29
Eisse cost ($\$$) \& tax ($\$ \mathbf{7} \quad 9300 \quad 700$
Conversion type $\&$ cost $(\$) 0$
Grants 8 tax concessiorrs ($\$$) 0
46.1 Total net investment ($\$$) 10000

VEHICLE AMAHL VARIAELE COSTS (AVERAGE):
Total fuel costs ($\$ / y$)
1561
Misc matls (\$/1000kn \& \$/y) $8.7 \quad 168$
Driver costs incl ovhd ($\$ / \mathrm{y}$) 12000
Maint cost $(\$ / 1000 \mathrm{~km} 8 \$ / \mathrm{y}) \quad 45 \quad 870$
Total variable costs $(\$ / y) \quad 14599$
$\begin{array}{lrl}= & 0 \text { cents/psngr,km } \\ = & 383 \text { cent5/Te,kn }\end{array}$
(1) Ref, source: 3-35, 38, 41, 42, 44, 46-48, 51, 56, 57, 60-68, 70, 72, 73, 155-173.
(2) See AFEH printout for details, (3) Converted (C), Adoton (AD) or Stand-alone (SA).
(4) Associated with garaging, admin., and vehicle ROI.
(5) All GJ units are higher heating values

(8) 10v\% ethanol 8900% leaded gasolire blended at refinery to leaded regular specifications.
(9) Land is included in garaging costs (see note 4).

CASE DEFINITION (1)

hatrix ref	\#: 93	MATRIX CASE\#:	
FUEL:	CASOLDE (RL)	ENGINE TYPE:	SI
SERUICE:	TRUCK(INT/RES/3)	PINP STATION:	RETAII
LOCATION:	TORONTO	THE FRAF:	401983

ECONOHIC CRTIERIA \& FUEL PROPERTIES

\% ROI on 4283 plant replacement value	20
z int. on 80% vehicle investment	15
Fuel density ($\mathrm{Te} / \mathrm{m} 3$)	. 718
Fuel higher heating value ($C \mathbf{N} / \mathrm{m} 3$) (5)	34

PLANT GATE COST:

imary resour	Crude
Resource cost (\$/GJ)	5.88
Plant location	S.Ontario
Product rate (GJ/d) (6)	78295
Product newe	Gasoline
Process efficiency (\%)	85.88
Product cost (2) (\$/GJ)	8.4
Frodict cost (cent5/1)	28.56

TEFHINAL COSTS	PRIMAFY	SECON
Throughent (m3/d) (6)	1068	0
Througheut (G/d) (6)	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investment \$(10)6	12.3	0
Imestment cost \$/d	6739	0
Utility cost $5 / \mathrm{d}$	110	0
Hiaintrce cost \$/d	110	0
Labour cost \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/8	10672	0
Terminal costs \$/GJ	. 54	0
Terminal costs cents/l	1,83	0

FIEL COST AT PLAP:

Pretax fuel/Fed 531 tx ($\mathrm{c} / 1$) $35.17 \quad 3.16$
Fed exc/Prov tax (cent5/1) $0 \quad 7.6$
Total fuel tax ($\mathrm{c} / 18 \$ / \mathrm{G}$) $10.76 \quad 3.16$
Tot fivel cost ($\mathrm{c} / 18 \$ / \mathrm{GJ}$) $\quad 45.93 \quad 13.5$
OUERALL RESOKKCE UTITEATION:
Pesngr.kM/GJ \& Te,kM/GJ : 0 56
VEHICLE AMuMal FIXED COSTS:
License \& Insurarce cost ($5 / \mathrm{y}$)
Annual cost of investment ($\$ / \mathbf{y}$)
Annual cost of financing ($\$ / \mathrm{y}$)
Other Pixed costs ($\$ / y$) (4)
-- Total fixed costs (\$/y)

TOTAL DISTRIEAION COSTS:
Facility location kn Prom upstra point
\$/GN shipped by barge
\$/GJ shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road
Total distr cost (\$/GJ)
Total distr cost (cent5/1)

PRI TEATINAL	SEC TERYINAL	REE STATION
Toronto	0	Toronto
150	0	20
0	0	0
.09	0	0
0	0	0
0	0	.11
.09	0	.11
.3	0	.37

REFUELIING STATION COSTS:

Fleet or retail	Retail
Throughput GJ/d $8 \mathrm{~m} / \mathrm{d}$ (356	10.47
Avg inventory (days thrput)	7
Construction status (3)	SA
Orig invest base stn \$(10)6 (7)	. 51
New investrent \$(10)6	0
Investment costs (\$/d)	279
Mainterorice costs (\$/0)	7
Latour costs ($5 / 8$)	130
Other costs (\$/d)	14
Utility costs (\$/d)	
Statn costs (\$/G \& cent5/1) 1,21	4.11

VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{~km} 8 \mathrm{GJ} / \mathrm{km}$) 32.7 . 011118
Vehicle life (k.m \& yrs) $134400 \quad 6$
Payload (psrgrs \& Te) 0 . 725
Ease cost ($\$$) \& tax ($\$$) $13950 \quad 1050$
Conversion type $\&$ cost ($\$$) 0
Grants \& tax concessiors (\$) 0 0
Total net investment ($\$$) 15000
VEHICLE AaNAL VARIARLE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 3362
Misc matls ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}) \quad 35 \quad 784$
Oriver costs incl outh ($\$ / \mathrm{y}$) 15600
Hirint cost ($\$ / 1000 \mathrm{kn} 8$ \$/y) 1493337
Total variable costs (\$/y) 23083
AMERACE YEHICLE LIFE CYCLE COST OF OFERATION $=0$ cents/psngr.km
AVERACE VEHTCLE LIFE CYCLE COST OF OFERATION $=258.3$ cerits/Te.kM
(1) Ref, source: 3-35, 155-173.
(2) See AFEK printout for details.
(3) Conwerted (C), Adt-on (AO) or Stand-alone (5A).
(4) Associated with garaging, administration and vehicle ROI.
(5) All GJ units are higher heating values
(6) Regular leaded gasoline only.
(7) Includes $\$ 260000$ land cost.

CASE DEFINITION (1)

MATRIX REF	\$ \% 9	MATRIX CASE\#:	54
FUEL:	GA5OLINE(R1)	ENGINE TYPE:	SI
SERVICE:	TRUCK(INT/URB/3)	PUPP STATION:	FLEET
LOCATION:	TORONTO	TIME FRAME:	401983

ECONDHIC CRITERIA \& FUL PROPERTIES

Z ROI on 4083 plant replacement value	20
Z int. on 80% vehicle investment	15
Fuel derrity (Te/m3)	.718
Fuel higher heating value (G/ $/ \mathrm{m} 3)(5)$	34

PLANT GATE COST:	
Primary resource	Crude
Resource cost (\$/GJ)	5.88
Plant location	S.Ontario
Product rate (GJ/d) (6)	78295
Proouct name	Gasoline(RL)
Process efficiency (\%)	85.88
Proouct cost (2) (\$/G)	7.17
Product cost (cents/l)	24.37

TOTAL DISTRIR:TIION COSTS: Facility location Toronto kn frow upstrm point \$/GN shipped by barge \$/GJ shipped by pipe \$/GN shipped by rail \$/GN shipped by road Total distr cost ($\$ / \mathbf{N}$)
Total distr cost (cents/l) Toronto

PRI TERMINAL SEC TERHTNAL

150	0
0	0
.09	0
0	0
0	0
.09	0
.3	0

seccondary
TERTINAL COSTS PRIMARY SECONDARY

Throughput ($\mathrm{m} 3 / \mathrm{d}$)	1068	0
Throughput ($\mathrm{CJ} / \mathrm{J}^{\text {) }}$ (6)	36312	0
Storage capacity (days)	20	0
Construction status (3)	SA	0
Investiment \$(10)6	12.3	0
Investment cost $\$ / \delta$	6739	0
Utility cost \$/d	110	0
Maintnce cost \$/d	110	0
Letrour cost \$/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/d	0	0
Terminal costs \$/GJ	. 25	0
Terminal costs cents/l	. 85	0

FIEL COST AT PUPF:
Pretax fuel/Fed sal tx (c/l) $33.2 \quad 2.98$
Fed exc/PTov tax (cents/1) 0.6
Total fuel tax (c/1 \& \$/G) 10.58 3.11
Tot fivel cost (c/1 \& \$/G) 43.78 12.87
OVERALI RESOKFCE UTILTZATION:
Psigr.k.M/GJ \& Te.kM/GJ: 0
VEHICLE ANNAA FIXED COSTS:
License \& Insirarice cost ($\$ / y$) 2030
Armual cost of investment $(\$ / y) 2500$
Annual cost of finaxcing $(\$ / y) \quad 750$
Other fixed costs ($\$ / y$) (4) 13600
Total fixed costs ($\$ / \mathrm{y}$) 18880
REFLELITNG STATION COSTS:

Fleet or retail	Fleet
Throushput GJ/d $8 \mathrm{n} 3 / \mathrm{d} 50$	1.47
Avg inventory (days thrput)	7
Construction status (3)	SA
Orig invest base stn \$(10)6 (7)	. 06
New investment \$(10)6	0
Investment costs (\$/d)	32
Maintenance costs ($\$ / \mathbf{/}$)	2
Lebour costs (\$/d)	70
Other costs ($\$ / 0$)	3
Utility costs (\$/d)	1
Statn costs (\$/G) 8 cents/1) 2.15	7.31

VEHICLE DATA:

Fuel usage ($1 / 100 \mathrm{~km}$ \& GJ/k.m)	32.7	. 011118
Vehicle life (kM 8 yrs)	134400	6
Payload (psngrs 8 Te)	0	. 725
Base cost (\$) \& tak (\$)	13950	1050
Corversion type 8 cost ($\$$)		0
Grants 8 tax concessiors (\$) 0	0	0
Total net irvestment (\$)		15000

VEHICLE AMMAL VAFIARLE COSTS (AVERAGE):
Total fuel costs ($\$ / y$) 3205
Misc matls ($\$ / 1000 \mathrm{kn} 8 \$ / \mathrm{y}$) 3504
Driver costs incl ouhd ($\$ / y$) 15600
Maint cost ($\$ / 1000 \mathrm{~km}$ \& $\$ / \mathrm{y}$) $149 \quad 3337$
Total variable costs (\$/y) 27926

AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION
$=\quad 0$ cents/psrigr.ikm
AUERAGE UEHICLE LIFE CYCLE COST OF OFERATION
(1) Ref, source: 3-35, 155-173.
(2) See AFEK printout for details
(3) Converted (C), Add-on (AD) or Stand-alone (SA).
(4) Associated with garaging, administration and vehicle ROI.
(5) All GU units are higher heating values
(6) Regular leaded gasolire only.
(7) Land cost is onitted here but included with garage costs (see note 4).

CASE DEFINITION (1)

MATRIX REF	: 90	HATRIX CASE\#:	5
FIEL:	DIESE1	ERGINE TYPE:	CI
SERVICE:	TRUCK(INT/URE/3)	PLPP STATION:	FLEET
LOCATION:	TORONTO	TIPE FRAME:	401983

ECONONIC CRITERIA \& FUE PROPERTIES

R ROI on 4083 plant replacement value	20
Z int, on 80% vehicle investment	15
Fuel density (Te/m3)	.829
Fuel higher heating value (GJ/m3)(5)	38.18

PLANT GATE COST:

Primary resource	Crude
Resource cost ($\$ / G$)	5.88
Plant location	S.Ontario
Product rate (GJ/d) (6)	61074
Product name	Diesel
Frocess efficiency ($\%$)	86.51
Product cost (2) ($\$ / G$)	6.79
Product cost (cents/1)	25.92

TERMINAL COSTS	PRIARY
Throughput ($\mathrm{m} 3 / \mathrm{d}$) (6)	720
Throughput (G / d) (6)	27489
Storage capacity (days)	20
Construction status (3)	SA
Investment \$ \$(10)6	8.3
Investmerit cost \$/ס	4547
Utility cost \$/d	74
Maintnce cost \$/d	74
Labour cost \$/d	1150
Other costs \$/d	326
Harketing costs \$/d	0
Terninal costs \$/GJ	. 27
Terminal costs cents/l	-83

FUEL COST AT PURP:
Pretas fuel/Fed sal to (c/l) 35.62
Fed exc/Frov tax (cents/l) 0
Total fuel ta; (c/l \& \$/GJ) 12.8
Tot fivel cost (c/1 \& \$/GJ) 48.42
OVERALL RESOURCE UTILTZATION:
F'sigr.k.m/GJ \& Te.kn/GJ: 0
VEHICLE AMAMAL FIXED COSTS:
License \& Insurance cost ($\$ / y$)
Annual cost of investrent ($\$ / y$)
Arrual cost of financing ($\$ / y$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / \mathbf{y}$)

TOTAL DISTRIB:ITON CDSTS:
Facility location kM from upstrm point \$/Gl shipped by barge \$/GJ shipped by pipe \$/GJ shipped by rail \$/Gd shipped by road Total distr cost (\$/CJ) Total distr cost (cents/l)

PRI TERAINAL SEC TERMINAL REF STATION

Toronto	0	Toronto
150	0	20
0	0	0
.083	0	0
0	0	0
0	0	.095
.083	0	.095
.31	0	.36

SECOADARY
0
0
0
0
0
0
0
0
0
0
0

0
0
-
3.2
3.2 Fiel usage (1
9.6 Vehicle life (kM \& yrs) 134400
3.35 Fayload (psrges \& Te) 0 . 725
12.68 Base cost ($\$$) 8 tax ($\$$) $17670 \quad 1330$

Conversion type \& cost ($\$$) 0
Grants 8 tax concessions ($\$ 000$
Total net investment (\$)
19000
VEHICLE AMMUAL VARTARAE COSTS (ANERAGE):
Total fuel costs ($\$ / y$) 2683
Hise matls ($\$ / 1000 \mathrm{~km}$ \& \$/y) 3504
Oriver costs incl ortd ($\$ / \mathrm{y}$) 15600
Maint cost ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}) \quad 134 \quad 3001$
Total variable costs ($\$ / y$) 22068
$=\quad 0$ cents/psngr.k.k
$=\quad 256.7$ cents/Te.km

AVERACE VEHICLE LIFE CYCLE COST OF OPERATION
(1) Ref. source: 3-35, 103-109, 155-173.
(2) See AFEM printout for details.
(3) Converted (C), Add-on (AD) or Stand-alore (SA).
(4) Associated with garaging, administration and vehicle ROI.
(5) All GJ units are higher heating values
(6) Diesel only.
(7) Land is included with garaging costs (see note 4).

CASE DEFINTITON (1)

MATRIX REF	F $1: 90$	MATRIX CASE\#:	56
FUEL:	Propane	EMGINE TYPE:	SI
SEKVICE:	TRUCK(IN/AKP/3)	PUPP STATION:	FLEET
LICCATION:	TORONTO	TIE FRAE:	40198

ECOHOHIC CRITERIA \& FUEI PROPERTIES

| 2 ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| 2 int, on 80% vehicle investrent | 15 |
| Fuel density (Te/ 43) | .508 |
| Fuel higher heating value (G/ $/ 43$) (5) | 25.59 |

FLANT GATE COST:
Primary resource Resource cost ($\$ / G J$)
Plant location
Product rate $(G / d)(6)$
Product name
Process efficiency ($\%$)
Product cost ($\$ / \mathbf{N})(2)$
Product cost (cents/1)

	TOTAL DISTRIBUION COSTS:
Raw nat gas	Facility location
2	kn fron upstra point
Edronton	\$/EN shipped by barge
46308	\$/GN shipped by pipe
Propane	\$/GJ shipped by rail
92.8	\$/GJ shipped by road
4.24	Total distr cost (\$/GJ)
10.85	Total distr cost (cents/l)

FRI TERHINAL	SEC TERHITAL	REF STATION
Sarnia (7)	Toronto	Toronto
3095	245	20
0	0	0
. 3	0	0
0	0	0
. 44	. 45	. 38
. 74	. 45	. 38
1,89	1.15	. 97

TERHINSL COSTS	PRISARY	SECONEAGY
Throughput (m3/d) (6)	7269	300
Throughput (G / d) (6)	186013	7677
Storige capacity (days)	20	10
Construction status (3)	SA	SA
Investment \$ $\$ 1016$	30	4
Investment cost \$/ ${ }^{\text {d }}$	16438	2191
Utility cost \$/d	20700	100
Haintrce cost \$/d	1644	219
Labour cost \$/\%	2730	500
Other costs \$/d	1644	219
Harketing costs \$/d	70600	4000
Terninal costs \$/GJ	. 61	. 94
Terainal costs cents/l	1.56	2.4

fuel cost át puif:
$\begin{array}{ll}\text { Pretax fuel/Fed sal tx (c/1) } & 26.62 \\ \text { Fed exc/Prov tax (cents/l) } & .74\end{array}$

Total fiel $\operatorname{tax}(\mathrm{c} / 18$	$\$ / G)$.81	.31
Tot fuel cost $(\mathrm{c} / 18$	$\$ / \mathrm{G})$	27.43	10.71

OVERALL RESOURCE UTIIIZATION:
Fisngr,km/GJ \& Te.kM/GJ: $0 \quad 61.7$
VEhicle mathal fIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}) \quad 2030$
Arrual cost of investment ($\$ / y$)
Arrual cost of financing ($\$ / \mathrm{y}$)
Other fixed costs ($\$ / y$) (4)
Total pixed costs ($\$ / \mathrm{y}$) 18993
AUERAGE VEMICLE LIFE CYCLE COST OF OPERATION $\quad=\quad 0 \quad 0$ cent5/psrigr,kn
AVERACE VEHICLE LIFE CYCLE COST OF OPERATION
2510
753
refueling station costs:

Fleet or retail		Fleet
Throughput G//d $8 \mathrm{~m} 3 / \mathrm{d}$	50	1.95
Avg inventory (days thrput)		4
Construction status (3)		C
Orig invest base stn \$(10)6	(8)	. 06
New investment \$(10)6		. 07
Increm inv costs ($\$ / \mathbf{d}$)		71
Incr, maint costs ($\$ / \mathrm{d}$)		4
Incr labour costs (\$/d)		70
Incer other costs ($\$ / \mathrm{d}$)		7
Incer utility costs ($\$ / \mathrm{d}$)		1
Statn costs (\$/GJ 8 cents/1)	3.05	7.8

vehicle data:
Fuel usoge ($1 / 100 \mathrm{kH}$ \& $\mathrm{GJ} / \mathrm{kM}$) 42.58 . 010896222
Vehicle life ($\mathrm{kA} \& \mathrm{grs}$) $134400 \quad 6$
Fayload (psngrs \& Te) 0 .725
Ease cost ($\$$) \& $\mathrm{t}_{3 \times}$ ($\$$) $13950 \quad 1050$
Cormersion type \& cost (\$) F 1500
Grants 8 tax concessions ($\$ 400 \quad 1050$
Total net investment ($\$$) 15050
VEHICLE AMMAL VARTAELE COSTS (AMERAGE):
Total fuel costs $(\$ / \mathrm{y})$
Misc matls ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) 35 \quad 784$
Driver costs incl outh ($\$ / \mathrm{y}$) 15600
Haint cost ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}) 149 \quad 3337$
Total variable costs (\$/y) 22335
(1) Ref. source: 3-35, 111-118, 155-173.
(2) See AFEK printout for details, (3) Converted (C), Addon (AD) or Stardalore (SA).
(4) Associated with garaging, administration and vehicle ROI. (5) All GJ units are higher heating values
(6) Proparie only. (7) Gathering costs in Alberta are shown as road cost in road costs as ,36 and . 08 \$/G respectively. (8) Land inclusjed in garaging costs (see note 4).

CASE DEFINITION (1)

MATRIX R	\#: 9e	MATRIX CASE\#:	57
FIEL:	HEOH(100\%)	ERGDE TYFE:	CI
SERUICE:	TRUCN(INT/RRB/3)	PUAP STATION:	RETAIL
LOCATION:	TOKONTO	TIE FRAE:	401983

ECONOKIC CRITERIA \& FUE PROPERTIES

Z ROI on 4083 plant replacement value	20
Z int. on 80% vehicle investment	15
Fuel dersity (Te/m3)	.796
Fuel higher heating value (Cu/m3)	18.08

PLANT GATE COST:	
Primary resource	Nat Gas
Resource cost (\$/GJ)	2
Plant location	Edanonton
Product rate ($G / / \delta^{\text {) }}$	45414
Product name	Metharol
Frocess Efficiency (\%)	61.1
Product cost (\$/GJ)(2)	7.909
Product cost (cents/1)	14.3

TOTAL DISTRIEUITON COSTS:	PRI TERTINAL	SEC TERKIMAL	Fig Station
Facility location	Toronto	0	Toronto
kn fron upstrn point	2850	0	20
\$/GJ shipped by barge	0	0	0
\$/Gd shipped by pipe	0	0	0
\$/GJ shipped by rail	2.4	0	0
\$/GJ shipped by road	0	0	. 54
Total distr cost (\$/G)	2.4	0	. 54
Total distr cost (cents/l)	4.33	0	. 97

TERYINAL COSTS	FRITARY	SECORDARY			
Throughput ($\mathrm{A} 3 / \mathrm{d}$) (6)	25	0	REFUELITNG STATION COSTS:		
Throughput ($\mathrm{C} / \mathrm{/d}$) (6)	452	0	Fleet or retail		Retail
Avs inventory (days thrput)	26	0	Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d}$	50	2.76
Construction status (3)	AO	0	Avg inventory (days thrput)		4
Incr investnt \$(10)6	. 2	0	Constructior, status (3)		AO
Incr inust cost $3 / \delta$	109	0	Orig invest base stn \$(10)6		0
Incr util cost $\$ / 0$	0	0	New investment \$(10)6		. 08
Incr mairit cost $\$ / 0$	5	0	Increm inw costs ($\$ / \mathrm{d}$)		43
Incr labor cost $\$ / \delta$	0	0	Incr. maint costs ($\$ / \delta$)		2
Incr other costs $\$ / \delta$	11	0	Iner labour costs ($\$ / \mathrm{d}$)		0
Iner mktg costs $5 / d$	140	0	Incr other costs ($\$ / \mathrm{d}$)		4
Terminal costs \$/GJ	. 58	0	Utility costs ($\$ / \mathbf{/}$)		1
Terminal costs cents/l	1.04	0	Statn costs (\$/G 8 cent5/1)	. 99	1.78
FUEL COST AT PIAF:			VERICLE DATA:		
Pretax fuel/Fed sal tx (c/l)	22.42	2.01	Fuel usage ($1 / 100 \mathrm{kn}$ \& $\mathrm{GJ} / \mathrm{km}$)	55.96	. 010117568
Fed exc/Prov tax (cents/1)	0	0	Vehicle life (k, 8 yrs)	134400	6
Total fuel tax (c/l \& \$/GJ)	2.01	1.11	Payload (psngrs 8 Te)	0	. 725
Tot fuel cost (c/l \& \$/GJ)	24.43	13.51	Erse cost ($\$$) \& tax (5)	17670	1330
			Conversion type \& cost (\$)	F	1400
OVERALL RESOUFCE UTILIZATION	.		Grants \& tax concessions (\$) 0	0	1330
Psngr.k.m/GJ 8 Te,kn/GJ:	0	43.7	Total net investment (\$)		19070
VEHICLE AMAUAL FIXED COSTS:			VEHICLE AMALAL VARTAELE COSTS	(AVERA	
License \& Insurance cost (\$/4)		2030	Total fuel costs ($\$ / \mathrm{y}$)		3061
Armul cost of investment ($\$$		3178	Nisc matls ($\$ / 1000 \mathrm{kn}$ 8 \$/y)	35	784
Arnual cost of finarcing (\$		953	Driver costs ircl ouhd ($\$ / 4$)		15600
Other fixed costs ($\$ / \mathrm{y}$) (4)		13600	Maint cost ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$)	134	3001
Total fired costs ($\$ / \mathrm{y}$)		19761	Total variable costs ($\$ / 4$)		22446
AUERAGE VEHICIE LIFE CYCLE COST OF OPERATION AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION			259.1 cents/psngr.k.m		

(1) Ref. source: 3-47, 49-59, 61-75, 155-173.
(2) See AFEM printout for details, (3) Converted (C), Add-on (AO) or Standalone (SA),
(4) Associated with garaging, adimistration and vehicle ROI. (5) All GJ units are higher heating values
(b) 1002 methanol.

CASE DEFINTIION (1)

MATRIX REF	\$: 97	MATRIX CASE\$:	58
FUEL:	HEOH(100\%)	EXGINE TYPE:	CI
SERVICE:	TRUCX(INT/LRB/3)	PUPP STATION:	FLEET
LOCATION:	TORONTO	TIXE FRAFE:	41983

ECONOHIC CRITERIA \& FUE PROPERTIES

K ROI on 4083 plant replacement value	20
$\%$ int. on 80% vehicle investment	15
Fuel dersity (Te/M3)	.796
Fuel higher heating value (GU/M3)	18,08

PLANT GATE COST:

Primary resource

Resource cost ($\$ / G J$)

Plant location
Product rate (GJ/d)
Product name
Process Efficiency (χ)
Product cost (\$/GJ)(2)
Product cost (cents/l)
Nat Gas
2
Edronton
45414
Kethanol
61.1
7.909
14.3

TOTAL DISTRIBUIION COSTS:	PRI TERKIHAL	SEC TERKINAL	REF STATION
Facility location	Tororito	0	Toronto
kn from cpstrm point	2850	0	20
\$/NS shipped by barge	0	0	0
\$/GJ shipped by pipe	0	0	0
\$/GJ shipped by rail	2.4	0	0
\$/GJ shipped by rosd	0	0	. 54
Total distr cost (\$/GJ)	2.4	0	. 54
Total distr cost (cents/1)	4.33	0	. 97

TERYTMAL COSTS	PRISARY	SECONDARY
Throughput ($\mathrm{m} / \mathrm{/d}$) (6)	25	0
Throughputt (GJ/d) (6)	452	0
Avg inventory (days thrput)	26	0
Construction status (3)	A0	0
Incr imvestnt \$(10)6	. 2	0
Incr inust cost \$/d	109	0
Incr util cost $\$ / 0$	0	0
Incr maint cost \$/d	5	0
Incr labor cost \$/d	0	0
Incr other costs \$/d	11	0
Incr mktg costs \$/ $/$	140	0
Terminal costs \$/GJ	. 58	0
Terminal costs cents/1	1.04	0

FLEL COST AT PMAP:

Pretax Puel/Fed sal tx (c/1) 25.35

$$
2.28
$$

0
1.26
15.28

Total fuel tax (c/1 \& \$/GJ) 2.28
Tot fuel cost (c / l \& \$/GJ) 27.63
OVERALL RESONRCE UTILTIATION:
Psngr.kM/GJ \& Te.kn/GJ: 0
VEHICLE AMMLAL FIXED COSTS:
Licerise \& Insurance cost ($\$ / \mathrm{y}$)
Armusl cost of investment ($\$ / y$)
Arnual cost of financing ($\$ / \mathrm{y}$)
Other fixed costs ($\$ / y$) (4)
Total fixed costs ($\$ / \mathrm{y}$)
43.7

2030
3178
953
13600
19761

TOTAL DISTRIBUIION COSTS:
Facility location \$/as shipped by barge \$/GJ shipped by pipe \$/GN shipped by rail \$/GJ shipped by rosd Total distr cost (\$/GN)
Total distr cost (cents/1)

AUERAGE VEHICLE LIFE CYCLE COST OF DPERATION $=0$ cents/psngr. kA
AVERAEE VEHTCLE LIFE CYCLE COST OF OPERATION
REFUELING STATION COSTS:
Fleet or retail Fleet
Throughput GJ/d \& M3/ $\quad 50 \quad 2.76$
Avg inventory (days thrput) 4
Construction status (3)
Orig invest base stn $\$(10) 6$ (7)
C
.06
New irwestment $\$(10) 6 \quad .036$
Increm inv costs ($\$ / \mathrm{d}$) 52
Incr, maint costs ($\$ / d$) 3
Incr labour costs ($\$ / d$) 70
Incr other costs ($\$ / \mathrm{d}$) 5
Utility costs ($\$ / \mathbf{0}) \quad 1$
Statn costs ($\$ /$ GN \& cent5/1) $2.61 \quad 4.71$
VEHICLE DATA:
Fuel ussge ($1 / 100 \mathrm{kn}$ \& $\mathrm{GJ} / \mathrm{kH}$) $55.96 \quad .010117568$.
Vehicle life (kn \& yTs) 1344006
Payload (psrgars \& Te) 0 . 725
Base cost (\$) \& tax (\$) 176701330
Conversion type \& costs (\$) F 1400
Grants 8 tax concessions ($\$$) $0 \quad 1330$
Total net investmerit ($\$$) 19070
VEHICLE ANHLAL MARIARELE COSTS (ANERAGE):
Total pisel costs ($\$ / 4$) 3462
Misc matls (\$/1000km \& \$/y) 354
Driver costs incl ouhd ($\$ / y$) 15600
Maint cost ($\$ / 1000 \mathrm{~km}$ \& \$/y) 1343001
Total variable costs ($\$ / y$) 22847

$=$	0 cents/Psngr.kn
$=$	261.6 cents $/ \mathrm{Te}, \mathrm{km}$

(1) Ref, source: 3-35, 47, 49-59, 61-75, 155-173.
(2) See AFEH printort for details, (3) Converted (C), Addon (AO) or Stand-alone (SA).
(4) Associated with garaging, administration and vehicle ROI.
(5) All GJ units are higher heating values
(6) 100% methanol.
(7) Land is included with garaging costs (see note 4).

CASE DEFINTTION (1)

MATRIX REF $: 99$	MATRIX CASE;: 59	
FLEL:	HEOHCET(8)	ENGIE TYFE: CI
SERVICE: TRUCK(INT/UR8/3)	PLAP STATION: FLEET	
LOCATION: \quad TORONTO	TINE FRAK: 401983	

ECONOKIC CRITERIA \& FUZ PRDFERTIES

7 ROI on 4083 plant replacement value	20
z int, on 80% vehicle investment	15
Fcel density (Te/M3) (B)	.804
Fuel higher heating value (G/ $/ \mathrm{M} 3)(8)(5)$	18.52

	PLANT GATE COST:		
Prin resrce	Nat gas		
Resrce $\$ / G I$	2		-
Location	Edmonton	Toronto	-
Prod GJ/d	45414		-
Prod name	Methanol	DII-3	Elend(8)
Proc Eff $\%$	61.1	60	61
Prod $\$ / G J(2)$	7.909	160	18.93
Prod cent5/1	14.3	429	35.05

TERMINAL COSTS	PRIMARY	SECONDARY		
Throughput (m3/d) (7)	250	0	REFUELING STATION COSTS:	
Throughput (GJ/d (7)	4630	0	Fleet or retail	Fleet
Avg inventory (deys thrput)	26	0	Throughput GJ/d \& m3/d 50	2.69
Construction status (3)	C	0	Avg inventory (days thrput)	4
Incr investnt \$(10)6	2	0	Construction status (3)	C
Iner inust cost $\$ / d$	1095	0	Orig invest base stn \$(10)6 (9)	. 06
Incr util cost \$/d	14	0	New investment \$(10)6	. 036
Incr maint cost \$/d	14	0	Increm inv costs ($\$ / \mathrm{d}$)	52
Incr labor cost \$/d	220	0	Iner, maint costs (\$/d)	3
Incr other costs \$/d	60	0	Ince labour costs ($\$ / \mathrm{d}$)	70
Incr metg costs \$/d	0	0	Incr other costs ($\$ / \mathrm{d}$)	5
Terminal costs \$/GJ	. 3	0	Utility costs (\$/d)	1
Terminal costs cents/l	. 55	0	Statn costs (\$/GJ \& cents/1) 2.61	4.83
FUEL COST AT FUPF:			VEHICLE DATA:	
Pretax fuel/Fers sal tx (c/l)	45.67	4.11	Fuel usage (1/100km \& GJ/km) 54.63	. 010117476
Fed exc/Prov tax (cents/l)	0	0	Vehicle life (kM \& yrs) 134400	6
Total foel tax (c/l \& \$/GJ)	4.11	2.21	Payload (psrgrs \& Te) 0	. 725
Tot fuel cost ($c / 1$ \& $\$ / G)$	49.78	26.87	Base cost (\$) \& tax (\$) 17670	1330
			Conversion tupe \& cost (\$) F	800
OUERALI RESORFCE UTILIZATION	:		Grants \& tax concessions (\$) 0	1330
Psingr.km/GJ \& Te,kn/GJ:	-	43.7	Total net investment (\$)	18470
VEhICLE AMMAL FIXED COSTS:			VEHICLE AMNUL UAFIARLE COSTS (AVERASE):	
License \& Insurance cost (\$/y)		2030	Total fuel costs (\$/y)	6089
Anmal cost of investment (\$/y)		3080	Mise matls ($\$ / 1000 \mathrm{~km} 8$ \$/y) 35	784
Arrubl cost of financing (\$/y)		609	Driver costs incl ouhd (\$/y)	15600
Other fixed costs (\$/y) (4)		13600	Haint cost ($\$ / 1000 \mathrm{~km} 8 \$ / \mathrm{y}$) 134	3001
Total fixed costs ($\$ / \mathrm{y}$)		19319	Total variable costs (\$/y)	25474
AUERALE VEHICLE LIFE CYCLE COST OF OPERAT」ON AVERAEE VEHICLE LIFE CYCLE COST OF OPERATION			O cents/Psngr,k.k.	

(1) Ref. source: 3-35, 47, 49-59, 61-75, 155-173.
(2) See AFEM printout for details, (3) Converted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with garaging, administration and vehicle ROI. (5) All GJ units are higher heating values
(6) 95% of methanol rail tariff from Edmonton. Plant gate cost of $0 \Pi-3$ includes 13cents/1 truck cost fr, 5, Carolina,
(8) Blend of 950% methanol and 5 vz DII-3 cetane enhancer (blended in conventional fuels terminal)
(9) Land included with garaging costs (see note 4),

CASE DEFINTITON (1)

ECONOYIC CRIIERIA \& FUL PROPERTIES

Z ROI on 4083 plant replacement value	20
Z int. on 80% vehicle investment	15
Fuel derisity (Te/m3) (8)	. 72
cel higher heating value ($\mathrm{C} / \mathrm{m} 3$)(8)(5)	32.99

PLANT GATE COST:
Primary resources Crude/MeOH/EuOH
Resrce cost $\$ /(G J$ (6)
Plant location
Product rate GJ/d (8)
Product nate (8)
Process effic.(z) (7)
Prodict cost ($\$ /(\mathrm{GJ})(2)$
Product cost (cents/1)

TOTAL DISTRIEUTON COSTS:
Facility location kn from upstrm point \$/G shipped by barge \$/GJ shipped by pipe \$/GN shipped by rail \$/G shipped by rood Total distr cost (\$/aJ) Total distr cost (cent5/1)

FRI TERHTHAL SEC TERHITNAL
Toronto
150
000

0
0
$0 \quad 0$
.0930

.093	0	.11
.3	0	.11
	.36	

TERHINAL COSTS	FrIMARY	SECONO
Throughput (n3/d) (8)	1098	0
Throughput (CJ / d) (8)	36223	0
Avg inveritory (days thrpur)	20	0
Construction status (3)	C	0
Investment \$(10)6	12.3	0
Investment cost \$/d	6739	0
Utility cost s / d	110	0
Maintenance cost $\$ / 1 /$	110	0
Labour cost s/d	1706	0
Other costs \$/d	484	0
Marketing costs \$/d	10672	0
Terminal costs \$/GJ	. 547	0
Terminal costs cents/l	1.8	0

FuEL COST AT PUFP:
Pretax fuel/Fed sal tx ($c / 1$) $34.28 \quad 3.08$
6.88

Fed exc/Prov tax (cent5/1) 0
Total Puel tak ($\mathrm{c} / \mathrm{l} 8 \mathrm{\$} / \mathrm{GJ}$) 9.96
Tot fiel cost (c / l \& $\$ / 6 \mathrm{~N}$) $\quad 44.24 \quad 13.41$
OVERALL RESOURCE UTILIZATION:
Psngr.k.m/GJ \& Te.km/GJ: 0
VEHICLE AMMAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$) 2030
Armual cost of investmert ($\$ / \mathrm{y}$) 2500
Armual cost of financing ($\$ / \mathrm{y}$) 750
Other fixed costs $(\$ / y)(4) \quad 13600$
Total fiked costs $(\$ / \mathrm{y}) \quad 18880$
AUERAGE UEHICLE LIFE CYCLE COST OF OPERATION
AUEEAGE VEHICLE LIfE CYCLE COST OF OPERATION
(1) Ref, source: 3-35, 47, 49-59, 61-75, 155-173.
(2) See AFEH printout for details.
(3) Converted (C), Add-on (AO) or Stand-alone (SA).
(4) Associated with garaging, administration and vehicle ROI.
(5) All GJ units are higher heating values
(6) HeOH cost is Edmoriton plant gate($\$ 7.91 / \mathrm{GJ})+\$ 2.40 / \mathrm{G}$ rail tariff to refinery. (7) B7\%(refinery), biZ(alc, prod' n) \& ZGJ.
(8) 4.75 vz methanol, 4.75 vz t butanol 890.5 vZ leaded gasolire blended at refinery to leaded regular specifications.
(9) Land is included with garagiry costs (see note 4).

CASE DEFINITION (1)

MATRIX REF	1: 103	MATRIX CASEP:	61
FUEL:	OIESEL	ENGINE TYPE:	CI
SERVICE:	TRUCK(INT/LRB/8)	PUP STATION:	FLEET
LOCATION:	TOROWTO	TIPE FRAE:	401983

ECONOKIC CRITERIA \& FUR PROPERTIES

| Z ROI on 4083 plant replacement value | 20 |
| :--- | :--- | :--- |
| $\%$ int. on 80% vehicle investment | 15 |
| Fuel dersity (Te/n3) | .829 |
| Fuel higher heating value $(\mathrm{G} / \mathrm{n} 3)(5)$ | 38.18 |

PLANT CATE COST:

Primary resource	Crude
Resource cost ($\$ / G \mathrm{~S})$	5.88
Plant location	S.Ontario
Product rate (CJ/d) (6)	61074
Product name	Diesel
Process efficiency ($\%$)	86.51
Product cost (2) ($\$ / G \mathrm{~J})$	6.79
Product cost (cents/l)	25.92

TERMITAL COSTS	PRTIARY	SECO
Throughput (m3/d) (6)	720	0
Throughput (GJ / d) (6)	27489	0
Storage capacity (days)	20	0
Construction status (3)	5A	0
Investmerit \$(10)6	8.3	0
Investment cost \$/d	4547	0
Utility cost $\quad \$ / d$	74	0
Hinintice cost \$/d	74	0
Lebour cost $\quad 3 / d$	1150	0
Other costs $\quad 3 / d$	326	0
Marketing costs \$/d	0	0
Terminal costs \$/[J	. 22	0
Terminal costs cents/l	. 83	0

Fretax fuel/Fed sal tx (c/l) 29.4
Fed exc/Prov tax (cents/l) 0
Total fuel tak (c/l \& \$/GN) 12.24
Tot fuel cost ($c / 18 \$ / G J$) 41.64
OUERALL RESCARCE UTIIIZATION:
FEngr.kM/GJ \& Te,kM/GJ: 0
VEHICLE AABMAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$)
Anrual cost of investment $(\$ / y)$
Annual cost of financing ($\$ / y$)
Other fived costs ($\$ / \mathrm{y}$) (4)
$=-\quad$ Total fixed costs ($\$ / \mathrm{y}$)
TOTAL OISTRIEUIION COSTS:
Facility location
kn fron Upstrn point
$\$ / G J$ shipped by barge
\$/G shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road
Total distr cost (\$/GJ)
Total distr cost (cent5/1)

PRI TERYIMAL	SEC TERHINAL	REF STATION
TOFOnto	0	TOROnto
150	0	20
0	0	0
.083	0	0
0	0	0
0	0	.095
.083	0	.095
.31	0	.36

SECDNDARY

REFUELLING STATION COSTS:

Fleet or retail	Fleet
Throughput GJ/d $8 \mathrm{~m} 3 / \mathrm{d}$	18.33
Avg inventory (days thrput)	7
Construction status (3)	SA
Orig invest base stn \$(10)6 (7)	. 37
New investment \$(10)6	0
Investment costs (\$/d)	202
Mrintenance costs (\$/d)	10
Labour costs (\$/d)	130
Other costs ($\$ / \mathrm{d})$	20
Utility costs (\$/d)	7
Statn costs (\$/GJ 8 cents/1) . 52	1.98

VEHTCLE DATA:
2.64 Fuel usage ($1 / 100 \mathrm{kM} \& \mathrm{GJ} / \mathrm{km}$) 52 . 0198536
9.6 Vehicle life (km \& yrs) $880000 \quad 5$
3.2 Payload (psrgers \& Te) 0
10.9 Base cost ($\$$) 8 tax ($\$$) $85095 \quad 6405$

Conversiori type $\&$ cost ($\$$)
Grants \& tais concessions (\$) 0
Total net investment ($\$$) 91500
VEHICLE AMAML VARIABLE COSTS (AVERACE):
Total fuel costs ($\$ / \mathrm{y}$) 38087
18300 Mise matls ($\$ / 1000 \mathrm{kn} 8 \$ / \mathrm{y}$) 32
$5490 \quad$ Driver costs incl ovhd $(\$ / y) \quad 35000$
46000 Maint cost ($\$ / 1000 \mathrm{~km} \& \$ / \mathrm{y}$) $62 \quad 10912$
76884
ANERAGE VEHICLE LIFE CYCLE COST OF OPERATION
AVERAGE VEHICLE LIFE CYCLE COST OF OPERATION
$=0$ cents/psngr.kn
$=4.5$ cents/Te.kn
(1) Ref. source: 3-35, 103-109, 155-173.
(2) See AFEM printout for details.
(3) Comerted (C), Aditon (AD) or Stand-alone (SA).
(4) Associated with garaging, adiministration and vehicle ROI.
(5) All GJ units are higher heating values
(6) Diesel only.
(7) Land is included with garaging costs (see note 4).

CASE DEFIMIITON (1)

MATRIX REF	1: 10b	MATRIX CASE\%:	62
FUEL:	C3/DIESEL (9)	EMGINE TYPE:	CI
SERVICE:	TRUCK (INT/RRB/8)	PUTP STATION:	FLEET
LOCATION:	TORONTO	TIME FRAME:	401983

ECONDKIC CRITERIA $\&$ FLIE PROFERTIES
Z ROI on 4093 plant replacement value 20
Z int, on 80% vehicle investment
Fuel dorsity ($\mathrm{Te} / \mathrm{m} 3$) (6) 15
Fuel higher heating value ($G / / 43$)(5)(6) 25.59

(1) Ref, source: 3-35, 103-109, 155-173.
(2) See AFEM printout for details,
(3) Cormerted (C), Adt-on (AD) or Stand-alone (SA).
(4) Associated with garaging; adininistration and vehicle ROI, (5) All GJ units are higher heatirg values
(b) Propare only.
(7) Gathering costs in Alberta are shown as road costs,
(8) Land included in garaging costs (see note 4).
(9) Dual Propane(80\%)/Diesel(207) fleel. This sheet incorporates diesel pump cost from sheet Refi 5b/2.

CASE DEFINITION (1)

MATRIX REF	\#: 10c	MATRIX CASEF:	63
FUEL:	HEDH(100\%)	ENGINE TYPE:	CI
SERVICE:	TRUXK(INT/RRE/B)	PUPP STATION:	FLEET
LOCATION:	TORENTO	TITE FRAIE:	401983

ECONOHIC CRITERIA \& FLEL PROPERTIES

\% ROI on 4083 plant replacement value	20
\% int, on 80% vehicle imestment	15
Fuel density (Te/m3)	.796
Fuel higher heating value (CJ/m3)	18.08

PLANT GATE COST:

Primary resource	Nat Gas
Resource cost ($\$ / G J$)	2
Plant location	Ednonton
Product rate (GJ/ $)$	45414
Product rame	Hethanol
Process Efficiency (\%)	61.1
Product cost $(\$ / G)(2)$	7.909
Product cost (cents/l)	14.3

TERKINAL COSTS
Throushput (m3/d) (6)
Throughput ($G / / d$) (6)
Avg inventory (days thrput)
Construction status (3) AD
Incr investnt \$(10)6
Incr inust cost $\$ / 0$
Incr util cost $\$ / d$
Incr maint cost $\$ / \delta$
Incr labor cost $\$ / \delta$
Ircer other costs $\$ / d$
Incr witg costs $\$ / \delta$
Terminal costs \$/GJ
Terminal costs cents/l

FRIARY
250

4520
26
A0

$A D$	0
2	0

10950

140
140
2200
$60 \quad 0$
$0 \quad 0$
.310
.560

TOTAL DISTRIB:TION COSTS: Facility location Toronto kn from upstrm point \$/GJ shipped by barge \$/GJ shipped by pipe \$/GJ shipped by rail \$/GJ shipped by road Total distr cost (\$/LJ)
Total distr cost (cents/1)

FRI TENTINAL SEC TEKYINAL

Toronto	0	Toronto
2850	0	20
0	0	0
0	0	0
2.4	0	0
0	0	.54
2.4	0	.54
4.33	0	.97

FUEL COST AT PUAP:
Fretax fuel/Fed $5 a 1$ tx (c/l) 21.46
Fed exc/Frow tax (cent5/1) 0
Total fuel tax (c/18\$/GJ) 1.931 .06
Tot fuel cost (c/l \& \$/GJ) $23.39 \quad 12.93$
OVEFALL RESOUKCE UTIL TZATION:
Psiggr.kM/EJ \& Te.kn/GJ: $0 \quad 646.3$
VEHICLE AARUAK FIXED COSTS:

Licerse \& Insurance cost $(\$ / y)$	7094
Armual cost of investment $(\$ / y)$	17459
Arnual cost of financing $(\$ / y)$	5237
Other fixed costs $(\$ / y)(4)$	46000
Total fixed costs $(\$ / y)$	75790

AUERAGE VEHICLE LIFE CYCLE COST OF OPERATION AVEFAEE VEHICLE LIFE CYCLE COST OF OPERATION

(1) Ref. source: 3-35, 103-109, 155-173.
(2) See AFEn printout for details.
(3) Converted (C), Add-on (AD) or Stand-alone (SA).
(4) Associated with garaging, adininistration and vehicle ROI.
(5) All GJ units are higher heating values
(b) 100% nethanol.
(7) Land is included with garaging costs (see note 4).

REFUELLING STATION COSTS:

Fleet or retail	Fleet
Throughput Gu/d $8 \mathrm{~m} 3 / \mathrm{d} 700$	38.71
Avg inventory (days thrput)	4
Construction status (3)	C
Orig invest base stri \$(10)6 (7)	. 37
New investment \$(10)6	. 222
Increm inv costs ($\$ / 0$)	324
Incr, maint costs ($\$ / \delta$)	16
Incr labour costs ($\$ / \delta$)	130
Incr other costs ($\$ / \mathrm{d})$	32
Utility costs ($\$ / \mathbf{/}$)	7
Statn costs (\$/GJ \& cent5/1) . 72	1.3

VEHICLE DATA:
Fuel usage ($1 / 100 \mathrm{~km} \& \mathrm{GJ} / \mathrm{km}$) 109.8 . 01985184
Vehicle life (kM \& yrs) 880000
Payload (psngrs \& Te) 01
Base cost ($\$$) \& tax ($\$$) $85095 \quad 6405$
Conversion type \& cost (\$) Fx 2200
Grants \& tax concessions (\$) $0 \quad 6405$
Total net irvestment ($\$$) 87295
VEHICLE ANKUAL VARIAELE COSTS (AVERAGE):
Total fuel costs ($\$ / \mathrm{y}$) 45176
Hisc matls ($\$ / 1000 \mathrm{kn} 8 \$ / \mathrm{y}$) 32532
Driver costs incl ouhd ($\$ / y$) 35000
Maint cost ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) 6210912
Total variable costs (\$/y) 96720
$=\quad 0$ cents/psngr.kM
$=\quad 4.66$ cents/Te.kM

CASE DEFINITION (1)

MATRIX R	1: 100	HATRIX CASE\%:	64
FUEL:	MEDH+CET (8)	ENGIE TYPE:	CI
SERVICE:	TRUCK(INT/ARS/8)	FUPP STATION:	FLEET
LOCATION:	TORONTO	TIE FRAFE:	401983

ECONOHIC CRITERIA \& FUE PROPERTIES

z ROI on 4883 plant replacement value	20
Z int. on 80% vehicle investment	15
Fiel density (Te/M3) (8)	.804
Fuel higher heating value (G/m3)(8)(5)	18.52

PLANT CATE COST:

Prin resrce	Nat gas		-
Resrce \$/G	2		-
Location	Edmonton	Toronto	-
Prod Gal/ ${ }^{\text {d }}$	45414		-
Prod name	Hethanol	DII-3	Blend(8)
Proc Eff \%	61.1	60	61
Prod \$/Gu (2)	7.909	160	18.93
Prod cents/1	14.3	429	35.05

TERHINAL COSTS	Prithary	SECONOARY
Throughput (n3/d) (7)	250	0
Throughput (G)/d (7)	4630	0
Avg inventary (days thrput)	26	0
Construction statios (3)	C	0
Incr investnt \$(10)6	2	0
Iner invst cost \$/d	1095	0
Incr util cost \$/d	14	0
Incr maint cost \$/d	14	0
Incr labor cost $\$ / \mathbf{d}$	220	0
Incer other costs \$/ $/ 0$	60	0
Incr eikts costs \$/d	0	0
Terminal costs \$/Gl	. 3	0
Terninal costs cents/l	. 55	0

FUEL COST AT PUPP:

Pretax fuel/Fed sal tx (c/1) $42.17 \quad 3.79$
Fed exc/Prov tax (cents/1) 0
Total fuel tax (c/l $8 \$ / G) 3.79$
Tot fuel cost (c/l \& \$/GJ) 45.96
OVERALL RESOURCE UTH IZATION:
Psmgr.kM/GJ \& Te.kM/GJ: 0 63B
VEHICLE AMUAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$) 7094
Armual cost of investment ($\$ / \mathrm{y}$) 17299
Annual cost of financing ($\$ / \mathrm{y}$) 5189
Dther fixed costs ($\$ / 4$) (4) 46000
Total fiked costs ($\$ / \mathrm{y}$) 75582

TOTA. DISTRIEAION COSTS:
Facility location kn fron upstrm point
\$/GJ shipped by barge \$/EN shipped by pipe \$/GN shipped by rail (6) \$/GN shipped by road Total distr cost ($\$ / \mathbf{G})$ Total distr cost (cents/l)
rer station

Toronto	0	Toronto
2850	0	20
0	0	0
0	0	0
2.29	0	0
0	0	.54
2.29	0	.54
4.24	0	1

REFLELIING STATION CDSTS:

Fleet or retail	Fleet
Throughput GJ/d 8 M3/d 700	37.79
Avg inventory (days thrput)	4
Construction status (3)	C
Orig invest base stn \$(10)6 (9)	. 37
New investment \$(10)6	. 272
Increm inv costs ($\$ /$ / $)$	324
Incer, maint costs ($\$ / \mathbf{d}$)	16
Incr labour costs (\$/ $/$)	130
Incr other costs (\$/d)	32
Utility costs ($\$ / \mathbf{/}$)	7
Statn costs ($\mathrm{s} / \mathrm{GN} 8$ cents/1) . 72	1.33

vehticle data:

Fuel usage ($1 / 100 \mathrm{~km}$ \& $\mathrm{GJ} / \mathrm{km}$)	108.3	. 02005716
Vehicle life (kn \& yrs)	880000	5
Payload (psmgrs \& Te)	0	21
Elase cost (\$) 8 tax (\$)	85095	6405
Conversion type \& cost (\$)	F	1400
Grants \& tax concessions (\$). 0		6405
Total ret investment (\$)		86495

Vehicle aninal vartarie costs (average):
Total fuel costs ($\$ / \mathrm{y}$) 87580

Misc natls ($\$ / 1000 \mathrm{kn}$ \& $\$ / \mathrm{y}$) $32 \quad 5632$
Driver costs incl avid ($\$ / \mathrm{y}$) 35000
Maint cost ($\$ / 1000 \mathrm{kn} \& \$ / \mathrm{y}$) $62 \quad 10912$
Total variable costs $(\$ / y) \quad 139124$
(1) Ref. source: 3-35, 47, 49-59, 61-75, 155-173.
(2) See AFEH printout for details. (3) Converted (C), Adton (AO) or Stand-alone (SA),
(4) Associated uith garaging, administration and vehicle ROI. (5) All Gal units are higher heating valves
(6) 95% of nethanol rail tariff fron Edmontom. Plant gate cost of DII-3 ircludes $13 \mathrm{cents} / \mathrm{l}$ truck cost fr. S. Carolina.
(8) Blend of 95v\% methanol and 5vz 0II-3 cetane enhancer (blended in conventional fuels terninal)
(9) Land included with garaging costs (see note 4).

APPENDIX B - NOTES ON LCC WORKSHEETS

Comparison of Reference Vehicle Classes B-1
Comparison of Base Case Fuel Consumptions
by Vehicle Type B-2
Comparison of Vehicle Conversion Costs
(in Constant 1983 \$) B-3
Comparison of Miscellaneous Materials \&
Maintenance Costs B-4
Comparison of Fleet Annual Garage/Terminal
Costs Per Vehicle B-5
Comparison of License \& Insurance Costs B-6
Summary of Life-Cycle Costs B-7
Methodology Used in Alternative Fuels
Life-Cycle Costs Summary Sheets B-8
Sensitivity Analysis of Vehicle Annual
Variable Costs (VC) \& Life-Cycle Costs (LCC) B-9

COHPARISOY OF BASE CASE FUEL CONGLAPTIONS BY YEHICLE TYPE (1)

Ciesel Fropene!	LNG	CNO	Propane Methanol	Metherol	Methanol	Ketharol		hanol
Diesel			90%	100%	+ Cetane	Blend		Elend

(Differerce between alternative fuel consumption and reference fuel as \% ref fuel

MOTES:
(1) Rase Case consumptions of LMG, CNG, propane, 90% methanol, metharol and ethenol blends are consisterit with eurrent S / I ergine conversions (either field or factory) without changes to basic ergine compression ratio, Ease Case consumptions of propene/diesel, 1004 methenol and netherol + cetare erharcer fuels are consistent with techrologs presently under developnert using C / I (or glow plug ignition) engines.
(2) Future (1990) reference fuel consumptions are based on anticipated improvements to base vehicle/engine design. 12\% and 5% reductions have been assumed for gasoline and diesel consumption respectively (except 5% for computer auto and 9% for inter-urben gasoline truck),
(3) Refererce sources:

(1) Base cost includes Provincial tax.
(2) $F=$ Factory,$R=$ Field retrofit.
x signifies conversior is rot yet cownercially available (ie, demo installations only at present),
(All units in $\$ / 1000 \mathrm{~km}$)

Gasoline	Diesel	Propane	LNG	CNG	Propane Methanol	Hethanol	Hetheriol	Ketharol		nol
(Lo Req)		Diesel			90\%	100\% (2)	$+\mathrm{CI}(2)$	Blend		Blerd

NOTES: (1) All cases represent cirrent (40/1983) techrology except where noted.
(2) These cases represent future cownercial application.

COYPARISON OF FLEET AMOUALL GARAGE/TERHINALL COSTS PER VEHICLE (1)

	Reference Fuel	Total Fleet Size	Total Opertg days/yr	Fleet capacity Operts day	fuel 5 tn y in $\mathrm{G} /$ Calndr day	$\begin{array}{r} \text { Fleet } \\ \text { FOI } \\ \$ / y / \text { veh } \\ \text { (3) } \end{array}$	Other Costs \$/y/veh (4)	
taxI	Gasolire	100	300	183	150	1400	7100	8500
E4S (sch1)	Gasoline	55	200	91	50	865	3800	4665
$\begin{aligned} & \text { EUSS } \\ & \text { (UTb) } \end{aligned}$	Diesel	200	265	964	700	(2)	13400	13400
$\begin{aligned} & \text { EUSS } \\ & \text { (int/urb) } \end{aligned}$	Diesel	100	300	852	700	26000	39000	65000
$\begin{aligned} & \text { TRUCK } \\ & \text { (urb) } \end{aligned}$	Gasolire	100	250	44	30	1300	2700	4000
THUCK (int/urb/3)	Gasoline	75	300	61	50	2000	11600	13600
TRUCK (int/Irb/8)	Diesel	75	300	852	700	11900	34100	46000

NOTES:

(1) Costs of operating fleet garage/termiral using reference fuels (excludes refoelling facilities, vehicle maintenance, driver and fuel costs but includes vehicle return on investment (ROI)).
(2) Operated as public utility and therefore not requires to give return on investment.
(3) Eased on 13\% pretax return on investment (typical for private fleet operators in 1983).
(4) Includes following cost items:

- ROI and/or rent on garages, equiphent, offices, terninals, land, etc.
- Managenent \& labour costs associated with fleet admin. \& sales but excluding vehicle maintenance, driver and refuelling costs.
- Maintenance of property excluding vehicles.
- Miscellareons road tolls \& property takes.
(All costs in 1983 \$per vehicle)

Reference Vehicle type	Fuel Type	$\begin{aligned} & K_{H} \text { per } \\ & \text { Year } \end{aligned}$	Base Vehicle Cost(2)	License Cost	Insurance Cost	Insurance \% Base Cost	Total L8I Cost
AUTO (Comwter)	Gasoline	6600	8770	45	690	7.8	735
AUTO (Standard)	Casoline	18300	8150	45	690	8.4	735
TAXI	Gasoline	120000	11000	145	3230	29.3	3375
Eas (School) (1)	Gasoline	19200	33500	210	520	1.5	730
ExS (Urban) (1)	Diesel	60000	165000	325	2155	1.3	2480
EAS (Int-Urban) (1)	Diesel	106910	202500	785	1950	. 9	2735
TRUCK (Passenger)	Casoline	19350	10000	45	715	7.1	760
TRUCK (Urben)	Gasoline	19350	10000	45	1250	12.5	1295
Truck (Int-Urt-Class 3)	Gasoline	22400	15000	325	1705	11.3	2030
TRUCK (Int-Urb-Class 8)	Diesel	176000	91500	1644	5450	5.9	7094

NOTES:
(1) In view of low insurance cost reported it is likely that bus companies may assume part of insurance liability, About 5-7\% of vehicle cost per arram would be full insurance cost. Differerace is included in garage/terminal cost arnd maintenance costs.
(2) Ease cost includes Proviricial sales tax,
(3) Reference sources:

SLANATYY OF LITE CYCLE COSTS

REF *	VEHICLE TYPE	FUEL TYPE R=retail F=fleet	REF CASE VARIABLE/ LIFE CYCLE COSTS
13	Connuter	Gasoline R	221/26.7
1b	auto	CiNG $\quad R$	141/25.9
ic	-	Fropare R	180/26.8
23	Stornjard	Gasoline R	973/11.6
23	suto	Diesel R	$883 / 11.5$
2 c	"	LG k	922.12.8
2 d	${ }^{1}$	Clis R	$555 / 10.2$
2 e	1	Propana K	Tós/10.9
21	1	MEATH 9C\% K	$937 / 11.5$
29	"	lizCH blend 8	$929 / 11.6$
2 h	"	EtOH blend R	978/11.7
33	Taxi	Gasoline R	39553/56.6
3b	"	Gasoline F	37682/55.8
3c	u	LNG R	38181/58.9
30	"	LHG F	37463/57.3
38	"	CNiG (1) R	35759/55.6
39	"	CN'G (1) F	35583/55,7
39	11	Properie f	36626/54.9
3n	"	Fropane F	36418/54.7
3 i	I'	MeOH 90\% R	33354/56.5
3 j	1	MEOH 90\% F	38622/56.7
3.	${ }^{\prime}$	MeOH 90\% R	38578/56.7
31	"	MeOH 90\% F	37731/55. 8
3 n	${ }^{\prime \prime}$	EtOH 90\% R	38773/56. 9
37	"	EtOH 90\% F	37910/56.0
43	School	Gasgline F	12369/4.60
46	bus	CNG F	10955/4.29
4 c	"	Froparie F	11655.4.44
43'	"	Msolit blers F	12433/4.32
$4{ }^{4}$	$1{ }^{\prime}$	E.toi hlers F	1557/4.67

:-
(1) Separate duel fuel system using CNG 70\%, gasoline 30%.
(2) Concurrent propane 80%, diesel 20%, dual fuel system.

CASE DEFINITION

MATRIX REF \ddagger :	MATRIX CASE\#:
FUEL:	ENGINE TYPE:
SEFUICE:	PUAF STATION:
LDCATION:	TITE FRAME:

ECONOMIC CRITERIA \& FUEL PROFERTIES

\% ROI on 4083 plant replacement value	$X 1$
$\%$ int. on 80% vehicle investmerit	$Y 1$
Fuel density (Te/m3)	
Fuel higher heating value (GJ/m3)	$Z 1$

FLANT GATE COST:
Primbry resource
Resource cost ($\$ / \mathrm{FJ}$)
Plant location
Frodict rate (G / d)
Product name
Process efficiency (\%) Al
Pronuct cost (\$/GJ) E.1
Froduct cost (cerits/1) = E1*21x 1

TOTAL DISTRIRIION COSTS: FRI TERMINAL SEC TERMINAL REF STATION Facility location k.M from upstrm point
\$/Gd shipped by barge
\$/GJ shipped by pipe
\$/GJ shipped by rail
\$/GJ shipped by road
Total distr cost ($\$ / \mathrm{GJ}$)
Total distr cost (cents/1)

$C 1$	$"$	$"$
$D 1$	$"$	$"$
$E 1$	$"$	$"$
$F 1$	$"$	$"$
$G 1=C 1+01+E 1+F 1$	$H 1$	$I 1$
$=G 1 \times 21 \times 1$		

TERMINAL COSTS
Throughput ($\mathrm{m} 3 / \mathrm{d}$)
Throushput ($\mathrm{GJ} / \mathrm{J}^{\prime}$)
Storage capacity (dozs)
Construction status
Investment $\$(10) 6 \quad \mathrm{Kl}$
Investment cost $\$ / \mathbf{d}$
Utility cost $\quad \$ / d$
Mainitrice cost $\$ / d$
Lhour cost $\$ / \mathrm{g}$
Other costs $\quad \$ / d \quad$ P1
Marketing costs $\$ / \mathrm{D}^{2} \quad$ Q1
Termiral costs $\$ / G J$
Terminal costs cents/l

FRIMAFY
$\downharpoonleft 1$
"
$L 1=K 1 \times \times 1 / .0365$
"
N1
M1

- "
"

Fil $=$ SUM $(L 1, Q 1) / J 1 \quad 51$
$=F i 1 \times Z 1 \times, 1$

REFUELLING STATION COSTS:
Fleet or retail
Throughput (GJ / j)
$T 1$
Avg iriventory (days thrpunt)

FUEL COST AT FUMF:
Fretax fuel/Fed sal t: (c/l)
Fed exc/Frov tax (cents/l)
Total fuel tax (c/l)
F2(see note)
H 2 I2
$\mathrm{J}_{2}=\mathrm{G}_{2}+\mathrm{H}_{2}+\mathrm{I}_{2}$
$1: 2=F 2+\sqrt{2}$
Tot fuel cost (c/l \& $\$ /$ NJ)
OUERALL RESOUFCE UTILIZATION:
Psngr,km/GJ \& Te,km/GJ:
$X 2=A 1 \times 02 / N 2$
VEHICLE ANAMLAL FIXED COSTS:
License \& Insurance cost ($\$ / \mathrm{y}$) $\quad Z 2$
Arrual cost of investment ($\$ / \mathrm{y}$) $\quad \mathrm{A} 3=\mathrm{XZ} / \mathrm{F} 2$
Arirsal cost of firancing ($\$ / y$) E $3=A 3 x+3$
Other fixed costs ($\$ / \mathrm{y}$) (4)
Total fixed costs $(\$ / y) \quad D 3=A 3+E 3+C 3$
AVEFAGE vehicle life cycle cost of oferation
AVEFAGE VEHICLE LIFE CYCLE COST OF OFEFAATION

VEHICLE AMMHAL VAFIAEAE COSTS (AVERAGE):
Total fiel costs ($\$ / \mathrm{y}$) $\quad E 3=02 \times N 2 \times L 2 / \mathrm{F} 2$
Misc matls ($\$ / 1000 \mathrm{k} . \mathrm{m} 8 \mathrm{~s} / \mathrm{y}$) F3 G3=53x02x,001/F2
Driver costs ircl ouhd ($\$ / \mathrm{y}$)
MBint cost $(\$ / 1000 k . \mu \$ \$ / y) \quad$ I3 $\quad J 3=13 \times 02 \times, 001 / \mathrm{F} 2$ Total variable costs ($\$ / \mathrm{y}$) $\quad K 3=E 3+G 3+\mathrm{K} 3+\sqrt{3}$

* NOTE: $F 2=(B 1+G 1+H 1+I 1+F 1+S 1+E 2) \times Z 1 x, 1$
$R=$ retrofit, $F=$ factory, $\#=$ Demo only

```
= L3=(03+K3)\times100\timesF2/02/02 }\quadll
= L3=(03+K3)\times100\timesF/2/02/Q2 
```


NDTES: (1) 25% increase in $\mathrm{km} / \mathrm{yT}$ at constant total lifetime k.m.
(2) Plant gate costs (FGC) of finels (derived from EMf AFEM program) are as follows:

FLEL	PLANT	FLANT	RETAII CASE	HHOLESALE CASE	FCC E 0\%
DESCRIPTION	MAME	LOCATION	\%FOI/FCC($\$ / \mathrm{GJ}$)	ZROI/FLC(\$/GJ)	ROI(\$/GJ)
LR Gasoline	Kefirery	S. Ontario	14.7/8.40	$-7.0 / 7.17$	7.59
Diesel	"	1	14.7/7.64	$-7.0 / 6.79$	7.05
9.5v\% Oxirol	1	"	$14.7 / 8.67$	$-7.0 / 7.42$	7.76
10u\% Etharol	11	11	14.7/9.01	$-7.0 / 7.73$	7.96
100\% Metharol	MeOHTNG	Edwonton	n/3	$10 / 7.91$	5.57
100\% Etharol	EtOH-C2H4	"	r/a	$20 / 18.49$	14.87
Propane	Stradile	11	N / a	$20 / 4.24$	4.02
LNG	LMG	Toronto	20/10.28	$10 / 8.44$	6.60

(3) Subsioy deletion implies zero federal/provincial grants or tak concessions on vehicle purchase and the same total fuel tax 35 for $L R$ gasoline at the retail pump, namely $\$ 3.6 / \mathrm{GJ}$.
(4) Projected changes in fuel consumption and vehicle conversion costs only are included (basis: constant $\$ 1983$),
(5) Arnual variable costs in $\$ / y \mathrm{r}$ and life cycle costs (LCC) in cents/psigrik.m or ceris/Te.k.m.

REFINEFY CASE: TYPICAL ONTARIO FUELS REFIMERY MITH
FLANT CAFACITY / STREAM FACTOR 85000 3R/1983 PROD SLATE \& 14.7\% ROI (RETAILING CASE)

DATE / LOCATION: 4Q 1983 / TORONTO AREA
INUESTMENT DATA :
FLANT COST = FIELD, EMGINEERING $\&$ CAT/CHEM COSTS $=\begin{array}{lllll}300 & 30 & 5 & = & 335\end{array}$
HOFKING CAPITAL MWS 60 days operating expenses e $\$ 142329 \quad /$ day $=140$
INT EFR STRT UF 15% interest on 40% of total plant cost over 3 years $=60$
START UP COST 2% of total plant cost $=6$
TOTAL IMESTHENT MHS
AMRUAL COST OF IMNESTHENT
14.7% SIMFIE RET ON INESTHENT $=\quad 79$ \$ \#

CuANTITY	HN	56	LNIT	STRT DAY	AARUAL	\$/1	\$/G	CENTS/L
R	ETU		ST	COS	COST	(HHV))	

OFERATING EXFENSES:

CKLDE FEED EEL	58476	5.803	.838	36	2105	730	6.20	5.88	22.70
nat gas fuel foees	695	6.4		26.62	18	6	4.16	3.94	16.78
fief gas fuel foee	2367	6.4		0	0	0	0.00	0.00	0.00
FOHEF Mill	238			32.1	8	3			
CAT 8 CHEMICALS					7	2			
ISOESTANE BEL	1604	4.185	. 563	35.6	57	20	8.51	8.06	22,45
N EUTANE EEL	606	4.035	. 584	35.6	22	7	8.82	8,36	22.45
TEL(100\%) Kg	1508			4.8	7	3			
MAINT MATECONT LAB					17	6			
MAINT LABRSUF MEN	150			30700	20	7			
OFEE LABSSLF MEN	150			30700	20	7			
ADM $\&$ SLPRT LAB					8	3			
OTHER EXPENSES					20	7			
TOTALS					2308	802			

EYY-FRODUCT	CREDITS:									
SHLFHHR	TONS	6	7.97		7	0.46	0.16	9.66	9.16	48.55
REF FUEL GAS	FOEE	2367	6.4		0	0.00	0.00	0.00	0.00	0.00
FKOFANE	EEL	1090	3.85	.508	26.5	$2 B .89$	10.02	6.88	6.52	16.71
EUTANES	EEL	0	4.035	.584	35.6	0.00	0.00	8.82	8.36	22.45
TOTAL EYY-FFOD	CREDIT					29.35	10.18			

FRODUCT CREDITS:

NAFHTHA SFECIALS EEL	1524	5.59	. 827	48.18	73	25	8.62	8.17	30.38
MIXED DLEFINS EEL	800	4.14	. 562	48.18	39	13	11.64	11.03	30.38
LEADED REG GASOL EEL	15322	5.11	. 718	45.29	694	241	8.86	8.40	28.56
UMLEADED REG CAS EEE	15769	5.17	. 729	48.18	750	260	9.32	8.83	30.38
AUIATION GASOLIN EEL	68	4.93	. 686	48.18	3	1	9,77	9.26	30,38
dET FuEL "A" EEE	3180	5.6	. 805	45.77	146	50	8.17	7.75	28.86
JET FUEL "E" EEE	262	5.32	.756	45.77	12	4	8.60	8.15	28,86
DIESEL (ALL) EEE	10640	5.74	. 829	46.26	492	171	8.06	7.64	29.16
LIGHT FIEL OIL EEE	4640	5.95	. 882	45.77	212	74	7.69	7.29	28.86
HEAUY Fitel OIL EEE	3070	6.49	1.04	29.58	91	31	4.56	4.32	18;65
TOTAL FFROULCT CREDIt	56165				2512	871			

TOTAL AMNUAL CREDIT: 10.18 3*' +871.14 sim $=881.32$ sw TOTAL FUEL \& POAER $=6.47$ VK CKLDE
 OVERALL REFINEFY PROCESS EFFICIENCY (HN EASIS) ENERGY IN FRDOUCTS / ENERGY IN FEED \& FLEL STREAKS = 85.88 \%

FEFINEFY CASE: TYFICAL ONTARIO FUELS REFINERY WITH 3R/1983 PROD SLATE \& -7\% ROI (HHOLESALING CASE) (BASE CASE
INYESTMENT DATA:

AMALAL COST DF IMUESTMENT E

OFEFATING EXFENSES:

CRUDE FEED EEL	58476	5.803	. 838	36	2105	730	6.20	5.88	22.70
Nat cas fuel foee	695	6.4		26.62	18	6	4,16	3.94	16.78
REF GAS FUEL FOEE	2367	6.4		0	0	0	0.00	0.00	0.00
FOLER MHH	238			32.1	8	3			
CAT \& CHEMICALS					7	2			
ISOEJTANE EEL	1604	4.185	. 563	35.6	57	20	8.51	8.06	22.45
N EUTANE EEL	506	4.035	. 584	35,6	22	7	8.82	8.36	22.45
TEL(100\%) Kg	1508			4.8	7	3			
maint matacont lab					17	6			
MAINT LAERSUFP MEN	150			30700	20	7			
OFER LABESUFP MEN	150			30700	20	7			
ADH 8 SUFFRT LAE					8	3			
OTHER EXFENSES					20	7			
TOTALS					2308	802			

EY-FKDOUCT CREDITS:

SULFHRK	TONS	6	7.97		77	0.46	0.16	9.66	9.16	48.55
FEF FUEL GAS	FOEE:	2367	6.4		0	0.00	0.00	0.00	0.00	0.00
PROFANE	EEL	1090	3.85	.508	26.5	28.89	10.02	6.88	6.52	16.71
EUTANES	EEL	0	4.035	.584	35.6	0.00	0.00	8.82	8.36	22.45
TOTAL ESY-FFOD CREDIT					29.35	10.18				

FROGALT CREDITS:

NAFHTHA SFECIALS EEL	1524	5.59	.827	41.10	63	22	7.35	6.97	25.91	
MIXED OLEFINS	EEL	800	4.14	.562	41.10	33	11	9.93	9.41	25,91
LEADED FEG GASOL EEL	15322	5.11	.718	38.63	592	205	7.56	7.17	24.36	
URLEADED FEG CAS EEL	15569	5.17	.729	41.10	640	222	7.95	7.53	25.91	
AUIATION GASOLIN EEL	68	4.93	.686	41.10	3	1	8.34	7.90	25.91	
LET FUEL "A"	EEL	3180	5.6	.805	39.05	124	43	6.97	6.61	24.62
WET FUEL "E"	EEL	262	5.32	.756	39.05	10	4	7.34	6.96	24.62
OIESEL (ALL)	EEL	10640	5.74	.829	41.10	437	152	7.16	6.79	25.91
LICHT FUEL OIL	EEL	4640	5.95	.882	39.05	181	63	6.56	6.22	24.62
HEAUY FUEL OIL EEEL	3070	6.49	1.04	29.59	91	32	4.56	4.32	18.66	

 ONERALL REFINEGY FROCESS EFFICIENCY (HAN EASIS) ENERGY IN FROOUCTS / ENERGY IN FEED \& FUEL STREAMS $=85.88$ \%

FLANT CAFACITY / STREAMF FACTOF 85000 . 95 DATE / LOCATION: 40 1983 / TORONTO AREA

$$
-7 \% \text { SITFLE FET ON IMESTMENT }=\quad-38 \$ M M
$$

REFIMEFY CASE: TYPICAL ONTARID FUELS REFINERY KITH $30 / 1983$ PROD SLATE \& 14.7\% ROI (RETAILING CASE)

FLANT CAPACITY / STREAM FACTOR 85000 DATE / LOCATION: 4D 1983 / TORONTO AREA
(RASE CASE + 9.50\% OXINDL + .49 Pb/1)
INUESTMENT DATA :

AMMLAL COST OF IMVESTHENT Q
 14.7 \% SIMFLE RET ON INMESTMENT =
 79 \$ ${ }^{2}$ H

QuANTITY	HN	56	LNIT	STRM DAY	AMEMAL	\$/MHBTU	\$/GJ	CENTS/L
FER DAY	M PRTU/E:		COST \$	COST MS	COST HM\$	(H+N)	(HNV)	

OFEEATIMG EXFENSES:									
CRUDE FEED BEE	55522	5.803	. 838	36	1999	693	6.20	5.88	22.70
NAT GAS FUEL FOEE	728	6.4		26.62	19	7	4.16	3.94	16.78
FiEF GAS FUEL FDEE	1692	6.4		0	0	0	0,00	0.00	0.00
FOHER MLH	226			32.1	7	3			
CAT \& CHEMICALS					7	2			
ISOEJTANE EEE	1379	4.185	. 563	35.6	49	17	8.51	8.06	22,45
N EUTANE EEL	197	4.035	. 584	35.6	7	2	8.82	8.36	22.45
TEL(100\%) K'g	1508			4.8	7	3			
OXINOL EEL	2935	3.67	. 795	43	126	44	11.72	11,10	27.11
MAINT MATRCONT LAE					17	6			
MAINT LAERSLF MEN	150			30700	20	7			
OFEF LAERSLF MEN	150			30700	20	7			
ADM $\&$ SLPFT LAE					8	3			
OTHER EXFENSES					20	7			
TOTALS	624.3				2306	801			

EY-PRODUCT CREDITS:

SLLFHKK	TONS	6	7.97		77	0.46	0.16	9.66	9.16	48.55
REF FLEL GAS	FOEB	1692	6.4		0	0.00	0.00	0.00	0.00	0.00
FFKOFANE	EEL	864	3.85	.508	26.5	22.90	7.94	6.88	6.52	16.71
EUTANES	EELL	0	4.035	.584	35.6	0.00	0.00	8.82	8.36	22.45
TOTAL EY-FFOD CREDIT					23.36	8.10				

FFRDNUCT CREDITS:

NAPHTHA SFECIALS	EEA	1524	5.59	. 827	48,26	74	26	8.63	8.18	30.43
MIXED DLEFINS	EEEL	800	4.14	. 5.62	48,26	39	13	11,66	11.05	30.43
LEADED REG GASOL	EEL	15322	4.96	. 724	45.36	695	241	9,15	8.67	28.60
LIHEADED REG GAS	ERE	15569	5.01	. 731	48.26	751	261	9.63	9.13	30.43
AUIATION GASOLIN	EEt	68	4.93	. 686	48,26	3	1	9.79	9.28	30.43
JET FLEL "A"	EEE	3180	5.6	. 805	45.84	146	51	8.19	7.76	28.90
JET FUEL "E"	EEE	262	5.27	. 748	45.84	12	4	8.70	8.24	28.90
DIESEL (ALL)	EEL	10640	5.75	. 832	46.33	493	171	8.06	7.64	29.21
LIGHT FIEL OIL	EEL	4640	5.96	. 884	45.84	213	74	7.69	7.29	28.90
HEAVY FIEL OIL	EER	3070	6.49	1.04	29.63	91	32	4.57	4.33	18.68
TOTAL FROOULCT CRE	EDIT	55939				2516	872			

TOTAL ANMUAL CREDIT:	8.10 \$19	$+$	872.45 \$1\%	=	880.55	TOTAL FUEL P POHER =	5.51	V\% CRUDE
TOTAL ANMUAL DEEIT:	79.49	+	801.06 \$4\%	$=$		ENEKGY IN - OUT	15.20	V\% CFILOE
OVERALL REFINEFY FROCESS	EFFICIENCY		IS) EMERGY		TS / EMERGY	FEED \& FIEL STREAMS =	86.30	\%

REFINERY CASE: TYPICAL ONTARIO FUELS REFINERY KITH 32/1983 FRROD SLATE \& -7\% ROI (HMLESALING CASE)
(EASE CASE + 9.5v\% OXIMCL + .4g Pb/1)

PLANT CAPACITY / STREAY FACTOR 85000 DATE / LOCATION: 40 1983 / TOFONTO AREA

IMNESTHENT OATA:
FLANT COST = FIELD, ENGINEERING \& CAT/CHEM COSTS = $300 \quad 30 \quad 503$

INT BFR STRT UP MAH 15% interest on 40\% of total plant cost over 3 years $=60$
START UP COST Mis 2% of total plant cost $=6$

TOTAL IMESTIUENT His
541
AMNLAL COST OF IMUESTHENT $2 \quad-7 \%$ SIFFLE RET ON IMESTHENT $=\quad-38$ \$MY

Quentity	HN	56	LNIT	STRH DAY	Ahatal	\$/4HETU	1/9		/
	MPTU/E		COST	15	COST Mids	(HNN)			

OFEEATIMG EXFENSES:									
CRLDE FEED EEL	55522	5.803	.838	36	1999	693	6.20	5.88	22.70
NAT GAS FUEL FOEB	728	6.4		26.62	19	7	4.16	3.94	16.78
REF GAS FIEL FOEB	1692	6.4		0	0	0	0.00	0.00	0.00
FOMER MILH	226			32.1	7	3			
CAT 8 CHEHICALS					7	2			
ISOEUTAME REL	1379	4.185	. 563	35.6	49	17	8.51	8.06	22.45
N EITANE ERL	197	4,035	. 584	35.6	7	2	8.82	8.36	22.45
TEL(100\%) Kg	1508			4.8	7	3			
OXINOL EEL	2935	3.67	. 795	43	126	44	11.72	11.10	27,11
MAINT MATBCONT LAB					17	6			
MAINT LABZSUF MEN	150			30700	20	7			
OfER LARSSLF MEN	150			30700	20	7			
ADH \& SLFRT LAB					8	3			
OTHER EXPENSES					20	7			
TOTALS	62453				2306	801			

EY-FKODUCT	EDITS:									
SILFHEK	TONS	6	7.97		77	0.46	0.16	9.66	9.16	48.55
REF FIEL GAS	FOEE	1692	6.4		0	0.00	0.00	0.00	0.00	0.00
Propane	EEL	864	3.85	. 508	26.5	22.90	7.94	6.88	6.52	16.71
EUTANES	EEL	0	4.035	. 588	35.6	0.00	0.00	8.82	8.36	22.45
TOTAL EY-PRDO	CFEDIT					23.3	8.10			

FRODUCT CREDITS:

NAFHTHA SFECIALS PEEA	1524	5.59	. 827	41.32	63	22	7.39	7.01	26.05
MIXED OLEFINS EEL	800	4.14	. 562	41.32	33	11	9.98	9.46	26.05
LEADED KEG CASOL ERL	15322	4.96	. 724	38.84	595	206	7.83	7.42	24.49
URIEADED REG GAS EEL	15569	5.01	. 731	41.32	643	223	8.25	7.82	26,05
AUIATITN CASDLIN BEL	68	4.93	. 686	41.32	3	1	8.38	7.94	26.05
IET Fuel "A" 既	3180	5.6	. 805	39.26	125	43	7.01	6.64	24.75
JET FUEL "E" EEA	262	5.27	. 748	39.26	10	4	7.45	7.06	24.75
DIESEL (ALL) ERL	10640	5.75	. 832	39.67	422	146	6.90	6.54	25.01
LIGHT FUEL OIL BEL	4640	5.96	. 884	41.32	192	66	6.93	6.57	26,05
heavy fitl oil bel	3070	6.49	1.04	29.75	91	32	4.58	4.35	18.76
TOTAL FFOOUCT CREDIT	55939				2178	755			

 OVERALL REFINEFY PROCESS EFFICIEMCY (HAN EASIS) ENERGY IN FRTOUCTS / ENERGY IN FEED \& FUEL STREAKS
5.51 UZ CRIDE
15.20 UK CRUDE 86.30 \%

REFINERY CASE: TYPICAL ONTARIO FUELS REFINERY KITH 3R/1983 FROD SLATE 8 14.7\% ROI (RETATLING CASE)
(BASE CASE + 10v\% ETHANDL) (1)
INESTHENT DATA :

QUANTITY	HNV	56	LNTT	STRM DAY	AMMPAL	\$/4NBTU	\$/GJ	CENTSA
PER DAY	MBTU/B		COST \$	COST M\$	COST Mits	(HEV)	(HN)	

OFERATING EXPENGES: CRLDE FEED BRL mat cas fuel foeb REF GAS FuEL FOEB POHER HH
CAT \& CHEHTCALS ISCESTAME EEL N BITAAE BEL TEL(100\%) Kg ETHANOL BEL
HAINT MATSCONT LAB MAINT LABRSUP: MEN
OPER LABSSUP MEN
ADH \& SUPRT LAB OTHER EXFENSES
totals

54493	5.803	.838	36	1962	680	6.20	5.88	22.70
793	6.4		26.62	21	7	4.16	3.94	16.78
1416	6.4		0	0	0	0.00	0.00	0.00
221			32.1	7	2			
1194	4.185	.563	35.6	7	23	2	15	8.51
957	4.035	.584	35.6	34	12	8.82	8.06	22.45
1034			4.8	5	2	22.45		
3089	3.56	.795	76.3	236	82	21.43	20.31	48.11
				17	6			
150			30700	20	7			
150			30700	20	7			
				8	3			
			20	7				
61942				2398	833			

BY-FRDDUCT CREDTS:

SILFHR	TONS	6	7.97		77	0.46	0.16	9.66	9.16	48.55
REF FIEL GAS	FOEB	1416	6.4		0	0.00	0.00	0.00	0.00	0.00
PROPANE	EEL	790	3.85	.508	26.5	20.94	7.26	6.88	6.52	16.71
BITANES	EEL	0	4.035	.584	35.6	0.00	0.00	8.82	8.36	22.45
TOTAL EY-PRDD CREDT					21.40	7.42				

FRODUCT CREDITS:									
NAFHTHA SFECIALS PEL	1524	5.59	.827	50.06	76	26	8.96	8.49	31,56
HIXED OLEFINS EEL	800	4.14	. 562	50.06	40	14	12.09	11.46	31.56
LEADED REG GASOL ERL	15322	4.95	. 725	47.06	721	250	9.51	9.01	29,67
LRIEADED KEG GAS brL	15569	4.95	. 723	50.06	779	270	10.11	9.59	31,56
AUIATION CASOLIN ERL	68	4.93	. 686	50.06	3	1	10.15	9.62	31.56
WET FUEL "A" REL	3180	5.62	. 808	47.56	151	52	8.46	8.02	29.99
NET FUEL "B" BEL	262	5.33	. 755	47.56	12	4	8.92	8.46	29.99
DIESEL (ALL) EBL	10640	5.78	. 838	48.06	511	177	8.31	7.88	30.30
LIEHT FUEL OII EREL	4640	5.97	. 887	47.56	221	77	7.97	7.55	29,99
HEAUY FUEL OIL BEEL	3070	6.49	1.04	30.74	94	33	4.74	4.49	19,38
total froouct credit	55865				2610	905			

 OUERALL REFINERY PROCESS EFFICIENCY (HN BASIS) EMERGY IN PRTOUCTS / ENERGY IN FEED \& FLEL STREAHS = 86.72%
(1) Gasolines contain zero reformate and leaded gasoline TEL usage is less than allowable (. 27 vs . fg fo/l),
fREFINEFY CASE: TYPICAL ONTARID FUELS REFINEFY WITH 30/1983 FROD SLATE \& -7\% FOI (\%HRESALING CASE)
(EASE CASE + 10v\% ETHANOL) (1)
INUESTMENT DATA :
PLANT COST $=$ FIELD, ENGINEEKING \& CAT/CHEM COSTS $=30030 \quad 5035$
HOFKING CAFITAL M $\$$
INT EFF STET UF' MMs 15% interest on 40% of total plant cost over 3 years $=60$ STAFT UF COST MH $\$ 2 \%$ of total plant cost $=6$
TOTAL INVESTKENT MM\$
anMal cost of investment e

FLANT CAFACITY / STREAM FACTOF 85000
$+95$ DATE / LOCATION: 4Q 1983 / TOFONTO AFEA
-7% SITFLE RET ON IMUESTHENT $=\quad-38 \$ 4 \%$

QUANTITY	HHV	56	UNIT	STRM DAY	ANARLAL	\$/MiNETU	\$/GJ	CENTS/L
FER DAY	HFETU/E		COST ${ }^{\text {S }}$	COST MS	COST MMS	(HRV)	(HW)	

OFERATING EXFENSES:

CRIDE FEED EEL	54493	5.803	. 838	36	1962	680	6.20	5.88	22.70
NAT GAS FUEL FOEE	793	6.4		26.62	21	7	4.16	3.94	16.78
REF GAS FUEL FOEE:	1416	6.4		0	0	0	0.00	0.00	0,00
FOKER M M H	221			32.1	7	2			
CAT \& CHEMICALS					7	2			
ISOEUTANE EEL	1194	4.185	. 563	35.6	43	15	8.51	8.06	22,45
N EUTANE EEL	957	4.035	. 584	35,6	34	12	8.82	8.36	22.45
TEL (100\%) Kg	1034			4,8	5	2			
ETHANLI EEL	3089	3.56	. 795	76.3	236	82	21.43	20.31	48.11
MAINT MATACONT LAB		.			17	6			
MAINT LAESSLFF MEN	150			30700	20	7			
OFEF LAESSLF MEN	150			30700	20	7			
ADM \& SUFFT LAE					8	3			
OTHEF EXFENSES					20	7			
TOTALS	61942				2398	833			

EY-FRODUCT CREDITS:

SULFHLK	TONS	6	7.97		77	0.46	0.16	9.66	9.16	48.55
FEF FUEL GAS	FOEE	1416	6.4		0	0.00	0.00	0.00	0.00	0.00
FFOFFANE	EEL	790	3.85	.508	26.5	20.94	7.26	6.88	6.52	16.71
EUTANES	EEL	0	4.035	.584	35.6	0.00	0.00	8.82	8.36	22.45
TOTAL EY-FFRDD CREDIT					21.40	7.42				

FFROLCT CFEDITS:

NAFHTHA SPECIALS EEL	1594	5.59	. 827	42,95	65	23	7.68	7.28	27.08
MIXED OLEFINS EEL	800	4.14	. 562	42,95	34	12	10.38	9.83	27.08
LEADED REG GASOL EEL	15322	4.95	. 725	40.38	619	215	8.16	7.73	25,46
UPLEADED FEG GAS EEL	15569	4.95	. 723	42.95	669	232	8.68	8.22	27.08
AUIATION GASOLIN EELL	68	4.93	. 686	42.95	3	1	8.71	8.26	27.08
JET FUEL "A" EEL	3180	5.62	. 808	40.81	130	45	7.26	6.88	25.73
JET FUEL "E" EEL	262	5.33	.755	40.81	11	4	7.66	7.26	25.73
DIESEL (ALL) EEL	10640	5.78	. 838	42.95	457	158	7.43	7.04	27.08
LIGHT FUEL OIL EEL	4640	5.97	. 887	40.81	189	66	6.84	6.48	25.73
HEAUY FUEL OIL EEEL	3070	6.49	1.04	30.93	95	33	4.77	4.52	19.50
TOTAL FFRDIET CREDIT	55865				2272	788			

 OVEFALL REFINEFY FROCESS EFFICIENCY (HN EASIS) ENEKGY IN FFTOUCTS / ENEFGY IN FEED \& FUEL STREAMS = 86.72 \%
(1) Gasolines contain zero reformate and leaded gasoline TEL usage is less than allowable (. 77 vs isg Fib/l),

C-6

CASE STLOY IITLE :
CASE DESCKIFTION: stradolle plant in edronton

FFOCESS NAME: FFGOFAME (STRACDLE)

CAFACITY, TE/D	$:$
CAFACITY, GJ/D	919
LOCATION	46308.4
EDHONTON	

IMESTKENT:
TOTAL FIELD COST (TFC), MMS
AMD
HONE OFFICE COST (HOC), MMS
CAT 8 CHEF IMMENTOFY, MMS UNCERTAINTY CONTFIEUTION, HH/\$
TOTAL FLANT COST (TFC), MMS
WOFKING CAFITAL, MM\$
START-UF COST, MHS
INTEEEST EEFORE STAFT-UF, MMS KOYALTY, MHS CONTINGENCY, MMS TOTAL INYESTHENT, MH\$

PROCESS COOE : 32

SN-STREAH FACTOR :	0.959
THEKHAL EFFICIEMCY:	98.97
STARTUF DATE :	401983

24.40
xxy RASIS xxx
251.33
0.06
25.13
0.00
11.06
287.58
5.75
51.77
0.00
0.00
369.50
(10.0 ACKES $@ 6333$ \$/ACRE)
(10.0% of TFC)
(UNCERTAINTY FACTOF $=1.04$) ($2.0 \% \mathrm{DF} \mathrm{TFC}$)
($0.0 \% \mathrm{OF} \mathrm{TFC}$)
(60 DAYS OF OF. EXF. LESS NAT GAS PRODUCT VALUE)
(15.0\% INTEREST ON 40.0% OF TFC ONEF 3.0 YEARS)

X ANNLAL COST OF INUESTMENT © 20.0\% SIFFLE ROI $=\$ 73.90$ MH

OFEEATING EXFENSES:
FEEDSTOCKS
FAH NAT. GAS, TE
UTILITIES ELECTRIC FDHER, MIHH FiAH HATEF, TE

CATAL YSTS \& CHEMICALS
TAX
MAINT. MAT, \& CONTRACT LAE.,
MAint, LAE, \& SUFEFVISION, MEN
OFER. LAE. \& SLFEFVISION, MEN
ADMIN. \& SUFFOKT LAEDUR
OTHER EXFENSES
TOTAL EXFENGES

UNITS [J/UNIT $\$ /$ UNIT M $/ \$ / 5 D$ MMS/YR $\$ / G J$ FER DAY
$\begin{array}{llllll}35947.00 & 52.78 & 105.56 & 3794.56 & 1328.23 & 2.00\end{array}$
$\begin{array}{lllll}61.00 & 10.55 & 28.30 & 1.73 & 0.60\end{array}$
$\begin{array}{lllll}4921.00 & 0.00 & 0.06 & 0.29 & 0.10\end{array}$

		1.64	0.57
		5.82	2.04
		13.77	5.03
23	30700	3.00	1.10
30	30700	3.92	1.43
		1.38	0.51
		17.21	6.28
		3843.34	1345.89

xXXX TOTAL ANNLAL COSTS (OFERATING + INMESTHENT) $=\$ 1395.89$ MM $+\$ 73.90$ KH $=\$ 1919.79$ MH OFEFATING CREDITS: LINITS GJNNIT \$/UNIT Ms/SD MMS/YR \$/GJ EY-FFDOUCTS:

NAT GAS, TE
Frooucts:

ETHANE, TE	0.374	1556.00	51.89	164.31	255.67	89.49	3.17
FROFANE, TE	0.508	919.00	50.39	213.79	196.47	68.77	4.24
N-EUTAE, TE	0.584	259.00	49.49	266.72	69.08	24.18	5.39
C5 CONO, TE	0.695	212.00	48.39	211.28	44.79	15.68	4.37
I-ETTANE, TE	0.563	190.00	49.40	281.05	53.40	18.69	5.69
TOTAL (OK AUG)	0.449	3136.01	50.86	197.51	619.41	216.81	3.88

IIXX TOTAL ANMAL CREDITS (PROOUCTS + BYFROOUCTS) $=\$ 216.81$ NH $+\$ 1202.98$ NM $=\$ 1419.79$ HM

CASE STUDY TITLE : NEL ALTERNATIUE FUELS FLANTS: MIDSST STUPY CASE DESCRIPTION: NEN LMG FLANT IN TOKONTO

PKOCESS NAME: LNG

CAFACITY, TE/D :	19.19
CAFACITY, GI/D :	1000.37
LOCATION :	TOFONTO

INVESTMENT:
TOTAL FIELD COST (TFC), M M
LAND COST, NMS 0.006
HOME OFFICE COST (HOC), MMK 0.497
CAT \& CHEM INMENTORY, MM\$ 0.011
UNCERTAINTY CONTRIEUTION, M 0.055
TOTAL FLANT COST (TFC), HHS
WOFKING CAFTTAL, MMK
START-UF' COST, MMS
INTEFEST REFORE START-UF', MM $\$$
KOYALTY, M M
CONTINGENCY, M M
TOTAL IMESTMENT, MM\$

FKOCESS CODE : 30

OH-STREAM FACTOR :	0.950
THEFKAL EFFICIENCY:	84.3%
STARTUF DATE :	$40 \quad 1983$

xXX BASIS xxx
(1.0 ACFES E 6333 \$/ACFE)
(10.0\% OF TFC)
(LACERTAINTY FACTOK $=1.01$)
5.540
0.393 (60 DAYS OF OFERATING EXFENSES)
0.111 (2.0% OF TFC)
0.332
0.000
$0.000 \quad(0.0 \%$ 0F TPC)
6.376

OFEFATIAG EXFENSES:	$\begin{aligned} & \text { UNITS } \\ & \text { FER DAY } \end{aligned}$	GJ/INIT	\$/UNIT	M/50		\$/EJ
FEEDSTOCKS						
NAT GAS, TE	19.190	52.964	248.931	4.777	1.656	4.700
UTILITIES						
ELECTRIC FOMEF, M MH	16.130	10.551	32.100	0.518	0.180	
CATALYSTS \& CHEMICALS				0.011	0.004	
MAINT, MAT, \& CONTRACT LAE,				0.272	0.099	
MAINT. LAE, \& SUFERVISION, MEN	0		30700	0.000	0.000	
OFER. LAEi. \& SUFERVISION, MEN	4		30700	0.522	0.191	
ADMIN, \& SUFF'ORT LAEOHK				0.104	0.038	
OTHEF EXFENSES				0.340	0.124	
TOTAL EXFENGES				6.545	2.292	
xxx* TOTAL AMHHLAL COSTS (OFERATING + INUESTHENT)	\$	$29 \mathrm{Mr} \mathrm{+}$	\$ 1.28	$M=\$$	3.57 Mm	
OFERATING CREDITS:	INITS F'ER DAY	GJ/UNIT	\$/UNIT	$M / 50$	MM\$/YR	\$/GJ
FFODUCTS: 56						
LNG, TE 0.425	19.190	52.130	536.100	10.288	3.567	10.284
TOTAL (RF AVG) 0.425	19,190	52.130	536.100	10.288	3.567	10.284
XXXX TOTAL ANMUAL CREDITS (PRODHCTS + BYFFROULCTS)	$=\$$	57 +	\$ 0.0	M $\mathrm{H}=$	3.57 MM	

CASE STLOY TITLE :
CASE DESCRIPTION: new Heoh-rig plant in edronton

PROCESS MAE : HEOH-NG

CAPACITY, TE/D	:	2000
CAPACITY, GJ/D	45414	
LOCATION :		EDHONTON

IMESTHENT:

TOTAL FIELD COST (TFC), M ${ }_{\text {S }}$	239,836
LAD COST, M	0.309
HOHE OFFICE COST (HOC), M	23.984
CAT 8 CHEM IMENTORY,	6.176
UNCERTAINTY CONTRIEUTION,	5.406
TOTAL FLANT COST (TPC), Iat	275.710
HORKING CAPITAL, HMS	14.859
START-LP COST,	5.514
INTEEEST BEFCRE START-IF, MMS	49,628
ROYALTY, Mis	3.021
CONTINEENCY, MAS	0.000
TOTAL INESTHENT,	348.732

PROCESS COOE : 2

ON-STREAM FACTOR :	0.900
THERHAL EFFICIENCY :	61.1%
STARTUP DATE :	401983

xXX BASIS $\mathbf{x x x}$
(SCALE EXFONENT: .699675) (48.7 ACRES 86333 \$/ACRE) (10.0% OF TFC)

$$
\text { (LINCERTAINTY FACTOR }=1,02 \text {) }
$$

(60 DAYS OF OFERATING EXFENSES)
(2.0\% OF TFC)
(15.0\% INTEEEST ON 40.0\% OF TFC ONER 3.0 YEAFS)
($0,0 \%$ OF TPC)
x ANMPLL COST OF IMESTHENT Q 10.0\% SITFLE ROI $=\$ 34.87$ in

OPERATIMG EXFENSES:
feedstocks
nat cas, te
UTILITIES
EFH, TE
ELECTRIC FOHER, MinH
COOLING HATER, TE

$\begin{aligned} & \text { LNITS } \\ & \text { PER DAY } \end{aligned}$	GJ/NIT	\$/NIT	M $\%$ /5D	\% $/$ / $/$ R	\$/G
1378.600	52.964	105.928	146.032	47.972	2.000
2962,200	0.000	2.533	7.504	2.465	
124.000	10.551	28.300	3.509	1.153	
224030,000	0.000	0.154	34.501	11.333	

CATALYSTS \& CHEMTCALS

		7.732	2.540
		13.142	4.797
60	30700	7.835	2.860
60	30700	7.835	2,860
		3.134	1.144
		16.427	5.996
		247.650	83.119

OFERATING CREDITS:
PROOUCTS:

FER DAY
HETHANOL, TE 0.796
TOTAL (OK AUG) 0.796
$\begin{array}{llllll}2000.000 & 22.707 & 179.592 & 359.184 & 117.992 & 7.909\end{array}$ $\begin{array}{llllll}2000.000 & 22.707 & 179.592 & 359.184 & 117.992 & 7.909\end{array}$

XIXX TOTAL AMRIAL CREDITS (PROOUCTS + BYPROOUCTS) $=\$ 117.99$ MH $+\$ 0.00$ MH $=\$ 117.99 \mathrm{MM}$

CASE STLOY TITLE :
CASE DESCRIPTIIN: new ethanol plant in edmonton

PROCESS MME: ETOHETHMENE

CAPACITY, TE/D :	1075
CAPACITY, GJ/D	31964.1
LOCATION :	
EDHONTON	

IMUESTHENT:
TOTAL FIELD COST (TFC), MHs LAND COST, HMS
HONE OFFICE COST (HOC), MW
CAT \& CHEM INENTORY, HW\$
LIMCERTAINTY CONTRIESTION, M
TOTAL FLANT COST (TPC), MW
NORKING CAPITAL, HY\$
START-IF COST, IHS
INTEEEST BEFOPE START-LP, HTS
ROYALTY, MTS
CONTINEENCY, MS
TOTAL IMESTHENT, M M

PROCESS COOE : 7

OH-STREAM FACTOR :	0.900
THERHAL EFFICIENCY:	59.0%
STARTLP DATE :	401983

2XX BASIS $\mathbf{x a x}$

117.72	
0.19	(30.0 ACRES P 6333 \$/ACRE)
11.77	(10.0\% OF TFC)
1.06	
2.62	(LACERTAINTY FACTOR $=1.02$)
133,35	
28.37	(60 dAYS OF DPERATIMG EXPENSES)
2.67	(2.0\% Of TPC)
24.00	(15.0X INTEEEST ON 40.0X OF TRC OVER 3.0 YEARS)
1.64	
0.00	(0.0% OF TPC)
190.04	

38.01 (

NG EXFENSES:	LNITS PER DAY	G/INIT	\$/NNTI	$\mathrm{Hs} / \mathrm{SO}$	H/\$ $/$ /R	\$/EN
FEEDSTOCKS						
ETHMENE, TE	690,20	50,35	513.00	354.07	116.31	10.19
UTILITIES						
NAT GAS, TE	35.74	52.96	105.93	3.79	1.24	2.00
	116.00	10.55	28.30	3.28	1.08	
FOTAELE HATER, TE	2873.00	0.00	0.14	0.41	0.13	
COOLING HATER, TE	160570.00	0,00	0.15	24.73	8.12	
HF STEAM, TE	5841.00	2.79	10.00	58.41	19.19	3.58
CATALYSTS \& CHEMICALS				5.85	1.92	
MAINT. MAT. \& CONTRACT LAE,				6.45	2.35	
MAINT, LAB, 8 SUPERUISION, HEN	25		30700	3.26	1.19	
OFER. LAB, \& SLPERUTSION, MEN	25		30700	3.26	1.19	
AOHIN. \& SLPPORT LAECUR				1.31	0.48	
OTHER EXPENSES				8.06	2.94	
TOTAL EXPENSES				472,89	156.16	

xxx TOTAL AMNLAL COSTS (OPERATING + INESTIENT) $=\$ 156.16$ M $+\$ 38.01 \mathrm{M}=\$ 194,17 \mathrm{MM}$

OFERATING CREDITS:		$\begin{gathered} \text { LNTTS } \\ \text { PER DAY } \end{gathered}$	GMLNT	\$/NIT	H3/50	M\$/YR	\$/G
Prowucts:	56						
ETHANOL, TE	8.796	1075.00	29.73	549,84	591.07	194.17	18.49
TOTAL (OR AUG)	0.796	1075.00	29,73	549,84	591,07	194,17	18.49

IXXX TOTAL AMULL CREDITS (PRTOOUCTS + BYFRCOOLCTS) $=\$ 194.17 \mathrm{im}+10.00 \mathrm{im}=\$ 194.17 \mathrm{MY}$

LOCATION \& TIME: All plants considered in this study are assumed to be located in the vicinity of Edmonton or Toronto, except that the conventional fuels refinery is based on a S. Ontario location. Capital costs assume a new plant, ready for start up in 4 Q 83 . This is the same as the replacement cost of an existing facility.

RETURN ON INVESTMENT: The following values for pretax ROI have been assumed:

Plant

Propane (straddle)20
Methanol (from NG) 10
Ethanol (from Ethylene) 20
LNG 20
Refinery (retail case) 14.7
Refinery (wholesale case) -7.0
The above assigned ROI values, which are based on replacement costof plant, are generally consistent with the market (wholesale) price of the fuel.

Plant	Design Capacity	Stream Factor (\%)	Throughput (\% design)
Propane	$919 \mathrm{Te} / \mathrm{d}$. 96	100
Methanol	2000	. 90	100
Ethanol	1075	. 90	100
LNG	19.2	. 95	100
Refinery (crude)	85000 BPSD	. 95	69

The impact of lower \% throughput on these alternative fuels is least for propane and most for LNG. Sensitivities for this varlable are as follows:
Fuel
\% change in plant gate cost/
\% change in throughput

Propane	0.05
Methanol	0.3
Ethanol	0.2
LNG	0.36
Refinery (retail case)	0.09

UNCERTAINTY FACTORS: These are factors associated with the assigned costs of plants to reflect uncertainties inherent in the design and/or estimate.

COMMODITY \& LABOUR COSTS: See APpendix E for $4 Q 83$ prices used in development of plant gate costs.

**** FEED RLEND *****

ALKMLATION

xIX FEED xXX
＜ 11 〉 ALKYLATION FEED $=6528.46$
〈 62 〉 C3／C4 TO ALKM＝ 4477.67
＜ 20 ＞I－C4 FR．CAS PLANT $=446.422$
＜ 21 〉 I－C4 IHFDFTED＝ 1604.37
mx PRODUCT mxx
$\langle 50\rangle$ ALKYLATE $=4693.02$
＜63＞LE FFOH ALKYL（FOE）$=526.239$
CAT REFOKHER
xxX FEED XXX
〈9〉 FEFORIVEK FEED＝ 7500
xIX FROOUCT XXX
＜ 17 〉 KEFDFHATE $=6392.63$
＜ 57 〉 LE FROM REFOFHER（FOE）$=879.605$

GAS PLANT
xxx feed xxx
＜2〉 OVEFHEAD $=8439.12$
〈57＞LE FROH REFOFHER（FOE）$=879.605$
〈 16 〉 LE FROH POAY（FOE）$=0$
〈63〉 LE FROH ALMM（FOE）$=526.239$
sxx PROOUCT XXX
$\langle 19\rangle$ FUEL GAS（FOE）$=2366.6$
＜ 20 ＞I－C4 FR，GAS PLANT $=446.422$
＜ 49 ＞KEF CA TO BEENOING $=2414.8$
〈 69 〉 L5R $=6155.49$
＜71〉 EATAME＝ 0
$\langle 72\rangle$ FROFANE $=1090.3$

ISOHERIZATION

xxy FEED xx
〈 69 〉 LSF $=6155.44$
xxx PROOUCT $\mathbf{x x}$
〈29＞LSR + ISO $=6155.44$
mX BY－PASS $=100 \mathrm{Z} \quad \mathrm{mX}$
CASOLTE ELEMOING
5XX FETD XXX
＜29＞LSR + ISO $=6155.44$
＜26＞REFOKFATE $=4868,63$
$\langle 50\rangle$ ALKYLATE $=4693.02$
＜ 15 ＞POLMER＝0
＜ 14 〉 CRACKED CAS $=12827.1$
＜49＞REF CA TO ELENDDG $=2414,8$
〈 68 〉 DPORTED C4＝ 605.813

xxX Proouct $\mathbf{x x}$
$\langle 22\rangle$ LEADED RECULAF $=15322$
＜23＞UMEADED REGLAF $=15569$
＜24＞UMEADED FKEMTUK 0
〈25〉 AVIATION CASOLTE $=68$

EXY GASOLIME COHFOSITIDN YXX

	LR	LR	LF	AV
LSR	.388875	.0129838	0	0
CRACKED CAS	.481527	.35	0	0
REFORHATE	.0669158	.246859	0	0
POL MER	0	0	0	0
ALKMATE	0	.297157	0	.905
CA	.0626827	.093	0	.095
HEOH	0	0	0	0

THFEO FUEL ELEMDING

xXX FEED $\mathbf{~ x X x}$

〈 30 ）LSF $=32.75$
〈 58 〉 $\mathrm{NAFHTHA}=501.4$
〈 59 〉 KEROSENE $=2907.85$
EXX PFRDNCT XXX
《42＞JET FUEL $P=262$
＜43＞JET FIEL A＝ 3180
axx TURE：FUEL COFFOSITION xax

MAFHTHA BASE （JET E）	KEROSENE BASE （JET A）
.125	0
.7	.1
.175	.9

DISTILLATE ELENDNG
IXX FEED IXX
〈 60 ）KERUSENE $=9360.36$
＜ 40 ）LCO 2811.07
$\langle 38\rangle$ LCO $=3108.57$
EX PRLOUCT EXX
〈 44 〉 STOVE OII＝ 0
〈45＞LIAT FUEI OII＝ 4640
＜46＞DIESEL FLEL $=10640$
xx DISTILLATE COHFOSITION xxx

STOVE DII DIESEI FUEL LFO

KEROSEAE	1	.686	.444249
LCO	0	.05	.555296
LCO	0	.264	$4.55499 E-04$

HEAVY FUEL OII EXERDING
MX FED XXX
$\langle 41\rangle L C O=4.56775$
$\langle 35\rangle L C D=290$
〈 13$\rangle+H C D=849.643$
〈37〉 HED＝ 0
＜31＞REDUCED CRIDE＝ 0
〈 34 〉 VAC RESIDUM $=1925.79$
Ex PROOUCT XXX
＜47＞HEANY FUEL OII＝ 3070

OTHEF PROOUCTS
＜ 27 〉 MAFHTHA SPECIALTIES＝ 1524
〈36＞HNGO TO LLEE OIL＝ 0
＜ $48>$ RESID TO COKTME $=0$
〈33＞VAC RESDD TO ASPHPLT PLANT $=3790$
＜ 61 ＞OLEFIN PETROCHEMICAL FEED＝ 800
（66）NAFHTHA PETROCHEMICAL FEED＝ 0
＜ 67 ＞VGO PETROCHEMICAL FEED＝ 0
〈 71 〉 EATAME＝ 0
＜ 72\rangle PROFAME $=1090.3$

DISTILLATE DEGURFRTIZATION

STREAM	TOTAL RFCD	DOS FEED EFCD	EY－PASS
KEROSEME	12268.2	0	100
LGO	2815.64	0	100
LCO	3398.57	0	100
HCD	849.643	0	100
UAC RESIDIUH	1925.79	0	100

TOTAL FEED，EFCD 0

＊＊＊PRODUCT SLATES \＆SPECTFICATIONS＊＊＊

AUIATION TUREO FUELS

ET Fuel b，PrCD	262	256，008	373.56
S．G．	．755581		
ASTM 20／50／90	225.387		
RUP，FSIA	2.15085		
SHOYE PT，MY	． 755581		
SULFUR HT\％	． 0227798		
ST FUEL A，BFCD	3180		
S．G．	． 805226		
FOAR PODNT，F	－54．4766		
ASTM 10／50／90，F	339.73	390.392	460.226
FLASH POINT，F	129.588		
SHOXE PT，ITY	． 805226		
SNFUR MT\％	． 0492737		

HIDOLE DISTILLATES

DIESEL FUEL，EPCD	10640	
POLR FOINT， F	－37．9692	
S．G．	． 829055	
ASTM 10／50／90，F	369.182	446.52551 .455
FLASH POINT，F	138．416	
CETANE MUMEEK	45，4467	
VISCOSITY P 100 F，C．S．	1．81528	
CHAR FACTOK	11.6596	
MEAEF ，F	443.237	
SUFUR NTX	． 109198	

LIEHT FIEL OIL, RPCD	4640
POUR POINT ,F	-63.8373
S.G.	. 882342
ASTM 10/50/90 ,F	$381.111 \quad 477.128 \quad 593.435$
FLASH POINT ,F	145,086
VISCOSITY E 100 F.C.S.	2.31495
CHAF FACTOK	11.074
SULFUR WT\%	. 281895
STOVE OIL, EPCD	0
FOUR FOINT, F	-51.5978
S.G.	. 810905
ASTM 10/50/90 ${ }_{\text {, }}$ F	$356.713 \quad 401.6 \quad 462.786$
FLASH FOINT, F	131.93
UISCOSITY E 100 F.C.S.	1,40758
SULFLK WT\%	. 0527973
HEAVY FUEL OIL	
HEAYY FUEL OIL, EFCD	3070
USCOSITY P 122 F , C.S	290.748
SMLFLR WT\%	1.17603
GASOLINE	
LEADED REGUAAR,EFCD	15322
TEL Addition,ce/IG:	1.75
KON / MON / (R+H)/2 (Clear)	87.2095 / 78.8821 / 83.0458
RON / MON / ($\mathrm{F}+\mathrm{H}$)/2	93.6454 / 84.6104 / 89.1279
FVFF, Psia	10.9271
UR EADED RECULAR, PFCD	155.69
RON / MON / (R+H)/2	92.5 / 85.6406 / 89.0703
RVP, psia	11.0181
UREEADED PREFTIM, EPCD	0
RON / MON / ($\mathrm{F}_{\text {H }}^{\text {H }}$)/2	$0 / 0 / 0$
RUP,psia	0
ANIATION CASOLTE, EFFCD	68
RON / HDN / ($\mathrm{R}+\mathrm{H}$)/2	92.9829 / 90.8 / 91.9
RMP, psia	10.7934

HE FETD \max

〈10〉 CAT PQLY FEED＝0
mx PRODUCT Ixx
〈15＞PACHER＝1
$\langle 16\rangle L E$ FROW PQY（FDE）$=0$

GKMATION

Hax FEDD HEX
＜ 11 ＞ALKLATION FEED＝ 4758.57
＜ 62 ＞© $1 /$ CA TO $\mathrm{ALKM}=3262.49$
＜ 20 ＞I－C4 FR，CAS PLANT $=301.7$
〈 21 〉 I－C4 IPORTED $=1194.38$
IEI PROOUCT $8 \times$
〈 56 〉 ALKYATE $=3125,86$
〈 63 〉 LE FROM ALMM（FOE）$=378.86$
CAT REFORHER
xx FEED x xx
〈9〉 REFORHER FEDI＝ 1755
xxy Prooult my
〈 17 〉 REFORHATE $=1525.18$
〈 57 〉 LE FROH REORUER（FOE）$=150,871$
CONOEFSION（LVK）$=86.9048 \quad$ Severity（RON Clear）$=90 \quad$ FEED $K H=11.8272$
GAS PLATT
5x FEED 108
＜2＞OVEREAD $=13510.9$
＜ 57 ＞LE FROH REFONUER（FOE）$=150.871$
〈 16 〉 LE FROM PQY（FOE）$=0$
〈 63 〉 LE FRON ALKY（FOE）$=378.86$
sx Proouct im
$\langle 19\rangle$ FUNI GAS（FDE）$=1416.34$
〈 20\rangle I－C4 FR，CAS PLANT $=301.7$
＜49＞REF C4 TO RLENOING $=2399.32$
〈 69 〉 LSR $=11286.9$
〈 71\rangle OUTAE $=0$
$\langle 72\rangle$ PROPAE $=790.352$
TSOUERIZATITN
min feed mix
＜69＞LSR＝ 11286.9
5x Proouct Ix
〈 29 〉 LSR + ISO $=11286.9$
ITY BY－PASS＝ 100 Y mx
CASODE BLERDNG

〈 29 〉 LSR + ISO $=11286.9$
〈 26 〉 REFORHATE $=1.17542$
＜ 50 ＞ALKMLATE $=3125.86$
〈15〉 POLMER＝1
＜14）CRACKED CAS＝ 10749.8
〈49＞REF C4 TO BLENDING $=2399,32$
＜ 68 ＞IMPCRTED C $4=956.738$
〈 71 〉 OCT B005TER＝ 3095.9
mi Procuct $\mathbf{x x}$
〈22＞LEADED RECUAPR＝ 15322
$\langle 23\rangle$ UNEADED REGUAR＝ 15569
〈24〉 INLEADED PRETINK $=0$
$<25>$ NIATION GASOLNE $=68$
mY CASOLDE COWFOSTITON x RX

	LR	UR	UP	AN
LSR	． 534977	． 199232	1	1
CPACMED Cas	． 284983	． 41	1	1
REFDRFATE	7．671527－65	1	1	1
POLMER	1	1	1	1
ALMMATE	1	． 215768	1	． 965
C4	． 1799626	.175	1	． 095
HEOH	1	1	1	1

LSR＝ 131 NAFFTHA $=52.4$ KEROSEAE $=325$

mx TREO FUE COPOSITION mx

WAPHTHA BASE	
（JET B）	KEROSEPE BASE （LET $A)$

LSR	． 5	1
MAFHTHA	． 2	1
KEROSEPE	． 3	1
OISTHLATE ELENDTM		
$20 \times$ FEED 1008		
＜ 61 ＞ KEROSEAE $=7076.01$		
＜ 40 ＞L00 $=3700.88$		
〈38〉LCOL 4503.12		
20x PrDOUCT m		
＜44＞STOVE OIL＝ 1		
＜ 45 ＞LIEHT FUEL OLIC 4640		
＜ 46 ＞DIESE FUEL $=16640$		
EX OISTI	COHPO	

STOE OIL DIESE FUE LFO

KLROSEEE	1	.5223	.327312
LCO	0	.13	.672397
L00	1	.347	$2.91127 E-14$

heat fill oll rlendig

〈 41 〉 L $00=, 0402832$
〈 35 〉 $\mathrm{LCO}=222$
＜ 13 ＞ $\mathrm{HCD}=1180.78$
〈 37 〉 $\mathrm{MOO}=1$
＜ 31 ＞REDUCED CRUDE $=0$
〈 34 〉 UAC RESTIDUN $=1669.18$
xin PROOUCT x KI
＜47＞HEAY FIET OIN $=3070$

OTHER PRODULCTS
＜ 27 〉 MPFTTHA SPECIALTIISS $=1524$
〈 36 〉 HKOD TO LLEE OIL＝ 0
＜48＞RESID TO COKING＝
＜ 33 ＞VAC RESDD TO ASPHALT PLANT $=3790$
＜ 61 ＞OLEFIN PETROCHETCLCL FEDD $=8: 0$
＜ 66 ＞MAFHTHA PETROCHETCAL FEID $=1$
＜67＞UCO PETROCHENTCAL FEED＝1
＜ 71 ＞BUTAEE $=0$
＜ 72 〉 PROP PAKE $=790.352$

OISTILLATE DESULURIZATION

STREA	TOTAL BPCD	$\begin{aligned} & \text { DOS FEED } \\ & E F C D D \end{aligned}$	BY－PASS
KERCSEEE	10334.6	1	100
L00	3700.92	1	100
100	4723.12	1	100
HCO	1180.78	J	100
HAC RESIDUM	1669.18	0	100

TOTAL FEED，BPCD
※x＊PRODUCT SLATES \＆SPECIFICATIONS＊＊＊

Altation tree fues

ET FuEl $\mathrm{B}, \mathrm{BPCD}$	262	275.705	410.534
S．6．	．754874		
ASTM 20／50／90	201.449		
RUP，PSIA	2.21147		
SHOKE PT，Hi	．754874		
SULPR MTZ	． 226516		
UET FICL $A, B P C D$	3180		
S．c．	．897655		
POUR POINT，F	－53． 1353		
ASTK 10／50／90， F	303.214	391.97	446.727
FLAFH POINT，F	130.152		
SHOXE PT，Mir	．877655		
SILFIR MTZ	． 1465498		

hIDOLE DISTILLATES

DIESE FUEL，BPCD	11640		
POUR POINT， F	－37． 1394		
S．G．	．839475		
ASTK 10／50／90，F	374．045	467.76	553．688
FLASH PIDIT， F	141．168		
CETAEE MHEER	45.1807		
uscosity e $100 \mathrm{~F}, \mathrm{C}, \mathrm{S}$ ．	1.97916		
CHAR FACTOR	11.5839		
IEAEP ，F	456，299		
SUFIR MTZ	．132356		

LIFT FUEL Mn,8P0	4610		
POUR POITT, 5	-59.1771		
S.6.	. 88737		
ASTH 10/50/90,F	391.688	492.05	598.468
FLASH PDINT ,F	150.608		
VISCOSITY 8100 F,C.S.	2.52907		
CHAR FACTDR	11.0616		
SULFUR WT\%	. 269509		
STOVE OII, RPCD	0		
POUR POINT, F	-55.1353		
S.G.	, 807655		
ASTh 10/50/90,F	353.214	391.957	446.727
FLASH FOINT, F	130.152		
VISCOSITY 9100 F,C.S.	1.3375		
SLLFLR NT\%	. 0465498		
HEAVY FIEL OII			
HEAVY FLEL OIL, ${ }^{\text {PPCD }}$	3070		
VISCOSITY E 122 F, C.S	194.314		
SILFIR WTX	1.05935		
GASOLTE			
LEADED REGULAR, ${ }^{\text {PPCD }}$	15322		
TEL Addition,ce/IG:	1.2		
RON/ MON/(R+H)/2 (Clear)	88.8457	79,9929	/ 84.4193
RON / HDN / (R+N)/2	$93.6702 /$	/ 84.2366	/88.9534
RUP, psia	10.9943		
LULEADED REGULAR,BPCD	15569		
RON / KDN / (R+H)/2	93.3095 /	/ 84.8821	/ 89,0958
RUP,psiz	11.0248		
IRLEADED PREITIM, EPCD	1		
RON / HDN / (R+H)/2	1/1/1		
RUP, psia	1		
NJIATION CASOTME,BPCD	68		
RON / HON / (R+H)/2	$92.9829 / 90.8 / 91.9$		
R(P),psia	10.7934		

（ All flows are EFCD unless otherwise stated，）

CFTUE			
xXX FEED $\mathbf{x x}$			
＜0＞CNWDE FEED $=55522.2$			
xxx PRODUCT Exx			
＜ 2 ＞OVERHEAD $=12104.8$			
＜ 28 ＞LSK＝9972．29			
＜3＞NAPHTHA $=3501.4$			
＜ 4 〉 KERDSEME $=11647.6$			
＜5＞LCO＝5597．77			
〈1＞REDHCED CRUDE $=22670.7$			
STREAY MAIE	56	IfP	E
LSR	．710421	8	249，19
NAFHTHA	．764882	249，19	299，87
KEROSERE	＋810908	299，87	500
LGO	．845297	500	600
RLIOUCED CRUSE	． 940926	600	1300
YACOHM			
ExY FEED $\mathbf{x x}$			
〈32＞REDUCED CRUDE $=22670.7$			
IXX PRLOUCT ExX			
＜6＞HMED＝ 17243.7			
く 7＞RESIDUM作 5427.05			
STREAM HAE	56	IR9	EP
REDICE：PRIDE	． 940926	600	1310
HVED	． 907206	600	1035
RESIDMA	1.04807	1035	1310
CAT CRACKER			
IxI FEED XXX			
＜ 64 ＞HVCN＝ 17243.7			
＜ 65\rangle LCD $=2645+23$			
＜ 8 〉 FCCU FEED $=19888.9$			
nix PROOUCT IXI			
＜ 12 ＞LCO＝ 3977.78			
＜ 13 ＞ $\mathrm{HCO}=994.446$			
＜ 14 ＞CRACKED CAS $=11405.5$			
＜39＞C3／C4－FCCLV 4521.89			
＜ 18 ＞LE FRON CAT CRACKER（FOE）$=1407.4$			
AVALAREE C3／C4 OLEFINS $=4521.89$			
CONERSION $h t \%=73.4065 \quad$ CONERSION Vol $z=75$COKE，WTZ 6.15387			
CONE ，1／tF 16051．6			

xxx FEED $\mathbf{x x}$
＜ $10>$ CAT FOLY FEED $=0$ IEX PROOUCT ITX
＜ 15 ＞PQR YMER＝0
＜ 16 ＞LE FROM POLY（FDE）$=0$

ALKYLATION

IKX FEED IXX
〈 11 〉ALKYLATION FEED $=5430,08$
〈 62 ）C3／C4 TO ALKYL $=3721.89$
〈 20 〉 I－C4 FRi，CAS PLANT $=329,013$
＜21＞I－C4 IHFOKTED＝ 1379.17
xxx PRODUCT $\mathbf{x y}$
＜ 50 ＞ALKYLATE＝ 3904.94
〈63）LE FROH ALKY（FOE）$=\mathbf{4 3 6 . 4 5 8}$
CAT REFORMER
18x FEED xXX
＜9．REFORTEF FEED＝ 3000
xxX FRODUCT XXX
〈17〉 REFOKHATE＝2606．7
＜ 57 ＞LE FROH REFOKHEF（FOE）$=257.886$
CONERSION（LUX）$=86.89 \quad$ Severity（RON Clear）$=90 \quad$ FEED KH＝11．8291
CAS PLANT
xIX FEED XXX
＜2． 2 NEKHEAD $=12104.8$
＜ 57 〉 LE FROM REFORUUR（FOE）$=257.886$
〈 16 〉LE FROM POLY（FOE）$=0$
〈 63 〉 LE FROM ALKYL（FOE）$=436.458$
xx PRODULCT xXX
〈 19 〉 FUEL GAS（FOE）$=1692.09$
＜ 20 ＞I－C4 FK，GAS PLANT $=329.013$
＜ 49 ＞REF C4 TO RLEMDING $=1733.7$
〈 69 〉 LSK $=9891.07$
$\langle 71\rangle$ RUTANE $=0$
〈 72 〉 PROFANE $=864.063$
ISOFERIZATION
ExX FEED MXX
〈69＞LSN＝9891．07
IEX PRDOUCT XXX
$\langle 29\rangle L 5 R+$ ISO $=9891.07$
EXX BY－PASS $=100 \mathrm{Z} \quad$ EXY

CASOLIME REPDING

IxX FEED $\mathbf{x x}$

〈 29 ＞LSR + ISO $=9891.07$
〈26＞REFORNATE＝ 1082.7
〈 50 〉 ALKYLATE $=3904.94$
〈 15 〉 POLYEER＝ 0
〈 14 ＞CRACYED CAS $=11405.5$
＜49＞REF C4 TD BEEMDING $=1733.7$
〈 68 〉 IFPORTED C4 $=196.776$
＜ 70 ＞OCT BOOSTEK＝2941．11
xix froouct xxx
〈22＞LEADED REGULAR $=15322$
〈 23 ＞UNEADED REGULAR $=15569$
$\langle 24\rangle$ LRHEADED FRERTUR $=0$
$\langle 25\rangle$ ANIATION GASOLIME $=68$

ITX CASOLIE COHFOSITION XXX

	LR	LR	LF	AU
LSR	.563566	.0814189	1	0
CRACKED CAS	.287132	.45	1	0
REFORKATE	0	$.0695 A 23$	0	0
POLYKER	0	0	0	0
ALKMLATE	0	.246539	0	.905
C4	.0543027	.0575	0	095
HEOH	0	0	0	0

TUFED FUEL EEEMING
x $\mathbf{x x}$ FEED $\mathbf{~ X X X}$
〈 30 〉 LSR $=81.22$
〈SB＞NAFHTHA $=501.4$
＜ 59 ＞ $\mathrm{KEKOSEPI}=2859.38$
xxx FFiODUCT Xxx

〈43〉 $\boldsymbol{\text { ETT}}$ FUEL $A=3180$
xXX TURED FUEL COFFOSTIION XXX

MAFFTHA EASE	
（JET E）	KEROSENE EASE
（JET A）	

LSR	.31	0
MAFHTHA	.7	.1
KEROSENE	$-9.99999 E-03$.9

DISTILLATE EXEMDNG
xxx FEED $\mathbf{x X X}$
$<60>$ KEROSENE $=8788.19$
＜ 40 〉 $L C O=2949.04$
〈 38 ＞ $\mathrm{LCO}=3542.78$
mx PROOUCT Xxx
＜44＞STOVE OIL＝ 0
〈 45 〉 LIGKT FUEL OIL＝ 4640
〈 46 〉 DIISEL FUEL $=10640$
MXX DISTILLATE CDAFOSTITON XXX
STOUE OIL DIFSEL FUE LFO

KEROSERE	1	.648	.408072
LCO	0	.075	.591548
LGO	0	.277	$3.801545-04$

HEAYY FUL OIL QLENDING
$57 \mathrm{feFD} \times \mathrm{xx}$
＜ 41 〉 LCO $=3.5036$
＜35＞LCO 435
〈13〉 $H C O=994.446$
＜37＞ $\mathrm{HMCO}=0$
＜31＞REOUCED CRLDE $=0$
＜34＞WAC RESTIDUKH $=1637.05$
mxx PrDOUCT xx
〈 47 〉 HEAYY FUCL OII＝ 3070

OTHEK FKOUNXTS
（27）MAFHTHA SPECIALTIES＝ 1524
〈36＞HNCO TO LLEE OIL＝0
〈 18 〉 RESID TO COKING＝ 0
＜33）VAC RESID TO ASPHALT PLANT $=3790$
＜61＞OLEFIN PETROCHERICAL FEED $=800$
＜66＞MAPHTHA PETROCHEKICAL FEED＝ 0
〈 67 〉 VGO PETROCHEMICAL FEED $=0$
＜ 71\rangle BUTANE＝ 0
$\langle 72\rangle$ PROPARE $=864,063$
DISTILLATE DESULFLRIZATION

STKEAM	TOTA EFCD	DOS FEED EFCD	EY－PASS
KEFOSEME	11647.6	0	
LCD	2952.54	0	100
LCD	3977.78	0	100
HCO	994.446	0	100
UAC FESIDMM	1637.05	0	100
			100

TOTAL FEED，EFCD O
※xxPRDDUCT SLATES \＆SPECIFICATIDNSwwx

AUIATION TLREA FLELS

UET FUEL B，EFCD	262		
S．G．	． 747539		
ASTM 20／50／90	220.695	269.993	287.477
R＇FF，FSIA	2，02075		
SHOUE PT，MiM	．747539		
SULFL WT\％	． 0160257		
IET FUEL A，EPCD	3180		
S．G．	． 806306		
POUR POINT，F	-55.3287		
ASTM 10／50／90，F	340.08	390.401	460.228
FLASH FOINT，F	125.344		
SHONE FT，MH	． 806306		
SULFUR WT\％	．049303		

MIMOLE DISTILLATES

DIESEI FUEL，EFCD	10640		
POUR FOINT，F	－37．2472		
S．G．	． 832474		
ASTM 10／50／90，F	370.847	453.843	554.982
FLASH FOINT ，F	139.314		
CETAE MNEER	45．2928		
VISCOSITY E 100 F，C．S．	1，87876		
CHAR FACTOK	11.6344		
HEAEF ， F	448.553		
SULFE WT\％	．117951		

LIEHT FUEL OII, $\mathrm{EPCD}^{\text {P }}$	4640		
FOLF POINT, F	-61.9696		
S.G.	. 894041		
ASTM 10/50/90,F	389.781	482.209	595.168
FLASH POINT, F	147.13		
UISCOSITY E 100 F.C.S.	2.39066		
CHAS FACTOF	11.0714		
SLEFUR HT\%	. 269362		
STOUE OIL, EFCD	0		
FOFF FOINT, F	-51.5951		
S.E.	. 810908		
AETM 10/50/90,F	35.725	401.608	462.788
FLASH FOINT , F	131.936		
VISCOSITY E $100 \mathrm{~F}, \mathrm{C} .5$.	1.40764		
SUEFIE WT\%	. 0527999		
HEAUY FEL OIL			
HEAVY FUEL OI, EPCD	3070		
VISCOSITY E $122 \mathrm{~F}, \mathrm{COS}$	104.572		
SULFLR WT\%	1.06701		
CASOLTE			
LEADED REGULAR,EFCD	15322		
TEL Addition,ce/IG:	1.75		
KON / HON / (R+hi)/2 (Clear)	$86.3803 /$	/ 78,9183	/82.6493
KON / HON/ (R+H)/2	$93.9827 /$	/ 84,9986	/ 89,0407
RVP,psia	10.8572		
UREADED RECHLAR, EPCD	15569		
RON / HON / (R+H)/2	92.7141 / 85.2458 / 88,98		
RVF,psia	11.8819		
LNLEADED PKEFTIM, EPCD	0		
RON / HON / (R+H)/2	$0 / 1 / 0$		
RVF, psia	0		
- AUIATION CASOTME, EPCD	68		
KON / KON / ($\mathrm{K}+\mathrm{H}$)/2	92.9829 / 90.8 / 91.9		
RWP,psia	10.7934		

page
Major Resource Costs E-1
Other Commodities E-3

Major Resource Costs

Natural Gas (3)

	\$/GJ	End User	\$/GJ(4)
Alta. Wholesale Price	1.59	Alta. Industrial (1)	2.00
		Alta. Commercial (2)	2.40
Distribution \& Other Costs +1.04			
Alta. Border Price	$=2.63$		
TCPL Tariff	+0.94		
Toronto City Gate Price	$=3.57$		
NGGL Tax	+0.15		
Canadian Ownership Charge	+0.14		
Toronto Wholesale Price	$=3.86$	Toronto Industrial (1)	3.94
		Toronto Commercial (2)	4.70
(1) Suitable for large scale MeOH-NG plant or refinery			
(2) Suitable for CNG refuelling station			
(3) Sources: EPN, Nov Northwestern Utili	1983; es and	WR, Energy Statistics Ha onsumers' Gas.	
(4) Difference between charge.	holesal	and end user cost is ut	company

Domestic Crude (1) \$/BBL
Old Oil lavg. wellhead) 29.46
Petrol eum Compensation Charge 3.76
Canadian Ownership Charge 1.15
TCPL Tariff (Edmon-Toronto) 1.11
Alta. Gathering Charge 0.52
Blended Price at Toronto Refinery Gate $36.00(\$ 226.5 / \mathrm{cu} . \mathrm{m}$.
(1) Source: EPN, Nov. 1983

Utillities

Electric Power	2.83¢/kwh (Edmonton)
Electric Power	$3.214 / \mathrm{kwh}$ (Toronto)
Raw Water	6¢/Te
Boiler Feedwater	\$2.53/Te
Cooling Water (recirc)	$15.4 ¢ / \mathrm{Te}$
Potable Water	14\$/Te
Medium Pressure Steam	\$3.58/GJ (Edmonton)

Feedstocks and Byproducts

Ethylene	$\$ 513 / \mathrm{Te}$	(Edmonton)
Butanes	$\$ 225 / \mathrm{cu} . \mathrm{m}$.	(Toronto)
TEL (100\%)	$\$ 4.8 / \mathrm{kg}$	(Toronto)
Propane(3)	$\$ 167 / \mathrm{cu} . \mathrm{m}$.	(Toronto)
Sulphur	$\$ 70 / \mathrm{Te}$	(Toronto)
Heavy Fuel Oil	$\$ 187 / \mathrm{cu} . \mathrm{m}$.	(Toronto)
Ethanol	$\$ 481 / \mathrm{cu} . \mathrm{m}$.	(Toronto) (2)
Methanol	$\$ 186 / \mathrm{cu} . \mathrm{m}$.	(Toronto) (2)
TBA	$\$ 360 / \mathrm{cu} . \mathrm{m}$.	(Toronto)
Oxinol	$\$ 271 / \mathrm{cu} . m . ~(T o r o n t o) ~$	

(1) These are prices f.o.b. fuels plant gate except where noted. Product prices are calculated using the Alternative Fuels Economics model program (see Appendices C \& D).
(2) Includes $\$ 43 / c u . m$. rail transportation cost from Edmonton plant.
(3) Refinery by-product.

Manufacturing plant operating/maintenance labour	$\$ 30700 / \mathrm{yr}$
Refuelling station labour	$\$ 6.5-7.0 / \mathrm{hr}$.

(1) Excluding burdens and benefits and supervising staff.

(kg)	$=$.4536	(1 b)
(kg / h)	$=$. 4536	($1 \mathrm{~b} / \mathrm{h}$)
(Te)	=	. 907	(ST)
$(\mathrm{Te} / \mathrm{d})$	$=$. 907	(STPD)
(GJ)	=	1.0551	(MMBTU)
(kPa)	$=$	6.895	(psi)
($G J / \mathrm{kg}$)	$=$	2.326	(MMBTU/Ib)
(GJ/Te)	$=$	1.163	(MMBTU/ST)
(kJ/kg)	$=$	2.326	(BTU/Ib)
(Mwh)	$=$. 2931	(MMBTU)
(m3/d)	$=$. 15899	(BPD)
$(\mathrm{Nm} 3 / \mathrm{m} 3)$	$=$. 1684	(SCFB)
(Nm 3)	$=$.0268	(SCF)
(Sm3)	$=$.0283	(SCF)
($\mathrm{GJ} / \mathrm{m} 3$)	$=$	6.652	(MMBTU/BBL)
litre	$=$	158.63	(BBL)
litre	=	3.778	(U.S. gal)
litre	$=$	4.536	(Imp. gal)
\$/1itre	=	. 6305	(\$/BBL)
\$/litre	$=$. 2647	(\$/U.S. gal)
\$/1itre	$=$. 2205	(\$/lmp. gal)
\$/GJ	$=$. 9478	(\$/MMBTU)
\$/Te	=	1.1025	(\$/ST)
\$/Te	$=$	$6.305 / \mathrm{sg}$	(\$/BBL)
\$/Sm3	$=$	35.3	(\$/SCF)

	page
Miscellaneous	G-1
Properties	G-1
Materials	G-2

Miscellaneous

SI	Spark ignition
CI	Compression ignition
FOE	Fuel oil equivalent of material (on energy basis)
FOEB*	Energy equivalent of material in barrels of fuel oil
NGGL	Natural gas and gas liquids
TCPL	Trans Canada Pipelines Ltd.
MM**	$(10)^{6}$
M	$(10)^{3}$
$M \$ / S D$	Thousands of $\$$ per stream day
BPCD	Barrels per calendar day
BBL	Barrel
DDS	Distillate desulphurization unit
FCC	Fluid catalytic cracking unit

Properties

LV\%	Liquid volume \%
IBP	Initial boiling point (TBP basis) of material
EP	End point (TBP basis) of material
TBP	True boiling point distillation
API	Gravity based on American Petroleum Institute method
SG	Specific gravity
RVP	Reid vapour pressure
MeABP	Mean average boiling point
RON	Research octane number
MON	Motor octane number
*	Energy content of fuel oil is assumed to be 6.4 MMBTU(HHV)/BBL
-	Millimeters when applied to smoke point

Materials

RL Gasoline	Regular leaded gasoline
MeOH	Methanol
$\mathrm{MeOH} 100 \%$	Methanol - fuel grade
MeOH 90\%	90v\% methanol, 10v\% RL gasoline
MeOH blend	$90.5 \mathrm{v} \% \mathrm{RL}$ gasoline, 4.75 v \% MeOH, 4.75v\% BuOH
BuOH	t-Butanol Itertiary butanoll
$\mathrm{MeOH}+\mathrm{cet}$	95 v \% methanol, $5 \mathrm{v} \%$ cetane enhancer
EfOH	Ethanol (100\%)
EfOH blend	90v\% RL gasoline, 10v\% ethanol
C3	Propane or propane \& propylene
C3/diesel	80v\% propane, 20v\% diesel, concurrent injection
C4	Butanes
104	I so-Butane
TEL	Tetraethyl lead
BFW	Boiler feedwater
MP steam	Medium pressure steam
SYNCR	Syncrude
DOMH	Domestic heavy crude
COND	C5+condensate
IPLI	InterProvincial Pipeline \#1 crude
LCO	Light cycle oil from FCC unit
HCO	Heavy cycle oil from FCC unit
LSR	Light straight run naphtha
LGO	Light lstraight runl gas oil
HVGO	Heavy vacuum gas oil
LE	Light ends (i.e. ethanol and lighter gases)
LNG	Liquefled natural gas
CNG	Compressed natural gas at 16.5 MPa pressure

ACCORING
and

