WCVI Salmon Bulletin Area 23 (Barkley Sound, Alberni Inlet) Sockeye Forecast for the 2024 Return
 23 April 2024

Nicholas A. W. Brown
© His Majesty the King in Right of Canada, as represented by the Minister of the Department of Fisheries and Oceans, 2024

Cat. No. Fs144-68/2024E-PDF ISBN 978-0-660-71586-5

Correct citation for this publication:
Brown, N. A. W. 2024. Area 23 (Barkley Sound, Alberni Inlet) Sockeye Forecast for the 2024 Return. West Coast of Vancouver Island Stock Assessment Bulletins. 21p

SUMMARY

1. For 2024 fishery management purposes, the Area 23 Roundtable has agreed to begin fisheries in the "Moderate" zone (500000-700000 adult return) for early season harvest management. Henderson Lake Sockeye remain a constraining stock in the "Low" zone.
2. There is uncertainty among the 2024 forecast models. Predictions (Table 3) vary between 281000 (survival stanza method), 352000 (Coho leading indicator model), 773000 (multivariate model), and 805000 (sibling model). Forecast models for the 2024 aggregate Somass Sockeye return are described in Appendix A.
3. All models, except the Coho leading indicator, predict GCL will comprise the dominant portion of the run. In 2020 and 2021 (broods returning as ages 5 and 4 fish, respectively, in 2024), escapements to both lakes were near or above average (Figure 5). The estimated juvenile Sockeye abundances in Great Central Lake and Sproat Lake in the 2021 and 2022 sea-entry years were low compared to historic levels. However, returns from the 2021 sea-entry year have thus far indicated a very high marine survival rate. The marine survival rate for the 2022 sea-entry year is uncertain as only jacks that went to sea in 2022 have returned. Therefore, a precautionary management approach for early season fisheries is warranted until the total run size and stock composition can be more accurately determined. In-season estimates of stock composition will be available during the second and third weeks of June. The first preliminary run size reforecast is expected 20 June 2024.
4. The recommended management outlook for Henderson Sockeye is the "Low" zone for harvest management, corresponding to an expected return of 15000-25000 (Table 4). The key consideration influencing this outlook is a high marine survival rate in 2021, and moderate spawner abundances in the main contributing brood years, 2019-2020.

BACKGROUND

Great Central Lake, Sproat Lake, and Henderson Lake are the three main Sockeye stocks returning to Barkley Sound (Area 23). The status of each stock is assessed as a separate Conservation Unit (CU) for implementation of Canada's Wild Salmon Policy. From 1980-2023, the median adult terminal returns (catch and escapement) of Great Central Lake, Sproat Lake, and Henderson Lake Sockeye are 305000, 241000 and 23000, respectively (Table 5). In the Somass Sockeye return, the historical median split between Great Central Lake and Sproat Lake abundance is 55% Great Central (inter-quartile range: 46$61 \%$ Great Central).
The pre-season biological forecasts for Somass Sockeye (outlined in this bulletin) inform a management forecast that guides June fishing plans (Table 8). The run size forecasts are revised weekly starting in the third week of June based on in-season indicators described later in this bulletin. The first in-season reforecast is anticipated no earlier than Thursday, 20 June 2024.
Data limitations preclude a statistical forecast for Henderson Sockeye. Instead, a management zone is set based on an outlook that considers spawner abundances and smolt abundances (when available) and indicators related to marine survival rates for the contributing brood years. This outlook informs management decisions around the amount and timing of fisheries that are likely to intercept Henderson Sockeye.

2024 SOMASS SOCKEYE BIOLOGICAL FORECASTS

Several indicators of varying accuracy are used to inform the pre-season Somass Sockeye biological forecasts: abundances of younger siblings from the same brood and smolt years as returning 2024 age classes, sea surface temperatures recorded at both Amphitrite Point Lightstation and an offshore buoy anchored south of the Brooks Peninsula, survival rates of Coho from the same brood year but return as
adults one year earlier, and estimates of winter smolt abundances in Great Central and Sproat Lakes. The predicted Somass aggregate return is further broken down into age- and stock-specific forecasts in Table 3.

Model forecasts for the 2024 aggregate Somass Sockeye return are described in detail in Appendix A and summarized here:

- The Multivariate forecast (Table 3) predicts a total return to the Somass River of 773000 (75% prediction interval: 240000-2200000) adult Sockeye. The predicted returns to Great Central and Sproat Lakes are 505000 and 223000 adult Sockeye, respectively (71% GCL).
- The Sibling forecast (Table 3) predicts a total return to the Somass River of 805000 adult Sockeye. The predicted returns to Great Central and Sproat Lakes are 616000 and 189000 adult Sockeye, respectively ($77 \% \mathrm{GCL}$). The model suggests age-4 fish will be the dominant age class in both the Great Central and Sproat returns (Table 3).
- The sea-surface-temperature-based SStM forecast (Table 3) predicts a total return to the Somass River of 281000 adult Sockeye. The predicted returns to Great Central and Sproat Lakes are 195000 and 86000 adult Sockeye, respectively (69% GCL). Spring marine temperatures at Amphitrite Point were below average in 2021 and in 2022, which results in a "high" survival scenario (5\%) for returning 4- and 5-year-olds. Indications from the 2020-2021 sea-entry years suggest marine survivals are high for these cohorts (Figure 6), likely much higher than the 5% assumed by the model. However, smolt abundances were low in both Great Central and Sproat Lakes through 2020-2021 (Figure 4).
- The Coho Leading Indicator (CLI) model predicts a total return to the Somass River of 352000 adult Sockeye. The predicted returns to Great Central and Sproat Lakes are 121000 and 232000 adult Sockeye, respectively ($34 \% \mathrm{GCL}$). The CLI model accounts for spawner abundances in the contributing brood years, as well as the survival rate of Robertson Creek Coho from the contributing sea-entry years. Coho survival rates were slightly above the 6\% average in 2021 (7.4\%) and in 2022 (6.7\%).

2024 SOMASS SOCKEYE MANAGEMENT FORECAST

For fishery management purposes, the Area 23 Roundtable has agreed to manage to a forecast in the "Moderate" zone (see Table 8) corresponding to an expected return of 500000 adult Sockeye.

Based on the projected return, a precautionary approach to fisheries management will be required until in-season information can inform run size estimates. In-season indicators that will be applied to inform management in 2024 include:

- Stock compositions from samples collected by the test fishery in June will be used as an indicator of the relative proportions of Great Central and Sproat Lake at the end of the run.
- Area D gillnet catch rates in Area 23 in the second and third weeks of June will be used as an indicator of the final Somass Sockeye adult return.
- The total cumulative accounting (escapement, catch, Alberni Inlet abundance estimate, and lower river abundance estimate) and estimated run timing will be used to predict the final Somass Sockeye adult return.
- Scale samples collected from the test boat, fisheries, and escapement at the fishways will inform the predicted age composition of the return.
- River temperatures and inlet conditions will inform holding patterns and migration conditions, which affect escapement timing, pre-spawn natural mortality, and susceptibility to fisheries.

2024 HENDERSON SOCKEYE OUTLOOK

The recommended management outlook for Henderson Sockeye is the "Low" zone for harvest management, corresponding to an expected return of 15000-25000 Sockeye (Table 4). Spawner abundance in the 2019 brood year (13500 Sockeye) was near the historical median of 13000, but in the 2020 brood year, only 4600 spawners were estimated (Table 4). Based on positive ocean indicators and data from incomplete brood years, Sockeye marine survival rates for the 2021 smolt year are high. Therefore, expectations are for a near-average Henderson sockeye return in 2024.

For further information contact:
Nick Brown
WCVI Stock Assessment Biologist
Phone: (250) 327-8583
Email: Nicholas.Brown@dfo-mpo.gc.ca

APPENDIX A. FORECAST METHODOLOGY

Statistical forecast models

Four models have historically been used to forecast Sockeye returns to Great Central and Sproat Lakes: the Survival Stanza Method (SStM), Surface Salinity Method (SSM), Salmonid Enhancement Program Biostandard Method (SEPB), and Coho Leading Indicator Method (CLI; Hyatt et al. 2003). More recently, a sibling regression model was developed that uses the relationships between the returns of Sockeye at earlier ages to predict future returns of their older siblings (i.e. predicts age 4, 5, and 6 returns based on the abundance of earlier returning age 3, 4, and 5 fish from matching brood years; Peterman 1982, DFO 2012). In 2021, a multivariate multiple regression model was developed that integrates data from younger sibling abundances, smolt abundances, and sea-entry conditions.
The SStM and SSM use annual estimates of the numbers of smolts from Great Central and Sproat Lakes and predictors of early marine survival (marine temperature and salinity measured off Amphitrite Point, Ucluelet, respectively) to estimate returns (Hyatt et al. 2003).

The CLI model is based on the observation that marine survivorships for both juvenile Sockeye and Coho migrating through Barkley Sound and up the West Coast of Vancouver Island often covary because both species face similar physical and biological conditions at sea-entry in a given year (Hyatt et al. 2003). Because Coho return one year earlier than most Sockeye, Coho survival values observed in one year can be used to predict survival of Sockeye returning the following year.

In general, the Sibling and SStM forecasts have provided the most accurate forecasts over the long term, with mean absolute percentage errors (MAPE) of 39% and 62%, respectively (Figure 7). Over the past 5 years, the Sibling and SSM models have performed the best (MAPEs of 41% and 80% respectively), while the SStM and CLI models have performed poorly (MAPEs of 90%, 183\%, respectively; Figure 7). The Multivariate model appears to improve on the Sibling model, with a retrospective MAPE of 33%. The multiple regression analysis applied by the Multivariate model suggests that much of the variation in survival rates ascribed to sea-entry conditions in the smolt-based models is captured in the returning sibling abundances. New for 2024 is the inclusion of average January-February sea surface temperatures from ECCC buoy c46132 "South Brooks," which appears to more accurately predict survival rates compared to the nearshore temperatures recorded at the Amphitrite Point Lightstation (Figure 6).

The forecasts generated from all methods are evaluated based on their relative accuracy at predicting past returns along with other relevant information (e.g. marine environmental conditions or observations). A heuristic management forecast for the Somass aggregate return is produced to guide early season fisheries. This forecast sets pre-season expectations and guides early-season harvest planning.

2023 forecast performance

The pre-season management forecast was in the "Moderate" zone with a predicted return of approximately 500000 adult Somass Sockeye (Table 2).
The observed return of approximately 543000 adult Somass Sockeye was in the $47^{\text {th }}$ percentile of all runs recorded since 1977 (Table 1, Table 5, Figure 2). Fish from the 2017-2020 brood years returned in 2023, with the majority contributed from 2018 and 2019. The proportion of age 42 fish (49%) was well above the sibling model prediction (13\%) and well below the SStM prediction (78\%) but similar to predictions from the Multivariate and CLI models (54%, and 51% respectively). The 2023 return included an above average jack (ages 3_{2} and 4_{3}) return to Great Central Lake.
The proportion of Great Central Lake in the total adult return (46\%) was higher than expected pre-season (37%; average of the 4 forecast models employed). Returns from the 2018 brood year are heavily dominated by Sproat Lake (85%), but a relatively even abundance from the two lakes has been observed returning from the 2019 brood year (50% Great Central) and returns from the 2020 brood year are dominated by Great Central Lake (73\%; Table 6).

All models, except the sibling forecast, under-predicted the 2023 return (Table 2). The prediction from the multivariate model was closest to the observed return (absolute percentage error: 26%). The sibling
model and the SStM came closest to predicting the final proportion of GCL Sockeye in the final 2023 return (42% and 47% predicted GCL, respectively). In the 2020 sea-entry year (age 5_{2} and 6_{3} Sockeye returning in 2023), the smolt abundance in GCL was very low, and in 2021, GCL smolt abundance was also low; these abundances nevertheless translated to a strong adult return to GCL in 2023. These low smolt abundances in GCL led the smolt-based forecast model (SStM) to greatly under-predict the return. Preliminary data from the 2020 and 2021 sea-entry years suggest high survival rates on the orders of 12$15+\%$ (Figure 6), well above the 7.2% and 5.0% applied in the CLI and SStM, respectively.
The return of approximately 21000 Henderson Lake Sockeye in 2023 exceeded the 10-year median of c. 16000 (Table 1, Table 5, Figure 3) and aligned with the pre-season outlook for a return in the "low" management zone (15000-25000 Sockeye). Pre-season expectations were based on near-average spawner abundances in the 2018 and 2019 brood year, and an expectation for high marine survival rates to be experienced by the 2020 and 2021 sea-entry years.

Sources of uncertainty

The mean absolute percentage errors (MAPEs) for five forecast models that have been used to predict Somass Sockeye returns range from about $38-196 \%$. Retrospective analysis suggests the Multivariate model is the best performing forecast. On average, the observed return is about 40% higher or lower than the return predicted by the Multivariate model. Factors that contribute to forecast uncertainty include, but are not limited to: model structure, assumptions about the relationships between returns and the predictor variables, and uncertainty in the source data (e.g. smolt abundances, age compositions in historical returns). Smolt estimates for the 2018-2022 sea-entry years were derived from a revamped acoustictrawl survey program and are considered to have better accuracy compared to previous years in the historical record.

For the Henderson Sockeye outlook, there is considerable uncertainty due to lower quality assessment data relative to the Somass stocks. There are less complete age data, relatively high uncertainty in the estimates of spawner abundance, and uncertainty in catch estimates. Catch estimates are particularly uncertain in recent years when the abundance of Henderson Sockeye is low relative to the Somass stocks. Under these circumstances, the probability of detection of Henderson Sockeye in catch samples is lower and therefore catch of Henderson Sockeye may be underestimated.

The relationships between available ocean indicators and survival rates in Area 23 Sockeye are uncertain. While there are weak correlations between spring sea surface temperatures and salinities measured at Amphitrite Point and Somass Sockeye survival ($R^{2} 0.03-0.17$), some years with seemingly excellent ocean conditions (e.g. 2002) have not yielded high survivorship. The inclusion of winter sea surface temperature data from a buoy further offshore of the WCVI (see above) seems to yield improved predictions of Sockeye survivals ($R^{2} \approx 0.24$; Figure 6).

APPENDIX B. FUTURE DIRECTIONS FOR STATISTICAL FORECASTING

Biological oceanographic covariates

The early marine period is understood to be a critical phase in Sockeye survival that can potentially explain a significant portion of return variability (Tanasichuk \& Routledge, 2011). Measurements from physical oceanographic parameters, such as temperature and salinity, have been considered in the Area 23 Sockeye forecast since the late 1980s (Hyatt et al., 2003) as indicators of marine conditions affecting Sockeye survival. However, physical oceanographic characteristics are considered proxies for biological factors, namely predator and prey abundances, that are assumed to affect survival more directly (Koslow et al., 2002; Meuter, Peterman \& Pyper, 2002). Tanasichuk \& Routledge (2011) showed that for Somass Sockeye, a significant portion of return variability could be explained by euphausiid (krill) abundances in Barkley Sound during the juvenile marine migration period. Further work has also elucidated effects of continental shelf piscivorous hake biomass and Gulf of Alaska Pink salmon abundances on Somass Sockeye returns (R. Tanasichuk, pers. comm.). DFO plankton surveys in Barkley Sound operated from 1991-2014, and were resumed in 2022. Piscivorous hake biomass estimates are generated each year for the entire North American continental shelf, but further analysis is required to estimate the portion of the total estimate that is close to the WCVI (to account for interannual variability in hake latitudinal distribution). A fruitful avenue for future forecasting efforts would be to assimilate pertinent euphausiid and hake data, and to incorporate these as predictors in a forecast model.

Heritability in age-at-return

Sockeye from Great Central and Sproat Lakes exhibit diverse life histories with respect to freshwater and marine ages. Emerging research suggests age-at-maturity and perhaps life history type (i.e. freshwater and marine ages) could be heritable in Sockeye salmon (Walters et al, 2021; R. Tanasichuk, pers. comm.). If this is the case, a more accurate forecast could be developed that considers both stock- and life-history-specific predictors. For example, life-history- and stock- specific datasets appear to better describe stock-recruit relationships in Somass Sockeye (Figure 8). Future forecasts could explore relationships with age-matched brood year spawners, and perhaps investigate whether any of the candidate physical or biological oceanographic variables described above can be used to predict residuals from the stock-recruit relationships (Figure 9).

REFERENCES

DFO. 2012. Assessment of Area 23 Sockeye and 2010 Forecast (Barkley Sound and Alberni Inlet). DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2012/033.
Hyatt, K. D., W. Luedke, D. P. Rankin, J. Till and D. Lewis 2003. Review of the year 2002 return of Barkley Sound Sockeye salmon and forecasts for 2003. Fisheries and Oceans Canada. Canadian Science Advisory Secretariat. Research Document. 2003/033. iv + 34p. https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/276685.pdf

Koslow, J.A., Hobday, A.J. and Boehlert, G.W. (2002) Climate variability and marine survival of coho salmon (Oncorhynchus kisutch) in the Oregon Production area. Fisheries Oceanography. 11:65-77
Mueter, F. J., Peterman, R. M. \& Pyper, B. J. Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Can. J. Fish. Aquat. Sci. 59, 456-463. (2002)

Peterman, R. M. (1982). Model of salmon age structure and its use in preseason forecasting and studies of marine survival. Canadian Journal of Fisheries and Aquatic Sciences, 39(11), 1444-1452. https://doi.org/10.1139/f82-195
Tanasichuk, R. W., \& Routledge, R. (2011). An investigation of the biological basis of return variability for sockeye salmon (Oncorhynchus nerka) from Great Central and Sproat lakes, Vancouver Island. Fisheries Oceanography, 20(6), 462-478. https://doi.org/10.1111/j.1365-2419.2011.00596.x

Waters, C.D., Clemento, A., Aykanat, T., Garza, J.C., Naish, K.A., Narum, S. and Primmer, C.R. (2021), Heterogeneous genetic basis of age at maturity in salmonid fishes. Mol Ecol, 30: 1435-1456.
https://doi.org/10.1111/mec. 15822

APPENDIX C. TABLES AND FIGURES

Table 1. Total return of Sockeye to Barkley Sound in 2023.

Conservation Unit	Age at Return							Total

Table 2. Forecast performance of Somass Sockeye models for 2023. Absolute Percentage Error (APE) is the absolute value of (Forecast return - Observed return) $\times(\text { Observed return })^{-1}$.

2023 Management forecast: Moderate zone (c. 500000 adults)

543414	Forecast 2023			
observed	SStM	CLI	Sibling	Multivariate
Expected	145108	275610	723094	464524
Obs. - Exp.	398306	267804	-179680	78890
APE	129%	87%	58%	26%

Table 3. Predictions by age and lake for 2024 from the four best-performing Somass Sockeye forecast models.

Forecast			Age at return			\% of return	
Sibling			42	52	5_{3} and 63	Total	
	GCL		483,764	106,108	26,042	615,914	77\%
	SPL		102,358	74,503	12,310	189,171	23\%
	Total		586,122	180,611	38,352	805,085	
	\% at age		73\%	22\%	5\%		
SStM			4s	5s		Total	
	GCL		155,814	39,025		194,839	69\%
	SPL		69,546	16,300		85,846	31\%
	Total		225,360	55,325		280,685	
	\% at age		80\%	20\%			
CLI		$4{ }_{2}$	52	53	63	Total	
	GCL	92,433	19,749	5,804	2,620	120,606	34\%
	SPL	164,864	53,318	9,620	3,905	231,707	66\%
	Total	257,297	73,067	15,424	6,525	352,313	
	\% at age	73\%	21\%	4\%	2\%		
Multivariate		$4{ }_{2}$	52	53	6_{3}	Total	
	GCL	359,708	146,530	29,616	14,022	549,876	71\%
	SPL	111,013	91,537	16,431	4,059	223,040	29\%
	Total	470,721	238,067	46,047	18,081	772,916	
	\% at age	61\%	31\%	6\%	2\%		

Table 4. Factors considered in the 2024 outlook for the Henderson Sockeye return.

Return Year	Age at Return	Brood year	Spawner abundance	Smolt Year	Smolt Abundance	Marine Survival
2023	4	2020	4.5 k (low)	2022	Pending	uncertain
	5	2019	13.5 k (avg.)	2021	Pending	high

Table 5. Terminal adult return of Area 23 Sockeye; 1980-2023. "Total A23 Catch" includes Henderson Sockeye.

Table 6. Escapement, catch, and total return-at-age to date from brood years contributing to the 2024 Somass Sockeye return. Note.-data from each brood year span multiple return years; e.g. fish from the 2018 brood year returned as age 3 s in $2021,4 \mathrm{~s}$ in 2022 , 5 s in 2023 , and will return as age 6s in 2024.

	Age	2018 brood year			2019 brood year			2020 brood year		
		GCL	SPL	TOTAL	GCL	SPL	TOTAL	GCL	SPL	TOTAL
Escapement	32	2,958	74,697	77,655	39,648	44,028	83,676	80,457	29,049	109,506
	42	34,553	349,607	384,160	81,222	64,745	145,967			
	43	1,328	3,057	4,385	8,208	3,347	11,555			
	52	13,635	48,053	61,688						
	53	16,336	7,196	23,531						
	TOTAL	68,810	482,610	551,419	129,078	112,120	241,198	80,457	29,049	109,506
Catch	32	1,637	1,034	2,671	7,122	14,120	21,242	10,264	5,157	15,421
	42	31,342	196,028	227,370	87,946	98,500	186,445			
	43	293	956	1,249						
	52	18,911	58,872	77,783						
	53	13,571	9,737	23,308						
	TOTAL	65,754	266,627	332,381	95,690	113,196	208,887	10,264	5,157	15,421
Total Return	32	4,595	75,731	80,326	46,770	58,148	104,918	90,720	34,206	124,926
	42	65,895	545,635	611,530	169,168	163,245	332,412			
	43	1,621	4,013	5,634	8,830	3,924	12,754			
	52	32,546	106,925	139,471						
	53	29,907	16,933	46,840						
	TOTAL	134,564	749,237	883,800	224,768	225,317	450,084	90,720	34,206	124,926
\% of Somass return		15\%	85\%		50\%	50\%		73\%	27\%	

Table 7. Excerpt from the management plan: Standardized Area 23 Sockeye Fishing Regime for early-season (June) fisheries. Typically, commercial seine fisheries are not planned until late June. However, all fisheries may be adjusted depending on in-season assessment results.

MANAGEMENT	FORECAST RUN SIZE	MAANULTH FIRST NATIONS	RECREATIONAL	$\begin{gathered} \text { TSUMASS } \\ \text { ECONOMIC } \\ \text { OPPORTUNITY } \end{gathered}$	COMMERCIAL SEINE*	COMMERCIAL GILLNET
1-Critical	Less than $\mathbf{2 0 0 , 0 0 0}$	no harvest				
2 - Very Low	200,000 to 350,000	Open, fishing to target through limited effort (designated g / h vessels)	2 fish/day + Area restrictions + Late opening	Community/elder seine 1 day/week g/n	no harvest	1 day/week starting 64 (1 day total)
3 - Low	350,000 to 500,000	Open, fishing to target through limited effort (designated g / n vessels)	2 fish/day + Area restrictions	Community/elder seine 2 days/week g/n	seine fishing to target	1 day/week starting 63 (2 days total)
4 - Moderate	500,000 to 700,000	Open, fishing to target through limited effort (designated g / h vessels)	4 fish/day (time-area closures if required)	Community/elder seine 3 days/week g/n	seine fishing to target	1 day/week starting 62 (3 days total)
5 - High	$\begin{gathered} 700,000 \text { to } \\ 1,000,000 \end{gathered}$	Open, fishing to target through limited effort (designated g / n vessels)	4 fish/day (time-area closures if required)	Community/elder seine 4 days/week g/n	seine fishing to target	1 day/week starting 62 (3 days total)
6 - Abundant	1,000,000 +	Open, fishing to target through limited effort (designated g / h vessels)	4 fish/day	Community/elder seine 5 days/week g/n	seine fishing to target	1 day/week starting 61 (4 days total)

Figure 1. Sibling regression fits by Gilbert-Rich age (columns) and lake (rows; GCL = Great Central Lake, SPR = Sproat Lake). Blue lines and the shaded areas around them show the model predictions and 95% confidence intervals, respectively. Both x and y axes are plotted on a log-scale.

Figure 2. Estimated adult returns of Somass (Great Central and Sproat Lake) Sockeye, 1984-2023.

Figure 3. Estimated adult returns of Henderson Lake Sockeye, 1984-2023. Catch estimates begin in 2011 when genetic sampling was instituted.

Figure 4. Estimated Sockeye "pre-smolt" juvenile abundances for Great Central, Sproat, and Henderson Lakes by sea-entry year. Most adult Sockeye returning in 2024 are associated with the production from the 2020 and 2021 sea-entry years.

Figure 5. Time series of adult escapements to the Somass River. The black dashed line shows the historical median \% GCL in the total return (56\%).

Figure 6. Time series of the marine survival rate index for Somass Sockeye stocks, with coloured tiles showing average January-February sea surface temperatures (SST; ${ }^{\circ} \mathrm{C}$) measured at Environment and Climate Change Canada's monitoring buoy "South Brooks" (station 46132). Unfilled dots show years where the survival rate index is based on incomplete broods (not all fish that went to sea in those years have returned as adults). The majority of Sockeye returning in 2024 went to sea in 2021 (ages 5_{2} and 63) and 2022 (ages 42 and 5_{3}).

Figure 7. Time series of differences between predictions from the various forecast models and the observed Somass Sockeye returns.

Figure 8. Ricker stock-recruit relationships for Great Central Lake (GCL) and Sproat Lake (SPR). Smaller top panels show life-history-specific relationships, where returns of each age are plotted against same-age spawners by brood year. The larger bottom panels show stock-recruit relationships for entire lake populations, where returns of all ages are plotted against spawners of all ages from the contributing brood year.

Figure 9. Comparison of multivariate retrospective forecasts and biologically-based return estimates for Somass River sockeye versus observed returns (credit: R. Tanasichuk).

