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ABSTRACT 

Haigh, S.P, Page, F.H, and O’Flaherty-Sproul, M.P.A. 2024. Dispersion models of pesticides 

released from finfish aquaculture tarpaulin bath treatments part 1: equations and solutions. Can. 

Tech. Rep. Fish. Aquat. Sci. 3619: iv + 24 p. 

In the salmon aquaculture industry, bath pesticide treatments are used in the management of 

sea-lice infestations. Upon conclusion of the treatment, the pesticides are released into the 

environment. This report presents and expands upon the models from Page et al. (2015; 2023) 

for the growth and dilution of a released pesticide patch. Detailed mathematical descriptions of 

the models are given and the accompanying solutions are provided over a range of dilution ratios 

(treatment concentration divided by toxicity threshold) and treatment cage sizes. The models have 

three components: horizontal dispersion parameterization (Fickian and Okubo), vertical extent 

(constant and vertical growth), and concentration distribution with the patch (mean and Gaussian). 

Models with a constant depth are solved analytically whereas those with the vertical growth must 

be solved numerically. Solutions are presented for all combinations of the three components. For 

all models considered, the maximum size of the toxic patch, the time required to achieve the 

maximum size, and the total time that the patch contains toxic concentrations are calculated. The 

calculations indicate that both maximum size and total time of toxicity increase with both the 

perimeter of the treatment cage and dilution ratio. 

RÉSUMÉ 

Haigh, S.P, Page, F.H, and O’Flaherty-Sproul, M.P.A. 2024. Dispersion models of pesticides 

released from finfish aquaculture tarpaulin bath treatments part 1: equations and solutions. Can. 

Tech. Rep. Fish. Aquat. Sci. 3619: iv + 24 p. 

Dans l’industrie de la salmoniculture, les traitements antiparasitaires par bain sont utilisés pour 

gérer les infestations de pou du poisson. Lorsque le traitement est terminé, les pesticides sont 

rejetés dans l’environnement. Le présent rapport explique en détail les modèles de Page et al. 

(2015, 2023) pour la croissance et la dilution des panaches de pesticide rejetés. Il contient des 

descriptions mathématiques détaillées des modèles et présente les solutions connexes pour une 

gamme de rapports de dilution (la concentration du traitement divisée par le seuil de toxicité) et 

de tailles de cages de traitement. Les modèles ont trois composantes : le paramétrage de la 

dispersion horizontale (Fickian et Okubo), l’étendue verticale (constante et croissance verticale) 

et la distribution de la concentration avec le panache (moyenne et gaussienne). Les modèles 

présentant une profondeur constante sont résolus de manière analytique, tandis que les modèles 

présentant une croissance verticale doivent être résolus de manière numérique. Les solutions 

sont fournies pour toutes les combinaisons des trois composantes. Pour chacun des modèles 

examinés, la taille maximale du panache toxique, le temps nécessaire pour atteindre la taille 

maximale et la durée totale pendant laquelle le panache contient des concentrations toxiques 

sont calculés. Les calculs indiquent que la taille maximale du panache et la durée totale de la 

toxicité augmentent toutes les deux avec le périmètre de la cage de traitement et avec le rapport 

de dilution. 
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1 INTRODUCTION 

In the salmon aquaculture industry, one challenge associated with open net-pen aquaculture is 

the prevention and management of sea-lice infestations. Sea-lice infestations can directly impact 

the health and welfare of cultured fish. Also, sea-lice infestations may serve as reservoirs and 

amplifiers of sea lice abundance which may lead to impacts on the health and welfare of wild fish. 

These impacts have the potential to lead to economic consequences for the both the cultured and 

wild fishing industries as well as the potential for cultural impacts. Many methods are used to 

prevent and control these infestations including in-feed drug treatments, bath pesticide 

treatments, cleaner fish, pressure sprays, and warm water sprays. This document focuses on 

modelling the release and dispersal of pesticides into the environment after net-pen bath 

treatments. 

Page et al. (2015) describe in detail the net-pen bath pesticide treatment method that has been 

used in the southwest New Brunswick area of the Bay of Fundy in eastern Canada. At the end of 

the treatment period, the pesticide is released into the environment. The pesticide patch grows 

due to turbulent dispersion and local current conditions and is transported (i.e. advected) away 

from the treatment site by the local water currents. The growth of the size of the patch results in 

a dilution of the pesticide concentration. For a period of time, the concentration of the pesticide 

within the patch may be sufficiently high to be harmful to non-target organisms which may come 

into contact with the patch. Page et al. (2015) showed that the growth of the pesticide patch is 

complicated and depends on multiple factors. The growth of the patch and its direction of 

movement is highly dependent on the location of the treatment in relation to other net pens on the 

site.  Additionally, the growth and movement of the pesticide patch is dependent on the local 

hydrographic conditions at the site and the timing of the treatment since these determine the local 

currents which depend on, for example, the phase of the tide, vertical stratification, spatial 

variation in the currents, local weather conditions, and time of year. Finally, the pesticide patch 

growth and direction of movement also depend on the state of the farm infrastructure which 

includes, for example, the cage size, the mesh size, the amount of bio-fouling on the nets, and 

the cage array configuration and orientation. As a consequence the shapes of pesticide patches 

can be highly variable with the concentration of the pesticide within the patch being non-uniform 

and patchy. 

Modelling the release, transport and dispersal of individual releases of pesticides from net-pen 

bath treatments requires hydrodynamic models that use spatially varying bathymetry and estimate 

the spatial and temporal variations in the local hydrographic characteristics (e.g. sea level, water 

velocity,  turbulence, waves, water temperature, and salinity) for the time of treatment and for 

multiple hours afterwards Page et al. (2015). These modelling efforts require significant time and 

resources of both personnel and computing. In contrast, simpler models can be run quickly (order 

seconds to minutes) and can also provide useful, but less detailed, information for regulatory 

purposes. Page et al. (2015) showed that horizontal scale of pesticide patches agree reasonably 

well with the scaling curves established by the Okubo (1968; 1971) model. Page et al. (2023) 

further expanded on this, examining the temporal behaviour of a pesticide patch for a typical 

treatment scenario using two different concentration models. 

This report gives a detailed mathematical description and derivation of the models presented in 

Page et al. (2015; 2023), the solution of the models for variables of potential interest to regulators, 
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and presents computed results over a range of parameters for all the models. Detailed 

comparisons of model solutions are presented in an accompanying report Haigh et al. (2024) as 

well as recommendations concerning model selection for calculating conservative estimates of 

the calculated variables. 

2 DESCRIPTION OF MODELS 

The models described below assume that a pesticide patch is represented by a cylinder with 

radius 𝑟𝑒(𝑡′) and depth 𝐻(𝑡′), where 𝑡′ is the time post-release. It is assumed that the horizontal 

and vertical growths are independent allowing for each direction to be modelled separately and 

then combined. This assumption is consistent with the relationships established by Okubo (1971) 

which were based on data from areas in which the dispersing patches did not interact with the 

seabed. There are three components to the models: the horizontal dispersion, the vertical extent, 

and the concentration distribution within the cylindrical patch. For each component two models 

are examined.  

The horizontal dispersion models are solutions to the diffusion equation which are Gaussian 

distributions. One model assumes a constant dispersion coefficient (Fickian model) and the other 

model assumes the Okubo (1971) time-varying dispersion coefficient (Okubo Model).Models 

describing the vertical extent of the patch are given. One model assumes that the patch has a 

constant vertical depth throughout its growth. This model yields analytic solutions. The other 

model imposes a vertical growth structure up to a maximum depth and yields equations that must 

be solved numerically. 

Models predicting the concentration distribution of released pesticide within the patch are given. 

The models assume that a pesticide patch is toxic if it contains concentrations above an 

Environmental Quality Standard (EQS) concentration, 𝐶eqs. The mean concentration model has 

a uniform concentration in the horizontal. The Gaussian concentration model assumes a radial 

Gaussian distribution of concentration in the horizontal. Both the mean and Gaussian models 

assume a uniform concentration distribution in the vertical.  

Details of the models are given below. The models predict quantities that may be of interest to 

regulators: the maximum horizontal radius of the toxic patch, 𝑟max the time post-release at which 

this occurs, 𝑡max, and the total time that the patch contains toxic concentrations, 𝑡tox. 

 

2.1 HORIZONTAL DISPERSION MODELS 

2.1.1 FICKIAN MODEL 

Mathematically, the horizontal spread of a bath pesticide due to dispersion can be described by 

the diffusion equation (Crank, 1975) 

 

 𝜕𝐶

𝜕𝑡
= 𝐾𝑥

𝜕2𝐶

𝜕𝑥2
+ 𝐾𝑦

𝜕2𝐶

𝜕𝑦2
 (2.1) 
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where 𝐶(𝑥, 𝑦, 𝑡) is the depth-averaged pesticide concentration at horizontal coordinates 𝑥 and 𝑦 

at time 𝑡 and 𝐾𝑥/𝐾𝑦 are the horizontal dispersion coefficients in the 𝑥 / 𝑦 directions . For an 

instantaneous source released at (𝑥, 𝑦, 𝑡) = (0,0,0) on an infinite horizontal plane, the solution to 

(2.1) is given by Lee et al. (2009) 

 
𝐶(𝑥, 𝑦, 𝑡) =

𝑀

4𝜋(𝐾𝑥𝐾𝑦)
1
2𝑡

𝑒
−(

𝑥2

4𝐾𝑥𝑡
+

𝑦2

4𝐾𝑦𝑡
)
 (2.2) 

 

where 𝑀 is the total mass of the released bath pesticide. Equation (2.2) is a Gaussian relationship 

with the variances in 𝑥 and 𝑦 directions given by 𝜎𝑥
2 = 2𝐾𝑥𝑡 and 𝜎𝑦

2 = 2𝐾𝑦𝑡 , respectively, the 

mean variance defined as 𝜎𝑥𝜎𝑦  (Lee et al., 2009), and the standard deviation given by √𝜎𝑥𝜎𝑦. 

For a fixed time, the contours of constant concentrations are ellipses. For the case where the 

horizontal dispersion coefficient is independent of direction, i.e., 𝐾𝑥 = 𝐾𝑦 = 𝐾ℎ the concentrations 

vary radially which can be observed by rewriting (2.2) as (Crank, 1975) 

 
𝐶(𝑟, 𝑡) =

𝑀

4𝜋𝐾ℎ𝑡
𝑒−𝑟2 4𝐾ℎ𝑡⁄  (2.3) 

 

where 𝑟 = √𝑥2 + 𝑦2 is the radial distance from the point source and the radial variance is given 

by (Lee et al., 2009) 

 𝜎𝑟
2 = 𝜎𝑥

2 + 𝜎𝑦
2 = 4𝐾ℎ𝑡 (2.4) 

 

In this case, the contours of constant concentrations are circles. 

2.1.2 OKUBO MODEL 

In reality, as a result of the spatially varying flows in the ocean, pesticide patches do not evolve 

as simple ellipses or circles (Lee et al., 2009). To address this, one approach is to define the 

equivalent radius, 𝑟𝑒(𝑐), as the radius of a circular patch which has the same area as that 

contained within the pesticide contour of concentration 𝑐 (Okubo, 1968; 1971; Lee et al. 2009). 

Thus, a given pesticide concentration distribution can be described by a radially symmetric 

function �̂�(𝑡, 𝑟𝑒) where �̂�(𝑡, 𝑟𝑒(𝑐)) = 𝑐 (Lee et al., 2009). It can be shown that the equivalent 

variance, 𝜎𝑟𝑐
2 , is given by 

 𝜎𝑟𝑐
2 = 2𝜎𝑥𝜎𝑦 (2.5) 

 

i.e., twice the mean variance (Okubo, 1968). Lee et al. (2009) give the following interpretation of 

the equivalent variance: it is “the tracer-weighted average of the area enclosed by the tracer 

contours” where in our case the tracer is the pesticide being released.  Here we will be using the 
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empirical time dependent relationship of the equivalent radial variance determined by Okubo 

(1968; 1971), 

 𝜎𝑟𝑐
2 = 𝛼 𝑡𝛽 (2.6) 

 

As in Lee et al. (2009), we define the apparent diffusivity, 𝐾𝑎, as 

 
𝐾𝑎(𝑡) =

1

4

𝜕𝜎𝑟𝑐
2

𝜕𝑡
 (2.7) 

 

Crank (1975) showed that the solution of the constant dispersion coefficient case, equation (2.3), 

can be used to find the solution using a time-dependent dispersion coefficient 𝐾𝑎(𝑡), as defined 

by equations (2.6) and (2.7). We outline the steps here. For the time-dependent dispersion 

coefficient case where the horizontal coefficient is independent of direction, the diffusion equation 

(2.1) becomes 

 𝜕𝐶

𝜕𝑡
= 𝐾𝑎(𝑡) (

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2) (2.8) 

 

 To remove the time dependence of the dispersion coefficient in (2.8), Crank (1975) defined  

 
𝑇(𝑡) = ∫ 𝐾𝑎(𝑡′)𝑑𝑡′

𝑡

0

 (2.9) 

 

which gives  

 𝑑𝑇 = 𝐾𝑎(𝑡)𝑑𝑡 (2.10) 

 

Substituting (2.10) into (2.8) gives 

 𝜕𝐶

𝜕𝑇
=

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
 (2.11) 

 

Noting that equation (2.11) is a special case of equation (2.1) with 𝐾𝑥 = 𝐾𝑦 = 1 and 𝑡 = 𝑇, the 

solution to (2.11) is given by equation (2.3) with 𝐾ℎ = 1 and  𝑡 = 𝑇, and is given by  

 
𝐶(𝑇, 𝑟) =

𝑀

4𝜋𝑇
𝑒−𝑟2 4𝑇⁄  (2.12) 

 

Evaluating (2.9), using (2.7), gives 
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𝑇(𝑡) =

1

4
𝜎𝑟𝑐

2  (2.13) 

 

Substituting (2.13) into (2.12) gives 

 
𝐶(𝑡, 𝑟) =

𝑀

𝜋𝜎𝑟𝑐
2 𝑒−𝑟2 𝜎𝑟𝑐

2⁄  (2.14) 

 

This is the solution given by Okubo (1968). Note that the solution for the constant horizontal 

coefficient of diffusivity case, i.e., equation (2.3), can be written in the same form as (2.14) using 

the radial variance defined in equation (2.4). From here forward, we will refer to the use of a 

constant horizontal coefficient of diffusivity as the Fickian horizontal dispersion model and the use 

of the time varying horizontal coefficient of diffusivity as defined by (2.6) and (2.7) as the Okubo 

horizontal dispersion model. Also we use 𝜎2 to represent 𝜎𝑟
2 for the Fickian model and 𝜎𝑟𝑐

2  for the 

Okubo model. Although Lee et al. (2009) recommend using the equivalent variance (i.e., the 

Okubo horizontal dispersion model) since it is independent of the actual shape of the patch, we 

will examine results from both models since the Fickian approach is often used. 

2.2 VERTICAL MODELS 

The patch depth (or thickness in the vertical) is given by a function 𝐻(𝑡′), where  𝑡′ is the time 

post-release of the patch. Two models are considered for the vertical behaviour of a pesticide 

patch. Both assume there is a vertical barrier that limits the vertical extent of the pesticide patch. 

The vertical barrier could be a thermocline or the seabed and will depend on local hydrographic 

conditions. 

2.2.1 CONSTANT DEPTH 

The constant depth model assumes an instantaneous vertical mixing to the depth of the vertical 

barrier.  Thus the vertical extent of a patch remains unchanged, i.e., constant, for the duration of 

its growth: 

 
𝐻(𝑡′) = {

𝐻0 if 𝑡′  =  0

𝐻max if 𝑡′  >  0
 (2.15) 

 

where  𝐻0 is the treatment depth and 𝐻max is the depth of the vertical barrier. Here we have not 

prescribed a structure of the pesticide distribution in the vertical and are assuming that the 

pesticide is well mixed, i.e. uniformly distributed, in the vertical. 

2.2.2 VERTICAL GROWTH 

The vertical growth model was proposed by (Page et al., 2023) and is given by equation (2.16). 

The model is based on dimensional analysis. The model assumes that the initial patch depth is 

equal to the treatment depth, 𝐻0, and grows vertically until it reaches the vertical barrier, at which 

point it remains a constant depth.  



 

6 
 

 
𝐻(𝑡′) = {

𝐻0 + √𝐾𝑧𝑡′ if 𝐻 <  𝐻max

𝐻max if 𝐻 ≥  𝐻max

 (2.16) 

 

𝐾𝑧 is the vertical coefficient of diffusivity and it  is assumed to be constant through time and depth. 

Equation (2.16) can be written as 

 
𝐻(𝑡′) = {

𝐻0 +  √𝐾𝑧𝑡′ 𝑖𝑓 𝑡′ <  𝑡growth
∗

𝐻max 𝑖𝑓 𝑡′ ≥   𝑡growth
∗  (2.17) 

 

where   𝑡growth
∗  is given by  

 
𝑡growth

∗ =  
(𝐻max − 𝐻0)2

𝐾𝑧
 (2.18) 

 

As with the constant depth model, we have not prescribed a structure of the pesticide distribution 

in the vertical and are assuming that the pesticide is well mixed, i.e. uniformly distributed, in the 

vertical. 

2.3 THREE DIMENSIONAL CONCENTRATION MODELS 

Concentration solutions given for the horizontal dispersion model are the amount of pesticide per 

unit area. Since we are assuming that the growth of a pesticide patch in the horizontal direction 

is independent of its vertical growth, we can combine the horizontal and vertical models to 

determine the concentration per unit volume. The independence of pesticide patch growth in the 

horizontal and vertical directions suggest the impact of the vertical extent of the patch is seen in 

the concentration and not the horizontal spread (i.e. the horizontal scale of the patch), as 

suggested by Okubo (1971). 

For both the constant depth and vertical growth models,  we are assuming that the pesticide is 

uniformly distributed in the vertical. Thus the concentration per unit volume at a given depth can 

be determined by dividing the concentration per unit area in (2.14) by the depth 𝐻(𝑡′): 

 

𝐶(𝑡′, 𝑟, 𝑧) = {

𝑀

𝜋𝜎2(𝑡0 + 𝑡′)𝐻(𝑡′)
𝑒−𝑟2 𝜎2(𝑡0+𝑡′)⁄ 𝑖𝑓 𝑧 ≤  𝐻(𝑡′)

0 𝑖𝑓 𝑧 >  𝐻(𝑡′)

 (2.19) 

 

where 𝑡0 takes into account the initial patch size and is dependent on the horizontal dispersion 

model, as discussed below in section 2.3.1. In (2.19) 𝐻(𝑡′) is given by either (2.15) or (2.17) for 

the constant depth or vertical growth model, respectively. It is assumed that at a given radius, the 

patch concentration is constant throughout its depth 𝑧; note that there is no dependence on 𝑧 in 

(2.19). The modelled maximum concentration within the patch at a given time, 𝐶max(𝑡′), occurs at 

the centre of the patch, i.e., at 𝑟 = 0, and is given by 
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𝐶max(𝑡′) =

𝑀

𝜋𝜎2(𝑡0 + 𝑡′)𝐻(𝑡′)
 (2.20) 

 

The equations above were used previously in the Okubo horizontal dispersion model (Page et al., 

2015; 2023). 

Below, two models describing the concentration throughout the patch are discussed. Both models 

assume that a pesticide patch is toxic if it contains concentrations above an Environmental Quality 

Standard (EQS) concentration, 𝐶eqs. For both models we define the patch radius and identify its 

maximum, 𝑟max, as well as examine the time at which this maximum occurs, 𝑡max, and the total 

time that the patch contains toxic concentrations, 𝑡tox. The use of these models for the growth of 

aquaculture pesticide patch growth was previously presented in (Page et al., 2023). 

2.3.1 MEAN MODEL 

The mean concentration model assumes that the chemical is uniformly distributed throughout the 

patch. The pesticide concentration solution given by (2.14) stretches out to infinity, with 𝐶 → 0 as 

𝑟 → ∞. This result is a mathematical construct. In reality, and for practical purposes, the pesticide 

patch has a finite size. Following Okubo (1968), we assumed that the radius of a circular patch, 

𝑟𝑒, is defined as 

 𝑟𝑒 = 𝑛𝜎(𝑡) (2.21) 

 

which contains (100 𝛾𝑛)% of the pesticide mass where (see Okubo (1968) for derivation) 

 𝛾𝑛 = 1 − 𝑒−𝑛2
 (2.22) 

 

Computed values of 𝛾𝑛 for different values of 𝑛 are given in Table 2.1. 

 

Table 2.1. The fraction of pesticide mass  𝛾𝑛 contained within a radius of  𝑛𝜎𝑟𝑐 for several values 

of  𝑛. Note that values of 𝛾𝑛 for  𝑛 = 1 and  𝑛 = 2 are in agreement with those published by Okubo 

(1968). For  𝑛 = 1.5, our value of  𝛾𝑛 differs from that of Okubo (1968) but is in agreement with 

the 0.90 value given by Lawrence et al. (1995). 

 

𝑛 𝛾𝑛 

0.5 0.22 

1 0.63 

1.5 0.89 

2 0.98 

2.5 >0.99 
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In equation (2.21), 𝑡 represents the time since the mass of pesticide was released from a point 

source. In reality the pesticide patch has an initial finite radius, 𝑟0. We define 𝑡0 as the time 

required for a patch from a point source to grow to the initial patch size. From (2.21) we have 

 𝑟0 = 𝑛𝜎(𝑡0) (2.23) 

 

Using (2.4) for the Fickian model gives 𝑡0 = 𝑟0
2/(4𝑛2𝐾ℎ) whereas for the Okubo model  (2.6) gives 

𝑡0 = (𝑟0
2/𝑛2𝛼)1/𝛽. We set  

 𝑡 = 𝑡0 + 𝑡′ (2.24) 

 

in the horizontal concentration equations to account for the initial patch size. 

The patch volume, 𝑉patch, at a given time is given by the product of the patch horizontal area and 

the depth  

  

 𝑉patch = 𝜋𝑛2𝜎2(𝑡0 + 𝑡′)𝐻(𝑡′) (2.25) 

 

where 𝐻(𝑡′) depends on the vertical model. For a patch containing a uniformly distributed 

pesticide concentration, the concentration is simply the average concentration, 𝐶avg,  given by 

 
𝐶avg =  

𝑀patch

𝑉patch
 (2.26) 

 

where 𝑀patch is the mass of pesticide contained within the patch. Since we are using (2.21) to 

define the patch radius, 𝑀patch = 𝛾𝑛𝑀. Thus, the mass within the patch is a proportion of the mass 

of quantity used in the treatment. The mass of the pesticide used in the treatment, 𝑀, is a function 

of the treatment concentration, 𝐶0, and the treatment volume, 𝑉0, i.e., 

     𝑀 = 𝑉0𝐶0   (2.27) 

 

 Thus we can express (2.26) as 

 
𝐶avg =  

𝛾𝑛𝑉0𝐶0

𝜋𝑛2𝜎2(𝑡0 + 𝑡′)𝐻(𝑡′)
  (2.28) 

 

For a given treatment volume, 𝑉0, and treatment concentration, 𝐶0, the average concentration 

decreases with time since the total amount of mass in the patch remains constant and the volume 

increases. Assuming the patch is initially toxic, i.e., 𝐶0 > 𝐶eqs, the patch is toxic until 𝐶avg = 𝐶eqs, 
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after which it is no longer toxic. Since the patch size is always increasing, this also coincides with 

the time 𝑡max
′ , at which the maximum toxic patch size occurs, i.e., for the mean concentration 

model 𝑡max
′ = 𝑡tox

′ , where 𝑡tox
′  is the length of time that a patch is considered toxic. This behaviour 

was discussed in Page et al. (2023). We wish to know the time 𝑡max
′  at which 𝐶avg = 𝐶eqs, and the 

resulting patch radius, 𝑟eqs. Defining the dilution factor, 𝑅, as 

 
𝑅 =  

𝐶0

𝐶eqs
 (2.29) 

 

 Substituting 𝐶avg = 𝐶eqs and using (2.29), we write (2.28) as  

 
1 =  

𝛾𝑛𝑉0𝑅

𝜋𝑛2𝜎2(𝑡0 + 𝑡max
′ )𝐻(𝑡max

′ )
 (2.30) 

 

which can be used to find  𝑡max
′ .  

Using (2.21), the maximum size of the toxic patch, 𝑟max, can be calculated from (2.30) and is given 

by 

𝑟max
2 =  

𝛾𝑛𝑉0𝑅

𝜋𝐻(𝑡max
′ )

 (2.31) 

2.3.2 GAUSSIAN MODEL 

An alternative to the mean concentration model, which assumes a spatially homogeneous 

distribution of the pesticide, is to use the Gaussian distribution of pesticide concentration to 

determine the patch size. At any given time post-release, 𝑡′, the size of the toxic patch can be 

defined as the radius at which the concentration equals the EQS concentration since only 

concentrations within this radius are greater than the EQS. We set 𝐶(𝑡′, 𝑟, 𝑧) = 𝐶eqs in (2.19): 

 
𝐶eqs =

𝑀

𝜋𝜎2(𝑡0 + 𝑡′)𝐻(𝑡′)
𝑒−𝑟eqs

2 𝜎2(𝑡0+𝑡′)⁄  (2.32) 

 

and solve for 𝑟eqs
2  

 
𝑟eqs

2 = −𝜎2(𝑡0 + 𝑡′) · ln [
𝜋𝐶eqs𝜎2(𝑡0 + 𝑡′)𝐻(𝑡′)

𝑀
] (2.33) 

 

Expressing (2.33) as a function of the dilution ratio, 𝑅, gives 

 
𝑟eqs

2 = −𝜎2(𝑡0 + 𝑡′) · ln [
𝜋𝜎2(𝑡0 + 𝑡′)𝐻(𝑡′)

𝑉0𝑅
] (2.34) 
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Equation (2.34) is only valid for the time period during which 𝐶max ≥ 𝐶eqs, or when 𝑉0𝑅 ≥

𝜋𝜎2(𝑡0 + 𝑡′)𝐻(𝑡′). Furthermore, depending on the value of 𝑛 in equation (2.21) it is possible that  

𝑟eqs is initially larger than the patch size, 𝑟e. If we define 𝜎0 = 𝜎(𝑡0), then setting 𝑡′ = 0 in (2.34) 

we get 

 
𝑟eqs

2 = −𝜎0
2 · ln [

1

𝑛2𝑅
] (2.35) 

 

Whereas 

 

 𝑟0
2 = 𝑛2𝜎0

2 (2.36) 

 

Comparing (2.35) and (2.36), 𝑟eqs is initially larger than the patch size, 𝑟0 if 

 

 𝑛2𝑅 >  𝑒𝑛2
 (2.37) 

 

Recalling that 𝑟0 contains 100 𝛾𝑛% of the pesticide mass (see equation (2.21) and accompanying 

text), the conditions in equation (2.37)  will occur when the quantity of pesticide within the initial  

𝐶eqs concentration contour is greater than 𝛾𝑛𝑀. It should be noted that, for the Gaussian model, 

the quantity of pesticide within the toxic patch changes over time and eventually decreases to 

zero. In contrast, for the mean concentration model, the quantity of pesticide within the toxic patch 

is constant. In both models, the total quantity of pesticide within the environment is constant for 

all time. Thus the absence of concentrations above the EQS does not indicate a lack of pesticide 

in the environment and the spatial scale of the patch continues to grow with time. 

For a given time, the radius at which 𝐶eqs occurs, 𝑟eqs, can be found by taking the square root of 

𝑟eqs
2  given in (2.34). Using the Okubo model, Page et al. (2023) illustrated that (2.34) produces a 

patch radius that increases with time to a maximum and then decreases until 𝐶max(𝑡′) attains 𝐶eqs 

after which all concentrations within the patch are below 𝐶eqs. The precise details will depend on 

the patch depth function, 𝐻(𝑡′). To determine the length of time for which the patch contains 

concentrations above the EQS, 𝑡tox
′ , we set 𝐶max = 𝐶eqs in (2.20) 

 
𝐶eqs =

𝑀

𝜋𝜎2(𝑡0 + 𝑡tox
′ )𝐻(𝑡tox

′ )
 (2.38) 

Which using (2.29) can be written as 

 

 
𝑅 −

𝜋𝜎2(𝑡0 + 𝑡tox
′ )𝐻(𝑡tox

′ )

𝑉0
= 0 (2.39) 
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and then solve for 𝑡tox
′  in (2.39). Since the solution depends on the choice of depth and 

concentration models, they are presented for the different combinations in the next section.  

3 MODEL SOLUTIONS 

For a pesticide patch released from a single cage, we explore solutions to the different 

combinations of horizontal dispersion (Fickian or Okubo),  depth (constant or vertical growth), and 

concentration (mean or Gaussian) models for a range of treatment cage sizes, 10 ≤ 𝑃cage ≤ 500 

(assuming a circular cage) and dilution ratios, 102 ≤ 𝑅 ≤ 104. As in Okubo (1968; 1971), we use 

𝑛 = 1.5 (yielding 𝛾𝑛 = 0.89, see Table 2.1) with 𝛼 = 5.6 × 10−6 and 𝛽 = 2.22 (Lawrence et al., 

1995). We use typical values of 1.0 and 0.01 m2·s-1 for 𝐾ℎ and 𝐾𝑧, respectively (Lewis, 1997). A 

typical treatment depth, 𝐻0, of 4 m (Page et al., 2015) and a maximum patch depth, 𝐻const = 𝐻max 

of 20 m are used. All parameter values are given in Table 3.1. 

Table 3.1. Parameter values (or ranges) used in all solutions (both analytic and numeric) 

presented in this document.  

 

Parameter Description Units Value 

𝛼 Parameter used in equation (2.6) - 5.6×10-6 

𝛽 Parameter used in equation (2.6) - 2.22 

𝑛 Parameter used in equation (2.21)  - 1.5 

𝐾ℎ Horizontal coefficient of diffusivity m2·s-1 1.0 

𝐾𝑍 Vertical coefficient of diffusivity m2·s-1 0.01 

𝐻0 Treatment depth m 4 

𝐻max Maximum patch depth for all depth models m 20 

𝑃cage Cage perimeter (assume circular cage) m [10,500] 

𝑅 𝐶0/𝐶eqs - [102,104] 

 

3.1 CONSTANT DEPTH 

For an arbitrary depth function, 𝐻(𝑡′), numerical solutions are likely required to determine the 

relationship between the maximum size of a toxic patch (where 𝐶 ≥ 𝐶eqs implies toxicity) for both 

the Fickian and Okubo dispersion models and the Gaussian concentration and mean 

concentration models. However, for the simple case of a constant patch depth, 𝐻(𝑡′) = 𝐻max, 

analytical solutions can be found. 
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3.1.1 MEAN CONCENTRATION MODEL 

3.1.1.1 FICKIAN DISPERSION MODEL 

Using (2.4) in (2.30) we solve for 𝑡max
′  to determine the time post-release at which the maximum 

size of a toxic patch occurs 

 
𝑡max

′ =
𝛾𝑛𝑉0𝑅

4𝜋𝑛2𝐾ℎ𝐻max
 − 𝑡0  (3.1) 

 

The size of the patch having an average concentration equal to the EQS can be found from (2.31)  

 
𝑟max

2 =  
𝛾𝑛𝑉0𝑅

𝜋𝐻max
 (3.2) 

 

It should be noted that, for the mean concentration model with constant depth, 𝑟max
2  is independent 

of the dispersion coefficient. This is unsurprising since the total volume required to dilute the 

pesticide concentration to the EQS depends only on the radius (and not the time required to get 

there) when the depth remains constant. Also recall that for the mean concentration model, the 

patch is no longer toxic when  𝑡′ > 𝑡max
′ , i.e., 𝑡max

′ = 𝑡tox
′ . 

Solutions to equations (3.1) and (3.2) are shown in Figure 3.1 and Figure 3.2. The maximum size 

of the toxic patch and the time required to achieve it increase with both the perimeter of the 

treatment cage and 𝑅. Ranges of the calculated values of 𝑟max, 𝑡max
′ , and 𝑡tox

′  are given in Table 

3.2. 

 

Figure 3.1. Solutions of  𝑟max (m) for the mean concentration model with constant depth. Note 

that the solution is independent of the horizontal dispersion model used. Parameters used are 

given in Table 3.1. Since 𝑅 =  𝐶0/𝐶eqs, log10 𝑅 gives the order of magnitude dilution factor, i.e., 

log10𝑅 = 3 is a factor of 1000 dilution. 
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Figure 3.2. Solutions of  tmax
′  (h) for the mean concentration model with constant depth using 

Fickian (left) and Okubo (right) horizontal dispersion models. Note for the mean concentration 

model  tmax
′ = ttox

′ . Parameters used are given in Table 3.1. Since 𝑅 =  C0/Ceqs, log10 R gives the 

order of magnitude dilution factor, i.e., log10 R = 3 is a factor of 1000 dilution. 

 

Table 3.2. Intervals of minimum and maximum of calculated values  𝑟𝑚𝑎𝑥, 𝑡𝑚𝑎𝑥
′ , and  𝑡𝑡𝑜𝑥

′ . for all 

the combinations of concentration, horizontal dispersion, and depth models. Model solutions were 

calculated over the 𝑃cage and 𝑅 ranges of [10,500] and  [102,104], respectively. All other model 

parameters are given in Table 3.1. 

Concentration 

Model 

Horizontal Dispersion 

Model 
Depth Model 𝒓𝐦𝐚𝐱 (m) 𝒕𝐦𝐚𝐱

′  (h) 𝒕𝐭𝐨𝐱
′  (h) 

Mean Fickian Constant [7,3366] [0.0,349.5] [0.0,349.5] 

Mean Okubo Constant [7,3366] [0.2,65.0] [0.2,65.0] 

Gaussian Fickian Constant [4,2159] [0.0,323.4] [0.0,879.3] 

Gaussian Okubo Constant [4,2159] [0.2,62.7] [0.3,99.7] 

Mean Fickian Growth [14,3366] [0.0,349.5] [0.0,349.5] 

Mean Okubo Growth [11,3366] [0.3,65.0] [0.3,65.0] 

Gaussian Fickian Growth [9,2159] [0.0,323.4] [0.0,879.3] 

Gaussian Okubo Growth [7,2159] [0.3,62.7] [0.5,99.7] 
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3.1.1.2 OKUBO DISPERSION MODEL 

For the mean depth model, the time at which the maximum size of a toxic patch occurs can be 

determined by substituting (2.6) into (2.30): 

 

𝑛2𝛼(𝑡max
′ + 𝑡0)𝛽 =  

𝛾𝑛𝑉0𝑅

𝜋𝐻max
 (3.3) 

 

 or 

 
𝑡max

′ =  (
𝛾𝑛𝑉0𝑅

𝑛2𝜋𝛼𝐻max
)

1/𝛽

− 𝑡0  (3.4) 

 

From (2.31), the maximum size of the toxic patch is the same as for the Fickian model and given 

by (3.2). Thus, for the mean concentration model with constant depth, the maximum patch size is 

independent of the horizontal dispersion model and only the timing of when the maximum patch 

size occurs depends on the horizontal dispersion model. 

Solutions to equations (3.4) and (3.2) are shown in Figure 3.1 and Figure 3.2 (parameter values 

used are given in Table 3.1). The maximum size of the toxic patch and the time required to achieve 

it increase with both the perimeter of the treatment cage and 𝑅. 

3.1.2 GAUSSIAN CONCENTRATION MODEL 

For the Gaussian concentration model, the time at which the maximum value of 𝑟eqs occurs can 

be determined by setting 
𝑑𝑟eqs

2

𝑑𝑡
= 0 and solving for 𝑡. From (2.34) we must solve for 𝑡: 

 𝑑

𝑑𝑡
(−𝜎2(𝑡) · ln [

𝜋𝜎2(𝑡)𝐻max

𝑅𝑉0
]) = 0 (3.5) 

 

 
−

𝑑

𝑑𝑡
(𝜎2(𝑡)) · ln [

𝜋𝜎2(𝑡)𝐻max

𝑅𝑉0
] − 𝜎2(𝑡)

𝑑

𝑑𝑡
(ln [

𝜋𝜎2(𝑡)𝐻max

𝑅𝑉0
]) = 0 (3.6) 

 

 
−

𝑑

𝑑𝑡
(𝜎2(𝑡)) · ln [

𝜋𝜎2(𝑡)𝐻max

𝑅𝑉0
] − 𝜎2(𝑡)

𝑅𝑉0

𝜋𝜎2(𝑡)𝐻max

𝑑

𝑑𝑡
(

𝜋𝜎2(𝑡)𝐻max

𝑅𝑉0
) = 0 (3.7) 

 

 𝑑

𝑑𝑡
(𝜎2(𝑡)) (ln [

𝜋𝜎2(𝑡)𝐻max

𝑅𝑉0
] + 1) = 0 (3.8) 

 

The solution to (3.8) is dependent on the horizontal dispersion model used. 
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3.1.2.1 FICKIAN DISPERSION MODEL 

Using the Fickian dispersion model (2.4), (3.8) becomes  

 
4𝐾ℎ (ln [

𝜋4𝐾ℎ(𝑡max
′ + 𝑡0)𝐻max

𝑅𝑉0
] + 1) = 0 (3.9) 

 

Solving for 𝑡max
′  gives the time post-release at which the maximum patch size occurs, 𝑡max

′  : 

 
𝑡max

′ =
𝑅𝑉0

4𝑒𝜋𝐾ℎ𝐻max
− 𝑡0 (3.10) 

  

To find the maximum patch size, 𝑟max, we substitute (3.10) into (2.34) and simplify, giving 

 
𝑟max

2 =
𝑅𝑉0

𝑒𝜋𝐻max
 (3.11) 

It should be noted that, for the Gaussian concentration model with constant depth, 𝑟max
2  is 

independent of the dispersion coefficient.  

In contrast to the mean model, the size of the toxic patch for the Gaussian model is non-zero after 

it has reached its maximum size. The patch will contain no concentrations above the EQS after 

the time at which the peak concentration equals the EQS, i.e., 𝐶eqs = 𝐶max. From (2.20)  

 
𝐶eqs =

𝑀

𝜋𝜎2(𝑡0 + 𝑡′)𝐻max
 (3.12) 

 

Recalling that 𝜎2 is given by (2.4) for the Fickian case and 𝑀 is given by (2.27), we can use 

equation (3.12) to solve for the time post-deposit 𝑡tox
′ : 

 
𝑡tox

′ =
𝑉0𝑅

4𝜋𝐾ℎ𝐻max
− 𝑡0 (3.13) 

 

When 𝑡′ ≥  𝑡tox
′ , the pesticide patch contains no concentrations above the EQS and occurs at a 

time Δ𝑡 after 𝑡max
′  where 

 
Δ𝑡 =

𝑉0𝑅

4𝜋𝐾ℎ𝐻max
(1 −

1

𝑒
) (3.14) 

 

Solutions to 𝑟max, 𝑡max
′ , 𝑡tox

′ , given by equations (3.11), (3.10), and (3.13), respectively, are shown 

in Figure I.1, Figure I.2, and Figure I.3. The maximum size of the toxic patch and the time required 

to achieve it increase with both the perimeter of the treatment cage and 𝑅. Also, the total time 

during which a patch contains toxic concentrations increases with both the perimeter of the 

treatment cage and 𝑅. 
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3.1.2.2 OKUBO DISPERSION MODEL 

Using the Okubo dispersion model (2.6), (3.8) becomes  

 
𝛼 𝛽(𝑡max

′ + 𝑡0)𝛽−1 (ln [
𝜋𝛼(𝑡max

′ + 𝑡0)𝛽𝐻max

𝑅𝑉0
] + 1) = 0 (3.15) 

 

There are two solutions to (3.15): 𝑡max
′ = −𝑡0, which is not physically realistic, and 

 
ln [

𝜋𝛼 (𝑡max
′ + 𝑡0)𝛽𝐻max

𝑅𝑉0
] + 1 = 0 (3.16) 

 

Solving for 𝑡max
′  gives the time post-release at which the maximum patch size occurs, 𝑡max

′  : 

 

𝑡max
′ = (

𝑅𝑉0

𝑒𝜋𝛼𝐻max
)

1
𝛽

− 𝑡0 (3.17) 

 

To find the maximum patch size, 𝑟max, substitute (3.17) into (2.34): 

 

𝑟max
2 = −𝛼 (

𝑅𝑉0

𝑒𝜋𝛼𝐻max
) · ln [

𝜋𝛼 (
𝑅𝑉0

𝑒𝜋𝛼𝐻max
) 𝐻max

𝑅𝑉0
] (3.18) 

Simplifying (3.18) gives 

 
𝑟max

2 =
𝑅𝑉0

𝑒𝜋𝐻max
 (3.19) 

 

which is identical to the solution of 𝑟max
2  for the Fickian case with constant depth and a Gaussian 

concentration distribution. (see equation (3.11)). To find the time after which the patch contains 

no concentrations above the EQS, we use (2.6) in (3.12) 

 

𝑡tox
′ = (

𝑅𝑉0

𝜋𝛼𝐻max
)

1
𝛽

− 𝑡0 (3.20) 

 

When 𝑡′ ≥  𝑡tox
′ , pesticide patch contains no concentrations above the EQS and occurs at a time 

Δ𝑡 after 𝑡max
′  where 

 

 

Δ𝑡 = (
𝑅𝑉0

𝜋𝛼𝐻max
)

1
𝛽

[1 −
1

𝑒1/𝛽
] (3.21) 
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Solutions to 𝑟max, 𝑡max
′ , 𝑡tox

′ , given by equations (3.19), (3.17), and (3.20), are shown in Figure I.1, 

Figure I.2, and Figure I.3, respectively. The maximum size of the toxic patch and the time required 

to achieve it increase with both the perimeter of the treatment cage and 𝑅. Also, the total time 

during which a patch contains toxic concentrations increases with both the perimeter of the 

treatment cage and 𝑅. 

3.2 VERTICAL GROWTH 

Here we explore the behaviour of the patch radius size when vertical growth model, see equation 

(2.16), is used. Since there are no simple analytical solutions for 𝑡max
′ , 𝑡tox

′ , and 𝑟max for this case, 

numerical solutions are calculated to explore the behaviour for a range of 𝑅 and 𝑃cage values. All 

calculations were done using the statistical software R version 4.2.0. Parameter values used are 

given in Table 3.1. 

3.2.1 MEAN CONCENTRATION MODEL 

3.2.1.1  FICKIAN DISPERSION MODEL 

Using the function uniroot from the R software package version 4.2.0, the root to (2.30) with 𝐻(𝑡′) 

given by (2.16) and 𝜎2 given by (2.4), 𝑡max
′ , was estimated. The maximum radius,  𝑟max, was found 

by substituting the estimated value of 𝑡max
′ , into (2.31). Solutions are shown in Figure I.4 and 

Figure I.5 (parameter values used are given in Table 3.1). The maximum size of the toxic patch 

and the time required to achieve it increase with both the perimeter of the treatment cage and 𝑅. 

3.2.1.2 OKUBO DISPERSION MODEL 

The time at which the largest toxic patch occurs, 𝑡max
′ , is found using the same method as for the 

mean model with Fickian horizontal dispersion and vertical growth. In this case, the root to (2.30) 

is found using 𝜎2 given by (2.6). The maximum radius, 𝑟max, was found by substituting the 

estimated value of 𝑡max
′ , into (2.31). Solutions are shown in Figure I.4 and Figure I.5 (parameter 

values used are given in Table 3.1). The maximum size of the toxic patch and the time required 

to achieve it increase with both the perimeter of the treatment cage and 𝑅. 

3.2.2  GAUSSIAN CONCENTRATION MODEL 

3.2.2.1 FICKIAN DISPERSION MODEL 

For the Gaussian concentration model with Fickian horizontal dispersion and vertical growth, the 

maximum toxic patch size, 𝑟max, and the time at which it occurs, 𝑡max
′ , are found by finding the 

maximum of equation (2.34) using (2.4) for 𝜎2(𝑡0 + 𝑡′) and (2.16) for 𝐻(𝑡′). This is estimated 

numerically using the function optimize from the R software package version 4.2.0. The total 

length of time during which a patch contains concentrations above the EQS, 𝑡tox
′ , is given by the 

root to equation (2.39) which is found using the function uniroot from the R software package 

version 4.2.0 using (2.4)  for 𝜎2(𝑡0 + 𝑡′) and (2.16) for 𝐻(𝑡′).  

Solutions for 𝑟max, 𝑡max
′ , and 𝑡tox

′  are shown in Figure I.6, Figure I.7, and Figure I.8, respectively. 

The maximum size of the toxic patch and the time required to achieve it increase with both the 

perimeter of the treatment cage and 𝑅. Also, the total time during which a patch contains toxic 

concentrations increases with both the perimeter of the treatment cage and 𝑅. 
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3.2.2.2 OKUBO DISPERSION MODEL 

The radius of the largest toxic patch, 𝑟max, that time at which it occurs, 𝑡max
′ , and the total time that 

the patch contains toxic concentrations, 𝑡tox
′ , are found using the same methods as for the 

Gaussian model with Fickian horizontal dispersion and vertical growth (see above). In this case, 

𝜎2(𝑡0 + 𝑡′) is given by (2.6).  

Solutions for 𝑟max, 𝑡max
′ , and 𝑡tox

′  are shown in Figure I.6, Figure I.7, and Figure I.8, respectively. 

The maximum size of the toxic patch and the time required to achieve it increase with both the 

perimeter of the treatment cage and 𝑅. Also, the total time during which a patch contains toxic 

concentrations increases with both the perimeter of the treatment cage and 𝑅. 
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4 SUMMARY 

• Other than the Okubo horizontal dispersion model, all the models require choices of 

parameters. The model solutions are sensitive to the value of these parameters. In this 

document, the impact of the dilution ratio and the cage size were explored, all other 

parameters were fixed.  

• Analytical solutions of the maximum size of the toxic patch, the time at which this occurs, 

and the total time patch contains toxic concentrations are easily derived when a constant 

patch depth is assumed. Analytical solutions can be used to give insight on how 

parameters impact solutions. 

• When the constant depth solution is used, maximum patch size is independent of the 

horizontal dispersion model. 

• For all combinations of horizontal dispersion, depth, and concentration models, the 

maximum size of the toxic patch, the time required to achieve it, and the total time that the 

patch contains toxic concentrations increase with both the perimeter of the treatment cage 

and 𝑅. The details of the solution, however, vary with the combination of horizontal 

dispersion, depth, and concentration models. 

• An accompanying report (Haigh et al., 2024) compares solutions of the models, examines 

sensitivity of some of the parameters, and recommends model selection for regulatory 

use. 

• For a net pen perimeter of 150 m and a dilution ratio of 3, the toxic patch achieves a 

maximum size between 205 m and 358 m which occurs between 2.9 h and 7.3 h post-

release, and no toxic concentrations are present after 3.1 h to 11.4 h post-release 
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APPENDIX I: MODEL SOLUTION FIGURES 

 

Figure I.1. Solutions of   𝑟max (m) for the Gaussian concentration model with constant depth. Note 

that the solution is independent of the horizontal dispersion model used. Parameters used are 

given in Table 3.1. Since 𝑅 =  𝐶0/𝐶eqs, log10 𝑅 gives the order of magnitude dilution factor, i.e., 

log10𝑅 = 3 is a factor of 1000 dilution. 

 

  

Figure I.2. Solutions of  𝑡max
′  (h) for the Gaussian concentration model with constant depth using 

Fickian (left) and Okubo (right) horizontal dispersion models. Parameters used are given in Table 

3.1. Since 𝑅 =  𝐶0/𝐶eqs, log10 𝑅 gives the order of magnitude dilution factor, i.e., log10𝑅 = 3 is a 

factor of 1000 dilution. 
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Figure I.3. Solutions of  𝑡tox
′  (h) for the Gaussian concentration model with constant depth using 

Fickian (left) and Okubo (right) horizontal dispersion models. Parameters used are given in Table 

3.1. Since 𝑅 =  𝐶0/𝐶eqs, log10 𝑅 gives the order of magnitude dilution factor, i.e. log10𝑅 = 3 is a 

factor of 1000 dilution. 

 

  

Figure I.4. Solutions of 𝑟max (m) for the mean concentration model with vertical growth using 

Fickian (left) and Okubo (right) horizontal dispersion models. Parameters used are given in Table 

3.1. Since 𝑅 =  𝐶0/𝐶eqs, log10 𝑅 gives the order of magnitude dilution factor, i.e., log10𝑅 = 3 is a 

factor of 1000 dilution. 
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Figure I.5. Solutions of  𝑡max
′  (h) for the mean concentration model with vertical growth using 

Fickian (left) and Okubo (right) horizontal dispersion models. Note for the mean concentration 

model  𝑡max
′ = 𝑡tox

′ . Parameters used are given in Table 3.1. Since 𝑅 =  𝐶0/𝐶eqs, log10 𝑅 gives the 

order of magnitude dilution factor, i.e., log10𝑅 = 3 is a factor of 1000 dilution. 

 

  

Figure I.6. Solutions of  𝑟max (m) for the Gaussian concentration model with vertical growth using 

Fickian (left) and Okubo (right) horizontal dispersion models. Parameters used are given in Table 

3.1. Since 𝑅 =  𝐶0/𝐶eqs, log10 𝑅 gives the order of magnitude dilution factor, i.e., log10 𝑅 = 3 is a 

factor of 1000 dilution. 



 

24 
 

  

Figure I.7. Solutions of  𝑡max
′  (h) for the Gaussian concentration model with vertical growth using 

Fickian (left) and Okubo (right) horizontal dispersion models. Parameters used are given in Table 

3.1. Since 𝑅 =  𝐶0/𝐶eqs, log10 𝑅 gives the order of magnitude dilution factor, i.e., log10 𝑅 = 3 is a 

factor of 1000 dilution. 

 

  

Figure I.8. Solutions of  𝑡tox
′  (h) for the Gaussian concentration model with vertical growth using 

Fickian (left) and Okubo (right) horizontal dispersion models. Parameters used are given in Table 

3.1. Since 𝑅 =  𝐶0/𝐶eqs,  log10 𝑅 gives the order of magnitude dilution factor, i.e., log10 𝑅 = 3 is a 

factor of 1000 dilution. 


