

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

s Ecosystems and Oceans Science

Secrétariat canadien des avis scientifiques (SCAS)

Document de recherche 2024/004

Région du Québec

Évaluation des stocks de hareng (*Clupea harengus*) de la côte ouest de Terre-Neuve (Division OPANO 4R) en 2021

Kim Émond, Hélène Dionne, Manuelle Beaudry-Sylvestre, Frédéric Paquet, Shani Rousseau, Caroline Lehoux, and Pedro Nilo

> Pêches et Océans Canada Institut Maurice-Lamontagne 850, Route de la Mer, C.P. 1000 Mont-Joli, Québec, G5H 3Z4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien des avis scientifiques 200, rue Kent Ottawa (Ontario) K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté le Roi du chef du Canada, représenté par le ministre du ministère des Pêches et des Océans, 2024 ISSN 2292-4272 ISBN 978-0-660-70505-7 N° cat. Fs70-5/2024-004F-PDF

La présente publication doit être citée comme suit :

Émond, K., Dionne, H., Beaudry-Sylvestre, M., Paquet, F., Rousseau, S., Lehoux, C., et Nilo, P. 2024. Évaluation des stocks de hareng (*Clupea harengus*) de la côte ouest de Terre-Neuve (Division OPANO 4R) en 2021. Secr. can. des avis sci. du MPO. Doc. de rech. 2024/004. xi + 97 p.

Also available in English :

Émond, K., Dionne, H., Beaudry-Sylvestre, M., Paquet, F., Rousseau, S., Lehoux, C., and Nilo, P. 2024. Assessment of the West Coast of Newfoundland (NAFO Division 4R) Atlantic Herring (Clupea harengus) Stocks in 2021. DFO Can. Sci. Advis. Sec. Res. Doc. 2024/004. xi + 93 p.

TABLE DES MATIÈRES

RÉSUMÉ	xi
1. INTRODUCTION	1
2. MÉTHODES	2
2.1. DÉBARQUEMENTS	2
2.2. ÉCHANTILLONNAGE COMMERCIAL ET BIOLOGIQUE	3
2.3. COMPOSITION DES CAPTURES COMMERCIALES PAR ÂGE	4
2.4. INDICATEURS BIOLOGIQUES	5
2.4.1. Indice de recrutement	5
2.4.2. Longueur et âge à 50 % de maturité	5
2.4.3. Longueur et poids selon l'âge	6
2.4.4. Indice de condition relative	7
2.4.5. Indice cumulé de productivité du stock	7
2.5. RELEVÉ ACOUSTIQUE	8
2.5.1. Plan du relevé	8
2.5.2. Acquisition et analyse des données acoustiques	8
2.5.3. Relevés de l'été et de l'automne 2020 et 2021	10
2.6. DÉTERMINANTS ENVIRONNEMENTAUX LIÉS À LA CONDITION ET AU	
RECRUTEMENT	11
2.6.1. Indices environnementaux	11
2.6.2. Modèles additifs généralisés (GAM)	12
3. RÉSULTATS ET DISCUSSION	13
3.1. DÉBARQUEMENTS	13
3.2. ÉCHANTILLONNAGE COMMERCIAL ET BIOLOGIQUE	14
3.3. RELEVÉS ACOUSTIQUES D'ÉTÉ ET D'AUTOMNE DE 2020 ET 2021	15
3.4. ÉVALUATION DE LA COMPOSANTE DES REPRODUCTEURS DE PRINTEMPS	16
3.4.1. Composition des prises commerciales selon l'âge	16
3.4.2. Indice de biomasse d'après les relevés acoustiques	16
3.4.3. Indice de recrutement	17
3.4.4. Longueur et âge à 50 % de maturité	17
3.4.5. Longueur et poids selon l'âge	18
3.4.6. Indice de condition relative	18
3.4.7. Indice cumulé de productivité du stock	18
3.5. ÉVALUATION DE LA COMPOSANTE DES REPRODUCTEURS D'AUTOMNE	19
3.5.1. Composition des prises commerciales selon l'âge	19
3.5.2. Indice de biomasse d'après les relevés acoustiques	19
3.5.3. Indice de recrutement	20
3.5.4. Longueur et âge à 50 % de maturité	20
3.5.5. Longueur et poids selon l'âge	21
3.5.6. Indice de condition relative	21

3.5.7. Indice cumulé de productivité du stock 3.6. DÉTERMINANTS ENVIRONNEMENTAUX LIÉS À LA CONDITION ET AU RECRUTEMENT	.21 .21
4. SOURCES D'INCERTITUDE	.22
5. CONCLUSION ET AVIS	.23
RÉFÉRENCES CITÉES	.24
TABLEAUX	.29
FIGURES	.46
ANNEXE A : INFORMATIONS SUPPLÉMENTAIRES SUR LES RELEVÉS ACOUSTIQUES RÉALISÉS DANS LA DIVISION 4R DE L'OPANO ENTRE 1991 ET 2021	.87

LISTE DES TABLEAUX

Tableau 1. Variables physiques et biologiques utilisées dans les analyses GAM pour évaluer les effets de l'environnement sur la condition (Kn) et le recrutement (R) des reproducteurs de printemps (RP) et d'automne (RA)
Tableau 2. Débarquements (t) annuels et Total Admissible des Captures (TAC) de hareng parsous-division pour la Division 4R entre 1966 et 2021. Les données de 2019, 2020 et 2021 sontpréliminaires
Tableau 3. Débarquements (t) annuels de hareng par engin de pêche pour la Division 4R entre1966 et 2021. Les données de 2019, 2020 et 2021 sont préliminaires.31
Tableau 4. Débarquements (t) annuels de hareng par engin et sous-division pour la Division 4Rentre 1966 et 2021. Les données de 2019, 2020 et 2021 sont préliminaires
Tableau 5. Nombre de harengs atlantiques échantillonnés par année, saison, flotte (mobile et fixe) et sous-division de l'OPANO dans le cadre du programme d'échantillonnage au port commercial et envoyés à l'IML pour une vérification plus approfondie de leurs caractéristiques biologiques
Tableau 6. Prises commerciales par âge (en milliers) des reproducteurs de printemps sur lacôte ouest de Terre-Neuve (division 4R de l'OPANO) de 1965 à 202135
Tableau 7. Densités de la biomasse de hareng et estimations par strate à partir du relevéacoustique effectué du 8 au 30 août 202036
Tableau 8. Densités de la biomasse de hareng et estimations par strate à partir du relevéacoustique effectué du 18 octobre au 5 novembre 202037
Tableau 9. Densités de la biomasse de hareng et estimations par strate à partir du relevéacoustique effectué du 8 au 18 août 202138
Tableau 10. Densités de la biomasse de hareng et estimations par strate à partir du relevéacoustique effectué du 13 au 28 octobre 2021
Tableau 11. Taux d'exploitation (%) pour les stocks de hareng reproducteurs de printemps etd'automne dans la division 4R de l'OPANO en 2020 et 2021.40
Tableau 12. Nombre (en milliers) selon l'âge de reproducteurs de printemps des relevésacoustiques effectués en été et à l'automne sur la côte ouest de Terre-Neuve (division 4R del'OPANO) de 1991 à 2021.41
Tableau 13. Prises commerciales par âge (en milliers) des reproducteurs d'automne sur la côteouest de Terre-Neuve (division 4R de l'OPANO) de 1965 à 2021.42
Tableau 14. Nombre (en milliers) selon l'âge de reproducteurs d'automne selon les relevésacoustiques effectués en été et à l'automne sur la côte ouest de Terre-Neuve (division 4R del'OPANO) de 1991 à 2021.43
Tableau 15. Résultats des modèles additifs généralisés évaluant l'effet de l'environnement sur la variabilité du Kn pour chaque série temporelle disponible et composante reproductrice44
Tableau 16. Résultats des modèles additifs généralisés (quantile 0,5) évaluant l'effet del'environnement sur le recrutement pour chaque série temporelle disponible et composantereproductrice
Tableau A17. Dates de début et de fin et navires utilisés pour effectuer les relevés acoustiques sur le hareng de 1991 à 2021. Tous les navires mentionnés font partie de la flotte de la Garde

Tableau A18. Nombre d'échantillons de hareng atlantique par relevé et par engin de pêche utilisés pour l'estimation de l'indice de biomasse acoustique de 2009 à 2021. Certaines années, des échantillons provenant de la pêche commerciale ont été utilisés pour combler les lacunes de l'échantillonnage (en gras). Le nombre total de harengs est indiqué entre parenthèses.......88

LISTE DES FIGURES

Figure 1. (A) Carte des sous-divisions de la division 4R de l'OPANO. (B) Carte des zones de pêche au hareng (ZPH) 13 et 14
Figure 2. Carte du plan de stratification du relevé acoustique47
Figure 3. Débarquements commerciaux cumulatifs (t) de hareng par sous-division et total autorisé des captures (TAC) de la côte ouest de Terre-Neuve (division 4R de l'OPANO) de 1985 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires48
Figure 4. Débarquements commerciaux de hareng (t) par engin de pêche de la côte ouest de Terre-Neuve (division 4R de l'OPANO) de 1985 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires
Figure 5. Débarquements commerciaux de hareng (t; ligne bleue continue) et quotas (t; ligne noire pointillée) par flottille de pêche (grand senneur ≥ 65 pi, petit senneur < 65 pi, et engin fixe) dans la division 4R de l'OPANO de 1990 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires
Figure 6. Diagramme de quantile représentant les débarquements commerciaux (t) de hareng par année et par jour julien pour les grands senneurs (≥ 65 pi), les petits senneurs (< 65 pi) et les engins fixes de 2000 à 2021 dans la division 4R de l'OPANO
Figure 7. Débarquements commerciaux cumulés (%) pendant la saison de pêche par période de 5 ans selon le jour de l'année et par flotte de pêche (grand senneur ≥ 65 pi, petit senneur < 65 pi, et engin fixe) dans la division 4R de l'OPANO. Les deux dernières années de données disponibles sont également représentées individuellement. Les débarquements de 2019, 2020 et 2021 sont préliminaires
Figure 8. Emplacement des débarquements commerciaux de hareng (t) par la flotte de grands senneurs (≥ 65 pi) dans la division 4R de l'OPANO de 2000 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires
Figure 9. Emplacement des débarquements commerciaux de hareng (t) par la flotte de petits senneurs (< 65 pi) dans la division 4R de l'OPANO de 2000 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires
Figure 10. Emplacement des débarquements commerciaux de hareng (t) par la flotte de senne tuck (engin fixe) dans la division 4R de l'OPANO de 2005 à 2020. Les débarquements de 2019 et 2020 sont préliminaires
Figure 11. Pourcentage de latitude et de longitude manquantes dans les données ZIFF du hareng de la division 4R de l'OPANO pour les grands et petits senneurs et les sennes tuck. Les données de 2019, 2020 et 2021 sont préliminaires
Figure 12. Distributions des fréquences de longueur relative des harengs reproducteurs de printemps et d'automne capturés par la flotte de senneurs (grand et petit) dans la division 4R de l'OPANO de 1990 à 2021
Figure 13. Distributions des fréquences de longueur relative des harengs reproducteurs de printemps et d'automne dans les échantillons récoltés lors du relevé multispécifique au chalut de fond du nGSL du MPO de 2018 à 2021
Figure 14. Diagrammes circulaires représentant la proportion (en nombre d'individus) de reproducteurs de printemps et d'automne dans les échantillons biologiques prélevés lors du relevé au chalut de fond multispécifique du nGSL du MPO de 2018 à 2021 et envoyés à

l'Institut Maurice-Lamontagne pour une caractérisation biologique détaillée. Le rayon du cercle est proportionnel à la taille de l'échantillon60
Figure 15. Distribution de la biomasse de harengs mesurée lors des relevés hydroacoustiques d'été (août) et d'automne (octobre-novembre) de 2019 à 2021
Figure 16. Diagrammes circulaires représentant la proportion (en nombre d'individus) de reproducteurs de printemps et d'automne dans les échantillons biologiques utilisés pour estimer la biomasse mesurée lors des relevés acoustiques d'été (août) et d'automne (octobre- novembre) de 2019, 2020 et 2021 dans la division 4R de l'OPANO. Le rayon du cercle est proportionnel à la taille de l'échantillon
Figure 17. Distributions des fréquences de longueur totale relatives des reproducteurs de printemps (A) et d'automne (B) utilisées dans le calcul de l'indice acoustique désagrégé par âge dans les relevés d'été (lignes bleues) et d'automne (lignes noires) effectués de 2009 à 2021 (n= nombre de poissons, moyenne= longueur moyenne)
Figure 18. Proportion de harengs reproducteurs de printemps et d'automne (nombre d'individus) dans les débarquements commerciaux de la division 4R de l'OPANO de 1965 à 202163
Figure 19. Composition annuelle des captures selon l'âge (%) de hareng reproducteur de printemps dans la division 4R de l'OPANO de 1965 à 202164
Figure 20. Indice de biomasse des relevés acoustiques d'automne (1991-2021) et d'été (zones grisées, 2019-2021) pour le hareng reproducteur de printemps, avec et sans prise en compte des transects du détroit de Belle Isle. Les barres d'erreur représentent les erreurs-types64
Figure 21. Proportion de harengs reproducteurs de printemps et d'automne (nombre d'individus) estimée à partir des relevés acoustiques d'été et d'automne de 1991 à 202165
Figure 22. Composition annuelle des nombres selon l'âge (%) des harengs reproducteurs de printemps dans les relevés acoustiques d'été (août) et d'automne (octobre-novembre) effectués dans la division 4R de l'OPANO de 1991 à 2021
Figure 23. Distribution des fréquences de longueur (panneau supérieur) et d'âge (panneau inférieur) du hareng reproducteur de printemps à partir d'échantillons recueillis pendant le relevé acoustique estival (chalut pélagique) et le relevé annuel multispécifique du MPO dans le nGSL (chalut de fond, NGCC Teleost) dans la division 4R de l'OPANO de 2019 à 2021
Figure 24. Indice de recrutement du hareng reproducteur de printemps dans les prises commerciales de la division 4R de l'OPANO pour les cohortes de 1962 à 201867
Figure 25. Longueur à la fourche à 50 % de maturité (L ₅₀) par cohorte pour le hareng reproducteur de printemps dans la division 4R de l'OPANO67
Figure 26. Ogive de maturité (ligne bleue) en fonction de la longueur pour la cohorte 2017 des reproducteurs de printemps. La L_{50} a été estimée à 24,52 cm de longueur à la fourche68
Figure 27. Âge à 50 % de maturité (A ₅₀) par cohorte dans la division 4R de l'OPANO pour les reproducteurs de printemps68
Figure 28. Ogive de maturité (ligne bleue) en fonction de l'âge pour la cohorte 2017 des reproducteurs de printemps. La A ₅₀ a été estimée à 4,85 ans69
Figure 29. Longueur totale (mm) pour les âges 2 à 11+ des reproducteurs de printemps dans la division 4R de l'OPANO de 1965 à 2021
Figure 30. Poids total (g) pour les âges 2 à 11+ des reproducteurs de printemps dans la division 4R de l'OPANO de 1965 à 2021

Figure 31. Indice de condition relative standardisé (avec un intervalle de confiance de 95 %) pour le hareng reproducteur de printemps dans la division 4R de l'OPANO de 1970 à 2021....72

Figure 32. Indice cumulé de productivité du stock basé sur la somme (point blanc) des anomalies annuelles normalisées des principaux indicateurs de productivité du stock (indice de condition relative, longueur totale moyenne à l'âge 6 et indice de recrutement) des harengs reproducteurs de printemps dans la division 4R de l'OPANO de 1970 à 2021
Figure 33. Composition annuelle des captures selon l'âge (%) de hareng reproducteur d'automne dans la division 4R de l'OPANO de 1965 à 202173
Figure 34. Indices de biomasse des relevés acoustiques d'automne (1991-2021) et d'été (zones grisées, 2019-2021) pour le hareng reproducteur d'automne, avec et sans prise en compte des transects du détroit de Belle Isle. Les barres d'erreur représentent les erreurs-types
Figure 35. Composition annuelle des nombres selon l'âge (%) des harengs reproducteurs d'automne dans les relevés acoustiques d'été (août) et d'automne (octobre-novembre) effectués dans la division 4R de l'OPANO de 1991 à 2021
Figure 36. Distribution des fréquences de longueur (panneau supérieur) et d'âge (panneau inférieur) du hareng reproducteur d'automne à partir d'échantillons recueillis pendant le relevé acoustique estival (chalut pélagique) et le relevé annuel multispécifique du MPO dans le nGSL (chalut de fond, NGCC Teleost) dans la division 4R de l'OPANO de 2019 à 2021
Figure 37. Indice de recrutement du hareng reproducteur d'automne dans les prises commerciales de la division 4R de l'OPANO pour les cohortes de 1962 à 2017
Figure 38. Longueur à la fourche à 50 % de maturité (L_{50}) par cohorte pour le hareng reproducteur d'automne dans la division 4R de l'OPANO
Figure 39. Ogive de maturité (ligne bleue) en fonction de la longueur pour la cohorte 2017 des reproducteurs d'automne. La L_{50} a été estimée à 25,46 cm de longueur à la fourche
Figure 40. Âge à 50 % de maturité (A ₅₀) par cohorte dans la division 4R de l'OPANO pour les reproducteurs d'automne
Figure 41. Ogive de maturité (ligne bleue) en fonction de l'âge pour la cohorte 2017 des reproducteurs d'automne. La A ₅₀ a été estimée à 5,29 ans
Figure 42. Longueur totale (mm) pour les âges 2 à 11+ des reproducteurs d'automne dans la division 4R de l'OPANO de 1965 à 202179
Figure 43. Poids total (g) pour les âges 2 à 11+ des reproducteurs d'automne dans la division 4R de l'OPANO de 1965 à 202180
Figure 44. Indice de condition relative standardisé (avec un intervalle de confiance de 95 %) pour le hareng reproducteur d'automne dans la division 4R de l'OPANO de 1970 à 202181
Figure 45. Indice cumulé de productivité du stock basé sur la somme (point blanc) des anomalies annuelles normalisées des principaux indicateurs de productivité du stock (indice de condition relative, longueur totale moyenne à l'âge 6 et indice de recrutement) des harengs reproducteurs d'automne dans la division 4R de l'OPANO de 1970 à 2021
Figure 46. Variabilité interannuelle des variables explicatives de l'environnement physique inclus dans le modèle additif généralisé évaluant l'effet de l'environnement sur la condition et le recrutement du hareng, moyennée pour les régions 2, 3 et 4 de l'approche écosystémique82
Figure 47 Variabilité interannuelle des variables explicatives de la productivité du phytoplancton

Figure 47. Variabilité interannuelle des variables explicatives de la productivité du phytoplancton inclus dans le modèle additif généralisé évaluant l'effet de l'environnement sur la condition et le

Figure 48. Variabilité interannuelle des variables explicatives de la productivité du zooplancton incluses dans le modèle additif généralisé évaluant l'effet de l'environnement sur la condition et le recrutement du hareng, moyennée pour les régions 2, 3 et 4 de l'approche écosystémique. 84

Figure 50. Modèles additifs généralisés (GAM) sélectionnés pour le *Kn* des hareng reproducteurs d'automne de 4 à 9 ans. A) Les *Kn* observés (cercles noirs) sont tracés par rapport aux prédictions GAM (ligne bleue) et aux intervalles de confiance à 95 % des prédictions (zone bleue ombrée), B) Contribution de chaque variable au *Kn* prédit chaque année, C) Effet de la température de surface de la mer (SST) moyenne d'août à novembre, D) Effet de l'abondance de C. finmarchicus à l'automne, E) Effet de la phénologie de C.

RÉSUMÉ

Ce document fournit les détails concernant les données et les analyses utilisées pour évaluer l'état des stocks de hareng reproducteurs de printemps et d'automne de la côte ouest de Terre-Neuve (division 4R de l'OPANO). La présente évaluation de stock a eu lieu les 1^{er} et 2 mars 2022 et fournit des avis pour les saisons de pêche 2022 et 2023. Les données et les connaissances disponibles sont insuffisantes pour évaluer quantitativement l'état de la ressource. Toutefois, les principaux résultats de cette évaluation indiquent que le maintien du total autorisé des captures (TAC) au statu quo ne devrait pas présenter de risque significatif pour les deux stocks reproducteurs de hareng de la division 4R à court terme. Les taux d'exploitation maximaux en 2020 et 2021, estimés comme étant le rapport entre le TAC et l'indice de biomasse le plus élevé estimé lors du relevé acoustique, étaient faibles (inférieurs à 15 %). L'abondance des jeunes poissons observés lors des relevés acoustiques et dans les prises commerciales de 2020 et 2021 pour les reproducteurs de printemps et d'automne est un signe encourageant pour l'avenir de ces stocks. Les débarguements sont en baisse depuis 2017, et la récente diminution de 81 % depuis 2019 peut s'expliquer par la forte incidence de poissons de taille inférieure à la taille légale, qui a empêché les pêcheurs d'atteindre leurs quotas. Après une période pendant laquelle le stock était faible dans les années 2000 et 2010, on remarque des signes d'augmentation du stock de reproducteurs de printemps depuis 2019. Cette conclusion devra être réexaminée après la révision du cadre d'évaluation en 2024-2025.

1. INTRODUCTION

Le hareng de l'Atlantique (*Clupea harengus*) est un poisson pélagique qui se déplace en bancs et qui est présent dans tout l'océan Atlantique Nord et les eaux adjacentes (Brunel et Dickey-Collas 2010). Au Canada, sa répartition s'étend des côtes de la Nouvelle-Écosse à celles du Labrador. Les stocks de hareng ont une structure complexe qui demeure largement méconnue. Chaque stock est composé d'un certain nombre de populations qui utilisent des aires temporellement et spatialement distinctes pour leur reproduction (Melvin *et al.* 2009; Stephenson *et al.* 2009). Chaque année, le hareng effectue des migrations sur de longues distances entre ses aires d'alimentation, de reproduction et d'hivernage. Au cours de ces migrations, différentes populations, soit du même stock, soit des stocks adjacents, se mélangent pendant la période d'alimentation et d'hivernage, mais se séparent à nouveau en leurs composantes individuelles pendant la saison de fraie. Les mêmes harengs reviennent aux mêmes sites de fraie année après année. Ce phénomène de « homing » est attribué à un comportement d'apprentissage avec le recrutement des jeunes classes d'âge dans une population (McQuinn 1997).

Dans de nombreux écosystèmes de l'Atlantique nord-ouest, les populations de hareng sont caractérisées par la présence de deux groupes ou stocks reproducteurs (Melvin *et al.* 2009). Les reproducteurs de printemps (RP) frayent généralement en avril et mai, et les reproducteurs d'automne (RA), en août et septembre. Historiquement, les régions plus au sud étaient dominées par les RA et les régions du nord, par les RP, bien que les tendances des deux composantes reproductrices aient varié au fil du temps (Melvin *et al.* 2009). Sur la côte ouest de Terre-Neuve (division 4R de l'OPANO; Figure 1A), les SS et FS sont considérés comme des stocks distincts et sont évalués séparément. Des études génétiques récentes ont confirmé la différenciation génétique entre ces deux groupes reproducteurs (Lamichhaney *et al.* 2017, Chen *et al.* 2021).

Dans la division 4R de l'OPANO, la pêche du hareng est gérée par un total admissible des captures (TAC) sans distinction entre les deux stocks reproducteurs. Le TAC actuel de 20 000 t a été établi sur la base d'un avis scientifique au début des années 2000 (MPO 2003). Le TAC est subdivisé en trois catégories d'allocation : les engins mobiles (senne bourse) de plus de 19,8 m (55 % du TAC : 11 000 t), les engins mobiles de moins de 19,8 m (22 % du TAC : 4 400 t) et les engins fixes, dont la senne-barrage modifiée appelée senne « tuck » (23 % du TAC : 4 600 t). La pêche aux engins mobiles de plus de 19.8 m fonctionne selon un régime de quotas individuels transférables (QIT), tandis que celle aux engins mobiles de moins de 19,8 m fonctionne selon un régime de quotas individuels (QI). La pêche aux engins fixes est entièrement concurrentielle avec des quotas distincts pour les zones de pêche du hareng 13 et 14 (Figure 1B). Le stock de hareng de la division 4R sert également à la pêche de poissonappât dans laquelle les pêcheurs sont autorisés à utiliser des filets maillants pour capturer des harengs destinés à être utilisés dans des pêches commerciales qui nécessitent des appâts comme le homard et le crabe des neiges. Depuis 2018, une allocation annuelle de 50 t pour la pêche de poissons-appâts a été prélevée dans l'allocation pour les engins fixes. Jusqu'en 2017, la limite de taille minimale pour le hareng était fixée à une longueur à la fourche de 26,5 cm, alors qu'un maximum de 10 % de harengs inférieurs à la taille légale (en nombre) par sortie de pêche était autorisé. En 2017 et 2018, la limite de taille minimale du hareng a été abaissée à 24,76 cm après une mise à jour de la longueur moyenne à 50 % de maturité, et la tolérance pour les poissons inférieurs à la taille légale a été portée à 20 % (MPO 2018).

Une première série de relevés acoustiques a été réalisée à l'automne (octobre et novembre) entre 1991 et 2002 dans la division 4R afin d'obtenir une estimation de l'abondance du hareng. Une deuxième série de relevés a été lancée à l'automne 2009 et s'est poursuivie jusqu'en 2021. L'objectif de ces relevés était d'estimer l'abondance des RP et des RA lorsqu'ils se rassemblent près de la côte pour se nourrir avant d'entamer leur migration vers les zones d'hivernage. Un relevé acoustique estival (août) a également été effectué depuis 2019 afin de cibler les agrégations de RA pendant leur saison de fraie. Les données recueillies lors de ces relevés ont été utilisées pour calculer les indices de biomasse pour les deux stocks reproducteurs. Ces indices de biomasse sont, avec les données de la pêche commerciale, la principale source d'information utilisée pour évaluer l'état des stocks de hareng dans la division 4R. Lors de la dernière réunion d'examen scientifique par les pairs en 2020, les préoccupations liées à certains aspects de l'indice du relevé acoustique ont conduit au rejet du modèle d'évaluation (analyse de population virtuelle) comme base de l'avis scientifique, ce qui a entraîné le rejet des points de référence et de l'approche de précaution (Chamberland *et al.* 2022). Un examen du cadre d'évaluation sera effectué de 2023 à 2025.

Un examen par les pairs a été effectué du 1^e au 2 mars 2022 afin de fournir à la gestion régionale des pêches un avis sur l'état des stocks de hareng de la côte ouest de Terre-Neuve, avis publié dans le rapport d'avis scientifique qui a suivi (MPO 2022). Le présent document détaille les données et les analyses qui sous-tendent l'avis scientifique. Cela comprend l'évaluation de l'état des stocks de harengs à partir 1) des données de la pêche commerciale des saisons 2020 et 2021 (réparties par sous-division, engin et mois); 2) des indicateurs biologiques mis à jour découlant du programme d'échantillonnage commercial; 3) de la caractérisation biologique des captures du relevé de pêche au chalut de fond multispécifique mené par Pêches et Océans Canada (MPO) dans le nord du golfe du Saint-Laurent; et 4) des résultats des relevés acoustiques d'été et d'automne 2020 et 2021. Les analyses réalisées sur les effets de l'environnement sur les indices de productivité des stocks (recrutement et condition relative) sont également présentées.

2. MÉTHODES

2.1. DÉBARQUEMENTS

Les données sur la pêche commerciale du hareng atlantique dans la division 4R de l'OPANO (Figure 1A) ont été extraites en janvier 2022 des fichiers ZIFF (« Zonal Interchange File Format ») produits par le bureau régional de la statistique du MPO pour les années 2000 à 2021. Au moment de cette évaluation, les données de débarquement pour les saisons de pêche 2019 à 2021 étaient considérées comme préliminaires, car les débarquements étaient encore en cours de compilation ou de validation pour certaines pêches au hareng. Les débarquements pour la période de 1965 à 1999 ont été compilés à partir de différentes bases de données et rapports archivés (McQuinn 1987a, McQuinn et Lefebvre 1995a, McQuinn *et al.* 1999).

Les données sur les débarquements ont été regroupées par sous-division de l'OPANO (Figure 1A) et engin de pêche. Les grands senneurs sont définis comme des senneurs ayant une longueur de bâtiment supérieure ou égale à 19,8 mètres (ou 65 pi), tandis que les petits senneurs ont une longueur de bâtiment inférieure à 19,8 mètres (ou 65 pi). Les types d'engins rarement utilisés ont été regroupés sous la rubrique « autres » et comprennent la sennebarrage et la senne de rivage, la ligne à main (appâtée), la palangre, le filet maillant dérivant, la trappe non spécifiée, le chalut de fond à panneau (arrière), le chalut mésopélagique (arrière), le chalut mésopélagique (de côté) et la turlutte.

Les données de débarquement par flottille de pêche (grands et petits senneurs et engins fixes) ont été comparées aux allocations pour la période de 1985 à 2021. Des distributions de fréquences cumulées ont été utilisées pour décrire les tendances saisonnières des débarquements pour des années individuelles ou des blocs d'années pour la période de 1985 à 2021. Enfin, les répartitions spatiales annuelles des captures pour les trois types de senneurs (grands, petits et senne tuck) ont été cartographiées. Bien que les pêcheurs soient tenus d'enregistrer les informations relatives aux lieux de pêche (c.-à-d. les coordonnées géographiques), il arrive fréquemment que des données soient manquantes. Par conséquent, les données sur lesquelles les cartes ont été basées sont incomplètes et ne comprennent que les débarquements pour lesquels la latitude et la longitude ont été fournies.

Avant 2017, la pêche d'appâts au hareng n'était pas incluse dans les statistiques de débarquement, car aucune donnée antérieure à la mise en place des journaux de bord (2017) n'était disponible. De 2017 à 2019, les prises de la pêche d'appât au hareng ont été estimées à l'aide des journaux de bord retournés par les pêcheurs, bien que les taux de retour de ces journaux aient été faibles (Chamberland *et al.* 2022). Les prélèvements de harengs comme appât ont toutefois été exclus de cette évaluation, car les données des journaux de bord pour 2020 et 2021 n'avaient pas encore été compilées. Cette pêche ne contribue très probablement qu'à une petite fraction des prises totales (0,04 à 0,2 % des débarquements totaux, Chamberland *et al.* 2022).

2.2. ÉCHANTILLONNAGE COMMERCIAL ET BIOLOGIQUE

Des échantillons biologiques ont été prélevés dans les principaux ports de débarquement dans le cadre du programme d'échantillonnage commercial du MPO depuis 1965. Pour un débarquement donné, 150 harengs ont été choisis au hasard et mesurés (longueur totale) à 0,5 cm près afin d'obtenir des informations sur la fréquence des longueurs. Ensuite, un autre échantillon de 55 poissons a été sélectionné au hasard et envoyé à l'Institut Maurice-Lamontagne (IML) pour la détermination de la composante reproductrice (printemps ou automne), de la longueur totale (\pm 1 mm), de la masse totale (\pm 1 g), du sexe, de la masse des gonades (\pm 0,1 g), du stade de développement des gonades et de l'âge par extraction et examen de l'otolithe.

Le groupe reproducteur a été attribué à chaque hareng selon la méthode établie par McQuinn (1987b, 1989). Les stades de maturité des gonades 1, 2, 6 et 7 ont été déterminés par examen visuel conformément aux critères établis par Landry et McQuin (1988), alors que les stades de maturité 3, 4, 5 et 8 ont été déterminés par une analyse discriminante utilisant un indice gonadosomatique (McQuinn 1989). Les harengs immatures (stades de maturité 1 et 2) ont été assignés à une composante reproductrice selon l'examen visuel de leurs otolithes (Messieh 1972, Cleary *et al.* 1982). Les individus matures (stades de maturité 3 à 8) ont été affectés à une composante reproductrice selon le stade de maturité des gonades et le mois de capture (McQuinn 1987b).

Le poids total (W_t) et le poids des gonades (W_g) des échantillons congelés (W_{frozen}) ont été convertis en poids d'échantillons frais (W_{fresh}) au moyen des équations suivantes pour les mâles :

$$W_{t,fresh} = 1,2258 \cdot W_{t,frozen}^{0,96916}$$

 $W_{g,fresh} = 1,253 \cdot W_{g,frozen}^{0,977}$

et pour les femelles :

$$W_{t,fresh} = 1,626 \cdot W_{t,frozen}^{0,97851}$$
$$W_{g,fresh} = 1,365 \cdot W_{g,frozen}^{0,916}$$

Au besoin, la longueur à la fourche (LF) a été convertie en longueur totale (LT) comme suit :

$LT = (1,0866 \cdot LF) + 9,5632$

Enfin, la longueur totale d'échantillon congelé (LT_{frozen}) a été convertie en longueur totale d'échantillon frais (LT_{fresh}) comme suit :

$$LT_{fresh} = 1,02 \cdot LT_{frozen}$$

Seules les fréquences de longueurs de la pêche à la senne bourse (grande et petite) ont été présentées, car cet engin représente la plus grande proportion de la capture totale (~80 % de la capture totale au cours de la période 2000-2021). Les distributions de fréquences incluent les poissons de toutes les sous-divisions et de tous les mois.

Depuis 2018, des échantillons de hareng ont été recueillis dans le cadre du relevé multispécifique annuel au chalut de fond du nGSL du MPO, effectué en août, afin d'estimer la longueur et la composition par âge des poissons vulnérables à l'engin, ainsi que d'augmenter la taille d'échantillon pour les estimations de la longueur et de l'âge à la maturité. Pour tous les traits effectués dans la division 4R avec un minimum de 30 harengs, un échantillon aléatoire de 55 poissons au maximum a été congelé et envoyé à l'IML pour la détermination des caractéristiques biologiques. En 2018-2020, tous les poissons capturés dans la division 4R dont la longueur totale était inférieure à 200 mm ont également été ajoutés aux échantillons.

2.3. COMPOSITION DES CAPTURES COMMERCIALES PAR ÂGE

La composition selon l'âge des prises commerciales a été calculée à l'aide d'une application écrite en Visual Basic développée à l'IML et mise à jour pour la dernière fois en 2014. Les équations utilisées dans cette application proviennent des fonctions APL de CATCH (Rivard 1982) et sont basées sur les méthodes et les équations détaillées dans Gavaris et Gavaris (1983) et McQuinn (1987a). En bref, pour chaque année, les débarquements de la pêche commerciale ont été regroupés par mois, par sous-division de l'OPANO et par engin (ci-après appelées strates) afin d'être associés aux échantillons biologiques correspondants. Lorsqu'il n'y avait aucun échantillon biologique pour une strate donnée, les débarquements ont été appariés avec le ou les échantillons jugés les plus représentatifs. La hiérarchie suivante a été utilisée pour attribuer des échantillons biologiques aux strates dont les échantillons étaient insuffisants (McQuinn 1987a) :

- 1. Sur plusieurs mois à l'intérieur d'une sous-division et d'un trimestre (avril à juin, juillet à septembre et octobre à décembre).
- 2. Dans toutes les sous-divisions en un mois.
- 3. Sur plusieurs mois et dans toutes les sous-divisions à l'intérieur d'un trimestre.
- 4. Sur les mois et les trimestres dans la zone nord (4Ra) et la zone sud (4Rb, 4Rc, 4Rd).

Sur la base des échantillons biologiques attribués, la proportion de capture par strate, la composition par âge et le poids moyen par âge ont été calculés pour chaque composante reproductrice. La capture totale par strate pouvait donc être séparée par composante reproductrice, et transformée en capture par âge (en nombre) pour les composantes de printemps et d'automne. La capture annuelle par âge par composante reproductrice de la division 4R a été obtenue en faisant la somme de toutes les strates. Les proportions annuelles de chaque composante reproductrice dans les captures commerciales de chaque année, p_{ys} , ont été obtenues par :

$$p_{ys} = \sum_{a=1}^{A} N_{ysa} / \sum_{s}^{S} \sum_{a=1}^{A} N_{ysa}$$

où N_{ysa} est le nombre de poissons de l'âge *a* et de la composante reproductrice *s* au cours de l'année *y*.

2.4. INDICATEURS BIOLOGIQUES

2.4.1. Indice de recrutement

Un indice de recrutement relatif a été calculé pour chaque composante de reproducteurs à partir de la composition selon l'âge des prises de la pêche commerciale, fournissant une estimation approximative de la force relative par cohorte. Les nombres d'individus selon l'âge ont d'abord été convertis en proportions annuelles selon l'âge :

$$p_{ysa} = \frac{N_{ysa}}{\sum_{a=1}^{A} N_{ysa}}$$

 p_{ysa} a ensuite été normalisé ($spay_s$) en soustrayant la proportion moyenne de chaque âge \bar{p}_{sa} et en divisant par l'écart-type σ_{sa} des proportions calculées pour l'ensemble des années :

$$\bar{p}_{sa} = \frac{\sum_{y}^{Y} p_{ysa}}{Y}$$
$$\sigma_{sa} = \sqrt{\frac{\sum_{y}^{Y} (p_{ysa} - \bar{p}_{sa})^2}{Y}}$$
$$spay_s = \frac{p_{ysa} - \bar{p}_{sa}}{\sigma_{sa}}$$

L'indice de recrutement a été calculé en faisant la moyenne des proportions normalisées des âges 3 et 4 pour les années y et y + 1 respectivement, sauf pour la cohorte 2018 où seul l'âge 3 de l'année y a été utilisé. L'indice de recrutement qui en résulte a été décalé de 3 ans pour correspondre à l'année de naissance.

2.4.2. Longueur et âge à 50 % de maturité

La longueur et l'âge à maturité sont généralement considérés comme la longueur (L₅₀) et l'âge (A₅₀) auxquels 50 % des individus sont sexuellement matures. La L₅₀ et l'A₅₀ sont des indicateurs biologiques qui peuvent refléter des changements induits par la pêche dans les calendriers de maturation (Lappalainen *et al.* 2016), des changements dans les conditions environnementales, ainsi que des mécanismes dépendant de la densité tels que des augmentations ou des diminutions drastiques de la biomasse (Cardinale et Modin 1999, Coutré *et al.* 2013). La L₅₀ peut également être utilisée pour établir des tailles légales minimales dans les pêches commerciales afin d'éviter la surpêche de croissance.

La L_{50} et l'A₅₀ ont été estimées par groupe reproducteur et par année de cohorte (année de naissance). L'estimation par année de cohorte (estimations longitudinales) a été privilégiée par rapport à l'année (estimations transversales), car le calendrier de maturation reflète les conditions vécues par les cohortes (Enberg *et al.* 2012), et parce que les résultats sont utilisés comme indice biologique (et non dans un modèle d'évaluation de stock). Toutes les données biologiques disponibles (débarquements commerciaux, relevé acoustique – voir section 2.5 et relevé de pêche au chalut de fond dans le nGSL, ci-après appelés échantillons commerciaux et de recherche) ont été utilisées dans les calculs. En raison des problèmes liés à l'incidence élevée de harengs trop petits ces dernières années, une demande a été déposée à la Direction des sciences afin de déterminer la valeur L_{50} actuelle des stocks de harengs RP et RA. Ces

valeurs L_{50} ont également été comparées à la limite de taille commerciale. La L_{50} a été exprimée en longueur à la fourche en centimètres pour faciliter la comparaison avec la limite de taille légale.

Une ogive de maturité par composante de reproducteurs et année de cohorte a d'abord été estimée à l'aide d'un modèle linéaire généralisé (GLM) avec une distribution d'erreur binomiale et une fonction de lien logit, avec le stade de maturité (mature ou immature) comme variable de réponse et la longueur ou l'âge comme variable explicative. Le mois de capture a également été inclus comme variable explicative dans l'estimation de L_{50} afin de corriger pour la croissance saisonnière. Le mois de capture n'a toutefois pas été pris en compte pour les RP en raison de la quantité insuffisante de juvéniles dans les échantillons biologiques. Les GLM ont ensuite été utilisés pour prédire les valeurs L_{50} et A_{50} de chaque cohorte des deux composantes de reproducteurs. La L_{50} des RA a été calculée comme étant la L_{50} prévue en novembre.

Pour tenir compte de la maturation du hareng juvénile tout au long de l'année de sa première reproduction, l'âge a été calculé en utilisant le mois de capture avec les équations suivantes :

$$a'_{SS} = \frac{8 + (mcapt - 1) + (a - 1) \cdot 12}{12}$$
$$a'_{FS} = \frac{5 + (mcapt - 1) + (a - 1) \cdot 12}{12}$$

Où a'_{SS} et a'_{FS} sont respectivement les âges des RP et des RA utilisés dans les modèles GLM, mcapt est le mois de capture et a est l'âge déterminé par la lecture de l'otolithe. Ce faisant, on a supposé que tous les RP et RA avaient éclos le 1^e mai et le 1^e août respectivement.

Pour les RP, A_{50} n'a pas pu être estimée pour certaines cohortes en raison du nombre insuffisant de harengs immatures dans les échantillons. Par conséquent, pour chaque cohorte, les données des deux cohortes voisines ont été incluses afin d'obtenir des tailles d'échantillon suffisantes. Les intervalles de confiance à 95 % entourant L_{50} et A_{50} ont été obtenus par la méthode bootstrap (nombre d'itérations = 999). Pour chaque réplicat ou échantillon généré, un GLM a été ajusté et utilisé pour estimer les valeurs L_{50} et A_{50} . Les intervalles de confiance ont été obtenus en calculant les quantiles à 2,5 % et 97,5 % des valeurs L_{50} et A_{50} simulées. Les cohortes dont le nombre total de juvéniles était inférieur à cinq (y compris les données de deux cohortes voisines) ont été exclues de l'analyse.

2.4.3. Longueur et poids selon l'âge

La longueur et le poids selon l'âge ont été estimés en ajustant un GLM par composante de reproducteurs et classe d'âge, avec une distribution gaussienne de l'erreur et une fonction de lien d'identité. Pour tenir compte de la variabilité temporelle et spatiale et des engins de pêche dans les échantillons, les longueurs et les poids selon l'âge ont été standardisés en incluant la sous-division de l'OPANO, le mois de capture et l'engin de pêche comme variables explicatives dans les modèles. Pour les RP, les longueurs et les poids selon l'âge standardisés ont été produits en utilisant les valeurs prédites par les GLM pour les niveaux suivants des facteurs de standardisation : sous-division 4Rd de l'OPANO, mois d'août et petites senneurs (navires de moins de 65 pi). Pour les RA, les niveaux de référence étaient la sous-division 4Ra de l'OPANO, le mois de novembre et les petites senneurs. Ces niveaux de référence ont été choisis pour maximiser le nombre d'années de longueur et de poids à l'âge qui peuvent être prédites. Les intervalles de confiance à 95 % entourant les longueurs et les poids selon l'âge ont été calculés à l'aide de la fonction *interval* de la bibliothèque *HH* (Heiberger 2020) du logiciel R (R Core Team 2021). Les longueurs et les poids moyens selon l'âge ont été estimés

en utilisant toutes les données biologiques disponibles (échantillons commerciaux et de recherche).

2.4.4. Indice de condition relative

L'indice de condition relative Kn de Le Cren (1951) a été estimé séparément pour les harengs RP et RA à l'aide de la formule suivante :

$$Kn = \frac{W}{aL^b}$$

où W est le poids somatique (g), L la longueur totale (mm) et a et b les paramètres de la relation logarithmique poids-longueur. Les valeurs de Kn < 1 indiquent que le poids du poisson est inférieur à la moyenne des poissons de même longueur. Kn a été standardisé pour tenir compte de la variabilité saisonnière et spatiale et de l'engin entre les échantillons. Pour ce faire, un GLM avec une structure d'erreur gaussienne et une fonction de lien d'identité, avec la sousdivision de l'OPANO, le mois de capture et l'engin de pêche comme variables indépendantes, a été ajusté aux données Kn de chaque composante de reproducteurs. Pour les RP, les Knstandardisés ont été produits en utilisant les valeurs prédites par les GLM pour les niveaux suivants des facteurs de standardisation : sous-division 4Rd de l'OPANO, août et petits senneurs. Pour les RA, les niveaux de référence étaient la sous-division 4Ra de l'OPANO, le mois de novembre et les petits senneurs. Seuls les poissons d'âge 4 à 9 ont été pris en compte dans l'estimation de Kn. Le Kn des RP et des RA d'âge 4 à 9 a varié de manière similaire sur l'ensemble de la série chronologique et a donc fait l'objet d'une moyenne annuelle pour chacune des deux composantes de reproducteurs. Les intervalles de confiance à 95 % entourant les valeurs prédites de Kn ont été calculés à l'aide de la fonction interval de la bibliothèque HH du logiciel R.

2.4.5. Indice cumulé de productivité du stock

Un indice cumulatif combinant trois indicateurs de productivité du stock a été développé pour intégrer les données disponibles sur les deux composantes reproductrices de hareng de la côte ouest de Terre-Neuve et pour décrire leurs tendances temporelles respectives en matière de productivité. Trois indicateurs annuels ont été inclus : l'indice de recrutement (1970 à 2018; voir section 2.4.1), la longueur totale moyenne à l'âge 6 (1970 à 2021; voir section 2.4.3) et l'indice de condition relative (1970 à 2021; voir section 2.4.4). Chaque indicateur a été transformé en anomalies normalisées en soustrayant la moyenne de la série et en divisant par l'écart-type de la série. L'indice de productivité a été défini comme la somme des anomalies annuelles normalisées.

Chaque indicateur représente différents aspects de la productivité. L'indice de recrutement a été considéré comme une approximation du moment où les pics annuels de recrutement auraient pu se produire, mais il ne peut pas être utilisé pour détecter les tendances à long terme. Les variations de la longueur moyenne à l'âge 6 ont été interprétées comme une approximation des changements à long terme des taux de croissance individuels. La croissance individuelle est souvent liée à d'autres indices vitaux, notamment la survie et la fécondité, et peut être influencée par la densité de population, la disponibilité des proies, le risque de prédation et la température (Smoliński 2019; Becker *et al.* 2020). La condition est un attribut particulièrement important de chaque poisson qui peut affecter la productivité du stock par son influence sur la croissance, la reproduction et la survie (ICES 2017). La condition d'un poisson représente les circonstances physiques et biologiques qu'il a rencontrées au cours d'une période antérieure et est influencée par les interactions entre la disponibilité de la nourriture, les

caractéristiques de l'environnement et de l'habitat et la physiologie de l'individu (p. ex., état de reproduction, hivernage).

2.5. RELEVÉ ACOUSTIQUE

Une première série de relevés acoustiques au large de la côte ouest de Terre-Neuve, visant à estimer la biomasse de harengs pendant la pêche commerciale d'automne ciblant les agrégations préhivernage, a été réalisée en octobre et novembre 1991, 1993, 1995, 1997, 1999 et en septembre 2002. Une deuxième série de relevés a débuté à l'automne 2009, suivant les recommandations du Conseil pour la conservation des ressources halieutiques (CCRH 2009), et a été réalisée en octobre et novembre 2009, 2010, 2011, 2013, 2015, 2017, 2019, 2020 et 2021. Ce relevé couvre une zone plus étendue puisqu'il inclut toujours les strates septentrionales (sous division 4Ra), qui étaient auparavant parfois omises, ainsi que la Basse-Côte-Nord du Québec (sous division 4Sw, non incluse dans cette évaluation). En 2019, 2020 et 2021, des relevés acoustiques ont été effectués en août en plus du relevé d'automne afin de cibler les agrégations de RA pendant leur saison de reproduction. Les détails et les résultats de la première série de relevés acoustiques (1991-2002) sont présentés dans McQuinn et Lefebvre (1999), Beaulieu *et al.* (2010) ainsi que dans l'annexe A, et ne seront pas abordés plus longuement. Les sections suivantes décrivent la méthodologie utilisée pour les relevés de 2009 à 2021.

2.5.1. Plan du relevé

Le relevé couvrait toute la côte ouest de Terre-Neuve, du cap Anguille jusqu'à la partie sud du détroit de Belle Isle, couvrant généralement les isobathes de 20 m à 60 m. La zone d'étude a été stratifiée (strates 1 à 10, BN) en fonction des principales caractéristiques physiques de l'environnement, de la répartition spatiale des captures commerciales et de la répartition de la population telle qu'observée dans les relevés antérieurs (McQuinn et Lefebvre 1999) (Figure 2). En 2019, deux nouvelles strates ont été ajoutées sur les côtés nord et sud du détroit de Belle Isle (strates BI1 et BI2, voir la Figure 2), qui est considéré comme une zone importante pour l'alimentation estivale et automnale du hareng (Moores et Winters 1984; McQuinn et Lefebvre 1995b). Les transects effectués par le navire hydroacoustique étaient parallèles, équidistants et orientés perpendiculairement à la côte dans chaque strate (Figure 2). La distance entre les transects a varié chaque année pour des raisons logistiques. Pour chaque relevé, le premier transect de chaque strate a été placé au hasard. Le nombre total de transects pour toutes les strates a été déterminé sur la base du temps alloué au navire moins 30 %. comme marge en cas de mauvais temps et de pannes mécaniques. On a néanmoins constaté une variation entre les années du nombre de transects par strate (Figure A51). Les transects ont été effectués la nuit seulement (entre 17 h et 7 h) en raison du comportement diurne du hareng qui migre généralement du fond la nuit, ce qui permet de mieux le distinguer des échos du fond et de réduire le problème de la « zone aveugle » (Mitson 1983, McQuinn et Lefebvre 1999).

2.5.2. Acquisition et analyse des données acoustiques

De 2009 à 2020, un échosondeur EK60 de Simrad (Kongsberg Maritime AS, Horten, Norway) a été utilisé pour transmettre et recueillir les signaux acoustiques. Jusqu'à cinq fréquences (38, 70, 120, 200 et 333 kHz) ont été utilisées simultanément, selon le navire effectuant le relevé (Tableau A17). Toutes les données ont été enregistrées en temps réel sur un ordinateur à l'aide du logiciel ER60 de Simrad. En 2021, on a utilisé l'échosondeur plus perfectionné Simrad EK80, fonctionnant simultanément à trois fréquences (38, 120 et 200 kHz). Des expériences en laboratoire et sur le terrain ont confirmé que les appareils EK60 et EK80 fournissent des

mesures de coefficients de rétrodiffusion similaires (Demer *et al.* 2017; Macaulay *et al.* 2018). Par conséquent, le passage de l'appareil EK60 à l'appareil EK80 ne devrait pas entraîner de changement significatif dans l'estimation de la biomasse de la série chronologique du relevé. L'échosondeur a été étalonné chaque année avant le relevé au moyen de la méthode de cible ou sphère standard (Demer *et al.* 2015).

Pour les relevés de 2009 à 2020, les données acoustiques ont été transformées en format HAC (HydroACoustics; McQuinn *et al.* 2005) au moyen du ER60. Les fichiers HAC ont par la suite été examinés et intégrés dans des cellules de 2 m (profondeur) par 25 m (distance horizontale) à l'aide du logiciel CH2 conçu à l'IML (Simard *et al.* 2000). Pour les relevés de 2021, l'analyse des données acoustiques a été réalisée avec Echoview 12 (Myriax Pty, Ltd., Hobart, Tasmanie, Australie) et le logiciel R (version 4.0.2) avec RStudio (version 1.3.1056, RStudio Team 2020). Les échogrammes ont été examinés de la même manière, puis intégrés dans des cellules de 2 m (profondeur) sur 25 m (distance horizontale) sous forme de fichiers .csv. Les fichiers exportés ont été transformés au format HEI (Hydroacoustic EchoIntergration, Simard *et al.* 2000) en utilisant R.

Les bancs ont été classés en tant que poissons à vessie natatoire en comparant l'intensité moyenne du volume de rétrodiffusion (S_V) des fréquences de 38, 120 et 200 kHz. La plupart des bancs de poissons ont été considérés comme étant des harengs, car très peu d'autres espèces de poissons à vessie natatoire étaient présentes dans la zone du relevé en automne (McQuinn et Lefebvre 1999). La conversion de la rétrodiffusion en biomasse a été réalisée en utilisant les estimations de force de cible par unité de longueur (TS_{cm}) déterminées à partir de l'équation suggérée par Foote (1987) pour les clupéidés à 38 kHz :

$$TS_{cm} = 20(\log_{10} \cdot L) - 71.9$$

où *L* est la longueur moyenne du poisson (cm), et en convertissant en force de cible par unité de poids (TS_{kg}) :

$$TS_{kg} = TS_{cm} + 10(\log_{10} W^{-1})$$

où *W* est le poids moyen du poisson en kilogrammes (McQuinn et Lefebvre 1999). Les longueurs et les poids moyens ont été calculés pour chaque transect à partir des échantillons les plus étroitement associés à chaque banc. La biomasse totale des RP et des RA a été calculée en utilisant une estimation du pourcentage du poids de chaque composante de reproducteurs correspondant à chaque échantillon. Le navire et l'engin de pêche utilisés pour recueillir les échantillons, le nombre d'échantillons ainsi que la taille de chaque échantillon varient d'un relevé à l'autre (Tableau A18). Pour certaines années, des échantillons provenant de la pêche commerciale ont été utilisés pour convertir les signaux acoustiques en biomasse en raison de l'impossibilité d'obtenir des échantillons indépendants de la pêche (p. ex., 2013, 2015, 2017 et 2020).

Les estimations de la biomasse totale et de la variance par strate ont été obtenues en suivant les équations décrites dans O'Boyle et Atkinson (1989) pour les relevés dont les longueurs de transect varient. Bien que l'application des statistiques classiques pour un plan stratifié aléatoire à un relevé stratifié systématique puisse conduire à un biais dans les estimations de la variance des strates, la variance devrait théoriquement être surestimée (Cochran 1977). Les estimations de la variance et les erreurs-types correspondantes présentées dans la section des résultats sont donc considérées comme conservatrices en ce qui concerne les données acoustiques. Il convient également de noter que la variance définie ici ne quantifie pas l'incertitude statistique des estimations de la biomasse, mais plutôt la variabilité inter-transects de l'abondance du hareng au sein de chaque strate.

La biomasse totale par composante reproductrice par strate a été transformée en nombre selon l'âge en utilisant la même méthodologie que celle utilisée pour les prises commerciales selon l'âge (voir section 2.3). L'indice d'abondance désagrégé à l'âge a ensuite été obtenu en faisant la somme de toutes les strates couvertes par le relevé au cours d'une année donnée. Cependant, certaines strates n'ont pas été couvertes chaque année et les estimations de la biomasse du relevé sont limitées à celles qui l'ont été, ce qui entraîne une sous-estimation de la biomasse totale du stock les années pour lesquelles des strates du relevé sont manquantes (Figure A51).

2.5.3. Relevés de l'été et de l'automne 2020 et 2021

Le relevé acoustique exige l'estimation de nombres selon l'âge indépendants de la pêche commerciale et s'appuie donc sur des échantillons biologiques recueillis par un navire de pêche d'accompagnement afin d'obtenir des informations sur la composition, la longueur et le poids des bancs de hareng. Au cours de la période 2009 à 2013, le navire hydroacoustique a été accompagné d'un navire de pêche affrété (Gemini II) équipé d'une senne bourse (Tableau A18). En 2015 et 2017, en raison de l'impossibilité d'affréter un navire de pêche, la composition démographique du stock a été principalement déduite à partir des échantillons de la pêche commerciale qui présentaient la correspondance spatio-temporelle la plus proche (c.-à-d. le jour et la distance les plus proches entre le relevé et les échantillons commerciaux). La conséquence de cette lacune réside dans le fait que ces échantillons, désormais classés comme « échantillons de recherche », ont été exclus du calcul des prises selon l'âge de la pêche commerciale afin d'éviter d'induire une corrélation entre les deux sources de données. Les échantillons utilisés dans les calculs ultérieurs proviennent donc de différents types d'engins, car il n'a pas été possible de sélectionner un seul type d'engin pour remplir la condition de correspondance spatio-temporelle la plus proche (Tableau A18). Lors des relevés acoustiques de 2019 à 2021, l'affrètement d'un navire de pêche a permis la collecte d'un plus grand nombre d'échantillons indépendants de la pêche (Tableau A18). Le navire affrété était équipé d'un chalut pélagique avec une sélectivité de taille minimale (cul de chalut de 50 mm) et avait pour instruction d'échantillonner les poissons dans les zones de signaux acoustiques élevés afin de permettre un échantillonnage avec la correspondance spatio-temporelle la plus proche. Jusqu'à 100 harengs sélectionnés au hasard par trait ont été congelés in situ et envoyés à l'IML pour analyse en laboratoire.

Depuis au moins 2009, la pêche commerciale dans la division 4R, qui cible les agrégations de harengs avant l'hivernage, a généralement eu lieu plus tard dans l'année, ce qui suggère un retard potentiel dans le moment de la migration du hareng à la fin de l'automne (MPO 2018). Ce changement a entraîné un décalage temporel entre le relevé acoustique et la pêche commerciale, une déviation du plan initial du relevé acoustique (McQuinn et Lefebvre 1999, MPO 2018). En raison des contraintes logistiques associées au déploiement des petits navires de recherche du MPO plus tard en automne, trois relevés acoustiques supplémentaires ont été réalisés en août de 2019 à 2021 (ci-après appelé relevé d'été) afin de cibler les agrégations de RA dont on estime qu'elles se produisent de manière plus constante dans le temps. Ce relevé est considéré comme le début d'une nouvelle série chronologique. Les relevés acoustiques d'été ont été effectués avec le NGCC Frederick G. Creed (11-23 août 2019), le NGCC Leim (8-30 août 2020) et le navire de recherche Novus (8-18 août 2021) dans les strates définies dans le plan de relevé original ainsi que dans le détroit de Belle Isle (Figure 2), une zone où les débarquements de hareng ont augmenté au cours des dernières années.

2.6. DÉTERMINANTS ENVIRONNEMENTAUX LIÉS À LA CONDITION ET AU RECRUTEMENT

Une étude précédente examinant les liens entre le recrutement du hareng des divisions 4T et 4R et la variabilité environnementale à l'aide d'indices environnementaux multidimensionnels a indiqué que la variabilité environnementale ne semblait pas agir uniformément sur le recrutement de l'un ou l'autre des stocks ou sur leurs aroupes reproducteurs respectifs (Brosset et al. 2019). De plus, un recrutement élevé chez les RP de la division 4R était associé à des conditions plus fraîches (température, composition et phénologie des espèces de zooplancton), tandis qu'un recrutement élevé chez les RA de la division 4R était associé à des conditions plus chaudes. Dans ce contexte, nous avons évalué les relations entre le recrutement, la condition corporelle et les conditions environnementales à l'aide d'indices environnementaux distincts produits dans le cadre de l'approche écosystémique du MPO du golfe du Saint-Laurent (Duplisea et al. 2020). Pour ce faire, des modèles additifs généralisés ont été utilisés pour évaluer l'effet des variations des conditions environnementales physiques (température de surface, moment du réchauffement et du refroidissement des eaux de surface) et biologiques (dynamique du bloom printanier, abondance et phénologie des principaux taxons zooplanctoniques) connues pour être mécaniquement liées au recrutement et à la croissance des petites espèces de poissons pélagiques (Brosset et al. 2019, Ljungström et al. 2020). Calanus spp. et Pseudocalanus spp. sont des taxons importants en raison de leur rôle majeur dans l'alimentation des larves de harengs, des juvéniles et des adultes (voir Darbyson et al. 2003, Wilson et al. 2018).

L'hypothèse avancée était que la condition corporelle des deux composantes reproductrices réagirait positivement à des conditions plus chaudes et à une apparition plus précoce du plancton, ainsi qu'à une plus grande disponibilité des proies préférées ou importantes. De même, une autre hypothèse était que le recrutement devait être favorisé dans des conditions propices à une croissance plus rapide (et à une meilleure survie) des larves de hareng.

2.6.1. Indices environnementaux

Les indices environnementaux ont été extraits de la matrice écosystémique du GSL (Duplisea *et al.* 2020). Ils ont été choisis en fonction de leur rôle potentiel dans le succès de l'alimentation, le gain d'énergie nette et le recrutement du hareng. Les variables explicatives ont été classées en trois catégories : (1) indices physiques, (2) indices de la dynamique du bloom printanier et (3) indices d'abondance et de phénologie des principaux taxons zooplanctoniques (Tableau 1).

Les indices physiques (1982-2021) étaient la température de surface de la mer (SST), la semaine de l'année où la SST se réchauffe jusqu'à 10 °C, la semaine de l'année où la SST se refroidit jusqu'à 10 °C et le dernier jour de glace. Pour chaque composante reproductrice, la SST du mois utilisé pour standardiser le *Kn* ou la moyenne des mois entre la fraie et le mois utilisé pour standardiser le Kn ont été prises en compte dans les analyses. Ainsi, pour la composante des RP, la SST en août et la SST moyenne de mai à août ont été considérées, tandis que la SST en novembre et la moyenne d'août à novembre ont été prises en compte pour le stock de hareng RA. Les indices de la dynamique du bloom printanier (1998-2019) comprenaient la date du début et la durée du bloom. Les indices zooplanctoniques (2001-2019) comprenaient l'abondance de C. finmarchicus, C. hyperboreus, Pseudocalanus spp. et des petits calanoïdes (dominés par Pseudocalanus spp.) au début de l'été et en automne, la phénologie (rapport entre les stades C1-C4 et les autres copépodites) de C. finmarchicus au début de l'été et en automne et la phénologie de C. hyperboreus (rapport de C4 sur C1-C4) au début de l'été (utilisé pour les RP uniquement). L'abondance et la phénologie de C. hyperboreus n'ont pas été considérées comme des variables explicatives du recrutement, car il est peu probable qu'il soit une proie des larves de hareng. Le rapport entre l'abondance

des grands calanoïdes sur les petits calanoïdes a été utilisé pour refléter les changements dans la taille moyenne des taxons zooplanctoniques servant de proies.

Tous les indices environnementaux énumérés ci-dessus ont été extraits pour les régions 2 (Mécatina), 3 (Centre) et 4 (Nord-Est) de l'approche écosystémique qui correspondent à la division 4R, et la moyenne annuelle des indices a été pondérée par la superficie de chaque région (Duplisea *et al.* 2020).

2.6.2. Modèles additifs généralisés (GAM)

L'effet de l'environnement sur la variabilité interannuelle de Kn a été évalué avec des modèles additifs généralisés (GAM) en supposant une distribution d'erreur gamma. Des GAM quantiles (Fasiolo *et al.* 2021) ont été appliqués pour vérifier l'effet de l'environnement sur le recrutement en utilisant les quantiles 0,5 et 0,75 en raison de la grande variabilité des données de recrutement. Une approche progressive a été adoptée lors de l'examen des variables explicatives environnementales des différentes catégories :

- 1. les indices physiques représentant la série chronologique la plus longue (1982 à 2021)
- 2. les indices physiques et du bloom printanier (1999-2019)
- 3. les indices physiques, du bloom printanier et de zooplancton correspondant à la série chronologique la plus courte (2001-2019).

Les corrélations et les relations entre les variables explicatives ont été vérifiées et les variables explicatives corrélées (r > 0,6) n'ont pas été incluses dans les mêmes modèles. Les observations aberrantes ont fait l'objet d'un diagramme par points. Tous les modèles testés prenaient en compte un maximum de trois variables prédictives afin de minimiser le potentiel de sur-ajustement et ont été classés en fonction de leur critère d'information d'Akaike corrigé pour les échantillons de petite taille (AICc). La dimension de base (k) a été fixée à un maximum de trois pour éviter les relations multimodales. Le variance expliquée (R^2) entre les prédictions et les observations et la déviance expliquée ont été calculés et chaque modèle a été évalué en utilisant une simulation bootstrap et une validation croisée de type « jackknife ».

La simulation bootstrap a consisté à rééchantillonner les prédicteurs et à réajuster le modèle 1 000 fois. La variance expliquée a été calculée pour chaque itération et la variance expliquée par le modèle a été comparée à la distribution de la variance expliquée obtenue dans les simulations bootstrap. Les modèles ont été retenus si leur variance expliquée respective était supérieure au seuil du 95^e centile des ensembles de données simulés. Chaque modèle a également été testé en utilisant une procédure jackknife. Pour chaque modèle, une année à la fois a été supprimée, le modèle a été réajusté et la valeur a été prédite. Les valeurs prédites ont ensuite été comparées aux valeurs observées en calculant le coefficient de corrélation de Pearson (r). Le modèle final sélectionné présentait l'AICc le plus faible ($\Delta < 2$), le R² le plus élevé ($\Delta < 0.05$), était significatif (< 0.05) dans les simulations bootstrap (c'est-à-dire que la déviance expliquée du modèle était supérieure au 95^e centile de la distribution de la déviance expliquée obtenue dans les simulations bootstrap), et était robuste à l'égard des années manquantes (jackknife $R^2 \Delta < 0,1$). Lorsque deux modèles présentaient des performances semblables pour tous les indicateurs, le modèle le plus parcimonieux a été sélectionné. Les résidus du modèle ont été inspectés pour vérifier l'autocorrélation temporelle à l'aide de la fonction acf de R. Toutes les analyses ont été effectuées dans R version 4.0.2, les GAM ont été ajustés à l'aide de la librairie mgcv (Wood 2017) et les GAM quantiles ont été calculés à l'aide de la librairie *qqam* (Fasiolo *et al.* 2021).

3. RÉSULTATS ET DISCUSSION

3.1. DÉBARQUEMENTS

Au cours des années 1980 et 1990, les débarquements de hareng atlantique sur la côte ouest de Terre-Neuve étaient variables et s'élevaient en moyenne à 15 405 t par année, avec un maximum de 26 437 t en 1991 et un minimum de 8 164 t en 1990 (Tableau 2, Figure 3). Les débarquements ont augmenté lentement, mais régulièrement entre 2000 et 2008 et se sont stabilisés à environ 20 000 tonnes jusqu'en 2016, limités par le TAC pour ces années. Les débarquements n'ont pas atteint le TAC depuis 2017 et ont totalisé 4 863 t en 2020 et 3 075 t en 2021 (données préliminaires, Tableau 2, Figure 3). En 2020, les pêcheurs de la division 4R ont déclaré qu'une quantité importante de harengs inférieurs à la taille légale de 24,76 cm avait entravé leur capacité à récolter le quota disponible, ce qui a continué à poser problème pour la saison de pêche 2021. Depuis 2012, la plupart des débarquements ont été déclarés comme provenant de la sous-division 4Rb de l'OPANO, sauf en 2020 et 2021, où la plupart des débarquements ont été déclarés comme provenant des sous-divisions 4Ra et 4Rc, respectivement (Tableau 2, Figure 3).

La majorité du hareng a été débarquée par la flotte des grands senneurs (Tableau 3, Figure 4). En 2020 et 2021, les grands senneurs ont débarqué respectivement seulement 1 198 t et 2 044 t (données préliminaires), soit moins que la moyenne de 9 651 t de 1966 à 2019 (Tableau 3). Les petits senneurs ont débarqué moins de biomasse en 2021 (110 t) qu'en 2020 (1 148 t), alors que la moyenne de 1990-2019 (aucun débarquement avant 1990) était de 3 580 t (Tableau 3, Figure 4). La biomasse débarquée avec la senne tuck s'est élevée à 2 215 t en 2020 et à 749 t en 2021, alors que les autres engins fixes (filet maillant et trappe) ont débarqué 302 t et 172 t en 2020 et 2021 respectivement (Tableau 3). En 2020, moins du quart des quotas alloués aux petits et grands senneurs ont été capturés (Figure 5). En 2021, moins de 20 % du quota des grands senneurs a été capturé, tandis que les petits senneurs et les engins fixes ont débarqué moins de 5 % de leur quota (Figure 5).

Les activités de pêche de printemps des flottes de navires à grande et petite senne bourse ont diminué à la fin des années 1990 suite à la mise en place de mesures de gestion visant à protéger les principales frayères de la composante RP (MPO 2017). Depuis lors, ces activités, ainsi que la pêche à la senne tuck, sont principalement pratiquées à l'automne (Figure 6). Les débarquements cumulés des grands et petits navires à senne bourse indiquent que ces pêches commencent et se poursuivent plus tard depuis les années 2010, sauf en 2021 où les débarquements des grands et petits senneurs ont principalement eu lieu avant le 1^{er} juillet (Figures 6 et 7). Les débarquements de la flotte à engins fixes se produisent généralement tout au long de la saison, mais la saison 2020 a connu le début le plus lent depuis 2010, les débarquements se produisant principalement en novembre et en décembre (Figure 7).

Les débarquements des grands et petits senneurs sont concentrés près de la côte et dans les grandes baies, principalement dans les portions sud et médiane de 4R (Bonne Baie (4Rb), Baie des Îles (4Rc), baie de Port au Port (4Rc) et baie St. George (4Rd); Tableau 4, Figures 8-9). Les débarquements par la senne tuck ont commencé en 2005 dans la sous-division 4Ra et Bonne Baie (Tableau 4, Figure 10). Ils se sont ensuite étendus aux grandes baies situées plus au sud (la saisie des coordonnées de pêche est incomplète pour 2020 et 2021). La proportion des valeurs de coordonnées géographiques manquantes dans les données ZIFF était inférieure à 20 % et souvent nulle pour les grands senneurs jusqu'en 2019, et comprise entre 25 % et 63 % pour les petits senneurs au début des années 2000, pour ensuite descendre en dessous de 10 % jusqu'en 2015, année où le pourcentage a de nouveau augmenté (Figure 11). Les données relatives à la senne tuck présentent le plus grand nombre de coordonnées manquantes, les pourcentages diminuant de 2005 à 2016, mais augmentant récemment pour

atteindre 100 % en 2021. L'occurrence élevée de valeurs manquantes en 2020 et 2021 est probablement due au fait que ces données étaient encore préliminaires. L'interprétation de la répartition spatiale des débarquements de senne tuck en 2020 et 2021, et dans une moindre mesure de la flotte des grands et petits senneurs, est donc incertaine.

3.2. ÉCHANTILLONNAGE COMMERCIAL ET BIOLOGIQUE

Les échantillons commerciaux de hareng atlantique ont généralement été prélevés selon la répartition des pêches dans l'espace et dans le temps (Tableau 5). En 2020, les échantillons n'ont été collectés qu'à l'automne et la plupart d'entre eux provenaient de la pêche plus importante aux engins mobiles. En 2021, aucun échantillon n'a été prélevé dans le cadre de la pêche aux engins fixes au printemps et à l'automne, et seuls quatre échantillons (trois au printemps et un à l'automne) ont été prélevés dans le cadre de la pêche aux engins mobiles. Le nombre d'échantillons prélevés en 2021 était faible en raison des très faibles débarquements des pêches à la petite senne bourse et à la senne tuck (Tableau 3). Les échantillons prélevés en 2020 l'ont été dans les sous-divisions 4Ra et 4Rb de l'OPANO, tandis que ceux prélevés en 2021 l'ont été dans les sous-divisions 4Ra, 4Rb et 4Rc (Tableau 5).

Les distributions des fréquences de longueur des harengs RP et RA capturés par la flotte de petits et grands navires à senne bourse sont présentées dans la Figure 12. Les distributions des fréquences de longueur des deux composantes de reproducteurs sont caractérisées par la présence de modes proéminents qui sont associés à de fortes cohortes (Figure 12). Ces cohortes dominantes peuvent être suivies dans le temps à partir de l'âge 4 et pourraient être en mesure de soutenir la pêche pendant plusieurs années. Pour les RP, les fréquences de longueur entre 2006 et 2011 ont été dominées par la cohorte de 2002 (selon les lectures d'âge fondées sur les otolithes). Le mode fort le plus récent dans les fréquences de longueur entre 2015 et 2021 a été causé par la cohorte 2013, tandis que le mode à des tailles plus petites entre 2019 et 2021 a été généré par la nouvelle cohorte 2017 (Figure 12). Pour les RA, les lectures d'âge à partir des otolithes ont confirmé que le mode fort entre 2003 et 2013 était dû aux cohortes 2000 et 2001. Depuis 2013, les fréquences de longueur des RA sont dominées par la cohorte 2008 et les individus plus âgés (Figure 12). De 2019 à 2021, des individus plus petits, appartenant très probablement à la cohorte plus récente de 2016, étaient également apparents dans les fréquences de longueur.

Les cohortes fortes les plus récentes recensées dans les fréquences de longueur provenant de la pêche à la senne bourse ont également été observées dans les fréquences de longueur des échantillons recueillis lors du relevé multispécifique au chalut de fond dans le nGSL du MPO de 2018 à 2021 (Figure 13). Pour les RP, les fréquences de longueur étaient dominées par la cohorte 2013 et, dans une moindre mesure, par la cohorte 2017 en 2020 et 2021. Pour les RA, les fréquences de longueur étaient principalement dominées par les individus plus âgés. Le mode de la cohorte 2016 était également perceptible, en particulier en 2020.

L'emplacement et la proportion des RP et des RA dans le relevé de pêche au chalut de fond multispécifique dans le nord du golfe du Saint-Laurent du MPO de 2018 à 2021 sont présentés dans la Figure 14. Les échantillons prélevés en 2018 et 2019 étaient concentrés dans la partie nord de la division OPANO 4R (sous-divisions 4Ra et 4Rb), tandis que les échantillons prélevés en 2020 et 2021 étaient mieux répartis dans l'ensemble de la zone. En moyenne, la composante de RP représentait 24,0 % et 14,8 % de tous les harengs échantillonnés en 2018 et 2019 respectivement, et ces proportions ont augmenté à 40,2 % et 48,1 % en 2020 et 2021, respectivement. En 2020 et 2021, la proportion de RP était plus élevée dans la partie sud de la division 4R de l'OPANO, tandis que les RA étaient généralement plus dominantes dans le nord (Figure 14).

3.3. RELEVÉS ACOUSTIQUES D'ÉTÉ ET D'AUTOMNE DE 2020 ET 2021

La couverture spatiale du relevé acoustique a considérablement varié pendant les années et d'une année à l'autre; le nombre de transects réalisés par strate (c.-à-d. la densité des transects) a connu une baisse générale au cours de la période de 1991 à 2021 (Figure A51). Comme en 2019, les relevés acoustiques de 2020 et 2021 ont été effectués en été (août) et en automne (octobre et novembre). Les relevés d'été ont couvert toutes les strates initiales à l'exception de la strate 1 en 2020 et des strates 2 et 8 en 2021, tandis que les relevés d'automne ont exclu les strates 4 et 8 en 2020, ainsi que les strates 7 et 8 en 2021 (voir la Figure 2 pour les noms des strates). Dans certains cas, les strates du détroit de Belle Isle ont été exclues ou n'ont été que partiellement couvertes en raison de problèmes mécaniques, de conditions météorologiques défavorables ou de contraintes de temps ou de disponibilité des navires (Figures 15 et A51).

La distribution spatiale de la biomasse du hareng pendant les relevés acoustiques de l'été et de l'automne 2020 et 2021 est illustrée dans la Figure 15. Alors qu'au cours de l'été 2020, les valeurs de biomasse les plus élevées ont été observées dans les strates 5 et 7 (baie des Îles), à l'automne 2020, les valeurs les plus élevées ont été observées dans la strate 4Sw, près de la limite méridionale de la strate Bl2 (Tableaux 7 et 8). En 2021, les valeurs de biomasse les plus élevées ont été observées dans la strate 4Sw, près de la limite méridionale de la strate Bl2 (Tableaux 7 et 8). En 2021, les valeurs de biomasse les plus élevées ont été observées dans la strate 10, Bl1, Bl2 et 4Sw) pour les relevés d'été et d'automne (Tableaux 9 et 10, Figure 15).

Les échantillons biologiques utilisés pour estimer l'indice de biomasse du relevé acoustique de 2020 et 2021 comprenaient entre 12 et 17 échantillons distincts, la taille totale des échantillons allant de 606 à 1 268 individus (Tableau A18). La plupart des échantillons ont été recueillis par un chalut pélagique affrété, bien que les relevés des étés 2020 et 2021 aient également inclus des échantillons recueillis au cours du relevé multispécifique au chalut de fond réalisé par le NGCC *Teleost*. L'indice de biomasse du relevé acoustique de l'automne 2020 comprenait également deux échantillons de la pêche commerciale, car les échantillons recueillis par le chalut pélagique affrété ne couvraient pas suffisamment l'ensemble de la zone d'étude. La prédominance des échantillons provenant de la pêche au chalut pélagique de 2019 à 2021 contraste avec les relevés des années précédentes (2009 à 2017), dans lesquelles la pêche à la senne bourse représentait environ 90 % de tous les échantillons recueillis (Tableau A18).

La proportion de RP et de RA dans les échantillons utilisés pour estimer l'indice de biomasse en 2020 et 2021, ainsi que leur distribution spatiale, sont illustrées dans la Figure 16. La proportion de RP dans ces échantillons a augmenté par rapport aux années précédentes. Dans l'ensemble, la composante RP représentait 42,4 % des harengs échantillonnés en août 2020 et 42,5 % de ceux échantillonnés en octobre et novembre 2020. En 2021, cette composante de reproducteurs comprenait respectivement 39 % et 67,4 % des individus échantillonnés au cours du relevé acoustique d'été et d'automne.

Les distributions des fréquences de longueur des composantes RP et RA utilisées dans l'estimation de l'indice acoustique d'automne 2009 à 2021, ainsi que les échantillons des relevés d'été 2019 à 2021, sont présentées dans la Figure 17. Pour les RP, la progression attendue des modes de 2009 à 2017 associée aux différentes cohortes était difficilement discernable en raison de la très faible occurrence des RP dans certains échantillons biologiques entre 2010 et 2017, où le nombre total de RP variait de 0 à 76. Cette situation a changé ces dernières années, alors que les modes observés aux environs de 200 à 225 mm et de 300 à 325 mm en 2019 sont passés aux classes de longueur de 225 à 250 et de 325 à 350 mm, respectivement, dans les relevés acoustiques d'été et d'automne 2020 et 2021 (Figure 17A). Pour les RA, le mode dominant de la distribution des fréquences de longueur de 2009 à 2017, qui se trouvait dans la catégorie de longueur 325 à 350 mm, n'a pas semblé suivre la

croissance des cohortes au fil du temps (Figure 17B). Plus récemment, cependant, le mode observé aux longueurs de 175 à 225 mm en 2019 est passé à la catégorie 250 à 275 mm en 2020 et 2021, une tendance cohérente avec la dynamique des cohortes attendue au fil du temps.

3.4. ÉVALUATION DE LA COMPOSANTE DES REPRODUCTEURS DE PRINTEMPS

3.4.1. Composition des prises commerciales selon l'âge

La proportion annuelle de RP dans les débarquements commerciaux de hareng a varié entre 25,8 % et 81,7 % au cours de la période comprise entre 1965 et 2005 (Figure 18). La proportion de RP a diminué rapidement à partir de 2005 environ et a atteint la valeur la plus basse de la série chronologique (1,6 %) en 2014. Depuis lors, la proportion de RP dans la pêche a augmenté et représentait 89,6 % des débarquements en 2021, la valeur la plus élevée de la série chronologique (Figure 18).

La composition selon l'âge des RP débarqués dans la pêche commerciale en 2020 et 2021 était caractérisée par la prédominance de la cohorte 2013 (âge 7 en 2020 et âge 8 en 2021), et dans une moindre mesure de la cohorte 2017 (âge 3 en 2020 et âge 4 en 2021) (Tableau 6, Figure 19). La cohorte 2013 représentait 39,9 % et 42,7 % de tous les débarquements de RP (en nombre) en 2020 et 2021, respectivement, tandis que la cohorte 2017 représentait 25,8 % en 2020 et 15,6 % en 2021. Le nombre estimé de poissons d'âge 2 dans la pêche commerciale en 2019 (cohorte 2017) était le plus élevé pour ce groupe d'âge depuis 1965 (Tableau 6, Figure 19). Cela peut refléter une cohorte abondante, des changements dans les mesures de gestion qui ont autorisé la prise de harengs plus petits, ou une combinaison des deux. En 2017 et 2018, la taille minimale légale a été abaissée de 26,5 cm à 24,76 cm (longueur à la fourche) à la suite d'une mise à jour de l'âge à la maturité, et le niveau de tolérance pour le débarquement de petits harengs a été augmenté de 10 % à 20 % (MPO 2018). Nous serons en mesure d'évaluer l'importance de la cohorte 2017 lors de la prochaine évaluation, lorsqu'elle aura complètement recruté à la pêche. Les autres cohortes dominantes sont celles de 1968, 1974, 1980, 1982, 1990, 1996, 1997, 1999 et 2002 (Figure 19).

3.4.2. Indice de biomasse d'après les relevés acoustiques

En 2020, l'indice de biomasse de la composante RP a été estimé à 103 564 t (IC à 95 % : \pm 9 316 t) lors du relevé d'été, tandis que la biomasse lors du relevé d'automne a été estimée à une valeur beaucoup plus faible de 7 877 t (IC à 95 % : \pm 921 t; Tableaux 7-8). En 2021, la biomasse a été estimée à 45 580 t (IC à 95 % : \pm 4 659 t) et 112 145 t (IC à 95 % : \pm 20 803 t) en été et en automne, respectivement (Tableaux 9 et 10). Le relevé acoustique de l'automne 2021 a permis d'estimer l'indice de biomasse de RP le plus élevé depuis le début des relevés (Figure 20). La proportion de RP dans les relevés acoustiques a considérablement augmenté ces dernières années (Figure 21), passant d'une moyenne de 7,3 % pour la période de 2009 à 2017 à une moyenne de 42,4 % en 2019 (été : 23,7 %, automne : 53,8 %), 44,6 % en 2020 (été : 44,8 %, automne : 40.6 %), et 51,5 % en 2021 (été : 22,9 %, automne : 75,4 %). Une prévalence récente plus élevée des RP a également été observée dans les prises commerciales (Figure 18).

Au cours du relevé d'été, 5,2 %, 25,6 % et 1,1 % de la biomasse des RP ont été observés dans le détroit de Belle Isle en 2019, 2020 et 2021 respectivement, tandis que la majorité de la biomasse (84,6 %) a été constatée dans cette même zone au cours du relevé d'automne 2021 (les relevés d'automne en 2019 et 2020 ne comprenaient pas le détroit de Belle Isle). À l'exception de 2019, une plus grande biomasse a été observée au cours du relevé d'été qu'au cours du relevé d'automne, sans tenir compte des strates du détroit de Belle Isle (Figure 20).

Toutefois, si l'on tient compte de la biomasse observée dans le détroit, une plus grande biomasse a été observée lors du relevé d'automne en 2021 également.

Bien que les changements dans la capturabilité et la couverture des relevés empêchent les comparaisons interannuelles et l'évaluation des tendances à long terme de la biomasse, les indices de biomasse estimés sont considérés comme représentant des estimations minimales de la quantité de poissons disponibles au moment du relevé. Le rapport entre la biomasse pêchée et l'indice de biomasse le plus élevé estimé au cours des relevés acoustiques a été considéré comme une approximation du taux d'exploitation maximal. En 2020 et 2021, les taux d'exploitation maximaux étaient respectivement de 1,1 % et 2,4 % (Tableau 11). Si le TAC de 20 000 t avait été atteint, les taux d'exploitation maximaux auraient été de 4,5 % en 2020 et de 15,6 % en 2021. Ces taux d'exploitation sont inférieurs aux points de référence biologiques couramment utilisés pour les espèces présentant des caractéristiques de cycle biologique similaires (p. ex., $E_{0,1}$ = 29,5 %, Turcotte *et al.* 2021).

L'indice de relevé acoustique désagrégé par âge pour les RP ne correspondait pas aux cohortes les plus dominantes observées dans les prises selon l'âge de la pêche commerciale, à l'exception de la cohorte la plus récente de 2017 (Figure 22). Cette divergence avec les prises commerciales selon l'âge pourrait s'expliquer par la faible taille des échantillons lors des relevés acoustigues pour la composante RP, la capturabilité variable dans le temps, la couverture partielle du relevé ou le changement de l'engin d'échantillonnage. Les estimations de la biomasse des RP selon les relevés acoustigues étaient principalement composées de poissons de la cohorte 2017 en 2019 (été : 65,0 %, automne : 64,0 %) et 2020 (été : 88,4 %, automne : 68,1 %) (Tableau 12, Figure 22). La cohorte 2017 a également dominé le relevé acoustique d'automne en 2021 (91,1 %), mais pas celui de l'été 2021 (23,9 %), qui a été dominé par des individus plus âgés, soit des âges 6 à 8 (68,1 %). Cette disparité pourrait s'expliquer par les échantillons utilisés pour convertir la biomasse selon les relevés acoustiques en nombre selon l'âge. En raison de la faible disponibilité d'échantillons dans les relevés acoustiques, la plupart des échantillons utilisés pour diviser la biomasse en nombre selon l'âge ont été prélevés dans le cadre du relevé multispécifique au chalut de fond dans le nGSL du MPO, qui présentait une sélectivité plus faible pour les jeunes âges et les petites longueurs que le relevé effectué au moyen du chalut pélagique (Tableau A18, Figure 23).

3.4.3. Indice de recrutement

L'indice de recrutement de la composante RP, qui représente la proportion des âges 3 et 4 dans les prises commerciales avec un décalage de 3 ans, est présenté dans la Figure 24. Cet indice fournit une estimation très approximative de la force relative des cohortes. Les cohortes importantes se sont manifestés de manière irrégulière (tous les 5 à 15 ans environ) au cours de la période de 1965 à 2021, et étaient entrecoupées de cohortes modérées à faibles. Les événements de recrutement important les plus récents ont eu lieu en 2012, 2013 et 2017. Cet indice doit cependant être interprété avec prudence, en particulier lorsqu'on le compare d'une année à l'autre, car la sélectivité des âges 3 et 4 a varié au fil du temps. Les changements apportés à la gestion de la pêche commerciale (p. ex., aucune taille minimale légale de capture avant 1985, diminution de la taille minimale légale en 2018) ont très probablement affecté la sélectivité des âges 3 et 4 dans la pêche. La diminution observée de la longueur moyenne de ces classes d'âge depuis les années 1990 pourrait également avoir réduit leur sélectivité au fil du temps (voir la section 3.4.5).

3.4.4. Longueur et âge à 50 % de maturité

La L₅₀ pour la composante RP a diminué pour les cohortes 1962 à 1993, a augmenté vers la moyenne globale (24,19 cm de longueur à la fourche) jusqu'à la cohorte 1997, et a ensuite

présenté des tendances plus variables à partir de la cohorte 1999 (Figure 25). Plus précisément, la L_{50} pour les cohortes 2000 à 2004 a varié près de la moyenne globale et a ensuite diminué en dessous de la moyenne pour les cohortes 2005 à 2012. Depuis lors, la L_{50} a augmenté, de sorte que l'estimation la plus récente disponible (cohorte 2017) était légèrement supérieure à la moyenne de la série chronologique. La L_{50} actuelle (cohorte 2017) a été estimée à 24,52 cm (longueur à la fourche), ce qui est proche de la limite de taille minimale actuelle de 24,76 cm pour la pêche commerciale (Figure 26). Il n'a pas été possible d'estimer la L_{50} pour les cohortes 1998, 2007 et 2010, car moins de 5 poissons immatures ont été échantillonnés. Les grands intervalles de confiance dans les simulations bootstrap pour certaines cohortes étaient associés à la petite taille des échantillons (Figure 25).

L'A₅₀ a diminué pour les cohortes 1961 à 2000, a augmenté au-dessus de la moyenne de la série chronologique de 3,38 ans pour les cohortes du début des années 2000, puis a diminué d'environ un an jusqu'à la cohorte 2011 (Figure 27). L'A₅₀ a augmenté depuis lors, atteignant les valeurs les plus élevées de la série pour les cohortes 2015 (4,32 ans), 2016 (4,76 ans) et 2017 (4,85 ans) (Figure 28). Les intervalles de confiance à 95 % dans les simulations bootstrap sont plus importants entre les cohortes 2004 et 2011, ce qui est lié à la petite taille des échantillons (Figure 27).

3.4.5. Longueur et poids selon l'âge

Après une augmentation entre le milieu des années 1970 et le milieu des années 1980, la longueur et le poids moyens de la composante RP sur la côte ouest de Terre-Neuve ont diminué tout au long des années 1990 et 2000 dans toutes les classes d'âge, puis sont restés relativement stables et inférieurs aux moyennes à long terme depuis le début des années 2010 (Figures 29 et 30). À l'exception de l'âge 2 (qui n'était pas bien représenté dans les échantillons), le déclin était plus important pour le poids selon l'âge que pour la longueur selon l'âge. En moyenne, la longueur selon l'âge a diminué de 4,3 % (âge 10) à 12 % (âge 4) entre 1990 et 2021, tandis que le poids moyen selon l'âge a diminué de 24,5 % (âge 10) à 40,4 % (âge 4) entre 1990 et 2021. Une diminution de la longueur moyenne et du poids selon l'âge a également été observée dans les autres composantes RP de l'Atlantique Nord-Ouest, y compris celles de la Côte-Nord du Québec (division 4S; MPO 2021a), des côtes est et sud de Terre-Neuve (division 3KLP; Bourne *et al.* 2018) et du sud du golfe du Saint-Laurent (division 4T et sous-division 4Vn; Turcotte *et al.* 2021).

3.4.6. Indice de condition relative

L'indice de condition relative (Kn) des RP était faible au début des années 1970, a commencé à augmenter à la fin des années 1970 et est resté relativement élevé jusqu'aux années 2010 (Figure 31). Depuis lors, Kn est en baisse et se situe en dessous de la moyenne de la série depuis 2014. Les valeurs minimales de 0,98 et 0,99 ont respectivement été atteintes en 2016 et 2021 pour cette composante.

3.4.7. Indice cumulé de productivité du stock

L'indice cumulé de productivité du stock suggère que la composante RP est passée d'un régime de faible productivité à un régime de forte productivité. Au cours des années 1970, les anomalies de l'indice cumulé de productivité du stock ont été majoritairement négatives (Figure 32). Après une période d'anomalies positives dans les années 1980, la productivité de la composante RP a fluctué entre des anomalies positives et négatives tout au long des années 1990. Depuis le milieu des années 2000, les anomalies sont restées majoritairement négatives, à l'exception des années au cours desquelles des événements de recrutement notables ont été observés (p. ex., 2012 et 2013). Bien qu'il y ait des signes d'augmentation

récente, cela suggère que la composante RP de la côte ouest de Terre-Neuve est dans un état de productivité plus faible (c.-à-d. croissance et condition réduites) depuis le milieu des années 2000, comme observé pour la composante RP de la division 4T et de la sousdivision 4Vn de l'OPANO (Turcotte *et al.* 2022).

3.5. ÉVALUATION DE LA COMPOSANTE DES REPRODUCTEURS D'AUTOMNE

3.5.1. Composition des prises commerciales selon l'âge

Les débarquements commerciaux de RA en 2020 et 2021 étaient principalement composés de poissons d'âge 9 et plus (Tableau 13, Figure 33). Ces groupes d'âge représentaient 60 % et 85,3 % de toutes les prises de RA en 2020 et 2021, respectivement. La dernière cohorte relativement abondante dans les activités de pêche a été observée en 2008 (âge 12 en 2020 et âge 13 en 2021). Une nouvelle cohorte (2016) semble avoir émergé dans la pêche pour les RA en 2019 (MPO 2021b). Bien que relativement abondante en 2019 et 2020 (les prises à l'âge 3 en 2019 et à l'âge 4 en 2020 étaient parmi les plus élevées de la série), cette cohorte était absente des prises en 2021 (Tableau 13, Figure 33). Les autres cohortes dominantes étaient celles de 1979, 1990, 1995, 2000 et 2001 (Figure 33).

Il est intéressant de noter que l'augmentation de la prévalence des RA entre le début des années 2000 et le milieu des années 2010 a été prédite dans une certaine mesure par Melvin et ses collaborateurs (2009) en fonction de leur modèle conceptuel de succès reproductif déterminé par l'environnement et de l'augmentation attendue des températures moyennes de l'eau. Il convient toutefois de noter que les proportions de RA dans les échantillons (Figure 18) sont représentatives des proportions dans les activités de pêche (par opposition à l'abondance relative du stock) et sont donc influencées par les mesures de gestion mises en œuvre en 1999 qui visent à protéger la composante RP, ainsi que par la sélectivité des activités de pêche.

3.5.2. Indice de biomasse d'après les relevés acoustiques

L'indice de biomasse des RA de la division 4R de l'OPANO a été estimé à 226 005 t (IC à 95 % : ± 35 507 t) lors du relevé d'été 2020, tandis que la biomasse lors du relevé d'automne a été estimée à seulement 16 283 t (IC à 95 % : ± 2 053 t) (Tableaux 7 et 8). En 2021, la biomasse a été estimée à 210 121 t (IC à 95 % : ± 36 845 t) et 43 170 t (IC à 95 % : ± 6 154 t) lors des relevés d'été et d'automne, respectivement (Tableaux 9 et 10). Le relevé acoustique de l'été 2020 a permis d'estimer l'indice de biomasse de la composante RA le plus élevé depuis le début des relevés (Figure 34). La proportion de RA dans les relevés acoustiques a augmenté progressivement de 45,1 % en 1991 à 70,4 % en 2002, est restée élevée de 2009 à 2017 (87.4 % à 98.1 %), puis a diminué à partir de 2019 (Figure 21). Les proportions de la composante RA pour les relevés d'été (55,2 % à 77,1 %) étaient cependant supérieures ou égales aux proportions estimées lors les relevés d'automne (24,6 % à 59,4 %), ce qui peut être attribué au fait que la fraie a lieu en même temps que le relevé d'été. Comme observé pour la composante RP, la biomasse des RA observée dans le détroit de Belle Isle représente une partie importante de la biomasse estimée dans l'ensemble de la zone d'étude (41 % à 48,5 %). sauf lors du relevé d'été 2019 où elle ne représentait que 8,8 % de la biomasse (Figure 34). Une biomasse plus importante de RA a été observée pendant l'été que lors des relevés d'automne, en incluant ou non la biomasse estimée dans le détroit de Belle Isle. Cependant, la différence entre la biomasse estimée lors des deux relevés (été et automne) était plus importante en 2020 et 2021 qu'en 2019.

Bien que les changements dans la capturabilité et la couverture des relevés empêchent les comparaisons interannuelles et l'évaluation des tendances à long terme de la biomasse, les indices de biomasse estimés en 2020 et en 2021 sont considérés comme représentant des

estimations minimales de la quantité de poissons disponibles au moment des relevés. Le rapport entre la biomasse pêchée et l'indice de biomasse le plus élevé estimé au cours des relevés acoustiques a été considéré comme une approximation du taux d'exploitation maximal. En 2020 et 2021, le taux d'exploitation maximal était respectivement de 1,7 % et 0,2 % (Tableau 11). Si le TAC de 20 000 t avait été atteint, le taux d'exploitation maximal aurait été de 6,8 % en 2020 et de 1,2 % en 2021. Ces taux d'exploitation sont inférieurs aux points de référence biologiques couramment utilisés pour les espèces présentant des caractéristiques de cycle biologique similaires (p. ex., $E_{0,1} = 27,4$ %, Turcotte *et al.* 2021).

L'indice de relevé désagrégé par âge pour les RA semble correspondre à certaines des cohortes dominantes antérieures présentes dans les prises selon l'âge de la pêche commerciale (p. ex., 2000, 2001 et 2008; Figures 33 et 35), mais les tendances des nombres de poissons selon l'âge dans les relevés acoustigues après 2008 sont plus incohérentes et comprennent des effets annuels pour lesquels l'abondance était élevée dans une plage d'âges (p. ex., 2010 et 2013). Les estimations de la biomasse des RA d'après les relevés acoustiques en 2020 ont été dominées par les poissons d'âge 4 de la cohorte 2016 (été : 60,5 %, automne : 52,6 %). L'indice du relevé d'été 2020, désagrégé par âge, montre le plus grand nombre de poissons d'âge 4 (cohorte 2016) depuis le début des relevés (Tableau 14 et Figure 35). Bien que cette contribution élevée de jeunes poissons puisse être une indication d'une forte cohorte 2016, sa valeur élevée pourrait être au moins partiellement associée à un changement dans la capturabilité du relevé basée sur des échantillons indépendants de la pêche commerciale. La cohorte 2016 a également dominé le relevé acoustique de l'automne 2021 (40,6 %), mais pas celui de l'été 2021 (10,4 %), qui a été dominé par les poissons d'âge 8 et plus (70,1 %). Contrairement à ce qui a été observé pour les RP, les échantillons acoustigues et les échantillons obtenus par le NGCC Teleost étaient dominés par des individus plus âgés en 2021 (Figure 36).

3.5.3. Indice de recrutement

L'indice de recrutement de la composante RA est présenté dans la Figure 37. Comme pour la composante RP, les cohortes importantes se manifestent de manière irrégulière dans les activités de pêche (tous les 3 à 16 ans environ) au cours de la période de 1965 à 2021. Les derniers événements de recrutement important ont eu lieu en 2000 et plus récemment en 2016, mais dans une bien moindre mesure. Cet indice doit toutefois être interprété avec prudence, car la sélectivité des âges 3 et 4 a très probablement diminué au fil du temps (voir explications complémentaires dans la section 3.4.3).

3.5.4. Longueur et âge à 50 % de maturité

La L_{50} pour la composante RA était stable pour les cohortes pendant les années 1960, a diminué jusqu'aux cohortes du début des années 1990, puis a augmenté vers la moyenne de la série chronologique de 24,51 cm de longueur à la fourche (Figure 38). La L_{50} varie sans démontrer de tendance autour de la moyenne à long terme depuis la cohorte 2000. La L_{50} actuelle (cohorte 2017) a été estimée à 25,46 cm (longueur à la fourche), ce qui est supérieur à la limite de taille minimale actuelle de 24,76 cm pour la pêche commerciale (Figure 39). La L_{50} pour les cohortes de 1963, 1964, 1971, 1975, 1976, 1983 et 1984 n'a pas pu être estimée pour le mois de novembre, car aucun échantillon n'était disponible pour ce mois. Les grands intervalles de confiance à 95 % lors des simulations bootstrap pour certaines cohortes entre 1972 et 1985 étaient associés à des échantillons de petite taille de poissons juvéniles.

L'A₅₀ des RP a varié entre 3,13 et 5,87 ans entre les cohortes 1961 et 2017 (Figure 40). L'A₅₀ a diminué entre les cohortes 1965 et 1981, a fluctué en dessous de la moyenne de la série chronologique de 4,08 ans jusqu'aux cohortes du milieu des années 2000, et a depuis

augmenté pour atteindre les valeurs les plus élevées de la série pour les cohortes 2015 (5,59 ans), 2016 (5,87 ans) et 2017 (5,29 ans; Figure 41). Les grands intervalles de confiance à 95 % lors des simulations bootstrap pour certaines cohortes étaient associés à des échantillons de petite taille de poissons juvéniles.

3.5.5. Longueur et poids selon l'âge

Après un déclin tout au long des années 1980 et 1990 pour toutes les classes d'âge (2 à 11+), les longueurs et les poids moyens selon l'âge de la composante RA ont continué à diminuer ou sont restés relativement stables et inférieurs à la moyenne à long terme tout au long des années 2000 et 2010 (Figures 42 et 43). Comme pour la composante RP, le déclin a été plus important pour le poids selon l'âge que pour la longueur selon l'âge, sauf pour l'âge 2 (qui n'était pas bien représenté dans les échantillons). En moyenne, la longueur selon l'âge a diminué de 3,4 % (âge 10) à 18,3 % (âge 3) entre 1990 et 2021, tandis que le poids moyen selon l'âge a diminué de 21,5 % (âge 10) à 36,7 % (âge 5). Une diminution du poids moyen selon l'âge a également été observée dans les autres composantes de RA dans l'Atlantique Nord-Ouest, dont celles de la Côte-Nord du Québec (division 4S; MPO 2021a), du sud du golfe du Saint-Laurent (division 4T et sous-division 4Vn; Turcotte *et al.* 2021), ainsi que du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy (divisions 4V, 4W et 4X; Singh *et al.* 2020).

3.5.6. Indice de condition relative

Les tendances de l'indice de condition relative (Kn) de la composante RA étaient très similaires aux observations faites pour la composante RP (Figure 44). Cependant, à tout moment de la série chronologique, la condition des RA était inférieure d'environ 0,1 point à celle des RP. Kndes RA a diminué et est inférieur à la moyenne de la série depuis 2006, et a atteint une valeur minimale de 0,92 en 2012.

3.5.7. Indice cumulé de productivité du stock

Après une période d'anomalies positives dans les années 1980, la productivité des RA a fluctué entre des anomalies positives et négatives tout au long des années 1990 et au début de l'année 2000, les fortes anomalies positives étant principalement associées à des événements de recrutement importants (p. ex., 1995, 1998 et 2000; Figure 45). La productivité de cette composante est demeurée largement négative depuis 2003, ce qui suggère que les RA de la côte ouest de Terre-Neuve ont connu une baisse de productivité au cours des deux dernières décennies.

3.6. DÉTERMINANTS ENVIRONNEMENTAUX LIÉS À LA CONDITION ET AU RECRUTEMENT

Les indices décrivant l'environnement physique et le bloom printanier ont montré de fortes variations interannuelles sans tendances claires, à l'exception de la température de la surface de la mer qui a montré une tendance au réchauffement au cours de la période étudiée (Figures 46 et 47). Les indices liés à la dynamique du zooplancton, en revanche, ont montré des tendances claires au cours de la période 2001 à 2019 (Figure 48). L'abondance des *Calanus* était généralement plus élevée au début de l'été qu'à l'automne. L'abondance de *C. finmarchicus* a diminué à l'automne au cours des années 2000, puis est restée relativement stable bien que très variable depuis, avec des pics en 2008, 2012 et 2017 (Figure 48). L'abondance de *C. hyperboreus* est restée relativement stable au cours de la période 2002 à 2019 et était plus élevée en 2003, 2009 et 2014. L'abondance de *Pseudocalanus* spp. et des petits calanoïdes ont commencé à augmenter vers 2010, ce qui a entraîné une diminution du rapport de l'abondance des grands calanoïdes sur les petits calanoïdes (Figure 48). L'indice de

phénologie de *C. finmarchicus* au début de l'été et à l'automne a augmenté au cours de la période 2001 à 2019, tandis que la phénologie de *C. hyperboreus* a varié sans tendance et a été la plus élevée au cours de la période 2004 à 2013 (Figure 48).

En ce qui concerne le Kn de la composante RP, le meilleur modèle ne prenant en compte que les indices environnementaux physiques a été rejeté, car il présentait une autocorrélation temporelle (Tableau 15). Le meilleur modèle tenant compte des indices physiques et de la dynamique du bloom printanier expliquait une variance plus faible de Kn que le 95^e percentile de la distribution de la variance expliquée par les valeurs rééchantillonnées, et il a été rejeté (Tableau 15). Le meilleur modèle prenant en compte les indices d'abondance et de phénologie du zooplancton expliquait 83 % de la variance de Kn. Le modèle était robuste face aux années manquantes, c'est-à-dire que le *r* entre les observations et les prédictions de *Kn* (0,83) obtenu avec la méthode jackknife a été jugé similaire au r^2 obtenu avec toutes les données (0.7). Selon ce modèle, le Kn des RP était plus élevé lorsque la durée du bloom phytoplanctonique printanier était plus longue, lorsque la phénologie de C. hyperboreus était plus précoce (c.-à-d. un développement plus avancé, comme l'indique une proportion plus élevée de stades CIV par rapport aux stades CI-CIV), et lorsque l'abondance de Pseudocalanus ssp. était plus faible (Figure 49). L'abondance des *Pseudocalanus* est le prédicteur qui a l'effet le plus important sur le Kn des RP (Figures 49B et 49D). Les *Pseudocalanus* sont de petits calanoïdes qui fournissent moins d'énergie par unité que les grands calanoïdes, ce qui pourrait favoriser un gain net d'énergie plus faible chez le hareng pendant les années où ces petits calanoïdes sont plus abondants (Ljungström et al. 2020). Les petits calanoïdes sont plus abondants dans le GSL depuis 2014 (Blais et al. 2019), ce qui suggère que le hareng pourrait obtenir moins d'énergie ces dernières années pour le même effort de recherche de nourriture, ce qui est cohérent avec les valeurs plus faibles de *Kn* observées ces dernières années (Figure 31).

En ce qui concerne le *Kn* de la composante RA, le meilleur modèle qui ne prend en compte que les indices physiques a montré une forte autocorrélation temporelle dans les résidus et a donc été rejeté (Tableau 15). Le meilleur modèle incluait la température de la surface de la mer moyenne d'août à novembre, l'abondance de *C. finmarchicus* à l'automne et la phénologie de *C. finmarchicus* à l'automne et expliquait 66 % de l'écart de *Kn* (Tableau 15, Figure 50). Le modèle était robuste face aux années manquantes (c.-à-d. que le *r* entre les observations et les prédictions de *Kn* (0,68) avec la procédure jackknife était similaire au *r*² obtenu avec toutes les données (0,61). La valeur de *Kn* pour la composante RA était plus élevée lorsque la température de la surface de la mer était plus froide, lorsque *C. finmarchicus* était plus abondant et lorsque la phénologie de *C. finmarchicus* se produisait plus tôt (c.-à-d. lorsque le rapport C1-C4/C1-C6 était plus faible) (Figure 50). La condition des deux composantes du stock de hareng a donc été favorisée par la forte abondance de gros copépodes calanoïdes riches en énergie, ce qui est cohérent avec les résultats obtenus pour le stock de hareng de la division 4S (MPO 2021a).

Tous les modèles ont été rejetés pour l'indice de recrutement, car la variance expliquée n'était pas supérieure au 95^e centile de la distribution de la variance expliquée obtenue dans les simulations bootstrap (Tableau 16).

4. SOURCES D'INCERTITUDE

Les changements de capturabilité du relevé acoustique représentent une source d'incertitude majeure pour l'évaluation des stocks de hareng RP et RA de la côte ouest de Terre-Neuve. Plusieurs facteurs pourraient expliquer les variations observées dans la capturabilité du relevé. Les dates du relevé (mi-octobre - début novembre) sont restées relativement constantes alors que la pêche commerciale s'est déplacée dans le temps (de fin septembre à la fin décembre),

ce qui pourrait indiquer un changement dans le comportement des poissons et la disponibilité du hareng pour le relevé. Les variations interannuelles dans l'effort d'échantillonnage acoustique et la couverture spatiale du relevé peuvent également influencer la capturabilité et ajoutent une incertitude importante à la série temporelle. Enfin, l'échantillonnage biologique utilisé pour diviser la biomasse acoustique entre les harengs RP et RA et la convertir en nombre à l'âge a été effectué avec des engins variables d'une année à l'autre. Ils provenaient parfois de la pêche commerciale ou d'autres relevés du MPO (p. ex., NGCC *Teleost*). L'utilisation d'échantillons de la pêche commerciale compromet l'indépendance statistique des échantillons acoustiques par rapport aux données de pêche et ajoute de l'incertitude aux résultats des relevés.

Le manque d'information sur la structure de la population de hareng dans le nGSL est une autre source importante d'incertitude dans cette évaluation. Dans le nGSL, le hareng est géré et évalué comme deux stocks distincts, l'un le long de la côte ouest de Terre-Neuve (division 4R) et l'autre sur la Côte-Nord du Québec (division 4S). Cependant, des études par capture-marquage-recapture et des données de pêche commerciale indiquent que des mélanges se produisent entre le stock de hareng de la division 4R et celui de l'est de la division 4S pendant leurs migrations d'alimentation et d'hivernage (Moores et Winters 1984; McQuinn et Lefebvre 1995b). Plus précisément, McQuinn et Lefebvre (1995b) soupçonnaient que le hareng ayant frayé le long de la Basse-Côte-Nord du Québec (sous-division 4Sw de l'OPANO) a ensuite été capturé le long de la côte ouest de Terre-Neuve pendant la pêche commerciale d'automne, et suggèrent que la définition de la division 4R comme unité de gestion soit révisée pour inclure la sous-division 4Sw. Toutefois, les patrons de migration et de mélange des stocks de harengs dans le nGSL sont encore mal connus. Jusqu'à ce que des données plus détaillées soient accessibles, les stocks de hareng des divisions 4R et 4S sont considérés comme des populations distinctes et évalués séparément.

5. CONCLUSION ET AVIS

Les données et les connaissances actuelles sont insuffisantes pour évaluer quantitativement l'état de la ressource. Toutefois, les données disponibles jusqu'en 2021 indiquent que le maintien du TAC au statu quo ne devrait pas présenter de risque significatif pour les deux composantes reproductrices du hareng de la division 4R à court terme. Bien que le relevé acoustique comporte des incertitudes qui nuisent à l'interprétation des tendances temporelles et des valeurs absolues de l'abondance, la biomasse calculée représente une estimation minimale de la quantité de poissons disponibles au moment du relevé. Les taux d'exploitation maximaux estimés à partir de ces biomasses et de la pêche commerciale pour 2020 et 2021 étaient faibles (inférieurs à 15 %) et inférieurs aux points de référence biologiques couramment utilisés pour les espèces présentant des caractéristiques de cycle biologique similaires (Patterson *et al.* 1992).

Après une période de faible abondance du milieu des années 2000 aux années 2010, la composante RP dans la division 4R de l'OPANO montre des signes récents d'augmentation. La proportion de RP a augmenté de manière significative depuis 2019 dans les prises commerciales et dans le relevé acoustique. Les relevés acoustiques de 2020 et 2021 ont également permis d'estimer la biomasse des RP la plus élevée depuis le début du relevé.

Les estimations de la biomasse selon le relevé acoustique en 2020 et 2021 étaient principalement composées de RP de la cohorte 2017 (âges 3 et 4) et de RA de la cohorte 2016 (âges 4 et 5). L'abondance des individus d'âge 3 et 4 dans la composante RP est la plus élevée ayant été observée depuis le début du relevé. L'abondance des jeunes poissons observée lors des relevés acoustiques de 2020 et 2021 pour les deux composantes reproductrices est un signe encourageant pour l'avenir de ces stocks. Le volume des débarquements est en baisse depuis 2017, et la récente diminution de 81 % depuis 2019 peut s'expliquer par la forte incidence de poissons de taille inférieure à la taille légale, qui a empêché les pêcheurs d'atteindre leurs quotas.

Les prises selon l'âge dans la pêche commerciale ont suivi la progression des cohortes jusqu'à l'âge 11+ pour les deux composantes reproductrices, ce qui indique une faible mortalité globale. Les prises selon l'âge étaient également dominées par les individus plus âgés (âge 9+) pour la composante RA, qui représentait la majorité des débarquements. La dominance des cohortes plus âgées dans les prises suggère que cette composante n'est pas surexploitée (Berkeley *et al.* 2004). En outre, une pression de pêche excessive aurait dû réduire la L₅₀ et l'A₅₀ au fil du temps, ce qui n'est pas le cas pour les composantes RP et RA.

Lors de la dernière réunion d'examen scientifique par les pairs en 2020, les préoccupations liées à certains aspects du relevé acoustique d'automne ont conduit au rejet du modèle d'évaluation comme base de l'avis scientifique, ce qui a entraîné le rejet des points de référence et de l'approche de précaution (MPO 2021b). Un examen du cadre d'évaluation sera effectué de 2023 à 2025.

RÉFÉRENCES CITÉES

- Becker, J. B., Cieri, M., Libby, D. A., St. Gelais, A., Sherwood, G., et Chen, Y. 2020. Temporal variability in key life history traits of Atlantic herring in the Gulf of Maine. J. Fish Biol. 97: 953-963.
- Blais, M., Galbraith, P.S., Plourde, S., Scarratt, M., Devine, L. et Lehoux, C. 2019. <u>Les</u> <u>conditions océanographiques chimiques et biologiques dans l'estuaire et le golfe du Saint-</u> <u>Laurent en 2018</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2019/059. iv + 67 pp.
- Bourne, C., Mowbray, F., Squires, B., et Koen-Alonso, M. 2018. <u>2017 Assessment of Newfoundland east and south coast Atlantic herring (*Clupea harengus*) stock complexes. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/026. v + 45 p.</u>
- Brosset, P., Doniol-Valcroze, T., Swain, D. P., Lehoux, C., Van Beveren, E., Mbaye, B. C., Emond, K., et Plourde, S. 2019. Environmental variability controls recruitment but with different drivers among spawning components in Gulf of St. Lawrence herring stocks. Fish. Oceanogr., 28: 1-17.
- Brunel, T. et Dickey-Collas, M. 2010. Effects of temperature and population density on von Bertalanffy growth parameters in Atlantic herring: a macro-ecological analysis. Mar. Ecol. Prog. Ser., 405: 15-28.
- Cardinale, M. et Modin, J. 1999. Changes in size-at-maturity of Baltic cod (*Gadus morhua*) during a period of large variations in stock size and environmental conditions. Fish. Res. 41: 285-295.
- Chamberland, J.-M., Lehoux, C., Émond, K., Vanier, C., Paquet, F., Lacroix-Lepage, C., Benoît, H.P., Van Beveren, E. et Plourde, S. 2022. <u>Les stocks de hareng Atlantique (*Clupea harengus*) sur la côte ouest de Terre-Neuve (Division 4R de l'OPANO) en 2019</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2021/076. v + 116 p.
- Chen, J., Bi, H., Pettersson, M. E., Sato, D. X., Fuentes-Pardo, A. P., Mo, C., Younis, S.,
 Wallerman, O., Jern, P., Molés, J., Gómez, A., Kleinau, G., Scheerer, P., et Andersson, L.
 2021. Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring. Commun. Biol., 4: 795.

- Cleary, L., Hunt, J., Moores, J., et Tremblay, D. 1982. Herring aging workshop, St. John's, Newfoundland, March 1982. DFO CAFSAC Res. Doc. 82/41. 10 p.
- Cochran, W. G. 1977. Sampling techniques. John Wiley and Sons. New York.
- Coutré, K., Gedamke, T., Rudders, D. B., Driggers, W. B., III, Koester, D. M. et Sulikowski, J. A. 2013. Indication of density-dependent changes in growth and maturity of the barndoor skate on Georges Bank. Mar. Coast. Fish. 5: 260-269.
- Darbyson, E., Swain, D. P., Chabot, D., et Castonguay, M. 2003. Diel variation in feeding rate and prey composition of herring and mackerel in the southern Gulf of St Lawrence. J. Fish Biol., 63: 1235-1257.
- Demer, D.A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., et al. 2015. Calibration of acoustic instruments. ICES Coop. Res. Rep. No. 326. 130 pp.
- Demer, D. A., Andersen, L. N., Bassett, C., Berger, L., Chu, D., Condiotty, J., Cutter, G. R., et al. 2017. <u>2016 USA–Norway EK80 Workshop Report: Evaluation of a wideband</u> <u>echosounder for fisheries and marine ecosystem science</u>. ICES Coop. Res. Rep. No. 336. 69 pp.
- Duplisea, D., Merette. D., Roux. M.-J., Benoit, H. B., Blais, M., Bourdages, H., Galbraith, P., et Plourde, S. 2020. Gulf of St. Lawrence ecosystem approach: gslea. R package version 0.1.
- Enberg, K., Jørgensen, C., Dunlop, E. S., Varpe, Ø., Boukal, D. S., Baulier, L., Eliassen, S., et Heino, M. 2012. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar. Ecol., 33: 1-25.
- Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R., et Goude, Y. 2021. qgam: Bayesian Nonparametric Quantile Regression Modeling in R. J. Stat. Soft., 100: 1-31. doi: 10.18637/jss.v100.i09.
- Foote, K. G. 1987. Fish target strengths for use in echo integrator surveys. J. Acoust. Soc. Am., 82: 981-987.
- CCRH. 2009. L'avenir de la pêche : Le hareng dans l'est du Canada. Rapport pour la ministre des Pêches et Océans, Ottawa, Ontario. 46 p.
- Galbraith, P.S., Chassé, J., Dumas, J., Shaw, J.-L., Caverhill, C., Lefaivre, D. et Lafleur, C. 2022. <u>Conditions océanographiques physiques dans le golfe du Saint-Laurent en 2021</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/034. iv + 85 p.
- Gavaris, S. et Gavaris, C. A. 1983. Estimation of catch at age and its variance for groundfish stocks in the Newfoundland region. In: Sampling Commercial Catches of Marine Fish and Invertebrates (eds W. G. Doubleday and D. Rivard), Can. Spec. Publ. Fish. Aquat. Sci. Department of Fisheries and Oceans, Ottawa, Canada, 66, pp. 178-182.
- Grégoire, F., Beaulieu, J.-L., et McQuinn, I. H. 2013. <u>Les stocks de hareng (*Clupea harengus harengus* L.) de la côte ouest de Terre-Neuve (Division 4R de l'OPANO) en 2011</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2012/121. iv + 70 p.
- Heiberger, R. M. 2020. <u>HH: Statistical Analysis and Data Display: Heiberger and Holland</u>. R package version 3.1-43.
- ICES. 2017. Report of the Workshop on Fish condition (WKFICON), 17-18 November 2016, Girona, Spain. ICES CM 2016/SSGIEOM:30. 35 pp.
- Lamichhaney, S., Fuentes-Pardo, A. P., Rafati, N., Ryman, N., McCracken, G. R., Bourne, C., Singh, R., Ruzzante, D. E., et Andersson, L. 2017. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc. Nat. Acad. Sci., 11: E3452-E3461.
- Landry, J. et I. H. McQuinn. 1988. Guide d'identification microscopique et macroscopique des stades de maturité sexuelle du hareng de l'Atlantique (*Clupea harengus harengus* L.). Rapp. tech. can. sci. halieut. aquat. 1655: 71 p.
- Lappalainen, A., Saks, L., Šuštar, M., Heikinheimo, O., Jürgens, K., Kokkonen, E., Kurkilahti, M., Verliin, A., et Vetemaa, M. 2016. Length at maturity as a potential indicator of fishing pressure effects on coastal pikeperch (*Sander lucioperca*) stocks in the northern Baltic Sea. Fish. Res. 174: 47-57.
- Le Cren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (*Perca flavescens*). J. Anim. Ecol. 20: 201-219.
- Légaré, B., Beaulieu, J.-L., Girard, L. et Grégoire, F. 2014. <u>Les stocks de hareng (*Clupea harengus harengus* L.) de la côte ouest de Terre-Neuve (Division 4R de l'OPANO) en 2013. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/091. v + 74 p.</u>
- Ljungström, G., Claireaux, M., Fiksen, Ø., et Jørgensen, C. 2020. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser., 636: 1-18.
- Macaulay, G. J., Scoulding, B., Ona, E., et Fässler, S. M. M. 2018. Comparisons of echointegration performance from two multiplexed echosounders. ICES J. Mar. Sci., 75: 2276-2285.
- McQuinn. I. H. 1987a. <u>Revisions to the 4R herring Catch-at-age matrices</u>. Can. Atl. Fish. Sci. Adv. Com. Res. Doc. 87/68, 23 p.
- McQuinn, I. H. 1987b. <u>New maturity cycle charts for herring stocks along the West Coast of Newfoundland (NAFO Division 4R) and the North Shore of Quebec (NAFO Division 4S)</u>. Can. Atl. Fish. Sci. Adv. Com. Res. Doc. 87/66, 11 p.
- McQuinn, I. H. 1989. Identification of spring- and autumn-spawning herring (*Clupea harengus harengus*) using maturity stages assigned from a gonadosomatic index model. Can. J. Fish. Aquat. Sci., 46: 969-980.
- McQuinn, I. H. 1997. Metapopulations and the Atlantic herring. Rev. Fish Biol. Fish., 7: 297-329.
- McQuinn, I. H. et Lefebvre, L. 1995a. <u>A review of the West Coast of Newfoundland (NAFO division 4R) herring fishery data (1973 to 1994)</u>. DFO Atl. Fish. Res. Doc. 95/56, 40p.
- McQuinn, I. H. et Lefebvre, L. 1995b. <u>Distribution, movements and size composition of spring-spawning herring in the northern Gulf of St. Lawrence</u>. DFO Atl. Fish. Res. Doc. 95/57.
- McQuinn, I. H., et Lefebvre, L. 1999. <u>An evaluation of the western Newfoundland herring</u> <u>acoustic abundance index from 1989-1997</u>. CSAS Res. Doc. 99/120. 20 p.
- McQuinn, I. H., Hammil, M., et Lefebvre, L. 1999. <u>An assessment and risk projections of the</u> <u>West Coast of Newfoundland (NAFO Division 4R) Herring Stocks (1965 to 2000)</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 99/119, 94 p.
- McQuinn, I. H., Reid, D., Berger, L., Diner, N., Heatley, D., Higginbottom, I., Andersen, L. N., Langeland, O., et Lapierre, J.-P. 2005. Description of the ICES *HAC* standard data exchange format, Version 1.60. In ICES Coop. Res. Rep. No. 278. 86 p.

- Melvin, G. D., Stephenson, R. L., et Power, M. J. 2009. Oscillating reproductive strategies of herring in the western Atlantic in response to changing environmental conditions. ICES J. Mar. Sci., 66: 1784-1792.
- Messieh, S. N. 1972. Use of otoliths in identifying herring stocks in the southern Gulf of St. Lawrence and adjacent waters. J. Fish. Res. Bd. Canada, 29: 1113-1118.
- Mitson, R. B. 1983. Acoustic detection and estimation of fish near the sea-bed and surface. FAO Fish. Rep. 300: 27-34.
- Moores, J. A. et Winters, G. H. 1984. Migration patterns of Newfoundland west coast herring, *Clupea harengus*, as shown by tagging studies. J. Northw. Atl. Fish. Sci., 5: 17-22.
- MPO. 2003. <u>Hareng de la côte ouest de Terre-Neuve (Division 4R) en 2002</u>. MPO Sciences, Rapport sur l'état des stocks 2003/008 (2003).
- MPO. 2017. <u>Plan de gestion intégrée des pêches Hareng Région de Terre-Neuve-et-Labrador 4R3Pn</u>.
- MPO. 2018. <u>Évaluation des stocks de hareng de la côte ouest de Terre-Neuve (division 4R) en</u> <u>2017</u>. Secr. can. de consult. sci. du MPO, Avis sci. 2018/036.
- MPO. 2021a. <u>Évaluation des stocks de hareng de la Côte-Nord du Québec (division 4S) en</u> <u>2020</u>. Secr. can. de consult. sci. du MPO. Avis sci. 2021/037.
- MPO. 2021b. <u>Évaluation des stocks de hareng de la côte ouest de Terre-Neuve (division OPANO 4R) en 2019</u>. Secr. can. de consult. sci. du MPO, Avis sci. 2021/005.
- MPO. 2022. <u>Évaluation des stocks de hareng (*Clupea harengus*) de la côte ouest de Terre-Neuve (division 4R de l'OPANO) en 2021</u>. Secr. can. des avis sci. du MPO. Avis sci. 2022/020.
- O'Boyle, R. N. et Atkinson, D. B. 1989. Hydroacoustic survey methodologies for pelagic fish as recommended by CAFSAC. CAFSAC Res. Doc. 89/72, 12 p.
- Patterson, K. 1992. Fisheries for small pelagic species: an empirical approach to management targets. Rev. Fish Biol. Fish., 2: 321-338.
- R Core Team. 2021. <u>R: A language and environment for statistical computing</u>. R Foundation for Statistical Computing, Vienna, Austria.
- Rivard, D. 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aquat. Sci. 1091: 146 p.
- RStudio Team. 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA.
- Simard, Y., McQuinn, I. H., Montminy, M., Lang, C., Stevens, C., Goulet, F., Lapierre, J.-F., Beaulieu, J.-L., Landry, J., Samson, Y., et Gagné, M. 2000. *CH2*, Canadian hydroacoustic data analysis tool 2 user's manual (version 2.0). Can. Tech. Rep. Fish. Aquat. Sci. 2332, vii + 123 p.
- Singh, R., Knox, D., MacIntyre, A., et Melvin, G.D. 2020. <u>Évaluation des stocks de hareng des</u> <u>divisions 4VWX de l'Organisation des pêches de l'Atlantique Nord-Ouest (OPANO) en 2018</u>. Secr. can. de consult. sci. du MPO, Doc. de rech. 2020/062. vi + 167 p.
- Smoliński, S. 2019. Sclerochronological approach for the identification of herring growth drivers in the Baltic Sea. Ecol. Indic. 101: 420-431.

- Stephenson, R. L., Melvin, G. D. et Power, M. J. 2009. Population integrity and connectivity in Northwest Atlantic herring: a review of assumptions and evidence. ICES J. Mar. Sci., 66: 1733-1739.
- Turcotte, F. 2022<u>. Effets de l'environnement sur la dynamique du recrutement et sur les</u> projections de la population de géniteurs de printemps du hareng de l'Atlantique de la <u>division 4TVn de l'OPANO</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/047. iv + 27 p.
- Turcotte, F., Swain, D.P., McDermid, J.L. et DeJong, R.A. 2021. <u>Évaluation des stocks de</u> <u>Hareng de l'Atlantique (*Clupea harengus*) de la zone 4TVn de l'OPANO dans le sud du</u> <u>golfe du Saint-Laurent en 2018-2019</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2021/030. xv + 167 p.
- Wilson, C. J., Murphy, H. N., Bourne, C., Pepin, P., et Robert, D. 2018. Feeding ecology of autumn-spawned Atlantic herring (*Clupea harengus*) larvae in Trinity Bay, Newfoundland: Is recruitment linked to main prey availability? J. Plankton Res., 40: 255-268.
- Wood, S. N. 2017. Generalized additive models: an introduction with R, second edition. Chapman and Hall/CRC, Boca Raton, FL.

TABLEAUX

Tableau 1. Variables physiques et biologiques utilisées dans les analyses GAM pour évaluer les effets de l'environnement sur la condition (Kn) et le recrutement (R) des reproducteurs de printemps (RP) et d'automne (RA). Les modèles pour le hareng RA ne comprenaient pas de variables liées au bloom printanier. Pour le hareng RP, on a utilisé l'abondance et la phénologie du zooplancton au début de l'été (juin), tandis que l'abondance et la phénologie du zooplancton à l'automne (octobre) ont été utilisées pour le hareng RA. SST : température de surface de la mer. Le printemps correspond à la première semaine de l'année où la température de l'eau de surface est supérieure à 10°C et l'automne correspond à la dernière semaine de l'année où la température de l'eau de surface est inférieure à 10°C.

Dáriada	Voriable	Dáfáranaa	K	n	R	2
Fenoue	Variable	Reference	RP	RA	RP	RA
	SST Mai-Juin		х	-	х	-
	SST Mai-Août		х	-	х	-
	SST Mai-Novembre		-	-	х	х
	SST Août		х	-	-	-
1982-2021	SST Août-Novembre	Galbraith <i>et al.</i> 2022	-	х	-	х
	SST Novembre		-	х	-	-
1	Début du printemps (SST > 10°C)		х	-	х	-
	Début de l'automne (SST < 10°C)		-	х	-	х
	Moment de la dernière apparition de la glace		х	-	х	-
1000 2010	Début du bloom	Plain of al. 2010	х	-	х	-
1999-2019	Durée du bloom	Diais et al. 2019	х	-	х	-
	Abondance de C. finmarchicus		х	х	х	х
	Abondance de C. hyperboreus		х	х	-	-
	Abondance de <i>Pseudocalanus</i> spp.		х	х	х	х
2001-2019	Abondance de petits calanoïdes	Blais <i>et al.</i> 2019	х	х	х	х
	Grands calanoïdes / petits calanoïdes		х	х	х	х
	Phénologie de C. finmarchicus		х	х	х	х
	Phenologie de C. hyperboreus		х	-	-	-

		SOUS-D	IVISION			
ANNEE	4Ra	4Rb	4Rc	4Rd	TOTAL	TAC
1966	45	5 530	103	216	5 894	-
1967	40	5 540	66	215	5 861	-
1968	11	3 843	59	156	4 069	-
1969	68	2 545	46	277	2 936	-
1970	407	3 473	27	79	3 986	-
1971	1 954	1 063	2 424	3 830	9 271	-
1972	3 628	1 544	862	4 921	10 955	-
1973	9 213	2 068	2 862	12 541	26 684	-
1974	3 043	918	857	2 624	7 442	-
1975	1 786	266	128	3 340	5 520	-
1976	2 467	246	2 069	6 569	11 351	-
1977	4 366	189	2 205	5 568	12 328	12 000
1978	5 651	369	1 984	6 807	14 811	12 500
1979	3 265	3 998	5 043	6 032	18 338	12 500
1980	4 243	2 969	6 944	5 098	19 254	18 000
1981	1 969	3 090	4 899	3 639	13 597	16 000
1982	1 696	4 550	7 158	1 466	14 870	10 000
1983	2 259	3 557	4 188	1 412	11 416	10 000
1984	809	4 722	3 925	1 007	10 463	10 000
1985	301	10 070	1 897	2 118	14 386	10 000
1986	337	16 298	2 655	2127	21 417	17 000
1987	993	10 496	4 320	112	16 581	30 600
1988	553	1 349	13 789	2 454	18 145	30 600
1989	350	1 010	7 033	9 288 5 106	1/ 68/	37 000
1990	576	6 047	1 2 3 9	16 420	0 104	35 000
1991	002	0 947	2 494	8 806	20 437	35 000
1992	902	2 108	1 0 2 0	11 022	15 330	35 000
1993	1 017	5 711	3 053	2 500	12 380	35 000
1995	2 284	3 273	7 321	2 333	16 012	22 000
1996	2 584	2 951	8 173	1 114	14 823	22 000
1997	2 571	3 451	5 300	1 638	12 960	22 000
1998	4 129	7 729	5 891	609	18 359	22 000
1999	1 653	4 766	3 087	1 201	10 707	13 000
2000	1 981	2 995	6 469	1 470	12 916	15 000
2001	2 613	2 643	6 379	1 589	13 224	15 000
2002	1 604	2 621	7 660	1 232	13 117	15 000
2003	1 290	714	2 593	10 533	15 130	20 000
2004	712	252	6 162	7 574	14 700	20 000
2005	1 138	3 574	5 889	7 326	17 927	20 000
2006	957	5 645	4 457	7 538	18 597	20 000
2007	884	915	13 831	375	16 005	20 000
2008	731	3 286	5 668	11 058	20 743	20 000
2009	821	4 573	10 707	4 134	20 235	20 000
2010	984	5 651	4 342	8 228	19 205	20 000
2011	2 694	6 389	4 899	6 489	20 471	20 000
2012	2 396	9 249	2 994	4 712	19 351	20 000
2013	1 977	8 651	6 322	2 424	19 374	20 000
2014	2 129	13 798	640	1 585	18 152	20 000
2015	2 322	15 915	637	546	19 420	20 000
2016	3 195	14 253	2 211	273	19 932	20 000
2017	2 842	9 727	2 102	767	15 438	20 000
2018	1 566	4 360	607	885	7 418	20 000
2019	4 512	7 642	3 182	470	15 806	20 000
2020	2 803	1 154	618	288	4 863	20 000
2021	316	530	2 018	211	3 075	20 000
MOYENNE (1966-2019)	1 921	4 723	3 931	3 955	14 531	-

Tableau 2. Débarquements (t) annuels et Total Admissible des Captures (TAC) de hareng par sousdivision pour la Division 4R entre 1966 et 2021. Les données de 2019, 2020 et 2021 sont préliminaires.

ENGIN DE PÊCHE ANNÉE Grand Petit Filet											
ANNÉE	Grand senneur	Petit senneur	Filet maillant	Senne Tuck	Trappe	Autre	TOTAL				
1966	5 491	0	403	0	0	0	5 894				
1967	5 464	0	397	0	0	0	5 861				
1968	3 776	0	293	0	0	0	4 069				
1969	2 585	0	351	0	0	0	2 936				
1970	2 979	0	1 007	0	0	0	3 986				
1971	6 607	0	2 664	0	0	0	9 271				
1972	6 800	0	4 155	0	0	0	10 955				
1973	20 068	0	6 6 1 6	0	0	0	26 684				
1974	4 731	0	2 711	0	0	0	7 442				
1975	3 221	0	2 232	0	0	67	5 520				
1976	8 207	0	2 979	0	0	165	11 351				
1977	9 453	0	2 651	0	0	224	12 328				
1978	9 123	0	5 536	0	0	152	14 811				
1979	9 990	0	8 215	0	0	133	18 338				
1980	9 632	0	9 471	0	0	151	19 254				
1981	7 925	0	5 503	0	0	169	13 597				
1982	9 548	ů 0	5 249	0	0	73	14 870				
1983	7 270	0	3 9/7	0	0	100	14 07 0				
1984	7 213	0	3 252	0	0	7	10 463				
1985	12 171	0	1 205	0	0	10	14 206				
1986	10 17 1	0	1 203	0	0	10	14 300				
1007	19 270	0	2 147	0	0	0	21 417				
1307	13 733	0	2 843	0	0	5	16 581				
1900	16 353	0	1 792	0	0	0	18 145				
1909	16 660	0	1 027	0	0	0	1/ 68/				
1990	5 245	2 016	836	0	66	0	8 164				
1991	23 106	2 488	779	0	62	1	26 437				
1992	12 815	1 853	552	0	117	0	15 336				
1993	11 634	3 240	119	0	103	4	15 100				
1994	7 634	3 854	747	0	145	1	12 380				
1995	10 815	3 392	1 658	0	145	2	16 012				
1996	9 472	3 072	2 175	0	102	1	14 823				
1997	7 751	3 052	1 803	0	350	3	12 960				
1998	9 468	4 434	4 217	0	233	6	18 359				
1999	7 146	2 599	869	0	92	0	10 707				
2000	8 427	3 153	1 277	0	59	0	12 916				
2001	8 344	3 418	1 215	0	150	97	13 224				
2002	8 392	3 383	1 256	0	73	13	13 117				
2003	11 090	2 307	1 630	0	104	0	15 131				
2004	11 099	2 974	499	0	127	2	14 701				
2005	11 005	3 918	1 031	908	529	535	17 926				
2006	11 101	3 941	702	2 300	499	53	18 596				
2007	10 954	2 659	132	1 546	706	8	16 005				
2008	11 125	2 000 A 257	3	1 1090	700	0	20 7/2				
2009	11 171	- 557 A A16	0	3 772	872	0	20 143				
2010	10 240	4 4 10	525	3110	560	0	20 23/				
2011	10 2 10	4 900	020	∠ 3 00	500	166	19 200				
2012	10 200	5 4Z9	2 108	1 883	020 000	100	20 4/1				
2012	10 047	51/2	1 790	1 342	862	137	19 350				
2013	9 985	4 905	915	2 337	1 231	0	19 373				
2014	9 994	5 504	96	1 075	1 440	43	18 152				
2015	11 168	4 471	680	2 030	928	144	19 421				
2016	10 999	4 397	623	2 594	1 132	188	19 933				
2017	9 628	3 312	546	1 167	746	37	15 436				
2018	4 076	966	512	1 439	424	0	7 417				
2019	7 677	3 758	680	3 401	289	0	15 806				
2020	1 198	1 148	117	2 215	185	0	4 863				
2021	2 044	110	2	749	170	0	3 075				
OYENNE 966-2019)	9 651	1 989	1 974	616	249	52	14 531				

Tableau 3. Débarquements (t) annuels de hareng par engin de pêche pour la Division 4R entre 1966 et 2021. Les données de 2019, 2020 et 2021 sont préliminaires.

				4Ra							4Rb			
ANNÉE	Grand	Petit	Filet	Senne	Tranna	Autro	TOTAL	Grand	Petit	Filet	Senne	Tranna	Autro	TOTAL
	senneur	senneur	maillant	Tuck	Trappe	Autre	TOTAL	senneur	senneur	maillant	Tuck	Trappe	Autre	TOTAL
1966	0	-	45	-	-	-	45	5 491	-	39	-	-	-	5 530
1967	0	-	40	-	-	-	40	5 464	-	76	-	-	-	5 540
1968	0	-	11	-	-	-	11	3 776	-	67	-	-	-	3 843
1969	0	-	68	-	-	-	68	2 344	-	201	-	-	-	2 545
1970	0	-	407	-	-	-	407	2 939	-	534	-	-	-	3 473
1971	356	-	1 598	-	-	-	1 954	725	-	338	-	-	-	1 063
1972	0	-	3 628	-	-	-	3 628	1 330	-	214	-	-	-	1 544
1973	3 453	-	5 760	-	-	-	9 213	1 763	-	305	-	-	-	2 068
1974	1 071	_	1 972	_	_	_	3 043	439	_	479	_	_	_	918
1975	10/1	_	1 76/	_	_	22	1 786		_	2/0	_	_	26	266
1976	184	_	2 143	_	_	140	2 467	0	_	276	_	_	20	246
1977	2 155	_	2 140	_	_	183	4 366	0	_	158	_	_	20	189
1978	1 834	-	2 020	-	-	100	5 6 5 1	0	-	288	-	-	91 81	360
1979	1 0 0 4	-	2 750	-	-		2 265	2 0 2 0	-	1 0 1 0	-	-	101	2 000
1975	409	-	3 2 3 0	-	-	/ F	3 203	2 029	-	1 040	-	-	121	3 330
1001	420	-	3 0 1 0	-	-	с 07	4 243	2 002	-	0/9	-	-	00	2 909
1000	342	-	1 600	-	-	21	1 969	2 037	-	913	-	-	140	3 090
1902	0	-	1 695	-	-	1	1 696	3 973	-	519	-	-	58	4 550
1983	787	-	1 438	-	-	34	2 259	3 223	-	226	-	-	108	3 557
1984	15	-	790	-	-	4	809	4 166	-	554	-	-	2	4 722
1985	0	-	295	-	-	6	301	9 718	-	348	-	-	4	10 070
1986	0	-	337	-	-	0	337	15 830	-	468	-	-	0	16 298
1987	164	-	829	-	-	0	993	10 164	-	327	-	-	5	10 496
1988	44	-	509	-	-	0	553	1 093	-	256	-	-	0	1 349
1989	13	-	337	-	-	0	350	947	-	69	-	-	0	1 016
1990	0	0	323	0	54	0	377	1 145	0	174	-	13	0	1 332
1991	0	151	368	-	56	1	576	6 567	270	103	-	7	0	6 947
1992	0	347	440	-	115	-	902	3 954	145	47	-	1	0	4 147
1993	362	332	55	-	103	-	852	1 899	299	0	-	0	0	2 198
1994	72	406	394	-	145	1	1 017	4 063	1 487	161	-	0	0	5 711
1995	464	580	1 215	-	24	0	2 284	2 138	930	101	-	104	0	3 273
1996	226	404	1 883	-	70	0	2 584	1 896	886	143	-	27	0	2 951
1997	0	617	1 765	-	189	1	2 571	2 192	1 097	8	-	154	0	3 451
1998	577	647	2 793	-	110	2	4 129	4 750	1 455	1 398	-	123	3	7 729
1999	610	379	600	-	64	-	1 653	3 409	1 060	269	-	28	0	4 766
2000	414	307	1 231	-	29	0	1 981	1 776	1 149	40	-	30	0	2 995
2001	1 228	223	1 157	-	5	0	2 613	1 076	1 360	58	-	145	4	2 643
2002	247	233	1 103	-	9	13	1 604	1 407	1 029	121	-	64	-	2 621
2003	-	23	1 193	-	74	-	1 290	110	148	426	-	30	-	714
2004	-	185	429	-	99	0	712	-	169	53	-	28	2	252
2005	-	110	537	72	329	90	1 137	733	1 340	467	502	191	340	3 574
2006	18	81	446	12	400	0	957	1 830	1 841	171	1 673	99	31	5 645
2007	14	148	43		680	0	884	106	322	78	382	26	-	915
2008	-	31	-	0	700	-	731	2 679	523	1	83		-	3 286
2009	_	97	0	-	725	0	821	1 516	732		2 179	147	0	4 573
2000	_	-	451	_	533	0	984	3 3 10	838	69	1 4 1 1	23	-	5 651
2010	_	51	2 017	_	625	0	2 694	5 / 86	469	80	3/5	20	0	6 389
2011	-	103	1 362	65	862	1	2 2054	5 150	3 500	421	160	0	0	0 303
2012	-	105	710	03	1 002	4	2 3 3 0	5 051	2 209	421	649	-	0	J 24J 0 654
2013	-	00 11E	011	101	1 / 1 /	-	1 3//	0 171	2 003 1 006	140	040	144	0	12 700
2014	-	440	92	130	1 4 1 4	43	2 129	9 1/1 10 026	4 220	4	1 044	20	U	15 / 98
2015	740	500	080	10	928	-	2 322	0 570	১ / ১০ ০ / ২০	U	1 4 0 0	-	-	15 915
2016	742	522	623	1/9	1 129	-	3 195	95/6	34/3	-	1 103	3	99	14 253
2017	852	447	545	252	746	-	2 842	7 048	23/5	1	265	-	37	9 727
2018	-	117	511	514	423	-	1 566	3 551	526	1	281	1	-	4 360
2019	1 362	645	671	1 544	289	-	4 511	5 278	1 758	9	597	-	-	7 642
2020	74	940	117	1 487	185	-	2 803	506	124	-	524	-	-	1 154
2021	-	-	2	144	170	-	316	125	11	-	394	-	-	530
MOYENNE	E (1966-2019	9)					1 921							4 723

Tableau 4. Débarquements (t) annuels de hareng par engin et sous-division pour la Division 4R entre 1966 et 2021. Les données de 2019, 2020 et 2021 sont préliminaires.

Tableau 4. (suite).

				4Rc							4Rd			
ANNÉE	Grand senneur	Petit senneur	Filet maillant	Senne Tuck	Trappe	Autre	TOTAL	Grand senneur	Petit senneur	Filet maillant	Senne Tuck	Trappe	Autre	TOTAL
1966	0	-	103	-	-	-	103	0	-	216	-	-	-	216
1967	0	-	66	-	-	-	66	0	-	215	-	-	-	215
1968	0	-	59	-	-	-	59	0	-	156	-	-	-	156
1969	0	-	46	-	-	-	46	241	-	36	-	-	-	277
1970	12	-	15	-	-	-	27	28	-	51	-	-	-	/9 2.020
1972	Z Z39 727	-	100	-	-	-	2 424	3 201 1 713	-	040 179	-	-	-	3 030
1973	2 740	_	100	-	_		2 862	12 112	-	429	_	-		12 541
1974	756	-	101	_	_	-	857	2 465	-	159	_	_	-	2 624
1975	0	-	112	-	-	16	128	3 221	-	116	-	-	3	3 340
1976	1 956	-	111	-	-	2	2 069	6 067	-	499	-	-	3	6 569
1977	2 009	-	193	-	-	3	2 205	5 289	-	272	-	-	7	5 568
1978	1 037	-	931	-	-	16	1 984	6 252	-	522	-	-	33	6 807
1979	2 774	-	2 267	-	-	2	5 043	4 387	-	1 642	-	-	3	6 032
1980	3 703	-	3 224	-	-	17	6 944	3 499	-	1 558	-	-	41	5 098
1981	3 277	-	1 622	-	-	0	4 899	2 269	-	1 368	-	-	2	3 639
1982	5 575	-	1 572	-	-	11	7 158	0	-	1 463	-	-	3	1 466
1983	3 269	-	873	-	-	46	4 188	0	-	1 410	-	-	2	1 412
1904	3 023	-	902	-	-	0	3 925	1 700	-	1 006	-	-	1	1 007
1986	1 586	-	1 060	-	-	0	2 655	1 854	-	390 273	-	-	0	2 1 10
1987	3 183	-	1 137	-	-	0	4 320	222	-	550	-	-	0	772
1988	13 197	-	592	_	-	0	13 789	2 019	-	435	_	_	0	2 454
1989	6 589	-	444	-	-	0	7 033	9 111	-	177	-	-	0	9 288
1990	824	248	187	-	0	0	1 259	3 275	1 768	152	-	0	0	5 196
1991	1 577	741	175	-	0	0	2 494	14 961	1 326	133	-	0	0	16 420
1992	1 271	82	37	-	0	0	1 391	7 589	1 279	27	-	1	0	8 896
1993	740	276	9	-	0	4	1 029	8 634	2 333	55	-	0	0	11 022
1994	2 026	951	75	-	0	0	3 053	1 472	1 010	117	-	0	0	2 599
1995	5 457	1 680	179	-	5	1	7 321	2 755	201	163	-	12	1	3 134
1996	6 751	1 332	84	-	5	1	8 173	600	450	65	-	0	0	1 114
1997	4 237	1 042	11	-	/	2	5 300	1 322	296	19	-	0	0	1 638
1990	371Z 2405	21/3	5	-	0	1	3 091	420	260	21	-	0	0	1 201
2000	4 766	1 697	5	-	0	0	6 469	932 1 470	209	0	-	0	0	1 470
2001	4 708	1 578	-	-	-	93	6 379	1 332	257	-	-	-	-	1 589
2002	5 929	1 721	9	-	-	-	7 660	809	400	23	-	-	0	1 232
2003	2 192	401	1	-	-	0	2 593	8 788	1 735	10	-	-	0	10 533
2004	5 673	489	-	-	-	-	6 162	5 426	2 131	17	-	-	-	7 574
2005	4 693	925	-	269	-	2	5 889	5 579	1 543	27	65	9	103	7 326
2006	3 029	991	3	433	-	-	4 457	6 224	1 028	82	182	-	22	7 538
2007	10 834	1 866	4	1 1 1 9	-	8	13 831	1	323	7	45	-	-	375
2008	4 165	666	-	837	-	-	5 668	4 341	3 137	2	3 5/8	-	-	11 058
2009	8 300	7839	-	202	-	-	10 /0/	1 349	1 /48	-	1 037	-	-	4 134
2010	3 332 2 770	1 300	2	609	-	- 120	4 342	2 004	3 5 10	2	020	4	-	6 /89
2012	1 821	866	7	280	-	120	2 994	2 004	694	-	828	-	114	4 712
2013	2 643	2 063	51	1 564	-	-	6 322	2 291	93	1	38	-	-	2 424
2014	303	287	-	49	-	-	640	520	546	-	520	-	-	1 585
2015	92	170	-	358	-	17	637	-	63	-	356	-	127	546
2016	681	336	-	1 105	-	89	2 211	-	66	-	207	-	-	273
2017	1 272	350	-	480	-	-	2 102	456	140	-	170	-	-	767
2018	275	238	-	94	-	-	607	250	86	-	550	-	-	885
2019	1 037	1 264	-	881	-	-	3 182	-	91	-	380	-	-	470
2020	618	-	-	-	-	-	618	-	84	-	204	-	-	288
2021	1 919	99	-	-	-	-	2 018	-	-	-	211	-	-	211
WOTENNE	= (1900-2015	")					3 931							J 955

Tableau 5. Nombre de harengs atlantiques échantillonnés par année, saison, flotte (mobile et fixe) et sous-division de l'OPANO dans le cadre du programme d'échantillonnage au port commercial et envoyés à l'IML pour une vérification plus approfondie de leurs caractéristiques biologiques. Les poissons échantillonnés avant et après le 1^{er} août sont considérés comme provenant de la pêche de printemps et d'automne, respectivement.

			Pêc	he de	printer	nps						Pêc	he d'a	utomne				
ANNÉE		Fi	xe			M	obile			Fix	e				Mobile			TOTAL
	4Ra	4Rb	4Rc	4Rd	4Ra	4Rb	4Rc	4Rd	4Ra	4Rb	4Rc	4Rd	4R	4Ra	4Rb	4Rc	4Rd	
1965	0	0	0	0	0	0	0	0	0	100	0	0	0	0	465	0	0	565
1966	0	0	0	0	0	0	0	0	0	48	48	0	0	0	252	0	250	598
1967	0	100	0	94	0	163	0	300	50	2//	78	24	0	0	545 350	0	0	1 395
1960	0	0	0	0	0	0	20	50	0	50	0	24	0	0	496	0	0	750 596
1970	100	0	0	0	0	0	0	200	248	350	0	0	0	0	149	0	0	1 047
1971	200	0	0	0	0	0	300	150	0	550	0	0	0	50	150	0	0	1 400
1972	150	50	0	100	0	0	97	350	400	400	0	0	0	0	1 375	150	0	3 072
1973	50	288	0	0	0	450	436	545	739	697	0	0	0	400	450	0	0	4 055
1974	30	100	0	0	0	0	50	797	745	150	0	0	0	300	300	0	0	2 472
1975	199	250	0	50	48	0	0	600	0	0	0	0	0	0	0	0	0	1 147
1976	350	100	19	29	0	0	150	1 190	150	0	0	0	0	447	0	0	0	2 435
1977	535 750	276	0	100	0	04	04	721	1 048	50	0	0	0	200	290	0	0	4 397
1970	300	100	499	250	0	94 248	94 374	1 069	750	100	0	0	0	300	150	0	0	3709 4140
1980	1 149	200	900	477	648	500	347	849	800	99	0	0	0	000	500	1 085	0	7 554
1981	500	259	1 499	175	59	516	823	1 375	396	37	Ő	Ő	Ő	0	1 117	0	0	6 756
1982	149	0	344	47	0	55	592	210	0	154	0	0	0	50	582	150	0	2 333
1983	53	0	0	56	0	127	889	0	2 099	343	0	0	0	274	1 082	793	0	5 716
1984	50	0	302	101	0	798	494	0	2 006	247	100	0	0	106	2 918	0	0	7 122
1985	0	0	543	352	0	506	1 328	282	1 049	0	0	0	0	0	3 747	349	0	8 156
1986	149	0	845	890	0	129	364	401	1 237	90	150	0	0	0	1 650	50	0	5 955
1987	0	0	943	795	50	105	241	167	1 535	92	0	0	0	58	971	204	47	5 158
1900	344 178	0	1 001	118	50	101	101	622	755	220 10/	0	0	0	טר 118	838	358	0 81	0 392 5 316
1990	148	0	513	338	0	-102	159	508	883	50	0	0	0	2	1 045	85	97	3 830
1991	200	0	299	296	0	127	216	315	440	50	0	0	0	93	831	278	1	3 146
1992	200	0	329	399	0	313	218	185	247	0	0	0	0	155	948	203	177	3 374
1993	422	0	745	500	0	389	133	1 010	1 312	0	0	0	0	200	597	246	0	5 554
1994	337	0	730	600	0	358	1 207	636	1 119	69	0	0	0	187	1 250	757	232	7 482
1995	420	50	399	699	0	100	366	255	1 236	0	0	0	190	254	515	765	264	5 513
1996	300	50	346	848	100	0	450	0	1 259	250	0	0	192	200	100	600	100	4 795
1997	200	0	5/8	486	0 50	0	150	250	800	0 50	0	0	100	250	400	600 50	150	4 129
1990	200	0	278	848	150	315	67	0	100	0	0	0	330	732	380	1 151	0	4 560
2000	250	0	278	650	50	0	250	100	200	50	0	0	88	100	550	250	0	2 816
2001	350	0	395	400	200	50	100	50	50	50	0	0	0	350	349	450	99	2 893
2002	150	50	287	497	150	208	250	150	0	50	0	0	47	250	484	349	183	3 105
2003	150	0	310	399	100	125	550	0	0	0	0	0	0	0	100	50	1 199	2 983
2004	50	0	345	399	0	0	100	0	0	0	0	0	0	0	0	600	750	2 244
2005	0	0	164	247	0	0	192	0	0	0	0	0	0	0	93	49	901	1 646
2006	0	0	264	109	50	0	50	50	0	50	0	0	0	0	450	50	1 000	2 073
2007	0	0	0	0	100	0	0	0	0	50	99	100	0	0	98	1 252	0 579	1 599
2008	0	0	0	0	0	0	349	0	0	350	0	001	0	0	420 Q1Q	200	576 441	3 541
2010	150	0	0	0	0	0	150	0	0	298	0	0	182	0	299	443	350	1 872
2011	150	Ő	0	Ő	0	50	199	0	0	198	0	0	0	231	299	208	785	2 120
2012	107	0	0	0	0	0	0	0	0	53	0	0	0	55	1 104	0	603	1 922
2013	220	0	0	0	0	0	110	0	0	0	0	0	0	67	1 331	479	359	2 566
2014	218	0	0	0	0	0	0	0	110	55	0	0	0	0	1 537	0	330	2 250
2015	0	0	0	0	0	0	0	0	110	48	0	0	0	111	1 265	0	110	1 644
2016	0	0	0	0	110	0	0	0	0	0	0	0	0	275	1 154	317	0	1 801
2017	104	0	0	0	110	0	0	0	0	0	0	0	0	211	109	001 0	210 105	1 / 51
2019	103	0	0	0	55	0	140	0	0	0	0	0	0	110	710	55	95 0	1 070
2020	0	0	0	0	0	0	0	0	110	55	0	0	0	587	255	0	0	1 007
2021	0	0	0	0	55	0	110	0	0	0	0	0	0	0	54	0	0	219

Tableau 6. Prises commerciales par âge (en milliers) des reproducteurs de printemps sur la côte ouest de Terre-Neuve (division 4R de l'OPANO) de 1965 à 2021.

					Â	GE				
ANNEE	2	3	4	5	6	7	8	9	10	11+
1965	630	73	13	693	1 602	1 293	651	461	305	509
1966	115	283	276	520	1 822	4 176	2 090	1 652	382	638
1967	0	18	459	139	318	3 403	2 745	1 265	742	847
1968	84	163	302	549	203	569	1 120	2 049	420	358
1969	366	1 730	2 778	1 026	500	264	703	1 259	1 185	117
1970	1 067	570	297	435	182	75	116	565	1 615	61
1971	0	2 527	303	841	720	651	340	350	2 412	255
1972	284	220	8 189	1 308	1 461	1 245	1 115	1 377	1 034	2 013
1973	1 833	435	1 063	27 872	2 570	3 222	3 232	2 598	4 789	5 696
1974	141	261	130	371	9 445	318	851	774	490	2 175
1975	57	996	420	100	1 063	8 431	317	336	244	665
1976	484	680	846	201	350	2 802	15 567	759	3 136	3 588
1977	10	534	541	409	304	348	4 362	15 959	1 694	6 003
1978	0	47	1 987	207	679	241	2 162	8 208	15 260	5 062
1979	167	25	214	10 828	617	1 075	547	2 772	7 404	14 032
1980	300	854	106	355	13 872	407	1 344	247	1 427	20 574
1981	40	417	2 114	129	354	8 872	188	515	283	13 181
1982	594	2 374	693	2 452	421	2 153	6 488	704	950	12 863
1983	34	2 965	3 562	1131	1 091	293	713	2 990	798	7 975
1984	198	433	7 773	3 809	595	814	209	672	755	4 226
1985	362	4 587	787	21 642	3 993	445	381	255	380	1 764
1986	323	2 348	13 762	3 349	28 781	5 241	465	167	260	1 661
1987	455	329	2 781	15 257	3 507	12 952	1 736	182	37	806
1988	702	539	402	2 461	15 064	3 677	13 616	2 527	423	2 060
1989	305	574	763	461	3 036	18 704	3 072	10 910	779	1 380
1990	114	2 136	670	405	997	5 010	16 296	3 773	6 432	2 187
1991	577	2 233	9 849	1 285	768	3 018	6 955	21 327	2 366	6 579
1992	90	1 243	1 707	8 538	998	998	2 781	2 168	11 879	3 902
1993	79	1 592	3 802	3 409	6 784	1 509	2 102	2 727	2 800	8 804
1994	14	332	2 597	3 183	3 762	3 4 3 4	1 642	1 589	1 757	1 945
1995	12	247	1 219	5 750	5 807	2 152	7 126	185	3 083	4 577
1996	1 347	248	1 156	4 056	7 712	4 211	551	3 291	419	1 597
1997	36	1 006	131	259	1 303	6 598	1 684	580	2 554	1 588
1998	80	859	7 836	393	579	2 143	7 683	1 146	994	3 174
1999	152	1 815	3 501	4 583	202	156	749	1 532	378	943
2000	0	3 106	7 182	2 207	3 971	108	248	765	857	773
2001	189	184	3 627	6 440	4 045	3 794	146	338	766	1 651
2002	0	6 545	515	6 643	8 770	3 672	3 525	179	411	869
2003	0	1016	5 576	1 367	5 085	6 021	1 924	931	204	569
2004	1 048	722	2 224	4 829	2 307	8 375	5 591	1 113	320	841
2005	149	2 935	2 504	653	3 439	809	4 282	5 182	1 984	2 155
2006	63	391	4 973	4 891	1 402	1 643	1 529	2 011	919	575
2007	0	45	332	3 055	1 492	527	385	381	574	1 060
2008	57	62	141	857	5 078	740	635	361	345	475
2009	94	422	469	206	1 339	7 141	2 735	908	1453	2 612
2010	0	32	248	232	404	14/3	3 301	1 143	445	1 437
2011	0	95	222	161	159	449	1570	1 256	463	642
2012	0	63	195	462	1 018	748	591	2 918	3 259	499
2013	0	69	520	1 300	207	8/1	1 259	2 961	1 905	564
2014	0	50	111	169	1/2	124	126	113	17	150
2015	3//	1 150	308	210	333	55	138	0	12	0
2016	U	1 569	1 232	4/6	188	99	290	131	/1	851
2017	U	228	3 484	1 941	442	585	702	596	134	375
2018	U 2 0 0 7	506	346	1 980	614	306	65	406	93	41
2019	2 937	141	1 501	865	9 857	3 3/4	913	275	282	657
2020	U	1 369	222	413	443	2 119	355	187	60	146
2021	0	96	1 187	314	605	1 742	3 267	288	146	0

Tableau 7. Densités de la biomasse de hareng et estimations par strate à partir du relevé acoustique effectué du 8 au 30 août 2020. L'erreur type (S.E.) et le coefficient de variation (C.V.) des estimations de la biomasse ont été calculés en fonction de la variance de la biomasse des transects par strate (O'Boyle et Atkinson 1989). N.É.= Non échantillonné.

Été 2020		;	Strate		Coeffic	cient de rétro	odiffusion de	e surface (s₌)	Rep	roducteurs	d'automne		Repro	oducteurs d	e printemp	s
		Airo	No	Longueur	Densité	Total S.	Moyen	ne pondéré	e Sa	Dens.	В	iomasse		Dens.	В	iomasse	
Nom	Strate	(km ²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	C.V.	biom. (kg/m²)	Total (t)	S.E.	C.V.	Biom. (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
St. Georges N.	2	302,7	4	6 465,4	0,085	2 637,6	8,71E-06	2,1E-06	24,1	0,019	5 856,0	1 410,1	24,1	0,004	1 330,0	320,2	24,1
Port-au-Port G.	3	795,8	4	8 857,1	0,045	12 881,9	1,62E-05	2,57E-06	15,9	0,024	18 756,7	2 977,2	15,9	0,015	11 991,3	1 903,4	15,9
Port-au-Port	4	352,0	3	10 925,9	0,093	5 203,3	1,48E-05	4,38E-06	29,7	0,02	7 080,8	2 102,1	29,7	0,015	5 237,7	1 555,0	29,7
Bay of Islands G.	5	477,9	5	14 939,1	0,156	11 078,2	2,32E-05	5,61E-06	24,2	0,028	13 369,0	3 231,9	24,2	0,026	12 466,9	3 013,9	24,2
Bonne Bay Bank	6	1 157,2	3	13 552,2	0,035	25 134,8	2,17E-05	3,16E-06	14,5	0,028	32 033,6	4 657,6	14,5	0,025	29 484,5	4 287,0	14,5
Bay of Islands	7	293,2	4	15 980,9	0,218	8 596,9	2,93E-05	4,35E-06	14,8	0,04	11 688,3	1 734,1	14,8	0,029	8 646,0	1 282,8	14,8
Bonne Bay	8	58,5	6	2 989,9	0,307	627,2	1,07E-05	2,36E-06	22	0,023	1 327,2	292,6	22,0	0,008	466,4	102,8	22,0
Hawk's Bay	9	499,7	3	10 107,1	0,061	1 445,8	2,89E-06	1,12E-06	38,8	0,005	2 288,3	888,9	38,8	0,003	1 437,0	558,2	38,8
St. John Bay	10	959,1	9	11 765,7	0,11	10 100,8	1,05E-05	2,54E-06	24,1	0,025	23 699,5	5 708,4	24,1	0,006	5 738,1	1 382,1	24,1
Belle-Isle S.	BI1	774	8	7 472,8	0,077	44 087,6	5,7E-05	3,04E-05	53,3	0,134	103 996,0	55 674,7	53,5	0,033	25 179,5	13 480,0	53,5
Belle-Isle N.	BI2	603,7	5	8 401,8	0,07	2 387,7	3,95E-06	1,31E-06	33,1	0,009	5 596,3	1 855,7	33,2	0,002	1 355,0	449,3	33,2
Bras Nord	BN	32,9	3	3 249,4	0,296	230,8	7,01E-06	6,66E-07	9,5	0,01	313,8	29,8	9,5	0,007	232,1	22,0	9,5
Moyenne / Total:	-	6 714,6	57	9 558,9	0,08	124 412,7	0,000206	3,21e-05	15,6	0,034	226 005,3	56 453,5	25,0	0,015	103 564,5	14 812,0	14,3

Automne 2020		St	trateum		Coeffi	cient de rétr	odiffusion d	e surface (s₂	a)	Rep	roducteurs	d'automne)	Repro	ducteurs d	e printem	ps
		Aire	No	Longueur	Densité	Total s.	Moyen	ne pondéré	e Sa	Dens.	В	iomasse		Dens.	В	iomasse	
Nom	Strate	(km²)	transect	transect (m)	éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	C.V.	biom. (kg/m²)	Total (t)	S.E.	C.V.	biom. (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	407,7	7	4 556,3	0,078	138,5	3,4E-07	1,58E-07	46,6	0,001	339,3	158,2	46,6	0	95,0	44,3	46,6
St. Georges N.	2	302,7	4	7 026,1	0,093	507,9	1,68E-06	7,54E-07	45,0	0,004	1 244,4	559,4	45,0	0,001	348,6	156,7	45,0
Port-au-Port G.	3	802,9	7	9 270,8	0,081	1 205,5	1,5E-06	5,43E-07	36,2	0,003	2 031,2	734,9	36,2	0,001	1 197,7	433,4	36,2
Port-au-Port	4	N. É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bay of Islands G.	5	474,5	3	14 772,3	0,093	292,1	6,16E-07	2,52E-07	41,0	0,001	519,2	212,7	41,0	0,001	272,2	111,5	41,0
Bonne Bay Bank	6	1 148,1	7	12 089,7	0,074	1 708,9	1,49E-06	4,12E-07	27,7	0,003	3 211,6	890,6	27,7	0,002	1 742,8	483,3	27,7
Bay of Islands	7	286,2	4	17 867,9	0,25	1 525,5	5,33E-06	9,22E-07	17,3	0,009	2 675,0	462,0	17,3	0,005	1 549,4	267,6	17,3
Bonne Bay	8	N. É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Hawk's Bay	9	499,8	4	7 794,6	0,062	374,2	7,49E-07	2,75E-07	36,7	0,001	676,4	248,5	36,7	0,001	392,0	144,0	36,7
St. John Bay	10	967,8	8	13 288,7	0,11	2 578,7	2,66E-06	9,95E-07	37,3	0,006	5 585,6	2 085,2	37,3	0,002	2 279,5	851,0	37,3
Belle-Isle S.	BI1	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Belle-Isle N.	BI2	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bras Nord	BN	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Moyenne / Total:		7 413,7	44	10 833,3	0,062	8 331,3	1,44e-05	1,74E-06	12,1	0,002	16 282,7	2 517,9	15,5	0,001	7 877,2	1130	14,3

Tableau 8. Densités de la biomasse de hareng et estimations par strate à partir du relevé acoustique effectué du 18 octobre au 5 novembre 2020. L'erreur type (S.E.) et le coefficient de variation (C.V.) des estimations de la biomasse ont été calculés en fonction de la variance de la biomasse des transects par strate (O'Boyle et Atkinson 1989). N.É.= Non échantillonné.

Été 2021			Strate		Coeffi	cient de rétr	odiffusion d	e surface (s	ı)	Rep	oroducteurs	d'automne	1	Repro	ducteurs d	e printem	os
		Aire	No	Longueur	Densité	Total a	Moyen	ne pondéré	e Sa	Dens.	В	iomasse		Dens.	В	iomasse	
Nom	Strate	(km ²)	transect	transect (m)	éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	C.V.	biom. (kg/m²)	Total (t)	S.E.	C.V.	biom. (kg/m²)	Total (t)	S.E.	c.v.
St. Georges S.	1	302,9	8	3 794,7	0,1	1 214,2	4,01E-06	3,02E-06	75,3	0,001	396,4	298,6	75,3	0,013	4 002,6	3 015,1	75,3
St. Georges N.	2	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Port-au-Port G.	3	796,3	5	10 428,6	0,065	3 956,4	4,97E-06	1,47E-06	29,6	0,006	4 762,7	1 409,7	29,6	0,006	4 664,8	1 380,7	29,6
Port-au-Port	4	352,5	5	9 906,9	0,141	2 141,4	6,07E-06	2,7E-06	44,5	0,008	2 904,4	1 147,3	39,5	0,008	2 844,7	1 123,7	39,5
Bay of Islands G.	5	477,9	4	12 878,8	0,108	2 527,5	5,29E-06	2,38E-06	45,0	0,006	3 042,6	1 369,7	45,0	0,006	2 980,1	1 341,6	45,0
Bonne Bay Bank	6	1 157,3	10	11 945,8	0,103	10 397,4	8,98E-06	2,07E-06	23,0	0,017	20 221,7	4 656,5	23,0	0,015	17 325,1	3 989,5	23,0
Bay of Islands	7	306,2	7	10 907,8	0,249	2 544,3	8,31E-06	1,81E-06	21,8	0,011	3 353,4	667,4	19,9	0,011	3 284,5	653,6	19,9
Bonne Bay	8	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Hawk's Bay	9	499,7	6	9 462,3	0,114	5 700,1	1,14E-05	3,33E-06	29,2	0,022	11 086,1	3 237,3	29,2	0,019	9 498,1	2 773,6	29,2
St. John Bay	10	983,3	11	10 739,5	0,12	18 509,7	1,88E-05	7,19E-06	38,2	0,080	78 226,8	29 156,9	37,3	0	466,3	173,8	37,3
Belle-Isle S.	BI1	301,6	7	3 908,2	0,091	20 896,2	6,93E-05	3,12E-05	45,0	0,286	86 127,2	38 723,8	45,0	0,002	513,4	230,8	45,0
Belle-Isle N.	BI2	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bras Nord	BN	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Movenne / Total:		6 198.7	63	9 330.3	0.094	67 887.2	0.000137	3.26E-05	23.8	0.034	210 121.3	48 862.4	23.3	0.007	45 579.6	6 178.9	13.6

Tableau 9. Densités de la biomasse de hareng et estimations par strate à partir du relevé acoustique effectué du 8 au 18 août 2021. L'erreur type (S.E.) et le coefficient de variation (C.V.) des estimations de la biomasse ont été calculés en fonction de la variance de la biomasse des transects par strate (O'Boyle et Atkinson 1989). N.É.= Non échantillonné.

Automne 2021		:	Strate		Coeffi	cient de rétr	odiffusion d	e surface (s₂)	Repi	roducteurs	d'automne	•	Repro	oducteurs d	e printemp	s
		Airo	No	Longueur	Densité	Total s.	Moyen	ne pondéré	e Sa	Dens.	В	iomasse		Dens.	В	iomasse	
Nom	Strate	(km²)	transect	transect (m)	éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	C.V.	biom. (kg/m²)	Total (t)	S.E.	C.V.	biom. (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	407,7	11	4 028,4	0,109	693,6	1,7E-06	6,07eE07	35,7	0,001	462,3	156,3	33,8	0,004	1 564,9	529,0	33,8
St. Georges N.	2	302,7	6	6 283,9	0,125	490,2	1,62E-06	6,11E-07	37,8	0,001	412,3	155,7	37,8	0,003	947,7	357,9	37,8
Port-au-Port G.	3	796,3	9	9 232,9	0,104	1 912,9	2,4E-06	9,4E-07	39,1	0,001	1 090,3	426,8	39,1	0,005	4 164,8	1 630,3	39,1
Port-au-Port	4	352,5	7	9 464,9	0,188	1 452,2	4,12E-06	2,01E-06	48,7	0,004	1 344,2	641,2	47,7	0,008	2 746	1 309,9	47,7
Bay of Islands G.	5	477,9	4	14 650,5	0,123	1 206,3	2,52E-06	5,55E-07	22,0	0,003	1 304,7	286,7	22,0	0,005	2 166,1	475,9	22,0
Bonne Bay Bank	6	1 157,3	11	12 061,3	0,115	3 234,0	2,79E-06	8,91E-07	31,9	0,007	7 590,4	2 419,2	31,9	0,003	3 368,1	1 073,5	31,9
Bay of Islands	7	N.S.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bonne Bay	8	N.S.			-	-	-	-	-	-	-	-	-	-	-	-	-
Hawk's Bay	9	499,7	7	8 158,2	0,114	710,2	1,42E-06	1,04E-06	73,0	0,003	1 666,8	1 216,4	73	0,001	739,6	539,8	73,0
St. John Bay	10	983,3	9	1 ,926,1	0,100	1 258,6	1,28E-06	5,07E-07	39,6	0,003	2 461,4	948,9	38,6	0,002	1 583,8	610,6	38,6
Belle-Isle S.	BI1	1 092,2	12	9 123,8	0,100	32 491,4	2,97E-05	1,16E-05	39,1	0,018	19 552,4	7 636,4	39,1	0,065	70 949,4	27 710,0	39,1
Belle-Isle N.	BI2	626,8	10	7 642,2	0,122	16 299,5	2,6E-05	9,42E-06	36,2	0,012	7 284,9	3 000,6	41,2	0,038	23 914,8	9 850,1	41,2
Bras Nord	BN	N.S.			-	-	-	-	-	-	-	-	-	-	-	-	-
Average / Total:		7 094,2	86	9 157,2	0,108	59 748,9	7,36E-05	1,52E-05	20,7	0,006	43 169,8	8 733,5	20,2	0,016	112 145,2	29 524,4	26,3

Tableau 10. Densités de la biomasse de hareng et estimations par strate à partir du relevé acoustique effectué du 13 au 28 octobre 2021. L'erreur type (S.E.) et le coefficient de variation (C.V.) des estimations de la biomasse ont été calculés en fonction de la variance de la biomasse des transects par strate (O'Boyle et Atkinson 1989). N.É.= Non échantillonné.

Tableau 11. Taux d'exploitation (%) pour les stocks de hareng reproducteurs de printemps et d'automne dans la division 4R de l'OPANO en 2020 et 2021. Les taux d'exploitation sont estimés comme étant le rapport entre les débarquements (t) et l'indice de biomasse (t) le plus élevé estimé dans les relevés acoustiques. Les débarquements présumés de chaque composante reproductrice si le TAC de 20 000 t avait été prélevé sont basés sur les proportions des deux stocks reproducteurs dans la composition des prises commerciales en fonction de l'âge pour 2020-2021.

Année	Stock reproducteur	Débarquements (t)	Indice acoustique de biomasse (t)	Taux d'exploitation (%)
Sur la base	e des débarquements prélimina	aires pour 2020-2021 :		
2020	Printemps	1 143	103 565 (± 9 316)	1,10 (1,01-1,21)
	Automne	3 719	226 005 (± 35 507)	1,65 (1,42-1,95)
2021	Printemps	2 682	112 145 (± 20 803)	2,39 (2,02-2,94)
	Automne	342	210 121 (± 36 845)	0,16 (0,14-0,20)
Si les 20 0	00 t avaient été prises :			
2020	Printemps	4 702	103 565 (± 9 316)	4,54 (4,17-4,99)
	Automne	17 448	226 005 (± 35 507)	6,77 (5,85-8,03)
2021	Printemps	15 298	112 145 (± 20 803)	15,56 (13,12-19,10)
	Automne	2 552	210 121 (± 36 845)	1,21 (1,03-1,47)

Tableau 12. Nombre (en milliers) selon l'âge de reproducteurs de printemps des relevés acoustiques effectués en été et à l'automne sur la côte ouest de Terre-Neuve (division 4R de l'OPANO) de 1991 à 2021.

Delevá	ÂGE											
Releve	2	3	4	5	6	7	8	9	10	11+		
Automne 1991	5 252	14 241	78 462	216	13 484	43 972	26 318	48 683	8 773	44 080		
Automne 1993	15 591	36 865	32 008	26 686	41 341	1 567	6 965	6 965	5 398	12 879		
Automne 1995	1 000	4 627	5 587	32 838	12 184	6 786	18 560	5 301	12 356	14 334		
Automne 1997	128	18 951	2 380	4 341	17 636	29 299	12 529	343	27 038	5 618		
Automne 1999	4 597	44 622	24 176	29 285	725	0	988	8 243	1 786	8 323		
Automne 2002	1 217	8 112	909	16 287	33 965	23 812	19 822	238	4 709	1 190		
Automne 2009	0	1 346	0	485	3 769	10 014	2 423	1 938	969	3 284		
Automne 2010	2 900	5 996	62 616	920	1 518	12 254	17 779	4 280	1 311	1 047		
Automne 2011	0	8 839	3 086	3 364	3 225	279	5 951	5 952	5 923	5 255		
Automne 2013	0	0	16 396	3 560	848	3 392	3 110	0	173	0		
Automne 2015	0	508	3 962	1 321	0	0	0	0	364	0		
Automne 2017	0	0	4 879	18 292	0	0	0	1 424	0	1 424		
Été 2019	85 247	5 760	11 520	2 304	16 128	9 216	0	0	1 152	0		
Automne 2019	314 759	37 518	4 450	7 082	90 861	10 034	24 389	153	0	2 695		
Été 2020	2 055	974 302	57 554	6 166	20 555	36 999	2 055	2 055	0	0		
Automne 2020	484	44 068	10 977	1 937	1 291	3 874	1 453	323	323	0		
Été 2021	0	916	49 447	5 494	31 133	77 834	32 049	6 410	1 831	1 831		
Automne 2021	895	16 118	740 535	15 223	9 850	8 954	15 223	5 373	895	0		

Tableau 13. Prises commerciales par âge (en milliers) des reproducteurs d'automne sur la côte ouest de Terre-Neuve (division 4R de l'OPANO) de 1965 à 2021.

Annóo	ÂGE											
Annee	2	3	4	5	6	7	8	9	10	11+		
1965	17	655	476	235	271	303	1 010	653	355	722		
1966	44	76	682	318	348	232	1 181	931	845	2 517		
1967	0	112	181	790	369	124	433	934	1 011	3 108		
1968	0	170	108	209	935	223	174	284	998	1 913		
1969	34	299	711	364	876	736	200	142	214	1 859		
1970	0	466	187	33	51	251	90	71	89	1 688		
1971	40	0	112	440	638	2 150	3 485	2 071	1 073	14 138		
1972	10	96	115	1 310	1 345	2 852	2 165	3 577	2 173	28 342		
1973	0	1 798	1 180	1 1 1 4	2 6 2 6	1 527	2 631	3 830	8 265	17 653		
1974	0	20	393	530	325	592	258	308	313	5 610		
1975	0	19	40	865	925	107	157	147	218	3 371		
1976	0	48	272	290	422	561	325	253	88	4 818		
1977	0	.0	169	134	404	721	405	342	293	6 646		
1978	0	10	27	545	393	1 108	1 689	503	341	6 051		
1979	0	7	116	345	2 689	520	1 287	1 847	468	6 286		
1980	15	, 181	136	86	176	1 729	250	675	308	5 243		
1981	0	33	524	245	90	295	1 234	153	124	3 369		
1982	101	567	1 824	956	509	140	377	972	315	2 609		
1983	15	83	2 330	1 356	1 300	506	150	467	618	2 824		
1984	0	55	668	6 250	1 147	000 008	220	146	268	3 001		
1985	15	235	1 340	1 907	9 678	902	622	115	36	468		
1986	35	426	1 4 3 1	2 671	2 292	8 4 2 1	794	384	66	227		
1987	0	156	/87	1 35/	2 000	1 728	5 027	171	163	106		
1988	181	207	511	/81	1 2/10	1 7/0	1 667	4 165	705	777		
1990	404	500	530	023	807	7/0	828	961	2 873	083		
1905	-+0 27	530	1 568	121	306	120	38/	830	2 07 3	1 718		
1000	73	832	1 278	5 763	674	1 501	010	6/0	2 1//	7 12/		
1001	,0	337	1 1 1 6	1 //8	1 236	775	5/3	770	2 144	3 028		
1002	21	210	672	1 957	1 015	1 661	558	011	877	1 608		
1994	0	61	994	2 777	4 032	3 104	2 4 3 5	1 630	1 179	3 000		
1995	65	91	1 4 1 9	6 159	3 512	3 905	1 211	3 189	411	4 246		
1996	0	1 969	1 358	2 531	8 573	2 304	3 927	828	1 968	3 130		
1997	0	593	1 726	877	1 086	7 649	2 193	4 949	562	4 200		
1998	0	597	4 802	8 820	2 995	2 0 2 9	13 268	1 251	4 289	4 493		
1999	0	989	10 785	4 245	4 103	1 178	858	4 238	1 096	2 222		
2000	572	359	3 154	10 673	3 175	2 854	998	352	5 329	3 807		
2001	83	2 503	589	4 829	9 608	3 647	2 607	532	546	2 265		
2002	0	216	6 476	831	2 147	3 660	958	502	110	1 305		
2003	227	8 782	3 910	4 227	2 130	6 168	4 305	1 212	441	2 674		
2004	51	776	7 653	2 889	2 368	2 252	6 841	1 859	318	2 510		
2005	181	734	2 668	21 815	4 036	2 825	1 1 1 3	2 252	2 577	2 610		
2006	0	440	1 318	9 622	30 865	5 447	3 620	2 673	2 925	3 509		
2007	34	871	3 007	4 355	13 677	30 979	3 083	1 928	577	2 594		
2008	76	1 666	2 503	1 978	5 327	17 332	31 643	5 561	1 535	4 184		
2009	139	402	6 271	2 710	2 530	4 146	11 850	24 999	2 685	3 274		
2010	0	86	481	3 491	2 463	3 877	9 354	24 053	10 584	3 304		
2011	0	871	883	1 596	3 837	4 047	5 040	15 725	24 198	9 639		
2012	0	194	3 435	2 140	2 886	5 905	5 398	9 070	17 350	14 875		
2013	6	421	2 106	10 581	4 307	4 768	8 565	8 951	12 192	11 657		
2014	63	769	960	1 445	11 580	4 894	6 104	10 515	10 642	18 242		
2015	42	3 961	4 967	1 782	2 037	12 376	5 151	6 817	9 913	23 145		
2016	52	325	2 878	4 069	1 488	2 559	13 341	5 678	6 366	31 838		
2017	0	152	899	4 809	3 428	1 061	3 697	11 233	7 280	17 404		
2018	23	222	395	733	1 718	1 391	1 769	3 129	6 059	7 114		
2019	49	2 125	979	921	1 696	4 699	4 994	3 378	5 308	16 661		
2020	0	16	1 933	196	358	1 292	1 858	2 380	2 195	3 894		
2021	0	0	0	0	52	26	52	208	208	338		

Tableau 14. Nombre (en milliers) selon l'âge de reproducteurs d'automne selon les relevés acoustiques effectués en été et à l'automne sur la côte ouest de Terre-Neuve (division 4R de l'OPANO) de 1991 à 2021.

	ÂGE											
ANNEE	2	3	4	5	6	7	8	9	10	11+		
Automne 1991	0	8 841	37 546	29 664	12 515	4 207	12 515	16 616	4 101	106 938		
Automne 1993	3 054	42 610	25 955	33 590	14 213	36 785	9 533	5 601	8 996	31 228		
Automne 1995	0	7 365	15 411	59 905	12 296	20 7 19	8 609	16 702	5 713	36 515		
Automne 1997	119	3 334	29 209	12 209	13 805	69 256	7 892	17 097	1 849	36 207		
Automne 1999	838	19 431	83 377	42 889	44 183	10 165	4 585	52 314	7 335	26 596		
Automne 2002	1 422	4 451	66 684	4 943	24 607	85 516	32 926	20 979	3 156	17 721		
Automne 2009	2 986	673	21 474	8 761	9 336	26 564	82 666	77 087	4 429	20 410		
Automne 2010	0	20 190	18 109	97 164	61 536	36 405	89 921	142 890	90 500	41 651		
Automne 2011	0	54 138	27 071	19 456	37 160	23 192	31 018	86 786	134 727	40 555		
Automne 2013	2 889	18 088	49 418	91 576	86 103	42 062	67 059	62 379	67 008	158 837		
Automne 2015	0	7 980	13 717	5 862	14 624	40 698	15 915	28 025	48 126	137 759		
Automne 2017	0	0	1 598	10 201	25 127	8 303	13 970	39 303	31 859	50 105		
Été 2019	7 406	89 927	6 348	25 391	28 565	70 884	33 855	12 696	21 159	126 956		
Automne 2019	1 872	137 301	12 790	93 318	57 651	18 335	27 253	4 261	8 471	61 928		
Été 2020	0	29 867	821 346	70 934	35 467	87 735	104 535	52 267	56 001	98 935		
Automne 2020	345	2 072	49 736	6 735	2 763	3 799	4 490	7 081	4 835	12 779		
Été 2021	26 688	1 906	11 438	72 440	24 782	70 534	148 693	81 972	83 878	173 475		
Automne 2021	45 499	3 981	15 925	107 491	8 531	5 119	11 375	15 356	13 081	38 674		

Tableau 15. Résultats des modèles additifs généralisés évaluant l'effet de l'environnement sur la variabilité du Kn pour chaque série temporelle disponible et composante reproductrice. phys: indices physiques, phyto: bloom printanier + indices physiques, zoo: zooplancton + bloom printanier + indices physiques. L'effet de chaque variable explicative sélectionnée sur la variable réponse peut être positif (+) ou négatif (-). Les effets non significatifs sont notés avec n.s. La performance des modèles a été évaluée avec le R² entre les valeurs observées et prédites, le % de déviance expliquée (%DEV), la comparaison de la déviance expliquée avec le bootstrap (* pour significativement plus élevé que la distribution obtenue par bootstrap et n.s. sinon) et le coefficient de corrélation de Pearson entre les valeurs prédites et observées au cours de la procédure Jackknife. Le statut des modèles est soit sélectionné, soit rejeté. En cas de rejet, la raison est donnée. Les modèles sélectionnés sont en gras.

Composante	Séries	Variables explicatives sélectionnées	Effet	R²	%DEV	Bootstrap	Jackknife	Statut
Printemps	phys.	SST Août	-	0,14	15	*	0,31	rejeté : autocorrélation temporelle
	phyto.	Dernière glace to. SST Mai-Août Durée du bloom		0,37	45	n.s.	0,45	rejeté: échec du bootstrap
	ZOO .	Durée du bloom Phénologie de <i>C. hyperboreus</i> (début de l'été) Abondance de <i>Pseudocalanus</i> (début de l'été)	+ n.s. + -	0,70	83	*	0,83	sélectionné
Automne	phys.	SST Août-Novembre	-	0,25	27	*	0,45	rejeté : autocorrélation temporelle
	z00.	SST Août-Novembre Abondance de <i>C. finmarchicus</i> (automne) Phénologie de <i>C. finmarchicus</i> (automne)	- + -	0,61	66	*	0,68	sélectionné

Tableau 16. Résultats des modèles additifs généralisés (quantile 0,5) évaluant l'effet de l'environnement sur le recrutement pour chaque série temporelle disponible et composante reproductrice. phys: indices physiques, phyto: bloom printanier + indices physiques, zoo: zooplancton + bloom printanier + indices physiques. Les effets non significatifs sont notés avec n.s. La performance des modèles a été évaluée avec le R² entre les valeurs observées et prédites, le % de déviance expliquée (%DEV), la comparaison de la déviance expliquée avec le bootstrap (* pour significativement plus élevé que la distribution obtenue par bootstrap et n.s. sinon) et le coefficient de corrélation de Pearson entre les valeurs prédites et observées au cours de la procédure Jackknife. Le statut des modèles est soit sélectionné, soit rejeté. En cas de rejet, la raison est donnée.

Composante	Séries	Variables explicatives sélectionnées	Effet	R²	%DEV	Bootstrap	Jackknife	Statut
Printemps	phys.	Dernière glace	n.s.	-0,04	11	n.s.	-0,65	rejeté: échec du bootstrap
	phyto.	Début du printemps	n.s.	-0,06	17	n.s.	-0,30	rejeté: échec du bootstrap
	Z00.	Début du bloom	n.s.	-0,12	23	n.s.	-0,32	rejeté: échec du bootstrap
Automne	phys.	SST Mai-Novembre	n.s.	-0,02	10	n.s.	-0,16	rejeté: échec du bootstrap
	Z00.	SST Mai-Novembre	n.s.	-0,04	18	n.s.	-0,14	rejeté: échec du bootstrap

Figure 1. (A) Carte des sous-divisions de la division 4R de l'OPANO. (B) Carte des zones de pêche au hareng (ZPH) 13 et 14.

Figure 2. Carte du plan de stratification du relevé acoustique. Les polygones rouges sont des strates ajoutées à la zone de relevé en 2019 dans le détroit de Belle Isle. Le polygone bleu est la strate qui couvre la sous-division 4Sw de la division 4S de l'OPANO (non incluse dans cette évaluation). Les lignes grises à l'intérieur de chaque strate sont les transects effectués par le navire hydroacoustique à l'automne 2021.

Figure 3. Débarquements commerciaux cumulatifs (t) de hareng par sous-division et total autorisé des captures (TAC) de la côte ouest de Terre-Neuve (division 4R de l'OPANO) de 1985 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires.

Figure 4. Débarquements commerciaux de hareng (t) par engin de pêche de la côte ouest de Terre-Neuve (division 4R de l'OPANO) de 1985 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires.

Figure 5. Débarquements commerciaux de hareng (t; ligne bleue continue) et quotas (t; ligne noire pointillée) par flottille de pêche (grand senneur \geq 65 pi, petit senneur < 65 pi, et engin fixe) dans la division 4R de l'OPANO de 1990 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires.

Débarquements (t) · 0 • 250 • 500 • 750

Figure 6. Diagramme de quantile représentant les débarquements commerciaux (t) de hareng par année et par jour julien pour les grands senneurs (≥ 65 pi), les petits senneurs (< 65 pi) et les engins fixes de 2000 à 2021 dans la division 4R de l'OPANO. Les débarquements individuels sont représentés par des cercles dont la taille est proportionnelle au poids débarqué et légèrement déplacés pour une meilleure représentation visuelle. Les débarquements de 2019, 2020 et 2021 sont préliminaires.

Figure 7. Débarquements commerciaux cumulés (%) pendant la saison de pêche par période de 5 ans selon le jour de l'année et par flotte de pêche (grand senneur ≥ 65 pi, petit senneur < 65 pi, et engin fixe) dans la division 4R de l'OPANO. Les deux dernières années de données disponibles sont également représentées individuellement. Les débarquements de 2019, 2020 et 2021 sont préliminaires.

Figure 8. Emplacement des débarquements commerciaux de hareng (t) par la flotte de grands senneurs (≥ 65 pi) dans la division 4R de l'OPANO de 2000 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires.

Figure 8. (suite).

Figure 9. Emplacement des débarquements commerciaux de hareng (t) par la flotte de petits senneurs (< 65 pi) dans la division 4R de l'OPANO de 2000 à 2021. Les débarquements de 2019, 2020 et 2021 sont préliminaires.

Figure 9. (suite).

Figure 10. Emplacement des débarquements commerciaux de hareng (t) par la flotte de senne tuck (engin fixe) dans la division 4R de l'OPANO de 2005 à 2020. Les débarquements de 2019 et 2020 sont préliminaires.

Figure 11. Pourcentage de latitude et de longitude manquantes dans les données ZIFF du hareng de la division 4R de l'OPANO pour les grands et petits senneurs et les sennes tuck. Les données de 2019, 2020 et 2021 sont préliminaires.

Figure 12. Distributions des fréquences de longueur relative des harengs reproducteurs de printemps et d'automne capturés par la flotte de senneurs (grand et petit) dans la division 4R de l'OPANO de 1990 à 2021. Les lignes verticales en pointillés noirs représentent la limite de la taille minimale (1990-2017 : 26,5 cm de longueur à la fourche, 2018-2021 : 24,76 cm de longueur à la fourche).

Figure 13. Distributions des fréquences de longueur relative des harengs reproducteurs de printemps et d'automne dans les échantillons récoltés lors du relevé multispécifique au chalut de fond du nGSL du MPO de 2018 à 2021.

Reproducteurs d'automne 📕 Reproducteurs de printemps

Figure 14. Diagrammes circulaires représentant la proportion (en nombre d'individus) de reproducteurs de printemps et d'automne dans les échantillons biologiques prélevés lors du relevé au chalut de fond multispécifique du nGSL du MPO de 2018 à 2021 et envoyés à l'Institut Maurice-Lamontagne pour une caractérisation biologique détaillée. Le rayon du cercle est proportionnel à la taille de l'échantillon.

Figure 15. Distribution de la biomasse de harengs mesurée lors des relevés hydroacoustiques d'été (août) et d'automne (octobre-novembre) de 2019 à 2021. La biomasse est proportionnelle à la hauteur des barres. La biomasse mesurée dans la sous-division 4Sw de la division 4S de l'OPANO est représentée en bleu, mais n'est pas incluse dans cette évaluation.

Reproducteurs d'automne 📕 Reproducteurs de printemps

Figure 16. Diagrammes circulaires représentant la proportion (en nombre d'individus) de reproducteurs de printemps et d'automne dans les échantillons biologiques utilisés pour estimer la biomasse mesurée lors des relevés acoustiques d'été (août) et d'automne (octobre-novembre) de 2019, 2020 et 2021 dans la division 4R de l'OPANO. Le rayon du cercle est proportionnel à la taille de l'échantillon.

Figure 17. Distributions des fréquences de longueur totale relatives des reproducteurs de printemps (A) et d'automne (B) utilisées dans le calcul de l'indice acoustique désagrégé par âge dans les relevés d'été (lignes bleues) et d'automne (lignes noires) effectués de 2009 à 2021 (n= nombre de poissons, moyenne= longueur moyenne).

Figure 18. Proportion de harengs reproducteurs de printemps et d'automne (nombre d'individus) dans les débarquements commerciaux de la division 4R de l'OPANO de 1965 à 2021.

Figure 19. Composition annuelle des captures selon l'âge (%) de hareng reproducteur de printemps dans la division 4R de l'OPANO de 1965 à 2021. La superficie du cercle est proportionnelle à la proportion du nombre de poissons à chaque âge. Les deux derniers chiffres des années de cohorte sont indiqués audessus des bulles.

Figure 20. Indice de biomasse des relevés acoustiques d'automne (1991-2021) et d'été (zones grisées, 2019-2021) pour le hareng reproducteur de printemps, avec et sans prise en compte des transects du détroit de Belle Isle. Les barres d'erreur représentent les erreurs-types.

Figure 21. Proportion de harengs reproducteurs de printemps et d'automne (nombre d'individus) estimée à partir des relevés acoustiques d'été et d'automne de 1991 à 2021.

Figure 22. Composition annuelle des nombres selon l'âge (%) des harengs reproducteurs de printemps dans les relevés acoustiques d'été (août) et d'automne (octobre-novembre) effectués dans la division 4R de l'OPANO de 1991 à 2021. La superficie du cercle est proportionnelle à la proportion du nombre de poissons à chaque âge. Les deux derniers chiffres des années de cohorte sont indiqués au-dessus des bulles.

📕 Échantillons acoustiques 🗾 Échantillons du Teleost

Figure 23. Distribution des fréquences de longueur (panneau supérieur) et d'âge (panneau inférieur) du hareng reproducteur de printemps à partir d'échantillons recueillis pendant le relevé acoustique estival (chalut pélagique) et le relevé annuel multispécifique du MPO dans le nGSL (chalut de fond, NGCC Teleost) dans la division 4R de l'OPANO de 2019 à 2021.

Figure 24. Indice de recrutement du hareng reproducteur de printemps dans les prises commerciales de la division 4R de l'OPANO pour les cohortes de 1962 à 2018. L'indice a été obtenu en calculant la moyenne des proportions normalisées des âges 3 et 4 pour les années y et y+1, à l'exception de la cohorte 2018 pour laquelle l'âge 3 de l'année y a été utilisé.

Figure 25. Longueur à la fourche à 50 % de maturité (L_{50}) par cohorte pour le hareng reproducteur de printemps dans la division 4R de l'OPANO. Les barres d'erreur représentent les intervalles de confiance à 95 % obtenus par simulations bootstrap. La ligne horizontale en pointillés noirs représente la moyenne de la série (24,19 cm) et la ligne en pointillés rouges représente la taille de capture légale (24,76 cm).

Figure 26. Ogive de maturité (ligne bleue) en fonction de la longueur pour la cohorte 2017 des reproducteurs de printemps. La L_{50} a été estimée à 24,52 cm de longueur à la fourche. La zone grisée représente l'intervalle de confiance à 95 %. Les points noirs représentent les harengs matures (1) et immatures (0) observés.

Figure 27. Âge à 50 % de maturité (A₅₀) par cohorte dans la division 4R de l'OPANO pour les reproducteurs de printemps. Les barres d'erreur représentent les intervalles de confiance à 95 % obtenus par simulations bootstrap. Pour chaque cohorte, les données ont été regroupées avec les deux cohortes voisines en raison du nombre insuffisant de poissons immatures. La ligne noire horizontale en pointillés représente la moyenne de la série (3,38 années).

Figure 28. Ogive de maturité (ligne bleue) en fonction de l'âge pour la cohorte 2017 des reproducteurs de printemps. La A₅₀ a été estimée à 4,85 ans. La zone grisée représente l'intervalle de confiance à 95 %. Les points noirs représentent les harengs matures (1) et immatures (0) observés.

Figure 29. Longueur totale (mm) pour les âges 2 à 11+ des reproducteurs de printemps dans la division 4R de l'OPANO de 1965 à 2021. Les séries ont été standardisées pour tenir compte de la sous-division de l'OPANO, de l'engin de pêche et du mois de capture. La ligne horizontale en pointillés noirs représente la moyenne de la série.

Figure 30. Poids total (g) pour les âges 2 à 11+ des reproducteurs de printemps dans la division 4R de l'OPANO de 1965 à 2021. Les séries ont été standardisées pour tenir compte de la sous-division de l'OPANO, de l'engin de pêche et du mois de capture. La ligne noire horizontale en pointillés est la moyenne de la série.

Figure 31. Indice de condition relative standardisé (avec un intervalle de confiance de 95 %) pour le hareng reproducteur de printemps dans la division 4R de l'OPANO de 1970 à 2021. La série a été standardisée pour tenir compte de la sous-division de l'OPANO, de l'engin de pêche et du mois de capture. La ligne noire horizontale en pointillés représente la moyenne de la série (1,11).

Figure 32. Indice cumulé de productivité du stock basé sur la somme (point blanc) des anomalies annuelles normalisées des principaux indicateurs de productivité du stock (indice de condition relative, longueur totale moyenne à l'âge 6 et indice de recrutement) des harengs reproducteurs de printemps dans la division 4R de l'OPANO de 1970 à 2021.

Figure 33. Composition annuelle des captures selon l'âge (%) de hareng reproducteur d'automne dans la division 4R de l'OPANO de 1965 à 2021. La superficie du cercle est proportionnelle à la proportion du nombre de poissons à chaque âge. Les deux derniers chiffres des années de cohorte sont indiqués audessus des bulles.

Figure 34. Indices de biomasse des relevés acoustiques d'automne (1991-2021) et d'été (zones grisées, 2019-2021) pour le hareng reproducteur d'automne, avec et sans prise en compte des transects du détroit de Belle Isle. Les barres d'erreur représentent les erreurs-types.

Figure 35. Composition annuelle des nombres selon l'âge (%) des harengs reproducteurs d'automne dans les relevés acoustiques d'été (août) et d'automne (octobre-novembre) effectués dans la division 4R de l'OPANO de 1991 à 2021. La superficie du cercle est proportionnelle à la proportion du nombre de poissons à chaque âge. Les deux derniers chiffres des années de cohorte sont indiqués au-dessus des bulles.

Figure 36. Distribution des fréquences de longueur (panneau supérieur) et d'âge (panneau inférieur) du hareng reproducteur d'automne à partir d'échantillons recueillis pendant le relevé acoustique estival (chalut pélagique) et le relevé annuel multispécifique du MPO dans le nGSL (chalut de fond, NGCC Teleost) dans la division 4R de l'OPANO de 2019 à 2021.

Figure 37. Indice de recrutement du hareng reproducteur d'automne dans les prises commerciales de la division 4R de l'OPANO pour les cohortes de 1962 à 2017. L'indice a été obtenu en calculant la moyenne des proportions normalisées des âges 3 et 4 pour les années y et y+1, à l'exception de la cohorte 2017 pour laquelle l'âge 3 de l'année y a été utilisé.

Figure 38. Longueur à la fourche à 50 % de maturité (L_{50}) par cohorte pour le hareng reproducteur d'automne dans la division 4R de l'OPANO. Les barres d'erreur représentent les intervalles de confiance à 95 % obtenus par simulations bootstrap. La ligne horizontale en pointillés noirs représente la moyenne de la série (25,41 cm) et la ligne en pointillés rouges représente la taille de capture légale (24,76 cm).

Figure 39. Ogive de maturité (ligne bleue) en fonction de la longueur pour la cohorte 2017 des reproducteurs d'automne. La L_{50} a été estimée à 25,46 cm de longueur à la fourche. La zone grisée représente l'intervalle de confiance à 95 %. Les points noirs représentent les harengs matures (1) et immatures (0) observés.

Figure 40. Âge à 50 % de maturité (A₅₀) par cohorte dans la division 4R de l'OPANO pour les reproducteurs d'automne. Les barres d'erreur représentent les intervalles de confiance à 95 % obtenus par simulations bootstrap. La ligne noire horizontale en pointillés représente la moyenne de la série (4,08 années).

Figure 41. Ogive de maturité (ligne bleue) en fonction de l'âge pour la cohorte 2017 des reproducteurs d'automne. La A₅₀ a été estimée à 5,29 ans. La zone grisée représente l'intervalle de confiance à 95 %. Les points noirs représentent les harengs matures (1) et immatures (0) observés.

Figure 42. Longueur totale (mm) pour les âges 2 à 11+ des reproducteurs d'automne dans la division 4R de l'OPANO de 1965 à 2021. Les séries ont été standardisées pour tenir compte de la sous-division de l'OPANO, de l'engin de pêche et du mois de capture. La ligne horizontale en pointillés noirs représente la moyenne de la série.

Figure 43. Poids total (g) pour les âges 2 à 11+ des reproducteurs d'automne dans la division 4R de l'OPANO de 1965 à 2021. Les séries ont été standardisées pour tenir compte de la sous-division de l'OPANO, de l'engin de pêche et du mois de capture. La ligne noire horizontale en pointillés est la moyenne de la série.

Figure 44. Indice de condition relative standardisé (avec un intervalle de confiance de 95 %) pour le hareng reproducteur d'automne dans la division 4R de l'OPANO de 1970 à 2021. Les séries ont été standardisées pour tenir compte de la sous-division de l'OPANO, de l'engin de pêche et du mois de capture. La ligne noire horizontale en pointillés représente la moyenne de la série (1,01).

Figure 45. Indice cumulé de productivité du stock basé sur la somme (point blanc) des anomalies annuelles normalisées des principaux indicateurs de productivité du stock (indice de condition relative, longueur totale moyenne à l'âge 6 et indice de recrutement) des harengs reproducteurs d'automne dans la division 4R de l'OPANO de 1970 à 2021.

Figure 46. Variabilité interannuelle des variables explicatives de l'environnement physique inclus dans le modèle additif généralisé évaluant l'effet de l'environnement sur la condition et le recrutement du hareng, moyennée pour les régions 2, 3 et 4 de l'approche écosystémique. Le début du printemps correspond à la première semaine de l'année où la température de l'eau de surface est supérieure à 10°C et le début de l'automne correspond à la dernière semaine de l'année où la température de l'eau de surface est inférieure à 10°C (JDA = jour de l'année, SDA = semaine de l'année). SST représente la température de surface de la mer.

Figure 47. Variabilité interannuelle des variables explicatives de la productivité du phytoplancton inclus dans le modèle additif généralisé évaluant l'effet de l'environnement sur la condition et le recrutement du hareng, moyennée pour les régions 2, 3 et 4 de l'approche écosystémique (JDA = jour de l'année).

Figure 48. Variabilité interannuelle des variables explicatives de la productivité du zooplancton incluses dans le modèle additif généralisé évaluant l'effet de l'environnement sur la condition et le recrutement du hareng, moyennée pour les régions 2, 3 et 4 de l'approche écosystémique.

Figure 49. Modèles additifs généralisés (GAM) sélectionnés pour le *Kn* des hareng reproducteurs de printemps de 4 à 9 ans. A) Les *Kn* observés (cercles noirs) sont tracés par rapport aux prédictions GAM (ligne bleue) et aux intervalles de confiance à 95 % des prédictions (zone bleue ombrée), B) Contribution de chaque variable au *Kn* prédit chaque année, C) Effet de la durée du bloom printanier, D) Effet de l'abondance de Pseudocalanus spp. au début de l'été, E) Effet de la phénologie de C. hyperboreus au début de l'été.

Figure 50. Modèles additifs généralisés (GAM) sélectionnés pour le *Kn* des hareng reproducteurs d'automne de 4 à 9 ans. A) Les *Kn* observés (cercles noirs) sont tracés par rapport aux prédictions GAM (ligne bleue) et aux intervalles de confiance à 95 % des prédictions (zone bleue ombrée), B) Contribution de chaque variable au *Kn* prédit chaque année, C) Effet de la température de surface de la mer (SST) moyenne d'août à novembre, D) Effet de l'abondance de C. finmarchicus à l'automne, E) Effet de la phénologie de C. finmarchicus à l'automne.

ANNEXE A : INFORMATIONS SUPPLÉMENTAIRES SUR LES RELEVÉS ACOUSTIQUES RÉALISÉS DANS LA DIVISION 4R DE L'OPANO ENTRE 1991 ET 2021

Nous présentons ici : 1-les navires hydroacoustiques utilisés pour effectuer les relevés acoustiques de 1991 à 2021 (Tableau A17), 2-le résumé des échantillons biologiques utilisés dans l'estimation des indices d'abondance de 2009-2021 (Tableau A18), 3-l'effort d'échantillonnage (nombre de transects par strate) au cours de la période 1991-2021 (Figure A51), 4-les estimations de biomasse par strate et composante reproductrice pour les périodes 1991-2002 (Tableau A19) et 2009-2021 (Tableau A20), et 5-la distribution spatiale de la biomasse de hareng mesurée pendant les relevés acoustiques de 2009 à 2017 (Figure A52). Les estimations de la biomasse de 1991 à 2002 proviennent de documents d'évaluation du stock antérieurs (McQuinn et Lefebvre 1999, Grégoire *et al.* 2012, Légaré *et al.* 2014).

Tableau A17. Dates de début et de fin et navires utilisés pour effectuer les relevés acoustiques sur le hareng de 1991 à 2021. Tous les navires mentionnés font partie de la flotte de la Garde côtière canadienne (GCC), à l'exception du RV Novus qui est un navire affrété par la société Leeway Marine.

Relevé	Début	Fin	Navire
1991	23 nov	02 dec	E.E. Prince (GCC)
1993	11 nov	24 nov	Frederick G. Creed (GCC)
1995	20 oct	02 nov	Frederick G. Creed (GCC)
1997	16 oct	31 oct	Frederick G. Creed (GCC)
1999	10 oct	21 oct	Frederick G. Creed (GCC)
2002	15 sep	26 sep	Frederick G. Creed (GCC)
2009	21 oct	06 nov	Frederick G. Creed (GCC)
2010	21 oct	02 nov	Frederick G. Creed (GCC)
2011	20 oct	01 nov	Frederick G. Creed (GCC)
2013	13 oct	22 oct	Frederick G. Creed (GCC)
2015	15 oct	25 oct	Vladykov (GCC)
2017	21 oct	06 nov	Frederick G. Creed (GCC)
Été 2019	11 aout	23 aout	Frederick G. Creed (GCC)
Automne 2019	26 oct	06 nov	Leim (GCC)
Été 2020	08 aout	30 aout	Leim (GCC)
Automne 2020	19 oct	06 nov	Leim (GCC)
Été 2021	04 aout	18 aout	RV Novus (Leeway Marine)
Automne 2021	13 oct	28 oct	RV Novus (Leeway Marine)

Tableau A18. Nombre d'échantillons de hareng atlantique par relevé et par engin de pêche utilisés pour l'estimation de l'indice de biomasse acoustique de 2009 à 2021. Certaines années, des échantillons provenant de la pêche commerciale ont été utilisés pour combler les lacunes de l'échantillonnage (en gras). Le nombre total de harengs est indiqué entre parenthèses.

Relevé	Chalut pélagique	Chalut de fond	Senne Tuck	Senne bourse (> 65')	Senne bourse (< 65')	Filet maillant	Navire
2009	0	0	0	8 (1 743)	0	0	Navire de pêche affrété
2010	0	0	0	3 (625)	0	0	Navire de pêche affrété
2011	0	0	0	3 (728)	0	0	Navire de pêche affrété
2013	0	0	0	4 (566)	4 (324)	0	Navire de pêche affrété et échantillons commerciaux
2015	0	0	2 (110)	8 (442)	8 (441)	1 (48)	Échantillons commerciaux
2017	1 (93)	0	0	3 (166)	1 (55)	0	CCGS Leim et échantillons commerciaux
Été 2019	12 (505)	0	0	0	0	0	Navire de pêche affrété
Automne 2019	11 (868)	0	0	0	0	0	Navire de pêche affrété
Été 2020	12 (1 061)	5 (202)	0	0	0	0	CCGS Teleost et Navire de pêche affrété
Automne 2020	12 (850)	0	0	0	2 (104)	0	Navire de pêche affrété et échantillons commerciaux
Été 2021	3 (248)	9 (358)	0	0	0	0	CCGS Teleost et Navire de pêche affrété
Automne 2021	16 (1 268)	0	0	0	0	0	Navire de pêche affrété

Tableau A19. Densités de la biomasse de hareng et estimations par strate provenant des relevés acoustiques effectués à l'automne 1991 (23 novembre au 2 décembre), 1993 (11 au 24 novembre), 1995 (20 octobre au 2 novembre), 1997 (16 au 31 octobre), 1999 (10 au 21 octobre) et 2002 (15 au 26 septembre). Les écarts-types (S.E.) et les coefficients de variation (C.V.) des estimations de la biomasse ont été calculés sur la base de la variance de la biomasse des transects par strate (O'Boyle et Atkinson 1989). N.É.= Non échantillonné.

1991		:	Strate		Coeffi	cient de rétr	odiffusion d	e surface (s₂)	Rep	roducteur o	d'automne		Repr	oducteur de	e printemp	s
		Airo	No	Longueur	Densité	Total s	Moyen	ne pondéré	e Sa	Densité	В	iomasse		Densité	В	iomasse	
Nom	Strate	(km ²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	C.V.	Biomasse (kg/m²)	Total (t)	S.E.	C.V.	biomasse (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
St. Georges N.	2	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Port-au-Port G.	3	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Port-au-Port	4	437,4	6	10 518,7	0,144	0	0	-	-	0	0	-	-	0	0	-	-
Bay of Islands G.	5	707,6	11	11 898,6	0,185	1 016,8	1,44E-06	1,41E-06	97,9	0,004	3 014,0	2 950,7	97,9	0,004	3 683,0	3 605,7	97,9
Bonne Bay Bank	6	682,5	29	12 992,7	0,552	26 307,3	3,85E-05	3,25E-05	84,4	0,114	77 970,0	65 650,7	84,2	0,099	95 297,0	80 240,1	84,2
Bay of Islands	7	295,7	6	14 526,2	0,295	198,4	6,71E-07	6,92E-07	103,1	0,002	588,0	606,2	103,1	0,002	719,0	741,3	103,1
Bonne Bay	8	53,2	14	2 158,5	0,568	451,1	8,47E-06	7,89E-06	93,2	0,017	877,0	816,5	93,1	0,019	1 718,0	1 599,5	93,1
Hawk's Bay	9	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
St. John Bay	10	1 640,3	21	14 503,1	0,186	0	0	-	-	0	0	-	-	0,000	0	-	-
Moyenne / Total:	-	3 816,8	87	11 410,7	0,260	27 973,6	4,91E-05	3,35E-05	68,2	0,022	82 449,0	65 547,0	79,5	0,019	101 417,0	80 626,5	79,5
																	-
1993		;	Strate		Coeffi	cient de rétre	odiffusion d	e surface (s₄)	Rep	roducteur o	l'automne		Repr	oducteur de	e printemp	5
1993		Aire	Strate	Longueur	Coeffi Densité	cient de rétro	odiffusion de Moyen	e surface (s₂ ne pondéré) e Sa	Rep Densité	roducteur o B	l'automne iomasse		Repr Densité	oducteur de B	e printemp iomasse	5
1993 Nom	Strate	Aire (km²)	Strate No. transect	Longueur moy. du transect (m)	Coeffi Densité d'éch. (km/km²)	cient de rétro Total sª (m²)	odiffusion do Moyen Moyenne (m²/m²)	e surface (s₌ ne pondéré S.E.) ee sa Total (t)	Rep Densité Biomasse (kg/m²)	roducteur o B Total (t)	d'automne iomasse S.E.	C.V.	Repr Densité Biomasse (kg/m²)	oducteur de B Total (t)	e printemp iomasse S.E.	s C.V.
1993 Nom St. Georges S.	Strate 1	Aire (km²) 1 157,4	Strate No. transect	Longueur moy. du transect (m) 10 929,8	Coeffi Densité d'éch. (km/km²) 0,161	tient de rétro Total sa (m²) 333,9	Moyen Moyene (m²/m²) 2,89E-07	e surface (s ne pondéré S.E. 2,77E-07) ee sa Total (t) 95,8	Rep Densité Biomasse (kg/m ²) 0,001	roducteur o B Total (t) 788,0	d'automne iomasse S.E. 757,3	C.V. 96,1	Repr Densité Biomasse (kg/m²) 0,001	oducteur de B Total (t) 778,0	e printemp iomasse S.E. 747,7	s C.V. 96,1
1993 Nom St. Georges S. St. Georges N.	Strate 1 2	Aire (km²) 1 157,4 665,8	Strate No. transect 17 10	Longueur moy. du transect (m) 10 929,8 10 732,0	Coeffi Densité d'éch. (km/km²) 0,161 0,161	Total sa (m ²) 333,9 0	Moyenne (m²/m²) 2,89E-07 0	e surface (s ne pondéré S.E. 2,77E-07) ee sa Total (t) 95,8	Rep Densité Biomasse (kg/m ²) 0,001 0,000	roducteur (B Total (t) 788,0 0	d'automne iomasse S.E. 757,3 -	C.V. 96,1	Repr Densité Biomasse (kg/m²) 0,001 0,000	oducteur de B Total (t) 778,0 0	e printemp iomasse S.E. 747,7	s C.V. 96,1
1993 Nom St. Georges S. St. Georges N. Port-au-Port G.	Strate 1 2 3	Aire (km²) 1 157,4 665,8 850,6	Strate No. transect 17 10 13	Longueur moy. du transect (m) 10 929,8 10 732,0 11 531,0	Coeffi Densité d'éch. (km/km²) 0,161 0,161 0,176	tient de rétre Total sª (m²) 333,9 0 933,6	odiffusion de Moyen (m²/m²) 2,89E-07 0 1,10E-06	e surface (s ne pondéré S.E. 2,77E-07 - 7,67E-07) e s _a Total (t) 95,8 - 69,7	Rep Densité Biomasse (kg/m²) 0,001 0,000 0,003	roducteur d B Total (t) 788,0 0 2 203,0	d'automne iomasse S.E. 757,3 - 1 539,9	C.V. 96,1 - 69,9	Repr Densité Biomasse (kg/m²) 0,001 0,000 0,002	oducteur de B Total (t) 778,0 0 2 176,0	e printemp: iomasse S.E. 747,7 - 1 521,0	s C.V. 96,1 - 69,9
1993 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port	Strate 1 2 3 4	Aire (km²) 1 157,4 665,8 850,6 437,4	No. transect 17 10 13 11	Longueur moy. du transect (m) 10 929,8 10 732,0 11 531,0 7 524,4	Coeffi Densité d'éch. (km/km²) 0,161 0,161 0,176 0,189	Total sa (m ²) 333,9 0 933,6 2,8	odiffusion de Moyenne (m²/m²) 2,89E-07 0 1,10E-06 6,48E-09	e surface (s _i ne pondéré S.E. 2,77E-07 - 7,67E-07 6,43E-09) ee sa Total (t) 95,8 - 69,7 99,2	Rep Densité Biomasse (kg/m ²) 0,001 0,000 0,003 0,000	roducteur d B Total (t) 788,0 0 2 203,0 7,0	d'automne iomasse S.E. 757,3 - 1 539,9 7,0	C.V. 96,1 - 69,9 99,3	Repr Densité Biomasse (kg/m ²) 0,001 0,000 0,002 0,000	oducteur de B Total (t) 778,0 0 2 176,0 7,0	e printemp: iomasse S.E. 747,7 - 1 521,0 7,0	s C.V. 96,1 - 69,9 99,3
1993 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G.	Strate 1 2 3 4 5	Aire (km ²) 1 157,4 665,8 850,6 437,4 707,6	No. transect 17 10 13 11 16	Longueur moy. du transect (m) 10 929,8 10 732,0 11 531,0 7 524,4 10 237,8	Coeffi Densité d'éch. (km/km²) 0,161 0,161 0,161 0,176 0,189 0,231	Total s a (m ²) 333,9 0 933,6 2,8 3 141,8	Moyen Moyenne (m²/m²) 2,89E-07 0 1,10E-06 6,48E-09 4,44E-06	e surface (sa ne pondéré S.E. 2,77E-07 - 7,67E-07 6,43E-09 1,59E-06) ee sa Total (t) 95,8 - 69,7 99,2 35,8	Rep Densité Biomasse (kg/m ²) 0,001 0,000 0,003 0,000 0,010	roducteur d B Total (t) 788,0 0 2 203,0 7,0 7 413,0	d'automne iomasse S.E. 757,3 - 1 539,9 7,0 2 653,9	C.V. 96,1 - 69,9 99,3 35,8	Repr Densité Biomasse (kg/m²) 0,001 0,000 0,002 0,000 0,008	oducteur de B Total (t) 778,0 0 2 176,0 7,0 7 324,0	e printemp: iomasse S.E. 747,7 - 1 521,0 7,0 2 622,0	s C.V. 96,1 - 69,9 99,3 35,8
1993NomSt. Georges S.St. Georges N.Port-au-Port G.Port-au-PortBay of Islands G.Bonne Bay Bank	Strate 1 2 3 4 5 6	Aire (km ²) 1 157,4 665,8 850,6 437,4 707,6 1 035,5	No. transect 17 10 13 11 16 44	Longueur moy. du transect (m) 10 929,8 10 732,0 11 531,0 7 524,4 10 237,8 10 350,2	Coeffi Densité d'éch. (km/km²) 0,161 0,161 0,161 0,176 0,189 0,231 0,231 0,440	Total sa (m ²) 333,9 0 933,6 2,8 3 141,8 13 206,5	odiffusion de Moyenne (m²/m²) 2,89E-07 0 1,10E-06 6,48E-09 4,44E-06 1,28E-05	e surface (sa ne pondéré S.E. 2,77E-07 - 7,67E-07 6,43E-09 1,59E-06 2,64E-06) re Sa Total (t) 95,8 - 69,7 99,2 35,8 20,6	Rep Densité Biomasse (kg/m ²) 0,001 0,000 0,003 0,000 0,010 0,038	Total (t) 788,0 0 2 203,0 7,0 7 413,0 39 017,0	d'automne iomasse S.E. 757,3 - 1 539,9 7,0 2 653,9 7 725,4	C.V. 96,1 - 69,9 99,3 35,8 19,8	Repr Densité Biomasse (kg/m²) 0,001 0,000 0,002 0,000 0,000 0,000 0,002 0,008 0,029	oducteur de B Total (t) 778,0 0 2 176,0 7,0 7 324,0 38 337,0	e printempe iomasse S.E. 747,7 - 1 521,0 7,0 2 622,0 7 590,7	s C.V. 96,1 - 69,9 99,3 35,8 19,8
1993NomSt. Georges S.St. Georges N.Port-au-Port G.Port-au-PortBay of Islands G.Bonne Bay BankBay of Islands	Strate 1 2 3 4 5 6 7	Aire (km ²) 1 157,4 665,8 850,6 437,4 707,6 1 035,5 295,7	Strate No. transect 17 10 13 11 16 44 4 4	Longueur moy. du transect (m) 10 929,8 10 732,0 11 531,0 7 524,4 10 237,8 10 350,2 14 401,7	Coeffi Densité d'éch. (km/km²) 0,161 0,161 0,161 0,176 0,189 0,231 0,440 0,195	Cient de rétre Total sa (m ²) 333,9 0 933,6 2,8 3 141,8 13 206,5 534,2	0diffusion de Moyenne (m²/m²) 2,89E-07 0 1,10E-06 6,48E-09 4,44E-06 1,28E-05 1,81E-06	e surface (sa ne pondéré S.E. 2,77E-07 - 7,67E-07 6,43E-09 1,59E-06 2,64E-06 1,73E-06) ee sa Total (t) 95,8 - 69,7 99,2 35,8 20,6 95,6	Rep Densité Biomasse (kg/m²) 0,001 0,000 0,003 0,000 0,010 0,038 0,004	Total (t) 788,0 0 2 203,0 7,0 7 413,0 39 017,0 1 260,0	d'automne iomasse S.E. 757,3 - 1 539,9 7,0 2 653,9 7 725,4 1 208,3	C.V. 96,1 - 69,9 99,3 35,8 19,8 95,9	Repr Densité Biomasse (kg/m²) 0,001 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003	oducteur de B Total (t) 778,0 0 2 176,0 7,0 7 324,0 38 337,0 1 245,0	e printemp: iomasse S.E. 747,7 - 1 521,0 7,0 2 622,0 7 590,7 1 194,0	c.v . 96,1 - 69,9 99,3 35,8 19,8 95,9
1993NomSt. Georges S.St. Georges N.Port-au-Port G.Port-au-PortBay of Islands G.Bonne Bay BankBay of IslandsBonne Bay BankBonne Bay Bank	Strate 1 2 3 4 5 6 7 8	Aire (km ²) 1 157,4 665,8 850,6 437,4 707,6 1 035,5 295,7 53,2	Strate No. transect 17 10 13 11 16 44 4 4 11	Longueur moy. du transect (m) 10 929,8 10 732,0 11 531,0 7 524,4 10 237,8 10 350,2 14 401,7 2 200,5	Coeffi Densité d'éch. (km/km²) 0,161 0,161 0,161 0,176 0,189 0,231 0,440 0,195 0,455	Total sa (m ²) 333,9 0 933,6 2,8 3 141,8 13 206,5 534,2 51,2	Moyen Moyenne (m²/m²) 2,89E-07 0 1,10E-06 6,48E-09 4,44E-06 1,28E-05 1,81E-06 9,62E-07	e surface (sa ne pondéré S.E. 2,77E-07 - 7,67E-07 6,43E-09 1,59E-06 2,64E-06 1,73E-06 5,61E-07) ee sa Total (t) 95,8 - 69,7 99,2 35,8 20,6 95,6 58,3	Rep Densité Biomasse (kg/m²) 0,001 0,000 0,003 0,000 0,010 0,038 0,004 0,003	roducteur d B Total (t) 788,0 0 2 203,0 7,0 7 413,0 39 017,0 1 260,0 159,0	d'automne iomasse S.E. 757,3 - 1 539,9 7,0 2 653,9 7 725,4 1 208,3 92,7	C.∨ . 96,1 - 69,9 99,3 35,8 19,8 95,9 58,3	Repr Densité Biomasse (kg/m²) 0,001 0,000 0,002 0,000 0,008 0,029 0,003 0,002	oducteur de B Total (t) 778,0 0 2 176,0 7,0 7 324,0 38 337,0 1 245,0 125,0	e printemp: iomasse S.E. 747,7 - 1 521,0 7,0 2 622,0 7 590,7 1 194,0 72,9	s C.V. 96,1 - 69,9 99,3 35,8 19,8 95,9 58,3
1993NomSt. Georges S.St. Georges N.Port-au-Port G.Port-au-PortBay of Islands G.Bonne Bay BankBay of IslandsBonne BayHawk's Bay	Strate 1 2 3 4 5 6 7 8 9	Aire (km ²) 1 157,4 665,8 850,6 437,4 707,6 1 035,5 295,7 53,2 <i>N.É.</i>	Strate No. transect 17 10 13 11 16 44 4 4 11	Longueur moy. du transect (m) 10 929,8 10 732,0 11 531,0 7 524,4 10 237,8 10 350,2 14 401,7 2 200,5	Coeffi Densité d'éch. (km/km²) 0,161 0,161 0,161 0,176 0,189 0,231 0,440 0,195 0,455 -	Total sa (m ²) 333,9 0 933,6 2,8 3 141,8 13 206,5 534,2 51,2 -	odiffusion de Moyenne (m²/m²) 2,89E-07 0 1,10E-06 6,48E-09 4,44E-06 1,28E-05 1,81E-06 9,62E-07 -	e surface (sa ne pondéré S.E. 2,77E-07 - 7,67E-07 6,43E-09 1,59E-06 2,64E-06 1,73E-06 5,61E-07 -) ee s₁ Total (t) 95,8 - 69,7 99,2 35,8 20,6 95,6 58,3 -	Rep Densité Biomasse (kg/m ²) 0,001 0,000 0,003 0,000 0,010 0,038 0,004 0,003 -	roducteur d B Total (t) 788,0 0 2 203,0 7,0 7 413,0 39 017,0 1 260,0 159,0 -	d'automne iomasse S.E. 757,3 - 1 539,9 7,0 2 653,9 7 725,4 1 208,3 92,7 -	C.V. 96,1 - 69,9 99,3 35,8 19,8 95,9 58,3 -	Repr Densité Biomasse (kg/m ²) 0,001 0,000 0,002 0,000 0,008 0,029 0,003 0,002 -	oducteur de B Total (t) 778,0 0 2 176,0 7,0 7 324,0 38 337,0 1 245,0 125,0 -	e printemps iomasse S.E. 747,7 - 1 521,0 7,0 2 622,0 7 590,7 1 194,0 72,9 -	s C.V. 96,1 - 69,9 99,3 35,8 19,8 95,9 58,3 -
1993NomSt. Georges S.St. Georges N.Port-au-Port G.Port-au-PortBay of Islands G.Bonne Bay BankBay of IslandsBonne BayHawk's BaySt. John Bay	Strate 1 2 3 4 5 6 7 8 9 10	Aire (km ²) 1 157,4 665,8 850,6 437,4 707,6 1 035,5 295,7 53,2 N.É. N.É.	Strate No. transect 17 10 13 11 16 44 4 4 11	Longueur moy. du transect (m) 10 929,8 10 732,0 11 531,0 7 524,4 10 237,8 10 350,2 14 401,7 2 200,5	Coeffi Densité d'éch. (km/km²) 0,161 0,161 0,161 0,176 0,189 0,231 0,440 0,195 0,455 -	cient de rétre Total sa (m ²) 333,9 0 933,6 2,8 3 141,8 13 206,5 534,2 51,2 -	odiffusion de Moyenne (m²/m²) 2,89E-07 0 1,10E-06 6,48E-09 4,44E-06 1,28E-05 1,81E-06 9,62E-07 -	e surface (sa ne pondéré S.E. 2,77E-07 - 7,67E-07 6,43E-09 1,59E-06 2,64E-06 1,73E-06 5,61E-07 -) ee sa Total (t) 95,8 - 69,7 99,2 35,8 20,6 95,6 58,3 - - -	Rep Densité Biomasse (kg/m ²) 0,001 0,000 0,003 0,000 0,010 0,038 0,004 0,003 -	Total (t) 788,0 0 2 203,0 7,0 7 413,0 39 017,0 1 260,0 159,0 -	d'automne iomasse S.E. 757,3 - 1 539,9 7,0 2 653,9 7 725,4 1 208,3 92,7 - -	C.V. 96,1 - 69,9 99,3 35,8 19,8 95,9 58,3 -	Repr Densité Biomasse (kg/m ²) 0,001 0,000 0,002 0,000 0,008 0,029 0,003 0,002 -	oducteur de B Total (t) 778,0 0 2 176,0 7,0 7 324,0 38 337,0 1 245,0 125,0 -	e printemp: iomasse S.E. 747,7 - 1 521,0 7,0 2 622,0 7 590,7 1 194,0 72,9 - -	c.v. 96,1 - 69,9 99,3 35,8 19,8 95,9 58,3 -

1995		;	Strate		Coeffi	cient de rétro	odiffusion de	surface (s _a)		Rep	roducteur	d'automne		Repr	oducteur d	e printemp	s
		Airo	No	Longueur	Densité	Total s	Moyen	ne pondéré	e Sa	Densité	В	iomasse		Densité	E	Biomasse	
Nom	Strate	(km²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m ²)	Total (t)	S.E.	C.V.	Biomasse (kg/m ²)	Total (t)	S.E.	C.V.
St. Georges S.	1	1 156,7	14	10 952,6	0,133	0	0	-	-	0,000	0	-	-	0	0	-	-
St. Georges N.	2	666,5	8	10 911,8	0,131	0	0	-	-	0,000	0	-	-	0	0	-	-
Port-au-Port G.	3	866,8	10	1 557,3	0,018	1 640,6	1,89E-06	1,49E-06	78,8	0,002	1 965,0	1 548,4	78,8	0,003	4 586,0	3 613,8	78,8
Port-au-Port	4	N.É.			-	-	-	-	-	-	-	-	-	0.000	-	-	-
Bay of Islands G.	5	766,3	25	11 957,9	0,390	2 447,9	3,19E-06	1,38E-06	43,3	0,006	4 573,0	1 971,0	43,1	0,005	5 312,0	2 289,5	43,1
Bonne Bay Bank	6	1 044,5	33	12 481,3	0,394	3 563,3	3,41E-06	7,67E-07	22,5	0,009	8 942,0	2 012,0	22,5	0,005	5 717,0	1 286,3	22,5
Bay of Islands	7	296,6	10	10 005,6	0,337	0	0	-	-	0,000	0	-	-	0,000	0,0	0,0	0,0
Bonne Bay	8	53,0	9	2 404,3	0,408	11,9	2,24E-07	1,61E-07	71,9	0,000	10,0	7,5	74,5	0,000	39,0	29,1	74,5
Hawk's Bay	9	487,1	11	9 065,9	0,205	1 029,0	2,11E-06	1,21E-06	57,3	0,005	2 607,0	1 496,4	57,4	0,003	1 650,0	947,1	57,4
St. John Bay	10	1 786,5	20	17 441,1	0,195	13 028,9	7,29E-06	4,04E-06	55,4	0,019	33 301,0	18 448,8	55,4	0,012	20 847,0	11 549,2	55,4
Average / Total:	-	7 124,0	140	10 753,1	0,216	21 721,6	1,81E-05	4,75E-06	26,2	0,007	51 398,0	17 783,7	34,6	0,005	38 151,0	13 200,2	34,6
1997		:	Strate		Coeffi	cient de rétro	odiffusion de	surface (s _a))	Rep	roducteur o	d'automne		Repr	oducteur d	e printemp	s
		Airo	No	Longueur	Densité	Total sa	Moyeni	ne pondéré	e Sa	Densité	В	iomasse		Densité	E	Biomasse	
Nom	Strate	(km²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m²)	Total (t)	S.E.	C.V.	Biomasse (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	328,0	39	5 066,5	0,602	6 885,3	2,10E-05	5,62E-06	26,8	0,026	8 648,1	1 944,2	22,5	0,061	20 083,1	4 515,0	22,5
St. Georges N.	2	305,0	29	5 202,1	0,495	361,3	1,19E-06	8,06E-07	68,1	0,001	453,8	296,2	65,3	0,003	1 053,9	687,9	65,3
Port-au-Port G.	3	1 324,8	26	18 525,9	0,364	64,2	4,85E-08	3,61E-08	74,5	0,000	102,3	73,1	71,4	0,000	78,8	56,3	71,4
Port-au-Port	4	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bay of Islands G.	5	850,4	21	13 496,7	0,333	1 070,0	1,26E-06	6,09E-07	48,4	0,003	2 167,6	1 047,4	48,3	0,002	1 969,5	931,6	47,3
Bonne Bay Bank	6	1 156,2	35	11 202,4	0,339	561,7	4,86E-07	1,77E-07	36,5	0,001	1 135,8	390,0	34,3	0,001	1 065,3	365,8	34,3
Bay of Islands	7	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bonne Bay	8	52,0	8	2 839,1	0,437	46.4	8 025 07		62 6	0.002	97.4	54.1	55.5	0,001	67.7	37,6	55,5
						10,1	0,922-07	5,67E-07	03,0	0,002	- ,	, .	, -	,	.,.		
Hawk's Bay	9	550,3	24	8 349,8	0,364	43,0	7,82E-07	5,67E-07 7,03E-08	89,9	0,000	117,2	102,8	87,7	0,000	38,2	33,5	87,7
Hawk's Bay St. John Bay	9 10	550,3 1 339,8	24 25	8 349,8 17 821,4	0,364 0,333	43,0 14 052,8	7,82E-08 1,05E-05	7,03E-08 2,59E-06	89,9 24,7	0,000 0,029	117,2 38 276,1	102,8 9 383,8	87,7 24,5	0,000 0,009	38,2 12 488,0	33,5 3 061,6	87,7 24,5

Tableau A19. (suite).

|--|

1999		:	Strate		Coeffi	cient de rétr	odiffusion de	e surface (s _a))	Rep	oroducteur	d'automne		Repro	oducteur d	e printemp	s
		Airo	No	Longueur	Densité	Total s	Moyen	ne pondéré	e Sa	Densité	I	Biomasse		Densité	E	Biomasse	
Nom	Strate	(km ²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m²)	Total (t)	S.E.	C.V.	Biomasse (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
St. Georges N.	2	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Port-au-Port G.	3	1 004,4	20	13 863,9	0,276	3 296,6	3,28E-06	9,86E-07	30,0	0,005	4 856,1	1 232,9	25,4	0,006	6 213,7	1 836,3	29,6
Port-au-Port	4	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bay of Islands G.	5	850,4	20	12 547,3	0,295	2 443,1	2,87E-06	9,73E-07	33,9	0,005	4 068,6	1 246,2	30,6	0,005	3 859,6	1 174,7	30,4
Bonne Bay Bank	6	910,3	10	15 935,3	0,175	11 557,9	1,27E-05	7,35E-06	57,9	0,037	33 948,2	18 332,8	54,0	0,014	12 541,4	6 677,8	53,2
Bay of Islands	7	292,3	5	16 727,3	0,286	71,7	2,45E-07	1,48E-07	60,5	0,000	96,4	49,9	51,7	0,000	0,0	0,0	-
Bonne Bay	8	52,0	8	1 997,8	0,307	7,5	1,44E-07	1,36E-07	94,0	0,000	21,9	19,1	87,4	0,000	8,8	7,7	87,4
Hawk's Bay	9	320,4	8	7 535,3	0,188	281,3	8,78E-07	8,29E-07	94,4	0,001	337,3	295,5	87,6	0,001	393,0	344,2	87,6
St. John Bay	10	1 203,6	19	16 720,3	0,264	8 252,6	6,86E-06	1,62E-06	23,7	0,014	17 034,4	3 950,3	23,2	0,003	3 912,4	674,6	17,2
Moyenne / Total:	-	4 633,4	90	12 946,3	0,251	25 910,8	2,70E-05	7,70E-06	28,5	0,013	60 363,0	18 837,7	31,2	0,006	26 929,0	7 065,3	26,2
2002		5	Strate		Coeffi	cient de rétr	odiffusion de	e surface (s _a))	Rep	oroducteur	d'automne		Repro	oducteur d	e printemp	s
		Aire	No	Longueur	Densité	Total s.	Moyen	ne pondéré	e Sa	Densité	1	Biomasse		Densité	E	Biomasse	
Nom	Strate	(km ²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m²)	Total (t)	S.E.	C.V.	Biomasse (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	410,8	25	4 331,2	0,264	876,5	2,13E-06	1,08E-06	50,8	0,006	2 421,9	1 162,8	48,0	0,003	1 226,5	588,9	48,0
St. Georges N.	2	305,2	15	6 059,0	0,298	1 575,0	5,16E-06	4,77E-06	92,4	0,010	3 048,9	2 709,4	88,9	0,011	3 364,1	2 989,5	88,9
Port-au-Port G.	3	1 697,0	17	18 177,7	0,182	669,1	3,94E-07	3,00E-07	76,2	0,001	1 222,1	893,0	73,1	0,001	1 384,6	999,3	72,2
Port-au-Port	4	362,3	6	10 516,5	0,174	4 251,2	1,17E-05	1,04E-05	88,4	0,028	10 199,3	8 468,2	83,0	0,019	6 743,0	5 598,6	83,0
Bay of Islands G.	5	482,3	9	13 317,8	0,249	1 576,1	3,27E-06	2,80E-06	85,7	0,007	3 403,6	2 750,5	80,8	0,005	2 455,1	1984,0	80,8
Bonne Bay Bank	6	1 089,0	26	11 497,3	0,274	460,7	4,23E-07	3,02E-07	71,3	0,001	994,9	678,5	68,2	0,001	717,6	489,4	68,2
Bay of Islands	7	301,9	4	14 287,0	0,189	1 673,9	5,55E-06	3,76E-06	67,8	0,009	2 655,6	1 675,0	63,1	0,013	4 043,0	2 092,1	51,7
Bonne Bay	8	59,1	6	2 918,7	0,296	37,8	6,40E-07	2,70E-07	42,1	0,001	79,1	27,8	35,1	0,001	68,6	24,1	35,1
Hawk's Bay	9	506,0	15	8 643,0	0,256	25,6	5,07E-08	4,73E-08	93,3	0,000	79,6	71,5	89,8	0,000	24,0	21,5	89,8
St. John Bay	10	1 477,6	16	20 540,0	0,222	15 657,5	1,06E-05	5,52E-06	52,1	0,033	48 810,9	23 293,2	47,7	0,010	14 523,6	7 841,7	54,0
Cape Ray	13	97,7	6	2 932,3	0,180	0	0	-	-	0	0	-	-	0	0	-	-
Moyenne / Total:	-	6 788,9	145	10 624,9	0,211	26 803,5	4,00E-05	1,36E-05	34,0	0,011	72 916,0	25 191,5	34,5	0,005	34 550,1	10 567,6	30,6

Tableau A20. Densités de la biomasse de hareng et estimations par strate provenant des relevés acoustiques effectués à l'automne 2009 (21 octobre au 6 novembre), 2010 (21 octobre au 2 novembre), 2011 (20 octobre au 1^e novembre), 2013 (13 au 22 octobre), 2015 (15 au 25 octobre), 2017 (21 octobre au 6 novembre) et 2019 (26 octobre au 6 novembre), et à l'été 2019 (11 au 23 août). Les écarts-types (S.E.) et les coefficients de variation (C.V.) des estimations de la biomasse ont été calculés sur la base de la variance de la biomasse des transects par strate (O'Boyle et Atkinson 1989). N.É.= Non échantillonné.

2009		:	Strate		Coeffi	icient de rétr	odiffusion de	surface (s _a)		Rep	oroducteur o	l'automne		Repro	ducteur de	printemp	s
		Aire	No	Longueur moy du	Densité	Total s	Moyen	ne pondéré	e Sa	Densité	В	iomasse		Densité	Bi	omasse	
Nom	Strate	(km²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m²)	Total (t)	S.E.	C.V.	Biomasse (kg/m ²)	Total (t)	S.E.	c.v.
St. Georges S.	1	410,8	15	3 776,9	0,138	3 819,36	9,30E-06	5,43E-06	58,4	0,031	12 821,1	7 490,2	58,4	0,003	1 123,3	656,2	58,4
St. Georges N.	2	172,5	9	3 787,4	0,198	10 159,38	5,89E-05	3,57E-05	60,6	0,198	34 103,7	20 655,3	60,6	0,017	2 987,9	1 809,7	60,6
Port-au-Port G.	3	1 697,0	17	12 426,2	0,124	2 746,33	1,62E-06	9,11E-07	56,3	0,005	9 219,1	5 189,9	56,3	0,0005	807,7	454,7	56,3
Port-au-Port	4	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bay of Islands G.	5	482,3	9	17 262,3	0,322	6,89	1,43E-08	1,35E-08	94,3	0,00005	23,1	21,8	94,3	0,000004	2,0	1,9	94,3
Bonne Bay Bank	6	1 089,0	20	10 848,0	0,199	1 331,37	1,22E-06	5,92E-07	48,4	0,004	4 469,2	2 163,1	48,4	0,0004	391,6	189,5	48,4
Bay of Islands	7	334,9	9	5 414,1	0,145	2 071,82	6,19E-06	5,57E-06	90,1	0,021	6 954,8	6 267,3	90,1	0,002	609,3	549,1	90,1
Bonne Bay	8	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Hawk's Bay	9	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
St. John Bay	10	1 477,9	14	18 871,1	0,179	324,80	2,20E-07	1,26E-07	57,2	0,001	1 090,3	623,6	57,2	0,0001	95,5	54,6	57,2
Moyenne / Total:	-	6 170,4	99	9 972,0	0,160	20 459,95	7,75E-05	3,65E-05	47,2	0,011	68 681,4	23 537,8	34,3	0,001	6 017,4	2 062,2	34,3
2010		:	Strate		Coeff	icient de rétr	odiffusion de	surface (s _a)		Rep	roducteur c	l'automne		Repro	ducteur de	printemp	s
2010		Aire	Strate	Longueur	Coeffi Densité	icient de rétr	odiffusion de Moyen	surface (s _a) ne pondéré	e s _a	Rep Densité	roducteur c B	l'automne iomasse		Repro Densité	ducteur de Bi	printemp omasse	s
2010 Nom	Strate	Aire (km²)	Strate No. transect	Longueur moy. du transect (m)	Coeffi Densité d'éch. (km/km²)	Total s _a (m²)	odiffusion de Moyen Moyenne (m²/m²)	surface (s _a) ne pondéré S.E.	e s _a Total (t)	Rep Densité Biomasse (kg/m²)	roducteur c B Total (t)	l'automne iomasse S.E.	c.v.	Repro Densité Biomasse (kg/m²)	ducteur de Bi Total (t)	printemp omasse S.E.	s C.V.
2010 Nom St. Georges S.	Strate 1	Aire (km²) 407,7	Strate No. transect	Longueur moy. du transect (m) 3 944,1	Coeffi Densité d'éch. (km/km²) 0,155	Total s _a (m ²) 3 178,34	Moyen Moyenne (m²/m²) 7,79E-06	surface (s _a) ne pondéré S.E. 5,68E-06	e s _a Total (t) 72,9	Rep Densité Biomasse (kg/m²) 0,024	Total (t) 9 789,7	l'automne iomasse S.E. 7 134,1	C.V. 72,9	Reprov Densité Biomasse (kg/m²) 0,005	ducteur de Bie Total (t) 1 945,2	printemp omasse S.E. 1 417,6	s C.V. 72,9
2010 Nom St. Georges S. St. Georges N.	Strate 1 2	Aire (km²) 407,7 302,7	No. transect 16 15	Longueur moy. du transect (m) 3 944,1 5 305,0	Coeffi Densité d'éch. (km/km ²) 0,155 0,263	Total s _a (m ²) 3 178,34 3 807,99	Moyen Moyenne (m²/m²) 7,79E-06 1,26E-05	surface (s _a) ne pondéré S.E. 5,68E-06 5,88E-06	e s _a Total (t) 72,9 46,7	Rep Densité Biomasse (kg/m ²) 0,024 0,041	Total (t) 9 789,7 12 321,5	l'automne iomasse S.E. 7 134,1 5 758,0	C.V. 72,9 46,7	Reprov Densité Biomasse (kg/m ²) 0,005 0,008	ducteur de Bi Total (t) 1 945,2 2 329,6	printemp omasse S.E. 1 417,6 1 088,7	s C.V. 72,9 46,7
2010 Nom St. Georges S. St. Georges N. Port-au-Port G.	Strate 1 2 3	Aire (km²) 407,7 302,7 <i>N.É</i> .	Strate No. transect 16 15	Longueur moy. du transect (m) 3 944,1 5 305,0	Coeffi Densité d'éch. (km/km²) 0,155 0,263 -	icient de rétri Total s _a (m ²) 3 178,34 3 807,99 -	diffusion de Moyenne (m²/m²) 7,79E-06 1,26E-05	e surface (s _a) ne pondéré S.E. 5,68E-06 5,88E-06 -	e s _a Total (t) 72,9 46,7	Rep Densité Biomasse (kg/m²) 0,024 0,041 -	roducteur c B Total (t) 9 789,7 12 321,5 -	l'automne iomasse S.E. 7 134,1 5 758,0 -	C.V. 72,9 46,7	Repro Densité Biomasse (kg/m ²) 0,005 0,008 -	ducteur de Bi Total (t) 1 945,2 2 329,6 -	printemp omasse S.E. 1 417,6 1 088,7 -	s C.V. 72,9 46,7 -
2010 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port	Strate 1 2 3 4	Aire (km²) 407,7 302,7 <i>N.É.</i> <i>N.É.</i>	Strate No. transect 16 15	Longueur moy. du transect (m) 3 944,1 5 305,0	Coeffi Densité d'éch. (km/km²) 0,155 0,263 - -	icient de rétri Total s _a (m ²) 3 178,34 3 807,99 - -	diffusion de Moyenne (m²/m²) 7,79E-06 1,26E-05 - -	e surface (sa) ne pondéré S.E. 5,68E-06 5,88E-06 - -	e s _a Total (t) 72,9 46,7 -	Rep Densité Biomasse (kg/m ²) 0,024 0,041 - -	roducteur c B Total (t) 9 789,7 12 321,5 - -	l'automne iomasse S.E. 7 134,1 5 758,0 - -	C.V. 72,9 46,7 -	Repro Densité Biomasse (kg/m ²) 0,005 0,008 - -	ducteur de Bi Total (t) 1 945,2 2 329,6 - -	printemp omasse S.E. 1 417,6 1 088,7 - -	s C.V. 72,9 46,7 -
2010 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G.	Strate 1 2 3 4 5	Aire (km²) 407,7 302,7 <i>N.É.</i> <i>N.É.</i> 474,5	Strate No. transect 16 15 8	Longueur moy. du transect (m) 3 944,1 5 305,0 14 578,1	Coeffi d'éch. (km/km²) 0,155 0,263 - - - 0,246	icient de rétri Total sa (m ²) 3 178,34 3 807,99 - - - 7 436,34	diffusion de Moyenne (m²/m²) 7,79E-06 1,26E-05 - - 1,57E-05	surface (sa) ne pondéré S.E. 5,68E-06 5,88E-06 - - - 3,05E-06	e s _a Total (t) 72,9 46,7 - - 19,5	Rep Densité Biomasse (kg/m ²) 0,024 0,041 - - - 0,054	Total (t) 9 789,7 12 321,5 - - 25 397,8	l'automne iomasse S.E. 7 134,1 5 758,0 - - 4 939,9	C.V. 72,9 46,7 - - 19,5	Reprov Densité Biomasse (kg/m ²) 0,005 0,008 - - - 0,004	ducteur de Bi- Total (t) 1 945,2 2 329,6 - - - 1 745,0	printemp omasse S.E. 1 417,6 1 088,7 - - 339,4	s C.V. 72,9 46,7 - 19,5
2010 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank	Strate 1 2 3 4 5 6	Aire (km²) 407,7 302,7 N.É. N.É. 474,5 638,3	Strate No. transect 16 15 8 10	Longueur moy. du transect (m) 3 944,1 5 305,0 14 578,1 8 390,4	Coeffi d'éch. (km/km²) 0,155 0,263 - - 0,246 0,131	icient de rétri Total sa (m ²) 3 178,34 3 807,99 - - 7 436,34 6 538,65	Moyen Moyenne (m²/m²) 7,79E-06 1,26E-05 - 1,57E-05 1,02E-05	surface (sa) ne pondéré S.E. 5,68E-06 5,88E-06 - - 3,05E-06 2,49E-06	e s _a Total (t) 72,9 46,7 - 19,5 24,3	Rep Densité Biomasse (kg/m ²) 0,024 0,041 - - - 0,054 0,035	roducteur c B Total (t) 9 789,7 12 321,5 - - 25 397,8 22 331,9	iautomne iomasse S.E. 7 134,1 5 758,0 - - 4 939,9 5 418,4	C.V. 72,9 46,7 - 19,5 24,3	Reprod Densité Biomasse (kg/m ²) 0,005 0,008 - - - 0,004 0,002	ducteur de Bi- Total (t) 1 945,2 2 329,6 - - 1 745,0 1 534,4	printemp omasse S.E. 1 417,6 1 088,7 - - 339,4 372,3	c.v. 72,9 46,7 - 19,5 24,3
2010 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands	Strate 1 2 3 4 5 6 7	Aire (km²) 407,7 302,7 N.É. N.É. 474,5 638,3 245,4	Strate No. transect 16 15 8 10 6	Longueur moy. du transect (m) 3 944,1 5 305,0 14 578,1 8 390,4 9 077,1	Coeffi d'éch. (km/km²) 0,155 0,263 - - 0,246 0,131 0,222	icient de rétri Total sa (m ²) 3 178,34 3 807,99 - - 7 436,34 6 538,65 834,17	Moyen Moyenne (m²/m²) 7,79E-06 1,26E-05 - 1,57E-05 1,02E-05 3,40E-06	e surface (sa) ne pondéré S.E. 5,68E-06 5,88E-06 - - 3,05E-06 2,49E-06 1,01E-06	e s _a Total (t) 72,9 46,7 - 19,5 24,3 29,9	Rep Densité Biomasse (kg/m ²) 0,024 0,024 - - 0,041 - 0,054 0,035 0,012	roducteur c B Total (t) 9 789,7 12 321,5 - - 25 397,8 22 331,9 2 849,0	l'automne iomasse S.E. 7 134,1 5 758,0 - - 4 939,9 5 418,4 850,7	C.V. 72,9 46,7 - 19,5 24,3 29,9	Reprov Densité Biomasse (kg/m ²) 0,005 0,008 - - 0,004 0,002 0,001	ducteur de Bir Total (t) 1 945,2 2 329,6 - - 1 745,0 1 534,4 195,7	printemp omasse S.E. 1 417,6 1 088,7 - - 339,4 372,3 58,4	s 72,9 46,7 - 19,5 24,3 29,9
2010 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay	Strate 1 2 3 4 5 6 7 8	Aire (km²) 407,7 302,7 N.É. N.É. 474,5 638,3 245,4 35,3	Strate No. transect 16 15 8 10 6 3	Longueur moy. du transect (m) 3 944,1 5 305,0 14 578,1 8 390,4 9 077,1 3 446,1	Coeffi d'éch. (km/km²) 0,155 0,263 - - 0,246 0,131 0,222 0,293	icient de rétri Total sa (m ²) 3 178,34 3 807,99 - - 7 436,34 6 538,65 834,17 19,75	diffusion de Moyenne (m²/m²) 7,79E-06 1,26E-05 - - 1,57E-05 1,02E-05 3,40E-06 5,59E-07	surface (sa) ne pondéré S.E. 5,68E-06 5,88E-06 - - 3,05E-06 2,49E-06 1,01E-06 2,25E-07	e s _a Total (t) 72,9 46,7 - 19,5 24,3 29,9 40,3	Rep Densité Biomasse (kg/m ²) 0,024 0,024 - - 0,041 - - 0,054 0,035 0,012 0,002	roducteur c B Total (t) 9 789,7 12 321,5 - - 25 397,8 22 331,9 2 849,0 67,5	l'automne iomasse S.E. 7 134,1 5 758,0 - - 4 939,9 5 418,4 850,7 27,2	C.V. 72,9 46,7 - 19,5 24,3 29,9 40,3	Reprod Densité Biomasse (kg/m ²) 0,005 0,008 - - 0,004 0,002 0,001 0,000	ducteur de Bi- Total (t) 1 945,2 2 329,6 - - 1 745,0 1 534,4 195,7 4,6	printemp omasse S.E. 1 417,6 1 088,7 - - 339,4 372,3 58,4 1,9	s 72,9 46,7 - 19,5 24,3 29,9 40,3
2010 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay Hawk's Bay	Strate 1 2 3 4 5 6 7 8 9	Aire (km²) 407,7 302,7 N.É. N.É. 474,5 638,3 245,4 35,3 412,8	Strate No. transect 16 15 8 10 6 3 10	Longueur moy. du transect (m) 3 944,1 5 305,0 14 578,1 8 390,4 9 077,1 3 446,1 8 248,5	Coeffi d'éch. (km/km²) 0,155 0,263 - - 0,246 0,131 0,222 0,293 0,200	icient de rétri Total sa (m ²) 3 178,34 3 807,99 - - 7 436,34 6 538,65 834,17 19,75 1 832,98	Moyen Moyenne (m²/m²) 7,79E-06 1,26E-05 - 1,57E-05 1,02E-05 3,40E-06 5,59E-07 4,44E-06	surface (sa) ne pondéré S.E. 5,68E-06 5,88E-06 - - 3,05E-06 2,49E-06 1,01E-06 2,25E-07 3,99E-06	e s _a Total (t) 72,9 46,7 - 19,5 24,3 29,9 40,3 89,9	Rep Densité Biomasse (kg/m ²) 0,024 0,024 - - - 0,054 0,035 0,012 0,002 0,015	roducteur c B Total (t) 9 789,7 12 321,5 - - 25 397,8 22 331,9 2 849,0 67,5 6 260,3	l'automne iomasse S.E. 7 134,1 5 758,0 - - 4 939,9 5 418,4 850,7 27,2 5 627,7	C.V. 72,9 46,7 - 19,5 24,3 29,9 40,3 89,9	Reprov Densité Biomasse (kg/m ²) 0,005 0,008 - - - 0,004 0,002 0,001 0,000 0,001	ducteur de Bi Total (t) 1 945,2 2 329,6 - - 1 745,0 1 534,4 195,7 4,6 430,1	printemp omasse S.E. 1 417,6 1 088,7 - - 339,4 372,3 58,4 1,9 386,7	s 72,9 46,7 - 19,5 24,3 29,9 40,3 89,9
2010 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay Hawk's Bay St. John Bay	Strate 1 2 3 4 5 6 7 8 9 10	Aire (km²) 407,7 302,7 N.É. N.É. 474,5 638,3 245,4 35,3 412,8 945,3	Strate No. transect 16 15 8 10 6 3 10 6 3 10 14	Longueur moy. du transect (m) 3 944,1 5 305,0 14 578,1 8 390,4 9 077,1 3 446,1 8 248,5 13 079,0	Coeffi d'éch. (km/km²) 0,155 0,263 - - 0,246 0,131 0,222 0,293 0,200 0,194	Total s (m ²) 3 178,34 3 807,99 - 7 436,34 6 538,65 834,17 19,75 1 832,98 24 632,85	diffusion de Moyenne (m²/m²) 7,79E-06 1,26E-05 - - 1,57E-05 1,02E-05 3,40E-06 5,59E-07 4,44E-06 2,61E-05	surface (sa) ne pondéré S.E. 5,68E-06 5,88E-06 5,88E-06 2,49E-06 1,01E-06 2,25E-07 3,99E-06 8,82E-06	e s _a Total (t) 72,9 46,7 - 19,5 24,3 29,9 40,3 89,9 33,9	Rep Densité Biomasse (kg/m ²) 0,024 0,041 - - 0,054 0,035 0,012 0,002 0,015 0,089	roducteur c B Total (t) 9 789,7 12 321,5 - - 25 397,8 22 331,9 2 849,0 67,5 6 260,3 84 130,3	iomasse S.E. 7 134,1 5 758,0 - 4 939,9 5 418,4 850,7 27,2 5 627,7 28 488,4	C.V. 72,9 46,7 - 19,5 24,3 29,9 40,3 89,9 33,9	Reprov Densité Biomasse (kg/m ²) 0,005 0,008 - - 0,004 0,002 0,001 0,000 0,001 0,000	ducteur de Bi Total (t) 1 945,2 2 329,6 - - 1 745,0 1 534,4 195,7 4,6 430,1 5 780,4	printemp omasse 3.E. 1 417,6 1 088,7 - - 339,4 372,3 58,4 1,9 386,7 1 957,4	s 72,9 46,7 - 19,5 24,3 29,9 40,3 89,9 33,9

	/																
2011		:	Strate		Coeff	icient de rétro	odiffusion de	e surface (s₌)	Re	oroducteur	d'automne		Repro	oducteur de	printemp	s
		Aire	No	Longueur	Densité	Total a	Moyen	ne pondéré	e Sa	Densité	В	liomasse		Densité	В	iomasse	
Nom	Strate	(km ²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m²)	Total (t)	S.E.	C.V.	Biomasse (kg/m²)	Total (t)	S.E.	
St. Georges S.	1	410,8	17	4 212,3	0,174	508,07	1,24E-06	4,58E-07	37,0	0,004	1 709,7	632,5	37,0	0,000	146,4	54,2	
St. Georges N.	2	305,2	14	4 717,6	0,216	1 040,63	3,41E-06	2,39E-06	70,2	0,011	3 501,8	2 457,1	70,2	0,001	299,9	210,4	
Port-au-Port G.	3	812,0	16	7 352,8	0,145	2 603,19	3,21E-06	2,09E-06	65,3	0,011	8 760,1	5 718,5	65,3	0,001	750,3	489,8	
Port-au-Port	4	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	
Bay of Islands G.	5	482,6	8	14 926,8	0,247	712,19	1,48E-06	6,22E-07	42,1	0,005	2 450,0	1 032,4	42,1	0,000	119,4	50,3	
Bonne Bay Bank	6	1 148,1	23	11 186,5	0,224	6 623,12	5,77E-06	3,24E-06	56,1	0,020	22 784,0	12 780,9	56,1	0,001	1 110,1	622,7	
Bay of Islands	7	334,9	6	4 134,5	0,074	20,50	6,12E-08	5,59E-08	91,3	0,000	70,5	64,4	91,3	0,000	3,4	3,1	
Bonne Bay	8	30,6	3	3 747,9	0,368	13,52	4,42E-07	2,46E-07	55,5	0,002	46,5	25,8	55,5	0,000	2,3	1,3	
Hawk's Bay	9	506,0	6	6 564,3	0,078	357,32	7,06E-07	2,66E-07	37,6	0,002	1 022,6	384,7	37,6	0,000	179,5	67,5	
St. John Bay	10	728,1	13	13 477,1	0,241	23 415,87	3,22E-05	7,60E-06	23,6	0,092	67 013,7	15 833,9	23,6	0,016	11 761,3	2 778,9	
Moyenne / Total:	-	4 758,3	106	8 326,8	0,185	35 294,41	4,85E-05	8,89E-06	18,3	0,023	107 359,0	21 317,2	19,9	0,003	14 372,6	2 899,1	
2013		:	Strate		Coeff	icient de rétre	odiffusion de	e surface (s _a)	Rej	oroducteur	d'automne		Repro	oducteur de	printemp	os
		Aire	No	Longueur	Densité	Total a	Moyen	ne pondéré	e sa	Densité	В	liomasse		Densité	В	iomasse	
Nom	Strate	(km ²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m ²)	Total (t)	S.E.	C.V.	Biomasse (kg/m²)	Total (t)	S.E.	
St. Georges S.	1	407,7	17	4 208,6	0,175	1 123,15	2,75E-06	2,07E-06	75,2	0,009	3 842,9	2 891,3	75,2	0,00008	33,7	25,3	
St. Georges N.	2	302,7	15	6 900,9	0,342	962,66	3,18E-06	1,65E-06	51,8	0,011	3 293,8	1 706,9	51,8	0,0001	28,9	15,0	
Port-au-Port G.	3	802,9	17	8 214,5	0,174	362,95	4,52E-07	1,73E-06	382,1	0,001	1 176,2	4 753,0	404,1	0,00001	10,0	41,7	4
Port-au-Port	4	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	
Bay of Islands G.	5	474,5	9	14 540,4	0,276	498,14	1,05E-06	5,43E-07	51,7	0,003	1 614,3	834,8	51,7	0,00003	13,7	7,1	
Bonne Bay Bank	6	1 148,1	23	11 327,6	0,227	41 308,84	3,60E-05	2,02E-05	56,2	0,125	143 041,0	80 378,3	56,2	0,00031	356,6	200,4	
Bay of Islands	7	299,9	7	10 057,7	0,235	839,27	2,80E-06	1,50E-06	53,7	0,009	2 719,9	1 460,8	53,7	0,0001	23,1	12,4	
Bonne Bay	8	58,5	3	2 658,3	0,136	13,96	2,39E-07	1,84E-07	77,1	0,001	48,3	37,3	77,1	0,000002	0,1	0,1	

1,4

18,4

208,1

4,5

20,2

490,8

C.V.

37,0

70,2

65,3

-

42,1

56,1

91,3

55,5

37,6

23,6

20,2

C.V.

75,2

51,8

417,1

-

51,7

56,2

53,7

77,1

29,9

90,9

42,4

Tableau A20 (suite).

Hawk's Bay

St. John Bay

Moyenne / Total:

9

10

-

499,8

799,5

4 793,7

12

17

120

9 172,8

12 469,0

9 221,1

0,220

0,265

0,231

525,40

2 344,53

1,05E-06

2,93E-06

47 978,89 5,04E-05 2,07E-05

3,14E-07

2,66E-06

29,9

90,9

41,0

0,004

0,010

0,035

1 819,3

8 118,4

165 674,4 80 945,0

543,9

7 377,8

29,9

90,9

48,9

0,00001

0,00003

0,0001

2015		;	Strate		Coeffi	icient de rétro	odiffusion de	e surface (s _a)	Rep	roducteur	d'automne		Repro	oducteur de	e printemp	s
		Aire	No	Longueur	Densité	Total s.	Moyen	ne pondéré	e Sa	Densité	В	iomasse		Densité	В	iomasse	
Nom	Strate	(km²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m²)	Total (t)	S.E.	C.V.	Biomasse (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	407,7	17	4 285,5	0,179	223,91	5,49E-07	4,35E-07	79,3	0,002	763,4	605,3	79,3	0,00007	30,2	24,0	79,3
St. Georges N.	2	299,0	14	6 038,1	0,283	466,63	1,56E-06	1,38E-06	88,6	0,005	1 590,9	1 409,0	88,6	0,0002	63,0	55,8	88,6
Port-au-Port G.	3	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Port-au-Port	4	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bay of Islands G.	5	464,5	8	14 434,8	0,249	11 794,07	2,54E-05	7,16E-06	28,2	0,090	41 909,6	11 812,2	28,2	0,0008	387,6	109,2	28,2
Bonne Bay Bank	6	1 132,5	11	11 335,1	0,110	9 470,43	8,36E-06	2,45E-06	29,3	0,030	33 652,7	9 875,1	29,3	0,0003	311,2	91,3	29,3
Bay of Islands	7	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bonne Bay	8	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Hawk's Bay	9	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
St. John Bay	10	876,7	7	15 600,4	0,125	1 837,21	2,10E-06	1,03E-06	49,1	0,007	6 078,9	2 983,2	49,1	0,0002	190,9	93,7	49,1
Moyenne / Total:	-	3 180,5	57	8 890,4	0,159	23 792,25	3,80E-05	7,77E-06	20,5	0,026	83 995,5	15 757,4	18,8	0,0003	983,0	180,9	18,4
2017		;	Strate		Coeffi	icient de rétro	odiffusion de	e surface (s₌)	Rep	roducteur	d'automne		Repro	oducteur de) printemp)S
2017		Airo	Strate	Longueur	Coeffi Densité	icient de rétro	odiffusion de Moyen	e surface (s₌ ne pondéré) e Sa	Rep Densité	roducteur o B	d'automne iomasse		Repro Densité	oducteur de B	e printemp iomasse)S
2017 Nom	Strate	Aire (km²)	Strate No. transect	Longueur moy. du transect (m)	Coeffi Densité d'éch. (km/km²)	icient de rétro Total s₄ (m²)	odiffusion de Moyen Moyenne (m²/m²)	e surface (s₄ ne pondéré S.E.) e sa Total (t)	Rep Densité Biomasse (kg/m²)	roducteur d B Total (t)	d'automne liomasse S.E.	C.V.	Repro Densité Biomasse (kg/m²)	oducteur de B Total (t)	e printem liomasse S.E.	c.v.
2017 Nom St. Georges S.	Strate 1	Aire (km²) 126,6	Strate No. transect 4	Longueur moy. du transect (m) 5 623,7	Coeffi Densité d'éch. (km/km²) 0,178	Total sa (m ²) 39,07	Moyen Moyenne (m²/m²) 3,09E-07	e surface (s₄ ne pondéré S.E. 8,58E-08) ee sa Total (t) 27,8	Rep Densité Biomasse (kg/m²) 0,001	roducteur o B Total (t) 116,9	d'automne iomasse S.E. 32,5	C.V. 27,8	Repro Densité Biomasse (kg/m²) 0	oducteur de B Total (t) 0	e printemp liomasse S.E.	C.V.
2017 Nom St. Georges S. St. Georges N.	Strate 1 2	Aire (km²) 126,6 303,7	Strate No. transect 4 15	Longueur moy. du transect (m) 5 623,7 5 280,6	Coeffi Densité d'éch. (km/km²) 0,178 0,261	Total s a (m ²) 39,07 1 752,33	Moyen Moyenne (m²/m²) 3,09E-07 5,77E-06	e surface (s₄ ne pondéré S.E. 8,58E-08 4,81E-06) ee sa Total (t) 27,8 83,4	Rep Densité Biomasse (kg/m ²) 0,001 0,017	roducteur (B Total (t) 116,9 5 243,7	d'automne iomasse S.E. 32,5 4 373,8	C.V. 27,8 83,4	Repro Densité Biomasse (kg/m ²) 0 0,002	oducteur de B Total (t) 0 725,7	e printem liomasse S.E. - 605,3	c.v.
2017 Nom St. Georges S. St. Georges N. Port-au-Port G.	Strate 1 2 3	Aire (km²) 126,6 303,7 802,9	Strate No. transect 4 15 17	Longueur moy. du transect (m) 5 623,7 5 280,6 8 261,2	Coeffi Densité d'éch. (km/km²) 0,178 0,261 0,175	icient de rétru Total sa (m ²) 39,07 1 752,33 2 665,20	Moyen Moyenne (m²/m²) 3,09E-07 5,77E-06 3,32E-06	e surface (s _a ne pondéré S.E. 8,58E-08 4,81E-06 4,17E-06) Total (t) 27,8 83,4 125,6	Rep Densité Biomasse (kg/m²) 0,001 0,017 0,010	roducteur (B Total (t) 116,9 5 243,7 7 975,4	d'automne iomasse S.E. 32,5 4 373,8 10 019,9	C.V. 27,8 83,4 125,6	Repro Densité Biomasse (kg/m ²) 0 0,002 0,001	0ducteur de B Total (t) 0 725,7 1 103,7	e printem liomasse S.E. - 605,3 1 386,7	c.v. - 83,4 125,6
2017 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port	Strate 1 2 3 4	Aire (km²) 126,6 303,7 802,9 <i>N.É.</i>	Strate No. transect 4 15 17	Longueur moy. du transect (m) 5 623,7 5 280,6 8 261,2	Coeffi Densité d'éch. (km/km²) 0,178 0,261 0,175 -	icient de rétro Total sa (m ²) 39,07 1 752,33 2 665,20 -	00000000000000000000000000000000000000	e surface (s₁ ne pondéré S.E. 8,58E-08 4,81E-06 4,17E-06 -) e sa Total (t) 27,8 83,4 125,6 -	Rep Densité Biomasse (kg/m ²) 0,001 0,017 0,010 -	roducteur (B Total (t) 116,9 5 243,7 7 975,4 -	d'automne iomasse S.E. 32,5 4 373,8 10 019,9 -	C.V. 27,8 83,4 125,6	Repro Densité Biomasse (kg/m²) 0 0,002 0,001 -	0ducteur de B Total (t) 0 725,7 1 103,7 -	e printemį liomasse S.E. - 605,3 1 386,7 -	C.V. - 83,4 125,6
2017 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G.	Strate 1 2 3 4 5	Aire (km²) 126,6 303,7 802,9 <i>N.É.</i> 474,5	Strate No. transect 4 15 17 9	Longueur moy. du transect (m) 5 623,7 5 280,6 8 261,2 13 294,8	Coeffi Densité d'éch. (km/km²) 0,178 0,261 0,175 - 0,252	Total sa (m ²) 39,07 1 752,33 2 665,20 - 350,72	Moyen Moyenne (m²/m²) 3,09E-07 5,77E-06 3,32E-06 - 7,39E-07	e surface (sa ne pondéré S.E. 8,58E-08 4,81E-06 4,17E-06 - 2,46E-07) e sa Total (t) 27,8 83,4 125,6 - 33,3	Rep Densité Biomasse (kg/m ²) 0,001 0,017 0,010 - 0,002	roducteur of B Total (t) 116,9 5 243,7 7 975,4 - 1 163,1	d'automne iomasse S.E. 32,5 4 373,8 10 019,9 - 386,8	C.V. 27,8 83,4 125,6 - 33,3	Repro Densité Biomasse (kg/m ²) 0 0,002 0,001 - 0,0001	0ducteur de B Total (t) 0 725,7 1 103,7 - 58,5	e printem; liomasse S.E. - 605,3 1 386,7 - 1 9,5	c.v. - 83,4 125,6 - 33,3
2017 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank	Strate 1 2 3 4 5 6	Aire (km²) 126,6 303,7 802,9 N.É. 474,5 1 148,1	Strate No. transect 4 15 17 9 23	Longueur moy. du transect (m) 5 623,7 5 280,6 8 261,2 13 294,8 10 915,4	Coeffi Densité d'éch. (km/km²) 0,178 0,261 0,175 - 0,252 0,219	Total sa (m ²) 39,07 1 752,33 2 665,20 - 350,72 3 240,25	Odiffusion de Moyen Moyenne (m²/m²) 3,09E-07 5,77E-06 3,32E-06 - 7,39E-07 2,82E-06	e surface (sa ne pondéré S.E. 8,58E-08 4,81E-06 4,17E-06 - 2,46E-07 7,44E-07) ee sa Total (t) 27,8 83,4 125,6 - 33,3 26,4	Rep Densité Biomasse (kg/m ²) 0,001 0,017 0,010 - 0,002 0,009	roducteur (B Total (t) 116,9 5 243,7 7 975,4 - 1 163,1 10 745,8	d'automne iomasse S.E. 32,5 4 373,8 10 019,9 - 386,8 2 834,2	C.V. 27,8 83,4 125,6 - 33,3 26,4	Repro Densité Biomasse (kg/m ²) 0 0,002 0,001 - 0,0001 0,0005	0ducteur de B Total (t) 0 725,7 1 103,7 - 58,5 540,5	e printem; Nomasse S.E. - 605,3 1 386,7 - 19,5 142,6	C.V. - 83,4 125,6 - 33,3 26,4
2017 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands	Strate 1 2 3 4 5 6 7	Aire (km ²) 126,6 303,7 802,9 <i>N.É.</i> 474,5 1 148,1 192,7	Strate No. transect 4 15 17 9 23 6	Longueur moy. du transect (m) 5 623,7 5 280,6 8 261,2 13 294,8 10 915,4 7 502,4	Coeffi Densité d'éch. (km/km²) 0,178 0,261 0,175 - 0,252 0,219 0,234	Total sa (m ²) 39,07 1 752,33 2 665,20 - 350,72 3 240,25 113,49	Odiffusion de Moyenne (m²/m²) 3,09E-07 5,77E-06 3,32E-06 - 7,39E-07 2,82E-06 5,89E-07	e surface (sa ne pondéré S.E. 8,58E-08 4,81E-06 4,17E-06 - 2,46E-07 7,44E-07 4,50E-07) e Sa Total (t) 27,8 83,4 125,6 - 33,3 26,4 76,4	Rep Densité Biomasse (kg/m ²) 0,001 0,017 0,010 - 0,002 0,009 0,002	roducteur (B Total (t) 116,9 5 243,7 7 975,4 - 1 163,1 10 745,8 376,4	d'automne iomasse S.E. 32,5 4 373,8 10 019,9 - 386,8 2 834,2 287,7	C.V. 27,8 83,4 125,6 - 33,3 26,4 76,4	Repro Densité Biomasse (kg/m ²) 0 0,002 0,001 - 0,0001 0,0005 0,0001	0ducteur de B Total (t) 0 725,7 1 103,7 - 58,5 540,5 18,9	e printem; siomasse S.E. - 605,3 1 386,7 - 19,5 142,6 14,5	C.V. - 83,4 125,6 - 33,3 26,4 76,4
2017 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay	Strate 1 2 3 4 5 6 7 8	Aire (km ²) 126,6 303,7 802,9 <i>N.É.</i> 474,5 1 148,1 192,7 58,5	Strate No. transect 4 15 17 9 23 6 3	Longueur moy. du transect (m) 5 623,7 5 280,6 8 261,2 13 294,8 10 915,4 7 502,4 2 930,6	Coeffi Densité d'éch. (km/km ²) 0,178 0,261 0,175 - 0,252 0,219 0,234 0,150	Total sa (m ²) 39,07 1 752,33 2 665,20 - 350,72 3 240,25 113,49 28,62	Odiffusion de Moyen (m²/m²) 3,09E-07 5,77E-06 3,32E-06 - 7,39E-07 2,82E-06 5,89E-07 4,89E-07	e surface (sa ne pondéré S.E. 8,58E-08 4,81E-06 4,17E-06 - 2,46E-07 7,44E-07 4,50E-07 1,68E-07) e s _a Total (t) 27,8 83,4 125,6 - 33,3 26,4 76,4 34,4	Rep Densité Biomasse (kg/m ²) 0,001 0,001 - 0,002 0,002 0,002 0,002	roducteur of B Total (t) 116,9 5 243,7 7 975,4 - 1 163,1 10 745,8 376,4 94,9	d'automne iomasse S.E. 32,5 4 373,8 10 019,9 - 386,8 2 834,2 287,7 32,7	C.V. 27,8 83,4 125,6 - 33,3 26,4 76,4 34,4	Repro Densité Biomasse (kg/m ²) 0 0,002 0,001 - 0,0001 0,0001 0,0001	oducteur de B Total (t) 0 725,7 1 103,7 - 58,5 540,5 18,9 4,8	e printem; Biomasse S.E. - 605,3 1 386,7 - 19,5 142,6 14,5 1,6	C.V. - 83,4 125,6 - 33,3 26,4 76,4 34,4
2017 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay Hawk's Bay	Strate 1 2 3 4 5 6 7 8 9	Aire (km ²) 126,6 303,7 802,9 N.É. 474,5 1 148,1 192,7 58,5 499,8	Strate No. transect 4 15 17 9 23 6 3 11	Longueur moy. du transect (m) 5 623,7 5 280,6 8 261,2 13 294,8 10 915,4 7 502,4 2 930,6 9 055,1	Coeffi Densité d'éch. (km/km ²) 0,178 0,261 0,175 - 0,252 0,219 0,234 0,150 0,199	Total sa (m ²) 39,07 1 752,33 2 665,20 - 350,72 3 240,25 113,49 28,62 705,54	Addiffusion de Moyenne (m²/m²) 3,09E-07 5,77E-06 3,32E-06 - 7,39E-07 2,82E-06 5,89E-07 4,89E-07 1,41E-06	e surface (sa ne pondéré S.E. 8,58E-08 4,81E-06 4,17E-06 - 2,46E-07 7,44E-07 4,50E-07 1,68E-07 1,22E-06) e sa Total (t) 27,8 83,4 125,6 - 33,3 26,4 76,4 34,4 86,6	Rep Densité Biomasse (kg/m ²) 0,001 0,017 0,010 - 0,002 0,002 0,002 0,002 0,002	roducteur (B Total (t) 116,9 5 243,7 7 975,4 - 1 163,1 10 745,8 376,4 94,9 2 339,8	d'automne iomasse S.E. 32,5 4 373,8 10 019,9 - 386,8 2 834,2 287,7 32,7 2 026,1	C.V. 27,8 83,4 125,6 - 33,3 26,4 76,4 34,4 86,6	Repro Densité Biomasse (kg/m²) 0 0,002 0,001 - 0,0001 0,0001 0,0001 0,0001	oducteur de B Total (t) 0 725,7 1 103,7 - 58,5 540,5 18,9 4,8 117,7	e printem; iomasse S.E. - 605,3 1 386,7 - 19,5 142,6 14,5 1,6 101,9	C.V. - 83,4 125,6 - 33,3 26,4 76,4 34,4 86,6
2017 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay Hawk's Bay St. John Bay	Strate 1 2 3 4 5 6 7 8 9 10	Aire (km ²) 126,6 303,7 802,9 <i>N.É.</i> 474,5 1 148,1 192,7 58,5 499,8 743,2	Strate No. transect 4 15 17 9 23 6 3 11 16	Longueur moy. du transect (m) 5 623,7 5 280,6 8 261,2 13 294,8 10 915,4 7 502,4 2 930,6 9 055,1 10 331,2	Coeffi Densité d'éch. (km/km ²) 0,178 0,261 0,175 - 0,252 0,219 0,234 0,150 0,199 0,222	Total sa (m ²) 39,07 1 752,33 2 665,20 - 350,72 3 240,25 113,49 28,62 705,54 5 543,26	Addiffusion de Moyenne (m²/m²) 3,09E-07 5,77E-06 3,32E-06 - 7,39E-07 2,82E-06 5,89E-07 4,89E-07 1,41E-06 7,46E-06	e surface (sa ne pondéré S.E. 8,58E-08 4,81E-06 4,17E-06 - 2,46E-07 7,44E-07 4,50E-07 1,68E-07 1,22E-06 2,74E-06) e sa Total (t) 27,8 83,4 125,6 - 33,3 26,4 76,4 34,4 86,6 36,7	Rep Densité Biomasse (kg/m ²) 0,001 0,017 0,010 - 0,002 0,002 0,002 0,002 0,002 0,005 0,023	roducteur (B Total (t) 116,9 5 243,7 7 975,4 - 1 163,1 10 745,8 376,4 94,9 2 339,8 17 257,5	d'automne iomasse S.E. 32,5 4 373,8 10 019,9 - 386,8 2 834,2 287,7 32,7 2 026,1 6 331,4	C.V. 27,8 83,4 125,6 - 33,3 26,4 76,4 34,4 86,6 36,7	Repro Densité Biomasse (kg/m²) 0 0,002 0,001 - 0,0001 0,0005 0,0001 0,0001 0,0002 0,003	oducteur de B Total (t) 0 725,7 1 103,7 - 58,5 540,5 18,9 4,8 117,7 2 459,6	e printem; Biomasse S.E. - 605,3 1 386,7 - 19,5 142,6 142,6 14,5 1,6 101,9 902,4	C.V. - 83,4 125,6 - 33,3 26,4 76,4 34,4 86,6 36,7

Tableau A20. (suite).

Été 2019		:	Strate		Coeffi	cient de rétro	odiffusion de	e surface (s _a)	Rep	roducteur c	l'automne		Repro	oducteur de	e printemp	s
		Airo	No	Longueur	Densité	Total s	Moyen	ne pondéré	e Sa	Densité	В	iomasse		Densité	В	iomasse	
Nom	Strate	(km ²)	transect	transect (m)	d'éch. (km/km²)	(m ²)	Moyenne (m²/m²)	S.E.	Total (t)	Biomasse (kg/m²)	Total (t)	S.E.	C.V.	Biomasse (kg/m²)	Total (t)	S.E.	C.V.
St. Georges S.	1	407,7	3	8 552,0	0,063	1 514,1	3,71E-06	3,76E-06	101,4	0,008	3 443,9	3 491,4	101,4	0,001	536,9	544,3	101,4
St. Georges N.	2	302,7	6	7 417,8	0,147	1 098,3	3,63E-06	2,89E-06	79,6	0,008	2 509,2	1 988,2	79,2	0,001	391,2	310,0	79,2
Port-au-Port G.	3	806,3	5	10 795,3	0,067	733,2	9,09E-07	5,58E-07	61,3	0,002	1 664,7	1 022,7	61,4	0,000	259,5	159,4	61,4
Port-au-Port	4	N.É.			-	-	-	-	-	-	-	-	-	-	-	-	-
Bay of Islands G.	5	474,5	4	16 250,8	0,137	4 973,1	1,05E-05	8,09E-06	77,2	0,031	14 521,7	11 204,1	77,2	0,003	1 370,4	1 057,3	77,2
Bonne Bay Bank	6	1 148,2	11	12 843,5	0,123	3 417,2	2,98E-06	1,10E-06	37,0	0,007	7 613,7	2 825,1	37,1	0,002	2 209,5	819,9	37,1
Bay of Islands	7	335,4	7	10 821,8	0,226	12 367,5	3,69E-05	1,49E-05	40,3	0,067	22 563,3	9 382,7	41,6	0,017	5 774,5	2 401,3	41,6
Bonne Bay	8	58,5	6	3 328,6	0,341	965,5	1,65E-05	5,29E-06	32,0	0,035	2 045,1	656,1	32,1	0,010	612,1	196,4	32,1
Hawk's Bay	9	499,8	6	9 672,9	0,116	454,2	9,09E-07	2,24E-07	24,7	0,002	1 120,9	276,8	24,7	0,001	261,4	64,5	24,7
St. John Bay	10	996,9	7	17 100,8	0,120	19 479,2	1,95E-05	1,22E-05	62,6	0,052	51 768,9	32 401,4	62,6	0,008	7 668,6	4 799,7	62,6
Belle-Isle S.	BI1	312,0	7	5 885,9	0,132	3 419,8	1,10E-05	4,95E-06	45,1	0,028	8 653,3	3 911,0	45,2	0,003	865,7	391,3	45,2
Belle-Isle N.	BI2	626,8	7	9 748,5	0,109	690,9	1,10E-06	4,84E-07	43,9	0,003	1 751,3	768,7	43,9	0,000	175,2	76,9	43,9
Moyenne / Total:	-	5 968,8	69	10 338,1	0,120	49 113,0	1,08E-04	2,27E-05	21,1	0,020	117 656,0	36 124,6	30,7	0,003	20 125,1	5 586,8	27,8
Automne 2019		;	Strate		Coeffi	cient de rétro	odiffusion de	e surface (sa		Rep	roducteur c	l'automne		Repro	oducteur de	e printemp	s
Automne 2019		Airo	Strate	Longueur	Coeffi Densité	cient de rétro	odiffusion de Moyen	e surface (sa) ne pondéré	e Sa	Rep Densité	roducteur c B	l'automne iomasse		Repro Densité	oducteur de	e printemp iomasse	IS
Automne 2019 Nom	Strate	Aire (km²)	Strate No. transect	Longueur moy. du transect (m)	Coeffi Densité d'éch. (km/km²)	cient de rétro Total sa (m²)	odiffusion de Moyen Moyenne (m²/m²)	e surface (s₃) ne pondéré S.E.	e sa Total (t)	Rep Densité Biomasse (kg/m²)	roducteur c B Total (t)	l'automne iomasse S.E.	C.V.	Repro Densité Biomasse (kg/m²)	oducteur de B Total (t)	e printemp iomasse S.E.	os C.V.
Automne 2019 Nom St. Georges S.	Strate 1	Aire (km²) N.É.	Strate No. transect	Longueur moy. du transect (m)	Coeffi Densité d'éch. (km/km²) -	cient de rétro Total s _a (m²) -	odiffusion de Moyen Moyenne (m²/m²) -	e surface (sa) ne pondéré S.E. -	e sa Total (t)	Rep Densité Biomasse (kg/m²) -	roducteur c B Total (t) -	l'automne iomasse S.E. -	C.V.	Repro Densité Biomasse (kg/m²)	oducteur de B Total (t) -	e printemp iomasse S.E.	C.V.
Automne 2019 Nom St. Georges S. St. Georges N.	Strate 1 2	Aire (km²) N.É. N.É.	Strate No. transect	Longueur moy. du transect (m)	Coeffi Densité d'éch. (km/km²) - -	cient de rétro Total sa (m²) - -	odiffusion de Moyen Moyenne (m²/m²) - -	e surface (sa) ne pondéré S.E. - -	e sa Total (t) -	Rep Densité Biomasse (kg/m²) - -	roducteur c B Total (t) - -	l'automne iomasse S.E. - -	C.V. -	Repro Densité Biomasse (kg/m²) - -	oducteur de B Total (t) - -	e printemp iomasse S.E. - -	25 C.V. - -
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G.	Strate 1 2 3	Aire (km²) N.É. N.É. 730,0	Strate No. transect	Longueur moy. du transect (m) 11 777,4	Coeffi Densité d'éch. (km/km²) - - 0,048	cient de rétro Total sa (m ²) - - 2 792,9	odiffusion de Moyenne (m²/m²) - - 3,83E-06	e surface (sa) ne pondéré S.E. - - 1,49E-06	e sa Total (t) - - 39,0	Rep Densité Biomasse (kg/m²) - - 0,010	roducteur c B Total (t) - - 7 568,0	d'automne iomasse S.E. - - 998,4	C.V. - - 38,8	Repro Densité Biomasse (kg/m²) - - - 0,004	2 573,9	e printemp iomasse S.E. - - 998,4	C.V.
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port	Strate 1 2 3 4	Aire (km²) N.É. N.É. 730,0 N.É.	Strate No. transect	Longueur moy. du transect (m) 11 777,4	Coeffi Densité d'éch. (km/km²) - - 0,048 -	cient de rétro Total sa (m ²) - - 2 792,9 -	odiffusion de Moyenn (m²/m²) - - 3,83E-06 -	e surface (sa ne pondéré S.E. - - 1,49E-06 -	e sa Total (t) - - 39,0 -	Rep Densité Biomasse (kg/m ²) - - - 0,010 -	roducteur c B Total (t) - - - 7 568,0 -	i'automne iomasse S.E. - - 998,4 -	C.V. - 38,8 -	Repro Densité Biomasse (kg/m ²) - - - 0,004 -	2 573,9 -	e printemp iomasse S.E. - - 998,4 -	- - 38,8 -
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G.	Strate 1 2 3 4 5	Aire (km²) N.É. N.É. 730,0 N.É. N.É.	Strate No. transect 3	Longueur moy. du transect (m) 11 777,4	Coeffi Densité d'éch. (km/km²) - - - 0,048 - -	cient de rétro Total sa (m ²) - - 2 792,9 - -	odiffusion de Moyenne (m²/m²) - - 3,83E-06 - -	e surface (sa ne pondéré S.E. - - 1,49E-06 - -	e sa Total (t) - 39,0 -	Rep Densité Biomasse (kg/m²) - - - 0,010 - - -	roducteur c B Total (t) - - 7 568,0 - - -	i'automne iomasse S.E. - - 998,4 - -	C.V. - 38,8 -	Repro Densité Biomasse (kg/m ²) - - 0,004 - -	Deducteur de B Total (t) - - 2 573,9 - -	e printemp iomasse S.E. - - 998,4 - -	c.v. - - 38,8 - -
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank	Strate 1 2 3 4 5 6	Aire (km²) N.É. N.É. 730,0 N.É. 972,8	Strate No. transect 3	Longueur moy. du transect (m) 11 777,4 11 869,2	Coeffi Densité d'éch. (km/km²) - - 0,048 - - 0,048 - 0,085	cient de rétro Total sa (m ²) - 2 792,9 - - - 12 230,8	odiffusion de Moyenne (m²/m²) - - 3,83E-06 - - 1,26E-05	e surface (sa) ne pondéré S.E. - - 1,49E-06 - - 3,91E-06	e sa Total (t) - - 39,0 - - 31,1	Rep Densité Biomasse (kg/m ²) - - 0,010 - - 0,025	roducteur c B Total (t) - - 7 568,0 - - 23 866,1	i'automne iomasse S.E. - - 998,4 - - 4 044,9	C.V. - 38,8 - 31,1	Repro Densité Biomasse (kg/m ²) - - 0,004 - - 0,013	Deducteur de B Total (t) - - 2 573,9 - - - 13 021,7	e printemp iomasse S.E. - - 998,4 - - 4 044,9	c.v. - 38,8 - 31,1
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands	Strate 1 2 3 4 5 6 7	Aire (km²) N.É. N.É. 730,0 N.É. 972,8 299,9	Strate No. transect 3 7 3	Longueur moy. du transect (m) 11 777,4 11 869,2 18 479,7	Coeffi Densité d'éch. (km/km²) - - 0,048 - - 0,085 0,185	cient de rétro Total sa (m ²) - 2 792,9 - - 12 230,8 672,9	diffusion de Moyenne (m²/m²) - 3,83E-06 - - 1,26E-05 2,24E-06	e surface (sa ne pondéré S.E. - - 1,49E-06 - 3,91E-06 6,38E-07	e sa Total (t) - 39,0 - 31,1 28,4	Rep Densité Biomasse (kg/m ²) - - 0,010 - - 0,025 0,005	roducteur c B Total (t) - - 7 568,0 - - 23 866,1 1 417,4	i'automne iomasse S.E. - - 998,4 - - 4 044,9 191,1	C.V. - 38,8 - 31,1 27,7	Repro Densité Biomasse (kg/m ²) - - 0,004 - - 0,013 0,002	Deducteur de B Total (t) - 2 573,9 - - 13 021,7 689,7	e printemp iomasse S.E. - - 998,4 - - 4 044,9 191,1	c.v. - - 38,8 - - 31,1 27,7
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay	Strate 1 2 3 4 5 6 7 8	Aire (km²) N.É. N.É. 730,0 N.É. 972,8 299,9 58,5	Strate No. transect 3 7 3 4	Longueur moy. du transect (m) 11 777,4 11 869,2 18 479,7 2 867,0	Coeffi Densité d'éch. (km/km²) - - 0,048 - - 0,048 - 0,085 0,185 0,196	cient de rétro Total sa (m ²) - 2 792,9 - 12 230,8 672,9 161,8	diffusion de Moyenne (m²/m²) - - 3,83E-06 - - 1,26E-05 2,24E-06 2,77E-06	e surface (sa ne pondéré S.E. - 1,49E-06 - 3,91E-06 6,38E-07 7,77E-07	e sa Total (t) - - 39,0 - 31,1 28,4 28,1	Rep Densité Biomasse (kg/m ²) - - 0,010 - - 0,025 0,005 0,005	roducteur c B Total (t) - - 7 568,0 - - 23 866,1 1 417,4 315,8	i'automne iomasse S.E. - - 998,4 - - 4 044,9 191,1 48,4	C.V. - 38,8 - 31,1 27,7 28,1	Repro Densité Biomasse (kg/m ²) - - 0,004 - - 0,013 0,002 0,003	Deducteur de B Total (t) - 2 573,9 - - 13 021,7 689,7 172,3	e printemp iomasse S.E. - - 998,4 - - 4 044,9 191,1 48,4	c.v. - - 38,8 - 31,1 27,7 28,1
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay Hawk's Bay	Strate 1 2 3 4 5 6 7 8 9	Aire (km²) N.É. N.É. 730,0 N.É. 972,8 299,9 58,5 499,9	Strate No. transect 3 7 3 4 5	Longueur moy. du transect (m) 11 777,4 11 869,2 18 479,7 2 867,0 10 602,4	Coeffi d'éch. (km/km²) - - 0,048 - - 0,085 0,185 0,196 0,106	Total s a (m ²) - 2 792,9 - 12 230,8 672,9 161,8 3 954,8	odiffusion de Moyenne (m²/m²) - - 3,83E-06 - 1,26E-05 2,24E-06 2,77E-06 7,91E-06	e surface (sa ne pondéré S.E. - 1,49E-06 - 3,91E-06 6,38E-07 7,77E-07 4,72E-06	e sa Total (t) - - 39,0 - - 31,1 28,4 28,1 59,7	Rep Densité Biomasse (kg/m²) - - 0,010 - 0,010 - 0,025 0,005 0,005 0,005	roducteur c B Total (t) - - 7 568,0 - - 23 866,1 1 417,4 315,8 4 097,0	i'automne iomasse S.E. - - 998,4 - - 4 044,9 191,1 48,4 3 574,2	C.V. - - 38,8 - 31,1 27,7 28,1 59,8	Repro Densité Biomasse (kg/m ²) - - 0,004 - - 0,004 - 0,003 0,002 0,003 0,012	Deducteur de B Total (t) - 2 573,9 - - 13 021,7 689,7 172,3 5 977,2	e printemp iomasse S.E. - - 998,4 - 4 044,9 191,1 48,4 3 574,2	c.v. - - 38,8 - 31,1 27,7 28,1 59,8
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay Hawk's Bay St. John Bay	Strate 1 2 3 4 5 6 7 8 9 10	Aire (km²) N.É. N.É. 730,0 N.É. 972,8 299,9 58,5 499,9 996,9	Strate No. transect 3 7 3 4 5 6	Longueur moy. du transect (m) 11 777,4 11 869,2 18 479,7 2 867,0 10 602,4 16 279,4	Coeffi d'éch. (km/km²) - - 0,048 - - 0,085 0,185 0,196 0,106 0,098	cient de rétro Total sa (m ²) - 2 792,9 - - 12 230,8 672,9 161,8 3 954,8 21 733,0	diffusion de Moyenne (m²/m²) - 3,83E-06 - - 1,26E-05 2,24E-06 2,77E-06 7,91E-06 2,18E-05	e surface (sa ne pondéré S.E. - 1,49E-06 - 3,91E-06 6,38E-07 7,77E-07 4,72E-06 2,59E-06	e sa Total (t) - 39,0 - 31,1 28,4 28,1 59,7 11,9	Rep Densité Biomasse (kg/m ²) - - 0,010 - - 0,025 0,005 0,005 0,005 0,008 0,032	roducteur c B Total (t) - - 7 568,0 - - 23 866,1 1 417,4 315,8 4 097,0 31 531,2	i'automne iomasse S.E. - - 998,4 - - 4 044,9 191,1 48,4 3 574,2 2 987,1	C.V. - - 38,8 - - 31,1 27,7 28,1 59,8 11,9	Repro Densité Biomasse (kg/m ²) - - 0,004 - - 0,013 0,002 0,003 0,012 0,025	Deducteur de B Total (t) - 2 573,9 - - 13 021,7 689,7 172,3 5 977,2 25 087,9	e printemp iomasse S.E. - - 998,4 - - 4 044,9 191,1 48,4 3 574,2 2 987,1	c.v. - - 38,8 - - 31,1 27,7 28,1 59,8 11,9
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay Hawk's Bay St. John Bay Belle-Isle S.	Strate 1 2 3 4 5 6 7 8 9 10 BI1	Aire (km²) N.É. N.É. 730,0 N.É. 972,8 299,9 58,5 499,9 996,9 N.É.	Strate No. transect 3 7 3 4 5 6	Longueur moy. du transect (m) 11 777,4 11 869,2 18 479,7 2 867,0 10 602,4 16 279,4	Coeffi Densité d'éch. (km/km²) - - 0,048 - 0,048 - 0,085 0,185 0,196 0,106 0,098 -	cient de rétro Total sa (m ²) - 2 792,9 - 2 792,9 - 12 230,8 672,9 161,8 3 954,8 21 733,0 -	diffusion de Moyenne (m²/m²) - - 3,83E-06 - - 1,26E-05 2,24E-06 2,77E-06 7,91E-06 2,18E-05 -	e surface (sa ne pondéré S.E. - 1,49E-06 - 3,91E-06 6,38E-07 7,77E-07 4,72E-06 2,59E-06 -	e sa Total (t) - - 39,0 - 31,1 28,4 28,1 59,7 11,9 -	Rep Densité Biomasse (kg/m ²) - - 0,010 - - 0,025 0,005 0,005 0,005 0,008 0,032 -	roducteur c B Total (t) - - 7 568,0 - - 23 866,1 1 417,4 315,8 4 097,0 31 531,2 -	i'automne iomasse S.E. - - 998,4 - - 4 044,9 191,1 48,4 3 574,2 2 987,1 -	C.V. - - 38,8 - 31,1 27,7 28,1 59,8 11,9 -	Repro Densité Biomasse (kg/m ²) - - 0,004 - - 0,013 0,002 0,003 0,012 0,025 -	Deducteur de B Total (t) - 2 573,9 - - 13 021,7 689,7 172,3 5 977,2 25 087,9 -	e printemp iomasse S.E. - - 998,4 - - 4 044,9 191,1 48,4 3 574,2 2 987,1 -	c.v. - - 38,8 - - 31,1 27,7 28,1 59,8 11,9 -
Automne 2019 Nom St. Georges S. St. Georges N. Port-au-Port G. Port-au-Port Bay of Islands G. Bonne Bay Bank Bay of Islands Bonne Bay Hawk's Bay St. John Bay Belle-Isle S. Belle-Isle N.	Strate 1 2 3 4 5 6 7 8 9 10 Bl1 Bl2	Aire (km²) N.É. N.É. 730,0 N.É. 972,8 299,9 58,5 499,9 996,9 N.É. N.É.	Strate No. transect 3 7 3 4 5 6	Longueur moy. du transect (m) 11 777,4 11 869,2 18 479,7 2 867,0 10 602,4 16 279,4	Coeffi d'éch. (km/km²) - - 0,048 - - 0,085 0,185 0,185 0,196 0,106 0,098 - -	cient de rétro Total sa (m ²) - 2 792,9 - 12 230,8 672,9 161,8 3 954,8 21 733,0 - - -	diffusion de Moyenne (m²/m²) - - 3,83E-06 - 1,26E-05 2,24E-06 2,77E-06 7,91E-06 2,18E-05 - - - - - - - - - - - - -	e surface (sa ne pondéré S.E. - 1,49E-06 - 3,91E-06 6,38E-07 7,77E-07 4,72E-06 2,59E-06 - - -	e sa Total (t) - - 39,0 - 31,1 28,4 28,1 59,7 11,9 - -	Rep Densité Biomasse (kg/m ²) - - 0,010 - - 0,025 0,005 0,005 0,005 0,005 0,008 0,032 - -	roducteur c B Total (t) - - 7 568,0 - - 23 866,1 1 417,4 315,8 4 097,0 31 531,2 - -	i'automne iomasse S.E. - - 998,4 - - 4 044,9 191,1 48,4 3 574,2 2 987,1 - - -	C.V. - - 38,8 - 31,1 27,7 28,1 59,8 11,9 - -	Repro Densité Biomasse (kg/m ²) - - 0,004 - - 0,013 0,002 0,003 0,012 0,025 - - -	Deducteur de B Total (t) - - 2 573,9 - - 13 021,7 689,7 172,3 5 977,2 25 087,9 - - -	e printemp iomasse S.E. - - 998,4 - 4 044,9 191,1 48,4 3 574,2 2 987,1 - -	c.v. - - 38,8 - 31,1 27,7 28,1 59,8 11,9 - -

Figure A51. Nombre de transects réalisés par strate pour les relevés acoustiques d'automne de 1991 à 2021 (noir) et pour les relevés acoustiques d'été de 2019 à 2021 (rouge).

Figure A52. Distribution de la biomasse de harengs mesurée lors des relevés hydroacoustiques de 2009 à 2017. La biomasse est proportionnelle à la hauteur des barres rouges. Les noms des strates du relevé sont identifiés par des chiffres. Les relevés de 2009 à 2013 et de 2017 ont été effectués avec le NGCC F.G. Creed, et la plateforme désignée en 2015 était le NGCC Vladykov. BN : bras Nord.