

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

s Ecosystems and Oceans Science

Secrétariat canadien des avis scientifiques (SCAS)

Document de recherche 2024/007

Région du Québec

Résultats de la pêche comparative entre le NGCC *Teleost* et le NGCC *John Cabot* dans l'estuaire et le nord du golfe du Saint-Laurent en 2021 et 2022

Hugues P. Benoît¹, Yihao Yin² et Hugo Bourdages¹

¹ Pêches et Océans Canada Institut Maurice-Lamontagne Mont-Joli (Québec) G5H 3Z4

² Pêches et Océans Canada Institut océanographique de Bedford Dartmouth (Nouvelle-Écosse) B2Y 4A2

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien des avis scientifiques 200, rue Kent Ottawa (Ontario) K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté le Roi du chef du Canada, représenté par le ministre du ministère des Pêches et des Océans, 2024 ISSN 2292-4272 ISBN 978-0-660-70788-4 N° cat. Fs70-5/2024-007F-PDF

La présente publication doit être citée comme suit :

Benoît, H.P., Yin, Y., et Bourdages, H. 2024. Résultats de la pêche comparative entre le NGCC *Teleost* et le NGCC *John Cabot* dans l'estuaire et le nord du golfe du Saint-Laurent en 2021 et 2022. Secr. can. des avis sci. du MPO, Doc. de rech. 2024/007. xix + 233 p.

Also available in English:

Benoît, H.P., Yin, Y., et Bourdages, H. 2024. Results of Comparative Fishing Between the CCGS Teleost and CCGS John Cabot in the Estuary and Northern Gulf of St. Lawrence in 2021 and 2022. DFO Can. Sci. Advis. Sec. Res. Doc. 2024/007. xvii + 229 p.

TABLE DES MATIÈRES

RÉSUMÉ	xix
1. INTRODUCTION	1
2. MÉTHODES	2
2.1. PÊCHE COMPARATIVE	2
2.2. ANALYSE DE DONNÉES DE PÊCHE COMPARATIVE	3
2.2.1. Modèles binomiaux	3
2.2.2. Modèles bêta-binomiaux	5
2.2.3. Modèle de Tweedie pour les données sur la biomasse	5
2.2.4. Ajustement, selection et validation des modeles	0 8
2.2.6. Interprétation des résultats d'analyse et application des facteurs de conversion	9
3. RÉSULTATS	10
3.1. PRÉSENTATION DES RÉSULTATS	10
3.2. QUELQUES RÉSULTATS EN PARTICULIER	11
3.2.1. Morue franche (Gadus morhua)	11
3.2.2. Merlu argenté (<i>Merluccius bilinearis</i>)	11
3.2.3. Merluche blanche (<i>Urophycis tenuis</i>)	11
3.2.4. Merluche à longues nageoires (<i>Phycis chesteri</i>)	12
3.2.5. Loup atlantique (Anarnichas lupus) et loup tachete (A. minor)	12
3.2.7. Grosse poule de mer (Cyclonterus lumpus)	12
3.2.8. Plie canadienne (Hippoglossoides platessoides)	13
3.2.9. Plie grise (Glyptocephalus cynoglossus)	13
3.2.10. Flétan du Groenland (Reinhardtius hippoglossoides)	13
3.2.11. Flétan de l'Atlantique (<i>Hippoglossus hippoglossus</i>)	14
3.2.12. Raie épineuse (<i>Amblyraja radiata</i>)	14
3.2.13. Rale a queue de velours (<i>Malacoraja serita</i>)	14 17
3.2.15 Hareng de l'Atlantique (<i>Clupea harengus</i>)	14
3.2.16. Capelan (<i>Mallotus villosus</i>)	14
3.2.17. Encornet rouge nordique (<i>Illex illecebrosus</i>)	15
3.2.18. Crevette nordique (<i>Pandalus borealis</i>)	15
3.2.19. Crabe des neiges (<i>Chionoecetes opilio</i>)	15
3.2.20. Plumes de mer	15
fonction de la longueur	16
3.2.22. Autres taxons mesurés présentant une différence significative de l'efficacité relative	ve
indépendante de la longueur	16
3.2.23. Effets significatifs de covariables	17
3.2.24. Interpretation des resultats pour les taxons pour lesquels seules des analyses	17
	17
	18
5. REMERCIEMENTS	19
6. REFERENCES CITÉES	19

7. TABLEAUX	22
8. FIGURES	45
9. ANNEXES	230
ANNEXE I – MODIFICATIONS À L'ENGIN DE PÊCHE CAMPELEN 1800 – AVANT	LA
PÊCHE COMPARATIVE DE 2020	230
ANNEXE II – DÉTERMINATION DE LA ZONE BALAYÉE	232

LISTE DES TABLEAUX

Tableau 1. Détails pour les paires de traits pertinentes dans la pêche comparative en 2021 et 2022 dans l'estuaire et le nord du golfe du Saint-Laurent, où les colonnes contenant la mention « TEL » représentent les valeurs pour le NGCC Teleost et celles contenant la mention « CA » représentent les valeurs pour le NGCC John Cabot. Les heures de début du trait (Heure) sont exprimées en heures décimales, les latitudes (« Lat. ») et longitudes (« Lon. ») de départ sont exprimées en degrés décimaux, les valeurs « Dist. » représentent la distance chalutée pour chaque navire en milles nautiques (nm), « Sép. » est la distance (séparation) entre les positions de départ du trait pour les deux navires en kilomètres (km) et « Prof. » est la profondeur moyenne du trait. La date est celle du début du trait par le NGCC Teleost, et la note « ¹ » qui accompagne une entrée pour Heure CA indique que le trait par le NGCC John Cabot a commencé le jour précédent juste avant minuit. Les notes de bas de page dans la colonne « Sép. » indiquent les cas pour lesquels les traits de chalut ont été effectués au même endroit, « ² » indiquant que le NGCC John Cabot a pêché en premier et « ³ » indiquant que le NGCC
Tableau 2. Ensemble de modèles binomiaux avec diverses hypothèses pour l'effet de lalongueur et l'effet de la station dans l'efficacité de capture relative
Tableau 3. Un ensemble de modèles bêta-binomiaux avec diverses hypothèses sur l'effet de lalongueur et l'effet de la station dans l'efficacité de capture relative, et l'effet de la longueur sur leparamètre de variance.28
Tableau 4. Groupes taxonomiques utilisés pour les analyses des données de pêche comparative dans l'estuaire et le nord du golfe du Saint-Laurent. Les codes sont ceux utilisés couramment dans la région du Québec du MPO, communément appelés codes STRAP29
Tableau 5. Résumé des longueurs des prises exclues des analyses non agrégées par longueur.
Tableau 6. Nombre total de paires de traits pertinentes (celles avec au moins une prise), et paires pour lesquelles le taxon a été capturé uniquement par le NGCC John Cabot ou uniquement par le NGCC Teleost, avec une référence au numéro de la figure dans laquelle les résultats sont représentés. Les listes sont classées selon le type d'analyse (non agrégée par longueur ou agrégée par taille) et approximativement selon la taxonomie
Tableau 7. Preuve relative pour les modèles binomiaux et bêta-binomiaux sans regroupement par longueur, d'après (A) les valeurs delta du critère d'information d'Aikaike (CIA) ou B) du critère d'information de Bayes (CIB)
Tableau 8. Valeurs de P associées aux tests pour un effet lisse de la profondeur, un effet lisse de l'heure et un effet fixe du jour sur les quantiles des résidus normalisés du meilleur modèle sélectionné sans regroupement par longueur. Les valeurs < 0,01 sont indiquées en caractères gras
Tableau 9. Preuve relative pour les modèles binomiaux et bêta-binomiaux avec regroupement par taille pour les nombres de prises d'après les valeurs du critère d'information d'Aikaike (CIA) et du critère d'information de Bayes (CIB), et estimations du facteur de conversion Rho, avec les intervalles de confiance approximatifs à 95 %, pour les prises en nombre et en poids des taxons pour lesquels des analyses sans regroupement par longueur ont également été entreprises
Tableau 10. Preuve relative pour les modèles binomiaux et bêta-binomiaux avec regroupement

par taille pour les nombres de prises d'après les valeurs du critère d'information d'Aikaike (CIA) et du critère d'information de Bayes (CIB), et estimations du facteur de conversion Rho, avec

les intervalles de confiance approximatifs à 95 %, pour les prises en nombre et en poids des	
taxons pour lesquels seules des analyses avec regroupement par taille ont également été	
entreprises.	43

LISTE DES FIGURES

Figure 2. Emplacement des paires de traits comparatives pêchées en 2021 et en 2022.45

Figure 4. Interprétation du deuxième des trois ensembles de figures présentant les données et les résultats pour les taxons ayant fait l'objet d'analyses sans regroupement par longueur. (vi) Estimation des fonctions de la proportion de la prise propre à la longueur, logit(pAi(l)), pour chaque modèle convergent; le modèle sélectionné est représenté par une ligne rouge avec son IC approximatif à 95 % (zone ombrée), ainsi que la proportion empirique moyenne propre à la classe de longueur de la prise totale d'une paire réalisée par le NGCC Teleost (points bleus). (vii) Estimation de la fonction de l'efficacité de capture relative (facteur de conversion) du meilleur modèle (avec l'IC à 95 %). La ligne bleue horizontale tiretée indique l'efficacité de capture relative qui suppose une efficacité constante pour les petites et les grandes tailles.....47

Figure 5. Interprétation du troisième des trois ensembles de figures présentant les données et les résultats pour les taxons ayant fait l'objet d'analyses sans regroupement par longueur. Diagramme en boîte des quantiles des résidus normalisés en tant que fonction de : (viii) la longueur, (ix) la station, (x) la classe de profondeur et (xi) l'heure. En (ix), les résidus associés aux 5 premières paires pêchés en 2021 sont indiqués par une ligne verte, et ceux associés aux paires dans lesquels les navires ont pêché séquentiellement la même trace sont indiqués par une ligne colorée : le NGCC John Cabot a pêché en premier (foncé bleu), le NGCC Teleost a pêché en premier (bleu clair).

Figure 6. Interprétation des figures présentant les données et les résultats pour les taxons ayant fait l'objet d'analyses avec regroupement par taille. Diagramme de double projection de la racine carrée du nombre de prises par le NGCC John Cabot par rapport à la racine carrée du nombre de prises par le NGCC Teleost; la ligne bleue et l'intervalle ombré représentent la conversion estimée et l'IC à 95 % approximatif du meilleur modèle avec regroupement par taille et les paires réalisées en 2021 et 2022 sont représentées par des couleurs différentes. (ii) Comme pour le panneau (i), mais pour les poids des prises. Les quantiles des résidus de l'analyse des nombres de prises sont représentés en tant que fonction (iii) des valeurs ajustées, (v) de l'heure et (vii) de la profondeur de la calée jumelée; les valeurs sont colorées selon le même système que dans le panneau (i). De même, les quantiles des résidus de l'analyse des poids des prises sont représentés en tant que fonction (iv) des valeurs ajustées, les valeurs

pour le NGCC Teleost étant représentées par des cercles rouges et celles pour le NGCC John Cabot par des cercles noirs, (vi) de l'heure et (viii) de la profondeur de la calée jumelée, les valeurs étant à nouveau colorées selon le même système que dans le panneau (i)49
Figure 7a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Myxine limosa50
Figure 7b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Myxine limosa51
Figure 7c.Quantiles des résidus normalisés du modèle sélectionné pour Myxine limosa51
Figure 8a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Centroscyllium fabricii
Figure 8b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Centroscyllium fabricii
Figure 8c.Quantiles des résidus normalisés du modèle sélectionné pour Centroscyllium fabricii.
Figure 9a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Amblyraja radiata54
Figure 9b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Amblyraja radiata55
Figure 9c.Quantiles des résidus normalisés du modèle sélectionné pour Amblyraja radiata55
Figure 10a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Malacoraja senta
Figure 10b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Malacoraja senta
Figure 10c.Quantiles des résidus normalisés du modèle sélectionné pour Malacoraja senta57
Figure 11a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Clupea harengus58
Figure 11b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Clupea harengus
Figure 11c.Quantiles des résidus normalisés du modèle sélectionné pour Clupea harengus59
Figure 12a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Mallotus villosus60
Figure 12b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Mallotus villosus61
Figure 12c.Quantiles des résidus normalisés du modèle sélectionné pour Mallotus villosus61
Figure 13a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Argentina silus62
Figure 13b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Argentina silus
Figure 13c.Quantiles des résidus normalisés du modèle sélectionné pour Argentina silus63

Figure 14a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Arctozenus risso
Figure 14b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Arctozenus risso
Figure 14c.Quantiles des résidus normalisés du modèle sélectionné pour Arctozenus risso65
Figure 15a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Gadus morhua
Figure 15b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Gadus morhua67
Figure 15c.Quantiles des résidus normalisés du modèle sélectionné pour Gadus morhua67
Figure 16a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Phycis chesteri
Figure 16b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Phycis chesteri
Figure 16c.Quantiles des résidus normalisés du modèle sélectionné pour Phycis chesteri69
Figure 17a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Urophycis tenuis70
Figure 17b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Urophycis tenuis
Figure 17c.Quantiles des résidus normalisés du modèle sélectionné pour Urophycis tenuis71
Figure 18a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Merluccius bilinearis72
Figure 18b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Merluccius bilinearis
Figure 18c.Quantiles des résidus normalisés du modèle sélectionné pour Merluccius bilinearis.
Figure 19a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Enchelyopus cimbrius
Figure 19b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Enchelyopus cimbrius
Figure 19c.Quantiles des résidus normalisés du modèle sélectionné pour Enchelyopus cimbrius
Figure 19d.Ajustements du modèle et étalonnage fondé sur la profondeur sélectionné pour Enchelyopus cimbrius
Figure 19e.Quantiles des résidus normalisés du modèle sélectionné pour Enchelyopus cimbrius
Figure 20a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Nezumia bairdii
Figure 20b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Nezumia bairdii

Figure 20c.Quantiles des résidus normalisés du modèle sélectionné pour Nezumia bairdii78
Figure 21a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Scomber scombrus
Figure 21b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Scomber scombrus
Figure 21c.Quantiles des résidus normalisés du modèle sélectionné pour Scomber scombrus.
Figure 22a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Ammodytes sp
Figure 22b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Ammodytes sp
Figure 22c.Quantiles des résidus normalisés du modèle sélectionné pour Ammodytes sp82
Figure 23a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Anarhichas lupus
Figure 23b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Anarhichas lupus
Figure 23c.Quantiles des résidus normalisés du modèle sélectionné pour Anarhichas lupus84
Figure 24a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lumpenus lampretaeformis
Figure 24b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lumpenus lampretaeformis
Figure 24c.Quantiles des résidus normalisés du modèle sélectionné pour Lumpenus lampretaeformis
Figure 25a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Leptoclinus maculatus
Figure 25b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Leptoclinus maculatus
Figure 25c.Quantiles des résidus normalisés du modèle sélectionné pour Leptoclinus maculatus
Figure 26a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lycodes lavalaei
Figure 26b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lycodes lavalaei
Figure 26c.Quantiles des résidus normalisés du modèle sélectionné pour Lycodes lavalaei90
Figure 27a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lycodes vahlii91
Figure 27b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lycodes vahlii
Figure 27c.Quantiles des résidus normalisés du modèle sélectionné pour Lycodes vahlii92

Figure 28a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Melanostigma atlanticum
Figure 28b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Melanostigma atlanticum
Figure 28c.Quantiles des résidus normalisés du modèle sélectionné pour Melanostigma atlanticum
Figure 29a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Sebastes sp
Figure 29b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Sebastes sp
Figure 29c.Quantiles des résidus normalisés du modèle sélectionné pour Sebastes sp96
Figure 30a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Artediellus sp
Figure 30b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Artediellus sp
Figure 30c.Quantiles des résidus normalisés du modèle sélectionné pour Artediellus sp98
Figure 31a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Triglops murrayi
Figure 31b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Triglops murrayi100
Figure 31c.Quantiles des résidus normalisés du modèle sélectionné pour Triglops murrayi100
Figure 32a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Myoxocephalus scorpius101
Figure 32b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Myoxocephalus scorpius102
Figure 32c.Quantiles des résidus normalisés du modèle sélectionné pour Myoxocephalus scorpius
Figure 33a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Gymnocanthus tricuspis
Figure 33b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Gymnocanthus tricuspis
Figure 33c.Quantiles des résidus normalisés du modèle sélectionné pour Gymnocanthus tricuspis
Figure 34a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Leptagonus decagonus
Figure 34b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Leptagonus decagonus106
Figure 34c.Quantiles des résidus normalisés du modèle sélectionné pour Leptagonus decagonus
Figure 35a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Aspidophoroides monopterygius

Figure 35b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Aspidophoroides monopterygius108
Figure 35c.Quantiles des résidus normalisés du modèle sélectionné pour Aspidophoroides monopterygius
Figure 36a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Eumicrotremus terraenovae
Figure 36b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Eumicrotremus terraenovae110
Figure 36c.Quantiles des résidus normalisés du modèle sélectionné pour Eumicrotremus terraenovae110
Figure 37a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Cyclopterus lumpus111
Figure 37b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Cyclopterus lumpus
Figure 37c.Quantiles des résidus normalisés du modèle sélectionné pour Cyclopterus lumpus.
Figure 38a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Liparidae
Figure 38b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Liparidae114
Figure 38c.Quantiles des résidus normalisés du modèle sélectionné pour Liparidae114
Figure 39a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Hippoglossoides platessoides
Figure 39b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Hippoglossoides platessoides116
Figure 39c.Quantiles des résidus normalisés du modèle sélectionné pour Hippoglossoides platessoides
Figure 40a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Glyptocephalus cynoglossus
Figure 40b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Glyptocephalus cynoglossus
Figure 40c.Quantiles des résidus normalisés du modèle sélectionné pour Glyptocephalus cynoglossus
Figure 41a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Reinhardtius hippoglossoides
Figure 41b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Reinhardtius hippoglossoides120
Figure 41c.Quantiles des résidus normalisés du modèle sélectionné pour Reinhardtius hippoglossoides
Figure 42a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Hippoglossus hippoglossus

Figure 42b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Hippoglossus hippoglossus
Figure 43a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lophius americanus123
Figure 43b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lophius americanus124
Figure 43c.Quantiles des résidus normalisés du modèle sélectionné pour Lophius americanus.
Figure 44a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Illex illecebrosus125
Figure 44b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Illex illecebrosus
Figure 44c.Quantiles des résidus normalisés du modèle sélectionné pour Illex illecebrosus126
Figure 45a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Pasiphaea multidentata
Figure 45c.Quantiles des résidus normalisés du modèle sélectionné pour Pasiphaea multidentata128
Figure 46a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Spirontocaris liljeborgii
Figure 46b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Spirontocaris liljeborgii130
Figure 46c.Quantiles des résidus normalisés du modèle sélectionné pour Spirontocaris liljeborgii
Figure 47a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lebbeus polaris131
Figure 47b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lebbeus polaris
Figure 47c.Quantiles des résidus normalisés du modèle sélectionné pour Lebbeus polaris132
Figure 48a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Pandalus borealis133
Figure 48c.Quantiles des résidus normalisés du modèle sélectionné pour Pandalus borealis.134
Figure 49a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Pandalus montagui
Figure 49c.Quantiles des résidus normalisés du modèle sélectionné pour Pandalus montagui. 136
Figure 50a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Atlantopandalus propinqvus
Figure 50b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Atlantopandalus propinqvus138
Figure 50c.Quantiles des résidus normalisés du modèle sélectionné pour Atlantopandalus propinqvus

Figure 51a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Pontophilus norvegicus
Figure 51b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Pontophilus norvegicus140
Figure 51c.Quantiles des résidus normalisés du modèle sélectionné pour Pontophilus norvegicus140
Figure 52a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Argis dentata141
Figure 52b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Argis dentata142
Figure 52c.Quantiles des résidus normalisés du modèle sélectionné pour Argis dentata142
Figure 53a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lithodes maja143
Figure 53b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lithodes maja144
Figure 53c.Quantiles des résidus normalisés du modèle sélectionné pour Lithodes maja144
Figure 54a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Chionoecetes opilio145
Figure 54b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Chionoecetes opilio146
Figure 54c.Quantiles des résidus normalisés du modèle sélectionné pour Chionoecetes opilio.
Figure 55a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Hyas araneus147
Figure 55b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Hyas araneus
Figure 55c.Quantiles des résidus normalisés du modèle sélectionné pour Hyas araneus148
Figure 56a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Hyas alutaceus149
Figure 56b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Hyas alutaceus149
Figure 56c.Quantiles des résidus normalisés du modèle sélectionné pour Hyas alutaceus 150
Figure 57.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Myctophiformes
Figure 58.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Eumesogrammus praecisus
Figure 59.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Porifera153
Figure 60.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Tentorium semisuberites

i

Figure 61.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Polymastia sp
Figure 62. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Stylocordyla borealis
Figure 63. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Hydrozoa
Figure 64. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ptychogena lactea
Figure 65. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Rhodaliidae
Figure 66.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Scyphozoa
Figure 67.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Cyanea capillata
Figure 68. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Periphylla periphylla
Figure 69. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Hormathia digitata
Figure 70. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Epizoanthus erdmanni
Figure 71.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Bolocera tuediae
Figure 72.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Stephanauge nexilis
Figure 73. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Actinostola callosa
Figure 74.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Stomphia coccinea
Figure 75. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Actinauge cristata
Figure 76.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Gersemia rubiformis
Figure 77.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Drifa glomerata
Figure 78.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pennatula aculeata
Figure 79. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ptilella grandis
Figure 80.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Halipteris finmarchica

Figure 81. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 82. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 83. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 84. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 85. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 86. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 87. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 88. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 89. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 90. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Scaphander punctostriatus......184 Figure 91. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 92. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 93. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 94. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 95. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 96. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 97. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 98. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 99. Visualisation des données sur la pêche comparative, des prédictions du modèle avec Figure 100. Visualisation des données sur la pêche comparative, des prédictions du modèle

Figure 101.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Laetmonice filicornis
Figure 102.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Polynoidae
Figure 103.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Brada inhabilis
Figure 104.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Nymphon sp198
Figure 105.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Aega psora
Figure 106.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Syscenus infelix
Figure 107.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Epimeria loricata
Figure 108.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Eualus fabricii
Figure 109.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Eualus macilentus
Figure 110.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Spirontocaris sp
Figure 111.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Spirontocaris spinus205
Figure 112. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Sabinea septemcarinata206
Figure 113. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Munidopsis curvirostra207
Figure 114.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pagurus sp
Figure 115.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Cucumaria frondosa209
Figure 116.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Strongylocentrotus sp210
Figure 117. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Brisaster fragilis
Figure 118. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ctenodiscus crispatus
Figure 119. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pteraster militaris
Figure 120. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ceramaster granularis

i

Figure 121. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Hippasteria phrygiana
Figure 122. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pseudarchaster parelii216
Figure 123. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Crossaster papposus
Figure 124. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Henricia sp
Figure 125. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Leptasterias (Hexasterias) polaris.
Figure 126. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Leptasterias groenlandica220
Figure 127.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Psilaster andromeda
Figure 128. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Gorgonocephalus sp
Figure 129. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ophiura sarsii
Figure 130.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ophiacantha bidentata
Figure 131. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ophiopholis aculeata
Figure 132. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ophioscolex glacialis
Figure 133. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ascidia sp
Figure 134. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Eudistoma vitreum
Figure 135. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Boltenia ovifera
Figure A1. Plan de filet pour le chalut Campelen 1800231
Figure A2. Envergure des ailes (A), ouverture des portes (B) et ouverture verticale (C) du chalut Campelen en fonction de la profondeur pour les 144 traits effectués par le NGCC John Cabot en 2022.

RÉSUMÉ

Les relevés au chalut de fond fournissent des données essentielles pour l'évaluation des stocks de poissons de fond et d'autres taxons, pour la surveillance des écosystèmes et l'établissement de rapports connexes, ainsi que pour la recherche. Ils peuvent permettre de produire des indices annuels de l'abondance qui sont proportionnels à la taille du stock, à condition que la constante de proportionnalité, généralement appelée « capturabilité », ne change pas au fil du temps. Ce résultat est normalement obtenu en utilisant un plan et des procédures de relevé normalisés. Périodiquement, il devient nécessaire ou souhaitable de modifier un ou plusieurs aspects du protocole et des expériences d'étalonnage sont généralement nécessaires pour estimer les ajustements à apporter en fonction des variations potentielles de la capturabilité. De 2004 à 2022, on a utilisé le NGCC *Teleost*, équipé d'un chalut de fond Campelen 1800, pour le relevé annuel dans l'estuaire et nord du golfe du Saint-Laurent. Ce navire sera bientôt mis hors service et sera remplacé par le NGCC John Cabot, qui est équipé d'un chalut Campelen 1800 légèrement modifié. En août 2021 et août 2022, on a réalisé des expériences de pêche comparative avec ces deux navires et ces deux engins jumelés afin d'obtenir les données sur les prises nécessaires pour estimer leur efficacité de pêche relative pour un grand nombre de taxons de poissons et d'invertébrés qui sont régulièrement échantillonnés dans ce relevé. Dans ce document, nous décrivons brièvement ces expériences de pêche comparative et présentons les analyses des données obtenues pour 125 taxons de poissons et d'invertébrés régulièrement échantillonnés dans le relevé mené dans le nord du golfe du Saint-Laurent. Les analyses ont fait appel à une série de modèles statistiques contemporains utilisés précédemment dans des analyses approfondies de pêche comparative dans l'est des États-Unis et qui ont été récemment largement testés à l'aide de simulations. La capturabilité relative en fonction de la longueur des individus (poissons, crevettes et calmars) ou de la largeur de la carapace (crabes) a été évaluée et estimée pour 50 taxons et des estimations avec regroupement par taille ont été dérivées pour les autres. Étant donné les grandes similitudes entre l'ancien navire et le nouveaux navire, ainsi qu'entre les engins de pêche, et la similarité attendue en matière de capturabilité qui en résulte, et dans certains cas en raison de la taille modeste des échantillons, les estimations de la capturabilité relative n'étaient pas statistiquement significatives pour de nombreux taxons. Des recommandations pour l'application des facteurs de conversion sont fournies. L'utilisation de ces facteurs de conversion maintiendra l'intégrité des séries chronologiques de plus de quatre décennies pour divers taxons marins du nord du golfe.

1. INTRODUCTION

Dans le monde entier, les relevés au chalut de fond fournissent des données essentielles pour l'évaluation des stocks de poissons de fond et d'autres taxons, pour la surveillance des écosystèmes et l'établissement de rapports connexes, ainsi que pour la recherche. Ils peuvent permettre de produire des indices annuels de l'abondance qui sont proportionnels à la taille du stock, à condition que la constante de proportionnalité, généralement appelée « capturabilité », ne change pas au fil du temps. Si cette cohérence n'est pas assurée par un plan et une normalisation adéquats de l'échantillonnage, le risque de confondre les changements de l'abondance avec les variations de la capturabilité est accru. Il est essentiel de maintenir la cohérence des protocoles de relevé, ainsi que des navires de recherche et des engins (que nous appellerons simplement le « protocole » dans le reste du document) pour préserver une capturabilité constante. Périodiquement, il devient cependant nécessaire ou souhaitable de modifier un ou plusieurs aspects du protocole et des expériences d'étalonnage sont généralement nécessaires pour estimer les ajustements à apporter en fonction des variations potentielles de la capturabilité. La forme la plus courante et la plus efficace de ces expériences est la pêche comparative, qui consiste habituellement à effectuer un chalutage jumelé avec les deux navires, soit celui de l'ancien protocole et celui du nouveau, aussi près l'un de l'autre qu'il est possible de le faire en toute sécurité. Cette façon de faire minimise la différence entre les densités de poissons échantillonnées par les chaluts, de sorte que les différences entre les prises sur les répétitions de l'échantillonnage par les chaluts jumelés reflètent la différence de capturabilité.

Pêches et Océans Canada (MPO) entreprend une pêche comparative pour chacun de ses six relevés au chalut de fond dans l'Atlantique de 2021 à 2023 afin de calibrer deux nouveaux navires hauturiers de sciences halieutiques qui remplaceront deux navires existants qui seront mis hors service. Pour certains relevés, le changement de navire s'accompagnera également d'une modification du chalut et des procédures de relevé (p. ex., la durée des traits), et l'effet conjoint de tous ces facteurs sur la capturabilité relative devrait être reflété dans les résultats des expériences de pêche comparative. Dans le cadre du relevé de l'estuaire et du nord du golfe du Saint-Laurent (EnGSL), qui a lieu annuellement en août depuis 1984, le NGCC John Cabot (63,0 m; 2 975 t de jauge brute) remplacera le NGCC Teleost (63 m; 2 405 t de jauge brute), qui a été utilisé pour effectuer le relevé depuis 2004. Pendant le relevé de l'estuaire et du nord du golfe du Saint-Laurent, le NGCC Teleost a pêché en utilisant le chalut Campelen 1800 (Walsh et al. 2009), et une version de ce chalut, légèrement modifiée pour le rendre moins susceptible d'être endommagé et pour améliorer sa réparabilité, sera utilisée par le NGCC John Cabot (détails à l'annexe I). Aucun autre changement n'a été apporté au protocole de relevé avec l'arrivée du NGCC John Cabot. La pêche comparative entre les deux navires, avec leurs chaluts respectifs, a eu lieu lors du relevé de l'estuaire et du nord du golfe du Saint-Laurent régulier en 2021, et principalement en 2022. Le plan utilisé, parfois appelé plan de relevé parallèle (Thiess et al. 2018), a consisté en la réalisation de paires de traits de chalut sur des sites sélectionnés dans le cadre du plan de aléatoire stratifié de routine pour le relevé (figure 1). Un tel plan est la meilleure façon de garantir que les résultats de la pêche comparative reflètent les conditions environnementales de la zone d'étude qui peuvent affecter la capturabilité, principalement les profondeurs et le substrat du fond. Il garantit également que des données seront disponibles pour estimer les facteurs de rajustement de la capturabilité relative pour le plus grand nombre possible de taxons échantillonnés lors du relevé et pour lesquels une normalisation est nécessaire pour la poursuite des recherches et des rapports.

Dans le présent document, nous décrivons brièvement les expériences de pêche comparative pour le EnGSL menées en 2021 et 2022 et présentons les analyses des données obtenues pour 125 taxons de poissons et d'invertébrés régulièrement échantillonnés par le relevé du EnGSL. Les analyses ont fait appel à des modèles statistiques contemporains utilisés précédemment dans des analyses approfondies de pêche comparative dans l'est des États-Unis (Miller *et al.* 2010; Miller 2013) et appliqués récemment à des analyses de données de pêche comparative passée pour certains stocks du golfe du Saint-Laurent (Yin et Benoît 2022a; Benoît *et al.* 2022). Ces modèles ont été largement testés dans un contexte de simulation et il a été confirmé qu'ils convenaient pour des analyses telles que celles employées dans le cas présent (Yin et Benoît 2022b). Dans le cadre des analyses, la capturabilité relative en fonction de la longueur des individus (poissons, crevettes et calmars) ou de la largeur de la carapace (crabes) a été estimée pour 50 taxons et des estimations avec regroupement par taille ont été dérivées pour les autres. Étant donné les différences considérables entre l'ancien et le nouveau protocole de relevé, notamment une modification substantielle de l'engin de pêche et de la longueur du trait, nous nous attendions à des différences importantes dans la capturabilité relative indépendante et dépendante de la longueur pour cette expérience de pêche comparative.

2. MÉTHODES

2.1. PÊCHE COMPARATIVE

La pêche comparative a été limitée à la période du 13 au 18 août en 2021 en raison de la disponibilité du NGCC *John Cabot*. Vingt-et-une paires de traits valides ont été réalisées cette année-là (tableau 1; figure 2). En 2022, 161 paires de traits valides ont été réalisées entre le 11 août et le 13 septembre. Au cours des deux années, la pêche comparative a été réalisée aux stations de relevé régulières choisies selon le plan d'échantillonnage aléatoire stratifié (figure 1).

Aux stations présélectionnées, le NGCC *John Cabot* et le NGCC *Teleost* ont pêché aussi près l'un de l'autre dans l'espace et dans le temps qu'il était possible et sécuritaire de le faire. La majorité des paires ont été réalisées côte à côte et, d'une station à l'autre, les navires ont alterné entre la présence de l'autre navire à bâbord ou à tribord. Des efforts ont été faits pour garantir des profondeurs similaires entre les deux endroits échantillonnés pour une même station. La distance séparant les navires était généralement d'un kilomètre ou moins, et ne dépassait pas deux kilomètres. La différence entre les heures de départ des paires de traits était en moyenne de dix minutes, et dépassait une heure (mais pas deux heures) pour seulement sept paires de traits. Pour huit stations, un seul navire pouvait trouver un fond approprié, ou les courbes de niveau étaient marquées; les traits ont donc été effectué au même endroit de manière séquentielle, en alternant le navire qui pêchait en premier entre les stations. Ces stations sont répertoriées dans le tableau 1.

Les deux navires ont effectué des traits standards en visant une durée de trait de quinze minutes à trois nœuds. Des durées de trait d'au moins dix minutes ont été jugées acceptables. La durée des traits a été mesurée à partir du moment où le chalut touchait le fond et commençait à pêcher jusqu'au moment où il était soulevé du fond. Les deux navires ont utilisé un système de chalutage automatique utilisant des capteurs Scanmar dans lequel la géométrie du chalut est ajustée dynamiquement pendant le trait afin de maintenir le chalut perpendiculaire à la trajectoire. Les données des capteurs Scanmar ont également été utilisées pour surveiller le rendement du chalut et pour potentiellement invalider un trait, mais elles n'ont pas été utilisées pour calculer la zone balayée par chaque trait pour l'analyse des données. La distance entre les traits a plutôt été utilisée comme seul facteur de normalisation pour la zone balayée par chaque trait. Une brève analyse des données Scanmar est présentée à l'annexe II. Sur la base de cette analyse, la zone balayée (envergure des ailes) d'un trait de chalut moyen est de 16,71 m avec le nouveau protocole, contre 16,94 m avec le protocole *Teleost*-Campelen.

Le traitement des prises a respecté les protocoles standards du relevé de l'estuaire et du nord du golfe du Saint-Laurent (Bourdages *et al.* 2021), à l'exception de certains échantillonnages biologiques détaillés tels que la collecte de données sur la maturité des poissons et le poids individuel, et la collecte d'otolithes pour certaines espèces, qui n'ont été effectués qu'à bord du NGCC *Teleost* lors des traits comparatifs.

2.2. ANALYSE DE DONNÉES DE PÊCHE COMPARATIVE

2.2.1. Modèles binomiaux

Dans l'analyse des données de chaque expérience de pêche comparative, l'objectif est d'estimer l'efficacité de capture relative entre une paire de combinaisons navire-engin (appelées « navire » dans cette section pour plus de simplicité). Nous supposons que la prise prévue du navire v ($v \in \{A, B\}$) pour la longueur l et à la station i est exprimée comme suit :

$$E[C_{vi}(l)] = q_{vi}(l)D_{vi}(l)f_{vi}$$

où $q_{vi}(l)$ est la capturabilité du navire v, D_{vi} est la densité de la population sous-jacente échantillonnée par le navire v et f_{vi} est un terme de normalisation qui inclut généralement la zone balayée d'un trait et, le cas échéant, la proportion de sous-échantillonnage pour la mesure des tailles à bord. Dans un modèle binomial (p. ex. Miller 2013), les prises par le navire A à la station i, conditionnées par les prises combinées des deux navires à cette station, $C_i(l) =$ $C_{Ai}(l) + C_{Bi}(l)$, ont une distribution binomiale :

$$C_{Ai}(l) \sim BI(C_i(l), p_{Ai}(l))$$

où $p_{Ai}(l)$ est la proportion attendue des prises par le navire *A*. Les traits d'une paire sont généralement supposés pêcher les mêmes densités sous-jacentes à la station, étant donné que les navires de la paire pêchent normalement à une faible distance l'un de l'autre : $D_{Ai}(l) = D_{Bi}(l) = D_i(l)$. La logit de la probabilité des prises par le navire *A* est alors

$$logit(p_{Ai}(l)) = log(\frac{E[C_{Ai}(l)]}{E[C_{Bi}(l)]}) = log(\rho_i(l)) + o_i$$

où $\rho_i(l)$ est le rapport des capturabilités entre les navires *A* et *B* pour la longueur *l* et à la station *i* ou le facteur de conversion, la quantité d'intérêt,

$$\rho_i(l) = q_{Ai}(l)/q_{Bi}(l)$$

et $o_i = log(f_{Ai}/f_{Bi})$ est une variable dérivée des termes de normalisation connus pour la longueur du trait par rapport aux longueurs de trait standard et pour le sous-échantillonnage.

Pour un facteur de conversion fondé sur la longueur, nous considérons un effet de la longueur lisse basé sur une fonction de lissage additif généralisé,

$$log(\rho(l)) = \sum_{k=0}^{K} \beta_k X_k(l) = \mathbf{X}^T \mathbf{\beta},$$

où les valeurs β sont les paramètres des coefficients et sont estimées, **X** ou { $X_k(l), k = 0, 1, \dots, K$ } est un ensemble de fonctions de base de lissage et *K* est la dimension de la base qui contrôle le nombre de paramètres des coefficients et est généralement prédéfinie. Ici, un lissage par spline cubique a été utilisé (Hastie *et al.* 2009), avec les fonctions de base et les matrices de pénalité générées par le progiciel mgcv for R en R (Wood 2011; R core team 2021).

L'estimation d'un lissage par spline cubique est basée sur l'objectif de lissage de la somme pénalisée des carrés, mais en pratique, celui-ci est généralement remplacé par un objectif de vraisemblance pénalisée (Green et Silverman 1993) :

$$\mathcal{L}(\boldsymbol{\beta}_{,,\lambda}) = f(\mathbf{Y}|\mathbf{X}_{,,\boldsymbol{\beta}}\boldsymbol{\beta})e^{-\frac{\lambda}{2}\boldsymbol{\beta}^{T}\mathbf{S}\boldsymbol{\beta}}$$

 \mathcal{L} désigne la fonction d'objectif de vraisemblance. $f(\mathbf{Y}|\mathbf{X}, \boldsymbol{\beta})$ est la fonction de probabilité conjointe des données des relevés \mathbf{Y} conditionnée par les fonctions de base et les paramètres des coefficients. \mathbf{S} est la matrice de pénalité définie par le lissage et la dimension de la base et λ est le paramètre de lissage. Ce dernier est estimé par le maximum de vraisemblance avec d'autres paramètres du modèle, mais il peut être sensible aux données. Dans ce cas, il peut être déterminé par d'autres critères tels que la validation croisée généralisée (Wood 2000).

On peut aussi reparamétrer le lissage du maximum de vraisemblance pénalisée en un modèle à effets mixtes (Verbyla *et al.* 1999; Wood 2017) pour faciliter la mise en œuvre et l'incorporation d'effets aléatoires supplémentaires :

$$log(\rho_i(l)) = \mathbf{X}_f^T \mathbf{\beta}_f + \mathbf{X}_r^T \mathbf{b}$$

où β_f sont des effets fixes et **b**, des effets aléatoires. \mathbf{X}_f et \mathbf{X}_r sont des transformées des fonctions de base **X** et d'une décomposition propre de la matrice de pénalité **S**, $\mathbf{X}_f = \mathbf{U}_f^T \mathbf{X}$ et $\mathbf{X}_r = \mathbf{U}_r^T \mathbf{X}$, où \mathbf{U}_f et \mathbf{U}_r sont les vecteurs propres qui correspondent aux valeurs propres nulle et positive de **S**. Les effets aléatoires sont $b \sim N(0, \mathbf{D}_+^{-1}/\lambda)$, où D_+ est la matrice diagonale des valeurs propres positives de S. Dans la représentation par le modèle à effets mixtes du lissage par spline cubique, le nombre d'effets fixes est de 2 et le nombre d'effets aléatoires est limité par K - 2. Les effets du lissage sont transformés en réduction des effets aléatoires dans l'ajustement des écarts aléatoires et peuvent être intégrés dans des modèles complexes à effets mixtes couramment utilisés en sciences halieutiques (Thorson et Minto 2015).

Des effets aléatoires supplémentaires peuvent être incorporés dans le modèle à effets mixtes pour tenir compte des variations de l'efficacité de capture relative pour chaque station,

$$log(\rho_i(l)) = \mathbf{X}_f^T(\boldsymbol{\beta}_f + \boldsymbol{\delta}_i) + \mathbf{X}_r^T(\mathbf{b} + \boldsymbol{\epsilon}_i).$$

où $\delta_i \sim N(0, \Sigma)$ et $\epsilon_i \sim N(0, D_+^{-1}/\xi)$. À partir d'un nouveau paramétrage analogue du lissage par spline cubique, ces effets aléatoires permettent des déviations de la conversion basée sur la longueur à chaque station. Σ est la matrice de covariance des effets aléatoires correspondant aux écarts aléatoires et contient trois paramètres. ξ contrôle le degré de lissage des lissages aléatoires et le lissage peut différer à chaque station.

Voici un résumé du modèle mixte binomial ci-dessus :

$$C_{i}(l) = C_{Ai}(l) + C_{Bi}(l)$$

$$C_{Ai}(l) \sim BI(C_{i}(l), p_{Ai}(l))$$

$$logit(p_{Ai}(l)) = log(\rho_{i}(l)) + o_{i}$$

$$log(\rho_{i}(l)) = \mathbf{X}_{f}^{T}(\boldsymbol{\beta}_{f} + \boldsymbol{\delta}_{i}) + \mathbf{X}_{r}^{T}(\mathbf{b} + \boldsymbol{\epsilon}_{i})$$

Le modèle est estimé par le maximum de vraisemblance et la vraisemblance marginale intégrant les effets aléatoires est exprimée comme suit :

$$\mathcal{L}(\boldsymbol{\beta}_{f,n}\boldsymbol{\Sigma}_{n,\lambda},\xi) = \int \left(\prod_{i=1}^{m} \int \int f(\mathbf{Y}_{i}|\mathbf{X}_{f,n}\mathbf{X}_{r,n}\boldsymbol{\beta}_{f,n}\mathbf{b}_{n,\boldsymbol{\delta}_{i,n}}\boldsymbol{\epsilon}_{i})f(\boldsymbol{\delta}_{i}|\boldsymbol{\Sigma})f(\boldsymbol{\epsilon}_{i}|\boldsymbol{\xi})d\boldsymbol{\delta}_{i}d\boldsymbol{\epsilon}_{i}\right)f(\mathbf{b}|\boldsymbol{\lambda})d\mathbf{b}$$

Le modèle mixte binomial peut être adapté pour diverses hypothèses sur le lissage et la variation potentielle de la station afin de tenir compte de la densité sous-jacente différente d'une espèce et des limitations des données, en particulier pour les mesures de longueur. Un ensemble de modèles binomiaux considérés dans les présentes analyses est fourni dans le tableau 2.

2.2.2. Modèles bêta-binomiaux

L'hypothèse binomiale sur les prises peut être étendue à une distribution bêta-binomiale pour tenir compte de la surdispersion aux stations (Miller 2013) :

$$C_{A,i}(l) \sim BB(C_i(l), p_{A,i}(l), \phi_i(l)).$$

La distribution bêta-binomiale est un composé de la distribution binomiale et d'une distribution bêta à priori. Plus précisément, elle suppose un effet aléatoire à distribution bêta dans la proportion attendue de captures par le navire *A* entre les stations. Par conséquent, la variance des prises prévues par le navire A est de

$$var(C_{A,i}) = C_i p_i (1-p_i) \frac{\phi_i + C_i}{\phi_i + 1}$$

où ϕ est le paramètre de surdispersion qui représente la variation extra-binomiale.

On peut appliquer le même effet de la longueur de lissage au paramètre de surdispersion,

$$log(\phi_i(l)) = \mathbf{X}_f^T \mathbf{\gamma} + \mathbf{X}_r^T \mathbf{g}$$

où γ sont des effets fixes et **g**, des effets aléatoires, $\mathbf{g} \sim N(0, \mathbf{D}_{+}^{-1}/\tau)$. Cet effet de longueur modélise l'hétérogénéité de la variance et est particulièrement utile pour projeter l'incertitude sur des longueurs mal échantillonnées. Cependant, l'estimation d'un paramètre de variance fondé sur la longueur nécessite généralement des données suffisantes sur les prises selon la longueur, qui ne sont habituellement pas disponibles pour les espèces moins abondantes.

Voici un résumé du modèle mixte bêta-binomial :

$$C_{i}(l) = C_{Ai}(l) + C_{Bi}(l)$$

$$C_{Ai}(l) \sim BB(C_{i}(l), p_{Ai}(l), \phi_{i}(l))$$

$$logit(p_{Ai}(l)) = log(\rho_{i}(l)) + o_{i}$$

$$log(\rho_{i}(l)) = \mathbf{X}_{f}^{T}(\boldsymbol{\beta}_{f} + \boldsymbol{\delta}_{i}) + \mathbf{X}_{r}^{T}(\mathbf{b} + \boldsymbol{\epsilon}_{i})$$

$$log(\phi_{i}(l)) = \mathbf{X}_{f}^{T}\boldsymbol{\gamma} + \mathbf{X}_{r}^{T}\mathbf{g}$$

La vraisemblance marginale est exprimée par

$$\mathcal{L}(\boldsymbol{\beta}_{f},\boldsymbol{\gamma},\boldsymbol{\Sigma},\boldsymbol{\lambda},\boldsymbol{\xi},\boldsymbol{\tau})$$

$$= \int \int \left(\prod_{i=1}^{m} \int \int f(\mathbf{Y}_{i}|\mathbf{X}_{f},\mathbf{X}_{r},\boldsymbol{\beta}_{f},\mathbf{b},\boldsymbol{\gamma},\mathbf{g},\boldsymbol{\delta}_{i},\boldsymbol{\epsilon}_{i})f(\boldsymbol{\delta}_{i}|\boldsymbol{\Sigma})f(\boldsymbol{\epsilon}_{i}|\boldsymbol{\xi})d\boldsymbol{\delta}_{i}d\boldsymbol{\epsilon}_{i}\right) f(\mathbf{b}|\boldsymbol{\lambda})f(\mathbf{g}|\boldsymbol{\tau})d\mathbf{b}d\mathbf{g}$$

De même, on peut appliquer diverses hypothèses de lissage au paramètre de variance. Le tableau 3 présente un ensemble de modèles mixtes bêta-binomiaux.

2.2.3. Modèle de Tweedie pour les données sur la biomasse

Les modèles binomiaux et bêta-binomiaux sont appropriés pour les données constituées de nombres de prises, mais pas pour le poids ou la biomasse des prises. Les indices de la

biomasse sont régulièrement dérivés des données de relevé pour surveiller les tendances de la population. Pour les taxons mesurés, la manière la plus fiable pour obtenir les valeurs de la biomasse ajustées en fonction de la variation de la capturabilité relative consiste à appliquer les résultats des analyses décrites ci-dessus aux nombres de prises propres à la longueur et à utiliser une conversion longueur-poids. Cependant, les mesures individuelles ne sont pas prises pour de nombreux taxons d'invertébrés et n'ont pas été effectuées certaines années ou pour certains traits de relevé pour un grand nombre des taxons restants. Il a donc fallu estimer les capturabilités relatives pour les poids des prises avec regroupement par taille pour tous les taxons.

L'analyse des poids des prises nécessitait une distribution de probabilité avec une masse à zéro, mais qui est par ailleurs continue et peut prendre en compte une certaine surdispersion dans les poids des prises. Contrairement aux modèles pour les nombres de prises, il n'a pas été possible de conditionner les estimations du modèle à la prise totale. Nous avons utilisé le modèle suivant, qui suppose que les poids des prises sont une variable aléatoire à distribution de Tweedie (TW) :

$$W_{i,v} \sim TW(\mu_{i,v,v},\varphi_{v,\tau})$$
$$E[W_{i,v}] = \mu_{i,v} = \exp(v + S_i + o_{i,v})$$
$$Var[W_{i,v}] = \varphi(\mu_{i,v})^{\tau}$$

où $W_{i,v}$ est le poids des prises à la station *i* par le navire *v*, $\mu_{i,v}$ est le poids attendu des prises à la station *i* pour le navire *v*, φ est le paramètre de dispersion de la distribution de Tweedie, τ est un paramètre de puissance, limité à l'intervalle 1< τ <2 (Dunn et Smyth 2005), *v* est l'effet fixe du navire, où $exp(v) = \rho$, S_i est un effet fixe qui tient compte de la biomasse à la station *i* et $o_{i,v}$ est la variable d'échelonnement. Contrairement au modèle des nombres de prises dans lequel la variable d'échelonnement était le logarithme du rapport des efforts d'échantillonnage (distance de remorquage et fraction de l'échantillonnage des captures), la variable d'échelonnement dans le modèle de Tweedie est le logarithme de l'effort d'échantillonnage à la station *i* pour le navire *v*, par rapport à l'effort standard pour ce navire.

Nous avons d'abord étudié une version du modèle dans laquelle l'effet de la station était traité comme un effet aléatoire de la forme suivante :

$$E[W_{i,v}] = \mu_{i,v} = \exp(v + \delta_i + o_{i,v})$$
$$\delta_i \sim N(0, \sigma^2)$$

Cependant, la distribution normale présumée pour l'effet aléatoire dans le prédicteur linéaire s'est avérée inappropriée dans l'application aux données.

2.2.4. Ajustement, sélection et validation des modèles

Les modèles binomiaux et bêta-binomiaux des tableaux 2 et 3 pour les analyses des prises sans regroupement par longueur ont été mis en œuvre à l'aide du progiciel Template Model Builder (TMB) pour R (Kristensen *et al.* 2016). TMB utilise l'approximation de Laplace pour intégrer la log-vraisemblance négative commune (nll) sur les effets aléatoires afin de calculer la log-vraisemblance négative marginale (mnll). L'optimisation de la log-vraisemblance négative marginale est ensuite entreprise dans R à l'aide de la fonction *nlminb()*. Les fonctions de base pour la spline de lissage cubique et les matrices de pénalité correspondantes ont été générées à l'aide du progiciel mgcv en R (Wood 2011) sur la base de 10 nœuds équidistants (*K* = 9) dans la gamme de longueurs spécifiée au préalable en fonction de la gamme de longueurs observée propre à chaque taxon. TMB calcule automatiquement une erreur type pour l'estimation du maximum de vraisemblance du facteur de conversion par la méthode delta (Kristensen *et al.* 2016).

Des analyses ont également été effectuées pour les nombres de prises avec regroupement par longueur, pour les taxons ou les cas où des facteurs de conversion avec regroupement par longueur sont nécessaires. Contrairement aux analyses décrites ci-dessus qui considèrent les prises d'un taxon à une station et dans une classe de longueur comme les données de base, ces analyses avec regroupement par longueur ont modélisé les nombres totaux de prises à chaque station. Dans un souci de simplicité, ces analyses ont été mises en œuvre à l'aide de la fonction glmmTMB du progiciel homonyme en R (Brooks et al. 2017). Les modèles BIO, BI1, BB0 et BB1 (tableaux 2 et 3) ont été ajustés en spécifiant family=binomial(link = "logit") ou family=betabinomial(link = "logit"), selon le cas, en conservant les mêmes hypothèses que les modèles sans regroupement par longueur. Il convient de noter que les estimations du facteur de conversion pour ces quatre modèles, obtenues à partir des analyses avec regroupement par longueur, diffèrent probablement de celles obtenues à partir des analyses sans regroupement par longueur lorsqu'il existe une forte dépendance sous-jacente à la longueur dans la capturabilité relative entre les deux navires. En outre, comme les tailles des échantillons sont plus grandes dans les analyses sans regroupement par longueur, les erreurs types sur les facteurs de conversion devraient généralement être plus faibles.

Des analyses des poids des prises ont également été réalisées à l'aide de la fonction glmmTMB. L'option family = tweedie a été spécifiée.

Les modèles sans regroupement par longueur n'ont été ajustés que pour les taxons pour lesquels des données étaient disponibles pour au moins 25 paires de traits pertinentes (paires avec une prise par au moins un navire). Le modèle avec regroupement par taille n'a été ajusté que pour les taxons pour lesquels des données étaient disponibles pour au moins 15 paires de traits pertinentes. Bien que ces seuils soient quelque peu arbitraires, ils sont raisonnables compte tenu de la complexité des modèles (nombre de paramètres fixes et aléatoires estimés) et sont conformes aux exigences minimales qui ressortent de l'étude de simulation de Yin et Benoît (2022b).

Il y avait au total 13 modèles possibles de prises avec regroupement par longueur pour estimer les facteurs de conversion, bien que la convergence n'ait pu être atteinte pour aucun des taxons pour le modèle le plus complexe, BB7, et seulement un taxon avec BB6. Il y avait quatre modèles possibles pour les nombres de prises avec regroupement par longueur. Le meilleur modèle pour chaque ensemble d'analyses a été sélectionné selon le critère d'information de Bayes (CIB) afin de maximiser l'ajustement du modèle, tout en évitant l'ajustement excessif de modèles plus compliqués, en particulier dans les cas sans données adéquates. Nous avons également examiné les valeurs pour le critère d'information d'Akaike (CIA), qui tend à sélectionner des modèles légèrement plus complexes que le CIB (Hastie *et al.* 2009), mais qui, dans les présentes applications, a largement confirmé les décisions fondées sur le CIB.

Dans chaque analyse sans regroupement par longueur, on a comparé les estimations de la fonction μ (proportion attendue dépendante de la longueur des prises par le navire *A*) par tous les modèles convergents aux proportions de l'échantillon (regroupées par station et moyennées pour chaque longueur) afin de fournir une interprétation plus rigoureuse des résultats. L'estimation $\rho(l)$ (efficacité de capture relative attendue ou fonction de facteur de conversion) et l'intervalle de confiance approximatif à 95 % correspondant du meilleur modèle sont ensuite indiqués pour la gamme de longueurs contenue dans les données d'entrée. Les quantiles des résidus normalisés du modèle (Dunn et Smyth 1996) ont été produits et tracés à l'aide de diagrammes en boîte en fonction de la longueur et de la station de relevé afin d'évaluer visuellement l'adéquation de l'ajustement du modèle. Compte tenu des préoccupations

possibles concernant une pêche non standardisée au cours des premiers traits entreprises en 2021 (supposées ici être les cinq premiers), et d'éventuels effets d'épuisement dans les traits comparatifs effectués un navire à la fois sur le même trajet de chalutage (n = 8), les résidus de ces stations ont été distingués dans ce dernier graphique. Compte tenu du nombre potentiellement élevé de stations pour certaines espèces, qui aurait autrement généré un diagramme en boîte encombré, nous avons tracé uniquement les résidus pour les 60 premiers traits en 2022 afin de donner une indication d'un éventuel manque d'ajustement. Enfin, nous avons tracé les résidus du modèle en fonction de la profondeur et de l'heure à laquelle une station a été pêchée, deux facteurs connus pour influencer la capturabilité (p. ex. Benoît et Swain 2003), afin d'évaluer si ces effets pouvaient interagir avec l'effet du navire étudié. Pour repérer les cas où ces effets ont pu avoir une influence, nous avons également ajusté les modèles gaussiens suivants (présentés à l'aide de pseudo-équations) aux quantiles des résidus normalisés du modèle (NQR) :

- I. NQR ~ s(profondeur) + (1|station)
- II. NQR ~ s(heure) + (1|station)
- III. NQR ~ facteur(jour) + (1|station)

où s(x) représente une fonction lisse de la variable x, (1|station) représente un effet aléatoire pour la station et facteur(jour) est un facteur délimitant le jour et la nuit, où jour = 6 h 00 < heure \leq 20 h 00, conformément à Benoît et Swain (2003). Les effets lissés et discrets de l'heure ont été pris en compte pour signaler les cas d'un éventuel effet nycthéméral sur la capturabilité relative (p. ex. Benoît et Swain 2003). Nous avons examiné les valeurs de p associées aux effets de la profondeur, de l'heure et du jour, et nous avons approfondi les tendances des résidus dans les cas où la valeur de p était inférieure à 0,01.

L'ajustement des analyses avec regroupement des prises pour les nombres et les poids a été évalué en traçant le facteur de conversion et l'intervalle de confiance approximatif à 95 % correspondant dans les diagrammes de double projection de la prise d'un navire par rapport à l'autre. En outre, nous avons examiné les quantiles des résidus mis à l'échelle obtenus à l'aide du progiciel DHARMa en R (Hartig 2021). Contrairement aux quantiles des résidus normalisés utilisés dans les analyses sans regroupement par longueur ci-dessus, qui ont une distribution gaussienne attendue lorsque l'ajustement du modèle est adéquat, les quantiles des résidus dans DHARMa ont une distribution uniforme attendue. Ce choix a été dicté en partie par le fait qu'il était plus facile d'examiner les résidus à l'aide de diagrammes en boîte dans le premier cas, qui comporte davantage de valeurs résiduelles. Les résidus des analyses avec regroupement par prise ont été examinés pour vérifier l'uniformité et une éventuelle surdispersion, et ont été tracés en fonction des valeurs ajustées, de la profondeur de la station et de l'heure. L'évaluation des résidus dans les analyses avec regroupement par taille s'est limitée à une inspection visuelle.

2.2.5. Traitement des données avant l'analyse

Les données relatives à certains taxons ont été regroupées avant l'analyse en raison d'incohérences perçues dans l'identification au cours des relevés ou en raison de la petite taille des échantillons pour des taxons apparentés et morphologiquement similaires. Ces regroupements sont décrits dans le tableau 4.

Dans un très petit nombre de cas, la capture d'un ou deux individus dans la plage de longueur la plus petite ou la plus grande a eu une influence excessive sur la forme de la fonction du facteur de conversion dépendant de la longueur à ces longueurs et à des longueurs similaires. Cela résulte de la souplesse inhérente aux fonctions splines cubiques et est un problème connu pour ces modèles (Cadigan *et al.* 2022). Bien que Cadigan et ses collaborateurs (2022) présentent une autre approche qui est probablement plus robuste, celle-ci n'est applicable qu'aux fonctions monotones de capturabilité relative dépendant de la longueur, ce qui en limite l'application. En outre, nous n'avons pas pu obtenir d'ajustements convergents pour les tentatives faites avec les données de deux des taxons possédant le plus de données, la plie canadienne (*Hippoglossoides platessoides*) et le flétan du Groenland (*Reinhardtius hippoglossoides*), et par conséquent nous n'avons pas adopté cette approche. Nous avons plutôt exclu de l'analyse les prises pour ces longueurs extrêmes. Le tableau 5 résume ces cas.

Les procédures de tri des grands sébastes (plus de 33 cm approximativement) ont différé entre les deux navires au cours de la deuxième phase de l'expérience de pêche comparative en 2022, au cours de laquelle la majorité des paires de traits comparatifs ont été réalisés. À bord du NGCC *John Cabot*, ces poissons ont été échantillonnés de manière aléatoire dans le cadre de la capture de poissons d'environ plus de 20 cm, tandis qu'à bord du NGCC *Teleost*, les grands poissons ont été explicitement séparés de l'abondante capture de poissons d'environ 20 à 28 cm avant l'échantillonnage biologique. Compte tenu de l'extrême abondance de sébastes mesurant de 20 à 28 cm dans les prises au chalut, cette différence de procédures a entraîné des prises de grands sébastes beaucoup plus fréquentes dans les données du NGCC *Teleost*. Étant donné l'impossibilité de distinguer l'effet de cette différence de procédure des effets possibles des navires, les données relatives aux sébastes de plus de 33 cm ont été exclues des analyses.

2.2.6. Interprétation des résultats d'analyse et application des facteurs de conversion

Deux tendances générales observées dans la sélection du modèle et les résultats du modèle ont motivé l'adoption de critères de sélection supplémentaires pour déterminer si un facteur de conversion (fonction) doit être appliqué, et lequel doit être appliqué dans les analyses futures des données du relevé. Premièrement, dans certains cas, un modèle dépendant de la longueur a été sélectionné, mais les intervalles de confiance à 95 % pour la fonction du facteur de conversion chevauchaient une valeur de un sur toute la plage de longueurs, ce qui indique qu'aucune différence statistique n'existe avec le cas de la capturabilité équivalente des navires. Dans ces cas, nous avons examiné les résultats des analyses ne dépendant pas de la longueur, mais nous avons constaté qu'ils n'étaient généralement pas statistiquement significatifs non plus, et nous concluons donc que des conversions ne sont pas nécessaires pour ces taxons. De même, pour les taxons pour lesquels seules des analyses agrégées par taille ont été réalisées, nous avons interprété les cas où les intervalles de confiance des estimations contiennent la valeur un comme non significatifs d'un point de vue statistique.

Comme indiqué ci-dessus, l'estimation des fonctions de facteur de conversion propres à la longueur peut être sensible à la rareté des données dans les queues des fréquences de longueur. Malgré l'élimination de certaines longueurs extrêmes, il restait des cas où les valeurs du facteur de conversion s'écartaient considérablement de la tendance générale dépendant de la longueur, les longueurs tendant vers les plus petites et les plus grandes longueurs. Nous avons donc adopté la procédure suivante. Nous avons d'abord déterminé les longueur totale propre au taxon pour l'expérience de 2021 et 2022 pour les taxons comportant au moins 20 classes de longueur (classes en centimètres ou en millimètres), et nous avons utilisé les percentiles 2,5 et 97,5 pour les taxons comportant moins de classes. Nous avons ensuite déterminé les valeurs de la fonction du facteur de conversion à ces percentiles pour chaque taxon, et nous avons considéré ces valeurs comme des constantes pour les longueurs inférieures à ces percentiles, respectivement. Ces valeurs constantes ont été

projetées respectivement sur les plus petites et les plus grandes longueurs propres au taxon observées depuis 1984 dans le cadre du relevé.

3. RÉSULTATS

Les résultats des différentes analyses pour les nombreux taxons couverts par ce rapport sont tout simplement trop nombreux pour être interprétés en détail. Nous avons plutôt cherché à fournir des figures et des tableaux détaillés qui décrivent les résultats et soutiennent les décisions relatives à l'application des facteurs de conversion, et à fournir une interprétation des résultats uniquement pour les principales espèces exploitées et les espèces dont la conservation est préoccupante. Ces espèces, qui font l'objet de rapports annuels (p. ex., Bourdages *et al.* 2022), sont celles pour lesquelles le rapport sur les résultats du relevé est susceptible d'avoir le plus de répercussions, et donc celles pour lesquelles la nécessité d'un examen et d'une interprétation minutieux des résultats de la pêche comparative est sans doute la plus grande. Nous commençons par expliquer la structure de la présentation des résultats, puis nous abordons les résultats pour ces espèces précises.

3.1. PRÉSENTATION DES RÉSULTATS

Les tableaux et figures suivants présentent les résultats propres à chaque taxon.

Le tableau 6 indique le nombre total de paires d'échantillons pertinentes (c'est-à-dire les paires dans lesquelles le taxon a été capturé par au moins un des deux navires), le nombre de paires pour lesquelles seul le NGCC *John Cabot* a capturé le taxon, et le nombre de paires pour lesquelles seul le NGCC *Teleost* a capturé le taxon. Le tableau fournit notamment une référence au numéro de la ou des figures dans lesquelles les résultats sont présentés pour ce taxon. Les taxons pour lesquels des analyses agrégées par longueur ont été effectuées sont présentés en premier, suivis de ceux pour lesquels des analyses agrégées par taille ont été utilisées.

Le tableau 7 fournit des détails sur la preuve et la sélection du modèle (valeurs Δ CIA et Δ CIB) pour les analyses non agrégées par longueur.

Le tableau 8 présente les valeurs p pour l'effet de lissage de la profondeur, l'effet de lissage du temps et l'effet fixe du jour sur les résidus du quantile normalisé du meilleur modèle non agrégé par longueur. Les valeurs ≤ 0,01 sont indiquées en gras.

Le tableau 9 fournit des détails sur la preuve et la sélection du modèle (valeurs CIA et CIB) pour les analyses des nombres de prises agrégées par longueur, ainsi que les facteurs de conversion estimés (rho) et les intervalles de confiance à 95 % pour les analyses des nombres de prises et des poids de prises pour les taxons qui ont également été pris en compte dans les analyses non agrégées par longueur.

Le tableau 10 fournit les mêmes types de résultats que le tableau 9, mais pour les taxons qui n'ont pas été pris en compte dans les analyses non agrégées par longueur, soit parce qu'un échantillonnage représentatif de la longueur n'a pas été effectué, soit parce que le nombre total de paires d'échantillons pertinents était de $15 \le n < 25$.

Les graphiques des résultats des analyses non agrégées par longueur sont présentés dans plusieurs panneaux sur trois pages pour chaque taxon. Les figures 3 à 5 expliquent le contenu de chaque page. En bref, la première page (identifiée a.) fournit un résumé des données d'un point de vue spatial, agrégées par taille et propres à la longueur (détails dans la figure 3). Les résultats des analyses agrégées par taille sont présentés dans l'un des panneaux afin de réduire le nombre total de figures contenues dans ce rapport. La deuxième page (identifiée b.)

fournit un graphique de l'ajustement de tous les modèles convergents et un graphique de la fonction du facteur de conversion sélectionné et de l'intervalle de confiance à 95 %, ainsi que les valeurs constantes projetées que nous proposons pour les longueurs les plus petites et les plus grandes (détails dans la figure 4). Enfin, la troisième page (identifiée c.) fournit divers diagrammes en boîte à moustaches pour les valeurs résiduelles du quantile normalisé pour le modèle sélectionné (détails dans la figure 5).

Les graphiques des résultats des analyses agrégées par longueur, y compris le modèle ajusté et les résidus du quantile du modèle, sont présentés sur une seule page pour chaque taxon pour les analyses des nombres de prises (colonne de gauche) et des poids de prises (colonne de droite; détails dans la figure 6). Les figures ne sont présentées que pour les taxons qui n'ont pas fait l'objet d'analyses non agrégées par longueur afin de réduire le nombre total de figures dans ce rapport. Néanmoins, les ajustements du modèle agrégé par longueur sélectionné pour les prises des taxons restants sont présentés dans les graphiques des analyses non agrégées par longueur de conversion figurent dans le tableau 9. Des graphiques détaillés des résidus ont été créés et examinés, mais ils ne sont pas officiellement présentés ici.

3.2. QUELQUES RÉSULTATS EN PARTICULIER

3.2.1. Morue franche (Gadus morhua)

Les prises de morue franche étaient remarquablement similaires entre les deux navires, à l'exception d'un trait de chalut en 2021 au cours duquel le NGCC *Teleost* a réalisé une prise très importante (figure 15a, voir le diagramme de double projection et les fréquences de longueur). La composition globale des espèces différait également entre ces navires (résultats non montrés), y compris les prises relatives de sébastes, ce qui suggère que les deux navires ont pêché dans des habitats différents. Les modèles convergents ont suggéré que l'efficacité relative des deux navires était très similaire et que toute dépendance à la longueur était faible. Néanmoins, le modèle BB5 a été sélectionné en fonction du CIB, bien que les intervalles de confiance associés à la fonction du facteur de correction chevauchent la valeur de un pour toutes les longueurs (figure 15b). Aucune tendance dans les résidus n'indique un manque d'ajustement important du modèle (figure 15c). L'application d'un facteur de correction dans les futures analyses des données du relevé n'est pas recommandée pour la morue franche.

3.2.2. Merlu argenté (Merluccius bilinearis)

Le merlu argenté a été principalement capturé au cours de l'expérience de 2022. Les prises effectuées par les deux navires étaient très similaires pour une plage de quantités de prises (figure 18a). Les fréquences de longueur étaient similaires entre les navires, mais, comme pour la merluche blanche (voir ci-dessous), le NGCC *Teleost* a démontré une tendance à capturer davantage de merlu argenté de plus grande taille. Cependant, l'CIA et le CIB favorisent le modèle BB1 qui ne dépend pas de la longueur (tableau 7). En outre, les intervalles de confiance de l'estimation suggèrent que l'efficacité relative des deux navires ne diffère pas de manière significative (figure 18b). L'ajustement du modèle semble adéquat (figure 18c). L'application d'un facteur de correction dans les futures analyses des données du relevé n'est pas recommandée pour le merlu argenté.

3.2.3. Merluche blanche (Urophycis tenuis)

La merluche blanche a été capturée au cours des deux années, et les nombres de prises ainsi que les fréquences de longueur étaient très similaires entre les navires, mais le NGCC *John Cabot* a semblé capturer davantage d'individus de longueur inférieure à 35 cm et un peu moins d'individus plus grands (figure 17a.). Néanmoins, l'CIA et le CIB ont favorisé le modèle BI1 qui ne dépend pas de la longueur (tableau 7). En outre, les intervalles de confiance de l'estimation suggèrent que l'efficacité relative des deux navires ne diffère pas de manière significative (figure 17b). L'ajustement du modèle semble adéquat (figure 17c). L'application d'un facteur de correction dans les futures analyses des données du relevé n'est pas recommandée pour la merluche blanche.

3.2.4. Merluche à longues nageoires (Phycis chesteri)

Peu de merluches à longues nageoires ont été capturées en 2021; la majorité des prises ont été effectuées dans la partie orientale du chenal Laurentien en 2022 (figure 16a). Les prises effectuées par les deux navires étaient remarquablement similaires en 2022. Il semble que l'efficacité relative du NGCC *Teleost* diminue avec la longueur; le modèle BB0 a été sélectionné en fonction du CIB, et confirmé en fonction de l'CIA (tableau 7). Les intervalles de confiance du modèle sélectionné chevauchent la valeur de un (figure 16b). Les résidus du modèle présentent une légère tendance à être positifs pour les longueurs inférieures à 30 cm, mais l'ampleur des résidus du quantile normalisé est faible (figure 16c.), et l'CIA n'offre que peu de soutien pour les modèles dépendant de la longueur (tableau 7). L'application d'un facteur de correction dans les futures analyses des données du relevé n'est pas recommandée pour la merluche à longues nageoires.

3.2.5. Loup atlantique (Anarhichas lupus) et loup tacheté (A. minor)

Le loup atlantique a été principalement capturé en 2022 le long de la côte ouest de Terre-Neuve (figure 23a). Les prises étaient quelque peu variables d'un navire à l'autre, mais le NGCC *John Cabot* a eu tendance à capturer plus d'individus pour la plupart des longueurs. Néanmoins, un modèle indépendant de la longueur a été sélectionné (BI1) à la fois en raison de l'CIA et du CIB, avec des intervalles de confiance sur l'estimation indiquant qu'il n'y a pas de différence significative entre les navires (figure 23b). Une légère tendance dans les résidus du modèle tracés en fonction de la longueur indiquait un petit écart possible d'ajustement du modèle (figure 23c), bien que l'CIA n'offre qu'un léger soutien pour des modèles dépendants de la longueur (BI3 et BB4, avec des valeurs delta-CIA de 4 et 6 respectivement), et qu'aucun soutien ne soit offert par le CIB. L'application d'un facteur de correction dans les futures analyses des données du relevé n'est pas recommandée pour le loup atlantique.

Bien que le loup tacheté (*Anarhichas minor*) soit une espèce dont la conservation est préoccupante et qui est occasionnellement capturée dans le cadre du relevé, trop peu d'individus ont été capturés au cours de la pêche comparative pour que l'on puisse estimer une capturabilité relative.

3.2.6. Sébastes (Sebastes sp.)

Le NGCC *Teleost* a capturé beaucoup plus de sébastes que son homologue pour une paire de traits en 2021, la même que celle indiquée pour la morue franche, probablement parce que la pêche était effectuée dans un habitat différent de celui du NGCC *John Cabot* (figure 29a). Les prises de sébastes peuvent être particulièrement abondantes et donc variables, mais les deux navires ont généralement capturé des quantités très similaires. Le NGCC *Teleost* présente une légère tendance à capturer plus de sébastes de longueurs comprises entre 10 et 15 cm. Cela s'est traduit par une efficacité de capture relative significativement différente à ces longueurs pour le modèle BB5 sélectionné, bien que la différence de capturabilité ne soit pas significative à des longueurs plus grandes (figure 29b). Le modèle a estimé que le NGCC *Teleost* était significativement moins efficace pour capturer les sébastes de longueur inférieure à 8 cm, bien que ces longueurs représentent une fraction insignifiante de la capture. Les résidus du modèle

suggèrent un ajustement adéquat du modèle (figure 29c). La fonction d'efficacité relative définie par la ligne noire en pointillés dans le panneau inférieur de la figure 29b est recommandée pour les sébastes.

3.2.7. Grosse poule de mer (*Cyclopterus lumpus*)

La grosse poule de mer n'a pas été capturée fréquemment et les prises étaient composées d'un ou deux individus (figure 37a). Le modèle BI0 a été sélectionné, bien que certains des autres modèles aient été soutenus par l'CIA, mais pas par le CIB (tableau 7). Les intervalles de confiance pour la conversion estimée se rapprochaient, mais ne se chevauchaient pas avec une efficacité relative de 1 (figure 37b). Les estimations du meilleur modèle indépendant de la longueur et des analyses des poids de capture agrégés par longueur (diagramme de double projection de la figure 37a; tableau 9) suggèrent que le NGCC *John Cabot* pourrait être plus efficace pour la capture de la grosse poule de mer. L'estimation du modèle BI0 est recommandée.

3.2.8. Plie canadienne (Hippoglossoides platessoides)

Les prises de plie canadienne étaient remarquablement similaires entre les navires pour les deux années (figure 39a). L'efficacité relative du NGCC *John Cabot* augmente clairement avec les longueurs. Bien que l'ampleur de l'effet soit modeste, la dépendance à la longueur est statistiquement significative (figure 39b). Le modèle sélectionné, BB5, semble bien s'ajuster aux données (figure 39c). L'adoption de la conversion en fonction de la longueur est recommandée pour la plie canadienne.

3.2.9. Plie grise (Glyptocephalus cynoglossus)

Les prises de plie grise étaient très similaires entre les navires pour les deux années (figure 40a). Le NGCC *John Cabot* démontre une tendance claire à capturer plus de plie grise pour toutes les longueurs échantillonnées. Les intervalles de confiance de la fonction estimée du facteur de conversion pour le modèle sélectionné en fonction du CIB, BB1, indiquent une différence significative par rapport à la capturabilité égale entre les navires, indépendamment de la longueur (figure 40b). Le modèle sélectionné semble bien s'ajuster aux données (figure 40c). L'adoption de la conversion indépendante de la longueur est recommandée pour la plie grise.

3.2.10. Flétan du Groenland (*Reinhardtius hippoglossoides*)

À l'exception d'une paire de traits, les captures de flétan du Groenland ont été remarquablement similaires entre les navires pour les deux années (figure 41a). Il semble que le NGCC *John Cabot* ait tendance à capturer davantage de petits flétans du Groenland (moins de 20 cm), bien que les intervalles de confiance de la fonction du facteur de conversion pour le modèle sélectionné, BB5, suggèrent que la différence n'est peut-être pas statistiquement significative (figure 41b). Dans l'ensemble, la preuve d'une conversion significative dépendante de la longueur est faible (figure 41b), et les résultats des modèles indépendants de la longueur (voir le diagramme de double projection de la figure 41a) et agrégés en fonction de la longueur (tableau 9) indiquent que l'effet du navire n'est pas statistiquement significatif. Par conséquent, l'application d'un facteur de correction dans l'analyse future des données de relevé n'est pas recommandée pour le flétan du Groenland.

3.2.11. Flétan de l'Atlantique (*Hippoglossus hippoglossus*)

Bien que les nombres de prises de flétan de l'Atlantique aient été généralement faibles et les longueurs variables pour chacun des traits, les navires ont généralement capturé des quantités et des longueurs similaires dans les paires de traits (figure 42a). Le modèle BI1 a été sélectionné et semble bien s'ajuster aux données (figure 42b). Cependant, l'efficacité de capture relative n'était pas significativement différente d'une valeur de un (figure 42b). L'application d'un facteur de correction n'est pas recommandée dans les futures analyses des données du relevé pour le flétan de l'Atlantique.

3.2.12. Raie épineuse (*Amblyraja radiata*)

La raie épineuse a été capturée en quantités similaires par les deux navires, bien que le NGCC *Teleost* ait eu tendance à capturer plus d'individus de longueur inférieure à 25 cm, en particulier en 2021 (figure 9a). Le modèle BB1 a été sélectionné à la fois en fonction de l'CIA et du CIB, bien que l'CIA ait favorisé le modèle dépendant de la longueur BB4 (figure 9b). L'efficacité de capture relative estimée ne diffère pas d'une valeur de un. L'ajustement du modèle BB1 semble adéquat (figure 9c). L'application d'un facteur de correction n'est pas nécessaire dans les futures analyses des données du relevé pour la raie épineuse.

3.2.13. Raie à queue de velours (Malacoraja senta)

Les prises de raie ;a queue de velours présentaient une plus grande variabilité entre les navires, bien que le NGCC *John Cabot* ait été clairement plus efficace pour la plupart des longueurs (figure 10a). Le modèle BI1 a été sélectionné et semble fournir un ajustement adéquat (figures 10b et 10c). Les intervalles de confiance de l'estimation s'approchaient d'une valeur de un, mais ne la chevauchaient pas, comme c'était le cas pour l'analyse des prises agrégées (tableau 9). Ces résultats confirment que le NGCC *John Cabot* était significativement plus efficace et l'application du facteur de conversion est recommandée.

3.2.14. Aiguillat noir (Centroscyllium fabricii)

Bien que l'aiguillat noir n'ait été capturé que dans un petit nombre de paires de traits dans le chenal Laurentien et dans l'estuaire, les prises et leurs longueurs étaient très similaires entre les navires (figure 8a). La fonction du facteur de correction pour le modèle sélectionné, BB1, n'était pas statistiquement significative par rapport à l'efficacité équivalente pour les deux navires (figure 8b). L'application d'un facteur de conversion dans les futures analyses n'est pas recommandée pour l'aiguillat noir.

3.2.15. Hareng de l'Atlantique (Clupea harengus)

Les prises de hareng étaient similaires entre les navires dans la plupart des paires de traits, mais beaucoup moins lorsqu'un navire réalisait une prise importante (figure 11a). À l'exception de BI2, tous les modèles suggèrent que l'efficacité relative du navire est très similaire ou égale. Les intervalles de confiance pour le modèle sélectionné, BB1, indiquent qu'il n'y a pas de différence significative de capturabilité entre les navires (figure 11b); par conséquent, l'application d'un facteur de conversion n'est pas recommandée.

3.2.16. Capelan (Mallotus villosus)

Les prises de capelan étaient très variables dans les données de pêche comparatives, bien que le NGCC *Teleost* semble être plus efficace pour capturer des capelans d'environ 12 à 15 cm, qui étaient de loin les longueurs les plus courantes dans les prises (figure 12a). Cela a été confirmé par la modélisation en fonction de la longueur, où le modèle BB4 a été sélectionné,

indiquant une différence significative pour ces tailles uniquement (figure 12b). Cependant, nous ne voyons pas d'explication pour une telle fonction en forme de dôme et nous soupçonnons qu'il s'agit d'un résultat erroné. Une conversion agrégée par longueur est soutenue en fonction des résultats de la modélisation des poids indépendants de la longueur et agrégés par longueur (voir le diagramme de double projection de la figure 12a; tableau 9). Nous recommandons d'utiliser l'estimation du modèle BB1 pour le capelan, le modèle indépendant de la longueur obtenant le plus de soutien en fonction de l'CIA et du CIB.

3.2.17. Encornet rouge nordique (Illex illecebrosus)

Les nombres de prises d'encornet rouge nordique étaient généralement petits et variables, mais similaires d'un navire à l'autre (figure 44a). Bien que le NGCC *Teleost* semble être plus efficace, la différence n'est pas statistiquement significative pour le modèle dépendant de la longueur sélectionné (figure 44b), ni pour les modèles indépendants de la longueur et agrégés par longueur (figure 44a; tableau 9). Un facteur de conversion n'est pas recommandé pour cette espèce.

3.2.18. Crevette nordique (*Pandalus borealis*)

La crevette nordique a été principalement capturée dans les paires de traits effectuées dans l'estuaire et dans la pointe nord du canal d'Esquiman (figure 48a). Le NGCC *Teleost* a eu tendance à capturer plus de crevettes nordiques de toutes tailles, et en particulier les individus de moins de 15 mm. Le modèle BB5 a été sélectionné et semble s'ajuster adéquatement aux données (figure 48b,c). Les estimations de ce modèle suggèrent que le NGCC *Teleost* était significativement plus efficace (entre environ 50 et 75 % de plus) pour capturer à la fois des individus plus petits et plus grands. L'adoption de la fonction de facteur de correction dépendant de la longueur du modèle BB5 est recommandée pour cette espèce.

3.2.19. Crabe des neiges (*Chionoecetes opilio*)

Le crabe des neiges a été capturé principalement dans les paires de traits effectuées dans l'estuaire et le long de la côte nord du Québec (figure 54a). Le NGCC *John Cabot* a été nettement plus efficace pour capturer le crabe des neiges pour toute la plage de tailles de cette espèce. Le modèle BB1 a été sélectionné en fonction du CIB, bien que le modèle BB5, qui estimait une fonction convexe très légère pour l'efficacité relative, ait été soutenu par l'CIA et le CIB (figure 54b; tableau 7). Le modèle BB1 s'ajuste bien aux données et indique que la différence d'efficacité est statistiquement significative. Le facteur de conversion de BB1 est recommandé pour les futures analyses des prises de crabe des neiges du relevé.

3.2.20. Plumes de mer

Quatre espèces de plumes de mer sont couramment capturées dans le cadre du relevé : *Pennatula aculeata, Ptilella grandis, Balticina finmarchica* et *Anthoptilum grandiflorum*. Les prises de chacune d'entre elles ont été suffisamment nombreuses au cours de la pêche comparative pour permettre des analyses (tableau 6). Le NGCC *John Cabot* a été statistiquement plus efficace pour capturer les quatre espèces si l'on se base sur le nombre de prises, et généralement aussi sur le poids des prises (tableau 10; figures 78 à 81). Les efficacités relatives estimées étaient similaires entre les espèces et devraient être appliquées dans les futures analyses.

3.2.21. Autres taxons présentant une différence significative de l'efficacité relative en fonction de la longueur

En plus des taxons examinés ci-dessus, quatre autres taxons ont démontré une différence d'efficacité entre les navires en fonction de la longueur.

Le NGCC *Teleost* était plus efficace pour capturer les petites *Myxine limosa* (moins de 30 cm), mais moins efficace pour capturer les plus grandes (figure 7a). Une fonction dépendante de la longueur basée sur le modèle BI3 est bien soutenue pour cette espèce (figures 7b et 7c).

Les captures de grande argentine (*Argentina silus*) ont été quelque peu variables et aucun des deux navires n'a semblé plus efficace pour la plupart des longueurs (figure 13a). Cependant, pour des longueurs supérieures à 25 cm, et surtout supérieures à 30 cm, le NGCC *Teleost* était plus efficace. Le modèle sélectionné est cohérent avec une efficacité égale jusqu'à environ 28 cm, mais estime une différence extrême pour des longueurs plus importantes (figure 13b). Les prises à ces longueurs étaient faibles, mais pas rares. Cependant, il ne semble pas y avoir d'explication pour des différences aussi importantes dans l'efficacité relative. Compte tenu de ces observations et du fait que les efficacités relatives indépendantes de la longueur et agrégées par longueur n'étaient pas statistiquement significatives (diagramme de double projection de la figure 13a; tableau 9), nous recommandons de ne pas adopter de facteur de conversion pour la grande argentine.

Comme pour la crevette nordique, des fonctions d'efficacité relative légèrement concaves ont été estimées pour la crevette ésope (*Pandalus montagui*; figure 49b) et pour la crevette de Norvège (*Pontophilus norvegicus*; figure 51b).

3.2.22. Autres taxons mesurés présentant une différence significative de l'efficacité relative indépendante de la longueur

En plus des taxons examinés ci-dessus, trois autres taxons présentaient des effets statistiquement significatifs indépendants de la longueur : *Lycodes vahlii*, *Liparidae* et *Atlantopandalus propinqvus*. Pour les deux premiers taxons, les intervalles de confiance pour l'efficacité relative estimée s'approchaient très près d'une valeur de un, mais ne la chevauchaient pas (figures 27b et 38b). Dans les deux cas, les estimations basées sur les prises agrégées par taille n'étaient pas significatives (tableau 9) et, en fonction de ces résultats, l'application d'un facteur de conversion n'est pas recommandée. En revanche, les analyses indépendantes de la longueur (figure 50b) et agrégées par taille (tableau 9) pour *A. propinqvus* ont démontré une différence significative dans l'efficacité relative, le NGCC *Teleost* capturant des spécimens de plus grande taille.

Les taxons qui ont été pris en compte dans les analyses des effets dépendants de la longueur et qui n'ont pas été spécifiquement mentionnés dans cette section ou dans une section précédente des résultats sont considérés comme ayant été associés à une différence d'efficacité non significative entre les navires et ne nécessitent donc pas l'application d'un facteur de conversion. Dans tous les cas, les estimations de l'analyse des nombres de prises agrégées par longueur corroborent ces conclusions. Toutefois, les analyses des poids des prises agrégés indiquent une différence significative pour certains taxons : *Arctozenus risso, Nezumia bairdii, Scomber scombrus, Leptoclinus maculatus, Triglops murrayi, Lithodes maja* et *Hyas alutaceus* (tableau 9). Étant donné l'absence de preuve indiquant l'existence d'un effet dépendant de la longueur qui pourrait générer ces résultats contradictoires, et étant donné que les modèles utilisés pour les poids des prises n'ont pas été testés par simulation pour une utilisation dans les analyses de pêche comparative, contrairement aux modèles pour les nombres de prises (Yin et Benoît 2022b), et peuvent donc ne pas être entièrement fiables, nous recommandons de ne pas appliquer de facteur de conversion pour ces taxons.

3.2.23. Effets significatifs de covariables

Pour les taxons inclus dans les analyses non agrégées par longueur, les résidus du quantile normalisé du modèle sélectionné étaient associés à la profondeur pour deux taxons et au moment de la journée pour deux autres (tableau 8).

Pour la motelle à quatre barbillons (*Enchelyopus cimbrius*), les résidus ont tendance à être positifs pour les profondeurs inférieures à 150 m, et négatifs pour les profondeurs supérieures à 400 m (figure 19c). Nous avons réajusté la suite de binomiales et de bêta-binomiales en traitant la profondeur plutôt que la longueur comme covariable. Le modèle présentant le meilleur ajustement, BB4, a fourni un meilleur ajustement aux données que le modèle dépendant de la longueur le mieux ajusté en fonction de l'CIA (2 249 c. 2 258) et du CIB (2 282 c. 2 284) (il convient de noter que les valeurs absolues sont indiquées dans les tableaux, par rapport aux valeurs delta dans le tableau 7). Le NGCC *Teleost* était plus efficace pour capturer la motelle à quatre barbillons à des profondeurs inférieures à environ 220 m, et moins efficace à des profondeurs plus importantes (figure 19d). Le modèle s'est adapté aux données de manière adéquate, sans tendance apparente dans les résidus en fonction de la profondeur, de la longueur ou du moment de la journée (figure 19e). Pour cette espèce, un facteur de correction associé à la profondeur est recommandé.

Les prises de crevette verte (*Argis dentata*) ont eu tendance à être légèrement variables et limitées aux faibles et moyennes profondeurs (figure 52a). Bien qu'une diminution de la valeur des résidus du quantile semble survenir avec l'augmentation de la profondeur, l'ampleur du changement médian est faible (figure 52c). Étant donné les larges intervalles de confiance de l'estimation du meilleur modèle (figure 52b), il n'existe pas de preuve solide indiquant un effet de profondeur et les analyses n'ont pas été poursuivies.

Pour l'agone atlantique (*Leptagonus decagonus*), les résidus étaient positifs vers minuit, 4 h et 20 h, et négatifs ou neutres aux autres moments de la journée (figure 34c). Cette tendance, qui émerge d'un modèle ajusté à des prises éparses, avec de nombreux cas où aucune prise n'a été effectuée par l'un ou l'autre des navires (figure 34b), n'est pas conforme aux schémas typiques de la variation nycthémérale de la capturabilité (Benoît et Swain 2003) ou de l'activité crépusculaire, ce qui suggère que le résultat pourrait être erroné.

Les captures de crevette de verre (*Pasiphaea multidentata*) étaient assez homogènes entre les navires pour de nombreuses paires de traits (figure 45a). Les valeurs des résidus du quantile pour les paires de traits effectuées juste après minuit étaient fortement négatives et celles des paires de traits effectuées avant 8 h étaient généralement négatives (figure 45c). Par ailleurs, les valeurs pour les paires de traits réalisées le soir et jusqu'à minuit étaient généralement positives. Ces tendances ne sont pas compatibles avec un effet important du cycle nycthéméral et, par conséquent, les analyses n'ont pas été poursuivies.

3.2.24. Interprétation des résultats pour les taxons pour lesquels seules des analyses agrégées par taille ont été effectuées

À l'exception de deux espèces de poissons, la plupart des taxons pour lesquels seules des analyses agrégées par taille ont été effectuées sont des invertébrés (tableau 10). Les résultats pour cet ensemble de taxons sont trop nombreux pour être interprétés individuellement. Nous mettons plutôt en évidence certaines des tendances qui se dégagent des résultats.

Pour de nombreux taxons coloniaux, les résultats diffèrent souvent entre les analyses des nombres et des poids (p. ex., *Porifera*, figure 59; *Gersemia rubiformis*, figure 76; tableau 10). Il en est de même pour les invertébrés fragiles tels que l'oursin délicat (*Brisaster fragilis*, figure 117) et les ophiures (p. ex., *Ophiura sarsii*, figure 129). Ces résultats ne sont pas
surprenants, étant donné que les poids sont des quantités mesurées, tandis que les nombres sont dérivés de ce qui est considéré comme des individus ou des fragments relativement intacts et parfois même dérivés en utilisant un petit sous-échantillon qui est à la fois pesé et dénombré. Il existe donc une variabilité d'échantillonnage supplémentaire pour les nombres de prises et un potentiel de sous-estimation des nombres dans les échantillons dans lesquels une forte proportion d'individus est réduite à de petits fragments. En outre, dans les traits de chalut où il n'y a pas d'individus ou de fragments intacts, aucune inférence sur le nombre de prises n'est faite, ce qui entraîne une différence de taille d'échantillon entre les analyses basées sur le nombre et sur le poids. Compte tenu de la plus grande incertitude concernant les nombres de prises, nous recommandons d'appliquer un facteur de conversion uniquement lorsque l'analyse des poids des prises est significative, et d'appliquer le facteur de conversion de l'analyse basée sur le poids à la fois aux poids et aux nombres. De façon plus générale, nous nous interrogeons sur l'intérêt de calculer le nombre de prises pour ces taxons, compte tenu de l'incertitude inhérente à leur dérivation. Les taxons pour lesquels les nombres dérivés ne sont probablement pas fiables sont les suivants : les porifères. les hydrozoaires. les scyphozoaires. Epizoanthus erdmanni, Gersemia rubiformis, Drifa glomerata, les Nephtheidae, les bryozoaires, les polychètes, les Polynoidae, Brisaster fragilis, Ophiura sarsii et Ascidia sp.

Contrairement aux taxons coloniaux et fragiles, les analyses basées sur le nombre et le poids des taxons solitaires bien échantillonnés concordent bien (tableau 10). Parmi les exemples notables, on peut citer la méduse Cyanea capillata (figure 67), les anémones Bolocera tuediae (figure 71) et Actinostola callosa (figure 73), les guatre espèces de plumes de mer mentionnées précédemment (figures 78 à 81), le petit crustacé Syscenus infelix (figure 106), le pied de pélican (Arrhoges occidentalis; figure 85) et l'oursin Strongylocentrolus sp. (figure 116). Pour les taxons solitaires, nous recommandons d'appliquer les deux corrections respectives aux poids et aux nombres lorsque l'un ou l'autre ou les deux sont statistiquement significatifs, à condition que les estimations semblent raisonnables, c'est-à-dire qu'elles ne sont pas associées à une erreur type anormalement élevée, par exemple. Cette approche garantira la cohérence des corrections appliquées, en particulier dans les cas où la taille réduite de l'échantillon et la variabilité des données sont susceptibles d'être à l'origine de résultats non significatifs pour l'une des deux mesures (p. ex., Cucumaria frondosa, figure 115). Pour un exemple de correction statistiquement significative pour laguelle l'estimation ne semble pas raisonnable et ne doit donc pas être appliquée, consulter les résultats de l'analyse basée sur le nombre pour la crevette Eualus fabricii (figure 108).

4. DISCUSSION

Dans l'ensemble, les données obtenues en 2021 et 2022 semblent suffisantes pour tester de manière fiable les différences d'efficacité relative entre les navires et pour estimer les facteurs de conversion et les fonctions de facteurs de conversion dépendant de la longueur pour les taxons les plus couramment capturés dans le cadre du relevé, qui comprennent la plupart des espèces importantes sur le plan commercial. Une pêche comparative supplémentaire améliorerait la précision des estimations, en particulier pour les taxons peu fréquemment capturés ou ceux dont les prises sont variables, mais les avantages semblent faibles par rapport aux coûts financiers et logistiques d'une pêche comparative supplémentaire. Pendant la réunion d'examen par les pairs portant sur les résultats de ces expériences de pêche comparative, il a été conclu qu'aucune pêche comparative supplémentaire n'était justifiée sur la base de ces considérations.

Les expériences menées dans le nord du golfe du Saint-Laurent ont utilisé un plan de relevé parallèle, ce qui permet de s'assurer que les capturabilités relatives estimées sont pertinentes pour les conditions de l'habitat dans la zone du relevé. En outre, en fonction des analyses des

résidus du modèle et après un examen plus approfondi, nous avons conclu qu'il n'y avait qu'un seul cas où la capturabilité relative était affectée par la profondeur ou le moment de la journée, des facteurs clés qui peuvent affecter la capturabilité globale au cours du relevé (p. ex., Benoît et Swain 2003). Ces conditions confirment la fiabilité des estimations du facteur de conversion.

L'efficacité relative du NGCC *Teleost* et du NGCC *John Cabot*, qui pêchait à l'aide d'un chalut Campelen 1800 légèrement modifié, était supposée être similaire a priori. Les résultats sont généralement conformes à cette hypothèse, puisque des estimations non significatives de l'efficacité relative ont été obtenues pour la plupart des taxons. Pour ceux dont les résultats étaient significatifs et jugés fiables, la différence d'efficacité relative était faible. Bien que cela n'ait pas été étudié en détail, il semble que tous les taxons qui sont plus étroitement associés au fond démontrent une tendance à être plus faciles à capturer par le NGCC *John Cabot*. C'est ce qui ressort, par exemple, des résultats concernant la myxine, la plie canadienne et la plie grise, trois des espèces de crabes et un certain nombre d'invertébrés benthiques, y compris les plumes de mer.

5. REMERCIEMENTS

De nombreux membres du personnel scientifique du MPO et de la GCC ont participé à la planification et à la mise en œuvre de la pêche comparative dans l'estuaire et le nord du golfe du Saint-Laurent. Nous sommes reconnaissants à Jordan Ouellette-Plante d'avoir fourni le code R Markdown qui a grandement simplifié le processus de compilation des nombreuses figures dans le document, ainsi qu'à Paul Regular et Andrea Perreault d'avoir relevé et corrigé une erreur dans le calcul des valeurs CIA et CIB dans des analyses antérieures. Nous souhaitons remercier Truong Nguyen d'avoir fourni des détails sur les changements apportés au chalut Campelen 1800, et Laurie Isabel pour ses recommandations sur les groupes de taxons appropriés pour l'analyse. Enfin, nous remercions Jordan et Laurie pour leur relecture attentive de l'avant-dernière version de ce document.

6. RÉFÉRENCES CITÉES

- Benoît, H.P., et Swain, D.P. 2003. Accounting for length and depth-dependent diel variation in catchability of fish and invertebrates in an annual bottom-trawl survey. ICES J. Mar. Sci. 60: 1297-1316.
- Benoît, H.P., Ouellette-Plante, J., Yin, Y, et Brassard, C. 2022. <u>Revue du cadre d'évaluation de la morue franche de la division OPANO 3Pn4RS : relevés indépendants de la pêche</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/049. xv + 135 p.
- Bourdages, H., Brassard, C., Chamberland, J.-M., Desgagnés, M., Galbraith, P., Isabel, L. et Senay, C. 2022. <u>Résultats préliminaires du relevé écosystémique d'août 2021 dans</u> <u>l'estuaire et le nord du golfe du Saint-Laurent</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/011. iv + 96 p.
- Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Mächler, M., et Bolker, B.M. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal, 9(2):378-400.
- Cadigan, N.G., Yin, Y., Benoît, H.P., et Walsh, S.J. 2022. A nonparametric-monotone regression model and robust estimation for paired-tow bottom-trawl survey comparative fishing data. Fish. Res. 254: 106422.

- Dunn, P.K., et Smyth, G.K. 1996. Randomized quantile residuals. J. Comput. Graph. Stat 5: 236-244.
- Dunn, P.K., et Smyth, G.K.. 2005. Series evaluation of Tweedie exponential dispersion model densities. Statis. Comput. 15:267-280.
- Green, P.J., et Silverman, B.W. 1993. Nonparametric regression and generalized linear models. Chapman and Hall/CRC, 184 p.
- Hartig, F. 2021. DHARMs: Residual diagnostics for hierarchical (multi-level.mixed) regression models. R package version 0.4.1
- Hastie, T., Tibshirani, R., et Friedman, J. 2009. The elements of statistical learning: data mining, inference, and prediction. Springer Science and Business Media.
- Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., and Bell, B.M. 2016. TMB: Automatic differentiation and Laplace approximation. J. Stat. Softw. 70: 1-21.
- Miller, T.J. 2013. A comparison of hierarchical models for relative catch efficiency based on paired-gear data for US Northwest Atlantic fish stocks. Can. J. Fish. Aquat. Sci. 70: 1306-1316.
- Miller, T.J., Das, C., Politis, P.J., Miller, A.S., Lucey, S.M., Legault, C.M., Brown, R.W., et Rago, P.J. 2010. Estimation of Albatross IV to Henry B. Bigelow calibration factors. Fish. Sci. Cent. Ref. Doc. 10-05; 233 p.
- R Core Team. 2021. <u>R: A language and environment for statistical computing</u>. R Foundation for Statistical Computing, Vienna, Austria.
- Thiess, M.E., Benoit, H., Clark, D.S., Fong, K., Mello, L.G.S., Mowbray, F., Pepin, P., Cadigan, N.G., Miller, T., Thirkell, D., et Wheeland, L. 2018. Proceedings of the national comparative trawl workshop, November 28-30, 2017, Nanaimo, BC. Can. Tech. Rep. Fish. Aquat. Sci. 3254: x + 40 p.
- Thorson, J.T., et Minto, C. 2015. Mixed effects: a unifying framework for statistical modelling in fisheries biology. ICES J. Mar. Sci. 72:1245-1256.
- Verbyla, A.P., Cullis, B.R., Kenward, M.G, et Welham, S.J. 1999. The analysis of designed experiments and longitudinal data by using smoothing splines. J. Roy. Stat. Soc. Ser. C 48: 269-311.
- Walsh, S.J., Hickey, W.H., Porter, J., Delouche, H., et McCallum, B.R. 2009. NAFC survey trawl operations manual: version 1.0. Fisheries and Oceans, Northwest Atlantic Fisheries Centre, Newfoundland Region, St. John's.
- Wood, S.N. 2000. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. Royal. Statist. Soc. Ser. B Stat. Methodol. 62: 413–428.
- Wood, S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73: 3–36.
- Wood, S.N. 2017. Generalized additive models: An introduction with R, 2nd ed. Chapman and Hall/CRC Press, 496 p.

- Yin, Y. et Benoît, H.P. 2022. <u>Réanalyse d'expériences de pêche comparative dans le golfe du Saint-Laurent et autres analyses visant à déterminer les indices de relevés au chalut de fond menés à l'échelle du stock de flétan du Groenland (*Reinhardtius hippoglossoides*) des <u>divisions 4RST depuis 1971</u>. Secr. can. des avis. sci. du MPO. Doc. de rech. 2022/002. viii + 48 p.</u>
- Yin, Y., et Benoît, H.P. 2022b. A comprehensive simulation study of a class of analysis methods for paired-tow comparative fishing experiments. Can. Tech. Rep. Fish. Aquat. Sci. 3466: vi + 99 p.

7. TABLEAUX

Tableau 1. Détails pour les paires de traits pertinentes dans la pêche comparative en 2021 et 2022 dans l'estuaire et le nord du golfe du Saint-Laurent, où les colonnes contenant la mention « TEL » représentent les valeurs pour le NGCC Teleost et celles contenant la mention « CA » représentent les valeurs pour le NGCC John Cabot. Les heures de début du trait (Heure) sont exprimées en heures décimales, les latitudes (« Lat. ») et longitudes (« Lon. ») de départ sont exprimées en degrés décimaux, les valeurs « Dist. » représentent la distance chalutée pour chaque navire en milles nautiques (nm), « Sép. » est la distance (séparation) entre les positions de départ du trait pour les deux navires en kilomètres (km) et « Prof. » est la profondeur moyenne du trait. La date est celle du début du trait par le NGCC Teleost, et la note « ¹ » qui accompagne une entrée pour Heure CA indique que le trait par le NGCC John Cabot a commencé le jour précédent juste avant minuit. Les notes de bas de page dans la colonne « Sép. » indiquent les cas pour lesquels les traits de chalut ont été effectués au même endroit, « ² » indiquant que le NGCC John Cabot a pêché en premier et « ³ » indiquant que le NGCC Teleost a pêché en premier.

Date	N° de paire	Strate	Prof. TEL (m)	Prof. CA (m)	Heure TEL	Heure CA	Dist. TEL (nm)	Dist. CA (nm)	TEL Lat.	TEL Lon.	Sép. (km)
2021-08-13	85	830	192	_	14,98	15,13	0,65	0,78	49,636	-64,355	1,54
2021-08-13	86	818	247	-	17,12	17,28	0,75	0,78	49,615	-64,461	0,72
2021-08-14	92	406	393	-	11,52	12,12	0,75	0,80	49,393	-64,923	1,39
2021-08-14	93	805	328	-	15,85	15,93	0,75	0,70	49,547	-65,222	0,78
2021-08-15	98	805	331	-	7,88	7,92	0,80	0,70	49,504	-66,323	0,63
2021-08-15	99	410	294	-	10,43	10,62	0,75	0,75	49,334	-66,143	1,20
2021-08-15	100	409	181	-	13,25	13,35	0,75	0,78	49,291	-66,028	1,39
2021-08-15	101	409	228	-	16,53	16,53	0,80	0,70	49,277	-66,192	0,62
2021-08-16	105	851	68	-	6,58	6,62	0,93	0,75	48,871	-67,573	0,68
2021-08-16	106	852	130	-	10,22	10,23	0,75	0,48	48,717	-68,197	0,56
2021-08-16	107	851	66	-	11,58	11,75	0,80	0,75	48,647	-68,326	0,49
2021-08-16	108	852	139	-	13,62	13,67	0,75	0,75	48,635	-68,451	0,56
2021-08-16	109	413	343	-	15,82	15,85	0,75	0,75	48,671	-68,706	0,81
2021-08-17	113	854	80	_	6,28	6,35	0,75	0,75	48,673	-68,974	1,64
2021-08-17	114	414	171	-	9,35	9,58	0,75	0,83	48,708	-68,8	1,16
2021-08-17	116	411	323	_	14,78	14,8	0,75	0,80	48,947	-68,223	1,79
2021-08-17	117	412	282	_	17,00	17,07	0,75	0,75	49,001	-68,091	1,97
2021-08-17	118	855	119	_	18,77	18,77	0,80	0,80	49,026	-68,122	1,05
2021-08-18	122	817	276	_	7,82	7,78	0,80	0,75	49,509	-66,595	1,41
2021-08-18	123	805	249	_	10,50	10,60	0,75	0,78	49,633	-66,686	0,73
2021-08-18	124	817	213	_	13,57	13,48	0,75	0,78	49,675	-66,88	1,01
2022-08-11	2	401	219	192	23,58	23,58	0,80	0,80	47,541	-60,449	0,56
2022-08-12	4	404	345	328	11,48	11,50	0,75	0,76	47,885	-60,64	0,41
2022-08-12	5	407	481	478	14,73	14,72	0,80	0,80	47,883	-60,281	0,32
2022-08-12	7	803	474	473	18,90	18,93	0,80	0,78	48,05	-60,216	0,79
2022-08-12	8	802	448	452	23,17	23,13	0,73	0,75	48,089	-59,955	0,52
2022-08-13	9	810	330	327	2,95	3,02	0,80	0,78	48,212	-59,842	1,1
2022-08-13	10	810	334	347	7,17	7,18	0,75	0,73	48,012	-59,682	0,67
2022-08-13	12	802	521	519	13,43	13,47	0,65	0,83	47,677	-59,73	0,3
2022-08-13	13	811	272	247	16,65	16,67	0,75	0,80	47,655	-59,433	1,52

Date	N° de paire	Strate	Prof. TEL (m)	Prof. CA (m)	Heure TEL	Heure CA	Dist. TEL (nm)	Dist. CA (nm)	TEL Lat.	TEL Lon.	Sép. (km)
2022-08-13	. 14	820	173	174	21,77	22,33	0,80	0,74	48,004	-59,494	0,6
2022-08-14	15	820	109	101	1,98	2,02	0,83	0,74	48,359	-58,959	0,81
2022-08-14	16	821	109	85	5,43	5,45	0,85	0,74	48,349	-59,358	0,2
2022-08-14	17	821	100	86	8,25	8,27	0,70	0,72	48,255	-59,491	1,88
2022-08-14	18	811	266	274	11,23	11,15	0,70	0,79	48,379	-59,735	0,38
2022-08-14	21	835	54	52	21,33	21,38	0,75	0,76	48,962	-59,061	1,1
2022-08-15	22	836	81	69	0,13	0,17	0,75	0,74	49,119	-58,767	0,39
2022-08-15	23	836	45	57	3,27	3,28	0,80	0,75	49,375	-58,395	1,2
2022-08-15	24	836	90	87	7,75	7,73	0,75	0,75	49,656	-58,429	0,86
2022-08-15	25	822	137	142	10,42	10,25	0,80	0,76	49,745	-58,563	0,29
2022-08-15	26	822	112	106	16,67	16,57	0,75	0,75	49,943	-58,231	1,28
2022-08-15	27	823	159	163	19,32	19,33	0,78	0,75	50,113	-57,906	0,82
2022-08-15	28	813	252	248	22,12	22,12	0,78	0,70	50,349	-57,974	0,72
2022-08-16	29	813	254	249	0,93	0,98	0,60	0,60	50,446	-57,909	1,05
2022-08-16	30	823	144	132	3,52	3,53	0,80	0,76	50,474	-57,563	0,90
2022-08-16	31	823	171	147	6,83	6,85	0,75	0,75	50,593	-57,501	1,01
2022-08-16	32	824	156	157	9,42	9,43	0,75	0,75	50,760	-57,577	0,99
2022-08-16	33	837	91	101	12,37	12,43	0,75	0,76	50,955	-57,324	0,57
2022-08-16	34	837	78	71	14,62	14,58	0,75	0,74	51,036	-57,196	0,61
2022-08-16	35	838	60	59	0,07	0,33	0,78	0,75	51,493	-56,450	0,05
2022-08-17	36	838	67	62	2,85	2,88	0,80	0,76	51,542	-56,311	0,31
2022-08-17	37	838	37	38	8,80	9,12	0,75	0,75	51,622	-55,686	0,39
2022-08-17	38	840	131	112	14,62	14,62	0,80	0,75	51,878	-55,768	1,07
2022-08-17	40	838	76	68	22,95	23,30	0,75	0,70	51,578	-56,569	0,52
2022-08-18	45	813	205	183	17,77	17,92	0,78	0,78	50,507	-58,161	0,78
2022-08-18	46	824	164	158	21,7	21,65	0,75	0,74	50,488	-58,318	0,11
2022-08-19	47	813	237	212	0,15	0,18	0,77	0,55	50,368	-58,409	0,30
2022-08-19	50	801	320	325	7,17	7,17	0,60	0,62	50,225	-58,577	0,39
2022-08-19	51	813	213	214	10,63	10,62	0,75	0,77	49,909	-58,688	0,81
2022-08-19	52	812	219	214	13,6	13,58	0,75	0,71	49,807	-59,059	0,68
2022-08-19	53	812	212	210	18,75	18,2	0,78	0,75	49,473	-59,171	0,49
2022-08-20	54	822	144	140	0,17	23,82 ¹	0,64	0,56	49,117	-59,178	0,25
2022-08-20	55	812	231	230	2,85	2,87	0,80	0,75	49,117	-59,444	0,56
2022-08-20	56	812	260	257	5,30	5,35	0,80	0,55	49,149	-59,591	0,89
2022-08-20	57	809	296	298	8,02	8,00	0,70	0,76	49,097	-59,779	1,15
2022-08-20	58	808	326	323	11,62	11,63	0,80	0,75	48,889	-60,020	0,60
2022-08-20	59	809	286	280	14,37	14,30	0,75	0,54	48,807	-59,763	0,84
2022-08-20	61	809	309	313	19,75	19,23	0,78	0,76	48,519	-59,896	0,27
2022-08-20	62	808	339	343	22,05	21,98	0,80	0,76	48,554	-60,076	1,04
2022-08-21	63	808	345	350	0,63	0,65	0,75	0,74	48,568	-60,239	1,03
2022-08-21	64	803	428	435	4,07	4,10	0,80	0,61	48,310	-60,188	0,93
2022-08-21	65	803	442	443	7,25	7,27	0,75	0,79	48,286	-60,629	0,53
2022-08-21	66	401	287	261	14,03	14,03	0,75	0,77	48,105	-61,204	0,53

Date	N° de paire	Strate	Prof. TEL (m)	Prof. CA (m)	Heure TEL	Heure CA	Dist. TEL (nm)	Dist. CA (nm)	TEL Lat.	TEL Lon.	Sép. (km)
2022-08-21	67	407	374	376	17	17,05	0,75	0,81	48,220	-61,347	0,63
2022-08-21	68	404	344	352	20,22	20,20	0,83	0,74	48,195	-61,382	0,99
2022-08-21	69	408	383	379	23,12	23,10	0,78	0,77	48,307	-61,627	0,00
2022-08-22	70	405	327	339	2,52	2,57	0,66	0,78	48,346	-61,955	0,47
2022-08-22	71	402	261	225	5,65	5,63	0,60	0,64	48,345	-62,081	0,38
2022-08-22	72	408	408	412	9,4	9,87	0,75	0,76	48,456	-62,090	0,90
2022-08-25	77	403	260	276	0,22	0,25	0,78	0,70	48,893	-63,790	0,24
2022-08-25	78	406	298	301	3,33	3,38	0,83	0,70	49,015	-64,094	0,77
2022-08-25	79	406	332	319	5,93	5,95	0,75	0,75	49,129	-64,168	0,74
2022-08-25	80	818	270	282	9,70	9,73	0,75	0,74	49,397	-63,868	0,68
2022-08-25	81	830	175	170	13,73	13,25	0,75	0,74	49,557	-63,993	0,45
2022-08-25	82	841	65	58	18,08	17,77	0,80	0,70	49,695	-64,290	0,55
2022-08-25	83	818	223	229	21,38	21,77	0,75	0,82	49,621	-64,443	0,23
2022-08-26	84	806	349	359	1,33	1,40	0,75	0,75	49,478	-64,482	0,52
2022-08-26	85	806	310	312	4,20	4,20	0,75	0,60	49,606	-64,821	0,26
2022-08-26	87	804	381	378	8,12	9,32	0,75	0,76	49,436	-65,011	1,24
2022-08-26	88	805	324	328	11,30	12,27	0,75	0,75	49,559	-65,221	0,35
2022-08-26	89	805	330	333	15,62	16,05	0,75	0,75	49,385	-65,579	0,41
2022-08-26	90	410	295	278	19,42	19,38	0,88	0,75	49,350	-65,657	0,62
2022-08-26	91	805	329	328	22,48	22,45	0,85	0,74	49,512	-65,762	0,65
2022-08-27	92	409	237	209	1,55	1,58	0,80	0,75	49,309	-65,96	0,77
2022-08-27	94	409	252	240	9,78	9,83	0,75	0,76	49,175	-66,71	0,24
2022-08-27	95	411	308	307	14,30	14,35	0,75	0,76	49,164	-67,409	0,19
2022-08-27	96	412	220	220	18,12	18,12	0,78	0,74	49,205	-67,798	0,27
2022-08-27	97	855	130	97	22,08	22,02	0,80	0,75	49,016	-68,142	0,47
2022-08-27	98	854	65	67	0,07	1,15	0,80	0,75	49,035	-68,204	0,43
2022-08-28	99	855	133	122	4,32	4,33	0,78	0,74	48,879	-68,585	0,07
2022-08-28	100	854	71	89	7,57	7,60	0,75	0,75	48,745	-68,934	1,17
2022-08-28	101	414	194	202	10,62	10,03	0,75	0,75	48,700	-68,788	0,22
2022-08-28	103	413	317	308	15,93	15,95	0,75	0,75	48,535	-68,911	0,59
2022-08-28	104	852	142	172	19,67	19,68	0,80	0,74	48,342	-69,085	0,81
2022-08-28	105	851	80	51	0,05	0,10	0,83	0,80	48,603	-68,486	0,20
2022-08-29	107	852	127	151	4,25	4,30	0,80	0,74	48,643	-68,414	0,01
2022-08-29	109	411	348	347	9,32	9,33	0,75	0,78	48,844	-68,285	1,04
2022-08-29	110	412	258	231	12,62	12,62	0,80	0,74	48,832	-67,950	0,24
2022-08-29	111	851	75	89	15,12	15,10	0,75	0,70	48,859	-67,640	0,37
2022-08-29	112	411	302	300	17,97	17,90	0,83	0,72	48,996	-67,542	0,72
2022-08-29	113	805	306	304	22,98	22,98	0,85	0,75	49,337	-66,980	0,79
2022-08-30	114	817	195	198	3,90	3,95	0,75	0,75	49,673	-66,940	0,88
2022-08-30	115	832	165	156	7,00	7,02	0,75	0,75	49,737	-66,979	0,95
2022-08-30	116	805	298	300	10,95	10,95	0,75	0,74	49,684	-66,443	0,96
2022-08-30	117	805	338	353	13,72	13,77	0,75	0,75	49,694	-66,189	0,71
2022-08-30	118	817	234	247	17,98	18,02	0,80	0,75	49,922	-66,589	0,16

Date	N° de paire	Strate	Prof. TEL (m)	Prof. CA (m)	Heure TEL	Heure CA	Dist. TEL (nm)	Dist. CA (nm)	TEL Lat.	TEL Lon.	Sép. (km)
2022-08-30	119	817	269	269	20,73	20,73	0,80	0,78	49,880	-66,334	0,2
2022-08-31	122	832	142	147	8,32	7,88	0,75	0,77	50,129	-65,811	0,15
2022-08-31	124	817	244	225	15,78	16,23	0,75	0,75	49,801	-65,244	0,45
2022-08-31	125	817	205	204	19,9	19,12	0,80	0,80	50,002	-65,201	0,12
2022-08-31	126	832	141	147	21,92	21,93	0,80	0,75	50,106	-65,163	0,40
2022-09-01	127	832	158	149	2,42	2,42	0,80	0,75	50,061	-64,548	0,52
2022-09-01	128	831	150	162	4,38	4,42	0,67	0,74	49,986	-64,442	0,19
2022-09-01	130	832	114	117	12,17	11,53	0,55	0,55	50,026	-64,196	0,45 ²
2022-09-01	131	841	82	83	15,05	15,72	0,75	0,74	49,992	-63,914	0,04 ³
2022-09-01	132	839	50	50	19,08	18,38	0,80	0,68	50,129	-63,774	0,18 ²
2022-09-02	135	839	66	66	11,43	12,17	0,80	0,75	50,214	-62,873	0,33 ³
2022-09-02	136	828	145	140	15,82	15,78	0,75	0,74	50,025	-62,698	1,19
2022-09-03	140	829	148	170	1,17	1,15	0,83	0,73	49,808	-63,102	0,02
2022-09-03	143	829	141	131	9,92	8,90	0,55	0,52	49,700	-62,698	0,96
2022-09-03	144	816	239	235	11,77	11,77	0,75	0,75	49,765	-62,585	0,95
2022-09-03	145	828	187	197	14,97	14,93	0,75	0,75	49,853	-62,273	0,10
2022-09-03	146	816	266	262	18,23	18,22	0,78	0,75	49,737	-62,007	0,16
2022-09-03	147	816	203	213	21,15	21,2	0,80	0,73	49,814	-61,820	0,28
2022-09-04	148	839	59	58	4,63	5,23	0,85	0,77	50,093	-61,867	0,04
2022-09-04	149	827	159	164	11,72	10,17	0,55	0,54	49,854	-61,418	0,01 ²
2022-09-04	151	816	279	278	16,47	17,47	0,75	0,59	49,714	-61,245	0,80
2022-09-04	152	816	222	215	21,37	21,43	0,78	0,75	49,544	-61,770	0,13
2022-09-05	153	816	235	229	1,03	1,02	0,72	0,70	49,479	-61,300	0,48
2022-09-05	154	815	285	290	5,78	5,80	0,65	0,75	49,559	-60,803	0,58
2022-09-05	155	815	284	288	8,28	8,20	0,75	0,75	49,509	-60,666	0,87
2022-09-05	157	812	268	269	15,77	15,77	0,75	0,82	49,413	-59,627	0,95
2022-09-05	158	812	273	274	19,25	19,28	0,78	0,74	49,664	-59,588	0,90
2022-09-05	159	812	243	242	22,3	22,35	0,78	0,78	49,460	-59,421	0,99
2022-09-07	161	836	82	85	23,55	23,50	0,82	0,63	49,248	-58,572	0,91
2022-09-08	162	822	100	103	2,13	4,08	0,88	0,58	49,497	-58,615	1,23
2022-09-08	163	812	236	241	7,47	8,88	0,75	0,59	49,853	-59,192	0,04
2022-09-08	165	801	278	277	13,93	13,90	0,75	0,80	50,056	-58,844	0,79
2022-09-08	166	801	305	302	18,02	18,00	0,75	0,80	50,105	-58,672	0,32
2022-09-08	167	814	217	227	23,35	21,57	0,80	0,85	50,081	-59,155	0,49
2022-09-09	168	814	235	245	1,20	1,40	0,75	0,75	49,958	-59,357	0,30
2022-09-09	169	827	97	96	6,28	7,25	0,55	0,52	49,906	-60,058	0,33 ³
2022-09-09	170	833	86	89	8,88	9,07	0,70	0,76	49,846	-60,069	1,09
2022-09-09	171	833	78	75	11,63	11,75	0,75	0,74	49,644	-60,126	0,22
2022-09-09	172	827	122	120	15,93	15,53	0,75	0,74	49,791	-60,367	0,04 ²
2022-09-09	173	827	162	158	18,37	18,38	0,75	0,70	49,895	-60,634	0,27
2022-09-09	174	815	281	279	22,67	22,68	0,65	0,64	49,659	-60,656	0,91
2022-09-10	175	815	257	263	2,00	2,00	0,75	0,76	49,366	-60,804	0,19
2022-09-10	176	815	246	240	5,92	5,90	0,80	0,83	49,229	-60,659	0,69

Date	N° de paire	Strate	Prof. TEL (m)	Prof. CA (m)	Heure TEL	Heure CA	Dist. TEL (nm)	Dist. CA (nm)	TEL Lat.	TEL Lon.	Sép. (km)
2022-09-10	177	815	255	252	10,13	10,10	0,75	0,53	49,218	-60,052	0,99
2022-09-10	178	808	277	278	12,45	12,40	0,75	0,66	49,165	-60,150	0,42
2022-09-10	179	815	281	287	14,68	14,60	0,75	0,54	49,086	-60,323	0,50
2022-09-10	180	829	92	91	19,07	19,48	0,80	0,73	49,041	-61,011	0,11 ³
2022-09-10	181	830	133	134	22,12	22,07	0,80	0,71	48,903	-61,052	0,63
2022-09-11	182	819	234	250	0,65	0,63	0,80	0,75	48,848	-61,330	0,12
2022-09-11	183	807	317	313	2,98	3,00	0,75	0,81	48,776	-61,273	0,17
2022-09-11	184	819	266	276	5,6	5,57	0,75	0,57	48,762	-60,903	0,43
2022-09-11	185	819	253	252	9,00	9,00	0,60	0,57	48,828	-60,456	0,89
2022-09-11	188	803	399	393	17,37	17,28	0,75	0,71	48,465	-60,690	0,43
2022-09-11	189	803	406	408	20,40	20,73	0,75	0,75	48,344	-61,047	0,43
2022-09-11	190	407	410	408	23,63	23,47	0,75	0,82	48,204	-61,088	1,17
2022-09-12	191	803	422	421	3,33	3,27	0,80	0,55	48,450	-61,600	0,87
2022-09-12	192	803	421	426	6,47	6,42	0,75	0,82	48,578	-61,952	0,52
2022-09-12	193	804	412	411	9,15	9,13	0,75	0,78	48,629	-62,043	0,69
2022-09-12	194	807	358	348	11,60	11,62	0,80	0,82	48,774	-62,157	0,40
2022-09-12	195	807	363	365	14,27	14,27	0,65	0,71	48,795	-62,425	0,32
2022-09-12	196	807	283	279	16,68	16,85	0,65	0,76	48,906	-62,455	0,12
2022-09-12	197	830	129	143	18,77	18,77	0,60	0,56	49,013	-62,429	0,39
2022-09-12	198	818	268	259	20,82	20,82	0,80	0,81	48,942	-62,567	0,13
2022-09-13	199	408	384	391	0,60	0,62	0,75	0,76	48,710	-62,620	0,50
2022-09-13	200	405	356	363	3,83	3,87	0,80	0,78	48,528	-62,855	0,27
2022-09-13	201	402	249	264	6,43	6,57	0,80	0,78	48,470	-62,935	0,52

Tableau 2. Ensemble de modèles binomiaux avec diverses hypothèses pour l'effet de la longueur et l'effet de la station dans l'efficacité de capture relative. Un effet de lissage de la longueur peut être pris en compte et l'effet de la station peut être ajouté à l'ordonnée à l'origine, sans interaction avec l'effet de la longueur, ou ajouté à la fois à l'ordonnée à l'origine et au lisseur pour permettre une interaction entre les deux effets.

Modèle	log(ρ)	Effet de la longueur	Effet de la station
BIO	eta_0	constant	non considéré
BI1	$\beta_0 + \delta_{0,i}$	constant	ordonnée à l'origine
BI2	$\mathbf{X}_{f}^{T}\mathbf{\beta}_{f} + \mathbf{X}_{r}^{T}\mathbf{b}$	lissé	non considéré
BI3	$\mathbf{X}_{f}^{T}\mathbf{\beta}_{f} + \mathbf{X}_{r}^{T}\mathbf{b} + \delta_{0,i}$	lissé	ordonnée à l'origine
BI4	$\mathbf{X}_{f}^{T}(\mathbf{\beta}_{f} + \mathbf{\delta}_{i}) + \mathbf{X}_{r}^{T}(\mathbf{b} + \boldsymbol{\epsilon}_{i})$	lissé	ordonnée à l'origine, lissage

Tableau 1. Un ensemble de modèles bêta-binomiaux avec diverses hypothèses sur l'effet de la longueur et l'effet de la station dans l'efficacité de capture relative, et l'effet de la longueur sur le paramètre de variance. Un effet de lissage de la longueur peut être pris en compte à la fois dans le facteur de conversion et dans le paramètre de variance. Un possible effet de la station peut être ajouté à l'ordonnée à l'origine, sans interaction avec l'effet de la longueur, ou ajouté à la fois à l'ordonnée à l'origine et au lisseur pour permettre une interaction entre les deux effets.

Modèle	log(ho)	$log(\phi)$	Effets de la longueur	Effet de la station
BB0	eta_0	γ_0	constant/constant	non considéré
<i>BB</i> 1	$\beta_0 + \delta_{0,i}$	γ ₀	constant/constant	ordonnée à l'origine
BB2	$\mathbf{X}_{f}^{T}\mathbf{eta}_{f} + \mathbf{X}_{r}^{T}\mathbf{b}$	γ ₀	lissé/constant	non considéré
BB3	$\mathbf{X}_{f}^{T}\mathbf{\beta}_{f} + \mathbf{X}_{r}^{T}\mathbf{b}$	$\mathbf{X}_{f}^{T}\mathbf{\gamma} + \mathbf{X}_{r}^{T}\mathbf{g}$	lissé/lissé	non considéré
BB4	$\mathbf{X}_{f}^{T}\mathbf{\beta}_{f} + \mathbf{X}_{r}^{T}\mathbf{b} + \delta_{0,i}$	γ_0	lissé/constant	ordonnée à l'origine
<i>BB</i> 5	$\mathbf{X}_{f}^{T}\mathbf{\beta}_{f} + \mathbf{X}_{r}^{T}\mathbf{b} + \delta_{0,i}$	$\mathbf{X}_{f}^{T}\mathbf{\gamma} + \mathbf{X}_{r}^{T}\mathbf{g}$	lissé/lissé	ordonnée à l'origine
<i>BB</i> 6	$\mathbf{X}_{f}^{T}(\mathbf{\beta}_{f} + \mathbf{\delta}_{i}) + \mathbf{X}_{r}^{T}(\mathbf{b} + \boldsymbol{\epsilon}_{i})$	γ ₀	lissé/constant	ordonnée à l'origine, lissage
BB7	$\mathbf{X}_{f}^{T}(\boldsymbol{\beta}_{f} + \boldsymbol{\delta}_{i}) + \mathbf{X}_{r}^{T}(\mathbf{b} + \boldsymbol{\epsilon}_{i})$	$\mathbf{X}_{f}^{T}\mathbf{\gamma} + \mathbf{X}_{r}^{T}\mathbf{g}$	lissé/lissé	ordonnée à l'origine, lissage

Taxon	Code du taxon	Codes dans le groupe
Gadus morhua	438	430, 436, 438
Myctophidae	271	271, 272, 275, 278, 280, 281, 285, 290
Ammodytes sp.	696	693, 695, 696
Artediellus sp.	810	810, 811, 812
Eumicrotremus terraenovae	847	844, 845, 847
Liparidae	853	853, 856, 862, 865, 868, 874
Enchelyopus cimbrius	461	454, 461
Porifera	1101	1101 – 1165 (à exécuter séparément, incluant toutes les éponges)
<i>Polymastia</i> sp.	1109	1107, 1109, 1122, 1126 (à exécuter séparément de 1101)
Naticidae	3420	3420, 3422, 3437
Buccinum sp.	3516	3516, 3517, 3520, 3523
Colus sp.	3575	3575, 3576, 3577
Astarte sp.	4227	4227, 4231
<i>Nymphon</i> sp.	5961	5951, 5961
Pteraster sp.	8409	8409, 8410, 8411, 8412
Ophiura sarsii	8553	8553, 8552

Tableau 4. Groupes taxonomiques utilisés pour les analyses des données de pêche comparative dans l'estuaire et le nord du golfe du Saint-Laurent. Les codes sont ceux utilisés couramment dans la région du Québec du MPO, communément appelés codes STRAP.

Taxon	Longueurs exclues
Myxine limosa	<13 cm
Argentina silus	>35 cm
Urophycis tenuis	>85 cm
Ammodytes sp.	>20 cm
Sebastes sp.	>33 cm
Myoxocephalus scorpius	<13 cm
Gymnocanthus tricuspis	<9 cm
Leptagonus decagonus	<7 cm
lllex illecebrosus	<11 cm
Pandalus borealis	<6 mm
Pandalus montagui	<6 mm
Pontophilus norvegicus	<6 mm
Chionoecetes opilio	>130 mm

Tableau 5. Résumé des longueurs des prises exclues des analyses non agrégées par longueur.

Tableau 6. Nombre total de paires de traits pertinentes (celles avec au moins une prise), et paires pour lesquelles le taxon a été capturé uniquement par le NGCC John Cabot ou uniquement par le NGCC Teleost, avec une référence au numéro de la figure dans laquelle les résultats sont représentés. Les listes sont classées selon le type d'analyse (non agrégée par longueur ou agrégée par taille) et approximativement selon la taxonomie.

Taxon	Code	Paires	John Cabot	Teleost	Numéro de
			uniquement	uniquement	la figure
Analyses non agrégées par lon	gueur				
Poissons					
Myxine limosa	13	108	14	12	7
Centroscyllium fabricii	27	30	6	3	8
Amblyraja radiata	90	162	15	15	9
Malacoraja senta	91	135	33	27	10
Clupea harengus	150	121	19	24	11
Mallotus villosus	187	91	10	17	12
Argentina silus	193	30	6	11	13
Arctozenus risso	320	113	8	12	14
Gadus morhua	438	102	16	11	15
Phycis chesteri	444	43	7	8	16
Urophycis tenuis	447	109	14	22	17
Merluccius bilinearis	449	102	14	14	18
Enchelyopus cimbrius	461	140	15	24	19
Nezumia bairdii	478	111	7	10	20
Scomber scombrus	572	63	14	14	21
Ammodytes sp.	696	31	16	10	22
Anarhichas lupus	700	31	5	9	23
Lumpenus lampretaeformis	716	39	8	10	24
Leptoclinus maculatus	717	37	10	15	25
Lycodes lavalaei	728	32	8	9	26
Lycodes vahlii	730	49	6	13	27
Melanostigma atlanticum	745	56	10	11	28
Sebastes sp.	792	171	5	9	29
Artediellus sp.	810	47	14	12	30
Triglops murrayi	814	38	7	5	31
Myoxocephalus scorpius	819	34	9	7	32
Gymnocanthus tricuspis	823	39	6	15	33
Leptagonus decagonus	836	25	10	7	34
Aspidophoroides	838	50	16	13	
monopterygius					35
Eumicrotremus terraenovae	847	31	5	9	36
Cyclopterus lumpus	849	42	24	11	37
Liparidae	853	38	7	13	38
Hippoglossoides platessoides	889	169	9	12	39
Glyptocephalus cynoglossus	890	150	12	10	40
Reinhardtius hippoglossoides	892	156	18	14	41

Taxon	Code	Paires	John Cabot	Telenst	Numéro de
	couc	rancs	uniquement	uniquement	la figure
Hippoglossus hippoglossus	893	85	19	24	42
Lophius americanus	966	34	12	16	43
Calmar					
Illex illecebrosus	4753	81	19	26	44
Crevettes					
Pasiphaea multidentata	8057	90	10	8	45
Spirontocaris liljeborgii	8087	48	16	15	46
Lebbeus polaris	8093	57	22	21	47
Pandalus borealis	8111	152	7	9	48
Pandalus montagui	8112	84	10	13	49
Atlantopandalus propinqvus	8113	39	6	20	50
Pontophilus norvegicus	8135	111	12	13	51
Argis dentata	8138	33	6	8	52
Crabes					
Lithodes maja	8196	80	19	25	53
Chionoecetes opilio	8213	108	21	17	54
Hyas araneus	8217	26	8	8	55
Hyas alutaceus	8219	39	12	7	56
Analyses agrégées par taille					
Poissons					
Myctophiformes	271	47	8	12	57
Eumesogrammus praecisus	711	24	4	11	58
Porifères					
Porifera sp.	1101	122	22	21	59
Tentorium semisuberites	1108	15	5	4	60
Polymastia sp.	1109	30	21	5	61
Stylocordyla borealis	1112	21	12	5	62
Hydrozoaires et scyphozoaires					
Hydrozoa	1341	27	10	10	63
Ptychogena lactea	1353	35	10	12	64
Rhodaliidae	1380	26	5	9	65
Scyphozoa	2040	18	10	6	66
Cyanea capillata	2080	163	16	8	67
Periphylla periphylla	2096	57	19	18	68
Anthozoaires					
Hormathia digitata	2150	49	20	12	69
Epizoanthus erdmanni	2156	33	14	17	70
Bolocera tuediae	2158	90	29	13	71
Stephanauge nexilis	2159	23	11	5	72
Actinostola callosa	2162	81	16	15	73
Stomphia coccinea	2173	40	10	15	74
Actinauge cristata	2182	67	11	15	75
Gersemia rubiformis	2184	32	4	14	76

Taxon	Code	Paires	John Cabot	Teleost	Numéro de
Tuxon	couc	i un es	uniquement	uniquement	la figure
Drifa glomerata	2191	28	10	10	77
Pennatula aculeata	2203	136	22	16	78
Ptilella grandis	2210	44	14	6	79
Halipteris finmarchica	2217	28	11	2	80
Anthoptilum grandiflorum	2218	51	18	9	81
Nephtheidae	2219	15	5	8	82
Tentaculata					
Pleurobrachia pileus	2255	16	4	6	83
Bryozoaires	2670	15	6	8	84
Gastropodes					
Arrhoges occidentalis	3418	37	16	8	85
Cryptonatica affinis	3422	27	15	9	86
Buccinum sp.	3516	67	26	13	87
Neptunea despecta	3567	15	7	5	88
Colus sp.	3575	21	7	11	89
Scaphandre ponctué	3715	23	5	11	90
Bivalves					
Megayoldia thraciaeformis	4025	49	21	2	91
Mytilus sp.	4121	20	11	7	92
Chlamys islandica	4167	16	3	7	93
Astarte sp.	4227	48	18	11	94
Cuspidaria glacialis	4526	30	10	5	95
<i>Rossia</i> sp.	4557	32	7	20	96
Céphalopodes					
Stoloteuthis leucoptera	4587	27	13	11	97
Bathypolypus bairdii	4904	83	21	29	98
Polychètes					
Polychaeta	4950	99	45	34	99
Aphrodita hastata	5002	31	17	11	100
Laetmonice filicornis	5003	49	10	15	101
Polynoidae	5007	41	12	20	102
Brada inhabilis	5755	16	5	9	103
Nymphon sp.	5961	56	17	17	104
Malacostracés					
Aega psora	6771	16	6	8	105
Syscenus infelix	6791	80	7	13	106
Epimeria loricata	7383	16	1	12	107
Eualus fabricii	8075	19	2	12	108
Eualus macilentus	8077	22	3	13	109
Spirontocaris sp.	8084	22	11	10	110
Spirontocaris spinus	8085	17	3	10	111
Sabinea septemcarinata	8128	23	6	7	112
Munidopsis curvirostra	8164	24	6	11	113

Tayon	Codo	Pairos	John Cahot	Teleost	Numára da
	Coue	r all 23	uniquement	uniquement	la figure
Paaurus sp.	8178	35	13	16	114
Holothurides et échinidés	01/0				114
Cucumaria frondose	8312	16	5	5	115
Strongvlocentrotus sp.	8363	62	7	13	116
Brisaster fraailis	8378	95	14	14	117
Astérides					
Ctenodiscus crispatus	8407	127	25	8	118
, Pteraster militaris	8410	19	5	5	119
Ceramaster aranularis	8429	33	5	12	120
Hippasteria phrvaiana	8431	62	20	26	121
Pseudarchaster parelii	8433	27	12	5	122
Crossaster papposus	8447	27	5	10	123
Henricia sp.	8483	59	16	20	124
Leptasterias (Hexasterias)	8511	16	6	7	
polaris					125
Leptasterias groenlandica	8513	21	5	9	126
Psilaster andromeda	8520	29	5	2	127
Ophiurides					
Gorgonocephalus sp.	8540	33	10	8	128
Ophiura sarsii	8553	90	17	20	129
Ophiacantha bidentata	8575	40	4	20	130
Ophiopholis aculeata	8583	54	10	14	131
Ophioscolex glacialis	8585	33	6	17	132
Ascidiacées					
Ascidia sp.	8742	93	14	13	133
Eudistome vitreum	8778	21	5	8	134
Boltenia ovifera	8792	19	5	3	135

Tableau 7. Preuve relative pour les modèles binomiaux et bêta-binomiaux sans regroupement par longueur, d'après (A) les valeurs delta du critère d'information d'Aikaike (CIA) ou B) du critère d'information de Bayes (CIB). Les entrées avec "-" indiquent les modèles qui n'ont pas convergé. Le modèle BB7 n'a convergé pour aucun taxon et n'est pas inclus dans le tableau. De même, le modèle BB6 est exclu car la convergence a été obtenue pour un seul taxon, Arctozenus risso, pour lequel l'ajustement était associé aux plus grandes valeurs de CIA et de CIB par rapport aux autres modèles.

A) /	1CIA
------	------

Code	Taxon	BI0	BI1	BI2	BI3	BI4	BB0	BB1	BB2	BB3	BB4	BB5
13	Myxine limosa	465	87	336	1	-	345	81	243	246	0	1
27	Centroscyllium fabricii	46	22	49	24	-	13	0	17	17	3	3
90	Amblyraja radiata	175	22	166	24	-	95	0	89	80	1	-
91	Malacoraja senta	40	0	44	4	-	30	1	33	-	5	8
150	Clupea harengus	1716	30	1679	34	-	433	0	434	418	3	-
187	Mallotus villosus	1168	195	1078	136	-	192	28	181	180	0	6
193	Argentina silus	165	62	139	31	-	60	23	48	48	0	2
320	Arctozenus risso	47	1	43	0	-	36	-	35	38	-	-
438	Gadus morhua	2718	210	2707	206	-	1026	34	1028	1000	35	0
444	Phycis chesteri	11	6	12	7	-	2	0	3	6	1	4
447	Urophycis tenuis	117	0	111	1	-	86	2	83	86	3	-
449	Merluccius bilinearis	108	14	111	16	-	37	0	40	43	2	5
461	Enchelyopus cimbrius	162	30	155	20	68	88	7	82	81	0	3
478	Nezumia bairdii	101	10	105	13	-	61	0	64	68	3	7
572	Scomber scombrus	62	6	35	0	-	21	6	11	15	1	-
696	Ammodytes sp.	35	0	37	4	-	18	2	21	25	6	-
700	Anarhichas lupus	78	0	82	4	-	69	2	73	77	6	9
716	Lumpenus lampretaeformis	99	0	102	3	-	79	2	83	85	5	-
717	Leptoclinus maculatus	102	0	98	1	-	20	1	23	24	2	5
728	Lycodes lavalaei	69	1	64	0	-	56	-	54	58	-	-
730	Lycodes vahlii	210	109	199	96	-	50	8	41	-	0	3
745	Melanostigma atlanticum	79	0	83	3	-	45	2	49	52	5	-
792	Sebastes sp.	5902	1483	5834	1464	-	-	143	874	821	127	0
810	Artediellus sp.	56	7	51	1	-	24	4	21	-	0	-
814	Triglops murrayi	62	4	63	7	-	13	0	14	17	2	6

Code	Taxon	BI0	BI1	BI2	BI3	BI4	BB0	BB1	BB2	BB3	BB4	BB5
819	Myoxocephalus scorpius	20	0	20	1	-	16	1	18	19	2	5
823	Gymnocanthus tricuspis	165	0	168	1	-	73	0	77	80	1	-
836	Leptagonus decagonus	347	7	333	0	-	101	7	105	109	2	6
838	Aspidophoroides	71	1	71	2	-	19	0	22	24	1	3
847	monopterygius Eumicrotremus terraenovae	84	0	77	1	36	31	-	31	34	3	6
849	Cyclopterus lumpus	0	1	3	5	-	2	-	5	9	-	11
853	Liparidae	32	28	19	0	-	2	1	4	5	1	-
889	Hippoglossoides	802	138	789	132	-	329	33	319	305	25	0
890	platessoides Glyptocephalus cynoglossus	914	43	899	34	-	395	4	395	373	0	3
892	Reinhardtius hippoglossoides	782	230	771	190	-	390	47	389	381	38	0
893	Hippoglossus hippoglossus	1	0	5	4	-	3	2	7	-	-	-
966	Lophius americanus	4	6	0	2	-	-	8	2	-	-	-
4753	Illex illecebrosus	1	0	5	4	-	3	-	7	-	-	-
8057	Pasiphaea multidentata	676	63	680	51	-	317	10	320	304	0	-
8087	Spirontocaris liljeborgii	38	0	39	3	-	28	-	29	33	-	-
8093	Lebbeus polaris	140	2	109	0	-	80	3	74	78	2	-
8111	Pandalus borealis	11439	2486	10844	2252	-	1524	280	1456	1447	224	0
8112	Pandalus montagui	2537	242	2457	117	264	636	76	595	575	11	0
8113	Atlantopandalus propingvus	148	0	151	4	-	78	2	82	84	-	-
8135	Pontophilus norvegicus	369	126	243	25	-	186	84	99	101	1	0
8138	Argis dentata	171	10	157	0	-	118	8	118	115	1	-
8196	Lithodes maja	13	0	16	4	-	15	-	18	21	-	-
8213	Chionoecetes opilio	527	98	520	64	-	226	14	228	212	2	0
8217	Hyas araneus	26	1	18	0	-	28	-	-	-	-	-
8219	Hyas alutaceus	50	0	54	0	-	41	1	44	-	1	-

B) ∆C	IB
-------	----

Code	Taxon	BI0	BI1	BI2	BI3	BI4	BB0	BB1	BB2	BB3	BB4	BB5
13	Myxine limosa	442	72	328	0	-	330	73	242	259	6	21
27	Centroscyllium fabricii	31	15	49	32	-	6	0	24	38	18	32
90	Amblyraja radiata	160	14	166	31	-	87	0	96	103	16	-
91	Malacoraja senta	33	0	51	18	-	30	9	48	-	27	44
150	Clupea harengus	1702	24	1679	41	-	426	0	441	438	17	-
187	Mallotus villosus	1145	177	1067	130	-	175	16	175	186	0	17
193	Argentina silus	139	43	126	24	-	41	10	42	54	0	15
320	Arctozenus risso	40	0	49	12	-	36	-	46	62	-	-
438	Gadus morhua	2672	171	2676	183	-	987	3	1005	992	20	0
444	Phycis chesteri	2	4	17	19	-	0	5	15	31	20	36
447	Urophycis tenuis	109	0	118	16	-	86	9	98	116	25	-
449	Merluccius bilinearis	94	7	111	23	-	30	0	47	64	16	33
461	Enchelyopus cimbrius	142	17	148	21	88	75	0	82	94	7	23
478	Nezumia bairdii	88	4	105	20	-	54	0	71	89	17	34
572	Scomber scombrus	49	0	36	8	-	15	8	19	36	16	-
696	Ammodytes sp.	29	0	43	16	-	18	8	33	49	24	-
700	Anarhichas lupus	70	0	89	19	-	69	9	88	107	28	47
716	Lumpenus	92	0	109	16	-	79	9	96	111	25	-
717	lampretaeformis	06	0	104	10		20	7	24	47	10	24
717		90 61	0	71	13	-	20 55	1	54 68	47	19	34
720	Lycodes vablii	199	04	101	05	-	35	-	40	00	-	-
730	Molonootiamo otlontioum	72	94	00	95	-	35 45	7	40 60	-	22	25
743	Sebastes sp	73 5861	1450	5807	14	-	45	116	854	015	111	-
010	Sebasies sp.	12	0	40	5	-	-	2	25	015	10	0
010	Arteoleilus sp. Trialona murravi	43	0	49 65	15	-	0	2	20	- 27	10	-
014	Myoyooonholyo ooorniyo	12	0	00	10	-	9	2	21	37	10	32 20
019	Myoxocephalus scorpius	15	0	20	14	-	10	1	31	40	22	30
823	Gymnocantnus tricuspis	159	0	174	13	-	73	6	89	104	19	-
836	Leptagonus decagonus	334	U	33Z	5	-	94	6	110	120	13	28
838	Aspiaopnoroides monopterygius	64	0	76	13	-	18	5	32	46	18	31

Code	Taxon	BI0	BI1	BI2	BI3	BI4	BB0	BB1	BB2	BB3	BB4	BB5
847	Eumicrotremus terraenovae	78	0	82	13	66	31	-	42	57	21	35
849	Cyclopterus lumpus	0	8	17	26	-	9	-	26	44	-	52
853	Liparidae	24	26	23	11	-	0	5	15	30	19	-
889	Hippoglossoides platessoides	759	102	760	110	-	293	4	297	298	11	0
890	Glyptocephalus cynoglossus	896	32	894	37	-	383	0	398	391	10	28
892	Reinhardtius hippoglossoides	736	193	741	167	-	352	16	366	373	23	0
893	Hippoglossus hippoglossus	0	7	21	28	-	10	17	31	-	-	-
966	Lophius americanus	0	10	12	22	-	-	19	22	-	-	-
4753	lllex illecebrosus	0	4	16	20	-	8	-	24	-	-	-
8057	Pasiphaea multidentata	653	46	670	47	-	300	0	316	313	3	-
8087	Spirontocaris liljeborgii	32	0	45	14	-	28	-	40	55	-	-
8093	Lebbeus polaris	133	0	114	10	-	78	8	84	99	17	-
8111	Pandalus borealis	11400	2454	10819	2232	-	1492	254	1437	1440	211	0
8112	Pandalus montagui	2501	212	2434	100	266	607	53	578	570	0	1
8113	Atlantopandalus propingvus	142	0	157	16	-	78	8	94	108	-	-
8135	Pontophilus norvegicus	345	108	231	19	-	168	71	93	106	0	11
8138	Argis dentata	155	0	154	3	-	109	4	122	131	11	-
8196	Lithodes maja	5	0	24	19	-	15	-	34	53	-	-
8213	Chionoecetes opilio	497	76	506	58	-	204	0	222	222	4	18
8217	Hyas araneus	17	0	24	14	-	26	-	-	-	-	-
8219	Hyas alutaceus	43	0	61	15	-	41	8	59	-	24	-

Taxon	s(profondeur)	s(heure)	jour
Myxine limosa	0.564	0.784	0.788
Centroscyllium fabricii	0.402	0.774	0.482
Amblyraja radiata	0.173	0.095	0.712
Malacoraja senta	0.341	0.697	0.320
Clupea harengus	0.392	0.268	0.245
Mallotus villosus	0.597	0.727	0.934
Argentina silus	0.497	0.156	0.730
Arctozenus risso	0.906	0.067	0.839
Gadus morhua	0.227	0.540	0.716
Phycis chesteri	0.026	0.752	0.143
Urophycis tenuis	0.933	0.991	0.248
Merluccius bilinearis	0.400	0.124	0.032
Enchelyopus cimbrius	<0.001	0.208	0.104
Nezumia bairdii	0.342	0.525	0.736
Scomber scombrus	0.925	0.487	0.570
Ammodytes sp.	0.049	0.737	0.625
Anarhichas lupus	0.490	0.843	0.519
Lumpenus lampretaeformis	0.547	0.016	0.418
Leptoclinus maculatus	0.978	0.360	0.545
Lycodes lavalaei	0.135	0.204	0.052
Lycodes vahlii	0.016	0.463	0.976
Melanostigma atlanticum	0.518	0.132	0.458
Sebastes sp.	0.864	0.579	0.680
Artediellus sp.	0.177	0.938	0.404
Triglops murrayi	0.857	0.451	0.539
Myoxocephalus scorpius	0.053	0.219	0.856
Gymnocanthus tricuspis	0.570	0.098	0.029
Leptagonus decagonus	0.567	0.001	0.400
Aspidophoroides monopterygius	0.176	0.193	0.840
Eumicrotremus terraenovae	0.900	0.352	0.035
Cyclopterus lumpus	0.551	0.515	0.190
Liparidae	0.760	0.812	0.361
Hippoglossoides platessoides	0.480	0.342	0.340
Glyptocephalus cynoglossus	0.179	0.440	0.551
Reinhardtius hippoglossoides	0.166	0.778	0.581
Hippoglossus hippoglossus	0.995	0.078	0.236
Lophius americanus	0.443	0.510	0.250
Illex illecebrosus	0.553	0.074	0.340
Pasiphaea multidentata	0.940	0.004	0.145
Spirontocaris liljeborgii	0.789	0.233	0.326

Tableau 8. Valeurs de P associées aux tests pour un effet lisse de la profondeur, un effet lisse de l'heure et un effet fixe du jour sur les quantiles des résidus normalisés du meilleur modèle sélectionné sans regroupement par longueur. Les valeurs < 0,01 sont indiquées en caractères gras.

Taxon	s(profondeur)	s(heure)	jour
Lebbeus polaris	0.512	0.204	0.196
Pandalus borealis	0.044	0.169	0.615
Pandalus montagui	0.852	0.413	0.081
Atlantopandalus propinqvus	0.155	0.445	0.972
Pontophilus norvegicus	0.898	0.377	0.150
Argis dentata	0.178	0.283	0.807
Lithodes maja	0.010	0.978	0.473
Chionoecetes opilio	0.022	0.772	0.705
Hyas araneus	0.155	0.697	0.241
Hyas alutaceus	0.113	0.124	0.411

Tableau 9. Preuve relative pour les modèles binomiaux et bêta-binomiaux avec regroupement par taille pour les nombres de prises d'après les valeurs du critère d'information d'Aikaike (CIA) et du critère d'information de Bayes (CIB), et estimations du facteur de conversion Rho, avec les intervalles de confiance approximatifs à 95 %, pour les prises en nombre et en poids des taxons pour lesquels des analyses sans regroupement par longueur ont également été entreprises. Rappelons qu'un seul modèle a été utilisé pour les poids des prises et que les valeurs du CIA et du CIB ne sont donc pas indiquées.

		CIA			CIB			
Taxon	BI1	BB0	BB1	BI	BB0	BB1	Rho (nombres)	Rho (poids)
Myxine limosa	626	624	626	632	629	634	0,88 (0,73-1,07)	0,76 (0,66-0,88)
Centroscyllium fabricii	187	187	189	189	189	193	1,00 (0,76-1,31)	0,94 (0,72-1,23)
Amblyraja radiata	747	745	747	753	751	756	1,02 (0,89-1,17)	0,97 (0,86-1,11)
Malacoraja senta	402	400	402	408	406	411	0,78 (0,63-0,97)	0,85 (0,68-1,07)
Clupea harengus	655	641	642	661	647	650	1,03 (0,83-1,30)	0,99 (0,79-1,23)
Mallotus villosus	657	646	646	662	651	654	1,26 (0,97-1,65)	1,42 (1,10-1,83)
Argentina silus	158	154	156	161	157	160	1,49 (0,86-2,59)	2,04 (1,39-3,01)
Arctozenus risso	454	453	455	459	459	463	1,12 (0,96-1,31)	1,13 (1,02-1,27)
Gadus morhua	793	782	781	799	787	789	1,02 (0,83-1,26)	1,16 (0,95-1,41)
Phycis chesteri	168	167	169	171	171	175	1,02 (0,80-1,31)	0,86 (0,71-1,04)
Urophycis tenuis	402	400	402	408	406	410	1,12 (0,92-1,36)	1,17 (1,00-1,37)
Merluccius bilinearis	433	432	434	438	437	442	1,01 (0,84-1,22)	1,13 (0,96-1,32)
Enchelyopus cimbrius	646	645	647	652	651	656	0,91 (0,77-1,06)	0,82 (0,72-0,93)
Nezumia bairdii	643	641	642	649	646	651	0,92 (0,81-1,03)	0,85 (0,79-0,92)
Scomber scombrus	202	201	203	207	205	209	0,91 (0,65-1,27)	0,64 (0,47-0,88)
Ammodytes sp.	88	85	87	91	88	91	0,77 (0,41-1,43)	1,05 (0,57-1,95)
Anarhichas lupus	126	125	127	129	128	132	0,90 (0,58-1,40)	0,67 (0,43-1,02)
Lumpenus lampretaeformis	162	161	163	165	164	168	0,96 (0,61-1,49)	0,86 (0,61-1,21)
Leptoclinus maculatus	113	109	111	116	112	115	1,47 (0,86-2,52)	1,97 (1,12-3,45)
Lycodes lavalaei	130	127	129	133	130	134	0,97 (0,58-1,61)	1,50 (0,91-2,47)
Lycodes vahlii	228	227	229	232	230	234	1,38 (0,97-1,95)	1,21 (0,93-1,57)
Melanostigma atlanticum	251	251	253	255	255	259	1,24 (0,94-1,64)	1,13 (0,96-1,34)
Sebastes sp.	2307	2285	2280	2313	2291	2290	0,99 (0,86-1,14)	0,98 (0,89-1,09)
Artediellus sp.	168	167	169	171	171	174	1,21 (0,78-1,89)	1,60 (1,12-2,29)
Triglops murrayi	198	198	200	201	201	204	0,81 (0,61-1,07)	0,73 (0,61-0,88)
Myoxocephalus scorpius	125	124	126	128	127	131	1,31 (0,83-2,07)	1,61 (1,05-2,46)
Gymnocanthus tricuspis	181	180	182	184	183	187	1,23 (0,78-1,94)	1,16 (0,81-1,65)
Leptagonus decagonus	97	95	97	100	97	100	0,89 (0,46-1,74)	0,80 (0,32-1,99)
Aspidophoroides	144	142	144	148	146	150	0,93 (0,61-1,43)	
monopterygius Fumicrotremus terraenovae	125	124	126	127	126	130	1 36 (0 83-2 21)	1,30 (0,92-1,84)
Cvclopterus lumpus	74	73	75	77	77	81	0.59 (0.34-1.01)	0,93 (0,61-1,42)
Liparidae	103	102	104	106	105	109	1 41 (0 93-2 15)	0,43 (0,23-0,8)
Hippoglossoides	1127	1127	1129	1134	1133	1138	0.93 (0.84-1.03)	1,20 (0,75-1,91)
platessoides	1121	1121	1120	1101	1100	1100	0,00 (0,01 1,00)	0,89 (0,83-0,96)
Glyptocephalus cynoglossus	922	920	922	928	926	931	0,88 (0,77-1,00)	0,88 (0,79-0,97)
Reinhardtius	947	944	946	953	950	955	0,95 (0,85-1,08)	1 01 (0 02 4 4)
Hippoglossus hippoglossus	230	230	232	235	235	239	1,00 (0,77-1,30)	0.99 (0.76-1.31)

		CIA			CIB			
Taxon	BI1	BB0	BB1	BI	BB0	BB1	Rho (nombres)	Rho (poids)
Lophius americanus	58	58	-	61	61	-	0,93 (0,52-1,67)	1,76 (0,90-3,45)
Illex illecebrosus	216	216	218	221	220	225	1,23 (0,95-1,59)	1,24 (1,01-1,51)
Pasiphaea multidentata	826	815	814	831	820	822	0,85 (0,69-1,05)	1.15 (0.99-1.33)
Spirontocaris liljeborgii	147	142	144	151	146	150	0,93 (0,58-1,48)	0.64 (0.43-0.95)
Lebbeus polaris	181	177	179	185	181	185	1,11 (0,69-1,78)	1.39 (0.99-1.95)
Pandalus borealis	1784	1769	1770	1790	1775	1779	1,10 (0,94-1,29)	1,16 (1,01-1,33)
Pandalus montagui	700	689	689	705	693	696	1,13 (0,86-1,50)	1 03 (0 78-1 37)
Atlantopandalus propinqvus	129	128	130	132	131	135	1,81 (1,05-3,13)	1,95 (1,20-3,16)
Pontophilus norvegicus	720	713	714	725	719	722	1,19 (0,98-1,45)	1,20 (1, <u>2</u> 0 0,10)
Argis dentata	203	199	200	206	202	205	1,33 (0,80-2,19)	1,21 (1,86 1,18)
Lithodes maja	239	238	240	244	243	247	0,79 (0,60-1,04)	0 73 (0 58-0 91)
Chionoecetes opilio	551	547	549	556	552	557	0,71 (0,57-0,89)	0,70(0,56-0.84)
Hyas araneus	83	81	83	85	83	86	1,14 (0,64-2,06)	1,03(0,57-1,86)
Hyas alutaceus	143	142	144	146	145	149	0,78 (0,52-1,18)	0,54 (0,40-0,73)

Tableau 10. Preuve relative pour les modèles binomiaux et bêta-binomiaux avec regroupement par taille pour les nombres de prises d'après les valeurs du critère d'information d'Aikaike (CIA) et du critère d'information de Bayes (CIB), et estimations du facteur de conversion Rho, avec les intervalles de confiance approximatifs à 95 %, pour les prises en nombre et en poids des taxons pour lesquels seules des analyses avec regroupement par taille ont également été entreprises.

		CIA			CIB			
Taxon	BI1	BB0	BB1	BI1	BB0	BB1	Rho (nombres)	Rho (poids)
Myctophitormes	142	141	143	146	145	149	1,21 (0,88-1,66)	1,19 (0,93-1,51)
Eumesogrammus praecisus	89	87	89	92	90	93	1,93 (1,01-3,69)	1,45 (0,85-2,46)
Porifera	116	115	117	120	118	122	0,53 (0,32-0,88)	0,88 (0,69-1,12)
Tentorium semisuberites	48	47	49	50	49	51	0,89 (0,40-1,98)	1,12 (0,54-2,32)
Polymastia sp.	56	64	66	59	67	70	0,00 (0,00-0,01)	0,36 (0,17-0,76)
Stylocordyla borealis	54	53	55	56	56	59	0,60 (0,27-1,36)	0,87 (0,41-1,87)
Hydrozoa	30	29	31	31	30	33	0,65 (0,24-1,76)	0,29 (0,13-0,64)
Ptychogena lactea	123	120	122	126	123	126	1,04 (0,61-1,76)	1,30 (0,71-2,37)
Rhodaliidae	96	95	97	98	98	101	0,80 (0,46-1,42)	0,89 (0,62-1,29)
Scyphozoa	21	21	23	22	22	24	0,26 (0,05-1,38)	0,69 (0,30-1,61)
Cyanea capillata	555	555	557	562	562	567	0,77 (0,68-0,87)	0,80 (0,70-0,91)
Periphylla periphylla	122	121	123	126	125	129	0,81 (0,53-1,22)	0,81 (0,51-1,27)
Hormathia digitata	159	157	159	163	161	165	0,59 (0,38-0,92)	0,73 (0,47-1,14)
Epizoanthus erdmanni	76	68	70	79	71	74	1,00 (0,50-2,01)	1,24 (0,63-2,45)
Bolocera tuediae	331	331	333	336	336	340	0,41 (0,28-0,62)	0,51 (0,39-0,66)
Stephanauge nexilis	70	69	71	72	71	75	0,55 (0,27-1,12)	0.52 (0.29-0.93)
Actinostola callosa	456	453	455	461	458	462	0,59 (0,46-0,77)	0.57 (0.44-0.73)
Stomphia coccinea	113	110	112	116	114	117	0,96 (0,56-1,65)	0.88 (0.54-1.43)
Actinauge cristata	429	427	429	434	432	436	0,78 (0,57-1,08)	0.53 (0.39-0.71)
Gersemia rubiformis	78	77	79	81	80	83	1,66 (0,93-2,96)	2.77 (1.68-4.55)
Drifa glomerata	51	49	51	53	51	54	0,70 (0,31-1,58)	1.18 (0.52-2.67)
Pennatula aculeata	783	772	774	788	778	782	0,71 (0,57-0,89)	0.44 (0.36-0.53)
Ptilella grandis	233	230	232	237	233	237	0,56 (0,37-0,86)	0.62 (0.41-0.92)
Halipteris finmarchica	86	86	88	89	89	92	0,42 (0,25-0,69)	0.51 (0.35-0.74)
Anthoptilum grandiflorum	284	281	283	287	285	289	0,64 (0,41-0,99)	0.57 (0.38-0.85)
Nephtheidae	-	20	22	-	21	24	1,34 (0,42-4,21)	2 13 (1 04-4 38)
Pleurobrachia pileus	42	41	-	43	43	-	1,23 (0,56-2,68)	0.97 (0.50-1.86)
Bryozoa	29	28	30	30	29	31	1,10 (0,37-3,29)	0.95 (0.33-2.74)
Arrhoges occidentalis	93	93	-	96	96	-	0,56 (0,45-0,69)	0.58 (0.47-0.72)
Cryptonatica affinis	55	54	56	57	56	60	0,59 (0,28-1,22)	0 43 (0 21-0 89)
Buccinum sp.	175	174	176	179	178	183	0,53 (0,39-0,72)	0.37 (0.27-0.50)
Neptunea despecta	27	-	-	28	-	-	0,79 (0,33-1,90)	0 75 (0 32-1 75)
Colus sp.	48	47	49	50	49	52	1,48 (0,68-3,23)	1 16 (0 60-2 22)
Scaphander punctostriatus	67	67	69	69	69	72	1,25 (0,63-2,47)	0.96 (0.54-1.71)
Megayoldia thraciaeformis	213	215	217	216	218	222	0,13 (0,06-0,28)	0.15 (0.11-0.22)
Mytilus sp.	42	40	42	44	42	45	0,54 (0,23-1,28)	0 73 (0 28-1 91)
Chlamys islandica	52	52	54	54	54	57	0,98 (0,50-1,91)	1 41 (0 71-2 81)
Astarte sp.	132	130	132	135	134	138	0,54 (0,34-0,86)	0.33 (0.21-0.50)
Cuspidaria glacialis	87	86	88	90	89	93	0,52 (0,31-0,87)	0,43 (0.28-0.66)

		CIA			CIB			
Taxon Possia sp	BI1 60	BB0	BB1 61	BI1 63	BB0	BB1 65	Rho (nombres)	Rho (poids)
Stoloteuthis leucontera	61	58	60	64	60	64	0.76 (0.37-1.55)	1,07 (0,52-2,20)
	206	205	207	211	210	21/	0,70(0,37-1,33)	0,44 (0,24-0,82)
Balliypolypus balluli Bolyobacto	200	200	207	211	210	214	1,03(0,70-1,41)	1,18 (0,88-1,60)
	249	240	242	200	245	200	0,02 (0,43-0,90)	0,27 (0,18-0,40)
Aphrodita nastata	04	102	170	175	60	09 475	0,60 (0,30-1,19)	0,54 (0,29-1,01)
	171	108	170	1/5	1/1	1/5	1,19 (0,78-1,81)	1,27 (0,88-1,84)
Polynoidae	93	91	93	97	95	98	1,40 (0,82-2,39)	1,00 (0,60-1,67)
Brada Innabilis	35	34	30	30	30	39	1,66 (0,68-4,09)	1,71 (0,86-3,41)
Nympnon sp.	169	168	170	173	1/2	1/6	1,22 (0,83-1,78)	1,26 (0,91-1,75)
Aega psora	30	30	32	31	31	34	1,18 (0,51-2,73)	1,37 (0,62-3,04)
Syscenus infelix	320	320	322	325	325	329	0,78 (0,62-0,98)	0,75 (0,63-0,90)
Epimeria loricata	28	28	-	30	30	-	7,58 (3,92-14,69)	4,74 (2,80-8,03)
Eualus fabricii	55	55	57	57	57	60	449,51 (1,15-1,7E6)	1,35 (0,57-3,20)
Eualus macilentus	97	95	97	99	98	101	3,05 (1,37-6,77)	3,87 (2,58-5,79)
Spirontocaris sp.	22	22	24	22	22	24	1,27 (0,34-4,75)	1,15 (0,54-2,45)
Spirontocaris spinus	60	60	61	61	61	64	2,55 (1,01-6,44)	0,73 (0,46-1,16)
Sabinea septemcarinata	106	105	107	109	107	110	1,03 (0,54-1,95)	1,52 (0,96-2,40)
Munidopsis curvirostra	57	57	59	59	59	62	1,86 (0,99-3,47)	2,12 (1,31-3,44)
Pagurus sp.	65	65	-	68	68	-	1,01 (0,61-1,69)	0,74 (0,43-1,27)
Cucumaria frondosa	41	41	43	43	43	45	0,52 (0,31-0,88)	0,80 (0,46-1,39)
Strongylocentrotus sp.	378	376	378	382	380	384	0,98 (0,72-1,34)	0,90 (0,71-1,15)
Brisaster fragilis	775	770	772	780	775	780	0,83 (0,65-1,05)	0,53 (0,43-0,65)
Ctenodiscus crispatus	997	993	995	1002	998	1003	0,60 (0,49-0,73)	0.49 (0.41-0.59)
Pteraster militaris	60	60	62	62	62	65	0,95 (0,49-1,84)	1.55 (0.80-3.00)
Ceramaster granularis	98	96	98	101	99	102	1,09 (0,64-1,87)	1.02 (0.55-1.87)
Hippasteria phrygiana	123	123	125	128	127	132	1,30 (0,89-1,91)	1.12 (0.77-1.65)
Pseudarchaster parelii	57	57	-	59	59	-	0,44 (0,28-0,68)	0.42 (0.25-0.72)
Crossaster papposus	84	83	85	87	86	89	1,04 (0,59-1,84)	0.57 (0.23 - 1.41)
Henricia sp.	141	141	143	145	145	149	0,87 (0,63-1,20)	0.66(0.48-0.93)
Leptasterias (Hexasterias)	40	39	41	42	41	44	1,21 (0,50-2,95)	0,00 (0,10 0,00)
polaris	55	54	56	57	56	50	1 00 (0 49 2 09)	1,35 (0,52-3,51)
Leplasienas groenianuica	162	04 160	164	166	00 165	169	1,00 (0,46-2,06)	0,74 (0,33-1,66)
	103	102	104	100	100	100	0,39 (0,25-0,62)	0,22 (0,17-0,30)
Gorgonocepnalus sp.	135	133	135	137	130	740	0,73(0,46-1,16)	0,74 (0,49-1,11)
Opniura sarsii	705	703	705	/10	708	/12	0,84 (0,63-1,12)	0,50 (0,39-0,65)
Ophiacantha bidentata	134	133	135	138	137	140	2,41 (1,45-4,00)	1,90 (1,12-3,20)
Ophiopholis aculeata	314	312	313	318	316	319	1,18 (0,83-1,68)	1,03 (0,80-1,32)
Ophioscolex glacialis	82	81	83	85	84	87	1,73 (0,97-3,07)	1,59 (0,95-2,65)
Ascidia sp.	422	420	422	427	425	429	0,97 (0,76-1,25)	1,28 (1,05-1,56)
Eudistoma vitreum	63	61	63	65	63	66	1,33 (0,66-2,66)	1,30 (0,64-2,64)
Boltenia ovifera	66	65	67	68	67	70	0,86 (0,47-1,56)	1,02 (0,55-1,89)

8. FIGURES

Figure 1. Plan de stratification pour le relevé plurispécifique au chalut de fond dans le nord du golfe du Saint-Laurent.

Figure 2. Emplacement des paires de traits comparatives pêchées en 2021 et en 2022.

Figure 3. Interprétation du premier des trois ensembles de figures présentant les données et les résultats pour les taxons ayant fait l'objet d'analyses sans regroupement par longueur.(i) Présente une carte des prises effectuées par le NGCC Teleost (cercles rouges) et par le NGCC John Cabot (cercles bleus) dans les traits de pêche comparative; la taille des cercles est proportionnelle à la racine carrée du nombre de prises et les prises nulles sont indiquées par un signe +. (ii) Diagramme de double projection de la racine carrée du nombre de prises par le NGCC John Cabot par rapport à la racine carrée du nombre de prises par le NGCC John Cabot par rapport à la racine carrée du nombre de prises par le NGCC John Cabot par rapport à la racine carrée du nombre de prises par le NGCC Teleost; la ligne bleue et l'intervalle ombré représentent la conversion estimée et l'IC à 95 % approximatif du meilleur modèle avec regroupement par longueur et la ligne violette montre la conversion indépendante de la longueur estimée et l'IC à 95 % approximatif du meilleur modèle fondé sur les longueurs. (iii) Tracé de la proportion empirique de la prise totale d'une paire réalisée par le NGCC Teleost en fonction de la longueur pour chaque paire de traits (points gris) et en moyenne pour les paires de traits dans chaque tranche de longueur (points bleus). (iv) Fréquences de longueur totales pour les prises du NGCC Teleost (ligne noire) et du NGCC John Cabot (ligne grise) en 2021. (v) Identique au point (iv), mais pour 2022.

Figure 4. Interprétation du deuxième des trois ensembles de figures présentant les données et les résultats pour les taxons ayant fait l'objet d'analyses sans regroupement par longueur. (vi) Estimation des fonctions de la proportion de la prise propre à la longueur, $logit(p_{Ai}(l))$, pour chaque modèle convergent; le modèle sélectionné est représenté par une ligne rouge avec son IC approximatif à 95 % (zone ombrée), ainsi que la proportion empirique moyenne propre à la classe de longueur de la prise totale d'une paire réalisée par le NGCC Teleost (points bleus). (vii) Estimation de la fonction de l'efficacité de capture relative (facteur de conversion) du meilleur modèle (avec l'IC à 95 %). La ligne bleue horizontale tiretée indique l'efficacité équivalente entre les navires et la ligne noire pointillée représente la fonction d'efficacité de capture relative qui suppose une efficacité constante pour les petites et les grandes tailles.

Figure 5. Interprétation du troisième des trois ensembles de figures présentant les données et les résultats pour les taxons ayant fait l'objet d'analyses sans regroupement par longueur. Diagramme en boîte des quantiles des résidus normalisés en tant que fonction de : (viii) la longueur, (ix) la station, (x) la classe de profondeur et (xi) l'heure. En (ix), les résidus associés aux 5 premières paires pêchés en 2021 sont indiqués par une ligne verte, et ceux associés aux paires dans lesquels les navires ont pêché séquentiellement la même trace sont indiqués par une ligne colorée : le NGCC John Cabot a pêché en premier (foncé bleu), le NGCC Teleost a pêché en premier (bleu clair).

Figure 6. Interprétation des figures présentant les données et les résultats pour les taxons ayant fait l'objet d'analyses avec regroupement par taille. Diagramme de double projection de la racine carrée du nombre de prises par le NGCC John Cabot par rapport à la racine carrée du nombre de prises par le NGCC Teleost; la ligne bleue et l'intervalle ombré représentent la conversion estimée et l'IC à 95 % approximatif du meilleur modèle avec regroupement par taille et les paires réalisées en 2021 et 2022 sont représentées par des couleurs différentes. (ii) Comme pour le panneau (i), mais pour les poids des prises. Les quantiles des résidus de l'analyse des nombres de prises sont représentés en tant que fonction (iii) des valeurs ajustées, (v) de l'heure et (vii) de la profondeur de la calée jumelée; les valeurs sont colorées selon le même système que dans le panneau (i). De même, les quantiles des résidus de l'analyse des poids des prises sont représentés en tant que fonction (iv) des valeurs ajustées, les valeurs pour le NGCC Teleost étant représentées par des cercles rouges et celles pour le NGCC John Cabot par des cercles noirs, (vi) de l'heure et (viii) de la profondeur de la calée jumelée, les valeurs étant à nouveau colorées selon le même système que dans le panneau (i).

Figure 7a. Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Myxine limosa.

Figure 7b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Myxine limosa.

Figure 7c. Quantiles des résidus normalisés du modèle sélectionné pour Myxine limosa.

Figure 8a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Centroscyllium fabricii.

Figure 8b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Centroscyllium fabricii.

Figure 8c.Quantiles des résidus normalisés du modèle sélectionné pour Centroscyllium fabricii.

Figure 9a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Amblyraja radiata.

Figure 9b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Amblyraja radiata.

Figure 9c.Quantiles des résidus normalisés du modèle sélectionné pour Amblyraja radiata.

Figure 10a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Malacoraja senta.

Figure 10b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Malacoraja senta.

Figure 10c.Quantiles des résidus normalisés du modèle sélectionné pour Malacoraja senta.

Figure 11a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Clupea harengus.

Figure 11b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Clupea harengus.

Figure 11c.Quantiles des résidus normalisés du modèle sélectionné pour Clupea harengus.

Figure 12a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Mallotus villosus.

Figure 12b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Mallotus villosus.

Figure 12c.Quantiles des résidus normalisés du modèle sélectionné pour Mallotus villosus.

Figure 13a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Argentina silus.

Figure 13b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Argentina silus.

Figure 13c.Quantiles des résidus normalisés du modèle sélectionné pour Argentina silus.

Figure 14a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Arctozenus risso.

Figure 14b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Arctozenus risso.

Figure 14c. Quantiles des résidus normalisés du modèle sélectionné pour Arctozenus risso.

Figure 15a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Gadus morhua.

Figure 15b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Gadus morhua.

Figure 15c. Quantiles des résidus normalisés du modèle sélectionné pour Gadus morhua.

Figure 16a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Phycis chesteri.

Figure 16b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Phycis chesteri.

Figure 16c.Quantiles des résidus normalisés du modèle sélectionné pour Phycis chesteri.

Figure 17a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Urophycis tenuis.

Figure 17b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Urophycis tenuis.

Figure 17c. Quantiles des résidus normalisés du modèle sélectionné pour Urophycis tenuis.

Figure 18a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Merluccius bilinearis.

Figure 18b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Merluccius bilinearis.

Figure 18c.Quantiles des résidus normalisés du modèle sélectionné pour Merluccius bilinearis.

Figure 19a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Enchelyopus cimbrius.

Figure 19b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Enchelyopus cimbrius.

Figure 19c. Quantiles des résidus normalisés du modèle sélectionné pour Enchelyopus cimbrius.

Figure 19d.Ajustements du modèle et étalonnage fondé sur la profondeur sélectionné pour Enchelyopus cimbrius.

Figure 19e. Quantiles des résidus normalisés du modèle sélectionné pour Enchelyopus cimbrius.

Figure 20a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Nezumia bairdii.

Figure 20b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Nezumia bairdii.

Figure 20c.Quantiles des résidus normalisés du modèle sélectionné pour Nezumia bairdii.

Figure 21a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Scomber scombrus.

Figure 21b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Scomber scombrus.

Figure 21c. Quantiles des résidus normalisés du modèle sélectionné pour Scomber scombrus.

Figure 22a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Ammodytes sp.

Figure 22b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Ammodytes sp.

Figure 22c.Quantiles des résidus normalisés du modèle sélectionné pour Ammodytes sp.

Figure 23a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Anarhichas lupus.

Figure 23b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Anarhichas lupus.

Figure 23c. Quantiles des résidus normalisés du modèle sélectionné pour Anarhichas lupus.

Figure 24a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lumpenus lampretaeformis.

Figure 24b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lumpenus lampretaeformis.

Figure 24c. Quantiles des résidus normalisés du modèle sélectionné pour Lumpenus lampretaeformis.

Figure 25a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Leptoclinus maculatus.

Figure 25b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Leptoclinus maculatus.

Figure 25c. Quantiles des résidus normalisés du modèle sélectionné pour Leptoclinus maculatus.

Figure 26a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lycodes lavalaei.

Figure 26b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lycodes lavalaei.

Figure 26c. Quantiles des résidus normalisés du modèle sélectionné pour Lycodes lavalaei.

Figure 27a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lycodes vahlii.

Figure 27b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lycodes vahlii.

Figure 27c. Quantiles des résidus normalisés du modèle sélectionné pour Lycodes vahlii.

Figure 28a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Melanostigma atlanticum.

Figure 28b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Melanostigma atlanticum.

Figure 28c. Quantiles des résidus normalisés du modèle sélectionné pour Melanostigma atlanticum.

Figure 29a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Sebastes sp.

Figure 29b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Sebastes sp.

Figure 29c. Quantiles des résidus normalisés du modèle sélectionné pour Sebastes sp.

Figure 30a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Artediellus sp.

Figure 30b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Artediellus sp.

Figure 30c. Quantiles des résidus normalisés du modèle sélectionné pour Artediellus sp.

Figure 31a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Triglops murrayi.

Figure 31b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Triglops murrayi.

Figure 31c. Quantiles des résidus normalisés du modèle sélectionné pour Triglops murrayi.

Figure 32a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Myoxocephalus scorpius.

Figure 32b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Myoxocephalus scorpius.

Figure 32c. Quantiles des résidus normalisés du modèle sélectionné pour Myoxocephalus scorpius.

Figure 33a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Gymnocanthus tricuspis.

Figure 33b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Gymnocanthus tricuspis.

Figure 33c. Quantiles des résidus normalisés du modèle sélectionné pour Gymnocanthus tricuspis.

Figure 34a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Leptagonus decagonus.

Figure 34b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Leptagonus decagonus.

Figure 34c. Quantiles des résidus normalisés du modèle sélectionné pour Leptagonus decagonus.

Figure 35a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Aspidophoroides monopterygius.

Figure 35b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Aspidophoroides monopterygius.

Figure 35c.Quantiles des résidus normalisés du modèle sélectionné pour Aspidophoroides monopterygius.

Figure 36a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Eumicrotremus terraenovae.

Figure 36b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Eumicrotremus terraenovae.

Figure 36c. Quantiles des résidus normalisés du modèle sélectionné pour Eumicrotremus terraenovae.

Figure 37a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Cyclopterus lumpus.

Figure 37b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Cyclopterus lumpus.

Figure 37c. Quantiles des résidus normalisés du modèle sélectionné pour Cyclopterus lumpus.

Figure 38a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Liparidae.

Figure 38b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Liparidae.

Figure 38c. Quantiles des résidus normalisés du modèle sélectionné pour Liparidae.

Figure 39a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Hippoglossoides platessoides.

Figure 39b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Hippoglossoides platessoides.

Figure 39c. Quantiles des résidus normalisés du modèle sélectionné pour Hippoglossoides platessoides.

Figure 40a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Glyptocephalus cynoglossus.

Figure 40b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Glyptocephalus cynoglossus.

Figure 40c. Quantiles des résidus normalisés du modèle sélectionné pour Glyptocephalus cynoglossus.

Figure 41a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Reinhardtius hippoglossoides.

Figure 41b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Reinhardtius hippoglossoides.

Figure 41c. Quantiles des résidus normalisés du modèle sélectionné pour Reinhardtius hippoglossoides.

Figure 42a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Hippoglossus hippoglossus.

Figure 42b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Hippoglossus hippoglossus.

Figure 42c. Quantiles des résidus normalisés du modèle sélectionné pour Hippoglossus hippoglossus.

Figure 43a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lophius americanus.

Figure 43b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lophius americanus.

Figure 43c. Quantiles des résidus normalisés du modèle sélectionné pour Lophius americanus.

Figure 44a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Illex illecebrosus.

Figure 44b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Illex illecebrosus.

Figure 44c. Quantiles des résidus normalisés du modèle sélectionné pour Illex illecebrosus.

Figure 45a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Pasiphaea multidentata.

Figure 45b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Pasiphaea multidentata.

Figure 45c. Quantiles des résidus normalisés du modèle sélectionné pour Pasiphaea multidentata.

Figure 46a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Spirontocaris liljeborgii.

Figure 46b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Spirontocaris liljeborgii.

Figure 46c. Quantiles des résidus normalisés du modèle sélectionné pour Spirontocaris liljeborgii.

Figure 47a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lebbeus polaris.

Figure 47b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lebbeus polaris.

Figure 47c. Quantiles des résidus normalisés du modèle sélectionné pour Lebbeus polaris.

Figure 48a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Pandalus borealis.

Figure 48b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Pandalus borealis.

Figure 48c. Quantiles des résidus normalisés du modèle sélectionné pour Pandalus borealis.

Figure 49a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Pandalus montagui.

Figure 49b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Pandalus montagui.

Figure 49c. Quantiles des résidus normalisés du modèle sélectionné pour Pandalus montagui.

Figure 50a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Atlantopandalus propinqvus.

Figure 50b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Atlantopandalus propinqvus.

Figure 50c. Quantiles des résidus normalisés du modèle sélectionné pour Atlantopandalus propinqvus.

Figure 51a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Pontophilus norvegicus.

Figure 51b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Pontophilus norvegicus.

Figure 51c.Quantiles des résidus normalisés du modèle sélectionné pour Pontophilus norvegicus.

Figure 52a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Argis dentata.

Figure 52b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Argis dentata.

Figure 52c.Quantiles des résidus normalisés du modèle sélectionné pour Argis dentata.

Figure 53a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Lithodes maja.

Figure 53b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Lithodes maja.

Figure 53c. Quantiles des résidus normalisés du modèle sélectionné pour Lithodes maja.

Figure 54a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Chionoecetes opilio.

Figure 54b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Chionoecetes opilio.

Figure 54c. Quantiles des résidus normalisés du modèle sélectionné pour Chionoecetes opilio.

Figure 55a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Hyas araneus.

Figure 55b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Hyas araneus.

Figure 55c. Quantiles des résidus normalisés du modèle sélectionné pour Hyas araneus.

Figure 56a.Visualisation des données sur la pêche comparative et des prédictions du modèle avec regroupement par taille pour Hyas alutaceus.

Figure 56b.Ajustements du modèle et étalonnage fondé sur la longueur sélectionné pour Hyas alutaceus.

Figure 56c. Quantiles des résidus normalisés du modèle sélectionné pour Hyas alutaceus.

Figure 57.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Myctophiformes.

Figure 58. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Eumesogrammus praecisus.

Figure 59. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Porifera.

Figure 60. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Tentorium semisuberites.

Figure 61. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Polymastia sp..

Figure 62. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Stylocordyla borealis.

Figure 63. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Hydrozoa.

Figure 64. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ptychogena lactea.

Figure 65. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Rhodaliidae.

Figure 66. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Scyphozoa.

Figure 67. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Cyanea capillata.

Figure 68. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Periphylla periphylla.

Figure 69. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Hormathia digitata.

Figure 70. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Epizoanthus erdmanni.

Figure 71. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Bolocera tuediae.

Figure 72. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Stephanauge nexilis.

Figure 73. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Actinostola callosa.

Figure 74. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Stomphia coccinea.

Figure 75. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Actinauge cristata.

Figure 76. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Gersemia rubiformis.

Figure 77. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Drifa glomerata.

Figure 78. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pennatula aculeata.

Figure 79. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ptilella grandis.

Figure 80. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Halipteris finmarchica.

Figure 81. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Anthoptilum grandiflorum.

Figure 82. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Nephtheidae.

Figure 83.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pleurobrachia pileus.

Figure 84.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Bryozoa.

Figure 85. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Arrhoges occidentalis.

Figure 86. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Cryptonatica affinis.

Figure 87.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Buccinum sp.

Figure 88.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Neptunea despecta.

Figure 89. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Colus sp.

Figure 90. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Scaphander punctostriatus.

Figure 91. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Megayoldia thraciaeformis.

Figure 92. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Mytilus sp.

Figure 93. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Chlamys islandica.

Figure 94.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Astarte sp.

Figure 95. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Cuspidaria glacialis.

Figure 96. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Rossia sp.

Figure 97. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Stoloteuthis leucoptera.

Figure 98. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Bathypolypus bairdii.

Figure 99. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Polychaeta.

Figure 100. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Aphrodita hastata.

Figure 101. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Laetmonice filicornis.

Figure 102. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Polynoidae.

Figure 103.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Brada inhabilis.

Figure 104. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Nymphon sp.

Figure 105. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Aega psora.

Figure 106. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Syscenus infelix.

Figure 107.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Epimeria loricata.

Figure 108. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Eualus fabricii.

Figure 109. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Eualus macilentus.

Figure 110. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Spirontocaris sp.

Figure 111. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Spirontocaris spinus.

Figure 112. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Sabinea septemcarinata.

Figure 113. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Munidopsis curvirostra.

Figure 114. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pagurus sp.

Figure 115. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Cucumaria frondosa.

Figure 116. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Strongylocentrotus sp.

Figure 117. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Brisaster fragilis.

Figure 118. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ctenodiscus crispatus.

Figure 119.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pteraster militaris.

Figure 120. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ceramaster granularis.

Figure 121. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Hippasteria phrygiana.

Figure 122. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Pseudarchaster parelii.

Figure 123. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Crossaster papposus.

Figure 124. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Henricia sp.

Figure 125. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Leptasterias (Hexasterias) polaris.

Figure 126. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Leptasterias groenlandica.

Figure 127. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Psilaster andromeda.

Figure 128. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Gorgonocephalus sp.

Figure 129. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ophiura sarsii.

Figure 130. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ophiacantha bidentata.

Figure 131. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ophiopholis aculeata.

Figure 132. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ophioscolex glacialis.

Figure 133.Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Ascidia sp..

Figure 134. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Eudistoma vitreum.

Figure 135. Visualisation des données sur la pêche comparative, des prédictions du modèle avec regroupement par taille et des courbes de résidus pour Boltenia ovifera.

9. ANNEXES

ANNEXE I – MODIFICATIONS À L'ENGIN DE PÊCHE CAMPELEN 1800 – AVANT LA PÊCHE COMPARATIVE DE 2020

Des modifications ont été apportées au chalut Campelen 1800 avant le début de la pêche comparative dans les eaux canadiennes de l'Atlantique afin de rendre le chalut utilisé pour les relevés plus facile à utiliser et moins susceptible d'être endommagé, et de réduire les besoins en ressources humaines pour l'acquisition et le réapprovisionnement des pièces du chalut. Ce chalut est utilisé pour trois importants relevés au chalut de fond au Canada atlantique, à savoir le relevé du printemps et d'automne à Terre-Neuve-et-Labrador et le relevé de l'estuaire et du nord du golfe du Saint-Laurent.

Les modifications suivantes ont été apportées au chalut (voir le plan de la figure A1).

- 1. Raccourcissement du ventre n° 2 (CT19/CT25) et du panneau latéral n° 5 (CT31) (de 255,5 à 199,5 mailles de profondeur) afin de réduire les dommages, les réparations associées et les coûts de construction.
- Modification de certaines dimensions, y compris le rapport de diminution du ventre n° 3 (CT20/CT26), en réponse au raccourcissement du ventre n° 2 (voir la figure A1 pour plus de détails).
- 3. Renforcement de la protection du ventre inférieur n° 1 (CT24) en divisant ce panneau en trois sections qui sont lacées ensemble (en général, le filet se déchire dans une section, le plus souvent au milieu, si la déchirure est causée par de la roche ou de la boue, et les côtés du ventre ne sont pas endommagés). Une corde agissant comme « arrêt de déchirure » a également été ajoutée entre le ventre n° 1 et le ventre n° 2 pour éviter d'endommager davantage les autres ventres.
- Allongement des panneaux latéraux n° 2 CT29 et de la base d'aile supérieure CT16B (de 41,5 à 48,5 mailles) pour réduire la lâcheté des filets, ce qui augmente le risque de dommages, et pour faciliter les réparations et la construction.
- Allongement de la filière supérieure CT34 (de 13,53 à 13,70 mailles) pour aider à conserver la forme des ailes supérieures du filet et faciliter l'installation et le remplacement des flotteurs.

Figure A1. Plan de filet pour le chalut Campelen 1800

ANNEXE II – DÉTERMINATION DE LA ZONE BALAYÉE

La géométrie du chalut lorsqu'il est déployé sur le fond et qu'il pêche, à savoir l'écartement entre les portes et entre les ailes, et l'ouverture verticale, varie en fonction du navire utilisé et de la profondeur de pêche. La zone balayée par le chalut sur le fond est donc variable d'un trait à l'autre. Les capteurs Scanmar installés à différents endroits du chalut surveillent en permanence la géométrie du chalut et les données sont enregistrées pour chaque trait.

Les données géométriques moyennes de 144 traits effectués avec le NGCC *John Cabot* en 2022 sont présentées dans la figure A2. L'espacement moyen entre les portes et entre les ailes augmente avec la profondeur de pêche, et se stabilise à des profondeurs supérieures à 250 m. En revanche, l'ouverture verticale diminue en fonction de la profondeur, pour atteindre à nouveau une asymptote à des profondeurs supérieures à 250 m. En fonction des 144 traits, pour lesquels les profondeurs sont collectivement généralement représentatives des profondeurs présentes dans la zone du relevé, l'envergure moyenne des ailes était de 16,65 m, l'écartement moyen des portes était de 50,23 m et l'ouverture verticale moyenne était de 3,13 m.

Bien que l'envergure des ailes varie en fonction de la profondeur et du type de substrat, il est recommandé d'utiliser une envergure constante dans les calculs de l'abondance et de la biomasse de la zone balayée lors du relevé. Cette constante a été obtenue en prédisant l'envergure des ailes pour chacune des stations échantillonnées de 1990 à 2022 dans le cadre du relevé de l'estuaire et du nord du golfe (n = 7 264 traits) en fonction de la profondeur de la station et de la relation entre l'envergure des ailes et la profondeur (figure A2, panneau A). L'envergure moyenne des ailes du chalut Campelen 1800 modifié utilisé avec le NGCC *John Cabot* a été estimée à 16,71 m. En comparaison, l'envergure moyenne des ailes du chalut Campelen 1800 utilisé avec le NGCC *Teleost* était de 16,94 m. Ces constantes seront donc utilisées pour déterminer la zone balayée par le trait de chalut (envergure moyenne multipliée par la distance chalutée) en fonction du navire.

Figure A2. Envergure des ailes (A), ouverture des portes (B) et ouverture verticale (C) du chalut Campelen en fonction de la profondeur pour les 144 traits effectués par le NGCC John Cabot en 2022.