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ABSTRACT

S

A computer-based procedure has been developed for
calibrating hydrophones by the substitution method using a
pseudo-gaussian white noise signal. The technique has been
shown to be a viable alternative to the more conventional CW
and pulsed CW substitution methods. Owing to the wideband
nature of the noise signal, the effects of boundary conditions :
are reduced considerably. Software routines for a Honeywell
H-316 minicomputer are used to generate the noise signal,
perform the analog-to-digital sampling and carry out the
calibration computations. This method is particularly useful ;
for.low frequency wideband calibration and would allow !
measurement to less than one Hertz.
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SOMMAIRE

On a élaboré une procédure automatisée d'étalonnage
des hydrophones par méthode de substitution employant un
pseudo-bruit blanc. Cette technique s'est avérée €tre une
solution de rechange viable aux méthodes de substitution plus
classiques employant des ondes entretenues et des ondes

entretenues pulsées. Puisqu'il s'agit d'un signal de bruit &

large bande, les effets des conditions de limite sont
considérablement diminués. On se sert du logiciel d'un mini-
ordinateur Honneywell H-316 pour produire le signal de bruit,
effectuer 1'échantillonnage analogique-numérique et faire les
calculs d'étalonnage. Cette méthode est particulidrement
utile pour 1'étalonnage basse fréquence a large bande et elle
permettrait de mesurer a une fréquence inférieure a un (1)
hertz.
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1. INTRODUCTION

A hydrophone calibration method using a wideband
random noise signal in a reverberant tank was described by
McMorrow, Wallace and Coop in 1953.1} Accuracy and resolution
were limited by the readout and processing techniques
available at that time. Technological advances have allowed
these limitations to be largely overcome and a computer-based
procedure has been implemented that uses a pseudo-gaussian
white noise signal in the substitution method? of calibration.
A minicomputer system is used to generate the noise signal,
perform the analog-to-digital sampling and carry out the
calibration computations via the FFT technique.

This report first outlines the substitution method and
compares the relative merits of the conventional CW or pulsed
CW signals with the noise signal. Restrictions on the
characteristics of the hydrophones are also discussed. The
calibration equipment and procedure are then described with
details of the noise generation algorithm and signal
conditioning requirements. Finally, examples of the use of
the calibration procedure are presented.

2. COMPARISON OF -SIGNALS IN THE SUBSTITUTION METHOD

The simplest and most frequently used calibration
technique is the substitution or comparison method?’®, in
which the response of a hydrophone, referred to as the unknown,
is obtained by comparing its output signal to that of a
standard hydrophone placed in the same sound field.
Conventionally, the sound field is derived from a CW or pulsed
CW source which is stepped in frequency over the band of
interest.

Accurate open water calibrations normally require both
free-field and far-field conditions.?’?® The far-field
requirement can be met by choosing a sufficiently large
projector-to-hydrophone separation. In general, however, free-
field conditions can be approximated only in large homogeneous
bodies of water where the distance to any boundary or sound
scattering object can be made very large compared to the
projector-to-hydrophone separation. In acoustic tanks with CW
signals, the far-field requirement usually precludes the very
close separations necessary for practical free-field conditions.
Furthermore, unless the tank is highly anechoic, standing waves



are set up causing large variations in sound field intensity
over small distances.

At the higher frequencies, pulsed CW or tone burst
signals are used to achieve practical free-field conditions.?
The time separation between the signal arriving at the
hydrophone directly from the projector and the first signal
arriving by another path must be long enough to contain a few
cycles at the measurement frequency. The required number of
cycles depends on the Q of any resonances in the measurement
"system. This places a definite lower frequency limit on the

pulsed CW method. .

An alternative signal that overcomes some of the
limitations of CW and pulsed CW signals is gaussian white
noise. The use of computer-generated pseudo-gaussian noise
ensures that an identical signal spectrum is presented to both
the standard and unknown hydrophones. The frequency spectra
are analyzed, using the FFT technique to assemble the various
frequency components in bands or bins. The effects of
multiple reflections within the tank tend to be smeared out
since any pair of signal paths can produce both constructive
and destructive interference within a frequency bin. The dual
to the frequency smearing effect is the smearing of the spatial
variations of the sound field in the tank. The bin width or
frequency resolution should be narrow enough to allow definition
of the hydrophone characteristics but not so narrow that the
signal level is overly sensitive to hydrophone positioning.

Because the sound may be arriving at the hydrophone
position from many different directions, the hydrophones, both
standard and unknown, should be omnidirectional. If the tank
is fairly anechoic then the predominant sound path will be
directly from the projector to the hydrophone and some ’
directivity may be acceptable. Nevertheless, the results of
noise calibrations on directive hydrophones must be interpreted
with care. Another restriction on the hydrophones is one of
size. The hydrophone dimensions should be very small compared
to the tank dimensions to ensure that the sound field in the
tank is essentially independent of the presence of the
hydrophone. Otherwise, both the standard and unknown should
be of the same size, shape and orientation so as to exert a
similar influence on t%e sound field. '



3, CALIBRATION SYSTEM AND PROCEDURE

A block diagram of the noise calibration system is
shown in Figure 1. The system is centered around a
Honeywell H-316 minicomputer, which is used to control the
calibration process, perform calculations and produce hard-
copy results. The upper sampling frequency of 18.4 kHz is
limited by the speed of the A/D converter and the associated
software - this limits the calibrations to frequencies up to
about 9.0 kHz.

A wideband moving coil projector such as the USRD Type
J-11 or J-9 is used as the projector. The standard hydrophone
is normally a 2.5 cm diameter ceramic sphere which has a
constant sensitivity of -99.5 dB re 1 volt/ubar below 9.2 kHz.

A standard hydrophone is first mounted in a suitable
position in the acoustic tank and a pseudo-gaussian noise
signal is projected into the water. After a short delay to
allow the field to become stationary, the time response of
the standard output is sampled and the FFT technique is used
to compute its power spectrum. A number of independent noise
records are projected, the hydrophone output sampled, and
power spectra computed; the results are averaged to give a
mean power spectral density PS for the standard output. The
standard hydrophone is then replaced by the unknown hydrophone
and the above procedure is repeated, using identical noise
records, to give a mean power spectral density PX for the
unknown.

The sensitivity of the unknown hydrophone MX is computed
from the following

MX = PX- -~ PS + MS - G (1)

where all quantities are in decibels, MS is the sensitivity of
the standard relative to 1 volt/ubar and G is the net system
gain of the unknown over the standard. Equation (1) is
evaluated at a set of discrete frequencies determined by the
sampling rate of the hydrophones' outputs and by the number of
FFT sample points.

The FFT technique comprises the computation of the
complex discrete Fourier transform of a time sequence of
samples, and therefore contains both amplitude and phase
information. 1In the present implementation the phase
information is discarded and only the magnitude or power
spectral density is used. ' Should magnitude and phase
calibrations be required in the future, it may be possible to
use this phase information in a revised computational procedure.



b, GENERATION OF NOISE SIGNAL

The necessary wideband noise signal is obtained by
passing software-generated pseudo-gaussian numbers through a
digital-to-analog converter, the output of which is filtered,
amplified and projected into the acoustic tank. The gaussian
numbers are output at a rate equal to that used .to sample the
response of the hydrophone by the analog-to-digital converter.

Strictly speaking it is not necessary to impose a
gaussian amplitude distribution on the transmitted signal.
While other, possibly simpler signals might also satisfy, the
gaussian signal provided very acceptable results.

A typical calibration requires a large number of
independent records, say 100, each having 1024 points. To
allow time for the sound field to reach a stationary state, up
to 512 numbers are output before the hydrophone's response is
sampled. Therefore, the generator should have a period in
excess of 150,000.

The gaussian number generator described by Conolly“
was chosen because of its long period and simplicity of
implementation - keeping in mind that the word length of the
H-316 minicomputer is 16 bits. First, a table of uniformly
. distributed random integers Xy 1(1iiiN), drawn from a
population in the range 0 to 33767, is used to initialize the
generator. Then new sequences (index j) are formed
recursively as follows:

X X +

i,9¢1 = i, Y Xir,y oY

for i=1,2,...,N-1
and
where 3 <N<12, and 1 < j <M.

The quantity M is any positive integer greater than 1 and
generally not greater than the period of the generator. Also,

i

.




) 32768 Af X, o+ Xy, o> 32768

(1=1,...,N-1)

Y =
! or Xy 4 ¥ X i) > 32768

0 otherwise.

Finally, gaussian numbers G: are formed by summing the
uniformly distributed integers Xi j and scaling thus:
>

G =

1
3 = 323

(3)

o=z
»
.
et
I
W
=
N

i=1
The numbers so formed lie in the range of the 10-bit digital-

to-analog converter; that is, between -512 to 4511 inclusively
with zero mean. :

In the above-mentioned random number generator, the
amplitude distribution becomes more gaussian as the value of
N increases. Distributions for two values of N are shown in
Figure 2. The generator period and standard deviation are
given in Table I for several values of N. A typical power
spectral density for a single record is shown in the lower
curve of Figure 3; the result of averaging over 100 records is
illustrated by the upper curve. The rolloff at the upper end
of the frequency band is due to the low-pass filter used to
prevent aliasing, as explained in the next section. The use
of gaussian white noise averaged over several records ensures
that all frequency components are present at approximately
the same level.

5. SIGNAL CONDITIONING

The maximum frequency component that can possibly be
used in the digital computations is equal to the Nyquist
frequency or one-half the sampling frequency. Frequency
components above the Nyquist frequency will cause aliasing,
which may give rise to erroneous results unless they are



suppressed. As a result some signal conditioning is required.

When driven by the gaussian number generator, the
digital-to-analog converter outputs a sequence of rectangular
pulses of varying amplitude. Such a signal has large
components at frequencies well above the maximum frequency of
interest. Low-pass filtering is used to reduce the levels of
the undesirable high frequencies in the projector driving
signal. The cut-off frequency of the filter is set just below
the Nyquist frequency.

The signal observed at the output terminals may contain
undesirable high and low frequencies from sources other than
the projector as well as 60 Hz components due to power line
interference. Therefore, the signal is normally passed through'
a bandpass filter before it is sampled by the analog-to- digital
converter. The upper cut-off frequency is set equal to the
highest frequency of interest which should be below the Nyquist
frequency. The lower cut-off frequency is normally determined
by the amount of low frequency rejection required.

6. EXAMPLES

First, a standard hydrophone (2.5 cm diameter sphere)
was calibrated against itself by the substitution method using
the pseudo-gaussian noise signal with a sampling rate of 18.4
kHz and a resolution of 18 Hz. Based on Equation (1) and on
the assumption that the value of MS is fixed, the computed
value of MX should be a straight line across the entire
frequency band - with a value equal to that of MS. 1Indeed,
this result is obtained, as shown by the solid line in Figure
4, if the position of the hydrophone is not changed during the
calibration. The effect of changing the hydrophone position
by approximately 3 cm is shown by the dashed curve in Figure
4; the attendant changes in the acoustic field are indicated
by the departures from a straight line at the higher
frequencies, especially beyond 1500 Hertz. This result
emphasizes the necessity for accurate positioning of the
hydrophones, although the sensitivity to hydrophone positioning
can be reduced by broadening the frequency resolution. '

Figure 5 shows the calibration results for a 5.1 cm
diameter spherical hydrophone using the pseudo-gaussian noise
signal (dashed curve) and a pulsed CW signal (solid curve).
The agreement is very good in the overlapping frequency range




from 1.0 to 9.2 kHz. Below 1 kHz, however, calibration results
are obtainable with the pseudo~gaussian signal but would not
be valid with the pulsed CW waveform.

A resonant bender transducer (Edo Western Model
_248 4.5) that 1s nearly omnidirectional was calibrated by
the two methods, pseudo-gaussian noise and pulsed CW. The
results, presented in Figure 6, show agreement within *1 dB
over most of the frequency range. The greater discrepancy at
higher frequencies could be due to the increasing directivity
of the transducer and to the difficulty in matchlng the
positions of the standard and unknown when they are of widely
differing size and shape.

The noise method can be used to detect certain faults
in hydrophones. For example, a bubble of air in a hydrophone
boot was simulated by attaching a plastic bubble of about 0.2
cm® to the outside of an omnidirectional hydrophone. The
calibration results with and without the bubble are shown in
Figure 7.  The bubble resonance is clearly evident at about
650 Hz.

The calibration curve of Figure 5 is replotted in
Figure 8 down to 20 Hz. The calibration was carried out in
two sections: the upper section with a sampling rate of 18.4
kHz and resolution of 144 Hz and the lower section with
sampling rate 2 kHz and resolution 7.8 Hz. Hum interference
is readily identified by the dip near 60 Hz but this does not
preclude a valid calibration at other frequencies.

/. CONCLUSIONS

Pseudo-gaussian noise is an attractive alternative to
conventional CW signals in the substitution method of
hydrophone calibration. It allows for automatic wideband
calibration at medium-to-low frequencies under free-field
conditions and in the case of tank measurements, the noise
technique is far less sensitive to interference from boundary
reflections.

The pseudo-gaussian noise method is especially useful
for calibration at low frequencies down to one Hertz or less -
being limited only by the sound generation equipment. The
pulsed CW and noise methods are complementary in the sense
that they can be used together to obtain ultra wideband
hydrophone calibrations in an open acoustic tank.




TABLE I.

CHARACTERISTICS OF PSEUDO-GAUSSIAN NUMBER GENERATOR

Sequence Length, N 5 6 7 12
Period 344064 172032 2080768 4444160
Standard Deviation 132 121 112 85
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