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QAtbst ract

L
e
/" A review of theoretical developments in predicting the buckling response of cylinders subject

to impulsive loads is presented. Most of this theory deals with axisymmetric, radial impulses
on cylinders. The development of solutions for the critical modes and loading magnitudes
which produce excessive growth of displacements are reviewed. Existing theories cover the
specific cases of either entirely elastic or entirely plastic material behaviour for infinite length
and short cylindrical shells. The resultant theories are applied to various shell geometries to .
investigate influencial parameters. A review of numerical finite element and finite difference
studies which investigate dynamic pulse buckling is also given. The requirements to examine
dynamic buckling of more complex structures such as ring stiffened cylinders are djscussed.?

Résumé

Un examen des perfectionnements théoriques pour la prédiction de la réaction au flambage
des cylindres soumis 2 des impulsions de charge est présenté. La plus grande partie de
cette théorie a porté sur les impulsions radiales, axisymétriques exercées sur les cylindres.
On y examine aussi les solutions mises au point pour les amplitudes de charges et les
modes critiques qui produisent des déplacements sans limites. Les théories existantes
portent sur des cas précis de comportement des matériaux entierement élastiques ou
entierement plastiques pour des enveloppes cylindriques courtes et des lon gueur infinie.
Les théories qui en découlent sont appliquées a différentes géométries d'enveloppes afin
d'étudier les parametres d'influence. Un examen des étude d'éléments finis numériques et
d'écarts finis relatives & I'étude du flambage par impulsion dynamique est aussi présenté,
On y traite des exigences pour I'étude du flambage dynamique de structures plus complexes
comme des cylindres renforcés de frettes.
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Notation
a
an(7)bn(T)

- ag,wo

A

Ter

An($), Bn()
Bn

c

ch

C(9), f,4,90,¢,7
Cy,C4,C5,C4,Cs5,Ce
dA

D,

D

Ey

E

E

Ey

frrgn

shell radius to mid thickness
asymmetric amplitudes of motion

radial hoop mode amplitude

‘displacement amplification from autoparametric excitation of flexural

mode
amplification functions for displacement and velocity imperfections
= V00n/Pn

speed of sound in material = ,/EPL, constant in equation (159)

=V En/p

~coefficients defined in equation (161)

constants defined in reference 17

differential arc length of shell

= vOﬁn/pn

12F
(1-2?)

strain hardening tangent modulus

B
1-0v2

equivalent Young’s Modulus =

Young’s Modulus

~ tangent modulus

generalized variables, dependent on »
stress function
shell thickness

shell thickness

moment of inertia




= -

3

asymptotic peak impulse

critical impulse from Dirac delta function
peak impulse amplitude

variable length parameter
=2(1-k+ k2)

(3K, /2)t/?

(2-k)/ Ky

material curve parameter defined as yon

length of shell

nondimensjonal length = L/a

resultant moment in i direction

mass of shell material= ph

circumferential harmonic wave number
circumferential harmonic of greatest unbounded growth
resultant membrane force in i coordinate direction
= (n? - 1)(n? - s?)

stability parameter = Vp/ca

radial pressure

axisymmetric pressure amplitude

asymmetric pressure amplitude

asymptotic peak pressure

minimum pulse amplitude to cause buckling

_ 402y Kont
T3 h)e

constants defining material curves that are strain rate dependent
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Umn 3 an bl men

|

Vo

Yo

shear force

parameter of Bessel equation, defined in text
deformed shell radius = a ~ w,

parameter of Bessel equation, defined in text
radius of deformed motion, = a(1 — w)
circumferential membrane force

nondimensional shell parameter= Sa?/Epl = 12042/ Eph? for plastic
flow buckling,= p/a for elastic buckling

parameter of Bessel equation, defined in text
time
kinetic energy or pulse duration time

- pulse time defining plastic flow solution

" pulse time defining elastic, quasi-static solution

time spent in elastic motion
nondimensional radial displacement= w/a
strain energy of shell

- -strain energy of hoop mode
‘strain energy of flexual mode
complimentary solution of flexural mode

modal amplitudes for axial harmonic, m and circumferential harmonic,
n

particular solution to hoop mode
initial radial velocity

nondimensional initial velocity= \/12p/EraVp/h

tangential displacement




wq

Wy,

€m
€mi

€f

Tn

KT

radial displacement

initial shape imperfections

natural frequency of vibration
radial motion in elastic regime
final radial motion

radial inertia force

coordinate through shell thickness
perturbations of the initial velocity

— _R?
— 1242

critical damping ratio, or = \/E,/E
amplitudes of initial imperfections
nondimensional initial shape impe}féction = $0n
=t-t,

strain

strain of shell midsurface

midsurface strain of initial imperfections
flexual strain

strain at yield

generalized strain rate

=p\1= X2

material viscosity constant

perturbation amplitude of sine function
curvature for injtial shape imperfections

shell curvature
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A wave parameter = n/s

Un parameter of Mathieu instability equation

v Poisson’s Ratio

Q, parameter of Mathieu instability equation

¢ angle of curvature after deformation %? = -,1; -

P nondimensional tangential displacement = v/a, also change in shell angle

of curvature, § — ¢

1/p deformed radius of curvature

P shell material density

Om constant plastic flow stress

oy maximum stress in hoop mode

oy maximum stress in flexural mode

oy yield stress

o generalized stress

o} deviatoric stress of component i

o® current midsurface stress

oo generalized stress at infinitesimally small strain rate

To termination time of elastic motion

T nondimensional time, defined in various sections

Tf time to terminal radial motion
_TSRR time at which strain rate reversal occurs

) circum{erential coordinate, also initial angle of curvature of the shell
-Cotcp :ﬂ,/(_‘%&)z_l

3 =1-r1/74
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1 INTRODUCTION

Buckling under static loading is traditionally investigated in the design of shell structures.
Buckling instability is also a possible mode of failure in structures subject to dynamic loads.
Dynamic buckling of impulsively loaded shell structures occurs through unstable growth of
displacements during motion. Dynamic buckling has been considered in the design of such

“structures as aircraft, automobiles, trains, pipelines and reactor pressure vessels to improve
their resistance to accidental impact or explosion loading. A dynamic buckling mode of failure

- provides a high energy-absorbing mechanism which decreases the transmitted shock to internal
components or personnel. Improvement in design to resist shock loads from hostile weapons
or operational conditions has been the goal of considering dynamic buckling in the design of
military structures such as missiles and rockets. This study presents a review of theoretical
developments in dynamic pulse buckling to delineate the physical concepts of the process. This
review serves as a basis for further work in developing an understanding of dynamic buckling
in the context of submarine pressure hull response to underwater shock loading.

Studies of submarine response to shock loading have concentrated on predicting the stress
level and pattern resulting from complex pulse-structure interaction [1,2] and have generally not
considered dynamic buckling failure which will probably occur after the material has reached
its yield limit. As in static load studies, critical combinations of structural parameters and
load will cause instability, and as in static analysis, detection of these dynamic stability limits
requires special formulae and/or numerical methods. Previous work in dynamic buckling has
been mainly for axisymmetric, pulse loading of unstiffened cylinders. The submarine problem is
more complex as it requires consideration of asymmetric pulse loading of ring stiffened cylinders.

The term ‘dynamic buckling’ has been used to describe two different types of structural
behaviour mechanisms. The first type is buckling of a structure subject to periodic loading
functions which result in a resonance with a buckling mode. This is termed ‘parametric buck-
ling’, as the loading function is a parameter of the displacements in the differentjal equation
which describes the motion [3]. The load intensity to cause collapse can be lower than the
static buckling load for parametric buckling behaviour. The second type of dynamic buckling
is usually termed ‘pulse buckling’ resulting from a transient loading function of a single pulse
form. Pulse loading intensities needed to cause buckling are larger than the static buckling
load. This review is.concerned primarily with the latter, ‘pulse buckling’ definiton of dynamic

_buckling, as it corresponds to buckling caused by shock loads.
An extensive review of the theory and analytical solutions to the pulse buckling problem is
given in Section 2 for the purpose of developing an understanding of the physics of dynamic
- pulse buckling. The Stanford Research Institute (SRI) has devoted effort to this topic for the
last three decades and most relevant work comes from this source. A collection of SRI work
has been compiled in a comprehensive manuscript [4]. Other reviews of dynamic pulse buckling
are given in References [5,6,7]. As is the case for theoretical studies of most complex problems,




analytical solutions have been derived only for relatively simple geometries and loading func-
tions. Asymmetric loading, ring stiffeners and other complexities make analytical solutions for
pulse buckling of submarine pressure hulls unlikely. Numerical modelling by finite element or
finite difference methods offers a means of solving these more complex problems. In any type
of analysis, one must know before hand what structural behaviour to expect, and formulate
a model accordingly. The physics of dynamic buckling is complex, in that one may not know
if the response will be elastic or plastic, of short duration or long, and indeed, one may also
not be able to define the mode or point of failure. Therefore an understanding of the theory
of dynamic buckling for simple cases is essential before undertaking more complex numerical
investigations.

Section 3 of this report gives approximate formulae for the determination of critical buckling
modes and critical impulse loads for dynamic buckling of simplified cases. These have resulted
from assumptions made to the various theories. The effects of several shell geometry and
material parameters on the critical modes and loads are investigated through these formulae.

A few studies have investigated response of shells to impulsive loading by finite element or
finite difference methods. A review of some of this work is given in Section 4.




2 THEORETICAL REVIEW

In static, linearly elastic, bifurcation buckling, the critical load is a well defined point
depending only on the structural geometry, material properties and loading distribution. In
dynamic pulse buckling, the solution is for excessive growth of a particular mode or modes,
rather than for specific critical points. The intensity and duration of the load affect the buckling
mode as well as the total response. The response also depends on the time spent in the elastic
and plastic phases of the motion. )

This section reviews theories for simplified physical cases of plastic flow pulse buckling and
elastic pulse buckling. All theories start with the derivation of the equations of motion for the
physical problem of concern. They then proceed to the solution for the unbuckled, axisym-
metric, radial hoop motion. The complimentary solution for the flexural buckling motion is
then considered for initial displacement and velocity perturbations with harmonic circumferen-
tial variation. Nonlinear ordinary differential equations result, requiring numerical integration
for complete solution, unless linearizing assumptions can be justified. Dynamic instability is
determined by investigating the boundedness of the perturbed motion; this is the Liapunov
definition of instability [8]. In all cases investigated, the nonlinear differential equations are
linearized and examined qualitatively to determine their stability via exponential growth of
certain critical modes.

Solutions for plastic behaviour (thick shells with small radius to thickness, a/h, ratios) and
elastic behaviour (thin shells with large a/h ratios) have been derived separately [9,10] and
are reviewed here to illustrate the governing physics of each case. Basic assumptions of either
entirely plastic or entirely elastic behaviour are needed to permit solution. The critical radius
to thickness ratio for transition from predominantly elastic to predominantly plastic response
is in the range of 100 to 200 for most engineering materials. The transition is not distinct,
Completely plastic behaviour can be assumed for a/h ratios below 40 and completely elastic
behaviour can be assumed for a/h ratios greater than 400. Shells of intermediate a/h ratios have
some combination of plastic and elastic behaviour. The magnitude of the pulse also affects the
ultimate response. Solutions for intermediate a/h ratio shells require consideration of significant
contributions from both elastic and plastic response, and no known analytical solutions have
been derived for this case.

This section presents discussions of the individual plastic and elastic theories followed by a
discussion of the work of Stuiver [11] who presents a common method of deriving both the elastic
and plastic equations and shows that the plastic response has some dependency on the elastic
motion. Other studies which investigate the effects of shell length, pulse duration and spacial
shape, varying material properties and strain rate reversal on the shell motion and stability are
then reviewed. In order to facilitate the use of the various theories in design, most authors have
applied simplifying assumptions to derive approximate formulae for critical dynamic buckling
modes and impulses. These are presented in Section 3 along with sample calculations using




these formulae for a wide range of shell parameters.



2.1 Plastic Flow Pulse Buckling

Abrahamson and Goodier [9], produced the first satisfactory solution to the dynamic pulse
buckling of shells in 1962. The solution was for completely plastic response of an infinite length
cylinder to a perturbed axisymmetric velocity pulse. It was limited to cylinders of smaller a/h
ratios where elastic behaviour can be ignored. This is the simpler of the theories for dynamic
pulse buckling and illustrates the physics of problem very well. This theoretical work was
verified by considerable experimental investigation. -

The basic assumption of this theory is that motion occurs entirely in the plastic material
regime and that the entire shell is in a state of continuously increasing compressive plane strain
with no strain rate reversal. Perturbed inextensional flexural modes are superimposed on the
axisyminetric, constant compressive plastic flow stress state. The resistance of the shell to the
motion comes from moments produced by a stress differential across the shell thickness as a
result of the strain hardening or tangent modulus. Thus, this theory has also been called the
‘tangent modulus’ theory as its existence is dependent upon the material having a non-zero
plastic tangent modulus.

2.1.1 Derivation of the Equation of Motion

Figure 1 illustrates the stress differential occuring in a shell perturbation (local disruption in
uniform radial motion) as a result of the strain hardening modulus, E,. This stress differential
results in a bending moment:

M = EhIK (1)

where T = Tlihs for a unit width of shell and & is the curvature of the shell segment, the
derivation of which is given in Appendix A, and is defined as:

1, 82
K= ;(5523+w) (2)

The assumption is made that the solution is for a ring or an infinite length cylinder; no
end effects or biaxial stress state are included in the curvature derivation. The radius and the
thickness of the shell are conservatively assumed to remain at their initial value throughout the
motion. In reality, the a/h ratio of the shell will decrease with the motion making the shell more
resistive to buckling. The mean circumferential hoop stress, 0,,, is assummed to be constant
around the circumference and with time. In reality, o, will vary as the radial deflection, w(e),
varies and more impoTtant, it will also increase due to strain hardening. The strain hardening
modulus is assumed to be constant and Om is taken as the average stress in the post yield,
plastic flow region. This assumption affects the solution by overestimating the time required
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Figure 1: Strain Differential from Strain Hardening (from reference [9])

for the hoop motion to absorb the kinetic energy of the impulse. The average compressive hoop
force in the shell is:

From Figure 2, equilibrium of forces results in:

S M = (M+dM)dz — Mdz — Q(dA\)dz = 0 (4)
which reduces to: oM
@= ®
and:
S Fz = —(Q + dQ)dz + Qdz + Zd)dx — Sd¢dz = 0 (6)
which reduces to: 50 96 52
w
T T T ()

where m is the mass/unit circumference and where % = 1; in which % is the deformed radius
of curvature defined by:

1 1,8%
tr= gt alee ) ®)

8=

1
p




Figure 2: Shell Force Components

Substituting equations (2) and (1) into equation (5) and equations (8) and(5) into equation (7)
gives the partial differential equation of motion for the shell:

E,I 8%w 82w 1 1 62w _ &?w o
at Copr T ) Ol + (G t = s ®)
Reference [9] rewrites equation (9) in dimensionless form using:
w (B, 1 [Eyht ., Sa®  120,a® |
=TI et T Vi12y p a? and ¢ = EnI~  Eyh? (10)

to give equation (9) as:

0%u 0 0u o, 8% 5 ,
;?F+(1+S)W+su+53__8 (11)
2.1.2 Particular Solution

The particular solution to equation (11) is for the unperturbed, axisymmetric, radial motion
of the perfect ring (ie. w is independent of ). Equation ( 11) is reduced to:
0%u

W + 8211. = —g% (12)




with initial conditions for an initial velocity pulse:

ow . Ou 12pa
w(o) = u(o) = 0, and ( i )t=0 = Vo, which becomes (87' Jr=0= Vo = 1/ A hVO (13)
and solution: v
up(7) = =1 + cossT + ?o sin sT. (14)

The duration of the inward hoop motion is established from the particular solution by deter-
mining the time at which the radial velocity vanishes. Setting the first derivitive of equation (14)
equal to zero gives:

1
= arctan % (15)

2.1.3 Perturbed Velocity Solution

The complimentary solution of equation (11) is derived assuming a harmonic circumferen-
tial perturbation in the initial velocity profile of the shell:

(g—z)fﬂ) = v,[1 + nzz;z(oan cosnf + B, sin nf)] (16)

where a, and (3, are parameters dependent on the degree of velocity perturbation. This results
in a solution of the form:

u(r) = f:[fn(r) cos nfd + g,(7)sin nd] (17)

n=2

which after substitution into the homogeneous form of equation (11) gives:

n? f.(1) cos nd + n'g, (1) sin nd + (1 + s*)(—n? fo () cos nd — n?g, () sin né)
482 (fr(T) cos 0l + gn(T)sinn) + fr(7)cos nd + gp(r)sinnb = 0 (18)

yielding the ordinary differential equation:
fotn =021+ 6%) + $%fn = 0 (19)
and a similar equation for g,. The coefficient,
[n® = n?(1+s%) + %) = (n? — 1)(n® — 6%) = P (20)

determines the stability of motion. For n < s, f, and g, are hyperbolic, unstable functions and
for n > s, f., and g, are circular, stable functions. In other words, only circumferential modes,




n, which are less than the shell parameter, s, will grow exponentially if the load intensity is
great enough. For example, a shell of parameters a/h=30, E} = 10° psi and om=75,000 psi has
a value s=29 which allows a large number of harmonics, 7, to grow unbounded. One of these
unbounded harmonics will predominate.

Taking the value of s to be its nearest greater integer value, the complimentary solution of
fr and g, is:

n=s oo
falr) = Z(An coshp,7 + B, sinh p, 1) cos nf + z (A cos pu7 + B, sin p,7) cos né (21)

n=2 n=s+1

where p} = (n% — 1)(s> — n2) for n < s, or, = (n? = 1)(n? — s?) forn > s + 1.

2.1.4 Complete Solution

Adding equations (21) and (14) gives the complete solution as:

u(7,0) = <1 4 cos st + % sinsr + Z[(A” cosh p,7 + B, sinh PnT) cos nb

n=2 :

o0
+(Cy cosh p,7 + D, sinh PnTYsinnf] + Z [(A, cos p,T + B, sin PnT) cos né

n=s-41

+(Cn cos pr7 + Dy, sin p,7) sin né) (22)

A, and C), are zero from the initial conditions (13) and B, and D,, are determined from
the initial velocity perturbation, equation (16), to be: B, = 2;%‘- and D, = 3%% giving the
final solution as:

wlr,8) = -1+ cossr + Y2 sin T + v, Y 2 (an cosnb + Bnsin nﬂ);}; sinh p, T
+00 3 nzss1{¥, cosnd + B, sin n0);1; sin p, 7 (23)

The buckling instability occurs as a result of excessive growth of the p%sinh PnT term. One

value of p,, will dominate the response. Taking the derivitive of;lz— sinh? p,, 7 gives the limit point
as:

1 1
(P2)er = Z(sg ~1)% or,n2 = -2-(.92 +1) (24)

For the shell dimensions used in the above example, (pn)c- is 420 giving an n.. of 21 as the
critical mode for dynamic pulse buckling. The function Ln sinh p, 7 should be investigated for

a range of n in the vicinity of n., and for a duration 77 defined by equation (15) to determine
the instability characteristics. '




Since this theory has used the assumption of monotonically increasing compressive strain,
the limit point of strain rate reversal has to be investigated. The total compressive strains
consisting of the hoop strain and flexural strain for the inside and outside surfaces, respectively,

are:
h.w h 0w h . w h 8w
r,) =1+ —)l—+——-x]and [1 — —}[— — === 25
(r,0) =1+ 2a][a + 2a? 692] [ 2a][a 2a? 692] (25)
These equations, upon substitution of equation (23) have to be investigated at various times
throughout the motion to determine the onset of strain rate reversal. The occurrence of strain

rate reversal is an indication that instability is imminent.

2.1.5 Discussion of Plastic Flow Buckling

A number of assumptions have been made in Abrahamson and Goodier’s plastic flow
buckling theory. They are:

1. The solution is for plane strain, and therefore an infinite cylinder or ring.

2. The loading function is a perturbed, axisymmetric, radial velocity impulse at the shell
surface.

3. The solution ignores the elastic behaviour completely, and therefore is applicable to shells
with small a/h ratios in which significant plastic flow will occur.

4. Theradial hoop motion is assumed to occur with a constant stress value, and with constant
initial values of shell thickness and radius. The tangent modulus is also assumed to be
constant during the motion.

5. The stress state is one of continuously increasing compression and therefore, the theory
is only applicable up to the point of strain rate reversal.

All of these assumptions have been addressed in studies subsequent to that of Abrahamson and
Goodier [9], which are discussed in later sections.

Defining the velocity pulse parameters, v,, @, and B, is the main difficulty in using this
method to define a structure’s response to a shock load. Reference [9] investigated several
velocity pulse profiles and although the buckled shapes differed, the results only varied by 5
percent.

For given shell dimensions, this theory may be used to establish:

¢ the expected dominant mode shape of plastic pulse buckling via equation (24),
e an approximation to the duration of the response time via equation (15),and

¢ the motion of the shell, given the velocity pulse parameters via equation (23).

10




To determine the critical impulse for dynamic buckling, one must establish a limit point at
which buckling is assumed to occur. This may be in the form of a specified amplitude as is
done in Section 3 where the derivation of approximate pulse buckling formulae is discussed, or
may be the point of strain rate reversal detected by equation (25). Equations (23,24,15 and
25) have been investigated via a computer program for various a/h ratios, material parameters
and load amplitudes. The loading function used in the code js derived from reference [9] where
a parabolic perturbation is assumed. This involves only cosine, and thus e, terms, and is of

the form:

1(0.0) — 132 9 1 P 1 0

%(6,0) = v,[1 — %W—a(cos ~ 3 cos 36 + 5 cos 50 — ...)] (26)
The maxirnum perturbation is 5 percent of Vo and the n=1 term is irrelevent to the asymmetric
1532(—1 (n=1})/2

sorsms s for n =

buckled shape. The a, perturbation terms are then defined as a,, =
3,5,7...

Model | a/h | Vo(in/sec) [ E(psi) | om (psi) | mer | tr(sec) | tsrr(sec)
30 6,000 1,000,000 | 50,000 | 17 [ 0.00243 | 0.00194
30 4,000 1,000,000 | 50,000 | 17 | 0.00175 | 0.00175
30 2,000 1,000,000 | 50,000 | 17 | 0.00093 none
30 500 1,000,000 | 50,000 | 17 | 0.00236 none
25 6,000 1,000,000 | 50,000 | 14 0.002 0.0018
20 6,000 1,000,000 | 50,000 | 11 | 0.00162 | 0.00146
15 6,000 1,000,000 | 50,000 9 |0.00121 | 0.00121
10 6,000 1,000,000 | 50,000 6 | 0.00081 | 0.00081
30 6,000 500,000 | 50,000 | 24 | 0.00243 | 0.00194
30 6,000 16,000 50,000 | 165 | 0.00243 | 0.00194
30 6,000 5,000,000 | 50,000 8 10.00243 | 0.00242
30 6,000 1,000,000 | 60,000 | 19 | 0.00207 | 0.00165
30 6,000 1,000,000 { 70,000 | 20 | 0.0018 0.00144

e T Ty WY
PO m o OO TD DA R

Table 1: Results of Plastic Flow Theory for Various Parameters

Figures 3 and 4 illustrate the growth of various modes at several values of time during the
response for models 2 and 9 of Table 1. It can be seen that the growth for several modes in
the vicinity of n, is exponential with time, with the n. mode becoming dominant. Table 1
shows the critical mode, termination time, 7y, and the time at which strain rate reversal occurs,
TSRR, for several shell parameters. Model 2 (Figure 3), had 7srp =75, so that the solution
remains valid throughout the motion. In model 9 (Figure 4), 74 was greater than TSRR; as a
result, the solution was no longer applicable because very rapid growth occurs, as can be seen
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Figure 3: Modal Growth for Model 2

in Figure 4. Trends from Table 1 indicate that the critical mode increases with increasing a/h,
decreases with increasing tangent modulus, Ej, increases with increasing flow stress, o, and
remains unchanged with variation in the magnitude of the initial velocity impulse. The time
of terminal motion, 77 (the time at which the shell velocity first reaches zero), is a function
of the rate at which the initial energy can be absorbed by the shell. As the shell becomes
thicker (lower a/h ratio), 7; decreases and as the initial velocity (energy input) increases, 7
increases. Abrahamson and Goodier [9] experimentally investigated the behaviour of several
long cylinders and found good agreement with the theoretical mode predictions for lower a/h
ratios. :

Reference [12] advances the theory of reference [9] to include initial shape imperfections in
the shell and the effect of increasing thickness, decreasing radius and varying material properties
on the response of the cylinder. The radius is now defined as:

r=a-— W, (27)
where w, is the uniform radial motion. This results in a redefinition of the curvature as:
1 1 1 8w
- _ I —_— 2
k= a+a2(w+802) (28)
An additional term in the curvature to include the initial imperfections is given as:
1 8%w;

Ry = 5 (wit 67’” 7 (29)
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Figure 4: Modal Growth for Model 9

so that equation (8) becomes:

0¢ 1 1 '
a—p—-a""{‘}"‘f'z (30)
Using equations (27 to 30) in equation (7) gives the equation of motion as:
EyI 04w 8%w S &*w 0w ?w
v (g T agr) + alwt ) + (wit Gl = —ms (31)

where h is now defined as ho2.

The solution of equation (31) follows that of equation (9) except that it must be evaluated
numerically if variations in Ej,0,A and r are to be considered. This formulation has been used
in reference [12] to establish critical velocities for which excessive buckling will not occur.

An independent development of the plastic flow theory is given in Section 2.3 from Reference
[11] which encompasses the elastic influence on the plastic flow behaviour. The important
conclusion is that as the a/h ratio becomes higher, the elastic portion of the response influences
_ the formation of the critical mode and the ultimate motion.
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2.2 [Elastic Pulse Buckling

Goodier and Mclvor [10], and Lindberg [13,4], produced a theory of elastic pulse buckling
for rings and long shells subject to perturbed, axisymmetric, velocity pulses, similar to the
perturbation theory for plastic flow pulse buckling. The mode formation occurs during elastic
motion and the theory considers only elastic behaviour. Flexural buckling modes are assumed
to form before the hoop mode reaches yield. Additional energy above that which could be
absorbed elastically in the hoop mode is assumed to go into forming permanent plastic hinges
in the flexural modes. For engineering materials, the elastic buckled form can occur for shells of
a/h ratios greater than approximately 260. Shells with an a/h ratio below this value will have
their hoop mode enter the plastic flow region before significant elastic flexural motion occurs,
although the elastic motion will influence the resulting plastic flow buckling mode [11].

The mechanism of producing buckling modes is a transfer of energy from a fundamental hoop
mode to flexural modes. This is also the physical mechanism for plastic flow buckling. However,
in the plastic flow buckling theory, the hoop mode membrane energy is considerably greater than
the energy which is transferred to flexural modes and the actual energy transfer is not considered
(ie. the loss of energy from the hoop mode is neglected). In elastic pulse buckling, almost all
energy can be transferred between the hoop and flexural modes. The differential equation of
motion for this case is the Mathieu equation [3], which is discussed further in Appendix B. The
Mathieu equation models transfer of energy from a periodic loading function to a vibratory-
buckling mode of one half the frequency of the driving force. Parametric instability results
if sufficient energy is transferred to cause buckling. Since we are dealing with pulse loading,
there is no periodic external driving frequency; however, the hoop mode oscillates at a natural
frequency and energy can be transferred to a flexural mode of half of this hoop mode frequency.
This is termed ‘autoparametric’ instability since the driving force is self generated. The main
difference with the classical parametric instability is that the autoparametric instability case
does not have a sustained energy input and if the shell does not buckle permanently on the first
phase of the hoop motion, it will only vibrate with a continuous energy interchange between
hoop and flexural modes until damping ceases the motion. The magnitude of the initial velocity
in relation to the shell geometry dictates whether permanent buckling or only vibrations will
occur. Even if buckling does not occur, stress values in excess of hoop mode stress values are
generated by the superposition of the amplified flexural modes.

Since the coupling between hoop and flexural modes is an integral part of the motion, one
mode cannot be assumed to occur independently of the other, as in the plastic flow buckling
theory. In plastic flow buckling, the hoop mode thrust is assumed to remain constant until
motion stops, as it is of considerably greater energy than the flexural modes. In the elastic
case, the transfer of energy needs to be considered and coupling terms between the fundamental
hoop mode and flexural modes have to be maintained in the solution.
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2.2.1 Derivation of the Equation of Motion

The equation of motion in section 2.1 for plastic flow buckling was derived on equilibrium
principles. For elastic pulse buckling, energy formulations and Lagrange’s equation are used to
derive the equation of motion [4].

The radial and tangential shell displacements with initial imperfections, are expressed as:

w(h,t) = w(h,t) + w;(6)
5(6,t) = v(6,t) + v;(8) (32)
where w; and v; are initial imperfections and w and v are the radial and tangential displacements

measured from the initial w;, v; state.
The kinetic energy per unit length of shell is given by:

1 ] 27 aw av
T=: — ) + (=)%ds.
arha [ (G + () (33)
Reference [4] uses the dimensionless quantities:
U w; v v ct
U=E,Uo=—al,¢=;,¢i=jand7'=—a" ' (34)

where ¢ = 1/% and E; = TZE;T, to give equation (33) as:

2T y
T=%EMaﬁ K%§f+m%§fwa (35)

The strain energy of the shell is defined as:

2 /2
U:Eﬂ/ [z (36)
2 Jo Jens

where the hoop stress is given by Eje.
The total circumferential strain, €, is the sum of the middle surface hoop strain, €,,, and
the flexural strain from the change in curvature a distance, 2, from the middle plane:

€= €, + 2K (37)

- which when substituted into equation (36) gives the strain energy as:

27
U= %E,ha / (€2, + a%a’k?]do (38)
0
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where o? =. % and k, the curvature, is defined by equation (2) and derived in Appendix A.
Equation (38) is nonlinear and terms up to 4th order are required to maintain the required
coupling of hoop and flexural modes [4].
The midsurface hoop strain is defined by a change in length of a circumferential element

from ad@ to rdf given by: )
_ L [0, 200y,

which, when put in dimensionless form, and using the relations w = a —r and ¢ = ¢ — 8, gives,
after reduction [4]:

. 31,) e sz 1 (6‘u ).2

T “a0 2 a4
Including initial imperfections in the midsurface strain gives: €, = €, — €n; Which after sim-
plification becomes:

(40)

oY 31/) 1,0u Ou Ju; 6‘@& o;

24 il — ===
=" o6 T2\ Tag s o o0 (41)
Substituting equations (2) and (41) into equation (38) gives the strain energy as:
P z ,0u 0us
U= gBha [ (GGG =0 +( —O((Ger - 2c S 2002
0y 8¢, 1 Bu 292 | o2

with shape imperfections and 4th order terms maintained. The displacements are now expressed
as Fourier series:

u(r,8) = ao(T) + i[an(r) cos né + bp(7) sin nd]

nw=l
o o]
P(1,0) = Y _[en(7) cos nf + dn(7)sin nb] (43)
n=1
Shell inextensibility is assumed, which gives: ¢, = —b,/n and d, = a,/n. Imperfections are
taken in the form [4]:
302 =y = Z[én cos n# + -y, sin nb)] (44)
n=2

to give the energy expressions:

n? +1 da,

T = xEihal(52) + 2 Z( Wy (Gmy) (45)
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and:

U = rEhala? + % >l = 1)20? ~ (n® = 2)ag)(a? — 52)

n=2
13, 4 4, 4, 14 =, 2
=3 2o 5! = 3+ )@k + 5) = 3(n? ~ 2)(Entn + mba)ac] (46)
n=2 n=2 ) . B - o
To obtain the equation of motion, equations (45) and (46) are substituted into the Lagrange
equation: or or st o -
d U
—_( ) — 1 2 47
395 " o * 5z = 40
to give:
dp + ag — 41(722 —2)aZ = 0, for the generalized coordinate, z; = ag (48)
and 3
dn + (wi — fnao)an, + §n2fngnaf{ = \/-I_Qanan, for, z; = a, 7 (49)

2(n2 _1)2 42 2(n2_ 4,24 . . . .
whfre w2 = -u%;fi)i, Jo = %agn = n?—(—%, and the nondimensional imperfection
is 65 = $6,. The b, terms have been omitted since solution will concern only a few specific
amplified harmonics and the phasing of several harmonic components will not greatly affect the
solution.

2.2.2 Impulse Velocities for Vibration and No Buckling

For velocities which do not cause the shell to buckle in the first phase of the hoop mode,
the shell will vibrate with energy interchanging between the hoop and flexural modes. At early
motion, most of the energy will be in the hoop mode and the a2 term can be neglected in

n
equation (48) to give solution:
‘_/"
ag = TO sinr (50)

for an initial axisymmetric radial velocity of V.
Substituting equation (50) into equation (49) and redefining parameters in the Mathieu
equation format [3], gives:

dn + (Qn — pnsin)a, = V1206, sin T (51)

- where the Mathieu stability parameters are defined as [4]:

0 — 2 = a’n?(n? - 1)?
"= AR )

"T (a4 1) T m(82)
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Figure 5: Mathieu Stability Diagram (from reference [10])

and:
_ faVo nz(n'f— 2o

c  (n?+1)c
The format of the Mathieu equation, (51), is given in a simpler homogeneous form in refer-

ence [10], where initial imperfections and fourth order terms are omitted in the strain energy
expression since only small velocities are considered.

A curve of {1, versus u,, both of which are functions of the shell parameter, «, the initial
velocity, Vy and the circumferential wave number, n, can be plotted on the Mathieu stability
diagram. This is shown in Figure 5. The derivation of the stability regions (shaded areas) on 3
the Mathieu diagram is a very difficult process and is discussed further in Appendix B and
reference [14].

It can be seen in Figure 5 that for this case of small initial velocity, the curve passes mainly
through regions of stability with the exception of the {1, = 1/4 abscissa which is unstable for
any pn (with no damping). Setting 0, = 1/4 in equation (52) gives an approximation for the

(53)
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Figure 6: Response Showing Transfer of Energy From Hoop to Flexural Modes (from reference

(4])

critical mode as {10]:

e = 1.316\@ (54)

assuming n., >> 1. This also gives the critical frequency of w, equal to one half of the hoop
mode frequency necessary to have ‘autoparametric’ instability. Using the relationship ng, >> 1,
the Mathieu equation (51) can be rewritten in the form [4]:

a, + p2/\2(/\2 - sinr)a, = sz\za\/ﬁszsin% - (55)

with p = :—’3,/\ = 2 and §? = E from which p can be used as a ‘stability’ parameter in that it

contains the necessary parameters, o and Vj, to establish instability from the Mathieu diagram.

The motion of the shell is determined by including the aZ term in the equation of motion,

- (48), to allow for coupling between the hoop and flexural modes. Reference [4] omits the a2

term in equation (49) and attains a solution to the shell motion by numerical integration. The

_ results are reproduced in Figure 6. It can be seen that energy is almost completely transferred
between the hoop and flexural modes.

A third curve in Figure 6 is that of the peak outer fiber strain. This is the structurally

important aspect of the autoparametric behaviour for small initial velocities where permanent

buckling does not occur. It can be seen that the peak strain occuring during the flexural
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mode is considerably greater than that during the hoop mode. An analysis not considering this
autoparametric effect would not detect this amplification and would underestimate the peak
stress under an impulsive load.

To estimate the stress amplification from flexural vibrations, the peak hoop and flexural
stresses can be derived assuming that there is complete energy transfer uniquely to both modes
from the initial kinetic energy. The initial kinetic energy can be determined from equation (33)

for an initial velocity, Vg, as:
T = 7phaV2 (56)

The strain energy of the shell, assuming that it is entirely in the hoop mode, is determined
from equation (46) as:
Uy = nEjhaa} (57)

The strain energy assuming that it is entirely in the flexural mode, n.,, is also determined from
equation (46) with the additional assumptions that n., >> 1 and that 4th order terms are
negligible, as:

Us = -;-ﬂ'Elhancraza? (58)

Equating equation (56) with equations (57) and (58) and using equation (52) with Q,_, = 1/4
to establish the critical mode, gives an approximation of maximum amplitudes of vibration as:

Yo (59)

v
ap = — and Oy, = V8
c
for the hoop and flexural modes, respectively. This means that the flexural mode amplitude is
2.83 times the hoop mode amplitude.
To compare stress amplitudes, the maximum hoop strain of w/a = ag = Vp/c gives the

maximum hoop stress as:
Ve
oy = Ez*-g (60)

The flexural strain is defined from equation (37) for the curvature as:
h 1 Ow
€f = zK = 7 58 ) = Une, = \/ganzrancr (61)

which after substitution of equation (59) and equation (52) for Q,,, = 1/4 gives the maximum
stress in the flexural mode as:

o5 = ——El Véoy (62)

which means that the stress in the autoparametrically excited flexural mode is 2.45 times that
of the hoop mode.




Goodier and Mclvor [10] numerically integrated the Mathieu equation of motion, equa-
tion (55), for several a/h values and present graphical results which illustrate the energy trans-
fer between hoop and flexural modes. The a/h values used are much lower than those for which
elastic dynamic buckling could occur.

The previous determination of autoparametric response, and of stress amplification factors,
has been for initial velocities such that the a3 term could be neglected from equation (49) for
the flexural terms of motion. Lindberg and Florence [4] show that for values of the stability
parameter, p > 1/2, this leads to unbounded growth of displacement terms. The motion for
velocities resulting in p > 1/2, can be determined by numerical integration of the equations of
motion, (48) and (49). The effect of damping can also be considered by including S, the critical
damping parameter, to give the equations of motion as:

.. . 1 .
d, + 2Bdy + ag — Z(n2 ~2)a2 + 28dy =0 (63)
and 3
d, + 2Bw,a, + (wﬁ — fnao)a, + gnzfngnaﬁ =V12af,éa0 (64)

From results of numerical integration, it was found that the critical mode number was a function
of p (ie. initial velocity for constant shell parameters), An empirical fit to results of the
numerical integration gave a formula for the critical mode as [4]:

4
s 4
ngr = Z]-); + (0.6)48 (65)

where, from equation (55), s? = 2.
From results of the numerical integration, motions for two different values of p are shown
in Figure 7. It can be seen that energy transfer to the flexural mode is complete closer to the
first inward hoop motion as p increases.
To derive an expression for stress amplification similar to equation (62) for the small injtial

velocity case, the total energy of the system including the 4th order, al terms, is used [4]:

AV+T) ., . .
wEha 245 + 4, + 2a3 + (na? —nag)a? + ﬁn“ai = 2p?a? (66)

In determining the maximum flexural stress, it is also necessary to consider the coincident
energy in the hoop mode, arising from the coupling term, (nia? — n’ag)a?, in equation (66).
To determine the maximum amplitude of ap at the point of maximum a,, the velocities, dp
and a,, are set to zero and a2 is maximized with respect to ag. The upper bound to the stress
amplification is given as:

U f+ el ere, 4, = 230/ VN § 2 - 23 (67)
oH i 1272 er
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Figure 7: Elastic Motion for Various Stability Parameters, p (from reference [4])

which is shown to have values in the range of 2.5. Results from numerical integration gave
stress amplification values in the order of 1.65 for p > 1.5 indicating that the upper bound of
equation (67) may be too high [4].

2.2.3 Pulse Buckling from Large Initial Velocities

For larger initial velocities, Vo, in relation to the shell parameter, «, (ie. large p), the
shell will buckle during the first compressive hoop mode. For large values of p, the curves of
) versus p on the Mathieu diagram (Figure 8) do not pass primarily through stable regions
as was the case for smaller p values, as was shown in Figure 5. As was the case in plastic
flow buckling, many modes are amplified, with one mode being dominant. In considering the
Mathieu equation, (55), it is clear that the coefficient of @, must be negative for unbounded
growth. Following the approach of plastic flow buckling, the largest n for which unbounded
growth may occur can be estimated by taking sinr = 1 in equation (55), to give:

2_ Yo

22 <1, 1’1.,2,1".‘z =8 = ;;E : (68)

Reference [13] rewrites the Mathieu equation, (55), without initial shape imperfections as:

dy — p?A¥(sinr — A%)ay =0 (69)
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ence [13])

with initial conditions:

an(0) = VOZ", an(0) = 0 (70)

where 7, are harmonic perturbations of the initial velocity field, Vp. The investigation of modal
growth can be accomplished by numerical integration of equation (69) with variations in the
parameters A and p. Figure 9 shows the mode amplifications with time of an aluminum cylinder
of a/h=480 and V, = 800in/sec [13]. It should be noted that buckling occurs for the elastic
case at very high wave numbers, in the range of n =45 to 65.

For complete analysis of the motion of the elastic shells, equations (48) and (49) need to
be numerically integrated with the initial conditions of equations (70). An empirical fit to
results obtained in this manner gives a relation for the amplitude of the most amplified mode
In relation to the initial imperfection as a function of the parameter, p, as [4]:

a
-5—"lmu = 1.2¢° (71)
n

The mode of maximum amplification can be estimated by solving equation (69) for a con-
stant hoop thrust case (ie. letting sinr = 1). This is the same assumption as is made in
plastic flow buckling, where the time dependent coupling between hoop and flexural modes is
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reference [13]) '

neglected. This gives [13]:

ax(t) = Vo:nﬁ%&—z, where T, = pAV1 — A2 (72)
n

from which the maximum amplified mode can be determined by minimizing equation (72) with

respect to A to give:
1

V2

To establish whether elastic, dynamic buckling will occur for a given velocity pulse on a
given shell, it is necessary to determine if ejther hoop or flexural yielding occur and which will
occur first. Elastic, dynamic buckling is signified if flexural yield is reached first, otherwise the
shell will enter the plastic flow hoop mode where dynamic buckling will occur as plastic flow
buckling influenced by the elastic mode. Using equation (61) for flexural strain and equation(71)
for maximum amplitude, the flexural strain can be expressed as:

Aer = (73)

€ = \/§A2p(1.2'5;ep)g'— (74)

Setting expression (74) equal to the yield strain ¢, gives a relation between p and h/a. A similar
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expression for the hoop strain can be attained by setting:
Vo _ ph _
¢ Viza Y
Using the value of A, = 0.6, from results of numerical integration of equation (69), Lindberg
and Florence [4] present a curve, Figure 10, for different imperfection values, 6, giving hoop
and flexural yield limits as functions of p and «. For practical values of initial imperfection
of 1 percent of the shell thickness (6§ = .01) and €y = .004, it can be seen that purely elastic,
dynamic buckling will not occur for shells below a/h=260. The stability parameter, P, must also
be greater than 3.66 for buckling to occur, otherwise only autoparametric vibrations will occur.
These parameters represent a very thin shell, thinner than would be used in most submarine
applications.
The topic of autoparametric, dynamic, elastic buckling has been addressed subsequent to
reference [10] by other authors. Hubka [1], derives an analytical solution to the coupled non-

(75)
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linear differential equations of motion for response to small initial velocities. The solution
agrees with the numerical results of reference [10] showing a slowly varying hoop mode function
modulating a rapidly varying flexural mode. '

The Mathieu type instability describes response for periodic type loadings and many ref-
erences examine this [15,16,17]. This is not pursued further here as response to single pulse
loading is of primary interest.
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2.3 Elastic and Plastic Pulse Buckling

This section presents an analytical investigation [11] which includes both the plastic and
elastic regimes in a single theory. The theory reduces to the plastic flow or elastic theories
discussed in the previous two sections for limiting cases. The necessity of combining both elastic
and plastic behaviour for a wide range of a/h ratios is demonstrated. Although equations of
motion are produced, a general solution to the elastic-plastic case is not formulated.

The problem considered here is again for a ring or infinite shell subject to a perturbed,
nearly uniform, axisymmetric velocity pulse. The linearized equation of motion, derived from
equilibrium of a shell segment (see equation 7) is, with the additional assumption that u is

much less than 1: /E . /E
o i o - :
o232 a2j? + a2fz = 0 (76)

where 32 = %‘ and ,”, is the spatial derivitive with respect to §. The parameter £, in this form
of the equation of motion, can be used for the elastic as well as the plastic flow case. For purely
linear, elastic response, # = 1 and o/E = e. Reference [11] considers only material of bilinear
stress-strain curves represented by:

)u” +

w4 (1+

o/E = e,ﬁ2=1,f0r05656y

E
o/E = (1-p8%¢,+f%, 5% = -E—", fore, <e - (77)
Equation (76) is then divided into two regimes, one for elastic strain:

; € " U €
u’”+(1+;§)u tgt=0fr0<e<e (78)
and one for plastic strain:

l—,@zé'y " i € 1—ﬁ2€y
@ o2t TRt et TR a2

The initial conditions, as in the plastic and elastic tases, incorporate imperfections in the initial
displacement and velocity fields, defined by the series:

w4 (1 + =0, fore <¢ (79)

Vo & ]
ug(0) = - Z(ano sin n8 + byg cos nb)

n=1
to(0) = —cq[l + > _(anisinné + b, cosnd)) (80)
n=1

where an; are of perturbation order (<<1).
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‘The solution follows that of the previous cases, with a particular, unperturbed solution and
a perturbed, complimentary solution yielding buckling terms.

Solving equations (78) and (79) for perfectly radial motion (no dependence on #), yields the
particular solutions:

ﬂ':}-/gsinr,for‘—/gzu$ey (81)
¢ c
and: 7
1-— B2 1-2 Ve
Te o+ B (L -t e T Do, (82)

where 79 = arcsin 7% V 72 Cot = /(1255)2 — 1 and the constants of integration were derived

from the initial conditions:
Vo . . Vi
u(Tg) = —CE sinTy = €y, and ,°(7p) = —ZQ cos 7o (83)

If the initial velocity is great encugh to cause Vg/c > ¢, then the radial hoop motion ceases at
time: 7r/2 go . :
: (51)
The complimentary solutions are obtained by solving equations (78) and (79) subject to
initial conditions (80). The flexural motion of the shell is assumed to be inextensional, allowing
€ = u, and the complete solution to be taken as u(#, ) = T(7) + u.(8,7). Equations (78) and
(79), reduce to the variational equations of the perturbation of u:

Tf =10+ —F7

w4 (14— )u+ _Oforogﬁgey (85)
and: _ 5 ,
w 1-— € u " Ue — .
ul +[(1+ 7 »j,’;)+§]uc+a2ﬂ2=0for €, < (86)
for which solutions of the form:
ue(8,7) = -‘% S [an(r)sin 18 + by(r) cos nf] (87)
n=1

are assumed.
Substitution of equation (87) into equations (85) and (86) produces the homogeneous form
of the Mathieu differential equation,(51), of the elastic theory (section 2.2), if n<<1:

20/

Gn + o?(n? - sint)g, =0,for 0 < U< ¢, (88)
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and of the plastic regime:

, o, - o e
Gnt @ fint - %‘%"ﬁi\/ L+ %(VZ*;C)? Sin[B(7 ~ 10) + ¢llgn = 0,for ¢, <T  (89)

the latter of which reduces to :

bn + a2B%[nt — n?

1o = 0,for §2 << 1 (90)
Equation (90) is similar to equation (19) of the plastic flow theory (section 2.1). Equation (89)
reduces to equation (88) for elastic motion where B=1.

Both equation (88) for the elastic case and equation (89) for the plastic flow case, are
of the Mathieu instability type. Values of the parameters, n,a%,Vy,c and 3 can be found
which fall within the unstable regions of the Mathieu diagram. If the hoop mode response
remains completely elastic (ie. Vo < c¢y), then the mode of buckling will be established solely
by equation (88) as was given in section 2.2 from Lindberg and Florence [4]. If Vy > cey,
then the hoop mode enters the plastic material regime and the buckling mode shape will be
some combination of the two predominant harmonics determined from the elastic and plastic
solutions. If V5 >> cey, then the response will be governed by the predominant mode of the
plastic flow regime as was the case in section 2.1. - o

To obtain the predominant harmonics of equations (88) and (89), these Mathieu equations
must be solved. This is of extreme analytical complexity [14]. Stuiver [11], produces an ap-
proximate solution resulting in:

=P _ 1o 4
A= " = 51— 2] (91)

for the elastic regime, where A,p and s are defined in equation (55) and:

Ny = 0.85\/():—2-(2—1)1/2[1 + (ﬂVTO/E)2]1/4 (92)
¥y

for the plastic regime. For P > 2, Ag is equal to 0.595 which is in good agreement with the
value of Ay = 0.6 obtained through numerical integration [4]. Equation (92), for the plastic
flow wave number, Npl, gives comparable values to equation (24) of the plastic flow case derived
by Abrahamson and Goodier [9].

Comparison of resultant buckled wave numbers from tests on cylinders with 9 < a/k < 36
show that the experimental values lie between the Ner and ny values of equations (91) and (92)
with no particularly good agreement with either value. Stuiver postulates that this is a result
of both the elastic and plastic modes influencing the response.
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A complete solution to the nonlinear differential equations describing the radial motion
would be very complex and would be better left to approximate numerical methods, such as
finite difference or finite element.

One such study, using a dynamic elastic-plastic, geometrically nonlinear finite difference
code for rings, is presented by Wesenberg [18]. Three cylindrical shells of a/h=100, 200 and
300 were subjected to axisymmetric impulse loads, and response was measured by high speed
photography. Initial imperfections were measured for the predominant resultant mode and
incorporated in the finite difference solution. The radial velocity perturbations were measured
from the photographs and used as the velocity perturbation parameters in the finite difference
solution. The numerical solution allowed the shells to buckle, deform plastically and damp out
to a final deformed shape. The permanent peak deformations for a range of impulse loads were
in good agreement with the finite difference predictions. The wave number of predominant
response was shown to increase linearly with the magnitude of the applied impulse. All three
shells buckled in wave numbers ranging from 30 < n < 35; however, the solution does require
imperfection and perturbation input from the buckled shell which one would normally not know
apriori.

Using equations (91) and (92) for the experimental aluminum shell described in reference
11, with parameters: h=0.02 in, a=2.0 in, E=10,000,000 psi, E;=130,000 psi, 7(0.2%)=44,000
psi, p = 0.27 x 1072 Ib-sec?/in?, ¢=200,000 in/sec and V=805 in/sec, gives ny = 13 and
npr = 121. This shell buckled experimentally at » = 30 [18]. This indicates that the actual _
response is somewhere in between the cases of purely elastic and purely plastic response for a
shell of a/h=100. The plastic theory greatly overestimates the mode of fundamental response. ;
Since both n; and ny are linear functions of a/h, for the same velocity impulse, the shell with
a/h=200 will have ng = 26 and np = 242 as predictions and the a/h=300 shell will have
ner = 39 and ny; = 363 as predictions. For these thinner shells, which buckled experimentally
at n=32 and n=33, respectively, the elastic prediction is in reasonable agreement. This could
be expected as these shells are in the range of the elastic limit of a/h>260 reported by Lindberg
and Florence [4].
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2.4 Pulse Buckling for Finite Length Cylinders

The theories presented in the previous sections of this chapter have dealt with rings or
long shells for which plane strain conditions have been assumed. This section discusses theory
for the dynamic buckling of axisymmetrically loaded shells of finite length where biaxial stress
states and end conditions have been included. First, the extension of the plastic flow buckling
case to include a biaxial stress state will be discussed. Then, the elastic dynamic buckling case
is considered for finite length cylinders with simply supported end conditions. Elastic dynamic
buckling, particularly if the loading function is of longer duration than a pure impulse, may
occur at circumferential wave numbers of small enough value that end conditions affect the
response of the entire shell {19].

2.4.1 Plastic Flow Buckling of Finite Length Cylinders

As was the case in section 2.1 for rings or long cylinders, the theory derived for finite
length cylinders is for the specific case of a perturbed, axisymmetric, velocity pulse on an
imperfect cylinder. The theory is most applicable to thick shells (a/h < 40), where the hoop
membrane strain will undergo significant plastic deformation before buckling occurs and elastic
behaviour can be neglected. The assumption of no occurrence of strain rate reversal is also
made and a linear strain hardening modulus is used as the constitutive relationship. Florence
and Vaughan [20], first developed the theory for short shells with a plane stress assumption,
and then extended it to consider shells of variable length to the limit of the infinite length,
plane strain case [21]. The solutions are for the unbounded amplification with time, of the
predominant circumferential buckling mode.

Due to the biaxial stress state, an additional resisting moment to the strain-hardening
moment derived in section 2.1 exists. Material incompressibility is assumed giving the condition
(in terms of strain rates):

2+ és+é, =0 (93)
where é, = %‘Etﬂ. The generalized strain rate and stress are defined by [20,22]:
. 2, . .
e-t@+gea) (50
and: 3
o’ =5(c2+of +07) (95)

where of are the deviatoric stress components. With the assumption of o, = 0 (stress through
the shell thickness), and using the Levy-Mises flow law [22], ¢;/0] = A, where ) = 3¢/20, from
equations (94) and (95), the stress components become:

20, _, ] 20 ,, .
Or = §€(2€$ + 60), and, og = gg(ex + 269) (96)
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and for a linear strain hardening assumption, & = Exé, which allows:
o =0y+ Epe (97)

where oy is the yield stress.
For unperturbed, radial, hoop motion, the circumferential strain rate is:

& = —(1 — z/a)(wo/a) (98)
where z is measured from the shell midsurface and g is the radial hoop motion.
With the assumption of plane stress, o, = 0, = 0, and é, = ¢, = —¢&y/2 from equation (96),

at the midsurface, equation (98) gives é; = é, = wo/2a. The strain rates at any point z, in the
shell are defined as:

ér = Wo/2a, ég = —(1 — z/a)(wo/a), and, €, = —(1/2 — z/a)(o/a) (99)

which, when substituted into equation (94), with (2/a) terms of order two or more neglected,
gives the generalized strain rate:

é¢=—(1-z/a)(@o/a) (100)
and the stress relations:
oz = (2z/3a)o and og = —(1 — z/3a)c .. (101)
where the generalized stress is now defined as:
o =0y + Er(l — z/a)(woe/a) (102)
Reference [20] defines ¢ as the current midsurface stress:
0° = oy + En(wo/a) (103)
allowing the stress components to be defined as:
oz = (22/3a)e® and 05 = —0° + (2/3a)(0, + 4Erwo/a) (104)

again with z/a terms of order two or greater neglected.
The moments and membrane forces for a shell segment, determined using equation (104)
are:

/2
M, = / ) opzdz = (h3/18a)0® (105)
—~hf2
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k)2

My =/ p opzdz = (h*/36a)(c® + 3Erwo/a) (106)

—h/2 ‘

h/2 h/2
N, = / 0zdz =0 and Ny = / 0gdz = —o%h (107)

~h/2 ~h/2

The equation of motion for the unperturbed state, from Figure 2 and equation (7), is:
w
Ny = aph &2° (108)
which becomes: .

o912 + (en/a)*wp = —oy/ap (109)

upon substitution of equations (107) and (103) and defining ¢ = E,/p. For initial velocity
pulse conditions, wo(0) = 0 and o(0) = Vj, the particular solution for this problem is:

wo(t) = Vo(a/er)sin(cxt/a) — (0ya/Ep)[1 — cos(ept/a)] (110)

The perturbed solution is defined as w(#,t) with the total solution being wg(t) + w(8,1).
The curvature, from equation (8), is defined as:

1 (’wo + w) iazw

K= ; + o2 e —_892 (111)
giving the perturbed motion strain rate components as:
. wo+w,  z 8w
R S e R 1
¢ (wo + w)
z 2a
. wg + w . z 0%
@ = (1/2-z/a)(——)+ 250 (112)
The generalized strain rate ;from equation (94), becomes:
._Wotw, oz 0w
€= ” ~a2(w0+w+ 602) (113)

with orders of z/a greater than one and perturbation products neglected. Equation (113) is
integrated to give the generalized strain:

w;

- _wy  w w oz N PFw— wy)
=g to T —a2[wo+(w—w.)+—a72——] (114)
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where w; is defined in reference [20] as the initial deformed shape, w; = w(#,0). The generalized
stress is then given as:

E E O (w — w;
0= 0%+ 2w —w;) - —a’;—z[wo +(w—w) + -—(‘g—ozﬂl] (115)

Equations (96),(112) and (115) and a binomial expansion of equation (113), give stress compo-
nents:

22 1 62w Ep

Oy = 3Cz[cf 1+ T )+ " (w — w;)] | (116)

E, z 1 82w E, 0w — wy;)

_ [0 = — an. L 140 — —=n —_ AT s

oy = ~fo"+ " (w—w)]+ 3a[or (1+ o 96 )+ - (Bwo + 4(w — w;) + 3 507 ]

with resultant moments and membrane forces:
My = gl (U + o-az) + —(w—w)] (117)
R2 . . 1 2w,  Ey P (w — w;)

Mgy = 360[0 (1+ —w—ow)-l- = (3w0+4(w—'w,)+3 562 )] (118)
N;=0and Ny = —h[o® + %(w - w;)] (119)

The second term of Mp in equation (118) is the resisting moment from strain hardening, Es,
which governed the theory of section 2.1 for infinite shells. The first term of Mo, %00(1 +
%;%%%”—), is an additional resisting moment arising from the different locations of points, 2,
through the shell thickness on the yield ellipse (Figure 11), which is defined by the equation:

0% — 0,09 + 0} = 02 (120)

The strain rate vectors at the outer, mid and inner surfaces are of different magnitudes on
the yield surface giving rise to a strain differential through the shell thickness and thus a
resisting moment. This moment has been termed the ‘directional moment’ in reference [20]
and is dependent on a biaxial stress state. The second term of Mp is referred to as the ‘strain
hardening’ moment and depends on the existence of Ej. 7

The equation of motion is found by substituting the curvature and force-moment expressions,
equations (111) and (117) to (119) into equation (7), giving:

i 1 &M, (wo+w) , 18w O (wo + w)

1
— NG e T e

0 (121)
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Figure 11: Strain Vectors on Yield Ellipse (from reference [20D)

Simplifying assumptions are introduced by Lindberg and Vaughan [20]; the hoop thrust is made

constant with time: Ny = —oph, the (wo + w)/a? term in the curvature is neglected, and the
4(w — w;) term in My (equation (118)) is neglected. This yields equation (121) as:

R, 1 8%w Evd*(w—w), 008w 8w

s6al” Mt g Y3 am It aam tPam =0 (122)

36a

where the four terms represent, respectively, the directional moment, the strain hardening mo-
ment, the hoop thrust and the inertia. With the introduction of the dimensionless parameters:
U = w/a,u; = wifa,u0 = wofa,7 = Vot/2a,r; = PV§/20y,0* = h%/124? and B = Ei/oy,
equation (122) becomes:

o

o? & [_.1_a2u + 3ﬂp2(u —u;), 0% + 77 8u
c 062" ug 062 002 062 ° 2 972

which is similar to equation (41) of the plane strain plastic flow buckling case except that the

‘directional moment’ term has been added and u has been neglected with respect to 1.

The equation of motion for the unperturbed motion, equation (108), is given, from the
simplifying assumptions, as o, = —aptdg, which, when put in nondimensional form gives: 29 =
- —2/7¢. Initial conditions,wq = 0 and wo = Vp yield up = 0 and o = 2. Integration of iiy with
‘the initial conditions yields the dimensionless hoop velocity:

to(7) = 2(1 — 7/74) (124)

1+ =0 (123)

-
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and the dimensionless hoop displacement:
wo(T) = 2(7 — 73/274). (125)

The time at which motion ceases (i = 0), is 7f and the midsurface hoop strain at this time
is wo/a = uo(7s) = 7;. Reference [20] introduces a further parameter, £ = 1 — 7/7y, such that
the period of motion is now defined in the interval 0 < £ < 1. The equation of motion is now
expressed as:

8%u %u 2,82 1 8Pu ik
9 + 2Tf802 - o [:3»285892 - 2Tfﬂaw(u —u)]=0. (126)
The perturbations of the fundamental motion are expressed in sine series as:
(o0
uw(8,€) = Y _ un(£)sinnd (127)
1
with initial shape:
oo
ui(6,1) =) ansinnd (128)
- :
and initial velocity perturbations:
00
V = Vo(1+ ) _ by sinnb) (129)
1

yielding the Bessel type differential equation:
Qn

i — i — Bt = Snan ’ (130)
subject to initial conditions:
un(1) = a, and ,(1) = —274bs (131)
where: 2
Qn= =3 R = 2rin?%(1 — a®Bn?), and s, = 27 a2pnt (132)
The solution of equation (130) takes the form of Bessel functions and is [20], for RZ > 0:
un(€) = An(£)an + Bn(§)bn (133)
where: 7

An(®) = 27 L(Baf) Ko1(Bn) + Ko(Bnb)Io-1(Bn))(Rn + Sn/Bn) = Sa/Rr
Bu(€) = 275" [~L(Ra&)Ko(Rn) + Ko(Rn€)lo(Rn)] (134)
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Figure 12: Displacement and Velocity Amplifications as a Function of Harmonic Number for A
Short Cylinder (from reference [20])

where [, and K, are modified Bessel functions of the first and second kind of order v = (1—"'232-)
The restriction R2 > 0 defines the range of harmonics, n, which will grow unbounded, as
n? < 1/a28. For RZ < 0, the solution is in terms of Jy and Y, unmodified Bessel functions
which do not become unstable. This is similar to the plane strain case where hyperbolic
functions represent the unbounded range of n, and circular functions, the bounded n. The
An(§) and B,(£) functions represent amplifications of the shape and velocity imperfections,
respectively. Equation (130) may also be evaluated numerically. The amplification functions
Ar(£) and B,.(£) resulting from numerical integration, are shown in Figure 12. These are similar
in form to Figures 3 and 4. The exact values of the amplified parameters are dependent on the
initial shape and velocity imperfections. Although the displacement amplification functions are
greater than the velocity amplifications, the two terms may be comparable for realistic initial
imperfections. An approximate formula for the critical mode is given in reference [20]:

- ey = (72)1/4\@ (135)

Reference [21] carries the theory for short shells to shells of variable length by introducing
the parameter, k, into the strain rate relation, such that:

éx = —kégfor 0 <k <1/2 (136)
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Figure 13: Yield Ellipse for Variable Length Shells (from reference [21])

where k=1/2 for the plane stress, short shell case just described, and k=0 for the infinite shell,
plane strain case. Figure 13 shows the yield ellipse of the midsurface strains for varying shell
length. The shaded region is entirely in a state of biaxial compression with the short shell case
(k=1/2), corresponding to o, = 0. The stress state is expressed in terms.of k as:

oy _1- 2k

p = 5Tk (137)

The value of k varies along the length of the shell, being near zero at the middle of a long shell
and near one half at the ends of the shell. An approximate formulae for k as a function of
length is given [4], as:

cosh(2Q %)
k(z)= ————L<for —L/2<z < L/2 138
(2) 2 cosh(QE) o [2ses<lf (138)
where L is the cylinder length, D is the diameter and:

02 (2—k)Ki (139)

= K - (T - 2k)7]

_._The theory for the variable length shells follows that of the short shells, but includes addi-
tional parameters as a result of: ' B
éz = k’tbo/(l (140)
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which are defined as:

K1 =201 -k+ k%), K;=1/3K1/2, and, K3 = (2 - k)/K; (141)

Only the key equations, with the K; parameters, will be repeated here . The solution of the
unperturbed radial motion is defined by equation (110) which now becomes:

wo _ Vo . 3oy _
Z = e sin(Aept/a) 2K2Eh[1 cos(Aept/a)] (142)

‘where A2 = £(2—k). This solution is reduced to that of equation (125) for a constant midsurface
stress, o, giving: w
= =r(2~7/1) (143)

with 7 now defined as:
ry= LV0E?
20m(2 - k)
Om is taken as the average stress in the post yield region as was used in section 2.1. This is
different than the short shell theory which uses gy, which is the yield stress (ie.o,, > oy).
The resultant moments and forces for the perturbed motion, equations (117 to 119), become:

(144)

B 3konKs 1 6% K3 B, 5? _

h?  3k%0m K3 1 &% K3Ep,

) 2
Mo = Gl it ) 22 - ey Zow_w)) (140)

onmh Omh
T - = 2IC - = L —_—
N. , ( 1) and Ny K, (-2+k) (147)

where, again, My consists of a ‘directional moment’ resulting from a strain differential on the
yield surface through the shell thickness and a ‘hardening moment’ resulting from an Ej, of
positive slope creating a strain differential through the shell thickness.

The above force, moment and curvature relations are substituted into the equation of motion
(equation 121), resulting in the nondimensional equation of motion:

) 0%u +2 Fu 82 [ kK3 &u  2(2- k)rfﬂ(azu _ Py
orz " oz T Y e 2 ke doer T K, 867 ~ gz

N=0 (148)

“where the nondimensional quantities are defined in equation (123) except that o, replaces
oy and 7y is defined by equation (144). Using the same displacement perturbations (equa-
tion 127), initial distortion (equation 128), velocity imperfections (equation 129), and initial
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conditions (equation 131), the same Bessel type differential equation as equation (130) results.
The coefficients are now redefined in terms of k as:

0, = 302nk? K3
"T(2-k)?

2 2 o?fn’ 2 2
, R2=2rm*[1—-(2 - k)—i,2—-], and, S, = 27yn° — R, (149)
with solution defined by equations (133) and (134). The amplification functions A»(£) and
B, (&) behave as in Figure 12.

Both references [21] and [20] develop simplified expressions for the amplification functions
by approximating their final values at £ — 0. In considering the modified Bessel functions at
their limits, it can be shown that:

, . 2711 (v)
Lteo€ I,,(Rnf) = 0 and Lt K,(R.§) = -——R‘;-— (150)
n

where T'(v) is the Gamma function, and for R, >> v, it can be shown that:
I(R et 151
WBn) = —m (15)

which result in approximations for A, and B, at £ = 0 of:

[(v)efrrsn? I'(v)efnry 5
A0 = g, yeer = PO SRRy (59

For k approaching a value of zero for the long shell, plane strain case, Q;z =0, R =
2rm?(1l — 29‘—%-2-), and S, = 4Tfa—2\§§i and the solution of equation (130) now is in the form-of
hyperbolic amplification functions:

An(£) = (2ryn?[R%) cosh R,(1— £) — S/ By, (153)

and:

B(£) = (274/Ry)sinh Rn(1 - £) (154)
which for terminal motion (¢ = 0), are approximated by:
A,(0) =~ 7yef"n? | R? and Bn(0) = rye™/Rn (155)

Differentiating either of equations (155), with respect to n to obtain its maximum value yields:

_ |3 (156)

e =\ 4028
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with amplifications:
An..(0) = €® and B, (0) = r;efn /R, (157)

V3

where Ry, = rynl = L1 and 74, the final circumferential strain is:

2
Ty = .\/%VQ (158)

For k approaching a value of 1 /2 for the short shell, plane stress case, the strain hardening

" moment becomes negligible, giving S, ~ 0 and R2 ~ 2r/n?. The maximum harmonic, n.,,

is determined from maximizing equation (152) with respect to n. Reference [4] presents the
equation for n.. resulting from a graph of Q),, vs R,, as:

c\/214(2 - KK
g, = S BI (159)

where; ¢=5/14 for A, and ¢=5/17 for B,. Approximate amplifications for the critical mode
for a®fn? << 1, Rn? ~ 2r/n? and k=1 /2 are given by reference [20] as:

Rn

R
-— _ _6_ —_ _ Tge™m
Any = 55— a0d By, = e (160)

An important conclusion from studying the effect of length in plastic flow buckling is that
the number of waves (ner) in the buckled mode increases with shell length. For the same load
and a/h value, a short shell with k=0.5 buckled with wave number 13, compared to its longer
counterpart of k=0, which buckled with wave number 21 [21].

For the general case where both directional and strain hardening moments are significant,
Lindberg and Florence [4] again derive an expression for the critical mode 7., by minimizing
Apn(&) with respect to n to obtain:

T2 — k i
= O YL DI i ne (a61)

where: C(q) = ¢(c1e=9/%) and ¢=0.36, ¢; = 0.85, gp=0.1, ¢ > 0.01, ¢ = 5’—(2_-22?}%’17)3’ f(E) =

_\/1'— (%—?‘)2 and 52 = zzTIk{)?;rﬁ.
The approximations to the amplification functions, A,(0), can be used to establish critical

buckling velocities and impulses by establishing a limiting value of Apn(0). This is done in
- Section 3.
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2.4.2 Elastic Pulse Buckling of Finite Length Shells

Mclvor and Lovell [23], address the topic of autoparametric, elastic response of pulse
loaded finite length cylinders in the same manner as Goodier and Mclvor [10] for infinite
length cylinders, described in Section 2.2. Expressions for the membrane and bending energy
are derived and given in Reference [23]. These are considerably more complex than those of
equation (42), as the axial strain must also be considered in the energy integral. Displacement
functions:

(o] oo
w(z,0,t) = Y > Unn(t)sin m;rm cos nf
=0 n=0
"o e mrz
v(2,8,8) = Y D Vin(t)cos ] sin nf
=0 n=0
o o mmrz
w(z,0,t) = D D Wpn(t) cos J cos né (162)
m=0n=0

are assumed which now consider axial variation of the shell generator. Boundary conditions
which facilitate a solution have been assumed; —g—’j,u, radial and circumferential shear are zero
and v and w are non-zero at the ends. These boundary conditions are not neccessarily of most
interest in practical problems. Expressions (162) are substituted into the energy expressions
which are in turn used in the Lagrange equation, (47), to determine the equations of motion
with Upnn, Vinn and W, as generalized coordinates. These expressions are similar in form to
equations (48) and (49) of the infinite length case but are considerably more complex and have
three pairs of equations for each of u,v and w, whereas the infinite length case only considered
the radial displacement, w.

For a radial, impulsive velocity on the shell, the equation of motion (Lagrange’s equation)
for the fundamental hoop mode (n=m=0) is reduced to [23]:

oo + oo = 0 (163)

With initial conditions wee(0) = 0 and 1o(0) = aVo/c, where ¢ = E/p(1— v?) = E;/p and the
initial velocity Vp, is much less than c for elastic response, the solution to equation (163) is:

woo(T) = 2—}—:@ sinT (164)

where 7 = ct/a. Perturbations of the higher order harmonic terms are used to investigate
stability with initial velocity imperfections given by:

. aVy
Wmn (0) = 7mn—22 for Ymn << 1 (165)
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Figure 14: Mathieu Stability Curve for Finite Length Shell (from reference [23])

Considering products of perturbations to be negligible, the Lagrange equations for generalized
displacements, Uy, Vinn and W,,,,-become:

I}mn + ClUmn + C2an + CSWmn =0

an + C2Umn + C4an + CSWmn =0
Wonn + CaUpmn + CsVinn + Winn(Cs + C4Woo/a) = 0 (166)

where C; are defined in reference [23] and are functions of m,n,h,a and l.

Neglecting tangential inertia (ﬁmn = Vi = 0) allows Uy, and Vi, to be expressed in terms
of Winn, from which the latter of equations (166) can be written in the Mathieu differential
equation form:

Winn + (2 + psin 7)W= 0 (167)

where = Cg — giz- + %%%%’,1%5’3)3 and is a function of the shell parameters, m and =, and
“u = CyqVo/c. The resulting I\/iathieu stability curve is shown in Figure 14 for the Q = 1/4 region
of stability for given initial velocity and shell parameters. Parametric points (€2, u) are defined
- by intersections of families of curves of m and n. Only the m=0 line was present for the infinite
shell case in Figure 5. As a result of finite length allowing higher axial modes of response,
there are many more points in the unstable region of the Mathieu diagram. Reference [23]
demonstrates that as the shell length increases, the m=1,2,... lines converge with the m=0 line,
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giving the response of the infinite shell (Figure 5). The response of the shell is determined by
numerically integrating the equations of motion for a few of the most amplified modes. These
modes are obtained from the Mathieu stability diagram and confirmed by ensuring that the
response for the chosen modes is of comparable energy to the input kinetic energy. Results of
numerical integration in reference [23], show that the modes of maximum amplification are not
always of the m=0 mode as in infinite shells.

Since this analysis is for purely elastic behaviour, elastic buckling, which grows to permanent
deformation or collapse before hoop mode yield, will only occur for very thin shells. The
important aspect of this theory, as in the case of the infinite shell elastic response theory is
that stresses are significantly amplified by the flexural modes over the purely radial hoop mode
stresses. These amplifications need to be determined from the summation of the harmonic
amplitudes obtained from numerical integration of the Lagrange equations. Results reported
in reference [23] indicate that amplification factors as high as four for circumferential stresses
and eight for axial stresses may exist.

The case of parametric instability of elastic, finite length cylinders has been addressed by
several authors for nonimpulsive loads [19,15,16]. For these cases, the Donnell shell equations
have been used to derive the equations of motion for the unperturbed radial and perturbed
flexural motions. Bienick, Fan and Lackman [16], derive equations of motion from Donnell
equations and use the Galerkin method to obtain a solution for a system of differential equations
and arrive at a Mathieu type equation. Similar results to those of McIvor and Lovell [23] are
attained, where an increase in the number of parametric points in the Mathieu diagram results
from decreasing the length of the shell. Yao [15], gives a good discussion of the development of
the Mathieu equation from Donnell shell theory and gives several examples of its use for shells
loaded radially and axially. It is, however, for very thin shells under static or periodic loading.

Anderson and Lindberg [19], use Donnell shell theory to derive the equations of motion for
the shell, which will be repeated here. Using the compatability equation:

10%w lw ., 0%w

A*F + Eb[——=75 = ( ag,l,(,,y)%r(amz Wz = (168)

and equilibrium equation:

162F O°F 0*w 0’°F 8w  O°F 8w

. 4, L1078 _ _
DA w a 0z  9y? Oz + Ox8y 8z0y  Oz? Oy?

p=0 (169)

of Donnell shell theory [24], inertial and initial displacement imperfection terms are added, from
which the equilibrium equation becomes:

Nzo N N 8w
2"392( wtwi)+ =L+ ph—z —p = 0 (170)

- 82
DA4w+N$5;2-(w+w,-)+2 5

( +w;)+
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with N; and N.g defined by the Airy stress function, F', and Ny defined by the Airy stress
function plus the membrane force from radial motion giving:

92F &F Eh we &F
* T aop7 = “oapag MM Ne= T g (171)

The compatability equation becomes:

-

2
AP = 22— 2 o (172)

~ where the variations of wg with @ dissappear, as w is the radial hoop mode. The stress func-
tion, F, represents the perturbed flexual motions. Nondimensional quantities are introduced in
reference [19] as:

v =wla, u; = wi/a, £ = z/a,l = L/a, and, T =ct/a (173)

and the displacement and pressures are assumed to be of series form:

u(€,0,7) = uo(r)+ f: un(T) cos nf sin 7€/1

n=1 .
u;i(€,0) = 3 8n(T)cos nfsin g/l
n=1
o) = 2P 3 fsin ¢/l 174
p(&,0,7) = m[po(f) + nz_; Pr(T)cos nésin v&/ (174)

where displacement and pressure distribution have been assumed to be half sine wave form
(simply supported ends), and p,(7) are the pressure perturbations from which stability can be
determined. Substituting the first of equations (174) into equation (172) yields:

1,82 2 Eh & 712 .
&?(525 + W)F_ -—-‘—z-—ngl 73 Un cosnfsinwé/1 (175)
F must then be of the form:
F = E'ynun(r) cosnfsinmf/l (176)

n=1
_Which when substituted into equation (170) yields the equations of motion:
do+uy = po
1— [nud)(m/0)* _ 2
| [+ (2 B2 —nuwlu, = p,+ nugé, (177)
which must be evaluated numerically to determine the shell motion. Equation (177) is of the
Mathieu type.

2
- in + [a*(n® + 77)7 + (
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2.5 Effect of Pulse Duration on Response

The theory of the preceeding sections has been for response to ideal, perturbed axisymmet-
ric impulsive loads where an ideal impulse, applied over a zero time period can be represented
as a Dirac Delta function. The ideal impulse was applied as an initial velocity condition since
it had no time dependence. In reality, an ideal impulse is difficult to achieve, as the pulse will
have some finite time duration.

A time dependent loading function must be incorporated directly into the equation of mo-
tion. This was seen in Section 2.4, where the Donnell shell equation was used to investigate
stability. Anderson and Lindberg [19], investigated the effect of loading rate by considering the
plastic flow equation for quasi-impulsive loads and the Donnell equation, (177), for quasi-static
loading. This implies that dynamic pulse buckling occurs when the shell is in the plastic flow
regime, which is true for all but very thin shells, and that static buckling occurs in the elastic
regime. Reference [19] defines the impulsive loads by triangular and exponential functions,
giving I = PT/2 for the triangular shaped pulse and I = PT for the exponential shaped pulse,
where T is the exponential time constant.

The plastic flow equation of motion is defined, including time varying pressure and variable
material properties, as [19]:

o’E; &u  ,a’E; 0¢,0%°u oy o 2 w;
Tt CE TR gt gt

where the initial displacement imperfection and the displacement and pressure functions with

perturbations are defined as: '

) (178)

i+ +(

u;(0) = Z 6, cosné

n=1
oo
u(0,7) = uo(T) + D tn cosnb
n=1
p(6,7) = po(r) + ) _ pn cosnb (179)
n=1

resulting in the equations of motion:

i + EEQ(I + uo) = po
Ole-t
E
__with initial conditions u,(0) = #,(0) = 0. Solutions of equation (180) are obtained by numerical

integration as are the results for the elastic model from equation (177). Both equations are of
Mathieu form.

iy + (02 = D[T0? = Dl = pot+ B0 - D (180)
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Figure 15: Peak Pressure versus Impulse Curves (from reference [19])

By arbitrarily assuming a critical imperfection amplification of 1000 as the buckling thresh-
old, Reference [19] derived curves from the two theories as a, function of impulse versus pressure,
shown in Figure 15. The two curves are hyperbolic, approaching two asymptotes of a critical
impulse for high peak pressure and critical peak pressure for high impulse. The critical impulse
approaches the ideal impulse from the plastic flow pulse buckling theory of section 2.1 and the
critical pressure approaches the elastic, static buckling pressure for infinite time duration. The
intermediate portion of the curve, where both elastic and plastic behaviour are significant, is
not defined by either theory. Through numerical calculations it is demonstrated that for inter-
mediate a/h ratios, there are two fundamental growth modes, one of higher harmonics for the
plastic flow behaviour and one of lower harmonics for the elastic behaviour.

Lindberg and Anderson [19], investigate the effects of various pParameters on the curve of
Figure 15. The pulse temporal variation, of exponential or triangular shape, showed a maximum
shift of 35 percent in the curve. Changing the a/h ratio had an expected effect of changing

.the relative proportions of the two curves. For thick shells (small a/h), the hyperbolic curve of
the plastic flow theory was dominant with very little or no elastic curve in existance. For thin
shells (large a/h), the opposite behaviour occurred, with the elastic hyperbola, dominating. A

- change of length of the cylinder affected only the elastic branch, as the plastic flow theory used

. was for infinite length cylinders.

Approximate formulae for the hyperbolic curves have been developed in reference [19], from
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which, for a given shell, critical load parameters can be established. The curves are defined by:
[(P/Ps)—1][(I/1a) - 1] =1 (181)

where for the plastic flow curve:

Py=Pr= %ay(h/a) , and,
I4 = It = (96/K)"*a(po, ) *(h/a)*/* (182)
and for the elastic case:
P4 = Pg = 0.92E(a/L)(h/a)*/*

and, Iy = Ig = 5pca(h/a)? (183)

where K is the o/ E; slope of the shell material. The form of curve derived from these is shown
in Figure 16.

Characteristic pulse time durations are also derived, defining which theory best describes
the shell behaviour:

T>Tr=  2af c){}b% plastic flow theory
T<Tg=  5.5(L/c)/a/h  elastic theory
Tg<T<Tr intermediate strain reversal theory (184)
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Nachbar [25] investigates the impulse to cause failure in an elastic/perfectly-plastic infinite
cylinder, as a function of pressure versus time duration, for a rectangular pulse shape. Failure
is assumed to occur at a specified displacement, w #» and motion termination occurs at 75 when
w = 0.

The equation of motion for the radial hoop mode is given as:

62w Uho
pah-—a-tT = pR — r— (185)
where R = a(1 — w). Upon introducing nondimensional notation, equationl85 becomes :
Pw o
w—p(l—’u)—l_w. (186)

After some manupulation, reference [25] presents an expression for the critical impulse under
Dirac Delta function loading as:

wy o
Iy, = \/2A ——dw (187)

For elastic perfectly plastic material which defines o(w) = u for u < uy and u = u, for u > Uy,
the critical impulse for a Dirac Delta function becomes:

wy
I5; = wy, /2-——y -1 (188)
where wy < 0.1a.

For the case where the duration of the impulse is less than the time of response spent in
the elastic regime, ty, the impulse to cause failure is given as:

It = wy /A +1 (189)

where Ay =t;— ¢, = \ /2(—:’—‘;{1 — 1). The ratio of finite pulse to Dirac Delta function impulse is
given as:

Iy s T/2 ,
E“I‘ sinT /2 (190)

- Lo
. -:—I—-w—T Af-i-l (191)
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Figure 17: Critical Pulse Parameters for Axisymmetrically Loaded Cylinders (from reference
[25])

where T > 2 arccos[Ay, /A§ + 1] and po is the pulse amplitude. The minimum pulse amplitude

which will cause failure defined by wy, is:

1+ A%

po = wy[m] (192)
occuring over a pulse of duration:
- = / 24T U
T = Tpes = Ay 2+Af+2+arcs1n1+A§. (193)

From this theory, curves of impulse ratio to pulse duration time were produced from which
critical rectangular pulse parameters can be derived. These curves are shown in Figure 17 as a

function of Ay, which is the time spent in the plastic regime.
The theory of Reference {25], has been based solely on tracking the mean radial displacement

of the hoop mode, w. No flexural perturbations are considered. It is assumed that flexural
buckles will form at a given w, and that the longer the time spent in the plastic regime, the
-more likely it will be that flexural buckles will form.
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2.6 Effect of Spacial Pulse Shape

In many practical problems, and certainly in the case of a submarine subject to shock
loading, the pulse wave will not be axisymmetric and, in fact, will also not be applied to the
entire shell instantaneously. The main restriction in assuming axisymmetry in the preceeding
theory, is that the circumferential membrane stress is independent of circumferential location.
In asymmetric loading functions, this is not the case. For thicker shells, which buckle in plastic
flow at higher harmonics, it has been postulated [27,19,4], that if the circumferential stress can
be assumed to be constant over a few buckled wave lengths, then the maximum circumferential
stress, gg, can be used in the axisymmetric pulse buckling equation. This requires that a finite
element analysis of sufficient accuracy to predict the peak membrane stress of the shell, oy, as
a function of time, be undertaken. These values are then used in the numerical integration of
the axisymmetric equations for perturbed motion.

In thinner shells, or for shells with longer duration pulses, the buckled wave lengths will be
longer (smaller number of harmonics, n), and it is less likely that the circumferential stress will
remain constant over one wavelength. This also depends, in both thick and thin shells, on the
degree of asymmetry in the loading function which must be at least smoothly varying.

An impulse loading of the distribution described by:

I'=1I.cos0,for, —r/2<8<x/2
=0, for, /2 < 8 < 37 /2 (194)

was investigated in reference [4]. Experimental results indicated that buckling took place over
about 120 degrees of the shell. Studies utilizing oy results from finite element analysis, com-
paring peak impulse values to give the same deflection amplitude, indicate that a greater peak
impulse is required for the cosine distribution. This varies from about 20 percent greater for
the thick shell-plastic flow case to 100 percent greater for the thin shell-elastic case. It was also
determined [4] that for the cosine pulse, the a/h ratio at which the behaviour is purely elastic is
shifted much higher. For the axisymmetric pulse, a/h=288 and for the cosine pulse it increases
to 480.
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2.7 Strain Rate Reversal

In the plastic flow theory the assumption was made that the shell was in a continuous state
of compression. In fact, as the buckles grow with time, the outer and inner fibers of the shell
will see some reversal of strain rate, with tension zones eventually occurring in the convex parts
of the buckles. The effects of strain rate reversal on the simple theory outlined in section 2.1
were investigated by Lindberg and Kennedy [26] through a numerical finite element computer
code which modelled layers through the shell thickness to obtain correct strain distribution and
more complete results. Two main differences from the simple theory were noted in this study.

The time to final response was shorter in the finite element code results, as the additional
loss of energy from the hoop mode to the flexural mode was modelled. In the simple plastic
fiow theory, it was assumed that the hoop mode absorbed all of the initial kinetic energy before
motion ceased. This shorter response time resulted in the simple theory overestimating the
buckled amplitudes as they were allowed more time to grow.

The occurrence of strain rate reversal caused the buckles to unload elastically. This greatly
increased the stiffness of the buckles as the elastic modulus instead of the strain hardening
modulus was in effect. The motion of the higher harmonics was significantly curtailed as the
higher harmonics have higher curvatures and thus experience strain rate reversal earlier. The
result was that buckling occurred at significantly lower harmonic numbers than the simple
theory predicted. Figure 18 shows the results for harmonics n=20 and n=30, comparing the
finite element computer code theory to the simpler plastic flow theory. The predominant har-
monic of the simple theory was n=30, and of the code results was n=20. The simpler theory
significantly overexaggerated the response based on using the incorrect =30 harmonic but
reasonable agreement was attained for the n=20 harmonic between both methods.
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2.8 Material Property Effects

For impulsive loading, the effect of high strain rate on material properties may be signifi-
cant. It is well known that the yield stress of a material may increase under high strain rates.
This effect, although acknowledged, has not been specifically considered in available references
for pulse buckling. Increased yield stress will affect the elastic response theory (Section2.2) if
Young’s Modulus is changed. The effect of increased yield stress on the plastic flow theory will
be to increase the membrane flow stress value of equation(3). For more complete theory, where
variable material properties are included via numerical integration of the equations of motion,
a strain rate sensitive material curve could be used, if it were known.

Another strain rate effect is that of viscoelasticity and viscoplasticity, where the modulus
can be very dependent on strain rate. For response to pulse loading, the strain rate continuously
decreases with the motion as it comes to rest. This means that a continuously varying modulus
must be considered in the analysis. Lindberg and Florence [4] have addressed pulse buckling
response of finite length cylindrical shells of viscoplastic material. This follows the theory of
Section 2.4 for plastic flow buckling of finite length shells. A relationship between generalized
stress and generalized strain rate for viscoplastic material is used:

yé=0fog—1 (195)

where 7 is the viscosity constant from material tests and oo is the generalized stress at infinites-
imally small strain rate. The equation of motion for the unperturbed radial motion is:
2(2 - k) . —(2 - k)oo
o+ 3a%p 0AWo Kzap (196)
which varies from the plastic case by the term ooMo replacing Erwo. The solution of equa-
tion (196) is given as:

3a _o(2—k) T0Y? 3a’p 3at
1 — e~ 22-F) - . 19
ST, 349 33 — ooy~ 27K (197)

wo = [Vo +
The equation of motion for the perturbed flexural motions, is given, in the nondimensional

parameters used in equation (148), as:

a? 3k?  4yVp 8% 8u
" e-m'EE Tt 3 Vogx T 2igg =0 (198)

i

in which the second term varies from the non-viscoplastic case of equation (148). By making
_the substitutions of equations (127) to (130), the governing equation becomes:

i — (Pn 4 Qn/&)itn — R2up =0 (199)
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where: P, = %‘é{‘ﬁ"— and Q, = %‘-”:,’c‘)%, with solution in the same form as the non-
viscoplastic case:

Un(€) = An(€)an + Bn(£)bn (200)

where A,(£) and B,(£) are the amplification functions for the displacement and velocity per-
turbations and are now defined in terms of Kummer functjons and given in reference [4, pg
246].

Experimental work reported in Reference [4] demonstrated that for fully annealed 1015
steel, the effects of increased strain rate were increased the yield stress and lengthened plastic
. portion of the material curve. A relationship for increase in yield stress with strain rate is
postulated by Symonds and Bodner[28] as: '

ofoy =1+ (¢/D)V? (201)

where o, is the static yield stress and p and D are constants dependent on the material (5 and
40.4 respectively, for mild steel).

The key material parameter in plastic flow buckling is the tangent modulus. If the tangent
modulus is assumed to be constant (linear plastic regime), closed form solutions are attainable.
The tangent modulus is not usually linear, in which case numerical integration of the equations
of motion is required. A description of the material curve used in much of the work is:

g =oc/E=¢for,0 <e<g,
E,
=6+ K(e—¢), for,e > ¢, (202)

which describes curves of the form shown in Figure 19.
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3 Approximate Formulae for Critical Impulse and Critical
Modes of Dynamic Pulse Buckling

From the preceeding theory, formulae for the critical mode of response and for approxima-
tion of the critical impulse to produce pulse buckling have been derived.
The critical mode number (predominant harmonic of response) for plastic flow buckling of
infinite cylinders or rings is given as (equation 24) [9]:

g = %(82 +1) (203)

which, if 1 is neglected with respect to s?, becomes: n, = N Fe. Stuiver [11] derives a
critical mode equation for the same case using the combined elastic-plastic theory (equation 92):

npr = 0.85v/6=(—L)1/2[1 4 (ﬂVL/E)ﬂl/‘* (204)
h*Ey €y
which gives comparable values to equation (203). For plastic flow buckling of short shells where

directional moments dominate the strain hardening moments, Vaughan and Florence [20] give
the critical mode (equation 135), as:

Ner = (72)1/4\/% - T (205)

For variable length shells, Lindberg and Florence [4] give the expression (equation (161)):

2- kK or
%, = o L2 NG e (206)

where the parameters are defined in section 2.4.
For viscoplastic material response, where the viscoplastic moments dominate the directional
moment, reference [4] gives the critical mode as:

r 8vya? Ky,

n (207)

where the parameters are defined in section 2.8. All of the above formulae are for thick shells
where the response is considered to be entirely plastic.

For response where behaviour is entirely elastic, equation (54) gives the critical mode for
" response without permanent buckling as [10]:

Rer = 1.316\/;;? (208)
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For larger initial impulses where buckling can occur, the empirical relation (equation (65))

gives:
4 025 0.13V?

Mor = 3 3 (209)
Stuiver [11], gives a value for the elastic critical mode as:
\ %,
Toor = 2 . c° (210)

To establish the critical impulse which will cause dynamic buckling, a limit of displacement
amplitude to define the point of buckling must be defined. With simplifying assumptions on
material properties and critical mode numbers, equations for approximate critical impulse have
been derived.

For plastic flow buckling of infinite cylinders or rings, Lindberg and Florence [4] derive an
expression for the impulse required to give a 20 fold increase in initial shape imperfection as:

= Vpeay [ 2oLy (211)

Lindberg and Florence also give threshold impulse values for variable length shells failing by
plastic flow buckling, by taking the limit as a shape amplification of 100, ie. A, = 100. For
long shells, with k=0, this gives:

I, = 3.07\/tha(g)2 (212)
and for short shells with k=1/2, this gives:
I, = 2.46,/—‘pama(%)3/2 (213)

for ¢ > 0.5 where ¢ = -272—3%% For variable length shells, the impulse functions:

= (ﬁ’i%{ge)l/‘* F(E/p5a(2)3/2(In/2¢4,)3/4  for 0.01 < ¢
= ( )fN vpEra(2)?In A, for 0.01 > ¢ (214)

can be used, by setting the amplification, A, equal to 100, and where the variables are defined
in Section 2.4. For viscoplastic material response, Lindberg and Florence give the impulse
amplification relation:

-  4.2(2-k)

I=3x, 9K,

22 Bpranpyyistin i) (215)
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for which A, may be taken as 100 to determine critical impulses.

For buckling in the elastic regime, where the flexural buckles exceed yield before the hoop
mode, a value of p=4 is used in equation (71) to give an amplification of initial shape imper-
fection of 65. From the relation for impulse to velocity of I = phV,, the critical impulse for a
condition of p=4 is given [4] as:

I, = 1.15pca,(g)2 (216)

where the condition, a/k < 1.15/¢,, must be met to ensure the hoop motion does not exceed
yield.

The curves presented in Section 2.5 from reference [19] can also be used to establish critical
impulses, particularly if the loading is not for an ideal impulse.

To cover the full range of a/h values, Lindberg and Florence [4] suggest using the plastic
flow and elastic buckling threshold equations, and then using whichever gives the lowest value.
When these are plotted on a graph of a/h versus I, Figure 20 results (for the given aluminum
shell). The two equations defining the two buckling lines are given as:

;i—a = 1.807D(h/a)®/? for a/h < .405/D?
= 1.15(h/a)? for a/h > .405/D? (217)

The results of these various formulae have been investigated via a computer program for
shells of various dimensions and properties. Table 2 gives the shell parameters and Table 3
gives the results.

Models 1 to 19 were used to investigate shells with increasing a/h ratios. Columns A, B and
C give the critical mode from infinite cylinder, plastic flow theory. The critical mode increases
with a/h and the theory becomes inapplicable for a/h much greater than 40, where elastic
behaviour starts to have some influence. Columns D and E give the critical modes for the short
cylinder, plastic flow theory. The greater resistance to bending resulting from the directional
moment contribution is evident in the lower mode numbers for these cases. Columns F, G and
H give the critical impulse and velocity to cause plastic flow buckling. As the shell becomes
thinner (larger a/h), the required impulse becomes less, as would be expected. Column I gives
the critical mode for the low velocity, elastic vibration response. Columns J and K give the
critical modes for the larger velocity, elastic buckling case. The critical modes also increase
with a/h ratio. Column L gives the critical impulse and velocity to cause elastic, dynamic pulse
buckling and as in the plastic flow case, as a/h increases, the required impulse decreases.

The effect of changing the material yield stress, oy, is investigated with Models 3, 20 and
21. There is no change for any of the formulae except for column B which shows a decrease in
- the critical mode number with decreasing yield stress. This is from the elastic-plastic theory of
Stuiver [11] who included some elastic effect in the determination of the plastic flow buckling
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critical modes. Formulae for column A and C would also be affected as they are a function of
the flow stress, o,,, which is a function of the yield stress. This can be seen in models 31 to 33

where g, is

varied.

Models 3 and 22 to 25 were used to investigate the effect of varying the tangent modulus
in the strain hardening portion of the material curve. Columns A, B and C for the infinite
shell, plastic flow theory show a dramatic decrease in the critical mode for increasing tangent

-modulus. Columns F and G show that the required critical impulse increases with tangent

modulus for

the infinite shell, plastic flow case, as would be expected due to an increase in the

shell stiffness. Columns D and E for the critical mode and column H for the critical impulse
“show no change with varying tangent modulus as these values are for the short shell case where
the directional moment is assumed to be dominant over the strain hardening moment.

The effec

t of varying the initial velocity was investigated with Models 3 and 26 to 30. There

is a slight variation in column B with the critical mode number increasing with increasing initial
velocity. This is from equation (204) which shows a variation of n., as the square root of V.
Column E shows a strong dependency of n. on Vy. The other plastic flow formulae show no
variation with initial velocity. The critical impulse and velocity formulae, are, of course, not
affected by Vy. The elastic critical modes for velocities large enough to cause buckling are
influenced by the initial velocity. Columns J and K show that the critical mode number varies
proportionally to the initial velocity.

Models 3 and 31 to 33 were used to investigate the effect of varying the flow stress value,
Om. Columns A and C show a decrease in critical mode with decreasing flow stress. Column
B, from equation (204), shows no change in critical mode with flow stress, but, the flow stress
is an average value which is dependent on the yield stress and tangent modulus, which are
parameters in equation (204) so some effect should be realized. This is also the case in the
critical impulse formulae of columns F and G where the tangent modulus is used. The flow
stress does not have any influence on the elastic theory.
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Model | a(in) | B(in) | o, (psi) | om(psi) [ En(psi) | Vo(in/sec) p(Ib-sec?/in*)
1 10 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
2 20 1 .| 60,000 | 70,000 | 1,000,000 6,000 0.000787
3 30 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
4 40 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
5 50 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
6 60 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
7 70 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
8 80 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
9 90 | 1 | 60,000 | 70,000 | 1,000,000| 6,000 0.000787
10 100 1 60,000 | 70,000 | 1,000,000 6,000 0.000787

11 120 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
12 140 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
13 160 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
14 180 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
15 200 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
16 250 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
17 | 300 | 1 |e60000]| 70,000 | 1,000,000 6,000 0.000787
18 350 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
19 400 1 60,000 | 70,000 | 1,000,000 6,000 0.000787
20 30 1 50,000 | 70,000 | 1,000,000 6,000 0.000787
21 30 1 40,000 | 70,000 | 1,000,000 6,000 0.000787
22 30 1 60,000 | 70,000 | 2,000,000 6,000 0.000787
23 30 1 60,000 | 70,000 | 3,000,000 6,000 0.000787
o | 30 | 1 | 60,000/ 70,000 | 4,000,000 6,000 0.000787
25 30 1 60,000 |{ 70,000 10,000 6,000 0.000787
26 30 1 60,000 | 70,000 | 1,000,000 9,000 0.000787
27 30 1 60,000 | 70,000 | 1,000,000 5,000 0.000787
28 30 1 60,000 | 70,000 | 1,000,000 3,000 0.000787
29 30 1 60,000 | 70,000 | 1,000,000 1,000 0.000787
30 30 1 60,000 | 70,000 | 1,000,000 500 0.000787
31 30 1 60,000 | 65,000 | 1,000,000 6,000 0.000787
32 30 1 60,000 | 61,000 | 1,000,000 6,000 0.000787
33 30 1 60,000 | 60,000 | 1,000,000 6,000 0.000787

Table 2: Shell Parameters Used in Table 3
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Model Plastic Flow Theory Elastic Theory
# ’ Ner Ier-Ver( in/s) Nep Iep-Ver
A B C D E F G H I J K L
1 3 5 6 9 8] 5.1-6465 8.6-10943 5.8-7336% 4 4 3( 18.5-23537
21 12 10 12 13 14| 2.5-3232 4.3-5471 4.1-518714 s 7 6| 9.3-11768
3119 16 18 15 18| 1.7-2155 2.9-3648 3.3-42361 7 11 10| 6.2-7846
41 25 21 24 18 22)1.3-1616 2.2-2736 2.9-3668]1 8 14 13| 4.6-5884
o] 32 26 30 20 25{1.0-1293 1.7-2189 2.6-328111 9 18 17| 3.7-4707
6| 38 32 36 22 929 8-1077 1.4-1824 2.4-2995{10 21 20 3.1-3923
-T| 45 _ 37 42 24 32| .7-923 1.2-1563  2.2-2773{11 25 23| 2.6-3362
81 51 43 48 26 35| .6-808 1.1-1368  2.0-25941111 28 27| 2.3-2042
91 58 48 54 27 38| .55-718 1.0-1216  1.9-24451112 32 30| 2.1-2615
104 64 53 60 29 40| .5-647 .86-1094 1.8-2320 113 35 34| 1.9-2353
11077 64 72 31 46! .4-539 .7-912 1.7-2118 114 42 41| 1.5-1961
121 90 75 84 34 50| .36-462 .6-782 1.5-1961 i 15 49 47| 1.3-1681
131103 8 96 36 55| .32-404 .54-684 1.4-1834 {l16 57 541 1.2-1471
14 1116 96 108 39 60| .28-359 .48-608 1.4-1729 {17 64 61| 1.0-1307
151129 107 120 41 64| .25-323 .43-547 1.3-1640 {118 71 68 | .93-1177
16 1162 134 150 46 74 | .2,-259 .34-438 1.2-1467 {20 89 85 | .74-942
17 1194 161 180 SO 84 .17-21¢ .29-365 1.1-1340 }§22 106 102 | .62-785
18 1226 188 211 54 93| .15-185 .25-313 -98-1240 {24 124 119 | .53-673
19 1259 215 241 58 101 .13-162 .22-274 :91-1160 1126 142 136 | ,46-588
20 1 19 15718 15 18 |1.7-51%% 2.9-3648  3.3-4236 || 7 11 10 | 6.2-784¢
21| 19 13 18 15 18 1.7-2155 2.9-3648 3.3-423¢ 1l 7 11 10 | 6.2-7846
22 11312717 15 18 127473048 4.1-5159  3.3-4236 || 7 11 10} 6.2-784¢
23111 11 10 15 18 |2.9-3721 5.5-6318  3.3-4236 || 7 11 10 | 6.2-784¢
24 9 11 9-15 18 13.4-4301 5.7-7296 3.3-4236 7 11 10 ! 6.2-7846
25 |194 152 180 15 18 | .17-216 .29. 365 3.3-4236 |l 7 11 10 ! 6.2-784¢
26 118 AT I8 15 I 1 7-215% 2.9-3648  3.3°4236 || 7 i3 13 6.2-7846
27119 15 18 15 17 |1.7-2155 2.9-3648 3.3-4236 || 7 10 9 | 6.2-7846
28 1 19 15 18 15 14 |1.7-2155 2.9-3648  3.3-4236 || 7 8 7 | 6.2-7846
29 1 19 15 18 15 10 {1.7-2155 2.9-3648  3.3-4236 || 7 7 4 | 6.2-7846
30| 19 15 18 15 8 | 1.7-2155 2.9-3648  3.3-4236 || 7 7 2 | 6.2-7846
31 /18 16 17 15 18 T1.71218s 279736487 "3 %085l 97 11 10 | 6.2-7846
32 118 16 16 15 18 |1.7-2155 2.9-3648  3.1-3954 |7 11 10 | 6.2-784¢6
33 718 16 16 15 18 l1.7.2155 2.9-3648  3.08-3921l 7 11 10 | ¢.2-7346
= 9 E= Eqn 206, K=1/2, Ref 4 I= Eqn 208, Ref 10
- %; 532 582: ﬁgg 11 F= Egﬁ 211, Ref/4 = Eqn 209, Ref 41
C= Eqn 206, K=0, Ref 4 G= Eqn 212, K=0, Ref 4 K= Eqn 210, Ref 1
D= Eqn 205, Ref 20 = Eqn 213, K=1/2, Ref 4 L= Eqn 216, Ref 4

Tablé 3: R;;;lts of Various Formulae for Critical Modes and Impulses
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4 Review of Numerical Solutions to Dynamic Pulse Buckling

Finite difference and finite element numerical methods have been used to solve a wide vari-
ety of complex structural mechanics problems, particularly where analytical solutions cannot be
easily found. The successful utilization of numerical methods hinges on being able to formulate
a discretized model and solution scheme capable of modelling the correct physical behaviour.
For dynamic pulse buckling, this means that the model must be capable of reproducing the
nonlinear, elasto-plastic motion of the shell wall in the higher harmonic modes which occur in
pulse buckling,. o

Most numerical studies of pulse loading consider only unperturbed dynamic response and do
not consider the growth of buckling modes in the solution. Element grid discretization, nonlinear
formulations, solution methods, material property representation and the failure cutoff criteria
are parameters which need to be investigated for numerical determination of dynamic buckling.

Ishizaki and Bathe [29], investigated static and dynamic, linear and nonlinear response of
perfect and imperfect shells with the finite element program ADINA [30]. A spherical cap, a
cylinder and a sphere were investigated to determine the collapse loads. For large displacement,
elasto-plastic (E.P.) response, updated and total Langrangian (T.L.) kinematic formulations
were investigated as well as the modified Newton and the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) iterative solution schemes for equilibrium [31]. Without modelling imperfection per-
turbations in the shell geometry, the elastic bifurcation and the elasto-plastic yield collapse
loads can be determined. Figure 21a demonstrates the response of a complete sphere to a static
loading. Figure 21b shows the response of the perfect sphere to a dynamic step loading of half
the elastic buckling load magnitude. The elasto-plastic curve assumes a permanent set about
which the response oscillates and the elastic response oscillates with greater amplitude but
reaches zero displacement on each oscillation. Figure 21c shows the response to static loading
of an imperfect shell. The lower curves include the geometric nonlinear total Langrangian for-
mulation which allows the growth of the imperfections to produce instability. Figure 21d shows
the response of the imperfect shell to the dynamic step load. The top curve shows the results
of the elasto-plastic, total Langrangian formulation which models the unbounded growth of the
imperfection. This latter curve models the physical characteristics that the analytical solutions
did, that is, allowing unbounded nonlinear growth of displacements for a specified load. Two
important factors in reproducing this behaviour with the finite element method are that im-
perfections in the modes of response must be modelled to produce the unbounded growth, and
that the load amplitude has to be increased in consecutive analyses until instability occurs.
Instability was established in the ADINA study at the point where the determinant of the
stiffness matrix became negative (singular). Some major difficulties in formulating a solution

_to pulse buckling response of shells with the finite element method are evident.
" 'The analytical solutions discussed in Section 2 indicate that the circumferential modes
of predominant response (buckling growth) occur in higher harmonics than static buckling
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[29])
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modes. It can also not be easily determined which mode will predominate. Therefore it is
necessary to model imperfections for several harmonics of numbers up to 30 or higher. This
requires a very high level of discretization in the circumferential direction of the shell. In
determining the response of the cylindrical shell to a cosine pulse (the same problem as addressed
by Lindberg and Kennedy [26]), the model was discretized with 60, 8 noded elements in one half
of the circumference. Models to investigate dynamic pulse buckling, particularly as length and
complexities such as stiffeners are included, will very quickly attain a large number of degrees
of freedom. To determine the limit load of dynamic pulse buckling, several analyses runs at
increasing load levels will be required. Thus determination of dynamic pulse buckling response
by the finite element method will be an expensive and time consuming proposition. Quoting
from reference [29], ‘nonlinear dynamic buckling analysis is frequently beyond the current state
of the art’.

Lindberg and Kennedy [26], investigate plastic flow buckling theory with a finite element
code, SABOR/DRASTIC 6 [32]. This is an uncoupled, axisymmetric finite element analysis
where response is investigated one mode at a time. The results of this work in relation to the
plastic flow theory were discussed in Section 2.7. The formulation of the finite element problem
involved modelling harmonic imperfections of the applied impulse. In this case, harmonics
derived from the plastic flow theory and from experimental results were used. Good agreement
between the numerical results and experiment was attained, due in part to the fact that the
imperfections used in the numerical analysis were derived from the experimental results.

Wesenberg [18] investigates dynamic buckling response for shells with several a/h ratios
and compares them to experimental results. These are discussed in Section 2.3. Here again,
imperfection modes and amplitudes were measured from experimental results and used in the
numerical finite difference formulation.

More recently (1987-88), Gefken, Kirkpatrick and Holmes [33,34,35] applied three dimen-
sional nonlinear finite element solutions to rings and finite length thin shells with good corre-
lation to experimental results. The necessary requirements of using a finite element solution in
terms of initial imperfect shape and the level of discretization were investigated in these studies.
It was determined [35] that initial imperfections expressed in the exponential form:

A, =.05hn <10
h
A, = ;-’I,ﬁ n > 10 (218)

gave the best comparison to results of models with imperfections derived from measuring actual
cylinder imperfections, The finite element models were generated with a series of imperfections
covering a range of harmonics such that the geometry was formed by the harmonic summation:

, ‘ . 100
R(6) =R+ Ancos(nb + ¢y) (219)

n=2
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Kirkpatrick and Holmes[34] used the DYNAS3D finite element code with the Hughes-Lui shell
element. They reported requiring approximately ten of these single-integration-point elements
per buckling wavelength.

Many studies investigate the dynamic response of shell structures to impulsive loading,
but do not investigate the possibility of dynamic buckling. Wu and Witmer [36] develop a
layered finite element model of a curved beam including strain hardening and strain rate effects.
Comparisons to experimental results from impulse loading are made. Lee and Horng [2,37]
develop finite difference solutions to elasto-plastic dynamic response of ring stiffened cylinders
to shock wave type loading. The critical yield points occur at the stiffener shell connection.
Buckling could have been investigated if the harmonic imperfections were included in the study.

Several studies [38,39] investigate the finite element solution for displacements of cylindrical
shells subject to underwater shock loads. The nonlinear loading function of the coupled fluid-
structure interface is modelled using doubly asymptotic approximation and boundary elements.
To investigate dynamic stability for this case, a nonlinear finite element code and modelling to
include imperfections in the initial shape and pressure pulse must be used in conjunction with
the loading algorithm.
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5 Conclusions

Analytical solutions for specific cases of dynamic pulse buckling have been established by
various authors through investigation of the growth of perturbations to the fundamental motion.
Cylinders loaded with an axisymmetric pulse which respond either entirely in the elastic or _.
entirely in the plastic material range have been investigated analytically. Approximate formulae
to establish the critical modes of buckling and the critical impulses to cause buckling for various
simple cases have been derived. These approximate formulae have been investigated for various
shell parameters within the context of this review. The dynamic buckling response is a function -
of the shell dimensions, material properties and loading function. No analytical solution has
been derived for dynamic buckling of shells of intermediate a/h ratios which encompass many
practical cases.

For complex shell geometries, complex loading functions or shells of intermediate a/h ratios,
numerical finite element or finite difference methods offer a potential solution. This is not
straight forward and few studies have investigated dynamic buckling solutions using numerical
methods. Material and geometric nonlinearities have to be included in the formulation and,
as in the analytical solutions for the simple cases, solution is for excessive growth of initial
imperfections. No studies of ring-stiffened shells were found for this literature review. A finite
element solution seems to be most attractive for studying dynamic pulse buckling of submarine
structure. Pressure hulls tend to be of an intermediate a/h ratio where elasto-plastic behaviour
‘and strain rate reversal are important to the response.

The physical concepts of dynamic pulse buckling have been established through review of
the analytical studies. These and the approximate formulae for critical modes and loads will
be invaluable in attempting to formulate numerical solutions of more complex problems such
as pulse buckling of ring stiffened submarine pressure hulls.
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APPENDIX A: Derivation of the Shell Curvature Expression

The change in curvature, x, is defined as the difference between the deformed shell curvature,
%, and the initial shell curvature, %:
1 1

K= ; - Z
* The initial length of element mn, from Figure A.1, is ds = ad¢, and the initial curvature
is §% = 1. The length after deformation, myny, is ds + Ads, and the angle of curvature is

F)
. d¢ + Adg, which gives the curvature after deformation as:

L_ do+Adg
p  ds+ Ads
The angle Ad¢ is:

ow 8w Sw Qfﬂ .

Adg = dgny — dfm, = 0+ Fads - 5o = 53

do , d2w
~——+=— ds
ds ds?@

Figure A.1: Geometry of Shell Curvature (from reference [40])
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The change in length, Adg, is:

ad— (a - w) = —wdp = —w

giving the curvature as:

1_de+(G#)ds :
p o ds(1-7)
Neglecting higher order terms, this reduces to: .
1 1 w, 8w 1 w 1 §*w
s =T D E =M D aee

which when substituted into the expression for k, gives:

1,0%w
K= ;—i('éqs—z + w).
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APPENDIX B: Derivation of the Mathieu Stability Equation

The Mathieu differential equation for parametric instability can be most easily derived for the
case of lateral motion of an axially loaded bar [3]. The differential equation for the lateral
dynamic motion of a bar under axial loading is:

w 0?

8w

w
Blges ¥ Pz tmgp =0
If the axial loading is of a periodic nature, P(t) = P,+ P, cos ¢t, the equation of motion becomes:
tw w w
Efa—zz + (Po +Ptcos¢t)-a—:ﬁ— + m_ét-z— =0

If the response is assumed to be periodic, w(z,t) = f,(t)sin 222, the equation becomes:
{

0? nirt nin? . | nrz
[m at');n + EITfn — (P, + P; cos ¢t)-—l-2-—fn]sm - = 0
The internal expression must equal 0, giving:
o f P, + P;cos ¢t
i el =g ) m=0,n=1,28

2.2 . . . 2 2 .
where w,, = Eﬁ‘\/% is the free vibration frequency of an unloaded bar and, P =27-FEI,is

the Euler buckling load for the bar. This can be rewritten as:

o+ Q21— 2pncos gt) fr = 0

which is the traditional form of the Mathieu equation where Q,, = Wy /%’Q, the bar frequency

with applied axial load and u, = ETSDiTﬂ" the excitation parameter. The coefficient of f,
approaches zero for certain values of the loading function resulting in instability. The more
general case of this function for any periodic loading, P(t) = P,+ P, ®(t), where (1 +T) = ®(t),
is known as the Hill equation:

F"+Q1-2ud()]f=0

Functions f(t), must be found to satisfy this equation. This is difficult except for a few
simple cases (see Bolotin[3] and M¢Lachlin[14] for solutions). Parametric resonance of the bar
. will occur if the excitation frequency is twice the bar frequency, ¢ = 2. Regions of instability
can be plotted as functions of the parameters, Q and y. The shaded regions of Figure B.1 are
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regions of instability. The effect of damping on the system is to shift the regions of instability
away from the Q axis as shown in Figure B.2.

0.5

0.2f

0 2 1 ' } )
i.2 1.0 0.8 0.6 0.4 0.2 0

¢/20
Figure B.1: Regions of Instability from Mathieu Equation (from reference [3])
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Figure B.2: Regions of Instability with Damping (from reference [3])
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