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Abstract

Y

1 An algorithm is presented for modelling the time response of a lifting surface control system
to an arbitrary set of commands. Response dynamics are governed by a linear, second order,
ordinary differential equation. This allows the control system response frequency and damping
to be modelled, as well as current control surface position and rate of change of position
to be matched when a new command is issued. In order not to exceed the rate limit of
the control system, yet maintain continuity in the response and its high order derivatives in
time, the algorithm reduces response frequency when large deflection changes are required.
This approach is compared to a common first order model, and to a second order model
having piecewise continuous high order time derivatives but which always models both response
frequency and rate limit. !/

Résumé

On présente un algorithme de modélisation de la réponse temporelle d’un systéme de com-
mande de surface portante en réponse & un jeu arbitraire de commandes. La dynamique de la
réponse est régie par une équation différentielle linéaire ordinaire du second degré. 1l est donc
possible de modéliser la fréquence de la réponse et I’amortissement du systéme de commande,
et d’adapter la position de la surface de commande et le taux de variation de la position
lorsqu’une nouvelle commande est introduite. Afin de ne pas dépasser la limite de variation du
taux du systeme de commande tout en assurant la continuité de la réponse et de ses dérivées
temporelles d’ordre supérieur, I’algorithme réduit la réponse en fréquence lorsque des varia-
tions importantes de la déflexion sont nécessaires. Cette approche est comparée & un modele
commun du premier degré et & un modeéle du deuxiéme degré dont les dérivées temporelles de
degré supérieur sont continues piéce par pidce mais qui modéle toujours la réponse en fréquence
et la limite du taux de variation.
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Nomenclature

time.

time of issuance of a command.

phase shift constant determined by the initial condition 6, = é(z,).
the angular position of a control surface; a function of time.

first and second time derivatives of 4.

initial conditions; deflection and rate of deflection at ¢t = ¢,.

the current command; § — §, as t — oo.

the value of § at the inflection point in the time segment of the response in which the
initial conditions are applied (see Figure 1).

control system characteristic, to be specified; a positive number giving the maximum
possible control surface deflection rate.

dimensionless control system damping, to be specified; 0 < ¢ < 1.
frequency used in the algorithm time response; w < w_ ...

response frequency of the control system, to be specified.



1 introduction

This memorandum describes the initial version of an algorithm developed for modelling the
control systems used by submarines for control surface deflections. The algorithm is to be used
in numerical simulations of the six degree of freedom motion of a maneuvering submarine, and
will be a component of the DREA Submarine Simulation Package currently under development.
Compromises have been made in developing the algorithm, as discussed below. Increased effort
could eliminate many of these compromises, but this awaits more in-house knowledge about
the control systems themselves, as well as experience in using the algorithm in the simulation
package.

The requirement is to model the dynamics of a control surface responding to a command
(or a series of commands) to deflect to a certain angle (or angles) of attack. Two sets of pa-
rameters determine the response dynamics. First are the control system characteristics, which
may be complex; the algorithm only considers control system damping, response frequency
(determined by the control system time constant), and maximum rate of response. Second
are the control surface initial conditions (the kinematic states when a new command is given)
to which the response should be matched if an unrealistic discontinuity in the deflection time
history is to be avoided.

To provide increased flexibility in modelling control system characteristics and to reduce
the degree of discontinuity when a new command is issued, a second order model of the control
system is chosen over a first order one. The dynamics are modelled with a linear, second order,
ordinary differential equation in which two free parameters, system damping and response
frequency, are determined by each individual control system. Two initial conditions allow
continuity to be maintained in control surface position and deflection rate when the command
is issued, even when a previous command is in the midst of being executed. Continuity cannot
be maintained in second or higher time derivatives of control surface position.

The maximum rate at which a control surface deflects, its rate limit, is also an important
characteristic to model. This is particularly true for large deflections where the rate limit
dominates the nature of the response while the system response frequency governs only the
transients leading up to and down from the maximum rate. However, given the limited number
of free parameters in the second order model, enforcing a rate limit means the proper frequency
cannot always be modelled (at least not without creating a response whose time derivatives
are discontinuous, something which is desirable to avoid in this initial model).

With only two free parameters but three independent characteristics to model, compro-
mises must be made. Following Campbell and Graham,! analytical solutions to the governing
differential equation are first obtained by treating the damping and frequency parameters as
constants. Then, if necessary, the value of the response frequency is set lower than its correct
value so that the rate limit is not exceeded. The frequency is set only once, when the command
is issued; the frequency does not change between commands.

Thus, the algorithm requires three control system characteristics to be specified: response

frequency (equivalent to maximum frequency of response), rate limit (maximum deflection
rate), and damping. Control system damping is assumed to be sub-critical and constant.



2 The Second Order Model

Consider the linear, second order, ordinary differential equation:
3+2Cw5+w26=w266 (1)

where ¢ is the control surface deflection at any point in time; §, is the commanded deflection
angle; ( is the dimensionless control system damping (assumed sub-critical, so 0 < { < 1);
and w is the response frequency of the control system. The first and second time derivatives
of § are § and 6 respectively.

A general, exact, analytical solution to equation 1 is:

§ =8, + ae=Ct=1) sin [ \/T= C w(t — 1) + ] (2)

where 1, is the time the command 4, is given, and o and f# are unknown constants to be
determined by the initial conditions:

8o =6(ty), & =8(ty). (3)

Setting ¢t = ¢y and 6 = é; in equation 2 gives o = —(6, — §,)/sin 3. Thus, the solution and
its first two time derivatives can be written:

6,— 6

§=6,— —EI—BQ e~ Sw(t—to) SIH[ /1—(2w(t-—t0)+ﬁ] (4(1)
§ = w00 sin [T (Rt — 1) + § — cos™] (4b)
b= —w? 68111;0 e~ gin[/1 - Cuw(t~ty) + B — 2 cos (] (4c)

since /1 — (? = sin(cos'(). Applying the final initial condition (equation 3) to equation 4b
maintains continuity in rate:

by = w6‘;i;;° sin(8 — cos™1() (5)

so that:

__ /e

tan g C—éo/[w(ﬁ —60)] , 0<pB<.

The arctan function is multivalued, so f is determined uniquely by choosing it to be the
principal value when b, = 0; that is, 0 < 8 < /2 when 8 = tan~'(1/1 = ¢2/¢). Then,
for é, # 0, by considering how the term by /[w(8, — 6,)] varies in equation 6 (for all possible
combinations of the parameters), and in order for # to be continuous as the denominator in

the RHS of the equation goes through zero, one can show that the range for 3 needs to be
extended as shown.

(6)

Figure 1 shows an example of a solution to equation 1, where values for §, and t, are not
explicitly shown since placement of this curve in é-t space depends on the initial conditions.
For example, when 6, = é,, either 8 = 0 and the curve must be shifted so that t, = ¢,, or

2
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Figure 1  Control surface time response (equation 4a) to command 6., assuming 6, > &,.
The command is issued at t = t,, where t, < t; < t,; the portion of the curve
before time t, is ignored.

B =m and t, = t,. For the more general case that 6§, < §,, t, will be between t, and t,. For
6o > 6., the correct solution is simply a reflection of the curve shown about the line § = §,.
In order to show better the qualitative nature of the solution, an unrealistically low damping
value (¢ = 0.3) has been used in the sketch.

Maximum deflection rates occur at ¢ = t*, when & is zero:
=0 = +/1- Cw(t* —ty)+ P —2cos I =nr; n=0,41,£2,... (7)

There are an infinite number of values for t*. However, the local maximum deflection rate
of primary interest, 5mu , is the one immediately following the extreme in § which occurs
between t, and t,: that is, at t* = t+ (see Figure 1). Since § is defined between 0 and =,
n must be zero when t* = t+, so:

V1=Cuw(tt —t)) =2cos™1¢ - 8. (8)

Substituting equation 8 into equation 4b gives the value of 5max for a given w or, alternatively,
the value of w for a specified 6, :

w= 6max Sinﬂ e((2cos'1(—ﬁ)/\/1—(2 . (9)
(6. — 6g)V1-¢?

3




To evaluate this expression, § must first be obtained. This can be done using equation 6 if
w is known, or by eliminating w using equation 5 if §,,,, is known. In the latter case, a trial
and error solution of 3 is required and this is discussed in detail in a later section.

The response to a given command is determined by first assuming w = w,,,, (the system
response frequency), then checking to see if the maximum deflection rate is less than or equal to
the rate limit, and then, if it is not, recalculating a solution in which the maximum rate is the
rate limit. The following observations can be made about the nature of a solution constructed
in this manner; they hold whether §;, is greater than or less than §,. (Recall from Figure 1
that ¢, <t, <t, correspondsto 0 < B < 7.)

1) With w initially set to w,,, and with B such that t, < t, < t~, |6_,,| will always be
less than the rate limit since |§,| < rate limit, and over this portion of the Figure 1 curve

16| > 16max|; thus, w = w_,  is the correct solution.

2) With w initially set to w,,, and B such that t+ < t, <t,, |6, | can be greater than
the rate limit because it is not part of the solution. In this case, w = w,,, is always the
correct solution since it can be shown that all subsequent |§| values will be less than the

initial |6y| value, which is itself no bigger than the rate limit.

X

3) Given (1) and (2), exceeding the rate limit is only possible if ¢t~ < t; < t*; that is, if
B~ < B < 2cos™1(.

4) 7 can be shown to be purely a function of { by eliminating w from equations 5 and 9
and setting 6y = —6,,,,:

V1 - (% —sin(cos™¢ — ﬁ-)e<(2cos"C—ﬂ‘)/\/1—7 —0.

B~ is solved by trial and error. Figure 2 shows it plotted against (.
5) Let:

R= 6. =67 20\/1-¢? e—C(2cos™1¢=p)/\/1-¢?

6.— 6,  sinf
where 6% = §(t*). Although it may be obvious, one can rigorously show, for t~ < t, < t*,
that:
0<R<1 always. (10)

Clearly R is always positive. Further, when ¢, = t¥, R = 1. As t, decreases from t*,
B decreases from 2cos~1(. The derivative:

dR
B R [cot(cos™'() — cot B3]
shows that R decreases monotonically until §, = 0 (ie, 8 = cos~1( ). As t; decreases
further to ¢=, R increases monotonically to alocal maximum (within the range of interest)
at t = t~. Thus, if B > 1, it must do so at t, = ¢t~ : thatis, at é; = 6~ = 6(¢t~) and
B = p~. However, as shown in Figure 2:

6. — &%t 2(sin(cos™1({ - 7) <1
5. -6 sin 8~ )

0<

This result (equation 10) can be used to prove the second sentence of item (2).

4
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Figure 2 Values of B (in radians) as a function of the damping: § = 8~ when t;, =t~ and
B = cos™!( when &, = 0. Also shown is the relative separation of §, from 6%
and 6~.

And, finally, a major result which allows the sign of é,,,, to be immediately established.

6) Equations 4a, 8, and 9 can be combined to give:

- (1)

which, together with equation 10, leads to the following conclusion: When ¢~ < ¢, < tt,
the sign of 6, — 6, equals the sign of ¢ for arbitrary 6,4 .

max ?

These observations are used in the analyses that follow.



3 Frequency or Rate Limited?

As discussed earlier, the system response is modelled in either a ‘frequency limited’ or rate
limited mode. The frequency limited solution mode is always calculated first and uses the spec-
ified system response frequency w to determine w. This solution is correct if the magnitude
of the associated maximum rate §,,_ is less than or equal to the specified rate limit. If not,
the rate limited solution is calculated using the specified rate limit as the magnitude for Smax.
As will be shown, this results in an artificially low response frequency. In general, whether a
solution should be frequency or rate limited is unknown until one of the solutions is calculated
and the associated parameters examined. The frequency limited solution is calculated first
because it involves no trial and error procedures, so less effort is expended if it turns out to be
the wrong solution.

max

One proceeds as follows. Given w,,., ¢, 6., 6,, and 50, equation 6 is used to get (.
Equation 9 is then used to calculate the value of §_,, associated with this trial solution, unless
B is too close to 0 or m, which results in the ratio (6, — §,)/sin 8 becoming indeterminate.
In this case, a different formulation for this ratio, obtained from equation 5, must be used:

8= 8y _ ((b = &) — by/w

sin 8 cos B+/1 — (2 ' (12)

If |éax| is less than or equal to the specified rate limit, gL (always positive), or if
B > 2cos™1(, then the frequency limited solution is correct. Otherwise, a change is made to
a rate limited solution.

As will now briefly be shown, when the change is made to a rate limited solution by
reducing the magnitude of §,,, the magnitude of w is also reduced. To show this, the question
to ask is ‘What is the variational relationship between w and |6_,,| for a given command and
set of initial conditions?’. This is most easily answered by considering how |6_,, | varies with w,
or, how 6_,. /(8. — &,) (see item (6) above) varies with w. It is convenient to define a new
parameter v using a version of equation 9:

‘émaxezcm'_l(/\/l"7 wesB/V1-¢2

LTI W wny BT

where, for a given problem, all the parameters on the LHS are constant except for 5max. Thus,
the question becomes ‘What is dy/dw?’ where:

4 _0y Ovdb
dw  Ow  8Bdw’

Using equation 6 one can show that:

dw ~—wy/1-¢?

@ = sin A sin(fB — cos~1()

so that:
dy  eSPlV1-¢
o= ———1—-_——-—C2—sin(2cos_lc -B)>0 for B~ <P <2cos”I(. (13)



Thus, reducing the magnitude of §_,  simultaneously reduces the magnitude of w; however,
note that the opposite happens when ¢, > t*, which shows that this question was not a trivial
one.

This result allows one to proceed with the rate limited solution knowing the consequences
of doing so.

4 The Rate Limited Solution

Here, it is assumed that the frequency limited solution was not acceptable and that the fre-
quency must be altered to bring the magnitude of the maximum deflection rate down to épy .
The first step is to calculate a new value for 3, knowing that 8~ < 8 < 2cos~1(.

After eliminating w from equations 5 and 9, it is convenient to introduce F', a function
defined to be zero when § takes on its correct value:

5 i - -1 -1 2
F(g) = 5m(:x _ sin(f 1 jozz C)eg(zcos -8 //1-¢7 (14)

is determined by the rate limit and item (6) of Section 2:

Here, 6,,,,

5max = Sign(6c - 60) 6RL . (15)

4.1 Trial and Error Solution for 8

The trial and error Newton-Raphson method is used to solve for 8. For this, F is expanded
in a Taylor series:

F(B) ~ F(fo) + %%(ﬂo)Aﬂ Foo 2 AB—0

where (3, is an initial guess for 8 and Af is the error in the guess. Assuming S, is sufficiently
close to 3, this equation allows one to predict a new and improved value for 3, namely
By = By + AB, by setting F(8) = 0. There results:

ap = 3E0) (16)
L)
where: F . —sin(2cos™1¢ — ) ¢(2cos™¢=B)//1-¢3
OF 0 or . : (17)
Thus:

. Ji—e N bo 77 (2 eor=1(-p0)[/I=C
AB = sin(2 cos~1¢ — ;) sin(eos™ ¢ = A + 6 b= e (%)

max

is the correction to f3;, the i'P iteration; i is as large as necessary to give the required accuracy.
The only difficulty with this approach is the indeterminateness in equation 18 as § — 2 cos 1( ;

that is, as 8y/6,,,, — 1. This problem is resolved in the next subsection.

7
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Figure 3 The 3 region for the rate limited solution: 8~ < 8 < 2cos~1(.

This iterative procedure should be examined further to ensure it has acceptable conver-
gence properties. The Newton-Raphson method can be counted on to converge to the correct
solution only if F/08 is nonzero everywhere within a range delimited by the extreme most
B; values encountered in the iterative process. Happily, equation 17 shows that:

%% < 0 always for 2cos /¢ — 7 < B < 2cos7!( (19)

(see Figure 3). Therefore, one must establish what 8, values will ensure that the §; remain
within this range.

Consider the second derivative of F':

O’F sin(3cos™1( — ) e$(2cos™1¢=p)/{/1-¢?

W(ﬂ) = (1- C2)3/2 (20)
which shows there is an inflection point in F at:
Bint =3cos™I¢ — 7. (21)

Furthermore, F(f3) is concave upwards for 8,y < # < 3cos~!({ and concave downwards for
3cos™1( — 21 < B < Biy¢- Thus, if one chooses f, such that:

ﬂcorrect < 130 S ﬁinf or :Binf S IBO < ﬂcorrect

8



as well as keeping 5, within the range of equation 19, then the Newton-Raphson method will
always march monotonically towards the correct 3, be it greater than or less than f,,; that
is:

ﬁcorrect <. < ﬂi+1 < ,31- < lBi—l <---< ﬂO for ﬂcorrect < ﬂO < IBinf

(22)
ﬂO <. < IBi—l < rBi < ﬂi+l <--< ﬂcorrect for ﬂinf < 130 < chorrect .
In practice, since S > 0 always, one sets:
Bo = max(fBiy,0). (23)

One could use (B = max(f8,,;,8”), but B~ is too complicated a function for convenient use.
When B.qrrect > €0s™2(, the number of iterations can be reduced by increasing 3,:

B, = cos™'¢  when sign(éo) = sign(6, — 6;) - (24)

This procedure has excellent convergence properties. Typically only 5 to 10 iterations are
needed to give an accuracy greater than 1 part in 108.
4.2 Taylor Series Solution for 3

The previous subsection provides a general numerical solution of F(8) = 0 (equation 14) for 5.
However, the solution cannot be used as §, — 6., (8 — 2cos~1() because equation 18
becomes indeterminate. In this subsection, this situation is remedied by developing a solution
of F(f) = 0 which gives # as a Taylor series in a suitably chosen small parameter.

Consider the small, but always positive parameter:

A—0as 8— 2cos”I(.

In terms of A, F(B8) = 0 becomes:

- = sin(/1 — (2 A — cos™1()
6max V 1- CZ

—_elh
i-¢

N]__’\_Z_Q__.(_‘.l_gz_:_l_)i‘i_...:l_.)_‘?_[1+2<)‘+(4<2—1)’\2+...]

((sin\/l—@z\—\/1—Czcos\/1—c2)\)

2 3 24 2 3 12

as A — 0. Rearranging and carrying out further expansions results in:

. 1/2
é (A A2
*”[2<1'3'°T)] (-S4 %) 29)

ma



Thus, the ‘natural’ small parameter in the sought after expansion has identified itself:

, 1/2
€= [2 (1 - 62‘;)] : (26)

Upon continually substituting equation 25 into itself, there results:

2 e 27 16¢3)et
ﬂ~2cos'lC—M[e—-£§—+(3+78§) —( C‘;4OC)€

(81 + 624¢% + 64¢*)e®  (81¢ + 156¢% — 16¢%)e®
17280 8505

(30375 + 460728¢2 + 260928(* — 71168()¢’
+ 43545600 + (27)

as ¢ — 0. This number of terms was obtained by initially expanding 6,/é,,,
All of these terms were then carried through the subsequent calculations.

to terms O()8).

Equation 27 presents no numerical problems provided € is small enough. Although con-
vergence has not been proved, at the very least the equation is an asymptotic expansion, so
the error in it is of the order of the first neglected term. In practice, this error criterion is
applied to the last term in the truncated expansion; ie, equation 27 is only used if:

30375 + 460728(* + 260928¢* ~ 71168¢° ,
43545600

<E (28)

where E is the level of relative error acceptable in 4 (noting that 2cos~!( = O(y/1-¢?)).
Actually, this expansion converges well for reasonable values of E (typically 10~°).

Equation 28 provides the means for deciding whether the Taylor series or Newton-Raphson
trial and error solution for § should be used, since ¢ is known from equations 15 and 26. Using
double precision computer arithmetic (16-17 significant figures), the Newton-Raphson solution
has been found to work well right up to the point where equation 27 takes over.

With B determined, calculation of the remainder of the rate limited solution is straight-
forward. Equation 9 gives w and equation 4a gives the solution itself.

10



5 Some Examples

Figure 4 shows how the algorithm predicts the deflection time histories for both large and small
deflections for different damping ratios. The lower the damping, the faster the commanded
deflection is achieved, but at the cost of increasing overshoot (see Figure 5). For surface ship
rudder roll stabilization studies, Campbell and Graham?® decided on a damping ratio of 0.7
since this gave good response while keeping overshoot:

0 = e~¢r/V1-¢ (assuming 6, = 0) (29)

to less than 5 per cent of the commanded change. A damping ratio of 0.9 is preferred by
others since it keeps overshoot to less than 0.2 per cent of the commanded change, which is
zero for practical purposes.

Figures 5 and 6 show how the algorithm matches time responses to the proper initial
conditions at each issuance of a new command. Keep in mind that second and higher order
derivatives of these time responses are discontinuous at these command points.

As previously mentioned, the numerical implementation of the algorithm uses double pre-
cision arithmetic, and this helps provide a robust routine. Despite the presence of a singularity
in the solution of 8 as { — 1 (see Figure 3), an accurate time response was still generated for
¢ = 0.9999 (Figure 5).

Figure 7 compares two other algorithms to the one being proposed. The first order model
is governed by the first order differential equations:

b=w_, (6,6 for |6] < é
6 = g, otherwise.
There results:
6 =6y + bpp(t—1t,) forty <t <t
. , (31)
6=6,— —-6-}31‘—6_“’“'“““’) fort! <t< o0
wmax

for 6, > é,, and where t' is chosen to match equations 31 at ¢t = ¢'. If §, — §; is small enough,
t' <'t, and only the last of equations 31 need be considered. In Figure 7, t' = 2.99 seconds,
point A on the dotted curve. This first order model has a discontinuous slope at t = t,,
so it cannot match the initial condition 6, = 0. The model also has a discontinuous second
derivative at t = ¢'.

The second order, ‘piecewise continuous’ model is probably closest to the actual response
of the control system. It uses wp,, to model the transient responses from ¢ = t; until the
rate limit is achieved (point B in Figure 7), and from termination of the rate limit (point C)
to t = oo. It is constructed from the proposed second order, continuous model’s solution

when w =w_,  and §_, = gy, which occurs when &, = 7.27 degrees (see Figure 4b). This
solution is simply pulled apart at its inflection point and a straight line (with slope ég; ) of
sufficient length inserted so that the required 6, is achieved. Since § = 0 at the inflection
point and, of course, for the straight line, the resulting solution is continuous through to and
including its second derivatives at points B and C. The two second order models are identical

for deflection changes less than the critical value of §, = 7.27 degrees.

11
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w = 0.357 rad/s, Smax = ORL
—————————————————————————————— ~ 35
Wmax = 2.0 rad/s
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a) Low damping: ( = 0.7.

Figure 4 Time responses of two control surfaces to six commands. In each case, the two
smallest changes commanded are frequency limited, while the three largest are
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W = Wmax, 6max = 0.034 rad/s
i / 2.5
0 | I !
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b) High damping: { = 0.9.

rate limited. The commands (*) are those unique values at which the solution changes from
one mode to the other.
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Figure 5 Time responses to identical commands of four control systems with different damp-
ing ratios; 6, = 10 degrees issued at t = ty, 6, = 0 issued at t — t, = 4 seconds.

10 T T T T l T T ¥ T
- Wmax = 2.0 rad/s .
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Figure 6 Time response to a series of commands §, =
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Figure 7  Four time responses to the command 6, = 20 degrees issued at t—t, = 0. The first
order model has a discontinuity in its slope at the origin, and in its second derivative
at point A. The second order, piecewise continuous model has a discontinuous
second derivative at the origin (as does the proposed model) and third derivative
at points B and C, but always models both w,,, and 5RL.
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Figure 4b shows how the proposed second order continuous model would tend toward the
second order, piecewise continuous model as the commanded change decreases, and away from
it as the commanded change increases. If the piecewise continuous model is indeed closest
to the actual control system response, and if discontinuities in the response time derivatives
are not of concern, then the preferred algorithm is the piecewise continuous model (even the
first order model might be better for large deflections); however, if it is desirable to minimize
discontinuities in the time derivatives of the equations of motion, the proposed second order
continuous model may be best. Note that, for arbitrary initial conditions and large deflection
changes, the second order, piecewise continuous model still requires the trial and error solution
of equation 14 for the determination of 5.

This concern over discontinuities is motivated by the fifth order numerical method being
considered for integrating the submarine equations of motion. As is shown by Enright et al,?
numerical integration of ordinary differential equations across discontinuities can be both inef-
ficient and inaccurate unless special precautions are taken. These precautions involve stopping
the integration at each discontinuity and restarting it on the other side. The precautions are
mandatory if accurate estimates of the global errors® associated with the numerical integra-
tion procedure are required. Discontinuities in time derivatives as high as the sixth order (the
order of the numerical method plus one) are of concern. Some discontinuities are inevitable
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(whenever a new command is issued for example), but by minimizing them the complexity of
incorporating a control system model in the submarine equations of motion is also minimized.

Figure 7 also shows how lower damping allows the proposed control system model to
achieve the commanded deflection sooner. This may be desirable if overshoot is not of concern
or, indeed, if one is prepared to use overshoot to compensate empirically for the slow response
of the proposed model.

6 Conclusion

A general algorithm has been presented for modelling the time response of a control system to
an arbitrary set of commands. The algorithm considers the response frequency (time constant),
rate limit, and damping of the control system in determining the response, but cannot always
model response frequency if discontinuities in high order time derivatives of the response are
to be minimized. The algorithm always matches the zeroth and first order time derivatives
of the existing motion and response at the time the command is issued; subsequent motion is
perfectly continuous.

This algorithm can be easily modified to provide a response which always models the
specified response frequency, as well as the rate limit. This can be done without changing
the characteristics of the match at the time the command is issued, but is at the expense of
discontinuities in the third and higher order time derivatives of the subsequent motion.

Some time must now be spent evaluating this control system algorithm in conjunction with
the proposed integration routine for the submarine equations of motion. Also, more knowledge
is required about the relevant control systems before extensive effort is put into developing a
control system model which minimizes discontinuities as well as closely reproducing control
surface time responses.
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