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Abstract
The problem of ,traéking an underwater narrowband signal that has experienced the
many vagaries of open ocean transmission is of considerable interest. Usually the simpler

signal followers developed for radar applications fail when attempting to handle the unique -

" underwater environment ‘encountered by a passive line array receiver. This paper
_ investigates a particular recursive algorithm called the Probabilistic Data Association filter to
determine if it can provide robust passive tracking of low signal-to-noise signals in a
‘background of clutter caused by other sources and noise. It will be shown that two
modifications to the basic algorithm substantially improve its tracking performance and its
ability to estimate the target signal's trajectory. In addition, an effective technique for
detecting when the filter is no longer following the signal will be presented. This loss-of-
lock detector works for very low-level target signals. - '

Résumé

Le probléme de poursuite d’un signal sous-marin 2 bande étroite soumis aux
multiples aléas de la transmission océanique libre présente un intérét considérable.
Habituellement, les systémes les plus simples de poursuite des signaux développés en vue
d’applications radar se réveélent inefficaces dans le milieu sous-marin ti€s particulier
rencontré par les récepteurs passifs a réseau linéaire. Ce document examine un algorithme
récursif particulier, appelé filtre probabiliste d’association de données, afin de déterminer
s’il permet la poursuite passive robuste de signaux a faible rapport signal/bruit dans un
clutter de fond provenant d’autres sources et de bruit. Il est démontré que deux
modifications de 1’algorithme de base améliorént considérablement le rendement de la
poursuite ainsi que 1’aptitude a évaluer la trajectoire du signal de la cible. De plus, le
document présente une technique efficace pour détecter lorsque le filtre ne suit plus le
signal. Ce détecteur de décrochage s’utilise avec les signaux de cible de trés faible niveau.
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1. introduction

o

Accurate ‘estimation of the bearing to an acoustic source is a critical step in the

- narrowband passive localization problem. The estimates of bearing obtained from a towed

. array serve as inputs to contact motion analysis algorithms and the ultimate accuracy of the -
'+ localization depends critically on the accuracy of the basic parameter extraction process.: In
-a real ‘ocean environment where observed signal bearings exhibit significant dynamic

behavior, a standard method to improve the basic parameter extraction process is to apply a

o “model-based, recursive filtering procedure to the time history of bearing observations.
- Two.common examples are the Kalman filter[1] with nearest neighbour association[2] and

its extension, the Probabilistic Data Association (PDA) filter[2] which better accounts for

- the spurious bearing measurements that result from background acoustic noise. The

purpose of this paper is to analyze how well the PDA filter can follow an acoustic
narrowband signal that is buried in ocean noise, and to illustrate how alterations can

- improve its performance. The Kalman filter will be used for comparison.

~ Such recursive ﬁltering- procedures have the potential for reducing the variance of the

| ) estimates from towed-array bearing and frequency measurements to provide more accurate
‘post-processing analysis of target position. In addition, the PDA filter should provide

more robust tracking of low Signal-to-Noise Ratio (SNR) signals in clutter due to
preprocessing of the measurement space. Another advantage of this filter over the Kalman

_ filter is its ability to detect when the signal is no longer being tracked. It will be shown.that
certain alterations to the basic PDA filter can improve its performance when the signal is

barely detectable above the background noise. A Monte Carlo simulation was employed to

- provide an accurate comparison between filter estimates of the source bearing and
- frequency, and the actual values. The simulator provided measurement errors in bearing,
frequency, and signal power that closely approximated those observed from an actual -

towed array. A practical method for detecting when the PDA filter has “lost lock” on the

target signal will also be demonstrated.

The paper is organized in the following manner: In Section 2, a brief overview of the -

simulation of towed array measurements is presented, followed in Sections 3 and 4 by

- descriptions of the Kalman and Probabilistic Data Association filters. Section 5 describes

modifications made to the PDA filter to enhance its tracking performance. The ability of
these filters to follow a dynamic signal and the accuracy of their estimates is evaluated in

. Section 6. Finally, in Section 7, two methods are presented for detecting when a tracker.
" _is_ no longer following the signal. : R , -

" 2. . Bearing Tracking

.~ " With towed arrays, a common approach for estimating the bearing to an acoustic
“source is to form multiple independent beams which span the angular space to be -
" monitored.  The beam which contains the maximum power from the signal provides an
- estimate of its angle from the array. However, the best accuracy one can expect with this
._approach is plus or minus one half of the beam-to-beam spacing, which often makes it
- difficult to achieve sufficient bearing accuracy for further processing. To partially

circumvent this problem, knowledge of the beampattein shape of the beamformer can be
used to interpolate between beamis in order to provide more accurate bearing estimates[3].
Unfortunately, a towed line array does not measure the bearing to a source directly.

~ Rather, a conical arrival angle relative to the array axis is available at the output of a phase-

. Ml



to-plane beamformer([4,5] and source bearing is calculated by adding array heading which
is obtained from a compass installed in the array. Note that the conical arrival angle may be
a biased estimate of source bearing if there is a vertical component in the arrival angle. For
the remainder of this paper it will be assumed that the vertical arrival angle is zero.

This paper utilizes computer simulations to emulate power beammaps obtained in a real
world environment. At each time snapshot, a beammap was formed in the vicinity of the
predicted signal position. Each frequency/beam cell had the ambient noise power modelled
as an independent X2 sequence convolved with a noise model beampattern across beams
and an FFT binpattern across frequency. The signal emulated the Swerling I model[6,7]

‘by having the signal power weighted with a scaled X2 variate of unity mean and variance
proportional to the time-bandwidth product associated with the simulated integration
period. The bearing and frequency of the signal were corrupted by addition of variates
from a zero-mean, Gaussian distribution having standard deviations similar to the
measurement error found in an actual system. Then the noisy signal was mapped onto the
beamformer/frequency measurement space by convolution with the appropriate beampattern
and frequency binpattern. Next, the Local Maximum Data (LMD), consisting of all cells -
. that contained simulated acoustic power greater than the surrounding eight neighbour cells,
was obtained from the beammap. Parabolic interpolation[3] in both bearing and frequency
was performed on each of the LMD to increase the accuracy of the measurements. Then,
_the normalized power, p, was calculated by taking the power in each cell designated as
LMD and dividing it by the average background noise power. For the particular LMD
generated by the signal, its normalized power p; is the signal+noise-to-noise ratio

- expressed as (P + P, )/P, in linear units, with P, indicating the power from the signal
- and P, the average noise power in an FFT bin. Wlth this definition for the noise power a
value of ps of 0 dB represents a very weak signal. While the measured LMD are
expressed in this fashion, the signal power for each simulation was known exactly before
being perturbed by the emulated beamformer as discussed above. In the rest of the paper
the term SNR will be used to denote the true signal-to-noise ratio of the signal before the -
beamformer, expressed as P,/P, (Note that p; = SNR + 1).

Consequently, at each time snapshot a data set of bearing, frequency, arid normalized .
power values served as input to the tracking filters. For some of the filters to be
investigated, the input data was first preprocessed with a threshold to remove all LMD
below a certain normalized power.

A simulated beammap from a single integration period is illustrated in Figure 1, where
the tonal is clearly visible above the background clutter. The other peaks are caused by the
ambient background noise. In Figure 2, the interpolated local maximum data obtained
from this beammap are presented in a greyscale format where the levels of grey represent
the normalized powers. It is the time sequence of these LMD that is processed by the
recursive ﬁlters under study

To 1nvest1gate the trackmg performance of the signal followers a simulated target
executed a track of straight line legs separated by large angle turns. Flgure 3 illustrates the
scenario, showing the constant course of the towing ship at the top and the zig-zag target
track almost due South in bearing, with the signal arriving at the array with an angle in the
vicinity of 90° relative to its axis. At 8-second intervals the beamformer provided
measurements of bearing and frequency from the source, involving 4 nor-overlapping
- averages, with a total of 80 samples available. In Figure 4 the true bearing and frequency
of the target signal are shown for the 80 time snapshots. The scenario was lepeated for a
set of signal-to-noise ratios that spanned the range from very low to moderate, that is from
-2 to +3 dB. At each SNR a Monte Carlo simulation involving a sample set of 200
independent examples of the scenario provided the data for a statistical analysis of tracking
performance and accuracy of the bearing and frequency estimates.
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To provide a reference, the standard Kalman filter was employed using the so-called
nearest neighbour approach(2] to determine the appropriate input. At each time snapshot,
- the sample of bearing/frequency/normalized power closest to the position predicted by the
.Kalman filter was assumed to be from the signal. It will be seen that this filter is capable of
tracking the target reasonably well. However, large errors in the estimation of the signal
trajectory were observed due to its susceptibility to outliers, which occur when .
measurements from the signal fall below a threshold level and are discarded. Then the
nearest neighbour algorithm incorrectly accepts noise spikes as being from the signal, even
if they are distant from the filter-predicted position. .

‘3. The Kalman Filter

To use the Kalman filter in a signal following application one must assume that the .
measurements z; of bearing, frequency and normalized power at time k can be modelled by
the equations, ' : ‘

Xp = Fxp_ +wWp_g (1)
zj =Hxp + vy ' : (2)

where x; is a state vector of parameters to be estimated. Equation 1 is a difference equation
which describes the time-evolution of the arriving signal via the matrix F and w;is a
random vector included to account for the uncertainty in the dynamic model. This vector is
assumed to be zero-mean and Gaussian and is described by the covariance matrix Q.
Whereas Equation 1 describes the evolution of the signal, the signal observations are
assumed to be generated from the state according to Equation 2 where H reprasents a linear
function converting the signal state to towed array observations, and v is a zero-mean
Gaussian random vector process with covariance R which accounts for the measurement
noise. Under the above assumptions, the Kalman filter is a recursive procedure that is an .
optimal state estimator in the minimum least-square-error sense. ‘

Since the detection ranges of towed arrays can be quite long, the actual bearing to a
- detected source generally changes slowly with time. The time-evolution of bearing can
thus be described by a low-order model. The Doppler effect occasionally causes a more
dynamic behavior on the received frequency, but it is not possible to exactly model these
effects from the towed array measurements. Consequently the time-evolution of the signal
frequency was also described by a low-order model with adequate process noise Q to allow
tracking through these dynamic periods, as illustrated in Figure 4. Thus for the purposes
of this paper the models will be limited to first order in both bearing and frequency. To
further distinguish the narrowband signal from background noise spikes, the normalized
power is measured and included as a state. Consequently, the state is a five-dimensional
vector consisting of the bearing 0, bearing rate 0, frequency f, frequency rate f, and
normalized power, ps, which allows Equation 1 to be written as '

0 1T 0 0 0f6 .
6 0100 0f8 ' ' .
Xk=f =001T0 f +Wir (3)
f 0 001 OffF|-
Ps |y OOOOIpSk_1

where T is the time interval between beammap samples and the transition matrix F defines a
linear model. The state-to-measurement conversion provided by Equation 2 can be written
. for the present case as ’ ‘
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“The Kalman filter is a recursive procedure defined by the following set of equations:

St s ®)
P} =(I-K,H)P; o (6)
Ky =P H'S;! , E )
Sy =HP;HT +R (8)
KR ©)
P = FP+FT+Q - 0

“In the above equations “hatted” quantities such as X represent estimated values and

~ quantities with a

_estimated values based on knowledge about the signal dynamics and model uncertainty.
On the other hand, symbols with a superscripted “+” represent updated values which are

. corrected based on the most.recent observations. The symbol P; denotes the state

5‘ kh)

superscripted symbol represent quantities estimated from previously

covariance matrix defined by _ _ _
N ~ - - T ) . 4
Pk:=E[(xk—xk)(xk—Xk) :I . (11) )
and Sy represents the measurement prediction covariance matrix )
e T
sk;=E[(zk_ka)(zk_nxk) } (12)

Here K designates the so-called Kalman gain which is a time- varymg gain matrix.

In order to run the Kalman ﬁlter on a sequence of bearmg and frequency observatlons
initial values must be provided for X and P and the quantities Q and R must. be supplied.
Variation in these parameters can have very pronounced effects on the performance of a
Kalman filter so care must be taken in setting them. The particular values of Q used in this

- -paper will be discussed in more detail when the results are presented. Since initialization of
. recursive filters is not being investigated here, the components of X have been equated to
- the true bearing, frequency, and normalized power of the signal, while the bearing and

frequency rates have been set to zero. For the next three measurements the true values of

8, f, and ps were provided to allow convergence of the filter before commencement of the
full noise-corrupted observations. . The initialization of the covariance was handled by
setting the diagonal of Py to large values that converged to the filter-predicted estunates

- within a couple of time sarnples

The measurement covariance R can be obtained from an analysns of the errors expected
when measuring bearing, frequency, and normalized power. Consequently, a Monte Carlo

~ simulation was invoked to provide the standard deviation of the parameter estimates as a
“function of the SNR. For bearing measurements, Figure 2 of [3] illustrates the SNR

dependence for the standard deviation of the arrival angle estimates, 6,,. The Monte Carlo.



analysis showed that the standard deviation orpr when estimating frequency through the
FFT algorithm follows 6,, but with a constant offset when expressed in logarithmic form.
This occurs since the FFT can be viewed as a conventional beamformer [4,5], and
consequently has the same dependence on SNR. When using the Hannmg’ wmdow thlS
constant becomes 0.16: ~

logjo(OFrr)= loglo(oaa)+ 0.16

" Here 6, is relatlve to the half-power width of the beampattern mainlobe and ¢ gpris relative
to an FFT bin, where the spectra have been convolved with a Hanning spectral window
and beams by a Taylor window with the free parameter set to p=4. The standard deviation
on the measurements of p under the Swerling model can be approximated by .
= pP,/VBT [8] where P, is the background noise power and BT is the time-
bandW1dth product associated with the simulated 1ntegrat10n period. - _

One important aspect of the Kalman filter is that it accepts a single stream of
measurements. After each time snapshot the filter accepts one measurement representing
the signal, z;, updates the state estimate through Equation 5, then performs a one step |
prediction using Equation 9 that provides the data coordinates to be used in the selection of
the next measurement. However, in a noisy environment containing low level signals in
- clutter, choosing the correct measurement may be difficult. In such cases the nearest
~ neighbour procedure is often used, where that observation closest to the filter-predicted
position is assumed to arise from the source of interest. In this study, a large window
centred on the position predicted by the Kalman filter was used to limit the distance to the
nearest measurement when thresholding of the data was invoked. This meant that, with
very high threshold levels, occasionally no measurement was available and the filter
provided a one-step predlctlon

4 The Probabilistic Data Association Filter

The simplistic nearest neighbour procedure is prone to incorrect choice of the signal
measurement when the signal level is low. An alternative algorithm that employs Bayesian
. techniques to determine the correct measurement is the Probabilistic Data Association
filter[2]. It is assumed that there is a single target of interest, modelled by Ecquation 1,ina"
background clutter that can be modelled as independent identically distributed random
variables with uniform spatial and spectral distributions. A hyper-ellipsoidal gate or
window centred on the filter-predicted position of the next signal measurement is
maintained by the PDA filter, and only observations within the gate are considlered as valid.
The size of the gate is determined by the level of confidence that the signal is included. The
probability Pg 2that the signal is within the gate places an upper bound G on the square of
the distance! dj; to the “edge” of the gate [9]:

B=(-ws) s -wis) 6 ()

for.observation i at time k. z; ~Hx, is the Kalman filter residual describing the difference
between actual measurement i and the predicted measurement position. When Pg=0.99 it

~can be shown that G=11.84 for the three dimensions being considered here [9]. This value

is used in the remainder of the paper. Although it may appear that the gate is of a ﬁxed
size, it is actually data—dependent dueto S; 1, A

1 Although in reality a dlstance squared, d2 is common]y referred to as a dlstance and will be so called in the
rest of this paper.
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Only those observations of bearing, frequency, and normalized pbWer that fall within
the gate are considered as valid., Each is assigned a probability B of being from the signal

~ of interest, while oy represents the alternate hypothesis that none of the measurements

originated from the target[2]. At each time snapshot k, given Ny observations within the

- gate and a time-dependent probability of detection P:

B = —le | (14)
bic + 2,-:1 ik : A '
ok = ——=5— (15)
bk + zi:l €ik .o )
where: ¢y = edi/? . | ( 16)
2
| (*GE) Ni(1-PGPay)
and b= - : (17)
| Pdk(?)

- Here n, is the number of dimensions in the measurement vector z;x, and ey, is proportional
~ to the likelihood function for observation i, given the distance dj; described. by

Equation 13.

- Once the probabiiities Box and B;; have been calculéted, the hypotheses are .mérged to

- provide a weighted sum of the residuals Z;, associated with the N, observations:

Nl( ' ]
7= Bt (18)
i=1 :
whe_re - iik =2k —Hﬁ; (19)

' When the signal has high SNR it is easily distinguished from the clutter, and B;; for the

signal approaches unity while the remaining measurements from clutter have little

-influence. However, for a weak signal several observations may have roughly equal B

which in turn results in a residual Z; that may not “point” to any one measurement. This -
increases the possibility that the filter may lose track of the signal as it moves in bearing and
frequency. : :

'S5, Modifications to the PDAF Filter for Sonar Applications

Two ad hoc modifications were made to the standard PDA filter to provide enhanced
tracking of low-level narrowband signals. The first involves altering the probabilities By
to improve detection of the signal measurement, and the second involves improving those
parts of the state X that involve rates of change. : '

Due to the dynamics involved when tracking moving contacts, it is necessary to use
short integration times which in turn cause large variances on the measurement of
normalized power. As a result, incorporation of p; into the filter state does not greatly help
to distinguish signal from clutter at low levels. To assist in the identification of the correct

‘observation an ad hoc modification in the calculation of Bix has been incorporated. This

alteration improves the recognition of the signal measurement from an SNR perspective by
enhancing those B that correspond to LMD with high normalized power values:




Dreix

B = ——iks | (20)
by + zi:l Djkeik
by
Bok = N ’ . (21
by + -2,~=k1 Direik
0 if pi <pr, or
where_ Qi ={Ppnik pi2pr: otheersé_
1 ifall p; < pr

‘First,'a threshold pr is established w1th only a small probability, say 10-2-10 4 that an
observation from noise alone will exceed this normalized power level. If there are one or
more observations within the gate and the normalized power p of at least one exceeds the
threshold, then all measurements falling below pr are deleted as arising from clutter. The

“likelihood functions of the remainder are modified by a probability Pp, ; that will be
explained below. If no measurement exceeds pr all observations are incorporated and the
normal PDA filter is used. Consider the likely situation when only the observation from
the signal exceeds the threshold. In this case, independent of the position within the
window, the signal measurement is the only one used in the re31dua1 Zy, thus providing
enhanced tracking.

With the PDA filter one assumes that there is one signal in background clutter within
the gate from which measurements are extracted. Thus one can define the probability P,
* that a particular measurement did not arise from noise alone (and in fact contains the desired
* signal), while the alternate and exclusive hypothesis is that this measurement originated
from clutter with probability P,. Figure 5 illustrates this concept where an LMD
measurement having a partlcular normalized power pg is compared to a population of
noise-only LMD with the probability density shown. The probability Py, that it originated
from the source (not due to noise) is the area under the probability density as shown, while
the probability of false alarm Pg, = P,. The value for the threshold pr can be obtained in a
similar manner by choosing that normalized power that ylelds the des1red Py,

llllllllllllllllljllllllllll

Noise Probability Density

05 1.0 15 2.0 25 3.0
Normalized Power, p

Fig. 5. Probability density distribution for noise-only LMD with BT=4,
along with Py, and Py, for the observation with normahzed
power po.
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Table I. Signal Followers and their modifications.

Filter Type - Thresholded Input Bix Modified 8,f Smoothed
.- PDAF-MS : No _ Yes Yes
PDAF-M ~ No Yes , No -
~ - PDAF-T ~ Yes  No No
~ PDAF No No No
Kalman  Yes '

The second modification to the PDA filter follows from the observation that the state
estimates of 6 and f-are noisy, since they are inferred only indirectly from the
measurements of bearing and frequency and the correct model for a maneuvering target is -
not known. At all levels of SNR the tracking capability of the filter was improved by

smoothing these two states following the update step of Equation 5, and using the

smoothed estimates in the one-step prediction described by Equation 9. A median filter

‘was chosen for the smoothing operation rather than a running average because it is less

susceptible to outliers. For the following simulations the best filter length was found to be
three past samples, which balanced the conflicting requirements of smoothness versus

quick response to a maneuver.

6. Tracking Performance

- The attribute of paramount importance for any signal following filter is its ability to

-accurately track, despite changes in signal characteristics caused by such effects as varying

propagation conditions and target maneuvers. The function of tracking can be viewed from

- two perspectives. The first involves the ability of a filter to follow a weak signal without '
- loosing lock. The second involves the ability to accurately estimate that signal’s trajectory.

A particular filter may be robust from one perspective but do poorly from the other. To
evaluate the ability of each filter from these two aspects, the analysis was separated into

- two parts.- The first assessed the capability of each filter to remain locked onto the signal

up to the end of the scenario, while the second compared each filter’s ability to estimate the
true signal trajectory over the entire scenario. The following two subsections describe the
results of the analysis. :

6.1 Maintaining Lock on the Signal

Four forms of the PDA filter along with the Kalman filter were compared to ascertain
which best provided robust signal following, and whether this tracking performance
extended to a low enough SNR to be usable in an operational sonar system. Table I lists
the five filter forms to be compared, with the following designations: PDAF-MS represents

the PDAF with both the modifications to B and Boy described by Equations 20 and 21,

and the smoothing of 6and f; PDAF-M represents the PDAF with just the modifications to

. Biand Boy; PDAF-T represents the PDAF that receives LMD values which have first been
. pre-processed by a threshold filter; PDAF represents the PDAF with no modifications or

input threshold; and Kalman represents the standard Kalman filter with an input threshold
and nearest neighbour association. - -
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. Fig. 6. Percentage of signal followers that still held lock on the signal at the
end of the 80 sample scenario.

Out of the 200 Monte Carlo simulations the percentage of times each filter maintained
lock on the target signal is presented in Figure 6, where for the purposes of this analysis
“maintained lock” is defined to mean a filter was still tracking over the last 10 time samples
in a simulation. In practice the vast majority of signal followers that lost lock at some point
over the 80 time samples did not re-acquire the target; however, any filter that did re-
acquire the signal before the last 10 samples is considered to have maintained lock. Note,
however, that any filter prone to losing and re-acquiring the signal will provide very poor
estimates of the true signal trajectory. In this paper loss-of-lock indicates that a filter is no
longer tracking the signal but is following noise measurements. Since initialization of the
filters was not part of the study, each filter was initialized with the true signal values and
allowed to settle before the background noise was added.

Figure 6 illustrates the SNR-dependence on tracking capability for each of the filters
under study. The modification to B provides a marked improvement in tracking over the
standard PDA and Kalman filters, with over 80% following a signal with SNR =0 dB
when the estimated states for bearing and frequency rates were also smoothed. It is
immediately apparent from the relatively poor tracking by the standard PDA filter that some
form of thresholding of the input data is crucial. This is the only filter that had no
thresholding of any kind, for although both PDAF-MS and PDAF-M used the entire set of
LMD on input, a threshold function was performed by the modification to B described by
Equation 20. The essential difference between the two types of thresholding occurs when
all the LMD have normalized powers below the threshold value. Then the input-threshold
method provides no measurements while the B;; modification uses all the LMD within the
filter gate. This allows the PDA filter to assess which observation is from the signal
through Bayesian statistics when it is not apparent from the signal power alone.
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_ - Table II. Best thfeshold pr and Py, as a function of SNR for BT = 4.
"SNR, PDAF-MS “PDAF-M PDAF-T Kalman

dB Pr__ P -~ pr  Pm pr P pr  Pq

3 241 103 241 103 266 104 266 104

1 241 103 241 103 209 102 266 104

0 241 103 209 102 209 102 241 103

-1 209 102 209 102 172 101 241 103

-2 209 102 209 102 172 10! 241 103

This study showed that tracking performance can be enhanced by allowing the
threshold level to be SNR-dependent. For this analysis, a threshold was defined by a

- given probability of false alarm, Pg,, which describes the probability that a measurement

above the threshold pr actually came from background noise alone. The optimum values

of pr for the scenario under study are presented in Table II, along with the corresponding
‘Pra.  As expected, at higher SNR a threshold Py, in the range of 10-3 — 10-4 provided
-mostly signal measurements to the filter resulting in enhanced tracking. But when

following signals of lower power it proved beneficial to also lower py in order to capture

- sufficient measurements arising from the signal as time progressed. The exception is the

Kalman filter whose susceptibility to outliers was very evident. This signal follower
always required a high p7in order to track the signal, which meant for lower level signals it
only occasionally glimpsed an observation from the source then continued on without any

input until the signal again exceeded the threshold setting. The result is a filter that meets
our criterion for tracking but which provides a very poor estimate of the true signal

- trajectory. On the other hand, the PDAF with input thresholding, PDAF-T, required

significant changes in threshold P, as SNR was varied in order to have sufficient
observations that included those from the source of interest. The critical dependence of

- threshold Pg, on SNR makes this filter less desirable in practice since the large variance on

the measured SNR (ps) makes an accurate estimate difficult or impossible. The two
modified filters were much less susceptible to threshold level since they always had
measurements that included those originating from the signal, with the thresholds listed in
Table I simply providing better tracking performance than with other Pg,.

The tracking ability of the filters shown in Figure 6 was obtained at the cost of

. allowing the plant covariance Q to be SNR-dependent. Under the constraint that the
~bearing and frequency components in Q had to be monotonic in SNR, the values in -
- .Table III represent the optimal values for Q;; at each SNR for this scenario. In an

operational system, py and Q could be updated through a table look-up scheme since an
estimate of SNR is provided in the state vector %. ' ’

-:6.2 Estimating the Trajectory of the Signal

The accuracy of the estimation of the signal trajectory can be quantified through the
Root Mean Square (RMS) error between the filter estimate and true position in bearing and
frequency over time. Since the important signal parameters are bearing and frequency

- rather than p; its estimate was not included in the RMS error calculation. At each SNR,

those signal followers in the 200 simulations that were not tracking the signal over the last
10 time snapshots were discarded. Using the remaining simulations the mean and standard
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Table III. Best variance Q for the ﬁlters under study at each SNR. Variance ,
: _on ps, Qs5 ="10.0 for all filters and Q;; = 0 for i # .

SNR, PDAF-MS  PDAFM PDAF-T “PDAF Kalman
dB 6 f 0 f e f 0 f 6 f

3 001 0001 10 01 0.1 0001 0.1 0.001 01 0.01

1. 001 0.001 10 0.1 0.1 0001 0.1 001 01 001

0. 001 0001 10 0.1 0.1 0.001 0.1 0.01 01 0.01
-1 0.01 0001 10 01 0.01 0001 01 001 1.0 0.1
0.1 001 001 0.01 0.01 0.01 1.0 0.1

2 003 0003 01 001 00 001 00l 001 1.
) f ) f 8 f 0 f 9 f

call 0.01 0.001 0.001 0.001 0.01 0.001 0.01 0.001 001  0.001

deviation of the difference between estimated and true bearing were combined into an RMS
error at each of the 80 time snapshots. In a like manner, the RMS error for frequency was
determined and the two were combined into a global RMS error ;. Based on the beam
spacing in degrees and the FFT bin resolution in Hz, the number of beams represented by
an RMS error of 1° was equivalent to the FFT bins represented by an RMS error of 0.1 Hz.
To give bearing and frequency errors approximately equal weight the frequency RMS
errors were first multiplied by 10 before being combined into Xi. Finally, the global RMS
error was averaged over the 80-sample track to provide a single number X that descrlbed
the accuracy of each filter.-

The average RMS error for each filter is presented in Figure 7, where it is seen that
~ the Kalman filter provides by far the poorest estimate of signal history independent of
signal level. The PDA filter with input thresholding, PDAF-T, gives good estimates for

-
o
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" RMS Error
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" —A— PDAF-M
| —O— PDAF-T
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| Fig. 7.  The average RMS error for those 51gna1 followers that malntamed lock,
as a function of SNR.
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‘moderate SNR but degrades more quickly than the others as the signal level decreases. The'

effect of smoothing the bearing and frequency rates is illustrated by the difference between
PDAF-M and PDAF-MS, which shows that for this ‘particular scenario smoothing
approximately halves the error at all signal levels. Finally, the PDA filter with no
thresholding of the input LMD exhibited similar tracking errors to the one with
thresholding, but as discussed earlier it had a substantially lower tracking capability.

- To give some feel to the actual RMS errors, consider the best filter (PDAF-MS)

- following a signal with an SNR of -2 dB. From Figure 7 the average difference between

the estimated and true track represented by the RMS error is approximately 6. For an

equally weighted bearing and frequency error this is roughly equivalent to an average
deviation of two beams and two FFT bins from the true signal position. For this very

weak signal, the filter is often unable to discern the signal from the background noise

.“measurements. The filter tends to wander until the signal appears somewhat above the

background, whereupon the modification of Equation 20 causes an enhancement of the 3

- associated with the signal measurement, and the filter jumps over to the signal position.
- When the filter is following a signal with SNR at or above 0 dB, the average error over the

80-sample track falls to less than one beam and one FFT bin.

7. The Detection of Signal Loss-of-Lock

A critical aspect of any signal following system is its ability to alert an operator when
there has been loss-of-lock on the target signal. In most experimental towed array systems
the signal-following function is a background operation which does not require operator
intervention once started. Whenever a filter fails to follow the signal it will continue on but

process just background random noise. If there is no mechanism to flag this condition then

all post-processing algorithms depending on the signal follower data will in turn generate

erroneous information. With the Kalman filter, monitoring of the innovations Z is often

used. However, this can be inconclusive since a deviation from a white, zero-mean
Gaussian sequence can indicate either loss of the signal or detection of a maneuver. In

~addition, for low level signals simulation has shown that this method is very unreliable for

either purpose. On the other hand, the PDA filter accepts both signal and clutter and

- assigns a probability to each observation through Bj;. The modification described in

Equation 20 substantially improves the discrimination between signal and noise, and so
enhances the detection of a loss-of-lock condition. Another parameter that can indicate
whether the filter is tracking the signal or just noise is P, which provides the probability
that a particular measurement has not originated from clutter. - By monitoring the history of
P,» assuming the filter's state estimate of pj, &p, one can deduce when the filter has lost
track of the target. :

A reliable loss-of-lock detector can be formed by comparing either the maximum B; at
time k, maxy(Bi), or Pny k(Xp) against-a corresponding threshold. When either parameter
falls below its threshold a loss-of-lock condition is announced. To improve performance
both maxy(B;) and Py, x(X,) are smoothed with a median filter over the preceding time
snapshots. For moderate S’I)\]RS either detector can be used, but for signals that are barely
discernible, logical or-ing the output from these two detectors produces a more sensitive

- detection mechanism. Improved response is obtained by adjusting both the median filter |
~ length and the threshold levels as a function of SNR. Table IV lists the values for filter
" length and threshold used in the study, which where chosen to meet the conflicting

‘requirements of low probability of false alarm and rapid and robust detection of loss-of-

lock.

13



- Table IV. Length of median filter and probability threshold for max(f) and P,
- detectors as a function of the SNR. ' :

SNR, dB Filter Length Py Threshold P, Threshold
B 7 0.65 | 0.85
1 1 - 0.60 0.80
0 23 0.53 - 0.77
<-1 - 33 053 0.77

A different scenario was constructed to analyze how well the best filter, PDAF-MS,
could detect loss-of-lock over a range of SNR. Both the target and towing ship maintained
a steady course and speed to minimize the dynamics on § and £, and the simulated true
SNR received by the line array remained constant until sample time k reached 30. Then the
SNR decreased at a linear rate until it reached the unobservable level of -6 dB at sample
time 40, remaining at this value until the end of the 80 sample scenario. The Monte Carlo
simulation included 200 runs but those signal followers that lost contact before k=30 were
eliminated. Thus the remainder maintained lock over the time the signal was observable.
Figure 8 presents the percentage of filters whose B-or-P,, detectors declared loss-of-lock
at each time snapshot k. Only at the lowest SNR did one filter erroneously dzclare loss-of-
lock before the signal faded. With heavier smoothing at the lower signal levels the
detectors were more sluggish in declaring loss of the signal, but all did detect the absence
of the target by the end of the scenario. Even for the lowest SNR, 95% of the filters had
declared loss-of-lock within 20 samples of the signal falling below the average noise level. .
For an integration time of 8 seconds this represents detection of signal loss within
2.6 minutes, while for a signal initially at 3 dB the time lag for 95% of the filters was
about 5 samples or 40 seconds. : ‘
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Fig. 8. The percentage of detectors that declared loss-of-lock at each sample time
k, as a function of SNR.
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‘8. Conclusions

In this paper we have examined the performance of several variations of the

Probabilistic Data Association filter. It has been demonstrated that two modifications can
‘enhance both tracking ability and estimation of the target signal trajectory. By modifying
- the parameter B that assesses the probability that observation i is from the signal, one can
-~ reduce the clutter within the gate and hence provide reasonable tracking even for barely
.. detectable signals.” By also smoothing those filter states that describe rates of change in

- bearing and frequency the accuracy of the estimate of the signal's true position over time is

" - further increased. : '

. A prime requirement for any signal following filter is the ability to recognize when the
signal of interest has.been lost. An effective loss-of-lock detector has been demonstrated

- for the PDA filter using the modified Bayesian probability By and the probability Ppy.
- This detector was shown to be sensitive even for very low level signals.

From the analysis described in this paper it has been demonstrated that the

- Probabilistic Data Association filter, with certain modifications, can provide robust tracking -

- of a very low level signal emanating from a maneuvering target.
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