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Abstract

The report analyses the detection performance of the Fast Fourler Transform (FFT)
type signal processor for narrowband signals in white Gaussian noise. Sinusoidal and
narrowband Gaussian signals are considered. The signal processor structure is based on
the short-time averaged periodogram approach to spectral estimation. Processor
parameters considered in the study include time-bandwidth product, data windowing,
periodogram overiap, FFT zeroes extension and data normalization. A buillding-block
approach is adopted, whereby the effects of each parameter on the detection threshold
can be determined. Results are presented in graphical form. Hence, for a seiected set
of processor parameters, the appropriate detection threshold can be readily obtained. A
thorough mathematical treatment of the problem is presented in the Appendices.




Resume

L'auteur analyse la performance du processeur de sngnaux a transformée de
Fourler rapide pour la detection de signaux a bande étroite en presence de bruit blanc
gaussien. Il etudie le cas des signaux gaussiens a bande étroite et sinusoidaux. La
structure du processeur est basee sur I'estimation spectrale par periodogrammes
moyennes sur une corte periode de temps. Les parametres utilises dans I'etude sont: le
produit du temps et de la largeur de bande, le choix des fenétres de données, le
recouvrement de penodogrammes, I'addition de valeurs nulles pour la transformée de
Fourier rapide et la normalization des données. Une approche par blocs fontionnels
permet de determiner les effets de chaque parametre sur le seuil de détection. Les
resultats sont presentes sous forme graphlque It est donc possible de determiner
facilement le seuil de detection correspondant a chacune de diverses combinaisons des

parametres du processeur. Les annexes presentent un expose mathemathue detaille
de la question.
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1 Introduction

A classical signal processing problem is the detection of a narrowband signal of
unknown frequency in noise. The ability of a signal processor to detect such a signal
depends on the processor structure and on the precise nature of the input waveform.
This report attempts to analyze In detail the performance of the Fast Fourier Transform
(FFT) processor In the above detection role. The name, FFT processor, comes from the
fact that the processor uses the Fast Fourier Transform algorithm in estimating the
power spectrum of the input process. Realistic models of the narrowband signa! and
noise will be used in the analysis, so that the predicted performance should correspond
well with that actually realized. The FFT processor is essentially optimum for the above
detection problem under a varlety of practical conditions[1]. The processor also lends
itself to high-speed digital Implementation(cf.[2]). Hence, it is finding increasing
application in areas such as passive sonar.

We shall examine in detail the detectability of a narrowband signal that is located
in one of the frequency cells, or bins, of the FFT. Two important classes of signals will
be included, namely, sinusoidal signals and narrowband Gaussian signals. The latter
class is a realistic model for signals which undergo random amplitude fluctuations as
they propagate through the medium. For example, continuous tonals that have
undergone long range muitipath propagation through the ocean have been observed at a
receiver to behave like narrowband Gaussian noise[3]. We will consider various rates
of signal fluctuation. The noise at the processor input will be assumed to be Gaussian,
and of uniform strength over the frequency band of analysis. The noise power will be
taken to be unchanging, that is,stationary over the processor integration time. The
assumption of stationary Gaussian noise is often satisfied in passive sonar for processor
integration times of the order of a few minutes[4], except, for example, when rapid
rates of doppler frequency shift occur due to changes in the source-receiver geometry.

The report permits a reader to determine the detection threshold, DT, at the
processor Input that is appropriate for a selected detection probability, Pp, and faise-

alarm probability, P,. DT Is the ratio, in decibels, of the signal power in a FFT frequency

bin to the nolse power in a 1 Hz frequency band that is necessary to achleve the
particular Py and Pg,. This convention is selected because of its historic use in the

sonar equation[5]. The analysis assumes the processor input derives from the output of
a single-channel receiver; however, the signal and noise models we use also permit the
analysis to treat the case where the input is a linear combination of the outputs of a
multichannel receiver, as would occur if the processor was preceeded by a linear
beamformer.

Our analysis considers the sensitivity of the DT to various processor parameters.
These include effects of integration time and FFT frequency resolution, data windowing,
FFT segment overlap, extension of the FFT length with zeroes prior to Fourier
transformation and data normalization. A buiiding-block approach is taken, whereby each
processor parameter can be isolated; this makes it possible to determine the effect on
the DT of varying any individual parameter. Results of the performance analysis are
presented in graphical form. For a particular processor design, the reader can readily
obtain corrections to the DT due to each process parameter, and hence arrive at the
final DT. Certain factors influencing the detection performance are not treated by this
report. These include effects due to the display format, such as level quantization and
peak-picking, effects of slow varlations in the background noise level[6], and the
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possibility of averaging across frequency the interpolated power estimates resulting
from zeroes extension in order to reduce the display density[7]. Also, we will assume
that the detection decision is made totally in-machine, so that variations in detection
performance that arise among human operators need not be considered.

In Section 2, we present the assumptions and methods that were used in the
performance evaluation. This includes a description of the properties assumed for the
signal and noise, as well as a description of the FFT processor and its components. The
potential corrections in DT due to these components are outlined. Section 3 contains
the results of the performance analysis in graphical form. By proceeding ioglcaily
through this section, the reader can select in turn the desired processor parameters,
and ultimately arrive at the DT. Several examples are given in Section 4 of the use of
the results in the preceeding section. For completeness, the mathematics necessary to
carry out the performance analysis are developed in the Appendices. With only a few
exceptions, the notation used in the report follows that presented in [8]

Parts of the analysis presented in this report have appeared previously in the
literature, notably[1],[7],[9],[10],[11] and [12]. Some of the results are new,
particularly those for Gaussian signals of arbitrary bandwidth. The important feature of
the report is that it brings together the factors affecting the detection performance of
this processor in a manner which permits ready evaluation of performance.




Section 2

2 Performance Evaluation: Assumptions and Methods

This section summarizes the assumptions and methods which we have used in
evaluating the processor performance. This includes a description of the processor
building-blocks, as well as the signal and noise models to be considered. In Section 2.3
we outline the mathematical techniques used in the evaluation procedure. For the
reader only interested in results, this final topic can be omitted.

2.1 The FFT Processor

The FFT processor structure is based on a power spectral estimation technique:
the method of averaged short-time periodograms[13]. The method is well suited to digitai
implementation(cf. [2]). In addition, the power-law detector with integration is
essentially optimum for two important classes of signal[14]: a phase-random sinusoid (at
small signal-to-noise ratios) and a narrowband Gaussian signal with baadwidth matched
to the processor bandwidth. The processor performance for both these types of signal
will be examined in Section 3.

Figure 1 shows the basic components of the processor. The input consists of a
finite record of duration, T,, of a band-limited, stationary process, x(t). T, is referred to

as the integration time of the processor. The record is uniformly sampled at sampling
frequency, 1‘3.1 Hence the input sequence may be written as x(n), n=0,......,.L.-1, where
L=f,T..

N
.
l ‘..ll“lu.’

2 ’I!'hllu
|
3| =0~ il

:

Figure 1. Schematic of the basic components of the FFT Processor

' The sampling frequency must be at least twice the highest frequency in the input
process, in order to satisfy the Nyquist criterion[15].




4 Section 2.1

The processor performs the following sequence of operations:

1) The record is subdivided into shorter segments of length T,
each containing N samples. The segment length fixes the width of
each FFT frequency cell, or bin, and hence the maximum frequency

resolution? of the processor.3 The FFT cell bandwidth, or FFT binwidth,
will be B=1/T. The ratio of record length to FFT segment length,
M=L/N=T,/T=BT,, defines the time-bandwidth product of the processor.

M is the number of independent incoherent averages of the power
estimate available in the processor integration time. A large time-
bandwidth product results in a stable power estimate. However, once
a record length is selected, frequency resolution and estimate
stability become mutually exclusive, i.e. as resolution is increased,
estimate stability Is decreased, and vice-versa.

2) The segments may be overlapped by D samples. The
fractional segment overlap is Y=D/N. Including overlap, we now have
a total number of segments, M'. Segment overlap increases the
stability of the power estimate by effectively increasing the number
of independent averages in the estimate. The effective number of
averages will lie between M and M'.

3) A discrete data window is applied to each segment. The
shape of the data window controls two effects on the power
estimate: the ability to resolve closely spaced narrowband frequency
components, and the influence that high strength components at one
frequency have on the estimate of components at other frequencies
(leakage).

4) The length of the segments may be extended with zeroes to
length N' prior to Fourier transformation. Zeroes extension does not
affect the resolution capabllity of the processor since the effective
bandwidth of each FFT bin is unchanged. However, it increases the
density of frequency points at which the spectrum Is estimated,
thereby introducing a greater overlap of the effective frequency
bands for adjacent FFT bins. Hence, there is less chance of missing
the peaks of narrowband components. Note that the most commonly
used redix-2 FFT algorithm requires that the number of points in the
transform be precisely a power of 2. Zeroes extension is often used
simply to meet this requirement.

6) Each windowed segment is Fourier analyzed with the Discrete
Fourier Transform, implemented via the Fast Fourier Transform (FFT)
algorithm. The magnitude~square of the FFT is taken. The result is
referred to as a (modified) periodogram. The periodograms obtained
from each segment are then averaged to yield the power estimate.
Hence, the estimation technique is referred to as the method of
averaged short-time periodograms.

2 Resolution in this context refers to the ability of the spectrum estimator to
separate closely spaced narrowband components in the spectrum.

3 The data window discussed in 3) will reduce the resolution from this maximum,
excepting when the window is rectangular.
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It Is useful now to express these processor operations in mathematical form. The
output of the FFT acting on the ith segment is a sequence of complex samples, X(f,),

where f =kf,/N', k=0,.....N'/2, and:

N-1
-j2mnf /f
X,(f) = Zw(n) x,(n) e J K/fs . M
n=0
The x,(n) is the input sequence for the ith segment, i.e.:
x,(n) = x[n+(i-1)(1-Y)N], n=0.,........ ,N-1 (2)
T IR M

and w(n) Is the data window, n=0,.......N-1.

A
The estimate, P(f,), of the power in the frequency bin centered at f,, is the
average of the powers over the M' segments:

MI
]
By = = ;‘ IX(F)I? . (3)

We will assume that the narrowband signal is not overresolved, i.e., the signal has
a bandwidth no greater than the FFT binwidth, B. However, the results presented in this
report can be extended to the case of overresolution. The approach is basically to
reduce the input signal power by the ratio of the FFT binwidth to signal bandwidth and
then assume the signal occupies precisely one FFT bin. This, of course, requires that
the detector treat each frequency bin independently, which is a valid assumption
provided a human operator does not make the detection decislon.

To detect a narrowband signal in a particular frequency bin, we must choose
between one of two hypotheses:

H: the frequency bin contains only noise;
H,: the frequency bin contains a narrowband signal plus noise.

We can obtain a power threshold, Py, for the FFT bin which the power estimate has

a (false-alarm) probabllity, Pg,, of exceeding when noise alone is present.? The detector

is considered optimal under the so-called Neyman-Pearson criterion[ 18] if this choice of
threshold maximizes the detection probability, Py, for each input signal to noise ratio. It

can be shown that the FFT processor is essentially optimum for a narrowband signal in
white Gaussian noise of known power[1].

A detection will always be assumed to have occurred (with probability, Pg,, that

% For this report, we consider practical values of Pz, to be of the order 107 to
1072
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the decision is wrong) if the power estimate, Q, exceeds the power threshold, where for
Gaussian noise, we choose to define P, as:®

pT = PN+I’PN )
(4
= (1+r)PN .

Py Is the mean power in the frequency bin due to noise alone, PN=E(3[H0), and E(-)
indicates expectation. Parameter, r, is a constant power ratio, in units of Py. This
notation emphasizes the fact that the power threshold is proportional to the mean noise
power.6 Hence, an increase in Py will cause a proportional increase in Py, and the faise-

alarm probability will remain unchanged. Such a detector is referred to as a constant
false-alarm rate, or CFAR detector.

The power threshold is obtained by integration of the probability density function,
f(x|H ), of the power estimate for the noise-only hypothesis, l.e.;

Pea = / f(x|Hg) dx . (5)
P

T

In Appendix G, we discuss the problem of threshold setting for various false-alarm
probabilities, and the effects of the processor on this setting.

From (4), we see that setting the power threshold for detection requires that we
know a priori the mean noise power in the FFT bin. in practice, this is seldom the case.
Then Py must be estimated from the data available within the finite time record. One

common method of estimating Py assumes that the FFT bins adjacent to the bin of
interest contaln only noise, and of the same mean power. Hence Py may be estimated
by averaging the power over K adjacent bins:

bK
3
By = - gﬁ(f,) : (6)
|

where b,,b,,....byx are the numbers of the FFT bins to be averaged. This approach is

known by a variety of names, including the moving window averager[17] or the celi-
averaging CFAR[18]. When the average in (6) uses an equal number of bins on either
side of f, it is referred to as the split window averager.

A new power estimate Is obtained by normalizing the power in each bin by Py (or

6N):

5 This choice of definition will become evident further in the analysis.

8 For non-Gaussian statistics, the power threshold will likely also depend on higher
moments of the noise distribution.




Section 2,1 7

P(f) = Birorpy, . (7)

When the spectrum is normalized as above, the new power threshold, 5T= (1+r),
becomes independent of the mean noise power.

The analysis of detection performance will require us to find that signal-to-noise
power ratio, SNR, in the FFT frequency bin and at the processor input which achieves a
given level of correctness for the detection decision. The probabllity of detection, Pp,
and probability of false-alarm, Peas quantify the decision confidence. Detection

threshold is related to the SNR by:
DT = 10-log(SNR*B) ,

where B Is the FFT binwidth. While finding the threshold power setting as discussed
above is a problem related to that of finding DT, knowledge of either DT or P; does not

directly lead to the other.

We will now summarize the procedures followed by the FFT processor. A
qualitative statement of the reasoning governing parameter selection is possible. More
quantitative arguments will be made in Section 3 based on the results presented there.

1) time-bandwidth product: First select the record length, L, and the number of
samples, N, per segment. The ratio, M, of record length to FFT segment
length defines the time-bandwidth product of the processor. It sets a
lower limit on the number of segments possible. The length of the
segment controis the frequency width, B, of each FFT bin and, hence,
the minimum frequency resolution. The number of segments controls the
stability of the final power estimate. For a fixed record length, high
resolution and high stability are conflicting requirements: an increase in
the number of segments reduces the individual segment length, thereby
increasing the binwidth, and vice versa. The analysis in Section 3 will
consider cases where the time-bandwidth product lies between 1 and
1000. The FFT binwidth will always be chosen to be no less than the
signal bandwidth. These conditions are usually typical to passive sonar,

except when high rates of doppler frequency shift may occur.”

2) overlap: select the fractional segment overlap, Y=D/N. Segment overlap
increases the stability of the power estimate. Although the X(f),

i=1,...,M' are correlated when overlap is used (the FFT's act partially on
the same input sequences), the effective number of averages Is still

greater than that without overlap. For overlap, ¥, the number of
segments, M', Is:

M' = (M-Y)/(1-7) . (8)

Y should be selected so that M' is an integer value. As Y approaches

7 A common situation where high doppler rates occur is when the target passes
through its closest point of approach, or CPA.
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unity, the gain in stability approaches a limiting value, since adjacent
FFT samples become more and more correlated with one another. The
increase in signal detectability that results from use of overlap must be
weighed against the increased processor load which it produces.

data window: select the data window to be applied to each segment. The

data window fixes the ultimate frequency resolution of the power
spectrum estimate. We show in Appendix C that the mean of the power
estimate in the kth FFT bin is:

. /2
E(P(f)) = / IW(f,-1)]2 s(f) df , (9)
~f /2

where S(f) is the power spectrum of the input sequence and W(f) is the
Fourier transform of the data window. [W(f)|? is referred to as the

spectral window.® Hence the mean of the spectral estimate is a
convolution of the true spectrum with the spectral window. The spectral
window is usually chosen to provide a reasonable trade-off between the
width of its mainlobe and its sidelobe level. The mainlobe width .
determines the resolution capability of the window, while the sidelobe
level determines the extent to which leakage of power from adjacent

frequencies will affect Q(fk).

In the analysis presented in Section 3, we will consider two data
windows(cf.[19]):

(a) rectangular window:
w(n) = 1 n=0,........,N-1 (10)

This, of course, corresponds to no weighting of the segment at all.
However, we choose to refer to this as the rectangular window, and
analyze its effect on the processor as we would for any other window.

(b) Hanning window(raised cosine):

w(n) = 0.8[ 1-cos(27rn/N)] n=0,........ , N-1 (11)

These data windows and thelr corresponding spectral windows are
shown in Figure 2. The shape of the spectral window has a weak
dependence on N; for N greater than about 32, this dependence
essentially disappears. We will always assume that N is sufficiently
large that this dependence can be ignored. The rectangular window has
the minimum possible mainlobe width for the class of symmetric, tapered
data windows; it Is also optimum when detecting a sinusold in white
noise[20]. However, its sidelobe level is relatively high, and ’
consequently suffers from leakage when the spectrum contains

8 This definition is somewhat different than that used in [19], where W(f)/W(0)
defines the spectral window.
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Figure 2. Data Windows and their corresponding Spectral Windows used in this
report

structure. The Hanning window provides a reasonable compromise
between mainiobe width and sidelobe level. its wide use in practice is
mainly due to its easy implementation. The properties of these windows
are tabulated in Appendix C.

The data window influences the detectability of the signal in three ways.
First the window causes leakage through its sidelobes of noise power
from adjacent bins into the bin of interest. Secondly, the signal power in
the bin may be less than that of the true signal power. This may result
either because the spectral window does not have unity sensitivity over
the signal spectrum, or because the signal is not centered on the FFT
bin. The latter loss is referred to as ripple loss. Finally,the data window
controls the correlation between the FFT samples from adjacent
overlapped segments. The sharper the taper on the data window, the
less will be the correlation between samples from these overlapped
segments. Hence, an increase in the effective number of averages can
be obtained within the integration time by increasing segment overlap,
and consequently increasing the stability of the spectral estimate. All
these effects are treated in Section 3 for the above two window types.

4) zeroes extension: we may extend the segment length with zeroes prior to
transformation. Zeroes axtension does not affect the shape of the
spectral window nor the stability of the power estimate. However it
does reduce the ripple loss since it increases the density of frequency
bins, thereby increasing the overlap of spectral windows from adjacent
bins. Hence, the maximum depth of the ripple in the sensitivity of the
estimator across frequency is reduced. It is possible at this point to
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average the power estimates that result from zeroes extension and that
lie at frequencies between the estimates obtained with no extension.
This is advantageous if only a limited number of frequency points can be
displayed. Such frequency averaging[7] can be shown to result in the
same detectabilty of a signal of unknown frequency as when the
redundant frequency points are not averaged and all points displayed.
Hence, we do not treat such frequency averaging in this report.

&) data normalization: if the noise power in the bin is unknown, the data
normalizer, (6), may be applied to estimate the noise level. Hence, the
number of noise-only bins to be used by the normalizer must be
selected. The uncertainty In Py wilil require a higher pcwer threshold in

order to achieve the same Pg,, than had Py been known. We examine

this increase in Section 3 as a function of the number of FFT segments
and the number of bins used in the normalizer. The case where noise is
stationary over a period longer than T, and hence can be estimated with
greater precision by incorporating noise estimates from prior records is
not treated.

2.2 Signal and Noise Properties

Two models of the narrowband signal will be used in the analysis.
1) Sinusoidal Signal:

We assume the signal is a sinusoid, which we express as:

xgs(n) = A cos(2mnf /f, + ¢), (12a)

=% ej(21rnfc/fs+q$) LA e-J(Z?rnfc/f,'ﬁd’). (12b)

A Is the amplitude, ¢ Is an arbitrary constant phase, and f. is the frequency. If f_ is
located within the FFT bin centered at f. , the output of the ith FFT due to the sinusoid
is obtained by substituting {(12b) in (1):

N-1 )
Xss(fi) = % eJ(0,+¢) E w(n) o 12mn(f-f)/f,
n=0

N-1
A e-J(0,+¢) Z“’(“) e-J2'Irn(fk+fc)/fs, (13a)

h=0
- % Wt s, 0, 52_ witety o O (1

0, is the phase at the start of the ith segment, relative to the phase at the start of the
record, and will be given by:

0, = 2w (i-1)(1-YINf /1, , (14)
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where 7 is the fractional segment overlap. The second term in (13b) is negligible
except for f, near zero or f;/2; we shall ignore this edge effect in the following

development.

2) Gaussian Signal

We assume that the signal is a stationary, ergodic zero-mean narrowband Gaussian
process, which can be expressed as:

xgg(n) = x5gcos(27mnf /f,) + xYq sin(27nf /f,) , (16)

where x5q(n) and x¥4(n) are stationary zero-mean Gaussian processes. The spectrum
of the narrowband signal will be taken to be symmetric about center frequency, fes
where f_ is located within the kth FFT bin; hence, x5g(n) and x¥n) will be independent.
The complex output, X, s5(f,), of the ith FFT and in the kth bin due to the Gaussian signal

is obtained by substituting the above for x(n) in (1), in the same manner as the
sinusoidal signal was treated in (13). However, since the signal is now random, we
require a statistical description of the FFT output. Since we ultimately deal with the
signal power output we wish to find the second-order statistics of the FFT output. The
second-order statistics of the FFT samples due to the Gaussian signal are described by
the M'xM' Hermitian correlation matrix, Kg. It defines the correlation between all

possible pairs of FFT samples, i.e.:

Kg = E(xSGxLG) , (18)

where Xgg is the M'-column vector of complex FFT samples at f, and ! indicates
complex conjugate transposition. The real and imaginary parts of Xgg represent the in-

phase and quadrature components of the narrowband filter output. In Appendix C, we
show that the terms in Kg have the form:

fy/2
Kpa,s = [W(f-F)]% Sg(f) e
~f,/2

J2m ety Lo 17

where: M = (p-q)(1-Y)N,

and Sg(f) is the signal spectrum. Equation (17) may be written equivalently as (see
Appendix C):

Kias =7 Oy Pwln) Rgtns o 127 NI/ e, (18)

n=-N+1




12 Section 2.2

where we have ignored a term in exp[-j2m (f +f.)/f,], which is similar to the edge effect

discussed with respect to (13b). ﬁs is the autocorrelation function of the signal
envelope and Ry, is that for the data window, i.e.:

N-|n]-1
Rw(n) = i w(i+|n])w(i) O<|n|sN-1,
i=0
(18)
=0 elsewhere.

For p=q, (18) reduces to the mean of the signal power estimate, Kpp,s=Ps-

If the signal is narrowband relative to the mainlobe of the spectral window, and if
the signal is centered on the bin, (18) becomes for P=q:

= N-1
Rg(O
pS= Kpp,s = Si ) Z RW(n) ,

i=-N+1

= B 13w, (20)

where 0“§ is the two-sided power of the signal. The term in (20) dependent on the data
window is referred to as the coherent power gain, P;, of the window[18], and is
essentially a measure of the signal power it passes. It has a value of N2 for the
rectangular window, but only N2/4 for the Hanning window, because of its taper[19].

In the analysis in Section 3, we will assume that N is sufficiently large that the
summation in (18) can be replaced by an integration. This is a satisfactory assumption
for N greater than about 32, well below values of N typically used in practice.

In Section 3 we consider two spectral types for the Gaussian signal. These
models are reasonable approximations to the measured spectra of sinusoidal sighals
after having undergone long-range multipath propagation in the ocean[21].

(a) rectangular spectrum:

Ss(f) = 03/28g fo-Bg/2 < f < f,+Bg/2
"fc‘lez <fg 'fc+Bs/2
(21)
=0 elsewhere.

Bg is the signal bandwidth, which we will assume is no greater than the FFT binwidth, B.
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Frequency, f., locates the center of the spectrum, which lies within the FFT bin centered
at f,. One can show that the signal envelope autocorrelation is:

202 sin(mBgn/1,)

Rs(n) = —rprt, (22)
(b) Cauchy Spectrum:
2
S(f) = 05/Bs (23)
1+4m?(£-1.)2/B2

The Cauchy spectrum is chosen since its envelope autocorrelation Iis an exponential, i.e.:

'lnIBS/fs

Rg(n) = 202 e (24)

and 1/Bg is the signal decorrelation time.

in Figure 3 we show the spectra of these two signal types and their
corresponding envelope autocorrelation functions.

3) Noise

The noise will be modelled as stationary, ergodic, zero-mean Gaussian with a
spectrum that is flat over the total analysis bandwidth.° We define X na(f) as the

output in the kth bin of the ith FFT acting on the noise. The correlation matrix of the FFT
samples is Ky , having terms of the form:

f,/2
Koo = 03 W(f -D)]% e
-f,/2

jemut/t,

(25)

= 02¢ Ru(¥) © sz?ifk/f,’

where: M = (p-q)(1-Y)N,
and O'ﬁ is the mean noise power per unit bandwidth (spectrum level). Ry s the

autocorrelation function of the data window, as defined in (19). When the FFT segments
are not overlapped, the FFT samples due to the noise become uncorrelated, since:

Rw(n) =0 n2N . (26)

The mean noise power In the FFT bin is obtalned from (26) for p=q:

S This spectrum condition requires that the sampling frequency be precisely twice
the Nyquist frequency. In practice, it is usually chosen higher to avoid aliasing due to
imperfect anti-alias filtering.




14 Section 2.2
(a) S (f) Rg(n)
2 5 2
o5 /28 /‘%
U BS .
. . J I . Do .
_fs/2 fe / (f) ' fe fS/2 N \/'fS/B fs ’Bs\, 4
3N 2N N 0 N 2N 3N
n
(b) —
Se(f) Rgln)
0% /B 20
- Bs/'rr
o |
. L f“..._Ah_J/v I f}.. -~ I 1] I
*, fo ! ? fo 5, 3N 2N N 0 fs/BZN 3N
n s

Figure 3. Spectra of the Gaussian signals used in this report, and their envelope
autocorrelation functions
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Py = Kpn =03f,Ru(0),

(27)
N-1
= 03f, E wi(n) .
n=0
Hence, it is often convenient to normalize the data window so that:
fg/2 N-1 1
/ WO df = Ry(0) = Y wi(n) = iy (28)
8

-fs/2 n=0

since with this normalization, PN=0’ﬁ, i.e., the noise power is normalized to spectrum level.

Assuming the signal is narrowband relative to the spectral window, the ratio of
signal power to noise power at the FFT output is (see (20) and (27)):

cZ _(Sw(n))?

Ps/P, =
" 2028 NZwin)

(29)

2
- SNR [ Cw(n))
N Zw2(n)

where SNR is the signai-to-noise ratio per FFT bin, but at the processor input. The term
in [+] above is the processing gain, PG, of the data window[18]; it directly measures the
effect of the window on the signai-to-noise ratio at the processor output. The
reciprocal of PG can be used to define the bandwidth, Ben, Of & rectangular filter (in

units of FFT binwidth) which has the same peak value as the spectral window and an
equal spectrum area. For the rectangular window, Bgn=1, while for the Hanning window,

Ben=1.5. Hence, the Hanning window causes a 1.76 dB (10l0g1.6) loss in output signal-

to-noise ratio compared to the rectangular window. In Section 3.3 we consider the more
general problem in which the signal bandwidth is comparable to the mainiobe width of the
spectral window.

In Figure 4, we show an example signal and noise power spectrum, with the
spectral window centered on the kth frequency bin. The figure is intended to clarify
some of the parameters we have introduced above. The exampie considers a
rectangular signal spectrum in white noise, and the spectral window of the rectangular
data window.

In the above development, the noise has been taken to be at least locally
stationary over the processor integration time, T,. The threshold power is set based on

the mean noise power, Py, (or estimate, BN) appropriate over T,. The performance

assessment of Section 3 ignores the possibility that the mean noise power in
subsequent integration periods may differ. The average processor performance in noise
having such a slowly fluctuating power level can be obtained by integrating the
performance for fixed Py over the distribution of possible values of Pn. Such analysis is
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Figure 4. An example signal and noise power spectrum with spectral window
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highly sensitive to the form assumed for the density function of Py[22], and hence wili
not be considered in this report.

4) Signal pius noise models:

We summarize here the properties of the power estimates under the hypotheses
of noise-only and of signal plus noise which are required in our analysis. These results
have been derived in detail in Appendix C.

H,: (Gaussian noise)
1 M
Bry = w ; X na(fidf? (30a)

where: E(P(f)) = 03f,Ry(0) , (30b)

_ Rw(™ o j2em Nt /1,

and: Kogn = R (0) , (30c)

= (p-q)(1-7)N.

We have chosen for convenience to normalize Kpg,n SO that Ko, y=1. The advantage of

this normalization is that the signal-to-noise ratio will appear explicitly in the correlation
expressions for signal in noise (see (31c¢c) and (84c)). Beyond this, it does not affect
the analysis.

H ,: (Gaussian signal in Gaussian noise)

Ml
1
Pt = ™M 21 X.sa(fi) + X, na(fI, (31a)
j=
f/2
where: E(S(fk)) = / IW(f-F)|2 Sg(f) df + oZf,Ry(0) , (831b)
“£,/2

SNR Rw(n) Rg(n+1) o2t /1,

and: KPQ,SN = E 7
N~ L Ry(0) T 207

, Rw(® _jemwe/f,

, 3
Ru(0) e (31c)

N = (p-q)(1-Y)N .
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where SNR is the ratio of narrowband signal power to noise power per FFT bin. As in the
case of noise only, the correlation expression for Gaussian signal and noise has been
normalized for unity noise power in the bin, so that SNR appears explicitly. For p=q,
(31c) becomes:

sva & Rw(n) Rg(n) IRELLICE AT

Rw(0) 202 (32)

pp.SN =
n=-N+1

In the case where the signal is narrowband relative to the spectral window, and
provided the signal is centered on the bin, (32) reduces to:

SNR
Ben

+1, (33)

Kpp.SN =

where B, is the equivalent noise bandwidth of the spectral window.

H 4: (sinusoidal signal in Gaussian noise)

MI
n 1
Ptr) = - Z X155 + X na(FI2 (34a)
=1
8 A 2, .2
Where: E( (fk)) = —a— IW(fk'fc)l + O'Nstw(o) . (34b)
SNR W -2 Ry (M) _jomHe /f
d! = < s ’ 34
an Kpa,sn N Ao (0) + Rur(0) e (34c)
where again we have normalized qu,su for unity noise power. Note that for p=q:
_SNR |W(f~f)]?
KpplSN- N Rw(o) + 1 b
(35)

SNR
Ben

<>

+1 as fof,,

as does (32). The performance analysis does not actually require the correlation
between FFT samples for this signal and noise model (see Appendix B.3); however, we
state the result here for completeness.

Finally, we comment that the above treatment does not directly apply to the
frequency bins centered at f=0 or f,=+f. /2. In these cases, the quadrature component
of the FFT fllter output vanishes, with the consequence that only half the independent
samples are available when compared to the power estimates for other bins. The results
of Section 3 can be applied to these cases by assuming the time-bandwidth product is
1/2 its value in the other bins.
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2.3 The Characteristic Function Approach to Performance Evaluation

The aim of the performance analysis of Section 3 is to obtain the signal-to-noise
power ratio, SNR, associated with a specified Py and Pea. These confidence measures

N
are related to the cumulative probability distribution, F(y), of the power estimate, P,
conditioned on the two hypotheses, H, and H ,:

Yy
Pea =1 - F(y|Hp) = 1 —f f(x|Hq) dx
0

(38)

Y
and: Pop =1 -F(ylH{) =1 -/ f(x|H,) dx
0

where f(x|H)) is the probability density function of /F\> conditioned on H,, and y is the
power threshold. From (4), y may be written:'°

y= PT =(1+r)PN .

The approach we adopt here to solving (36) relies on the use of the characteristic

function ®(£) of 6, i.e.:

©

BE|H ) = f f(x|H ) RN (37)
0

In general, f(x|H|) can be obtained as the inverse Fourier transform of B(E|H).
Unfortunately, in all but a few cases, this transform does not have a ready analytic
solution.”’ However, Bird[23] has shown that f(x|H|) can be expressed exactly out to
some value Y by the Fourier series:

f(x|H ) = thn(H,) e JETNXIY o exey (38a)
N=-cw
117 j2mrnx /Y
where: @n(Hl)=7/ f(x|H)) ! T ax . (38b)
0

Provided Y is chosen large enough, so that f(x|H )=0, x>V, it resuits that (see Appendix
A):

10 assuming the noise is Gaussian

' We look at some important cases which can be solved analytically in Appendix E.
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sin(mrny/Y)

-jrny/Y
mny/Y )

J
Y 27n
F(y|H,) = v E @(—Y—|Hl) [ Je (39)

n=-J

The error due to truncating the Fourier serles at J<« Is negligible for moderate values of
J. The technique and its error bounds are discussed in Appendix A.

To apply the above technique, we require the characteristic function of 6, under
both hypotheses H, and H,. These are obtained In Appendix B. The results are

summarized below.

H,: (Gaussian nolse)

M! i)
JGEBEY | ERERAS o (40)
i=1

where P&,'N is the ith eigenvalue of the correlation matrix, Ky, for the FFT noise samples
(see 30c). The complex exponential in (30c) does not affect the eigenvalues of Ky and
80 can be ignored in their calculation.

H y: (sinusoidal signal in Gaussian noise)

JESNR-C,/M' + E2SNR-C )\ y(1-K )/M'2
1 - JEAl,N/M'

T .
@(E|H,)=H(1-7',ﬂl)“exp[ 1. (a1
i=1

M M
where: K, = E Z /2T (P I-TIN( -t/ 1, [RolIR
p=1 q=1

Cy = [W(f~fI?/NR(0) (-~ 1/Bgy as fof) ,

A2
4028

and: SNR =

R,j is the i,jth term of an M'x M' matrix whose jth column is the orthonormal elgenvector

for the jth eigenvaiue of Ky. When there is no overlap, K=1, and the second term in the
exponential of (41) disappears.

H,: (Gausslan signal In Gausslan noise)

M! i
2@H,) = [T 0 - e g, (42)
i=1

where A, gy is the ith eigenvalue of the correlation matrix, Ksy, for the FFT samples of
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Gausslan signal plus noise (see 31c). As In the case of noise only, the complex
exponential in the noise component of (31c) does not affect the A gy's, and hence can
be ignored in their calculation.

The performance evaluation for known noise power proceeds as follows:

1) select the processor parameters, eg. number of segments, overlap,
window type, etc.;

2) select the signal type, and spectrum type (if Gaussian);

3) select a P, and iterate (39) using ®(£|H,), until the threshold, vy, is
obtained which yields this Pg,;

4) using the threshold from 3), iterate (39) using ®(§|H ;) until the signal-to-
noise ratio, SNR, is obtained corresponding to the selected Pp,.

Pearformance evaluation for unknown noise power is treated in Appendix F.
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3 Performance Evaluation Results

In this section we present resuits of the evaluation of the detection performance
of the FFT processor for narrowband signals. The processor structure and the
statistical properties of signal and noise which we have assumed are discussed in
Section 2.

For a selected set of processor parameters, as well as signal and noise conditions,
the detection threshold, DT, required to achieve specific P, and Pg, can be defined as

foliows:
DT =Gy + 10logB + SE+ L, +L -G, - G, + L, , (43)
where all values are in decibels. The terms in (43) are:

DT: detection threshold, or ratio of the narrowband signal power to the noise
power in a 1 Hz band necessary at the processor input to achieve a
specified Pp and Pg,;

Gy: the basic DT associated with a time-bandwidth product of M, and due to

averaging over M non-overlapped segments, assuming a 1 Hz FFT binwidth,
Pp = 0.6 and a specified Pg, (see Sec. 3.1);

B : the FFT binwidth, or reciprocal of the FFT segment length, T;

SE: the signal excess, or difference in DT between that for a selected Py and
that for Pp = 0.5 (see Sec. 3.2);

L, the loss in DT due to data windowing, assuming the narrowband signal is
centered on the FFT bin (see Sec. 3.3);

L,: the average ripple loss, which results when the signal is not centered on
the FFT bin (see Sec. 3.4);

G,: the reduction in average ripple loss due to extension of the data segment
with zeroes before the FFT is performed (see Sec. 3.5);

G,: the gain in DT due to segment overlap (see Sec. 3.8);

Ly: the loss in DT due to data normalization, as required when the noise power
is not known (see Sec. 3.7).

The first three terms in (43) define a baseline DT. They depend only on the
properties of the signal and noise, and on the time-bandwidth product of the processor.
The remaining terms are corrections, either losses or gains, to the basic DT due to the
actual processor structure. The following sections treat each of the terms in (43) in
turn. Results are presented in graphical form for convenient use by the reader. By
insertion of the appropriate values for each term in (43) the detection threshold for a
specific processor will result. Accuracy of the result should be of the order of +0.2 dB.
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3.1 Time-Bandwidth Product

In this section we show the basic detection threshold, G\,, associated with a given
processor time-bandwidth product. The time-bandwidth product represents the number
of non-overlapped segments, M, or equivalently, the ratio of the total record length to
the FFT segment length. The results are presented in Figures 5-7; the figures
correspond to Pg,'s of 10'2, 107% and 10'8, respectively. The detectlon probability is Py
= 0.5 in all cases. Values of M range from 1 to about 1000; this covers valuas of time-
bandwidth product typically encountered in practice. For exampie, for a 300 second
time record, and a 0.1 Hz FFT binwidth, the time-bandwidth product is 300x0.1=30.
Extrapolation methods for values of M in excess of 1000 are noted below. When no
segment overlap is used, then only integer values of M are permitted. However, when
overlap is used, a non-integer value of M is possible, provided the total number of
overlapped segments is an integer value.

Five curves appear in each of Figures 5-7. Each curve corresponds to a model of
the narrowband signal. These are as follows:

1) upper solid line: narrowband Gaussian signal having a
bandwidth, Bg, negligible compared to the FFT binwidth, B=1/T, i.e.
BsT=0. T is the FFT segment length. Hence, within any time record,
the signal appears as a sinusoid of fixed amplitude, but with an
amplitude which can fluctuate from one record to the next. Under the
narrowband Gaussian assumption, these fluctuations follow a Rayleigh
distribution. This type of signal has been referred to as a Swerling [
fluctuating signal in the radar literature[14].

2) lower solid line: narrowband Gaussian signal having a
rectangular spectrum with a bandwidth, Bg, exactly matched to the

FET binwidth, i.e. BgT=1. When no segment overlap is used, and

ignoring effects due to the data window, the FFT output from any one
segment is uncorrelated with that from any other segment (the signal
envelope autocorrelation shown in Figure 3a is sampled precisely at
the zeroes of the function). Such a signal has been referred to as a
Swerling II fluctuating signal[14]. In general, the narrowband
Gaussian signal will lie between the two limiting cases described by
Swerling | and 1l models. These intermadiate bandwidth cases are
treated shortly.

3) heavy dashed line: narrowband Gaussian signal having a
Cauchy spectrum with a bandwidth, Bg, matched to the FFT binwidth,

i.e. BsT=1. The results are essentially identical to those for the
Swerling 1l signal.

4) dashed line: sinusoidal signal. The figures show that the
detection threshold becomes identical to that for the two types of
narrowband Gaussian signal having BgT=1 for M greater than about 20;

5) dotted line: a frequently-used approximate solution to the
problem of narrowband signal detection. It assumes that the
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probability density function of the FFT power estimates is Gaussian,
both with and without signal present. In this case, the detection
threshold reduces to:

Gy = Slog(d/M) (44)

where d is referred to as the detection index[5]. It is a function of
the selected P, and Py,. The above approximation is derived in

Appendix D.1 and values of d are obtained for the Py's and Pea's used

in Figures 6-7. For M large, the approximation closely models the
results for the sinusoidal signa! and Gaussian signals having BgT =1,
since the density function of the power estimates indeed approaches
a Gaussian, according to the Central Limit Theorem[8]. For M small,
the error due to use of the approximation is of the order of a few dB
(at least for P,=0.5).

The above results assume that the signal-to-noise ratio is referenced to the FFT

bin.'? As we stated before, detection threshold is normalized to the equivalent noise
power in a 1 Hz band (spectrum level). If the actual FFT binwidth, B, differs from 1 Hz,
then the the above values must be corrected by 10/ogB, in order to preserve this
normalization. This correction will cause a 3 dB decrease in DT for each halving of the
FFT binwidth (or doubling of the FFT segment length). If the total record length is fixed,
a decrease in the FFT binwidth results in a corresponding decrease in M, with a resulting
increase in Gy,. Then it is important to know at what point, if any, a decrease in the FFT
binwidth (increase resolution) will gain more in DT instead of increasing the time-
bandwith product, M (increase stability). From Figures 6-7, we observe that the slope
of each of the curves is less than 3 dB/halving of M; hence, a decrease in the FFT
binwidth should always gain more than increasing the number of FFT segments ,provided,
of course, the binwidth does not become less than the signal bandwidth.

For M in excess of 1000, the Gaussian approximation, (44), provides a
satisfactory estimate of Gy, for the sinusoidal signal and Gaussian signals having BsT=1.

As we show in Appendix D.1, the estimate for the Swerling | signal can be obtained by
adding 1.8 dB to the above value, at least when P5=0.5.

Often the bandwidth of the Gaussian signal will lie between the limiting cases
described by the Swerling | and |l signals. Figures 8-13 treat G, for such signals, and

as a function of the time-bandwidth product, M. Values of M range from 1 to 100. To
avoid the large decibel range of Figures 5-7, the results are presented as corrections to
the thresholds for the zero bandwidth Gaussian signal (Swerling 1) as given in these
previous figures. Figures 8-10 consider the narrowband signal having a rectangular
spectrum, while Figures 11-13 consider the signal with a Cauchy spectrum. Each Figure
corresponds to one Pg,, either 10'2, 1074 or 10'6, and three Pg's: 0.1, 0.5 and 0.8. For
Pp=0.5, the absolute threshold is obtained as a correction to the Swerling | values in
Figures 5-7. For the other Pp values, we require the transition curves which are
introduced in the following section. Values of BsT treated in Figures 8-13 are: 0.01,

12 Aiternatively, they apply to the case where the FFT binwidth is 1 Hz wide.
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0.05, 0.1, 0.5 and 1.0. For any BgT greater than O, the correction in threshold
approaches that for BsT=1 asymptotically with increasing M. This reflects the overall
decrease in correlation between the FFT samples as M increases.

3.2 Transition Curves

The detection thresholds presented in Figures 6-7 consider only one value of
detection probability, namely Pp=0.5. Figures 14-22 allow selection of the detection

threshold for other values of Pp, and for the same signal types treated in Figures 56-7.
These graphs show the dependence of Po on signal excess (SE); such a graph is
commonly referred to as the transition curve. SE is defined as the difference, in dB,
between the threshold required for P,=0.5 and that for any other Pp. Hence, the SE is a
correction to be applied to thresholds obtained from Figures 5-7. Each figure treats a
single signal type and Pra- Values of time-bandwidth product, M, range from 1 to 6§12, in
powers of two. Certain values of M are omitted where the transition curves become
indistinguishable from one another. The figures are grouped as follows:

Figures 14-16: Narrowband Gaussian signal, BgT=0, and P;,=10"2, 1074, 107,
Labelled Swerling I.

Figures 17-19: Narrowband Gausslan signal, BsT=1, and P;,=10"%, 1074,1076. Signal

has rectangular spectrum. Results for Cauchy spectrum are
essentially identical. Labelled Swerling II.

Figures 20-22: Sinusoidal signal and Pr,=1072, 1074, 1078, Labelled Sinusoid.

Several observations can be made regarding these transition curves:

1) at a given SE, the slopes of the transition curves increase as

M increases.’® This will result in an increased detection probability at
positive SE, and decreased detection probability at negative SE.

2) at large M (greater than about 100), the transition curves for
the Swerling |l and sinusoidal signals become identical. Similar
behaviour was noted for G, in Figures 6-7.

3) for large positive values of SE, the Swerling | transition
curves are almost independent of M. Since the signal amplitude is
constant within any record length for the Swerling | signal, no
averaging over the distribution of signal amplitudes can occur within
the processor integration time. Hence, when the signal dominates the
estimate, as it does at large positive SE, there is no change in the
density function of the FFT output as M increases.

As we discussed in Section 3.1, detection of Gaussian signals having bandwidths

'3 For an exception, see case 3) below.
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intermediate to the Swerling | and il models, and at values of Pp other than 0.5, Is
treated in Figures 8-13.

3.3 Data Windowing

Because of the data window, the nerrcwband signal power measured in any FFT bin
may be reduced relativs to its true power. This resuits for three reasons, ali of which
are best understood in terms of the spectrai window, i.e. the magnitude-square of the

Fourier transform of the data window. ® The first reason that the power in the bin is
reduced arises because the spectral window is ret flat over the signal spectrum.

. . , . , . 1 L, .
Secondly, a processing gain is associated with the window '° which may reauce the

sensitivity to the narrowband signal refative to the ncise. Finaily the signal spectrum
may not be centered on the FFT bin. These first two icsses are treated in this
subsection; the last is treated in Section 3.4.

Figure 23 shows the processing loss, Ly 8ssociated with both the rectangular and
Hanning windows, as a function of the reiative bandwidth, BT, of the signal spectrum.

Gaussian signals of either rectangular spectrum or Cauchy spectrum are considered.
Losses for a sinusoidal signal correspond to those at B,7=0. The signal spectrum is

centered on the FFT bin. At BgT=0, the loss is due to the processing gain we noted
above. This gain is unity (O dB) for the rectangular window, and 1/1.5 (-1.76 dB) for
the Hanning window. As BgT increases from O, the loss associated with the droop of the
spectral window is introduced. This loss is greater for the rectangular window, since its
spectral window is narrower; it can cause niore than a 1 d8 loss for BgT=1.

3.4 Ripple Loss

If the narrowkand signal is not centered on the FFT bin, the signal power will be
reduced because of the curvature of the spectra! window. When a spectral window is
centered on each FFT bin across the entire frequency band, the sensitivity of the
processor ripples across frequency, foliowing the shape of the mainiobe of each
spectral window. The loss in signai power assoclated with this reduced sensitivity is
referred to as ripple loss, L. It depends on the shape of the mainlobe of the spectral

window, i.e. the broader the mainlcbe, the less will be the ripple loss.

In Flgure 24 we examine the ripole loss (in dB) for both the rectangular window
and the Hanning window. The loss is presented as & function of the relative

displacement of the siynal spectrum from the FFT bin center.'® Curves are given for
three values of signal bardwidth: Bg¥=0, 0.5 and 1.0. For BgT>0, the results are further
divided between the two signal spectrum types. At BgT=0, the loss is a direct measure
of the spectral window sensitivity at each displacement; for example, the rectangular

% The two data windows cunsidered in this report- the rectangular window and
Hanning window- and their spectrai windows are shown in Figure 2.

S For a discussion sz Section 2.2,
'® For relative visplacements greater than 0.5, the signal is considered to lie in the
adjacent bin.
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window is reduced by 3.9 dB in sensitivity at the bin edge. The loss is only 1.4 dB for
the Hanning window, owing to its broader mainlobe. As BsT increases from O, the ripple

loss is reduced.

The losses in Figure 24 are meaningful provided we know precisely the center
frequency of the signal. Since this is usually not known, it is appropriate to define an
average ripple loss across all possible displacements. This average ripple loss is shown
in Figure 25 as a function of the signal bandwidth, BgT. The results depend on window

type and signal spectrum type. The loss decreases monotonically as signal bandwidth
increases.

3.5 Zeroes Extension

The average ripple loss can be reduced by extending the length of the FFT
segment with zeroes prior to Fourier transformation. Zeroes extension does not alter
the shape of the spectral window. Hence, it does not change the raesolution or stabilty
of the spectral estimate. However, it does increase the number of frequency points at
which the spectrum is estimated, thereby reducing the possibility of missing the signal
peak.

2,

The gain, G,, in detection threshold due to zeroes extension is shown in Figure 26

versus the length of the segment extension. The gain represents the reduction in
average ripple loss due to the closer spacing of spectral windows across frequency.
The extension is normalized to units of the original segment length, e.g. a zeroes
extension of 2 means the segment length has been doubled by adding zeroes. The gain
depends on the data window, the signal bandwidth, BsT, and the signal spectrum type.

About 0.76 of the possible gain is achieved by doubling the segment length with zeroes.
The maximum gain reduces as BT increases, since the average ripple loss reduces as

well,

3.6 Segment Overlap

FFT segment overlap reduces the detection threshold since it effectively
increases the amount of incoherent averaging, hence increasing the stability of the
power estimate. The gain in detectability will depend on the correlation between noise
samples from adjacent FFT segments - as the correlation increases, the effective
increase in averaging is reduced. In Section 2 we showed that the correlation between
adjacent samples depends on the shape of the data window. A more tapered window
will produce less correlation between samples, and hence, the greater will be the gain
due to overlap. This does not imply that further tapering of the data window is good,
since for greater taper, the processing loss discussed in Section 3.3 increases. In
effect, segment overlap is a means of recovering, at least in part, this processing loss.
The detection gain due to overlap must be weighed against the accompanying increase
in processor load.

In general, the detection gain due to overlap will include dependence on the signal
type, its bandwidth and spectrum, the data window, time-bandwidth product, and
detection and false-alarm probabilities. A common approximation to the effects of
overlap is to define an effective number of averages, My, that results from
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overlap[11]. Mg will exceed the time-bandwidth product, M, by an amount that

depends on the extent of overiap and on the correlation between overlapped samples.
As overlap increases, My will approach a limiting value, since samples become highly

correlated. In Appendix D.2, the ratio M/M, is derived on the assumption it equals the

reduction in variance of the noise-only power samples. The ratio depends only on the
data window and overlap. The detection gain due to overlap can be obtained from
Figures 4-22 simply by increasing the time-bandwidth product by this ratio[11]. An
alternative approximation assumes that the detection gain is proportional to the square-
root of the increase in M, i.e.:

G, = Blog (Mg¢/M). (46)

This is similar to the Gaussian approximation to Gy, shown in Figures 6-7, where we see
that G,, is proportiona! to VM. In Appendix D.2 we have compared the predictions of

detection gain for the above two methods to those resulting from compiete analysis over
selected parameters. The method which uses a correction to Figures 4-22 is a better
approximation for 20 < M < 100; however, the maximum deviation we have observed
using (45) is still only of the order of £0.2 dB. Hence, considering its simpie evaluation,
the second approximation would seem adequate for our purposes.

Figure 27 shows the dependence of the detection gain on the fractional segment
overlap, according to the approximation expressed by (46). Gains are presented for the
rectangular and Hanning data windows, and for values of time-bandwidth products of:
M=4, 8, 16, 32 and ». The gain to be made by segment overlap is significantly more for
the Hanning window; however, its processing loss is likewise greater. For finite M, the
maximum gain is achieved at a fractional overlap less than unity.

It is interesting that any gain results at all due to overlap for the rectangular
window, since all data in the time record receives equal weight. Consider for the
moment the Iinverse Fourier transform of the power spectral estimate, namely the
autocorrelation estimate. The stability of the power estimate is related to the number of
estimates of the autocorrelation available at each time lag. By segmenting the time
record, we remove those autocorrelation estimates otherwise available across segment
boundaries. Segment overlap attempts to return these estimates, thereby increasing
the spectrum stabllity. This effect is realized regardless of the segment weighting.

While the curves presented in Figure 27 are continuous, only discrete values of
the fractional overlap, Y , are possible for finite M. Otherwise, a non-integer number of
overlapped segments results. For M' overlapped segments, Y must be chosen so that:

M' = (M-7)/(1-7), (46)

where M' is an integer. The curves in Figure 27 interpolate gains between those at the
allowed values of overlap.

3.7 Data Normalization

Threshold setting requires that we know the actual noise power in the frequency
bin of interest. Since this Is usually not known, the noise power must be estimated from
the avallable data. One estimation method Is to average the power in adjacent FFT bins,
assuming that they contain only noise, and of the same mean level. The power estimate




Section 3.7

561

16 ©
15 / o — — P
14 /// A— )
13 ‘/// — P
12 / /]
Ll //1/ N g
10 /
g‘:“ I / B //: Zoz(M)
é.? / ’%/,—— )
g.e /// / ’//// —r
Y /4B
) 22
\ / A )
3 // / RE%?\:‘[I)GOUWII_AR
: 2
~
.
0 2 3 4 5 & 7 8 9 0

FRACTIONAL OVERLAP
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in the bin of interest may then be normalized by this estimated noise power; this

removes the direct dependence of the threshold on the nolse power.'”” When the
normalizer uses some number of bins distributed about the bin of interest, the normalizer
is referred to as a moving window normalizer. We consider its effect on detection
performance below.

An Increase In detection threshold is necessary when data normalization is
required if we are to achieve the same P, and Pra had the noise power been known. We

will assume that the noise is of uniform power across the bins to be averaged by the
normalizer and that the power estimates in these bins are independent. Power
estimates in adjacent bins will be correlated because of leakage through the spectral
window. For typical spectral windows, and a reasonable number of bins in the average,
the correlation can be ignored. One exception, of course, is when zeroes extension is
used, since estimates in neighbouring bins will undoubtedly be correlated. One simple
method of avoiding this correlation is to have the normalizer not use estimates from bins
added by zeroes extension. The effect of leakage of signal power into bins included in
the average is also neglected; it will influence the power estimates only at large signal-
to-noise ratios, where the detection probability is high.

The detection threshold necessary when the normalizer is used depends on the
time-bandwidth product, on the number of bins in the average, on the properties of the
signal , as weli as on Py and P;,. The threshold for the moving window normalizer, under
the assumptions in the previous paragraph, is analyzed in Appendix F. Three signal
types are consldered: sinusoid, Swerling | and Swerling 1l. One important observation is
that while the absolute detection threshold depends on the signal model and Py, the

difference in detection thresholds required with and without the data normalizer is only
weakly dependent on these parameters. This has also been observed in [24].

In Figures 28-30 we present the increase in threshold (in dB) required for the
moving window normalizer. The increase is a function of the number of noise-only bins
used by the normalizer; the range is from 5-65 bins. An odd number of bins is possible in
the analysis, since no assumption of the distribution of bins around the bin of interest is

necessary. Each figure is for one Pea: 1072 y 10™% and 1078, The graphs depend on the
time-bandwidth product, M, used in obtaining the spectral estimate. Values of M lie

between 1 and 100. If segment overlap is used, the increases in DT will be somewhat
less. The actual results pertain to the Swerling Il signal at Pp=0.5; however, the results

are essentially the same for the Swerling | and sinusoidal signals, and for 0.1 < P, < 0.9.

The detection losses shown in these figures are quite small for a reasonable
number of bins in the normalizer average ( greater than about 20). This loss is less a
concern in practice than losses caused by a bias in the noise power estimate, i.e. the
power estimate is different, on average, from the actual noise power. Such bias may bhe
caused by non-uniformity, or non-whiteness, in the noise power spectrum over the
normalizer window, or by the presence of narrowband signals within the window. Hence,
the normalizer often contains design features to minimize these bias problems. For
example, the normalizer may reject from the average the bin containing the largest
power, so as to remove one narrowband signal. The median noise power[258] may be
used rather than the mean, since it is less influenced by the presence of narrowband
signals. Also, muitiple passes of the window may be made for additional smoothing of
non-uniform noise spectra.

7 For a discussion, see Section 2.1.
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4 Exampies of Use of the Results

in this section we present three examples of the use of the results of Section 3
to evaluate the detection threshold for a specific processor structure. The signal model
for each example and the processor parameters are given in Table 1. The approach is
to obtain from the graphs in Section 3 values for each of the terms in (43). Their
summation will then yieid the final detection threshold. Tables 2 - 4 tabulate each of
these terms and the appropriate values for the above three examples. The tables
include the source (Figure) of the value and comments to aid in its selection.

Table 1

Signal and processor parameters for example evaluation

PARAMETERS EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

1)signai type Gaussian Gaussian sinusoid

2)Spectrum rectangular Cauchy

3)bandwidth, Bg 0.1 Hz 0.001 Hz O Hz

4)record length, T, 300 s. 160 s. 600 s.

6)segment length, T 10 s. 10 s. 2 s.

6)FFT binwidth, 1/T 0.1 Hz. 0.1 Hz. 0.6 Hz.

7)time-bandwidth 30 16 300
product, M

8)relative signal 1 0.01 0
bandwidth, BgT

8)data window Hanning rectangular Hanning

10)zeroes ext. none 60% none

11)fractional 0.6 0.26 0.6
segment overlap

12)no. of bins in 20 20 20
normalizer

13) Py 0.6 0.9 0.2

14) P, 1074 1072 1075
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Table 2

Performance evaluation for Example 1

TERM VALUE(dB) SOURCE COMMENTS

Gy -0.7 Fig. 6 Pp=0.6, P;,=10"%, narrowband Gaussian
signal, rectangular spectrum, BgT=1,
M=30;

10logB -10.0 B =0.1 Hz;

SE 0 since P,=0.5, not necessary;

L, 2.2 Fig. 23 Hanning window, rectangular spectrum,

L 0.4 Fig. 256 Hanning window, rectangular spectrum,
BsT = 1;

-G, 0 no zeroes extension;

-G, -1.4 Fig. 27 Hanning window, 0.5 fractiona! overiap,
M = 30;

L, 0.2 Fig. 29 PFA=10'4, M=30, 20 noise-only bins.

DT =-9.3 dB
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Table 3
Performance evaluation for Example 2
TERM VALUE(dB) SOURCE COMMENTS
Gum -1.4 Figs.5,11 Fig.6: Gausslan signal, BgT=0, Pp=.5,

10logB  -10.0

SE

8.7

0.0

1.1

-0.4

DT =-2.4d8

Ppa=1072, M=16: Gy, = 0.0 dB;
Fig.11: Cauchy spectrum, BsT=0.01,
Pp=0.9, P;,=10"2, M=16: correction
to Gy = -1.4 dB;

B = 0.1 Hz;
Fig. 14 Swerling | (BgT=0), Py=0.9, P;,=1072,

NOTE:since Fig.11 is relative to
Swerling 1, we require SE for

Swerling |;
Fig. 23 rectangular window, BgT7=0.01;
Fig. 26 rectangular window, BgT=0.01;
Fig. 26 rectangular window, BgT=0.01,

zeroes extension=1.5;

Fig. 27 rectangular window, Bs7=0.01,
0.25 fractional overlap;

Fig. 28 PFA=10'2, M=18, 20 noise-only bins.

Section 4
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TERM VALUE(dB)

GM '5.8
10logB  -8.0
SE -3.2
Ly 1.8
L 0.6
-G, 0
-G, -1.4
L 0.1

DT =-11.0 dB

Table 4

Performance evaluation for Example 3

SOURCE

Figs.8,7

Figs.21,22

Fig. 23

Fig. 25

Fig. 27

Figs.29,30

COMMENTS

Pp=0.5, Pr,=1075, sinusoid, M=300
NOTE: interpolate in dB between
results for 1074 and 10’6;

B = 0.5 Hz;

Pp=0.2, Pe,=107%; sinusoid, M=300
NOTE: interpolate between results
for Pg,=10"% and 1076;

Hanning window, BgT=0;
Hanning window, BgT=0;
no zeroes extension;

Hanning window, .5 fractional
overiap, M=300;

Pra=107%, M=300, 20 noise-only bins
NOTE: extrapolate results for
Pra=10% and 1078,

59
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& Summary

This report has presented an analysis of the detection performance of the FFT
type processor for narrowband signais of unknown frequency in white Gausslan noise (of
possibly unknown level). Detection of both narrowband Gaussian signals and sinusoidal
signals has been treated. Various rates of amplitude fluctuation are considered in the
case of Gaussian signals. The FFT processor returns an estimate of the power spectrum
of the input process via the method of averaged short-time modified periodograms. The
input may consist of the output of a single-channel receiver, or alternatively, a single
beam as obtained by linearly beamforming the outputs of a multichannel receiver.

The detection performance analysis yields the detection threshold, DT, appropriate
for a specified false-alarm probability,Pr,, and detection probability, P,. We present

results at Pg,'s of 1072, 10™* and 1078, and at Pp's between 0.01 and 0.88. We
examine the sensitivity of the DT to a variety of processor parameters, including:
effects of integration time and processor bandwidth, the signal type, its bandwidth and
spectrum, data windowing (rectangular and Hanning windows), FFT segment overlap,
zeroes extension and data normalization. A building-block approach is taken whereby
each processor parameter is isolated and its effect on the DT studied. Results are
presented in graphical form so that for a particular processor design, the final DT can be
readily obtained.

The Appendices contain the detailed mathematics necessary for the performance
analysis.
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Appendix A

The Characteristic Function Approach to Performance Evaluation

In the analysis of detection performance, we require the signal-to-noise ratio,
SNR, corresponding to a specified detection probabiiity, Py, and faise alarm probability,

Pea. Pp and Pg, are obtained from the cumulative probability distribution, F(y|H,), of the

A
FFT power estimate, P, conditioned on the two hypotheses, H(signal absent) and
H (signal present):

y
0

(A.1)

y
and: Pop =1 -F(y][H) =1 -f f(x|H ) dx
0]

where f(x]H,) Is the probability density function, or pdf, of 6, conditioned on H,. The

Integration limit, v, is the power threshold setting; we discuss its selection in Appendix
G. The integrations in (A.1) are lower bounded by zero, since negative powers are not
possible.

Equation (A.1) can be solved, provided f(x|H,) is known. A common approach to
obtaining f(x) - the conditional probability is implicit - uses the characteristic function,

&), of B, le.

o«

B(¢) = / fx) 6% dx, (A.2)
0

where we see that the characteristic function and pdf are Fourier transform pairs.
Provided ®(£) is known, the pdf can be obtained as:

f(x)=27ri f ®(t) e"E"de. (A.3)

-0

The characteristic function is readily obtainable for the FFT power estimate under the
signal and noise models treated in this report; they are derived in Appendix B. Still, the

integration in (A.3) is often analytically intractable.'® An approximate method of solving
(A.3) has been developed by Bird[23]. He shows that f(x) can be expressed exactly
out to some value, Y, by the following Fourier series:

'8 several important cases which have analytic solutions are discussed in
Appendix E.
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00 = 3 8, @ IBTIXIY o exey
1 Y j2mnx/yY
where: ¢ = 7/ f(x) e dx.
¢]

The cumulative distribution, F(y), can be obtained from (A.4) as:

F(y)

Yy
/ f(x) dx
4]

0 b4
2 @n/ o j2mrnx/yY dx,
(0]

N=-w

= " - Y
= yz Qn Sim(‘—'vﬂl-) e fmny/ ’

where: Sinc(2) = sin(z)/2.

y<Y

y<Y

Appendix A

(A.4)

(A.5)

(A.Ba)

(A.6b)

(A.B8¢c)

The result in (A.8) Is exact; however, we require the (I)n. Comparing (A.2) and

(A.6), we see that:
1
$, = 7 @(—2—;'-—"), provided f(x)=0, x>Y

in which case, we can write (A.8¢) as:

W 4 = 2mn mny -jmrny/Y
Fiy) = 5 ‘-V;w@( 7 Sin(—") e

for y<Y and f(x)=0, xDY.

(A.7)

(A.8)

Of course, the pdf Is usually not zero for x>Y. If f(x) Is so small for x>Y, so that
the error in @n from using (A.7) is negligible, then (A.8) may be used to approximate F(y).

It is necessary to find Y, such that the error in F(y) is negligible, but so that the
computational effort is reasonable. The value of Y appropriate for the signal and noise

models considered in this report is, as given by Bird[23]:
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Y = M'(1+SNR) [n(M'/€), narrowband Gaussian signal
(A.9)

Y = M'(SNR+2(SNR In(M'/€))V2 + In(M'/€)), sinusoidal signal,

where: M' is the number of FFT averages,
SNR is the signal-to-noise ratio,

€ is the acceptable error in F(y).

When calculating Py, we have used €=0.01Pg,; when calculating Pp, we have used
€=107%.

Besides the error In F(y) introduced by the fact that the pdf extends beyond Y,
we must in practice truncate the Infinite series in (A.8) after some finite number of
terms, J. To examine this truncation error, we rewrite (A.8) as:

J
_Yy E ®(2mn/Y) __-j2mny/yY

Bird[23] has examined the truncation error in detail. He suggests the following
practical rule of thumb for truncation:

(A.11)

&(2mn/Y
truncate at Jd=n if: —'—(2——-—/-)—[( 1078,

Tn

He has shown that the accuracy obtained using the above technique is usually of the
order of 3 to 4 significant figures for SNR's (in dB) of practical interest.
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Appendix B

Relevant Characteristic Functions

B.1 Gaussian Noise

The FFT power estimate, a(fk), in the FFT frequency bin centered at f,, and due to
noise only, is:

]
Bty = - ; X na(fOl2 (B.1)

which can be expressed as the scalar product:

1 ]
ﬁ(fk) = _M'— XNG XNG, (8.2)
where:
X1.,NG
X2.NG
XNG = . ’ (8.3)
| Xm',nG

and t Is complex conjugate transposition. Under the assumption of Gaussian noise, Xng

is a vector of correlated complex Gaussian varlates, where the real and imaginary parts
are the In-phase and quadrature components. The second-order statistics of Xyng are

defined by the M'xM' complex correlation matrix, Ky, given by:

Ky = E(XNGXLG) (B.4)
E(+) indicates expectation. The correlation matrix is Hermitian positive-definite:
x
KogN = Kep,ns [Kyl>0 (B.5)

and also Toeplitz:

Koq. = Ko (B.6)

The Hermitian positive-definite property provides that K can be diagonalized:
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1

Ky = Ry Ay, nL= (Ry A2 YAN2 Ry ), (B.7)
where A is a diagonal matrix:

F A1,N 0 o) hd

0 AZ,N 0 e

Ay = . . . . , (B.8)

. . . v )

and A, y Is the ith eigenvalue of Ky- By is an M'xM' real matrix, whose Ith column is the

orthonormal eigenvector corresponding to An- Hence, X\g can be expressed as the
transformation of uncorrelated Gaussian variates, according to:

Xna = (AyAY2) Y (B.9)

where Y is a vector of complex uncorrelated Gaussian variates, having the identity
correlation matrix, . Equatlon (B.9) is seen to hold since:

t

E(xNGxLG)= ERy A2 Y Y A}/? RL )

=Ry A2 1A}/? RL

(B.10)
= Ay Ay RL
= Ky
Replacing Xyq in (B.2) by (B.9),we get:
1
P = vIAY2 By BLAY2 ¥
1
= YYANY (B.11)

MI
1 2
= Z LYEYR A
i=1

Then B is the weighted sum of Chi-square variates, the |Y,l2's, each having two degrees
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of freedom, X%, and unity mean but where the weights have possibly different values.'S
The characteristic function, ®(¢), of B Is:
-]
x
B(t) = / f(x) e‘IE dx, (B.12)
0]

N
where f(x) is the probability density function, or pdf, of 3 Since according to (B.11), P
is a sum of independent variables, $(£) becomes the product of the characteristic
functions for each variable, i.e.:

B(t) = / £x) 7% dx, (B.13)
i=1 0

where f(x) is the pdf for A, y[Y,|2/M', i.e.:

f,(x)=>‘l‘L o MMN 0. (B.14)
I,N
Hence, ®(¢) becomes:
Mor® M -xMA 3
&) = H / —— @ X N o x dax, (B.15a)
i=1 A
M! ) '
= II [1-1%.'.;& -1, (B.16b)
i=1

'S At £,=0 or f,=2f,/2, the imaginary component of Y, disappears. Hence, the [Y,|%s
are X% distributed with unity mean for these special bins.
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B.2 Gaussian Signal in Gaussian Noise

A
The FFT power estimate, P(f,), due to the narrowband Gaussian signal in Gaussian
noise is:

Ml
A 1 1 1
P(fi) = 4 E X,s6(fid * X, nalfidl = - XsnaXsnas (B.16)
i=1
where:
X1,sa*X1,NG
X256+ X2 NG
Xgng = . , (B.17)

| Xm,sa*Xm,Ng)

In a manner identical to that used for the noise-only case, we can express (B.16)
as:

M|
Bef = T;T 2 s Y2, (B.18)
i=1

where A, gy is the ith eigenvalue of the correlation matrix, Kgy, for the signal plus noise
samples:

KSN = E(XSNGxtSNG)' (8.1 9)

The matrix, Kgy, is evaluated in Appendix C.

As in Appendix B.1, the characteristic function, ®(¢), for Gaussian signal in
Gaussian noise becomes:

M o
B() = H [1- —ﬁl 1. (B.20)
i=1
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B.3 Sinusoidal Signal in Gaussian Noise

The FFT power estimate, B(fk), due to the sinusoidal signal in Gaussian noise Is:

Ml
Bt = % Z Xi,s5(fi) + Xy na(FIP (B.21a)
i=1
1 M 1 M
= 2 st + —— 3 X na(FOI? (B.21b)
W& M

M'
;
+ 2Re[ w Z x:ss(fk)xl,NG(fk)] .
=1

The summations In (B.21b) may be written as follows:

Ml

1 A2
(1) w ; 1X,,ss(f)I? = C - (B.22)

A is the amplitude of the sinusoid, f. is its frequency, and C is the value of the spectral
window at (f.-f ), i.e.:

C = [W(f -f)3 (B.23)

and we have ignored the edge-¢ffect term discussed with regard to (13) of the main text.

M! M!
1 1
(2) = X nal® = — M YR (B.24)
M M
i=1 i=1
as in Appendix B.1.
Ml
1 x 1
® M Z XissXing) = 4 XssXna
i=1

1
= ssAy A2 Y (see B9)

MY
(B.25)
Ml
1 x
alvTe Z a Y,
i=1

where we have defined a new vector, a, as:
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a = A2 anss : (B.26)

Using the above summations, (B.21b) can be written as:

a2 1 1
P= Y Z M Y2 + 2Re[ —MT E ar Y], (8.27)
=1 i=1

Since 3 is now expressed in terms of summations of independent variates, we can use
the same technique as in (B.13) to obtain its characteristic function, ®(¢), as:

B(E(H ) = f f,(y) ) dy
0
. 2 M' © 2 '
= oFCAY/4 II: / 1,(y) XY +2a,5y)/M dyl (B.28)
=1 0

[>] . 2 '
(0]

Where: al = aI'R + Jal",

and f(y) is the pdf of the Independent Gausslan variates comprising the real and
imaginary parts of Y (each variate is zero-mean Gaussian with variance of 1/2):

-y?
fy)=m12¢” | (B.29)

On substitution of (B.29) in (B.28), we have after some manipulation:

saa2sa M . 262 ;pmi2
BEH ) = oA MH (1-‘%_"-N ) exp- JUEE/M 1. (8.30)
= M

1-J§AI,N/M'

To obtain |a)|? In (B.30), we observe that:

aa' = A2 RLXSS x'san AY?, (B.31)
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M' M
t x
and faf? = (aa' )= A, 2 ; Z :Xp,Squ,SS RyRy
p=1g=1

caz ie-jZ’ﬁ(p-q)U-'Y)Nfc/f

=AN g RIS
p=1q=1
(B.32)
cA? T j21 (p-q)(1-7Y N(f, ~f )/
= A!.N 4 e s IRpI”RqI' '
p=1g=1
CA?
= A',N 4 Kl -
where the parameter, K, simplifies to:
K=1.
when there is no segment overlap, and to:
M M
Ki= 32 IR,lIR, -
p=1 g=1
when there is overlap but the signal is centered on the bin.
By inserting (B.32) for |a,|2 in (B.30), we can reduce the expression to:
M! . a2 2 2
EAN o1 JECAZ/aM" + E2CAR \(1-K )/ am
& = 1 -8 1 . .3
&8 = [T (1 - 200 )1 expp T 1. (8.33)

i=1

It is useful to have the signal-to-noise ratio, SNR, appear explicitly in the above,
since ultimately it is the SNR which we must obtain. Hence, we can normalize the signal

power, A2/4, by the noise power in the FFT bin, then proceed by assuming the noise
power per bin is unity. This normalization does not alter the analysis in any way, beyond
its advantage in having the SNR appear. The noise power in the bin is obtained from
(C.13) as:

Py = O0&f,Ru(0) ,
where the terms in the above are defined in Appendix C. Noting now that SNR is:

AZ

SNR = ,
4028
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and that the binwidth, B, is related to the sampling frequency, f,, by f,=BN, where N is
the transform size, we obtain for (B.33):

ESNR-C,/M' + E2SNR-C ) (1-K))/M'

2
e .34
T Bl o B8

M i)
S(E|H,) = H - JIVI# Y exp[
=1

where the new constant, C,, is:

C; = C/NRy(0).
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Appendix C

Correlation Between FFT Samples

To solve for the detection performance of the FFT processor, we require the
correlation, K, between the FFT outputs at f¢ from the pth and qth FFT's, where (see

Figure 1):

N-1
X, (f) = Z w(n) x,(n) o 12T nf/ty , {(C.1)
n=0
and: Koq = ECGURIXA(T)) . (c.2)

N is the number of discrete time samples per FFT segment and fs Is the sampling
frequency. The xp(n) is the real input time sequence for the pth segment, i.e.:

x5(n) = x[n+(p-1)(1-7)N] n=0,.......... N-1. (c.3)

Y is the fractional segment overlap. The w(n) is the data window, n=0,......, N-1. We
consider only real data windows here.

Then we have:

N-1 N-1
Xp(fk)x,:(fk) = Z w(nw(m) x,(n)x.(m) o 12 (n-m)fi /f, . (c.a)
n=0 m=0
On taking expectations, we obtain:
E[X(FOX(f)] = Kpq
(c.5)
N-1 N-1 .
= w(n)w(m) R(n-m+%) e-sz(n-m)fk/fs ,
n=0 m=0

where: ™ = (p-q)(1-Y)N,

and R(n) is the autocorrelation between samples of the input sequence separated by n
time units:

R(n) = E[x(i+n)x(i)] . (C.8)
Equation (C.5) can be shown to reduce to:

i -j2mnf, /1
Keg= D Ruln) R(n+t) e 27"/ Ts (c.7)
=N+ 1
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Rw(n) is the autocorrelation function of the data window:

N-|n}-1
Rw(n) = w(i+|nDw(D, Os|njsN-1,
i=0
(C.8)
=0 eisewhere .

Equation (C.7) is recognized as the Fourier transform of the discrete sequence
Rw(n)R(n+%), which, on performing the transform, yields:

£,/2

Koq = f [W(f-)]2 S(f) e

-f,/2

j2mutst, oo ©.9)

where |W(f)|2 is the spectral window, and S(f) is the power spectrum of the input
sequence at f. The convolution of the spectral window and spectrum in (C.9) is
equivalent to the multiplication of the window autocorrelation function and that for the
signal in the lag domain. The phase term in (C.9) performs the same function as the time

shift operator, %, in (C.7). Since both [W(f)|° and S(f) relate to discrete sequences,
they are cyclic in frequency, with period, fs-

Special Cases
(p=a:
Kpp = E]X(f)]2
= EB(1)) (C.10)

f,/2
= [W(E-D)I2 S() df .

~f,/2

Hence, the mean of the power estimate is the convolution of the true spectrum and the
spectral window.

(2) white Gaussian noise:

For white Gaussian noise of power, Uﬁ, per unit bandwidth, the noise
autocorrelation becomes:

R(n) = 03f,8(n) , (C.11)

where §(n) is the delta function. In this case, the correlation, KN,N, due to the noise is:
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Ko = O&f Ruc) 327 /s

| < N-1, (C.12)
=0 elsewhere .

where we have used the property that Ry (n) = Rw(-n). Hence, the nolse power, Py, in
the FFT bin is:

P = Kyp.n = O3F,RW(0) . (C.13)
This may be rewritten as:
N-1
_ Oif
Py = =N [N Z wA(n) ]
=0
(C.14)

N-1
=028 [N Z wi(n) 1,
n=0

to observe directly the dependence on the FFT binwidth, B = 1/T.

For no segment overlap, the correlation reduces to:

Kpan = Uﬁstw(o)s(P‘Q) . (C.15)

It is convenient to normalize the correlation, such that Kpp,n=1, implying that the
noise power in the bin has been normalized to unity. We shall see shortly that this
normalization has the advantage that the correlation between samples of signal and
noise explicity contains the signal-to-noise ratio. Beyond this convenience, the
normalization in no way aiters the analysis. Hence, (C.12) becomes:

_Rw() _j2mf/f, )
pa.N —WG lﬁlSN 1 N (C.16)

=0 elsewhere .

(3) narrowband Gaussian signal in white Gaussian noise:

In this case the autocorrelation of the Input sequence Is:
R(n) = Rg(n) + 03f8(n) , (C.17)

N-1
y —
2T | o2t pu(m 2T T (¢ g

and: Kog,on = Rw(mRg(n+%) e

n=-N+1
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The autocorrelation of the narrowband signal has the complex representation:

Rg(n) = %_ Re[Rg(n) erwnf"/f’] (C.19a)
- % Rg(n) o127 "e/fs % Rim e 2Te/fs (¢ 1ap)

where f_ is the center frequency of the signal spectrum and ﬁs(n) is the autocorrelation
of the complex signal envelope. Since the signal spectra we shall consider are

symmetric about f_, F.%s(n) will be purely real.

Inserting (C.19b) in (C.18) we obtain:

N-1

1 - -j2mn(f ~f)/f

Keasn =7 E Rw(mRg(n+M) e kel s
(C.20)

+ 02 Ry () ej27r?ifk/f, ’

where we have omitted the edge-¢ffect term that results in (C.20) due to the the second
term in (C.19b). It will be negligible provided f, is not near O or +f /2.

If the bandwidth of the signal spectrum is narrow compared to the bandwidth of
the spectral window, and if the signal is centered on the FFT bin, the first term on the
RHS of (C.20) defines the signal power, Pg, in the bin (when p=q):

R(0) A ol N
n=-N+1 n=0

The term, [Ew(n)]z, Is the coherent power gain, P, of the data window. The ratio
of signal power, (C.21), to noise power, (C.14), at the FFT output is:

2
Ps/Py = SNR [ (Zw(n)) 1. (C.22)

N Zw3(n)

where SNAR is the ratio of narrowband signal power to the noise power in the FFT bin.
The term in [-] is the processing gain, PG, of the data window. Its reciprocal is referred
to as the equivalent noise bandwidth, Bgy, of the window; it defines the bandwidth of an
ideal (rectangular) filter, in units of FFT binwidth, which would have the same noise
power as obtained from the spectrai window. Without a loss in generality, we can
normalize the correlation, (C.20), so that the noise power in the FFT bin is unity, and:
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SNR % Rw(n) Rg(n+™) ol2mnlt-t/e,

K =
pq,SN R Z

(C.23)
Rw(®)  Jjamrwe/f,
+ _*-RW(O) e .

(4) Sinusoidal signal in white Gaussian noise:

The correlation between FFT samples of a sinusoid in white Gaussian noise is not
needed for our analysis (see Appendix B.3). However, the result is given here for the
sake of completeness. The correlation can be obtained easlly from (C.20) by realizing
that the autocorrelation of the signal envelope for the sinusoid is simply:

Rg(n) = A2, (C.24)

where A is the sinusoid amplitude. On substituting (C.24) in (€C.20) we find:

N-1
2 .
- f~f)/f
Kpg,sn = ‘:— Ru(n) @ 127 e/
n=-N+1
2n e /1
+ 0 2Ry (M) &2 /s (C.26a)
A2 2 Af /f
= W2 + odfsRy () 2T M/ fs (C.26b)

The correlation can be normalized as was (C.23), in which case:

K_ .. = SNR W(H-f )] , Bw(™ oI 2T/,
Pa.SN © TN Rw(0) Rw(0)

A2
where now: SNR = —
404B

(8) Properties of the data windows used in this report:

(6a) rectangular window

w(n) = 1 n=0,........... ,N-1,

Rw(n) = N-|n| -N+1 <ns<N-1,
sin?(NT £/£,)

w f 2 = 2 8 ,

WO =N sin“(mf/f,)

Pc = N?,

PG =1,

BEN=1'




Appendix C

(5b) Hanning window

w(n) = 0.6 [1 - cos(2mn/N)] n=0,........ ,N-1,
1 27n 3 ., 2Mn
Rw(n) = Y [ (n+N)(1+0.6 cos( N )) - ZN sin( Y )/ ]
-N+1 <n < N-1,

2
IWEIZ = T [.6D(H) + 26(0(r-1,/N) + DLt/

sin(NT£/f,)

here: D(f) = ————___
where: D(f) sin(mf/f,)
N2
Pe=7
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Appendix D

Gaussian Approximations

D.1 Large time-bandwidth product

We will obtain asymptotic axpressions for the basic detection threshold, Gy, at

large time-bandwidth products (see Sec.3.1). Three signal types will be considered:
sinusoidal, Swerling | and Swerling 1.

For time-bandwidth product, M, large, and for no segment overlap, the probability
density function, or pdf, of the noise power estimate, approaches a Gaussian, with mean,

Py , and variance, 03=P2/M (Chi-Square with 2M degrees of freedom)[8]. Similarly, the
pdf of the power estimates for either the sinusoidal signal or Swerling !l signal in noise
approaches the Gaussian, with mean, Ps+n» and variance, 0‘§+~=P§+N/M[8]. Then the
false alarm probability, Pg,, and detection probability, P4, become:

-p
Pea = erfe( 10Ny = erfo(vMm(EL -1)) . (D.1a)
On Py
- P
Pp = erfc( 'ifﬁﬂ) = erfc(VvM(—— -1)), (D.1b)
O sen Ps+n
where erfc(y) is the complementary error function:
o
2
- 2
erfc(y) = (27r)'1"2f e x4 dx , (D.2)

y
and P+ is the power threshold.

We want to know what value of SNR=Pg/Py Is necessary when P, and Pg, are
specified values. Solving both (D.1a) and (D.1b) for Py, and equating the results, we
have:

P . P .
Py + TST erfc '(Pp,) = Pg,y + ‘/s;l" erfc”'(Pp) , (D.3)

where erfc !(x) is that value of y such that erfc(y) = x. Since Pg,\=Pg+Py, (D.3)
becomes:

p i
VPSI [erte™(Pry) - orfc™(Pp)] = 7S [VM + erfe™'(Py)] (D.4a)
-1 . -1
or: Ps = SNR = erfc” (Pgy) - erfc™'(Pp) (D.4b)

Py VM + erfc™ (Pp)
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Since vM >> |erfc'1(PD)| for large M, we have:

erfc™(Pg,) - erfe™'(Pp)

SNR = W (D.5)
It is usual to define a detection index, d, as[5]:
g=PomP) P M-SNR? . (D.8)
o PZ/M

Comparing (D.65) and (D.6) we see that:
SNR = (d/M)1/2 , (D.7a)
or: DT = 10 log SNR-B = & log B2d/M , (D.7b)
where: d = [erfc™'(Pg,) - erfc™'(Pp) 2 . (D.7¢)

In Figures 6-7, we require d for P, = 0.5 and for Pea = 10'2, 10’4, and 1078, Since
erfc (0.6) = 0, we have for d:

d= [erfc'1(PFA)]2

= 6.4 (Ppa=1072)
= 13.8 (Pea=107Y), (D.8)
=228 (Pa=1078) .

For Swerling | signals at large M, the pdf for signal plus nolse approaches a
constant plus an exponential, i.e.:

1 -x/P
fsen(Xx) = Py + o */Ps Upg) , (D.9)

S

since the pdf for nolse-only approaches a delta function relative to that for signal-only.
In this case, P becomes:

-]

Pp = / T:— e */Ps gx = o PTPN/Ps (D.10)
S
P

P

Solving both (D.1a) and (D.10) for Py, and equating the resuits, we obtain:
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Py g 1
pN + m erfc ('DFA) = PN + Ps in (P—D) (D.1 1&)
-1
or: sna=Fs o _orfe” (Pey) (D.11b)

Py VM in(1/p,)

If we compare the above result with that in (D.6), we find that at Pp=0.6, the

detection threshold for the Swerling | signal will be greater than that for the sinusoidal
or Swerling I signals by:

-10 log[in(1/Pp)] = -10 log 0.693 = 1.6 dB . (D.12)

D.2 Segment Overlap

In general, the gain in signal detectability due to the use of FFT segment overlap
depends on many parameters. These include the signal type, its bandwidth and
spectrum, the data window, time-bandwidth product and the detection and false-alarm
probabilities. At large time-bandwidth products, the probability density function, f(x|H ),
of the noise power estimate approaches a Gaussian distribution(see Appendix D.1).
Hence, a commonly used approximation to the effects of overlap considers only the
reduction in the variance of f(x]H,) when overlap is introduced[11].

The variance of the noise power estimate can be calculated as follows:

var[P(t)] = E[P%1] - E2[P(r)] (D.13a)
;Mo
“E[— 37 XonalOl MonaltdP 1
M™ p=1 g=1
(D.13b)

MI
1
B[ D Moot -
p=1

For simplicity, we drop the subscripts NG (noise, Gaussian) and the frequency variabie.
Then we have:

M' M M
1 x 1 2
var(P) — 303 B XD — [) ) EXXD] (D.14a)
p=1 g=1 p=1
RO
= = E(X,X) E(XX,) (D.14b)
p=1 q=1
1 Ml Ml
[ leqlz s (D.14C)
s e
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where qu=E(Xp)(;), and is the correlation between the pth and qth noise samples. From
(25) in the main text, we can express the correlation as:

Koq = ORFRWL(P-a)(1-V)N] o/ 27 (P=T-VINf/1, (D.16)

where O‘ﬁ Is the noise power per unit bandwidth, f, is the sampling frequency, 7 is the
fractional overlap, N is the number of samples in the segment, and Ry, is the
autocorrelation function of the data window:

N-]n|-1
Rw(n) = i w(i+|nw(l) 0 < In| < N-1
i=0
(D.18)
=0 [n] > N-1,

and w(n) is the actual data window. Since Rw depends only on the difference in the
indices, p and q, we can write (D.14) as:

A (0202 M'-1
Var[P] = —1i_ (M'=In|) RE, [n(1-7)N] . (D.17)
2 w
M n=iMre1

When no segment overlap is used, (D.17) reduces to:

02t,)? 02f,Rw(0)]2
Var[e] = (_N_s)_ [M R3,(0)] = L_Nle(_)]_ (D.18)
M2 M
where M' and M are related by:
M-
tE e 1
M 1= (D.19)

We can define an effective number of independent averages when overlap is used
as My, where:

_Var(/b)'no overlap

Mgy =M (D.20a)
" Var(/b)loverlap
Ml‘1 2
- M2 I RW[n(“"y)N] -1
=M2[ -2‘ - o~ 1 (D.20b)
n=-M'+1
M"‘1 2
= M2 ' " Rw[n(1-'Y)N] -1
=M [M + 2 Z (M N)—ij-(—o)——— ] (D.ZOC)

n=1
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Since the term in [-] is always greater than M' whenever there is overiap, M, will
always be less than M'. When no overlap is used,My+M'=M.

Given the effective number of averages associated with a selected data window
and segment overlap, we can approximate the signal detection performance in one of
two ways. First, we can proceed through the analysis discussed in Section 3 but using
a time-bandwidth product of My,[11]. Secondly, we can assume that the increase in

detectlon performance due to overlap obeys the relationship:
Moff
G,=6 log[T] . (D.21)

This follows from the Gaussian approximation to the detection threshoid deveioped in
Appendix D.1 (see (D.7)).

in Figures D.1 and D.2 we have compared the approximation given by (D.21) with
an analysis of the effects of overlap using the more accurate characteristic function
technique of Appendix A. We present results for a PFA=10'4, and at Py's of 0.1, 0.5 and
0.8. The fractional segment overlap is 0.5 In all cases. Figure D.1 treats the
rectangular data window and Figure D.2 the Hanning window. The solid line in each
graph Is (D.21) as a function of M, for 1<M<100. The results are independent of Py and
Pea- The various dashed lines refer to three cases treated using the characteristic
function approach: the sinusoidal signal, the Gaussian signal having BgT=0, and the
Gausslan signal having BgT=1 (and rectangular spectrum). We estimate the accuracy of

these results to be of the order of +0.06 dB. In all cases, the dashed lines and solid
line converge as M increases. This is expected since as M increases, the Gaussian
assumption becomes Increasingly valid. For M<100, the maximum difference between
any of the dashed lines and that due to (D.21) is about +0.2 dB.

If we use the first of the methods to measure the effects due to overlap (that is,
proceed through Section 3 using a time-bandwidth product of M,,) we obtain good
agreement with the dashed lines of Figures D.1 and D.2 for M>10. We have not shown
these results here. At small M, this method overestimates the gain in detectability by up
to 0.2 dB.
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Appendix E

Special Cases

In this appendix we consider the detection problem for some important special
cases of signal and noise for which there is a ready analytic solution. The general
problem Is solution of the integral (see Appendix A):

f(x]H,):E;r_ / B(E|H ) o Fix dt (E.1)

where f(x|H)) is the probability dencity function, or pdf, of the FFT power estimate,
conditioned on hypothesis, 4,. The ®(E|H)) is the characteristic function of the random
variable,under the same hypothesis. In Appendix A, we developed an approximate
solution to (E.1) for arbitrary P|H). In the following, we will examine some special
cases for which (E.1) can be solved analytically:

(1) Case 1: white Gaussian noise, no segment overlap

®(E|H,), as given by (B.15b) reduces in this case to:

DEIH = (1 - %; ™ (E.2)

where we have chosen to normalize the noise powsar in the FFT bin to unity, and M is the
time-bandwidth product (or number of FFT segments in the power average).

On substituting (E.2) in (E.1), we have:

i ® j -j
f(xlHo) =5 f (- .;_i. Mo X 4 (E.3a)
M -
=(MM1)1 xM-1¢ Mx x20
' (E.3b)
=0 elsewhere ,

which Is a scaied Chi-square distribution with 2M degrees of freedom, XEM. The false
alarm probability, P, is given by:

© M-1
-MP MP;)"
Pea =/ f(x|H)dx=a | E : ( an) , (E.4)
o} n=0 '
.

where Py Is the threshold power (normalized by the noise power).
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(2) Case 2: Narrowband Gaussian signal in white Gaussian noise,
no segment overlap, B,T = 1, rectangular signai spectrum,

signal centered on bin

This case closely approximates the Swerling If signal model.

®(£|H ,) as given by (B.20) becomes:

K (1, SNR \u (£.5)

Q(ElH«]) = [1 - 'ﬁ (1 BEN

SNR Is the signal-to-noise ratio (the noise power has been hormalized to unity), and Bey

is the equivalent noise bandwidth of the spectral window. The result Is approximate
since it assumes that the signal spectrum is narrowband relative to the spectral window.
This is a weak assumption for BsT=1. Nevertheless, we have found the error introduced

In the SNR by this assumption to be less than 0.1 dB in most cases examined. The
solution to (E.1) is similar to that found in Case 1, i.a.:

00
PD = / f(X|H1) ax
Py

= ¢ "MP1/(1+SNR/Bgy) :"3 (MPp)"
n=0 n!(1 +SNH/BEN)"

(E.8b)

(3) Case 3: Swerling | signal in white Gaussian noise, no segment overlap, signal
centered on bin

In this case, ®(£|H,) as given by (B.20) becomes:

e 1. & - _k . . SNR
PEIH,) = (1 -ﬁ) [1 ﬁ(HBsu 1, (E.7)

The result is exact, since the signal spectrum Is indeed narrowband relative to the
spectral window. Using straightforward mathematics, we find Pp to be:

Ben _ym-1 o"MP/(14M-SNA/Bgy,)

Po= 0+ snm

M-2

-MPy (MPL)" BEN  \M-n-1
> = [1-(1e_Den , >1. 8
+e 2 = [1 (1+M'SNR ) ] M>1 (E.8)

(4) Case 4: Sinusoidal signal in white Gaussian noise, no segment overlap,
signal centered on bin

D(E|H ) as given by (B.34) becomes:
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- -1
BEIH,) = (1 _é)_M ejé(1 /™) SNR/BEN. €.9)

This function does not yleld a convenient analytic solution for Pp. For the result see
[14].
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Data Normalization

Provided the mean noise level, Py, in the frequency bin of interest is known, the
false-alarm and detection probabiliities are given by:

Pea = f f(x|H,y) dx , (F.1a)
(141)Py,

Pp = f f(x|H ;) dx , (F.1b)
(1+r)Py

where f(x|H)) is the probability density function of the power estimate, conditioned on
hypothesis, H,. The lower integration limit is the power threshold. We observe it is
Proportional to Py (for a discussion, see Sec.2.1). Suppose Instead that the mean noise
power is not known, but is estimated in some manner. Then we must replace Py in (F.1)
by a random variable, say 2, corresponding to this estimate. The average P, and P, are
obtained by averaging this result over the distribution of possible values for z, i.e.:

Pea = / [ / f(x]|H ) dx] f,(2) dz, (F.2a)
0 (1+r)z

Pp = / [ / f(x|H ) dx] 1,(2) dz, (F.2b)
o} (1+r)z

where f,(2) is the probability density function of z.

Bird[28] has shown that the characteristic function method of solving (F.1), as
described in Appendix A, can be extended to solve (F.2). From (A.10) we have the
following approximate expression for the cumulative distribution of f(x):

Yy J
- y Z ®(27n/Y) _ -j2mny/y
F(y) = / f(X) ax == —Y— + 2Re “ j*n- (1 e ) N (F.3)
0 =

where ®(£) is the characteristic function corresponding to f(x), and Y is chosen so that
f(x)=0, x>Y. Hence we can wrlite (F.2) as:
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1 -/ FI(1+r)z] f,(2) dz (F.4a)
0

=1- (1:r) / zf,(z)dz

0 _
J ®
®(2mn/Y) -j2mn(1+r)z/Y
- 2Re Z —— 1 / f,(2) e dz), (F.4b)
n=1 0
where we have used the fact that:
/ f,(2)dz=1. (F.5)
(0]
(F.4b) can be simplified to:
- J
_(1+nPy ®2mn/Y) o o . 2Wn(1+r)
! Y 2 ; amn (17 %l v 1) (F.0)

where QZ(E) is the characteristic function of z, and we have assumed that the mean of

f,(2) is 5N.

The data normalizer we shall examine averages the power in a selected number, K,
of frequency bins surrounding the bin of Interest. The split window normalizer is a
special case of this method. We will assume that the power estimates are independent
across frequency, contain no contribution due to the signal, and have the same mean
noise level. Hence, z becomes:

M K
1
2= i D M D il (F.7)

=1 j=1

where, as in Sectlon 2.2, A\ Is the ith eigenvalue of the noise correlation matrix, and Y,

Is an independent, complex Gaussian varlate of unity variance. Then z Is proportional to
a welghted sum over KM' Chi-Square variates, each having 2 degrees of freedom.

Equation (F.2) has an analytic solution for some important special cases. For
example, if there is no segment overlap, then M'sM and the >‘1,N become identical.
Hence, z is a scaled Chi-Square variate with 2KM degrees of freedom. In this case, we
have the following solutions to (F.2) under the indicated signal and noise
conditions[24],[27]:
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(a) Gaussian noise only:
1+r M1 K
= -KM KM+n-1 -n ’
Pra=[1+— ] z_,;( ] (F.8)

(b) Swerling II signal in Gaussian noise:

M-1
1 +r -KM KM+n_1 K(1 +S~R/BEN) -n
= 1 . F.9
Po=l1+ K(1+SNR/Bg,) ] et R L T+r ] (F-9)
(c) Swerling I signal in Gaussian noise, M>1:
- 1 M-1 14r -KM
Po= U+ iswas 1" D1+ K(1+M-SNA/Boy)
(F.10)
14r 2 1 K
-KM KM-n-1yrs _ M-n-1 -n
*0e k! TR [ - e M-SNR/Bgy ) 101 + T
n=0
(d) Sinusoidal signal in Gaussian noise:
Po=1-[1+_K KM o"SNR/Bey/[1+(141)/K]
1+r
(F.11)
e 14r SNR/B
. MK+n-1 -n -n: MK: — EN
rg TR+ =17 4FyCon; s [T+k/Gen]

where ,F, is the confluent hypergeometric function.

In [28] an Iterative numerical solution to the above four cases is presented, which
Is simpler to implement than the above analytic expressions.
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Appendix G

Threshold Setting

In this Appendix, we discuss the problem of setting the power threshold in order to
achieve a particular P;,. We shall briefly examine those processor parameters which

affect the setting.
We will express the power threshold, P, as:
Py = (14r)Py, (G.1)

where r Is a constant power ratio and Py Is the mean noise power (or an estimate of Py s
should data normalization be used). Our aim is to obtain that value of r which will provide
a specified Pg,.

in a manner similar to that used in Section 3 to determine the detection threshoid,
we can express r in terms of the following decibel summation:

10logr = 10logry - G, + L, , (G.2)

where:
10logr, Is the basic power ratio associated with M non-overlapped

FFT segments;
G, is the reduction in threshold due to the introduction of segment

overiap;
Ly is the Increase In threshold necessary when data normalization

is used.

The basic power ratio, 10logr,, Is obtained by finding that value of ro In (E.4) which
gives the selected Py, (in (E.4), Py=(1+ry)). We have plotted 10logrg in Figure G.1 for

1SM<1000, and for Pgy's of 1072, 107 and 1076, At large M, these results become

Identical to the detection thresholds presented In Figures 5-7 for sinusoidal and
narrowband Gaussian signals (BgT=1) at P,=0.5. This occurs since at large M, the
density functions of signal and noise become Gaussian, and hence symmetric. Then the
power ratio, ry, equals the signal-to-noise ratio, SNR, necessary for the same Pr, and

for a Py=0.6.

G, and L, In (G.2) can be obtained using the resulits presented In Sections 3.6 and
3.7.

We conclude with an example calculation. Table G.1 outlines a particular set of
processor parameters. Table G.2 presents values for each of the terms in (G.2) and a
brief description of how they are obtained.
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Appendix G

Table G.1

Processor parameters for threshold setting examplie

PARAMETER VALUE

record length, T, 300 sec.

segment length, T 10 sec.

time-bandwidth product, M 30

data window Hanning

segment overlap 0.6

no.of bins in normalizer 20

Pea 1074
Table G.2

Evaluation of threshold setting for parameters in Table G.1

TERM VALUE(dB) SOURCE COMMENTS

10logr, -0.8 Figure G.1 Pra=107%

-G, -1.4 Figure 7 Hanning window, 0.5 overlap, M=30;

L, 0.2 Figure 29 PFA=10'4, M=30, 20 noise-only
bins;

10logr = -2.0 dB

Hence (14r)=1.63 and:

10log(1+r)=2.1 dB.

Then the power threshold should be set 2.1 dB above the estimate of the
mean noise powaer.
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