P148873.PDF [Page: 1 of 144]

Image Cover Sheet

CLASSIFICATION

UNCLASSIFIED

SYSTEM NUMBER

148873

I

I

TITLE

REAL-TIME INTERPROCESSOR SERIAL COMMUNICATIONS SOFTWARE FOR SKYNET EHF TRIALS

System Number:
Patron Number:

Requester:

Notes:

DSIS Use only:

Deliver to: BA

P148873.PDF [Page: 2 of 144]

P148873.PDF [Page: 3 of 144]

l l National Défense
* Defence nationale

REAL-TIME INTERPROCESSOR
SERIAL COMMUNICATIONS SOFTWARE
FOR SKYNET EHF TRIALS

by
Robin Addison

DEFENCE RESEARCH ESTABLISHMENT OTTAWA

REPORT NO. 1227

e July 1994
Canadi ottawa

P148873.PDF [Page: 4 of 144]

I l National Défense
* Defence nationale

REAL-TIME INTERPROCESSOR
SERIAL COMMUNICATIONS SOFTWARE
FOR SKYNET EHF TRIALS

by

Robin Addison
MILSATCOM Group
Space Systems and Technology Section
Radar and Space Division

DEFENCE RESEARCH ESTABLISHMENT OTTAWA

REPORT NO. 1227

PCN July 1994
041LM Ottawa

Abstract

The Skynet EHF (extremely high frequency) Trials consisted of several week-long accesses over
Skynet 4A during 1993. The whole link (from transmitting ground terminal to Skynet to receiving
ground terminal) was used to simulate an EHF downlink from a payload to a ground terminal. Use of
the Skynet satellite allowed the experimentation at EHF with the ground terminal and payload simulators
over a link that had real satellite effects such as link degradations caused by satellite motion and weather.
To conduct the trials, it was recognized that many tasks needed to be active at once: pointing of antennas,
monitoring power levels, synchronization, data communications and result logging. To shorten
development time and simplify integration requirements, a distributed multiple computer processing
system was chosen.

This paper describes the communications software which provided the services necessary for the
distributed processing used in the trials. The challenge was to develop a system that was easy to integrate
with the user software as well as to ensure that the communications hardware and software did not
conflict with special purpose boards in the various computers. For simplicity, stop-and-wait ARQ
(automatic repeat request) protocol was used for high-level message passing. Low-level communications
services that do not require handshaking, were also provided for equipment control. The communications
software package met these challenges and after extensive testing, was proven to provide the necessary
communications among all the processors and special devices of the distributed system.

Résumé

Les essais Skynet en EHF (extrémement haute fréquence) consistant en plusieurs périodes
d’utilisation d’une durée d’une semaine chacune, ont eu lieu en 1993. Un lien unidirectionnel satellite-
terre a été simulé par un lien composé d’une station terrestre émettrice, remplagant la charge utile, d’un
satellite, et d’un station terrestre réceptrice. L’utilisation du satellite Skynet a permis 3 CRDO (Centre
de recherche pour la défense, Ottawa) de faire des expériences sur certains problémes de communications
par satellite comme les dégradations causées par le mouvement du satellite et les conditions
météorologiques. Pour les essais, il a été nécessaire de faire plusieurs tiches en méme temps:
modification des azimuts des antennes, mesurage des niveaux des signaux, synchronisation en espace,
temps et fréquence, communication des donnés, et enregistrement des résultats. Un syst®me de traitement
distribué a été choisi pour minimiser le temps de développement nécessaire.

Ce rapport décrit le logiciel pour les communications entre les ordinateurs durant les essais Skynet
en EHF. Le défi était de développer un systtme de communications qui serait facile 2 intégrer avec les
logiciels résidents et les cartes installées dans les ordinateurs. Le protocole "stop-and wait ARQ" a été
choisi pour les communications de haut niveau entre les processeurs. Chaque message doit étre regu et
sa réception accusée avant la transmission du prochain. Les services de communications de bas niveau
ont été€ fournis pour le contrdle des instruments. Le logiciel présenté dans cet ouvrage a atteint son but
en fournissant les communications entre les ordinateurs et entre les différents instruments utilisés pour
les essais Skynet en EHF.

iii

Executive Summary

The Skynet EHF (extremely high frequency) Trials consisted of several week-long accesses over
Skynet 4A during 1993. The whole link (from transmitting ground terminal to Skynet to receiving
ground terminal) was used to simulate an EHF downlink from a payload to a ground terminal. Thus,
the transmitter was acting as the payload and the receiver was acting as the ground terminal. Use of the
Skynet satellite allowed the experimentation at EHF with the ground terminal and payload simulators over
a link that had real satellite effects such as link degradations caused by satellite motion and weather.

To conduct these trials, it was recognized that many tasks needed to be active at once: pointing
of antennas, monitoring power levels, synchronization, data communications and result logging. To
shorten development time, rather than integrating these tasks into one big multi-tasking computer, a
distributed processing system was chosen. This allowed each of the processes to be developed
independently and ensured that the many specialized hardware boards would not conflict with one-
another. Though the tasks were split into multiple platforms, it was still necessary for them to be able
to intercommunicate.

Asynchronous communications software is described which provided the services necessary for
the distributed processing used in the trials. The challenge was to develop a system that was easy to
integrate with the user software and to ensure that the communications hardware and software did not
conflict with special purpose boards in the various computers. Two types of services are provided: high-
level communications involving robust message handling with error free transmissions and low-level
communications for controlling equipment.

For simplicity, stop-and-wait ARQ (automatic repeat request) protocol is used for high-level
message passing. Each message must be received properly and acknowledged prior to the next message.
Lost or corrupted messages are retransmitted until received without errors. To simplify debugging, but
at the expense of efficiency, only printable characters are used for the messages and framing.

Because the communications software took control of all serial ports, low-level communications
services which do not require handshaking were provided for equipment control. This facilitated the
development of user software to command equipment such as antenna controllers through a serial port.

The software was developed using Microsoft C 6.0 on a Dell 433E running DOS 5.0 (Disk
Operating System version 5.0) and the real-time hardware interface portion was written in assembly
language. The communications software runs on any PC (personal computer) compatible computer
though AT-class machines cannot operate their serial ports at the highest speeds.

The communications software met the challenge and, after extensive testing, was proven to
provide the necessary communications among all the processors and special devices of the distributed
system.

P148873.PDF [Page: 7 of 144]

Table of Contents
ADSITACt . L . e e iii
REsUmME . . . e e iii
Executive SUMMATY ittt it e v
Table of CONtents i i e e e vii
Notational Conventionsttt e ix
Acknowledgments xi
L IntroduCtion . . . o e e e e e e e e 1
1.1 Background e e e 1
1.2 Skynet EHF Trials 1
1.3 Outline e 3
2. Protocol Design v it e e e e 5
2.1 Introduction 5
2.2 Commercial Software vs In-house Development 5
2.3 Network . . . e 5
2.4 Protocol Definition 6
2.5 Stop-and-wait ARQ e 7
2.6 Implementationttt 9
3. Software Design 13
3.1 Introduction e 13
3.2 Real-time Software 13
33 Low-level Communications 16
3.4 High-level Communications 16
4. Testing . .. e 21
4.1 Method 21
4.2 Problems Discovered it 21
4.3 Usage Problems, 22
4.4 Results e 22
S. Conclusions e 23
5.1 SUMMArY e 23
5.2 Future Work i e 23
Appendix A: Communications Software User’s Guide 25
Appendix B: Communications Software Programmer’s Reference 41
Appendix C: Real-time Software Programmer’s Reference 61
Appendix D: Communications Software Listing 79
Appendix E: Real-time Software Listing 111
References i e e e e 133

vii

P148873.PDF [Page: 8 of 144]

Notational Conventions

The following notational conventions are used to aid in the specification of syntax as distinct from
the normal text:

COM.C Filename
TO=COM1 Literal - type exactly as shown
open_com Software routine

~Item to be filled in/replaced with a value

{A | B} Choose one (and only one) of the members of this group
CR Control characters (CR = carriage return, LF = linefeed)
A Literal space

int ¢ = 0; Software listings

ix

P148873.PDF [Page: 9 of 144]

Acknowledgments

I would like to thank the people at Defence Research Agency in the United Kingdom for their
support and the use of the Skynet 4A satellite. Without the use of the EHF facility on the satellite,
arranged through TTCP STP-6 (The Technical Cooperation Program, Technical Panel S6) working group,
this project would never have been realized.

xi

1. Introduction
1.1 Background

The MILSATCOM (military satellite communications) group at DREO (Defence Research
Establishment Ottawa) and the Satellite Applications and Projects Directorate at CRC (Communications
Research Centre) have been engaged in the study of EHF (extremely high frequency) frequency-hopped
satellite communications for several years. Both groups provide support to the EHF SATCOM Project,
a 48 million dollar project. Approximately 80% of this project is devoted to an EHF system simulator
designated FASSET (functional advanced development model of a satellite system for evaluation and test)
developed in industry. To analyze aspects of frequency hopping communications and synchronization,
other than those used in FASSET, payload and ground terminal simulators have been developed in-house.

It became known, through participation in TTCP STP-6 (The Technical Cooperation Program,
Technical Panel S6) workshops, that the EHF portion of Skynet 4A was available to other TTCP
participants for experiments. Upon acceptance of the Canadian proposal for the Skynet EHF Trials by
the British, the ground terminal and payload simulators were modified to allow the Skynet 4A satellite
to be used as an EHF to X-band bent-pipe repeater. This allowed the experimentation at EHF with the
simulators over a link that had real satellite effects such as link degradations caused by satellite motion
and weather.

1.2 Skynet EHF Trials

The Skynet EHF Trials consisted of several week-long accesses over Skynet 4A during 1993.
The transmitter was situated at CRC and the receiver at DREO. The whole link (from CRC to Skynet
to DREO) was used to simulate an EHF downlink from a payload to a ground terminal. Thus, the
transmitter at CRC was acting as the payload and the receiver at DREO was acting as the ground
terminal. Skynet was used to introduce real satellite effects (such as doppler) to the link.

From the beginning, it was recognized that many tasks needed to be active at once: pointing of
antennas, monitoring power levels, synchronization, data communications and result logging. To shorten
development time, rather than integrating all these tasks into one big multi-tasking computer, a distributed
processing system was chosen. This allowed each of the processes to be developed independently - often
by different people. It also ensured that the many specialized hardware boards would not conflict with
one-another as they could be put in different computers. Though the tasks were split into multiple
platforms, it was still necessary for them to be able to communicate. Using existing ground terminal
equipment, it was not possible to co-locate the transmitter and receiver. This separation of 1 km between
the two further complicated the inter-processor communications.

1.2.1 Skynet EHF Trials Block Diagram

Fig. 1. shows the Skynet EHF trials block diagram. Normal rectangles represent off-the-shelf
equipment and custom circuitry whereas the rounded rectangles indicate computers and processors hosts.
Between boxes are three types of lines indicating the flow of information: data/control flow is
represented by thin lines with small arrowheads, analog/RF (radio frequency) connections are represented
by thick lines with hollow arrowheads and asynchronous serial communications are represented by the
dashed lines with solid arrowheads. It is these asynchronous serial communication links that are provided

by the software documented herein.

Skynet 4A

\‘ Simulated Ground Terminal

Antenna
Controller
Y

EHF Beacon &
Upconverter X-band Reference
A - / _ Downconverter Downconvertet
1 : Ephemeris
Reference |] . . Processor
: Recelve & Beacon &
------------ == —— -~ -|Synchronization Reference
' Processor Monitor
v i '
]
BPSK Satellite | _ » Data - - Burst DPSK)
Modulator|’ 3 Clock Logger Demodaulator] ,
AA i :
1 1 |
o Data Error] '
HE Analyzer .
1
L e SRR A
t
» BPSK <« > B¥K
————— Modem -
Controller Pemodulatos

Fig. 1. Skynet EHF trials block diagram.

1.2.2 Normal Signal Flow

The primary signal flow starts at the ground terminal that is acting as the payload. Pseudo-
random data from the Data Generator is passed to the Transmit & FH/DPSK Processor (FH/DPSK is
frequency-hopped differential phase-shift keying) which performs data modulation and provides the
frequency hopped pattern to the EHF Upconverter. Here, the hopping signal is combined with a
reference signal provided by the Reference Generator (this signal is monitored at the receiver and is used
to separate real uplink effects from that of the real downlink). This composite signal is then transmitted
at EHF to Skynet 4A. On-board the satellite, the signal is translated and retransmitted at X-band.

The other ground terminal (which is acting as the ground terminal for the experimental link)
receives the X-band signal and then processes it through the X-band Downconverter. The resultant
downconverted signal is fed to the Receive & Synchronization Processor for synchronization processing
and the signal is also passed on, with clocking, to the Burst DPSK Demodulator. The demodulated data
is then fed into to Data Error Analyzer for bit-error-rate (BER) measurements. In the case of digital

2

voice, the Data Generator and the Data Error Analyzer were replaced with vocoders. The X-band
downlink also contains the translated reference signal and a satellite beacon which are downconverted by
the Beacon & Reference Downconverter and then measured by the Beacon & Reference Monitor.

1.2.3 Channel-characterization Signal Flow

To characterize the channel, unhopped BPSK (binary phase-shift keying) was used. This was
done on the transmit side by replacing the hopped signal with an unhopped BSPK signal from a
commercial satellite modem. After downconversion on the receive side, the signal is split off and fed
to a similar unit for demodulation. These modems have built-in BER measurement capability. The
modems are configured and monitored by the BPSK Modem Controller.

For antenna pointing information, the ephemeris information is generated by the Ephemeris
Processor. For antenna scans, the pointing information is passed to the Receive & Synchronization
Processor, modified with scan information, and then returned to the Ephemeris Processor. Antenna
pointing is done by the receive Antenna Controller which is commanded by the Ephemeris Processor.
The Ephemeris Processor also remotely commands the Antenna Processor on the transmit side, which
in turn commands the transmit Antenna Controller.

1.2.4 Data Logging

Central to the whole system is the Data Logger. This computer logs data and status from five
processors. It also gets the time from the GOES (Geostationary Operational Environmental Satellite)
Satellite Synchronized Clock. Measurement data is sent from the Beacon & Reference Monitor several
times each minute. The Ephemeris Processor routinely sends the pointing and predicted doppler values
to the Data Logger. The Receive & Synchronization Processor sends raw synchronization data as well
as synchronization performance measurements. Both the BPSK Modem Controller and the Burst DPSK
Demodulation send BER measurements to the Data Logger.

1.2.5 Serial Communications

There are two types of asynchronous serial communications used for the experiment. Low-level
asynchronous serial communications, involving simple character/string reads and writes to devices, are
used in two cases. Low-level communications are used by the Transmit Antenna Processor to control
the Antenna Controller and by the Data Logger to get the time from the GOES Satellite Clock. All other
serial communications (shown by dashed lines) in the block diagram are high-level communications using
automatic-repeat-request (ARQ) error control. High-level communications only occur among
computers/processors.

1.3 Outline

This report first examines the trade-offs and design of the protocol for high-level communications
involving robust message passing. The next chapter deals with the design and implementation of the
software. The last chapter of this report covers the testing and problems that were uncovered during its
use.

A substantial portion of this report is contained in various appendices. Appendix A contains the
user’s guide to the communications software, both high and low-level. It includes a program example

3

P148873.PDF [Page: 13 of 144]

that exploits several features of the communications software. Appendix B contains the programmer’s
reference for the communications software. These two appendices together provide all the necessary
information for a programmer to use the communications software.

The real-time assembly routines, which control the various aspects of the hardware, are
documented in Appendix C. These routines can be used separately to allow interrupt driven
communications callable from C language. Finally Appendix D and E contain the software listings for
the communications software and real-time routines respectively.

2. Protocol Design

2.1 Introduction

The implementation of the communications software depended on several factors: availability
of commercial software, ease of programming, ease of debugging, performance of links, topology of the
links and, most importantly, requirements of the experiment. In the following sections, these aspects will
be examined in detail and the final selection will be outlined. The theory portion of this section draws
heavily on [1].

2.2 Commercial Software vs In-house Development
There are several communications packages for inter-computer communications available on the

market. The advantages and disadvantages of using a commercial package or developing in-house
software are presented in the table below:

Development Advantages Disadvantages
Method

Commercial - Very little or no development - Uncustomizable

Package - Cannot be debugged/altered

- May not work with other realtime tasks

- Must be selected with care to ensure necessary
features are available

- May require special (and expensive) hardware

In-house - Can be customized - Long development time
Development - Can be debugged/altered - programmer is - Complexity of development is proportional to
available to integrate it with other tasks sophistication of the network

Since the software was to be integrated with other real-time software (such as analog-to-digital
board drivers, digital signal processor interfaces and instrument bus controller drivers) it was decided to
use in-house development. The availability of the source code and the ability to modify the interface and,
in some cases, to accommodate unusual or undocumented features of other real-time driver software were
the key deciding factors.

2.3 Network

The topology and interconnect method among the computers has a major effect on the
development time and complexity. The methods considered were a local network (for example using
ethernet), a star topology where all stations are connected to one hub that passes messages between
stations and a point-to-point network where there is a dedicated link for every communication between
computers.

Some of the various options using the easiest available medium are presented in the table below
along with their advantages and disadvantages.

Topology Medium Advantages Disadvantages

Local network Ethernet - high speed and throughput - excessive complexity for in-house
(bus or ring) (or others) - easy to add or remove stations development
Star Serial - minimize the number of links required | - hub station has to handle all traffic

- speed is a function of the serial link - requires a hub (ie: an extra computer)

- serial can be slow

Point-to-point Serial - no routing required by any station - many links are required
interconnect - easy to add or remove stations/links - serial can be slow
- speed is a function of the serial link

Since simplicity and flexibility were more important than performance, the point-to-point
interconnect topology was selected using the standard serial ports available on personal computers.

24 Protocol Definition

A commercial software package would include a defined protocol for communications. Since the
communications software was to be developed in-house, an appropriate protocol had to be selected. The
key points considered are detailed below.

2.4.1 Error Control

Some method is required to correct errors or to allow retransmission of data in the event that an
error occurs. Forward error correction (FEC) codes introduce redundancy in the data to allow the
receiver to correct errors. This technique requires an encoder and decoder - relatively complex to
implement. Another technique is to use error detection coupled with automatic-repeat-request (ARQ).
This scheme uses a check value appended to the transmitted message. This check is verified at the
receiver and if the verification fails, errors are detected and retransmission of the erroneous message is
requested. The latter scheme, using a checksum, was chosen because of ease of implementation.

2.4.2 Flow Control

To ensure that the receiver does not lose any data when the transmitter is sending data quickly,
flow control is required. This can be accomplished by several methods including:

e Polling: The transmitter polls the receiver to see if it is ready
¢ Ready: The receiver indicates that it is ready for data
¢ Interrupt: The receiver interrupts the transmitter when there is too much data

Stop-and-wait includes a form of the Ready flow control because the receiver, upon receipt of
a message, does not acknowledge it until ready for the next message. Stop-and-wait flow control was
chosen because it is well integrated with the ARQ scheme for error control.

2.4.3 Control/Data Discrimination

In any protocol, it is necessary to distinguish between control messages (such as Ack, Nak and
routing) and user data messages. This can be done by keeping all control information in headers, by

6

using special codes to indicate control messages or by using a different medium. For the serial
communication system, it was decided that all user data messages will be prefixed with a header (which
includes some control information) and that strictly control messages would not have this header. To
distinguish between control and user data messages, the header will use characters that cannot occur in
the control messages.

2.4.4 Character vs Bit-oriented Protocol

Bit-oriented protocols are more efficient than character-oriented protocols because only the
number of bits needed are used whereas character-oriented protocols must use an integral number of bytes
as the minimum allocation. When using asynchronous character-oriented serial ports, however, it is much
simpler to use a character-oriented protocol. Because simplicity was more important than efficiency, a
character-oriented protocol was selected. To simplify debugging, this protocol was further restricted to
using only printable characters.

2.4.5 Synchronous vs Asynchronous

Synchronous serial communications is more efficient than asynchronous serial communications
because of the capacity needed for start and stop bits in asynchronous communications. The disadvantage
of synchronous serial communications is that a clock signal is required along with the data to clock the
data bits. Asynchronous serial communications was chosen because it is simpler to wire and is commonly
used on personal computers.

2.4.6 Frame Synchronization

It is important for the receiver to recognize the beginning and end of a message frame. The
delimiter of the header indicates the start of the message (though this same character could be included
in the data portion). To delimit the end of a message frame, carriage return/linefeed was used. These
control characters cannot occur in the data portion so they provided an unambiguous indication of the end
of the frame. The end of one frame also marks the beginning of the next because asynchronous
communication does not have idle characters between messages.

2.4.7 Addressing

Given point-to-point topology wherever communications are required, there is no need for
addressing of the messages (since any message received on a specific link can only come from the station
at the other end of the link). It is possible that, in a future system, the complexity of a full point-to-point
connection may prove to be impractical. In that case, it would be desirable to have addressing
information to allow messages can be passed on by intermediate stations. To allow for expansion,
addressing information was included in the message header.

2.5 Stop-and-wait ARQ

One method of error control on a communication link is ARQ. In this scheme, the transmitter
sends a message with some form of checksum which is received and then verified. If the verification is
successful, the message is acknowledged. If the verification fails, the receiver requests retransmission
of the message. Common ARQ schemes are: selective repeat, go-back-N and stop-and-wait. Selective
repeat, the most efficient, allows the transmitter to continually transmit messages without pausing for

7

acknowledgments and only the messages in error are retransmitted. In go-back-N, the transmitter
continually transmits, but if an error occurs in a message, the transmitter must go back to that message
and retransmit it and all succeeding messages. The simplest and least efficient form of ARQ is stop-and-
wait ARQ where the transmitter sends only one message at a time and must wait for acknowledgement
prior to transmitting the next message. Stop-and-wait ARQ was chosen for high-level communications.

2.5.1 Normal Messages

Fig. 2. shows the information flow for normal message transmissions and the cases where a single
error occurs. The normal message case shows the transmitting station (Tx) sending message #0 (Msg0)
to the receiving station (Rx). It takes a certain time to send the message, Rx processes the message
checking for errors and then responds with the appropriate acknowledgement for message #0 (Ack0).
Some time later, Tx has another message, message #1, and the same sequence occurs.

Normal Message Message Ack Ack
Messages Corrupted Lost Corrupted Lost

Fig. 2. Normal and single-error cases for stop-and-wait ARQ.

It is necessary that the acknowledgement number (but not negative acknowledgments) be matched
up to the message number to distinguish between duplicate messages and lost messages. For
stop-and-wait ARQ, it is only necessary to have two numbers to resolve the ambiguity - in the case of
the diagram they are 0 and 1.

2.5.2 Single Errors

There are two cases of single-error events. A transmission could be corrupted (in which case the
receiver gets some data, but with invalid framing or erroneous checksum) or a transmission could be
missed completely. When the transmitted message is corrupted, the receiver first detects and reports a
corrupted message. The receiver then responds with a negative acknowledgement (Nak). Upon receipt
of the Nak, Tx reports an error condition (now both Tx and Rx have reported the corruption) and

retransmits the message. When the valid message is received, the appropriate Ack is generated by Rx.
Once the Ack is received by Tx, the message has been passed error free and the protocol is complete.

When the entire message is lost, Rx sees no data at all and therefore, there is no Ack (nor a Nak)
sent by Rx. Tx after having sent a message only waits for a limited time for the acknowledgement and
after this period times-out, reports a message lost and retransmits the message. Rx responds with Ack
and the message has been passed error free.

If the Ack is corrupted, Tx reports the error, responds with a Nak and then Rx reports an error
and retransmits the Ack resulting the message being passed error free. If the Ack is lost completely, Tx
times-out, reports the error and retransmits the message. Rx then receives a duplicate of a valid message
so reports this error, acknowledges and then discards the duplicate message. Once again the message has
been passed error free and without duplication.

2.5.3 Other Problems
2.5.3.1 Loss of Message Number Synchronization

Another event that could occur is the loss of synchronization between message number and
acknowledgement number. In the case that the message or ack received is not the one expected, the
receiver reports the error and switches the expected number to be in synchronization with the received
message number. This event occurred often in the trials when the software on one machine was reset
without resetting the connected machines. After one error report, the machines are back in
synchronization,

253.2 Message or Ack Ambiguity

Another problem could occur when both stations are transmitting. a message to each other at the
same time. One station transmits a long message so the message is still being sent after the incoming
short message has been received. After the long message has been sent, an acknowledgment to the
received short message is transmitted. If the other station then sends a Nak (because of an error), there
exists an ambiguity. The error could be caused by a corrupted long message or by a corrupted Ack for
the short message. Since the long message originator cannot determine which caused the error, both the
Ack and the long message are retransmitted. This will result in either a duplicate message error or and
extra Ack error, but both the long and short messages will have been passed error free.

2.5.33 Multiple Errors

All other events require at least two errors to occur, and even in the case of multiple errors, the
stations will remain synchronized. It is possible, with multiple errors, to lose a message without having
detected the loss. But given the robustness of the physical link, such a sequence of errors are most
improbable.

2.6 Implementation
Given that stop-and-wait ARQ is used for the protocol, the implementation details must be

determined. In this section, first the factors affecting the implementation will be detailed, followed by
the details of the format of messages.

2.6.1 Factors Affecting Implementation
2.6.1.1 Minimum Content of Message

Stop-and-wait protocol requires a message number (0 or 1) to distinguish between duplicate
messages or loss of synchronization and also requires a checksum for error detection. User message data
is an essential part of the message.

26.1.2 Message Numbering

To resolve ambiguities, two message numbers (0 and 1) are needed for stop-and-wait ARQ.
Rather than including a message number field in the message headers and acknowledgements, the message
numbering was implemented using the case (lower or upper) of key letter(s) to designate message number
0 or 1. For the message header, the case of the ’h’ used in the checksum was set. For the
acknowledgement, the case of the three letters were set. It is recognized that this implementation is a
little cryptic, but it allowed for easy parsing of received messages and acknowledgments. A better
implementation would have been to include a message number field in the header and acknowledgements.

2.6.1.3 Desirable Fields

For future expandability, possibly involving routing in a complex network, it is desirable to have
the source and destination station names in the message header. It would be desirable to have a message
type field to streamline the processing of messages.

2.6.1.4 Debugging Aids

This communications system was needed to support the Skynet EHF Trials - it was not an end
to itself. Thus, it was desirable to minimize the development time, possibly at the expense of efficiency.
To simplify debugging, the following features were selected:

¢ Printable character messages ending with carriage return and linefeed

This choice ensures that a dumb terminal and a protocol analyzer could be used to debug
the protocol. The negative aspects are that using only printable characters is inefficient
for throughput (not a problem in this application) and that there are restrictions on the
characters which can be included in the message.

» Allow the checksum to be omitted

The receiver will not validate the checksum if it is "XX" instead of a hexadecimal
number. During debugging, when it is desirable to generate a message by hand, one
does not have to compute the checksum (a tedious and error prone task).

2.6.1.5 Fixed or Variable Length Fields
To simplify parsing, fixed length fields are desirable. This is true for the message text field, but

such a restriction might impose undue constraints on the variety of messages, s0 a compromise was
chosen. This compromise was to have fixed length header and a variable length text field.

10

2.6.2 Control Messages

The only valid control messages are listed below. ACK and ack acknowledge the receipt of a
message with no errors and the case of the ACK/ack matches the case of the *h’ on the checksum of the
transmitted message. Nak is used to request the retransmission of the message because of errors.

ack CR LF
ACK CR LF
nak CR LF

where CR LF is a carriage return and a linefeed to terminate the message

2.6.3 User Message Format

To pass data between machines, the user message is used. The two forms of the user message
are given below (one with user message data and one with a null message):

delimit the header

separators within the header

space character " ” is only included when there is message data
carriage return and linefeed to terminate the message

station field identifying the source of the message (see the table on the next page
for valid station names); this field is 4 characters long

station field identifying the destination of the message (see the table on the next
page for valid station names); this field is 4 characters long

message type field (see table below for valid message types); this field is 6
characters long and is blank filled if the message type is less than six characters

three character field comprised of two characters of hexadecimal checksum then
an ’h’ or "H’ (the case of the *h’ indicates whether "ack" or "ACK" is required)

optional variable-length message data, up to 199 characters plus the null
terminator. If there is no data, then the preceding space is omitted. Message
data should not include any control characters, especially not the carriage return
and linefeed used to terminate a message.

Examples (checksums are only for illustrative purposes, they have not been calculated):

[sync>dlog; log ;4Dh] Spatial scan complete at 10:51
[ephm>crca;point ;A2H] 10:58 12 Mar 93, Az=122.45, El=12.60, R=36132.8
[txpr>sync;status;22h}

11

Station Field Message Type Field
Value Description Value Description
dlog Data Logger & Experiment Controller comd Command message
beac Beacon & Reference Monitor config Configuration message
bdem Burst DPSK Demodulator Host log Log message
txpr CRC Transmit Processor status Status message
ephm Ephemeris Processor point Initial antenna pointing information
sync Synchronization Processor modpnt Modified antenna pointing information
crea CRC Antenna Controller Host time Time of day message
t85a T85 Antenna Controller Host error Error condition message ‘

2.6.4 Hardware Considerations

The communication system was implemented on the asynchronous serial ports of a PC (personal

computer). Most computers involved only required one or two serial ports to be fully connected, but
several computers needed more ports, one as high as eight ports. Ports beyond three were supplied using
the Digiboard DigiCHANNEL PC/8 eight-port serial board. For three or fewer ports, the standard
COM1, COM2 and COM3 ports were used. When installed, the Digiboard used different addresses for
COM3 and COM4 (along with special addresses for COM5 to COM10) and the software had to adapt
to the two hardware configurations.

To simplify the serial port interconnect, handshaking lines were not used (transitions were

ignored). Only transmit data, receive data and signal ground are required.

12

3. Software Design
3.1 Introduction

The following sections provide the details of the communications software design as well as the
implementation. The software is contained in two different files: COM.C contains the C language
routines that provide high and low-level communications, and SERIAL.ASM contains all the real-time
routines that provide basic interrupt-driven services for the hardware. First the real-time software will
be discussed followed by low-level and high-level communications services.

3.2 Real-time Software

DOS (Disk Operating System) does not provide interrupt driven communications through the
serial ports. The only way to have the necessary control and response time for the communications
software was to provide interrupt driven communications in assembly language. Once interrupts proved
necessary for serial ports, a further requirement to ensure that interrupts were tidied up prior to exit
forced the use of critical event trapping (control-C presses and critical error exits). As well, timeouts
required for the high-level protocols necessitate interrupt driven timer routines. These routines were
written to provide the minimum required service with a fast response time (more sophisticated service
is to be provided by high-level language routines). SERIAL.ASM contains all of the real-time services
written in assembly language.

3.2.1 Serial Ports

To ensure rapid response, interrupt driven communications were used. [2] was used as the basis
for a single-port interrupt service routine. There were several small bugs in the code shown in [2] which
had to be corrected. To provide service for multiple serial ports, it was necessary to extend the interrupt
service routine. In addition to separate buffers with pointers, separate settings for the ports and separate
status flags, it was also necessary to service the different IRQs (interrupt request) used. A further
complication entered because there were two possible types of hardware that used different addresses and
IRQs for COM3 and COM4.

All services provided are C-callable. They include setup and restoration of the interrupts,
configuration of the serial ports, reading and writing to the serial ports and getting the composite status
of the serial ports. More internal details are provided for each service and the service routine below.

3.2.1.1 Open Serial Ports

Each call to open_ser opens one serial port. The routine first checks the board type parameter
to see if Digiboard or standard addresses are in use. In the latter case, the IRQ number and port address
table used for setting up serial ports are modified (from the Digiboard defaults) to reflect the standard
values. At this stage, all interrupts are disabled until vector manipulation is complete at the end of this
routine. The routine then checks to see if the port has already been opened - if so, an error is generated
and the routine returns. The serial port hardware is then cleared and initialized. Next the routine checks
to see if the interrupt is already in use (each IRQ could have multiple serial ports using it) - if not, the
interrupt vector is setup. Finally, the interrupt controller is reset and interrupts are re-enabled.

13

Configuring the serial port is then accomplished using the routine set_ser. This routine is used
to configure a serial port’s baud rate, bits/character, stop bits and parity. The four characteristics are
combined into one 8-bit configuration byte. When invoked, this routine breaks up the configuration byte
to load up the hardware registers.

3.2.1.2 Close Serial Ports

A call to close_ser closes one serial port. If the port was not opened, then this routine returns
immediately with no error. When the port is open, this routine disables the serial port hardware and then
checks to see if any other port is using the IRQ. If not, then the vectors are restored to their original
values.

3.2.13 Composite Status of the Serial Ports

The composite status of all the serial ports is available using the routine star_ser. This status has
several bits that report problems with the serial ports. They include: interrupt called but no serial port
generated the interrupt, a RS-232 handshaking line changed state despite this interrupt being disabled,
a UART (universal asynchronous receiver/transmitter) error or break occurred despite being disabled,
receive and transmit buffer overflows and finally transmit buffer not empty. The last three bits are
composite status in that they represent the "OR" of the states of all of the active ports. In other words,
if one of these bits is set then at least one of the serial ports had the associated problem.

3.2.1.4 Receiving Data from Serial Ports

Data received is stored in the receive ring buffer by the interrupt service routine. Upon being
called by a C program, read_ser first compares the get and put pointers to determine if there are any
characters in the receive ring buffer (if there are no characters then the routine does an error return).
When there is data, the next character is removed from the ring buffer and returned to the calling routine.

3.2.1.5 Transmitting Data Out of the Serial Ports

When the routine write_ser is called to send a character out of a serial port, the transmit ring
buffer is checked to see if any characters are still queued. If so, or if the transmitter is not ready, then
the current character is added to the buffer which will be emptied one character at a time upon transmit
buffer empty interrupts. When saving the current character in the transmit ring buffer, the routine also
checks to see if the buffer is full - in which case the transmit buffer overflow bit is set in the composite
status. If the ring buffer is empty and the transmitter is ready, then the character is sent right away to
the serial port.

.

3.2.1.6 Serial Port Interrupt Service Routine

The serial port interrupt service routine handles both IRQ3 and IRQ4, the two interrupts used by
serial ports. Within the interrupt service routine, there are four types of interrupts serviced: control line
change, transmit buffer empty, receive character available, and break/UART error event. Of these,
control line change and break/UART error should not occur (because they should be masked) and are
serviced by clearing the interrupt and setting the appropriate error bit in the composite status.

14

The service routine is only invoked by a serial port event - it is never called by another routine.
Upon being invoked, ser_int first saves all the current context by pushing all the registers that it uses on
the stack. The service routine examines all the in-use serial ports and services any of them that have the
interrupt bit set. This means at least one serial port is serviced but not more than the number being used.
If no in-use serial ports are found with their interrupt bit set, then the service routine sets the invalid
interrupt bit of the composite status and exits. Once an in-use port with the interrupt bit set is found, the
interrupt identification register is used as an offset for a jump table to the appropriate interrupt type.

For transmit buffer empty interrupts, the service routines checks for characters available in the
transmit ring buffer. If available, one character is sent out the serial port. Otherwise, no action is taken.

For receive character available, the service routine first ensures that there is space available in
the receive ring buffer. If not, the receive buffer overflow bit is set in the composite status. When there
is space, the character is added to the receive ring buffer.

Prior to returning from the interrupt, the interrupt controller (as distinct from the serial port
hardware) is given the appropriate command to clear the interrupt or interrupts that occurred. As noted
before, the interrupt service routine, once invoked, services all used serial ports that have an interrupt
condition. Then the context is restored by popping the used registers from the stack.

3.2.2 Control-C/control-break Handler

DOS normally handies control-C and control-break keypresses by aborting the program, closing
open files and then returning to the DOS prompt. DOS does not restore most interrupt vectors as part
of this operation, so DOS is likely to crash if a program using interrupts is allowed to be aborted by
control-C or control-break. It is necessary for the user software to be able to trap these keypresses. The
hearts of the control-C and control-break handlers (break_int and ctlc_int) were taken from [2]. Once
either keypress occurs, the software sets a flag indicating that a control-C or control-break was pressed.
The user software check this flag by making periodic calls to press_break. The user software can either
ignore the keypress or can restore interrupts followed by an exit. C-callable routines are supplied
(open_break and close_break) that trap these keypresses and restore the DOS handler.

3.2.3 Critical Error Handler

Critical errors are severe errors that occur with the peripherals of the computer (such as the
floppy disk drive or printer). One example of a critical error is trying to read a floppy disk when there
is no disk in the drive. When a critical error occurs, DOS provides the standard prompt describing the
critical error and allowing the user to specify the action "Abort, Retry, Ignore or Fail." If the user
specifies "Abort", the program is aborted and control returns to the DOS prompt. Unfortunately, there
is no user abort routine to allow interrupts to be restored prior to returning to the prompt, so DOS will
likely fail at this point. The user software must trap the critical errors and service them; if "Abort" is
chosen, then the user software must restore the interrupts prior to returning control to DOS.

The critical error handler (crit_hand) was only slightly modified from the one given in [2]. Upon
critical error, the user is prompted with a non-specific "Critical Error Occurred: Abort, Retry, Ignore,
Fail?". If the user chooses "Abort", then all the interrupts are restored through hard coded calls to the
appropriate close routines. Once this is done, control is returned to DOS to finish the abort processing.
If any other value is chosen, then control is returned to DOS for finish the appropriate processing (for

15

example upon user selecting "Retry" then DOS retries the operation) and once the operation is complete,
DOS returns control to the user software (but not for "Abort").

C-callable services are provided for setup and restoration (open_crit and close_crit) of the critical
error handler. If software is written that uses any other interrupt, then changes must be made to the
critical error handler. The appropriate close must be added at the end of the critical error handler which
must then be reassembled.

3.2.4 Timers

Stop-and-wait ARQ requires the ability to wait a period of time after a message is sent before it
is declared lost and retransmitted. To provide this facility, a timer interrupt service routine was written.
Upon interrupt, the routine decrements all the timers once until they have reached zero. The DOS
16.7 Hz timer interrupt was redirected to this timer interrupt service routine. A separate routine
examines the remaining count to check for expiry of a timer.

The routines provided are C-callable and allow setup and restoration of the timer interrupt vector
(open_time and close_time) as well as routines to set the individual timers (sez_time) and to check them
for expiry (chk_time). chk_time actually returns the remaining count (which is zero on expiry). The
timer number used matches the serial port number used. Since there is no COMO, timer O is extra and
can be used in the user software as a general purpose count-down timer.

33 Low-level Communications

Low-level communications are provided by the routines getc_low, gets_low, putc_low, and
puts_low that get or put characters or strings to the serial ports. Each of these routines, when called, first
determines the serial port that matches the low-level station. purc low and puts_low send out the
character or string using calls to write_ser (described previously in section 3.2.1.5). gets_low, using calls
to read_ser, retrieves characters and puts them in a holding buffer until the specified terminator is
reached. If the terminator is not yet reached and there are no characters available, the routine returns
a status value that indicates that a string is not yet available. A later call will finally retrieve the
remaining characters (including the terminator) and return them to the calling routine. The routine
getc_low, first checks this holding buffer for characters - if found, a character is removed from the
holding buffer and returned. If the holding buffer is empty, the routine uses read_ser to get a character.
The routine returns this character or no data available.

34 High-level Communications

This section describes some of the details of the high-level communications software. First,
enabling and disabling communications will be examined, then the software involving receipt and
transmission of high-level messages will be described. Finally, some of the important variables and data
structures will be detailed.

3.4.1 Enabling and Disabling. Communications

The routine open_com is used to enable high and low-level communications. First the data
structures are initialized and the configuration file is read using the internal routine read_config. This

16

internal routine opens and reads the configuration file, setting up the serial port data structures as each
link declaration is processed. Once gpen_com enables the critical error handler, control-C/control-break
handler and the timers, all the serial ports declared in the configuration file are opened using a separate
open_ser for each link. Finally, the serial port parameters obtained from the configuration file are used
to set up the serial port hardware using calls to sez_ser.

The routine close_com closes all the serial ports using calls to close_ser and then disables the
timers. Finally, the DOS handlers for control-C/control-break and the critical error are restored.

3.4.2 Receiving Messages

Messages are received by calls to get_com which first checks for any control-C/break keypresses
or too many errors (total or by link) and returns if either of these are detected. Otherwise, get _com then
calls the internal routine getmess once for every active high-level port. getmess moves characters from
the ring buffer, via calls to getline, which in turn calls the real-time routine read_ser, and places them
into the receive message buffer. Characters are removed up until the message terminator is received.
The resultant string is classified as short (for control messages) or long (for user data). Long strings are
then checked for header integrity and the checksum is verified. This results in the message being
classified as one of: valid message, bad message, Ack or Nak. The Ack is further verified to ensure
that it is appropriate for the transmitted message, if not, it is declared to be an invalid Ack. The class
of message received then serves as the input for transitions in the receiver state machine. The next
sections will detail the receiver state machine and each of the possible states.

3.4.2.1 Receiver State Machine

Fig. 3. shows the receiver state diagram for high-level protocol. There are four possible states
shown by the filled-in circles. The arrows show the state transitions which occur normally as a result
of received data. Sending a user message or obtaining a receiver timeout can also cause state transitions.
The reason for the transition is shown in bold whereas italics are used for the action taken on transition.

3.4.2.2 Ready State

The Ready state is the most commonly used state in the receiver. This is the start-up state and
the state used while waiting for messages. As long as valid messages are received (and none sent) the
receiver stays in this state. There are only two ways to leave this state. If an invalid (corrupted) message
is received in the Ready state, a Nak is sent and the receiver changes to the Nak Sent state. The
transition to the Message Sent state occurs, not through the received data, but through the transmitter
when a message is transmitted.

3423 Nak Sent State
The Nak Sent state is distinguished from the Ready state by the timeout. On timeout, the Nak
is retransmitted and the timeout is restarted. On receipt of a valid message, the receiver returns to the

Ready State. If further corrupted messages are received, the Nak is retransmitted and the state does not
change.

17

Valid Message Nak, Timeout or Bad Message

Bad Message
Send Nak

Valid Message
Send Ack

yalid Ack

Send Message Valid Ack

Invalid Ack Invalid Ack
Valid Message . '
Send Ack L
'Message
Bad Message a nd . Ack o
Send Nek . -Sent

Timeout
Resand Message

Nak or Timeout _ Nak or Bad Message
Resend Message . Resend Message
Resend Ack

Fig. 3. High-level protocol receiver state diagram.

3424 Message Sent State

The Message Sent state is entered by the user transmitting a message. Message transmission is
only permitted when the receiver is in the Ready state. Upon transmission, the receiver is put in the
Message Sent state. While in this state, a timeout waiting for the Ack is set. Upon receipt of a Nak or
on expiry of the timeout, the transmit message is resent and the timeout restarted. If a valid message is
received in this state, the transition to the Message and Ack Sent state occurs. '

3425 Message and Ack Sent State

The Message and Ack Sent state is an infrequently used state. To get into this state, a message
must be transmitted and another valid one received and acknowledged prior to the Ack of the transmitted
message. In this state, there is ambiguity if a Nak is received - it is not possible to know if the Nak is
in response to a problem with the acknowledgement or with the original message (which could have been
lost). In the case that a Nak is received, both the Ack and the transmit message are resent - resulting in
at least one duplication at the far end, but no losses. This state functions otherwise as the Message Sent

state.

18

3.4.3 Sending Messages

Messages are sent using the routine send_com which frames the message, sets the checksum and
then checks to see if the receiver is in the Ready state (which ensures all previous messages have been
successfully transmitted). If so, the routine sendstr is used to send the string using calls to the real-time
routine write_ser. Also the countdown timer is started for the timeout using set time and the receiver
state is changed from Ready to Message Sent.

3.4.4 Internal Data Variables
3.4.4.1 Station Numbers

The number used internally for the stations is based upon the definitions given in the COM.H file.
Each high-level station is assigned a fixed number within the range: 1 up to but not including
LOW_BASE. A value of 0 is used to indicate a bad station. Any value greater or equal to LOW_BASE
is the station number for a station on a low-level link. Low-level stations are the sum of LOW_BASE
and an index. This index corresponds to the order that the low-level link declarations occur in the
configuration file (0 is the index for the first low-level link).

3.4.4.2 Serial Port Numbers

The values used for serial port numbers internally correspond to the associated COM port
number. Therefore, the serial port number for COM2 is 2. The range is 1 to 10.

3.443 Message Numbers

The message numbering scheme involves only two numbers 0 and 1. They correspond in the
message frame to "h’ and "H’ respectively. For acknowledgments, the numbers correspond to ’ack’ and
’ACK’ respectively.

3.44.4 Active Port Structure - s

The structure s details the active links for both high and low-level communications. It is indexed
by position in the configuration file and has one member for each link. For each link, the following
information is stored: the station number at the far end of the link, the serial port number and the serial
port settings (such as baud rate).

3.4.4.5 Serial Port Structure - p

The structure p details the serial ports and is indexed by the serial port number (1 to 10). This
structure only contains useful information for serial ports used in high-level communications links. For
each serial port, the following information is stored:

® state of the receiver

® station number at the far end of the link

* number of consecutive errors

* maximum allowable number of consecutive errors
® number of ticks before timeout

19

P148873.PDF [Page: 29 of 144]

e message number expected for the next receive message

e pointer for the receiver buffer

 holding buffer for the receiver

e previous received message string (for duplicate message detection)
e message number for the next transmit message

e previously transmitted message string (for retransmission)

20

4. Testing
4.1 Method

The development of the communications software required the use of multiple stations. Initially,
one end of the link was the development computer and the other was the HP 4952A Protocol Analyzer.
The analyzer was set up to send messages and also to respond with acknowledgments to messages sent
from the computer.

Once the software was basically working, two computers were connected each running an early
version of the program SER_DEMO (given as the example program in the Communications Software
User’s Guide found in Appendix A). This program reports all messages received and any
communications errors. It also generates messages at the press of a key. The next step in the testing was
to connect three computers together and send messages to one computer at the same time. No problems
were found.

Practical testing was done during verification of the beacon monitoring and data logging software
- where the communications software was integrated with user programs. The Beacon & Reference
Monitor, monitoring the satellite beacon, was configured to send the measurement results routinely to the
Data Logger. An overnight run was conducted to test the RF hardware and the two computers with their
associated software. This test highlighted some problems with the initial version of the communications
software and its usage.

4.2 Problems Discovered

There were times during the testing where multiple communications errors occurred followed by
an exit when too many errors were counted. The problem turned out to be with the Beacon & Reference
Monitor which was a slower AT-class computer. This computer did not have the processing power
necessary to service all the communications at 9600 baud at the same time as performing its primary
function. By reducing the baud rate to 2400, this problem was alleviated. This could have also been
rectified by replacing the AT-class machine with a 386 or 486 computer.

Another problem with communications was discovered where both lost messages and duplicate
messages were occurring. It turned out that several of the measurements done by the Beacon &
Reference Monitor over GPIB (general purpose instrument bus) were taking as long as 15 seconds (during
which there could be no calls to ger_com to process the handshaking). This was fixed by extending the
timeout period for the link to 30 seconds at both the Data Logger and the Beacon & Reference Monitor.

Later, during the trials, the Data Logger occasionally stopped servicing one of the links. This
turned out to be a problem with the interrupt service routine. The same interrupt service routine is
invoked for all links and it was coded to look only for the first link needing service. This caused a
conflict when more than one source of interrupt occurred simultaneously (the Data Logger had a large
number of links). To correct this problem, the interrupt service routine was modified to ensure that all
links (not just the first) that needed servicing were serviced.

21

4.3 Usage Problems

During integration prior to the trials, two usage problems were brought to light. They were
sufficiently common that future versions of the software should try to alleviate or at least provide
notification of these problems.

The first problem was an insufficient number of calls to get_com which processes the messages.
This resulted in messages or acknowledgements being lost and later duplicated. The root of the problem
was usually a time critical area in the user software that was waiting for some other hardware event. It
was very easy for the user to create a program with a loop waiting for a certain bit to be set without
calling get_com within this loop. If this waiting period was longer than the timeout, a problem occurred.
The solution to this problem was to ensure that get_com was called in all waiting loops.

The other problem resulted in general communications or framing errors on a link. This was
caused by the user including carriage returns and linefeeds in the message itself (this often occurred when
the same message sent to the Data Logger was also sent to the local computer display which requires the
linefeed). The linefeed would cause a premature detection of the end of message. This problem could
also occur when other control characters are embedded in the message because these characters are
discarded at the receiver prior to computing the checksum (which would then fail).

4.4 Results

After correcting the problems within the communications software found prior to and during the
trials, and correcting the problems in the user software, the communications software performed
successfully for the rest of the trials. Both the high and low-level communications provided the necessary
services for the users to allow communications among the distributed processors and to allow control
specific hardware devices. During these trials, the communications software serviced 8 high-level
interprocessor links and 3 low-level computer to instrument links.

1t should be noted that AT-class machines cannot run high-level communications at 9600 baud
or faster because of processing limitations inherent in these slow machines. 386 and 486-based machines
can handle multiple links at 9600 baud without problems and are better suited to the tasks required for
the Skynet EHF Trials.

22

S. Conclusions
5.1 Summary

The Skynet EHF Trials involved multiple computers which had to intercommunicate. The
communications software presented in the previous chapters provided the communications services
necessary for the distributed processing used in these trials. The challenge was to develop a system that
was easy to integrate with the user software as well as to ensure that the communications hardware and
software did not conflict with special purpose boards in the various computers.

For simplicity, stop-and-wait ARQ protocol was used for high-level message passing. This
provided robust message handling and error-free transmissions. To simplify debugging, but at the
expense of efficiency, only printable characters were used for the messages and framing. Also, low-level
communications services that do not require handshaking were provided for equipment control. The
software was developed in the C language with the real-time hardware interface portion written in
assembly language.

The communications software presented met the challenge and, after extensive testing, was proven
to provide the necessary communications among all the processors and special devices.

5.2 Future Work

In hindsight, improvements could be made to the communications software in three main areas:
detection of usage problems, flexibility and better software approaches. The following sections describe
these areas in more detail.

5.2.1 Detection of Usage Problems

Carriage returns, linefeeds or other control characters in a high-level message should be detected
prior to attempting to send the message. This could be done simply at the start of send_com, and if
control characters are detected in the string, there should be an error return from send_com.

The time between calls to get_com could be monitored by the extra timeout counter (timer 0 is
available) to ensure that long periods between calls to ger_com are reported right away. This timer
should be set for a timeout period of one-tenth of the smallest timeout for all links (or possibly to a user
specified value from the configuration file). When ger_com is called and this timer has expired, an error
message should be given such as "The time between calls to get_com is too long." This timer would be
restarted at each call to get_com.

5.2.2 Flexibility

The current communication software specifies, in the header file COM.H, the valid long and short
station names. This system worked for the Skynet EHF Trials because the names did not change. If it
is desired to have a different configuration, then the header file must be changed and the user and
communications software must be recompiled. It would be more flexible if the valid station names were
contained in some type of setup file and read at execution time. In this case, all stations must have the
same setup file.

23

P148873.PDF [Page: 33 of 144]

5.2.3 Better Approaches

Certain aspects of the program were designed early on in the development stage and proved to
be cumbersome or cryptic later. The first instance of this is the composite status for the real-time serial
port routines. This status returns only the combined status of all ports when an individual port status
would be more useful. This is most important for status items such as buffer overflows. The other
aspect of the status is that it was never used by the high-level communications software. This status
should be examined each time get_com is invoked and if necessary the error message should be returned.
Also, for low-level communications the status should be checked before sending data to ensure there is
room in the buffer.

The last problem is the method of generating message numbers are used for messages and
acknowledgements. The method of using the case of the letters to indicate the message number is cryptic.
It would be better to have a message number field and to include message number with the

acknowledgment.

24

Appendix A

Communications Software User’s Guide
1. Introduction

This appendix describes the use of the communications software. First high-level then low-level
communications are covered. Next the serial port configuration file used by the communications software
is documented. Finally a programming example using high-level communications is provided. The
interface details of each of the communications software routines are given in Appendix B:
Communications Software Programmer’s Reference.

2. High-level Communications

High-level asynchronous serial communications involve robust message handling with
confirmation of reception at the far end of the link. The handshaking is handled by the software - the
user is only responsible for specifying the destination, message type and message data. The following
sections will detail the information necessary to send a message as well as the information available on
receipt of a message. Then the communications errors and communications termination will be detailed.

2.1 Enabling and Disabling High-level Communications

High-level asynchronous serial communications (as well as low-level serial communications) are
enabled by the routine open_com. This routine reads the configuration file, sets up the message handling
routines and takes over the serial ports specified. No communications can occur until this routine is
called. It is only necessary to call it once regardless of the number of links in the configuration file.

Prior to termination of the user program, it is important that the routine close_com be invoked
to remove all the message handling routines and to free up the serial ports. If this routine is not invoked,
the computer will likely hang upon exit from the user program.

2.2 Sending Messages

To send a high-level message, one uses the routine send_com along with several parameters:
destination station number, message type number and message data. The destination station numbers are
defined in COM.H. Keywords for valid station numbers are:

DATA_LOGGER Data Logger & Experiment Controller

BEACON_MON Beacon & Reference Monitor
BURST_DEMOD Burst DPSK Demodulator Host
TX_PROC CRC Transmit Processor
EPHEM_PROC Ephemeris Processor
SYNC_PROC Synchronization Processor

CRC_ANTENNA CRC Antenna Controller Host
T85_ANTENNA T85 Antenna Controller Host

25

The station number can also be obtained from the routine look_com by giving the long station name as
a string.

The message type numbers are defined in COM.H and specify which type of message is to be
sent. The message type is distinct from the message data which contains a string. Keywords for message
type numbers must be one of the following:

COMMAND Command message, used to start/stop another processor or request status
CONFIGURE Configuration message, to choose setup or process for another processor

LOG Log message, to be stored in the log file
STATUS Status message, response to command (if necessary)
POINT Initial antenna pointing information, generated by the ephemeris processor

MOD POINT Modified antenna pointing information, modified by the sync processor
TIME _STAMP Time of day message, time of day distributed by the logger
ERROR Error condition message, error to be stored in the log file

The message types and any associated responses used must be agreed upon by the two stations
on the link. For example, the Sync Processor would send a Command message to the Tx Processor to
initiate a certain type of transmit waveform. The Tx Processor would respond with a Status message to
indicated that the transmit waveform was now valid.

Message data consists of a variable length string, formatted as specified by the experiment and
is an optional parameter. If there is no data, a null string should be passed to the routine.

2.3 Receiving Messages

Messages are obtained by the routine get_com with a return of VALID_MSG. This routine also
handles the handshaking, so it must be called repeatedly. If the routine is not called after a message
comes in, there will be no handshaking and a timeout error will be generated at the other end of the link.

When a message is received, the message type, message data and the source station are returned
by this routine. The message type and valid stations were shown in the previous section. The message
data is contained in a null-terminated string and in the event of no message data, the string will be a null
string.

2.4 Communication Errors

Communication errors such as lost messages are reported in gef_com using the COMM_ERR
return value. The return parameters provide the communications error number, the station at the far end
of the link that had the communication error and the error text. See the Communications Software
Programmer’s Reference in Appendix B for more details of the C program interface. The following table
provides details for each error including likely causes and remedies.

Note that there should not be any errors in normal operation. Using proper connectors and

keeping the line lengths within the RS-232 standard should provide error-free transmissions. If errors
do occur, it is usually an indication that something is wrong with the hardware setup.

26 .

Err | COMH Error Text Cause Remedy
No Define
1 CPTACK Ack corrupted A nak was received in response to the - Check timeout and
previously transmitted ack get_com call frequency
- Check connections
2 CPTNAK Nak corrupted A nak was received in response to the - Check timeout and
previously transmitted nak get_com call frequency
- Check connections
3 CPTRXA Receive message or | An unrecognizable string was received - Check timeout and
ack/nak corrupted May be one of: get_com call frequency
- errors in framing - Ensure there are no
- bad checksum control characters in the
- from station does not exist or is the wrong message strings
one (especially "\n’,’\r")
- to station does not exist or is the wrong one - Verify station names in
- message type is invalid configuration file
- garbage on the line - Check connections
4 CPTTXA Transmit message A nak was received after both and ack and a - Check timeout and
or ack corrupted message were transmitted (in response to get_com call frequency
either one) - Check connections
5 CPTTXM Transmit message A nak was received in response to the - Check timeout and
corrupted previously transmitted message get_com call frequency
- Check connections
6 EXTACK Extra ack received An ack was received when none was needed - Check timeout and
get_com call frequency
10 LSTACK Ack lost, duplicate The latest receive message number is out of - Check timeout and
message sync with the expected message number and get_com call frequency
the message is the same as the previous one - on the other end of the
this is a duplicate message link
11 LSTNAK Nak lost A nak was sent and no response was received | - Check timeout and
prior to timeout get_com call frequency
on the other end of the
link
I 12 LSTRXM Receive message The latest received message number is out of - Check timeout and
lost sync with the expected message number and get_com call frequency
the message is different from the previous on local station
one - a message must have been missed
13 LSTTXM Transmit message A message was sent and no response was - Check timeout and
lost received prior to timeout get_com call frequency
on the other end of the
link

The most common source of problems is the frequency with which calls are made to get _com.
Since this routine provides all the handshaking, if it is not called often enough, then messages are not

acknowledged within the timeout period of the sending station. The routine get_com does not require
a lot of processing power enabling the user to call it frequently with minimal effect on the primary task

27

of the computer. For more details on get_com, see the Communication Software Programmer’s
Reference in Appendix B.

A related problem is when the host computer does not have sufficient processing power to service
the serial ports at full speed. In that case, the solution is to lower the baud rate of the serial ports, reduce
the number or length of messages, and to minimize the number of ports to be serviced concurrently.

The next most common source of problems is the use of control characters in the message string.
Since the high-level protocol framing uses control characters to denote end-of-message, the incorporation
of control characters in the user string will cause the protocol to terminate prematurely the receive
message. To send a two-line message, first split it into two one-line messages and send them with two
separate calls to send_com.

25 Termination
The routine ger_com can also request program termination by the returning of QUIT. The

termination type and sometimes the originator number are available. Keywords for the termination types
are:

TOTAL Too many total errors occurred (sum of all errors on all links)

CONSEC Too many consecutive errors on any one link (the originator specifies which link
had too many errors)

BREAK Control-C or control-break was pressed

The user software can ignore this request, but with either of the communications error
terminations, high-level communications is no longer effective because it is continuously tied up reporting
errors. The routine flush_com may be used to reset a link after too many consecutive errors, but should
only be called once the reason for the errors is removed. The control-C/control-break keypress can be
used to exit the program or the user software can ignore these keys if an user initiated abort is not
desired.

Another source of termination which is beyond user software control, is the Abort selection upon
a critical error. Critical errors are operating system errors such as no floppy disk in the drive when
trying to read a directory. Because the operating system does not return control to the user software upon
the selection of Abort (as opposed to Retry, Ignore or Fail), these critical errors are trapped by the
communications software. There, a simplified critical error handler checks for the Abort response and
if selected, does the equivalent of close_com automatically prior to the return to DOS.

3. Low-level Communications

Low-level communications involve the sending and receiving of individual characters or character
strings. There is no handshaking, error control or flow control. It is meant primarily for controlling
peripherals (such as an antenna controller) using the serial ports. Low-level communication routines were
added to the communications software package because direct programming of the serial ports would
conflict with high-level communications controlling of the serial port interrupts. The following sections
detail the enabling and disabling of low-level communications, sending data, receiving data and
termination.

28

4

3.1 Enabling and Disabling Low-level Communications

Low-level communications (as well as high-level communications) are enabled by the routine
open_com. This routine reads the configuration file and sets up the serial ports as specified. No
communications can occur until this routine is called and it is only necessary to call this routine once
regardless of the number of links in the configuration file. The routine close_com must be called prior
to termination to free up the serial ports. If this routine is not invoked, the computer will likely hang
upon exit from the user program.

3.2 Sending Data

To send single characters out a serial port, the routine putc_low should be used. This routine
will send any one character out the serial port. If it is desired to send a string, the routine puzs_low can
send a null-terminated string. If it is necessary to send a null as part of a string, then the string should
be broken down into string, null character and string. These then should be sent out using calls to
puts_low, putc low and puts_low respectively.

3.3 Receiving Data

Single characters can be received from the serial port using the routine getc low. This routine
will obtain the next character from the ring buffer regardless of value. To obtain a terminated string
from a serial port, the routine gets_low can be used. This routine allows the user to specify the string
terminator and then retrieves all characters up to (but excluding) the specified terminator. The string
terminator cannot occur within the string.

3.4 Low-level Termination

The routine get_com, while normally only used for high-level communications, can be used to
detect user termination requests via control-C and control-break keypresses. All other features of
get_com are not used for low-level communications. The only possible returns are NO_MESSAGE (no
keypresses) and QUIT (termination request). The parameter associated with QUIT can have only one
value: BREAK to indicate that control-C or control-break has been pressed. The other values for this
parameter can only occur in high-level communications.

The user software can ignore this termination request with no consequences to the
communications software, but it is better to respond to the users attempt to exit the program. Prior to
termination of the program, it is important that close_com be invoked to restore interrupt vectors.

Another source of termination, beyond the user software control, is an Abort selection by the user
in response to a critical error. Critical errors are operating system errors (such as no floppy disk in drive
or printer not ready). Because the operating system does not return control to the user software upon
the selection of Abort (but it does for Retry, Ignore or Fail) these critical errors are trapped by the
communications software. There, a simplified critical error handler checks for the Abort response and,
if selected, does the equivalent of close_com prior to the return to DOS.

29

4. Serial Port Configuration File

This file contains the declarations necessary to specify completely all the communications links
for the local computer including all connected stations. It is read once at the start of the program and
cannot be changed while the program is running. SERIAL.CFG is the default name for this file, but
another filename can be specified using the routine config_com.

The configuration file is an ASCII text file, that can be edited using any text editor. Case is
unimportant. Blank lines and comment lines (any line starting with an “;") are ignored. Leading or
trailing tabs and spaces are ignored, but cannot occur inside keywords or values. The configuration file
consists of keywords (and their associated values), comments and blank lines. The following are valid

keywords:

Keyword Declaration Type Description
FROM Local Station Local station name
BOARD_TYPE Local Station Serial board type
MAX_ERROR Local Station Maximum total errors for abort
TO Link High-level link connected station name
LOW_LEVEL Link Low-level link connected station name
BAUD Link Baud rate
BITS Link Number of bits per character
CONSECUTIVE | Link Consecutive errors for abort
PARITY Link Parity type
PORT Link COM number
STOP Link Number of stop bits

The order of the keywords is important within the file. The local station declaration must precede
any link declarations. Within the link declarations (and after the link connected station name) any order
can be used for the link parameters (such as baud rate and parity). The Local Station Declaration defines
the local station and thus cannot be omitted. The link declarations define communications links to various
other computers or serial devices. There can be no, one or up to ten link declarations. The serial port
configuration file must have the following form:

30

4.1 Local Station Declaration

The local station declaration defines the local station, specifies the serial board type and sets the
maximum number of communication errors before aborting. The keywords used are FROM,
BOARD_TYPE and MAX_ERROR. The format for the declaration is:

4.1.1 TLocal Station Name (FROM)

The local station must be named as one of the predefined computers (Data Logger & Experiment
Controller, Beacon & Reference Monitor, Burst DPSK Demodulator Host, CRC Transmit Processor,
Ephemeris Processor, Synchronization Processor, CRC Antenna Controller Host or T85 Antenna
Controller Host.) This line must be the first line of the Local Station Declaration and hence will be the
first (non-comment) line in the file. There can only be one local station, so there is only one such
declaration allowed. This declaration cannot be omitted. The format of this declaration is given below:

FROM={DATA_LOGGER | BEACON MON | BURST DEMOD | TX_PROC | EPHEM_PROC |
SYNC_PROC | CRC_ANTENNA | T85 ANTENNA}

4.1.2 Local Station Parameters

The local station can be qualified by two parameters: the type of serial board used and the
maximum number of errors before aborting. Both of the parameters have defaults and can be omitted.
The order of the parameters is unimportant.

4.1.2.1 Serial Board Type (BOARD TYPE)

The Digiboard Digichannel PC/8 eight-port serial board was used on most computers. This board
had slightly different characteristics for the use of COM3 and COM4 compared to standard PC serial
ports. This declaration allows the board type to be specified (default is the Digiboard).

BOARD_TYPE={STANDARD | DIGIBOARD}
4.1.2.2 Maximum Number of Errors (MAX ERROR)

If the total number of communication errors received from the links exceeds the maximum
number of errors, the communications software causes the program to abort. This ensures that software
or hardware problems are recognized and can be acted upon. In normal operations, there should be no
communication errors. This value, must be greater than 0 and less than 30000. The
default value is 100.

MAX_ERROR={ifi

RS

31

4.2 Link Declaration

The link declaration consists of several lines describing the connected station and the parameters
of the serial link. Included are the keywords TO, LOW_LEVEL, BAUD, BITS, PARITY, PORT, STOP
and CONSECUTIVE. There can be from zero to ten link declarations. The format for link declarations
are:

PRSI

4.2.1 Connected Station Declaration

There are two types of links: high-level links involving robust message handling between
computers, and low-level links for a computer to drive a serial device such as a clock or antenna
controller. Either type of declaration must precede all of the associated serial port parameter declarations.
Succeeding connected station declarations are treated as separate links.

4.2.1.1 High-level Connected Station Name (TO)

For high-level communications this connected station declaration must be used. The declaration
defines the computer at the far end of the link (Data Logger & Experiment Controller, Beacon &
Reference Monitor, Burst DPSK Demodulator Host, CRC Transmit Processor, Ephemeris Processor,
Synchronization Processor, CRC Antenna Controller Host or T85 Antenna Controller Host.) The format
of the declaration is given below:

TO={DATA_LOGGER | BEACON_MON | BURST DEMOD | TX PROC | EPHEM_PROC |
SYNC_PROC | CRC_ANTENNA | T85_ANTENNA}

42.1.2 Low-level Connected Station Name (LOW_LEVEL)
If robust message handling is not desired, low-level links can be created to support
communications with serial devices. This declaration defines a reference name for the far end of the link

that is used later for low-level communications routines. The reference name given must be unique. The
format of the declaration is given below:

LOW_LEVEL={j&5

4.2.2 Link Parameters

These declarations define the serial port to be used and specify the parameters for asynchronous
communications - including baud rate, parity, number of bits per character, number of stop bits and
maximum number of consecutive errors. With the exception of the serial port to be used, all parameters
have a default value and are optional. The order of the declarations within this section is not important.
Keywords should not be used more than once per link, because the second occurrence overrides the first.
This section is finished at end-of-file or where there is subsequent connected station declaration.

32

4.2.2.1 Baud Rate Declaration (BAUD)

This keyword specifies which of the valid baud rates are to be used for the serial port. It is an
optional declaration and if it is not present, the baud rate defaults to 9600.

BAUD={110 | 150 | 300 | 600 | 1200 | 2400 | 4800 | 9600}
4.2.2.2 Bits Per Character Declaration (BITS)

This declaration controls the number of bits per character for asynchronous serial
communications. The default value is 8 bits per character. This declaration is optional.

BITS={51617) 8}
4223 Maximum Number of Consecutive Errors Declaration (CONSECUTIVE)

This declaration defines the maximum number of consecutive errors on the link. This is the
number of errors that occur in a row without any intervening valid messages. In normal operation, there
should be no errors. An abort caused by too many consecutive errors is usually indicative of a hardware
fault on the line or that the software at the connected station is not operating properly. The number of
] , must be between 1 and 10000. The default value is 10.

CONSECUTIVE=|

4.2.2.4 Parity Declaration (PARITY)

This declaration controls the parity bit, if used. The valid values allow no parity (all bits are
data), even parity or odd parity. This declaration is optional and if it is not present, the default value is
no parity.

PARITY={NONE | EVEN | ODD}
4.2.2.5 Port Declaration (PORT)

This declaration defines the port to be used and must be present in a link declaration. If it is not
present, an error occurs. Each link must use a different serial port, so no two links can have the same
port declaration. The valid values include COM ports 1 to 10. In the case of the tenth port, the
hexadecimal notation is used giving COMA. AUX is a synonym for COM1.

COM1 and COM2 ports are as defined for normal PCs. The other eight ports use the default
address/interrupt definitions of the DigiBoard DigiChannel PC/8 eight-port serial board. (For PC
versions of COM3 and COM4 use the BOARD_TYPE declaration.)

The program takes complete control of the serial port declared using the PORT keyword, so it
is important that there are no conflicts with the operating system, serial printers, other communication

software, networking software or serial mice.

PORT={COM1 | COM2 | COM3 | COM4 | COM5 | COM6 | COM7 | COMS8 | COM9 | COMA | AUX}

33

4.2.2.6 Stop Bits Declaration (STOP)

This declaration defines the number of stop bits transmitted. The selection of 1.5 stop bits is only
available when there are five bits per character (1.5 bits is converted to 1 bit for other character lengths
and 1 stop bit is converted to 1.5 bits for five bit characters). This declaration is optional and the default
value is one stop bit (1.5 stop bits for five bits per character).

STOP={1 | 1.5 | 2}
4.2.2.7 Timeout Declaration (TIMEOUT)

This declaration defines the period to wait before declaring timeout for a high-level link. This
is the time that, after sending a message, the sending station waits for the acknowledgement. This time
should be greater than the longest period in which the receiving station does not service high-level
communications (through calls to ger_com). The number of seconds for the timeout, §
must be between 1 and 100. The default value is 2 seconds.

4.3 Sample Configuration File

Below is a sample configuration file for the Burst DPSK Demodulator Host. The local computer
is BURST DEMOD (FROM), the high-level link connected station is the Data Logger and Experiment
Controller over COM2 (PORT) at 9600 (BAUD) with 8 bits per character (BITS), no parity (PARITY),
one stop bit (STOP), allowing a maximum of 10 (CONSECUTIVE) communication errors in a row and
with a timeout 5 seconds (TIMEOUT). A second link allows the computer to control the Comstream
Satellite PSK Modem using low-level communications.

SERIAL.CFG

Serial port configuration file for the modem host

FROM=BURST_DEMOD
BOARD_TYPE=DIGIBOARD
MAX_ERROR=500

;To Data Logger & Experiment Controller
TO=DATA_LOGGER

PORT=COM2

BAUD=9600

BITS=8

PARITY=NONE

STOP=1

CONSECUTIVE=10

TIMEOUT=5

;To Comstream Modem

LOW_LEVEL=COMSTREAM
PORT=COM3
BAUD=9600
BI1TS=8
PARITY=NONE
STOP=1

34

4.4 Configuration File Errors

The following table lists all the error that can occur when the configuration file is being read.

Also listed are the suggested remedies.

Configuration File Error

Remedy

Board type definition must follow FROM

A BOARD_TYPE definition was found in a link declaration.
BOARD_TYPE must be part of the local station declaration.

Cannot open §anii

AR, A

The configuration file does not exist or is locked.

Comm parameters without TO or LOW_LEVEL

Link parameters are found not preceded by TO or LOW_LEVEL.

Consecutive errors must be in range 1-10000

Ensure number for CONSECUTIVE is within 1 to 10000

Found a definition not preceded by FROM

FROM must be the first keyword in the configuration file

Low-level port name not unique

Two or more LOW_LEVEL declarations used the same name.
Choose unique names for each low-level link.

Maximum error must follow FROM

A MAX ERROR definition was found in a link declaration.
MAX_ERROR must be part of the local station declaration.

Maximum errors must be in range 1-30000

Ensure number for MAX_ERROR is within 1 to 30000

Maximum number of ports exceeded

More than 10 link declarations were found. No more than 10 links
per computer are supported.

Multiple FROM definition

Only one local station declaration is meaningful.

No FROM definition found

No local station declaration was found. FROM is must be included.

No PORT definition found
No PORT definition found for last TO

Link declaration did not include a PORT definition. PORT must be
included in each link declaration.

Redefinition of serial port

Link declaration included a PORT definition that has already been
used by another link. Each link declaration must have a unique port.

Timeout must be in range 1-100

Ensure number for TIMEOUT is within 1 to 100 (this is in seconds)

Unrecognized baud rate

The number for BAUD was not one of the valid choices. See 4.2.2.1.

Unrecognized bits/character

The number for BITS was not one of 5, 6, 7 or 8.

Unrecognized board type

The value for BOARD_TYPE was not STANDARD or DIGIBOARD.

Unrecognized definition

Unrecognized keyword was found.

Unrecognized FROM station

The value for FROM was not one of the valid choices. See 4.1.1.

Unrecognized parity

The value for PARITY was not one of NONE, EVEN or ODD.

Unrecognized port type The value for PORT was not one of the valid choices. See 4.2.2.5.
Unrecognized stop bits The value for STOP was not one of 1, 1.5 or 2.
Unrecognized TO station The value for TO was not one of the valid choices. See 4.2.1.1.

35

5. Example Program - SER_DEMO

This section details a program demonstrating the use of the communications software. The
program SER_DEMO was used (with minor modifications) to test the high-level communications software
and is a useful example of the use of the routines. In the following paragraphs, the program will be
detailed, the compiling and linking of the program will be presented and finally the program’s listing will
be given.

5.1 SER_DEMO Description

The program was first developed to test high-level communications so it includes the ability
to report all received messages and the ability to send messages at a keystroke. The program reports all
errors and can exit on a keypress.

The main program first starts communications with a call to open_com. If any error occurs
in the configuration file or setting up of the serial ports, the program exits with the error message
"Error in open_com." (This is accomplished using a routine pabort which prints out a message, closes
the communications using close_com and the aborts using exif). Once the communications software is
started, the program prints out the name of the local station - in the case of the sample configuration file,
it would be "burst_demod."”

Next the main program looks for a link with the station "data_logger" using look_com. If the
station is not defined in a high-level declaration within the configuration file, this routine will return an
error which is then reported by "Bad station lookup.”

The principal portion of SER_DEMO is the loop where keypresses and communications are
checked. The routine checkkey acts upon keypresses and the routine checkmsg checks and displays
received messages, communications errors or control-C/control-break termination requests.

5.2 Compiling and Linking SER_ DEMO

The software was compiled using Microsoft C 6.0 under DOS 5.0 using the small memory
model. The program (and communications software) was compiled and linked using the NMAKE utility.
The make file (SER_DEMO.) is given below:

ser_demo.exe: ser_demo.obj com.obj serial.obj
link ser_demo+com+serial;

ser_demo.obj: ser_demo.c com.h
cl /c ser_demo.c

com.obj: com.c com.h
cl /c com.c

serial.obj: serial.asm
masm serial;

36

P148873.PDF [Page: 46 of 144]

53

#include <conio.h>
#include “com.h"

/*
Local Routines

int checkkey(int mdest);
int checkmsg(void);
void pabort(char *msg);

SER_DEMO Listing

// Check and action key

presses

// Check for receive messages and others

// Print message, close

file, and exit

/* */
/* */
A main- - = = = - = = = - -0 .- oo */
/* */
/* */
void main(void)
{
int mlocal; // Station number of local station
int ndest; // Port number for desired destination
char stringl[2201; // String buffer used to hold station name
printf("SER_DEMO V1.1\n%);
// Open all communications
if ((mlocal=open_com())==BAD_STATION) pabort("Error in open_com");
printf("Local station is Xs\n*",stnlstr(mlocal,string));
// Select the link to the data logger
if ((ndest=look_com("data_logger"))==BAD_STATION)
pabort("Bad station lookup");
// Check for keypress (send messages to ‘ndest’) and receive messages
while (checkkey(ndest) == 0) €
if (checkmsg() != 0) break;
>
close_com();
exit(0);
)
r* */
Vi checkkey */
/* */
/* Description: Checks to see if a key has been pressed and performs the */
/* necessary action such as sending various messages or exiting */
/* Control-C/break is not done here, but reported by checkmsg */
Ad ’ */
/* Returns: (int) 0 for normal return */
r* 1 for exit from main program due to keypress */
/* In: (int ndest) destination station number for messages */
/* Out: - */
/* ... *,

int checkkey(int ndest)
<
int c;

if (kbhit() != 0) (
¢ = getch();
switch (c) {
case '17:

// Character from the keyboard

// 1s a

key pressed ?

// Get the character

printf(“Sending messagd 1\n");
send_com(ndest, COMMAND , "Check buffer");

37

// 1 = Send message 1

break;
case f2':

printf(¥Sending message 2\n"); // 2 = Send message 2
send_com(ndest,STATUS, "Buffer OK too");
break;
case '3/:
printf("Sending message 3\n"); // 3 = Send message 3
send_com(ndest,STATUS,"Do a third");
break;
case ‘4':
printf(”Sending message 4\n"); // & = Send message 4

send_com(ndest, STATUS, "Quarter");

break;
case ‘e’:
case ‘E’:
case ‘q’:
case 'Q’:
case 'x’:
case 'X’:
return 1; // e,E,g4,Q,X,X = quit
default:
break; // Otherwise ignore
}
}
return 0;
*/
checkmsg */
*/
Description: Checks with communications routines for: */
- receive messages from any link */
- communications errors */
- aborts from control-C/break */
*/
Returns: ¢int) 0 for normal return */
1 for exit from main program due to comm */
errors or control-C/break */
In: - */
Out: - */
.. */

int checkmsg(void)

<

// Message status - valid, error or quit

// Message type number

// Message from station number

// Message data

// String buffer used to name, type or error

int mstat;

int mtype;

int mfrom;

char mdatal2203;
char string[2201;

mstat = get_com(&mtype,&mfrom,mdata); // Check for message
if (mstat == VALID_MSG) { // Message available
printf(* from %s ", stnstr(mfrom,string));
printf(U(¥%s): \"%s\"\n",messtr(mtype,string),mdata);
} else if (mstat == COMM_ERR) { - // Communications error
printf(*-- Comm error with %s: %s\n*,stnlstr(mfrom,string),mdata);
} else if (mstat == QUIT) (// End main program
if (mtype == TOTAL) { // Too many errors
printf("Too many commmnication errors\n");
) else if (mtype == CONSEC) { // Too many in a row
printf(“Too many consecutive communication errors with Xs\n",
stnlstr(mfrom,string));
) else if (mtype == BREAK) (
printf("Break detected\n");

// Control-C/Break

)

return 1;
) .
return 0;

38

P148873.PDF [Page: 48 of 144]

>
/* */
/* pabort */
* */
/* Description: Print error message, close file and abort */
/* */
/* Returns: -- no return, aborts -- *x/
/* In: (char *msg) Pointer to error message string */
/* out: -- no return, aborts -- */
2 S R AR */
void pabort(char *msg)
{

printf("%s\n",msg);

close_com();

exit(0);
2

39

P148873.PDF [Page: 49 of 144]

40

Appendix B

Communications Software Programmer’s Reference

1. Introduction

This appendix provides all the use and interface details for the communications software. The
routines are listed alphabetically with the parameters, return values, usage, errors, program fragment
providing and example of use and any related routines. The following section provides a functional list
of the routines. For more detailed information on use of the whole package, see Communications
Software User’s Guide in Appendix A.

2. Use of the Routines

All the routine declarations and definitions are made in the header file COM.H which must be
included in the user program. The routines were compiled with Microsoft C 6.0 under DOS 5.0 using
the small memory model. The C calling convention is used for all routines. The routines can be grouped
into three categories: control routines, high-level communications routines and low-level communications
routines. The categories are detailed below.

2.1 Control Routines

These routines are used to enable and disable high or low-level communications. They are
usually invoked only once in a program. They include the following routines

close_com Close communications, restores interrupt vectors
config_com Overrides the default configuration file name (use prior to open_com)
open_com Enables communications as specified in configuration file

2.2 High-level Communications Routines

These routines are used during high-level communications which involves robust message
handling with error-free messages and message acknowledgement using stop-and-wait ARQ. The
following routines are used in high-level communications:

Slush_com Resets a communication link after too many errors

get_com Gets an available message from any link, checks for errors and terminal
conditions (also provides the handshaking, so it must be called repeatedly)

look_com Provides the station number given the high-level link station name

messtr Provides the message type string given a message type number

ready_com Checks to see if a link is ready for sending

send_com Asynchronously sends a message to the selected destination

stnistr Provides the long station name given the station number

stnstr Provides the short station name given the station number

41

2.3 Low-level Communications Routines

These routines are used during low-level communications which involve the sending and receiving
of individual characters or character strings. There is no handshaking, error detection or translation
involved. These routines are meant primarily for instrument control or to allow custom protocols to be
implemented. They are necessary to allow use of serial ports serviced by the communication software
but not used for high-level communications. Included are the following routines:

getc_low Gets a character from a link

gets _low Gets a terminated string from a link

look low Provides the station number given the low-level link station name
putc_low Send a character to a link

puts_low Send an unterminated string to a link

Note the get_com, while being a high-level routine, can be used in a strictly low-level system to
detect the terminal condition of control-C/control-break being pressed. It has no other effect on low-level
links.

3. Note on Program Fragments

With each routine description in the pages that follow, an example program fragment is included
to illustrate the routine’s use. It should be noted that despite appearances, these are not complete
programs. The declarations necessary to understand the example are included at the beginning of the
code. In many cases, opening and closing of services is omitted from the program fragments but must
be included in a complete program.

42

close_com

Description: Closes all high and low-level communications including the restoration of all interrupt
vectors for the serial ports, timers, control-C/control-break handlers and critical error
handler.

Declaration: void close_com(void)
Parameters: none
Returns: none

Use: This routine must be called prior to program exit to restore the normal interrupt and
critical error handlers for use with DOS. If it is not called, DOS will most probably
hang up - there is also a chance that files could be corrupted. The programmer must
ensure that this routine is called for normal exits, error exits and even for program
aborts.

In the event of a critical error (such as floppy disk read) where Abort is chosen as a
response, the critical error handler will automatically restore the vectors before returning
control to DOS. This is because DOS does not return to the program when Abort is

chosen.
Errors: none
Example:
int mlogger; // Logger station number
if ((mlocal=open_com()) == BAD_STATION) {
printf("Error in starting comms in open_com.\n"); .
// No close com here because the open was unsuccessful
exit(1l);
}
if {(mlogger=look com("data logger")) == BAD_STATION) {
printf("Cannot find link for data logger\n");
close_com();
exit(1l);
while (send_com(mlogger,LOG,"This is a test message”) != 0);
while (ready_com(mlogger) != 0); // Wait for message to be sent
close_com();
exit(0);
Related Routines: open_com

43

config_com

Description:

Declaration:
Parameters:
Returns:

Use:

Errors:

Example:

Overrides that default name (SERIAL.CFG) of the configuration file with a user specified
name. Valid for high or low-level communications.

void config_com(char *string)
char *string Pointer to the name of the configuration file (input)
none

This routine is used to allow different configuration files to be used by different programs
running in the same directory. By calling this routine prior to open_com a different
configuration file or drive and path can be chosen. Without this routine, open_com looks
for SERIAL.CFG in the default directory.

The name of the configuration file can be any DOS filename including file extension and,
if desired, path and drive specifications. It is recommended, but not essential, that the
extension ".CFG" be used for all such filenames. The filename must be a null-terminated
string.

There is no return and therefore no error return. If the filename specified is not a valid
filename, then the subsequent call to open_com will return BAD_STATION.

int mlocal; // Station number of local station

config_com("C:\EHF\NEWFILE.CFG"); // Use C:\EHF\NEWFILE.CFG instead of

// SERIAL.CFG in default directory

if ((mlocal=open_com()) == BAD_STATION) {

printf("Error in starting comms in open_com.\n");
exit(l);

Related Routines: opén_com

flush_com

Description:

Declaration:
Parameters:

Returns:

Use:

Errors:

Example:

Resets a link including the link consecutive error count and the total error count for all
links. Used on high-level links but no effect on low-level links.

int flush_com(int dest)
int dest Destination station number for the link obtained using look_com (input)

Integer, one of:
0 Link successfully reset
1 Bad station number

This routine, not meant for general use, resets a link including: state, consecutive error
count, receive & transmit buffers, receive & transmit ack flags and receive & transmit
old message buffers. As well, the total error count for all links is reset.

This routine reinitializes a link and can be used to restart a link that failed because of too
many errors. Generally, if a link receives too many errors, than the condition generating
these errors (software at the far end faulty or not running, insufficient frequency of calls
to get_com, poor choice of timeouts, control characters in message text, cables
disconnected) must be corrected before using this routine. Because of this fact, it is
unlikely that calling this routine, except under operator control, will provide any useful
results.

This routine was developed because one cannot call open_com to restart communications
without close_com which would disable all communications.

The destination station number is not valid (use look_com to get the valid number)

int mlogger; // Logger station number

if ((mlogger=look com(“"data_logger")) == BAD_STATION) {

printf("cannot find link for data logger\n");
exit(1l);

}
if (flush_com(mlogger) != 0) {

printf("Cannot reinitialize data logger link\n");
exit(1l);

Related Routines: none

45

get_com

Description:

Declaration:

Parameters:

Returns:

Use:

Gets any high-level message available, processes all incoming data and performs
handshaking, checks for errors and terminal conditions. This routine must be called
periodically for high-level communications to work.

int get_com(int *ctype, int *cfrom, char *cdata)

int *ctype Pointer to received message, error or termination type (output)

int *cfrom Pointer to originating station (output)

char *cdata Pointer to buffer, at least 200 characters long, contains the received
message or the communications error message (output)

See table below for more details.

Integer, one of:

NO_MESSAGE No messages available (any necessary processing occurred)
VALID_MSG Valid receive messages returned in parameters
COMM_ERR Communication error message returned in parameters
QUIT Terminal condition occurred, no more communications

and an orderly shut-down (close_com) should be done

This routine must be called frequently during the execution of the user program to ensure
that all high-level processing occurs (it is not compulsory for low-level communications
but if called, it can report control-C and control-break key presses). The time between
calls should be at no greater than 1/10® of the shortest timeout period (the default is
timeout is 2 s). This routine should not be called until after open_com.

All of the high-level processing occurs in this routine: checksum processing and protocol
handling as well as terminal condition detection. This routine is designed to be called
repeatedly and does not take an excessive amount of processing time. If it is not called
often enough, errors in handshaking occur usually noticed by messages or acks lost
followed by duplicate messages or extra acks.

The following table summarizes the use of the parameters for the various return types:

Return Value *ctype *cfrom *cdata
NO_MESSAGE | unused unused unused
VALID MSG Message Type Originator . Message Data
COMM_ERR Error Number Originator Error Text
QUIT Termination Type | Originator unused

(only for maximum
consecutive errors)

Message type is the type of message, as specified by the header and will be one of
COMMAND, CONFIGURE, LOG, STATUS, POINT, MOD_POINT, TIME_STAMP

46

and ERROR. The text of the message type is available using the routine messtr.

The originator is the station number of the station at the far end of the link. The text
name of this station is available using the routines stnstr or stnlstr.

The message data is a standard null-terminated string giving all the data portion of the
message (the header is not included). For messages with no data (just header) this will
be a null string.

Error number is the number of the error message. It is used internally and is not
recommended for the user. Error text contains the textual error message including any
parameters. It is a null-terminated string.

The termination type is one of:

TOTAL Too many total errors occurred (sum of all errors on all links)

CONSEC Too many consecutive errors on any link (originator specifies
which link had too many errors)

BREAK Control-C or control-break key occurred

Errors: This routine has no error returns itself, though a normal return can indicate a
communications error. For high-level communications errors, see Communications
Software User’s Guide in Appendix A.
Example:
int mstat; // Message status - valid, error or quit
int mtype; // Message type number
int mfrom; // Message from station number
char mdata[220]}; // Message data
char string[220]; // String buffer used to name, type or error
mstat = get_com(&mtype,&mfrom,mdata); // Check for message
if (mstat == VALID MSG) { // Message available
printf(" from %8s ",stnstr(mfrom,string));
printf("(%s8): \"%s\"\n",messtr(mtype,string),mdata);
} else if (mstat == COMM_ERR) { // Communications error
printf("-- Comm error with %s: %s\n",stnlstr(mfrom,string),mdata);
} else if (mstat == QUIT) { // End main program
if (mtype == TOTAL) { // Too many errors
printf ("Too many communication errors\n");
} else if (mtype == CONSEC) { // Too many in a row
printf ("Too many consecutive communications errors with %s\n",
stnlstr (mfrom, string));
} else if (mtype == BREAK) { // Control-C/Break
printf ("Break detected\n");
}
close_com();
exit(1l);
}
Related Routines: send_com, getc_low, gets_low

47

getc_low

Description: Gets a single character, if available, from a low-level link

Declaration: int getc_low(int dest)

Parameters: int dest The sending station number at the other end of the link as obtained from

look_low (input)

Returns: Integer containing the character received. If no characters are available, NO_DATA is
returned. BAD DEST is returned if the station number is not valid.

Use: This low-level link routine is the simplest way to get a character from the serial link.
It checks to see if any characters are stored in the interrupt service routine’s ring buffer
and returns a character if available. No protocols are used nor do any translations occur.

Errors: The return BAD_DEST occurs when the station number is not a valid low-level link
station. One must ensure the Jook_low routine is used to get the station number.

Example:

int c; // Character received

int mmodem; // Comstream Modem station number

if ((mmodem=look_low("comstream")) == BAD_STATION) ({
printf("Cannot find port for Comstream Modem.\n");
close com();
exit(1l);

}

c = getc_low(mmodem);
printf ("The character received from the modem is %c\n",c);

Related Routines: putc_low, gets_low, get_com, look_low

48

gets_low

Description:
Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

Get a terminated string from a low-level link
int gets_low(int dest, int term, char *string)

int dest Sending station number as obtained from look_low (input)
int term Terminating character for the string (input)
char *string Pointer to buffer to receive the string (output)

Integer, one of:
ALL_OK Valid string returned in buffer
NO DATA No data available
BAD_DEST The station number is not valid

This routine retrieves a string from the serial link specified. The characters are removed
from the interrupt service routine’s ring buffer and stored until the terminator is reached
(while returning NO_DATA) and then the whole string, less terminating character, is
returned. The received string is stored with a null terminator and is no longer than 200
characters.

If the terminator does not exist in the receive ring buffer, then gets low will return
NO_DATA. A later call to gets_low will can retrieve the data if the terminator is
subsequently present in the ring buffer or the routine getc low can be used to get at the
characters one at a time.

The return BAD_DEST occurs when the station number is not a valid low-level link
station. One must ensure the look_low routine is used to get the station number.

char inline{220]; // Input line buffer
int mmodem; // Comstream Modem station number

if ((mmodem=look_ low("comstream”)) == BAD_STATION) {

}

printf("Cannot find port for Comstream Modem.\n");
close_com();
exit(1);

¢ = gets_ low(mmodem, ‘\n’,inline);
printf("The line received from the modem is %s\n",inline);

Related Routines: puts_low, getc_low, get com, look_low

49

look_com

Description:
Declaration:
Parameters:

Returns:

Provides the station number given the long station name for a high-level link.
int look_com(char *stn)
char *stn Pointer to station name (input)

Integer station number for the station name. If the station name is not recognized,
BAD_STATION is returned.

Use: This routine is used to get the station number for high-level communications prior to
using the routine send_com. It first determines if the station name is one of the valid
names: DATA LOGGER, BEACON_MON, BURST _DEMOD, TX PROC,
EPHEM_PROC, SYNC PROC, CRC._. ANTENNA or T85_ ANTENNA. Then it checks
all the links defined by the conﬁguratlon file and determines if the station name occurs
in one of the link definitions (in other words that station is connected to this computer).
If all checks out, then the station number is returned.

The station name string is a null-terminated string where case is unimportant. It must
be free of blanks and control characters.

Errors: A return value of BAD_STATION can be caused by:

- a spelling error in the long station name
- blanks or control characters in the long station name
- giving the station name of a low-level link (use look_low instead)
- an attempt to use the short station name (4 characters) instead of the long one
- the configuration file does not define a link to the given station name
Example:
int mlogger; // Logger station number
if ({mlogger=look com("data_ logger"™)) == BAD_ STATION) {
printf("Cannot find 1ink for data logger\n");
exit(1l);
}
Related Routines: look_low, send_com, stnlstr, stnstr

50

P148873.PDF [Page: 60 of 144]

look_low

Description:
Declaration:
Parameters:

Returns:

Use:

Errors:

Example:

Determines the station number given a low-level link station name
int look_low(char *stn)
char *stn Pointer to low-level station name string (input)

Integer station number associated with the station name. If the station name is not
recognized, BAD STATION is returned.

This routine is used to get the station number for low-level communications prior to using
any of the following routines: getc_low, putc_low, gets_low or puts_low. It checks the
name against all of the names used in the low-level declarations in the configuration file.

The station name string is a null-terminated string where case is unimportant. It must
be free of blanks and control characters.

A return values of BAD_STATION can be caused by:

- a spelling error in the station name

- blanks or control characters in the station name

- giving a station name for a high-level link (use look_com instead)

- the configuration file does not define a link to the given station name

int mmodem; // Comstream Modem station number

if ((mmodem=look low("comstream")) == BAD STATION) {

printf(“Cannot find port for Comstream Modem.\n");
close com();
exit(1l);

Related Routines: look_com, getc_low, putc_low, gets_low, puts_low

51

messtr

Description:
Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

Provides a message type string for a given message type
char *messtr(int n, char *string)

Message type number obtained from ger_com (input)
Pointer to the buffer to contain the message type string (output)

int n
char *string

Pointer to the buffer that contains the message type string. This pointer is identical to
the parameter. There is no error return.

When provided with a message type number, as returned by ges_com, this routine returns
the message type as a fixed-length null-terminated string. The string is entirely in lower
case with training blanks to make 6 characters.

Note that there is no validation of the message type number, so a bad message type can
cause unknown results.

None, but the use of an invalid message type number can cause unpredictable results.

int mstat;
int mtype;
int mfrom;

// Message
// Message
// Message

status - valid, error or quit
type number
from station number

char mdata[220];
char string{220};

mstat = get_com(&mtype,&mfrom,mdata);
if (mstat == VALID_ MSG) {

Related Routines:

// Message data
// String buffer used for name or type .

// Check for message
// Message available

printf(" from %s ",stnstr(mfrom,string));
printf("(%s): \"%s\"\n",messtr(mtype,string),mdata);

get_com, stnstr, stnlstr

52

open_com

Description:

Declaration:
Parameters:

Returns:

Use:

Errors:

Example:

Opens all high and low-level communications including set-up for control-C and critical
error trappings. Reads in all the configuration information from the configuration file.

int open_com(void)
none

Integer station number of the local station. If an error occurred, BAD _STATION is
returned.

This routine should be called only once prior to any communications, high or low-level.
The ports cannot be reconfigured by a later call - in fact a second call will always result
in an error.

The routine sets up the serial ports, timers, enables serial port interrupts and redirects the
control-C/control-break and critical error handlers. The interrupts and handlers must be
restored by using close_com prior to ending the program or DOS will likely hang up.

This routine reads in the configuration file to determine the settings for the serial ports.
This file defaults to SERIAL.CFG in the default directory but any name specified by a
prior call to config_com can be used.

When successfully invoked, this routine prints out a two line header that indicates the
board type used, the name of the configuration file and the software versions of COM.H,
COM.C and SERIAL.ASM

A return value of BAD_STATION can be caused by
- the configuration file can not be opened (doesn’t exist or is already in use)
- an error in occurred in the configuration file (supplementary message will be displayed)

int mlocal; // Station number of local station
char string[220]; // String buffer used to hold station name

'if ((mlocal=open com()) == BAD_STATION) {

printf("Error in starting comms in open_com.\n");
exit(1l);

printf("Local station is %s\n",stnlstr(mlocal,string));

Related Routines: close_com, config_com

53

putc_low

Description: Send a character out a low-level link
Declaration: int putc_low(int dest, int c)
Parameters: int dest Receiving station number as obtained from look_low (input)
int ¢ Character to be sent (input)
Returns: Integer, one of:
ALL OK The character was successfully passed to the serial port interrupt
subroutine to be transmitted on the next interrupt
BAD DEST The receiving station number is not valid
Use: This routine is the simplest way to send a character out a serial link. It loads the
character into the serial port interrupt service routine’s ring buffer to be sent out on the
appropriate interrupt. No protocols or translations are used.
Note that it is possible to put characters into the ring buffer faster than the service routine
can service them. In general, no more than 500 characters should be put into the ring
buffer without ensuring that they have been sent. This could be by using some special
protocol (such as a response to a command), using a time delay (baud rate/10 gives the
number of characters per second) or by examining echoed characters.
Errors: The return BAD_DEST occurs when the station number is not a valid low-level link
station. One must ensure the look_low routine is used to get the station number.
Example:
int cj; // Character to be sent
int mmodem; // Comstream Modem station number
if ((mmodem=look low("comstream")) == BAD_STATION) ({

printf ("Cannot find port for Comstream Modem.\n");
close com();
exit(l);

printf ("Enter character to be sent to the modem?");
c = getch();
putc_low(mmodem,c) ;

Related Routines: getc_low, puts_low, send_com, look_low

54

puts_low

Description:
Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

Sends an unterminated string out a low-level link
int puts_low(int dest, char *string)

int dest Receiving station number as obtained from look_low (input)
char *string Pointer to string to be sent (input)

Integer, one of:
ALL OK The string was successfully passed to the serial port interrupt
subroutine to be transmitted in sequence
BAD_DEST The receiving station number is not valid

This routine takes a null-terminated string and sends it out the low-level link less the null
termination. If terminations are required as part of the protocol (such as a linefeed at the
end of the line) then the terminating character must be included in the string. The string
is loaded into the serial port interrupt service routine’s ring buffer to be sent out on the
appropriate interrupts. No protocols or translations are used.

Because this routine take a null-terminated string as input, it cannot be used to send a
null. If it is desired to send a null within or at the end of the string, a separate call to
putc_low must be made to send the nuil.

As with the routine putc_low, it is possible to put characters into the ring buffer faster
than the service routine can service them. In general, no more than 500 characters
should be put into the ring buffer without ensuring that they have been sent out. This
could be by using some special protocol (such as a response to a command), using a time
delay (baud rate/10 gives the number of characters per second) or by examining echoed
characters.

The return BAD_DEST occurs when the station number is not a valid low-level link
station. One must ensure that the look_low routine is used to get the station number.

char s[220]); // String to be sent to the modem
int mmodem; // Comstream Modem station number

if ({ (mmodem=look low("comstream")) == BAD STATION) {

printf("Cannot find port for Comstream Modem.\n");
close_com();
exit(1l);

printf ("Enter string to be sent to the modem?");
scanf("%s",s8);
puts_low(mmodem,s);

Related Routines: gets_low, putc_low, send_com, look_low

55

ready com

Description:
Declaration:
Parameters:

Returns:

Use:

Errors:

Example:

Checks to see if a high-level link is ready for sending.
int ready_com(int dest)
int dest Destination station number for the link obtained using look_com (input)

Integer, one of:
0 Link is ready for sending
1 Link not ready because the link is still transmitting or bad station number

This routine checks to see if the transmit buffer for the link is available. Normally, this
routine is passed a legal destination station number so the not-ready return means that the
previous message is still being transmitted or is waiting for an ack. Because of a possible
requirement for retransmission, the buffer must hold any outgoing message until the ack
is received.

This routine is most often used prior to program termination to ensure that all outstanding
messages have been sent and acknowledged prior to exiting. Similar return values can
be obtained from the routine send _com if one is only waiting to transmit the next
message.

A return of link-not-ready can occur if one of the following:

- the link is not ready because the preceding message has not yet completed the
transmission or handshaking

- the destination station number is not valid (use look_com to get the valid number)

int mlogger; - // Logger station number

if ((mlogger=look com("data_ logger")) == BAD_STATION) ({

printf(“"Cannot find link for data logger\n");

exit(1l);
while (send_com(mlogger,LOG,"This is a test megssage") != 0)
checkmsg(); // Check break and get_com
while (ready com(mlogger) != 0) // Wait for message to be sent
checkmsg() ; // Check break and get_com

// (checkmsg is documented on page 38)

Related Routines: send_com, look_com

56

send_com

Description:

Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

Asynchronously sends one high-level message to the selected destination if it is ready.
It formats the message and ensures reliable transfer with stop-and-wait ARQ.

int send_com(int dest, int mtype, char *string)

int dest The destination station number as obtained from look_com (input)
int mtype The message type number (input)
char *string Pointer to the message text, null string for header only (input)

Integer, one of:
0 Normal return, no error
1 Message not sent because of link not ready or illegal destination number

This routine formats the message by putting originator, destination, message type and
checksum in the header and adding on the message text and delimiters. It then places the
outgoing message in the buffer, begins to send it and returns. The remaining
transmissions and handshaking take place under interrupt control and through repeated
calls to get_com to process the handshaking.

Normally, this routine is passed legal destination numbers, so the message-not-sent return
value is indicative of the link not ready. This is because either the preceding message
has not yet finished transmission or the ack is still outstanding. Because of a possible
requirement for retransmission, the buffer must hold any outgoing message until the ack
is received. The message-not-sent return value of this routine can be used to wait for the
link to be ready, or ready_com can be used to simply check for the ready state.

The message type must be one of: COMMAND, CONFIGURE, LOG, STATUS,
POINT, MOD_POINT, TIME_STAMP or ERROR. The message text must be a
null-terminated string no longer than 199 characters but may be a null string. The
message text must not contain any control characters, especially not linefeeds or
carriage returns which are used as message delimiters in high-level protocol.

A return of message-not-sent can occur if one of the following:

- the link is not ready because the preceding message has not yet completed the
transmission or handshaking (ready_com can be used to check readiness of link)

- the destination station number is not valid (use look_com to get the valid number)

int mlogger; // Logger station number

if ((mlogger=look_com("data logger")) == BAD STATION) {

printf("Cannot find link for data logger\n");
exit(1l);

while (send_com(mlogger,LOG,"This is a test message") != 0);

Related Routines: get_com, putc_low, puts_low, look_com, ready_com

57

stnlstr

Description:
Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

Provides the long station name for a given high-level station number
char *stnistr(int n, char *string)

int n Station number for the high-level link (input)
char *string Pointer to the buffer to contain the long station name (output)

Pointer to the buffer that contains the long station name. This pointer is identical to the
parameter. There is no error return.

When provided with a high-level station nuniber, as returned by look_com, this routine
returns the long (variable length) station name in a null-terminated string. This name is
entirely in lower case. This routine is often used when outputting the details of a
received message from get_com. For a short (4 character) fixed-length name, use stnstr.

This routine only works for high-level link names. Low-level link names must already
be known within the program so there is no equivalent routine for low-level link names.

Note that there is no validation of the station number, so a bad station number can cause
unknown results.

None, but the use of an invalid station number can cause unpredictable results.

int mlocal; // Station number of local station
char string[220]; // String buffer used to hold long station name

if ((mlocal=open com()) == BAD_STATION) ({

printf ("Error in starting comms in open_com.\n");
exit(1l);

printf("Long station is %s\n",stnlstr(mlocal,string));

Related Routines: sinstr, messtr, look_com

58

stnstr

Description:
Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

Provides the short station name given the station number for a high-level link
char *stnstr(int n, char *string)

intn Station number for the high-level link (input)
char *string Pointer to buffer to contain the short station name (output)

Pointer to the buffer that contains the short station name. This pointer is identical to the
parameter. There is no error return.

When provided with a high-level station number, as returned by look_com, this routine
returns the short (4 character) station name in a null-terminated string. This name is
entirely in lower case and relatively cryptic - its primary use is in message headers of the
high-level protocol. For a more understandable name use stnistr.

This routine only works for high-level link names. Low-level link names must already
be known within the program so there is no equivalent routine for low-level link names.

Note that there is no validation of the station number, so a bad station number can cause
unknown results.

None, but the use of an invalid station number can cause unpredictable results.

int mlocal; // Station number of local station
char string[10]; // string buffer used to hold short station name

if ((mlocal=open_com()) == BAD_STATION) {

printf("Error in starting comms in open_com.\n");
exit(1l); .

printf ("short station is %s\n",stnstr(mlocal,string));

Related Routines: stnlstr, messtr, look_com

59

P148873.PDF [Page: 69 of 144]

60

Appendix C

Real-time Software Programmer’s Reference

1. Introduction

This appendix provides all the use and interface details for the real-time routines used by the
communications software. These routines provide control of the hardware that is not easily done in a
higher level language. Although they were designed to support the communications software, they are
also of use for other programs to provide interrupt driven serial communications, timer support and
control over user initiated aborts through control-C/control break and critical error trapping.

Since these are assembly language routines, there is no header file associated with their
declarations. To use these routines in a C program, function prototypes must be used based on the
declaration given for the specific routine in the following pages.

The routines, in the file SERIAL.ASM, were assembled using Microsoft Assembler 5.10 under
DOS 5.0 and are based on the small memory model. To use the large memory model, they must be
reassembled with different stack parameter offsets. See the "Memory Model Size" section in the
declaration area of the SERIAL.ASM program listing.

These routines are grouped into four categories: serial port, timer support, control-C/control-
break trapping and critical error trapping. These four categories are independent and stand-alone with
the exception of the critical error handler, which, upon detection of Abort, shuts down the other three
services. Each category is detailed below,

2. Serial Port Routines

These routines allow interrupt driven serial port communications. Unlike the DOS and BIOS calls
which only provide polled communications, these routines receive and transmit data on an interrupt basis
so they do not tie up the processor when waiting for data. Simple character read and write services are
provided along with opening, closing and configuring the serial ports. A composite status (an ORing
operation for the errors from all ports, ex: if the transmit buffer overflow bit is set then at least one port
had a transmit buffer overflow) is also available. The software supports up to ten ports and can easily
be extended with recompilation. The serial port routines are:

close_ser Closes a serial port and restores interrupts

open_ser Opens a serial port

read_ser Reads a character from a serial port

set_ser Sets the baud rate, bits, stop bits and parity of a serial port
stat_ser Returns the composite status of all serial ports

ver_ser Return the version number string for the serial port software
write_ser Sends a character to a serial port

61

3. Timer Routines

The timer routines provide eleven countdown timers used mostly by the communications software
for measuring timeouts. They can also be used for general purpose delays of up to 30 minutes. Routines
are provided to open, close, set and check the remaining count for a timer. Each timer counts down to
0 and remains there. The timer routines are:

chk_time Returns remaining number of ticks for a countdown timer
close_time Closes all countdown timers and restore interrupts
open_time Initializes and enables all 11 timers
set_time Sets the tick count for a countdown timer

4. Control-C/Control-Break Detection Routines

These routines allow the trapping of control-C and control-break. If a user presses either of the
key combinations, DOS normally aborts the program and returns to the prompt. Software using
interrupts must restore them prior to exiting, so trapping control-C/control-break keypresses allow the
programmer to do a clean exit rather than the abort forced by DOS. Routines are provided to open, close
and to check for the control-C/control-break keypresses. The control-C/control-break detection routines
include:

close_break Restores DOS control-C/control-break handler
open_break Enables trapping of control-C/control-break
press_break Checks to see if control-C/control-break was pressed

s. Critical Error Handler Routines

These routines allow critical errors to be trapped and, upon abort, the interrupts restored prior
to control being returned to DOS. Critical errors usually deal with printers or disk drives (for example
"Drive Not Ready" when there is no floppy in the drive). Without trapping critical errors, the user could
abort the program without allowing the interrupts to be restored.

The handler installed by these routines, upon abort, closes serial, timer and control-C/control-
break. The close routines associated with the services are robust and work even if the associated service
has not been enabled. It is this hard-coding of closures that makes these routines specific to the rest of
the SERTAL.ASM routines. If other interrupts are to be closed, this must be added to the code of the
critical error handler.

The critical error handler routines are:

close_crit Restores DOS critical error handler
open_crit Enables trapping of critical errors
62

P148873.PDF [Page: 72 of 144]

Returns number of ticks remaining in countdown timer

Description:
Declaration: int chk_time(int timer)
Parameters: int timer Countdown timer to be set with a valid range of 0-10
Returns: Integer, one of:
1 to 32767 Number of ticks remaining in countdown
0 Timer countdown complete
-1 Timer number out of range
Use: This routine is used to check for completion of the countdown timer. The user software
should be checking until the value returned is 0. Note that once the timer reaches 0, it
remains there so this routine only guarantees that the timeout period has been exceeded.
The amount that it has been exceeded depends on the frequency of calls to this routine.
Errors: Timer numbers must be within the range 0-10.
Example:
épen_time();
set_time(6,50); // Set timer 6 for 50 ticks (3 s)
while (chk time(6) (= 0); // Wait for 3 s

close_time();

Related Routines: set_time

63

P148873.PDF [Page: 73 of 144]

 close break

Description: Restores default control-C/control-break handler -

Declaration: void close_break(void)

Parameters: none -
Returns: none
Use: This routine disables control-C/control-break trapping and restores the DOS default

handler. The routine first checks to see if trapping was enabled (by an earlier call to
open_break). In the case that trapping was not previously enabled this routine just exits.

Errors: none

Example:

open_break();
while (press_break() == 0); // Wait for break to be pressed
close_break();

Related Routines: open_break, press_break

P148873.PDF [Page: 74 of 144]

Description: Restores system critical error handler

Declaration: void close_crit(void)

Parameters: none

Returns: none

Use: This routine disables critical error trapping and restores the DOS critical error handler.
It is used just prior to exiting to DOS by a program that uses interrupts. This routine
must be called last, after all other interrupts have been restored by closing.

Errors: none

Example;:

// Critical error use the normal DOS handler
open_crit();
// Critical errors are now trapped

Close crit():
// Critical errors use the normal DOS handler

Related Routines: open_crit

65

P148873.PDF [Page: 75 of 144]

Description:
Declaration:
Parameters:

Returns:

Use:

Errors:

Example:

int

i;

~ close_ser.
Closes serial port by restoring interrupts

int close_ser(int port)

int port Serial port to be disabled with a valid range of 1-10 for COM1-COM10
Integer, one of:

0 Successfully closed

1 Port could not be closed

This routine should be called prior to exiting for each port that was used. Once called,
the interrupts for that port are disabled and if no other active ports are using that vector,
the vector is restored.

After all ports are closed (therefore all interrupts have been restored) then close_crit
should be called to restore the default critical error handler.

With a valid port number, one is guaranteed that the port is closed after the call - either
it is closed with the call or was already closed. So if it is not known which ports are
active, then the programmer can close all ports and disregard the return value.

The port cannot be closed if:

- the port number is out of the range 1-10 for COM1-COM10
- the port is already been closed or was never opened

// Integer index

for (i=1;i<=10;i++)

close_ser(i); // Close all ten ports
close_crit(); // Restore default critical error handler
exit(0);
Related Routines: open_ser
66

P148873.PDF [Page: 76 of 144]

Description:
Declaration: void close_time(void)

Parameters: none

Returns: none

Use: ~Turns off the countdown timers and restores the default interrupt service routines. This
routine first checks to see if the timers were previously enabled. If not, then no action
is taken.

Errors: none

Example:

open time();

set time(6,50); // Set timer 6 for 50 ticks (3 s)
while (chk_time(6) t= 0); // Wait for 3 s

close_time(});

Related Routines: open_time

67

P148873.PDF [Page: 77 of 144]

D&éri ption:
Declaration:
Parameters:
Returns:

Use:

Errors:

Example:

open_break();

- open_break DT
Setup the control-C/control-f)réak‘hzllﬁvdvvlér | o ~ -
void open_break(void)

none

none

This routines allows the trapping of control-C and control-break. They must be trapped

to ensure that a program using interrupts can have an orderly exit if the user decides to

abort.

If the routine has already been called (and not closed), this and subsequent calls to open
the control-C/control-break handler are ignored.

none

while (press_break() == 0); // Wait for break to be pressed
close_ break();

Related Routines: close_break, press_break

68

Description:

Declaration:
Parameters:
Returns:

Use:

Errors:

Example:

- open_crit
Enables critical errors to be trapped and clean exit upon Abort

void open_crit(void)

none

none

This routine allows critical errors to be trapped to a handler that restores the default
interrupts prior to allowing an Abort exit. Because the Abort exit to a critical error does
not return to the user software, any programs that use interrupts must restore them at an
Abort exit to a critical error prior to returning to DOS with the Abort return.

This routine must be invoked prior to any routines using interrupts.

A critical error normally includes information relating to the cause of the error (drive
letter, type of problem). For simplicity, the critical error handler used here only reports
a critical error without specifying the source of the problem.

The critical error handler has a hard coded calls to close_break, close_time and close_ser.
All these routines are programmed so that they can be called without crashing even if the
corresponding open has not been done. If any other interrupts are used, then a closing
call must be added to this routine. Thus this routine is specific to the serial

communications software.

none

// Critical error use the normal DOS handler

open_crit();

// Critical errors are now trapped

close crit();

~// Critical errors use the normal DOS handler

Related Routines: close_crit

69

Description:

- open_ser

Sets up interrupts and initialize to allow communications on the specified port

Declaration: int open_ser(int port, int type)
Parameters: int port Serial port to be enabled with a valid range of 1-10 for COM1-COM10
int type Type of serial board used
0 Standard COM1-COM4 addresses
1 Digiboard addresses COM3-COM10 (standard COM1 & COM2)
Returns: Integer, one of:
0 Successfully opened
1 Port could not be opened
Use: This routine must be called once for every port to be used. Once called, the serial
interrupt is redirected (if not already done) and then the UART is initialized. This
routine initializes the UART, but does not set the baud rate and associated parameters -
use set_ser to do this.
The Digiboard PC/8 when installed uses different addresses for COM3 and COM4 and
allows the use of COMS5 to COM10 (not defined for a PC). The serial board type
parameter allows the software to work on computer with normal PC serial ports or with
the Digiboard PC/8 installed. If multiple ports (and therefore multiple opens) are used,
the type of board must be the same for all calls.
The critical error handler, set up by open_crit, should be invoked prior to this routine.
If it is not used and a user selects Abort in response to a critical error (such as floppy
drive not ready) then DOS will likely hang because the interrupt vectors will not have
been restored.
Errors: The port can not be opened if:
- the port number is out of the range 1-10 for ports COM1-COM10
- the port is already open
Example:
épen_crit(); // Ensure critical error handler active
if (open_ser(3,1) != 0) { // COM3 using Digiboard

printf("Cannot open COM3\n");
close _crit();
exit(1);

}
set_ser(3,0xE3); // 9600 baud, no parity, 1 stop bit, 8 bits/character

Related Routines: close_ser, set_ser

70

P148873.PDF [Page: 80 of 144]

Ii;scription:
Declaration:
Parameters:
Returns:

Use:

Errors:

Example:

‘open_time

Tnitializes and enables all countdown timers
void open_time(void)

none

none

This routine sets up the interrupts necessary to enable the 11 count-down timers. These
timers were designed to be used as timeout timers.

If the routine has already been called (and not closed), this and subsequent calls to open
the timers are ignored.

none

open_time();

set_time(6,50); // Set timer 6 for 50 ticks (3 s)
while (chk time(6) != 0); // Wait for 3 s

close _time();

Related Routines: close_time

71

P148873.PDF [Page: 81 of 144]

Description:
Declaration:
Parameters:

Returns:

Use:

Errors:

Example:

Checks to see if control-C/control-break was pressed since last invocation

int press_break(void)
none

Integer, one of:
0 No control-C/control-break pressed
27 Control-break pressed since last call
35 Control-C pressed since last call

This routine checks to see if either control-C or control-break have been pressed since
the last call (or since open_break). As long as the return value is 0, no keys have been
pressed requesting a program abort.

This routine traps all occurrences of control-C or control-break, so upon detection, the
programmer must implement a clean-up routine of the various interrupts.

Note that there is only one flag for control-C and control-break. If both are pressed,
only the last one pressed will be returned.

none

open_break(); :
while (press_break() == 0); // Wait for break to be pressed
close break();

Related Routines: open_break, close_break

72

P148873.PDF [Page: 82 of 144]

Gets a character from a serial port

Description:

Declaration: int read_ser(int port)

Parameters: int port Serial port to be read with a valid range of 1-10 for COM1-COM10

Returns: Integer value:

0to 255. Character received
-1 No character available
-2 Port number is out of range

Use: This routine when called checks the receive ring buffer of the appropriate port for a
character, and if one is available returns it. Otherwise, the routine returns with a no
character available. This means that the routine can be called frequently without forcing
the software to wait for the next character.

Errors: The port number is out of range if it is not within the range of 1-10 for COM1-COM10.
A return of no character available means that no new character has been received yet for
the serial port.

Example:

int c: // Character received
Qrite_ser(l,'C'); // Send "CF?" out port

write_ser(l,'F’);
write ser(l,?’);

while

({(c=read_ser(l)) < 0); // Wait for character

printf ("Response is %c\n",c);

Related Routines: write_ser

73

- set_ser

Sets the serial port parameters: baud rate, number of bits/character, number of stop bits

Description:
and parity.
Declaration: int set_ser(int port, int parm) .
Parameters: int port serial port to be set with a valid range of 1-10 for COM1-COM10
int parm serial port parameter (see table below)
Returns: Integer, one of:
0 Parameters successfully set
1 Port number out of range
Use: This routine sets the communication parameters for the serial port. The four parameters
are fully specified in the low 8-bits of the integer parameter. This routine should be
called immediately after open_ser and prior to any communications. This routine can be
called again to later change the communication parameters.
" The table below gives the values used to specify the four serial port parameters. One
value must be selected for each parameter and summed to get the composite parameter.
Bits per Character Stop Bits Parity || Baud Rate ’
5 bits 0x00 1 bit 0x00 || None 0x00 | 110 0x00
6 bits 0x01 2 bits 0x04 || Odd 0x08 } 150 0x20 .
7 bits 0x02 Even 0x18 } 300 0x40
8 bits 0x03 600 0x60
1200 0x80
2400 O0xA0
4800 0xCO
9600 0xEQ
Errors: Port number out of range occurs if the port number is not one of 1-10 for COM1-COM10
Example:
épen_crit(); // Ensure critical error handler active
if (open_ser(3,1) != 0) { // COM3 using Digiboard
printf("Cannot open COM3\n");
close_crit(); -
exit(1l);

}
set_ser(3,0xE3); [/ 9600 baud, no parity, 1 stop bit, 8 bits/character

Related Routines: open_ser

74

P148873.PDF [Page: 84 of 144]

Description:
Declaration:

Parameters:

Returns:

Uses

Errors:

Example:

o settime

s

Sets a specific countdown timer to a tick count

int set_time(int timer, int tick)

int timer Countdown timer to be set with a valid range of 0-10

int tick Number of ticks (16.7 ticks per second)
Integer, one of:

0 Timer successfully set

1 Timer number out of range

This routine sets a countdown timer to a specific number of ticks. The counter will be
decremented at each timer interrupt until it reaches 0 where it will remain (until set
again). There are 16.7 ticks per second, so using these timers, with a positive integer
tick count, the longest timeout period is 1962 s or almost 33 minutes. Negative values
will provide unpredictable results and should not be used.

Note that the asynchronous nature of the timer setting and decrementing allow an
ambiguity of just less than one tick (60 ms). Therefore, the minimum setting should be
a value of 2 to ensure the period is at least one tick long. The smallest period is then
60-120 ms.

Timer numbers must be within the range 0-10.

open_time();

set_time(6,50); // Set timer 6 for 50 ticks (3 s8)
while (chk_time(6) != 0); // Wait for 3 s

close time();

Related Routines: chk_time

75

Description:

Declaration:

Parameters:

Returns:

Use:

Errors:

Example:

tat ser

Provides a composite status of the 'ports
int stat_ser(void)
none

Integer status
0x01 Interrupt service routine invoked but no active port caused interrupt
0x02 Handshake line change caused interrupt, but it was supposed to be
disabled '
0x04 Serial line break or UART error
0x08 Receive ring buffer overflow
0x10 Transmit ring buffer overflow
0x20 Transmit ring buffer not empty

This routine returns a composite status, with error conditions latched, of all of the active
ports. The status is cleared after each call, so the bits indicate that at least one of the
error events occurred since startup or the last call to this routine. The Transmit buffer
not empty bit is not latched, it is simply the state of the transmit ring buffer at the time
of the call. This bit can be used to wait for all data to be transmitted.

If too much data is sent using write_ser and there is insufficient time to send it, then the
Transmit ring buffer overflow will be set. On the other hand, if lots of data is being
received and no calls to read_ser are made, then eventually the Receive ring buffer
overflow will be set.

If a serial line break (long period of space) occurred or there were asynchronous framing
errors (such as no stop bit) then the Serial link break or UART error bit will be set.

The bad interrupts bits will be set only if there are other programs (such as TSRs)
attempting to use the serial ports. This should not occur in normal operation.

none

write ser(1l,‘H’); // Send out "Hi\n"

write ser(l,'I’);

write_ser(l,’\n’);

while ((stat_ser() & 0x20) != 0); // Wait for buffer empty

Related Routines: none

76

P148873.PDF [Page: 86 of 144]

Description:
Declaration:
Parameters:

Returns:

Use:

Errors:

Example:

_ver_ser -

Returns the version number string of the serial port software

char *ver_str(void)

none

Pointer to character string with the serial port software version number. The version
number starts with a "V", followed by a date and then a decimal version. (ex:
V02Jun93.01 means that it was the first version created on June 2, 1993)

This routine returns the version number string to allow user programs to know which
version of the software has been linked. It is used by the communication software during
opening to display all of the relevant software versions. Any modifications to the file
SERIAL.ASM will result in an updated version number,

none

char *strpnt;

strpnt = ver_str(); // Get the version number
printf("The version number of SERIAL.ASM is %s\n",strpnt);

Related Routines: none

77

Description:
Declaration:
Parameters:

Returns:

Use:

Errors:

Example:

77 write ser
Sends a character to a serial port
int write_ser(int port, int ich);

int port Serial port, valid range 1-10 for COM1-COM10, to which the character
is to be sent
int ich Character to be sent to the port with a valid range of 0-255

Integer, one of:
0 Character successfully send
1 Port number out of range

This routine puts one character into the transmit ring buffer of the specified port. If the
transmit ring buffer is full, the character is discarded and the Transmit ring buffer
overflow bit is set (use star_ser to check this bit).

Note that it is possible to put characters into the ring buffer faster than the service routine
can service them. In general, no more than 500 characters should be put into the ring
buffer without ensuring that they have been sent. This could be by using some special
protocol (such as response to a command), using a time delay (baud rate/10 gives the
number of characters per second), by examining echoed characters or by checking the
composite Transmit ring buffer not empty bit available from stat_ser.

Port number out of range occurs if the port number is not one of 1-10 for COM1-COM10

write_ser(1l,'H’); // Send out "Hi\n"

write ser(l,'I’);

write_ser(1l,‘'\n‘);

while ((stat_ser() & 0x20) t= 0); // Wait for buffer empty

Related Routines: read ser, stat_ser

78

Appendix D

Communications Software Listing

1. Introduction

In this appendix, the two files, header file COM.H and the file COM.C, used for the
communications software are listed. This appendix does not cover the assembly language routines which
are given in the Appendix E - Real-time Software Listing.

2. Header File COM.H

#define HEAD_VERSION "W02Jun93.01"

/*

Station name definitions

.......................... */

#define BAD_STATION -1 /* Station name or number not valid */
#define UNKNOWN_ID 0 /* Station name garbled or not sent */
#define DATA_LOGGER 1 /* Data Logger & Experiment Controller */
#define BEACON_MON 2 /* Beacon & Reference Monitor */
#define BURST_DEMOD 3 /* Burst DPSK Demodulator Host */
#define TX_PROC 4 /* CRC Transmit Processor */
#define EPHEM_PROC 5 /* Ephemeris Processor */
#define SYNC_PROC 6 /* Synchronization Processor *x/
#define CRC_ANTENNA 7 /* CRC Antenna Controller Host */
#define T85_ANTENNA 8 /* T85 Antenna Controller Host */
#define NSTATION 9 /* Number of valid stations */
#define LENSTN 4 /* Length of station name field */
#define LOW_BASE 20 /* Base number used for low-level ports */
#define SNAMES Bunkn®, “"dlog", "beac", “bdem", "txpr",%ephm", *sync",¥crca", "t85a"
#define LNAMES “unknown®, "data_logger", "beacon_mon", "burst_demod","tx_proc®,\

“ephem_proc","sync_proc®,Vcrc_antenna,"t85_antenna"

/*

Receiver status definitions

............................. */
#define NO_MESSAGE 0 /* No message ready received */
#define VALID_MSG 1 /* Valid message received */
#define COMM_ERR 2 /* Communications error occurred */
#define QUIT 3 /* Exit program requested */
I*

Message type definitions

.......................... *y

#define BAD_MESSAGE -1 /* Message is invalid */
#define ACK 0 /* Ack message */
#define NAK 1 /* Nak message */
#define COMMAND 2 /* Command message */
#define CONFIGURE 3 /* Configuration message */
#define LOG 4 /* Log message */
#define STATUS 5 /* Status message */
#define POINT 6 /* Initial pointing information */
#define MOD_POINT 7 /* Modified pointing information */
#define TIME_STAMP 8 /* Time stamp */
#define ERROR 9 /* Error condition message : */
#define NMESSAGE . 10 /* Number of message types */
#define LENMSG 6 /* Length of message type field */

79

#define MNAMES nack M,"nak *,%comd %, Uconfig","log ",\
“gtatus","point *,“modpnt®, ®time ", Yerror

/*

Error check definitions

......................... *7

#define NO_ERROR 0 /* No error occurred */
#define TOTAL 1 /* Too many total errors occurred */
#define CONSEC 2 /* Too many consecutive errors on 1 port */
#def ine BREAK 3 /* Control-Break or Control-C occurred */
/*

Low-level "get" return definitions

.................................... */

#define BAD_DEST -2 /* Destination number is invalid */
#define NO_DATA -1 /* No data is available */
#define ALL_OK 0 /* Normal return */

*
High-level communications routines

.................................... */

r/* open_com opens all high and tow level communications */
/* get_com gets one message, if available, returns status */
r* send_com sends one message */
* Look_com determines port number given station name */
/% ready_com checks to see if port is ready to send message */
* config_com overrides default SERIAL.CFG name */
r* flush_com resets errors on a channel */
/* close_com closes all high and Low level communications */

int open_com(void);

int get_com(int *ctype, int *cfrom, char *cdata);
int send_com(int dest,int mtype,char *string);
int look_com(char *stn);

int ready_com(int dest);

void config_com(char *string);

int flush_com(int dest);

void close_com(void);

/*

Low-level communications routines

N L L L wemseaasunrsanew 'k/

/* These routines need high-level “open _com" and "close_com" before use */
r* getc_low gets one character */
/* gets_low gets one string terminated by the parameter */
I1* putc_Llow puts one character */
/* puts_low puts one string */
/* Look_low determines destination number given station name */
int getc_low(int dest);

int gets_low(int dest,int term,char *string);

int putc_Low(int dest,int c);

int puts_low(int dest,char *string);

int look_low(char *stn);

/*

string return functions

......................... */

/* In all cases the function points to string containing the answer */

/* stnstr returns the station string for the given ID number */
V fd stnistr returns the long station for the given ID number */
I* messtr return the message type for the given type number */

char *stnstr{int n,char *string);
char *stnlstr(int n,char *string);
char *messtr({int n,char *string);

80

"17J4un93.01%

100
10
8

MAXCOM+1
MAXCOM

configuration file keywords

- O

/* Default timeout is 2 s

/* Default number of maximum errors
/* Default number consecutive errors

*/
*/
*/

/* Number of valid baud rate keywords */
/* Number of valid port keywords
/* Number of valid low level ports

*/
*/

/* End of file in configuration file */
/* Error in configuration file
/* Local station name -

/* Serial board type (std/digiboard)
/* Max number of errors before exit

/* Introduces high-level link
/* Introduces low-level link
/* Port selection (COM1-COMA)
/* Baud rate selection

/* Parity
/* Number
/* Number
/* Number
/* Number

/* Number

type

of stop bits

of bits per character
of bits per character
of consecutive errors

of keywords

/* No communication port
/* COMT to ...

/* ... COMA (COM10)
/* Maximum number of comm port
/* 5 bits per character

/* 6 bits
/* 7 bits
/* 8 bits

/* 1 stop bit

/* 2 stop

/* No parity
/* 0dd parity

3. COM.C
#define COM_VERSION
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <bios.h>
#include “com.h®

/*

Miscel laneous definitions
........................... */
#define DEFTIME
#define DEFMAX
#define DEFCONSEC
#define NBAUD
#define NPORT
#define NLOW
/*

Serial
#define ENDFILE
#idefine ERRLINE
#define FROM
#define BOARD_TYPE
#define MAX_ERROR
#define TO
#define LOW_LEVEL
#define PORT
#idefine BAUD
#define PARITY
#define STOP
#define BITS
#define TIMEOUT
#define CONSECUTIVE
#define NDEF
/*

Serial port definitions
......................... */
#define NOPORT 0x00
#define COM1 0x01
#define COM2 0x02
#define COM3 0x03
#define COM4 0x04
#define COM5 0x05
#define COM6 0x06
#define COM7 0x07
#define COM8 0x08
#define COM9 0x09
#define COMA O0x0A
#idefine MAXCOM COMA
#define BITSS 0x00
#define BITS6 0x01
#define BITS7 0x02
#define BITS8 0x03
#define STOP1 0x00
#define STOP2 Ox04
#define NOPAR 0x00
#idefine PARODD 0x08
#define PAREVN 0x18

bits

/* Even parity

81

*/

*/
*/

COM.C

#define B110 0x00 /*
#define B150 0x20
#define B300 0x40
#define B600 0x60
#idefine B1200 0x80
#define B2400 OxAO
#define B4800 OxCO
#define B9600 OxEQ

Baud rate 110 bps
/* 150 bps
/* 300 bps
/* 600 bps
/* 1200 bps
/* 2400 bps
/* 4800 bps
/* 9600 bps

/* 1dle conditions
/* NAK sent, await retransmit
/* Message sent, await ACK

/* Message & ACK sent,await ACK

/* No line available
/* Line available

/* Standard COM3/4 addresses & IRQs */
/* Digiboard COM3/4 addresses & IRQS */

/* Start state
/* FROM keyword valid
/* TO/LOW_LEVEL keyword valid

/*

States for Receiver/Transmitter
................................. */
#define READY 0
#define NAK_SENT 1
#define MSG_SENT 2
#define MSG_ACK 3
/*

ugeti{ine" return values
........................ */
#define NO_LINE 0
#define AVAIL_LINE 1
/*

Values used for board types
............................ * /
#idefine STANDARD 0
#define DIGIBOARD 1
/*

States for parsing configuration file
#define START 0
#def ine. FROM_OK 1
#define INTRO_OK 2
I*

Communications error definitions
#define NOERR O
#define CPTACK 1
#define CPTNAK 2
#define CPTRXA 3
#define CPTTXA &

#define CPTTXM 5 r*
#define EXTACK 6
#idefine HEADER 7
#define ILCHAR 8
9

#define ILACK *
#define LSTACK 10 r*
#idefine LSTNAK 11 /*
#define LSTRXM 12 /*
#idefine LSTTXM 13 /*
#define NOCLOS 14 /*
#define NOHCHK 15 I*
#idefine NOOPEN 16 /*

#define NOSEM1 17 /*

#define NOSEM2 18 /*
#define NOSEPR 19 A
#define BADCHK 20 /*
#define BADFRM 21 I*
#define WRGFRM 22 *
fidefine BADTO 23 /*
#define WRGTO 24 Vi
#idefine BADTYP 25 /*
#define NERROR 26 *

No error */
Ack corrupted
Nak corrupted

Receive message or ack/nak corrupted

Transmit message or ack corrupted
Transmit message corrupted

Extra ack received

Header too short

Iltegal character in checksum
Iltegal ACK/NAK

Ack lost, duplicate message

Nak lost

Receive message lost

Transmit message lost

No closing bracket

No trailing "h" or “"H" on checksum
No opening bracket

No semicolon before message type
No semicolon after message type
No from/to separator

Checksum failure, should be %.2X
Bad FROM station, was '"%s"

Wrong FROM station, was "Xs"

Bad TO station, was "YXs®

Wrong TO station, was "Xs"

Bad message type, was "Xs"
Number of errors */

82

*/
*/
*/
*/

*/
*/

*/
*/

COM.C

/* Station names used in the message headers */
char stnnam{NSTATION] [LENSTN+1]1={SNAMES);

/* Long station names used in configuration file */
char stntit [NSTATION] [151={LNAMES);

/* Message types used in the message headers */
char mesnam{NMESSAGE] [LENMSG+1)={MNAMES);

/* Error messages */

char errtit(] [501=("No error","Ack corrupted","Nak corrupted",
“Transmit message or ack corrupted", .
“Transmit message corrupted4,
"Receive message or ack/nak corrupted",VExtra ack received",
“Header too short",®Illegal character in checksum",
“Illegal ACK/NAK", "Ack lost, duplicate message","Nak lost®,
“Receive message lost","Transmit message lost",
#No closing bracket","No trailing \"h\" or \"H\" on checksum",
“No opening bracket","No semicolon before message type®,
"No semicolon after message type","No from/to separator™,
"Checksum failure, should be ","Bad FROM station, was",
“Wrong FROM station, was","Bad TO station, was ",
“Wrong TO station, was","Bad message type, Was "};

char baudtit[NBAUD] [51= /* Valid baud rate strings */
{"1 10“ . Il150ll R Il300ll ’ II600II R II1200II . “2400" . "4800" . ll96°0ll};
int baudval [NBAUD]= /* Baud rate values */

{8110,B150,B300,B8600,81200,B82400,B4800,B89600};
char deftitINDEF][121= /* vValid keywords in config file */
{"from",*board_type',“max_error", "to", "low_level", "port","baud",
Yparity","stop","bits", "timeout", "consecutive');
char prttitINPORT] [5]1=("comi", "com2", /* Valid port names */
llcaﬁll ’ llcamll y I|ca-nsll N llcoﬂﬁll ' Ilcon-'7ll . Ilcmﬂll ’ Ilco‘-nqll . Ilcmall ' llauxll};

/* Low-level link names (as given in configuration file) */

char lowtit[NLOW] [50]; /* Array of names */

int mlow; /* Number of names */

/* Receive message information */

int rxtype; /* Receive message type */

int rxfrom; /* From station of message */

int rxto; /* To station of message */

int rxcase; /* Case of 'H’ for ack/ACK */

char rxdatal220]1; /* Message */

/* Queue used by get_com when 2 items are returned (ex COMM_ERR & VALID_MSG) */
int gflag; /* Queue flag O=empty, 1=full */

int qrxtyp; /* Message type */

int grxfrm; /* From station of message */

char grxdat[220]1; /* Message */

/* Communications error variables */

int errnum; /* Error number for bad msg */
char errpar(220]}; /* Error string parameter for bad msg */
int errvat; /* Error number parameter for bad msg */
int errcnt; /* Total number of communication errors */
int maxerr; /* Maximum number of errors before quit */

/* Serial configuration file variables */

FILE *sercfyg; /* File stream for configuration file */
char cfgnam[220] = (“serial.cfg"); /* Name of configuration file */
int nl; /* Line number of line being processed */
char lstline[220]; /* Line being processed */
int sfrom; /* From station number */
int bd_type; /* Board type (0O=std, 1=digiboard) */

83

COM.C

/* Structure for serial port definitions (indexed by 0..N) */

struct s_type (
int to; /* Destination of the serial link */
int port; /* COM port number of the serial tink */
int set; /* Settings of the serial link (baud, etc) */

) sIMAXCOM];

int nd; /* Number of entries in structure %s" */

/* structure for port definitions (indexed by COM port number) */
struct p_type {

int state; /* Receiver/transmitter state */
int dest; /* Destination of the serial link */
int error; /* Number of consecutive errors for high-level */
int max; /* Maximum number of consecutive errors */
int time; /* Number of ticks (16.6 ticks/s) for timeout */
int rxack; /* State of receiver ack (0O=ack, 1=ACK) */
int rxpnt; /* Pointer to receive buffer */
char rxbuff[2201; /* Receive buffer */
char rxold[220]1; /* old received message buffer */
int txack; /* state of the transmit ack (O=ack, 1=ACK) */
char txold[220]; /* old transmitted message buffer */
} pIMAXCOM+1]; /* 1 extra, COMO is not used */

/*
External Assembly Language Routines

/* Serial port routines */

int open_ser(int port,int type); /* Initialize serial ports, set up ints */
int close_ser(int port); /* Disable serial port interrupts */
int stat_ser(void); /* Determine serijal port status */
int set_ser(int port,int parm); /* Set baud rate, etc for serial port */
int read_ser(int port); /* Read a character from serial port */
char *ver_ser(void); /* Return version string */
int write_ser(int port,int ich); /* Send a character to serial port */
/* Control-Break/Control-C ISR routines */
void open_break(void); /* Initialize, set up trap for Ctl-C/Break */
void close_break(void); /* Disable trapping of Ctl-C/Break */
int press_break(void); /* See if break pressed (0=no, non-zero=yes) */
/* Timer tick ISR routines */
void open_time(void); /* Initialize timers, set up ints */
void close_time(void); /* Disable timers */

int set_time(int timer,int tick); /* Set countdown timer */

int chk_time(int timer); /* Check if timeout (0=timeout) *x/
/* Critical error handler routines */
void open_crit(void); /* Initialize and trap critical errors */
void close_crit(void); /* Disable trapping of critical errors */
/*

Internal routines
................... */

int baudmatch(char *string); /* Determine baud rate from a string */
void cfgerror(char *string); /* Output error message from configuration */
int cfgline(char *string); /* Get a non-blank line from config file */
int chk_error(int *dest); /* See if any error count has exceeded max */
char *errstr(char *string); /* Returns the error string for an error # */
int getline(int port); /* Get a line from a serial port */
int getmess(int port); /* Get a message from a serial port */
int lowindex(char *string); /* Get an index value for a low-level port */
int messtype(char *string); /* Determine message type from a string */
void parsemsg(int port); /* Parse the received message */

84

COM.C

int prtmatch(char *string); /* Determine port number from a string */
int read_config(void); /* Read configuration from config file */
void sendack(int port); /* Send the ack/ACK message to a port */
void sendnak(int port); /* Send NAK message to a port */
void sendstr(int port,char *string); /* Send a string to a port */
int station(char *string); /* Determine station number from short name */
int stnmatch(char *string); /* Determine station number from long name */
void strip(char *sting); /* Remove leading and trailing blanks */
/* */
FARR R A B N R A N B R N A B S NS */
YA High-level Communication Routines - - - - - - - - - - - */
J ¥ - s s e m e e e e e (declared in “"com.h") - = - = = = = = = = - - - - */
/* */
/* */
I* */
/* open_com */
A */
/* Description: Opens all high and low-level communications including setting */
r* up for control-C and critical error trapping. Reads in */
r* all the configuration information as well. */
r* */
/* Returns: (int) Station number of local station. If an error */
r7* occurred, BAD_STATION is returned. */
/* In: - */
/* Out: - */
/* .. */
int open_com(void)
{

int i; /* Integer index variable */

errcnt = 0; /* Initialize error reporting */

errnum = NOERR;

qflag = 0; /* Initialize queue as empty */

mlow = 0O; /* Initialize number of low-level ports */

for (i=0; 1<MAXCOM;i++) (/* Initialize port structure */
plil.error = 0;
plil.rxpnt = 0;
plil.rxack = 0;
plil.txack = 0;

it

plil.rxold[0] = ’\0’;
plil.txold[01 = ’\0’;
2
if (read_config() != 0) return BAD_STATION; /* Read config file */

if (bd_type == DIGIBOARD) {
printf(#<< Communications hardware: Digiboard");
) else {
printf(“<< Communications hardware: Standard");
)
printf(* Configuration file: Xs >>\n", cfgnam);
printf("<< Software: COM.H=%s, COM.C=%s, SERIAL.ASM=Xs >>\n",
HEAD_VERSION,COM_VERSION,ver_ser());

open_crit(); /* Enable trapping of critical errors */
open_break(); /* Enable trapping of Control-C/Break */
open_time(); /* Enable timers */

for (i=0;i<nd;i++) (/* Open all serial ports from config file */

if (open_ser(s{il.port,bd_type) I= 0) (
printf("Error in opening serial port %d\n",s([il.port);
close_com();
return BAD_STATION;

85

COM.C

pls[i]l.portl.state = READY;

for (i=0;i<nd;i++) set_ser(s[il.port,slil.set); /* Setup serial ports */
return sfrom; /* Return local station number */
b
/% */
r* get_com ' */
VA */

/* Description: Gets a message - checks all ports for an outstanding message */

r* also checks for if errors occurred or if control-C/break has */
/* been pressed. Occasionally a communications error occurs */
r/* while a valid message is received - when this happens the */
* errors is returned first and the message is queued for the */
/* next call. */
r* */
/* Returns: ¢int) NO_MESSAGE - no message available */
r* VALID_MSG - valid message returned */
r* COMM_ERR - communications error occurred */
r1* QUIT - terminal condition occurred */
r* */
/* In: - */
/* Out: (int *ctype) message type for VALID_MSG, exit type for */
/* QUIT, error number for COMM_ERR */
/* (int *cfrom) source of message, not used by QUIT except */
/* for excessive consecutive errors */
/* (char *cdata) message data for VALID_MSG or error message */°
r* for COMM_ERR, otherwise not used */
/* .. */
int get_com(int *ctype, int *cfrom, char *cdata)
<

int i,j; /* Integer index variables */

int et,ef; /* Error type ¥*/

if (press_break() 1= 0) (/* Check if break has been pressed */

*ctype = BREAK;
return QUIT;

b
if (Cet=chk_error(&ef)) != NO_ERROR) { /* Check if max error occur */

*ctype = et;
*cfrom = ef;
return QUIT;

)
if (gflag == 1) /* See if there is a message waiting */
*ctype = qrxtyp;
*cfrom = grxfrm;
strcpy(cdata,qrxdat);
qflag = 0;
return VALID_MSG;
>
for (i=0;i<nd;i++) € /* Check all high-level for a message */

if (slil.to < LOW_BASE) (
if ((j=getmess(s[il.port)) != NO_MESSAGE) {
*ctype = rxtype;
*cfrom = rxfrom;
strcpy(cdata,rxdata);
if (j == COMM_ERR) {

if (rxtype != BAD_MESSAGE) (/* 1f error occurred, but */
qrxtyp = rxtype; /* there is a valid message */
grxfrm = rxfrom; /* put it in the queue */
strepy(qrxdat, rxdata);
qflag = 1;

>

*ctype = errnum;
*cfrom = slil).to;

86

COM.C

P14887

3.PDF [Page: 96 of 144]

errstr(cdata);
return COMM_ERR;
) else (
return VALID_MSG;
>
}
>
>
return NO_MESSAGE;
*/
send_com */
*/

Description: Sends one message to the selected destination - formats the */
message, sets up the checksum and ensures reliable transfer */

through ack/nak
Returns: (int)
In: (int dest)

(int mtype)

(char *string)

and timeouts. */

*/
0 if no error occurred */
1 if illegal port or if port not ready */
destination station number */
message type ' */
message data */

*/
.. */

int send_com(int dest,int mtype,char *string)

<

int i,n;

char stri2201;
char cc[31;
int port;

int chk;

for (n=0;n<nd;n++) if (sinl.
if (n==nd) return 1;
port = s[n].port;

strf0] = 1[/;

str[1] = /\0’;

strcat(str,stnnamisfrom]);

strcat(str,">");

strecat(str,stnnamfsinl.tol);

strcat(str, n;u);

strcat(str,mesnamfmtypel);

if (plport].txack == 0) {
strcat(str,";XXh1");

> else {
strcat(str,¥;XXH1"%);

>

plportl] .txack "= 1;

if (stringl0) t= ’\0’) (
strcat(str," ");
strcat(str,string);

>

chk = 0;

for (i=0;i<strlen(str);i++)

chk &= OxFF;

sprintf(cc,"%.2X",chk);

str18] = ccl0];

str[19] = cclil;

strcat(str,"\r\n");

if (pIport].state 1= READY)
piport].txack "= 1;
return 1;

/* Integer index variables */

/* Used to assemble outgoing message string */
/* Used to hold the hexadecimal checksum */
/* Comm port number (1=COM1, 10=COMA) */

/* Checksum */

to==dest) break; /* Find “to" port */

/* Set up header */
/* Message of the form: */
/* [fFfff>ttet;mmmmmm; XXh] ddddddddd. .<CR><LF> */

/* where: ffff is the from station */
/* tttt is the to station */
I* mommmm §s the message type */
Vddd XX is the hex checksum */
r* h is sent to get “ack" */
I* H is sent to get “ACK" */
Vad ddddddddd is the message data */

/* Put in the space if there is data */

/* Compute the checksum */
if (Ci<18) |} (i>20)) chk += str[il;

< /* Ensure port is ready */
/* Otherwise error & exit */

87

COM.C

P148873.

PDF [Page: 97 of 144]

) else €
strepy(plportl.txold,str);
sendstr(port,str);
set_time(port,plportl.time);
piport] .state = MSG_SENT;

3

return 0;

/* Save the string for retransmit */

>
/*
/* Look_com
/*
/* Description: Determine the port number given the long station name
/*
/* Returns: (int) port number, BAD_STATION if not valid
/* In: (char *stn) pointer to string with long station name
/* Out: -
/* ..
int look_com(char *stn)
{
int 1,j; /* Integer index variables */
/* Find the matching long station name */
for (i=0; i<NSTATION;i++) if (strcmpi(stn,stntit[il) == 0) break;
if (i == NSTATION) return BAD_STATION;
/* Find the port with that station number */
for (j=0;j<nd;j++) if (s[jl.to == i) return i;
return BAD_STATION;
>
I*
/* ready_com
/*
/* Description: Checks to see if a link is ready for sending.
/*
/* Returns: ¢int) 0 if ready
/* 1 if still transmitting last message or bad
/* port number
/* In: (int dest) destination station number
/* Out: -
J¥esmesemamecaccemdmemmmecsaascsmccaccsmcsecssseceemmmmesessemmsmeeseemeseeene
int ready_com(int dest)
{
int n; /* Integer index variables */
int port; /* Comm port number (1=COM1, 10=COMA) */
for (n=0;n<nd;n++) if (sinl.to==dest) break; /* Find “to% port */
if (n==nd) return 1;
port = s[n].port;
if (plport].state != READY) { /* Ensure port is ready */
return 1;
>
return 0;
3
/*
/* config_com
I*
/* Description: Overrides the default (SERIAL.CFG) of the configuration file.
I*
/* Returns: -

88

COM.C

P148873.PDF [Page: 98 of 144]

/* In: (char *string) configuration file name */
/* Cut: - */
/* .. */
void config_com(char *string)
€

strcepy(cfgnam,string);

return;
b
r* */
r* flush_com */
/* */
/* Description: Resets channel and associate errors. */
r* */
/* Returns: ¢int) 0 if ready */
/* 1 if bad port number */
/* In: (int dest) destination station number */
/* Out: - */
/* .. */
int flush_com(int dest)
<

int n; /* Integer index variables */

int port; /* Comm port number (1=COM1, 10=COMA) */

for (n=0;n<nd;n++) if (s[n).to==dest) break; /* Find "to" port */

if (n==nd) return 1;

port = s[n].port;

plport] .state = READY;

plportl.error = 0;

plportl.rxpnt = 0;

plport]l..rxack = 0;

plport] .txack = 0;

plportl.rxold(0] = ’\0’;

plportl.txold[0] = ’\0’;

errcnt = 0;

return 0;
b
/* */
r* close_com */
/* */
/* Description: Closes all high and low-level communications including the */
/* restoration of all interrupt vectors for the serial ports, */
/* control-C/break interrupts and critical error traps. */
/* */
/* Returns: - */
/* In: - */
/* Out: - */
/* .. */
void ctose_com(void)
<

int i; /* Integer index variable */

for (i=0;i<nd;i++) close_ser(s[il.port); /* Close serial ports */

close_time(); /* Close timers */

close_break(); /* Close Control-C/Break */

close_crit(); /* Close critical errors */

return;
b

89

COM.C

/* */
/* */
¥ - .- Low-level Communication Routines- - = = = = = - = = - - */
J* = = = = e e e e e s (declared in "com.h") - - - - - - - = = = ~ = - = */
/* */
/* */
r* */
Vid getc_low */
r/* */
/* Description: Gets a character from a Link using destination station number */
Vhd */
/* Returns: (int) character if available */
r* NO_DATA is none available */
r* BAD_DEST if destination number is invalid */
/* In: (int dest) destination station number (this number is */
r* obtained through "look_low") */
/* Out: - */
/* .. */
int getc_Low(int dest)
{
int i,n; /* Integer index variables */
int c; /* Character from the port */
for (n=0;n<nd;n++) if (sIn].to==dest) break; /* Find port number */
if (n==nd) return BAD_DEST;
if (plsinl.portl.rxpnt != 0) { /* Get char from buffer */
c=plsn].port].rxbuff[0];
for (i=1;i<pIstnl.portl.rxpnt;i++) plsinl.portl.rxbuff{i-11=plsin].port].rxbuff(il;
pIlsin].portl.rxpnt--;
} else {
if ((c=read_ser(sinl.port))==-1) return NO_DATA;
b
return c;
)
A */
/* gets_Llow */
* */
/* Description: Gets a terminated string from a link using the destination */
/* station number */
/* */
/* Returns: ¢int) ALL_OK - if string is returned */
r1* NO_DATA - if no data available */
I* BAD_DEST - if destination number is invalid */
/* In: (int dest) destination station number (this number is */
/* obtained through “look_low") */
r* (int term) string termination character */
r* (char *string) pointer to buffer to receive the string */
/* Out: (char *string) pointer to string containing the received */
/* string */
/* .. */
int gets_low(int dest,int term,char *string)
4
int n; /* Integer index variable */
int c; /* Character from the port */
int np; /* Port number */
for (n=0;n<nd;n++) if (sIn].to==dest) break; /* Find port */

if (n==nd) return BAD_DEST;
np = sinl.port;
if ((c=read_ser(np))==-1) return NO_DATA; /* See if data avail */

90

COM.C

P148873.PDF [Page: 100 of 144]

while (ct=term) (/* Get data till term */
if (pinpl.rxpnt > 200) pInpl.rxpnt = 200; /* No more than 200 */
pinpl.rxbuffplnpl.rxpnt] = ¢c;
plnpl..rxpnt++;
if ((c=read_ser(np))==-1) return NO_DATA; /* Data still avail? */
}
pinpl.rxbuffplnpl.rxpnt] = 7\0‘; /* Terminate and save string */

strepy(string,pinpl .rxbuff);
plnpl.rxpnt = 0;
return ALL_OK;

>
I* */
/* putc_low */
r* */
/* Description: Send a character to a link using destination station number */
I* */
/* Returns: ¢int) ALL_OK - if character is sent */
/* BAD_DEST - if destination number is invalid */
/* In: (int dest) destination station number (this number is */
/* obtained through “lLook_low") */
* ¢int c) character to be sent */
/* out: - */
/* ... */
int putc_low(int dest,int c)
<

int n; /* Integer index variable */

for (n=0;n<nd;n++) if (sn].to==dest) break; /* Find port number */

if (n==nd) return BAD_DEST;

write_ser(s(n].port,c); /* Send character */

return ALL_OK;
>
r* */
/* puts_Low */
/* */
/* Description: Sends a string to a link using destination station number */
r* */
/* Returns: Cint) ALL_OK - if string is sent */
/* BAD_DEST - if destination number is invalid */
/* In: (int dest) destination station number (this number is */
/* obtained through "look_low") */
/* (char *string) pointer to string to be sent */
/* Out: - */
/* .. */
int puts_low(int dest,char *string)
<

int n; /* Integer index variable */

for (n=0;n<nd;n++) if (sin).to==dest) break; /* Find port number */

if (n==nd) return BAD_DEST;

sendstr(sn].port,string); /* Send string */

return ALL_OK;
3
/% */
/* look_Low */
r* */
/* Description: Determines station number given the low-level station name */
r* */

91

COM.C

P148873.PDF [Page: 101 of 144]

/* Returns: (int) destination station number */
/* BAD_STATION if invalid name */
/* In: (char *stn) pointer to string containing the station name */
/* out: - */
/¥ e e emomemmmeeeaameesesesaisses-eessesesesoenon- */
int look_low(char *stn)
<
int i; /* Integer index variable */
for (i=0;i<mlow;i++) if (strcmpi(stn,lowtitlil) == 0) return i+LOW_BASE;
return BAD_STATION;
3
/* * /
/* * /
VAR AR B string Return Functions- - = - = - = = = - - = - - */
/¥ - - -2 (declared in "com.h") = = = = = = = = - - - - - - */
/* * /
£ I LI I A S R S A SN */
/.I- .../
Vil errstr */
/* */
/* Description: Returns a string with the error message for the last error */
r/* */
/* Returns: (char *) pointer to string containing error message */
/* In: (char *string) pointer to buffer to receive the string */
/* Out: (char *string) pointer to string containing error message */
/* .. */
char *errstr(char *string)
€
char sval[10]; /* Temporary string for formatting */
strepy(string,errtitierrnuml); /* Save error text */
switch (errnum) (
case BADCHK: /* Add checksum parameter */
sprintf(sval,"%.2xXh", errval);
strcat(string,sval);
break;
case BADFRM:
case WRGFRM:
case BADTO:
case WRGTO:
case BADTYP:
strcat(string,errpar); /* Add string parameter */
break;
default:
break;
3
return string;
3
/* */
/* stnstr */
7% */
/* Description: Provide station name given the station number */
I* */
/* Returns: C(char *) pointer to string with station name */
* */
! r

/* In: ¢int n) station number

92

CoOM.C

P148873.PDF [Page: 102 of 144]

/* (char *string) pointer to buffer to receive the string */
/* Out: (char *string) pointer to string with station name */
/* .. */
char *stnstr(int n, char *string)
{

strepy(string,stnnaminl);

return string;
>
I* */
/* stnlstr */
/% */
/* Description: Provide long station name given the station number */
/* . */
/* Returns: (char *) pointer to string with long station name */
I* */
/* In: (int n) station number */
r/* (char *string) pointer to buffer to receive the string */
/* out: (char *string) pointer to string with long station name */
/* .. */
char *stnlstr(int n, char *string)
{

strepy(string,stntitinl);

return string;
3 ,
I* */
Vid messtr */
r* */
/* Description: Provide message type string given the message type number */
I* */
/* Returns: (char *) pointer to string with message type */
r* */
/* In: (int n) message type number */
/* (char *string) pointer to buffer to receive the string */
/* Out: (char *string) pointer to string with message type */
/* .. */
char *messtr(int n, char *string)
<

strepy(string,mesnaminl);

return string;
b
J* = = s o e m e */
/* */
VAR A A Internal Routines - = « = =~ = - - - - - - - - - */
I* */
/* */
I* */
I* baudmatch */
r7* */
/* Description: Determines the baud rate by matching a string with the valid */
Vid values */
r* */
/* Returns: (int) Baud rate in bps (0 indicates invalid string) */
/* In: (char *string) 'Pointer to baud rate string */
/* Out: - */
/* .. */

COM.C

int baudmatch(char *string)

1§

int i; /* Integer index variable */

for (i=0;i<NBAUD;i++) if (strcmp(string,baudtit[il)==0) return baudval[i];

return 0;

cfgerror

Description: Outputs an error message for the configuration file including */
the line number and the line. Closes configuration file */

Returns: -
In: (char *string) Error message string

void cfgerror(char *string)

{

int i;

printf("¥s in line %d of %s\n®,string,nl,cfgnam);
{stline{strien(lstline)-11 = \0’;

printf("%s\n", ilstline);

printf("Debug: ");

for (i=0;i<20;i++) printf("%02X »,lstlinelil);
printf("\nDebug: "); ’

for (i=20;i<40;i++) printf("%02X “,lstlinelil);
printf(*\n");

/* Error in line # */

/* output line */

int cfgline(char *string)

{

fclose(sercfg); /* Close config file */
return;

*/

cfgline */

*/

Description: Gets a non-blank line from configuration file */

Line must be of the form <keyword> = <value_string> */

*/

Returns: ¢int) Keyword number (see defines) */

ENDFILE for end of file *f

ERRLINE for unrecognized line */

In: - */

Out: (char *string) The value_string */

.. */

int i; /* Integer index variable */
char line([2201; /* String holding line read from config file */
char c[220]1; /* String to hold the keyword */
do {
if (fgets(line,220,sercfg)==NULL) return ENDFILE; /* End of file */

strepy(lstline,line);
nl++;

/* Save line for error message */

tinelstrien(line)-11 = \0’; /* Remove ‘\n’ and terminate line */
strip(line); /* Romove leading and trailing blanks */

if (Linel0l==';’) linel01=/\0/;
3} while (linef0l == ’\0’);

/* lgnore comment lines */

for (i=0;i<strlen(line);i++) lineli]l = tolower(linelil); /* Lower case */
for (i=0;i<strlen(line);i++) if (linelil=='=’) break; /* Find 7=’ */

if (i==strlen(line)) return ERRLINE;

94

CoOM.C

P148873.PDF [Page: 104 of 144]

strncpy(c,line,i}; /* Extract, terminate and strip keyword */
cli)l = \0’;

strip(c);

strepy(string,&line[i+11); /* Extract and strip value string */
strip(string);

for (i=0;i<NDEF;i++) if (strcmp(c,deftit[i))==0) break; /* Find keyword */
if (i == NDEF) return ERRLINE;

return i;
}
/* */
/* chk_error */
r* */
/* Description: Checks if any error count (total or consecutive on any port */
/* has exceeded the maximums */
* */
/* Returns: (int) TOTAL - total number of errors exceeded */
/* CONSEC - max consecutive errors on 1 port */
r/* NO_ERROR - no errors */
/* In: (*int dest) Station causing error (when valid) */
/* out: - */
/* .. */
int chk_error(int *dest)
<
int i; /* Integer index variable */
if (errcnt > maxerr) (/* Check for total errors */
*dest = UNKNOWN_ID;
return TOTAL;
>
for (i=0;i<nd;i++) { /* Check for consecutive errors on any link */
if (plslil.portl.error >= pis{il.portl.max) ¢
*dest = s[il.to;
return CONSEC;
>
3
*dest = UNKNOWN_ID;
return NO_ERROR;
X
/* */
r/* getline */
r* */
/* Description: Gets a line terminated by CR from a serial port. Control */
/* characters are discarded. Line available in “piport].rxbuff® */
r* */
/* Returns: ¢int) AVAIL_LINE - “p(port].rxbuff" has the line */
/* NO_LINE - no line available */
/* In: (int port) Port number (1=COM1 to 10=COMA) */
/* Out: - */
/* ... */
int getline(int port)
{
int ¢; /* Character read from port */
if ((c=read_ser(port))==-1) return NO_LINE; /* See if char avail */
while (c!=0x0D) { /* Until <CR> */
if (c >= 0x20) € /* Ignore cntl chars */
if (plportl.rxpnt > 200) piport].rxpnt = 200; /* Max 200 */
plportl.rxbuffplport]l.rxpntl = c;
plport].rxpnt++;
)

95

COM.C

P148873.PDF [Page: 105 of 144]

if ((c=read_ser(port))==-1) return NO_LINE;

3

plport}.rxbuff{plport]l .rxpntl = ’\0’;
return AVAIL_LINE;

/* Any avail still ?2 */

>
r* */
I7* getmess */
/% */
/* Description: Gets a message from a serial port. Controls the ACK/NAK */
r* handshaking and error detection. Message details are as */
Vid described for "parsemsg" */
/* %/
/* Returns: (int) VALID_MSG - a valid message is available */
r* NO_MESSAGE - no message available */
r7* COMM_ERROR - communication error occured */
/* In: (int port) Port number (1=COM1, 10=COMA) */
/* Out: - */
/* .. */
int getmess(int port)
<

struct p_type *pp; /* Pointer to port structure */

pp = &plportl; /* Get pointer to port structure */

sWwitch (pp->state) {
/* Ready state - no outstanding messages, acks or timeouts */
case READY:
if (getline(port) == NO_LINE) return NO_MESSAGE;
parsemsg(port);
if (rxtype == BAD_MESSAGE) (/* Bad message => nak */

sendnak(port);
set_time(port,plportl.time);
pp->state = NAK_SENT;
errnum = CPTRXA;

errcnt++;

pp->error++;

return COMM_ERR;

Y else if (rxtype == NAK) /* Nak is extra */

pp->rxack *= 1;
sendack(port);
errnum = CPTACK;
errcnt++;
pp->error++;

rxtype = BAD_MESSAGE;
return COMM_ERR;

) else if (rxtype == ACK) { /* Ack is extra */

) else if (rxcase i= pp->rxack) {
if (strcmp(pp->rxbuff,pp->rxold) i= 0) € /* New msg */

errnum = EXTACK;
errcnt++;
pp->error++;

rxtype = BAD_MESSAGE;
return COMM_ERR;

pp->rxack "= 1;
sendack(port);
strepy(pp->rxold,pp->rxbuff);
errnum = LSTRXM;
errcnt++;
PP->error++;
return COMM_ERR;

) else {

pp->rxack = 1; /* old msg */

sendack(port);
errnum = LSTACK;

96

/* out of msg sync */

COM.C

-t

P148873.PDF [Page: 106 of 144]

rxtype = BAD_MESSAGE;
errcnti+;
pp->error++;

return COMM_ERR;

b

) else {
strcpy(pp->rxold, pp->rxbuff); /* valid message */
sendack(port);

}

break;

/* Nak sent state - awaiting retranmission of message or ack/nak */
case NAK_SENT:

if (chk_time(port) == 0) { /* Timeout => retransmit nak */
sendnak(port);
set_time(port,plportl.time);
errnun = LSTNAK;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM_ERR;)

>
if (getline(port) == NO_LINE) return NO_MESSAGE;
parsemsg{port);
if (rxtype == BAD_MESSAGE) { /* Bad message => nak */
sendnak(port);
set_time(port,plport].time);
errnum = CPTRXA;
errcnt++;
pp->error++;
return COMM_ERR;
} else if (rxtype == NAK) (/* Nak => retransmit nak */
sendnak(port);
set_time(port,plport].time);
errnum = CPTNAK;
errcnt++;
pp->error++;
rxtype = BAD_MESSAGE;
return COMM_ERR;
) else if (rxtype == ACK) { /* Extra ack */
pp->state = READY;
errnum = EXTACK;
errcnt++;
pp->error++;
rxtype = BAD_MESSAGE;
return COMM_ERR;
) else if (rxcase != pp->rxack) { /* out of msg sync */
if (strcmp(pp->rxbuff,pp->rxoid) 1= 0) { /* New msg */
pp->state = READY;
pp->rxack *= 1;
sendack(port);
strepy(pp->rxold, pp->rxbuff);
errnum = LSTRXM;
errcnt++;
pp->error++;
return COMM_ERR;
) else {
pp->state = READY; /* old msg */
pp->rxack "= 1;
sendack(port);
errnum = LSTACK;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM_ERR;
)
) else {

97

CcoMm.C

P148873.PDF [Page: 107 of 144]

pp->state = READY;
strepy(pp->rxold, pp->rxbuff);
sendack(port);

b

brak;

/* Message ient state - awaiting ack */
case MS_SENT:

if chk_time(port) == 0) ¢
sendstr(port,pp->txold);
set_time(port,plportl.time};
errnum = LSTTXM;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM_ERR;

)
if getline(port) == NO_LINE) return NO_MESSAGE;
paremsg(port);
if rxtype == BAD_MESSAGE) {
sendnak{port);

set_time(port,piportl.time);

srrnum = CPTRXA;

rrrented;

W->error++;

*eturn COMM_ERR;

) e if (rxtype == NAK) (

: iendstr{port,pp->txotd);
iet_time(port,plportl.time);
wrrnum = CPTTXM;

ITTCNt++;

P->error++;

Xtype = BAD_MESSAGE;

eturn COMM_ERR;

} ek if (rxtype == ACK) {

f (pp->txack == rxcase) {
sendstr(port,pp->txold);
set_time(port,plport] .time);
errnum = LSTTXM;
errcnt++;

PP->error++;

rxtype = BAD_MESSAGE;

return COMM_ERR;
else {

pp->state = READY;

pp->error = 0;

return NO_MESSAGE;

} ele if (rxcase i= pp->rxack) {

F (strcmp(pp->rxbuff,pp->rxold) i= 0) {
pp->state = MSG_ACK;
pp->rxack “= 1;
sendack(port);
set_time(port,plport]l.time);
strcpy(pp->rxotd,pp->rxbuff);
errnun = LSTRXM;
errcnt++;
pp->error++;
return COMM_ERR;

)else {
pp->state = MSG_ACK;
pp->rxack *= 1;
sendack(port);
set_time(port,plportl.time);
errnum = LSTACK;
rxtype = BAD_MESSAGE;
errcnt++;

98

/* Valid message */

COM.C

/* Timeout => retransmit */

/* Bad message => nak */

/* Nak => retransmit */

/* Ack received */
/* out of msg sync */

/* Ack OK */

/* Out of msg sync */

/* New msg */

/* old msg */

P148873.PDF [Page: 108 of 144]

pp->error++;
return COMM_ERR;

>
3 else {
pp->state = MSG_ACK; /* valid message received */
strepy(pp->rxold, pp->rxbuff);
sendack(port);
set_time(port,plportl.time);
b
break;

/* Message and Ack transmitted, awaiting ack */
case MSG_ACK:

if (chk_time(port) == 0) {

b

/* Timeout => retransmit */
sendstr(port,pp->txold); /* message */
set_time(port,plport].time);

errnum = LSTTXM;

rxtype = BAD_MESSAGE;

errcnt++;

pp->error++;

return COMM_ERR;

if (getline(port) == NO_LINE) return NO_MESSAGE;
parsemsg{port);
if (rxtype == BAD_MESSAGE) { /* Bad message => retransmit

pp->rxack *= 1; /* both ack and message
sendack(port);

sendstr(port, pp->txold);

set_time(port,plport].time);

errnum = CPTRXA;

errcnt++;

pp->error++;

return COMM_ERR;

)} else if (rxtype == NAK) (/* Nak => retransmit both */

pp->rxack *= 1;
sendack(port);
sendstr(port,pp->txold);
set_time(port,plportl.time);
errnum = CPTTXA;

errcnt++;

pp->error++;

rxtype = BAD_MESSAGE;
return COMM_ERR;

) else if (rxtype == ACK) ¢ /* Ack received */

} else if (rxcase I= pp->rxack) {

if (pp->txack == rxcase) { /* Out of msg sync */
sendstr(port,pp->txold);
set_time(port,plportl.time);
errnum = LSTTXM;
errcnt++;
pp->error++;
rXxtype = BAD_MESSAGE;
return COMM_ERR;
> else {
pp->state = READY; /* Valid ack */
pp->error = 0;
return NO_MESSAGE;

/* out of msg sync */
if (stremp(pp->rxbuff,pp->rxold) 1= 0) € /* New msg */

pp->rxack *= 1;

sendack(port);

set_time(port,plportl.time);

strepy(pp->rxold, pp->rxbuff);

errnum = LSTRXM;

errcnt++;

pp->errort+;

return COMM_ERR;

99

*/
*/

CoOM.C

P148873.PDF [Page: 109 of 144]

COM.C

) else {
pp->rxack *= 1; /* old msg */
sendack(port);
set_time(port,plport].time);
errnum = LSTACK;
rxtype = BAD_MESSAGE;
errcnt++;
pp->error++;
return COMM_ERR;

>
) else (
strcpy(pp->rxotd,pp->rxbuff); /* Valid message */
sendack(port);
set_time(port,plportl.time);
3
break;

b
pp->error = 0;
return VALID_MSG;

)
* */
r* lowindex */
r* */
/* Description: Determines index number for low-level port names. All index */
/* numbers are based on LOW_BASE and do not conflict with high- */
/* level port numbers. */
r* */
/* Returns: (int) Index number for the low-level port, to be */
1* used as station number in other calls. 1If */
r* that name has already been used, then it */
/* returns BAD_STATION */
/* In: ¢char *string) Pointer to string with Low-level port name */
/* Out: - */
/* .. */
int lowindex(char *string)
<

int i; /* Integer index variable */

/* Check to see if name is already used */

for (i1=0;i<mlow;i++) if (strcmp(string,lowtit[il)==0) return BAD_STATION;

strepy(lowtit[mlowl ,string);

miowt++;

return mlow - 1 + LOW_BASE; /* Return numbers starting at LOW _BASE */
}
r* */
r* messtype */
/* */
/* Description: Determines the index number for the message type string */
/* Oonly the number of characters in the message type field */
r* are checked (LENMSG). */
I* */
/* Returns: ¢int) Index number for the message type. If the */
/* message string is not recognized, it returns */
r* BAD_MESSAGE */
/* In: (char *string) Pointer to string with message type */
/* Out: - */
/* .. */
int messtype(char *string)
<

int i,j; /* Integer index variables */

100

P148873.PDF [Page: 110 of 144]

/*
/*
/*

Vo

for(i=0; i <NMESSAGE; i++) (/*

Check for message type match */

for{ j=0; j<LENMSG; j++) if (string[j]l 1= mesnam[il[j]) break;

if (j == LENMSG) return i;
b
return BAD_MESSAGE;

parsefisg

Description: Parses message stored in

“plport] .rxbuff" including error

and format checking. Source and destination stations are

stored in "rxfrom* and “rxto" respectively.

is in "rxtype". The string "rxdata" contains the data part
of the message. "rxcase" contains the case of the ‘H’ which
indicates the case needed for the ack/ACK.

In the event of an error, “rxtype" is BAD_MESSAGE.

number is stored in Yerrnum", string parameter (if required)
is stored in "errpar" and if necessary the integer parameter

is stored in Yerrval".

Once the parsing is complete, the buffer pointer is reset

Returns: -
In: (int port)
Out: -

id parsemsg(int port)

int i;
int sndchk;
int chk;

rxfrom = 0;
rxto = 0;
if (plportl.rxpnt == 3) {

Port number (1=COM1, 10=COMA)

/* Integer index variable */
/* Checksum sent with message */
/* Computed checksum on receive message */

/* 3 chars => ack, ACK or NAK */

if (strcmp(plport).rxbuff, "ack")==0) (

rxtype = ACK;
rxcase = 0;
rxdata0] = \0’;

/* ack, no data */

) else if (strcmp(piport].rxbuff,"ACK")==0) {

rxtype = ACK;
rxcase = 1;
rxdataf0] = ‘\0’;

/* ACK, no data */

) else if (strcmpi(plportl.rxbuff,naki)==0) {

rxtype = NAK;
rxdatal0] = ’\0’;

) else {
rxtype = BAD_MESSAGE;
errnum = JLACK;
plport]l.rxpnt = 0;
return;

)

} else if (plportl.rxpnt < 22) ¢ r*
rxtype = BAD_MESSAGE;
errnum = HEADER;
plport].rxpnt = 0;
return;

) else ¢ r/*
if (plportl.rxbuffl[20] == ’h’) €

rxcase = 0;

/* NAK, no data */

/* otherwise, bad message */

<22 chars => header too short */

Check case of ’h’ for ack/ACK */

) else if (pIportl.rxbuff[20] == 7H’) (

rxcase = 1;
} else {
rxtype = BAD_MESSAGE;

The message type

*

The error */

*/
*/
*/
*/
*/

/* Not 'h' or ’H’ => bad head */

101

COM.C

P148873.PDF [Page: 111 of 144]

errnum = NOHCHK;
plportl.rxpnt = 0;
return;
>
/* Make all characters lower case */
for (i=0;i<22;i++) plportl.rxbuff[il = tolower(piport).rxbufflil);
if (plportl.rxbuff[0] != 7/[’) {
rxtype = BAD_MESSAGE;
errnum = NOOPEN;
plport]l.rxpnt = 0;

/* No opening bracket */

return;
3
if (plportl.rxbuff{53 t= 7>7) (
rxtype = BAD_MESSAGE; /* No separator */
errnum = NOSEPR;
pIportl.rxpnt = 0;
return;
>

if (plportl.rxbuffl101 t= ;) (

rxtype = BAD_MESSAGE; /* 1st ;! separator missing */

errnum = NOSEM1;
plportl.rxpnt = 0;
return;

>

if (plportl.rxbuffl17] 1= 7;!) {

rxtype = BAD_MESSAGE; /* 2nd ;! separator missing */

errnum = NOSEMZ2;
plportl.rxpnt = 0;

return;
b
if (plportl.rxbuff[21] 1= r17)
rxtype = BAD_MESSAGE; /* No closing bracket */
errnum = NOCLOS;
plportl.rxpnt = 0;
return;
>

rxfrom = station(&plportl.rxbuff[11);
if (rxfrom == BAD_STATION) {

rxtype = BAD_MESSAGE; /* Unrecognized from station */

errnum = BADFRM;
strncpy(errpar,&plport] .rxbuff[1],LENSTN);
errpar[LENSTN] = 7\0’;
piportl.rxpnt = 0;
return;
)} else if (rxfrom {= plport].dest) {

rxtype = BAD_MESSAGE;
errnum = WRGFRM;

/* 'from’ station does not */
/* match link destination */

strncpy(errpar , &plport] .rxbuff{1] ,LENSTN);
errpar [LENSTN] = 7\0/;
piportl.rxpnt = 0;
return;
}
rxto = station(&plport].rxbuff(6l);
if (rxto == BAD_STATION) {
rxtype = BAD_MESSAGE;
errnum = BADTO;
strncpy(errpar,&plportl .rxbuff{6] ,LENSTN);
errpar [LENSTN]I = /\0’;
plport]l.rxpnt = 0;
return;
) else if (rxto != sfrom) {
rxtype = BAD_MESSAGE; /* 'to’ station does not %/
errnum = WRGTO; /* match local station */
strncpy(errpar,&pfport] .rxbuff {61 ,LENSTN);
errpar [LENSTN] = '\0‘;
plportl.rxpnt = 0;

102

/* Unrecognized ’to’ station */

COM.C

P148873.PDF [Page: 112 of 144]

COM.C

return;
>
rxtype = messtype(&plportl.rxbuffi11]);
if (rxtype == BAD_MESSAGE) {
rxtype = BAD_MESSAGE; /* Unrecognized message type */
errnum = BADTYP;
strncpy(errpar,&plport] .rxbuff {11] ,LENMSG);
errpar [LENMSG] = /\0’;
plportl.rxpnt = 0;
return;
b
if ((tolower(pIport].rxbuff(181)1='x’) }}
(tolower(plportl.rxbuff[191)1="x7)) (
/7* Only check checksum if field is not 'xx’/ or XX/ */
if ((lisxdigit(plportl.rxbufff(183)) }|
(lisxdigit(plportl.rxbuffl191))) (
rxtype = BAD_MESSAGE; /* Checksum isn’t hexadecimal */
errnum = ILCHAR;
plportl.rxpnt = 0;

return;
b
sscanf(&p[port] .rxbuff[18],"%42x",&sndchk); /* Get tx checksum */
chk = 0; /* Compute receive checksum */

for (i=0;i<plport].rxpnt;i++) if ((i<18) || (i>20))
: chk += plport].rxbufflil;

chk &= OxFF; .

if (chk t= sndchk) {

rxtype = BAD_MESSAGE; /* Checksum doesn’t match */
errnum = BADCHK;
errval = chk;
plport].rxpnt = 0;
return;
3)
b
if (plportl.rxpnt < 24)
rxdatal0} = ’\0/; /* <24 chars => no data field */
) else {
strcpy(rxdata,&plport].rxbuff[23]); /* Get data field, skip blank */
b
piport].rxpnt = 0; /* Reset receive buffer pointer */
return;
>
/* */
/* prtmatch */
r* */
/* Description: Determines the port by matching a string with valid values */
/* COM1-9 are normal. COMA is used instead of “COM10" to ensure */
/* a constant length field. AUX is a synonym for COM1. */
/* */
/* Returns: (int) Port number (1=COM1, 10=COMA) If no match */
’* is found, 0 is returned */
/* In: (char *string) Pointer to port string */
/* out: - ¥/
/* .. */
int prtmatch(char *string)
L4
int i; /* Integer index variable */
char t[220]; /* Temporary string variable */
strepy(t,string); /* Copy string to temp, remove ’:’ if there */

i = strien(t);
if (tli-11==':7) tli-11 = ’\0’;

103

for (i=0;i<NPORT;i++) if (strcmp(t,prttitlil)==0) break;

COM.C

if (i == NPORT) return 0; /* No valid match was found */

if (i == NPORT-1) return 1; /* 'AUX’ is changed to 'COM1/ */ -

return i+1; /* Return port number */
>
7* */)
r/* read_config */
r* */
/* Description: Read the configuration file to set up the port */
Vid usage and stations names. Sets up the serial structure "“s* */
/* for any given tink "i" with “sfil.to" as the destination */
/* station, ®"s[il.port" as the port number and "s[i].set" as the */
/* serial port settings (baud rate etc). "nd" contains the */
r/* of links. Also sets up the port structure “p" for any given */
/* port "port" with "p[port].dest" as the destipation station. */
/* */
/* Returns: (int) 0 if config file is ok,1 if an error occurred */
/* In: - */
/* Out: - */
/* .. */
int read_config(void)
{

int i; /* Integer index variable */

int baud; /* Baud rate */

int parity; /* Parity */

int stop; /* Number of stop bits */

int bits; /* Number of bits per character */

int dtype; /* Keyword type number */ +

int state; /* State of the configuration file processor */

int itimeout; /* Number of seconds before timeout */

int consecut; /* Number of consecutive errors allowed before exit */

char parm{[220]; /* string parameter for the keyword */

nl = 0;

lstlinel[0] = /\0’;

nd = 0;

bd_type = 1;

if ((sercfg=fopen(cfgnam,®rit)y == NULL) { /* Open configuration file */

printf("Cannot open %s\n",cfgnam);
return 1;

2}

state = START;

while ((dtype=cfgline(parm)) != ENDFILE) {
switch (state) {

/* Start state - waiting for FROM to specify local station */

case START:

if (dtype == FROM) { /* FROM keyword */
if ((sfrom=stnmatch(parm)) == BAD_STATION) (

cfgerror(“Unrecognized FROM station);
return 1;

)

state = FROM_OK;

) else if (dtype == ERRLINE) { /* Unrecognized line */

cfgerror(“Unrecognized definition");

return 1;

) else { /* Keyword other than FROM */
cfgerror(“Found a definition not preceeded by FROM");
return 1;

>

break;

/* From OK state - waiting for TO/LOW_LEVEL to intro link */

case FROM_OK: .
maxerr = DEFMAX;

104

P148873.PDF [Page: 114 of 144]

s [nd] .port = NOPORT; /* Set default link values */

baud = B9600;

parity = MOPAR;

stop = STOP1;

bits = BITSS;

itimeout = DEFTIME;

consecut = DEFCONSEC;

if (dtype == T0) { /* High-level Llink */
if ((slnd].to=stnmatch{parm)) == BAD_STATION) {

cfgerror(“Unrecognized TO station®);

| return 1;
>
state = INTRO_OK;
) else if (dtype == LOW_LEVEL) (/* Low level link */

if ((sind].to=lowindex(parm)) == BAD_STATION) {
cfgerror(Low level port name not unique");
return 1;
}
state = INTRO_OK;
)} else if (dtype == BOARD_TYPE) { /* Specify board type */
if (strcmp(parm,"digiboard®)==0) (
bd_type = DIGIBOARD;
) else if (strcmp(parm,“standard")==0) {
bd_type = STANDARD;

) else {
cfgerror(“Unrecognized board type");
return 1;
>
)} else if (dtype == MAX_ERROR) { /* Maximum errors */

sscanf(parm, "%d" ,&maxerr);
if ((maxerr < 1) }} (maxerr > 30000)) {
cfgerror("Maximum errors must be in range 1-30000%);
return 1;
>
break;
} else if (dtype == ERRLINE) (/* Unrecognized line */
cfgerror("Unrecognized definition");
return 1;
) else € /* Other keywords */
cfgerror(*Comm parameters without TO or LOW_LEVELY);
return 1;
>
break;
/* Intro OK - waiting for comm parameters or another intro */
case INTRO_OK:
switch (dtype) €

case ERRLINE: /* Unrecognized line */
cfgerror("Unrecognized definition");
return 1;

case FROM: /* Extra From */
cfgerror(“Multiple FROM definitiont);
return 1;

case BOARD_TYPE: /* Bd type misplaced */
cfgerror("Board type definition must follow FROM");
return 1;

case MAX_ERROR: /* Max err misplaced */
cfgerror("Maximum error must follow FROM");
return 1;

case TO:

case LOW_LEVEL: /* Another link intro */

if (sInd]l.port == NOPORT) { /* PORT= is missing */
cfgerror("No PORT definition found");
return 1;

3

s[nd] .set = baud + parity + stop + bits;

plsind] .port]l.dest = sindl.to;

105

COM.C

case PORT:

case STOP:

P148873.PDF [Page: 115 of 144]

plsIndl.portl.time = (int)(itimeout * 16.66);
plsnd].portl.max = consecut;
nd++;
if (nd >= MAXCOM) (
cfgerror("Maximun number of ports exceeded");
return 1;
>
s[nd].port = NOPORT; /* Set default parameters */
baud = B9600;
parity = NOPAR;
stop = STOP1;
bits = BITSS;
itimeout = DEFTIME;
consecut = DEFCONSEC;
if (dtype == T0) (/* High-level link */
if ((snd].to=stnmatch(parm)) == BAD_STATION) (
. cfgerror{"Unrecognized TO station");
return 1;
3
} else { /* Low-level link */
if ((sIndl.to=Lowindex(parm)) == BAD_STATION) {
cfgerror("Low level port name not unique");

return 1;
}
}
state = INTRO_OK;
break;

if ((sind].port=prtmatch(parm)) == 0) {
cfgerror("Unrecognized port type");
return 1;

>
if(nd>0) € /* Check port not already use */

for (i=0;i<nd;i++) (
if (sind].port == s[il.port) {
cfgerror("Redefinition of serial port");
return 1;

>
)
break;

case BAUD: /* Define baud rate */

if ((baud=baudmatch(parm)) == 0) (
cfgerror("Unrecognized baud rate");
return 1;

>

break;

case PARITY: /* Define parity */

if (strcmp(parm,*none*)==0) {
parity = NOPAR;

)} else if (strcmp(parm,“even™)==0) {
parity = PAREVN;

} else if (strcmp(parm,odd")==0) (
parity = PARODD;

) else {
cfgerror(™Unrecognized parity");
return 1;

}

break;

if (strcmp(parm,®1")==0) {
stop = STOP?;

} else if (strcmp(parm,™i.5%)==0) {
stop = STOP1;

) else if (strcmp(parm,"2")==0) {
stop = STOP2;

106

COM.C

/* Define COM port to be used */

/* Define number of stop bits */

P148873.PDF [Page: 116 of 144]

) else {
cfgerror("Unrecognized stop bits");
return 1;
}
break;
case BITS: /* Define bits per character */

if (stremp(parm,"5")==0) {
bits = BITS5;

) else if (strcmp(parm,"6")==0) {
bits = BITS6;

} else if (strcmp(parm,"7'")==0) {
bits = BITS7;

) else if (strcmp(parm,"8%)==0) (
bits = BITSS8;

) else
cfgerror{"nrecognized bits/character");
return 1;
b
break;
case TIMEOUT: /* Set timeout */

sscanf(parm, "X4d",&itimeout);
if (Citimeout < 1) |} (itimeout > 100)) ¢
cfgerror("Timeout must be in range 1-100");
return 1;
>
break;
case CONSECUTIVE: /* Maximum errors */
sscanf(parm, "%d", &consecut);
if ((consecut < 1) |} (consecut > 10000)) (
cfgerror(!Consecutive errors must be in range 1-10000");
return 1;
>
break;
)
break;
3
b
switch (state) {
case START:
cfgerror("No FROM definition found"); -
return 1;
break;
case FROM_OK:
break;
case INTRO_OK:
if (sind].port == NOPORT) { /* PORT= missing */
cfgerror("No PORT definition found for last TO");
return 1;
>
sind) .set = baud + parity + stop + bits;
plsindl.port].dest = sindl.to;
plsind]l.portl.time = (int)(itimeout * 16.66);
plsind] .port]l.max = consecut;

nd++;
break;
>
fclose(sercfg); /* Close file */
return 0;
>
I* */
1* sendack */
/* */
/* Description: Sends an ack/ACK of the appropriate case to the port :;
/*

107

COM.C

P148873.PDF [Page: 117 of 144]

/* Returns: - */
/* In: ¢int) Port number (1=COM1, 10=COMA) */
/* out: - */
/* .. */

void sendack(int port)
<

if (plportl.rxack == 0) {
sendstr(port, “ack\r\n");
) else
sendstr(port, "ACK\r\n");

>

plportl.rxack *= 1; /* Toggle case for next ack/ACK */

return;
>
r* w*/
/* sendnak */
r* */
/* Description: Sends a nak to the port */
* */
/* Returns: - */
/* In: ¢int) Port number (1=COM1, 10=COMA) */
/* Out: - */
/* .. % /

void sendnak(int port)

sendstr(port,"nak\r\n");

return;
)
™ %/
r* sendstr */
/* */
/* Description: Sends a string to the port */
/* Returns: - */
/* In: ¢int) Port number (1=COM1, 10=COMA) */
/* (char *string) Pointer to string to be sent */
/* Out: - */
/* .. */
void sendstr(fnt port,char *string)
<

int i; /* Integer index variable */

for(i=0; i<strien(string); i++) write_ser(port,stringlil);

return;
3
Ad */
/* station */
I* */
/* Description: Determines the station number by matching a string with valid */
/* values. Only the number of characters in the from/to field */
I* are checked (LENSTN). */
7% */
/* Returns: ¢int) Station number. If the string is not */
* recognized, it returns BAD_STATION */
/* 1In: (char *string) Pointer to string with station name */
/* Out: - */
/* .. */

COM.C

P148873.PDF [Page: 118 of 144]

int station(char *string)

<

int 1,j; /* Integer index variables */

for{i=0; i<NSTATION; i++) (/* Match only LENSTR characters */

for(j=0; j<LENSTN; j++) if (string[j] != stnnam[il[j]1) break;
if (j == LENSTN) return i; /* Match found */

)

return BAD_STATION;
b
/* */
/* stnmatch */
/* */
/* Description: Determines the station number by matching a string with the */
/* valid long station names (used in configuration file). */
/* */
/* Returns: ¢int) Station number. If the string is not */
7* recognized, it returns BAD_STATION */
/* In: (char *string) Pointer to string with long station name */
/* Out: - */
/* .. */
int stnmatch(char *string)
{

int i; /* Integer index variable */

for (i=0;i<NSTATION;i++) if (strcmp(string,stntit[il)==0) break;

if (i == NSTATION) return BAD_STATION; /* No match found */

return i;
b
™ */
r* strip */
r/* */
/* Description: Removes trailing and leading blanks from a string */
/* . */
/* Returns: - */
/* In: (char *string) Pointer to string to be stripped of blanks */
/* out: (char *string) Pointer to string that has been stripped */
/* .. */

void strip(char *string)

int i; /* Integer index variable */
char t[220]1; /* Temporary working string */

/* Check (from beginning) for non-blank character */
for (i=0;i<strien(string);i++) if (!isspace(stringlil)) break;

if (i == strlen(string)) { /* Blank string */
stringf0] = "\0’;
return;

>

strepy(t,&stringlil); /* Remove leading spaces */

/* Check (from end) for non-blank character */
for (i=strlen(t)-1;i>0;i--) if (lisspace(stringlil)) break;
strncpy(string,t,i+1); /* Remove trailing spaces */
stringli+1] = ’\0/;
return;

109

COM.C

P148873.PDF [Page: 119 of 144]

110

Appendix E

Real-time Software Listing
1. Introduction

In this appendix, the assembly language file SERTAL.ASM is listed. This file includes all of the
real-time software used by the communications software. This appendix does not cover the C-language
portion of the communications software which are given in the Appendix D - Communications Software
Listing.

Conversely if one stop bit is chosen for five bits per character, it is converted to 1.5 stop bits.
2. SERIAL.ASM

TITLE SERIAL.ASM
SERIAL_VERSION EQU "W02Jun93.01"

SERIAL .ASM - serial port handlers

- timer support

control-C and Break trapping

- critical error trapping to allow clean exit on Abort

g e ne we W ws
)

H
; *C’ Language Interface

PUBLIC _open_ser,_close ser,_stat_ser,_ver_ser, set_ser
PUBLIC _read ser, write ser

Serial Port Routines
int open_ser(int port,int type) Opens serial ‘port’,valid range is 1-10
for COM1-10. ‘type’ is 0 for standard
port addresses, 1 for Digiboard.
Returns 0=0K, 1=port out of range

int close_ser{int port) Close serial ’port’, valid range is 1-10
returns 0 for OK,1 for port out of range
int stat_ser(void) Returns composite status of ports. See
the equates for status bit definitions
char *ver_ser(void) Returns string showing version number.
int set_ser(int port,int parm) Sets baud rate, bits, stop and parity

See equate for definitions of bits in
fparm’. Valid ’port’ is 1-10.
Returns 0 = OK, 1 = port out of range

int read_ser(int port) Get character from ’‘port’, valid range
is 1-10. Returns character, -1 for no
char avail or -2 for ‘port’ out of range

int write_ser(int port, int ich) Sends ’ich’ to ’‘port’, valid range 1-10
Returns 0 = 0K, 1 = port out of range

MU NE N M Mg W g WP WP Mg Mg WA N W WO Ne WE g Ma Mg s W N %e wa W

PUBLIC _open_time,_close_time,_set_time,_chk_time
; Timer Support Routines

void open_time(void) Initializes and enables all countdown timers

111

P148873.PDF [Page: 121 of 144]

void close_time(void) Disables all countdown timers

int set_time(int timer, int tick) Sets countdown ’timer’ to value ‘tick’
'Tick’ units = 1/16.7s Valid ’'timer’

TR TR TR TP N T TR T

"timer’ out of range

PUBLIC _open_break,_close_break, press_break

Control-C and Break Handling Routines

H void open_break(void) Initializes and enables Cntl-C/Break handler

i

; void close_break(void) Restores system Cntl-C/Break handler

; int press_break(void) Returns non-zero if Cntl-C/Break pressed since

Last call otherwise returns 0

PUBLIC _open_crit,_close crit

Critical Error Handling Routines
void open_crit(void) Enables critical error handler. This allows
a clean exit if Abort is chosen

®a mg wg wp Ny

void close_crit({void) Restores system critical error handler

.MODEL SMALL

is 0-10. Returns 0=0K, 1=out of range

int chk_time(int timer) Returns value of countdown ‘timer’. Valid range
0-10. Returns 0 when countdown complete, -1 if

Argl EQU [BP+4] ; [BP+6] for large model
Arg2 EQu [BP+6] ; [BP+8]

; -

H Common Declarations

MINCOM EQU com1t ; Range of COMs to shut down if Abort is
MAXCOM EQU COMA ; chosen in critical error handler
H

NO EQU 0 Interrupt initialized flag values

YES EQU 1

NORMAL EQU 0 ; Return values for routines

ERROR EQU 1 ; (not valid for read ser and chk_timer)
H

: Serial Port Handler

; Valid COM ports (see MINCOM and MAXCOM above)

CcoM1 EQu 1
coM2 EQU 2
COoM3 EQU 3
COM4 EQU 4
COM5 EQU 5
coMé EQU 6
coM7 EQU 7
COoM8 EQU 8

112

'SERIAL.ASM

; Definitions for the 8259 interrupt controller

COM9 EQU 9
COMA EQU 10
OCw EQU 20h
EOI EQU
IMR EQU 21h
; Port offsets for UART
S_RXD EQU 0
S_TXD EQU]
S_DLsSB EQU 1]
S_DMSB EaQu 1
S_IER EQU 1
DISINT EQU
ENRXD EQU
ENTXD EQU
ENBRK EQU
ENCTL EQU
S_IIR EQU 2
CTLINE EQU
NOINTS EQU
TXDRDY EQU
RXDRDY EQU
BREAKE EQU
VALBIT EQU
S_LCR EQU 3
BITS EQU
BITé EQU
BIT7 EQU
BIT8 EQU
STOP1 EQU
STOP2 EQU
PARNO EQU
PARODD EQU
PAREVN EQU
PAROD EQU
PAR1 EQU
BRKOFF EQU
BRKON EQU
DLAB EQU
S_MCR EQU 4
DTR EQU
RTS EQU
ouT1 EQU
ouT2 EQU
LOOPBK EQU
S_LSR EQU 5
RXREDY EQU
OVERUN EQU
PARITY EQU
FRAME EQU
BREAK EQU
TXREDY EQU
TXSRDY EQU
S_MSR EQU 6
DELCTS EQU
DELDSR EQU
FALRI EQU
DELCD EQU
CTs EQU
DSR EQU
RI EQU
(0] EQU

2

20h

registers

00000000b
00000001b
00000010b
00000100b
00001000b

00000000b
00000001b
00000010b
00000100b
00000110b
00000111b

00000000b
00000001b
00000010b
00000011b
00000000b
00000100b
00000000b
00001000b
00011000b
00111000b
00101000b
00000000b
01000000b
10000000b

00000001b
00000010b
00000100b
00001000b
00010000b

00000001b
00000010b
00000100b
00001000b
00010000b
00100000b
01000000b

00000001b
00000010b
00000100b
00001000b
00010000b
00100000b
01000000b
10000000b

-
s
.
r
»
,

LIRE TR T YT

-

Control
Nonspec
Interry

Receive
Transmi
Baud ra
Baud ra
Interruy

IR TR

Interru

«ma me we wa wy

-

Line co

.
I

Modem

ws Se wE wENe () v 1w

Line st

VR DR T VI Y T

Modem

wa me wg ws mewg wy w

word register
ific end-of-interrupt
pt mask register

data register (R,DLAB=0)

t data register (W,DLAB=0)
te divisor LSB (W,DLAB=1)
te divisor MSB (W,DLAB=1)
pt enable register (DLAB=0)
Disable all interrupts
Enable Rx data interrupts
Enable Tx empty interrupts
Enable Break/Error ints
Enable Control line ints
pt identification register
Control line int

No interrupts occurred

Tx empty interrupt

Rx data interrupt
Break/Error interrupt
Valid bit mask

ntrol register

Number of bits/character

Number of stop bits
Parity (none)
Odd

Even

Force 0

Force 1

Disable break

Send break

Controls divisor (addr 0/1)
ontrol register

Set Data Terminal! Ready

Set Request To Send

Set out 1 (reset Hayes modem)
Set out 2 (enable interrupts)
Set loopback mode

atus register

Rx data character available
Overrun error

Parity error

Framing error

Break received

Tx hold register empty

Tx shift register empty
tatus register

Change in CTS line

Change is DSR line

Falling edge of Rl line
Change in CD line

State of CTS Lline

State of DSR line

State of RI line

State of CD line

e wu w2 W

Status bits for variable stat - returned by stat_ser()

113

SERIAL.ASM

P148873.PDF [Page: 123 of 144]

INVINT EQU 00000001b
HANDSK EQU 00000010b
BRKERR EQU 00000100b
RXOVER EQU 00001000b
TXOVER EQU 00010000b
TXFULL EQU 00100000b

; Rx and Tx buffer definistions
BSIZE EQU 512

BFLOW EQU BSIZE-4
-DATA

s_base DW ?

stat DW 0
eoi_cnt DW 0

bas_tbl LABEL WORD

DW 03F8h

DW 02F8h
bas_¢3 DW 0100h
bas_c4 DW 0108h

DW 0110h

DW 0118h

DwW 0120h

bW 0128h

bW 0130h

bW 0138h
t_tbl LABEL WORD

DW 2

DW 0
t_c3 DW 0
t_cé4 DW 0

DW 0

DW 1]

DW]

Dy 0

DW 0

DW 0
use_tbl LABEL WORD ; Table

bW NO

DW NO

DW NO

bW NO

DW NO

DW NO

DW NO

DW NO

DW NO

DW NO
cnt_tbl LABEL WORD ; Table

DW 0

DW 0
off_tbl LABEL WORD : Table

bW ?

bW ?
seg_tbl LABEL WORD ; Table

DW ?

bW ?

s W s Ny we Wy

- we

me we we

-
,

e ma W wE W Wa s Wy wa W

-
.
’
-
’
.
’

Interrupt called, int bit not set (4 D]
Handshaking line change 2)
Error or break occured 4)
Receive buffer overflow (8)
Transmit buffer overflow (16)

Transmit buffer not empty, valid only (32)
on return from stat_ser()

Buffer size
Overflow point for buffer

Base address of serial port
Status
Number of EOls in the isr

Serial port base addresses

; CoM1
; COM2
s COM3
;s COM4
; COM5
: COMS
; COM7
; COM8
; COM9
; COMA
Translation table: serial port -> IRQ
; COM1, IRQ4
; COM2, IRQ3
; COM3, IRQ3
; COM4, IRQ3
; COM5, IRQ3
; COMS, IRQ3
; COM7, IRQ3
; coM8, IRQ3
; COM%, IRQ3
; COMA, IRQ3
for flags to indicate port in use
coM1
coM2
coM3
COM4
COM5
COM6
CoM7
coMs
COoM9
COMA
to count number of ports using IRQs
IRQ3
IRQ4
of offsets for old vectors
IRG3
IRQ4
of segments for old vectors
1RQ3
1RQ4

114

SERIAL.ASM

P148873.PDF [Page: 124 of 144]

SERIAL.ASM
eoi_flg LABEL WORD ; Table of flags for eoi services
DW 0 ; IRQ3
DW 0 ; IRQ4
rx_put LABEL WORD ; Receive buffer put pointers
DW rx1_buf ; COM1
DW rx2_buf ; coM2
DW rx3_buf ; COM3
DW rx4_buf ; COM4
bw rx5_buf ; COM5
DW rx6_buf ; COM6
DW rx7_buf ; CoM7
DwW rx8_buf ; coM8
DW rx9_buf ; COM9
DW rxa_buf ; COMA
rx_get LABEL WORD ; Receive buffer get pointers
DW rx1_buf ; CoM1
DwW rx2_buf ; COM2
DW rx3_buf ; COM3
DW rx4_buf ; COM4
DW rx5_buf ; COM5
bW rxé6_buf ; CoM6
DW rx7_buf ; CoM7
DW rx8_buf ; CoM8
DW rx9_buf ; COM9
DW rxa_buf ; COMA
rx_cnt LABEL WORD ; Receive buffer character counts
DW 0 ; COM1
DW 0 ; COM2
DW 0 ; COM3
DW 0 ; COM4
DW 0 ; COM5
DW 0 ; COM6
DW 0 ; CoM7
DW 0 ; coM8
DU 0 ; COM9
bW (] ; COMA
rx_beg LABEL WORD ; Pointer to beginning of receive buffer
bW rx1_buf ; CoM1
DW rx2_buf ; CoM2
DW rx3_buf ; COM3
DW rxé4_buf : COM4
DW rx5_buf ; COM5
DW rx6é_buf ; CoM6
DW rx7_buf ; CoM7
DW rx8_buf ; CoM8
bW rx9_buf ; COM9
bW rxa_buf ; COMA
rx_end LABEL WORD ; Pointer to end of receive buffer
bW rx1_lst ; coml
buW rx2_ist ; CoM2
oW rx3_ist ; COM3
DW rx4_List ; COM&
Dk rx5_lst ; COM5
DW rx6_Llst ; CoM6
bW rx7_Lst : CoM7
DW rx8_lst ; CoM8.
DW rx9_lst ; COM9
DW rxa_lst ; COMA
tx_put LABEL WORD ; Transmit buffer put pointers
DW tx1_buf ; Com1

115

P148873.PDF [Page: 125 of 144]

tx_get LABEL

tx_cnt LABEL

tx_beg LABEL

tx_end LABEL

tx2_buf
tx3_buf
tx4_buf
tx5_buf
tx6_buf
tx7_buf
tx8_buf
tx9_buf
txa_buf

WORD

tx1_buf
tx2_buf
tx3_buf
tx4_buf
tx5_buf
tx6_buf
tx7_buf
tx8_buf
tx9_buf
txa_buf

WORD

COO0OO0CO0OO0O00O0O

WORD

tx1_buf
tx2_buf
tx3_buf
tx4_buf
tx5_buf
tx6_buf
tx7_buf
tx8_buf
tx9_buf
txa_buf

WORD

tx1_lst
tx2_lst
tx3_ist
tx4_Lst
tx5_Lst
tx6_Lst
tx7_Lst
tx8_lst
tx9_Lst
txa_lst

; Receive buffers

rx1_buf DB
rx1_tst EQU
rx2_buf DB
rx2_lst EQU
rx3_buf DB
rx3_Llst EQU
rx4_buf DB

BSIZE DUP (?)
:SIZE DUP (?)
:SIZE buP (?)
:SIZE puP (?)

IR YR IR TEIRT]

: Transmit buffer get pointers

-e

ma % Mg Wy We Wy me My W

; Transmit buffer character counts

R TR TE T T TR

; Pointer

e M ne ma %a e by Ny % W

; Pointer

e Wa wE We wmg WE Wy wp W Ny

-e -e -y

-

coM2
coM3
CoM4
CoM5
coMé
coM7
coms
coM9
COMA

comi
comz2
coM3
CoMé
COM5
coMé
coM7
coMs
coM9
COMA

coM1
comz
coM3
CoM4
CoM5
COM6
coM7
COM8
COM9
COMA

to beginning of transmit buffer

coMm1t

coM2 -

coM3
coM4
COM5
CoM6
COM7
comg
COM9
COMA

to end of transmit buffer

COM1
coM2
COoM3
coM4
coM5
COMé6
COM7
coM8
CoM9
COMA

coM1

comM2

CcoM3

CoM4

116

'SERIAL.ASM

P148873.PDF [Page: 126 of 144]

rxé_Lst
rx5_buf
rx5_Lst
rx6_buf
rxé_Llst
rx7_buf
rx7_Lst
rx8_buf
rx8_1st
rx9_buf
rx9_Llst
rxa_buf
rxa_lst

; Transmit buffers

tx1_buf
tx1_Lst
tx2_buf
tx2_lst
tx3_buf
tx3_Llst
txé_buf
tx4_lst
tx5_buf
tx5_Lst
txé_buf
txé_lst
tx7_buf
tx7_Lst
tx8_buf
txB_Ist
tx9_buf
tx9_Lst
txa_buf
txa_lst

.CONST
ver_str
isr_vec

baud_dv

sbas_c3
sbas_cé4

st_c3
st_cé4

get_tbl

put_tbl

SERIAL_VERSION,O

EQU s

DB BSIZE DUP
EQU $

D8 BSIZE DUP
EQU $

[2]:3 BSIZE DUP
EQU $

DB BSIZE DUP
EQU $

b8 BSIZE DUP
EQU $

DB BSIZE DUP
EQU $

DB BSIZE DUP
EQU $

DB BSIZE DUP
EQU $

DB BSIZE DUP
EQU $

DB BSIZE DUP
EQU s

DB BSIZE DUP
EQU $

DB BSIZE DUP
EQU s

D8 BSIZE DUP
EQU $

DB BSIZE DUP
EQU S

DB BSIZE DUP
EQU $

DB BSIZE DUP
EQU s

DB

DD ser_int
LABEL WORD

bW 0417h

DW 0300h

DW 0180h

DW 00CCh

bW 0060h

DW 0030h

DW 0018h

DW 000Ch

DW 03E8h

DW 02E8h

DW 2

DW 0

LABEL WORD

DW 3508h

DW 350ch
LABEL WORD

DW 250Bh

DW 250Ch

(?)
(?)
?)
?)
(?)
?)

D)
?)
)
(?)
?)
(?)
(?)
(?)
7
()

’

[

~e

~e

LYY

-e - - LY LY - ~s - .

Baud rate divisor table

we WMo nE WE We ws wg Wy

Standard COM port definitions

-
r
-
r

Standard COM IRQ definitions

-
r
I

Serial port ISR "get vector" commands

-
T
-
T

Serial port ISR "put vector® commands

-
r
-
’

COM5
COoM6
CoM7
CoM8

COM?

CoM1

coM2

CoM4
COM5

COMé

comg
CcoM9

COMA

Version number string

Pointer to

110 bps
150 bps
300 bps
600 bps
1200 bps
2400 bps
4800 bps

9600 bps

CoM3
coMs

COM3, IRQ4
COM4, IRQ3

IRG3

IRG3
IRQ4

1SR

117

SERIAL.ASM

P148873.PDF [Page: 127 of 144]

dis_tbl LABEL WORD

DW 00001000b ; IRQ3
bW 00010000b ; IRQ4
en_tbl LABEL WORD ; 8259 masks to enable serial interrupts
DW 11110111b ; IRQ3
DW 11101111b ; IRQ4
eoi_tbl LABEL WORD ; 8259 specific end-of-interrupts
DW 63h ; IRQ3
DW 64h ; IRQ4
.CODE
_open_ser PROC NEAR ; Install serial port ISR
PUSH BP
MOV BP,SP
PUSH ES
PUSH DS
MOV AX,DGROUP
MoV DS, AX
MOV ES,AX
MOV BX,Argl : Get port number passed by C
MOV AH,Arg2 ; Get configuration passed by C
cMP BX,MAXCOM ; Check to see if it is within range
JLE os1
JMP oserr
os1: cMP BX,MINCOM
JGE os2
JMP oserr
os2: cMpP AH,0 ; If standard type, reassign COM3/4 addresses
JNE os3 : and IRQs over the Digiboard ones
Mov AX,sbas_c3
MOV bas_c3,AX
MOV AX,sbas_cé4
Mov bas_cé,AX
MOV AX,st_c3
MoV t_c3,AX
MoV AX,st_cé&
MoV t_ch ,AX
0s3: DEC BX ; Convert port number to table pointer
SAL BX, 1
CLI ; Disable interrupts while changing vectors
MoV AX,use_tbl[BX] ; Check to see if it is already open
CMP AX,NO
JE osé
JMP oserr
0s4: MOV use_tbl [BX],YES ; Set used flag
MOV AX,bas_tbl [BX] ; Set up serial port base address
MoV s_base, AX
MoV AL, ENRXD+ENTXD+ENBRK+ENCTL ; Enable all interrupts
MoV DX,S_IER
ADD DX,s_base
ouT DX, AL
clrdat: MOV DX,S_IIR ; Clear junk from UART
ADD DX,s_base
IN AL,DX ; Check for unserviced interrupts
MOV AH,AL
TEST AL NOINTS
JNZ clrok
cMP AH,CTLINE : If control line interrupt pending
JNE os5 ; then read MSR to clear it
MoV DX,S_MSR
ADD DX,s_base
IN AL,DX
os5: CMP AH, TXDRDY : 1f Tx empty interrupt pending

~s

8259 masks to disable serial interrupts

118

SERIAL.ASM

P148873.PDF [Page: 128 of 144]

SERIAL.ASM
JNE osé ; then do nothing
osé: CMP AH, RXDRDY ; If Rx data interrupt pending
JNE os7 ; then read data

MOV DX,S_RXD
ADD DX, s_base
IN AL,DX

0s7: CMP AH,BREAKE ; If Break/Error interrupt pending
JNE clrdat ; then read LSR to clear it
MoV DX,S_LSR
ADD DX,s_base
IN AL,DX

JMP clrdat

clrok: Mov AL, ,DTR+RTS+0UT2
MOV DX,S_MCR
ADD DX,s_base
ouT DX, AL
MoV AL ,ENRXD+ENTXD
MoV DX,S_IER
ADD DX,s_base
ouTt DX,AL
Mov AX, t_tbl [BX]
Mov BX,AX
MoV AX,cnt_tbl [BX]
INC cnt_tbl [BX)

Check for more pending interrupts
Set all handshaking lines

“-s me

Enable Rx and Tx interrupts

~

Translate port number to IRQ number

See if IRQ is already initialized

-s

CMP AX,0
JG osok
MoV AX,get_tblLIBX] ; Get old interrupt vector
PUSH BX
INT 21h
MoV AX,BX
pop BX
MoV off_tblIBX]1,AX ; Save for restoring later
MOV seg_tbl [BX]1,ES
PUSH DS
MOV AX,put_tbL[BX] ; Put in new int vector
LDS DX, isr_vec ; DS:DX point to new ISR
INT 21h
pop DS
IN AL, IMR ; Enable 8259 PIC
AND AL,BYTE PTR en_tbl [BX]
ouT IMR,AL
MOV AL,EOI ; Send out an EOI to clear it
ouT OCW,AL
osok: MOV AX,NORMAL ; Normal return
JMP SHORT osdone
oserr: MOV AX,ERROR ; Error return
osdone: STI ; Re-enable interrupts
POP DS
POP ES
MoV SP,BP
pPoP BP
RET

_open_ser ENDP

_close_ser PROC NEAR ; Remove serial port ISR

PUSH BP

MOV BP,SP
PUSH ES

PUSH DS

MOV AX,DGROUP
MoV DS, AX

MOV ES,AX
MOV BX,Arg1
CMP BX,MAXCOM
JLE cs1

Get port number passed by C
Ensure it is within range

.
£
.
L

119

P148873.PDF [Page:

JMP
csl: CMP
JGE
JMP
cs2: DEC
SAL
MOV
MOV
CMP
JE
JMP
cs3: MOV
MOV
MOV
MOV
DEC
JNZ
IN
OR
ouTt
MOV
MOV
ADD
ouUT
Mov
MOV
MoV
MOV
INT
csok: MOV
JMP
cserr: Mov
csdone: POP
POP
Mav
POP
RET
_close_ser ENDP

_stat_ser PROC NEAR

PUSH
MoV
PUSH
PUSH
MoV
MoV
MOV
MOV
OR
MoV
DEC
SAL
sal: cMP
JNE
suB
JGE
XOR
sa2: AND
POP
POP
MoV
POP
RET
_stat_ser endp

129 of 144]

cserr
BX,MINCOM

cs2

cserr

BX

BX, 1
AX,use_tbl [BX]
use_tbl [BX],NO
AX,YES

cs3

cserr
AX,bas_tbl [BX]
s_base, AX
AX,t_tbl [BX]
BX,AX

ent_tbl [BX]
csok

AL, IMR

; Convert port number to a table pointer

Get old value for used flag
Clear used flag
See if it was used before

s wy we

; Port wasn’t opened
; Get UART base address for port

; Translate port number to IRQ number

1f non-zero, do not disable IRQ
; Disable COM interrupts in 8259

: Decrease count of ports using this IRQ
H

AL,BYTE PTR dis_tbl [BX]

IMR,AL
AL,DISINT
bX,S_IER
bX,s_base

DX, AL
AX,put_tbl [BX]
DX,of f_tbl [BX]
CX,seg_tbl [BX]
DS,CX

21h

AX,NORMAL
SHORT csdone
AX,ERROR

DS

BP

BP,SP

ES

DS
AX,DGROUP
DS,AX
ES,AX
AX,stat
AX, TXFULL
BX,MAXCOM
BX

BX,1
tx_cnt{BX1,0
sa2

BX,2

sal

AX, TXFULL
stat,00H
DS

ES

SP,BP

BP

; Disable UART interrupts

; Restore original vector

; Normal return

; Error return

; Get serial port and buffer status

; Set transmitter buffers full flag
; Convert max port # to table offset

; Check to see if any tx buffer has data

Reset tx buffers full flag
Clear status for next catl

120

SERIAL.ASM

P148873.PDF [Page: 130 of 144]

_ver_ser PROC NEAR ; Returns string showing version number
PUSH BP
MoV BP,SP
PUSH ES
PUSH DS
MoV AX,DGROUP
Mov DS,AX
MoV ES,AX
Mov AX,OFFSET ver_str
POP DS
PoP ES
Mov SP,BP
popP BP
RET
_ver_ser endp
_set_ser PROC NEAR ; Set serial port paramenters
PUSH BP
Mov BP,SP
PUSH ES
PUSH Ds
MoV AX,DGROUP
Mov DS,AX
MoV ES,AX
MoV BX,Arg1 : Get port number passed by C
MoV AH,Arg2 ; Get configuration passed by C
CMP BX,MAXCOM ; Ensure port in range
JLE ss1
JMP sserr
ssi: CMP BX,MINCOM
JGE ss2
JMP sserr
ss2: DEC BX ; Convert port number to table pointer
SAL BX,1
MOV CX,bas_tbl [BX] ; Get base address of UART
Mov s_base,CX
MoV AL ,DLAB : Set DLAB bit to access divider regs
MOV DX,S_LCR
ADD DX,s_base
ouT DX,AL
MoV DL,AH ; Shift configuration to BAUD field
MoV cL,4
ROL DL,CL
AND DX,00001110b ; Mask out all other bits
MOV DI,OFFSET baud_dv
ADD DI,DX ; Convert to table pointer
MoV AL, [DI+1] ; Set high byte of divider
MOV DX,S_DMsB
ADD DX,s_base
out DX, AL
MoV AL, IDI] ; Set low byte of divider
MOV DX,S_DLSB
ADD DX,s_base
ouT DX,AL
MOV AL, AR ; Use rest of configuration to set LCR
AND AL,00011111b
MOV DX,S_LCR
ADD DX,s_base
ouT DX,AL
MOV AL ,ENRXD+ENTXD ; Enable Rx or Tx interrupts
MOV DX,S_1ER
ADD DX,s_base
ouT DX,AL
MOV AX,NORMAL ; Normal return
JMP SHORT ssdcne

121

SERIAL.ASM

P148873.PDF [Page: 131 of 144]

sserr: MOV AX,ERROR
ssdone: POP Ds
popP ES
MOV SP,BP
POP BP
RET
_set_ser ENDP
_read_ser PROC NEAR ; reads
PUSH BP
MoV BP,SP
PUSH ES
PUSH DS
Mov AX,DGROUP
MOV DS, AX
MoV ES,AX
MOV 8X,Arg1
CMP BX ,MAXCOM
JLE rsi
JMP rserr
rsl: CMP BX,MINCOM
JGE rs2
JMP rserr
rsa: DEC BX
SAL BX, 1
MoV DI, rx_get[BX]
cMp DI, rx_put [BX]
JE nodata
INC DI
(v, 1 DI,rx_end[BX]
JNE rs3
MOV DI, rx_beg[BX]
rs3: MOV AL, [DI]
MOV AH,0
MOV rx_get[BX1,DI
DEC rx_cnt [BX]
JMP SHORT rsdone
rserr: MOV AX,-2
JMP SHORT rsdone
nodata: MOV AX,-1
rsdone: POP DS
pPopP ES
MoV sP,BP
POP BP
RET

_read ser ENDP

_write_ser PROC

ws1:

Ws2:

PUSH
MoV
PUSH
PUSH
MoV
MOV
MoV
MoV
cMP
JLE
JMP
CMP
JGE
JMP
DEC
SAL

NEAR ; Write
BP

BP,SP

ES

DS
AX,DGROUP
DS, AX
ES,AX
BX,Argl
BX,MAXCOM
ws1

wserr
BX,MINCOM
wWs2

wserr

BX

BX,1

’

‘SERIAL.ASM

Error return

byte from serial port receive buffer

- ~e

~a

-

- me

-

Get port number passed by C

Ensure port is within range

Convert port to table pointer

See if character is available

Advance (with wraparound) get pointer DI

Get the character and clear upper byte

Save new get pointer
Reduce the buffer character count

Error return - port number out of range

Error return - no data available

char to serial port or tx buffer

’

Get port number passed by C
Ensure port within range

Convert port to table pointer

122

P148873.PDF [Page: 132 of 144]

MoV AX,bas_tbl [BX]
MoV s_base,AX
Mov DI, tx_put [BX]

CMP DI, tx_get [BX]

JNE sv_chr

MoV DX,S_MSR

ADD DX,s_base
AL, DX

AND AL,CTS+DSR
CMp AL,CTS+DSR
JNE sv_chr

e wa me we N w
—
=

MoV DX,S_LSR
ADD DX,s_base
IN AL,DX
TEST AL, TXREDY
Jz sv_chr
MoV AL,Arg2
MOV bX,S_TXD

ADD DX,s_base

out DX, AL

jmp SHORT wsok
sv_chr: MOV AL,Arg2

MoV [DI1, AL

INC DI

CMP DI, tx_end [BX]

JNE ws3

Mov DI, tx_beg[BX]
ws3: MOV tx_put [BX],D1

INC tx_cnt [BX]

CMP tx_cnt [BX] ,BFLOW

JLE Wsok

OR stat, TXOVER
wsok: MOV AX,NORMAL

JMP SHORT wsdone
wserr: Mov AX,ERROR
wsdone: POP DS

POP ES

MoV SP,BP

POP BP

RET
_wWrite_ser ENDP
ser_int: ; Serial

CLI

PUSH DS

PUSH ES

PUSH AX

PUSH BX

PUSH CX

PUSH DX

PUSH DI

PUSH SI

MoV AX,DGROUP
MoV DS, AX
Mov ES, AX

Mov BX,0

Mov eoi_cnt,BX

MOV eoi_flg,BX

MoV eoi_flg+2,BX
chkdev: CMP use_tbl [BX] ,NO

JE nxtdev

MoV S1,bas_tbl [BX]
MoV DX,S_ITR
ADD DX, SI

; Get base address of UART

; See if buffer already has characters

Check for DSR, CTS

-

Check for UART ready

Transmit char from ’C’

~e

Save character passed from C in buffer

-~

Advance (with wraparound) put pointer DI

-

; Check for transmit buffer overflow
; Set status bit for overflow
; Normal return

; Error return

port ISR for COM1-COM8 (IRQ3 & IRQ4)

; Start table pointer at first device
; Clear counter and flags for IRQ3,4

; Check to see if in use

; Check to see if this UART caused int

123

SERIAL.ASM

P148873.PDF [Page: 133 of 144]

nxtdev:

isdone:

notint:
found:

i_tbl

ctlint:

txend:

rxint:

rxend:

brkint:

sidoni:

ADD

INC
(o 14
JNE
MoV
MoV
JdMP

MOV
ADD

MOV
INC
CMP
JNE
MoV
MOV
MoV
INC
CMP
JLE

JMP
OR
MOV
ADD
JMP
PUSH

MOV
MOV

AL ,DX
AX,VALBIT
AX,NOINTS
found

BX,2
BX,MAXCOM*2
chkdev
eoi_cnt,0
notint
sidone

stat, INVINT
SHORT sidont
DI,AX
CS:i_tbl DI}
WORD

ctlint
txint

rxint
brkint

stat, HANDSK
DX,S_MSR
DX, St

AL,DX

SHORT sidon1

DI, tx_get[BX]
DI, tx_put [BX]
txend

tx_cnt [BX]
AL, IDI]
DX,S_TXD

DX, Sl

DX,AL

DI

DI, tx_end[BX]
txend

DI, tx_beg[BX]
tx_get[BX],DI
SHORT sidon1

DX,S_RXD
DX,SI

AL,DX

D1, rx_put[BX]
D1
D1,rx_end[BX]
ril

DI, rx_beg(BX]
[DI1,AL
rx_put [BX]1,DI
rx_cnt [BX1

rx_cnt[BX] ,BFLOW

rxend
stat,RXOVER
SHORT sidon1

stat,BRKERR
DX,S_LSR
DX,SI

AL ,DX

SHORT sidont

BX
AX,t_tbl [BX]
BX,AX

-s

we

so set

YR YR

.
I3

e we

-

; Rx data

.
z

.
r

-

~e ws

-e

SERIAL.ASM

If interrupt found then process

Next UART

No in-use UARTs caused interrupt,

invalid interrupt status bit

Use interrupt ID number as pointer

Handshaking line changed (set status bit)

Clear interrupt

Tx empty

1f data in buffer

then decrement count
and send it out

Advance get pointer (with wraparound)

available
Get character from UART

Advance put pointer (with wraparound)

Put character in buffer

Increment buffer count
Check for receive buffer overflow

Set status bit

; Break or error occurred (set status bit)

’

Clear interrupt -

Translate port number to IRQ number

124

P148873.PDF [Page: 134 of 144]

INC eoi_cnt ; Count number of total eoi

INC eoi_flg[BX] ; Set flag for later EOI

POP BX

JMP chkdev
sidone: CMP eoi_flg,0 ; Check for EOl for first IRQ

JE si1

Mov AX,eoi_tbl ; Get IRQ eoi instruction

ouT OCW, AL ; Send EOI to 8259 chip
sifl: CMP eoi_flg+2,0 ; Check for EOI for second IRQ

JE si2

MoV AX,eoi_tbl+2 ; Get IRQ eoi instruction

ouT OCW, AL ; Send EOI to 8259 chip
si2:

POP Si

POP DI

POP DX

pPopP CcX

POP BX

pop AX

POP ES

PoP DS

IRET
; Timer support
B e e me e mcmmemem—mm—ee—m— e —eomomm——n
NTIMER EQU 11 ; Number of countdown timers
GETTIV EQU 351Ch ; Get timer interrupt vector
PUTTIV EQU 251Ch ; Put timer interrupt vector
.DATA
t_vec DD ? ; Storage for original INT 1CH vector
t_init DW NO ; Flag to indicate if initialized
count LABEL WORD ; Table of count down values

DW NTIMER DUP (0)
.CODE

_open_time PROC

otdone:

_open_time ENDP

PUSH
MoV
PUSH
PUSH
MOV
MoV
MOV
CMP
JNE
MOV
MOV
INT
MoV
Mov
Mov
MOV
Mov
Hov
INT
POP
POP
L
POP
RET

NEAR s Install
BP

BP,SP

ES

DS

AX,DGROUP

DS, AX

ES,AX

t_init,NO H
SHORT otdone
t_init,YES H
AX,GETTIV :
21h

WORD PTR t_vec,BX
WORD PTR t_vec+2,E
AX,SEG time_int
DS,AX

DX,OFFSET time_int
AX,PUTTIV

21h

DS

timer tick ISR

Check to see if already initialized

Set initialized flag
Get interrupt vector for 1CH

; Save old vector
S
; DS:DX points to new routine

; Set interrupt vector

125

SERTAL.ASM

_close_time PROC NEAR

PUSH
MOV
PUSH
PUSH
MoV
MOV
Mov
CMP
JINE
MOV
LDS
MOV
INT
ctdone: POP
pPopP
MOV
POP
RET

P148873.PDF [Page: 135 of 144]

BP

BP,SP

ES

DS
AX,DGROUP
DS,AX
ES,AX
t_init,YES
ctdone
t_init,NO
DX, t_vec
AX,PUTTIV
21h

_close_time ENDP

-s

_set_time PROC NEAR ; Set the
PUSH BP
MOV BP,SP
PUSH ES
PUSH DS
MoV AX ,DGROUP
MoV DS,AX
MoV ES,AX
MOV BX,Arg1 :
CMP BX,NTIMER H
JL st
JMP sterr
st1: cMp BX,0
JGE st2
JMP sterr
st2: SAL BX,1 H
Mov AX,Arg2 H
MoV count [BX]1,AX ;
MOV AX,NORMAL
JMP SHORT stdone
sterr: MOV AX,ERROR H
stdone: POP ps
POP ES
Mov SP,BP
POP BP
RET
_set_time ENDP
_chk_time PROC NEAR ; Returns
PUSH BP
MoV BP,SP
PUSH ES
PUSH DS
MoV AX,DGROUP
MOV DS,AX
MoV ES,AX
MoV BX,Arg1 H
cMp BX,NTIMER ;
JL - ck1
JMP ckerr
ck1: CMP BX,0
JGE ck2

; Remove timer tick ISR

Check to see if initialized

DS:DX points to original routine
Set interrupt vector

count-down timer counter

Get timer number passed by C
Ensure it is within range

Convert timer number to table pointer
Get the tick count passed by C
Set countdown timer value

Error return

count-down value

Get timer number passed by C
Ensure timer number is within range

126

SERIAL.ASM

P148873.PDF [Page: 136 of 144]

JMP ckerr
ck2: SAL BX,1 ; Convert timer number to table pointer
MoV AX, count [BX] ; Load countdown value (0 if finished)
JMP SHORT ckdone
ckerr: MOV AX, -1 ; Error return - timer number out of range
ckdone: POP Ds
POP ES
MoV sP,BP
POP BP
RET
_chk_time ENDP
time_int: ; Timer tick interrupt service routine
CLI
PUSH DS
PUSH ES
PUSH AX
PUSH BX
PUSH (4
PUSH DX
MoV AX,DGROUP
Mov DS, AX
Mov ES,AX
MoV BX,0 ; Load table pointer for first timer
til: DEC count [BX] ; Decrease count but not below 0
JG ti2
AND count [BX],0000h
ti2: ADD BX,2 ; Get table pointer for next timer
CMP BX,NTIMER*2 ; Until done
JL ti1
PoOP DX
POoP cX
popP BX
POP AX
popP ES
POP DS
IRET
; Control-C and Break Detection
J e e e e c e e eemnecmemcmeeecmamememmmmm—————————
GETBIV EQU 351Bh ; Get Break interrupt vector
PUTBIV EQU 251Bh ; Put Break interrupt vector
GETCIV EQU 3523h ; Get Control-C interrupt vector
PUTCIV EQU 2523h ; Put Control-C interrupt vector
.DATA
b_vec DD ? ; Storage for original INT 18H vector
b_init DW NO ; Flag to inidicated initialized
brkflg DW 0 ; Flag that BREAK occurred
.CODE

_open_break PROC NEAR ; Install

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
CMP
JNE
MOV

BP

BP,SP

ES

DS
AX,DGROUP
DS,AX
ES,AX
b_init,NO
obdone
b_init,YES

L)

control-C and break ISR

Check to see if initialized

Set flag to indicate initialized

127

SERIAL.ASM

P148873.PDF [Page: 137 of 144]

MOV
INT
Mov
MOV
MOV
MOV
MoV
MoV
INT
MOV
MoV
MoV
MOV
INT
obdone: POP
POP
MOV
PopP
RET

AX,GETBIV

21h

WORD PTR b_vec,BX
WORD PTR b_vec+2,ES
AX,SEG break_int
DS,AX

DX,OFFSET break_int
AX,PUTBIV

21h

AX,SEG ctlec_int

DS, AX

DX,OFFSET ctlc_int
AX,PUTCIV

21h

DS

ES

sP,BP

B8P

_open_break ENDP

_close_break PROC NEAR

PUSH
MOV
PUSH
PUSH
Mov
Mov
MoV
CMP
JNE
MOV
LDS
MoV
INT
cbdone: POP
POP
MoV
POP
RET

BP

BP,SP

ES

DS
AX,DGROUP
DS,AX
ES,AX
b_init,YES
cbdone
b_init,NO
DX,b_vec
AX,PUTBIV
21h

ps

ES

sP,BP

BP

s wa we N

_close_break ENDP

-~y me e

‘SERIAL.ASM
Get break interrupt vector
(don’t need to save for Control-C)
Save break interrupt vector

DS:DX points to new break routine

Set Break interrupt vector

DS:DX points to new Control-C routine

Set Control-C interrupt vector

; Remove control-C and break ISR

Check to see if initialized -

Reset initialized flag
DS:DX points to original
Set Break interrupt vector

(system resets Control-C interrupt vector)

_press_break PROC NEAR ; Returns 0 if no break

PUSH
MoV
PUSH
PUSH
MoV
MOV
MOV
XOR
XCHG
POP
POP
MOV
POP
RET

BP
BP,SP

DS
AX,DGROUP
DS, AX
ES,AX

AX, AX

DS
ES
SP,BP
8P

_press_break ENDP

break_int:
PUSH
PUSH
PUSH

; Prepare to reset flag
AX,brkflg ; Normal return 0000h

no break
Break
Control-C

0018h
0023h

; Control-break interrupt service routine

ES

AX

128

P148873.PDF [Page: 138 of 144]

MoV AX,DGROUP

MoV DS, AX

MoV ES,AX

MOV brkflg, 1Bh ; Make it nonzero

POP AX

POP DS

POP ES

IRET
ctlc_int: ; Control-C interrupt service routine

PUSH ES

PUSH DS

PUSH AX

MoV AX,DGROUP

Mov DS,AX

Mov ES,AX

MOV brkflg,23h ; Make it nonzero

PopP AX

POP DS

POP ES

IRET
H
H Critical Error Trapping
GETEIV EQU 3524h ; Get critical error handler vector
PUTEIV EQU 2524h ; Put critical error handler vector
.DATA
e_vec DD ? ; previous contents of crit error handler
e_init DW NO ; Flag to indicate if initialized
.CONST
prompt DB ODh,0Ah, ‘Critical Error Occurred: ’,0Dh,0Ah

DB ! Abort, Retry, Ignore, Fail? ’,’$’
.CODE

_open_crit PROC

ocdone:

_open_crit ENDP

PUSH
MOV
PUSH
PUSH
MoV
MOV
MOV
CMP
JNE
MOV
MoV
INT
MOV
MoV
MoV

RET

NEAR ; Install new critical error handler
BP

BP,SP

ES

DS

AX,DGROUP

DS,AX

ES,AX

e_init,NO ; Check to see if initialized
SHORT ocdone

e_init,YES ; Set initialized flag
AX,GETEIV ; Get old vector

21h

WORD PTR e_vec,bx ; Save old vector
WORD PTR e_vec+2,es

AX,SEG crit_hand ; Set DS:DX to point to new handler

DS, AX
DX,OFFSET crit_hand

AX,PUTEIV ; Set up new handler
21h

129

SERIAL.ASM

P148873.PDF [Page: 139 of 144]

_close_crit PROC NEAR ; Restore

ccdone:

PUSH
MoV
PUSH
PUSH
MoV
MoV
MOV
CcMP
JNE
Mov
LDS
MoV
INT
POP
PoP
MoV
pPopP
RET

BP

BP,SP

ES

DS
AX,DGROUP
DS,AX
ES,AX
e_init,YES
ccdone
e_init,NO
DX,e_vec
AX,PUTEIV
21h

_close_crit ENDP

; This is the replacement critical error handler. It
; prompts the user for Abort, Retry, Ignore, or Fail and
; returns the appropriate code to the MS-DOS kernel.
L
crit_hand PROC FAR ; Critical error handler, called only by MS-DOS kernel
PUSH ES
PUSH DS
PUSH AX
PUSH BX
PUSH CcX
PUSH DX
PUSH S1
PUSH Dl
PUSH BP
MoV AX,DGROUP
MOV DS,AX
MoV ES,AX
getkey: MOV DX,0FFSET prompt ; Display prompt for user
MoV AH,0%h
INT 21h
Mov AH,01h ; Get user’s response
INT 21h
CHP AL,’a’
JE dabort
CcMP AL, ’A’
JE dabort
CMP AL,'r’
JE dretry
cMP AL, 'R’
JE dretry
CMP AL, 7’
JE dignor
CHP AL,‘I!
JE dignor
cMp AL, f!
JE dfail
cHP AL, ’F’
JE dfail
JMP getkey
dabort: MOV AL,2 ; Abort chosen
CALL _close _break ; Restore Break/Controi-C vector
CALL close_time ; Restore timer vector
Mov 8X,MINCOM ; Restore all serial vectors

: Check

Reset

original critical error handler

to see if initialized

initialized flag

Restor old vector

130

SERIAL,ASM

[

P148873.PDF [Page: 140 of 144]

SERIAL.ASM

di: CALL _close_ser

INC BX

CMP BX,MAXCOM

JLE d1

Mov AL,2 ; Set Abort return value

JMP ddone
dretry: Mov AL,1 ; Retry chosen

JMP ddone
dignor: Mov AL,O0 ; Ignore chosen

Jmp ddone
dfail: MoV AL,3 ; Fail chosen

JMP ddone
ddone: POP BP

pPoP DI

POP SI

POP DX

popP cX

PopP BX

POP AX

~ POP DS
poP ES
IRET ; exit critical error handler

crit_hand ENDP

END

131

P148873.PDF [Page: 141 of 144]

132

P148873.PDF [Page: 142 of 144]

(1]
[2]
(3]

[4]

[5]

References
W. Stallings, Data and Computer Communications. New York, NY: Macmillan, 1985.
R. Duncun, The MS-DOS Encyclbpedia. Redmond, Washington: Microsoft Press, 1988.

Software Installation and Operation Manual for DigiCHANNEL PC/X, DigiCHANNEL
MODEM/X and UNIX System V/386 Rel 3.2. Eden Prairie, MN: DigiBoard, 1991.

Microsystem Components Handbook, Microprocessors Volume 1. Santa Clara, CA: Intel
Corporation, 1986.

"INS8250, INS8250-B Universal Asynchronous Receiver/Transmitter Data Sheet", National
Semiconductor.

133

-135-
UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document. 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepared, c.g. Establishment sponsoring (overall security classification of the document
a contractor’s report, or tasking agency, are entered in section 8.) including special warning terms if applicable)
Defence Research Establishment Ottawa
Ottawa, Ontario UNCLASSIFIED
K1A 0Z4

3. TITLE (the complete document title as indicated on the title page. lis classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.)

Real-time Interprocessor Serial Communications Software for Skynet EHF Trials (U)

4. AUTHORS (Last name, first name, middle initial)
Addison, Robin D.

5. DATE OF PUBLICATION (month and year of publication of 6a. NO. OF PAGES (total 6b. NO. OF REFS (total cited in
document) containing information. Include document)
July 1994 Annexes, Appendices, etc.)
Y 145 5

7. DESCRIPTIVE NOTES (the category of the document, ¢.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, €.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.

DREO Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address. :

Defence Research Establishment Ottawa
Ottawa, Ontario, K1A 0Z4

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research 9b. CONTRACT NO. (f appropriate, the applicable number under
and development project or grant number under which the document which the document was written)
was written. Please specify whether project or grant)

041LM and Project D6470

10a. ORIGINATOR’S DOCUMENT NUMBER (the official document 10b. OTHER DOCUMENT NOS. (Any other numbers which may
number by which the document is identified by the originating be assigned this document either by the originator or by the
activity. This number must be unique to this document.) sponsor)

DREO REPORT 1227

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

Unlimited distribution

Distribution limited to defence departments and defence contractors; further distribution only as approved
Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
Distribution limited to government departments and agencies; further distribution only as approved

Distribution limited to defence departments; further distribution only as approved

Other (please specify):

AAA’\/\Q
e Nl N o N N

12, DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). however, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audi may be selected.)

Unlimited Announcement

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM RA.W (24 Nov 93)

-136-
UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).

It is not necessary to include here abstracts in both official languages unless the text is bilingual). »

The EHF (Extremely High Frequency) Skynet Trials consisted of several week-long accesses over Skynet 4A during
1993. The whole link (from transmitting ground terminal to Skynet to receiving ground terminal) was used to simulate an
EHF downlink from a payload to a ground terminal. Use of the Skynet satellite allowed the experimentation at EHF with
the ground terminal and payload simulators over a link that had real satellite effects such as link degradations caused by
satellite motion and weather. To conduct the trials, it was recognized that many tasks needed to be active at once: pointing
of antennas, monitoring power levels, synchronization, data communications and result logging. To shorten development
time and simplify integration requirements, a distributed processing system (multiple computers) was chosen.

This paper describes the communications software which provided the services necessary for the distributed
processing used in the trials. The challenge was to develop a system that was easy to integrate with the user software as
well as to ensure that the communications hardware and software did not conflict with special purpose boards in the various
computers. For simplicity, stop-and-wait ARQ (Automatic Repeat Request) protocol was used for high-level message
passing. Low-level communications services that do not require handshaking, were also provided for equipment control.
The communications software package met these challenges and after extensive testing, was proven to provide the necessary
communications among all the processors of the distributed system.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus. e¢.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possibie to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

serial communications
real-time

EHF

ARQ

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

