= JOFE Yl

I *I Natlonal Défense
Defence nationale

A SOPHISTICATED CAD TOOL FOR THE
CREATION OF COMPLEX MODELS FOR
ELECTROMAGNETIC INTERACTION ANALYSIS (U)

by

Marc Dion, Satish Kashyap
and Aloisius Louie
Nuclear Effects Section

Electronics Division

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 91-16

PCN June 1991
041LT Ottawa

ABSTRACT

This report describes the essential features of the MS-DOS version of
DIDEC_DREO, an interactive program for creating wire grid, surface patch, and
cell models of complex structures for electromagnetic interaction analysis. It
uses the device-independent graphics library DIGRAF and the graphics kernel
system HALO, and can be executed on systems with various graphics devices.

Complicated structures can be created by direct alphanumeric keyboard
entry, digitization of blueprints, conversion from existing geometric structure
files, and merging of simple geometric shapes. A completed DIDEC geometric file
may then be converted to the format required for input to a variety of time
domain and frequency domain electromagnetic interaction codes.

This report gives a detailed description of the program DIDEC_DREO, its
installation, and its theoretical background. Each available interactive command
is described. The associated program HEDRON which generates simple geometric
shapes, and other programs that extract the current amplitude data from electro-
magnetic interaction code outputs, are also discussed.

RESUME

Ce rapport décrit le programme DIDEC_DREO, congu pour les ordinateurs
personnels compatibles IBM. Il utilise les librairies graphiques DIGRAF et HALO,
ce qui lui permet d’utiliser diverses interfaces graphiques.

DIDEC_DREO est un programme interactif permettant la création et 1l’édition
de structures géométriques complexes pouvant étre utilisées pour l'analyse
d’interaction électromagnétiques. Les structures peuvent é&tre définies
directement du clavier, par lecture de plans 4 l’aide d’une tablette graphique,
par conversion de fichiers existant ou par génération automatique de formes
simples. Les structures peuvent étre converties en fichiers d’entrée pour
plusieurs programmes de simulation d’interaction électromagnétiques.

Ce rapport donne une description détaillée de DIDEC_DREO, de son
installation et de son utilisation, ainsi qu’un description de chaque commande.
Le programme HEDRON permettant la génération de formes simples y est aussi
décrit, de méme que les programmes permettant d’extraire et d’inclure les
résultats des programmes de simulation pour en permettre l’affichage.

iii

EXECUTIVE SUMMARY

DIDEC_DREO is an interactive program for Personal Computers for creating
models of complex geometric structures, for use in electromagnetic interaction
analysis. It uses the device-independent graphics library DIGRAF and the
graphics kernel system HALO, and can be executed on systems with various graphics
devices.

Complicated structures can be created by direct alphanumeric keyboard
entry, digitization of blueprints, conversion from existing geometric structure
files, and merging of simple geometric shapes. A completed DIDEC geometric file
may then be converted to the format required for input to a variety of time
domain and frequency domain electromagnetic interaction codes.

This report gives a detailed description of the program DIDEC_DREO, its
installation, and its theoretical background. Each available interactive command
is described.

The associated program HEDRON which generates simple geometric shapes, and
other programs that extract current amplitude data from electromagnetic
interaction code outputs, are also discussed.

TABLE OF CONTENTS

ABSTRACT
EXECUTIVE SUMMARY .
TABLE OF CONTENTS

1.0 INTRODUGCTION
1.1 DIDEC OVERVIEW
1.2 DIDEC INPUTS
1.3 OTHER FEATURES
2.0 GETTING STARTED
2.1 INSTALLATION
2.2 CONFIGURING DIDEC
2.3
2.4

RUNNING DIDEC
PRINTING GRAPHICS

3.0 THE DIDEC PROGRAM . .
3.1 MODELLING STRUCTURES
3.1.1 WIRE GRID MODELLING
3.1.2 PATCH MODELLING
3.1.3 CELL MODELLING .
3.2 DISPLAYS

3.2.1 DISPLAY SCALING FOR DIGITIZATION

3.3 COMMAND SYNTAX .
3.3.1 NUMERICAL EXPRESSIONS

3.3.2 VERTEX COORDINATE SPECIFICATION

3.4 COMMAND SUMMARY

4.0 COMMANDS DESCRIPTION
4.1 GLOBAL COMMANDS

.1.1 ABORT

ACTIVE .

DEBUG

HELP .

HOST .

PRINT

QUIT

ROUTE

.1.9 STOP .

4.2 DATA FILE HANDLING COMMANDS

.2.1 CLOSE

EDIT .

INPUT

LIST .

OUTPUT

PURGE

FEEEEEEES
e
WWAdW W

R S S S

NN NN
AWV W

vii

vii

w W

-
(S Ve Vo RRVe)

13
13
14
15
15
15
16
16
17
18

20
20
20
20
20
20
21
21
21
21
21
21
21
22
22
22
22
22

.

.2
.2
RAP

QH S

4.3

Voo~V WNE IO

.15

F N R IR R NP B O SRR R O

3
3
3
3
3
3
3
3
3.
3
3
3
3
3
3
D
4

1

4.4.2

4.5 DATA F
4.5.1

w

ENAME .
mTTT O

AL duda

IC DISPLAY MANTPULATION COMMANDS

BLOW .
CODE .
CYLINDER .
DISPLAY
DOTS
FIELD
IMAGE
LABEL
LOCATE .
NUMBER
RESET .
SPECTRUM
TABLE .
TEXT
VIEWPORT

ODEL BUILDING AND EDITING COMMANDS

DIGITIZATION .
4.1.1 SCALE

1.2 DIGITIZE .
3 CHANGE
VERTEX MANIPULATION
ENTER
DELETE .
ADD
DISCONNECT .
MULTIPLY .
SOCK .
VERIFY .
MANIPULATION
BISECT
CHAIN
COLOR

CUT
DIAMETER .
EDGES

JOIN .
LENGTH .
POLYGON

4,
4.
4. .
3
3
3.10 RADIUS
3
3

4
4
E
4,

b,
4
4
4

L S A R R i
Ny SN e

4
4,

WIR
4
4

WOV &~ WN

.11 SEGLEN
.12 TAG . .
.13 TRIANG
ELLANEOUS

4.1 PATCH

4.2 MERGE

4.3 REFLECT
ILE CONVERSION COMMANDS
FROM . e
4.5.1.1 FROM CDDP
4.5.1.2 FROM EFIE

Lo S IR SRR NP SRR LR SR R

1
T
2
2
2
2
2
2
2
E
3
3
3
3
3
3
3
3
C

S

4
4
4
4
4
4
4.
b,
4
4
4
MI
4
4
4

4.4,
4.4,
4.4,

viii

22
22
23
23
23
23
23
23
24
24
24
24
24
25
25
25
26
26
26
26
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
30
30
30
30
30
31
31
31
31
31
31
31
31
32
32
32
32
33

FROM FDTD
FROM NEC
FROM THREDE
FROM TWTDA .

Ny
e el
oaw W

4.5.2 e e
TO EFIE
TO FDTD
TO NEC .
TO THREDE
TO TWTDA .

=]
LuUuuULULULO VL uuwv

PR R SR S S
DN -
Ut W

5.0 ASSOCIATED PROGRAMS
5.1 HEDRON
1.

w

BOX

CYLINDER .

CONE .

SPHERE . e
RECTANGULAR PLATE
PRISM

POLYGON

TORUS

PARABOLOID .

-REV, IV, IV BV, B B, BV V]
(o BV RN CREN N W BV AN SN -

.Q....
el el el el el al

o .

5.2

INDEX .

REFERENCES

ix

33
33
34
34
34
34
35
35
35
36

37
37
39
39
40
40
42
42
43
43
43
43

47

49

Numerical
input
Digitizing
tablet
Simple
geometric
shapes
Figure 1-1

o

DIDEC

*.DID
files

M—

/@_—>
q\aa————b

NEC

EFIE

TWTDA

FDTD

— U

— U

" Cur rem -
EXTRACT

Block diagram showing the structure of the DIDEC program.

1.0 INTRODUCTION

DIDEC is an interactive program for creating wire grid, patch, and cell
models of complex geometric structures, for wuse in the solution of
electromagnetic interaction problems. Several codes are available for
computation of the interaction of electromagnetic waves with simple and
complicated structures. These codes exist for both frequency and time domains.
The list includes NEC (Numerical Electromagnetic Code) [l] and EFIE (Electric
Field Integral Equation) [2] for the frequency domain. For the time domain there
are TWID (Thin Wire Time Domain) [3], FDTD (Finite Difference Time Domain) [4],
and THREDE [7] among others. These codes have been extremely useful in finding
numerical solutions to many electromagnetic interaction problems.

All these codes have one feature in common: they require as an input the
geometry of the object under study. The geometry is supplied as a wire grid,
surface-patch, or cell model, depending on the simulation code. The creation of
such geometric data is not an easy task, and the difficulty increases with the
complexity of the structure (e.g., an aircraft). To help in this regard, DIDEC
(Digitize, Display, Edit and Convert) [5] was developed at Concordia University
a few years ago. Recently, DREO has made several improvements to DIDEC.

DIDEC began as a program that created wire models of a geometric structure
using a digitizing tablet. Initially, it created NEC input files for wire grid
structures. Since then it has developed into an interactive program, DIDEC_DREO,
for designing wire grid, patch, and cell models of complex structures for solving
electromagnetic interaction problems. This report describes various features of
the present version of DIDEC_DREO.

1.1 DIDEC OVERVIEW

Figure 1-1 shows a block diagram of the present DIDEC_DREO structure. A
geometric structure is stored in a DIDEC data file (%*.DID). The wire grid
portion is stored in vertex-edge form and the patch portion is stored in vertex-
patch form. In other words, a *.DID file contains a list of vertex numbers and
their (cartesian) coordinates

V1=(X11erzl)

\

am (X, Yoo Zy)

followed by a list of edges defined in terms of the two end vertices
Ek=(Vi,Vj)

and a list of patches defined in terms of their corners

s Vi, Vi) for a triangular patch
= (Vy, Vi, Ve, Vo) for a quadrilateral patch
Additional information in *.DID includes wire or patch colour which can

represent wire diameter, wire length, patch area or any electromagnetic
characteristic such as current magnitude.

1.2 DIDEC INPUTS

DIDEC_DREO is a very powerful tool, mainly due to its highly interactive

capabilities. DIDEC_DREO allows structures to be created or altered
interactively. Several files can be merged together, allowing the user to define
complicated structures "by parts". The results associated with one or multiple

input or output files can be displayed dynamically from various projections or
viewpoints simultaneously on one or more viewports. Figure 1-2 shows an example
of a typical 4-viewport display.

Structures can be created in different ways:

. Vertices can be entered numerically from the keyboard and then be joined
to form wires or patches.

. A graphic tablet can be used to digitize a set of blueprints. Each vertex
may be digitize twice with different view to resolve all coordinates, or
cross-section planes may be specified. Very large blueprints can be
digitized in sectioms.

. A geometric structure can be read from the input file of one of the
electromagnetic analysis programs (NEC, EFIE, TWTD, FDTD, THREDE, etc.).

. Simple geometric shapes, such as box, cylinder, cone, sphere, plate,
prism, polygon, torus or paraboloid, can be created with a companion
program and then merged to form complex structures.

Various manipulations of data in *.DID are possible. Vertices, wires and
patches can be added, moved, removed, altered, etc., and several *.DID files can
be merged into one.

1.3 OTHER FEATURES

When a *.DID file is completed, the geometric structure can be readily
converted to a file in the format needed for a specific electromagnetic analysis
program (NEC, EFIE, TWTID, FDTD, THREDE, etc.). It may however be necessary to
adapt the model before to meet some specific requirements of a particular code.

Structures can be defined in terms of wires (wire grid models) or surfaces
(patch models). Anh example of each is shown on Figure 1-2 (top left and top
right respectively). DIDEC allows wire grid models to be converted to patch

g

1Y
’ o

INPUT FILE 1. CYLWGRID. DID. RZ=20. EL=3C INPUT FILE 2. CYLPATCH. DID. R#E=2G. =zZi=3C

INPUT FILE 32 CYLHFDTDB. DID. RZ=20. =—_=

[N

Figure 1-2 Various representations of a cylinder: wire-grid modelling (top
left), patch modelling (top right), and cell modelling (bottom).

models, and vice versa. The conversion from wire grid to patch structure in
DIDEC uses the mathematical theory of graphs. The "incidence matrix" for the
wire grid structure is analyzed to identify all triangular and quadrilateral wire
frames, which can be converted into triangular and quadrilateral patches. Each
quadrilateral wire frame can also be divided into two triangular wire frames
first, and then the latter converted into triangular patches.

There are additional considerations when converting from a wire grid
structure to a patch structure. Some codes, such as EFIE, have a geometric
restriction that an edge cannot be shared by more than two triangular patches.
For example, when converting the NEC wire grid model of the aircraft CPl40 to
EFIE (Figure 1-2, Figure 1-3, top and bottom respectively), special care has to
be taken where the wings and the tail fins join the fuselage. The solution is
to "inflate" the wings and fins to thin tubes (i.e. "socks"). In DIDEC DREO this
process is automated: a *.DID file is analyzed to identify all the edges that
are shared by more than two patches, and then in each case the extra "wings" are
chosen for "inflation". The right wing of the CP140 aircraft, before and after
inflation, is shown on Figure 1-4.

Some electromagnetic interaction codes, such as FDTD and THREDE, use a cell
model to represent structures. In cell modelling, the geometric structure is
represented using orthogonal cellular blocks (cells). An example is shown on
Figure 1-2 (bottom). With the current version of DIDEC_DREO, it is possible to
read cell model files (input files to FDTD or THREDE) for display purposes only.
It is, however, possible to convert any DIDEC file (ie. wire grid or patch
models) to a FDTD or THREDE input file, suitable for use in running the finite-
difference time-domain simulations codes. Those files created by DIDEC may then
be reconverted back to a DIDEC format for display. Figure 1-5 shows a EFIE patch
model (in this case, the walls of the bridge of a Canadian Patrol Frigate) and
its conversion into a FDTD input file.

DIDEC_DREO also has the capability to read, after an electromagnetic
interaction program has been run, the results such as the current magnitude data,
which can be added to a *.DID file, so that they can be displayed by DIDEC as a
colour code for each wire or edge.

=NEC. DIO. HZ=

CP140

INFUT FILE 1.

I
Nrﬂ\ur{(‘\ s
ALY

P140=EFT.

C

INPUT FILE 2

Figure 1-3 Wire grid and patch models of the CP140 aircraft.

Figure 1-4 Right wing of the CPl40 aircraft, before (top) and after (bottom)
inflation.

S A,

S
AN =

INPUT FILE 2, BRIDCGE/=FOTO. O, HZ=20, “_=-_

Figure 1-5 Patch model (top) and cell model (bottom) of the bridge of the
Canadian Patrol Frigate.

2.0 GETTING STARTED

This chapter gives the installation and operation procedures for the
DIDEC_DREO program.

The current version is DIDEC_DREO, July 1990 (Copyright 1990, DREO), is
written in Microsoft FORTRAN 4.1, and runs on an IBM-compatible PC under DOS 3.30
or DOS V4. It uses the device-independent graphics package DIGRAF
(Copyright 1979, University of Colorado), and the graphics kernel system HALO 3.0
(Copyright 1989, Media Cybernetics). :

2.1 INSTALIATION

The DIDEC_DREO program is distributed on a single floppy disk which
contains two directories:

\DIDEC This directory contains all the executable files,
including overlays, configurations and device
drivers files.

\DIDEC\HELPFILE This subdirectory contains all the help files used
by the DIDEC HELP command.

The installation is simply done by copying all the files to a hard disk.
The following DOS command transfers all files to the directory \DIDEC onto a hard
disk:

XCOPY [floppy_drive]:\ [hard_drive]:\ /S

2.2 CONFIGURING DIDEC

DIDEC uses the HALO device-independent graphics kernel. HALO is a
collection of Fortran-callable subroutines for developing PC-based graphical
applications. HALO routines are device-independent and a wide variety of device
drivers is supplied for graphic displays, locators and printer/plotters.
Standard graphic modes (EGA, VGA, etc.) as well as higher resolution modes (super
VGA) are supported for many popular graphic adapters.

The HALO configuration file HALO.CNF must be present in the \DIDEC
directory. This configuration file is set to reflect the system’s hardware. It
lists the drivers used by HALO and their mode. All the files listed must reside
in the \DIDEC directory. The HALO.CNF file has the following format:

-D[graphics_device_driver]
-M[mode_number]

-P{printer_driver)
-L{locator_device_index&interrupt]
-T[COM_port&digitizer_format_file]

The first two lines specify the display device driver and the mode of
operation. A description of the drivers available to HALO can be found in

Section 2 of the HALO Language and Device Reference manual. A combination that
gives the highest resolution with 16 colors should be used.

The third line specifies the device driver for the printer. "-P[blank]"”
denotes the absence of printer (hence the DIDEC "PRINT" command cannot be used).
A complete list of the printer drivers can be found in Section 3 of the HALO
manual.

For example, the HALO.CNF file:

-DHALOIBMV.DEV
-M7
-PHALOLJTP.PRN
-L25
-T2CALCOMP.DGT

selects the drivers for a standard VGA adapter (mode 7) and for a HP LaserlJet
printer.

The fourth line is used to configure the locator device (such as a mouse)
used by some DIDEC commands. The first digit is the locator device index: "-LO"
if the locator is absent, "-L1" for a HALO-supplied locator device driver, and’
"-.1L2" for a manufacturer-supplied driver. See Section 5 of the HALO manual and
the description of the HALO command "SETLOCATOR". The second digit specifies the
interrupt level used by the locator. In the example above ("-L25"), a Microsoft
mouse is attached to interrupt 5. Locator device drivers are DOS-resident
programs and so it is necessary to load the locator driver before running DIDEC.
If there is no locator device, some DIDEC commands that normally use it can still
be used via direct keyboard input of parameters, and others cannot be used. The
DIDEC "ACTIVE" command toggles the locator availability indicator if a locator
exists.

DIDEC allows the input of geometric structures through a digitizer over
blueprints. This requires a digitizer attached to a COM port. The last line of

HALO.CNF is used to configure the digitizer: "-TO" indicates there is no
digitizer (hence the digitizing DIDEC commands "SCALE", "DIGITI", and "CHANGE"
cannot be used), "-T1" and "-T2" indicate the digitizer is connected to COM1 and

COM2, respectively. If a digitizer is specified, the name of a digitizer format
file must follow and this file must be located in the directory \DIDEC. This
file contains three lines:

Left, right, top, & bottom limits of tablet (4 integers)
Format of digitizer input (character string)
Translation table of keypad cursor (13 characters)

For example, if the digitizer is a CalComp 9000 tablet with a 16-key cursor
in the point mode, the format file CALCOMP.DGT would be:

0 47999 0 35999

(Al, 1X, 2I5)
0123456789DCA

10

The first line specifies the range of the digitizing tablet for both x and
y coordinates. The second line is a FORTRAN format, enclosed in parentheses,
required to decode the input of the table when a point is digitized. Three
variables are decoded: the ASCII value of the key pressed on the keypad and the
integer giving the cursor location (x and y coordinates). Only these three
values should be decoded and all other characters received the digitizer input
should be skipped (by the "X" format descriptor). The value for the key pressed
can be received either before or ‘after the x and y coordinates. Therefore, the
two possible formats are: "(Al,2In)" and "(2In,Al)", with possible "nX" inserted
in it. The third line gives 13 different characters sent by the digitizer that
would be, in order, interpreted as the numbers 0-9, "done", "erase", and "abort".
The keypad cursor used must therefore be able to send 13 or more different
signals.

2.3 RUNNING DIDEC

DIDEC also requires the ANSI.SYS driver to execute. The following line
should be present in the CONFIG.SYS file:

DEVICE=C:\dospath\ANSI.SYS

The current version of DIDEC.EXE uses overlays and should be executable
even when several DOS-resident programs are loaded. If it becomes necessary, a
memory manager such as QEMM may be used to move some drivers to high memory, thus
saving more space for running DIDEC.

To run DIDEC, first move to the working directory \DIDEC, then execute by
entering "DIDEC" at the DOS prompt. Alternatively, DIDEC can be executed from
any directory, providing that the following line is executed before or is placed
in the AUTOEXEC.BAT file:

APPEND [hard_drive]:\DIDEC

DIDEC can then be started with [hard _drive]:\DIDEC\DIDEC, via a batch file or its
location can be specified with the DOS PATH command.

DIDEC is an interactive program and reads in a sequence of user-supplied
commands at the DIDEC prompt "->". The "HELP" command may be used to display a
list of the available commands or to give more detailed explanations of any one
specific DIDEC command. Most DIDEC commands prompts for additional user-input.
A command in progress can be aborted by entering "ABORT" at these additional
prompts, in which case the program returns to the DIDEC prompt "->". To
terminate DIDEC, enter the command "QUIT" oxr "STOP".

2.4 PRINTING GRAPHICS

Any displayed DIDEC graphics image can be printed by entering the "PRINT"
command (if a printer is attached and is specified on the "-P" line in HALO.CNF).
The printed image is also saved in the file HALO.PIC. One can also use the
"IMAGE" DIDEC command to save the graphics image to a specific *.PIC file for
later viewing and printing.

11

To recover a *.PIC graphics image file to the screen, execute the HALOREAD

program.

HALOREAD file_name (without the PIC extension)

The saved image will be displayed on the screen and the user is prompted
for printing. A *.PIC file can be moved to other PC's for recovery and printing
by HALOREAD, but the graphics device driver and mode must be the same as they
were in the original PC where the file was created.

12

3.0 THE DIDEC PROGRAM

The name "DIDEGC" is derived from Digitize, Display, Edit and Convert
program. It is a Computer Aid Design tool for building wire grid, patch and cell
models of structures for use with several electromagnetic interaction codes.
This chapter describes the general command syntax and gives a list of the
commands.

3.1 MODELLING STRUCTURES

The geometric input for the electromagnetic interactions codes can be
classified into three general types of models: wire grid modelling (NEC and
TWTD), patch modelling (NEC and EFIE), and cell modelling (FDTD and THREDE).
With wire grid modelling, a structure is represented as a set of wires (thin or
fat) connected at their end points. Surfaces are approximated by using meshes.
With patch modelling, a structure is represented as a set of patches connected
at their edges. Codes may allow open or close bodies. In cell modelling, a
structure is considered to be occupying a collection of cartesian grided mesh
locations ("cells") in space. The following sections discuss each type of
modelling in more detail.

3.1.1 VWIRE GRID MODELLING

Complex structures can be modelled by using conducting wires, with each
wire possibly subdivided into a number of segments. A wire grid mesh can model
accurately a conducting sheet, providing that the mesh spacing is small compared
with the wavelength. For instance, guidelines for NEC suggests that the segment
length should be less than A\/10. Wires can be thin or fat. Wires are considered
thin when their radius is very small compared to the wavelength. Some codes,
such as TWID, support only thin wires, while others will support thin and fat
wires. For thin wires, the current is approximated as a filament of current on
the segment axis, and for fat wires, the current is distributed uniformly on the
segment surface.

Wires are specified in terms of their endpoint vertices, i.e. their 2 VIDs.
The wire characteristics supported are diameter, number of subdivisions, and
colour. The diameter of each wire is classified by a user-defined set of up to
15 different diameters. The number of subdivisions is implemented as a maximum
length per subdivision, also classified by a user-defined set of 15, and
converted automatically to the appropriate number of subdivisions when the "TO"
command is used. Wire colour is used only for display purposes. The colour
parameter may thus be used to identify particular groups of wires. Displays
normally show the wire colour, but may instead show colour-coding be either
diameter or maximum subdivision length.

Colour is selected using the "COLOR" command, described in Section 4.4.3.
When a wire is created it is given the current modal colour, which defaults to
white. The colour of existing wires may be changed by entering the colour
command and typing the wire endpoints in response to the prompt. The new colour
is then specified using a palette on the graphics display if the display device
is interactive, or by typing the colour number if the display device is not

13

interactive. The current modal colour is changed by using the "COLOUR" command
without specifying any wire IDs.

Diameter is specified using the "DIAMETER" and "TABLE" commands, described
under ‘Wire Manipulation Commands’. There may be up to 15 different diameters.
Each is assigned an integer index from 1 to 15. The correspondence between these
indices and the actual diameter is defined by a diameter table that is created
using the "TABLE" command. When wires are created they are given the current
modal diameter index, which defaults to 1. The diameter of existing wires may
be changed by entering the "DIAMETER" command and typing the wire endpoints in
response to the first prompt. The new diameter index of these wires is prompted.
The current modal diameter index is changed by using the "DIAMETER" command
without specifying any wire id’s. The "TABLE" command also associates a colour
with each diameter entry in the table. This colour is used for the ‘Colour-
Coding by Diameter’ option in the "DISPLAY" command.

The maximum length per subdivision is handled similarly to the "DIAMETER"
command, using another table. If no subdivisions are desired then a very large
length should be specified.

3.1.2 PATCH MODELLING

Structures can also be modelled by means of multiple, small flat surface
patches. Some codes, such as NEC, allow the use of wires and patches simulta-
neously. In that case, it is also possible to connect wires to patches. As with
the wire grid models, the patches should be small compared with the wavelength;
typically, a minimum of 25 patches should be used per square wavelength of
surface area. Patch modelling can be used to represent close bodies or open
bodies (bodies with apertures or cavities).

DIDEC supports triangular and quadrilateral patches. Patches are created
by the "PATCH" command. They are stored in a *.DID file as numbered patches
defined by the corner vertices. For quadrilateral patches, the four corners need
not to be coplanar. The "TO NEC" command converts them to NEC patches (SP and
SC cards). The "TO EFIE" command converts all patches into a list a vertices and
edges to create an *.EFI file.

The EFIE triangular "patches" are actually stored in a *.DID file as
triangular "wire grids" with an arbitrarily defined radius as 10% of the wire
length. This is because the EFIE program treats the triangular patches simply
as triangles with thin edges (i.e. line segments with zero radius). Only the
information on vertices and edges are supplied in the EFIE input file *.EFI, with
the triangular patches configured internally by EFIE.

EFIE also imposes some additional limitations. It supports only triangular
patches. The "TRIANG" command can be used to automatically divide all quadri-
lateral patches into two triangular patches. EFIE also prohibits that an edge
be shared be more than two patches. The "EDGES" command can be used to find any
edges shared by more than two triangular faces, and the "SOCK" command can be
used to inflate the "wings". See Section 4.4 for the description of the
individual commands.

14

3.1.3 CELL MODELLING

In cell modelling, the neighbourhood of the geometric structure (the "cell
space") is divided into cartesian grided mesh points (i.e. into a box-like
tessellation). The structure is considered to occupy a collection of these mesh
locations ("cells"). Thus depending on the size of the cells, a cell model is
a "staircase" approximation of the geometric structure, when the structure has
curved surfaces or planer surfaces that are not parallel to the cartesian axes.

The FDTD/THREDE geometric structure of cells is represented in DIDEC as
orthogonal cellular wire grids (again with an arbitrary wire radius as 10% of
wire length). The conversion commands "FROM FDID" and "FROM THREDE" are used to
display the cell structure in DIDEC only: the resulting *.DID files cannot be
used to generate any geometric input file to run another electromagnetic
simulation code.

It is, however, possible to convert any wire grid or patch structure in
%.DID format to a cell model, with the commands "TO FDTD" and "TO THREDE",
suitable for use in running FDTD and THREDE.

3.2 DISPLAYS

There may be from one to four independent viewing areas on the screen,
called ‘viewport’. Viewport configuration (shape and location) is limited to a
given set. Each viewport (if not empty) corresponds to exactly one open data
file or table, but a file may be displayed in more than one viewport. Any change
to the output file will be shown immediately in all viewports associated with the
output file. A viewport may be in use or empty. If empty, it may or may not be
erased. When a viewport has just been defined using the "VIEWPORT" command, it
is both empty and erased. If a viewport contains a display but the file from
which the display was done is no longer open, then the display is empty but not
erased. Certain commands which require specification of a viewport will abort
if the viewport is in use but will erase it and use it if it is empty and not
erased.

3.2.1 DISPLAY SCALING FOR DIGITIZATION

One viewport is selected (see below) as the ‘primary’ digitization
viewport. It is scaled based on the 4 corners of the tablet, and the appropriate
2-D projection is used. Any other viewports associated with the output file will
not be rescaled, although any digitized vertices which happen to fall within the
viewports will be drawn if the defined coordinates are compatible with the 2-D
projection in use. Therefore, if the user wants a non-standard view such as a
3-D view while digitizing then he must use more than one viewport and set up the
others before the "DIGITIZE" command (he cannot use a 2-D projection alone, there
must always be a ‘primary’ viewport).

The primary viewport is chosen as part of the "SCALE" command and may be
specified by the user by giving the viewport number. The default is as follows:

15

+ if no viewports are defined, then the full screen is defined as a viewport

and

- if the viewport configuration is defined, then the lowest-numbered free
viewport is wused. If none are free then the user must choose which
viewport is to be erased.

3.3 COMMAND SYNTAX

This section describes the general syntax for user commands. When the "->"
prompt is displayed, DIDEC is ready to accept a user command. Commands may be
abbreviated as long as enough letters are entered so that the command can be
uniquely identified. For example, "QUIT" may be abbreviated to as little as one
letter, but "CHAIN" cannot be abbreviated to "C", "CH" or "CHA" since these do
not distinguish "CHAIN" from "CHANGE". The command name must be followed by a
carriage return, often shown as "<CR>".

Most commands require further keyboard input. After the command is
entered, the user is prompted to enter the required data. In a few cases this
data may instead be entered on the same line as the command itself, but this is
never required. The term "parameter" is used to represent one data value. If
more than one parameter is entered on the same line, they must be separated by
commas. The following are the possible parameter types:

+ Null (empty or extra comma(s))
+ Integer value or expression (see Section 3.3.1 below)
- Real (floating point) value or expression

+ Range of consecutive integer values, expressed as two integers separated
by a hyphen (the first value must always be less than the second)

+ Wire identification, expressed as two integers separated by a space

« Character string, such as a filename or title

3.3.1 NUMERICAL EXPRESSIONS

Whenever an integer or real value is expected, a numerical expression may
be used instead. The five basic operations (including exponentiation) are
allowed, as well as unlimited parentheses. The syntax and priority of operations
are the same as FORTRAN. All input values are considered to be real (floating
point) numbers, so truncation is never done. The final result is rounded, not
truncated, if the prompt being answered expects and integer result. Vertex
coordinate specifications (VCS, described below) may be used in expressions.

16

The following are valid expressions and are all equal:

10 14-4
5%2 3%*2+1
6+(5+3)/2 6+4%2/2

3.3.2 VERTEX COORDINATE SPECIFICATION

A vertex coordinate specification (VCS) may be used whenever an integer or
real value is expected. A VCS is a way of accessing the value of the X, Y, or
Z coordinate of an existing vertex. The full form of a VCS is:

FnVmC

where n is a file number, m is a vertex number, and C is either X, Y, or Z. The
VCS consists of 3 parts, Fn, Vm, and C. Any one or two of these parts may be
omitted, but at least one must be present so that the VCS can be recognized. The
defaults are:

Fn: File - the output file

Vm: Vertex - the most recently accessed vertex, usually clear from the
context

C: X, Y, or Z - defined by the context if possible, else must be
specified

The defaults for file and vertex are used if a number is not specified,
whether or not the Key letter "F" or "V" is specified. The only purpose in
specifying "F" for "V" without a number is due to the restriction that a VCS
cannot be recognized unless one of the letters "F", "V", "X", "Y", or "Z" is
specified.

The VCSs are extremely useful in specifying coordinates of wvertices
required for digitized segment realignment and other situations where a direct
numeric coordinate entry is required or desired, since their real numeric value
may then be given to the system only once (say, when digitizing the first segment
containing that alignment vertex). All subsequent references can be given using
a VCS, reducing thereby any consistency errors in repeatedly entering the same
(possibly long) numeric values.

As an example of the uses of a VCS, consider the "ENTER" command, which
allows numerical entry of vertex coordinates. Suppose that vertex 1 in the
output file is defined, and vertices 2 and 3 are now ENTERed as follows:

-> ENTER

Vertices? 2,3

Vertex #2 X, Y, Z2? V1*2
Vertex #3 X, Y, Z2? V1,V2,X*2

All 3 coordinates of vertex 2 will then be double those of vertex 1, since the
expression "VIx2" is evaluated 3 times, once for each coordinate of vertex 2, and
each time the corresponding coordinate of vertex 1 is used. Vertex 3 has the X
coordinate of vertex 1 and the Y coordinate of vertex 2. The Z coordinate of

17

vertex 3 is double the previous X coordinate, resulting in an error if vertex 3
was not previously defined. Note that the default vertex used in evaluating
"Xx2" was vertex 3, although vertex 2 had just been referenced, because
referencing a vertex in a VCS does not change the definition of "most recently
accessed vertex" for the purpose of determining the default. Also note that
until the definition of vertex 3 is complete, any VCS which references vertex 3

uses the values from the previous definition, not the current one.

3.4 COMMAND SUMMARY

There are 60 available DIDEC commands, a list of which may be obtained with
the "HELP" DIDEC command. More information on a specific command is obtained by
typing HELP followed by the name of the command.

The commands can be divided into five groups:

global commands

data file handling commands

graphic display manipulation commands
model building and editing commands
data file conversion commands

[s s o T = g

An alphabetical list of all commands follows:

ABORT abort any command in progress

ACTIVE toggles the availability tag of a locator device

ADD adds a constant to coordinates of chosen vertices

BISECT bisects a wire

BLOW zooms into a part of a display

CHAIN creates a chain of wires by joining a list of vertices

CHANGE re-digitizes vertices already defined

CLOSE closes a file

CODE selects the color-coding table to be used for displays

COLOR changes the color of specified wires, or the color to be given
to subsequently created wires

CcuT deletes wires

CYLINDER toggles drawing of wires as cylinders

DEBUG for use only when debugging DIDEC

DELETE deletes vertices

DIAMETER changes the diameter table index of specified wires, or the

index to be given to subsequently created wires
DIGITIZE digitizes vertices which are undefined or partially defined

DISCON deletes vertices with > a specified number of wires attached
DISPLAY displays a geometry data file

DOTS toggles display of vertices ,

EDGES picks out all edges shared by more than two faces

EDIT opens an existing file as the current output file

ENTER accepts numerical keyboard entry of vertex coordinates

FIELD displays incident field

FROM CDDP creates a DIDEC file from a CDDP file and put CURRENTS to the
COLOR field for CODE=C display
EFIE creates a DIDEC file from an EFIE file

18

FDTD

NEC

THREDE

TWTDA
HELP

HOST
IMAGE
INPUT
JOIN
LABEL
LENGTH

LIST
LOCATE
MERGE
MULTIPLY
NUMBER
OUTPUT
PATCH
POLYGON
PRINT
PURGE
QUIT
RADIUS
REFLECT
RENAME
RESET
ROUTE
SCALE
SEGLEN
SOCK
SPECTRUM
STOP
TABLE

TAG

TEXT

TITLE

TO EFIE
FDTD
NEC
THREDE
TWTDA

TRIANG

VERIFY

VIEWPORT

creates a DIDEC file from a FDTD geometry file
creates a DIDEC file from a NEC file

creates a DIDEC file from a THREDE geometry file
creates a DIDEC file from a TWTDA file

displays this list. HELP Command Name gives information on
the specified command.

issues host (DOS) commands

writes the current display to a HALO image *.PIC file
opens an existing file for input (read-only)

creates wires joining existing vertices

prints out a list of vertices at the locator cursor
changes the "maximum subdivision 1length" table index of
specified wires, or the index to be given to subsequently
created wires

prints a formatted listing of the contents of a file
labels 3D locations on displayed files

merges an input file into the output file

multiplies coordinates of chosen vertices by a constant
indicates vertex and tag displayed number size

creates a new output file

creates triangular or quadrilateral patches

creates a chain of wires, and closes the chain

sends displayed image to a printer

destroys a file

exits DIDEC even if an output file is open

changes the absolute radius value of a wire

reflects a file about a principle axis (x,y,z)

changes the name of the output file

resets scaling information for a viewport and redraws it
accepts command input from a file

sets the scale of the digitizing tablet

changes the absolute segment length value of a wire
splits vertices in two and doubles the connecting wires
displays current magnitude spectrum

exits DIDEC if no output file is open

reads, creates and updates color-coding, diameter, length, and
area tables

gives a wire a NEC-compatible identification tag

writes text at cursor-chosen location

displays (I/0) and changes (0) file titles

creates an EFIE input file

creates a FDTD geometry file

creates a NEC input file

creates a THREDE geometry file

creates a TWTDA input file

splits each quadrilateral into two triangles

shows which vertices are fully or partly defined

chooses a display viewport format

19

4.0 COMMANDS DESCRIPTION

This chapter gives a detailed description of the DIDEC commands, divided
into five different groups: global commands, data file handling commands,
graphic display manipulation commands, model building and editing command, and
data file conversion commands.

4.1 GLOBAL COMMANDS

Commands in this group provides general system-level interaction.

4.1.1 ABORT

This command is in fact not a DIDEC-level command. It is a possible
response to most prompts WITHIN the progress of a DIDEC command. If "ABORT" is
entered, the current command is aborted and the program returns to a DIDEC prompt
("->"), when another DIDEC command may be entered.

4.1.2 ACTIVE

This command toggles the availability tag of a locator device (joystick,

trackball, mouse,...), if a locator exists (i.e., if it is not "-LO" in
HALO.CNF). When a locator device exists, the default is that it is active. When
active, some command options can be entered using the locator device. When not

active, these options are entered using the keyboard for some of the commands
(e.g. "VIEWPORT"), while some other commands (e.g. "BLOW", "TEXT") cannot be
used.

4.1.3 DEBUG

This command is used for the debugging of DIDEC. A file name is prompted
and useful information for debugging is written into this file. This command is
left over from the original DIDEC development phase and is not needed under
normal circumstances.

4.1.4 HELP

This gives information about a specific command, or lists the available
commands. For information about a specific command, type

HELP xxx

where "xxx" is the name of the command. You can also type "HELP" without the
command name, and then type the command name on the next line in response to the
prompt. If you type "<CR>" in response to the prompt, you will get a list of the
available commands.

20

4.1.5 HOST

This command temporarily suspends DIDEC and issues host (DOS) commands.
If the user enters a DOS command, the command is executed and control is returned
to DIDEC. If the user enters a blank line, control is returned to DIDEC. If the
user enters the word "COMMAND", a sequence of DOS commands can be carried out.
Enter "EXIT" to return control to DIDEC.

CAUTION: For systems with many things loaded in memory, the "HOST" command
may lead to system failure. In this case a memory expander such as QEMM may have
to be used to move some DOS-resident programs to high memory, thus saving more
space for running DIDEC.

4.1.6 PRINT

This command sends the currently displayed screen image to the printer
specified on the "-P" line in HALO.CNF. The image is also written to the file
HALO.PIC. The program HALOREAD can be used to read any *.PIC file.
4.1.7 QUIT

This command exits DIDEC. If an output file is opened, "QUIT" gives a
prompt to purge it before exiting. (See also the "STOP" command.)
4.1.8 ROUTE

This command allows entry of DIDEC commands from a file instead of from the
keyboard. A file name is prompted and commands are read from the file, echoed
on the terminal, and executed. When the end of the file is reached, command
control is returned to the keyboard.
4.1.9 STOP

This command terminates DIDEC. If an output file is opened, it must be
either CLOSEd or PURGEd before the "STOP" command can be used. (See also the
"QUIT" command.)
4.2 DATA FILE HANDLING COMMANDS

The user can open up to 4 DIDEC (*.DID) files. These may be restricted to
read-only (no modification allowed), and at most one can be opened as the current

output (either with "OUTPUT" or "EDIT"). After being opened, all (input or
output) files are referred to in terms of their reference file numbers, 1 to 4.

21

4.2.1 CLOSE

This command closes and saves an opened *.DID file. The file, file number,
and any associated viewport are also freed. If the file is an output file, there
is a prompt to compress it upon closing (default = no compression). An output
file must be closed before terminating DIDEC, or it will be lost.
4.2.2 EDIT

This command opens and existing *.DID file as output for editing.
Internally in DIDEC, a copy 1s done and the editing is actually done on the
"invisible" file unit 5. The editing is only incorporated into the selected file
when the output file is closed.

4.2.3 INPUT

This command opens an existing *.DID file for input (read-only).

4.2.4 LIST

This command lists all vertex coordinates, wire characteristics, and patch
information of a *.DID file. The device or file to receive the listing is
prompted.
4.2.5 OUTPUT

This command opens a new output *.DID file. DIDEC can only have one output
file at a time. If a file with the same name already exists, a warning is issued
(that the old file will be overwritten when the current output file is closed).
4.2.6 PURGE

This command closes a *.DID file and destroys it. If the file purged is
the output file and was opened using "EDIT" then it is the edited copy that is
purged, leaving the original intact.
4.2.7 RENAME

This command changes the name of the output file. If the output file was
opened with "EDIT", the new name will come into effect when the file is closed.

4.2.8 TITLE

This command displays the title of a file (30 characters), which was
entered when the *.DID file was first created to allow the storage of some

22

additional explanation of the file contents. For the output file there is an
option of changing the title.

4.3 GRAPHIC DISPLAY MANIPULATION COMMANDS

To show the contents of a *.DID file on the graphics screen, use the
"DISPLAY" command. The other commands in this group are all supplementary to
"DISPLAY", for the selection of the many possible displaying configurations.

4.3.1 BLOW

This command zooms into part of a display window. A locator device is
needed for this command, used to pick the lower-left and upper-right corners for
the zoom-in area.

The "BLOW" command can be iterated. The "RESET" command displays the
window in its pre-BLOW view.

4.3.2 CODE
This command selects the colour-coding field to be used for displays. The
3 fields for selection are (C)olor, (D)iameter, and (L)ength. The default coding

(upon starting DIDEC) is by diameter.

The colour-coding table is selected by the "TABLE" command.

4.3.3 CYLINDER

This command enables or disables the drawing of wires as cylinders (with
radius as specified in the radius entry of each wire). The normal state is
disabled, when wires are drawn as line segments.

The cylindrical representation of wires is useful for NEC structures, where
the "true" representation of the geometric file can be displayed.

4.3.4 DISPLAY

This command generates a display window, after the file number, viewport,
and view are selected. The view can be any parallel projection identified by the
azimuth and elevation angles. Three specilal projections are also provided:
front, top, and side views which correspond to the views from the positive x, z,
and y axis, respectively.

23

4.3.5 DOTS

This command enables or disables the drawing of vertices. If enabled
(default), a small white dot is drawn to show each vertex. The display will be
completed faster if "DOTS" is disabled.

4.3.6 FIELD

This command displays the "three arrows" (k,E,H) of an incident field. The
parameters theta, phi, H_theta, and H_phi are as in EFIE.

4.3.7 IMAGE

This command writes the currently displayed screen image to a HALO *.PIC
file. The program HALOREAD can be used to read any *.PIC file (See Section 2.4).

4.3.8 LABEL

This command needs the locator cursor. It displays a list of vertices
(vertex ID number and coordinates) at/near the locator cursor position.

4.3.9 LOCATE

This command labels 3D locations on displayed structures. A label is any
1 or 2 character string and put at specified locations marked with a small "+".

The locations can be supplied through the keyboard, or read from a file.
The first line of the file is an integer "n" giving the number of locations.
Each of the subsequent n lines contain an "A2"-format label and the 3 real x,y,z
coordinates of the location.

4.3.10 NUMBER

This command sets the vertex and tag displayed number size. The size
number is an integer between 0 and 9. On starting DIDEC, the default size is 0
(no vertex and tag number displayed). The size numbers 1 to 8 correspond to the
following standard "real" scaling factor of character size:

.25
.5

N OB W
oUW OO

[eNeoRoNe NNl

24

The size number 9 allows a choice of any positive real scaling factor. The size
numbers for vertex and tag are independent and are set separately.

4.3.11 RESET

This command redraws the display to show the complete object contained in

the file associated with the wviewport. Reset is useful after "BLOW" and
digitization ("SCALE", "DIGITIZE", and
"CHANGE") .

4.3.12 SPECTRUM

This command displays a current magnitude spectrum. This command is used
with the "FROM CDDP" command, where the current magnitudes are scaled and stored
in the COLOR field of each wire. One uses the "CODE = C" command to change the
display colour to the COLOR field, then uses the "TABLE" command to select a
COLOR table. Then the structure will be displayed in the current magnitude
colours.

The "SPECTRUM" command selects the current magnitude scale stored in a
% . CUR file and displays it on the bottom of a viewport. (Naturally, the same
%*.CUR used in the FROM CDDP scaling should be used.)

A %, CUR file has the format:

7 step 7 median value (positive real)
6 step 6 median value

5 step 5 median value

4 step 4 median value

3 step 3 median value

2 step 2 median value

1 step 1 median value

n

where n=0 for a linear scale and n=1 for a logarithmic scale.

4.3.13 TABLE

This command associates color-code, diameter, length, and patch area values
with colour indices. There are 4 types of color-coding tables, for "colour”,
diameter, subdivision length, and patch area color-coding. (The colour field is
used by CDDP files to display current magnitudes in colour, with the commands
"CODE = C" and a chosen colour table.)

The tables are stored in separate files. Tables may be created, edited,
or read in from files. To access a table, type the "TABLE" command and answer
the questions asking for the type of table and the option to be used.

The read option prompts for a file name, reads the file contents, and exits

the "TABLE" command. The edit option allows editing the table which is currently

25

in memory, and then prompts for a filename for the "new" table. The create

Antdan savas s Sak1a 3 - A s 1
VUPLiUii «SLUS LT LaultT ailiays 4l diciivi y aliud vidiitlicds LU Luc Suie

optic
a table is being edited (including the create option) the user is prompted for
a table index from 1-15, a color number from 1-15 for color-coding, and a value
as applicable for the diameter and subdivision length tables. If a locator
device exists and the "ACTIVE" toggle is set then the color is selected using the
cursor input method (if the table is displayed) instead of by color number. In
this case, position the cursor on the leftmost of the 2 color bars.

{ TThan
100 . walhl

4.3.14 TEXT

This command puts text at a locator cursor chosen position. Each text line
may have up to 50 characters and there is a maximum of 10 text lines per
viewport.

Available text characters are the 26 CAPITAL letters, the 10 numerals, the
space character, and
$*¥()+-=, . /N[]_<>:;1]

All other entries will be displayed as the "unknown" character (three short
horizontal lines); this is a limitation of DIGRAF.

4.3.15 VIEWPORT

This command chooses a display viewport configuration. One of the 9
configurations can be selected using the cursor (if active), or by entering
"VIEWPORT i,j" where 1i,j=1,2,3.

4.4 MODEL BUILDING AND EDITING COMMANDS

The commands in this section deal with the actual geometric model creation
process within DIDEC. Most of them may be classified into one of two groups,
vertex manipulation commands and wire manipulation commands, although many
commands that handle vertices also affect the attached wires, and many commands
that handle wires also affect the incident vertices. Several commands, as well,
do not fall into either category.

A vertex is identified by its number, a positive integer. Vertices are
separated by commas, and can be specified as a range with a hyphen joining the
initial and final vertices.

We shall first discuss three special vertex manipulation commands that use

the digitizing tablet (specified in the "-T" line of HALO.CNF; see Section 2.2)5
"SCALE", "DIGITIZE", and "CHANGE".

26

4.4.1 DIGITIZATION

The digitization and construction of a 3D wire grid model from its 2D
projections is done by first building a series of partial descriptions, called
segments, which are subsequently merged to for the complete model. The reason
for the segmentation is effectively twofold. First, the individual projects and
sections for natural 2D segments which from then the 3D structure after merging.
Second, the individual plans containing the 2D projections of the object to be
modelled are usually much bigger in size than the digitization surface (tablet)
available. Due to segmentation the scaling of the digitization surface is not
as simple as it would be otherwise, in order to maintain correct dimensions and
segment orientation/alignment throughout the entire model. Therefore, each time
a new segment is to be digitized, the user must supply two vertices which lie on
the digitization surface and whose real world coordinates must be made known to
the system. For the first segment of a model, these coordinates must be entered
manually, while for any subsequent ones the user may just give a reference using
the Vertex Coordinate Specification (VCS) described previously, provided that the
segments are partially overlapping at least in these two reference points.

Suppose now that the surface has been scaled for the given segment to be
digitized. The user now may proceed in two relatively independent ways, namely,
one can first specify the individual wires in terms of their endpoint Vertex
Identifications (VIDs), or to proceed with the digitization of the vertex
coordinates. If a wire is created whose VID is so far unknown to the system, an
entry for this vertex is made in the database with the coordinate values left
undefined. This approach is very useful, for it allows the user to specify the
exact coordinates in one segment and use the vertex in many other segments for
wire references. During the merging process, a defined coordinate from one
segment supersedes any undefined values that may come from other segments.
Moreover, when a display of a segment is requested, the system verifies whether
all vertices have the coordinates required for the particular projected defined.
Any deviations are reported to the user, in order that corrective action could
be taken.

The vertex digitization is controlled using three commands: "SCALE", "DIGITIZE"
and "CHANGE".

4.4.1.1 SCALE

This command sets the linear scale of the digitizing tablet using two
vertices. This command must be called first, before the other two commands
("DIGITIZE" and "CHANGE") that use the digitizing tablet. The two vertices uses
for scaling are digitized on the tablet, and their 3D coordinates are entered on
the keyboard. These values are used for setting the scale.

In our sample configuration (Section 2.2), the vertex "n" is digitized on
the CalComp l6-key cursor by positioning the crosshair over the vertex in the
blueprint, and then pressing the number n (the digits in sequence) followed by
"D" (for "done"). Mistakes can be erased by the key "C" (and then redoing the
vertex). The key "A" aborts the command.

27

4.4.1.2 DIGITIZE

This command enters vertices of blueprints with a digitizing tablet. The
vertex number of vertices to be digitized can either be entered at the
"VERTICES?" prompt, or if none is entered here directly on the cursor keypad.
In the latter case entering vertex "O" terminates this command. Commands "CHAIN"
and "POLYGON" may be used to automatically create wires joining the new vertices.
4.4.1.3 CHANGE

This command re-digitizes existing vertices with a digitizing tablet. The
vertex number of vertices to be re-digitized can either be entered at the
"VERTICES?" prompt, or if none is entered here directly on the cursor keypad.
In the latter case entering vertex "0" terminates this command.

4.4.2 VERTEX MANIPULATION

The following commands allow the manipulation of vertices.

4.4.2.1 ENTER

New vertices can also be created with this command. It accepts numerical
keyboard entries of vertex coordinates to create new vertices.

4.4.2.2 DELETE

Existing vertices can be eliminated with this command. It deletes a vertex
and all attached wires.

4.4.2.3 ADD

This command adds a constant to coordinates (X, Y, Z, or all 3) of chosen
vertices of an output file.
4.4.2.4 DISCONNECT

This command finds all vertices from the output file with > a supplied
number of wires attached, and (optionally) deletes them. This command is used
to make a *.DID file containing cells easier to view because of the huge number
of edges. It also gives some indication as to which edges are on the "surface"
of the structure and which are "interior".
4.4.2.5 MULTIPLY

This command multiplies coordinates (X, Y, Z, or all 3) of chosen vertices

of an output file by a constant.

28

4.4.2.6 SOCK

Some codes, such as EFIE, do not allow edges to be shared by more than two
surfaces. It is therefore necessary to "inflate" some surfaces before an input
file can be created for these codes (e.g. "TO EFIE").

The "SOCK" command splits a vertex in 2 in the direction and distance
entered, and doubles the connecting wires. An example is shown on Figure 1-4
where the right wing of an aircraft in shown before and after "inflation". The
"EDGES" command (described in Section) can be used to find the "illegal" edges.
4.4.2.7 VERIFY

This command shows which vertices are fully or partially defined. This
command is used after digitizing for checking. This command also resets the
F*MIN and F*MAX variables. If the file is an output file, the new values will
be written in the file header.

4.4.3 VWIRE MANIPULATION

The following commands (primarily) manipulate wires. A wire is defined as
a pair of vertex numbers (the two end points) separated by a blank. Wires are
separated by commas.
4.4.3.1 BISECT

This command bisects chosen wires in an output file.

The process is:

1. cuts the old wire
2. create the mid-point vertex
3. join the two end-point vertices to the mid-point vertex.

4.4.3.2 CHAIN

This command creates a chain of wires by joining a list of vertices V1,
V2,...,Vn. If Vn is to be joined to V1, completing a polygon, use the POLYGON
command.

4.4.3.3 COLOR

This command allows either changing the colour of specified wires or
setting the colour to be used for all wires which are created after this command
is entered. First you must select the color index from 1 to 15. This is done
using the cursor, if a locator exists, the "ACTIVE" tag is set, and the table is
displayed. Position the cursor over the leftmost of the two color bars.

29

However, it is actually the index that you are selecting, so if the 2 color bars
are different at that level then it is the rightmost color that you will see in
future displays unless the table 1s changed.

4.4.3.4 CUT

This command removes wires.

4.4.3.5 DIAMETER

This command allows either changing the diameter of specified wires or
setting the diameter to be used for all wires which are created after this
command is entered. First you must select the color index from 1 to 15. This
is done using the cursor, if a locator exists, the "ACTIVE" tag is set, and the
table is displayed. Position the cursor over the leftmost of the two color bars.
However, it is actually the index that you are selecting, so if the 2 color bars
are different at that level then it is the rightmost color that you will see in
future displays unless the table is changed.

4.4.3.6 EDGES

Some codes, such as EFIE, do not allow edges to be shared by more than two
faces. Before creating an input file for these codes (e.g. "TO EFIE"), it is
necessary to insure that this condition is not violated.

The "EDGES" command picks out all edges in a structure shared by more than
two surfaces. The faces can be triangular, or triangular and quadrilateral. The
quadrilateral option is very slow for large structures. See also the "SOCK"
command, in Section 4.4.2.6.

4.4.3.7 JOIN

This command creates wires by joining a pair of vertices (the two end
points) separated by a blank. Wires are separated by commas.

4.4.3.8 LENGTH

This command allows either changing the length of specified wires or
setting the length to be used for all wires which are created after this command
is entered. First you must select the color index from 1 to 15. This is done
using the cursor, if a locator exists, the "ACTIVE" tag is set, and the table is
displayed. Position the cursor over the leftmost of the two color bars.
However, it is actually the index that you are selecting, so if the 2 color bars
are different at that level then it is the rightmost color that you will see in
future displays unless the table is changed.

30

4.4.3.9 POLYGON

The POLYGON command creates a chain of wires by joining a list of vertices
Vl, V2,...,Vn, and completing the chain into a polygon by joining Vn to V1. If
Vn is not to be joined to V1, use the "CHAIN" command.

4.4.3.10 RADIUS

This command changes the absolute radius value (positive real number) of
a wire, either by direct entry of a new radius or by entry of a multiplying
factor for the old radius.

4.4.3.11 SEGLEN

This command changes the absolute segment length (positive real number) of
a wire. Note segment length (in the NEC context) is not wire length: a wire can
have several segments.

4.4.3.12 TAG

This command gives a wire a NEC-compatible identifiable tag. All new wires
created in DIDEC (by "JOIN", "CHAIN", ...) have tag = 0 and must be re-tagged.

4.4.3.13 TRIANG

This command splits each quadrilateral patches into two triangular patches.
It must used before creating input files from a model containing quadrilateral
patches (e.g. from a *.DID file "FROM [NEC|") for codes such as EFIE which uses
only triangular patches. This command is very slow for large structures.

4.4.4 MISCELLANEOUS

4.4.4.1 PATCH

This command creates triangular and quadrilateral patches. These patches
are NEC-compatible and will be converted to NEC patches by the "TO [NEC]"
command. The colour of each patch reflects its area, coded according to the
current area table. The patching can be done manually (by selecting the patch
vertices with the locator device) or automatically (creating patches from all
triangular or quadrilateral wire frames). Automatic quadrilateral patching of
large structures is very slow.

31

4.4.4.2 MERGE

This command merges an input file into the output file allowing the
concatenation of several *.DID files. Complicated structure can be easily
created from simple pieces or submodels. The common vertices (i.e. those at the
same locations) from different input files must have the same vertex numbers to
merge properly.

4.4.4.3 REFLECT .

This command reflects a file along a principal axis (x,y,z) into the output
file. The coordinate of each vertex corresponding to the axis of reflection is

negated. The original vertices must all lie on the same side of the axis.
Vertices with a zero entry in the reflected coordinate will get duplicated. So
additional vertex and wire manipulations may be required to "tidy up". The

vertex numbers are changed by adding 1000 for x-axis reflection, 2000 for y-, and
4000 for z-.

4.5 DATA FILE CONVERSION COMMANDS

The prime purpose for the development of the DIDEC program is the creation
of geometric input files for the many numerical electromagnetic simulation codes.
A DIDEC file can be generated by conversion from the geometry file of one of
these codes, and a DIDEC file can be converted to yield the geometry file of one
of these codes.

4.5.1 FROM

This command creates a DIDEC output *.DID file from a geometric input file
of one of the electromagnetic simulations programs.

4.5.1.1 FROM CDDP

The CDDP *.STR file is a NEC input file appended with the current
magnitudes on each wire segment for each frequency. An *.STR file can be
generated by the independent program NECDDP, which reads from a NEC output file
the currents on the segments and appends them to a NEC input file. The current
magnitudes are translated into a colour scale and stored in the colour field for
CODE = C display. The current magnitudes are scaled in 7 steps either linearly
by maximum or by an existing *.CUR current scale file. In the former case the
scale used will be written to a *.CUR file (for use by the SPECTRUM command for
display).

A * CUR file has the format:

32

7 step 7 median value (positive real)
6 step 6 median value

5 step 5 median value

4 step 4 median value

3 step 3 median value

2 step 2 median value

1 step 1 median value

n

where n=0 for a linear scale and n=1 for a logarithmic scale.

4.5.1.2 FROM EFIE

Although EFIE is a patch-only code, it requires that the geometry be
entered as a list of vertices (the corners of the patches) and a list of the
edges forming triangular patches (it does not support quadrilateral patches).
Therefore, when a EFIE input file (*.EFI) is read in, it is entered as a wire
grid model. The "PATCH" command can be used to convert the model into a patch
model. Since the EFIE input file contains no radius information (the line
segments joining vertices are "edges" and not "wires"), in the conversion the
diameter of each "wire" of the DIDEC file is assumed to be 10% of the wire
length. The 10% value is chosen so that the "equal-area" rule of wire-grid
modelling (i.e., the cylindrical walls of the wires have the same area as the
grids) is approximately satisfied. The radius of specific wires can later be
changed with the "RADIUS" command.

4.5.1.3 FROM FDTD

This command converts a *.FDG file of the finite difference time domain
code, FDTD from the University of Manitoba, to DIDEC format for display. An
% FDG file has the format:

nXx ny nz

number_of_occupied _cells
I J K

IIDX = n dx "DY = " dy IIDZ - i dz
"RANGE OF I = [..,..] J=1]..,..] K=[..,..]"

(See the documentation of FDTD for details [6]).

4.5.1.4 FROM NEC

The conversion routine can only handle patches (SP, SC, and SM cards) and
wires (GW cards). All other geometric specifications (symmetry GX, etc.) must
first be explicitly rewritten into the acceptable format in the NEC input file
% .NCI prior to the DIDEC conversion.

33

4.5.1.5 FROM THREDE

This command converts a *.TDG geometry file of the finite difference time
domain program THREDE into a DIDEC file. The purpose is simply to display the
cellular structure.

A * . TDG file has the format:

"TITLE"
" XO 1n nx
X0(1)

XOinx)
1" YO n ny
YO(1l)

YO&ny)
"n ZO ”n nz
Z0(1)

20(nz)
"T,J,K,NOPE(I,J,K)"
i j k NOPE

(See the documentation of THREDE for details [7]).

The *.TDG file is closely related to the geometry file *.FDG. An *.FDG
file can easily be converted to a *.TDG file (and vice versa). There is a major
difference between THREDE and FDTD geometry: the (i,j,k) system of THREDE is
right-handed with the orientation i = aft, j = top, and k = portside; while the
(I,J,K) system of FDTD is identical to that of DIDEC, right-handed with I =
front, J = portside, and K = top. The conversion is I = nx-i, J =k, and K = j.

4.5.1.6 FROM TWIDA

The TWTDA input file *.TWI used in this conversion is the version 3
developed at DREO, and has only 1 comment line and the DT... line before the
geometric data.
4.5.2 TO

This command generates a geometric Input file for the chosen

electromagnetic simulations code. The DIDEC file used to obtain the data can be
either an input file or an output file of the simulation code.

34

4.5.2.1 TO EFIE

In the conversion from a *.DID file to an *.EFI file, diameter and
subdivision length tables are ignored (because EFIE does not use these).

Additional considerations before the conversion are:

1. that all "grids" must be triangular (because EFIE works on triangular
faces). The DIDEC command TRIANG can be used first to convert each
quadrilateral grid to two triangular pleces. :

2. that EFIE has a geometric restriction that an edge cannot be shared by
more than two triangles. The DIDEC command EDGES can be used to identify
all the edges that are shared by more than two grids, and the DIDEC
command SOCK can be used to "inflate" the extraneous "wings" into thin
tubes.

4.5.2.2 TO FDTD

The *.DID file to be converted must consist of triangles only. The minimum
cell edge size provided 1is such that the overall cell space 1is at most
100x100x100 (hence the object can at most occupy the central 50x50x50 cells).

The default for the cell selection criterion is the equivolume sphere (a
sphere with a radius of 0.62035 = 0.5-(6/7)1/3 which has a volume of 1.), which
is usually adequate.

The file generated by this command is a *.FDG file in the format described
in Section 4.5.1.3. The "FRCM FDTD" command can be used to convert this *.FDG
file for display. Note that the "FROM FDTD" and "TO FDTD" commands are not
operational inverses.

4.5.2.3 TO NEC

If you did not enter coordinates in either meters or feet, you must enter
the number of meters in each unit. For example, if using inches you could type
"1/39.25" (without the quotes). Remember that an expression can be typed, you
do not need to reach for a calculator.

In the prompts for obtaining radius and segment length from the lookup
tables, the default Y uses the diameter and segment length tables, while the
response N uses the actual diameter and segment length entries of each wire.
4.5.2.4 TO THREDE

The *.DID file to be converted must consist of triangles only. The minimum

cell edge size provided is such that the overall cell space is at most
1001005100 (hence the object can at most occupy the central 50x50x50 cells).

35

The default for the cell selection criterion is the equivolume sphere (a
ernhovn witrh a w=adlea ~€ N £9028 . N & 76 /-\1/3 (olhiath haa a walisma AafF 1 0\ whicrh
Oyllbt\v wWibkii @ ACGULUO Vi V. Vavos - Voo \V/ II/ Wild il Qo 1= VA Wie VA)y L T Y
is usually adequate.

The file generated by "TO THREDE" is a *.TDG file which contains the XO,
Y0, and Z0 arrays and the I,J,K,NOPE for each cell (each NOPE=4). To see what
this *.TDG file looks like, use "FROM THREDE" to convert it back into DID format.
Note that "TO THREDE" and "FROM THREDE" are NOT operational inverses: the
resulting *.DID after TO and FROM is the "THREDE equivalent” of the original
* . DID file. :

4.5.2.5 TO TWIDA
In the prompts for obtaining radius and segment length from the lookup
tables, the default Y uses the diameter and segment length tables, while the

response N uses the actual diameter and segment length entries of each wire.

The *.TWI file generated has only 2 non-geometric lines in the beginning;
this is version 3 of TWTDA developed at DREO.

36

5.0 ASSOCIATED PROGRAMS

Several programs associated with DIDEC have been developed at DREO. HEDRON
creates simple polyhedral pieces for merging in DIDEC to form complicated
geometric structures. The programs NECDDP, EFCDDP and TWCDDP extract current
magnitude from the output files of NEC, EFIE and TWTD respectively, and create
the corresponding *.STR files in CDDP format for the DIDEC "FROM CDDP" command.

5.1 HEDRON

HEDRON is a FORTRAN program, developed at DREO, that creates polyhedra in
the following simple geometric shapes:

box

cylinder

cone

sphere

rectangular plate

prism

polygon

torus

paraboloid of revolution

O 00~ Oy & W

The running of the program is entirely interactive. The user is prompted for the
dimensions of the object, the maximum edge length, the option to make only part
of the polyhedron, triangulation, rigid transformations, and the choice of
initial vertex and edge numbering.

The polyhedron is built as an *.EFI file (i.e. the output of running HEDRON
in the form

HEDRON filename

is the EFIE input file filename.EFI). The *.EFI file may then be converted by
DIDEC into a *.DID file for further processing. Note that if the triangulation
option is not chosen, then the *.EFI file contains quadrilateral grids and is
therefore not a proper EFIE input (EFIE takes only triangles). The *.EFI format
is chosen for its mathematical convenience in polyhedral representation. If an
* ,NCI file is desired, for example, the DIDEC commands FROM EFIE followed by TO
NEC would convert the *.EFI file to *.NCI.

The principal idea behind HEDRON is that simple geometric shapes can be
created easily. More complicated objects may then be built by the "MERGE"
command, using several simple geometric parts. Other wire and vertex
manipulations (such as opening up "windows") may also be carried out in DIDEC.
The finished product may then be converted in turn to the *.EFI, *.FDG, *.NCI,
*,TWI, or *.TDG format. Figure 5-1 shown an example of an object built with this
method (from cylindrical and conical segments).

The "maximum length for edges" choice prompts the user to enter a positive

real number. Note however that this number is the maximum for ALL edges
generated, including, in particular, the "diagonals" of quadrilateral grids.

37

INPUT FILE 2. TESTRZ. DIC.

30
38

40, EL

TESTRI1. DID. RZ

JT FILE 3
generated by HEDRON.

INPUT FILE 1.

OUTP
Figure 5-1 Example of an object created by merging and editing simple shapes

Thus, for example, if one wants the edges of the square grids to be at most 1
unit long, then the maximum length for edges should be entered as a number
slightly larger than 1.4142 = SQRT(2).

In general the geometric object is positioned so that it is "centered” at
the origin and with the z-axis as the principal axis. One may choose any number
of sequential rigid transformations (translations and rotations about a cartesian
axis) to reposition the object. The transformations are important in merging
common vertices. As well, in the MERGE command of DIDEC common vertices from
different files (i.e. vertices from different objects that occupy the same
locations) must have identical numbers (VIDs) to merge properly. (If vertices
have different VIDs they will be treated as different vertices even if they have
the same coordinates.) This is what the option to choose the numbering of the
initial vertex is for. (The numberin