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ABSTRACT

Artificial Neural Networks (ANNs) use weighted interconnections of computational
elements in an attempt to mimic the ability of the human brain to learn pattern associations.
The type and architecture of an ANN is defined by the following items: the coding and
decoding schemes used for the inputs and outputs, respectively; the interconnection pattern
between the elements; the computation performed by each element; and the method used
to change the weighting of values passed on the connections (i.e. the learning mechanism).
These networks can be trained, or can train themselves, to perform tasks such as image
recognition, speech understanding, robot control, and data filtering, just to name a few of
the more popular areas of application. The ANN of interest in this report is the
Holographic Neural Network (HNN). This network is specifically designed for pattern
association storage, and its designers claim that it has an exceptional generalization
capability and storage capacity. The HNN mathematically realizes the storage and retrieval
mechanisms of holograms; hence the origin of its name. The operation of this network is
briefly described within this report. -

In addition to describing the HNN, this report presents pattern recognition
performance results of the HNN and compares them with the results achieved by other
more common ANNSs: Adaline, Hamming, Bidirectional Associative Memory, Recirculation,
and Back Propagation. The ‘patterns used for testing represent artificial high resolution
- radar images of ships. These images appear as a two-dimensional topology of peaks with
various amplitudes.

The performance comparisons show that the HNN does not perform as well as the
other ANNs when using the same test data. However, modification of the data, to make it
appear more Gaussian distributed, does improve the performance of the HNN. It is shown
that the HNN performs best if the input data is completely Gaussian distributed.

iii






RESUME

Les Réseaux Neuronaux Artificiels (NRAs) utilisent des interconnections qui relient
des éléments de calculs afin d’imiter 'habileté du cerveau humain 2 apprendre a reconnaitre
et a associer les formes. Le type et l’architecture d’'un RNA est défini par les
caractéristiques suivantes: le codage et le décodage utilisés respectivement pour les entrées
et les sorties; la structure des interconnections entre les éléments; les calculs faits par
chaque élément; et la méthode utilisée pour changer le poids des valeurs rencontrées par
les connections (c’est-a-dire le mécanisme d’apprentissage). Ces réseaux peuvent étre
entrainés ou peuvent s’emntrainer eux-mémes pour accomplir des tiches telle que la
reconnaissance d’images, la compréhension de la parole, le contrdle de robot et le filtrage
de données. Ces applications ne sont que quelques’unes des plus populaires. Le Réseau
Neuronal Holographique (RNH) est discuté dans ce rapport. Ce réseau est spécifiquement
congu pour le rangement d’association de formes, et ses concepteurs prétendent qu’il a des
capacités exceptionelles pour la généralisation et le rangement. Le RNH réalise
mathématiquement les mécanismes holographiques de rangement et d’extraction, d’oll
lorigine de son nom.” Le mode d’opération d’un tel réseau est briévement décrit dans ce
rapport. ' o ' ' T

En plus de décrire le RNH, ce rapport présente des résultats de la performance du
RNH pour la reconnaissance de formes et les compare avec ceux associés 3 d’autres RNAs
plus communs: Adaline, Hamming, Association Bidirectionelle de Mémoire, Recirculation
et Propagation Arriére. Les formes utilisées pour les tests représentent des images radars
de bateaux artificielles & haute résolution. Ces images sont constituées de pics d’amplitude
variable dans un espace 4 deux dimensions.

La comparaison des performances, déterminées 4 I'aide du' méme set de données
dans tous les cas, montre que le RNH n’est pas aussi performant que les autres RNAs.
Cependant, une modification des données pour obtenir une distribution plus rapprochée
d’une distribution Gaussienne améliore la performance du RNH. Il est démontré que le
RNH donne les meilleurs résultats quand les données d’entrée ont une distribution
complétement Gaussienne,






EXECUTIVE SUMMARY

The Airborne Radar Section at the Defence Research Establishment Ottawa is
interested in determining and evaluating techniques which may be used to recognize high
resolution radar images of ships. An Artificial Neural Network is one class of techniques
which has drawn much attention in the past few years. These networks attempt to mimic
the operation of the human brain to perform tasks such as speech understanding, robot
control and pattern recognition. These networks do not make any assumptions about the
distribution statistics of the input data that is processed. Some networks must be trained,
while others can learn on their own. These networks can learn data which is uncorrupted,
but recall the same data after it has been buried in noise.

The neural network of most interest within this report is called the Holographic
Neural Network (HNN). This network promises a very large data storage capacity and
excellent generalization capability. Both of these attributes can be achieved with only a few
learning trials, which is unlike most neural networks that require on the order of thousands
of learning trials.

This report will study the pattern recognition capability of the HNN for the
application area mentioned above. Its performance will be compared with five other
commonly used neural networks. It is shown that the best performance achieved by the
HNN occurs when the training data has a Gaussian distribution. This appears to be the only
drawback of this neural network.
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1.0 INTRODUCTION

Artificial Neural Networks (ANNS) attempt to model our present understanding of
the human brain. Our vast interconnection of neurons is modelled as a dense
interconnection of nonlinear computational elements or nodes. The links between the nodes
are weighted, and the ANN is able to learn by varying the values of these weights. Typical
things that these networks can learn to perform are image, written text and speech
recognition, and data filtering. The ANNs can either learn on their own or through
supervision. Self-learning implies the association of an input stimulus to an output response,
in which the input data is clustered by the ANN to derive an output. Supervised learning
implies that the ANN is presented with both an input stimulus and its associated or desired
output response.

An ANN contains the following components: the coding and decoding mechanisms
for its input and output data, respectively; the interconnection topology of the nodes; the
nonlinear computation performed in each node; and the method used to change the weights
on the links between the nodes. The coded format of the input and output data can either
be binary, bipolar or (scaled) analog. A typical interconnection topology has each node
connected to every other node in the network. The computation performed at each node
is identical, and consists of passing the summation of all the weighted input values through
a nonlinear threshold function, and then feeding the result to the input of all the other
nodes. The method for changing the weights defines the learning scheme for the network.
The type and architecture of the ANN depends upon the learning scheme, the
interconnection pattern, the computation performed by each node, and the data coding
format. A description of various types of ANNs, including a good introduction to the topic, .
can be found in [1]. For the interested reader, reference [2] describes more recent (i.e.
experimental) ANNS.

The ANN of interest in this report is the Holographic Neural Network (HNN)
because of the exceptional performance it has demonstrated [8]. This network
mathematically realizes the storage and retrieval mechanisms of holograms; hence the origin
of its name. Its operation is briefly described in the next section. The creators of this
network claim that it has an outstanding generalization capability and storage capacity.
These claims are presented and substantiated in the next section. The network’s superb
performance is achieved using Gaussian distributed data.

The Airborne Radar Section at DREO is interested in studying the performance of
various neural networks in recognizing high resolution radar images of ships. These images
can be grossly described as a two-dimensional topology of peaks with various amplitudes.
To simplify the testing process, artificial as opposed to real or simulated ship imagery is
used. Unlike real or simulated images, which require extensive data processing, an artificial
image is simply created with the knowledge that ship images are composed of a distribution
of peaks. Each artificial ship image consists of a fixed number of peaks arranged in a -
predetermined manner. Each peak is assigned one of three predefined amplitude values.




The distributions of the peaks - one distribution per ship image - are further described in
Section 3.

This distribution of amplitude values is non-Gaussian. Consequently, the
performance of the HNN is severely degraded, as is shown in Section 3. The HNN’s
recognition capability for this application is compared with that obtained by other more
common ANNs: Adaline [3], Hamming [1], Bidirectional Associative Memory [4],
Recirculation [5], and Back Propagation [1]. A description of these networks is beyond the
scope of this report, but can be found in the references given.

Since the HNN had difficulty recognizing the artificial radar images it was trained
with, but performed very well with Gaussian distributed data, the artificial data was modified
to make its distribution appear slightly more Gaussian. The results presented in Section 4
indicate that the HNN’s performance improved after this modification was made. Section
4 gives a description of the modified distribution of the test data.




2.0 THE HOLOGRAPHIC NEURAL NETWORK
AND ITS PERFORMANCE

2.1 Description of the Holographic Neural Network

The Holographic Neural Network (HNN) (a complete description can be found in
references [6] and [7]) is a heteroassociative ANN which uses supervised learning of analog
stimulus/response vector pairs. This means that the network can accept real-valued inputs
arranged as an N element vector, called the stimulus, and output a real-valued M element
vector, called the response. Values for N and M range from 1 to some maximum, limited
by the amount of memory available to implement the network. Since N does not have to
equal M, the network is considered heteroassociative. Learning is supervised because the
input stimulus and its corresponding output response must be presented to the network at
the same time.

There are two main advantages that this network provides over other networks. They
are the ability to learn or retain large amounts of data, which can be recalled with little
error, and the small number of trials required to learn that data. The first advantage is
achieved by using a sophisticated transformation scheme for the input data, prior to its
storage, and a complementary scheme for the output data. Each real-valued input element
of the stimulus vector is coded as phase information by using the sigmoidal transformation

0, = —2% |, k=1,2,3, ...,N (1)

B = 8k

where s, is the input value for element k of the stimulus vector, u is the mean value over
all N input elements, and o is the standard deviation of the N input element values. The
phase of input element k, 8,, has values between 0 and 2r, as shown in Figure 1 [7]. A
level of confidence in, or weighting of, the value s, is heuristically determined, where 0
corresponds to no confidence and 1 corresponds to full confidence in the value. Usually this
confidence level is set to 1. The confidence level represents the magnitude, and 8,
represents the phase, of the complex number that is actually stored within the HNN. Since
the network’s stored values are complex, its output values are also complex. However, since
the input was originally real-valued, the output must be transformed to a real value. This
is simply done by computing the inverse tangent of the imaginary part divided by the real
part of the complex number. The magnitude of the output complex number provides a level
of confidence in, or weighting of, the real-valued output.

With the sigmoidal transformation scheme, it is possible to overlay or store a large




number of input values onto a single input element, and yet be able to retrieve their
corresponding or associated output response values with little error. The number of input
values that can be stored on an element is dependent upon the statistical distribution of the
input data. ' o

o
2
Phase
Axis
o =
- + O
:f. Real aAxis —_—

Figure 1 Sigmoidal function - Transforming real-valued inputs to
the 0 to 2r phase domain [7].

One major advantage of the HNN over other ANNS is its ability to learn very quickly.
This is due to its encoding (learning) scheme, which creates a correlation matrix, X, of
complex numbers, by executing a complex inner product over the stimulus and response
vector elements. This is similar to the scheme used in the Bidirectional Associative Memory
[4]. Each element in the correlation matrix, x,;, is computed by multiplying the complex
conjugate of the transformed stimulus vector element k, with the transformed response
vector element j. In vector notation,

X = STR | 2)

where ST is the transpose of the complex conjugate of the stimulus vector, and R is the
response vector. To decode, or retrieve the response vector stored in the correlation matrix
X, the following operation is performed

R=1/c(S-X). 3)




where ¢ is a constant equal to the sum of the confidence measures over all k stimulus vector
elements. The encoding and decoding operation is depicted in Figure 2 [6]. By modifying
the encoding scheme so that the changes made to the correlation matrix after each learned
stimulus/response pattern are minimized, superior network performance is achieved [6].
The modified or enhanced encoding method is given by (in vector notation)

X DIFFERENCE = sT- R-1/c(S:-X)) (4a)

whereby

Xnew = X + XpprERENCE , _ (4b).

With this learning scheme, no more than three iterations of the learning cycle (i.e. three
encodings) using the same stimulus/response patterns are required to achieve the same level
of performance as other ANNSs, which typically require thousands of learning cycles. The
maximum levels of performance for the HNN are achieved with Gaussian distributed data,
as is discussed in the following subsection.

CONTROL ELEMENT

w Dacoding .
[R]={X]- (8]

il

Corralation Data
Il

4

$ Encoding
X =57 [R)
7S

Ganarated Response

Stimuius

Learned
Respanse

ENVIRONMENT <:

Figure 2 Schematic of the Encoding and Decoding scheme of the HNN [6].




2.2 Performance Measurements of the Holographic Neural Network

Two basic sets of performance measurements were derived by the company that
developed the HNN. The first is the storage capacity, and the second is the generalization
capability, of the HNN. The enhanced encoding scheme, described in the previous
subsection, was used. It should be noted that during the testing procedures, the length of
the stimulus vector is varied for different tests, but the length of the response vector is fixed
at one element. The values of the input and output data range between 0 and 255, and are
randomly selected from the same Gaussian distribution. In other words, the stimulus and
response vectors are associated using numbers from the same distribution. The first N
values are associated with the (N + 1)th value, the next N values are associated with the
(2N +2)th value, and so on. This testing demonstrates that by associating input vectors,
taken from a Gaussian distribution, with output numbers from the same distribution, the
network is still able to distinguish between the individual numbers. It should also be noted
that by using the sigmoidal transformation function on the input data, the Gaussian
distributed data is mapped into a more uniform distribution, which is stored in the HNN.
This mapping is depicted in Figure 3 [7].

input to sigmoid output f(om sigmoid
(Gaussian) (Uniform)
—
maps to
using sigmoid transform

Figure 3 Mapping of Gaussian (Normal) Distributed input through the
Sigmoid Transform [7].

Figure 4 [8] is a plot of the storage density of the HNN using a 1024 element
stimulus vector. The plot shows how the mean (over all test patterns) analog response error
in the output response vector, which is a percentage of the full scale value of 255, varies as
a function of both the number of storage pattern associations and the number of learning
trials. The error for each stored association is measured by dividing the absolute value of
the expected response minus the output response, by the maximum valued output response.




The errors for all associations are then averaged to obtain the mean response error.
With a conventional storage device, 512 patterns of a vector with 1024 elements
would require 512 Kilobytes of storage (one byte per element). With the HNN process, all
512 patterns are overlaid onto 1024 complex numbers, where each number is represented
by a magnitude (two bytes of storage) and a phase (two bytes of storage). Thus, only 4
Kilobytes are required to store these patterns. The storage requirements are reduced by a
factor of 128. However, with conventional storage, there is no error when the response
vector is recalled, but the HNN has about a 2.2 percent error (after three learning trials).

Figure 5 [8] is another plot representing storage density. It illustrates the variation
of the mean analog response error, as a function of the number of stored pattern
associations (which is a percentage of the length of the stimulus vector), for different lengths
of the stimulus vector. Note that as the length of the stimulus vector increases, the
performance improves slightly.

) e

Analog Response Error (% full scale)
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Figure 4 A plot of the mean analog response error, as a function of both the
number of storage patterns and the number of learning trials. The
length of the stimulus vector is fixed at 1024 elements [8]. '
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Figure 5 A plot of the mean analog response error, as a function of the stored
pattern density, for different lengths of the stimulus vector. Only
one learning trial is used to derive these results [8].

Figure 6 [8] illustrates the generalization capability of the HNN. Generalization is
a performance measure of the amount of error in the output response, for various amounts
of distortion of the input stimulus pattern. The plot in Figure 6 shows the mean analog
response error, as a function of both the number of learning trials and the distortion of the
stimulus pattern. The distortion is measured as a percentage of the number of vector
elements which have been altered from their original values. The length of the stimulus
vector is fixed at 1024 elements and the number of stored pattern associations is 256. Note
that even with a distortion of 50 percent, the error is below 10 percent.

As a final illustration of the performance of the HNN, Figure 7 [8] also depicts its
generalization capability. The plot in Figure 7 shows how the mean analog response error
varies, as a function of the distortion of the stimulus pattern, for different numbers of
encoded pattern associations. The length of the stimulus vector is fixed at 1024 elements.




The results in both Figures 6 and 7 indicate that the HINN has a large immunity to
very high distortion levels, even with high pattern storage densities. High levels of immunity
to distortion indicate that the learned pattern associations form generalizations, in the sense
that each pattern association maps a wide region within the stimulus state space to the
desired response.

Prior to comparing the performance of the HNN with other ANNs in our application
area, software to implement the HNN had to be written. It was coded in FORTRAN-77
and implemented on an IBM compatible 80286 microcomputer. Tests with Gaussian
distributed data were conducted to verify that the HNN was coded correctly. This allowed
its measure of performance, for storage capacity, to be directly compared with the results
plotted in Figures 4 and 5. Figure 8 illustrates the mean analog response error, as a
function of the number of stored pattern associations, for different numbers of learning
trials. The results in this figure can be compared with the results shown in Figure 4, except
that the "Number of Stored Patterns" axis in Figure 8 should be multiplied by 8 to allow a
direct comparison with Figure 4. The reason for this multiplication is that the results in
Figure 4 apply to a 1024 element stimulus vector, while the results in Figure 8 were
obtained with a 128 element stimulus vector. Comparing the results in these two figures
indicate that they are similar.

Figure 9 displays the mean analog response error versus the stored pattern density.
The stimulus vector length is 128 elements. The results in this figure are similar to the
results plotted in Figure 5.

Since the résults in Figures 8 and 9 are similar to those in Figures 4 and 5,
respectively, we can assume that the NN was coded correctly.” Although the mean error
results are very similar, they are not identical. There are two simple reasons for this
difference. First, the length of the stimulus vector used for testing by the company was 1024
clements, while only 128 elements (due to memory limitations) were used in our testing.
To a lesser degree, the second reason is that the Gaussian distributed data used to generate
the results in Figures 4 and 5 were not exactly the same as the data used to obtain the
results shown in Figures 8 and 9.
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Figure 6 A plot of the mean analog response error, as a function of both the percentage
of distortion of the input stimulus pattern and the number of learning trials.
The length of the stimulus vector is fixed at 1024 elements, and only 256
pattern associations are stored [8].
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3.0 PERFORMANCE COMPARISON OF THE HOLOGRAPHIC
NEURAL NETWORK WITH OTHER NETWORKS

One goal of the Airborne Radar Section at the Defence Research Establishment
Ottawa is to develop and evaluate algorithms that can be used to classify high resolution
radar images of ships. An evaluation of the pattern recognition capability of five common
ANNs was performed, and their performance is reported in [9]. In order to evaluate the
performance of the HNN in this application area, we shall test the HNN with the same data
as was used to evaluate the other ANNs in [9]. Thus, the pattern recognition capability of
the HNN can be directly compared with the other ANNS for this particular application. The
performance results and comparisons are presented in Section 3.2. A more detailed
description of the application area is given in the following subsection. It should be pointed
out that due to the limited funding for performing the evaluation described in [9], real or
simulated radar images of ships were not used since they would require far more time for
testing than was available. Instead, artificial images were used since they could be easily
generated and provided for a well-controlled data test set.

3.1 Application Area Used for Performance Testing

The data set, used to evaluate the ability of the ANNs to recognize patterns, can be
roughly described as a two-dimensional topology of peaks with various amplitudes. These
patterns crudely represent high resolution radar images of real ships. A total of ten distinct
patterns were created and used for testing. Each pattern consists of 6 rows of 27 columns
each. These patterns are presented in [9], but one is shown in Figure 10 for convenience.

1 5 10 15 20 25 27
1 LIL|iL
2 LIL|IL
3 HiH|H H{H|H
4 H|H{H HiHIH
5
6

Figure 10 An example image pattern used to test the ANN [9].
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The pattern within this figure is composed of a certain number of peaks, with each
peak being assigned one of three predefined amplitude values. A peak occupies six pixels
or elements in the two-dimensional grid pattern. The three peak amplitude values are
designated low, medium and high, and correspond to values of 5, 10 and 20, respectively.
The arrangement of these peaks and the values assigned to each, define the artificial radar
image of a ship. The pattern in Figure 10 has four peaks: two are high, one is medium, and
the fourth is low.

Not only are the image patterns used for testing, but corrupted versions of these
patterns are used as well. A predetermined number of image pixels was randomly selected
and assigned random amplitude values. If a pixel’s amplitude was zero, then a value was
added, and if it was non-zero, then this amplitude was modified. These altered image pixels
are called "added or modified peaks" in the remainder of this report. Figure 11(a) [9] shows
a (crude) three-dimensional plot of the image pattern of Figure 10, and Figure 11(b) [9]
shows a three-dimensional pattern of the same image with 12 added or modified peaks.

13
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3.2 Holographic Neural Network Performance Results
Compared With Five Other Networks

A performance summary of the five ANNs evaluated in reference [9], using ten
distinct image patterns similar to the one given in Figure 10, can be found in Table 1 [1_9].
The commercial neural networks software development package called Professional IT™,
created by Neuralware Inc. [10], was used to evaluate the five ANNs. This package provides
these precoded ANNS, and a graphical interface to display input and output data.

NUMBER OF CONFIDENCE
ADDED OR INTERVAL
NETWORK MODIFIED PERFORMANCE in Percent
: PEAKS (Confidence level
(Test Data) is set at 99.0%)
Adaline 0 100.0% 97.84 - 100.0
3 100.0% 97.84 - 100.0
6 95.0% 90.68 - 97.38
9 82.3% 75.95 = 87.26
12 71.0% . 63.86 — 77.23
Hamming 0 100.0% 97.84 - 1006.0
3 100.0% 97.84 - 100.0
6 100.0% 97.84 - 100.0
9 100.0% 97.84 - 100.0
12 100.0% 97.84 - 100.0
Bidirectional 0 30.0% 23.68 - 37.1¢9
Assoclative 3 46.3% 39.05 - 53.71
Memory 6 NOT TESTED N/A
9 NOT TESTED N/A

12 0.0% 0.00 - 2.16
Recirculation 0 100.0% 97.84 - 100.0
3 98.3% 95.09 - 99.42
6 95.3% 91.06 - 97.58
] 87.0% 81.19 ~« 91.21
12 81.3% 74.85 — 86.40
BackPropagation 0 100.0% 97.84 - 100.0
3 89.7% 84.29 - 93.39
6 79.3% 72.67 — 84.66
1] 73.0% 65.96 - 79.05
12 62.3% 54.90 - 69.17

Table 1 Performance Summary of five ANNs after training with uncorrupted
patterns [9]. NOT TESTED implies that no test was performed
because of anticipated poor results.
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During the learning process, the patterns presented to each network were randomly
selected from the training set of ten images. The Adaline network completed its training
after 4500 patterns (i.e. each of the distinct patterns was used 450 times) had been
presented. The Hamming and Bidirectional Associative Memory networks only required
one learning trial for each of the ten images. The Recirculation network was trained with
each pattern 750 times, and training of the BackPropagation network was completed after
each pattern had been presented 1950 times.

All test results were arrived at by presenting 300 patterns to the trained networks for
classification. These were randomly selected from the 10 distinct images, with each being
chosen 30 times using a different corrupted variation each time. With only 300 patterns
available for testing, the measured performance results may not be statistically accurate.
In other words, if many more patterns were used for testing, then more accurate or
statistically consistent results would have been obtained. Since a very large number of
patterns was not used for testing, a confidence region is defined, which provides an interval
within which the true network performance would lie with a given level of confidence. The
bounds of the confidence interval are provided in the following tables of performance
results. These limits have been computed under the assumption that the probability
distribution of the number of errors is Gaussian [11]. Note that if the confidence level is
reduced, then the confidence interval becomes smaller.

In addition to training with uncorrupted data, training was done with patterns that
had a number of added or modified peaks. Table 2 shows the performance results, for two
of the networks, using corrupted patterns for both training and testing [9]. As with the

results in Table 1, only 300 patterns were used to test the networks.

The performance results for the Adaline network were achieved after using 3300
corrupted (i.e. 330 times for each pattern) patterns for training. The BackPropagation
network required 19200 corrupted patterns (i.e. 1920 times for each pattern) in the learning
process to achieve its performance results. Note that, for this test data, the Adaline network
performed better when trained with corrupted data than with uncorrupted data. However,
this was not the case for the BackPropagation network.

" TIn order to test the NN with the same image patterns, its architecture was created
to accept input stimulus vectors with 162 elements (i.e. 27 columns by 6 rows each) having
scaled (from the original pixel values of 0, 5, 10 and 20) analog inputs ranging in value from
0 to 255. The output response vector consisted of 10 elements with analog values ranging
between 0 and 128. Each output element corresponded to one of the patterns. Hence, all
the elements, except one, should be zero at any time. In reality, all the output elements had
some non-zero value, but the element with the highest value was considered to be the
pattern which was associated to the input stimulus vector.
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NUMBER OF | NUMBER OF CONFIDENCE

ADDED OR ADDED OR INTERVAL

NETWORK MODIFIED MODIFIED PERFORMANCE in Percent

PEAKS PEAKS (Confidence
(Training | (Test level is set

. Data) Data) at 99.0%)

Adaline 12 0 100.0% 97.84 - 100.0
3 100.0% 97.84 - 100.0
6 98.7% 95.68 - 99.62
9 95.0% 90.68 - 97.38
12 90.7% 85.46 — 94.18
Adaline 24 0 100.0% 97.84 - 100.0
3 100.0% 97.84 - 100.0
6 99.7% 97.28 - 99.97
9 97.7% 94.23 - 99.10
12 96.3% 92.35 - .98.25
Back- 24 0 60.0% 52.58 - 66.99
Propagation 3 60.0% 52.58 ~ 66.99
6 59.3% 51.87 - 66.33
9 59.7% 52.27 - 66.71
12 59.7% 52.27 - 66.71

Table 2 Performance summary for the Adaline and BackPropagation
networks using corrupted training data [9].

Using the same training and testing procedure for the HNN as was used for the other
ANNSs, the performance results of Tables 3 and 4 were achieved. These can be compared
to Tables 1 and 2, respectively. It is apparent that the HNN performed very poorly in this
application. It was mentioned in reference [7] that because of the data coding format used,
perhaps only 3 or 4 learning trials (i.e. present each pattern association 3 or 4 times to the
network) would be needed to achieve the maximum pattern recognition performance. For
testing the HNN, 300 training patterns were used, and this corresponds to using each of the
10 patterns 30 times. Hence, the suggested maximum number of training trials was
exceeded, but this did not result in good performance. It should be pointed out that
evaluations with only 3 training trials were made, but resulted in a maximum performance -
of about 30.0% when tested with uncorrupted data.

From the results in Table 3, it appears as though the performance of the HNN
becomes worse with more training. For many ANNS, their performance tends to get better
with more training, but levels out at some maximum regardless of the amount of training
done. However, there are some ANNs whose performance tends to reach some maximum
level, and then decrease with additional training.
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NOT TESTED

NOT TESTED

NOT TESTED
10.67%

N/A

N/A

N/A
6.90 — 16.14

NUMBER OF CONFIDENCE
TOTAL NUMBER ADDED OR INTERVAL
OF TRAINING MODIFIED PERFORMANCE in Percent
PATTERNS PEAKS (Confidence level
(Test Data) is set at 99.0%)
300 0 100.0% 97.84 - 100.0
3 37.67% 30.81 - 45.07
6 18.67% 13.58 - 25.12
9 15.0% 10.45 - 21.06
12 10.7% 6.93 - 16.17
600 0 100.0% 97.84 - 100.0
3 35.3% 25.58 - 42.65
6 16.3% 11.55 - 22.51
9 14.67% 10.18 - 20.69
12 12.67% 8.52 - 18.43
900 0 100.0% 97.84 - 100.0
3 34.67% 28.00 - 42.01
6 14.67% 10.18 - 20.69
9 13.67% 9.34 - 19.57
12 10.0% 6.37 - 15.36
1200 0 100.0% 97.84 - 100.0
3 37.0% 30.18 - 44.39
6 16.0% 11.29 - 22.18
S 15.67% 11.02 - 21.81
12 11.67% 7.7L - 17.29
1500 0 100.0% 97.84 - 100.0
3
6
2
12

Table 3 Performance results for the HNN using uncorrupted patterns for
training, and 300 randomly selected patterns for testing.
NOT TESTED implies that no test was performed because of
anticipated poor results.

From the results in Table 4, it appears that if the HNN is trained with corrupted
data, its performance becomes worse. This is opposite of the behaviour of the Adaline

network, as indicated in Table 2.

_ The performance results for the HNN, as discussed in Section 2, showed that this
network has the potential to achieve high recognition capability using very few training trials.
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The major difference between the tests performed in Sections 2 and 3 is that Gaussian
distributed data was used in Section 2, while the patterns used in this section did not have
this distribution. To improve the performance of the HNN, the distribution of its input data
should be made to appear more Gaussian. Attempts at improving the performance of the
HNN, based on the requirement for Gaussian distributed input data, is presented in the
following section.

TOTAL NUMBER OF NUMBER OF CONFIDENCE
NUMBER ADDED OR ADDED OR INTERVAL
OF MODIFIED MODIFIED PERFORMANCE in Percent
TRAINING PEAKS PEAKS (Confidence

PATTERNS | (Training | (Test Data) level is set

| Data) at 99.0%)

300 3 c 60.0% 52.58 - 66.99

3 22.67% 17.08 - 29.45

6 12.3% 8.22 - 18.01

9 11.0% 7.17 - 16.52

12 10.0% 6.37 - 15.36

1200 3 0 90.0% 84.64 - 93.63

3 29.3% 23.04 - 36.45

6 13.3% 9.04 - 19.15

9 12.0% 7.97 = 17.67

12 9.3% 5.82 - 14.54

300 12 0 10.0% 6.37 - 15.36

3 11.3§ 7.41 - 16.87

6 11.0% 7.17 - 16.52

2 10.0% 6.37 — 15.36

12 10.0% 6.37 = 15.36

Table 4 Performance results for the HNN using corrupted patterns for
training, and 300 randomly selected patterns for testing.




4.0 MODIFICATION OF APPLICATION DATA TO IMPROVE PERFORMANCE

Two methods were used to try to improve the pattern recognition performance of the
HNN tabulated in Section 3. First, the input patterns were transformed to make them
appear more random and have less zero-valued pixels. To a human, zero-valued pixels are
not weighted heavily in the recognition process. This implies that zero-valued pixels should
not be part of the input patterns since they are not considered of importance to the
recognition process. Zero-valued pixels have no weight in the learning process of a typical
ANN. However, in the HNN, these pixels have the same weighting as nonzero-valued pixels
and are thereby important to the recognition process of the HNN. The second method
attempted to improve the performance of the HNN by manipulating the input patterns to
make their distributions more Gaussian.

To remove the zero-valued pixels, and make the input patterns appear more random,
the pixel values along the six rows were summed and the values along the 27 columns were
summed to form a 33 element input stimulus vector. This summation procedure was done
to each of the ten input patterns, for both training and testing. The HNN was evaluated
with these transformed input data patterns, and the results are presented in Table 5.

Comparing the results in this table with those in Tables 3 and 4, we find that the
transformation of the input patterns did not achieve the desired result of improved
recognition performance. In fact, the performance got worse.

To make the input pattern distributions appear more Gaussian, Gaussian distributed
noise was added to each pattern used in training and testing. The following range of noise
levels were tried (recall that pixel values within a pattern were 0, 5, 10.or 20): 0 to 1; 0 to
0.5; 0 to 0.2; 0 to 0.1; and O to 0.05. Preliminary tests showed that the range 0 to 0.2
produced the best performance, and so further testing was done with this range of noise
levels.

' Table 6 lists the recognition performance results achieved by the HNN using
corrupted and uncorrupted input patterns, with Gaussian distributed noise added to each
pattern. Comparing these results with Tables 3 and 4 shows that the results are almost
identical, except when 300 uncorrupted patterns were used for training. In this case, about
a 5% improvement in the performance of the HNN was achieved. Although this is a small
improvement, it is significant enough to indicate that if the input pattern distributions were
more Gaussian, then better performance could be achieved. However, due to the small
number of test patterns used, this improvement may only be the result of the variance in the
performance measures, as indicated by the confidence intervals provided in each table.

20




TOTAL NUMBER OF NUMBER OF CONFIDENCE
NUMBER ADDED OR ADDED OR INTERVAL
OoF MODIFIED MODIFIED PERFORMANCE in Percent
TRAINING | PEAKS PEAKS (Confidence
PATTERNS | (Training | (Test Data) level is set
Data) at 99.0%)
300 0 0 70.0% 62.81 - 76.32
3 23.3% 17.63 - 30.12
6 13.0% 8.79 - 18.81
9 11.0% 7.17 - 16.52
12 11.67% 7.71 - 17.29
1200 0 0 70.0% 62.81 - 76.32
3 19.67% 14.44 - 26.21
6 NOT TESTED N/A
9 NOT TESTED N/A
12 NOT TESTED N/A
300 3 0 20.0% 14.73 - 26.57
3 18.3% 13.26 - 24.71
6 9.0% 5.59 - 14.19
9 10.0% 6.37 - 15.36
12 8.67% 5.33 = 13.80
1200 3 0 30.0% 23.68 ~.37.19
3 20.3% 15.0 - 26.9
6 NOT TESTED N/A
9 NOT TESTED N/A
12 NOT TESTED N/A

Table 5 Performance results for the HNN using more randomized

input patterns for training, and 300 randomly selected
patterns for testing. NOT TESTED implies that no test was
performed because of anticipated poor results.

Comparing the results in Table 6 with Tables 1 and 2 shows that, for this application,
the recognition abilities of the HNN need a lot more improvement to achieve the maximum
performance of the other five ANNs. Based on the performance results given in Section 2,
it is anticipated that the HNN could indeed achieve better performance results than the
other ANNG in this application. This is provided an appropriate transform can be found to

make the input pattern distributions appear more Gaussian.

21




TOTAL NUMBER OF NUMBER OF CONFIDENCE
NUMBER ADDED OR ADDED OR INTERVAL
OF MODIFIED MODIFIED PERFORMANCE in Percent
TRAINING | PEAKS PEAKS (Confidence

PATTERNS | (Training { (Test Data) level is set

Data) at 99.0%)

300 0 0 100.0% 97.84 - 100.0

3 43.3% 36.16 - 50.73

6 23.3% 17.63 - 30.12

9 18.67% 13.58 - 25.12

12 16.0% 11.29 - 22.18

1200 0] 0 100.0% 97.84 - 100.0

3 34.67% 28.0 - 42.01

6 15.0% 10.45 -~ 21.06

9 13.0% 8.79 - 18.81

12 10.0% 6.37 - 15.36

300 3 0 60.03% 52.58 = 66.99

3 22.67% 17.08 - 29.45

6 12.3% 8.22 - 18.01

) 10.67% 6.90 - 16.14

12 10.0% 6.37 - 15.36

1200 3 0 90.0% 84.64 - 93.63

3 29.3% 23.04 - 36.45

6 13.3% 9.04 - 19.15

9 12.0% 7.97 = 17.67

12 10.0% 6.37 - 15.36

Table 6 Performance results for the HNN using input patterns with Gaussian
distributed noise added to each pattern used for training and
testing. Testing was done with 300 randomly selected patterns.
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5.0 CONCLUDING REMARKS

The Airborne Radar Section at DREO is interested in evaluating various techniques
for recognizing high resolution radar images of ships. This report has presented
performance results on the pattern recognition capability of a novel Artificial Neural
Network (ANN) called the Holographic Neural Network (HNN). Tt has compared the
HNN’s performance with five more commonly used ANNSs.

A brief description of the architecture and operation of the HNN was given in
Section 2. The network’s large storage capacity and generalization capability were
demonstrated with the use of Gaussian distributed data. Based upon these results, it was
anticipated that this network would be a prime candidate in achieving the goal of
recognizing radar images of ships. However, when the HNN was tested with an artificial
application, which resembled the pattern recognition area mentioned above, the network
was found to perform poorly. When the HNN’s performance was compared with the
performance of the five other networks described in Section 3, it was shown to be far worse.
However, based upon the excellent results reported in Section 2, it was decided to modify
the image patterns used to train and test the HNN. An improvement in the recognition
performance was achieved after adding Gaussian distributed noise to the input image
patterns.

Further improvement in the HNN’s recognition performance requires that an
appropriate transform be devised which can make the input pattern distributions appear
more Gaussian. One drawback to this network is that it performs best when using Gaussian
distributed input data. Present time comstraints prevented any further investigation into
devising such a transform, but this does remain a topic for future study. Further study is
justified because, as shown in Section 2, the HNN is capable of a large storage capacity
requiring only a few learning trials, and the network has excellent generalization capabilities.
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