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ABSTRACT

The representation of a signal in both the time and frequency domains is a major
topic of study in the area of signal processing. Over the past 40 years, many plausible
derivations and approaches of time-frequency distributions have been suggested. This paper
tests two time-frequency distributions and compares their results. The two distributions are
the discrete versions of the Wigner-Ville and Choi-Williams distributions. This paper will
demonstrate the capability of each distribution to resolve discrete sinusoidal and real radar
signals simultaneously in time and frequency. The radar data represents backscatter from
a ship on the open ocean. The results will be presented in both a graph and table format.
These results will be compared to those obtained from the standard short-time Discrete
Fourier Transform.

RESUME

La représentation simultanée d’un signal dans les domaines du temps et des
fréquences est un sujet d’étude important en analyse de signaux. Au cours des 40 derniéres
années, de nombreuses dérivations de distributions ont été suggérées. Ce document évalue
deux distributions dans le domaine temps-fréquence et compare les résultats. Les deux
distributions sont les versions discrétes des distributions de Wigner-Ville et Choi-Williams.
Ce rapport démontrera les limites de résolution de chacune des distributions pour des
signaux discrets sinusoidaux et des signaux radars réels. Les données radars sont des
signatures de bateaux prises en haute mer. Les résultats seront présentés a I'aide de
graphiques et de tables. IIs seront comparés a ceux obtenus a ’aide de la méthode standard
de la Transformée de Fourier.
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EXECUTIVE SUMMARY

The representation of a signal in both the time and frequency domains is"a topic of
great interest in the area of digital signal processing. The desired goal is to devise a
distribution that simultaneously represents the energy or intensity of a signal in both time
and frequency. Time-Frequency Distributions (TFDs) are best applied to non-stationary
signals. This important class of signals is commonly found in the real world. Typical
application areas include radar, sonar and seismology.

Over the past 40 years, many plausible derivations and approaches of TFDs have
been suggested. Considerable differences in the behaviour of the various distributions were
observed. In this paper, the Choi-Williams and Wigner-Ville distributions will be examined.
These are the two most popular forms of TFDs. Only the discrete versions of these TFDs
will be tested. The results associated with the two distributions will also be compared to
those obtained with the standard short-time Discrete Fourier Transform (DFT).

The tests will be performed with discrete simulated sinusoidal signals as well as with
real signals. The real signals considered represent the temporal radar backscatter collected
from a Synthetic Aperture Radar (SAR). The general properties of the backscatter are the
fading in and out of narrowband signals and shifting of signal frequency through time as a
result of scatterer motion. Using a TFD allows an analysis of the Doppler frequency history
of the scatterers located on a target of interest (e.g. a ship moving on the open ocean).

The major conclusion to be drawn from the tests perférmed with real signals is that
the Choi-Williams distribution is preferred over both the Wigner-Ville distribution and DFT
as a result of improved Signal-to-Noise Ratios in the spectral domain.

The eventual goal of this study is to determine whether the conventional use of the
DFT within the signal processing domain of a radar system should be replaced by a TFD
technique. TFDs may allow better tracking, detection and resolvability of signals.
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1. INTRODUCTION

The representation of a signal in both the time and frequency domains is a topic of
great interest in the area of digital signal processing. The desired goal is to devise a
distribution that simultaneously represents the energy or intensity of a signal in both time
and frequency. Time-Frequency Distributions (TFDs) are best applied to non-stationary
signals. This important class of signals is commonly found in the real world. Typical .
application areas include radar, sonar and seismology. i

Over the past 40 years, many plausible derivations and approaches of TFDs have
been suggested. Considerable differences in the behaviour of the various distributions were
observed. In this paper, the Choi-Williams and Wigner-Ville distributions will be examined.
These are the two most popular forms of TFDs. Only the discrete versions of these TFDs
will be tested. The results associated with the two distributions will also be compared to
those obtained with the standard short-time Discrete Fourier Transform (DFT).

The tests will be performed with discrete simulated sinusoidal signals as well as with
real signals. The real signals considered represent the temporal radar backscatter collected
from a Synthetic Aperture Radar (SAR). The general properties of the backscatter are the
fading in and out of narrowband signals and shifting of signal frequency through time as a
result of scatterer motion. Using a TFD allows an analysis of the Doppler frequency history
of the scatterers located on a target of interest (e.g. a ship moving on the open ocean).

The results of the study are reported in the next three sections. Section 2 describes
the two distribution techniques considered, namely the Choi-Williams and Wigner-Ville
distributions. Section 3 describes the tests performed and test data used. In addition, a
comparison of the test results with those obtained from the short-time DFT is presented.
Section 4 summarizes the findings and suggests further investigations.




2. TIME-FREQUENCY DISTRIBUTION METHODS

Two different approaches can be distinguished to compute TFDs. The first is by
means of analogue signal processing, and the second is by means of digital signal processing,
representing the continuous and discrete time domains, respectively. In this paper, only
discrete-time signals will be analyzed. Furthermore, only the TFD miethods of Choi-
Williams and Wigner-Ville will be examined. The two following subsections will briefly
describe each method.

For further theoretical information on TFDs, the interested readers can refer to
reference [1].

2.1. The Choi-Williams Method

Choi and Williams [2] succeeded in devising a new technique of time versus
frequency distribution which behaves remarkably well. It satisfies our intuitive notions with
respect to the locations of the signal energy. It also reduces, to a large extent, the spurious
cross-terms characteristic of multicomponent signals. Cross-terms represent unwanted signal
energy which results from interactions between pairs of different signal components within
the composite signal. These terms do not permit a straightforward interpretation of the
energy distribution. The desirable properties of a time-frequency distribution are also sat-
isfied by the Choi-Williams Distribution. These properties are discussed in [1].

The discrete-time form of the CWD is :

CWD(nK) =2 Wy(v)e G2rks/M), (1)

T=—00

u2

> Wu(u)———l———e-[“’2’°]'ﬂn+u+‘r)'f*(n+u—r) ,




where

o : is an adjustable amplitude scaling parameter,
Uyt : are the dummy-variables representing the time domain,
n,k  :are the discrete time and frequency indices, respectively,

N,M : are the sizes of the windows -
Sin) :is the discrete-time form of the input complex signal, and
f7(n) :is the complex conjugate of the discrete-time input signal.

In Equation (1), the term in the square bracket is referred to as the time indexed
autocorrelation function.

The Choi-Williams method will be tested with discrete-time input signals. The Fast
Fourier Transform (FFT) technique will be used to realize the first summation in Equation
(1). This will allow a significant speed up in the computation of this distribution. The
flowchart of the algorithm used for the evaluation of this distribution is given in Figure 1
for non-analytic signals (i.e. non-complex signals). Figure 2 gives the flowchart for analytic
signals. Amnalytic signals are complex signals with zero energy in the negative frequency
domain (i.e. -* < ® < 0) [10]. This distribution, as well as the Wigner-Ville Distribution,
requires that the input data be analytic in order to bandlimit the input signals so that they
are periodic with a period of = instead of 2x. This eliminates aliasing problems with the
distribution. The process of making a signal analytic effectively reduces the sampling rate
of the signal by a factor of two. This in turn increases, by a factor of two, the frequency
resolution of the output spectrum. Note that both distributions are periodic with a period
n (i.e. 0 < w < =), but all spectra of discrete-time signals are periodic with a period 2x (i.e. -
T << T)

A more detailed discussion of the properties and background theory of the CWD is
beyond the scope of this paper. The interested reader can refer to the papers by Choi and
Williams [2], and Cohen [1].

2.2. The Wigner-Ville Method

The Wigner-Ville Distribution (WVD) was the first distribution proposed and is the
most widely studied and used. This distribution is particularly suited for the time-frequency
analysis of stationary signals. It played a major role in the development of the field of TFD
techniques [1]. '
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The Wigner-Ville distribution in the discrete-time domain is defined as :

N-1

Wm0 =2 3, fnel) f =Ry e B0 @ wi () ey
where
k : is the dummy-variable represénting the time domain,
2N-2 :is the length of the window,
M : is the number of points in the DFT (i.e. 2N-2),
n,m : are the discrete time and frequency index, respectively,
f : is the discrete-time input complex signal, and
r : is the complex conjugate of the input signal.

The Wigner-Ville method will be tested with discrete-time input signals. In order to
speed up the computation, the FFT technique will be used for the evaluation of this
distribution.

The flowcharts of the algorithms developed for the evaluation of this distribution are
given in Figure 3 for non-analytic signals, and in Figure 4 for analytic signals. As with the
CWD, the input to the WVD must be analytic.

For a more detailed discussion of the theory behind the Wigner-Ville distribution and
its properties, the interested reader can refer to the papers by Claasen and Mecklenbriuker
[3]-[5], Andrieux, Feix, Mourgues, Bertrand, Izrar and Nguyen [6], Boashash and Black [7],
Peyrin and Prost [8], Amin [9], and Cohen [1].
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3. TESTING THE TFDs AND DFT
3.1. Description of test data

Tests of the two time-frequency distribution techniques were conducted to determine
their ability to resolve, in both time and frequency, various stationary and non-stationary
discrete signals. The input signals used for testing include the following four types of data:

e One Sinusoidal signal (used to illustrate whether the frequency of the
signal is estimated correctly) :

y(n) = sin(2rfn/sampling rate), . (3)

¢ Two Sinusoidal signals (used to illustrate the effects on the cross-terms
of each distribution for stationary signals) :

2nfin 2nf,n
y(n) =si ——L—— + si _ Imhn , (4)
sampling rate sampling rate

¢ Two Linear Frequency Modulation (LFM) signals (used to illustrate the effects
on the cross-terms of each distribution for nonstationary signals) :

_ e n ) (512 -n) . n
y(n) = 4.0003(21:( 3 )( 256 )) 4.0003(21:( 3 40)( 756 )) , (5)

® Two records of real range-compressed temporal radar data, with 4096 complex data
points per record, representing the radar backscatter through time of different
scatterers (sampled at 575 samples per second), designated as:

e REC336
e REC358

This last data source was included to illustrate the effects on the signal resolvability and
noise immunity of both distributions.

The first three types of signals were converted to analytic signals prior to being
processed by the two TFD functions. As the radar data is already bandlimited to the range
-n /2 to = /2, aliasing problems in the TFD functions are avoided for this last type of signal.
Note that only the real test signals contain multiplicative and additive noise, while the other




signals are noise-free.

The signals described above were also analyzed with the DFT technique. The FFT
was used for the computation. The results obtained with the DFT form a basis for
comparison since this technique is the standard approach for the spectral analysis of
discrete-time signals.

All output test results will be presented as plots of the magnitude, in dBs, of the
output spectrum from each technique. These results will be given in the following sections.

3.2. Discrete Fourier Transform analysis of test data

Prior to testing the two distribution techniques, a baseline was determined by using
the short-time DFT to compute the spectrum of each test signal at various time intervals.
The extracted time intervals were passed through a Hamming window to reduce sidelobe
levels. The window is defined as :

W(n)=0.54—0.46€0S(A2;”;), Osn<N-1.

The size of the DFT and window was 128 points. The DFT was implemented using
the FFT technique. The magnitude of the spectral output from the FFT, for each signal
described in Section 3.1, is plotted in Figures 5 to 14. The FFT routine given in reference
[11] was used. The code for this routine can be found in Appendix A.1.

The first three signals tested were non-complex, hence, their spectral response in the
positive frequency domain is identical to their response in the negative frequency domain.
The real radar data is complex, and so this replication of the spectrum does not occur.

In Figure 6, F1 and F2 refer to the two frequencies in Equation (4).
In Figures 7 to 14, T refers to the time index of the signal (ranging from 1 to 4096)

at the start of the block of data used for analysis. The signal-to-noise ratios for the spectra
in each of Figures 9 to 14 have been computed and can be found in Table 4.
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and a sampling rate = 64 samples per second.
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3.3, Testing the Choi-Williams Distribution

This section presents the magnitude of the output spectral results from the Choi-
Williams Distribution (CWD) for each of the input signals described in Section 3.1. The
code used to implement the CWD can be found in Appendix A.2.

In this section, the windows of the CWD,

Wy , Wy ()

are set to be rectangular windows with lengths N = 128 and M = 29. The selection of these
values was based on suggestions given in reference [2]. Test results with a Hamming window
can be found in Section 3.6.

While testing the CWD with various signals, it is possible to exercise control over the
level of the cross-terms and the degree of resolvability of the signals by simply adjusting the
amplitude scaling parameter, o. A typical value for o, as suggested in [2], is 1.0. For our
own test signals, a value of ¢ = 3.0 is used. The reason for selecting this value is given in
Section 3.5.1.

Figure 15 shows the CWD of the sinusoidal signal at T = 79. This figure can be
compared to Figure 5, which is the FFT of the same signal. Although the resolvability of
the signal at -30 dBs is similar for both techniques (i.e. approximately 2 Hz), the signal
energy is more concentrated in Figure 5. This may be due to the fact that the signal is
windowed prior to taking its FFT, but no window is applied prior to computing the CWD.

While testing with the two sinusoidal signals, different values of ¢ were used to
illustrate how the ratio of the signal-to-cross-term signal level changes. The valuese = 0.1,
10.0, and 3.0, at a time T = 79, were used and the CWD results are plotted in Figures 16
to 18, respectively. For values of o = 3.0 and 10.0, the resolvability of the two sinewaves
is better with the CWD than with the FFT (see Figure 6). However, the signal energy is
more concentrated in the FFTed signal. As with the single sinewave, the lack of any
windowing in the CWD may be the cause of reduced signal energy concentration.

Figures 19 to 22 show the CWD of the two LFM signals, defined by Equation (5),
for different values of T. As T increases, the two signals approach each other, then cross
each other, and spread apart. It can be observed from this sequence of plots, that the
resolvability of the signals, as well as the relative cross-term level, remain fairly constant.
Thus, it appears that for non-stationary signals without noise, the CWD gives consistent
results through time. Comparing these plots to the ones in Figures 7 and 8 (representing
the FFT of the LFM signals), it can be readily seen that the signals are better resolved in
the CWD, but that the cross-term levels are higher in the CWD.

14
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Figures 23 to 28 show the CWD of the two records of real radar data for different
values of T. This sequence of six plots may be compared to those in Figures 9 to 14,
respectively. A comparison of their SNRs is given in Section 3.5.2. It can generally be
observed that the CWD is better able to resolve the radar signal than the FFT (i.e. about
8 Hz for the CWD versus about 15 Hz for the FFT), and that the SNR is higher for the
CWD.
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Figure 23. CWD of REC336 at T = 79 and ¢ = 3.0.
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Figure 24. CWD of REC336 at T = 279 and o = 3.0.

19




-5@.00

RELATIVE MAGNITUDE (dB)

~60.00 T T T T T T T T T T T | BNURLABLIN e B e o s g |
~150.009 -50. 00 50.00 150.00

Figure 25. CWD of REC336 at T = 579 and ¢ = 3.0.

19.00

3.00

1
9
Q
Q@

1
N
S
©
s

RELATIVE MAGNITUDE (dB)

Figure 26. CWD of REC358 at T = 79 and ¢ = 3.0.

20



©
~
L

@

Q

[N
!

1

N}

[

@

Q
)

-62.00

RELATIVE MAGNITLDE (dE
8
L.
&

LI U SO A S W IS B Mt 2 S B s |

-150.00 | -5@.00 | 50.20 . - i5@.e0

FREQUENCY (Hz)

Figure 27. CWD of REC358 at T = 279 and ¢ = 3.0.

@
@
o

Q

.00

-10.00

RELATIVE MAGNITUDE (dB)

FREQUENCY ¢ Hz)

Figure 28, CWD of REC358 at T = 579 and 0 = 3.0.

21




3.4. Testing the Wigner-Ville Distribution

In this section, the magnitude of the output spectrum from the Wigner-Ville
Distribution (WVD) is presented for each of the input signals described in Section 3.1.
With the WVD, no o parameter is required. The code used to implement the WVD can
be found in Appendix A.3.

From Equation (2), it can be seen that implementation of the WVD makes provision
for the use of a window. The window used for testing was rectangular with a length N =
128. This is the same window as that used with the CWD.

Figure 29 shows the WVD of the sinusoidal signal at T = 79. This figure can be
compared to Figures 5 (FFT results) and 15 (CWD results). Obviously, the WVD is able
to better resolve this signal. It also concentrates the signal energy more than either the FFT
or CWD. Hence, the WVD is able to perform far better on stationary monotone signals.

Figure 30 shows the WVD of the two sinusoidal signals at T = 79. This figure can
be compared to Figures 6 (FFT results) and 18 (CWD results). Again, the WVD is able to
better resolve both signals and to concentrate their energy more than either the FFT or
CWD. In addition, the relative level of the cross-terms is negligible. Hence, the WVD is
able to perform far better on stationary multi-component signals.

Figures 31 to 34 show the WVD of the two LFM signals for different values of T.
The results in these figures can be compared to the results in Figures 7, 8 (FFT results), and
19 to 22 (CWD results). Although the two LFM signals are better resolved in the WVD
- (using the -3 dB point as a reference), definitely the relative level of the cross-terms are
much higher than either the FFT or CWD (i.e. about -10 dB for the WVD versus about -20
dB for the CWD). Hence, the WVD does not perform as well with non-stationary multi-
component signals.

Figures 35 to 40 show the WVD of the two records of real data for different values
of T. A general comparison of these figures to Figures 9 to 11 (FFT results for REC336)
and 23 to 25 (CWD results for REC336) shows that the WVD has a difficult time resolving
REC336. Section 3.5.2 will compare the SNR of all these figures. Then, it will be seen that
the SNR of the WVD is the worst of all three techniques. Hence, the WVD does not
perform as well with non-stationary noisy signals. Since these signals represent real world
signals, the WVD would not be an ideal choice to perform spectral analysis for this type of
signal.
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3.5. Comparison of Test Results

In this section, a comparison of the relative levels of the cross-terms between the two
distributions is made in order to determine which of the two distributions gives the highest
signal-to-cross-term ratio. With the CWD, this ratio is maximized via the selection of a near
optimum value for o. In addition, a comparison of the SNR of each of the real radar
signals is given for each distribution, including the DFT.

3.5.1. Comparison of the signal-to-cross-term ratio height
The signal-to-cross-term ratio height is defined as follows:
Ratio Height = (Maximum 1 / Maximum 2) , where

Maximum 1 : is the highest amplitude value of the true signal(s), and
Maximum 2 : is the highest amplitude of the cross-terms.

Since the cross-terms represent an unwanted composite signal or interference, similar
to noise, the signal-to-cross-term ratio should be as high as possible.

Tables 1 and 2 provide examples of ratio heights for the CWD, for different signals
and values of 0. These ratios are used to determine a near optimum value for o. Adjusting
o causes the cross-term levels and signal resolvability to change. From Table 1 it can be
observed that the largest ratio height occurs at ¢ = 5.0, while the largest ratio height in
Table 2 occurs at o = 1.0. Hence, the value of ¢ which maximizes the ratio height appears
to be dependent on the signal. For testing the CWD in this study, an average value of o
= 3.0 (i.e. (1.0 + 5.0)/2 ) was selected as representing an approximate optimum value.

Table 1. Ratio heights of two sinusoidal signals for CWD, with N = 128, M = 29,
F1 = 4.0 Hz, F2 = 12.0 Hz and a sampling rate = 32.0 samples per second.

T o] Ratio Height
79 0.1 18.0250
79 1.0 19.4640
79 2.0 22.9884
79 3.0 24.3925
79 4.0 26.1146
79 5.0 26.8160
79 6.0 26.2445
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Table 2. Ratio heights of two LFM signals for CWD, with N = 128 and M = 29.

T c I Ratio Height
79 0.1 ' 6.5920
79 1.0 14.3664
79 2.0 6.6651
79 3.0 4.7358
79 4.0 3.9374
79 5.0 ' 3.4689
79 6.0 3.1524

Having maximized the signal-to-cross-term ratio for the CWD of the signals being
tested, a comparison of ratio heights between both distributions can be made. Table 3
presents the ratio heights for the CWD and WVD. A comparison of the results shows that
the CWD is consistently better than the WVD. In other words, the true signals are more
easily detected in the CWD than in the WVD. However, comparing the plots in Figures 18
to 22 directly to the plots in Figures 30 to 34, it can be seen that the signals are better
resolved in frequency, at the -3 dB point, in the WVD. Hence, the choice of using either
a CWD or a WVD for spectral analysis of these types of signals depends upon the
application. To detect signals, the CWD should be used, but to determine the exact
frequency of a signal, the WVD should be used.

3.5.2. Comparison of the signal-to-noise ratio (SNR) for the two real signals

Of all the data used for testing, only the two real radar signals contained noise.
Thus, based on this data, a comparison of the signal-to-average noise ratios (SNRs) is made
of the output spectral data from both distribution techniques and the DFT. To compute the
SNR, the location of the signal was first derived using the location of the maximum valued
frequency bin, and then the energy in all other frequency bins which excluded the signal
(assumed to be three frequency bins wide) were averaged to determine the mean noise
value. This value was divided into the peak signal level to derive a measure of the SNR.
The SNRs (in dBs) of the two distributions and the DFT for the two real radar signals are
given in Table 4. It can be seen that the CWD gives the highest SNR in all cases, while the
WVD gives the lowest SNR in all cases. However, the resolvability of the signals is similar
for both distributions, and higher than that of the DFT. It would appear that for this type
of signal, the CWD would be best to use to perform a spectral analysis.
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Table 3. Ratio heights of two LFM signals for both TFDs, with N = 128 and M = 29.

L Choi-Williams Wigner-Ville
T o Ratio Height Ratio Height
1 3.0 6.2196 1.3355
51 3.0 6.0465 2.9974
61 3.0 2.5321 2.0343
201 | 3.0 2.5321 2.0343
301 3.0 6.3534 1.7173
501 3.0 5.5184 1.7414
801 3.0 6.0720 14668

Table 4. SNR of the two real radar signals for the DFT, CWD and WVD at different T.
DFT CWD WVD

T REC336 REC358 REC336 REC358 REC336 REC358 |

79 14.34 26.89 18.22 29.14 11.65 23.94
279 18.21 24.57 23.65 28.45 13.81 22.20
579 18.06 25.58 24.56 29.47 16.41 25.45

3.6. The CWD and WVD with a Hamming Window

In all tests described so far, the rectangular window was used with the TFDs. In an
attempt to increase the SNR of the real radar signals, the Hamming window was also
studied for both TFDs. The SNRs obtained with the Hamming window are given in Table
5 for the CWD and Table 6 for the WVD.

Two cases were tested for the CWD. In one case, both windows were Hamming.
In the second case, only the larger window was a Hamming window while the smaller
window was a rectangular window.

A comparison of these results with those in Table 4 clearly indicates that both TFDs

perform better without any windowing (i.e. a rectangular window). Furthermore, it is
computationally simpler to use a rectangular window.

31.




Table 5. SNR of the two real radar signals for the CWD with a Hamming window.

Wy and W, are Hamming | W is Hamming and W, is Rectangular
T REC336 REC358 REC336 l REC358
79 15.95 27.01 15.66 26.90
279 23.22 25.95 22.46 26.26
579 23.06 2647 22.59 26.50

Table 6. SNR of the two real radar signals for the WVD with a Hamming window.

T | REC336 I REC358

79 9.60 23.66
279 13.06 21.06
579 13.75 22.48

3.7. Varying the window size in the CWD

This section analyzes the effects of modifying the size of the two windows (i.e. N and
M) on the CWD. The SNRs for the two real radar signals were obtained for various
combinations of the values N and M. The results are given in Table 7.

The following general observations can be made from the results in Table 7. For a
fixed value of M, the SNR increases with increasing value of N. The same is true for a fixed
value of N and increasing value of M. This is simply a result of the fact that more of the
signal, which is more coherent than the background noise, is used to compute its
distribution. = The number of samples of the signal which are used to compute the
distribution is equal to NM, and it can be generally stated that the higher the NM value, the
higher the SNR.

Comparing the SNRs in this table to the ones in Table 4 for the DFT, we may be
able to conclude that as the value of M tends to 0, the CWD tends towards the DFT.
However, this may not be universally true since the kernel of each function is different (i.e.
f(x) for the DFT versus f(n+1)f (n-) for the CWD).
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Table 7. SNR of the two real radar signals for the CWD with different values of M and N.

| T M N REC336 REC358
79 29 64 12.72 26.69
79 20 128 16.34 27.87
79 29 128 18.22 29.14
79 29 256 20.61 31.11
79 64 128 21.72 31.08
279 . 29 64 21.13 26.04
279 20 128 22.40 27.41
279 29 128 23.65 28.45
279 29 256 26.02 30.88
279 64 128 26.07 31.04
579 29 64 22.47 26.29
579 20 128 23.34 27.91
579 29 128 24.56 29.47
579 29 256 25.80 30.61
579 64 128 27.13 31.89
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4, CONCLUDING REMARKS

This paper described and tested two time-frequency distributions: the Choi-Williams
and Wigner-Ville distributions. Many tests were conducted to illustrate how each technique
could resolve stationary and nonstationary signals in both time and frequency. The results
were compared to those obtained with the short-time DFT, which is the most standard
method used for spectral analysis.

From the results presented, it is concluded that the CWD performs better than both
the WVD and DFT. In particular, measures of the SNR for the real radar signals were
highest for the CWD. Also, the signal-to-cross-term ratios for the CWD were higher than

those obtained for the WVD.

Furthermore, for the sample lengths chosen, it was shown that a rectangular window
performs better than a Hamming window when used in the CWD. In addition to the
improved performance, the use of the rectangular window reduces the number of
computations required. It was also observed that the SNR scales with sample length for the
CWD. This is to be expected for a coherent signal buried in noncoherent noise. It is felt
that to further support these two findings, additional tests should be performed with other
types of nonstationary signals buried in noise. These signals can be simulated or real.

For the data considered, it was shown that a value of ¢ = 3.0 seemed to maximize
the signal-to-cross-term ratio. However, no tests were performed to indicate how ¢ affects
the SNR of the spectrum of the distribution. Such tests would be worthwhile since a more
optimum value for ¢ may be found. Indeed, the optimum value of o may be data
dependent. ‘

The results presented in this paper suggest that the CWD technique is superior to
both the WVD and DFT techniques for the analysis of noisy nonstationary signals. Since
these types of signals represent an important class of real signals, the CWD should be
seriously considered as a replacement technique for the standard short-time DFT technique.
The only apparent hinderance to using the CWD instead of the DFT is the increased
number of computations required to implement the CWD. From Equation (1), we see that
the extra computations come from computing the time indexed autocorrelation function.
There would be roughly 16xNxM additional operations (this assumes that the window is
rectangular and that the signal is complex). Therefore, it would take about ((16xNxM +
Nlog,N)/Nlog,N) times longer to compute the CWD versus computing the FFT. This
simplifies to (16xM/log,N + 1). For typical values of M=20 and N =128, it would take
about 47 times more computations to compute the CWD versus the FFT.
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S. APPENDIX A : List of Programs

A.l1  Subroutine to compute FFT

¥**** This subroutine is a realization of the Fast Fourier Transform theory

R % % ok

Subroutine for calculating FFT
Taken from page 394 of Numerical Recipes.

E 3

SUBROUTINE FFT(DATA,NN,ISIGN)
$DEBUG

REAL*8 WR,WI,WPR,WPL, WTEMP,THETA,DATA[HUGE]
DIMENSION DATA(2*NN)

N=2*NN

J=1
DO 11 I=1N,2
IF(J.GT.I) THEN
TEMPR =DATA(J)
TEMPI=DATA(J+1)
DATA®J)=DATA(I)
DATA(J+1)=DATA(I+1)
DATA(I)=TEMPR
DATA(I+1)=TEMPI
ENDIF
M=N/2
1 - IF ((M.GE.2).AND.(J.GT.M)) THEN
J=J-M
M=M/2
GOTO 1
ENDIF
J=J+M
11 CONTINUE

MMAX=2

2 IF (N.GT.MMAX) THEN
ISTEP=2*MMAX
THETA =6.28318530717959D0/(ISIGN*MMAX)
WPR =-2.D0*DSIN(0.5D0*THETA)**2
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WPI=DSIN(THETA)
WR=1.D0
WI=0.D0

DO 13 M=1,MMAX,2
DO 12 1=M,N,ISTEP
J=I+MMAX
TEMPR =SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J + 1)
TEMPI=SNGL(WR)*DATA(J + 1)+ SNGL(WI)*DATA(J)
DATA(J) =DATA(I)-TEMPR
DATA(J+1)=DATA(I+1)-TEMPI
DATA(I) =DATA(I)+ TEMPR
DATA(I+1)=DATA®I+ 1)+ TEMPI
12 CONTINUE
WTEMP=WR
WR = WR*WPR-WI*WPI+ WR
WI=WI*WPR + WTEMP*WPI + WI
13 CONTINUE
MMAX =ISTEP
GOTO 2
ENDIF

* Normalize inverse transform

IF(ISIGN.EQ.-1) THEN
DO 30 I=1,N
DATA(I) = DATA(I)/FLOAT(NN)
30 CONTINUE
ENDIF

*  Error found in published version. Description in book of wraparound

order is reversed. The following lines rearrang the data to
*  conform to the storage format outlined in Numerical Recipes.

DO 40 I=1,NN/2
TEMPR =DATA(2*I-1)
TEMPI=DATA(2*])
DATA(2*I-1) = DATA(N-(2*I-1))
DATA(2*I) = DATA(N-2*1+2)
DATA(N-(2*I-1)) =TEMPR
DATA(N-2*I+2)=TEMPI

40  CONTINUE

* Shift everything up two array subscripts
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50

TEMPR =DATA(N-1)

TEMPI=DATA(N)

DO 50 I=NN,2,-1
DATA(2*I-1) = DATA(2*1-3)

DATA(2*1)=DATA(2*I-2)7

CONTINUE
DATA(1)=TEMPR
DATA(2) =TEMPI

RETURN
END
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Subroutine to compute CWD.

------------------ /111111
SUBROUTINE CW(S,M,N,SIGMA,CWD,BIGT,MAGCWD)

/1111111117117

Subroutine for evaluating the Choi-Williams
distribution for a discrete time signal.

S( ) - (Signal) Real and imaginary parts of the signal
alternate

CWD( ) - (Distribution)

FS( ) - Array for storing FFT of S

ITNUM - Iteration Number

ACFN( ) - Time indexed auto-correlation function
SIGMA - Parameter of Choi-Williams Distribution

N,M - size of rectangular windows
Bigt - Number of points in input data file (Note: Power of 2)
Magewd - matrix of calculated magnitude of complex numbers of CWD

REAL*8 Al1,A,B,C,D,FIHUGE],REFF,IMFF,P2,P3

REAL*8 ACFN[HUGE],WN[HUGE],WM[HUGE],SIGMA,TAU,MU
REAL*8 SITHUGE],CWD[HUGE],MAGCWD[HUGE]

DIMENSION F(2100),ACFN(2100), WN(2100), WM(2100),5(2100)
DIMENSION CWD(2100), MAGCWD(1050)

INTEGER ITNUM,BIGT,K,FNUM,INTER VAL, UNITNUM, T,KL1,P1
PARAMETER (PI=3.1415926535)

Set up windowing arrays

DO 10 I=1,2*N
WN(I)=1.0
ACFN(I)=0
CONTINUE

DO 15 I=1,2*M
WM(I)=1.0
CONTINUE

Obtain analytic signal from given real valued realization
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30

40

100

DO 20 1=1,2*BIGT
FID)=S(I)
CONTINUE

CALL FFT(F,BIGT,1)

Multiply positive harmonics by 2, and negative harmonics
by O

DO 30 I=1,BIGT
F(I)=2*F(J)

CONTINUE

DO 40 I=BIGT+3,2*BIGT
F(I)=0

CONTINUE

IF(F(BIGT+1).LT.0) THEN
F(BIGT+1)=0
F(BIGT+2)=0

ENDIF

Perform inverse FFT on F to finally obtain analytic
signal

mité(6,*)’executing inverse ...
CALL FFT(F,BIGT,-1)

Determine limits for evaluation of equation 20, p.868,
Ref.6

NMIN=1+(M/2+N/2)
NMAX=BIGT-(M/2+N/2)

Evaluation equation
WRITE(*,*ENTER KL1 °’
READ(*,*)KL1 ,
write(*,*)’ Please waiting ...~
DO 45 T=NMIN,NMAX

if (T .EQ. KL1) THEN

I

WRITE(6,100)" executing N : T

FORMAT( +7,A25,17)
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DO 50 TAU=-N/2,N/2
IF (TAU.EQ.0) GOTO 50
DO 60 MU=-M/2,M/2
Al=4*TAU**2/SIGMA
A2=2%(T+MU+TAU)-1
A3=2*%(T+MU-TAU)-1

A=F(A2)
B=F(A2+1)
C=F(A3)
D=F(A3+1)
REFF=A*C+B*D
IMFF=C*B-A*D
ACFNQ2*TAU+N+1)=ACFN(2*TAU+N+ 1)+ (WM(MU+M/2+1)*1)/
+ SQRT(AT*PI))*EXP(-1*MU**2/A1)*REFF
ACFN(2*TAU+N+2)=ACFN(2*TAU+N+2) + (WMMU +M/2+1)*1)/
+ SQRT(A1*PI))*EXP(-1*MU**2/A1)*IMFF
60 CONTINUE
50 CONTINUE

DO 70 TAU=1,2*N
CWD(TAU) =2*WN(TAU)*ACFN(TAU)
70 CONTINUE

CALL FFT(CWD,N,1)
* Calculate magnitude for plotting and saving data in a file.
OPEN(UNIT=4,FILE="CW.DAT,FORM ="FORMATTED’)

DO 52 I=1,2*N-1.2
Pl=(1+1)/2
P2=CWD(I)
P3=CWD(I+1)
MAGCWD(P1) =SQRT(P2*P2+P3*P3)
WRITE(4,1992)P1, MAGCWD(P1)

1992 FORMAT(I8,E18.8)

52 CONTINUE

CLOSE(UNIT =4,STATUS =’KEEP’)
ENDIF
45 CONTINUE
RETURN
END



A.3  Subroutine to compute WVD.
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* Subroutine for determining the Wigner Ville

Distribution of a discrete signal in the time domain
% ok sk ok ok ok sk ok ok ok K K 3 sk ok ok ke ke 3 ok ok K ok ok kK K K 3 B N K B K K K K K K K 3 3k 3K Kk Ok B sk ok 3k Sk ke ok ok ke % K %k koK kK

*

ok ok S - Matrix of complex numbers of input data

WVD - Matrix of complex numbers of output data
Bigt - Number of points of input data

S ok ¢ 3 ok ok

% K Kk K K

SUBROUTINE WV(S,WVD,BIGT)

REAL*8 SHUGE],FIHUGE],WVD[HUGE], WVD2[HUGE],RECOEFF(0:20)
REAL*8 MAGWV[HUGE]INT1(0:20), REINT2(0:20), MAGS[HUGE]
REAL*8 PERROR(1050),PMAX, TEMP[HUGE],P2,P3

REAL*8 A B,C,D

INTEGER A1,A2

INTEGER BIGT,NMIN,NMAX,T,B1,B2, MAXNUM,N,UNITNUM,V,P1
INTEGER OLDUNIT,SIGNAL, RECNUM,INTERVAL,LK index
DIMENSION $(2100), WVD(2100),F(2100), MAGWV(2100)

DIMENSION WVD2(2100),MAGS(2100), TEMP(2100)
PARAMETER(PI=3.1415926535)

Do Hilbert Transform on discrete signal to get
analytical signal

DO 20 I=1,2*BIGT
F(I)=S(I)
20 CONTINUE ’
CALL FFT(F,BIGT,1)

Multiply positive harmonics by 2, and negative
harmonics by 0

DO 30 I=1,BIGT
F(I)=2.0*F(I)
30 CONTINUE
DO 40 I=BIGT+3,2*BIGT
F(I)=0.00
40  CONTINUE
IF(F(BIGT+1).LT.0) THEN
F(BIGT+1)=0.00
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F(BIGT+2)=0.00
ENDIF

Perform inverse FFT on F to finally obtain analytic
signal

CALL FFT(F,BIGT,-1)

DO 38 I=1,2*BIGT+1
WVD(I)=0.00
38 CONTINUE

WRITE(6,*)
write(6,*)” enter index N’
read(*,*)index

NMIN = 1 + INDEX/2
NMAX = BIGT - INDEX/2

WRITE(6,*YENTER V
READ(*,*)V

*  evaluate equation

DO 10 T = NMIN,NMAX
IF (T .EQ. V) THEN
DO 15 K=-INDEX/2,INDEX/2
A1=2*(T+K)-1
A2=2*(T-K)-1
A=F(Al)
B=F(Al+1)
C=F(A2)
D=F(A2+1)
TEMP(2*K + INDEX + 1) = (A*C+B*D)
TEMP(2*K + INDEX +2) = (B*C-A*D)
15 CONTINUE

WRITE(6,*) WAITING PLEASE ...’
DO 25 [=1,2*INDEX
WVD(I) =2.0*TEMP(I)
25 CONTINUE

CALL FFT(WVD,INDEX,1)
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*  save data in file " wv.dat"
OPEN(UNIT=4,FILE="WV.DAT ,FORM="FORMATTED’)
76 DO 52 I=12*INDEX-1,2
Pi=(I+1)/2
P2=WVD(I)
P3=WVD(I+1)
MAGWV(P1)=SQRT(P2*P2 +P3*P3)

WRITE(4,1992)P1,MAGWV(P1)
1992 FORMAT(I8,E15.6)

52 CONTINUE -

CLOSE(UNIT =4,STATUS =’KEEP’)
ENDIF

10 CONTINUE

RETURN
END
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