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Abstract

We present design-based Horvitz-Thompson and multiplicity estimators of the population size, as well as of the total and 
mean of a response variable associated with the elements of a hidden population to be used with the link-tracing sampling 
variant proposed by Félix-Medina and Thompson (2004). Since the computation of the estimators requires to know the 
inclusion probabilities of the sampled people, but they are unknown, we propose a Bayesian model which allows us to 
estimate them, and consequently to compute the estimators of the population parameters. The results of a small numeric 
study indicate that the performance of the proposed estimators is acceptable. 
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1.  Introduction

Conventional sampling methods are not appropriate for sampling hidden or hard-to-detect populations, such as drug 
users, sex workers and homeless people, because of factors such as lack of appropriate sampling frames, rareness of 
those population and elusiveness of their members to be sampled. See Tourangeau (2014) for a discussion about these 
and other factors. For this reason, several methods have been proposed for sampling this type of population. One of 
these is link-tracing sampling (LTS). The idea behind this method is to select an initial sample from the hidden 
population, and then ask the people in the initial sample to name their contacts who are also members of the population. 
The named people who are not in the initial sample are included in the sample and might be asked to name their 
contacts who also belong to the population. This process might continue in this way until specified stopping rule is 
satisfied. 

Félix-Medina and Thompson (2004) proposed a variant link-tracing sampling (LTS) to estimate the size of a hard-to-
reach population. In their proposed sampling design, a portion of the population is covered by a sampling frame of 
venues, such as bars, parks, and block streets, where the members of the population tend to gather. A simple random 
sample without replacement of venues is selected from the frame and the members of the population who belong to 
any of the sampled venues are included in the sample. Next, from each sampled venue its members are asked to name 
their contacts who also belong to the population. 

Estimators of the population size, as well as estimators of the population total and mean of a variable of interest, such 
as weekly drug spending of a drug user and weekly number of clients of a sex worker, which have been proposed for 
use with this sampling design and derived under different models appear in Félix-Medina and Thompson (2004), 
Félix-Medina and Monjardin (2006), Félix-Medina and Monjardin (2010), Félix-Medina et al. (2015) and Félix-
Medina (2021). In this work, we present estimators of the population size, total and mean which are derived under a 
design-based approach, but assisted in a Bayesian model. Thus, we expect that the proposed estimators perform 
acceptably under a wide range of conditions. 

2.  Sampling design and notation
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The variant of LTS proposed by Félix-Medina and Thompson (2004) is as follows. Let 𝑈 be a finite population of 𝜏
elements. A portion 𝑈1 of 𝑈 is assumed that is covered by a sampling frame of 𝑁 venues 𝐴1, … , 𝐴𝑁, where members 
of the population tend to gather. Let 𝑚𝑖 be the number of elements of 𝑈1 that belong to 𝐴𝑖, 𝑖 = 1,… , 𝑁. As in 
conventional cluster sampling, a person in 𝑈1 is assumed to belong to only one venue; thus, the number of people in 
𝑈1 is 𝜏1 = ∑ 𝑚𝑖

𝑁
1 . Let 𝑈2 = 𝑈 − 𝑈1 be the portion of 𝑈 that is not covered by the frame. Notice that the size of 𝑈2 is 

𝜏2 = 𝜏 − 𝜏1. A simple random sample without replacement 𝑆𝐴 = {𝐴1, … , 𝐴𝑛} of 𝑛 venues is selected from the frame. 
The 𝑚𝑖 elements of 𝑈1 that belong to each 𝐴𝑖 ∈ 𝑆𝐴 are included in the sample. Let 𝑆0 be the set of members of 𝑈1 that 
belong to the sampled venues and let 𝑚 = ∑ 𝑚𝑖

𝑛
1  be the size of 𝑆0. In each sampled venue its members are asked to 

name their contacts who also belong to the population. A named person is said to be linked to a venue if any of the 

members of that venue name him or her. Let 𝑥𝑖𝑗
(𝑘)

= 1 if person 𝑗 ∈ 𝑈𝑘 − 𝐴𝑖 is linked to venue 𝐴𝑖 ∈ 𝑆𝐴, and 𝑥𝑖𝑗
(𝑘)

= 0

otherwise, 𝑘 = 1, 2. For sampled person 𝑗 ∈ 𝑈𝑘, the following information associated with him or her is recorded: the 

value 𝑦𝑗
(𝑘)

 of the variable of interest 𝑦; the values 𝑥𝑖𝑗
(𝑘)

, 𝑖 = 1,… , 𝑛, of the link-indicator variables, and to which of the 

following subsets of 𝑈 the person belongs: 𝑈1 − 𝑆0, a specific 𝐴𝑖 ∈ 𝑆𝐴 or 𝑈2. We will denote by 𝑆1 and 𝑆2 the sets of 
𝑟1 and 𝑟2 people in 𝑈1 − 𝑆0 and 𝑈2 that are linked to at least one venue 𝐴𝑖 ∈ 𝑆𝐴. Finally, let 𝑆1

∗ = 𝑆0 ∪ 𝑆1 and 𝑆2
∗ = 𝑆2

be the sets of 𝑚 + 𝑟1 and 𝑟2 sampled people from 𝑈1 and 𝑈2, respectively.

3. Estimators of the size, total and mean 

Let 𝑌𝑘 = ∑ 𝑦𝑗
(𝑘)𝜏𝑘

1  and 𝑌̅𝑘 = 𝑌𝑘/𝜏𝑘 be the population total and mean of the 𝑦-values associated with the elements of 

𝑈𝑘, 𝑘 = 1, 2, and let 𝑌 = 𝑌1 + 𝑌2 and 𝑌̅ = 𝑌/𝜏 be the corresponding total and mean of the elements of  𝑈. Notice that 

if 𝑦𝑗
(𝑘)

= 1 for each 𝑗 ∈ 𝑈𝑘, then 𝑌𝑘 = 𝜏𝑘, 𝑘 = 1, 2, and 𝑌 = 𝜏. Horvitz-Thompson estimators of 𝜏𝑘, 𝑌𝑘, 𝜏 and 𝑌 are 

𝜏̂𝑘 = ∑ 1/𝜋𝑗
(𝑘)

𝑗∈𝑆𝑘
∗ , 𝑌 𝑘 = ∑ 𝑦𝑗

(𝑘)
/𝜋𝑗

(𝑘)
𝑗∈𝑆𝑘

∗ , 𝜏̂ = 𝜏̂1 + 𝜏̂2 and 𝑌 = 𝑌 1 + 𝑌 2, where 𝜋𝑗
(𝑘)

 is the inclusion probability of the 

element 𝑗 ∈ 𝑈𝑘, and which will be derived later. Estimators of the means 𝑌̅𝑘 and 𝑌̅ based on Horvitz-Thompson 

estimators are 𝑌̅ 𝑘 = 𝑌 𝑘/𝜏̂𝑘, 𝑘 = 1, 2, and 𝑌̅ = 𝑌 /𝜏̂. 

To compute the inclusion probability 𝜋𝑗
(𝑘)

 we will define the variables 𝑁𝑗
(𝑘)

= ∑ 𝑥𝑖𝑗
(𝑘)𝑁

𝑖=1  and 𝑋𝑗
(𝑘)

= ∑ 𝑥𝑖𝑗
(𝑘)𝑛

𝑖=1  which 

count the numbers of sites in the frame and in the sample 𝑆𝐴, respectively, that are linked to person 𝑗 ∈ 𝑈𝑘, 𝑘 = 1, 2. 

Notice that 𝑁𝑗
(𝑘)

 is unknown, whereas 𝑋𝑗
(𝑘)

 is known. Since the sample 𝑆𝐴 is selected by a SRSWOR design, it follows 

that 𝑋𝑗
(2)

 has a Hypergeometric distribution (𝑁,𝑁𝑗
(2)

, 𝑛). Therefore, 𝜋𝑗
(2)

= 1 − Pr(𝑋𝑗
(2)

= 0|𝑁𝑗
(2)

) = 1 −

(𝑁 − 𝑁𝑗
(2)

𝑛
) / (

𝑁
𝑛
), 𝑗 ∈ 𝑈2. In the case of person 𝑗 ∈ 𝑈1, the conditional distribution of 𝑋𝑗

(1)
 given that 𝑗 ∉ 𝑆0 is 

Hypergeometric distribution (𝑁 − 1,𝑁𝑗
(1)

, 𝑛), because a person in 𝑈1 cannot be linked to the venue to which he or she 

belongs. Thus, the inclusion probability 𝜋𝑗
(1)

 of person 𝑗 ∈ 𝑈1, is given by 

𝜋𝑗
(1)

= 1 − Pr(𝑗 ∉ 𝑆0)Pr(𝑗 ∉ 𝑆1|𝑗 ∉ 𝑆0) = 1 − (1 −
𝑛

𝑁
) Pr(𝑋𝑗

(1)
= 0|𝑁𝑗

(1)
, 𝑗 ∉ 𝑆0 ) = 1 − (𝑁 − 𝑁𝑗

(1)

𝑛
) / (

𝑁
𝑛
). 

Notice that the inclusion probability 𝜋𝑗
(𝑘)

 depends on 𝑁𝑗
(𝑘)

 and consequently is unknown. Therefore, we will estimate 

it by estimating 𝑁𝑗
(𝑘)

 using a Bayesian approach. 

We will firstly define a two-stage initial distribution of 𝑁𝑗
(𝑘)

. In the case of 𝑗 ∈ 𝑈2, we will suppose that 

𝑃𝑟(𝑁𝑗
(2)

≥ 1) = 1, because otherwise 𝑗 ∈ 𝑈2 cannot be sampled. Thus, we will define as the initial distribution of 

𝑁𝑗
(2)

|𝛼2, 𝛽2 the truncated at zero Beta-Binomial (𝑁, 𝛼2, 𝛽2), that is 

𝑔
𝑁𝑗

(2)
|𝑁,𝛼2,𝛽2

(𝑛𝑗
(2)

|𝑁, 𝛼2, 𝛽2) = (
𝑁

𝑛𝑗
(2))

𝐵(𝛼2 + 𝑛𝑗
(2)

, 𝑁 + 𝛽2 − 𝑛𝑗
(2)

)

𝐵(𝛼2, 𝛽2)

1

1 − 𝐵(𝛼2, 𝑁 + 𝛽2)/𝐵(𝛼2, 𝛽2)
, 

( 1 ) 



𝑛𝑗
(2)

= 1,… ,𝑁. In the case of  𝑗 ∈ 𝑈1 , we will define as the initial distribution of 𝑁𝑗
(1)

|𝛼1, 𝛽1 the truncated at zero 

Beta-Binomial (𝑁 − 1, 𝛼1, 𝛽1), that is 

𝑔
𝑁𝑗

(1)
|𝑁,𝛼1,𝛽1

(𝑛𝑗
(1)

|𝑁, 𝛼1, 𝛽1) = (
𝑁 − 1

𝑛𝑗
(1) )

𝐵(𝛼1 + 𝑛𝑗
(1)

, 𝑁 − 1 + 𝛽1 − 𝑛𝑗
(1)

)

𝐵(𝛼1, 𝛽1)

1

1 − 𝐵(𝛼1, 𝑁 − 1 + 𝛽1)/𝐵(𝛼1, 𝛽1)
, 

( 2 ) 

𝑛𝑗
(1)

= 1,… ,𝑁 − 1. Notice that we used 𝑁 − 1 instead of 𝑁. The reason for this is because a person in 𝑈1 cannot be 

linked to the venue to which he or she belongs; therefore, an upper bound of his or her number of links is 𝑁 − 1. To 
end the specification of the initial distribution we need to define the joint distribution of (𝛼𝑘, 𝛽𝑘). However, instead 
of specifying a distribution for these parameters, we will use a reparameterization suggested by Lee and Sabavala 
(1987), who define the parameters 𝜇𝑘 = 𝛼𝑘/(𝛼𝑘 + 𝛽𝑘) and 𝜌𝑘 = 1/(𝛼𝑘 + 𝛽𝑘). Notice that the inverse transformation 
is 𝛼𝑘 = 𝜇𝑘(1 − 𝜌𝑘)/𝜌𝑘 and 𝜌𝑘 = (1 − 𝜇𝑘)(1 − 𝜌𝑘)/𝜌𝑘. Since the parameters 𝜇𝑘 and 𝜌𝑘 are between zero and one, 

they define as the initial distributions of 𝜇𝑘 and 𝜌𝑘 the beta distributions with parameters (𝑎(𝜇𝑘), 𝑏(𝜇𝑘)) and 

(𝑎(𝜇𝑘), 𝑏(𝜇𝑘)), respectively. The joint probability density function 𝑔(𝜇𝑘, 𝜌𝑘) of (𝜇𝑘, 𝜌𝑘) is defined as the product of 

the density functions 𝑔𝜇𝑘
(𝜇𝑘) and 𝑔𝜌𝑘

(𝜌𝑘) of 𝜇𝑘 and 𝜌𝑘, respectively, 𝑘 = 1, 2. 

The likelihood function is based on the variables 𝑋𝑗
(𝑘)

 associated with people in the sample. We have that if 𝑗 ∈ 𝑆2, 

then Pr(𝑋𝑗
(2)

≥ 1|𝑗 ∈ 𝑆2) = 1, and consequently, the conditional distribution of 𝑋𝑗
(2)

, given that 𝑗 ∈ 𝑆2 and 𝑁𝑗
(2)

, is 

the truncated at zero Hypergeometric distribution (𝑁,𝑁𝑗
(2)

, 𝑛), that is 

𝑓
𝑋𝑗

(2)
|𝑗∈𝑆2,𝑁𝑗

(2)(𝑥𝑗
(2)

|𝑗 ∈ 𝑆2, 𝑛𝑗
(2)

) = [(
𝑛𝑗

(2)

𝑥𝑗
(2)

)(
𝑁 − 𝑛𝑗

(2)

𝑛 − 𝑥𝑗
(2)

) / (
𝑁
𝑛
)] [1 − (𝑁 − 𝑛𝑗

(2)

𝑛
) / (

𝑁
𝑛
)]

−1

Similarly, if  𝑗 ∈ 𝑆1, the conditional distribution of 𝑋𝑗
(1)

, given that 𝑗 ∈ 𝑆1 and 𝑁𝑗
(1)

, is the truncated at zero 

Hypergeometric distribution (𝑁 − 1,𝑁𝑗
(1)

, 𝑛), that is 

𝑓
𝑋𝑗

(1)
|𝑗∈𝑆1,𝑁𝑗

(1)(𝑥𝑗
(1)

|𝑗 ∈ 𝑆1, 𝑛𝑗
(1)

) = [(
𝑛𝑗

(1)

𝑥𝑗
(1)

)(
𝑁 − 1 − 𝑛𝑗

(1)

𝑛 − 𝑥𝑗
(1)

) / (
𝑁 − 1

𝑛
)] [1 − (𝑁 − 1 − 𝑛𝑗

(1)

𝑛
) / (

𝑁 − 1
𝑛

)]
−1

, 

whereas if 𝑗 ∈ 𝐴𝑖 ∈ 𝑆𝐴, the conditional distribution of 𝑋𝑗

(𝐴𝑖)
, given that 𝑗 ∈ 𝐴𝑖 ∈ 𝑆𝐴 and 𝑁𝑗

(𝐴𝑖)
, is the Hypergeometric 

distribution (𝑁 − 1,𝑁𝑗

(𝐴𝑖)
, 𝑛 − 1), that is 

𝑓
𝑋
𝑗

(𝐴𝑖)|𝑗∈𝐴𝑖∈𝑆𝐴,𝑁
𝑗

(𝐴𝑖)
(𝑥𝑗

(𝐴𝑖)
|𝑗 ∈ 𝐴𝑖 ∈ 𝑆𝐴, 𝑛𝑗

(𝐴𝑖)
) = (

𝑛𝑗

(𝐴𝑖)

𝑥𝑗
(𝐴𝑖)

)(
𝑁 − 1 − 𝑛𝑗

(𝐴𝑖)

𝑛 − 1 − 𝑥𝑗
(𝐴𝑖)

)/ (
𝑁 − 1
𝑛 − 1

),

where we have denoted by 𝑁𝑗

(𝐴𝑖)
 and 𝑋𝑗

(𝐴𝑖)
 the variables that count the numbers of venues in the frame and in the 

sample 𝑆𝐴, respectively, that are linked to person 𝑗 ∈ 𝐴𝑖 ∈ 𝑆𝐴. 

To estimate 𝑁𝑗
(𝑘)

, 𝑘 = 1, 2, and 𝑁𝑗

(𝐴𝑖)
, 𝑖 = 1,… , 𝑛, we will use a latent class approach. Thus, in the case of person 𝑗 ∈

𝑆2, we will define the vector of latent indicator variables associated with that person as 𝐶𝑗
(2)

= (𝐶1𝑗
(2)

, … , 𝐶𝑁𝑗
(2)

), where 

𝐶𝑙𝑗
(2)

= 1 if  𝑁𝑗
(2)

= 𝑙 and 𝐶𝑙𝑗
(2)

= 0 otherwise, 𝑙 = 1, … , 𝑁. In the case of person 𝑗 ∈ 𝑆1, his or her associated vector of 

latent indicator variables is 𝐶𝑗
(1)

= (𝐶0𝑗
(1)

, … , 𝐶𝑁−1𝑗
(1)

), where 𝐶𝑙𝑗
(1)

= 1 if  𝑁𝑗
(1)

= 𝑙 and 𝐶𝑙𝑗
(1)

= 0 otherwise, 𝑙 =

0,… , 𝑁 − 1. Finally, in the case of person 𝑗 ∈ 𝐴𝑖 ∈ 𝑆𝐴, the vector is 𝐶𝑗
(𝐴𝑖)

= (𝐶0𝑗
(𝐴𝑖)

, … , 𝐶𝑁−1𝑗
(𝐴𝑖)

), where 𝐶𝑙𝑗
(𝐴𝑖)

= 1 if  

𝑁𝑗

(𝐴𝑖)
= 𝑙 and 𝐶𝑙𝑗

(𝐴𝑖)
= 0 otherwise, 𝑙 = 0,… , 𝑁 − 1. Notice that 𝑁𝑗

(𝑘)
 determines 𝐶𝑗

(𝑘)
 and conversely; therefore, the 

problem of estimating 𝑁𝑗
(𝑘)

 is equivalent to that of estimating 𝐶𝑗
(𝑘)

. The same can be indicated about 𝑁𝑗

(𝐴𝑖)
 and 𝐶𝑗

(𝐴𝑖)
, 

𝐴𝑖 ∈ 𝑆𝐴. We will focus on estimating 𝐶𝑗
(𝑘)

, 𝑘 = 1, 2, and 𝐶𝑗
(𝐴𝑖)

, 𝐴𝑖 ∈ 𝑆𝐴. The conditional probability mass function 

(pmf), 𝑔
𝐶𝑗

(2)
|𝑁,𝜇2,𝜌2

(𝑐𝑗
(2)

|𝑁, 𝜇2, 𝜌2), of 𝐶𝑗
(2)

 given 𝜇2 and 𝜌2 is the one of the Multinomial 

(1, {𝑔
𝑁𝑗

(2)
|𝑁,𝛼2,𝛽2

(𝑙|𝑁, 𝛼2
∗, 𝛽2

∗)}
𝑙=1

𝑁

), whereas the conditional pmf, 𝑔
𝐶𝑗

(1)
|𝑁,𝜇1,𝜌1

(𝑐𝑗
(1)

|𝑁, 𝜇1, 𝜌1), of 𝐶𝑗
(1)

, as well as the 



conditional pmf, 𝑔
𝐶
𝑗

(𝐴𝑖)|𝑁,𝜇1,𝜌1

(𝑐𝑗
(𝐴𝑖)

|𝑁, 𝜇1, 𝜌1), of  𝐶𝑗
(𝐴𝑖)

, given 𝜇1 and 𝜌1, are both equal to the one of the same 

Multinomial (1, {𝑔
𝑁𝑗

(1)
|𝑁,𝛼1,𝛽1

(𝑙|𝑁, 𝛼1
∗, 𝛽1

∗)}
𝑙=0

𝑁−1

), where 𝑔
𝑁𝑗

(2)
|𝑁,𝛼2,𝛽2

 and 𝑔
𝑁𝑗

(1)
|𝑁,𝛼1,𝛽1

 are given by (1) and (2), 

respectively, and 𝛼𝑘
∗  and 𝛽𝑘

∗ are given by the inverse function of (𝜇𝑘, 𝜌𝑘), 𝑘 = 1, 2.  

Under the assumption that the vectors (𝑋𝑗
(𝑘)

, 𝐶𝑗
(𝑘)

 ) associated with the 𝑟𝑘 people in 𝑆𝑘 are mutually independent, we 

will have that their joint conditional distribution given 𝜇𝑘 and 𝜌𝑘 is 

𝑓𝑋(𝑘),𝐶(𝑘)|𝜇𝑘,𝜌𝑘
(𝑥(𝑘), 𝑐(𝑘)|𝜇𝑘, 𝜌𝑘) = ∏ 𝑓

𝑋𝑗
(𝑘)

|𝑗∈𝑆𝑘,𝐶𝑗
(𝑘)(𝑥𝑗

(𝑘)
|𝑗 ∈ 𝑆𝑘 , 𝑐𝑗

(𝑘)
)

𝑟𝑘
𝑗=1 𝑔

𝐶𝑗
(𝑘)

|𝑁,𝜇𝑘,𝜌𝑘
(𝑐𝑗

(𝑘)
|𝑁, 𝜇𝑘 , 𝜌𝑘), 

where 𝑓
𝑋𝑗

(𝑘)
|𝑗∈𝑆𝑘,𝐶𝑗

(𝑘) is the zero-truncated hypergeometric distribution of 𝑋𝑗
(𝑘)

, 𝑋(𝑘) is the vector of variables 𝑋𝑗
(𝑘)

, and 

𝐶(𝑘) is the matrix whose columns are the vectors 𝐶𝑗
(𝑘)

, 𝑗 ∈ 𝑆𝑘, 𝑘 = 1, 2. Also, under the assumption that the vectors 

(𝑋𝑗

(𝐴𝑖)
, 𝐶𝑗

(𝐴𝑖)
 ) associated with the 𝑚 people in 𝑆0 are mutually independent, we will have that their joint conditional 

distribution given 𝜇1 and 𝜌1 is 

𝑓𝑋(0),𝐶(0)|,𝜇1,𝜌1
(𝑥(0), 𝑐(0)|𝜇1, 𝜌1)

= ∏ ∏ 𝑓
𝑋
𝑗

(𝐴𝑖)|𝑗∈𝐴𝑖∈𝑆𝐴,𝐶
𝑗

(𝐴𝑖)
(𝑥𝑗

(𝐴𝑖)
|𝑗 ∈ 𝑆0, 𝑐𝑗

(𝐴𝑖)
)

𝑚𝑖

𝑗=1

𝑛

𝑖=1
𝑔

𝐶
𝑗

(𝐴𝑖)|𝑁,𝜇1,𝜌1

(𝑐𝑗
(𝐴𝑖)

|𝑁, 𝜇1, 𝜌1),

where 𝑓
𝑋
𝑗

(𝐴𝑖)|𝑗∈𝐴𝑖∈𝑆𝐴,𝐶
𝑗

(𝐴𝑖)
 is the hypergeometric distribution of 𝑋𝑗

(𝐴𝑖)
, 𝑋(0) is the vector of variables 𝑋𝑗

(𝐴𝑖)
, and 𝐶(0) is 

the matrix whose columns are the vectors 𝐶𝑗

(𝐴𝑖)
, 𝑗 ∈ 𝐴𝑖, 𝑖 = 1, … , 𝑛. 

The joint probability density function of the final distribution of (𝐶(0), 𝐶(1), 𝐶(2), 𝜇1, 𝜇2, 𝜌1, 𝜌2) is 

𝑔𝐶(0),𝐶(1),𝐶(2),𝜇1,𝜇2,𝜌1,𝜌2|𝑑𝑎𝑡𝑎(𝑐
(0), 𝑐(1), 𝑐(2), 𝜇1, 𝜇2, 𝜌1, 𝜌2|𝑑𝑎𝑡𝑎)

= 𝑔𝐶(0),𝐶(1),𝜇1,𝜌1|𝑑𝑎𝑡𝑎(𝑐
(0), 𝑐(1), 𝜇1, 𝜌1|𝑑𝑎𝑡𝑎)𝑔 𝐶(2),𝜇2,𝜌2|𝑑𝑎𝑡𝑎( 𝑐

(2), 𝜇2, 𝜌2|𝑑𝑎𝑡𝑎),

where 

𝑔𝐶(0),𝐶(1),𝜇1,𝜌1|𝑑𝑎𝑡𝑎(𝑐
(0), 𝑐(1), 𝜇1, 𝜌1|𝑑𝑎𝑡𝑎)

∝ 𝑓𝑋(1),𝐶(1)|𝜇1,𝜌1
(𝑥(1), 𝑐(1)|𝜇1, 𝜌1)𝑓𝑋(0),𝐶(0)|,𝜇1,𝜌1

(𝑥(0), 𝑐(0)|𝜇1, 𝜌1)𝑔(𝜇1, 𝜌1)

and 

𝑔 𝐶(2),𝜇2,𝜌2|𝑑𝑎𝑡𝑎( 𝑐
(2), 𝜇2, 𝜌2|𝑑𝑎𝑡𝑎) ∝ 𝑓𝑋(2),𝐶(2)|𝜇2,𝜌2

(𝑥(2), 𝑐(2)|𝜇2, 𝜌2)𝑔(𝜇2, 𝜌2).

Therefore, with respect to the final distribution, (𝐶(0), 𝐶(1), 𝜇1, 𝜌1) and (𝐶(2), 𝜇2, 𝜌2) are independent. 

Inferences about the parameters of interest are made by means of Gibbs sampling. Thus, the final conditional 

distribution of each of the parameters 𝐶𝑗

(𝐴𝑖)
, 𝑗 ∈ 𝐴𝑖 ∈ 𝑆𝐴, 𝐶𝑗

(𝑘)
, 𝑗 ∈ 𝑆𝑘 , 𝜇𝑘 and 𝜌𝑘, 𝑘 = 1, 2, given the rest of the 

parameters is obtained. The procedure is implemented by specifying the number of chains and the length 𝑇 of each 
chain, as well as the initial values of the parameters 𝜇𝑘 and 𝜌𝑘. Then, at each iteration of the algorithm, a value of each 
parameter is sampled from its conditional distribution given the most recent values of the rest of the parameters. This 

allows simulating values of the parameters 𝑁𝑗
(𝑘)

 and 𝑁𝑗

(𝐴𝑖)
, values of the inclusion probabilities 𝜋𝑗

(𝑘)
, 𝑗 ∈ 𝑆𝑘

∗, 𝑘 = 1, 2, 

and 𝜋𝑗

(𝐴𝑖)
, 𝑗 ∈ 𝐴𝑖 , 𝑖 = 1, … , 𝑛, and consequently values of the Horvitz-Thompson estimators of the sizes, totals and 

means. We also simulate values of the multiplicity estimators (Birnbaum and Sirken, 1965) of the sizes, totals and 

means, as well as values of the estimators of their conditional variances given the values of 𝑁𝑗
(𝑘)

 and 𝑁𝑗

(𝐴𝑖)
. The idea 

of computing estimates of the variances the multiplicity estimators is that they are easier to compute than those of the 
Horvitz-Thompson estimators, and they were used in the computation of the estimates of the variances of the Horvitz-
Thompson estimators.  

Once the iterations of the Gibbs sampling algorithm were carried out, estimates of the unconditional variances of the 

Horvitz-Thompson and Multiplicity estimators were computed by using the two-stage formula 𝑉 (𝜃 (𝑘)) =

𝑉[𝐸(𝜃 (𝑘)|{𝑁 𝚥
(𝑘)

}𝚥∈𝑆𝑘
∗)]

 
+ 𝐸[𝑉(𝜃 𝑀

(𝑘)
|{𝑁 𝚥

(𝑘)
}𝚥∈𝑆𝑘

∗)]
 

, where 𝜃 (𝑘) denotes either the Horvitz-Thompson or the Multiplicity 



estimator of the population parameter 𝜃𝑘 (𝑡ℎ𝑎𝑡 𝑖𝑠, 𝜏𝑘, 𝑌𝑘 or 𝑌̅𝑘), 𝑉[𝐸(𝜃 (𝑘)|{𝑁 𝚥
(𝑘)

}𝚥∈𝑆𝑘
∗)]

 
 is the sample variance of the 

simulated values of the estimator 𝜃 (𝑘) (after removing the values corresponding to the burn in period), and 

𝐸[𝑉(𝜃 𝑀
(𝑘)

|{𝑁 𝚥
(𝑘)

}𝚥∈𝑆𝑘
∗)]

 
 is the sample mean of the simulated values of the estimator of the conditional variance of the 

multiplicity estimator 𝜃 𝑀
(𝑘)

 of 𝜃𝑘. The estimate of the variance of the estimator 𝜃  of the parameter 𝜃 of the whole 

population 𝑈 is obtained by summing the unconditional variances of the estimators 𝜃 (1) and 𝜃 (2). 

4. Monte Carlo study 

To observe the performance of the proposed estimators, estimators of their variances and Wald confidence intervals 
based on those estimators, we carried out a small simulation study. Thus, we used data from the National Longitudinal 
Study of Adolescent Health (Add Health) collected during the 1994–1995 school year to construct a population. See 
Harris (2013) for a description of this study. Specifically, data from high school and its feeder middle school in 
Community 50 were used to construct a population 𝑈 of 𝜏 = 2487 elements divided into subpopulations 𝑈1 and 𝑈2

of sizes 𝜏1 = 1800 and 𝜏2 = 687, respectively. The elements in 𝑈1 were grouped into 𝑁 = 150 clusters of sizes 𝑚𝑖, 
𝑖 = 1, … , 𝑁, whose values were generated from a negative binomial distribution with mean and variance equal to 12 
and 24, respectively. A student in 𝑈 was linked to a cluster if any of the students in the cluster named that student as 
his or her friend. The variable of interest associated with each student was the number of friends named by him or her. 
The population totals were 𝑌1 = 10162, 𝑌2 = 2631 and 𝑌 = 12793; and the population means were 𝑌̅1 = 5.65, 𝑌̅2 =
3.83 and 𝑌̅ = 5.14. The study was carried out by repeatedly selecting 1000 samples from the population using the 
sampling design described in Section 2. The size of the initial sample 𝑆𝐴 of clusters was 𝑛 = 20.  From each sample, 
inferences about each parameter were obtained by using the Gibbs sampling algorithm with two chains, each one of 
length 4000 and a burn in period of 2000. The study was carried out using the R software environment for statistical 
computing (R Core Team, 2022).  

Table 4-1 
Results of the Monte Carlo study based on 1000 replicated samples selected from an artificial population 
constructed using data from the National Longitudinal Study on Adolescent Health. 

Horvitz-Thompson Sizes Totals Means
estimators 𝜏̂1 𝜏̂2 𝜏̂ 𝑌 1 𝑌 2 𝑌 𝑌̅ 1 𝑌̅ 2 𝑌̅ 

Estimators Pop. parameter 1800 687 2487 10162 2631 12793 5.65 3.83 5.14
of  
population 
parameters 

Mean 
Relative bias 

√Relative 𝑀𝑆𝐸

1602.8 
-0.11 
0.12 

730.3 
0.06 
0.16 

2333.1 
-0.06 
0.09 

9556.4 
-0.06 
0.08 

3089.3 
0.17 
0.24 

12645.7 
-0.01 
0.06 

6.0 
0.06 
0.06 

4.2 
0.11 
0.12 

5.4 
0.06 
0.06 

Estimators  
of  
standard 
deviations 

Std. deviation 
Mean 
Relative bias 

√Relative 𝑀𝑆𝐸

85.2 
144.2 
0.69 
0.75 

99.1 
117.8 
0.19 
0.29 

144.3 
222.7 
0.54 
0.60 

504.6 
916.2 
0.81 
0.87 

414.8 
516.9 
0.25 
0.33 

711.0 
1215.0 
0.71 
0.76 

0.08 
0.11 
0.45 
0.48 

0.17 
0.25 
0.49 
0.51 

0.09 
0.13 
0.41 
0.44 

95% conf. 
intervals

Coverage prob. 
Relative length

0.78 
0.31

0.98 
0.67

0.93 
0.35

0.96 
0.35

0.96 
0.77

0.99 
0.37

0.08 
0.08

0.70 
0.26

0.40 
0.10

Multiplicity Sizes Totals Means
estimators 𝜏̃1 𝜏̃2 𝜏̃ 𝑌 1 𝑌 2 𝑌 𝑌̅ 1 𝑌̅ 2 𝑌̅ 

Estimators Pop. parameter 1800 687 2487 10162 2631 12793 5.65 3.83 5.14
of  
population 
parameters 

Mean 
Relative bias 

√Relative 𝑀𝑆𝐸

1579.5 
-0.12 
0.13 

731.0 
0.06 
0.16 

2310.4 
-0.07 
0.09 

9581.8 
-0.06 
0.08 

3157.1 
0.20 
0.25 

12738.8 
-0.00 
0.06 

6.1 
0.08 
0.08 

4.3 
0.13 
0.14 

5.5 
0.07 
0.08 

Estimators  
of  
standard 
deviations 

Std. deviation 
Mean 
Relative bias 

√Relative 𝑀𝑆𝐸

83.1 
149.1 
0.80 
0.84 

99.0 
124.0 
0.25 
0.33 

142.5 
229.1 
0.61 
0.66 

502.3 
945.9 
0.88 
0.93 

411.6 
543.4 
0.32 
0.39 

704.2 
1248.9 
0.77 
0.82 

0.09 
0.11 
0.27 
0.32 

0.16 
0.26 
0.63 
0.64 

0.10 
0.14 
0.37 
0.40 

95% conf. 
intervals

Coverage prob. 
Relative length

0.75 
0.33

0.98 
0.71

0.93 
0.36

0.98 
0.35

0.96 
0.81

0.99 
0.38

0.02 
0.08

0.53 
0.27

0.19 
0.11



The results of the study are shown in Table 4-1. We can see that the Horvitz-Thompson estimators of the sizes, totals 
and means presented some bias issues, although most of the values of the relative biases were, in absolute value, less 
than or close to 0.1, except that of the estimator 𝑌 2, which was a relatively large value. The values of the square roots 
of the relative mean square errors of the estimators were, in general, acceptable, that is, they were less than or close 
to 0.1, except those of the estimators of 𝜏2 and 𝑌2, which were somewhat large. Thus, in general, the performance of 
the Horvitz-Thompson estimators was acceptable. With respect to the estimators of the standard deviations of the 
Horvitz-Thompson estimators, they presented serious problems of overestimation. In the case of the 95% confidence 
intervals of the population sizes and totals, they presented acceptable values of the coverage probabilities, except the 
interval of 𝜏1, which had a relatively small value of the coverage probability. The relative lengths of these intervals 
were also acceptable, except those of the intervals of 𝜏2 and 𝑌2, which were relatively large. However, the intervals of 
the population means had very low values of the coverage probabilities. The problem was that their lengths were very 
small, and this along with the small biases of the point estimators of the means yielded the very low values of the 
coverage probabilities. Nonetheless, and even considering the very small values of the coverage probabilities of these 
intervals, we think that they still provide good information about the means because the intervals are very short and 
close enough to the true values of the means. Finally, with respect to the Multiplicity estimators of the sizes, totals 
and means, the estimators of their standard deviations and their corresponding 95% confidence intervals, we can say 
that their performance was similar to, but slightly lower than that of the corresponding Horvitz-Thompson estimators. 
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