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Abstract

Sampling variance smoothing is an important topic in small area estimation. In this paper, we propose sampling 
variance smoothing methods for small area proportion estimation. In particular, we consider the generalized variance 
function and design effect methods for sampling variance smoothing. We evaluate and compare the smoothed 
sampling variances and small area estimates based on the smoothed variance estimates through analysis of survey 
data from Statistics Canada. The results from real data analysis indicate that the proposed sampling variance 
smoothing methods work very well for small area estimation.  
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1.  Introduction

Small area estimation has become very popular and important in both public and private agencies due to the growing 
demand for reliable estimates. Small area estimation is based on models that lead to reliable estimates for small areas 
of interest. In this paper, we focus on area level models that are based on direct survey estimates aggregated from the 
unit level data and area level auxiliary variables. Various area level models have been proposed in the literature to 
improve the precision of the direct survey estimates: a good summary of these methods is discussed in Rao and Molina 
(2015). The Fay-Herriot model (Fay and Herriot, 1979) is a basic area level model that is widely used in practice. The 
Fay-Herriot model has two components, namely, a sampling model for the direct survey estimates and a linking model 
for the small area parameters of interest. The sampling model assumes that there exists a direct survey estimator 𝑦𝑖 , 
which is usually design unbiased, for the small area parameter 𝜃𝑖 such that 

𝑦𝑖 = 𝜃𝑖 + 𝑒𝑖 ,  i = 1,…,m,                                                                     (1) 
where 𝑒𝑖 is the sampling error associated with the direct estimator 𝑦𝑖  and m is the number of small areas.  It is 
customary in practice to assume that the 𝑒𝑖’s are independently normal random variables with mean  𝐸(𝑒𝑖) = 0 and 
sampling variance 𝑉𝑎𝑟(𝑒𝑖) = 𝜎𝑖

2. The linking model assumes that the small area parameter of interest 𝜃𝑖 is related to 
area level auxiliary variables 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝)′ through a linear regression model  

𝜃𝑖 = 𝑥𝑖 ′𝛽 + 𝑣𝑖,  i = 1,…,m,                                       (2) 
where 𝛽 = (𝛽1, . . . , 𝛽𝑝)′ is a p × 1 vector of regression coefficients, and 𝑣𝑖’s are area-specific random effects assumed 

to be independent and identically distributed with E(𝑣𝑖) = 0 and Var(𝑣𝑖) = 𝜎𝑣
2. The assumption of normality for 𝑣𝑖 is 

generally also included. The model variance 𝜎𝑣
2 is unknown and needs to be estimated from the data. For the Fay-

Herriot model, the sampling variance 𝜎𝑖
2 is assumed to be known in model (1). As this is a very strong assumption, a 

smoothing or modeling approach is usually used to estimate 𝜎𝑖
2. The sampling variance can be smoothed or can be 

modeled directly as in Wang and Fuller (2003), You and Chapman (2006), Sugasawa, Tamae and Kubokawa (2017), 
etc. You (2021) shows that the smoothing approach can provide more efficient and accurate model-based estimates 
than the modeling approach for small areas under hierarchical Bayes framework. Lesage, Beaumont and Bocci (2021) 
also have some discussions on the sampling variance smoothing for the Fay-Herriot model.  

1Yong You, ICMIC, Statistics Canada, 100 Tunney’s pasture driveway, Ottawa ON, K1A0T6. Contact email: 
yong.you@statcan.gc.ca. Disclaimer: The content of this paper represents the authors' opinions and not 
necessarily those of Statistics Canada. It describes theoretical methods that may not reflect those implemented 
by the Agency.  
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The objective of this paper is to compare different methods to smooth the direct estimates of the sampling variances 
for proportions in small area estimation using the Fay-Herriot model. We proceed to do so as follows. Let 𝑝̂𝑖𝑤 be the 
direct design-based estimator for the proportion 𝑝𝑖  for a given characteristic in the i-th area. Applying the Fay-Herriot 
model to 𝑝̂𝑖𝑤 , we have  

𝑝̂𝑖𝑤 = 𝑝𝑖 + 𝑒𝑖,                                                                            (3) 
with the sampling variance 𝑉𝑎𝑟(𝑒𝑖) = 𝜎𝑖

2 unknown. Now let 𝑉 𝑖be the direct sampling variance estimate for 𝜎𝑖
2

obtained from the survey data. Usually some of the 𝑉 𝑖’s are very unstable due to small sample sizes. We, therefore, 
need to obtain a smoothed estimate, 𝑉 𝑖, for 𝜎𝑖

2, and then treat the smoothed variance estimate 𝑉 𝑖 in the sampling model 
(3) as known. In this paper, we compare two smoothing methods.  One method is based on the generalized variance 
function (GVF) and the other one is based on design effects (DEFF). We then propose an average smoothed (ASM) 
variance estimator based on GVF and DEFF smoothed estimators. The main purpose of the paper is to promote the 
proposed GVF and DEFF methods. The ASM is used as an additional choice as it pools the GVF and DEFF estimates 
by taking their average.

There are many applications of GVF in small area estimation, see, for example, the early work of Dick (1995) and the 
recent application in Hidiroglou, Beaumont, and Yung (2019). DEFF can also be used in variance modeling and 
smoothing for small area estimation. For example, You (2008) used the smoothed design effects over time to obtain 
the smoothed variance and covariance matrices. Liu, Lahiri, and Kalton (2014) also applied area level models to 
proportions using design effects for the sampling variance smoothing and modeling. In this paper, we provide a general 
method to compute the design effect and propose a smoothed variance estimator based on the average design effects 
over areas. We will also show that the DEFF-smoothed variance estimator and the GVF-smoothed variance estimator 
are roughly equivalent under certain conditions. We will illustrate the sampling variance smoothing methods via 
application using the Canadian Labor Force Survey (LFS) survey data.  

The paper is organized as follows. In section 2, we propose sampling variance smoothing methods including GVF and 
DEFF methods. In section 3, we compare the model-based estimates based on different smoothed sampling variance 
estimates using the LFS unemployment rate data. In section 4, we offer some concluding remarks.  

2. Sampling Variance Smoothing Methods 

2.1. Smoothing using log-linear models 

In this section, we will construct a GVF model to obtain smoothed sampling variances. This procedure is widely used 
in practice to model the variance. We apply a log-linear regression model on the direct sampling variance  𝑉 𝑖 using 
the sample size 𝑛𝑖 as the auxiliary variable in the model as follows: 

𝑙𝑜𝑔( 𝑉 𝑖) = 𝛽0 + 𝛽1 𝑙𝑜𝑔( 𝑛𝑖) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑚,                                               (4) 
where the model error term is 𝜀𝑖 ~ 𝑁 (0, 𝜏2), and the model error variance 𝜏2 is unknown. Note that the proposed 
regression model (4) is equivalent to the following model: 

𝑙𝑜𝑔( 𝑉 𝑖) = 𝛽0 + 𝛽1 𝑙𝑜𝑔(
1

𝑛𝑖
) + 𝜀𝑖, 𝑖 = 1, . . . , 𝑚,                                                (5) 

where 𝑙𝑜𝑔( 1/𝑛𝑖) is used as the auxiliary variable. The proposed GVF models (4) or (5) are the same models used in 
You (2021) for the hierarchical Bayes (HB) modeling of sampling variance. This GVF model also extends the model 
proposed by Souza, Moura, and Migon (2009) for sampling variances by using 𝑙𝑜𝑔( 1/𝑛𝑖)  and adding a normal 
random effect (𝜀𝑖) to the regression part in the model. 

Let 𝛽 0 and 𝛽 1 denote the ordinary least square estimators of the regression coefficients 𝛽0 and 𝛽1. A naïve GVF-
smoothed estimator of the sampling variance is obtained by taking the exponential of the fitted value:  

𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒 = 𝑒𝑥𝑝( 𝛽 0 + 𝛽 1 𝑙𝑜𝑔( 𝑛𝑖)).                                                       (6) 

Dick (1995) used the naïve smoothed estimator 𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒 in the application of census undercoverage small area 

estimation. As noted by Rivest and Belmonte (2000), the naïve smoothed estimator 𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒 underestimates the 

sampling variance. This can be seen as follows. If 𝑌 is a log-normal random variable with mean 𝜇 and variance 𝜎2, 

the mean of 𝑌 is 𝐸(𝑌) = 𝑒𝑥𝑝( 𝜇) 𝑒𝑥𝑝( 𝜏2/2). It follows that the smoothed estimator 𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒 underestimates the true 

values by ignoring the second term 𝑒𝑥𝑝( 𝜏2/2) in the mean of the log-normal random variable. Denote as 𝜔̂𝑅𝐵 =
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𝑒𝑥𝑝( 𝜏̂2/2) the Rivest and Belmonte (2000) correction, where 𝜏̂2 is the estimated residual variance of the proposed 
log-linear regression model (4). Then a GVF-smoothed estimator, denoted as 𝑉 𝑖

𝐺𝑉𝐹.𝑅𝐵 , is given by 

𝑉 𝑖
𝐺𝑉𝐹.𝑅𝐵 = 𝑉 𝑖

𝑛𝑎𝑖𝑣𝑒 ⋅ 𝜔̂𝑅𝐵 = 𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒 ⋅  𝑒𝑥𝑝( 𝜏̂2/2).                                                     (7) 

The naïve GVF estimator 𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒 in (6) underestimates the sampling variance by 𝑒𝑥𝑝( 𝜏̂2/2). This term is always 

greater than 1, and sometimes it could be large, depending on the value of  𝜏̂2.  

Hidiroglou, Beaumont, and Yung (2019) proposed another correction term for the naïve estimator 𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒. Let 𝑉 𝑛𝑎𝑖𝑣𝑒

be the sum of the naïve smoothed variance estimators, that is, 𝑉 𝑛𝑎𝑖𝑣𝑒 = ∑ 𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒𝑚

𝑖=1 , and 𝑉 𝑡𝑜𝑡𝑎𝑙 be the sum of the 

direct sampling variances, that is, 𝑉 𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑉 𝑖
𝑚
𝑖=1 . Following Hidiroglou, Beaumont, and Yung (2019),  we define a 

correction term, named as Hidiroglou, Beaumont, and Yung (HBY) correction term, as 𝜔̂𝐻𝐵𝑌 = 𝑉 𝑡𝑜𝑡𝑎𝑙/ 𝑉 𝑛𝑎𝑖𝑣𝑒. This 
leads to a second GVF-smoothed variance estimator , denoted as 𝑉 𝑖

𝐺𝑉𝐹.𝐻𝐵𝑌 . It is given by  

𝑉 𝑖
𝐺𝑉𝐹.𝐻𝐵𝑌 = 𝑉 𝑖

𝑛𝑎𝑖𝑣𝑒 ⋅ 𝜔̂𝐻𝐵𝑌 = 𝑉 𝑖
𝑛𝑎𝑖𝑣𝑒 ⋅

𝑉 𝑡𝑜𝑡𝑎𝑙

𝑉 𝑛𝑎𝑖𝑣𝑒 .                                                     (8) 

Note that 𝜔̂𝐻𝐵𝑌 is obtained as an alternative estimator  of 𝑒𝑥𝑝( 𝜏2/2) using the method of moments (Beaumont and 
Bocci, 2016). This avoids the sensitivity of the GVF model to deviations from the normality assumption of 𝜀𝑖 in model 
(4). A nice property of  𝑉 𝑖

𝐺𝑉𝐹.𝐻𝐵𝑌 is that the sum of the smooth variance estimates is equal to the sum of the direct 

sampling variance estimates, that is, ∑ 𝑉 𝑖
𝐺𝑉𝐹.𝐻𝐵𝑌𝑚

𝑖=1 = ∑ 𝑉 𝑖
𝑚
𝑖=1 . This property may ensure that the smoothing procedure 

does not systematically overestimate or underestimate the sampling variances. 

2.2. Smoothing using design effects

Let 𝑝̂𝑖𝑤  be the direct design-based estimate for a proportion 𝑝𝑖  and 𝑉 𝑖 the corresponding direct sampling variance 
under complex design for the i-th small area. Then the estimated design effect can be approximately computed as  

𝑑𝑒𝑓𝑓𝑖 =
𝑉 𝑖

𝑝𝑖𝑤(1−𝑝𝑖𝑤)/𝑛𝑖+𝑉 𝑖/𝑛𝑖
,                                                                  (9) 

where 𝑛𝑖 is the sample size of the i-th small area; see Gambino (2009). However, by noting that the 𝑑𝑒𝑓𝑓𝑖 in equation 
(9) is not equal to 1 under simple random sampling design, we modify the 𝑑𝑒𝑓𝑓𝑖 by multiplying it by a correction term 
(𝑛𝑖 + 1)/𝑛𝑖: 

𝑑𝑒𝑓𝑓𝑖 =
𝑉 𝑖

𝑝𝑖𝑤(1−𝑝𝑖𝑤)/𝑛𝑖+𝑉 𝑖/𝑛𝑖
⋅

𝑛𝑖+1

𝑛𝑖
.                                                         (10) 

Using equation (10), we can re-write the design-based sampling variance 𝑉 𝑖as 

𝑉 𝑖 = 𝑑𝑒𝑓𝑓𝑖 ⋅
𝑝̂𝑖𝑤(1−𝑝𝑖𝑤)

𝑛𝑖
⋅ (1 +

1−𝑑𝑒𝑓𝑓𝑖

𝑛𝑖
)

−1

.                                                  (11) 

If the sample size 𝑛𝑖 is large, the term (1 + (1 − 𝑑𝑒𝑓𝑓𝑖)/𝑛𝑖)
−1may be negligible in (11), equation (11) reduces to  

𝑉 𝑖 = 𝑑𝑒𝑓𝑓𝑖 ⋅
𝑝𝑖𝑤(1−𝑝𝑖𝑤)

𝑛𝑖
.                                                                 (12) 

Equation (12) is used, for example, in Liu, Lahiri, and Kalton (2014) for sampling variance smoothing and modeling. 
However, in small area estimation, 𝑛𝑖 can be very small, and the term (1 + (1 − 𝑑𝑒𝑓𝑓𝑖)/𝑛𝑖)

−1 may not be negligible.  

We can compute all the design effects 𝑑𝑒𝑓𝑓𝑖’s using (10) for all areas, and then compute the average  value over all 

areas, thereby obtaining a smoothed design effect 𝑑𝑒𝑓𝑓 =
1

𝑚
∑ 𝑑𝑒𝑓𝑓𝑖

𝑚
𝑖=1 .The average proportion estimate over all areas 

is given by 𝑝̄𝑤 =
1

𝑚
∑ 𝑝̂𝑖𝑤

𝑚
𝑖=1 . Replacing the 𝑑𝑒𝑓𝑓𝑖 by 𝑑𝑒𝑓𝑓 and 𝑝̂𝑖𝑤 by 𝑝̄𝑤 in equation (11), a DEFF-smoothed 

estimator of the sampling variance for proportion estimate 𝑝̂𝑖𝑤 is: 

𝑉 𝑖
𝐷𝐸𝐹𝐹 = 𝑑𝑒𝑓𝑓 ⋅

𝑝̄𝑤(1−𝑝̄𝑤)

𝑛𝑖
⋅ (1 +

1−𝑑𝑒𝑓𝑓

𝑛𝑖
)

−1

.                                             (13) 

If the sample size 𝑛𝑖 is large, then the term (1 + (1 − 𝑑𝑒𝑓𝑓)/𝑛𝑖)
−1 in 𝑉 𝑖

𝐷𝐸𝐹𝐹 can be negligible. The smoothed variance 

𝑉 𝑖
𝑑𝑒𝑓𝑓

 can then be simplified to  

𝑉 𝑖
𝐷𝐸𝐹𝐹 = 𝑑𝑒𝑓𝑓 ⋅

𝒑̄𝒘(𝟏−𝒑̄𝒘)

𝒏𝒊
.                                                              (14)
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2.3. Comparison of GVF and DEFF smoothing  

We now show that the GVF-estimators and the DEFF-estimator 𝑉 𝑖
𝐷𝐸𝐹𝐹 can perform similarly under certain conditions. 

Using  𝑉 𝑖
𝐺𝑉𝐹.𝑅𝐵 as an illustration, we can express this term as: 

𝑉 𝑖
𝐺𝑉𝐹.𝑅𝐵 = 𝑒𝑥𝑝( 𝛽 0 + 𝛽 1 ⋅ 𝑙𝑜𝑔( 𝑛𝑖)) ⋅ 𝑒𝑥𝑝(

𝜏̂2

2
) = 𝐶0 ⋅ 𝑒𝑥𝑝( 𝑙𝑜𝑔( 𝑛𝑖)

𝛽 1) = 𝐶0 ⋅ 𝑛𝑖
𝛽 1

where 𝐶0 = 𝑒𝑥𝑝( 𝛽 0 +
𝜏̂2

2
) is a constant. If the value of the regression coefficient 𝛽 1 is close to -1, then the GVF-

estimator 𝑉 𝑖
𝐺𝑉𝐹.𝑅𝐵 can be approximately written as 𝑉 𝑖

𝐺𝑉𝐹.𝑅𝐵 ≈ 𝐶0/𝑛𝑖.  

The DEFF-estimator 𝑉 𝑖
𝐷𝐸𝐹𝐹 can be rewritten as follows:  

𝑉 𝑖
𝐷𝐸𝐹𝐹 = 𝑑𝑒𝑓𝑓 ⋅

𝑝̄𝑤(1 − 𝑝̄𝑤)

𝑛𝑖

⋅ (1 +
1 − 𝑑𝑒𝑓𝑓

𝑛𝑖

)

−1

=
𝐶1

𝑛𝑖

⋅ (
𝑛𝑖 + 1 − 𝑑𝑒𝑓𝑓

𝑛𝑖

)

−1

=
𝐶1

𝑛𝑖 + 1 − 𝑑𝑒𝑓𝑓
≈

𝐶1

𝑛𝑖

,

where 𝐶1 = 𝑑𝑒𝑓𝑓 ⋅ 𝑝̄𝑤(1 − 𝑝̄𝑤) is a constant. Both the GVF-estimator 𝑉 𝑖
𝐺𝑉𝐹.𝑅𝐵 and the DEFF-estimator 𝑉 𝑖

𝐷𝐸𝐹𝐹 are 

proportional to 𝑛𝑖
−1   if the regression coefficient 𝛽 1 is close to -1 in the GVF regression model. Thus under such 

condition, both GVF and DEFF smoothed variances should perform similarly.  

In practical applications, to make use of both the GVF and DEFF smoothed estimates, we can define an average 
smoothed (ASM) estimator  𝑉 𝑖

𝐴𝑆𝑀=(𝑉 𝑖
𝐺𝑉𝐹.𝑅𝐵+𝑉 𝑖

𝐺𝑉𝐹.𝐻𝐵𝑌+𝑉 𝑖
𝐷𝐸𝐹𝐹)/3 as a simple data pooling method to obtain the final 

smoothed variance estimate. As we will see in the LFS small area application in Section 3, the average smoothed 
estimator 𝑉 𝑖

𝐴𝑆𝑀 can perform very well and lead to large bias and CV reduction for small area estimates.  

3.  LFS Small Area Estimation Using Smoothed Sampling Variances 

In this section, we apply the variance smoothing methods to the Canadian Labour Force Survey (LFS) data and 
compare the small area estimates based on the smoothed sampling variances. The LFS produces monthly estimates of 
the unemployment rate at national and provincial levels. The LFS also releases unemployment estimates for sub-
provincial areas such as Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs) across Canada. 
However, the direct estimates are not reliable for sub-provincial areas because the sample sizes in some areas are quite 
small. The various small area estimation models for LFS are discussed, for example, in Hidiroglou, Beaumont, and 
Yung (2019), Lesage, Beaumont and Bocci (2021), You, Rao, and Gambino (2003), and You (2008, 2021). We apply 
the Fay-Herriot model given by (1) and (2) to the May 2016 unemployment rate estimates at the CMA/CA level. We 
consider using four smoothed variance estimators in the LFS application, namely, 𝑉 𝑖

𝐺𝑉𝐹.𝑅𝐵,  𝑉 𝑖
𝐺𝑉𝐹.𝐻𝐵𝑌, 𝑉 𝑖

𝐷𝐸𝐹𝐹 and the 
average smoothed estimator 𝑉 𝑖

.𝐴𝑆𝑀=(𝑉 𝑖
𝐺𝑉𝐹.𝑅𝐵+𝑉 𝑖

𝐺𝑉𝐹.𝐻𝐵𝑌+𝑉 𝑖
𝐷𝐸𝐹𝐹)/3. We consider the EBLUP approach in the 

application. The details of the EBLUP estimator and related MSE estimation based on the Fay-Herriot model can be 
found, for example, in Rao and Molina (2015) and You (2021). Local area employment insurance monthly beneficiary 
rate is used as an auxiliary variable in the Fay-Herriot model as in Hidiroglou, Beaumont, and Yung (2019) and You 
(2008, 2021). The model-based estimates and the direct estimates are compared with the census estimates to evaluate 
the effects of sampling variance smoothing. 

We first obtain the smoothed sampling variances for all the 128 CMA/CAs using the proposed  𝑉 𝑖
𝐺𝑉𝐹.𝑅𝐵,  𝑉 𝑖

𝐺𝑉𝐹.𝐻𝐵𝑌, 

𝑉 𝑖
𝐷𝐸𝐹𝐹 and  𝑉 𝑖

𝐴𝑆𝑀. For the GVF model (4), the regression estimates are  𝛽 0 = −3.194 and 𝛽 1 = −0.901. The RB 

residual correction term 𝑒𝑥𝑝( 𝜏̂2/2) is equal to 1.467 and the HBY correction term is 𝜔̂𝐻𝐵𝑌 = 𝑉 𝑡𝑜𝑡𝑎𝑙/ 𝑉 𝑛𝑎𝑖𝑣𝑒 =1.786. 

As the regression coefficient 𝛽 1 = −0.901 is close to -1, and the difference between two correction terms is not large, 
we should expect a similar smoothed  sampling variances for the LFS data. We applied the Fay-Herriot model to the 
128 CMA/CA LFS unemployment rate data with the four different smoothed sampling variances and obtained the 
corresponding EBLUP estimates. The details of the EBLUP estimator with REML method to estimate the variance 
component can be found, for example, in You (2021) and Rao and Molina (2015). The small area EBLUP estimates 
are compared via the absolute relative error (ARE) of the direct and EBLUP estimates with respect to the census 

estimates for each CMA/CA as follows: ARE𝑖 = |(𝜃𝑖
𝐶𝑒𝑛𝑠𝑢𝑠 − 𝜃𝑖

𝐸𝑠𝑡)/𝜃𝑖
𝐶𝑒𝑛𝑠𝑢𝑠|, where 𝜃𝑖

𝐸𝑠𝑡 is the direct or the EBLUP 

estimate and 𝜃𝑖
𝐶𝑒𝑛𝑠𝑢𝑠 is the corresponding census value of the LFS unemployment rate. It is a common practice to 

evaluate the model-based estimates with the census values, for example, as in Hidiroglou, Beaumont and Yung (2019) 
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and You (2021). We then take the average of AREs over CMA/CAs by different subgroups with respect to sample 
size, same as in Hidiroglou, Beaumont and Yung (2019). Table 3.1 presents the average ARE for the direct LFS and 
EBLUP estimators based on different input sampling variance estimates. For comparison, we also used the direct 
sampling variance as input sampling variance in the Fay-Herriot model. For example, EBLUP(DIR) represents that 
the direct (DIR) sampling variance estimate is used in the Fay-Herriot model, EBLUP(GVF.RB) represents the 
smoothed sampling variance estimate 𝑉 𝑖

𝐺𝑉𝐹.𝑅𝐵 (GVF.RB) is used, etc.  

Table 3.1: Comparison of ARE for EBLUP estimates based on the different input sampling variances 
CMA/CAs Direct 

LFS
EBLUP 
(DIR)

EBLUP 
(GVF.RB)

EBLUP 
(GVF.HBY) 

EBLUP 
(DEFF)

EBLUP 
(ASM)

25 smallest areas 0.489 0.279 0.181 0.184 0.180 0.182
Next 25 smallest areas 0.338 0.214 0.146 0.147 0.146 0.146
Next 25 smallest areas 0.276 0.198 0.138 0.143 0.134 0.138 

Next 25 smallest areas 0.198 0.161 0.134 0.141 0.130 0.135 

28 largest areas 0.132 0.125 0.099 0.108 0.091 0.099 

Overall areas 0.283 0.194 0.138 0.144 0.135 0.139

It is clear from Table 3.1 that the EBLUP estimates substantially improve the direct estimates by reducing ARE. Even 
with the use of the direct sampling variance estimates, EBLUP(DIR) results in much smaller ARE than the direct 
survey estimator. However, by using the smoothed sampling variance estimates, EBLUP performs substantially much 
better than the direct estimator. The AREs are reduced by each area group and overall areas. In general, all the EBLUPs 
with the four smoothed sampling variances perform very similarly. Among the EBLUP estimators using smoothed 
sampling variances, EBLUP(GVF.HBY) has slightly larger ARE than others, and the EBLUP(DEFF) has slightly 
smaller ARE. For example, over all the 128 CMA/CAs, the respective ARE’s of EBLUP(GVF.RB), 
EBLUP(GVF.HBY) and EBLUP(DEFF) are 0.138, 0.144, and 0.135. So EBLUP(DEFF) performs the best in terms 
of relative error. For the average smoothed sampling variance 𝑉 𝑖

𝐴𝑆𝑀, the EBLUP(ASM) has overall ARE value 0.139, 
which is between the ARE values of EBLUPs using GVF and DEFF. The EBLUP(ASM) performs very well.  

For average CV, EBLUP also reduces the CV substantially over the direct estimator. The direct LFS estimator has 
average CV 39.4%, EBLUP(DIR) has average CV 24.5%, whereas EBLUP(GVF.RB) has average CV 10.3%, 
EBLUP(GVF.HBY) has a slightly smaller average CV 8.2%, and EBLUP(DEFF) has average CV value 11.8%. The 
EBLUP(ASM) has average CV 10.2%. Thus, using smoothed sampling variances substantially reduces the CV for 
EBLUPs, and again the CV for EBLUP(ASM) is between the CV values of EBLUP using GVF and DEFF variances. 
EBLUP(ASM) has smaller ARE than EBLUP(GVF.RB) and EBLUP(GVF.HBY) and has smaller CV than 
EBLUP(GVF.RB) and EBLUP(DEFF). The use of averaged smoothed sampling variances 𝑉 𝑖

𝐴𝑆𝑀 leads to a balanced 
reduction for both ARE and CV. It is clear that the average smoothed estimator 𝑉 𝑖

𝐴𝑆𝑀 performs very well.  

Lesage, Beaumont, and Bocci (2021) considered the following smoothing model, denoted as LBB model, for sampling 
variance smoothing:  

𝑙𝑜𝑔( 𝑉 𝑖) = 𝛽0 + 𝛽1 𝑙𝑜𝑔( 𝑧𝑖) + 𝛽2 𝑙𝑜𝑔( 1 − 𝑧𝑖)+𝛽3 𝑙𝑜𝑔( 𝑛𝑖) + 𝜀𝑖, 𝑖 = 1, . . . , 𝑚,                   (15) 

where 𝑧𝑖  is the employment insurance beneficiary rate used in the Fay-Herriot model as auxiliary variable to obtain 
the EBLUP estimators. By applying the LBB smoothing model (15) to the 128 area sampling variance data, we have 

the following regression estimates  𝛽 0 = −4.443, 𝛽 1 = −0.486,  𝛽 2 = −29.139 and 𝛽 3 = −0.886. The residual 
correction term 𝜔̂𝑅𝐵 = 𝑒𝑥𝑝( 𝜏̂2/2) is equal to 1.461 and the HBY correction term is 𝜔̂𝐻𝐵𝑌 = 𝑉 𝑡𝑜𝑡𝑎𝑙/ 𝑉 𝑛𝑎𝑖𝑣𝑒 =1.782. 
We denote as  𝑉 𝑖

𝐿𝐵𝐵.𝑅𝐵 the smoothed variance estimator based on the LBB model (15) using formula (7) with a 
correction term 𝜔̂𝑅𝐵=1.461. Similarly, let 𝑉 𝑖

𝐿𝐵𝐵.𝐻𝐵𝑌 be the smoothed variance estimator based on the LBB model (15) 
using formula (8) with a correction term  𝜔̂𝐻𝐵𝑌 =1.782. We now compare the EBLUP estimates based on the LBB 
smoothing model and the proposed smoothing method. In particular, we compare the proposed EBLUP(ASM) to 
EBLUP estimates using 𝑉 𝑖

𝐿𝐵𝐵.𝑅𝐵 and  𝑉 𝑖
𝐿𝐵𝐵.𝐻𝐵𝑌, e.g., EBLUP(LBB.RB) and EBLUP(LBB.HBY).  
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Table 3.2: Comparison of ARE based on different GVF models and smoothed sampling variances 
CMA/CAs Direct LFS EBLUP(ASM) EBLUP(LBB.RB) EBLUP(LBB.HBY) 

25 smallest areas 0.489 0.182 0.181 0.183
Next 25 smallest areas 0.338 0.146 0.144 0.145

Next 25 smallest areas 0.276 0.138 0.137 0.142 
Next 25 smallest areas 0.198 0.135 0.135 0.141
28 largest areas 0.132 0.099 0.099 0.108

Overall areas 0.283 0.139 0.138 0.143 

Table 3.2 presents the average ARE to compare the effects of variance smoothing using ASM and LBB model. It is 
clear from Table 3.2 that all EBLUP estimates perform very well and improve the direct survey estimates by 
substantially reducing the ARE with respect to the census values. EBLUP(ASM) and EBLUP(LBB.RB) perform 
almost the same, and EBLUP(LBB.HBY) has slightly larger ARE, same as EBLUP(GVF.HBY) in Table 3.1. 
EBLUP(LBB.HBY) and EBLUP(GVF.HBY) perform almost identically by comparing the results in Table 3.1 and 
Table 3.2. In terms of CV, EBLUP(LBB.RB) and EBLUP(ASM) have the same average CV 10.2%, and 
EBLUP(LBB.HBY) has the same average CV 8.2% as EBLUP(GVF.HBY). The LFS small area application shows 
that the proposed GVF model (4) and the proposed sampling variance smoothing methods GVF, DEFF and ASM 
perform very well by comparing the EBLUP estimates with the census values and other GVF smoothing model for 
LFS application, e.g., Lesage, Beaumont and Bocci (2021).  

4. Conclusion 

In this paper, we have proposed sampling variance smoothing estimators using the generalized variance function 
method and smoothed design effect method for small area estimation. The proposed smoothing models and methods 
only require the use of the sample size in the model and computation of design effects. The proposed estimators 
𝑉 𝑖

𝐺𝑉𝐹.𝑅𝐵,  𝑉 𝑖
𝐺𝑉𝐹.𝐻𝐵𝑌and 𝑉 𝑖

𝐷𝐸𝐹𝐹 usually result in similar smoothed variance estimates. In practical applications, we may 

use the average smoothed estimator  𝑉 𝑖
𝐴𝑆𝑀=(𝑉 𝑖

𝐺𝑉𝐹.𝑅𝐵+𝑉 𝑖
𝐺𝑉𝐹.𝐻𝐵𝑌+𝑉 𝑖

𝐷𝐸𝐹𝐹)/3 as a data pooling to obtain the final 
smoothed variance estimate. The proposed smoothing methods simplify the smoothing procedure for practical users 
as they don’t need other complicated GVF models or auxiliary variables for the sampling variance modeling. Also the 
proposed smoothing procedure can be easily implemented in practice. 
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