
Survey Methodology

Catalogue no. 12-001-X 
ISSN 1492-0921

Survey Methodology
49-2

Release date: January 3, 2024



Published by authority of the Minister responsible for Statistics Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Industry, 2024

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website, 
www.statcan.gc.ca. 
 
You can also contact us by 
 
Email at infostats@statcan.gc.ca 
 
Telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following numbers: 

 • Statistical Information Service 1-800-263-1136
 • National telecommunications device for the hearing impaired 1-800-363-7629
 • Fax line 1-514-283-9350

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, 
reliable and courteous manner. To this end, Statistics Canada 
has developed standards of service that its employees observe.  
To obtain a copy of these service standards, please contact  
Statistics Canada toll-free at 1-800-263-1136. The service   
standards are also published on www.statcan.gc.ca under 
“Contact us” > “Standards of service to the public.”

Note of appreciation
Canada owes the success of its statistical system to a 
long-standing partnership between Statistics Canada, the  
citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information 
could not be produced without their continued co-operation  
and goodwill.

https://www.statcan.gc.ca/eng/reference/licence
https://www150.statcan.gc.ca/n1/pub/12-001-x/12-001-x2023002-eng.htm
https://www.statcan.gc.ca
mailto:infostats%40statcan.gc.ca%20?subject=
https://www.statcan.gc.ca
https://www.statcan.gc.ca/eng/about/service/standards


ethicel
Zone de texte 
                      December 2023                                                                     Volume 49                                                                                                                                            Number 2

ethicel
Sticky Note
Marked set by ethicel



SURVEY METHODOLOGY 
 

A Journal Published by Statistics Canada 
 
Survey Methodology is indexed in The ISI Web of knowledge (Web of science), The Survey Statistician, Statistical Theory and 
Methods Abstracts and SRM Database of Social Research Methodology, Erasmus University and is referenced in the Current 
Index to Statistics, and Journal Contents in Qualitative Methods. It is also covered by SCOPUS in the Elsevier Bibliographic 
Databases. 

 
MANAGEMENT BOARD  
Chairman E. Rancourt 
Past Chairmen C. Julien (2013-2018) 
 J. Kovar (2009-2013) 
 D. Royce (2006-2009) 
 G.J. Brackstone (1986-2005) 
 R. Platek (1975-1986) 

Members J.-F. Beaumont 
 D. Haziza 
 W. Yung 
  
 
 

 
EDITORIAL BOARD  
Editor J.-F. Beaumont, Statistics Canada 
 
 
 

Past Editor W. Yung (2016-2020) 
 M.A. Hidiroglou (2010-2015) 
 J. Kovar (2006-2009) 
 M.P. Singh (1975-2005) 

 
Associate Editors  
 J.M. Brick, Westat Inc. 
 P.J. Cantwell, U.S. Census Bureau 
 G. Chauvet, École nationale de la statistique et de l’analyse de l’information 
 S. Chen, University of Oklahoma Health Sciences Center 
 J. Chipperfield, Australian Bureau of Statistics 
 J.L. Eltinge, U.S. Bureau of Labor Statistics 
 A. Erciulescu, Westat Inc. 
 W.A. Fuller, Iowa State University 
 D. Haziza, University of Ottawa 
 M.A. Hidiroglou, Statistics Canada 
 D. Judkins, ABT Associates Inc Bethesda 
 J.K. Kim, Iowa State University 
 P.S. Kott, RTI International 
 P. Lahiri, University of Maryland 
 É. Lesage, L’Institut national de la statistique et des études économiques 
 A. Matei, Université de Neuchâtel 

 K. McConville, Reed College 
 I. Molina, Universidad Complutense de Madrid 
 J. Opsomer, Westat Inc 
 D. Pfeffermann, University of Southampton 
 J.N.K. Rao, Carleton University 
 L.-P. Rivest, Université Laval 
 F.J. Scheuren, National Opinion Research Center 
 P.L.d.N. Silva, Escola Nacional de Ciências Estatísticas 
 P. Smith, University of Southampton 
 D. Steel, University of Wollongong 
 M. Torabi, University of Manitoba 
 D. Toth, U.S. Bureau of Labor Statistics 
 J. van den Brakel, Statistics Netherlands 
 C. Wu, University of Waterloo 
 W. Yung, Statistics Canada 
 L.-C. Zhang, University of Southampton 

 
  
Assistant Editors C. Bocci, K. Bosa, C. Boulet, S. Matthews, C.O. Nambeu and Y. You, Statistics Canada   

EDITORIAL POLICY  
Survey Methodology usually publishes innovative theoretical or applied research papers, and sometimes review papers, that 
provide new insights on statistical methods relevant to National Statistical Offices and other statistical organizations. Topics of 
interest are provided on the journal web site (www.statcan.gc.ca/surveymethodology). Authors can submit papers either to the 
regular section of the Journal or to the short notes section for contributions under 3,000 words, including tables, figures and 
references. Although the review process may be streamlined for short notes, all papers are peer-reviewed. However, the authors 
retain full responsibility for the contents of their papers, and opinions expressed are not necessarily those of the Editorial Board 
or of Statistics Canada. 
 
 
Submission of Manuscripts  
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles through the Survey 
Methodology hub on the ScholarOne Manuscripts website (https://mc04.manuscriptcentral.com/surveymeth). For formatting 
instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/surveymethodology). To 
communicate with the Editor, please use the following email: (statcan.smj-rte.statcan@statcan.gc.ca). 

https://mc04.manuscriptcentral.com/surveymeth
http://www.statcan.gc.ca/surveymethodology
mailto:statcan.smj-rte.statcan@statcan.gc.ca


 

Statistics Canada, Catalogue No. 12-001-X 

Survey Methodology 
 

A journal published by Statistics Canada 
 

Volume 49, Number 2, December 2023 
 

Contents  
Waksberg invited paper series 
 
Raymond L. Chambers 
 The missing information principle ‒ A paradigm for analysis of messy sample survey data ......................................... 219 
 
 

Special paper in memory of Professor Jean-Claude Deville 
 
Pascal Ardilly, David Haziza, Pierre Lavallée and Yves Tillé 
 Jean-Claude Deville’s contributions to survey theory and official statistics ................................................................. 257 
 
 Comments on “Jean-Claude Deville’s contributions to survey theory and official statistics” 
           Guillaume Chauvet .......................................................................................................................................... 299 
           Marc Christine ................................................................................................................................................ 305 
           Françoise Dupont ............................................................................................................................................ 313 
           Camelia Goga and Anne Ruiz-Gazen 
                       Jean-Claude Deville: Mathematics lover, high-flying researcher, and visionary ...................................... 321 
           Carl-Erik Särndal ............................................................................................................................................ 339 
 
 

Invited papers presented at the 2021 Colloque francophone sur les sondages 
 
Louis-Paul Rivest 
 Statistical methods for sampling cross-classified populations under constraints ........................................................... 347  
Alina Matei, Paul A. Smith, Marc J.E. Smeets and Jonas Klingwort 
 Targetted double control of burden in multiple surveys .............................................................................................. 363  
Estelle Medous, Camelia Goga, Anne Ruiz-Gazen, Jean-François Beaumont, Alain Dessertaine and Pauline Puech 
 QR prediction for statistical data integration .............................................................................................................. 385  
Vincent Loonis 
 Constructing all determinantal sampling designs ........................................................................................................ 411 
 
 

Regular papers 
 
Jerzy Wieczorek 
 Design-based conformal prediction ........................................................................................................................... 443  
J. Michael Brick and Jill M. DeMatteis 
 Sample designs and estimators for multimode surveys with face-to-face data collection .............................................. 475  
Yilin Chen, Pengfei Li and Changbao Wu 
 Dealing with undercoverage for non-probability survey samples ................................................................................ 497  
Balgobin Nandram, Nathan B. Cruze and Andreea L. Erciulescu 
 Bayesian small area models under inequality constraints with benchmarking and double shrinkage ............................ 517  
Emily Berg 
 Small area prediction of general small area parameters for unit-level count data ......................................................... 547  
Yanzhe Li, Sander Scholtus and Arnout van Delden 
 A method for estimating the effect of classification errors on statistics for two domains .............................................. 569  
Don Edwards, Piaomu Liu and Alexandria Delage 
 Model-based stratification of payment populations in Medicare integrity investigations .............................................. 607    
Acknowledgements ............................................................................................................................................................................. 627 
Announcements ................................................................................................................................................................................... 629 
In other journals .................................................................................................................................................................................. 631 

https://www150.statcan.gc.ca/n1/pub/12-001-x/12-001-x2023002-eng.htm


 
 
 
 
 
 
 
 
 



Survey Methodology, December 2023 217 
Vol. 49, No. 2, pp. 217-218 
Statistics Canada, Catalogue No. 12-001-X 

 

 

Waksberg Invited Paper Series 
 
 

The journal Survey Methodology has established in 2001 an annual invited paper series in honor of the late 

Joseph Waksberg to recognize his outstanding contributions to survey statistics and methodology. Each year a 

prominent survey statistician is chosen by a four-person selection committee appointed by Survey Methodology and 

the American Statistical Association. The selected statistician is invited to write a paper for Survey Methodology that 

reviews the development and current state of an important topic in the field of survey statistics and methodology. The 

paper reflects the mixture of theory and practice that characterized Joseph Waksberg’s work. The recipient of the 

Waksberg Award is also invited to give the Waksberg Invited Address, usually at the Statistics Canada Symposium, 

and receives an honorarium. 

Please see the announcements at the end of the Journal for information about the nomination and selection 

process of the 2025 Waksberg Award. 

This issue of Survey Methodology opens with the 23th paper of the Waksberg Invited Paper Series. The 

editorial board would like to thank the members of the selection committee Jack Gambino (Chair), 

Maria Giovanna Ranalli, Denise Britz do Nascimento Silva and Kristen Olson for having selected 

Raymond L. Chambers as the author of 2023 Waksberg Award paper. 

 

2023 Waksberg Invited Paper 

Author: Raymond L. Chambers 
 

Ray Chambers is Honorary Professorial Fellow at the National Institute for Applied Statistics Research 

Australia, University of Wollongong, Australia. He was Leverhulme Professor of Social Statistics and Head of 

the Department of Social Statistics, University of Southampton as well as inaugural Director of the Southampton 

Statistical Sciences Institute. He is an elected member of the International Statistical Institute and a Fellow of the 

American Statistical Association. He was co-Editor in Chief of the International Statistical Review 2015-2019. 

He was President of the International Association of Survey Statisticians, 2011-2013 and International 

Representative on the Board of the American Statistical Association, 2011-2014. He has published widely on 

robust model-based methods for inference from complex survey data, and particularly where this complexity 

arises through integration of data from multiple sources. With Chris Skinner, he jointly edited Analysis of Survey 

Data, Wiley, 2003. He co-authored Maximum Likelihood Estimation for Sample Surveys, CRC Press, 2012, with 

David Steel, Alan Welsh and Suojin Wang, and An Introduction to Model-Based Survey Sampling with 

Applications, Oxford University Press, 2012, with Robert Clark. With Li-Chun Zhang, he jointly edited Analysis 

of Integrated Data, CRC Press, 2019. He was elected as a Fellow of the Academy of Social Sciences in Australia 

in 2021.  
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1. Raymond L. Chambers, University of Wollongong, NSW, 2522, Australia. E-mail: possumgong@gmail.com. 

 

The missing information principle ‒ A paradigm for analysis 
of messy sample survey data 

Raymond L. Chambers1 

Abstract 

Sample surveys, as a tool for policy development and evaluation and for scientific, social and economic research, 
have been employed for over a century. In that time, they have primarily served as tools for collecting data for 
enumerative purposes. Estimation of these characteristics has been typically based on weighting and repeated 
sampling, or design-based, inference. However, sample data have also been used for modelling the unobservable 
processes that gave rise to the finite population data. This type of use has been termed analytic, and often involves 
integrating the sample data with data from secondary sources. 

 

Alternative approaches to inference in these situations, drawing inspiration from mainstream statistical 
modelling, have been strongly promoted. The principal focus of these alternatives has been on allowing for 
informative sampling. Modern survey sampling, though, is more focussed on situations where the sample data 
are in fact part of a more complex set of data sources all carrying relevant information about the process of 
interest. When an efficient modelling method such as maximum likelihood is preferred, the issue becomes one 
of how it should be modified to account for both complex sampling designs and multiple data sources. Here 
application of the Missing Information Principle provides a clear way forward. 

 

In this paper I review how this principle has been applied to resolve so-called “messy” data analysis issues in 
sampling. I also discuss a scenario that is a consequence of the rapid growth in auxiliary data sources for survey 
data analysis. This is where sampled records from one accessible source or register are linked to records from 
another less accessible source, with values of the response variable of interest drawn from this second source, 
and where a key output is small area estimates for the response variable for domains defined on the first source. 

 
Key Words: Maximum likelihood; Combined data; Informative sampling; Nondeterministic linkage; Small area 

estimation. 

 
 

1. Introduction 
 

1.1 Descriptive and analytical inference with multiple data sources 
 

Over the last century, sample surveys have become the primary method by which data are collected for 

analysis of social and economic processes, and empirical analysis of survey data is often the way theories 

are developed and investigated. While there has been a large increase in recent years in the data available 

from registers and administrative and business systems, these data are often limited. The number of variables 

for which information is gathered is often small, the definition of the variables may not be what is required, 

the data may be out-of-date, they may be available only in aggregate form and coverage of the population 

may be limited. A survey can be used to collect information on many variables at the individual person or 

business level, using relevant definitions in a consistent manner. This allows great flexibility in the estimates 

produced and the analyses possible. 

How the sample is defined in a sample survey can vary considerably. Probability-based samples based 

on complex designs that reflect the heterogeneity and complex structures of the population of interest 
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represent one extreme. These designs may use auxiliary data available concerning the population at the time 

of selection. At the other extreme are convenience samples (Galloway, 2005) whose relationship to the 

population they are supposed to represent is problematic. In many cases external information, both on the 

process of sample selection as well as the comparability of the selected sample with the target population in 

terms of some known characteristics, is available to the analyst. Traditionally this auxiliary information has 

been used to improve sample design and estimation. With the increasing amount of data available in 

administrative and business databases, the sample survey now has a significant new role in supplementing 

such data sources so that they can be fully exploited. In particular, we now regularly face situations where 

data from multiple data sources need to be integrated for inference. 

In order to address this issue of integrated inference, I will distinguish between statistical analysis aimed 

at estimating the value of an observable population quantity (e.g., the population average value of a variable) 

and analysis aimed at summarising the relationship between population variables in terms of a statistical 

model (e.g., a regression model). In the former case it is clear that the value of the population quantity 

becomes more and more “known” as the sample size increases, with the value known precisely (at least in 

theory) when the population is completely enumerated. This type of analysis is referred to variously as 

enumerative, predictive, descriptive or finite population inference. In the latter case the model is an abstract 

concept, corresponding to an idealisation of how the values of the different variables in the model relate to 

one another across the entire population. The “true” model is never known precisely, irrespective of how 

large a sample is used in the survey. This type of analysis is referred to as analytic inference. It is usually 

carried out by fitting the assumed statistical model to the survey data, with the nature and strength of the 

population relationship then summarised from the estimated values of the model parameters (e.g., the 

estimated regression coefficients). 

Unfortunately, two quite distinct modes of inference exist for these two cases. If the target is a finite 

population quantity (e.g., a population average) the inferential framework is based on repeated sampling of 

the population, i.e., the population values for the variable of interest are held fixed. This is often referred to 

as design-based inference. On the other hand, if the target is a parameter of a statistical model for the 

population of interest (e.g., a regression parameter), then inference is typically model-based, i.e., it is with 

respect to potential population values that could have arisen under the true model. Little (2012) has described 

this state of affairs as “inferential schizophrenia” since the distinction between a target of inference that 

corresponds to a finite population quantity (e.g., the small area mean of a variable )Y  and one that is the 

parameter of a model for the finite population values (e.g., the model expectation of )Y  is very blurred. 

Model-based prediction theory (both frequentist and Bayesian) overcome this by explicitly allowing for the 

impact of the sample design in model-based inference. 

In this paper I will adopt the frequentist interpretation of this framework, focussing on the use of the 

Missing Information Principle (the MIP) for model-based analytic inference in “messy” data situations 

where data from multiple sources are available. Other Waksberg Award papers have also discussed model-

based analytic inference from sample survey data (Scott, 2006; Rao, 2005; Pfeffermann, 2011), but none 

have zeroed in on the MIP and its use in the “messy” data that often arise in an integrated data context. 
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1.2 Weighting and complex sample designs 
 

Most surveys use complex sample designs, reflecting and exploiting the heterogeneity of their target 

populations. The complexities introduced by the interaction of the survey design with these sources of 

heterogeneity are often difficult to handle using standard statistical methods. One particular issue that often 

arises is the role of sample selection probabilities in the analysis of the survey data. Complex sample designs 

typically result in unequal selection probabilities, one consequence of which is that the distributions 

observed in the sample can be very different from those in the population from which the sample was 

selected. There is confusion amongst survey users, as well as among non-survey statisticians (Gelman, 

2007), about whether one should use selection probabilities in analysis, and if so, how this should be done 

in order to effectively “capture” the information about the sample design, and its effects, that they contain. 

A standard strategy is to weight for unequal selection probabilities when analysing survey data. The purpose 

of such weighting is to compensate for differences between the sample and population introduced by the 

sampling scheme (Pfeffermann, 1993). Using weighted summation of the sample data is attractive because 

it lends itself naturally to the estimation of linear parameters such as averages and totals, which are the 

primary objectives of many sample surveys, and also because linear estimators are very straightforward to 

build into survey estimation systems. 

There are two main approaches to constructing weights. Often this is via the reciprocals of the selection 

probabilities. Such weights have a long history in descriptive surveys but may also be incorporated in model 

fitting, for example by pseudo-likelihood methods (Skinner, Holt and Smith, 1989). In these methods 

estimating equations that assume simple random sampling are modified to incorporate the survey weights. 

Second, weights may incorporate auxiliary information concerning the population, for example in post-

stratification and regression estimation (Bethlehem and Keller, 1987; Chambers, 1996). In this case a 

multiple regression model for predicting survey variables by auxiliary variables is used to define the 

weights, with a widely used example being Generalized Regression (GREG) estimation (Särndal, Swensson 

and Wretman, 1992). A variant of this approach is calibration estimation (Deville and Särndal, 1992; 

Särndal, 2007), where weights are constructed so that they are close to the inverses of the selection 

probabilities while at the same time allowing the weighted estimates to agree with selected population 

moments of key auxiliary variables. 

The other principal concern with analysis involving sample survey data is how to make efficient use of 

external or auxiliary information when carrying out this analysis. Often, auxiliary information available 

about the population from a variety of sources (census, administrative registers, other surveys) is used to 

produce benchmarks that are used to constrain the survey estimates. Benchmarks are values of population 

characteristics or external estimates of these characteristics that are more reliable than unconstrained 

estimates derived from the sample data. Although many population benchmarks are often available, well-

known results on model over-fitting indicate that the number of benchmarks used in constraining survey 

weights should be limited to prevent instability of the resulting estimates. This leads to the conclusion that 

one should limit the number of calibration constraints imposed on the weights. The issue is particularly 



222 Chambers: The missing information principle ‒ A paradigm for analysis of messy sample survey data 

 

 
Statistics Canada, Catalogue No. 12-001-X 

important in multipurpose surveys, where the amount of related population information, and hence number 

of constraints, can be large (Bardsley and Chambers, 1984; Chambers, 1996). There are important practical 

advantages if the same weights are used for different estimates, and this can be achieved in model-based 

weighting if the same benchmarks are used for different survey variables. But this comes at a price. In 

particular, the resulting estimates can be inefficient, because the weights become very variable due to model 

over-parameterisation. Optimal methods for selecting the appropriate amount of external information to use 

in weighting have been discussed in the literature, but are limited to linear situations (Silva and Skinner, 

1997; Clark and Chambers, 2008). Little is known about the extension to nonlinear situations or to the role 

of calibration information in analytic inference. 

 
1.3 Analysis of complex survey data 
 

Much attention has been devoted to the analysis of complex data over the last three decades. For example, 

in the 1990s the UK ESRC Research Programme on Analysis of Large and Complex Datasets focussed on 

the development of methods for the statistical modelling of the complex data collected in social science 

investigations. Since then, there has been a rise in interest in the theoretical foundations of inference based 

on sample survey data (Krieger and Pfeffermann, 1992; Breckling, Chambers, Dorfman, Tam and Welsh, 

1994; Dorfman, Chambers and Wang, 2002; Little, 2003; Chambers and Skinner, 2003; Pfeffermann, 2011; 

Chambers, Steel, Wang and Welsh, 2012; Little, 2022). In particular, it is now accepted that statistical 

methods that assume that the distribution of the sample data and the distribution of the population data are 

identical generally lead to biased inference, since they take no account of either the complex sample design 

or the availability of auxiliary data. 

There are three frameworks for frequentist inference that are generally used to deal with this problem. 

 Pseudo-likelihood: This is a hybrid approach, with the unknown sufficient statistics in the 

population level likelihood estimating equations replaced by sample-weighted estimators (Kish 

and Frankel, 1974; Binder, 1983; Godambe and Thompson, 1986). The role of sample weights is 

therefore to adjust for differences between the sample distribution and the finite population 

distribution (Pfeffermann, 1993). Such weights usually have no connection with the variance 

structure of the data and so can lead to considerable inefficiency under the model. Furthermore, 

the weights used in practice are themselves adjusted, sometimes substantially, in order to 

integrate external population information (e.g., via calibration). However, weighted methods are 

very simple to implement and so are widely used. 

 Sample likelihood: An explicit model for the distribution of the sample data, based on the use of 

Bayes theorem to integrate the population model and the sampling procedure, is used to develop 

a likelihood (Krieger and Pfeffermann, 1992; Pfeffermann, Krieger and Rinott, 1998; Pfeffermann 

and Sverchkov, 1999, 2003). This sample likelihood approach is typically more efficient than 

pseudo-likelihood. However, since it focuses on the distribution of the sample data as the basis 
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for inference, rather than on the population, it ignores non-sample information from auxiliary 

integrated data, making it less than fully efficient. 

 Maximum likelihood: This is a fully efficient approach, where the auxiliary information and the 

sampling design are directly accounted for in the likelihood, itself defined by a joint model for 

the survey variables, the sampling and non-response processes and the auxiliary information. The 

basic methodology is set out in Breckling et al. (1994), while Chambers et al. (2012) provides a 

comprehensive development of maximum likelihood ideas in sample surveys. Adopting a 

maximum likelihood approach is conceptually appealing, but applying it to complex data requires 

care. Complex models are needed for the type of economic and social populations surveyed in 

practice, and the likelihood has to incorporate information about the sampling scheme and any 

auxiliary information about the population. A further difficulty arises in secondary analysis. Here 

the analyst does not always have access to information on how the data were obtained, and so 

suitable approximations need to be derived. Chambers, Dorfman and Wang (1998) consider 

likelihood-based analysis where sample design information is not provided, and in Section 5 of 

this paper I discuss the case where the analysis data set contains linked records but the analyst 

does not have access to the original data sets used in the linkage process. 

 
1.4 Multiple surveys and auxiliary data 
 

Extension of these approaches to multiple surveys and multiple auxiliary data sources is a relatively 

unexplored area of research, although the problem is well known, going back to the pioneering work of 

Patterson (1950) on composite estimation. Merkouris (2004) develops an integrated set of calibrated weights 

for use with the combined data from two independent surveys that measure the same variable of interest but 

use different types of auxiliary information. Elliott and Davis (2005) also consider the problem of weighting 

combined data on the same variable collected in two independent surveys, but allow one of these surveys to 

have a “higher quality” measurement process than the other, leading to a propensity-based adjustment to 

the original sample weights for the records from the second, “lower quality”, survey. In contrast to both 

these approaches, which are aimed at re-weighting the combined data set, and hence concerned with 

marginal analysis of the same variable using this combined data set, Strauss, Carroll, Bortnick, Menkedick, 

and Schultz (2001) consider how one would go about modelling a joint distribution using the combined data 

from two independent surveys. In particular, these authors focus on the situation where each survey 

contributes a different variable to this joint distribution, but there exists a third, typically much smaller, 

survey with information on both that can be used to create an estimate of this joint distribution by combining 

the joint information in the small survey with the marginal information in the two larger surveys. 

All of the references in the preceding paragraph address real issues that arise with integration of external 

auxiliary information with data from sample surveys. However, the approaches taken are problem specific 

and do not fit within a common inferential framework. When combined with efficient prediction, the MIP 

provides such a framework and can be used to develop solutions to a wide range of combining surveys 
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issues. In this paper I aim to show why this is the case in three important, but relatively straightforward, 

areas of application, and in doing so provide the reader with insight about a useful tool for tackling inference 

using what may be referred to as “messy” data. 

 
1.5 Summary of the paper 
 

This paper is meant to provide an overview of the MIP and its application, rather than a detailed 

methodological development. Consequently, I provide an informal definition of the MIP in Section 2 and 

in Section 3 I illustrate its use in combining data from two sources for the purpose of estimating a population 

regression relationship. In Section 4 I discuss the concept of informative sampling and use two simple 

examples to show how the MIP provides an appropriate framework for modelling sample data in this 

situation, while in Section 5 I show how the MIP can be used to suggest an efficient way of modelling linked 

data from two sources when the linkages can contain errors. At the close of this section I go on to show how 

these methods can then be used for small area estimation when records in different small area can be 

erroneously linked. Finally, in Section 6 I provide an overview and discussion of other applications where 

using the MIP has proved useful as well as some potential generalisations. 

 
2. The missing information principle and its use 
 

2.1 Messy data structures 
 

What are “the data”? From a classical statistical perspective the answer to this question might be typically 

characterized as a transparent “window” on the population of interest. But the real world is messier. There 

are multiple sources of data with varying levels of aggregation, suggesting that a more accurate charac-

terization is a distorted window on the target population, plus (perhaps) clearer windows on related 

populations. To illustrate this, consider some examples: 
 

Example 1: Values of Y  from register A  and values of X  from register B  plus values of both variables 

from a sample of records taken from a linked version of the two registers. The aim is to use the 

sample data plus the data from the two registers to model the Y X  relationship at register 

level (Imbens and Lancaster, 1994; Handcock, Rendall and Cheadle, 2005). 
 

Example 2: Values of Y  plus auxiliary variables X  and C  from survey A  plus values of the same 

variable Y  plus auxiliary variables Z  and C  from survey B.  Estimates of the population 

total of Y  based on a combined sample are required (Merkouris, 2004). 
 

Example 3: Values of “accurately measured” variables Y  and X  from a small survey A  and values of a 

“rough approximation” to X  from a much larger survey B  are available. This information is 

to be used to calculate small area estimates of Y  (Elliott and Davis, 2005). 
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Example 4: The analyst wishes to fit a model relating variables ,Y X  and Z  at a national level. She has 

access to values of variables Y  and Z  from a large national survey plus values of correlated 

variable X  and the same variable Z  from another, distinct, large national survey plus values 

of ,Y X  and Z  from a small, non-representative, third survey (Strauss et al., 2001). 

 

2.2 Using the Missing Information Principle to combine data sources 
 

The examples in the previous subsection illustrate pooling of multiple data sources, and all present 

problems for the analyst. However, they can be tackled by application of the Missing Information Principle 

or MIP. In particular, suppose that we can identify a model for the distribution of Y  in the target population, 

and this model is characterized by a parameter .  Suppose further that the data that we have for estimating 

this parameter are a mix of individual Y -values, values of other, related, variables, summary statistics, 

metadata (e.g., data definitions), paradata (e.g., information about how the data were obtained, sample 

weights, auxiliary data for the target population), related data from other surveys and other populations and 

so on. Opposed to this reality, the data we’d like to have for likelihood inference are data that define an ideal 

“rectangular” dataset containing representative data for the target population and related populations. 

A naïve approach in this situation is to assume that the population model for Y  also applies to the sample 

values of this variable, and so the maximum likelihood estimate for   can be calculated by maximising the 

sample contribution to the population likelihood. The corresponding “face value” maximum likelihood 

estimate for   is generally incorrect since the sampling method underpinning the population model 

(typically simple random sampling) will not be the one underpinning the sample data. Furthermore, the 

available data includes data from other sources that also contain information about .  The appropriate 

likelihood should therefore also take account of this information in order to arrive at the “full information” 

maximum likelihood estimate for .  

The MIP provides a route for going from a simple likelihood analysis based on the ideal dataset to the 

correct likelihood analysis for the actual data that are available. In particular, it states that likelihood-based 

inference using a “messy” observed dataset sD  can be achieved by carrying out likelihood-based inference 

using a larger “ideal” dataset UD  with the likelihood estimating equations defined by UD  replaced by their 

expected values given .sD  Note that it doesn’t matter what UD  is here. The only requirements are that sD  

(the data we have) is a subset of UD  (the data we would like to have), and that likelihood inference using 

UD  is straightforward. The MIP was first articulated by Orchard and Woodbury (1972) in the context of 

inference with missing data, and is closely related to the widely used EM algorithm (Dempster, Laird and 

Rubin, 1977). Its application to analysis of survey data was first described in Breckling et al. (1994). In our 

subsequent book, Chambers et al. (2012), we provide a comprehensive examination of how working within 

a MIP-based inferential framework leads to the maximum likelihood estimator (MLE) in a wide variety of 

messy data situations. In particular, the discussion in Sections 3 and 4 below summarises key aspects of this 

development by showing how the MIP can be used to fit simple population models to combined survey data. 
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In Section 5 I expand on this by showing how a difficult to compute MIP-based solution for one particular 

problem can be approximated by a much easier to compute MIP-based solution to a closely related problem. 

In order to apply the MIP, we work with the population distribution of all the data available to the survey 

analyst. This can be illustrated by considering the simple scenario where there is a single survey sample 

with non-response, linked to an auxiliary variables dataset, with a single analysis variable .Y  We use upper 

case to denote population quantities and lower case to denote sample quantities. Let respy  denote the vector 

of survey respondents’ values of Y  and let sr  denote the vector of response indicators for the sampled 

population units. We use US  to denote the vector of sample inclusion indicators for the surveyed population. 

The matrix of population values of the auxiliary variables, which can include cluster or PSU indicators, is 

denoted .UZ  Let   denote a vector of known population summary statistics. The available data are 

 resp , , , , .s s U U D y r S Z  In addition to resp ,y  the quantities , , ,s U U r S Z  potentially also contain 

information about .  In contrast, the ideal “rectangular” data are  , , , ,U U U U U D Y R S Z  with a density 

( ; )Uf D  that is straightforward to write down, and   is then either a component of   or defined by a 

1 1  transformation of the components of .  In either case if we can compute the MLE for ,  we can 

write down the MLE for .  Note that the likelihood generated by UD  is much easier to write down if UR  

or US  (or both) are ancillary for   given UZ  and .  That is, the distribution of UY  and that of UR  and 

US  are mutually independent given UZ  and .  

There are two basic quantities used in likelihood inference. They are the score function, i.e., the 

derivative with respect to   of the logarithm of the likelihood function, and the information function, i.e., 

the negative of the derivative of the score function with respect to .  The MLE is typically defined as a 

zero of the score function, while an estimate of the variance of MLE is the inverse of the information 

function evaluated at the MLE. 

Let x f  denote a vector of first order partial derivatives with respect to x  and let xx f  denote the matrix 

of second order partial derivatives with respect to .x  Then the MIP corresponds to two identities, proofs of 

which are set out in Lemma 2.1 of Chambers et al. (2012). 
 

The score identity: Provided the ideal data UD  include the available data ,sD  the available data score scs  

for the parameter   of the distribution of UD  is the conditional expectation, given these data, of the ideal 

data score scU  for ,  i.e., 

  sc log ( ; ) (sc ).s U s s UE f E   D D   

The information identity: The available data information info s  for   is the negative of the matrix of partial 

derivatives for the components of the available data score sc .s  This matrix can be written as the conditional 

expectation, given the available data, of the ideal data information infoU  for   minus the corresponding 

conditional variance of the ideal data score sc ,U  i.e., 

    info log ( ; ) Var log ( ; ) (info ) Var (sc ).s U s U s s U s UE f f E        D D D D   
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Note that the conditional expectations and variance in the score and information identities above are with 

respect to the distribution of the ideal data .UD  Also, in many applications scs  (and hence info )s  turns out 

to be a function of  obs
resp , , ,s s U D y r S  rather than of  resp , , , , .s s U U D y r S Z  In such cases it is not 

difficult to see that the score and information identities still hold, but with sD  replaced by obs.sD  See Result 2 

in Chambers et al. (1998). 

The MIP is sometimes taken as referring to the information identity only, since the conditional variance 

term in this identity corresponds to the loss of information about   due to observing the available data sD  

and not the ideal data .UD  In this paper I take the MIP as being defined by both identities. However, it is 

the score identity that I find the most useful when faced with a messy data situation since it leads to 

parameter estimates for a population level model. The information identity can be used to obtain uncertainty 

estimates by inverting the observed information, but these estimates can be obtained in a variety of other 

ways including direct differentiation of scs  as well as via bootstrap simulation of the fitted population level 

model. 

In effect, it is the score identity that specifies the MLE based on the available data, while it is the 

information identity that shows us how much information about the parameter of interest we actually have 

given the available data. This is not dissimilar to the way scU  is used to define a pseudo-likelihood estimator 

while the “observed information” about this estimator in the available data is given by the inverse of its 

estimated design variance. 

The use of the score identity in the MIP to obtain the MLEs given the available data is an example of the 

application of what may be termed the “Prediction Principle”, which is based on the fact that the minimum 

mean squared error predictor of the value of an unobserved random variable (say )Y  given the value of 

another random variable (say )X  is ( ).E Y X  This principle underpins the model-based approach to 

sampling inference, starting with the seminal contributions of Royall (1970) and Royall (1976). In the score 

identity Y  corresponds to scU  and X  corresponds to .sD  So the best predictor of the solution to sc 0U   

is the solution to  sc sc 0.s U sE D  Furthermore, since the ideal data score scU  is a function of the 

sufficient statistics for   defined by ,UD  the score identity also tells us that when scU  is a linear function 

of these sufficient statistics the best approximation to scU  given the available data sD  is obtained by 

replacing these population sufficient statistics in scU  by their expected values given .sD  

 
3. Combining survey data and marginal population information – 

Comparing the MIP with calibrated weighting 
 
3.1 Calibration weighting in surveys 
 

Likelihood analysis based on the MIP is a general and powerful way of incorporating external 

information into inference. However, its usefulness depends on our ability to construct models that capture 

the dependence between the survey variables and this external information at some “ideal” level and that 
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also allow straightforward conditioning on the available data. Calibrated weighting is a widely used method 

of survey estimation that also allows external information to be used, typically in the form of calibration 

constraints that ensure the weighted survey data are capable of exactly reproducing known finite population 

quantities. In most cases, the population quantities of interest are totals associated with auxiliary variables 

and so we consider constraints of the form s s U U
 w Z 1 Z  where UZ  is the matrix of the N  population 

values of a set of survey variables with known population totals, sZ  is the corresponding matrix of the n  

sample values, sw  is a vector of sample weights and U1  is a unitary N -vector. 

Deville and Särndal (1992) introduced the idea of using calibrated sample weights iw  that are closest to 

the expansion weights 
1

i


 where i  denotes the sample inclusion probability of population unit .i  There 

are a variety of metrics for measuring closeness that can be used for this purpose, but the most popular is 

the chi square metric 
1 1( ) ( )s s s sQ     w π w π  where 

1
s
π  is the vector of expansion weights and   is a 

positive definite matrix chosen by the analyst to reflect heteroskedasticity in the population values of the 

survey variables. Minimising Q  subject to calibration leads to weights 

 
cal 1 1 1 1 1( ) ( ).s s s s s U U s s

         w π Z Z Z Z 1 Z π   

An alternative take on calibration is to view it as ensuring model-unbiased linear prediction of population 

totals (Valliant, Dorfman and Royall, 2000; Chambers and Clark, 2012). This is because weighting implies 

the use of a linear predictor s s
w y  for the population total ,U U

1 Y  and if U U U Y Z e  with ( )U UE e Z  

,U0  then under non-informative sampling given UZ  any set of weights that are calibrated on UZ  will also 

define an unbiased predictor of U U
1 Y  under this linear model. So calibration is a good thing – provided the 

linear model assumption is valid. 

 
3.2 Application to data from two sources 
 

Consider the case where the population U  is such that the values iy  and ix  of two scalar variables, Y  

and X  are stored on separate registers, each of size .N  A simple random sample s  of n  units from one 

register is linked to the other via a unique common identifier, thus defining n  matched ( , )i iy x  pairs. Our 

aim is to use these linked sample data, plus auxiliary information corresponding to the population averages 

of Y  and X  from each register, to estimate the parameters ,   and 2  that characterise the population 

linear regression model i i iy x e      where the errors ie  are distributed as independent and identically 

distributed (iid) Gaussian random variables with zero mean and unit variance. 

The classical approach to fitting a population regression model like the one above given sample data is 

to use a pseudo-likelihood approach. See Kish and Frankel (1974), Binder (1983), Godambe and Thompson 

(1986) and Pfeffermann (1993). This is usually motivated as follows. Let UY  and UX  denote the vectors of 

population values of Y  and ,X  with ( ; )U Uf Y X  denoting the conditional probability density of these 

population values. Then, if the pair ( , )U UY X  were to be observed,   would be estimated as a solution to 
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sc log ( ; ) 0.U U Uf   Y X  But for any specified value of , scU  defines a finite population parameter 

(the “census score”) that we can estimate using the sample data and the sample weights, say by sc .w  The 

maximum pseudo-likelihood estimator (MPLE) of   is then the solution to the estimating equation sc 0.w   

Note that this approach does not specify how the sample weights should be constructed, only that sc 0w   

defines a “design-consistent” estimator of scU  for any permissible value of .  In particular, calibration 

weights can be used. For the case described above it is clear that there are three calibration constraints, 

defined by the population size ,N  the population mean of X  and the population mean of .Y  Substituting 

 U U U UZ 1 Y X  and setting   equal to the identity matrix of order ,N  calibration weights that satisfy 

these three constraints are given by 

 

1

cal

0

[ ] .
s s s s s s

s s s s s s s s s s s U s

s s s s s s U s

N
w N y y

n
x x


     

        
        

1 1 y 1 x 1

1 1 y x 1 y y y x y

1 x y x x x

  

Put cal 1 cal
ws i is

x N w x   and cal 1 cal .ws i is
y N w y   The corresponding calibrated MPLEs are then 

 

 
1

cal cal cal cal
CALmple

cal cal
CALmple CALmple

2 1 cal 2
CALmple CALmple CALmple

ˆ ( ) ( )

ˆˆ

ˆˆˆ ( ) .

i i i ws i i i wss s

ws ws

i i is

w x x x w x y y

y x

N w y x



 

  





  

 

  

 



  

The alternative to this hybrid calibration-MPLE approach is to use the MIP. To start, note that the face 

value MLEs (i.e., MLEs based on an assumption of simple random sampling and no auxiliary information) 

for ,   and 2  are 

 

FVmle 2

FVmle FVmle

2 1 2
FVmle FVmle FVmle

( ) ( )
ˆ

( )

ˆˆ

ˆˆˆ ( ) .

i s i ss

i ss

s s

i is

x x y y

x x

y x

n y x



 

  

 




 

  






  

However, there is extra information. In particular, we know the population means Uy  and Ux  of Y  and 

.X  So the face value MLEs are no longer full information MLEs. The latter can be computed using the 

MIP. Given the Gaussian assumption, the components of the ideal (i.e., population) data score function are 
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2 2
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Let a subscript of U s  denote the non-sampled part of the population. The corresponding components 

of the available data score function are then obtained by replacing the components of the ideal data score 

function by their conditional expectations given the sample values of Y  and X  and the values U sy   and 

U sx   of the non-sample means of Y  and .X  In order to do this, note that for non-sampled unit i  our 

Gaussian assumption for the error term in the population regression model, plus the fact of random sampling, 

allows us to write 

 
2 1 2

1 2 1 2

( )
,

( ) ( )

i i

U s

U s U s

y x N n
N

y x N n N n

   

   



  
 

        
      

         
X ∼   

where U sX  denotes the non-sampled values of .X  It is straightforward to see that the conditional 

distribution of Y  given ,X
U sy   and U sx   is then 

 2 1
, , ( ), 1i i U s U s U s i U sy x x y N y x x

N n
    

  
    

  
∼   

and so the MIP-based available data score function has components 

 

  

  

  

1 2

2 2

22
3 2 4

1
sc ( ) ( )

1
sc ( ) ( )

( 1) 1
sc ( ) ( ) .

2 2

s i i U s U ss

s i i i U s U s U ss

s i i U s U ss

y x N n y x

x y x N n x y x

n
y x N n y x

   


   


   
 

 

  

 

      

      


        







  

The MIP-based MLEs are obtained by setting these score components to zero and solving for ,   and 
2.  The solutions are 

 MIPmle 2

( ) ( ) ( ) ( ) ( )ˆ
( ) ( ) ( ) ( )

i s i s s s U U s U s Us

i s s s U U s U s Us

x x y y nx y y N n x y y

x x nx x x N n x x x


 

 

      


     




  

 MIPmle MIPmle
ˆˆ

U Uy x     

and 

    
2 2

2
MIPmle MIPmle MIPmle MIPmle MIPmle

1 ˆ ˆˆ ˆˆ ( ) .
1

i i U s U ss
y x N n y x

n
           


   

These are just the weighted least squares (WLS) estimators of these parameters based on an extended 

sample consisting of the data values in s  (each with weight equal to one) plus an additional data value (with 

weight equal to )N n  defined by the known non-sample means U sy   and .U sx   Standard WLS variance 

estimation methods can therefore be applied. Furthermore, these MIP-based MLEs depend only on the 

sample values of Y  and X  and on the population means of Y  and X  and not also on the individual values 

in the population vector UX  so they are also the available data MLEs when all one has is auxiliary summary 

information corresponding to the population means of Y  and .X  



Survey Methodology, December 2023 231 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Related results are reported in Handcock, Rendall and Cheadle (2005) who tackle the problem by 

maximising the face value likelihood generated by the sample values of Y  and X  subject to the constraint 

ˆˆ .U Uy x    This leads to the estimators 

 con 2 2

( ) ( ) ( ) ( )
ˆ

( ) ( )

i s i s s U s Us

i r s Us

x x y y n x x y y

x x n x x


    


  




  

 con con
ˆˆ

U Uy x     

and 

  
2

2 1
con con con

ˆˆˆ .i is
n y x       

In general, the differences between these constraint-based estimators and the MIP-based MLEs defined 

earlier will be small. 

 

3.3 Imprecise benchmarks 
 

So far, the population benchmarks Uy  and Ux  have been assumed to be precise. However, this is not 

always true. For example, they could be estimated from survey data themselves, albeit from surveys with 

much larger samples, and so may in fact have errors. This can arise, for example, if census coverage is 

incomplete, and so census outputs are adjusted for coverage error. It can also be the case that we have access 

to estimates derived from another larger survey rather than census values for these benchmarks. As long as 

the error or imprecision of such estimation is small, our MIP-based MLEs above are still valid. 

Asymptotically, if the benchmark estimates ( , )U Uy x   for ( , )U Uy x  satisfy 1 2( )U U py y o n   and Ux   
1 2( ),U px o n  and if they are used in place of ( , ),U Uy x  then it is easily seen that the resulting estimators 

MIPmle MIPmle( , )   are asymptotically equivalent to MIPmle MIPmle
ˆˆ( , )   apart from a negligible error of 1 2( ).po n  

However, this conclusion is not valid for 
2
MIPmle  unless a generally higher order accuracy of 1 2( )po n N  

for the benchmark estimates is assumed. 

Intuitively, one expects the extra information from knowing ( , )U Uy x  to contribute mainly to estimation 

of the intercept term   in the population regression model. To see that this is the case we write down the 

variances of MIPmlê  and MIPmle
ˆ .  This can be done by differentiating the available data score function 

components, changing signs and evaluating at these MLEs to get the observed information matrix for the 

regression model parameters. This matrix can then be inverted to get the (asymptotic) variances and 

covariances of these MLEs. Alternatively, exploiting their equivalence to a WLS fit, we can obtain the 

variances of MIPmlê  and MIPmlê  directly. These are 
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Here (2)
sx  is the mean of the squares of the sample X -values. It can be shown that MIPmle

ˆVar ( )   

FVmle
ˆVar ( ),  with equality only if .s U sx x   Similarly MIPmle FVmle

ˆ ˆVar ( ) Var ( ),   with equality only if 
(2) ,s s U sx x x   which is extremely unlikely in practice. This confirms our intuition above. 

 
3.4 Comparing the efficiency of MIP with that of calibration for data 

integration 
 

How much more efficient is using a MIP-based approach to data integration compared with a calibration-

based approach? Some insight can be obtained from the results of a small model-based simulation study set 

out in Tables 3.1 and 3.2. Here population values were generated as 5i i iy x e    with iz
ix e  and iz  and 

ie  generated independently of one another as standard Gaussian. A total of 1,000 simulations were carried 

out for each scenario, corresponding to choice of ,N n  and the degree of imprecision in the benchmarks. 

Sampling in Table 3.1 was carried out using simple random sampling without replacement (SRSWOR) and 

three levels of imprecision in the population benchmarks were examined – no error in the benchmarks, 

benchmarks subject to census-level error (benchmark equal to true value plus a random error with standard 

deviation equal to the actual marginal standard deviation multiplied by 1 2 )N   and benchmarks subject to 

larger survey error (benchmark equal to true value plus a random error with standard deviation equal to the 

actual marginal standard deviation multiplied by 
1 2( 5) ).N 

 

The values shown in Table 3.1 are relative efficiencies, defined as the ratio of the 5% trimmed RMSE 

of a reference estimator to the corresponding 5% trimmed RMSE of the estimator of interest, expressed as 

a percentage. Values over 100 therefore indicate superior relative efficiency for the alternative estimator. A 

trimmed RMSE was used to measure efficiency in order to avoid distortions caused by a small number of 

outlying error values generated in the simulations. The reference estimator in Table 3.1 is the face value 

MLE under SRSWOR. It is clear that the MIP-based MLEs perform well. In contrast, the MPLEs based on 

calibrated weights are consistently less efficient for all three parameters of interest, even when the 

benchmarks contain errors. It is only when the benchmark errors are relatively large that the efficiency of 

the MIP-based MLEs falls below that of the face value MLEs. 

Table 3.2 shows the relative performances of the same estimators as in Table 3.1, but this time where an 

informative sampling method is used. In particular, the sample data here are selected with inclusion 

probabilities that are approximately proportional to their Y -values, and the reference estimation method is 

MPLE, with weights defined by inverse sample inclusion probabilities under probability proportional to Y  

(PPY) sampling. In contrast the calibrated MPLE is based on calibrated versions of these sample weights 

while the MIP-based MLE is the same as in Table 3.1, i.e., it based on an assumption of SRSWOR. This 

allows one to investigate the degree to which incorporation of auxiliary population information helps protect 

against bias induced by misspecification of the sampling method. The gains from using the MIP-based MLE, 

even under a misspecified sampling method, are very clear. In contrast, the MPLE based on calibration 

weights is much less efficient, even though it is based on essentially unbiased sampling weights. 
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Table 3.1  
Linear population model under SRSWOR and population benchmarks of varying quality. 
 

 
N  = 500 

n  = 20 
N  = 1,000 

n  = 50 
N  = 5,000 

n  = 200 
 Benchmarks Known Precisely 
   CALmple 103 127 143 
  MIPmle 134 145 150 
   CALmple 81 90 96 
  MIPmle 106 102 101 

2   CALmple 84 94 99 
  MIPmle 102 100 100 

 Benchmarks Subject to Census-level Error 
   CALmple 84 101 112 
  MIPmle 116 111 116 
   CALmple 73 89 96 
  MIPmle 104 100 100 

2   CALmple 78 88 97 
  MIPmle 103 101 100 

 Benchmarks Subject to Larger Survey Error 
   CALmple 64 71 75 
  MIPmle 86 80 78 
   CALmple 71 84 93 
  MIPmle 100 95 100 

2   CALmple 63 77 94 
  MIPmle 99 94 99 
Notes: Values shown are per cent relative efficiencies with respect to 5% trimmed RMSE of the face value MLE under SRSWOR. CALmple 

denotes the MPLE based on calibrated weights, while MIPmle denotes the MIP-based MLE. 
 MIP = Missing information principle; MLE = Maximum likelihood estimator; MPLE = Maximum pseudo-likelihood estimator; 

RMSE = Root mean square error; SRSWOR = Simple random sampling without replacement. 

 
Table 3.2  
Linear population model under PPY sampling and population benchmarks of varying quality. 
 

 
N  = 500 

n  = 20 
N  = 1,000 

n  = 50 
N  = 5,000 

n  = 200 
 Benchmarks Known Precisely 
   CALmple 118 143 159 
  MIPmle 201 210 222 
   CALmple 63 73 81 
  MIPmle 109 110 117 

2   CALmple 78 89 91 
  MIPmle 106 106 111 
 Benchmarks Subject to Census-level Error 
   CALmple 98 120 135 
  MIPmle 136 139 152 
   CALmple 65 70 77 
  MIPmle 107 112 121 

2   CALmple 77 82 90 
  MIPmle 108 107 109 

 Benchmarks Subject to Larger Survey Error 
   CALmple 69 74 89 
  MIPmle 84 76 82 
   CALmple 54 57 66 
  MIPmle 103 107 117 

2   CALmple 62 71 87 
  MIPmle 99 101 102 
Notes: Values shown are per cent relative efficiencies with respect to 5% trimmed RMSE of expansion-weighted MPLE under PPY sampling. 

CALmple denotes the MPLE based on calibrated weights, while MIPmle denotes the MIP-based MLE. 
 MIP = Missing information principle; MLE = Maximum likelihood estimator; MPLE = Maximum pseudo-likelihood estimator; PPY = 

probability proportional to Y; RMSE = Root mean square error. 
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The results set out in Tables 3.1 and 3.2 provide some evidence for claiming that parameter estimation 

based on application of the MIP is more efficient, and sometimes considerably more efficient, than 

parameter estimation based on maximum pseudo-likelihood, particularly when this approach is based on 

calibrated weights. As one might expect, the MIP-based estimate of   benefits most from the auxiliary 

information. However there are non-negligible gains for MIP-based estimates of   and 2  as well. 

Why is the use of calibration weights so inefficient here? One answer follows from taking a model-based 

perspective on calibration. Recollect that calibrated weighting implicitly assumes a linear model linking Y  

and the variables defining the calibration constraints. But one of those constraints involves ,Y  implying an 

over-parameterised model. It is known (Bardsley and Chambers, 1984) that such models lead to highly 

variable weights and inefficient inference. 

 
3.5 Another example of the use of the MIP for analysis based on integrated 

data sources 
 

Integration of information from external sources when analysing survey data can arise in many different 

ways, and using the MIP as a general-purpose tool for these situations can be beneficial. For example, 

Merkouris (2004) describes a situation where independent generalized regression (GREG) estimators of the 

population total of a variable Y  based on data from multiple surveys need to be efficiently combined. The 

solution that is put forward in this paper is to form an efficiently weighted average of these different GREG 

estimators, where the efficient weights are based on a common auxiliary variable, say ,C  measured in the 

different surveys. But a MIP-based approach is also possible. To illustrate, suppose that there are just two 

surveys, say A  and B,  with survey A  using calibrated weights based on constraints defined by auxiliary 

variables X  and C  and survey B  using calibrated weights based on constraints defined by auxiliary 

variables Z  and .C  From a model-based perspective, the ideal data set would be where all three auxiliaries 

are measured in both surveys, in which case the data from both surveys could be stacked and values of Y  

fitted to a linear model with three covariates ( ,X C  and ).Z  Parameters of this model can therefore be 

estimated using the MIP, with unknown values of Z  in survey A  replaced by their conditional expectations 

and unknown values of X  in survey B  replaced by their conditional expectations. The model-based 

regression estimator of the population total of Y  using the combined data from both surveys is then just N  

times the fitted value of the three parameter model at the population means of ,X C  and .Z  This is very 

similar to data fusion (Raessler, 2004). 

 
4. Using the MIP under informative sampling 
 
4.1 What do we mean by saying that a method of sampling is informative? 
 

In Section 3 above I assumed that the method of sampling was simple random, so that US  and UY  are 

conditionally independent given .UZ  This allowed the sample label set s  to be treated as fixed since US  is 
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then ancillary for the parameters of the ideal data model. If US  is not ancillary, application of the MIP 

requires one to model the joint distribution of the ideal data and the outcome of the sampling process. This 

is specific to the method used to select the sample, and so it is impossible to provide general results. Instead, 

in this section I provide some insight into the use of the MIP under informative sampling by showing how 

two special cases of informative sampling impact on inference in the case of a very simple single parameter 

population distribution. These simple examples illustrate how using the MIP to integrate the information in 

US  in these situations can substantially improve inference. Before doing this, however, it is useful to be a 

little clearer about what we mean when we say a method of sampling is informative. 

Broadly speaking, sampling is informative if distributions of population and sample values of Y  are 

different (Pfeffermann, 1993). However, after conditioning on a population auxiliary, the two distributions 

can be the same. Sampling is non-informative (informative) for inference about the distribution of Y  given 

some information if the associated conditional probability of observing a particular value of Y  given a 

random population draw is equal (not equal) to the same conditional probability given the value of a random 

sample draw. That is, informative/non-informative status depends on what is being conditioned on. In 

particular, suppose that we have complete response, so sr  contains no information and our sample values 

of Y  are .sy  This allows us to concentrate on the impact of conditioning on US  and .UZ  In the same way 

that the concepts of Missing Completely At Random, Missing At Random and Non-Ignorable Missingness 

are defined in the missing data literature (Rubin, 1976; Little and Rubin, 1987; Little, 2003), we can define 
 

Completely Non-Informative Sampling: The distribution of UY  is independent of US  and ,UZ  so the 

marginal distribution of sy  contains all relevant information for .  
 

Non-Informative Sampling Given :UZ  The distribution of U UY Z  is independent of that of U US Z  (i.e., 

US  is ancillary for   given ),UZ  so we have the same parameters for distributions of s Uy Z  and U UY Z  

and the parameter of interest   depends on the parameters of joint distribution of sy  and UZ  (i.e., the 

parameters of distribution of s Uy Z  and the parameters of the marginal distribution of ).UZ  Here we can 

ignore the sampling process in likelihood-based inference but cannot throw away UZ  information. 
 

Informative Sampling: Here ,UY US  and UZ  are jointly dependent and the parameter of interest   can 

depend on all the parameters of the joint distribution of these quantities. An immediate consequence is that 

the conditional distributions of UY  and sy  given the auxiliary information UZ  can be very different, and 

so inference about the parameters of U UY Z  cannot just focus on the likelihood generated by the conditional 

distribution of .s Uy Z  
 

It should be clear from the above that informativeness of the sampling method depends on the auxiliary 

information available to the survey data analyst, and how much this information “explains” the outcome of 

the sampling process. For example, cluster and multi-stage sampling can be modelled when the auxiliary 

information includes indicators for the population groupings corresponding to sampling units at the different 

stages of sampling. A sampling method that is informative in one situation may not be informative in 

another. For example, even if the sampling mechanism is entirely determined by the auxiliary information, 
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this mechanism can be informative if we do not (or cannot) include it in our survey data, as often happens 

in secondary data analysis. Furthermore, even if UZ  is included in the available data, the sampling method 

can still be informative if it also depends on variables not included in UZ  that are correlated with those in 

.UD  In this case, including the outcome US  of the sampling mechanism as part of UD  requires us to specify 

the joint density of UY  and US  given .UZ  From this we can determine the distribution of sy  and hence 

write down the likelihood for .  The traditional approach to likelihood inference under informative 

sampling achieves this by directly specifying the distribution of SY  given ,UZ  where S  is a random subset 

of U  with distribution determined by the outcome .US  An alternative is to use the MIP to specify the score 

and information functions directly. 

 
4.2 Applying the MIP to size-biased and cut-off sampling 
 

In order to illustrate the use of the MIP in this context, first note that a commonly used model for 

informative sampling is where sample inclusion depends directly on .UY  Two ways this can happen are 

when inclusion probabilities are functions of Y  and where there is cut-off sampling on .Y  The key ideas 

for dealing with these two situations are straightforwardly developed by assuming that the N  population 

values of Y  are independent and identically distributed draws from a single parameter exponential 

distribution with marginal density ( ; ) exp( ),f y y     allowing one to obtain explicit results for both 

cases. In what follows I therefore make this assumption, with the target of inference then being 
1( ) .E Y     

First, suppose that the sample of n  units is selected using size-biased sampling with known inclusion 

probabilities, 

 
( )

( )
i i

i

U U

n y z

N y z










  

but where   is unknown. Here iz  is a auxiliary “size” value associated with population unit i  and there is 

complete response. It is easy to see that ( ) ( ) ,i U i U i iN y N z nz ny      and so provided 2,n   values of 

Uy  and   are deducible from the sample values of Y  and their known inclusion probabilities. 

Consequently the available data are the sample Y  values  ;iy i s  and .Uy  Applying the MIP, it 

immediately follows that the available data score for   is 

    1 1 1sc ( ) { ; }, ( ) ( ).s i i U s U UU
E y y i s y N E y N y             

The MIP-based MLE for   is then MIPmle
ˆ ,Uy   i.e., the ideal data MLE. Similarly, the available data 

information for   is the population information for this parameter, 2 ,N   and, since 
1,    the estimated 

variance of MIPmlê  is 
1 2 .UN y

 

Next consider what happens under cut-off sampling. Again assume complete response and population 

values distributed as one parameter exponential, with mean   the target of inference. But now suppose that 
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the vector of sample inclusion indicators is random, corresponding to all population units with ,iy K  for 

known .K  Then 

     1 1 1 1( , ) ( ) ( ) ( ) (1 )K K
U s s sE y K N ny N n E Y Y K N ny N n Ke e              y   

and so the available data score for   is 

 1 1sc ( ) ( ) ( ) (1 ) .K K
s sn y N n Ke e            

There is no analytic solution to setting this score function to zero, but it is easy to obtain numerically. If 

we let MIPmlê  denote this solution then the MIP-based MLE of   is 

 MIPmle MIPmle
ˆ ˆ1 1

MIPmle
ˆ ( ) ( ) (1 ) .K K

sy N n n Ke e          

Here it is easiest to obtain the available data information for   by direct differentiation of the available 

data score for this parameter, i.e., as 
2 2 2info ( ) (1 ) ,K K

s n N n K e e          and so a large sample 

estimate of the variance of MIPmlê  is  
MIPmle

1
4

ˆMIPmle
ˆ ˆ( ) info .sV

 
 




  

 

4.3 Maximum pseudo-likelihood under size-biased and cut-off sampling 
 

Alternatively, we could adopt a maximum pseudo-likelihood approach for both sampling methods 

above. For the case of size-biased sampling the maximum pseudo-likelihood estimator (MPLE) of ,  

obtained as the zero of the sample weighted estimate of the ideal data score, is the inverse of the Hájek 

estimator for the population mean of .Y  It immediately follows that the MPLE MPLÊ  of   is this Hájek 

estimator. Clearly MPLÊ  is suboptimal ‒ we know the inclusion probabilities ,i  so we know ,Uy  which 

is the ideal data MLE. However, MPLÊ  is approximately unbiased in large populations since 

 

1 1

MPLE 1 1

( ) ( )
ˆ( ) ( ).

( ) ( )

i i i iU U U U
U U

i i i U UU

I y y z n y z y
E E E E E y

I y z n y z

 


 

 

 

     
            




Y   

What about the case of cut-off sampling? Since pseudo-likelihood depends essentially on design 

consistency for its validity, and since this is turn requires that all population units have a non-zero chance 

of sample inclusion, it is clear that there is no MPLE for   under cut-off sampling. 

 

4.4 Maximum sample likelihood under size-biased and cut-off sampling 
 

The other well-known approach to inference under informative sampling is to maximize the sample 

likelihood. This is a model-based methodology (Krieger and Pfeffermann, 1992; Pfeffermann, Krieger and 

Rinott, 1998; Pfeffermann and Sverchkov, 2003) motivated by inferential methods for size-biased sampling 

that approximate the probability density sf  of the sample values making up sy  as a function of the 

probability density Uf  of the population values making up UY  and the sampling weights. In particular, 

Bayes Theorem is used to obtain the probability density of a randomly chosen sample value iy  as 

 
Pr ( ; ) ( ; )

( ; , ) ( )
Pr ( ; , )

i U i
s i U i

i s y f y
f y f y i s

i s
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where   is a nuisance parameter that characterizes the sample selection method. The estimator for the 

parameter   of interest is then defined by maximising the “sample likelihood” for ,  

 
Pr ( ; ) ( ; )

SL( , ; )
Pr ( ; , )

i U i
s

i s

i s y f y

i s

 
 

 





y   

as a function of .  Note that under this approach one needs to independently estimate the nuisance 

parameter .  

Applying the sample likelihood approach to estimation of the mean of an exponential distribution under 

the size-biased sampling scheme above, we first note the large sample approximation 

   1

1

( )
log SL( ; ) log exp( ) log( ) log( )

( )
i i

s i U s
i s U

y z
y n n z ny C

z


      

 





 
       

 
y   

where C  does not depend on .  Differentiating with respect to   leads to the sample likelihood score 

  1 1
SLsc 1 (1 ) .U sn z ny         

When 0   we have an explicit solution to SLsc 0  given by 2 ,sy   implying a maximum sample 

likelihood estimator (MSLE) for   of the form MSLE
ˆ 2.sy   No explicit solution exists for SLsc 0  when 

0,   so numerical methods need to be used. Also, when 0,   it is straightforward to show that in large 

samples ( ) 2 ,sE y   so MSLÊ  is approximately unbiased. 

A simple MSLE for   also exists under cut-off sampling. Here Pr ( ) Pr ( ) exp ( ),ii s y K K      so, 

up to an additive constant, the log of the sample likelihood for   under cut-off sampling is log ( )n    

( ).sn y K   It is easy to see that then the MSLE of   is MSLE
ˆ .sy K    This estimator is unbiased. 

 
4.5 Comparison of MIPmle, MPLE and MSLE 
 

Once again, small scale simulation results help put some perspective on how much efficiency is lost by 

using pseudo-likelihood or sample likelihood instead of full information likelihood based on application of 

the MIP with data from a single parameter exponential population. Tables 4.1 and 4.2 show bias and RMSE 

for size-biased sampling with 0   while Tables 4.3 and 4.4 show similar results for cut-off sampling. In 

all cases these results are based on 1,000 independent simulations. They show that a MIP-based MLE 

(MIPmle) is consistently preferable to estimation using maximum sample likelihood (MSLE) or maximum 

pseudo-likelihood (MPLE). Tables 4.1 and 4.2 also show that, as expected, maximum sample likelihood 

outperforms maximum pseudo-likelihood. These results are in line with what has been observed in other 

studies where using maximum pseudo-likelihood (by far the most prevalent method of parametric estimation 

with survey data) is inefficient (Dorfman, Chambers and Wang, 2002). Its only advantage would appear to 

be its simplicity and the widespread availability of software. 
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Table 4.1  
Size-biased sampling from a single parameter exponential population of size N  5,000 with 1   and with 
n  100. 

 

  Bias RMSE 
MIPmle MPLE MSLE MIPmle MPLE MSLE 

0.05 -0.0006 0.0040 -0.0018 0.0145 0.1424 0.0950 
0.25 -0.0002 0.0070 0.0009 0.0138 0.1147 0.0827 
0.50 0.0004 0.0094 0.0017 0.0139 0.1186 0.0813 
0.75 0.0004 0.0028 -0.0084 0.0140 0.1091 0.0763 
0.95 -0.0002 0.0074 -0.0047 0.0145 0.1134 0.0713 
Notes: Values of the auxiliary variable Z  were generated as a single parameter exponential with 1   and with Cor( , )Y Y Z    where 

2 1,     so increasing (decreasing) correlation implied decreasing (increasing) .  
 MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; MPLE = Maximum pseudo-likelihood estimator; MSLE = 

Maximum sample likelihood estimator; RMSE = Root mean square error. 

 
 

Table 4.2  
Same scenario as in Table 4.1 except that   0.5 and the impact of increasing n  is shown. 
 

n  Bias RMSE 
MIPmle MPLE MSLE MIPmle MPLE MSLE 

10 -0.0007 0.0611 -0.0139 0.0138 0.3457 0.2539 
30 0.0002 0.0255 -0.0061 0.0147 0.1986 0.1448 
100 0.0004 0.0094 0.0017 0.0139 0.1186 0.0813 
300 -0.0005 -0.0090 -0.0090 0.0142 0.0650 0.0460 
900 -0.0001 -0.0344 -0.0267 0.0144 0.0511 0.0371 
Notes: MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; MPLE = Maximum pseudo-likelihood estimator; MSLE = 

Maximum sample likelihood estimator; RMSE = Root mean square error. 
 

 
Table 4.3  
Cut-off sampling from a single parameter exponential distribution of size N  5,000 with 1   and with cut-
off 2.K   
 

  ( )E n  Bias RMSE 
MIPmle MSLE MIPmle MSLE 

0.4343 50 0.0108 -0.0016 0.0400 0.0646 
0.5112 100 0.0016 -0.0031 0.0197 0.0515 
0.7109 300 -0.0003 0.0020 0.0133 0.0393 
1.0172 700 -0.0008 0.0002 0.0162 0.0387 
1.6612 1,500 -0.0002 0.0010 0.0240 0.0424 
Notes: The impact of increasing expected sample size is shown. 
 MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; MSLE = Maximum sample likelihood estimator; RMSE = Root 

mean square error. 
 

 
Table 4.4  
Same scenario as in Table 4.3 except that the cut-off K  changes, with   modified to ensure expected sample 
sizes are as shown. 
 

K  ( )E n  Bias RMSE 
MIPmle MSLE MIPmle MSLE 

5 50 0.0254 -0.0020 0.0925 0.1522 
4 100 0.0038 -0.0025 0.0429 0.1045 
3 300 -0.0003 -0.0041 0.0202 0.0607 
2 700 0.0002 -0.0005 0.0160 0.0381 
1 1,500 0.0002 -0.0004 0.0122 0.0210 

Notes: The average value of   is 1.0048. 

 MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; MSLE = Maximum sample likelihood estimator; RMSE = Root 
mean square error. 
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4.6 Other examples of the use of the MIP under informative sampling 
 

There are other situations where sampling is informative because the sample design itself is informative. 

For example, size stratification (i.e., stratification based on a size variable Z  correlated with )Y  is 

informative when the size stratum boundaries are known, but the analyst does not have access to non-

sampled population values of .Z  This would often be the case in secondary analysis. For example, Dorfman, 

Chambers and Wang (2002) describe how the MIP can be used to approximate maximum likelihood 

estimates when Z  and Y  coincide. In a small-scale simulation study they show that using a MIP-based 

approach in this case leads to significant gains in efficiency compared with a maximum pseudo-likelihood 

approach using stratification weights. And even if Z  and Y  differ, it will usually be the case that they are 

highly correlated, in which case knowing that the non-sampled units within a stratum have values of Z  that 

lie between known bounds provides the analyst with information that can be used to modify inference about 

the stratum mean of Y  and hence its overall population mean. 

It has already been noted that using a maximum pseudo-likelihood approach can be inefficient. However, 

a powerful argument for its use in the past has been that it is design consistent, and so robust to 

misspecification of the population distribution of .Y  But this is usually relative to the use of a face value 

maximum likelihood approach, which ignores the information in the sample design and implicitly assumes 

simple random sampling. To illustrate, consider the following scenario, based on Examples 2 and 3 in 

Binder and Roberts (2003). Suppose that our assumed or working model for the population values of Y  is 

that they are independently and identically distributed as Gaussian with mean   and with variance 2.  

The sample design is stratified sampling based on an auxiliary size variable .Z  In particular, there are two 

strata, with stratum 1 (low values of )Z  sampled disproportionately less than stratum 2 (high values of ).Z  

In this case the face value MLE of   is the unweighted sample mean ,sy  ignoring the disproportionate 

stratification. However, the MPLE is the stratified sample mean 
1

1 1 2 2( ),st s sy N N y N y   where sjy  is the 

sample mean in stratum .j  

Now suppose that the working Gaussian model of a common mean and variance is misspecified, and in 

reality it is the conditional distribution of Y  given Z  that is Gaussian, with ( )E Y Z Z  and Var ( )Y Z   
2 .Z  We refer to this as the “true” model below. The target parameter   (the marginal mean of Y  across 

the population) under this true model is then  ( ) ( ).E E Y Z E Z    When N  is large it is reasonable to 

approximate it by  1
1 1 2 2( )UE z N N N      where 1, 2  are the means of Z  in strata 1 and 2 re-

spectively, with corresponding variances 
2
1 , 2

2 .  Consequently, under the true model, 
1

1 1( ) (sE y n n    

2 2)n  and 
1

1 1 2 2( ) ( ),stE y N N N     while 

     2 2 2 2 2 2 2
1 1 2 2Var ( )sy n n n           

and 

     2 2 1 2 2 2 2 1 2 2 2
1 1 1 2 2 2Var ( ) .sty N N n N n             
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Typically 2 2
1 2   so since 2 2n n N N  we see that that sty  is unbiased and has smaller variance than 

sy  under the true model. 

However, the face value MLE sy  makes no use of the available data on the size variable .Z  At a 

minimum this corresponds to the sample values of ,Z  which then allows the true regression model to be 

identified, and   estimated by 1ˆ .s sy z   Applying the MIP to this situation, and still using the working 

model to define the ideal data score, the MIP-based MLE is the solution of the available data score equation 

(here r  denotes the set of non-sampled population units) 

   ( ) 0.i i is r
y E y z        

In order to proceed further, one needs to be more specific about what one knows about the non-sampled 

Z  values. If this is just the stratum population sizes then a reasonable assumption is that the expected value 

and variance of Y  vary between the strata, and sty  is the MIP-based MLE. If in addition one knows the 

size stratum boundaries then the approach discussed following Table 4.4 can be adopted. However, suppose 

that one also knows the population average Uz  of .Z  It is easy to see that the MIP-based MLE is then 

MIPmle
ˆˆ .Uz   Furthermore, this MIP-based MLE is unbiased under the true model since MIPmle

ˆ( )E    
1

1 1 2 2( ),N N N     with 

  1 2 2 2 2 2 2 2
MIPmle 1 1 2 2
ˆVar ( ) ( ) .U sn E z z N N N          

Also, since 
2 2( ) 1U sE z z   under the specified stratified sample design, 

 

2 2 22 2
2 1 2 1 2

MIPmle 2 2 2
1 1

ˆVar ( ) Var ( ) 1 .j j j j

st j j j
j j j

N n N n
y n n

N n N N
    

 

    
             

     
    

The expression on right hand side above will typically be positive. This is supported by the small-scale 

simulation results shown in Table 4.5. That is, although the face value MLE is biased and inefficient under 

the true model, the MIP-based MLE that takes the information on Z  into account is unbiased under this 

model and usually more efficient than the MPLE. 

 
Table 4.5  

Simulation results for 1,000 independent repetitions of N  1,000, n  100, Z  distributed as single parameter 

exponential with mean 4, 1,    0.1 and a sample design with two strata defined by values below/above the 

population mean of .Z  
 

1n  2n  Bias RMSE 

sy  sty  MIPmlê  sy  sty  MIPmlê  

10 90 3.3461 -0.0036 -0.0033 3.3745 0.2843 0.1321 
25 75 2.3982 -0.0069 -0.0059 2.4319 0.2494 0.1280 
50 50 0.8554 0.0138 0.0062 0.9167 0.2546 0.1232 
propn allocation 0.0017 0.0021 0.0011 0.2698 0.2700 0.1333 
75 25 -0.7444 0.0044 -0.0047 0.7825 0.3220 0.1313 
90 10 -1.6860 0.0287 -0.0044 1.6957 0.4878 0.1294 
Notes: MIP = Missing information principle; MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; RMSE = Root mean square 

error. 
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5. Modelling using non-deterministically linked data 
 
5.1 Using the MIP when there is data linkage error 
 

Data linkage is the joining of two or more administrative or survey datasets using statistical matching 

(ADRN, 2012). A key feature of many linkage applications is a clear separation between the linkage process 

and subsequent analysis of the linked data. Typically, this separation is for reasons of confidentiality, in the 

sense that the linking agencies often use confidential data in their record matching. See Harron, Goldstein 

and Dibben (2016). The linked data set that eventuates is then made available to analysts but the information 

used in the linking is not. This is a secondary analysis situation. 

My focus here is on the bias in this analysis due to incorrect links, i.e., the bias that may arise if the 

linkage is not accurate enough (Lahiri and Larsen, 2005; Chambers, 2009; Kim and Chambers, 2012). Many 

of the linked data sets that are created are based on non-deterministic linking, where there is uncertainty 

about whether the data values in the linked record are actually for the same population unit. I also focus on 

the simplest scenario, where two population registers, denoted Y  and ,X  are linked, and the analyst, who 

has full access to the X -register, is provided with a sample of the records from the linked register. In 

particular, the Y -register contains values of a scalar random variable Y  and the X -register contains values 

of vector random variable .X  

Suppose that we are interested in modelling the conditional distribution of Y  given .X  This is 

straightforward given a random sample of correctly linked ( , )Y X  values. But, we do not have such a 

sample. Instead we have a sample of linked values 
*( , )Y X  where *Y Y  if the linkage is correct, but 

possibly not if it is incorrect. I say “possibly” here because depending on the scale of measurement of ,Y  

we can have *Y Y  even if the linkage is incorrect. 

To proceed further I introduce a set of sandbox assumptions that simplify further analysis. They are 

unlikely to hold in practice, but serve to define a useful “working model” for inference. These are 

 Both registers contain N  records, with no duplications, and linkage is 1 1  and complete. That 

is, all records in both registers are linkable, and no record in one register can be (eventually) 

linked to more than one record in the other register; 

 There is a categorical “blocking” variable B  recorded on both registers, measured without error 

on both, and taking Q  distinct values 1, 2, ,q Q …  such that all matching takes place within a 

block, i.e., records in both registers with the same value of ;B  

 The records on the linked data set are indexed in exactly the same way as they are indexed on the 

X -register. 

 

Suppose there are qM  records in each register with B q  (so ).qq
N M  Our second assumption 

above then constrains linkage errors to only occur within “blocks”. Let qy  and 
*
qy  denote the original and 

linked values of Y  in block .q  Under 1 1  and complete linkage it immediately follows that *
q q qy A y  

where qA  is an unknown random permutation matrix of order ,qM  i.e., entries of qA  are either zero or one, 
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with a value of one occurring just once in each row and column. Let X  denote the matrix of X  values in 

the X  register. Put ( )q qE A X T  and suppose that we have non-informative linkage given .X  That is, 

qA  is independent of qy  given X  and so 

 *( ) ( ; )q q qE E y X T y X   

where   denotes the vector of parameters of the conditional distribution of Y  given .X  These parameters 

are our primary target of inference. 

An efficient linkage process should ensure that correct linkages within a block are more likely than 

incorrect linkages. We therefore impose the restrictive but practically useful assumption that linkage errors 

are exchangeable within a block, i.e., the probability of a record being correctly linked in block q  is q  

while the probability that it is incorrectly linked is .q  We refer to this as an Exchangeable Linkage Errors 

or ELE model. Under 1 1  and complete linkage the ELE model implies ( 1) 1.q q qM     It immediately 

follows that ( ) ,q q q q q q q     T I 1 1  where qI  is the identity matrix of order qM  and q1  is the unitary 

vector of length .qM  

However, we do not have access to the full linked register. Instead we have a random sample s  of n  

records from this linked register. We extend the idea of non-informative linking by assuming that the random 

processes underpinning sample selection and linking are mutually independent and that these processes are 

both non-informative for the parameters of the distribution of Y  given .X  This ensures that linkage of a 

sample to a register is stochastically equivalent to sampling from a completely linked register. This register 

can be partitioned into Q  blocks with block q  itself partitioned into qm  sampled values followed by 

q qM m  non-sampled (and hence unobserved) linked values. Following standard practice, we use sub-

scripts of s  and r  to denote a partition into sampled and non-sampled values. Consequently sqA  is the 

matrix defined by those rows of qA  that correspond to sampled units, with ssqA  denoting those columns of 

sqA  that correspond to sampled units, and so on. We can then write the vector of sampled linked values in 

block q  as * ,sq sq qy A y  with ( ) [ ]sq sq q ssq srqE T A X T T  where ( )ssq q q sq q sq sq     T I 1 1  and srq T  

.q sq rq 1 1  

In order to carry out a maximum likelihood analysis in this situation we need to specify a model for the 

conditional distribution of Y  given .X  We assume a simple linear model with Gaussian errors for this 

purpose, i.e., we put 
2( , )N  y X X I∼

 
where I  is the identity matrix of order .N  However, our data 

consist of a sample of values of Y  from linked records. In order to apply the MIP in this case, we need to 

specify the conditional distribution of the correctly linked population values of Y  given these linked values. 

Now ( )q qE y X X  and 2Var ( ) ,q qy X I  while under ELE *( )sq sq qE y X T X  and 
*Var ( )sq y X  

* 2 .sq sq sq  I V  Here sqV  is the sample component of Var ( )q q qV A X X  and represents the increased 

heterogeneity in 
*
sqy  caused by incorrect linkage. Chambers (2009) shows that qV  is well approximated by 

the diagonal matrix with thi  diagonal term  2 (2) 2(1 ) ( ) ( )q q i q q qf f f f      where i if  x  and 
(2)

qf  is 

the average of the 
2

if  in block .q  Finally, we note that 

 
* 2Cov( , ) Cov( , ) Cov( , ) .q sq q sq q q q sq sq   y y X y A y X y y X T T   
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It is tempting to conclude from this (as I have done in the past) that the joint distribution of qy  and *
sqy  

given X  is then multivariate Gaussian with these moments. However, as pointed out by Zhang and Tuoto 

(2021), since the support of *
sqy  is just qy  this clearly cannot be true. However, if we are prepared to 

approximate this joint distribution by a Gaussian copula with the same first and second moments, then the 

MIP can be used to construct a corresponding approximation to the MLEs for the parameters   and 2  of 

the conditional distribution of qy  given * .sqy  This argument turns out to be surprisingly fruitful. 

Put 2 1( ) .sq sq sq sq  D T I V  Then 

 * 2 *( , ) ( )q sq q sq sq sq q sqE      y y X X D y T X a   

and 

 * 2 4Var ( , ) .q sq q sq sq sq   y y X I D T B   

That is, we can write * 1 2,q sq sq sq qy y X a B g∼  where ( , ).q q qNg 0 I∼  Next since * ,sq sq qy A y  the ideal 

data in block q  is the set { , }q qy X  while the available data is the set *{ , },sq qy X  when we treat ,qA  and 

hence ,sqA  as ancillary. In order to use the MIP we therefore first note that since 2( , ),q q qN  y X I∼  the 

score functions for   and 2  based on the ideal data are 

   2

1

sc ( )
Q

U q q q
q

  



 X y X   

  2 4 2 4 2

1 1

sc ( ) ( ) ( ) 2
Q Q

U e q q q q q q q q q q
q q

N N           

 

             y X y X y y X y X X   

so the MIP-based score function for   using the available data is 

      2 * *

1 1

sc ( , ) .
Q Q

s q q sq q q sq sq sq q
q q

E   

 

     X y y X X X D y T X   

In order to define the corresponding MIP-based score for 2  we first note that 

    * 1 2 1 2( , ) tr( )q q sq sq sq q sq sq q sq sq sqE E
       
 

y y y X a B g a B g a a B   

and 

 *( , ) .q q sq q sqE     X y y X X a   

This leads to a MIP-based available data score for 2  of the form 

 

     

   

2 4 2

1

* * 2

1

sc tr( )

tr ( ) .

Q

s sq q sq q sq
q

Q

sq sq q sq sq sq sq q sq
q

N

N

    

  







      
 

       
 





a X a X B

y T X D D y T X B
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Formal representations for the resulting estimators of   and 2  are obtained by setting these available 

data scores to zero and solving for these parameters. This leads to 

 

1

*
MIPmle

1 1

ˆ
Q Q

q sq sq q q sq sq
q q





 

   
     

   
 X D T X X D y   

and 

    2 1 * *
MIPmle

1

ˆ tr ( ) .
Q

sq sq q sq sq sq sq q sq
q

N  



      
 

 y T X D D y T X B   

Since sqD  (and hence )sqB  is a function of   and 2 ,  the above estimators are computed iteratively. 

They also require one to know (or at least have a good estimate of) the correct linkage probabilities in each 

block. This issue is discussed in more detail in Chambers and Diniz da Silva (2019) and highlights the 

importance of the simultaneous release of paradata about the linking process when linked data are released 

for secondary analysis. An important practical point that also needs to be made here is that the block size 

qM  will usually be very large, making computation of block-dimensioned quantities like sqD  and sqB  time 

consuming. So in the development below I introduce a further approximation, replacing qy  by sqy  in the 

ideal data. 

 
5.2 Application to small area estimation using non-deterministically linked 

data 
 

Probably the most common application of model-based ideas in survey sampling is small area estimation 

or SAE. That is, where the sampled population is partitioned into D  non-overlapping domains such that 

each domain is represented in the sample, but where the domain sample sizes are small, and sometimes even 

zero. It is standard to refer to these domains then as “small areas”, where “small” is actually a reference to 

the domain sample size. See Rao and Molina (2015) for a comprehensive discussion of methods that have 

been proposed for estimation of domain-specific quantities in this situation, with the most common target 

being the domain average of a variable Y  measured on the sampled population units. 

Here I focus on the special case where Y  is not measured directly on the sample but is obtained by 

linking the sample frame to another population register and then integrating the data from this register with 

the data directly obtained from the sampled units. This type of sample data acquisition is now increasingly 

common. Analysis variables in this integrated data set can exhibit increased heteroskedasticity (compared 

with an ideal data set where linkage is perfect) when records are incorrectly linked. This has the potential 

to lead to biased small area inference. See Briscolini, Di Consiglio, Liseo, Tancredi and Tuoto (2018). 

In order to show how MIP-based ideas coupled with an ELE linkage errors specification can be used in 

SAE I assume that the population distribution of Y  given a set of covariates X  is adequately modelled at 

the unit level by a linear mixed model with Gaussian random effects of the form 

 j j j jy e   x z u   
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where j  indexes individual population units, je  denotes individual model error, u  denotes a set of random 

area effects and jz  is a covariate characterising the impact of these area random effects on an individual 

population unit. The most common specification for this model in SAE is a random intercepts specification, 

where we associate a random effect iu  with each area i  and u  denotes the vector of these effects. In this 

case jz  is the vector that “picks out” the area in which unit j  is located. It is standard to assume non-

informative sampling within each area, in which case the sample data on Y  can be written in matrix form 

as 

 s s s s  y X Z u e   

where se  is a n-vector of uncorrelated zero mean Gaussian random variables with common variance 2 ,e  

u  is a D -vector of uncorrelated zero mean Gaussian random variables with variance 
2 ,u  and se  and u  

are distributed independently. 

With linked data spread across Q  blocks, however, we see 

 

*
1 1 1

*
2 2 2*

*

s s

s s

s s

sQ sQ Q

 
 

  
 
 
  

y A y

y A y
y A y

y A y


  

where diag( )s sqA A  and y  denotes the vector of actual (but unknown) Y -values in the population. Put 

diag( )s sqT T  and diag( ),s sqJ J  where ( )
q qsq q q sq q m M     T J 1 1  and ( ) .

q q q qsq m m M m 
 
 

J I 0  Then 

  

1 1

2 2* ,

s

s

s s

sQ Q

E  

 
 
  
 
  
 

T X

T X
y X Z T X

T X


  

  * 2 2 2 *Var( , ) ( ) ( ) ( )s e sq sq u sq u sp p q sq sp q p q            y X Z I V K T Z Z T1 1   

and 

 
* 2 2Cov( , , ) Cov( , , ) ( )s s s s e s u s s s s       y y X Z y A y X Z J Z Z T C T   

where ( )w1  equals one if statement w  is true and is zero otherwise, and sqK  (see Samart and Chambers, 

2014) represents the extra heterogeneity in 
*
sy  due to incorrect linkage of units in the same block but in 

different areas. Put   2 2Var , .s s e s u s s     y X Z I Z Z  Making the same Gaussian copula assumption as 

before, we can then write * 1 2, , ,s s s s sy y X Z a B g∼  with 

 * * 1 *( , , ) ( ) ( )s s s s s s s s sE      a y y X Z X C T y T X   

and 
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 * * 1Var ( , , ) ( ) .s s s s s s s s s
     B y y X Z C T T C   

Since *
s sy A y  the ideal data set underpinning the use of the MIP in this situation would normally 

include the population vector y  and, as in the previous development, application of the MIP would then 

proceed using the properties of the conditional distribution * , , .sy y X Z  However, this involves manipu-

lating N -dimensioned quantities, which is usually impractical. I therefore introduce a further approximation 

that replaces y  by sy  in the ideal data set. This has the immediate effect of replacing N -dimensioned 

quantities by n-dimensioned quantities in the score identity, which now depends on the first and second 

moments of the conditional distribution * , ,s sy y X Z  derived above. These can now be used to approximate 

the score functions for 
2, u   and 

2
e  based on the linked sample data, replacing the score functions for 

these parameters based on the ideal data set by their conditional expectations given the actual (i.e., linked) 

sample data. This process is the same as that already outlined for the simple regression case earlier so no 

details are provided here. Instead, I note that the popular maximum likelihood version of the Empirical Best 

Linear Predictor (EBLUP) of the mean iy  of Y  in area i  is of the form EBLUP ˆ ˆ
i i iy   x z u  where ̂  is the 

MLE for   and û  is the minimum MSE linear predictor for the vector of area effects u  when 
2, e   and 

2
u  are replaced by their MLEs. However, given linked sample data, the minimum MSE predictor of u  is 

its conditional expectation given these data. Under the Gaussian copula assumption this is 

 * 2 * 1 *( , , ) ( ) ( ).s u s s s sE     u y X Z Z T y T X   

When MIP-based MLE approximations for 
2, e   and 

2
u  are substituted in this expression we obtain a 

linkage error corrected predictor of the random effects vector ,u  which we denote by MIP
ˆ .u  Combining this 

with the MIP-based MLE approximation MIP̂  for   one can then compute a MIP-based predictor for the 

mean of Y  in area i  as MIP
MIP MIP
ˆ ˆ .i i iy   x z u  

I can illustrate the gains from using this MIP-based approach to SAE based on linked data via a small 

simulation. This assumes linkage errors follow an ELE model with known parameters (see Chambers (2009) 

for how one deals with an ELE model with estimated parameters). The target population consisted of D 

40 areas, with an average area population size of 500, so N  20,000. A random intercepts model was used 

to generate the ideal data values of Y  for unit j  in area i  according to 100 5 ,j j i jy x u e     where the 

values of jx  were generated as independent and identically distributed lognormal with a log scale mean of 

log(4.5)-0.5 and a log scale variance of 0.5. The area random effects iu  were independently generated as 

Gaussian with mean zero and variance 
2 2u   while the individual random effects je  were independently 

generated as Gaussian with mean zero and variance 
2 7.e   The actual linked values of Y  were then 

generated by independent repetitions of an ELE model within Q  40 blocks covering the population of 

interest. The blocks were defined independently of the small areas of interest, with 1q   in blocks 1-10, 

q  0.95 in blocks 11-20, q  0.9 in blocks 21-30 and q  0.85 in blocks 31-40. Blocks contained units 

from multiple small areas, with a block including units from an average of 5 small areas. As a consequence 

there was across area linkage error. Independent simple random samples were taken from each area, with 

area sample sizes ranging from 5 to 40 with an average of 25, so n  1,000 and the linked sample values of 

Y  as well as the population values of X  were then used to fit the random intercepts model. 
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The above scenario was independently simulated 100 times. In each simulation estimates of the model 

parameters were calculated for the ideal case (no linkage error for sample values) and for the naive case 

(linkage error ignored), in both cases via REML using the function lmer in R (R Core Team, 2019). 

Estimates were also calculated using the MIP-based approach described above, using the naive estimates as 

starting values. Table 5.1 shows the average values and RMSEs over the 100 simulations, while the boxplots 

in Figure 5.1 show the distributions of these parameter estimates over the same simulations. Observe that 

the measurement error due to linkage error causes naive estimates of the fixed effects to be biased, reflecting 

the fact that linkage error shrinks slope parameters towards zero, with naive estimates of between area 

variation reduced and corresponding estimates of within area variation greatly increased. This is exactly 

what one expects. The MIP-based estimates do not suffer from these problems. 

In addition, EBLUP-type estimates of the population average of Y  in each small area were calculated 

in each simulation, using the same parameter estimation methods (Ideal, Naive and MIP). For each small 

area and each simulation, the squared error and the absolute error of these EBLUP-type estimates were also 

computed. Figure 5.2 shows the boxplots of their corresponding mean squared error and mean absolute error 

values over the simulations for each area and for each parameter estimation method. These are denoted 

Area-MSE and Area-MAE respectively. 

These results show that a method for fitting a mixed model that allows for linkage error can lead to 

significant improvement over a naive approach that ignores linkage error. This is consistent with results 

presented in Samart and Chambers (2014), Briscolini et al. (2018) and Salvati, Fabrizi, Ranalli and 

Chambers (2021). Of these, it is only the first paper where linkage errors are allowed between distinct small 

areas. Note that the approach described in that paper is not based on use of the MIP but on direct 

development of the likelihood function generated by the linked data followed by approximation of the 

relevant score functions. It also assumes balanced data (all block by area cells have sample) in order to 

obtain a formula for .sqK  The same formula was used in the simulation reported here. In related research 

not presented here, Nicola Salvati and Enrico Fabrizi have empirically demonstrated that the small area 

estimates generated by the Samart-Chambers approach are less efficient than those generated by the MIP 

approach. 

 
Table 5.1  

Simulation results for 100 independent repetitions of the ELE linkage error scenario with N  20,000, n  1,000 

and Q  40 blocks. 
 

Parameter 
(True value) 

Average RMSE 
Ideal Naive MIP Ideal Naive MIP 

0  (100) 99.993 101.115 99.981 0.296 1.206 0.358 

1  (5) 5.004 4.637 5.006 0.051 0.384 0.078 
2
u  (2) 2.078 1.889 2.050 0.560 0.656 0.649 
2
u  (7) 7.016 16.651 7.438 0.326 9.975 1.166 

Notes: Independent SRSWOR samples were taken in each of D  40 areas with sample sizes ranging between 5 and 40. 
 ELE = Exchangeable linkage errors; MIP = Missing information principle; RMSE = Root mean square error; SRSWOR = Simple 

random sampling without replacement. 
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Figure 5.1 Boxplots showing the distributions of parameter estimate values in the simulations of the ELE 
linkage error scenario.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Dotted horizontal line shows the true value of each parameter. ELE = Exchangeable linkage errors; MIP = Missing information principle. 

 
Figure 5.2 Boxplots showing the distributions of area specific mean squared error (Area-MSE) and mean 

absolute error (Area-MAE) for the 40 areas in the ELE linkage error simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: ELE = Exchangeable linkage errors; MIP = Missing information principle. 
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Finally, it should be reiterated that application of the MIP approach with linked data is numerically 

intensive. This is because use of the ELE model to characterise linkage errors means that computations are 

effectively performed over all records in each of the blocks making up the X -register. A practical 

implementation of the MIP algorithm that can handle large-scale linked population registers (which can 

contain millions of records) is an ongoing research project. 

 
6. Discussion 
 

I never knew Joseph Waksberg, but I certainly knew of him. Lohr (2021) describes a research career at 

the US Census Bureau and at Westat that made important contributions to many areas of survey metho-

dology, including two that I subsequently became actively involved with ‒ census coverage adjustment and 

calibration of survey weights. However, it was Waksberg’s work on design and estimation using multiple 

frames that aligns most closely with the aims of this paper, since at their core these are about making 

maximum use of the information in combined data structures. In particular, his work shows us how to design 

sampling strategies that take advantage of this complexity to produce efficient estimates that relate to the 

population underpinning the combined data. 

My aim in this paper has not been design but estimation, and in particular the use of the Missing 

Information Principle as a guide for defining parametric estimators when modelling messy data. In the 

context of a multiple frames scenario with random sampling of each frame, the ideal data are the values 

associated with the union of the distinct population frames, and the estimating equations for model 

parameters given multiple frame sample data are defined by replacing the sufficient statistics in the ideal 

data score function by their conditional expectations given these available data. When these sufficient 

statistics are linear in functions of the ideal data values this usually corresponds to replacing function values 

for individual units by their conditional expectations given the information derived from their (potentially 

multiple) frame memberships. This can be a complex specification process, requiring different models for 

different amounts of frame overlap. 

There are many other messy data situations where application of the MIP leads to useful insights. Thus, 

Steel, Beh and Chambers (2004) report on how it can be used in likelihood-based inference with ecological 

data, i.e., where parameters of a joint distribution are of interest, but where the available data only provide 

information about marginal distributions. Here also having access to a very small sample taken from the 

joint distribution can have a very large impact in terms of improving the quality of inference. Another 

important application area where sampling is clearly informative is case-control sampling, see Prentice and 

Pyke (1979). Following the approach of Scott and Wild (1997) in this situation, Chambers and Wang (2008) 

use the MIP to develop MLEs for the parameters of a logistic regression model given case-control data. The 

simulation results they report show substantial improvement in efficiency over the standard approach for 

this model, which assumes simple random sampling in the fitting process and then discards the intercept 
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estimate. The MIP has been employed for efficient design as well, with Chipperfield, Barr and Steel (2018) 

using it in the context of efficient split questionnaire design. 

The book Chambers et al. (2012) contains many more examples of application of the MIP as well as 

much more detailed developments of the results sketched out in this paper. In particular these show the 

information functions based on the available data. However, as I stated at the start of this paper, I believe 

that it is the score identity component of the MIP that is most useful since it shows how estimation should 

proceed. Uncertainty estimation given these estimates can be derived from the information function, but 

they can also be derived via more direct Taylor Series approximations or via numerically intensive methods 

such as bootstrapping. 

When one views the score identity in the MIP from a more abstract perspective, it is clear that it is a 

special case of estimation based on the conditional expectation of a convenient estimating function. 

Consequently, if one generalises from the standard frequentist likelihood focus of this paper, it is interesting 

to note that an equivalent formulation of the score identity has been developed for estimating functions 

based on quasi-likelihood (Lin, Steel and Chambers, 2004). That is, there is scope for extension of the use 

of a MIP-based approach to estimation in messy data situations, for example those based on nonparametric 

likelihood approaches like empirical likelihood. Whether this leads to further insights remains to be seen, 

however. In any case such nonparametric extensions will also require methods for calculating the 

nonparametric equivalent of the conditional expectation operator reflecting the available information, 

perhaps via constrained parametric simulation. It will be interesting to see whether the development of these 

generalisations of the MIP will then allow it to accommodate the types of “large” machine learning models 

that are becoming more common. 

I am very grateful to the Waksberg Award Committee for giving me this opportunity to prepare this 

paper for Survey Methodology. Hopefully it will encourage other statisticians working with messy data to 

investigate whether the MIP (and its potential generalisations) can be a useful tool for making inferences 

based on these data. 

Finally, I would like to dedicate the preparation of this paper to my three friends and former colleagues 

from the University of Southampton, Fred Smith, Chris Skinner and Tim Holt, who have all now sadly 

passed away. Without the impetus of their groundbreaking book, Skinner, Holt and Smith (1989), and their 

insight and support during my years at Southampton, many of my personal contributions reported in this 

paper would not have been possible. 
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Abstract 

Jean-Claude Deville, who passed away in October 2021, was one of the most influential researchers in the field 
of survey statistics over the past 40 years. This article traces some of his contributions that have had a profound 
impact on both survey theory and practice. This article will cover the topics of balanced sampling using the cube 
method, calibration, the weight-sharing method, the development of variance expressions of complex estimators 
using influence function and quota sampling. 
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1. Introduction 
 

Jean-Claude Deville, who passed away in October 2021, will undoubtedly leave an important legacy in 

survey statistics. For more than 40 years, as part of the National Institute of Statistics and Economic Studies 

(INSEE) and then École nationale de la statistique et de l’analyse de l’information (ENSAI) in France, he 

developed major innovations including calibration techniques; balanced sampling; indirect sampling and 

weight sharre methods; variance calculation, particularly for complex estimators; processing of non-

ignorable non-response; and quota surveys. That being said, he has worked in all survey fields and beyond. 

His exceptional productivity is mainly attributable to a very fruitful imagination combined with a 

remarkable mastery of mathematical tools. It was also fed by the concrete cases encountered at INSEE, 

which, like all national statistical institutes, was constantly confronted with various constraints and obstacles 

that had to be overcome, generally quickly and at a low cost. As head of the statistical methodology unit, he 

had to meet the technical challenges presented to him as they arose. 

The following is an overview of Jean-Claude Deville’s developments, all of which have moved on to 

posterity and can be found in depth in the many articles he published throughout his career, some shared 

with colleagues with whom he had privileged relationships. Clearly, some of his developments have found 

considerable international applications since their publication. There has even been an “industrial” imple-

mentation for calibration, the development of which was designed with another prestigious statistician, Carl-

Erik Särndal. 

 

2. Unequal and balanced probability sampling 
 

2.1 Innovations in sampling algorithms 
 

A sample is said to be balanced on a variable if the Horvitz-Thompson estimators of the totals calculated 

from a sample are equal to or nearly equal to the population total = {1, , , }.U k N… …  Formally, suppose 
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that a vector of auxiliary variables 1= ( , , )k k kQz zz …   is known for all population units. Sample S  is 

balanced on kz  if  

 = ,k
k

k S k Uk 
 

z
z   

where k  is the inclusion probability, i.e., the probability that unit k  is selected in the random sample .S  

The idea of selecting a balanced sample dates back to the very beginning of survey theory. Kiær (1896, 

1899, 1903, 1905) was the first to propose what he called “representative counts”. It is actually a selection 

of samples by quota. However, it was Gini and Galvani (1929) who first selected a balanced sample in 

official statistics. They selected 29 Italian districts (circondari) out of 214 to match several population 

averages as well as possible (Langel and Tillé, 2011; Tillé, 2016; Brewer, 2013). This method was harshly 

criticized by Jerzy Neyman because the sample was not randomly selected (see Bellhouse, 1988). Yates 

(1949) and Thionet (1953) proposed methods for which a sample is selected and then improved by 

successively replacing units to approach a balancing setting. Hájek (1964, 1981) proposed using rejective 

sampling, which consists of selecting a series of samples until a sufficiently balanced sample is obtained. 

However, this method has the drawback of changing the inclusion probabilities of units without being able 

to calculate them accurately afterwards (Choudhry and Singh, 1979; Dupačová, 1979; Fuller, 2009; Legg 

and Yu, 2010; Boistard, Lopuhaä and Ruiz-Gazen, 2012; Fuller, Legg and Li, 2017). 

Jean-Claude Deville quickly became interested in sampling methods. In 1987, he published a book 

chapter with Jean-Marie Grosbras in which sampling methods were described and compared (Deville and 

Grosbras, 1987). The following year, along with Nicole Roth, they proposed a first balanced sampling 

method (Deville, Grosbras and Roth, 1988). The method applies only to equal probability of selection. The 

idea is to divide the variable space into quadrants and select one unit in the quadrant at each step that will 

contribute the most to achieving balancing. In the proceedings of the Örebro Conference held at Statistics 

Sweden in 1992, Jean-Claude Deville expressed his views on the three facets of the use of auxiliary 

information, namely constrained samples (i.e., balanced), conditional inference and weighting (Deville, 

1992). 

In parallel with this work, Jean-Claude Deville conducted very specific research on sampling issues. He 

proposed a formalization of sampling in a continuous population (Deville, 1989) long before the publication 

by Cordy (1993), who is often cited as the first reference in this field. He also proposed a selection method 

with unequal probabilities (Deville, 1998c), which is a variant of systematic sampling. 

Then, with Yves Tillé, he proposed the splitting method (Deville and Tillé, 1998) to select samples with 

unequal probabilities of selection. This class of methods consists of starting with the vector of inclusion 

probabilities, (0) = ,π π  the sum of which is equal to an integer .n  Then, at each step , 0,1, 2, ,t …  this vector 

( )tπ  is randomly modified until a vector containing only values equal to 0 or 1 is obtained, which 

corresponds to the selection of a sample. For the method to be correct, three conditions must be met: 

1. All components of the ( )tπ  remain in the interval [0, 1].  
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2. The sum of the components of ( )tπ  remains equal to .n  

3. The martingale property must be satisfied: 

 E { ( ) | ( 1)} = ( 1),p t t t π π π   for all  ,t  (2.1) 

where E ( )p   is the expectation with respect to the sampling design that takes the sampling 

randomization into account.  

 

The martingale property is sufficient to show that the inclusion probabilities are respected at each stage. In 

fact, through the law of total expectation, we readily obtain E { ( )} = (0).p tπ π  

The splitting method is a very general way of representing a sampling method. Almost all selection 

algorithms can be viewed as a splitting procedure. This allows one to focus on basic steps. Checking the 

three conditions allows one to quickly check whether or not the method is correct. 

One of the methods proposed as a special case of the splitting method is the pivot method for which only 

two components of the vectors ( )tπ  are changed at each step. This method was generalized to select multiple 

non-overlapping samples in the same population with equal or unequal probabilities (Deville and Tillé, 

2000b). 

The transition from the splitting method to balanced sampling was relatively simple when Jean-Claude 

Deville and Yves Tillé realized that samples 1( , , )NI I…   coded as vectors containing only 0 and 1 are the 

vertices of a N -cube of .NR  In addition, conditions 1 and 2 of the splitting method can be interpreted 

geometrically. The vectors ( )tπ  must remain in the simplex  =1
= [0,1] = .

N

k kk
c c n P  Figure 2.1 

shows a representation of this simplex for a sample of size = 2n  in a population of size = 3.N  The splitting 

method is therefore a random walk in a simplex that must statisfy the martingale property. 

 
Figure 2.1 Simplex bringing together samples of size = 2n  in a population of size = 3N  within a cube where 

the samples are the vertices. Here, the simplex is an equilateral triangle. 
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2.2 Balanced sampling using the cube method 
 

The shift to balanced sampling then became self-evident. It was simply a matter of replacing condition 

2 in the splitting method to obtain the general principles of a balanced sampling method. The following 

three conditions are therefore obtained:  

1. All components of the ( )tπ  remain in the interval [0.1].  

2. At each step = 0,1, 2,t …  the vectors 1( ) = ( ( ), , ( ))Nt t t π …   must meet the balancing 

equations:  

 ( ) = .k
k k

k U k Uk

t
 

 
z

z  

3. The martingale property must be satisfied  

 E { ( ) | ( 1)} = ( 1),p t t t π π π   for all  .t  (2.2) 

Conditions 1 and 2 now define a polytope  

 = [0,1] = ,k
k k k

k U k Uk

c c
 

  
 

  
 

z
zP   

in which the vectors ( )tπ  must remain to statisfy the balancing constraints at each step. An example of a 

polytope is shown in Figure 2.2. However, when the constraints are complex, the vertices of the polytope 

P  are not necessarily the vertices of the cube, meaning that there may not be exactly balanced samples. 

This will result in a roughly balanced sample. That is why the cube method consists of two phases: the flight 

phase and the landing phase. 

The flight phase is a random walk in the polytope P  that ends on one of the polytope vertices. The 

landing phase consists of selecting an approximately balanced sample close to the vertex of the polytope 

obtained at the end of the flight phase while satisfying the inclusion probabilities.  

 
Figure 2.2 Polytope P  in cases where the polytope vertices are not the vertices of the cube. 
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The cube method is a family of methods that allows such a random walk to be generated. For the flight 

phase, to go from ( )tπ  to ( 1),t π  the cube method is conducted in the following manner.  

1. A vector 1( ) = ( ( ), , ( ))Nt u t u tu …   is generated so that 

 1( ) = ,k

k U k

u t



z

0   

and ( ) = 0,ku t  if ( )k t  is an integer (0 or 1). If such a vector does not exist, the flight phase stops.  

2. We look for the largest positive values, 1  and 2 ,  that satisfy  

 10 ( ) ( ) 1k kt u t      and  20 ( ) ( ) 1,k kt u t      for all  .k U   

3. We update  

 1

2

( ) ( ) with probability
( 1) =

( ) ( ) with probability 1 ,

t t q
t

t t q






 

 

π u
π

π u
  

where 2 1 2= ( ).q     

 

There are several ways to generate the vector ( ),tu  which allows you to define several variants of the 

method. After a maximum of N  steps, the flight phase ends on the vertex of the polytope .P  This vertex is 

a vector containing at most Q  values that are neither 0 nor 1, where Q  is the number of auxiliary variables. 

To obtain a sample, one must apply the landing phase. Two variations are proposed in Deville and Tillé 

(2004). 

The cube method was first published in the proceedings of the Journées de méthodologie statistique 

(Deville and Tillé, 2000a) and then as a chapter of a book (Deville and Tillé, 2001). The English publication 

was much more difficult but was eventually accepted in Biometrika (Deville and Tillé, 2004, 2005). A 

referee could not accept that the samples could be balanced and random at the same time. Another could 

not admit that the method worked without listing all possible samples. Another criticism was that the method 

did not provide exactly balanced samples. However, the existence of an exact solution does not depend on 

the method but on the geometry of the problem. 

 

2.3 Implementation, method applications and research extensions 
 

A first prototype of a SAS-IML function was written by three students from the ENSAI (Bousabaa, 

Lieber and Sirolli, 1999) under the supervision of Frédéric Tardieu and Yves Tillé. The first version was 

very slow, to the point its applicability was doubtful, but progress was quickly made. Chauvet and Tillé 

(2006a) proposed an implementation that considers only a small portion of the population at each stage, 

significantly reducing the computational time. An SAS function was written using this procedure (Chauvet 

and Tillé, 2006b). Several R packages also allow the selection of a balanced sample (Tillé and Matei, 2021; 

Grafström and Lisic, 2019; Jauslin, Eustache, Panahbehagh and Tillé, 2021). Their method is especially 
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simple because the functions depend on only two arguments: the matrix of balancing variables and the 

vector of inclusion probabilities. 

Jean-Claude Deville was instrumental in changing the census procedure in France to a continuous system 

(Deville and Jacod, 1996). The cube method has been a valuable tool for constructing rotation groups (Durr 

and Dumais, 2002). The primary sampling units of the master sample were also selected using the cube 

method. The method was very quickly used in many applications (Tillé, 2011). As with calibration, 

balancing has become a standard procedure in survey statistics. 

The cube method has also generated a lot of academic work. The accuracy of balancing is discussed in 

Chauvet, Haziza and Lesage (2015). Leuenberger, Eustache, Jauslin and Tillé (2022) suggest sorting 

observations in ascending depth order in the scatter plot, reducing the rounding problem. The issue of 

optimal inclusion probabilities is addressed in Nedyalkova and Tillé (2008, 2012) and Chauvet, Bonnéry 

and Deville (2011). These results generalized the optimal stratification of Neyman (1934). Several articles 

deal with balancing for stratified populations (Chauvet, 2009; Hasler and Tillé, 2014; Jauslin, Eustache and 

Tillé, 2021). 

Several studies have been dedicated to spatial sampling. Grafström, Lundström and Schelin (2012) use 

the repulsive aspect of the pivot method to obtain samples properly spread out in space, increasing accuracy 

when data are autocorrelated. Grafström and Tillé (2013) then propose a variation of the cube method to 

obtain samples that are properly spread out and balanced on totals. Lastly, Jauslin and Tillé (2020a, b) 

balance on micro-strata containing the neighborhood of each unit to obtain particularly well-spread samples. 

Jean-Claude Deville did a lot of work on maximum entropy plans, which he left several handwritten 

notes on (Deville, 2000b; Deville, nda, ndb, ndc). These results finally enabled a relatively quick imple-

mentation of this plan. Deville and Qualité (2005) then proposed an extension to the multidimensional case. 

As a result of a referee’s remark during the submission of the article on the cube method, Jean-Claude 

Deville focused on determining a necessary and sufficient condition for balancing to have no rounding 

problems (Deville, 2015, 2014). Unfortunately, the condition obtained is very restrictive. In cases where the 

condition is met, it develops maximum entropy balanced designs (Deville, 2014). 

Jean-Claude Deville quickly understood the value of the cube method for applications other than 

sampling. Several balanced imputation methods were proposed by Chauvet, Deville and Haziza (2011); 

Hasler and Tillé (2016); Eustache, Vallée and Tillé (2022). These methods have the advantage of properly 

restoring the distribution of the imputed variable while reducing the variance caused by random imputation. 

The cube method is also used in fields of application far from sampling such as in the MCMC (Monte Carlo 

Markov Chain) methods (Chopin and Ducrocq, 2021). 

 
3. Calibration 
 

The papers by Deville and Särndal (1992) and Deville, Särndal and Sautory (1993) on calibration 

methods (also called recovery methods) and published in the prestigious Journal of the American Statistical 
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Association are considered to be two of the most important and influential articles in the past 30 years in the 

field of sampling and official statistics. These two articles propose a unified theory of estimation in the 

presence of auxiliary information, the premises of which are discussed in Lemel (1976) and Huang and 

Fuller (1978). The two papers co-authored by Jean-Claude Deville have generated numerous research 

articles over the past three decades. The reader is referred to Särndal (2007), Haziza and Beaumont (2017), 

Devaud and Tillé (2019), and Zhang, Han and Wu (2022) for reviews on calibration methods. Post-

stratification (e.g., Holt and Smith 1979), raking methods (Deming and Stephan, 1940; Stephan, 1942), 

generalized regression estimation (see, for example, Särndal, Swensson and Wretman, 1992) can be 

obtained as special cases of calibration methods. 

Calibration methods use auxiliary information available at the estimation stage to ensure consistency 

between the survey estimates produced and known or estimated external totals. In practice, calibration 

methods are also used to reduce non-response and coverage errors. 

 
3.1 Calibration in the absence of non-sampling errors 
 

In this section, we consider an ideal theoretical framework for which non-response and coverage errors 

are assumed to be negligible. Calibration is based on the availability of a vector of auxiliary variables, 

1= ( , , ) ,k k Jkx xx …   and the corresponding vector of population totals, 
1

= ( , , ) ,
Jx xt txt …   where =

jxt

,jkk U
x

 = 1, , .j J…  The vector xt  is obtained from an external source such as the census, an adminis-

trative file or another survey. 

When selecting a sample S  of a population ,U  it is almost certain that the sample will suffer from a 

random distortion in terms of the vector of auxiliary variables ,x  in the sense ,
ˆ , x xt t  with ,

ˆ =xt  

.k kk S


 x  Unlike a systematic distortion (as is usually encountered in a non-response context), we face 

a random distortion since ,
ˆE ( ) = .p  x xt t 0  The purpose of calibration is therefore to correct this distortion. 

More formally, we are seeking a set of calibration weights { ; }kw k S  such that 

 
( )k k k

k S k

d G w d

q
  (3.1) 

is minimized subject to the J  calibration constraints  

 = ,k k
k S

w

 xx t  (3.2) 

where =1k kd   and kq  is a scaling factor selected by the user (see Deville and Särndal, 1992; Deville 

et al., 1993). In the majority of cases encountered in practice, we set =1kq  for all .k  The function ( )G   is 

a pseudo-distance function to measure the closeness between the weights before calibration kd  and the 

weights after calibration .kw  

Calibration weights kw  are given by  
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 ˆ= ( ),k k k kw d F q λ x  (3.3) 

where λ̂  is a vector of size J  of estimated coefficients ensuring that the constraints (3.2) are satisfied, and 
1( ) = ( )F g    is the calibration function, defined as the inverse function of (.) ( ) .g G t t    The calibrated 

weight (3.3) can be viewed as the product of the weight before calibration, ,kd  and an adjustment factor, 
ˆ( ).k kF q λ x  In addition to the vector ˆ ,λ  the latter is dependent on the calibration function ( )F   (and 

therefore pseudo-distance function ( ))G   as well as the characteristics of the unit ,k kq  and .kx  In some 

situations, the term ˆ
k kq λ x  does not depend on ,k  in which case all calibration functions will lead to the 

same set of weights .kw  This occurs in the cases of post-stratification or ratio estimation (Haziza and 

Beaumont, 2017). 

The calibration estimator of yt  is given by  

 ,
ˆ = .y C k k

k S

t w y


  (3.4) 

Deville and Särndal (1992) considered a range of functions ( )G   some of which are presented in Table 3.1. 

For the generalized chi-squared distance, Deville and Särndal (1992) showed that calibration weights are 

given by  

 ˆ= (1 ),k k k kw d q λ x   

where  

 

1

,
ˆ ˆ= ( ).k k k k

k S

d q 





 
 

 
 x xλ x x t t   

It follows that the calibration estimator coincides with the well-known generalized linear regression 

estimator (see, for example, Särndal et al., 1992) 

 , , ,
ˆˆˆ ˆ= ( ) ,y C yt t   x xt t B  (3.5) 

where  

 

1

ˆ = .k k k k k k k k
k S k S

d q d q y



 

 
 
 
 B x x x   

This result is one of the important breakthrough in the field of estimation in the presence of auxiliary 

information: it is possible to construct the generalized regression estimator using calibration. Deville et al. 

(1993) have established that the use of Kullback-Leibler information (see Table 3.1) leads to the standard 

raking estimator, which is another major contribution. The truncated generalized chi-squared distance and 

the logit distance (see Table 3.1) allow for bounds to be placed on the calibration adjustment factors, 
ˆ( ),k kF q λ x  to limit the dispersion of the weights. 

Although the calibration estimators are biased with respect to the sampling design, they are consistent, 

which is a desirable property (Deville and Särndal, 1992). When the sample size n  is large enough, the 
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square bias of calibration estimators becomes negligible in front of their variance. Therefore, the mean 

square error of calibration estimators is approximately equal to their variance, provided that n  is large 

enough. 

Deville and Särndal (1992) showed that the variance of a calibration estimator can be approximated by  

 
,

ˆ( ) ,k
p y C k

k U U k

E E
V t

  

  


 

 (3.6) 

where =k k kE y  x B  is the “census residual” associated with unit k  with  

 

1

= .k k k k k k
k U k U

q q y



 

 
 
 
 B x x x   

This is a remarkable property: all calibration estimators have the same asymptotic variance regardless of the 

calibration function ( ).F   Expression (3.6) suggests that calibration estimators are efficient when residuals 

kE  are small, which will occur when the relationship between the variable of interest y  and the calibration 

variables x  is linear and strong. What if the relationship is not linear? In this case, the model may not fit the 

data well, leading to large residuals and a large variance. This has led Wu and Sitter (2001) to propose a 

model calibration procedure that allows for non-linear relationships through, for example, generalized linear 

models. However, unlike the classic calibration of Deville and Särndal (1992), model calibration requires 

the availability of the vector x  for all population units. This requirement is generally not met in practice, 

especially in household surveys. 

 
Table 3.1 

A few distance functions introduced in Deville and Särndal (1992). 
 

 Distance function ( )k kG w d  Calibration adjustment factor ˆ( λ x )
k kF q  

Generalized chi-square  
distance 

2

1
1

2
k

k

w

d

 
 

   

ˆ1 k kq λ x
 

Kullback-Leibler 
Information  

log 1k k k

k k k

w w w

d d d
 

 

ˆexp( )k kq λ x
 

Inverse Kullback-Leibler 
information 

log 1k k

k k

d w

w d
 

 

1
ˆ1 k kq λ x

 

Hellinger distance 

2

2 1k

k

w

d

  
 

    

1

ˆ1 2 k kq λ x
 

Truncated generalized  
chi-square distance 

2

1
1 < <

2

otherwise

k k

k k

w w
L M

d d

  
  
  

  

1 ( 1) ( 1)

> ( 1)

< ( 1)

k k k k

k k

k k

q L q M

M q M

L q L

     



 

λ x λ x

λ x

λ x

 





 

Logit distance 
log log < <

1 1

otherwise,

k k k k
k k

k

a b d w
a b L M

L M A d

 
 

  
  

( 1) (1 ) exp( )

1 (1 ) exp( )
k k

k k

L M M L Aq

M L Aq

  

  

λ x

λ x
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In multi-stage or multi-phase surveys, we face several layers of auxiliary information. For example, in 

two-stage sampling, we may have auxiliary information at the household level (number of individuals in 

the household, number of individuals in each age group, owner or tenant status, etc.) and information at the 

individual level (gender, age group, etc.). The reader is referred to Sautory and Le Guennec (2003) and 

Estevao and Särndal (2002, 2006) for a discussion of calibration methods in a multi-stage or multi-phase 

sampling. 

 
3.2 Adjustment of non-response by calibration 
 

Post-stratification and raking methods have long been used to treat unit non-response; see, for example, 

Thomsen (1978), Bethlehem and Keller (1987), and Bethlehem (1988). The first work on a unified non-

response calibration approach is presented in Deville and Dupont (1993) and Dupont (1993). The approach 

was further investigated by Lundström and Särndal (1999) and Särndal and Lundström (2005). The idea is 

to obtain final weights kw  from the initial weights in order kd  to achieve the following two objectives: (i) 

reduce non-response bias and (ii) ensure consistency between survey estimates and known population totals. 

We consider a population U  in which a sample S  is selected and only a subset rS  of units have 

responded. We therefore have .rS S U   We have two levels of auxiliary information: (1) The vector Ukx  

that is observed for rk S  and for which the vector of population totals, ,Ukk U x  is known. (2) The vector 

Skx  that is observed for k S  and for which the vector of Horvitz-Thompson estimates, ,k Skk S
d

 x  is 

available. Variables Ukx  are those that will ensure consistency between survey estimates and known 

population totals. Ideally, the variables Skx  are those that explain both the response status kR  and the 

variables of interest. For each ,rk S  we create the stacked vector  = .Uk
k

Sk

xx x  We are seeking a final 

weighting system, { ; },k rw k S  such that 

 
( )

r

k k k

k S k

d G w d

q

   

is minimized subject to the calibration constraints  

 = .
r

Ukk U
k k

k S k Skk S

w
d



 

 
 
 
 






x
x

x
  

The final weights are given by  

 ˆ= ( ).k k k r kw d F q λ x   

The estimator for yt  is given by  

  ,
ˆˆ = ( ) .

r

y C k k r k k
k S

t d F q y


 λ x  (3.7) 
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Although any pseudo-distance function ( )G   can be used, caution should be exercised. Indeed, selecting a 

pseudo-distance function in the context of non-response comes down to imposing a parametric model 

describing the relationship between the inverse of the response probabilities and the vector x  (Haziza and 

Lesage, 2016). In general, an erroneous choice of the function ( )G   will generally lead to a biased calibration 

estimator. An exception to this rule will occur when the variable of interest y  is linearly related to the vector 

x  and non-response is of the Missing At Random type (Rubin, 1976). 

Another important contribution by Jean-Claude Deville is calibration on instrumental variables, also 

known as generalized calibration (Deville, 1998a, 2000a, 2002). This approach has also been studied and 

discussed by, among others, Sautory and Le Guennec (2003), Kott (2006), Chang and Kott (2008), Kott and 

Chang (2010), Haziza and Beaumont (2017), and Lesage, Haziza and D’Haultfoeuille (2019). This approach 

is especially useful in the context of nonignorable non-response (Rubin, 1976). In this case, the response 

probability depends on fully observed variables but also variables available for the respondents only. As a 

result, estimating the response probabilities is not easy. Generalized calibration leads to a consistent 

estimator of a total if the exclusion restriction conditions are met. 

 
4. The weight-sharing method 
 

Indirect sampling involves selecting a sample from a target population using a different sampling frame, 

but somewhat related to that target population. Many developments related to the indirect survey can be 

found in Lavallée’s books (2002, 2007) to which we add more recent contributions such as Deville and 

Maumy-Bertrand (2006); Falorsi, Piersante and Bako (2016); Kiesl (2010); Medous, Goga, Ruiz-Gazen, 

Beaumont, Dessertaine and Puech (2023). We will see that Jean-Claude Deville played a leading role in the 

development of indirect sampling. 

 
4.1 The very beginning: Longitudinal surveys 
 

The genesis of the indirect sampling relates to a weighting problem in the context of longitudinal surveys. 

This involved weighting individuals interviewed in a social longitudinal survey that tracks individuals 

belonging to an household over time. 

After a selection of households (and thus individuals) in the first wave, changes in household 

composition throughout the waves, partly due to marriages and deaths, made the weighting process difficult. 

The solution is achieved by using the weight-share method (see Lavallée, 1995). 

The problem of weighting longitudinal household surveys has attracted interest from several authors, 

including Huang (1984); Judkins, Hubble, Dorsch, McMillen and Ernst (1984); Ernst, Hubble and Judkins 

(1984); Ernst (1989); and Kalton and Brick (1995). The article by Ernst (1989) clearly described the basis 

of the problem and proposed a solution related to the weight share method. 
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Consider a longitudinal survey of individuals drawn from households. Two waves of data are available: 

the wave A  (or first wave) and the wave B  (a subsequent wave). A sample AS  containing Am  individuals 

was drawn from the population in the wave A  containing AM  individuals. Let > 0,A
k  the probability of 

selection of individual .k  In wave ,B  the population then contains BM  individuals distributed among BN  

households ,B
iU  where the household i  contains B

iM  individuals. 

The longitudinal survey process is as follows. For each individual k  from ,AS  a list is established of 
B
iM  individuals from the household i  in wave B  containing this individual, i.e., ,BS  all of the Bn  

households identified by the individuals .Ak S  Once households from BS  have been identified, all 

individuals k  in households Bi S  are surveyed to measure the variable of interest .y  The weight-share 

method assigns an estimation weight ikw  to each individual k  in a surveyed household .B
iU  The method 

steps are as follows: 
 

− Step 1 For each individual k  in the households i  of ,BS  we calculate the initial weight 

= ,A
ik k kw    where =1k  if ,Ak S  and 0 otherwise.  

− Step 2 For each household i  of ,BS  we obtain the total number of individuals AB
iM  in the 

household i  present in wave A  (but not necessarily contained in ).AS  

− Step 3 The final weight = B
i

AB
i ik ik U

w w M


  is calculated.  

− Step 4 Lastly, we set =ik iw w  for all .B
ik U  

 

We could consider calculating the selection probability B
ik  of the individual k  in household i  of .BS  

This probability corresponds to the probability of selecting any of the B
iM  individuals in the household ,i  

and therefore we must know each of the B
iM  probabilities A

k  in the household i  of .BS  Unfortunately, 

especially in the case of multistage surveys, the probabilities A
k  are often unknown. In addition, apart from 

relatively simple cases (for example, when individuals k  are independently selected in ),AS  the calculation 

of the weights A
ik  can be very complex. The weight-share method thus offers a simple solution to a 

weighting problem that is difficult, if not impossible, to carry out in practice. 

 
4.2 A generalization of the problem 
 

Imagine links (or correspondence) between individuals in both waves of the survey. Since it involves 

tracking individuals over time, these links can be seen as “one-to-one” (Figure 4.1). During discussions with 

Jean-Claude Deville, he came up with the following idea: “Why not generalize the links?” So instead of 

having “one-to-one” links, why not consider “many-to-many” links (Figure 4.2)? Figures 4.1 and 4.2 

provide a graphical representation of the methods. The sample AS  is the yellow subset of the wave .A  The 

green subsets of the wave B  are clusters B
iU  (the households) encountered in the second wave. 
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Figure 4.1 Longitudinal links (“one-to-one”). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Arbitrary links (“many-to-many”). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

With this new way of looking at links, the question then became how to associate a weight (unbiased) to 

the surveyed units of BU  (the target population) following the selection of units in AU  (survey frame). In 

fact, the problem was much broader than that of longitudinal surveys. 

The new problem studied was the following. Let AU  and BU  be two populations related to each other. 

An estimate is required for BU  (target population), but a survey frame is available only for .AU  The 

     wave A                                                                                                 wave B 

Population UA                                                                                      Population UB 

                                                                     Ij,ik 

  j                                                                                                                                                       k 
 
 

 
                                                                                                                                                                i 
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proposed solution is to then draw a sample from AU  to produce estimates for BU  using the existing 

correspondence (links) between the two populations. For this new approach, Jean-Claude Deville then 

coined the term indirect sampling. 

Indirect sampling proceeds as follows. First, for each unit j  of ,AS  we identify the units k  from the 

clusters i  of BU  that have a link with .j  Let B
iU  be the set of all the units k  in cluster .i  For each unit k  

identified, we list the B
iM  units from cluster i  containing this unit. Lastly, we survey all the units k  from 

the clusters Bi S  to measure the variable of interest .y  

To illustrate indirect sampling, Jean-Claude Deville suggested an example where the goal is to survey 

people (units) living in dwellings (clusters). A sampling frame of dwellings is available, but unfortunately 

not up to date. This sampling frame does not include, among other things, the renovations impacting the 

divisions of dwelling in buildings. An example of this type of renovation is shown to the left of Figure 4.3. 

It can be seen that dwellings , , ,a b c d  and e  were transformed to obtain dwellings , ,a b c    and .d   

Drawing a sample of dwellings from the sampling frame, we get to the new dwellings using the 

correspondence between the old and new dwellings. This correspondence is illustrated to the right of 

Figure 4.3. 

 
Figure 4.3 Pre- and post-renovation dwellings (left) and indirect sampling of renovated dwellings (right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Estimating the total B

yt  of the target population BU  can be done using AS  drawn from .AU  However, 

note that this can be a major challenge if the links between the units of AU  and BU  are not one-to-one. In 

fact, in this case, it is difficult, if not impossible, to associate a selection probability, or an estimation weight, 

to the units surveyed in .BU  The solution then is to use the Generalized Weight-Share Method (GWSM), 

which yields an estimation weight for each surveyed unit of the target population .BU  
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As with longitudinal surveys, we consider a sample AS  containing Am  units drawn from AU  containing 
AM  units. The target population BU  contains BM  units and it is divided into BN  clusters, where the cluster 

i  contains B
iM  units. The links (or correspondence) between the units j  of AU  and the units k  of the 

clusters i  of BU  are identified by the variable , ,i jkl  where , =1j ikl  if there is a link between the unit Aj U  

and the unit k  of the cluster i  of ,BU  and 0 otherwise. 

To apply the GWSM, simply follow these steps (reminiscent of the weight-share method, but more 

general): 
 

− Step 1 For each unit k  of the clusters i  of ,BS  we calculate the initial weight =ikw  

, ,A

A
j ik j jj U

l  
  where =1j  if ,Aj S  and 0 otherwise.  

− Step 2 For each unit k  of the clusters i  of ,BS  we obtain the total number of links =B
ikL

, .A j ikj U
l

  

− Step 3 The final weight = B B
i i

B
i ik ikk U k U

w w L
 

   is calculated. 

− Step 4 Lastly, we apply =ik iw w  for all .B
ik U  

 

Lavallée (2002, 2007) mentioned that indirect sampling and the GWSM are useful because they offer a 

simple solution to complex survey and weighting problems. In addition, the GWSM generally yields the 

same results as classical results in the context of simple problems. In fact, the GWSM is an interesting 

solution, although it is not always the most accurate (minimum variance) compared with another more 

complex estimation method.  

 
4.3 Properties of the Generalized Weight-Share Method 
 

The development of the properties of the GWSM took place during discussions with Jean-Claude 

Deville, which began in 1995. These led to the following theorem and its two corollaries:  

 

Theorem 1 Duality of the form of ˆB
yt  with respect to AU  and .BU  The estimator ˆB

yt  can be written in both 

forms:  

 ˆ =
B B

i

B
y ik ik

i S k U

t w y
 

    

(with GWSM weights) and  

 ˆ = ,
A

B A
y j j j

j U

t Z 


   

where ,= .B B
i

B
j j ik i ii U k U

Z l Y L
    

 

Theorem 1 shows that we are, ultimately, in the presence of a simple Horvitz-Thompson estimator. From 

this finding, we obtain the following two corollaries:  
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Corollary 1 Bias of ˆ .B
yt  The estimator ˆB

yt  is unbiased for the estimation of ,BY  with respect to the sampling 

design.  

 

Corollary 2 Variance of ˆ .B
yt  The variance formula for the estimator ˆ ,B

yt  with respect to the sampling design, 

is given by  

  ˆ( ) = ,
A

j jB A A A
p y jj j j A A

A j U j jj U

Z Z
V t   

 



 

 

    

where A
jj   is the joint probability of selection of units j  and .j  

 
4.4 Calibration 
 

Let’s assume that we want to correct the GWSM weights so that the estimates produced correspond to 

known totals (auxiliary information). The most commonly used technique is the calibration developed by 

Deville and Särndal (1992). 

In the context of indirect sampling, there are two possible sources of auxiliary information:  

(i) From the survey frame ,AU  we have a column vector A
jx  and its total = A

A A
x jj Ut x  (assumed 

to be known). 

(ii) From the target population ,BU  we have a column vector B
ikx  and its total = B B

i

B B
x iki U k U  t x  

(assumed to be known).  

 

The calibration constraints associated with the GWSM are: 

(i) CAL, CAL,ˆ = =A

A A A A
x j j xj S

w
t x t  and  

(ii) CAL, CAL,ˆ = = ,B B
i

B B B B
x ik ik xi S k U

w
  t x t  where CAL,A

jw  is the calibration weight obtained from =A
jd  

1 ,A
j  and CAL,B

ikw  is the calibration weight of the unit k  from the surveyed cluster i  where the 

GWSM was applied.  

 

Based on Theorem 1, the latter constraint can be rewritten as: CAL, CAL,ˆ = = ,A

B A B
x j j xj S

w t
t   where 

,= .B B
i

B B
j j ik i ii U k U

l X L
    This constraint is now expressed in terms of units .Aj s  

By defining the vectors  

 =
A
jAB

j

j

 
  
 

x
x


  and  = ,

A
AB x
x B

x

 
 
 

t
t

t
  

we get the single constraint encompassing AU  and :BU  

 CAL, CAL,ˆ = = .
A

AB A AB AB
x j j x

j S

w


t x t   
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The formulation of the problem for determining the estimator CAL, CAL,ˆ = A

B A
y j jj S

t w Z
  associated with the 

GWSM is: Determine CAL, ,A
jw  for ,Aj S  to minimize the total distance  

 CAL,( , )
A

A A
j j j

j S

G w d


   

subject to the single constraint  

 CAL, CAL,ˆ = = .
A

AB A AB AB
x j j x

j S

w


t x t   

This formulation is consistent with that of Deville and Särndal (1992). Calibration can therefore be readily 

applied to indirect sampling and GWSM. 

It is important to note that this calibration work was done without direct collaboration with Jean-Claude 

Deville. However, after all the work presented by Lavallée (2001) at the Colloque francophone sur les 

sondages in Brussels, he discovered the article of Deville (1998b), which provides the same solution to the 

calibration problem associated with GWSM. 

 

4.5 Optimization of the links 
 

The indicator variable ,j ikl  indicates whether or not there is a link between the units j  of the sampling 

frame AU  and the units k  of the clusters i  of the target population .BU  However, it does not indicate the 

relative importance that some links might have over others. It is possible to replace ,j ikl  with a quantitative 

variable ,j ik  representing the importance we want to give to the link , .j ikl  This variable ,j ik  is defined on 

[0, ),  where , = 0j ik  is equivalent to , = 0.j ikl  It should be noted that if the process for assigning values 

of ,j ik  is independent of the selection of ,AS  the GWSM remains unbiased. 

By replacing the links ,j ikl  with , ,j ik  we obtain a new estimator (unbiased) ˆ .B
yt   The problem is then to 

determine optimal values ,j ik  so as to minimize the variance of ˆ .B
yt   Indeed, since the estimator ˆB

yt   remains 

unbiased regardless of the values of , ,j ik  it must be possible to determine the values of the latter to 

maximize the precision of ˆ .B
yt   The problem is therefore to determine , A Bj ik M M




    to minimize ˆ( ) =B
p yV t   

( ; = 1, , ; = 1, , ).B B
ik if y i N k M… …  

Deville and Lavallée (2006) determined the values of ,j ik  such that the variance of the estimator ˆB
yt   is 

(almost) minimal. The optimal solution is relatively complex, and often depends on the variable of interest 

.y  However, Jean-Claude Deville came up with the idea of defining the concept of weak optimality as well 

as that of strong optimality independent of the y -variables. 

Weak optimality consists of determining values of ,j ik  to minimize the variance of ˆB
yt   for a very specific 

choice of a variable of interest: = 1iky  for a given unit k  of a cluster i  of BU  and = 0i ky    for all other 

units of .BU  The optimization problem reduces to determining ,[ ] A Bj ik M M



 as to minimize ˆ( ) =B

p yV t   

( = 1;ikf y = 0;i ky i i     and ).k k  Deville and Lavallée (2006) mention that weak optimality consists 

of minimizing the variance V( | )B
ikw ik S   of the weight ikw  obtained by the GWSM (with ,j ik  instead of 

, )j ikl  for all possible values of ,[ ] .A Bj ik M M



 We note that the resulting weakly optimal weighted links do 
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not involve the variable y  itself (since the values of y  have been replaced by 1 and 0). In addition, the 

weakly optimal values of ,j ik  are generally relatively easy to calculate. 

Strong optimality independent of y  involves an additional step to weak optimality. It consists of 

checking that the weakly optimal values of ,j ik  do not generally depend (i.e., for any value of y  other than 

1 and 0) on the variable of interest .y  With this in mind, Deville and Lavallée (2006) proposed a criterion 

to check whether the weak optimality corresponds to the strong optimality (minimum variance of ˆ ).B
yt   If 

this criterion is met, strong optimality does not depend on the variable of interest .y  

 
5. The development of variance expression and its estimation for 

complex estimators 
 

The development of a variance formula and its estimation for a sample estimator is an essential step in 

producing confidence intervals that will inform users of statistics on their reliability. Conventional theory 

uses either an analytical approach, which is, by nature, based on mathematical formulas, or a sample 

replication approach (bootstrap, jackknife, random groups). Roughly speaking, the analytical approach may 

be considered more applicable when sampling is complicated and the expression estimator is rather simple, 

whereas the replication approach is used more readily in the opposite configuration, that is, in the presence 

of simple sampling and a complex estimator. This was certainly a common strategy before the development 

of the linearization theory for complex statistics. Jean-Claude Deville has contributed a great deal to the 

theory of linearization. Of course, the technique of linearization of estimators defined as functions of linear 

components, typically differentiable functions of estimators of totals, such as a ratio or coefficient of 

regression or estimators that are the solution of estimating equations (Woodruff, 1971; Binder, 1983; 

Wolter, 1985; Binder, 1991; Francisco and Fuller, 1991; Binder and Kovačević, 1995; Binder, 1996), has 

been known for many years. In the late 1990s, Jean-Claude Deville proposed a formal framework based on 

the influence function in the journal Survey Methodology (Deville, 1999) to deal with highly non-linear 

statistics, such as fractiles or parameters defined as solutions to certain equations (implicit parameters), in 

an asymptotic and general setting. When the sample size is large, linearization eventually allows a very 

complex estimator to be approximated by a classical linear estimator of the Horvitz-Thompson type, and 

then the variance of the former is approximated by the variance of the latter, thus producing the desired 

result. 

More specifically, the historical approach considers the parameter   and estimator ̂  as differentiable 

functions of the individual variables of interest. Linearization is then based on a Taylor expansion procedure 

of ̂  around its expectation .  Survey weights are present in the expression of ̂  but are not treated as 

variables. Jean-Claude Deville reverses the approach in some ways by considering ̂  as a function of survey 

weights and uses a derivative with respect to the weights; it is the influence function, introduced in the next 

part. 
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5.1 The theoretical framework 
 

The proposed methodology is explained in three stages: first, an asymptotic framework, second, a 

formalization using the concept of measure on a probabilistic space, and third, the use of the concept of 

influence function, which is appropriately adapted to the context. 

The asymptotic framework is the one defined in Isaki and Fuller (1982), and considers a series of nested 

populations, with respective sizes N  going to infinity, within which samples s  are selected, whose size n  

also goes to infinity. For any individual variable ,kx  if xt  is the true total of kx  and  

 ˆ =x k k
k s

t w x

   

its estimator, we assume that 1
xN t  has a limit, and that 1 ˆ( )x xN t t   converges towards 0 in probability and 

that 1 ˆ( )x xnN t t   converges in distribution towards a Gauss distribution. Any complex statistic S  

constructed from true or estimated totals is based on similar assumptions; depending to its expression, it is 

consistent when it is multiplied by ,N   where   is a positive integer. The integer   is called the degree 

of homogeneity. A ratio is a homogeneous statistic of degree 0 and a variance is a homogeneous statistic of 

degree 2. The first axiom is therefore extended by assuming that N S  has a limit. 

Then comes the formalization of the estimators by using the concept of measure. In the expression of 

any parameter, individuals in the finite population are “naturally” weighted by a weight equal to 1, 

interpreted as a mass associated with a measure M  with finite support. In the same population, sampling 

results in weighting any individual k  in the selected sample s  by the survey weight kw  and any individual 

k  outside s  by 0. This leads to the measure ˆ .M  A parameter, however complex, can be expressed as a 

function of ,M  noted ( )T M  and called “functional of ”.M  As an example, consider a total  

 
=1 =1

( ) = = ( ).
N N

k k
k k

T M y y M k    

Adopting a general notation familiar in the context of measure theory, we write ( ) = ,T M ydM  where we 

integrate over all the individuals in the population. Turning to estimators, again in the case of a total, we 

consider  

 
=1

ˆ ˆ( ) = = ( ),
N

k k k
k s k

T M w y y M k

    

in which case ˆ ˆ( ) = .T M ydM  This parallelism applies to any complex parameter, initially expressed as 

( )T M  and estimated by ˆ( ),T M  an estimator obtained by substituting M  with ˆ .M  

The third component of the theory uses the notion of influence function, which is used in the theory of 

robust statistics (Hampel, Ronchetti, Rousseeuw and Stahel, 1985). We consider a specific measure k  

obtained by assigning a mass equal to 1 to the individual ,k  and the measure kM t  leading to the mass 
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1 t  to the individual k  and to the mass 1 for all other individuals. The influence function is defined ‒ 

when the limit exists ‒ by  

 
0

( ) ( )
( , ) = lim .k

t

T M t T M
IT M k

t




 
  

It can be shown, under certain technical conditions most often satisfied in practice, that when the measure 

space is equipped with a distance, if a measure 2M  converges to a measure 1,M  then  

 2 1 1 2 1 1( ) = ( ) ( , ) ( , ) ,T M T M IT M k dM IT M k dM R    ε   

where Rε  is a random residual that converges to 0 in probability. This equality must be adapted to the 

postulated initial asymptotic conditions: to deal generally with the homogeneous statistics of degree ,  it 

is the functionals N T  that have the required asymptotic properties and must therefore be considered here. 

Also, noting that the total mass associated with the measurement M  is ,N  by setting a distance  

 1 2 1 2, =
M M M M

d yd yd
N N N N

     
     

     
    

and by setting 1 =M M  and 2
ˆ= ,M M  it follows that M̂ N  converges toward ,M N  which ultimately 

leads to: 

 
ˆ

ˆ( ) = ( ) ( , ) ( , ) ,
M M

N T M N T M IT M k d IT M k d R
N N

  
   

     
  

  ε   

where the residual Rε  is negligeable in probability in front of 1 ,n  under these conditions, that is, 

 for all  > 0, > 0.P nR εε ε   

By noting ( , ) = ,kIT M k z  it follows that 

 
=1

1 1ˆ( ( ) ( )) = .
N

k k k
k s k

N T M T M w z z R
N N





    ε  (5.1) 

By noting ˆ =z k kk s
t w z

  the natural linear estimator of the total 
=1

= ,
N

z kk
t z  

 
1ˆ ˆ( ( ) ( )) = ( ) .z znN T M T M n t t R
N

    ε   

According to the third asymptotic assumption, the term on the right has a Gaussian limit, and therefore the 

term on the left hand-side has an asymptotic variance, which is equal to that on the right hand-side. It is 

customary to use 2( 1) ˆ( )zN V t   as an approximate variance of ˆ( )T M  when n  is considered to be 

“sufficiently large”. The variable kz  is called a linearized variable associated with the functional .T  To 

carry out the variance estimation in practice, when kz  depends on a finite number of parameters that can be 
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estimated by using the sample data, kz  will be replaced by its natural estimator ˆ .kz  The estimated variance 

then differs from the true variance by a term whose order of magnitude is 1/2.n  

Deville’s paper was once again innovative since it was followed by several other works on variance 

estimation. While Deville proposed to linearize the parameter of interest at the population level, Demnati 

and Rao (2004, 2010) derive the estimator directly from survey weights. This method is a simple way to 

calculate the influence function on the estimator. Graf (2011); Antal, Langel and Tillé (2011); Graf and Tillé 

(2014); and Vallée and Tillé (2019) derived the estimator by the sample selection indicators, allowing for 

both the non-linearity of the estimator and calibration. The results given by the different methods are not 

always identical because the weights may depend on the selection indicators, especially when the estimator 

is calibrated. 

 
5.2 The tools 
 

From the previous theory, we obtain rules for calculating linearized variables that allow the treatment of 

complex estimators in a simple fashion, by breaking them down. The “total” functional 
=1

( ) =
N

ii
T M y  is 

the simplest. Since  

 
=1 =1 =1

( ) = ( ) ( ) = ,
N N N

k i i k i k
i i i

T M t y M i y t i y ty        

it follows that = ( , ) = .k kz IT M k y  The expression (5.1) is here tautological, with = 0.Rε  

Various useful properties are cited in the founding article.  

(i) Let ( )T M  and ( )S M  be two functionals: 

 ( ) ( , ) = ( , ) ( , )I T S M k IT M k IS M k    

and  

 ( )( , ) = ( , ) ( , ) ( , ) ( , ).I T S M k IT M k S M k IS M k T M k      

 

(ii) Let ( )T M  be a vector of totals in pR  and f  be a differentiable function of pR  in R  with the 

( , )p p  matrix of partial derivatives evaluated at ( )T M  is noted , ( ).f T MD  Then, ( )( , ) =I f T M k  

, ( ) ( , ).f T MD IT M k  This rule is useful for finding well known linearized, of smooth functions of 

totals, such as ratios or linear correlation coefficients. 

Now consider functionals parametrized by a vector   of ,pR  noted ( , ).T M   For example, if =1p  

and [0,1],   noting F  the distribution function associated with the distribution of ,ky  
1( , ) = ( )T M F   is the quantile of order   of the distribution. 

 

(iii) If ( , )T M   as a function of   has sufficient regularity, a reciprocal functional ( , )M   can 

therefore be defined satisfying ( , ( , )) = .T M M    For example, to treat the variance of a 

quantile, we will consider ( , ) = ( )T M F   and we obtain 1( , ) = ( ).M F   It can be shown 

that  



278 Ardilly et al.: Jean-Claude Deville’s contributions to survey theory and official statistics 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 
1

( , , ) = ( , ( , )) ( , , ).
T

I M k M M IT M k  



 

    
 

 (5.2) 

This theorem is useful for obtaining, for example, the linearization of a quantile or implicit 

parameter (see 5.3). 
 

(iv) Suppose that the parameter is written as a function of the value ,y  that is, let’s consider a 

functional of the type ( , ( ))T M y  where   is a function with the right technical properties, then 

the functional ( ) = ( , ( )) .S M T M y dM  So,  

 ( , ) = ( , ( )) ( , ( ), ) .kIS M k T M y IT M y k dM    (5.3) 

This theorem is used, for example, to determine the linearized Gini coefficient (see 5.3). 
 

(v) If the parameter is itself a functional ( ),S M  we can obtain the influence function of ( , ( ))T M S M  

‒ that is, the linearization of a compound of functionals ‒ as 

 ( , ( ), ) = ( , , ) ( , ) ( , ),
T

IT M S M k IT M k M IS M k 



 


  

where   takes the value ( )S M  in the final expression. 

 

We also mention an interesting property: for any functional of degree ,  we have  

 
=1

( , ) = ( ).
N

k

IT M k T M    

In particular if = 0  (a ratio for example), the population total of the linearized variables kz  is equal to 

zero. 

 
5.3 A few applications 
 

The above theory makes it possible to linearize virtually all the estimators that are encountered in survey 

statistics. It is therefore general in scope, and ultimately permits all analytical variance calculations, for 

(about) every conceivable parameter, under some asymptotic conditions, that is, when the sample size n  is 

considered to be “sufficiently large”. 

The original article by Jean-Claude Deville presents several examples of applications for complex 

parameters. It contains, along with the technical developments justifying them, the cases of implicit 

parameters, quantiles, the Gini coefficient, the poverty line (defined as the proportion of individuals in a 

population whose income is less than half its median), and the Kendall rank coefficient of correlation. The 

variance estimation for a principal component and that of the projection of a point representing any 

subpopulation on a factorial axis as part of a multiple correspondence analysis are also discussed. Below, 

we provide some results regarding implicit parameters, quantiles, and the Gini inequality coefficient. 
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An implicit parameter is a vector of pR  solution of an equation of the form ( , ) = 0,H M B  where 

( , ) = ( ),kk U
H M l

B B  the functions kl  being regular functions of pR  in .pR  Using (5.2), and noting 0B  

the solution of the equation, we get for all k  of ,U  

 
1

0 0( , ) = ( , ) ( , , ),
H

I M k M IH M k


 
  

 
B B B

B
  

which means that 

 

1

0 0( , ) = ( , ) ( ).k
k

k U

l
I M k M l





 
  

 
B B B

B
  

This situation is, for example, that of regression coefficients, the kl  stemming from normal equations. If the 

regression is linear, it obtain (classical notations)  

 
2

1
( ) = ( )k k k k

k

l y


 B x z B   

and finally the linearized vector of pR   

 

1

02 2

1
= ( , ) = ( )k k

k k k k
k U k k

I M k y
 





 
    
 


x z
z B x z B


   

which can also be found through the “traditional” approach. In the case of logistic regression, the 

conventional tools are no longer sufficient and then  

 

1

0 0 0= ( , ) = ( )(1 ( )) ( ( )),k k k k k k k k
k U

I M k f f y f





 
   

 
z B x z z B z B x z B      

where ( ) = (1 ).u uf u e e  

To obtain the linearized variable of a quantile, the functional “distribution function” must be considered: 

 
1 1

( ) = ( , ) = Card{ } = 1 ,
kk x xF x T M x k U x x dM

N N
       

whose influence function is 

 
1

( , , ) = {1 ( )}.
kx xIT M x k F x

N
    

Assuming for simplicity that this increasing function is differentiable and invertible, we define the quantile 

q  of order ,  where [0,1],   using ( ) = .F q   Application of the formula (5.2) would then lead to the 

linearized variable 

 1= ( , ) = [ ( )] (1 ).
kk x qz Iq M k N F q
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Jean-Claude Deville has proposed a clever idea that makes it simple to take into account the fact that ( )F x  

is a step function, which is neither derivable nor invertible. 

Let’s finish by specifying the linearization of a “Gini Index”, which is a standard inequality index. The 

index considered in the article is defined as  

 
1

GINI = ( ) ,
x

xF x dM
t 

  

where = .x kk U
t x

  Using (5.3) we obtain  

 
,inf= ( ) GINI ,k k k

k k

x x

x x x
z F x

t t


     

by applying  

 
<

,inf

<

1
=

1

k

k

x x

k

x x

x dM
x

dM




  

which corresponds to the average of the x -values less than .kx  

 
6. Quota sampling 
 

“Quota” sampling is not a survey method used frequently by national statistical institutes. The key 

argument is the resulting bias of the estimators, where smaller variances are not made available as opposed 

to with a well-chosen probabilistic method, given the large sample sizes commonly encountered in official 

statistics. Another more philosophical argument is the dependence of the quality of the estimate on a model, 

which is a set of simplifying assumptions of reality, and is sometimes overly simplifying. Jean-Claude 

Deville often made this second argument, which he considered to reflect a lack of neutrality that was not 

suitable for a national statistical institute, at least when it is possible to do otherwise (it may be argued that 

models are systematically used to deal with non-response, but this is unavoidable). It may be because this 

highly used empirical survey method (particularly in the private sector) is inherently risky and therefore 

controversial that Jean-Claude Deville felt the need to formalize the question. He appears to have been the 

first to do so in a comprehensive manner, writing an authoritative article in the journal Survey Methodology 

in 1991 (Deville, 1991). In this article, two types of models are distinguished: one model deals with 

sampling, another with the variable of interest. In each configuration, an estimator is given, its bias studied, 

and when possible, the author produces a theoretical expression of variance as well as an unbiased estimator 

of the variance. 

 
6.1 The general framework 
 

Recall the principle of quota sampling, by, for simplicity, restricting to the case of one or two so-called 

quota variables. Auxiliary information is made up of subpopulation sizes defined by the modalities of the 
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quota variables, which are therefore qualitative in nature. If there is a single qualitative variable with I  

modalities to define these subpopulations, we have the population count iN  for each modality i  varying 

between 1 and .I  If there are two qualitative variables with respectively I  and J  modalities, denoting by

,i jN  the population count of the cell ( , ),i j  we know the marginal count ,. ,=1
=

J

i i jj
N N  for any i  varying 

between 1 and I  as well as the marginal count ., ,=1
=

I

j i ji
N N  for all j  varying between 1 and J  

(“marginal” quotas). It should be noted that availability of the cross counts ,i jN  (“cross” quotas) brings us 

back to the case of a single qualitative variable. The selection of the sample is done empirically, without a 

sampling frame, following a few collection guidelines to randomize the composition of the overall sample 

of size n  as much as possible while imposing constraints on the in ’s (case of a quota variable) or assigning 

the ,i jn ’s (case of two quota variables). These constraints, which will be referred to as “quota constraints”, 

are set at the discretion of the survey statistician, but in practice, the most common method is the method of 

proportional quotas, where the idea is to ensure that the sample has the same structure as the population, 

i.e., = iN

i Nn n  in the case of a single variable, or ,.

,. = iN

i Nn n  for all i  and .,

., = jN

j Nn n  for all j  in the context 

of cross quotas (“proportional quota” constraints). Although this is a reassuring standard, it does not 

correspond to the intuitive optimal situation, since it is always preferable to increase the sample sizes in 

cells with the greatest dispersion (refer to the Neyman optimum in stratified sampling ‒ which differs from 

proportional allocation but is preferable). 

 
6.2 A sampling model 
 

The case of quotas on a single variable can be treated by pretending that we are in the case of a stratified 

sampling design with simple random sampling in each stratum, each stratum being associated with a 

modality i  of the quota variable, whereby the sample size in  is imposed. It is difficult to imagine other 

alternatives, so there is nothing original to add in this simple context. 

The interesting case is that of marginal quotas. The model has two phases. First, the selection can be 

viewed as a simple random draw under constraint, the constraints being those imposed on the ,.in  and on 

the ., ,jn  i.e., the constraints of quotas. That is a pretty daring assumption, that assumes that interviewers are 

completely neutral in selecting their respective samples. Technically, a simple random draw under constraint 

reduces to considering that any sample not meeting quotas has a zero probability of selection and that all 

samples meeting quotas have the same probability of selection. Practically, it could be implemented by 

conducting successive and independent simple random draws, while rejecting samples until quota 

constraints are satisfied (rejective selection). Secondly, the existence of these constraints is somewhat 

forgotten. 

Let ,i jP  be the weight ,i jN

N  of the cell ( , ).i j  The objective is to estimate these weights. Indeed, the average 

Y  of any variable of interest Y  defined in the population is written ,

,( , )
= i jN

i jNi j
Y Y  and, under the 

postulated model, the true average ,i jY  in the cell ( , )i j  is estimated without bias by the simple average ,i jy  

in the sample intersecting this cell, so that the natural estimator by quotas of Y  will be quota , ,( , )

ˆ ˆ= i j i ji j
Y P y  

where ,
ˆ
i jP  is an estimate of ,i jP  ‒ as much as possible without bias. With a standard simple random draw 
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selection, the sample sizes per cell ( , ),i j  i.e., , ,i jn  follow a multinomial distribution. In the second stage of 

modeling, we postulate that, subject to the quota constraints, the distribution of the ,i jn ’s remains 

mutinomial. In this context, the estimates ,i jP  are obtained, for example, using maximum likelihood 

estimation, which leads to maximizing the objective function ,

,( , )
.i jn

i ji j
P  Solutions must be compatible with 

known marginal information, which also requires  

 ,.
,

=1

=
J

i
i j

j

N
P

N
   for all  i   and  .,

,
=1

= ,
I

j

i j
i

N
P

N
   for all  .j   

The solutions obtained are in the form , 1
,
ˆ = ( )i jn

i j i jnP a b   (the unknown coefficients ia  and jb  are the 

Lagrange coefficients associated with the constraints). Since there are 1I J   independent constraints, for 

example, by imposing the identifier constraint = 0,Jb  we obtain the ia  and the ,jb  by solving the system (S)  

 ,.1
,

=1

( ) = ,
J

i
i j i j

j

N
n a b n

N
   for all  = 1, , ,i I…   

 .,1
,

=1

( ) = ,
I

j

i j i j
i

N
n a b n

N
   for all  = 1, , 1.j J …   

At this stage, it is clear that if quotas are proportional (it should be remembered that this is the scenario 

almost systematically chosen in practice), the system is resolved by systematically choosing = 1ia  and 

= 0,jb  in which case ,

,
ˆ = i jn

i j nP  and quota
ˆ = ,Y y  the customary sample mean. This provides a well-known 

result. The case of non-proportional quotas provides a complex estimator, whose analytical form is not 

explicit but asymptotically unbiased, since the specification of the model ‒ not discussed in the founding 

article ‒ is not in question. This point should prompt caution because, if proportional quota constraints are 

actually respected on average with a simple random selection, it seems to us that the sampling model 

becomes a priori more fragile when quotas significantly move away from proportional quotas, because of 

the fact that the second phase of this model is more difficult to accept. If the first phase of the model is 

probably the only way to build a theoretical basis for treating quotas, we could on the other hand ‒ this 

would be another exercise ‒ try to maximize the density of the ,i jn  under the quota constraints to obtain 

the ,
ˆ .i jP  

Jean-Claude Deville proposed a variance expression for quota
ˆ ,Y  the sampling design being the only 

randomization mechanism that generates variability here. It begins by breaking down the true averages per 

cell ,i jY  according to , ,=i j i j i jY A B E   by imposing the constraints = 0,JB  

 , ,
=1

= 0,
J

i j i j
j

N E   for all  = 1, ,i I…   

and  

 , ,
=1

= 0,
I

i j i j
i

N E   for all  =1, , 1.j J …   
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Then, he introduces the coefficients 0
ia  and 0

jb  ensuring the equalities  

 , ,1 0 0 1( ) = ( ) .i j i j

p i j i j

n N
E a b a b

n N
  

  
 

  

Indeed, , 1( )i jn

i jn a b   is an estimator of ,

, = i jN

i j NP  but it is not unbiased of ,i jP  in general, and the 

coefficients 0
ia  and 0

jb  satisfy the equations of the system (S) 

 0 0 1
, ,.

=1

( ) = ,
J

i j i j i
j

N a b N   for all  = 1, , ,i I…   

 0 0 1
, .,

=1

( ) = ,
I

i j i j j
i

N a b N   for all  =1, , 1.j J …   

If quotas are proportional, then =1ia  and = 0jb  and given the multinomial model, we also have 0 = 1ia  

and 0 = 0jb  (these values are solutions of the previous non-linear system in all cases, but they are not the 

appropriate values for non-proportional quotas). By applying  

 2 2
, ,

( , ),

1
= ( ) ,i j k i j

k i ji j

S y Y
N 

   

a variance expression is obtained: 

 
, 2 0 0 1 2

quota , ,
( , )

1ˆ( ) = { ( ) }.i j

i j i j i j
i j

N
V Y E a b S

n N
    

The optimal strategy is not one of proportional quotas, but one that “inflates” the quotas .in  and . jn  for the 

modalities i  and j  corresponding to the high dispersions 2
, .i jS  This rule, which is very intuitive, does not 

appear clearly in its principle if we stick to this variance calculation. On the other hand, it becomes evident 

when we condition on the sizes , .i jn  

When the quotas are proportional, we therefore have  

 
, 2 2

quota , ,
( , )

1ˆ( ) = ( ).i j

i j i j
i j

N
V Y E S

n N
   

It is clearly in our interest to have , = 0i jE  for all ( , ),i j  therefore an additive model. The article also 

proposes a variance estimator with low bias that is not complicated when quotas are proportional because it 

is obtained in this case from a classic residuals calculation in a certain standard linear regression. 

 
6.3 Models for the variable of interest 
 

This whole part is about taking a radically different view from the previous one, because this time the 

model pertains to the variable of interest .Y  This variable is considered to be random using the model-based 

approach developed by Royall (1970, 1976a, b, 1988) (see also Valliant, Dorfman and Royall, 2000; 
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Chambers and Clark, 2012). All the model versions considered in the article fall within the general 

framework of the linear model, of the type = ,Y XB u  where B  is a vector of unknown real coefficients, 

X  a matrix whose columns are explanatory variables, and u  is a vector of errors with a mean equal to 0 

and an unknown model variance .V  

In this context, a vector of values ,ky 1, , ,k N …  is composed of two vectors: sY  of size n  that includes 

the observed values ky  – those for which k s  – and rY  of size N n  that includes the unobserved values 

.ky  To define an optimal estimator of the true total = ,y kk U
t y

  it is natural to try to minimize the mean 

square error 2ˆE ( ) ,m yt t  where E ( )m   denotes the expectation under the randomization with respect to the 

values ky  (which therefore has nothing to do with the sampling randomization). We also impose an 

unbiasedness condition of the form ˆE ( ) = 0.m yt t  Finally, we are seeking a simple estimator, therefore 

linear, i.e., of the form of ˆ = ,s st g Y  where sg  is a vector (to be found) of size .n  The solution to this 

problem leads to  

  1
,opti

ˆ ˆˆ = ( ) ,y s s r r rs ss s st   1 Y 1 X B V V Y X B    

where s1  (respectively )r1  is a vector of size n  (respectively )N n  of 1’s, the terms ,sX ,rX ssV  and rsV  

representing the sub-matrices of X  and V  formed by the rows and columns associated with the sets of 

indices s  and .r  The estimated coefficient B̂  is the general least squares estimator, i.e., ˆ =B  
1 1 1( ) ( ).s ss s s ss s

  X V X X V Y   We will place ourselves a priori in the case where = 0,rsV  a simplifying 

assumption that is easy to accept unless the selection involves clusters. As a result, the optimal estimator 

simplifies itself greatly since  

 , opti
ˆˆ ˆ= ( ) = ,y s s r r k k

k s k r

t y y
 

  1 Y 1 X B    

where ŷkt  is the thk  coordinate of the vector ˆ ,rX B  that is, the optimal predictor of the unknown value .ky  

It is this expression that will subsequently be used to express the estimators arising from the quota method. 

It should be noted that if 1 is one of the regressors (which is extremely common), we have =kk s
y

  

ˆ ,kk s
y

  so that ,opti
ˆ ˆ= .y kk U
t y

  

The estimator , optiŷt  is unbiased by construction in the sense that , opti
ˆE ( ) = 0.m y yt t  The assessment of 

its accuracy also relies on its variance, defined by 2
,opti

ˆE E ( ) ,p m y yt t  where E ( )p   the expectation with 

respect to the sampling design. It is also equal to 2
,opti

ˆE E ( ) .m p y yt t  

The combination of a sampling randomization and a model randomization is not easy to treat if the model 

on ky  changes when we have information on the membership ‒ or non-membership ‒ of the individual k  

in the selected sample. Otherwise, any calculation would become unmanageable, and moreover, we would 

not even be able to credibly formalize the model’s dependence on the sample, which we recall, is random. 

Since it is not desirable (and not possible practically speaking) to seek to refine the assumptions beyond a 

certain degree, it is considered that the selection law of s  and the one that generates Y  are independent. 
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This is a non-informative model. Under these conditions, the model applied on ky  applies blindly to any 

individual k  without there being any need to know if k s  or if .k s  This bias is essential to make 

variance calculations, but unfortunately, it is questionable. Typically, in the case of empirical surveys, one 

can have doubts, at least when the operation is not conducted under very tight control of the interviewers’ 

practice, that there is no relationship between the values of Y  and whether they belong to the sample. This 

is what creates the main risk of bias in the estimators and what feeds the traditional criticism of empirical 

sampling. But let’s move on from this risk, accept it, and summarize, under these conditions, the theory set 

out in Jean-Claude Deville’s article (1991). 

The case of quotas based on a single qualitative variable and the case of cross-quotas are based on the 

same linear model, which is very simple: noting i  the modality of the quota variable and k  the individual 

identifier, we have , ,=i k i i ky m u  with ,E ( ) = 0m i ku  and 2 2
,E ( ) = .m i k iu   This reflects the expected natural 

situation, where the qualitative variable (or the cross-classification of the two variables) explains the 

variable of interest well. The sampling technique makes it so that the sample sizes in  in each modality are 

independent of the selected sample .s  We have ,
ˆ ˆ= = ,i k i iy m y  the simple average of ,i ky  calculated on 

individuals in the sample belonging to the modality .i  In this case, it is easy to check that the optimal 

unbiased estimator is  

 ,opti
=1

ˆ = .
I

y i i
i

t N y   

This is exactly the expression of the classical post-stratified estimator. It can be shown that  

 
2

2 2
,opti

=1

ˆE E ( ) = 1
I

i i
m p y y i

i i i

n
t t N

N n

 
  

 
   

by using the fact that the in ’s are independent of ,s  and then obtain an unbiased estimate of this variance. 

Now let’s look at marginal quotas in the context of an additive model, that is, for an individual k  

belonging to the modalities i  and j  of the two quota variables respectively: , , , ,=i j k i j i j ky u    with 

, ,E ( ) = 0m i j ku  and 2 2 2
, ,E ( ) = .m i j k i ju    The residuals are also considered to be mutually independent. The 

unbiased optimal estimator becomes  

 ,opti , , , ,
, ,

ˆˆ ˆ= ( )( ).y i j i j i j i j i j
i j i j

t n y N n        

Since the estimators of i  and j  are complicated to obtain in the general framework presented here, Jean-

Claude Deville suggests using the least squares estimators associated with an ordinary model. In this 

context, after writing out the normal equations, and thus easily obtaining the ˆi  and ˆ ,j  a bit of algebra 

leads to  

 ,opti . .
ˆˆ ˆ= .y i i j j

i j

t N N     
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In the case of proportional quotas, we check that , opti
ˆ = .yt N y  This is the estimator that is used classically 

in quota sampling, which is often used due to its simplicity. In the case of non-proportional quotas, we can 

always express analytically , opti
ˆ ,yt  particularly as a linear combination of simple estimators per cell , ,i jy  

i.e., ,opti , ,,
ˆˆ = ,y i j i ji j

t N y  but the expressions of ,
ˆ

i jN  are complex. 

When quotas are proportional, the true variance ,opti
ˆ( )yV t  can be expressed in terms of .,iN . ,jN 2

i  and 
2 ,j  and a variance estimator can also be obtained as 

 
,2 2

,opti ,
,

1ˆ ˆV( ) = ,
n

i jN
y i j

i j

n
t N s

n n


   

where 2
,i js  is the standard dispersion of the , ,i j ky ’s collected in the cell ( , ).i j  It is unbiased in the sense that 

,opti ,opti
ˆ ˆ ˆE E V( ) = V( ).p m y yt t  The feasibility of a variance calculation and its unbiased estimate is closely linked 

to the proportionality aspect of quotas: without this property, the development of the variance expression is 

no longer possible because the estimator , optiŷt  depends on the sample sizes per cell ,i jn  and these are 

themselves depend on the drawn sample… based on an unknown probability, by definition of an empirical 

selection. 

Finally, the article discusses the more general case of marginal quotas in a context where the model loses 

its additive aspect and becomes , , , , ,= .i j k i j i j i j ky u      The optimal estimator is , opti
ˆ =yt , ,, i j i ji j

N y  

but past this stage, we find ourselves in a context where not only do we not know ,i jN  but it does not even 

seem possible to produce a “natural” estimator. If the quotas are proportional, the practice ‒ and clearly the 

only possible outcome ‒ is to revert to the simple, standard expression ˆ = .t N y  The price to pay is that of 

bias, which is 

 
,

, ,
,

E E ( ) = E .i j

p m y p i j i j
i j

n
N y t N N

n


   
   

   
   

There is no reason for it to be zero, but when the instructions are well designed and the collection meets 

them, we can hope that the ratios ,i jn n  and ,i jN N  will be numerically close, and therefore the bias will 

be small. 

 
6.4 Operational conclusion 
 

The conclusion that can be drawn on the treatment of quota sampling is as follows. If one uses a single 

quota variable or if one uses cross-classified quotas (which is the best!) by using multiple quota variables, 

there is no difficulty in performing point estimation without bias and then calculating a variance. For 

marginal quotas, with a sampling model, an estimator is obtained in all circumstances. It is asymptotically 

unbiased and its variance can always be estimated. With a model on the variable of interest, we do not know 

how to manage non-additive models. If the model is additive, an unbiased estimator can always be produced, 

but if the quotas are not proportional, then we don not know how to estimate the variance. 
 



Survey Methodology, December 2023 287 

 

 
Statistics Canada, Catalogue No. 12-001-X 

7. Conclusion 
 

This article does not cover all of the original developments made by Jean-Claude Deville in the field of 

survey statistics. He has written numerous articles and made numerous presentations at conferences on other 

less significant aspects. As a result, his major works have themselves known a variety of fates. Calibration 

was certainly the most significant, best known and most widely used breakthrough worldwide, to the point 

that, today, there is no survey that is not calibrated on some external data, at least in the world of official 

statistics. The weight-share method is dependent on fairly specific survey conditions, but is nonetheless 

widely used, in particular, when repeated surveys are implemented over time and more specifically in the 

form of rotational sampling. The analytical development of variance expression for complex estimators 

regularly finds applications but relies on a rather complicated theory and has some serious competitors, 

namely the resampling methods. Balanced sampling has also had some success, but its use in official 

statistics is developing more slowly than calibration methods, probably because changing a sampling design 

is a much more consequential decision than changing an estimation procedure. Tillé (2011) already listed a 

list of applications 10 years after the method was developed. Interest in balanced sampling has since 

continued to grow. In France, the National Institute of Statistics and Economic Studies now makes a wide 

use of balanced sampling designs. As for the theory of quotas, this is mainly a clarification operation that 

helped somewhat demystify this technique that official statistics still looks at with some suspicion. Jean-

Claude Deville has undoubtedly touched upon it all, and with brilliance, something that the scientific 

community readily recognized by awarding him the prestigious Waksberg Prize in 2018, just three years 

before his death. 
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Abstract 

In this discussion, I will present some additional aspects of three major areas of survey theory developed or 
studied by Jean-Claude Deville: calibration, balanced sampling and the generalized weight-share method. 

 
Key Words: Calibration; Balanced sampling; Weight share. 

 
 

1. Introduction 
 

In this discussion, I will provide some additional information on calibration in Section 2, on the 

applications of balanced sampling in Section 3 and on the weight-share method in Section 4. In Section 5, I 

will conclude with some more personal details about my work with Jean-Claude and his influence on my 

research. 

 
2. Calibration 
 

The unification of adjustment methods on auxiliary information in the form of calibration estimators 

(Deville and Särndal, 1992; Deville, Särndal and Sautory, 1993) is certainly Jean-Claude Deville’s most 

important contribution. Let U  be a population of size .N  For a unit ,k U  let kx  be a J -vector of auxiliary 

variables of the total = .kk U
t

x x  For a sample S  with sampling weights = 1 ,k kd   Deville and Särndal 

(1992) showed that finding new weights ,kw  as close as possible to the weights kd  that satisfy the 

calibration constraints on ,tx  leads to the solution 

 ˆ= ( ),k k k kw d F q λx  (2.1) 

with ( )F   a distance-dependent calibration function, λ̂  a parameter adjustment vector and kq  a scaling 

factor. In most cases, kq  is chosen equal to 1, but with = 1J  and a single positive auxiliary variable ,kx  the 

choice of 1=k kq x  finds the ratio estimator with any function ( ).F   

The choice of the calibration function ( ) = 1F x x  (linear method) finds the generalized regression 

estimator (GREG). Deville and Särndal (1992, Result 5) showed that, for a general calibration function 

( ),F   the calibration estimator ,ŷ Ct  obtained is asymptotically equivalent to the GREG estimator and shares 

its properties: negligible bias and same asymptotic variance. However, it should be noted that this result 

requires a few assumptions about the function ( ).F   In particular, it must verify (0) = (0) = 1,F F   which 
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guarantees that its first-order Taylor expansion is the same as in the linear method (Deville and Särndal, 

1992, Result 4). 

A remarkable aspect of calibration estimators is that they require very little auxiliary information. The 

auxiliary variables kx  must be observed in the sample, and only the population totals tx  must be known. 

Even auxiliary totals estimated using a baseline survey can be used ‒ see for example Renssen and 

Nieuwenbroek (1997); Rancourt (2001); Berger, Muñoz and Rancourt (2009); Dever and Valliant (2010). 

Using estimated totals instead of true totals leads to increased variance, which remains limited if the baseline 

survey is much larger (Dever and Valliant, 2016). With well-chosen auxiliary variables, this increase may 

be smaller than the benefit linked to calibration (e.g., Ceccarelli and Guandalini, 2014). 

Calibration remains a very active area of research. In the case of many auxiliary variables, it is possible 

to modify the calibration equation so that certain constraints are only approximately met. This principle has 

led to the development of ridge calibration methods (Chambers, 1996), principal component calibration 

(Cardot, Goga and Shehzad, 2017) or penalized calibration (Guggemos and Tillé, 2010); see also Breidt and 

Opsomer (2017) for a review. In this large-scale case, Chauvet and Goga (2022) have also proposed a 

bootstrap criterion for choosing calibration variables. 

 
3. Balanced sampling 
 

The cube method is one of the finest technical innovations in survey theory in the last 25 years. A sample 

design is said to be balanced on a q -vector of auxiliary variables ,kz  if all samples S  with a non-zero 

probability of selection satisfy balancing condition 

 = .k k k
k S k U

d
 

 z z  (3.1) 

The cube method (Deville and Tillé, 2004), which selects (approximately) balanced samples, is based on 

two ingenious innovations. One is the splitting method, which breaks down a sample design into simpler 

designs. The other is a geometric representation that allows us to see a balanced sampling step as a random 

walk in a hyperplane of dimension .N q  

According to the equation (3.1), balancing can be viewed as a calibration that is integrated into the 

sampling design, without having to modify the weights .kd  The drawback is that the variables kz  must be 

known for each individual in the population, while the calibration would only require knowledge of the 

auxiliary totals .tz  Another practical problem is that balancing is generally destroyed by unit non-response. 

For this reason, the method is particularly interesting in a sampling context with low non-response, like for 

the selection of primary units for multi-stage sampling; see, for example, Costa, Guillo, Paliod, Merly-Alpa, 

Vincent, Chevalier and Deroyon (2018) for the sample design associated with the selection of the NAUTILE 

master sample from the Institut national de la statistique et des études économiques. 
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Balanced sampling is also very useful for dealing with item non-response. Suppose that in sample ,S  a 

variable of interest ky  is only observed in a sub-sample ,rS  and missing in additional sample .mS  The 

imputed estimator of the total is written as 

 *ˆ = ,
r m

yI k k k k
k S k S

t d y d y
 

    

with *
ky  an imputed value for .mk S  Imputation can be based on the model 

 0: = ( ) ,k k km y f  z ε  (3.2) 

with ( )f   a known function, 0kz  a vector of known variables for any ,k S kε  a random noise and   a 

vector of parameters to be estimated. The imputed value can be generated using the random imputation 

mechanism 

 * *
0
ˆ: = ( ) ,k k kI y f  z ε  (3.3) 

with ̂  an estimator of ,  and *,kε  a random term obtained by randomly drawing from the residuals 

0
ˆ= ( )k k ke y f  z  observed for .rk S  This imputation mechanism preserves the distribution of ky  at the 

cost of an additional variance for the imputed estimator ŷIt  because of the random term *.k kk Sm
d

 ε  A 

modification of the Cube Method (Chauvet, Deville and Haziza, 2011) allows sampling among residuals 

,ke ,rk S  ensuring that the variability of *

m
k kk S

d
 ε  is (almost) zero. The distribution of the imputed 

variable is maintained, while avoiding an increase in variance for ˆ .yIt  Most random imputation methods 

allow a balanced version, which has the great advantage of reducing variance without requiring additional 

information. 

 
4. Weight-share method 
 

The generalized weight-share method provides an elegant and practical solution for surveying a 

population BU  using another population ,AU  for which there is a sampling frame. As the authors pointed 

out, this is an essential tool for producing cross-sectional estimates in longitudinal surveys, where 

households present at date 1t   are captured using individuals selected at time t  and tracked over time (e.g., 

Ardilly and Lavallée, 2007). 

The key element of the method lies in the ability to transform any variable By  from BU  into a synthetic 

variable Ay  from ,AU  with the same total. Let jkl  be the link variable between the two populations, equal 

to 1 if units Aj U  and Bk U  are linked, and 0 otherwise. Let = A

A
k jkj U

L l
  be the total number of links 

between k  and ,AU  assumed to be > 0  for all .Ak U  For any ,Aj U  the synthetic variable is written as 

 = ,
B

B
jk kA

j B
k U k

l y
y

L

  (4.1) 
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which means that for any ,Bk U  each B
ky  is divided equally between all units in AU  linked to it. The 

conservation property of the total =B A

B A
k jk U j U

y y
    allows for using a Horvitz-Thompson estimator on 

,AU  which simplifies variance estimation in particular. 

The weight-share method is traditionally used for discrete populations (e.g., individuals, households, 

businesses). The same principle applies to more complex cases, where the survey population and the sample 

population are different in nature. In forest inventories (e.g., Gregoire and Valentine, 2007), the usual 

practice is to select a sample of points in a continuous universe AU  and use plots at these points to capture 

trees, which constitute the (discrete) population of interest .BU  To switch to a total estimate of ,BU  a 

variable By  can be transported on AU  in a so-called local density variable, following the same principle 

used in equation (4.1); see Stevens and Urquhart (2000) and Mandallaz (2007). Chauvet, Bouriaud and 

Brion (2023) have shown that various methods proposed in the forest inventory literature can be seen as 

stemming from an extension of the weight share method. 

 
5. In conclusion 
 

My first collaboration with Jean-Claude was on my doctoral thesis, which I wrote under his supervision 

between 2004 and 2007. The thesis dealt with the use of bootstrap methods in survey theory, and more 

specifically with the Gross method (1980), which Jean-Claude had already considered in a review article on 

replicate-based variance estimation techniques (Deville, 1987). As part of my thesis, I studied the 

application of the Gross method to sample designs with unequal probabilities (including Poisson and 

rejective sampling), balanced designs and multi-stage sampling. 

Ultimately, I only co-wrote four articles with Jean-Claude, which isn’t very many given the number of 

years we spent together at the Laboratoire de Statistique d’Enquête. However, my research was strongly 

influenced by our discussions. A significant part of my work deals with balanced sampling methods, and 

more specifically the theoretical properties and applications of the pivotal method. My thesis work on 

bootstrap left me with a guilty pleasure for variance estimation methods, as much for analytical techniques 

as for bootstrap. I have had the opportunity to use the linearization approach on several occasions in the 

epidemiological field, for estimating treatment effects using inverse probability weighted estimators, very 

similar in essence to the estimators used to deal with unit non-response. The link between the weight-share 

method and forestry methods is a new discovery for me and has inspired great research prospects. The 

methods developed by Jean-Claude still have a bright future ahead of them. 
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Abstract 

This article discusses and provides comments on the Ardilly, Haziza, Lavallée and Tillé’s summary presentation 
of Jean-Claude Deville’s work on survey theory. It sheds light on the context, applications and uses of his 
findings, and shows how these have become engrained in the role of statisticians, in which Jean-Claude was a 
trailblazer. It also discusses other aspects of his career and his creative inventions. 

 
Key Words: Sampling; Calibration; Balancing; Weight sharing; Quota; Statistical methodology; Statistician. 

 
 

The announcement of Jean-Claude Deville’s death in October 2021 was met with great emotion at the 

Institut national de la statistique et des études économiques (INSEE) and the Service statistique public (SSP) 

(France’s official statistical system), as well as in international circles (e.g., Canada, European partners). He 

was a great personality ‒ both personally and intellectually ‒ and his colleagues were deeply saddened by 

his death, but his body of work speaks to his outstanding qualities. Yves Tillé compiled a bibliography of 

Jean-Claude Deville’s work, available on INSEE’s Journées de méthodologie statistique website (French 

only), which also contains the proceedings of all the Journées from 1991 to 2022, including the papers 

mentioned in this article. 

Ardilly, Haziza, Lavallée and Tillé’s article is a remarkable account of some of Jean-Claude Deville’s 

major innovations in survey theory and statistical survey practice, particularly at the SSP, but also 

internationally ‒ balanced sampling, calibration, weight sharing, calculation of complex estimator variance, 

quota sampling. 

For those unfamiliar with Jean-Claude, the article seems to suggest that his career was essentially 

devoted to developing advanced fields of theoretical investigation, complex mathematical formulations and 

highly specialized research. However, as mentioned in the introduction, it is important to remember that 

Jean-Claude Deville worked at INSEE for several decades, part of which he spent working only with the 

Statistical Methods Unit, where survey questions had a key role. After this, he began working at the survey 

statistics laboratory of the École nationale de la statistique et de l’analyse de l’information (France’s 

National School of Statistics and Information Analysis) in Rennes, France. 

All this to say that he was driven by the need to find practical solutions to the real problems he or other 

statisticians faced in their day-to-day work, without necessarily knowing how to solve them. He also had a 

remarkable ability to describe and broaden the scope of the problems brought to his attention as well as to 

establish links between different disciplines. 

http://jms-insee.fr/
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Jean-Claude Deville also worked on subjects other than those strictly related to survey theory, including 

demography and data analysis ‒ further proof of his diverse research. He was also the founder of and resident 

theoretical expert on a major overhaul of the French census system, transforming it into a continuous sample 

census that was implemented in 2004. Although this article does not discuss his work, it is worth 

remembering. 

He also taught at the École nationale de la statistique et de l’analyse économique (France’s National 

School of Statistics and Economic Analysis) (e.g., second-order random processes, in-depth surveys). 

Ardilly, Haziza, Lavallée and Tillé produced an eloquent, yet highly detailed summary of the technical 

aspects of Jean-Claude Deville’s work. This discussion cannot begin without first highlighting the quality 

and comprehensive nature of their article. 

In addition, what follows is not intended as a commentary on the quality of this general article or on the 

intrinsic benefit of Jean-Claude Deville’s work, but rather as a way to shed light on some of his work to 

recontextualize it according to the daily questions of the statisticians who gave rise to it or who applied it. 
 

A man and his career 
 

Discussing Jean-Claude Deville’s work using the overview presented in the article also means discussing 

his day-to-day work as a statistician, which ‒ as mentioned above ‒ fuelled his theoretical reflections. 

Here are a few examples that can help to remember the variety of his work and his pragmatism. He was 

an expert on many subjects. The following is a random list drawn from my personal experience: 

Using the Vacances des Français survey (survey on vacations taken by the French), he helped answer a 

question from a group of Breton communes, which wanted to show that tourism in their areas had dropped 

following the sinking of the Amoco-Cadiz in 1978 and the resulting oil spill, with the aim of obtaining 

compensation in criminal court (1984). 

In 1985, for the CAMME project (transforming the household economic survey into a monthly survey), 

he devised a method for drawing the telephone sample from the paper directory ‒ the only one available at 

the time. 

From 1993 to 1998, he worked extensively to transform the French employment survey ‒ which was 

initially annual ‒ into a quarterly, then ultimately monthly, survey. He was disappointed that not all his 

recommendations were followed, but he did support and defend his colleagues, which was appreciated. For 

example, when a service provider with no subject-matter knowledge wanted to get involved (“I appreciate 

your vigilant tone”, he told me when I protested against this outside initiative). 

He was the architect of the modernized (continuous) census of population (1999-2000) and led a working 

group where he enjoyed participating in “spirited” scientific debate. 

He closely followed the OCTOPUSSE project (Organisation Coordonnée du Tirage Optimisé Pour Une 

mise en œuvre StatiStique des Échantillons, i.e., France’s coordinated optimized selection for statistical 

sample processing project) to build the new master sample from the continuous census, while ironically 
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illustrating his concern (in the form of a “parable of local leaders”) that INSEE’s regional directors would 

be asked for their opinion on the samples once they had been selected (2009). 
 

Calibration 
 

This corpus should be first because, on the one hand, these studies are now more than 30 years old and, 

on the other, it could be said that calibration procedures are the most popular theories in that they have 

become both commonplace and widespread in most statistical surveys. In addition, of the studies cited in 

Ardilly, Haziza, Lavallée and Tillé, it is undoubtedly the oldest theory that has been developed, implemented 

and normalized in tools, such as the SAS CALMAR macro. 

The value of calibration is well established ‒ not only does it reduce estimator variance, but it also 

ensures the coherence of estimated totals based on a statistical survey with external data deemed to be 

accurate and indisputable, on a certain number of sociodemographic, geographic and economic reference 

variables. 

To use it requires only available auxiliary information. Such information exists in most statistical 

systems and is usually correlated with survey variables of interest, but the calibration variables and those 

observed in the survey need to be conceptually coherent. 

However, one downside is the apparent ease with which the technique can be used and the temptation to 

calibrate to “everything” available. The price to pay is a more delicate adjustment of calibration weights 

and the risk of obtaining outlier weights, hence the need to limit the weights or, more specifically, the ratio 

between calibration weights and initial survey weights. It is also important to consider the definition of the 

most relevant calibration variables, without trying to multiply them, as there is a risk of introducing random 

collinearity. 

For example, at INSEE, the “Groupe Marges” (calibration working group) is working to define a policy 

on survey calibration methods, both in terms of the variables to use ‒ whether mandatory or optional ‒ and 

the sources best suited to providing reference margins. 

The method is so popular that it can be used “without weights”: empirical data can be calibrated to totals 

to make them “more representative” of the reference universe, without knowing the exact process of origin, 

then it is implicitly agreed to act as if there were initial survey weights that are all equal. 

Calibration can also be done on “nothing”, if no auxiliary information is available, which is rare. 

Generally, there are two dual formulas to keep in mind: 
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for a sample  s  selected from a population of size ,N  with inclusion probabilities .i  At the very least, we 

can therefore calibrate to the size of the population to have weights that add up exactly to this size. 



308 Christine: Comments on the Ardilly et al. (2023) paper 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Calibration procedures are used when there are several levels of nested statistical units, e.g., individuals–

households, establishments–businesses, when calibration data on the different levels are available and when 

it is necessary to ensure the weightings between these levels are consistent. 

Calibration has also often been used as an implicit way to correct non-response within a general 

procedure commonly referred to as “survey adjustment,” which eliminates the need for an explanatory non-

response model, which requires knowing explanatory variables at the individual level for both respondents 

and non-respondents. Françoise Dupont (Dupont, 1993) illustrated the equivalence of an integrated method 

and a two-stage method (non-response correction, then calibration) under certain assumptions. 

More specifically, the two approaches were combined in the generalized calibration method for treatment 

of non-response. With generalized calibration, non-response in a survey can be adjusted even when the 

individual characteristics most correlated with non-response are known only in the sample of people who 

responded to the questionnaire. This is particularly true when the non-observance of auxiliary calibration 

variables among non-respondents is the result of a delay between the information in the frame and the survey 

itself. 

The method consists more specifically in writing the calibration equations as follows: 

 
   

    ,k k kk r
d F z x X


   where kz  denotes the vector of non-response explanatory variables, known in the 

sample r  of respondents, and kx  denotes the vector of calibration variables, well correlated with the 

variables of interest, known in the sample and for which the totals (vector )X  are known in the population. 

F  is a calibration function. 

As a result, the method can correct non-response even when the explanatory variables are observed only 

in the sample of respondents, particularly when these variables are variables of interest. This has been 

programmed in a macro named “Calmar 2” (Le Guennec and Sautory, 2022), which is less popular than the 

original Calmar macro. 
 

Balanced sampling 
 

In some respects, balanced sampling ‒ first formalized in the work of Jean-Claude Deville and Yves 

Tillé in the early 2000s ‒ may appear to be a mirror image of calibration. It goes back to the idea Jean-

Claude Deville himself put forth as a statistician’s classic dream of building a “representative” sample, a 

perfect reduced model of the population from which it was drawn. While it was already known that a 

stratified sampling plan with proportional allocation conformed to the population structure in the sample, in 

terms of a certain number of descriptive characteristics, the aim was also to work with representativeness 

with regard to continuous variables. 

Compared with calibration, this technique also has the advantage of not modifying the design weights, 

as calibration does, but of imposing balancing conditions for a given set of inclusion probabilities, and 

therefore, design weights. 

However, it should be noted that a survey design, as a law on the set of possible samples in a finite 

population, cannot be reduced to obtaining a fixed set of inclusion probabilities .i  Selecting balanced 
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sampling that respects the set of the , ,i  as opposed to one that does not, means modifying the initial design 

while respecting the values of the i  and imposing so-called balancing constraints, which could give the 

impression of altering the randomness of the process. 

Naturally, in extreme cases, too many constraints would reduce the number of admissible samples, or 

even eliminate them all. Conversely, obtaining a balanced sample may be only approximate, hence the need 

to put variables into order of their importance in balancing so as to eventually relax constraints. 

For more than 20 years now, balancing techniques have spread through the statistical community and 

become commonplace. Some of the first applications in France involved selecting rotation groups of 

communes for the continuous census (to which Jean-Claude Deville contributed significantly), with various 

constraints on population counts. The technique was then used to draw primary units from the master sample 

from the census for household surveys, and it has also been used to ensure “geographical” balancing, but it 

would be impossible to list all its current applications. It’s also thanks to the fact that the initial macro, called 

CUBE, saw many developments, extensions and kinetic improvements, first in SAS, then in R. 

As with calibration, it can be said that balancing can be carried out “even on nothing”, i.e., when no 

particular variable of interest is available or relevant to the survey topic. As a result, we use basic properties 

of balancing: 

- Balancing on the constant variable equal to 1 is equivalent to balancing the sample on population 

size N. 

- Balancing on the inclusion probability variable is equivalent to ensuring a fixed-size design. 

- A stratified design with simple random sampling within each stratum is balanced on the stratum 

membership indicator variables, and, with constant inclusion probabilities per stratum, balancing 

on these variables amounts to stratified sampling with a fixed sample size per stratum. 

- With constant inclusion probabilities in the population, balancing on stratum membership indicator 

variables is equivalent to a stratified sampling with a fixed sample size per stratum and proportional 

allocation. 

 

In addition, balanced sampling using the Cube macro often replaces the basic sampling procedures 

described above. However, if variables of interest are added, the balancing method obviously becomes more 

specific than a “basic” selection. 
 

Weight sharing 
 

The weight sharing method seems to be old (1980s) yet fairly intuitive. Philippe Brion (Clairin and 

Brion, 1997) cites examples of its application: the “weighted segment” method used in agricultural statistics 

involves selecting a sample of segments (determined from natural boundaries, e.g., rivers, roads), then 

surveying each farm with land in the segment. It then becomes clear that a farm can be reached several times 

from several segments and that this repetition must be taken into account to ensure the weights are calculated 

appropriately. This method was inspired by Julien and Maranda (1989). 
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Other examples are also given: to survey a population of nomadic herders, a list of the country’s water 

points must be drawn up and a sample drawn, then we survey the individuals who visited these water points. 

The risk of double counting can be eliminated by retaining only the first visit during a given period, which 

requires knowledge of the details of these visits, including how many and when. 

On a different note, “basic” weight sharing is used when there is a survey of individuals drawn from a 

sample of households, with characteristics relating to each of the two levels, and we want to produce 

consistent statistics from the two levels (e.g., a distribution of individuals according to a given qualitative 

characteristic must be consistent with a household-level statistic that counts individuals with this 

characteristic). Therefore, the household and individual weights need to be articulated via a weight sharing 

method. This field was then extensively investigated and theorized by Pierre Lavallée in collaboration with 

Jean-Claude Deville. 

Jean-Claude Deville ‒ a Breton both by adoption and at heart ‒ had a keen interest in tourism in Brittany. 

One field of application for the weight sharing method was surveys of visitors to tourist sites. By surveying 

tourists at a given site for a given period, information about their stays (e.g., location, duration, 

accommodation), sociodemographic profiles and spending can be obtained. However, conducting these 

surveys at several sites could result in potentially interviewing the same tourist multiple times, thereby 

considerably biasing the resulting estimates. 

By identifying links (in this case, the places where a tourist surveyed at one location had previously been 

elsewhere), using the weight sharing method corrects this risk of bias. However, it is very important to 

clearly and precisely identify all desirable links when using this method and anticipate what questions 

should be added to the questionnaire for this purpose, whether in these or other surveys. 

Examples of similar uses of the method include surveys of homeless people (interviewed at a food 

establishment or accommodation) and attendance at cultural festivals (e.g., the opera festival in Aix-en-

Provence or Beaune, the short film festival in Clermont-Ferrand), where audiences may attend several 

shows, and therefore be surveyed multiple times. 
 

Calculating the variance of complex estimators 
 

As a reminder, below are a few areas in which Jean-Claude Deville’s techniques can be applied: 

- fractiles; 

- poverty indicators, estimated using SILC (Statistics on Income and Living Conditions) surveys, 

which have a major political impact; 

- concentration indexes (e.g., GINI). 
 

He addressed the following other areas on this theme in an innovative way, but they were not cited in 

Ardilly, Haziza, Lavallée and Tillé: 

- Eigenvalues in a principal component analysis of sample data; 

- Estimators derived from selection points from an infinite set, where discrete probabilities are 

replaced by measures in the sense of measure theory. 
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Quotas 
 

Jean-Claude Deville’s work on this subject should be seen more as an exercise in style. He was very 

reluctant about empirical versus random surveys, as the former were suitable only for private institutions 

that lacked appropriate frames, whereas official statistics had the means to manage such frames, draw 

samples from them, and calculate estimators and their variances based on the definition of a survey design. 

However, he wanted to build a theoretical approach to the quota method and define best practices. 

There are two possible approaches: 

- A model approach on the variable of interest, which is the best way of theoretically justifying the 

quota method. However, Jean-Claude Deville was, by nature, very reticent of models and of the 

risks official statistics would be taking by resorting to them. A model is based on assumptions, but 

are they verified, how do we know and can they be imposed on the user? 

- We try to place quotas in the context of design-based sampling and pretend it was stratified simple 

random sampling. 

 

In all cases, the key issue is the variance of the selected estimators. Can it be calculated theoretically and 

estimated and how can rules be derived for choosing between a random method and a quota method when 

either is possible but with different cost constraints and sample size scope? 

 

Conclusion 
 

In all the studies mentioned, and many others, Jean-Claude Deville was not only an innovator, but he 

also paved the way for many other areas of future development and research, which many researchers are 

now pursuing. 

We cannot recall Jean-Claude Deville’s memory without mentioning another major project he was 

involved in, one that goes hand in hand with his theoretical work: INSEE’s Journées de méthodologie 

statistique. He started this event in March 1991 and organized them until 1998. They are still held but are 

organized by other teams. Michel Glaude, Director of Demographic and Social Statistics at INSEE, 

highlighted the following at the end of the seventh edition of the Journées on December 5, 2000: 
 

“There was a passing of the baton between a team [Jean-Claude’s] that had organized the Journées de 

Méthodologie Statistique in the past and had devoted a great deal of energy and affection to it, and a new 

one. [...] I think it’s a fine lesson in how to pass on and pursue a goal.” 
 

Jean-Claude was obviously a major contributor to each Journées event, and some studies mentioned in 

Ardilly, Haziza, Lavallée and Tillé were presented there for the first time (jms-insee.fr). His last two papers 

are from 2015 and 2018 (Deville, 2015; Deville, 2018). 

To understand his motivations and objectives in creating the Journées, we must go all the way back to 

the introduction he gave in 1991, which appeared in the Proceedings of the first edition: 
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“The first goal of the Journées was to give the statistical community a tangible way to express themselves 

by bringing it together in one place for two days. 

The second was to make “practising statisticians” feel that statistical methods are useful for doing statistics. 

The third was to put on an event of a high scientific level, even if it meant setting the bar a little high for 

some of the public. 
 

Inspired by the example and the contacts he had established with Statistics Canada, Jean-Claude 

Deville’s Journées were vector of knowledge sharing and transfer and an opportunity to invite leaders in 

international statistics to come and have lively, productive debates with them. The events have become a 

place for statisticians from the public and private sector, professional and academic statisticians, and French 

and foreign statisticians to strike up a conversation and innovate. 

Had it not been for the COVID-19 pandemic, he might have been able to take part in the 30th anniversary 

in March 2021, but the most recent edition had to be postponed to March 2022. 

Jean-Claude Deville had an inquisitive mind, always seeking to expand his knowledge and looking for 

improvements. He paved the way for others and proved that statistics is far from a static discipline. 
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Many things have been written about Jean-Claude Deville in tributes from the statistical community (see Tillé, 
2022a; Tillé, 2022b; Christine, 2022; Ardilly, 2022; and Matei, 2022) and from the École nationale de la 
statistique et de l’administration économique (ENSAE) and the Société française de statistique. Pascal Ardilly, 
David Haziza, Pierre Lavallée and Yves Tillé provide an in-depth look at Jean-Claude Deville’s contributions to 
survey theory. To pay tribute to him, I would like to discuss Jean-Claude Deville’s contribution to the more day-
to-day application of methodology for all the statisticians at the Institut national de la statistique et des études 
économiques (INSEE) and at the public statistics service. To do this, I will use my work experience, and 
particularly the four years (1992 to 1996) I spent working with him in the Statistical Methods Unit and the 
discussions we had thereafter, especially in the 2000s on the rolling census. 
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I first learned of Jean-Claude Deville’s work on harmonic analysis of data on the trajectories of women’s 

fertility for my studies at ENSAE in the late 1980s. Jean-Claude Deville had examined these methods in the 

1970s. 

In his 1974 article (Deville, 1974), Jean-Claude Deville explained that after examining fertility in 

previous studies, he was looking for a satisfactory exploratory method to use rich individual data since many 

were available for multiple dates, which was quite rare at the time. He used the 1962 family survey, which 

provided information on the life trajectory of female respondents regarding the birth of children. In his 

introduction “Statistician seeking an analytical method,” he explains that he wants to analyze the gradual 

formation of families and the calendar of births based on the number of years married and that his entire 

thinking stems from a concrete problem with the data to analyze. He explains in detail why he does not want 

to use econometric methods that presuppose a model ‒ and therefore a preconceived idea of causal links. 

We already see his reservations about econometrics, which increased later on. Next were the mathematical 

developments to show how to adapt the general principle of harmonic analysis to time series data. This is 

an extension of harmonic analysis, as it is usually practised. An application of this was illustrated in the 

article by Deville (1977). 

This is a typical example of the research process in applied statistics: we start with a tangible case in a 

work environment for which we do not yet have a suitable tool, then conduct bibliographical research by 

integrating our predecessors’ contributions, and lastly, a mathematical reflection to propose a new method 

to test out in real life, refine and popularize. This long, open process, the example of Pierre Thionet’s career 

(1916-2002, architect of survey methodology at INSEE from 1946, to whom we owe the introduction of 

random surveys at INSEE, together with Raymond Lévy-Bruhl, who came up with methodological 
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reflections involving many ideas that went on to be developed) and whom Jean-Claude admired (Deville, 

2003; Armatte, 2003; Ardilly, 2022), explains why he has always defended career-based logic for 

methodologists so that ideas can come from accumulated experience and feed on theoretical readings, by 

proposing improved methods in order to innovate. 

For him, the elegance of the mathematical solution and its successful application were a source of great 

satisfaction. He spoke passionately about the findings he was proud of, such as drawing 1 out of 20 people 

for the 1990 census, which already comprises the idea of balanced sampling that Tillé (2022a) spoke about 

in his tribute to Jean-Claude Deville at the 2022 Journées de Méthodologie Statistique conference 

(Statistical Methodology Days). Another source of pride was the survey designs for external requesters for 

which he proposed creative, custom-made solutions. 

He was the architect of two “institutional” creations that expanded over time: a Statistical Methodology 

Unit and the Journées de Méthodologie Statistique. In both cases, “problems and solutions” were prioritized 

over “theory.” 
 

Creation of the Statistical Methodology Unit 
 

In 1994, the Statistical Methodology and Survey Division saw its missions expanded and its staff grow, 

going on to become the Unité Méthodes Statistiques (UMS) (Statistical Methodology Unit), which was 

responsible for the statistical methods used to produce demographic and social statistics. He led the UMS 

until 1998. 
 

Journées de Méthodologie Statistique 
 

Jean-Claude Deville created the Journées de Méthodologie Statistique, based on the concept of the annual 

scientific meetings that take place at the U.S. Census Bureau and Statistics Canada. In his view, there were 

a number of objectives, which he presented in his introduction of the third edition in 1993 (Deville, 1993): 
 

“There are many general statisticians in regional directorates and departmental statistical services with 

few opportunities to meet to talk shop.” [translation]. The purpose was to lead a network of statisticians and 

maintain their skills.  
 

“The second, harder idea […] was to give visibility to methodology work.” [translation] 
 

“Lastly, the third idea: ask foreign colleagues to give their thoughts on a specific problem and comment on 

INSEE’s work.” [translation] 
 

He concludes as follows: 

“In the end, the success of the Journées is easily explained: official statistics, as a discipline, exist in both 

France and around the world. It requires effort; the Journées de la statistique officielle are the periodic 

scientific meeting. It is easy to think of what is missing: an associated structure, as well as training and 

research structures in universities. All this should result in a more systematic publication of the work in 

more accessible forms than the current ones.” [translation] 
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Of the four years (1992 to 1996) I spent in the Statistical Methods and Survey Division and in the UMS, 

in two different positions, I witnessed many changes to statistical practices, always based on two pillars: 

theory and practice. 

In 1992, when I returned to the UMS to work on non-response, the theoretical groundwork of calibration 

was established and the SAS CALMAR macro (Deville, Särndal and Sautory, 1993) developed by Olivier 

Sautory could already be used to apply this method. On one hand, the tangible work of INSEE statisticians 

consisted in applying an iterative calibration procedure by successively calibrating each margin until the 

process converges to adjust their surveys. 

Thanks to the first article on calibration published in 1992 in JASA (Deville and Särndal, 1992), he 

scored very high points with his INSEE colleagues and gave survey methodology its first distinctions at the 

institute. It had yet to be proven that this method simultaneously corrected non-response bias and improved 

the accuracy of the estimator, as per the intuition of practitioners and their survey adjustment practices. This 

is the work I completed with Jean-Claude Deville, which resulted in publications for the 1993 Journées de 

méthodologie statistique (Deville and Dupont, 1993; and Dupont, 1993). 

We also needed to expand the use of the SAS CALMAR macro among practitioners. This is why the 

UMS gave many presentations on the CALMAR macro and offered to advise survey managers. Thanks to 

the presentations, the availability of the tools and accompanying advice, and management of the adjustment 

of complex surveys, we were able to gain the trust of survey managers and gradually modify their practices. 

This led to more in-depth reflection on the different cases of adjustment and to moving toward more 

homogeneous practices and a more sophisticated solution, when applicable (Dupont, 1995). 

In the same spirit, other practices were developed with the help of his UMS colleagues. The growing 

success of the methodology days demonstrated the desire and need to talk about and share statistical 

methodology in all fields, without prioritizing subjects according to their mathematical content, but rather 

according to their actual usefulness, in a field wider than econometrics, the only statistical discipline truly 

recognized at INSEE at the time. He helped to bolster the UMS’s credibility and advance its recognition in 

official statistics in France and around the world. 

This recognition was confirmed with the development of the unit in charge of demographic and social 

statistical methodology, whose human and financial resources expanded in 1994, while opening up to data 

collection methods with the creation of a small team to explore this, which he entrusted to me. 

Under his leadership, the UMS conducted purely methodological operations along with current 

collection operations. Work was initiated to quantify the interviewer effect (Berthier, Deville and Néros, 

1998) and two other projects to analyze the interviewer effect more qualitatively in surveys being developed 

on the duration of work and situations of disadvantage, another on the effect of mandatory response (Berthier 

and Dupont, 1999), and lastly, a more thorough project measured the impact of manual editing by managers 

on paper questionnaires. This involved examining the reality of the manual edits done in regional 

directorates based on instructions from survey designers in order to examine the evolution of edits with a 

view to transitioning surveys to computer-assisted personal interview (CAPI) mode, which includes the 
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possibility of automatic edits. By looking at the differences between the instructions given and the actual 

work done, this project illustrated the difficulty involved in manual edits. 

Many other projects began during this period in order to advance practices through turnkey tools 

provided to statisticians, as is already done at Statistics Canada. 

After the CALMAR tool, management of the automatic coding tool SICORE, designed by Pascal Rivière 

and Eric Meyer (Rivière, 1993) and led by Jean-Claude Deville, was transferred to the UMS to develop and 

systematize its use for coding occupations and countries. The tool was also adopted by foreign countries 

through INSEE’s cooperation activities. 

In 1994, a Comité du label (approval committee) was created (Christine and Roth, 2020), with the 

purpose of looking at survey design in terms of sampling, adjustment, questionnaire design and, more 

generally, the information collection system from a methodology perspective. The UMS was represented 

by an expert in charge of reviewing how best practices in terms of methods are applied. This systematic 

review of the methodology of all surveys helped to gradually develop the role of advising survey designers 

on the adjustment and estimation phases, as well as on questionnaire design (Bilocq, 1996). He contributed 

to advancing tangible practices and developing the advisory role of the UMS in survey development, which 

was formalized a few years later in the organization. 

The UMS took on the management of a common set of questions in household surveys about household 

composition, which had just been developed by a joint effort led by an experienced survey designer. The 

challenge was to systematize its use by offering services, as for a tool, in order to harmonize practices 

inasmuch as possible. Variables were added to produce data on immigrants and foreigners that could be 

analyzed in all household surveys. Managing the conversion to CAPI and automatic coding has made it 

more attractive to survey designers, and has enabled us to take pooling in surveys further, thanks to a turnkey 

tool. 

In line with the idea of a turnkey tool and advice on using it, the design of a precision calculation software 

package called POULPE (Caron, Deville and Sautory, 1998) was launched. 

In the same period, the methodology of the employment survey was undergoing a major change, with 

the introduction of an ongoing employment survey. The UMS played a key role in the discussions on the 

various aspects of methods and organization (Lagarenne and Schuhl, 1995; Détour, Thiesset and Schuhl, 

1995) that led to the introduction of the ongoing employment survey, which is still conducted today. 

The need for local statistics incited the UMS to support the implementation of a local population 

estimation method (Decaudin and Labat, 1996). 

At the same time in 1994, Jean-Claude Deville and other INSEE colleagues were thinking about making 

methodological changes to the census, which was to later become the “rolling census” (Deville and Jacod, 

1996). This unique method, though complex with regard to estimation and variance calculation, had many 

benefits for the organization, particularly smoothing the budget and the workload, which is why it was 

adopted (Durr, 2005). This transformation of the census was the first opportunity to use balanced sampling 
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when it was introduced in the 2000s, thanks to the CUBE macro (Tillé, 2022a). In practice, it revealed other 

qualities; for example, it contributed to implementing a cycle of ongoing improvements to the processes, 

which was not part of its initial objectives. 

Everyone knows Jean-Claude Deville differently, based on their experience working with him. I 

especially wanted to show his constant desire to bring about changes to the work at INSEE, be it for “hard” 

methodology (estimation, adjustment, sampling and variance calculation) or “soft” methodology, i.e., 

collection methods that are harder to analyze, such as a topic of study, and are published much less often. 

Thanks to his perseverance and the solutions he implemented, he helped survey methodology at INSEE 

gain more recognition. For Jean-Claude Deville, recognition of the role of methodology remained imperfect 

because the methodology used for businesses was the responsibility of another unit at the time, despite the 

potential for pooling resources. 

It was his passion for theoretical mathematics and his unwavering belief in the day-to-day application 

that contributed to all the technical progress mentioned above and paved the way to an ambitious, recognized 

methodology at INSEE. 
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Jean-Claude Deville: Mathematics lover, high-flying 

researcher, and visionary 

Camelia Goga and Anne Ruiz-Gazen1 

Abstract 

Jean-Claude Deville is one of the most prominent researcher in survey sampling theory and practice. His research 
on balanced sampling, indirect sampling and calibration in particular is internationally recognized and widely 
used in official statistics. He was also a pioneer in the field of functional data analysis. This discussion gives us 
the opportunity to recognize the immense work he has accomplished, and to pay tribute to him. In the first part 
of this article, we recall briefly his contribution to the functional principal analysis. We also detail some recent 
extension of his work at the intersection of the fields of functional data analysis and survey sampling. In the 
second part of this paper, we present some extension of Jean-Claude’s work in indirect sampling. These 
extensions are motivated by concrete applications and illustrate Jean-Claude’s influence on our work as 
researchers. 

 
Key Words: Electricity consumption estimation; Functional data analysis; Generalized weight share method; Indirect 

sampling; Postal traffic estimation. 

 
 

1. Introduction 
 

During his long career as “administrateur” at Insee (Institut national de la statistique et des études 

économiques), the French Statistical Office, Jean-Claude Deville encountered various statistical studies, 

some of them raising new challenges in statistics or in survey sampling theory. One of his greatest concerns 

was to solve the problems of practitioners, as he himself stated in the introduction of Deville (1974): “The 

following article was born from a very concrete problem: the study of the progressive constitution of 

families, of the calendar of births according to the duration of marriage.” (the original French version is: 

“L’article qui suit est né d’un problème tout à fait concret : l’étude de la constitution progressive des 

familles, du calendrier des naissances en fonction de la durée de mariage”). He did not hesitate to go to the 

field and participate in the drawing of a sample for example. He went one day, at 5 o’clock in the morning, 

in a sorting center to assist in the drawing of letters carried out by the French postal service. On this occasion 

he said: “We can feel statistics live!” (source: personal communication with Alain Dessertaine, research 

engineer at La Poste, the French postal service, who collaborated with Jean-Claude Deville on surveys 

conducted by La Poste, see also Section 3 of the present paper). His taste for applications, combined with 

his taste for mathematics and his extraordinary mathematical culture, led to the development of new theories 

and methods in statistics and survey sampling that answered the initial problems and much more. 
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Our collaboration with Jean-Claude was long-lasting (since the 2000s). We attended many of his 

fascinating talks and courses, had a lot of long and exciting discussions around mathematics (sometimes on 

small pieces of paper), and published several papers with him. He greatly influenced our working methods 

as researchers by encouraging us to start from applied problems, and develop general theoretical results 

even though we did not work in official statistics. He was very inspiring and passed on to us his passion for 

survey theory and more generally statistics and mathematics, but also his taste for applications. In this 

discussion, we would like to illustrate how Jean-Claude influenced our work, and as a result, the work of 

our PhD students. To do this, we will examine two concrete applications that we have encountered in our 

career: electricity consumption curves and postal traffic estimation. These applications allowed us to make 

some (small) advances in the theory of survey sampling that are extensions of Jean-Claude’s work in areas 

where he was a precursor: functional data analysis and indirect sampling. 

The Section 2 of this discussion is dedicated to Jean-Claude’s work on independent functional data, 

during the 1970s, before he started working on survey sampling. This section gives also an extension of the 

functional data analysis approach to dependent survey data from a population of curves, such as the 

electricity consumption curves, and the aim is to estimate the total electricity consumption curve. In the 

Section 3, we describe a problem of indirect sampling encountered in practice at La Poste. We focus on a 

particular type of links structure between the frame and the target populations called “Many-to-One” and 

show how the results in Deville and Lavallée (2006) can be extended. We also consider a particular double 

indirect sampling where the number of links to observe can be greatly reduced. Section 4 concludes the 

discussion with some personal thoughts on our collaboration with Jean-Claude. 

 
2. Deville and functional data analysis: A visionary of big data 
 

2.1 Independent functional data 
 

The seminal paper from 1974, “Méthodes statistiques et numériques de l’analyse harmonique”, 

unfortunately published only in French, develops a new kind of statistics, the statistics from functional data, 

largely popularized later by the book of Ramsay and Silverman (2005). Deville’s 1974 paper relates to a 

study carried out in 1962 on 240,000 women aged under 70, with the main aim of individually reconstructing 

the history of the constitution of each family. The date of birth of each woman along with the dates of birth 

of her children were registered, as well as the level of education, occupation, geographical location of the 

family in 1962, and further information about the husband, etc. As Deville claims in Deville (1977), which 

details the application on family data of the method developed in Deville (1974), “the statistician feels a 

certain perplexity in front of such rich data”. Deville was at the dawn of big data analysis and the use of 

traditional methods such as principal component analysis (PCA) led to uninterpretable results. Statistical 

experiments based on a division of time at a finer step, quarters instead of years, led Deville to think that 

the “continuous nature of time was not without influence on the choice of a method of analysis” (Deville, 

1974, Chapter 1). He considered that each individual k  was characterized by a temporal curve or trajectory 

( )kY t  for t  varying in a closed interval [0, ],T  “instead of being caracterized by a finite dimensional vector” 
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(Deville, 1977) and he extended principal component analysis to this new functional setting. In the family 

study, 0 represents the wedding year and = 20T  years since the wedding year. Deville considers this period 

of time after the wedding date as the maximum laps of time for having children since very few children are 

born after 20 years of marriage. The value ( )kY t  represents the number of children at year t  (since the 

wedding year). The study was conducted on only 100,000 so-called complete families, i.e., not dissolved 

after 20 years of marriage and the wife being under 45 years of age at the time of marriage. 

The observations [0, ]= ( ( ))k k tY Y t  T  are curves or functions, and handling such objects requires tools from 

the theory of random processes and functional analysis. New and different statistical objectives appear in 

this functional setting and in his pioneer work, Deville puts the basis of a new kind of statistics, called 

several years later functional data analysis (Ramsay and Silverman, 2005). In this infinite dimensional 

space, a first step would be to represent the data as well as possible in a small dimensional space in order to 

get a description of the functional data that allows interpretation. In order to do that, Deville (1974) supposed 

that kY  are independent random functions belonging to the Hilbert space 2 [0, ],L T  i.e., the space of square 

integrable functions defined on the closed interval [0, ],T  equipped with the inner product 

0
< , > = ( ) ( )f g f t g t dt

T

 and the induced norm  

  
1 2

2

0
( ) ( )f f t d t 

T

  

for ,f 2 [0, ].g L T  He showed that kY  may be represented as follows:  

 
1

( ) = ( ) < , > ( ), [0, ],k k j j
j

Y t t Y v v t t 


   T   

where ( )t  is the mean of ( )kY t  (i.e., the average number of children for the study families at instant ),t  

( ), 1jv j   are orthonormal functions from 
2 [0, ]L T  depending on t  but not on the individual ,k  and called 

the harmonics of the process in Deville (1974) by analogy with harmonical analysis of periodical/stationary 

signals on Fourier basis. The components < , >,k jY v  1j   depend on the individual k  but not on the 

time, are not correlated with each other, and are of variance equal to ,j  with 1 2 .  …  The functions 

kY  may be approximated in a small q -dimensional space as follows:  

 ,
=1

( ) = ( ) < , > ( ) ( ), [0, ],
q

k k j j q k
j

Y t t Y v v t R t t     T  (2.1) 

where the remainder , ( )q kR t  is the smallest possible according to an integrated variance criterion. Relation 

(2.1) allows us to represent as well as possible the deviation of the curves kY  from their mean function   

in a small
thq  dimensional space. Expression (2.1) is the functional extension of the classical decomposition 

on the first q  principal components, and Deville (1974, Chapter 4) viewed it as a functional principal 

component analysis (FPCA), a term used later by many authors (Ramsay and Silverman, 2005). The 

functions ( )jv   and the quantities , 1j j   are closely linked to the covariance operator Γ  of ,kY  the 

functional equivalent of the covariance matrix. The covariance operator Γ  maps 
2 [0, ]L T  to 

2 [0, ]L T  and 

is defined by:  
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0

( ) = ( , ) ( ) ,a r r t a t dtΓ
T

 (2.2) 

for any function 2 [0, ],a L T  and ( , ) = cov ( ( ), ( )),k kr t Y r Y t  the covariance between ( )kY r  and ( )kY t  for 

, [0, ].r t T  Then, j  and ( )jv   are respectively the eigenvalues and eigenfunctions of :Γ  

 ( ) = ( ),j j jv t v tΓ  (2.3) 

with 0, 1,j j    supposed to be sorted in decreasing order 1 2 .  …  In a p -dimensional space, Γ  is 

the classical covariance matrix of size ,p p  and j  and jv  are the usual eigenvalues and eigenvectors. 

The reader familiar with multivariate PCA (Jolliffe, 2002), will recognize in < , >k jY v  the scores of the 
thj  principal component with variance equal to j  where j  interpreted as the part of the total variance 

explained by the thj  principal component. The same interpretation of j  is valid in the new functional 

setting (Deville, 1974). The thq  dimensional space spanned by the eigenvectors , =1, ,jv j q…  gives a 

representation of the main modes of variation along time t  of the data around the mean .  Deville (1977) 

implemented this new statistical approach and analyzed in-depth the family trajectories. 

 
2.2 Dependent functional data from sample surveys 

 

The method developed in Deville (1974) may be applied to various contexts, and Deville gave several 

examples in Chapter 8 of the same article. He had forward-looking ideas since studies requiring these 

functional tools soon appeared in various domains such as chemometrics (Hastie and Mallows, 1993), 

economics (Kneip and Utikal, 2001), climatology (Besse, Cardot and Stephenson, 2000), biology (Chiou, 

Müller and Wang, 2003), to name just a few among the numerous references on this field. 

A new statistical age appeared with the spread of automatic process for data collection as well as with 

increasing storage capacities. Due to such smart devices, it is now very common to have very large data 

sets. Electricity load curves is an example of such data. More exactly, the ERDF (Electricité et Réseaux de 

France) installed more than 30 million smart meters in every household and company. These meters are able 

to send individual electricity consumption measures at very fine time scales (every 30 minutes or even every 

minute or second). The discretization scheme being very fine, the statistical units can be considered as 

functions of time. For illustration, let us consider a test population of =N 18,902 French companies for 

which the electricity consumption has been measured every half an hour over a period of two weeks. A 

sample of 20 load curves extracted from this test dataset is drawn in Figure 2.1 as well as the mean and the 

median profiles. In this example, ( )kY t  is the electricity consumption of individual k  at instant .t  

Nevertheless, in the presence of technical and budgetary constraints due to limited passband or storage 

costs of huge databases, the analysis of the whole dataset may be very difficult or very costly. In Chiky 

(2009), it is shown that if we are only interested in simple indicators, such as total or mean trajectories, even 

very simple survey sampling techniques, such as simple random sampling without replacement, are 

attractive alternatives to signal compression techniques since they permit to obtain precise estimates at a 

reasonable cost. Based on these findings, the ERDF considered implementing effective sampling strategies 

to estimate the total electricity consumption leading to several research works combining functional data 
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analysis and sampling theory. A research collaboration has been set up between ERDF (Alain Dessertaine) 

and the Université de Bourgogne (Hervé Cardot and Camelia Goga) and several PhD theses were dedicated 

to related topics (Etienne Josserand, Pauline Lardin-Puech, Anne De Moliner). 

 
Figure 2.1 A sample of 20 electricity consumption curves measured every half an hour over a period of one 

week.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
The mean consumption curve in the population is drawn in bold blue line and the median curve in red. 

 
 

The first work combining functional data and survey sampling techniques was Cardot et al. (2010) who 

conducted FPCA with survey data. Next, several papers considered the estimation of the total or mean curve 

with sampling designs (Cardot and Josserand, 2011; Cardot, Degras and Josserand, 2013). An important 

issue with this new type of datasets is how to build asymptotic confidence bands with desired coverage rates 

(Cardot and Josserand, 2011). Cardot, Dessertaine, Goga, Josserand and Lardin (2013) made a comparison, 

in terms of precision of the estimators for the mean of electricity consumption, of different approaches that 

can take auxiliary information into account. They also compared the width of the confidence bands. The 

conclusion of the empirical study was that incorporating the auxiliary information in the sampling design 

or at the estimation stage improves a lot the performance of estimators. In particular, the width of confidence 

bands is greatly reduced. Theoretical justification of these results are established in Cardot, Goga and Lardin 

(2013) and Cardot, Goga and Lardin (2014). 

We present briefly below FPCA for survey data. This work extends the results from Deville (1974) for 

functional but non-independent data, as well as the influence function based approach from Deville (1999). 
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2.2.1 FPCA with survey data 
 

Let us consider a population U  of size ,N  on which we observe, for each unit ,k  a deterministic function 

of time [0, ]= ( ( )) .k k tY Y t  T  The population total curve is defined by =Y kk U
t Y

  and the mean trajectory by 

= .N Yt N  The value of Yt  or N  at a measurement point [0, ]t T  is obtained directly as ( ) =Yt t  

( )kk U
Y t

  and ( ) = ( ) ,N kk U
t Y t N

  respectively. Figure 2.1 exhibits the mean electricity curve (in blue) 

computed over the study population. 

To perform FPCA, it is first required to estimate the covariance function of the data at the population 

level. For r  and t  in [0, ],T  the covariance function ( , )r t  between ( ( ))k k UY r   and ( ( ))k k UY t   is given 

by:  

 
1

( , ) = ( ( ) ( )) ( ( ) ( )), ( , ) [0, ] [0, ],k N k N
k U

r t Y r r Y t t r t
N

  


    T T   

and the associated covariance operator Γ  is given in (2.2). The covariance operator has the following 

equivalent forms:  

 
1 1

= ( ) ( ) = ,k N k N k k N N
k U k U

Y Y Y Y
N N

   
 

         

where the tensor product of two elements a  and b  of 2 [0, ]L T  is defined by:  

 ( ) = < , > ,a b y a y b   for all  2 [0, ].y L T   

The eigenelements of Γ  are given by:  

 ( ) = ( ), [0, ], = 1, , .j j jv t v t t j N Γ …T  (2.4) 

 

2.2.2 Design-based estimators of FPCA 
 

The mean trajectory N  or the variance operator ,Γ  as well as the eigenelements are unknown since we 

do not have access to all units k  from the population .U  They are estimated using a sample s  selected 

from U  according to a sampling design ( ),p   with first-order inclusion probabilities , .k k U   Skinner, 

Holmes and Smith (1986) studied some properties of multivariate PCA in a survey framework, and Deville 

(1999) determined the asymptotic variance of eigenelements of a PCA using the influence function 

approach. All these study parameters are non-linear functions of the total .Yt  The eigenvalues and 

eigenfunctions of Γ  are defined through the implicit equation (2.3) and are also non-linear functions. The 

approach developed in Deville (1999) consists in writing the parameter of interest as a functional T  of the 

discrete measure M  defined on the space 
2[0, ]:L T  

 = ,
kY

k U

M 

   

where 
kY  is the Dirac measure at kY  with .k U  Then, following (Cardot, Chaouch, Goga and Labruère, 

2008, 2010), N  and Γ  can be written as functionals of :M  
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 = ,N

Y dM

dM
 


 (2.5) 

 
( ) ( )

= .
N NY Y dM

dM

   


  (2.6) 

The eigenelements of ,Γ  defined by the implicit equation (2.4), are also functionals of .M  The measure 

M  can be estimated by:  

 
1ˆ =

kY
k s k

M 


   

and the estimators of N  and Γ  are obtained by plugging M̂  in (2.5) and (2.6), and obtain:  

 Haj

ˆ
ˆ = ,

ˆ
Yt

N
  (2.7) 

where ˆ = 1 kk s
N 

  is the Horvitz-Thompson estimator of .N  The variance operator Γ  is estimated by  

 Haj Haj

Haj Haj

ˆ ˆ( ) ( )1 1ˆ ˆ ˆ= = .
ˆ ˆ

k k k k

k s k sk k

Y Y Y Y

N N

 
 

  

   
  Γ  (2.8) 

The estimators ˆ ,j  of ,j  and ˆ jv  of jv  are the eigenelements of ˆ ,Γ  namely  

 ˆˆ ˆ ˆ( ) = ( ), [0, ], =1, , .j j jv t v t t j N Γ …T  (2.9) 

 

2.2.3 Asymptotic approximation and variance estimators 
 

All population parameters of interest can be written as ( ),T M  where T  is a functional of degree 0, 

namely ( ) = ( ).T M N T M  Under mild assumptions on the sampling design and the functions ,kY  Cardot 

et al. (2010) show that the design-based estimators ˆ( )T M  given in (2.7)-(2.9) are asymptotically design-

unbiased and consistent for ( ).T M  To obtain the asymptotic variance of ˆ( ),T M  Cardot et al. (2010) give a 

von-Mises expansion of ˆ ˆ( ) = ( )T M N T M  around M N  as follows:  

 

ˆ
ˆ( ) ( ) = ,

= ( , ) 1 ,

k T

k
k T

k U k

M M M
T M T M IT Y d R

N N N

I
IT M Y R



  
    

   

 
  

 




  

where = 1kI  if unit k  is selected in a sample and zero otherwise; ( , ) = ( , )k kIT M N Y N IT M Y  where 

( , )kIT M Y  is the influence function of T  at point kY  as defined in Deville (1999) and called the linearized 

variable of ;T  TR  is a remainder term. The influence function of N  is ( , ) = ( )N k k NI M Y Y N   

(Deville, 1999). Using perturbation theory arguments, Cardot et al. (2010) show that ( , ) =kI M Y  

 ( ) ( )N NY Y N      and  
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21
( , ) = (< , > )

< , > < , >1
( , ) = ,

j k k N j j

k N j k N

j k
j j

I M Y Y v
N

Y v Y v
Iv M Y v

N

  

 

 

 

 


 


 

  

provided that j    for all .j    Similar expressions have been obtained for jI  and jIv  by Deville 

(1999) for the non-functional case. Cardot et al. (2010) show that 1/2= ( )T pR o n  for T  given by (2.7)-(2.9), 

and determine the asymptotic variance of ˆ( ).T M  Cardot et al. (2010) give also variance estimators which 

are consistent under assumptions on higher-order inclusion probabilities.  

 
2.2.4 Why use FPCA? 

 

The principal components scores < , >,k N jY v  for =1, , ,j q…  are indicators of the deviation of curve 

kY  from its mean function N  and allow us to reconstruct rather well the functions ,kY k U  in a small thq  

dimensional space. When auxiliary variables are available, Cardot et al. (2010) suggest using them to 

improve the estimation of .Yt  FPCA may be also used when auxiliary information is very large; for example, 

the electricity consumption recorded every 30 minutes during a certain period may be used as auxiliary 

information in model-assisted or calibration type estimators of Yt  (Cardot, Goga and Shehzad, 2017). Such 

auxiliary variables are functional, and FPCA allows us to determine new uncorrelated variables and to 

perform calibration (Deville and Särndal, 1992) on them to improve the estimation of Yt  as in Cardot et al. 

(2017). 

 
3. Revisiting and going beyond Deville’s ideas on indirect sampling 

 

The question was submitted to us by Alain Dessertaine and Pauline Puech from La Poste. They were 

concerned by the loss of precision of the national postal traffic estimators after changing the sampling 

design. To understand their problem in depth, we worked on the theory with a PhD student, Estelle Médous, 

and derived interesting methodological advances. As explained in Section 4 of Ardilly, Haziza, Lavallée 

and Tillé (2023), Jean-Claude Deville played a key role in naming and deriving the general principles and 

properties of indirect sampling. The principal results are given in Deville and Lavallée (2006) and Lavallée 

(2007). In this section, we give some extensions of Jean-Claude Deville’s research work on indirect 

sampling that are detailed in Medous, Goga, Ruiz-Gazen, Beaumont, Dessertaine, and Puech (2023) and 

Medous (2023). 

 

3.1 The survey sampling problem of La Poste 
 

The measurement of monthly French postal traffic is important in particular for the accounting follow-

up at La Poste. However, only part of the postal traffic goes though an automatized processing and the 

monthly postal traffic has to be estimated through a probability-based survey. In 1994, this survey was called 

SYCI (Système de collecte de l’information), and consisted in drawing samples from populations of 
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postman rounds according to a stratified, two-stage and balanced sampling design, and using calibrated 

estimators. Jean-Claude Deville, then “Head of the Statistical Methods” at Insee, participated in the 

validation of the methodology of this survey, and in particular studied the precision of the estimators. 

Since 2008, the organization of postman rounds has changed and is no longer stable over time. Sampling 

directly from the target population has become impossible, and the sampling design has evolved to an 

indirect sampling design, called SYCI2, where the target population is still the population of postman rounds 

but the frame population is the population of postal addresses. As detailed in Section 4 on indirect sampling 

of Ardilly et al. (2023), as soon as the link weights are standardized (their sum equals one), Generalized 

Weight Share Method (GWSM) estimators are unbiased for the parameter of interest. But their precision is 

not easy to compare with the direct approach. At La Poste, the indirect sampling of SYCI2, compared to the 

previous direct sampling method of SYCI, led to a precision loss of the estimators, with an increase of the 

estimated standard deviations by a factor between 2 and 3. The study summarized below aimed to 

understand in depth this loss of precision. 

The frame population is made of postal addresses while the target population is made of postman rounds. 

The links structure between these two populations is of a particular type: every address belongs to one and 

only one postman round. Such links are called Many-to-One (or “All-to-One” in Deville and Lavallée, 2006) 

and will be abbreviated by “MtO” from now on. As detailed below, for this type of links structure, it is 

possible to go beyond Deville and Lavallée (2006) in the theoretical study of the GWSM estimators. 

 

3.2 MtO indirect sampling 
 

Let us focus on study parameters that are totals over the target population .TU  Following Deville and 

Lavallée (2006), we assume that a sampling frame exists for a population ,FU  that is related to TU  in such 

a way that any unit in TU  is linked to at least one unit in .FU  Moreover, we focus on the MtO situation 

where every unit in FU  is linked to one and only one unit in .TU  Let y  be the variable of interest measured 

on ,TU  and let ky  be its value for the thk  unit in .TU  We are interested in estimating = ,
T

y kk U
t y

  the 

total of y  over .TU  A sample Fs  is drawn from FU  according to a sampling design ( ).Fp   We can associate 

to Fs  the vector 1( , , )NF
I I …  where iI  is the sample membership indicator of the individual i  from FU  

defined as = 1iI  if i  is selected and = 0iI  otherwise. We denote by = Pr( )i Fi s   the first-order inclusion 

probability of unit i  and by = Pr( , )ii Fi i s    the second-order inclusion probability of units i  and .i  We 

suppose that all of the units i  have a positive inclusion probability > 0i  and we denote by = 1i id   their 

sampling weights. The sample Fs  in FU  leads to a sample Ts  in TU  made of the units in TU  linked to at 

least one unit in .Fs  

Consider, for all Fi U  and ,Tk U  some non negative link weight ik  such that ik  is positive when 

Fi U  and Tk U  are linked, and = 0ik  otherwise. We define the standardized link weights 

=
F

ik ik i ki U
     which satisfy the constraint = 1.

F
i ki U
    If, for a given unit ,Tk U FkU  denotes the 

set of units i  in FU  that are linked to ,k  the link weights ik  are equal to zero when i  does not belong to 

,FkU  and the standardized link weights can be written as = .
Fk

ik ik i ki U
     The total yt  can be written 

as the total on FU  of the variable , ,
T

ik k Fk U
y i U


   as follows:  
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 = = = .
T T F F T

y k ik k ik k
k U k U i U i U k U

t y y y 
    

   
      
   

       (3.1) 

The GWSM estimator of yt  studied in Deville and Lavallée (2006) is given by  

 1
ˆ = ,

F T

y i ik k
i s k s

t d y
 

 
  
 

    (3.2) 

and it estimates unbiasedly the total ,yt  provided that the link weights are standardized. 

To compute 1
ˆ ,yt  the link weights have to be standardized for all ,Tk s  which implies that the sum 

=
F Fk

i k i ki U i U
       has to be known for the units k  sampled in .TU  In Figure 3.1, we consider the case 

of 10 observations in FU  linked to one observation in TU  with link weights .ik  The observation i  

surrounded by an ellipse is sampled in .FU  It implies that the unit in TU  linked with i  is sampled, and that 

10 links have to be observed to compute the sum of the link weights. 

 
Figure 3.1 Small example with 10 MtO links for a unit sampled in the target population from a unit sampled 

in the frame population. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    Fi U                                                                                         Tk U  

    ik  

    FU                                                                                                  TU  

  sampled i 

Number of observed links: 10 



Survey Methodology, December 2023 331 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Like the direct Horvitz-Thompson estimator, GWSM estimators are unbiased for the total of interest. 

However, it is not possible to compare their variance with a direct Horvitz-Thompson estimator in a general 

framework. Indeed, in Subsection 4.1 of Ardilly et al. (2023), the authors recall that for indirect sampling 

and given first-order inclusion probabilities in the frame population, it is usually not possible to derive the 

inclusion probabilities in the target population. 

Comparing the direct and indirect approach is therefore difficult in general. Some results are obtained 

for MtO links and Poisson sampling in Medous et al. (2023). For Poisson sampling in the frame population 

and MtO links, the inclusion probabilities in the target population can be derived from those in the frame 

population, and the precision of the Horvitz-Thompson estimator of a total under direct sampling can be 

compared to the precision under indirect sampling. More precisely, Proposition 2.3 in Medous et al. (2023) 

states that the variance of the Horvitz-Thompson estimator for the direct sampling is always smaller than or 

equal to the variance of the GWSM estimator under the associated indirect sampling design. For Poisson 

sampling and MtO links, there is a loss of precision when using indirect sampling and a GWSM estimator 

compared to the associated direct sampling design and the Horvitz-Thompson estimator. 

Moreover, for MtO links, and a general condition on the sampling design, called the  -property, 

Medous et al. (2023) show that the weak optimal link weights derived in Deville and Lavallée (2006) are 

also strongly optimal link weights for the GWSM estimator (see Section 4.5 in Ardilly et al., 2023, for more 

details). The  -property is a property of the covariance matrix ,= ( )
Fii i i U    of the random sample 

membership indicators of the sampling design (.).Fp  For a given unit ,Tk U  let us recall that FkU  is the 

set, of size ,FkN  of units i  in FU  that are linked to .k  Because of the MtO links structure, the size FN  of 

FU  is equal to the sum .
T

Fkk U
N

  In what follows, we consider that units in FU  are ordered according to 

the ,FkU  so that the matrix   of size F FN N  can be written in blocks ,kk  , ,Tk k U  of size .Fk FkN N  

The number of blocks is equal to the size TN  of the population .TU  For MtO links and ordered indices in 

the population FU  as detailed above, a sampling design (.)Fp  satisfies the  -property if:   

(i) kk  is invertible, for all ,Tk U  

(ii) = t
kk kk k kc   1 1  for ,Tk k U   where k1  is the FkN -dimensional vector of ones.  

 

The  -property is a technical property that allows us to simplify the expression of the variance of the 

GWSM estimator in the particular case of MtO links. This property is satisfied for Poisson sampling and 

simple random sampling without replacement because the covariance matrix   of these sampling designs 

have constant off-diagonal terms. But the property is also true for example for stratified simple random 

sampling without replacement with equal sampling rates, or with unequal sampling rates when the units of 

FU  linked to the same unit in TU  belong to the same stratum (see Medous et al., 2023, or details). This 

result was already derived for Poisson sampling and simple random sampling without replacement in 

Deville and Lavallée (2006) but not stated clearly as a property of the MtO links structure. Furthermore and 

still under the  -property, Medous et al. (2023) provide an explicit and simple expression for the difference 

of the variances between any GWSM estimator and the optimal GWSM estimator. 
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The sampling design of SYCI2 is actually more complex than a simple indirect sample and the loss in 

precision observed at La Poste when using SYCI2 compared to SYCI had to be studied further. SYCI2 is 

making use of a double indirect sampling design with an intermediate population of outgoing mail sorting 

boxes. The properties of double indirect sampling designs are studied in Medous et al. (2023) and Medous 

(2023) and explained briefly in the next subsection. 

 
3.3 MtO-MtO double indirect sampling 

 

As explained in Section 4 of Ardilly et al. (2023), the total of the link weights has to be known for each 

observation sampled indirectly in the target population in order to standardize the link weights and get 

unbiased estimators. In the case of MtO links, the number of links between the frame population and the 

target population may be very large and enumerate the links may not be feasible. At La Poste, it means that 

all addresses delivered during a sampled postman round must be known. On average, there are 

approximately 500 addresses per postman round, and it is not possible to enumerate all of the addresses 

before the departure of the postman. To address this issue, La Poste had to consider a double indirect 

sampling design and the associated double GWSM estimator. The idea of double indirect sampling is to 

introduce an intermediate population MU  between the frame and the target populations, and to use the same 

principles as in simple indirect sampling. 

The use of an intermediate population was already introduced in Deville and Lavallée (2006) (see 

Subsection 3.3 for the transitivity property and 6.1 for the factorization) in order to simplify the derivation 

of optimal link weights. At La Poste, an intermediate population of mail sorting boxes is used to reduce the 

number of links to observe. The idea is that by introducing an intermediate population, we obtain more 

freedom in the choice of the link weights as detailed below. For the sake of simplicity, we focus on the case 

where not only the links between FU  and MU  but also between MU  and TU  are MtO. We consider 

nonnegative link weights 
FT
ik  for Fi U  and Tk U  (resp. FM ,ij  for , ,F Mi U j U  MT

jk  for ,Mj U  

)Tk U  associated with the links between FU  and TU  (resp. FU  and ,MU  and MU  and ).TU  In order to 

express the total =
T

y kk U
t y

  as a total on FU  as in equation (3.1), we need to compute standardized link 

weights 
FM

ij
  and 

MT
jk  such that  

 FM MT = 1.
F M

ij jk
i U j U

 
 
     (3.3) 

We have:  

 
FM MT FM MT= = = .

T T F M F T M

y k ij jk k ij jk k
k U k U i U j U i U k U j U

t y y y   
      

   
      
   

            

A double GWSM estimator, unbiased for ,yt  is:  

 
FM MT

2
ˆ = ,

F T M

y i ij jk k
i s k s j s

t d y 
  

 
  
 

     (3.4) 
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where the sample Ms  in MU  (resp. Ts  in )TU  is made of the units in MU  (resp. )TU  linked to at least one 

unit in Fs  (resp. ).Ms  

The standardization of the link weights given by (3.3) is called “global standardization”. By 

standardizing each set of links FM
ij
  and MT

jk  separately, which is called “double standardization”, it is easy 

to check that the link weights are also globally standardized. But as illustrated in the small example below, 

considering double standardized link weights, can result in a gain in terms of the number of links to observe, 

compared to simple indirect sampling. This property is not necessarily true for other types of globally 

standardized link weights. 

In Figure 3.2, the links between the frame population FU  and the target population TU  are the same as 

in Figure 3.1, but an intermediate population is introduced with 2 units, both linked to the only unit in ,TU  

and each one being linked to 5 units in .FU  In order to compute the estimator 2ŷt  from (3.4), we need the 

link weights to be globally standardized (see (3.3)). One possibility to standardize the sum FM MT

M
ij jkj U
 

  

is to divide it by its sum over ,Fki U  where FkU  is the population of units in FU  linked with .Tk U  On 

the left panel of Figure 3.2, this double standardization leads to observe 12 links since there are 10 

observations in FU  linked to the observation in TU  and 2 additional links between MU  and .TU  This 

situation is even worse than the 10 links to observe in the simple indirect case (see Figure 3.1). 

On the contrary, using a double standardization for the link weights is less costly, and the reason is a bit 

subtle. The standardization of the FM
ij  (resp. MT )jk  consists in dividing them by their sum over Fji U  

(resp. ),Mkj U  where FjU  (resp. )MkU  is the population of units in FU  (resp. )MU  linked with Mj U  

(resp. ).Tk U  It means that the links have to be known only for Fji U  for the double standardization 

instead of FkU  for the global standardization proposed just before. On the right panel of Figure 3.2, the 2 

links between MU  and TU  have to be observed, but only 5 links (among 10) have to be observed between 

FU  and ,MU  which leads to 7 links to observe in total. As detailed in Medous et al. (2023), for MtO links 

between FU  and MU  and between MU  and ,TU  double indirect sampling with double standardization may 

lead to a reduction in terms of the number of links to observe. At La Poste, on average, there are 500 postal 

addresses per postman round with 50 addresses per box and 10 boxes per round. Using double indirect 

sampling with double standardization leads on average to 60 links to observe compared to 500 with simple 

indirect sampling. 

The advantage of double indirect sampling in terms of number of links to observe is clear for La Poste, 

but questions on the choice of double standardized link weights arise. Can the choice of link weights have 

a large impact on the efficiency of GWSM estimators? Is it possible to find double standardized optimal 

link weights? The answer to both questions is affirmative. In Medous et al. (2023), we used some Monte 

Carlo simulations to illustrate that there may be situations where the loss of efficiency is huge. Moreover, 

results on historical postal data allow us to find a factor between 2 and 3 of efficiency loss between SYCI 

and SYCI2. Very recently, Medous (2023), in a preprint that will be available soon, derived the optimal 

doubly standardized link weights. These link weights allow us to observe fewer links compared to simple 

indirect sampling design, while obtaining the GWSM estimator of minimal variance (for any variable of 

interest). 
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     Fi U                        Mj U                      Tk U                  Fi U                        Mj U                     Tk U  

                  Number of observed links: 12                                             Number of observed links: 7 

 
Figure 3.2 Same example as on the previous figure, but with an intermediate population. On the left panel, 12 

links necessary for global standardization. On the right panel, only 7 links necessary for double 
standardization. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
       

 

 
4. Conclusion 

 

The two directions we decided to focus on in this discussion are two examples of Jean-Claude’s legacy. 

We also worked with Jean-Claude Deville on the estimation of complex parameters, on coordinated samples 

using partial influence function (Goga, Deville and Ruiz-Gazen, 2009), or were inspired by his ideas on 

non-parametrics for survey sampling (Goga and Ruiz-Gazen, 2014). 

Jean-Claude was a man of exchange and transmission, with fruitful research collaborations, and 

fascinating outreach presentations. We remember in particular some of his presentations for the students of 

the Master in Statistics and Econometrics at Toulouse School of Economics, and his paper in “Pour la 

science” Deville (2006). They were full of captivating anecdotes on the renovated French census, on the 

tourism survey in Brittany (with stories of bakeries and freeway tolls), on the survey for the evaluation of 

the cost of renovating the documents of the François Mitterand library, to name a few. 

With Jean-Claude disappears a fount of knowledge and intelligence from which we thought we could 

drink endlessly, but also a “father” and a friend (we were part of the “copains” as he used to say). We miss 

him terribly. 
  

 FM
ij                           MT

jk                                                       FM
ij                          MT

jk  

       FU                            MU                            TU                       FU                            MU                            TU  

    sampled i                                                                                                        sampled i 
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Abstract 

In recent decades, many different uses of auxiliary information have enriched survey sampling theory and 
practice. Jean-Claude Deville contributed significantly to this progress. My comments trace some of the steps on 
the way to one important theory for the use of auxiliary information: Estimation by calibration. 
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Introduction 
 

I am honored to reflect on the article by Ardilly, Haziza, Lavallée and Tillé on Jean-Claude Deville and 

his many contributions to survey theory and practice.  

I refer to the article as Ardilly, Haziza, Lavallée and Tillé (AHLT). One part of it is devoted to estimation 

of the finite population total by calibration theory. I concentrate on it here. More than thirty years have 

passed since the publication of the influential article on calibration by Deville and Särndal (1992). It was 

followed a year later by an important sequel, also published in the Journal of the American Statistical 

Association (JASA). 

A forerunner ‒ and a special case ‒ of the calibration estimator is “the well-known estimator by 

generalized linear regression”, as AHLT phrase it. Given in their formula (3.5), it is popularly known as the 

(linear) generalized regression (GREG) estimator. This gives me reason here to examine how the GREG 

estimator paved the way for the calibration estimator. The GREG estimator evolved in form and shape in 

the mid-to-late seventies and in the eighties; it is fair to say that it is the progenitor of the estimator by 

calibration. 

The GREG construction was a product of “the prediction argument”: To predict as well as possible the 

study variable values for the non-observed population units. On the other hand, a somewhat later stream in 

the literature dwells on “the weighting argument”: To conceive and compute the estimator of the population 

total through an appropriate weighting of the study variable values ky  observed for units k  in the 

probability sample ,s  preferably a weighting more “information laden” than simply the inverse inclusion 

probability weighting 1 .k kd   

My comments here trace my gradual understanding over several decades of estimation in the presence 

of auxiliary information. They are an incomplete testimony to a period of development where Jean-Claude 

Deville played an important part. Many others contributed and should have been recognized in my notes.  
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Meeting 
 

I first met Jean-Claude in the Swiss Alps. Not on skis, but at the traditional yearly “winter school” in 

statistics held at the resort Les Diablerets. We were both invited speakers there in 1987. I had been told 

beforehand that I was going to meet a French statistician, relatively new to the survey sampling field, who 

had made himself known by some recent interesting contributions.  

I did meet Jean-Claude there, in person, and in spirit. Contact and mutual understanding happened from 

the beginning. As a graduate of the prestigious Ecole Polytechnique, Jean-Claude relied on a strong 

mathematical background and ability; in addition, his work at Institut national de la statistique et des études 

économiques (INSEE) made him familiar with national statistical agencies and their efforts to produce 

accurate national statistics.  

A unique combination seemed to me to characterize him, as I got to know him: There was a mathematical 

insight that he applied in sometimes astonishing ways, yet with a clear background in national statistics 

production. He was very sensitive to resolving problems embedded in a greater practical environment, such 

as a national statistical agency.  

As he explained to me, at already well over 30, he had decided to change fields of research interest to 

survey science. The idea of probability sampling intrigued him: to select, with known probabilities, from a 

finite set of identifiable units. His curiosity was stimulated by the amazing variety of ways to do that, and 

how to estimate the population parameters on data from a probability sample using auxiliary variables.  

Seven years his senior, I had behind me a longer exposure to the field. He told me how he had 

systematically “taken in” the field of survey science, had studied the significant material, from the classical 

sampling books of the fifties to the recent work, in the newborn vigor that survey sampling theory found 

from around 1970. For example, he admired the work of the Czech sampling theoretician Jaroslav Hàjek. 

He had studied the 1977 Wiley book that I had co-authored, Foundations of Inference in Survey Sampling. 

In the years that followed, he came to Canada several times and we worked together at the Université de 

Montréal.  

 
Randomization theory 
 

I believe that Jean-Claude’s ideological preference agreed, essentially, with the randomization theory, 

the design-based fold of survey science. That is, an approach where the inference about the finite population 

is built on the probability sampling design, using the known inclusion probabilities of the sampled units. 

This positioning was by no means obvious, for someone who was learning the field in those days. The 

1970’s had brought a flux of ideas, some of them conflicting. A formidable challenger to the traditional 

design-based randomization theory was the model-based theory, which maintained instead that inference 

was to be based on the stochastic structure stipulated in the assumed model.  

So it seems to me that when Jean-Claude set out to learn the field, he might well have felt attracted to, 

and become a convinced disciple of, the model-based camp. But he did not.  
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Auxiliary information 
 

Estimation built around ideas of supplementary information and predicted y -values for non-observed 

units seems to have been studied, or attempted, as early as in the 1950’s, in places, such as the national 

statistical agencies, where insightful survey methodologists dwelled. At INSEE in France, P. Thionet and 

Y. Lemel were among persons whose important work influenced Jean-Claude. 

An important instance of auxiliary information occurs when values are known for all population units 

on one or more variables, x -variables, thought to be related to the survey variable, the y -variable. The 

Scandinavian countries, equipped as they are with high quality population registers of different kinds, were 

testing grounds for this methodology. The uses of auxiliary information led, beginning in the 1970’s, to a 

strong development in survey statistics research and practice.  

 
Generalized regression estimator 
 

The GREG estimator rests on “the prediction argument”; the y -values for the non-sampled units are 

predicted, on the basis of a perceived relationship between the study variable y and one or more correlated 

auxiliary variables. The linear GREG estimator, as we know it today, given in formula (3.5) in AHLT, 

evolved gradually, from the mid-to-late 1970’s onward. Several took a part in this; a gradual refinement 

took place. The first time that I used “generalized regression estimator” as a term and as a construction 

principle ‒ incomplete at the time ‒ was, as far as I recall now, in a co-authored article in Biometrika, Cassel, 

Särndal and Wretman (1976). Among contributions to “the regression thinking”, the work at Iowa State by 

W.A. Fuller and his students stands out. 

“Generalized” meant essentially that the early form of the GREG estimator extended what Cochran and 

other texts from the 1950’s had presented as a method to reduce variance, by attaching a linear regression 

adjustment term to the basic design-unbiased estimator. The adjustment, small in magnitude in large 

samples, was a function of the auxiliary variables.  

More generally, let ˆky  be the predicted value, by a linear or non-linear assisting model, of the study 

variable value .ky  The GREG construction is  GREG
ˆ ˆ ˆ ,k k k k ks U s

Y d y y d y      with U  representing 

the population and s  representing the probability sample from .U  The residuals ˆ
k ky y  left by the model 

fit become more apparent when we write it as GREG
ˆ ˆ ˆ( ).k k k kU s

Y y d y y     

In papers from the late seventies and early eighties, I had occasion to examine the linear GREG estimator, 

that is, where ˆky  is the result of a linear regression fit. I remember the 1976 co-authored Biometrika article 

especially because of an administrative curiosity.  

Although it was exceptional for an ordinary submission to Biometrika, the chief editor, D.R. Cox, wished 

to accompany the article with a special discussion, something to which we agreed. The article was seen, 

apparently, as an unorthodox mixture of an appeal to a model and its properties, and, at the same time, to 

the randomization distribution, ,p  arising from the probability sampling.  
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The discussant was T.M.F. (Fred) Smith, a highly respected survey theoretician with whom I came to 

enjoy, as time went by, much fruitful and friendly contact. He wrote: “This paper raises a fundamental issue 

in finite population inference via a superpopulation. … The authors impose the further constraint that (the 

regression estimator) T  should be p -unbiased … Why should the selection probabilities, ,p  take any 

precedence over the model ”?  It was a well-motivated question from his model-based point of view: If 

the regression model was trustworthy for building the estimator, why should it then be abandoned, in favour 

of the randomization distribution, when it came to evaluating basic properties, such as bias and variance?  

This was an illustration of an exchange that could occur in those days, between a member of the new 

model-based camp and one of the traditional design-based camp. In due time, the perspective in that article 

developed into “model-assisted design-based estimation”, i.e., assisted by the model but not dependent on 

its “truth”. The asymptotic p -unbiasedness served as protection against a possibly false or improper model. 

The “truth” or not of the model was not the primary issue. If the model does not hold, the estimator is still 

asymptotically design-consistent. 

 
Reoriented thought process 
 

The literature from 1980 and later suggested a “reorientation of the thought process”; some of the 

attention shifted away from the prediction argument to an alternative argument centered on the weights 

assigned to the observed sample y -values.  

In the prediction approach, I and others had built an estimator by predicting the unobserved y -values as 

well as possible, via a regression fit of some kind, and with a use of the auxiliary variables. In the interest 

of accurate estimation, it was clear that the predictions ˆky  must reflect as accurately as possible the unknown 

ky  for the non-observed units; the residuals ˆk ky y  should be small. 

The weighting argument focuses instead on estimation by an appropriate weighting of the y -values 

observed in the sample. In the interest of accurate estimation, the weight given to a sampled unit should 

reflect what is known, and what is particular, about a unit in the population. “Good weights” could or should 

be sample-dependent functions of the auxiliary vector values .kx  They might entail just a small but 

important adjustment to the basic design weights 1 ,k kd   as is the case with the weights implied by the 

GREG estimator formula. 

In Särndal (1982), I write the linear GREG estimator as a weighted sum over the sample, with the 

observed study variable value ky  receiving the weight ,k kd g  where the sampling design weight 1k kd   

undergoes a small adjustment ,kg  slightly away from “one”. Bethlehem and Keller (1987) also show the 

linear weighting interpretation of the GREG estimator, and they note the calibration property of the weights. 

 
Model-assisted survey sampling 
 

The thick manuscript of the book with that title, by Särndal, Swensson and Wretman, was nearing 

completion when I and Jean-Claude co-operated in the late 1980’s. I described to him the spirit of the book. 
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Published in 1992 by Springer-Verlag; it became popularly known as the Yellow Book. It advocated a 

design-based outlook on inference, more particularly in a vein that became widely known as model-assisted. 

The role of the model was explained at length, in particular in Chapter 6; the wording was important; it was 

convincing and inspired others. 

Curious as it may seem today, as book authors we were quite sensitive to the survey theory climate. For 

or against “reliance on models” had been a much debated question in the survey sampling theory literature 

since the early 1970’s. We had had our part of “the hot feelings”, through the case with the above mentioned 

1976 Biometrika article on generalized regression estimation. 

The Yellow Book used the prediction argument to carefully build and explain the GREG estimator of 

.kU
Y y   Predicted values ˆ

ky  from a linear regression fit are given by ˆ
ks k sy  x B  

   
1

,k k k k k k ks s
d d y


  x x x x  where s  is the probability sample and 1 .k kd   They are computable for 

all units if kx  is available for all. The linearly weighted form of the GREG estimator is also emphasized:  

 GREG
ˆ ,k k ks

Y d g y   

where    
1

1 .k k k k k k k kU s s
g d d

     x x x x x  

 
The gee-weights 
 

The “gee-weight”, as we used to call ,kg  is a weight factor, equaling one plus a term of minor magnitude 

in large samples, nevertheless with an important impact. It modifies slightly the design weight 1k kd 

into a total weight ,k kd g  and, as the Yellow Book explains, those weights satisfy 

 .k k k ks U
d g  x x   

It came to be known as the calibration property. I vividly remember my momentary surprise at my own 

“discovery” of the property; it was, however, quite evident upon a closer look, and therefore not given any 

immediate attention. Others active in the field were no doubt also aware of it in the years around 1980. The 

weights ,k kd g  their function, their calibration property, and their use in variance estimation were at the 

center of attention in a Biometrika article by Särndal, Swensson and Wretman (1989). 

The calibration property of the weights k kd g  was, however, a signal for my interest in calibrated weight 

systems: it must be a more generally fruitful idea. When Jean-Claude and I discussed it in the late 1980’s, 

the property was a well-established fact, a starting point: It must be possible to extend and generalize it.  

 
The rise of calibration theory 
 

A phrase in AHLT catches my attention: The authors maintain that the calibration theory, as in Deville 

and Särndal (1992), brought “… one of the most important advances in the field of estimation in the presence 

of auxiliary information: It is possible to construct the GREG estimator by means of a calibration.” In other 
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words, a “discovery” was that calibration theory is sufficiently broad in scope to admit the important GREG 

estimator under its umbrella.  

It is indeed important to have the GREG estimator as a member of the calibration family; I add, though, 

that my own insight happened in a different temporal order: Knowing in advance that the GREG weights 

have the calibration property, it must be possible to extend the idea.  

This took form in the theory well described in AHLT, with a measure of distance to minimize, between 

the survey weights 1k kd   and new weights ,kw  subject to the calibration constraint .k k ks U
w  x x  

A resulting calibrated weight kw  is a function of the auxiliary vector value .kx  

 
The calibration theory: Implications and interpretations 
 

I started these comments by noting two ways to proceed, “the prediction argument” as opposed to “the 

weighting argument”. This important distinction has set its mark on a part of theory development in survey 

sampling over the past several decades. 

The former was successfully used in creating the (linear or non-linear) GREG estimator. It seems to me 

now that the weighting argument, as used in calibration theory, has a broader application, or a wider appeal. 

To estimate, you just add up the properly weighted y -values. 

Much has been said on calibration in the literature since the Deville and Särndal (1992) article. It is true 

that calibration was presented there as a design-based methodology under ideal survey conditions, one 

hundred percent survey response, and an absence of other survey errors as well. However, time passing, the 

concept of calibration has shown itself to be an instrument of extraordinary power and flexibility, as 

witnessed, for example, in the variety known as model calibration, and especially in its extensions to 

nonresponse adjustment, treated in a large literature of its own. 

 
An image 
 

I close with a digression on the word “calibration”. At INSEE, the French term “calage” was apparently 

well established long ago. It was used, it seems, in early examples of a weighting that confirms the known 

population total of an auxiliary variable.  

As a French verb, “caler” means to rig, to fix, to stabilize. Elsewhere also, there were no doubt insightful 

statisticians who derived and computed weights, with the property today called “calibrated”, well before 

there was a special name and a special theory for the procedure. 

For the 1992 JASA article, Jean-Claude and I settled on the term “calibration”, aware of the meaning it 

has to some, namely, in the idea of the balance scale, this instrument used in food stores long ago: two plates 

at either end of beam. To fill a customer’s order for, say, 600 grams of coffee or butter or flour, the store 

clerk placed weights on one plate, amounting to 600 grams, then measured up the desired food item on the 

opposite plate, until balance occurred. The store had a collection of metal weights, in different 

denominations; they were certified, calibrated, to guarantee the customer’s right to a correct weighting. As 
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some have fondly reminded me over the years, “calibrated weights” brings up this old mental image of a 

trustworthy procedure. 
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Abstract 

The article considers sampling designs for populations that can be represented as a N M  matrix. For instance 
when investigating tourist activities, the rows could be locations visited by tourists and the columns days in the 
tourist season. The goal is to sample cells ( , )i j  of the matrix when the number of selections within each row and 
each column is fixed a priori. The thi  row sample size represents the number of selected cells within row ;i  the 

thj  column sample size is the number of selected cells within column .j  A matrix sampling design gives an 
N M  matrix of sample indicators, with entry 1 at position ( , )i j  if cell ( , )i j  is sampled and 0 otherwise. The 
first matrix sampling design investigated has one level of sampling, row and column sample sizes are set in 
advance: the row sample sizes can vary while the column sample sizes are all equal. The fixed margins can be 
seen as balancing constraints and algorithms available for selecting such samples are reviewed. A new estimator 
for the variance of the Horvitz-Thompson estimator for the mean of survey variable y  is then presented. Several 
levels of sampling might be necessary to account for all the constraints; this involves multi-level matrix sampling 
designs that are also investigated. 

 
Key Words: Balanced sampling; Creel surveys; Cube method; Multi-level sampling; Monte Carlo simulation; Variance 

estimation. 

 
 

1. Introduction 
 

Sampling from cross-classified populations raises interesting statistical issues, see Juillard, Chauvet and 

Ruiz-Gazen (2017) for a recent discussion. When each cell of the cross-classification contains a single unit, 

the population to sample has size NM  as it can then be viewed as a N M  matrix. The sample consists of 

cells ( , )i j  of the population matrix; this defines the N M  matrix Z  of sample indicators, with =1ijZ  if 

cell ( , )i j  is selected and = 0ijZ  otherwise. We focus on designs where the number of selections within 

each row and each column is fixed a priori. We define the thi  row sample size as the number of selected 

cells within row i  while the 
thj  column sample size is the number of selected cells within column .j  This 

work studies matrix sampling designs for which the row and the column sample sizes are predetermined; 

the row sample sizes vary from one row to the next while all the column sample sizes are equal. This 

generalizes a stratified sampling design that would apply if the sample sizes for only one dimension, either 

row or column, were fixed. Multi-level generalizations of the proposed design are also introduced.  

Populations having a matrix format occur, for instance, when pooling tourists (Deville and Maumy-

Bertrand, 2006) and in creel surveys (Kozfkay and Dillon, 2010); time, that is days, is one dimension of the 

matrix and the other one is location, such as venues frequented by tourists and fishing sites. Figure 1.1 

presents a sample selected in a 10 20  population matrix with row sample sizes equal to = 8m  and column 

sample sizes equal to = 4.n  The black entries identify the cells ( , )i j  that are selected, for which = 1.ijZ  

Having constraints on the row and the column sample sizes is useful in many contexts. In Ida, Rivest and 
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Daigle (2018)’s population matrix the rows are sites and the columns are days. The column sample size n  

is the number of sites that can be visited in one day while the row sample sizes { : = 1, , }im i N…  are related 

to sites’ importance. The sample matrix presented in Figure1.1 also applies for planning N  repeated surveys 

in a population of size .M  The thi  row of Z  identifies the units selected in survey .i  The row sample sizes 

are determined by the objectives of the individual surveys. The fixed column sample size creates a 

dependency between the row samples that ensures their coordination (Matei and Tillé, 2005): the response 

burden is shared equally among all population units. This work focusses mostly on the first application as 

it investigates the sampling properties of the Horvitz-Thompson estimator of the mean of the survey variable 

y  over the NM  population units: ijy  is the value of the survey variable for cell ( , ), = 1, , ;i j i N…  

= 1, , .j M…  For instance, ijy  is the total number of hours of fishing at site i  on day j  in Ida et al. (2018). 

The goal is to estimate the population mean, 
,

= ( )iji j
y y NM  using the Horvitz-Thompson estimator 

=1
ˆ ˆ= ,

N

ii
y y N  where ˆiy   is the sample mean for row .i  

 
Figure 1.1 Sample units, in black, drawn out of a 10 20  population matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The set of N M  0-1 matrices Z  with row totals given by = , = 1, ,i iZ m i N …  and column totals 

= , = 1, ,jZ n j M …  is fairly large (Barvinok, 2010). The goal of the matrix sampling design is to select 

uniformly among that set, thus all the N M  matrices Z  fulfilling the constraints on the row and the column 

sample sizes are equally likely to be selected. This can be achieved using the cube algorithm (Deville and 

Tillé, 2004); the constraints on the margins are then interpreted as balancing constraints. Rivest and Ebouele 

(2020) also discuss other sampling algorithms such as hypergeometric sampling and sampling through a 

Markov chain defined on the set of acceptable matrices .Z  
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The next section summarizes the findings of Rivest and Ebouele (2020) for the sampling design 

illustrated in Figure 1.1. A new approach, called the conditional approach, for the evaluation of the sampling 

properties of the Horvitz-Thompson estimator is proposed in Section 3. Section 4 suggests a new estimator 

for the between row covariances. Section 5 considers a hierarchical sampling design to select the rows of 

the population matrix. It also investigates the properties of the Horvitz-Thompson estimator of the 

population mean of the survey variable for this new design. 

 
2. The properties of the matrix sampling design with fixed row and 

column totals 
 

Consider a sampling design that selects the N M  matrix of sample indicators { }ijZ  uniformly among 

all the 0-1 matrix with row totals given by { }im  and fixed column total n  for = 1, ,j M…  where 

=1
= .

N

ii
m Mn  Given a matrix Z  that meets these constraints, any permutation of the columns of Z  is an 

acceptable matrix of sample indicators. This implies that the sampling design for selecting the units in row 

i  is without replacement simple random sampling of im  units among M  as all possible samples have the 

same probability of being chosen. This also entails that the sampling designs for selecting n  units among 

M  in a column are identical. It is a without replacement design with variable selection probabilities and a 

fixed sample size.  

The unit inclusion probabilities for cell ( , )i j  of the proposed design are = =ij i im M   for 

=1, ,i N…  and = 1, , .j M…  The joint inclusion probabilities of two cells ( , )i j  and ( , )k   is , .ij k   They 

can be expressed in terms of ik  the joint inclusion probabilities when sampling units within a column. They 

are given by  

 ,

, = ,

( 1) { ( 1)} = , ,
=

, .
( 1) 1

ik

i i
ij k

i k ik

i k j

m m M M i k j

m m
i k j

M M M









   


   

 









 (2.1) 

The joint selection probabilities in the same row or in the same column of a matrix are deduced from the 

row and the column sampling designs discussed above. When ,i k j    the joint selection probabilities 

only depend on ( , )i k  because of the column exchangeability. One has  

 ,= ( ) ( ) = ( 1) .i k ij k ij kj ij k ik
j j

m m E Z Z E Z Z M M M 


    


  

Solving this equation gives the general formula for , .ij k   

The joint probability for sampling rows i k  in two different columns, ,j    is larger than that for 

sampling i  and k  in the same column as  

 , = 1 > ,
1

ik i k
ij k ik

ik

M
M
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provided that  

 > .i k ik    (2.2) 

This condition ensures that the Sen-Yates-Grundy variance estimator for the Horvitz-Thompson estimator 

of a column total is positive. The condition >i k ik    is satisfied by the conditional Poisson sampling design 

(Chen and Dempster, 1994). It is conjectured that (2.2) is true for the design for sampling units within a 

column as this design converges to a conditional Poisson sampling design when M  goes to   and N  is 

fixed (Rivest, 2021). If true, (2.2) would also mean that the probability ik  that a column is sampled in both 

row i  and row k  is less than ,i k   the inclusion probability if the rows were sampled independently. Thus 

the fixed row and column totals create a negative coordination between row samples, see Grafström and 

Matei (2015) for a discussion of positive and negative coordination between samples.  

Another interesting result is that, for i k  and ,j    

 
1 1

Cov( , ) = Cov( , ) = ( ).
1 1

ij k ij kj ik i kZ Z Z Z
M M

    
 

   

This result remains true when =i k  provided that ii  is defined as being equal to = / .i im M  Indeed, one 

has Cov( , ) = (1 ) ( 1)ij i i iZ Z M     which is minus the variance of ijZ  divided by 1.M   This is used 

to prove that the covariance between ˆiy   and ˆ ,ky   the sample means for survey variable y  in rows i  and 

k  is  

 ˆ ˆCov( , ) = , , =1, ,i k ik iky y S i k N   …   

where  = / ( ) 1 /ik ik i k M     is the ( , )i k  entry of a N N  matrix   and ikS  is the covariance between 

rows i  and ,k
=1

= ( ) ( ) / ( 1),
M

ik ij i kj kj
S y y y y M    , =1, ,i k N…  and 

=1
= / .

M

i ijj
y y M   This result is 

used to evaluate the variance of 
=1

ˆ ˆ= / ,
N

ii
y y N  the Horvitz-Thompson estimator of the mean of :y  

 2

tr ( )ˆVar ( ) = ,y
N

S
 (2.3) 

where S  is the N N  covariance matrix of the y  column vectors and tr  is the trace operator. If (2.2) 

holds, then the off-diagonal entries of   are negative and (2.3) is smaller than 
2/ ,ii iii

S N  the variance 

of the stratified estimator obtained when sampling the rows independently when the between row 

covariances, ,ikS  are positive. Note also that to evaluate (2.3) one needs numerical values for the joint 

selection probabilities .ik  These can be obtained through simulations or using a numerical algorithm to 

evaluate the joint selection probabilities for the conditional Poisson sampling design, see Tillé (2006) and 

Rivest (2021), that can be used as an approximation. A conditional variance formula, that does not use the 

joint selection probabilities ik  is proposed in the next section.  

An obvious choice for an estimator of (2.3) would be the Sen-Yates-Grundy variance estimator. 

Unfortunately, the condition for it to be positive fails. Indeed the joint selection probability in two different 

rows and two different columns, ,ij k   satisfies  

 ,

1
= ( ),

1
ij k ij k ik i k

M
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which as argued in the discussion of (2.2) should be positive. Thus the Sen-Yates-Grundy variance estimator 

can be negative and an alternative estimator is needed. A plug-in estimator for (2.3) is given in Section 4. It 

demands the estimation of the ( 1) 2N N   between row covariances. The negative coordination between 

row samples renders the construction of estimators difficult. The proposals in Rivest and Ebouele (2020) 

are not really satisfactory as they give biased estimators when the column sample sizes are small. Alternative 

estimators are considered in Section 4. 

 

2.1 Extensions to unequal column sample sizes 
 

This section assumes that both the row and the column sample sizes of the matrix Z  vary. They are 

given by { : = 1, , }im i N…  and { : = 1, , }.jn j M…  The set of possible samples consists of N M  0-1 

matrices with fixed row and column totals. All the algorithms reviewed in Rivest and Ebouele (2020) can 

be used to select the sample uniformly in that set. The resulting design is however rather complex when jn  

takes several positive values. There are no closed form expressions for the unit inclusion probability of cell 

( , )i j  and for the joint inclusion of cells ( , )i j  and ( , )j   and there does not seem to be a manageable 

expression for the variance of the Horvitz-Thompson estimator. The limiting sampling design within a 

column converges, as M  goes to infinity, to a generalization of the conditional Poisson sampling design 

with untractable single inclusion probabilities, see Rivest (2021). Thus, to implement a design with varying 

column sample sizes, a simple solution is to stratify by column sample size. Independent matrix designs are 

then used to select the matrix sample in each stratum.  

The matrix sampling design of the previous section can be extended to situations where the two possible 

column sample sizes are either 0 or .n  Suppose that out of M  columns, 0 <M M  have a non-null sample. 

The row sample sizes { : = 1, , }im i N…  satisfy 0= .ii
m M n  The selection of a matrix Z  of sample 

indicators proceeds in two steps. Step 1 uses without replacement simple random sampling to select the 0M  

columns with non-null samples and a matrix design is used at step 2 to select the sampled cells in the 0M  

columns chosen at step 1. 

Let ik  be the conditional joint selection probability for rows i  and k  given that the column has been 

selected at step 1. The findings of the previous section are easily generalized to this new design. For instance  

  2
0

1 1
Cov( , ) = Cov( , ) = .

1 1
ij k ij kj ik i kZ Z Z Z M M m m M

M M
  

 
   

In addition variance formula (2.3) holds with a matrix g  defined by  0= ( ) 1g
ik ik i kMM m m M   for 

, =1, , ,i k n…  provided that one sets 0= .ii im M  

 
3. A conditional matrix sampling design  
 

This section discusses a conditional sampling design for which the matrix of sample indicators Z  is 

fixed, up to a random permutation of its columns. It derives a conditional alternative to (2.3), the variance 

of the Horvitz-Thompson estimator.  



352 Rivest: Statistical methods for sampling cross-classified populations under constraints 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Let 0Z  be a 0-1 matrix with row sums equal to { : = 1, , }im i N…  and column sums all equal to .n  

Suppose that the random matrix of sample indicators Z  is obtained by randomly permuting the columns of 

0.Z  This conditional sampling design shares many of the properties discussed in Section 2. The design for 

sampling units within row i  is simple random sampling of im  units in a population of size .M  The design 

for sampling units within a column is the same for each column. This design gives a probability of 1 M  to 

each of the columns of 0Z  and the probability for selecting unit i  and k  within a column is  

 0 0
=1

= ,
M

c
ik ij kj

j

Z Z M   (3.1) 

where 0 0,ij kjZ Z  are the entries ( , )i j  and ( , )k j  of 0Z  and exponent c  stands for conditional. For this 

design (2.1) holds with ik  replaced by the conditional joint selection probability .c
ik  In some instances, 

the sampling design proposed in Section 2 is a conditional sampling design. This occurs when the column 

sample size is either = 1n  or = 1n N   since all the possible sample indicator matrices Z  are then equal up 

to a permutation of their columns.  

The conditional variance of the Horvitz-Thompson estimator y  is a function of the N N  matrix c  

whose ( , )i k  entry is equal to  = ( ) 1 ,c c
ik ik i k M    c

ik  is defined in (3.1) and = ,i im M  as defined 

in Section 2. It is given by  

   2

tr ( )ˆVar = .
c

c y
N

S
 (3.2) 

Given a random matrix Z  of sample indicators obtained with one of the algorithms presented in Rivest 

and Ebouele (2020), one can evaluate the conditional joint inclusion probabilities using (3.1), applied to the 

matrix .Z  Then the conditional variance formula (3.2) is simpler than (2.3) as it does not require the 

evaluation of the unconditional joint selection probabilities .ik  The derivation of a simple variance formula 

is the main application of the conditional approach. 

The conditional matrix sampling design is a low entropy design and it may happen that (3.2) cannot be 

estimated. This occurs when one of the conditional joint selection probabilities (3.1) is equal to 0. Consider, 

for instance, the design in the Monte Carlo simulations of Section 4.1. It has = 9,N  = 36,M  = 2n  and 

row sample sizes im  varying between 6 and 11. This design involves ( 1) 2 = 36N N   joint selection 

probabilities and it not possible to find a matrix 0Z  with row totals varying between 6 and 11 for which the 

36 values of (3.1) are positive. For this design, only (2.3) can be estimated. 

 
4. A new estimator for the between row covariance 
 

This section suggests new estimators for the N N  covariance matrix S  for .y  The diagonal elements 

of S  are easily estimated using the row sample variances. Rivest and Ebouele (2020) use the columns that 

are sampled in both rows, i  and ,k  to estimate the covariance .ikS  The joint sample size for rows i  and k  

is often less than 2, considering the negative coordination between row samples noted in Section 2. Thus 

many covariances cannot be estimated using this approach and an alternative estimation strategy is proposed 
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in this section. It gives nearly unbiased estimators of the variances (2.3) and (3.2) of the Horvitz-Thompson 

estimator  

The proposed covariance estimator relies on the following expression for the covariance as a U-statistic,  

 
=1

2 2

=1

1
= ( ) ( )

1

1
= ( ) ( 1) ( ) ,

2 ( 1)

M

ik ij i kj k
j

M M

ij k ij kj
j j

S y y y y
M

y y M y y
M M

 



 


 
    

  



 


 (4.1) 

where .i k  See Appendix for a derivation of (4.1). 

The new covariance estimator uses the joint selection probabilities ik  of Section 2 that are assumed to 

be strictly positive, to construct estimators of the two terms in (4.1). This yields  

 

2 2

=1

2 2

=1

( ) ( )1ˆ = ( 1)
2 ( 1) ( 1) ( 1)

( ) ( )1
= .

2

M M
ij k ij k ij kj ij kj

ik
j ji k ik ik

M M
ij k ij k ij kj ij kj

j ji k ik ik

Z Z y y Z Z y y
S M

M M M M M

Z Z y y Z Z y y

M M

   

   





   
  

     

   
 

  

 

 

 



 



 (4.2) 

The plug-in unbiased variance estimator for (2.3) is simply  2
PI = tr ( ) ,v NS  where S  has entries given by 

(4.2). Observe that this covariance estimator can be constructed for the unconditional and the conditional 

sampling designs presented in Sections 2 and 3. For a conditional sampling design, one replaces ik  by ,c
ik  

see (3.1), in (4.2) as long as > 0.c
ik  

Covariance estimator (4.2) is very variable as its second term involves a division by ik  that can be very 

small. This leads to a covariance matrix estimator S  which is not positive definite and to an estimator for 

(2.3) that can, on some rare occasions, be negative. A more stable estimator can be obtained by assuming 

that all the between row correlations are equal. An estimator of the common correlation is then  

 
>

>

ˆ
ˆ = ,

ˆ ˆ

iki k

ii kki k

S

S S





 (4.3) 

where ˆiiS  and ˆkkS  are the sample variances for row i  and row k  respectively. An alternative covariance 

estimator is (ec)ˆ ˆ ˆˆ= .ik ii kkS S S  It leads to an equal correlation estimator, ec ,v  for (2.3). A stratified variance 

estimator, valid if the rows were sampled independently, 2
str

ˆ= ,ii iii
v S N  is also included as a 

benchmark in the Monte Carlo simulations that are presented next. 

 

4.1 A Monte Carlo investigation of the sampling properties of the new 
variance estimators 

 

The sampling properties of variance estimator (4.2) and its equal correlation alternative are investigated 

in two population matrices. The first one has = 9,N  = 36,M  column sample size is = 2n  and row sample 

sizes im  are (11,10,7,10,11,5,6,6,6). In the second one, M  and the row sample sizes are doubled while 
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= 9N  and = 2n  are unchanged. The y  variable in cell ( , )i j  has a log-normal distribution with expectation 

im  and variance 1.72 2.im  It is given by  

 = exp( ) = 1, , = 1, ,ij i j ijy m a e i N j M … …   

where the column effect ja  and the errors ije  are independent variables respectively distributed according 

to a  2 22,a aN    and a  2 22,e eN    distributions where 2 2 =a e  0.8. Simulations with 2 =a 0, 0.2 

and 0.4 are reported. This corresponds to a between row correlation    2 2 2= exp( ) 1 exp( ) 1a a       

of respectively 0, 0.18 and 0.40. Table 4.1 uses 6 simulated populations and the moments of variance 

estimators are calcuated using 410  Monte Carlo samples. These Monte Carlo samples are drawn using the 

MCMC swap algorithm of Oksanen, Blanchet, Friendly, Kindt, Legendre, McGlinn, Minchin, O’Hara, 

Simpson, Solymos, Stevens, Szoecs and Wagner (2020) discussed in Rivest and Ebouele (2020) to which 

the reader is referred for more details on the simulations. The results are reported in Table 4.1. 

When = 0  the three variance estimators are nearly unbiased in Table 4.1. The simple stratified 

variance estimator does not capture the positive correlation between rows and over-estimates the variance 

when > 0.  The plug-in and equal correlation estimators are unbiased for the 6 populations considered in 

Table 4.1. The standard deviations are also revealing. That for strv  is small as this estimator does not depend 

on the covariance estimators. The plug-in estimator is the most variable while the equal correlation that is 

based on the average covariance has a smaller standard deviation. 

 

Table 4.1 

The variance of ŷ  evaluated using (2.3) and the expectations, and standard deviations between parenthesis, of 

three variance estimators, the stratified estimator  str ,  the plug-in estimator  PI ,  the equal correlation 

estimator  ec .  
 

M     ˆvar y  strv  PIv  ecv  

36 0 0.932 0.913 (0.684) 0.930 (0.757) 0.928 (0.746) 
36 0.18 0.653 0.800 (0.258) 0.654 (0.288) 0.657 (0.280) 
36 0.40 0.544 0.730 (0.306) 0.542 (0.338) 0.543 (0.329) 
72 0 0.486 0.506 (0.225) 0.485 (0.252) 0.486 (0.245) 
72 0.18 0.350 0.424 (0.136) 0.350 (0.151) 0.349 (0.145) 
72 0.40 0.334 0.564 (0.182) 0.334 (0.190) 0.332 (0.182) 

 
To explain the near unbiasedness of ecv  in Table 4.1, one easily checks that this estimator is indeed 

unbiased when all the row sample sizes are constant and equal to .m  The matrix   can then be expressed 

in terms of the N N  identity matrix NI  and a 1N   vector of 1’s, ,N1  as = ( ) ( NN n I  

  ) 1N N N m N 1 1  and (2.3) only involves .iki k
S

  It is easily checked that the equal correlation 

estimator of that sum is unbiased as (4.2) is unbiased. 

 
5. A multi-level matrix design 
 

This section suggests multi-level generalizations of the matrix sampling designs of Sections 2 and 3. It 

involves clusters of rows and level 1 selects a sample of clusters for each column. This is done using a level 

1 random 0-1 matrix with fixed margins. A population matrix is then created for each level 1 cluster of rows; 
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the number of rows in the matrix is the size of the cluster and the number of columns is equal to the column 

total for that cluster in the level 1 sample indicator matrix. Level 2 selection is done independently in the 

population matrices of each level 1 cluster. Level three sampling is done in a similar way. This section 

focusses on two-level designs and uses the following notation:   

 (1)N  is the number row clusters. The size of the level 1 matrix of sample indicators is (1) ;N M  

the row and column sample sizes are (1) (1){ : =1, , }im i N…  and (1);n  

 (2) (1), =1, ,iN i N…  are the sizes of the level 1 row clusters. The level 2 matrix of sample indicators 

for cluster i  has dimension (2) (1);i iN m  the row and column sample sizes are (2)
( ){ : =k im i  

(2)1, , }iN…  and (2);n  

 The matrices of sample indicators can be combined in a matrix with (2)= iN N  rows and M  

columns. The column sample size is (1) (2)=n n n  and the sample size for the 
thk  row of cluster 

i  is (2)
( ).k im  

 

Note 
(1)

(1) =ii
m n M  while for (1)=1, , ,i N…  the sum of the row totals of cluster ,i  has to be a multiple 

of (2)n  as  

 (2) (2) (1)
( ) = .k i i

k

m n m  (5.1) 

Figure 5.1 gives a sample obtained with two levels of sampling in a matrix similar to that of Figure 1.1. 

One has = 10,N  = 20,M  while the row sample sizes are = 8m  and column sample sizes are = 4.n  The 

first level of sampling involves three clusters of rows, of respective size 3, 3, and 4. The 4 Z  matrices used 

to construct Figure 5.1 are given in Appendix. 

 
Figure 5.1 A sample drawn from a 10 20  population matrix using a two level matrix sampling design. 
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The hierarchical design proposed in this section is useful to accommodate constraints. For instance, when 

the rows are sites, a cluster is a set of neighboring sites than can be visited on the same day. When planning 

repeated, say monthly, surveys for the same population over one year, clusters could be used to ensure that 

a unit is surveyed only either in the first six months or in the last six months of the year.  

The hierarchical design shares a key property with the single level sampling designs presented in 

Sections 2 and 3. Given a matrix of sample indicators that meets the row and the column constraints, such 

as that given in Figure 5.1, any permutation of the columns of that matrix gives an acceptable sample matrix. 

Thus, under this hierarchical sampling scheme, the sampling design for selecting units within a row is 

without replacement simple random sampling. The selection probability for row k  of cluster i  is (2)
( ) .k im M  

This is the product of the level 1 selection probability for cluster ,i (1)
im M  times the level 2 selection 

probability (2) (1)
( )k i im m  in row k  of cluster .i  All the designs for sampling units within a column are 

identical. It has two levels and its joint selection probabilities (2) (1) (2)
( ), ( ){ : , =1, , , =1, , ,k i j ii j N k N  … …  

(2)=1, , },jN …  are calculated as follows:   

 For rows in the same cluster, =i j  then  (2) (1) (2)
( ), ( ) , ,=k i i i i km M    where (2)

, ,i k   is the joint selection 

probabilities for rows k  and   of cluster i  at the second level of sampling.  

 For rows in different clusters, ,i j  then    (2) (1) (2) (1) (2) (1)
( ), ( ) , ( ) ( )=k i j i j k i i j jm m m m    is the product of 

the joint selection probability for these two clusters at level 1, times the level 2 single selection 

probabilities for rows k  and   in clusters i  and .j  

 

In this construction the joint selection probabilities, for levels 1 and 2, can be approximated by those of 

conditional Poisson sampling as discussed in Section 2.  

It is now convenient to change the notation and to let , =1, ,i k N…  denote rows of the design matrix, in 

agreement with Sections 2 and 3. The selection probability in row i  is =i im M  and the joint selection 

probabilities are { },h
ik  where exponent h  means hierarchical. All the findings of Sections 2 and 3 apply to 

the hierarchical design provided that the joint selection probabilities { }ik  are replaced by their multi-level 

alternatives, { }.h
ik  For instance (2.1) and (2.3) hold for this new design, when written is terms of { }h

ik  and 

the matrix h  whose ( , )i k  entry is  = ( ) 1 .h h
ik ik i k M     The variance estimators proposed in 

Section 4 applies to the hierarchical design proposed in this section provided that all the joint selection 

probabilities { }h
ik  are strictly positive. The estimates of (2.3) and (3.2) are evaluated using the matrix h  

for the hierarchical design and the covariance estimator of Section 4. 

 
5.1 A Monte Carlo investigation 
 

This section revisits the Monte Carlo simulations of Section 4.1. The populations are sampled using a 

two level design: within each column the two rows sampled need to belong to the same cluster. The clusters 

of rows for level 1 consist of {1, 2, 3},  {4, 5, 6},  and {7, 8, 9}  and the row sample sizes are (11, 10, 7, 10, 

11, 5, 6, 6, 6), the same as those used in Section 4.1. At level 1, Z  is a 3 36  matrix. Its column totals are 
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= 1n  while from (5.1), its row totals are (14, 13, 9). The three Z  matrices for level 2 have respectively 14, 

13, and 9 columns and three rows; their column total is = 2.n  For this problem the designs of Sections 2 

and 3 are the same as the column totals of all the Z  matrices are either 1 or 1.N   

Since only one cluster is sampled in each column the joint selection probability h
ik  is 0 for two rows 

( , )i k  belonging to different clusters. Thus the covariance ikS  of the survey variable between these two 

rows is not estimable. Indeed only 9 of the  36 = 8 9 2  covariances can be estimated in the simulation 

design. The variances (2.3) and (3.2) are not estimable. The simulation study investigates the performance 

of the equal correlation estimator ecv  where the common correlation is estimated, through (4.3), using the 9 

covariances that are estimable. 

 
Table 5.1 

The variance of ŷ  evaluated using (2.3) and the expectations, and standard deviations between parenthesis, of 

two variance estimators, the stratified estimator  str  and the equal correlation estimator  ec .  
 

M     ˆvar y  strv  ecv  

36 0 0.888 0.922 (0.694) 0.968 (0.759) 
36 0.18 0.582 0.796 (0.244) 0.684 (0.360) 
36 0.40 0.587 0.738 (0.309) 0.521 (0.338) 
72 0 0.521 0.504 (0.230) 0.449 (0.251) 
72 0.18 0.318 0.421 (0.136) 0.362 (0.151) 
72 0.40 0.334 0.561 (0.183) 0.321 (0.195) 

 
The population sampled are the same as those investigated in Section 4.1. Even if the sampling designs 

differ, the expectations and variances of the stratified variance estimator strv  are identical in the two 

experiments. Indeed the strv  entries for Tables 4.1 and 5.1 are the same up to Monte Carlo errors. The bias 

of the equal correlation estimator ecv  ranges between 3% and 20%. It is smaller than that of strv  when > 0.  

Thus variance estimation is a problem when the first level column sample size is 1. Estimator strv  provides 

an upper bound for the variance while the validity of ecv  rests on an homogeneity assumption that can be 

verified, at least in part, by comparing the correlation coefficients that are estimable. 

 
5.2 A complex example 
 

This section discusses a complex sampling design presented in Ida et al. (2018) that involves a 54 33  

population matrix. The goal is to estimate the fishing effort y  over = 33M  days at 9 sites, grouped in three 

clusters. In Table 5.2 the sites are numbered from 1 to 9. Sites 1, 3, 7, and 9 have more fishermen; their 

planned number of visits is about twice that for the other sites. Each day a site can be visited at 6 time points, 

2 in the morning (AM), 2 in the afternoon (PM) and 2 in the evening (EV). So for each day there are 

= 9 6 = 54N   site-time-points. The sampling design selects 4 site-time-points on each day, under two 

constraints: the sites visited must be in the same cluster and the four visits must be selected as two blocks 

of two visits in either the morning, the afternoon or the evening. Three levels of sampling are needed to 
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address these constraints. Because of these constraints it is not feasible to have the number of visits to the 

more important sites, 1, 3, 7, and 9, exactly equal to twice that at the other sites. The row totals given in 

Table 5.2 correspond to an approximate solution to the determination of the site-time-point sample sizes. 

Other approximate solutions are possible; those considered in Ida et al. (2018) are obtained by running the 

cube algorithm, modified for highly stratified populations by Hasler and Tillé (2014), for the three levels of 

sampling.  

Appendix shows how to obtain a matrix of sample indicators for the 54 33  population matrix with 

column total = 4n  and row totals given in Table 5.2. There are three level of sampling. Level 1 selects one 

cluster for each day (column), level 2 proceeds cluster by cluster and selects two time periods for each day 

it is visited. Level 3 sampling is applied within each cluster period; it selects the two sites that will be visited 

at the two time point in the period. Level three sampling is stratified: one site is selected for each time point. 

This involves 13 Z  matrices of sample indicators.  

 
Table 5.2 

Vector of 54 row totals for the 54 33  matrix Z  for the design of Ida et al. (2018). 
 

Cluster Period Time-point-site Tot 

1 1  1 2  1 3  2 1  2 2  2 3  

1 AM 4 1 3 3 2 3 16 
1 PM 3 2 3 3 2 3 16 
1 EV 3 2 3 3 1 4 16 
1 Tot 10 5 9 9 5 10 48 
  1 4  1 5  1 6  2 4  2 5  2 6   

2 AM 1 2 2 2 1 2 10 
2 PM 2 2 1 2 2 1 10 
2 EV 2 2 2 2 2 2 12 
2 Tot 5 6 5 6 5 5 32 
  1 7  1 8  1 9  2 7  2 8  2 9   

3 AM 3 2 4 4 1 4 18 
3 PM 3 2 3 3 1 3 16 
3 EV 3 2 4 4 1 3 18 
3 Tot 9 6 11 11 5 10 52 

 
In Table 5.2, equation (5.1) means that the total sample size for each cluster is a multiple of 4 while that 

for each of the 9 cluster-periods is even. Once a matrix of sample indicators has been selected, either with 

the cube algorithm or by selecting the 13 random Z  matrices implementing the hierarchical design presented 

in the appendix, the conditional approach of Section 3 is a relatively straightforward method to estimate the 

variance. This involves two 54 54  matrices, an estimated covariance matrix S  and ,c  evaluated using 

(3.1). To account for the non estimability of some covariances found in the example considered in 

Section 5.1, the two variance estimators investigated in the simulation study reported in Table 5.1 could be 

used. Taking S  as a diagonal matrix of row variances gives the stratified variance estimator. The equal 

correlation estimator S  can also be evaluated. Thus two methods of variance estimation are available for 

this complex problem. 
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6. Discussion 
 

Many samplings problems face operational constraints that need to be addressed when designing a 

survey, see for instance Vallée, Ferland-Raymond, Rivest and Tillé (2015) for a forestry example. One 

strategy to address these constraints is to use the cube method, possibly within a multi-level design, after a 

careful specification of the selection probabilities. This paper proposes an alternative strategy for cross-

classified populations where the constraints can be expressed in terms of fixed row and column sample 

sizes. As illustrated in Section 5.2, this strategy involves setting up a population matrix and target row totals 

for the matrix of sample indicators. Sample selection is done by selecting relatively small sample indicator 

matrices Z  uniformly over the set of feasible matrices at each level of the design. The hypergeometric 

sampling algorithm of Rivest and Ebouele (2020) is suited for this problem as it does not need an initial 

value 0 ,Z  that is required by MCMC algorithms. One advantage of this approach is that the constraints on 

row and column totals are always verified while the cube method sometimes fails to meet them exactly. An 

interesting feature of the methodology proposed in this paper is the availability of variance estimators. If, at 

all the levels, the column sample sizes are larger than 2, then an unbiased variance estimator for the Horvitz-

Thompson estimator of the mean of the survey variable can be constructed. 
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The matrices of sample indicators needed to construct Figure 5.1 
 

The 3 20  matrix for selecting clusters 3,Z 2,Z  and 1Z  respectively within each column is given by   

 1

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 .

0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1

Z

 
 

  
 
 

  

The three matrices of sample indicators for level 2 sampling in respectively zones 3, 2 and 1 are  

 3

0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0

1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1

1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1

zZ

 
 
 
 
 
 

  

 2 1

1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1

1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 .

0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0
Z Z

   
   

    
     

z z   

The (10, 5) and (8, 5) entries in Figure 5.1 are equal to 1. This information can be retrieved from 1Z  and 

1:ZZ  in the fifth column of 1Z  zones 2 and 1 are sampled. It is the third times that zone 1 is sampled so that 

the third column of 1ZZ  informs us that the first and third row of 1Z  are sampled in that column. This 

translates into black boxes for entries (10, 5) and (8, 5) of Figure 5.1.  

 

Section 5.2: Some matrices of sample indicators for a three level sampling problem 
 

To simplify the presentation we use matrices 0Z  where identical columns are pooled together. A matrix 

of sample indicators is obtained by taking a random permutation of 0.Z  For the first level of sampling 0Z  

can be expressed using row vectors of ones, ,n1  and zeros, ,n0  where n  is the length of the vector. The 

level 1 0Z  matrix is  

 

12 8 13

(1)
0 12 8 13

12 8 13

= .

 
 
 
 
 

1 0 0

Z 0 1 0

0 0 1

  

  

  

  

The second cluster is selected 8 times. A 0Z  matrix for choosing the periods, AM, PM or EV, on the days 

that cluster two is selected is  

 (2)
0,2

1 1 1 1 1 0 0 0

= 1 1 0 0 0 1 1 1 ,

0 0 1 1 1 1 1 1

 
 
 
 
 

Z   

where the exponent gives the sampling level and the index accompanying 0 is the cluster to which this 

matrix 0Z  applies. The row totals for (2)
0,2 ,Z  5, 5, and 6 are half the AM, PM, EV totals for cluster 2 in 
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Table 5.2. We now consider period AM for cluster 2. Considering row 1 of (2)
0,2 ,Z  AM is selected 5 times. 

The third level matrix has five columns and 6 rows, corresponding to the time-point-site (1-4, 1-5, 1-6, 2-4, 

2-5, 2-6) with row totals (1, 2, 2, 2, 1, 2) as given in the AM line for cluster 2, see Table 5.2. Here one has 

to stratify by time point: one site need to be selected at each time point. A candidate 0Z  where the first three 

rows are for time point 1 and the last 3 for time point 2 is  

 (3)
0,2,AM

1 0 0 0 0

0 1 1 0 0

0 0 0 1 1
= .

0 1 1 0 0

1 0 0 0 0

0 0 0 1 1

Z

 
 
 
 
 
 
 
  
 

  

Thus the set of possible level 3 matrices (3)
2,AMZ  is obtained by permuting the columns of the first three and 

of the last three rows of (3)
0,2,AMZ  independently. The third level of sampling involves 9 matrices similar to 

(3)
0,2,AM .Z  
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Targetted double control of burden in multiple surveys 

Alina Matei, Paul A. Smith, Marc J.E. Smeets and Jonas Klingwort1 

Abstract 

Sample coordination methods aim to increase (in positive coordination) or decrease (in negative coordination) 
the size of the overlap between samples. The samples considered can be from different occasions of a repeated 
survey and/or from different surveys covering a common population. Negative coordination is used to control 
the response burden in a given period, because some units do not respond to survey questionnaires if they are 
selected in many samples. Usually, methods for sample coordination do not take into account any measure of the 
response burden that a unit has already expended in responding to previous surveys. We introduce such a measure 
into a new method by adapting a spatially balanced sampling scheme, based on a generalization of Poisson 
sampling, together with a negative coordination method. The goal is to create a double control of the burden for 
these units: once by using a measure of burden during the sampling process and once by using a negative 
coordination method. We evaluate the approach using Monte-Carlo simulation and investigate its use for 
controlling for selection “hot-spots” in business surveys in Statistics Netherlands. 

 
Key Words: Coordinated sampling; Negative coordination; Survey burden; Burden “hot-spots”. 

 
 

1. Introduction 
 

Sample coordination methods seek to alter the size of the overlap(s) between two or more samples 

relative to the case where all the samples are selected independently. Positive coordination refers to the case 

where the overlap is larger than under independent sampling, and is generally used to reduce the variance 

of measures of change between successive periods of repeating surveys, though it can also be used to link 

together information from two separate surveys. Negative coordination is when the overlap is smaller than 

under independent sampling, and is used particularly to reduce the number of surveys in which a particular 

unit is selected in a given period, and therefore to control the perceived burden of responding (Bradburn, 

1978). Bottone, Modugno and Neri (2021) have shown that increased perceived burden is associated with 

higher attrition and partial response, and also with lower data quality. 

In fact the effect of negative coordination is to spread out a fixed overall burden across either or both of 

more units and more time, so the total burden is the same, but the risk of any particular unit having a large 

burden within a short period is reduced ‒ ideally to zero, though this is not always possible in practice, 

because detailed stratification can result in some parts of the population being relatively heavily sampled. 

Negative coordination has been widely applied in business surveys where sampling fractions tend to be 

large, and we focus on examples from surveys of businesses and institutions, though the approach can be 

applied in various situations. 

There are many available methods for sample coordination, and Matei and Smith (2023) give an 

overview of them. An important approach in sample coordination is the use of permanent random numbers 

(PRNs). PRNs were introduced by Brewer, Early and Joyce (1972) to coordinate Poisson samples, and have 

been widely used since as the basis of other, different methods (see Ohlsson, 1995, for an overview). They 
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have also formed the basis of a number of sample coordination systems (which are also reviewed by Matei 

and Smith, 2023), which generally have to deal with a series of practical issues as well as following the 

theory of a particular sample coordination method. Coordination systems operate most flexibly where there 

are many units, and so benefit small units particularly. But they also operate to spread the response burden 

evenly for units of all sizes. 

The consequence is that although a sample coordination system reduces the overlaps between samples 

and therefore the current burden, there are still some units which appear more frequently than others across 

the range of samples being coordinated. This is at least partly driven by the use of stratified designs with 

many small strata, some of which have large inclusion probabilities. Statistics Netherlands operates a sample 

coordination system called the Survey Burden System (Smeets and Boonstra, 2018) which uses a PRN 

coordination approach which takes account of the accumulated burden of the units. This system does indeed 

result in relatively only a few units being included in multiple samples, but these “hot-spots” are a challenge 

because of the burden they represent for particular units and the consequent effects on response and relations 

with respondents. 

A related situation is identified by Landry (2011) in Statistics Canada’s Survey of Employment, Payroll 

and Hours (SEPH). Landry suggests the use of a take-none (cut-off) stratum, mainly to control the response 

burden on the smallest businesses. Although cut-off sampling is widely used, there is a risk of bias in 

estimates from such samples, so a better approach to burden control allowing unbiased estimation would be 

preferable. 

In this paper we therefore seek a method which follows the requirements of negative sample 

coordination, but allows for some additional control for units which have particular characteristics. We 

adapt the approach of spatially correlated Poisson (SCP) sampling (Grafström, 2012) to this problem, by 

introducing a measure of the response burden in the sampling process. 

In the remainder of the paper we introduce the framework and notation for sample coordination in 

Section 2, outline the procedure for spatially correlated Poisson sampling in Section 2.4 and develop the 

methodology for sample coordination with targetted double control in Section 3. We evaluate our proposal 

in Section 3.2; we provide Monte-Carlo simulation studies using the MU284 population from Särndal, 

Swensson and Wretman (1992) in Section 3.3, and real data on the business population in the Netherlands 

to assess its ability to deal with hot-spots in Section 3.4. Section 4 concludes with a discussion. 

 
2. Sample coordination and SCP sampling 
 

2.1 Framework and notation 
 

We consider the framework of two overlapping finite populations of units, denoted by 1U  and 2.U  One 

selects samples 1s  from 1U  and 2s  from 2 ,U  using the sampling designs 1p  and 2 ,p  respectively. The set 

formed by the two samples can be seen as a bivariate sample 1 2 1 2= ( , ) ,s s s U U   having a joint sampling 

design ,p  with the marginals 1p  and 2.p  The samples 1s  and 2s  are drawn dependently to alter the size of 

the overlap(s) between them relative to the case where the samples are selected independently. Thus, the 

samples 1s  and 2s  are said to be coordinated if  
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 1 2 1 1 2 2( , ) ( ) ( ),p s s p s p s   

(see Cotton and Hesse, 1992; Mach, Reiss and Şchiopu-Kratina, 2006). 

The size of the overlap between 1s  and 2 ,s  denoted by ,c  represents the number of units common to 1s  

and 2.s  It is in general a random variable having expectation  

 ,12( ) = ,k
k U

E c 

   

with  

 
1 1 2 2

,12 1 2 1 2
, ,

= ( , ) = ( , ), ,k
s k s s k s

P k s k s p s s k U
 

       

and 1 2=U U U  is the so-called “overall population”. Maximizing/minimizing ( )E c  in positive/negative 

sample coordination represents an overall standard to evaluate a coordination method. 

Let 1 1= ( )k P k s   and 2 2= ( )k P k s   be the first-order inclusion probabilities of unit k U  in the 

first and second sample, respectively. We consider that 1 = 0k  if 1k U  (if 1s  and 2s  are samples for two 

periods of the same survey, these new units represent “births”) and 2 = 0k  if 2k U  (“deaths”). 

Based on probability theory, the following bounds are available for the joint probability ,12 ,k  for any 

k U   

 1 2 ,12 1 2ALB = max (0, 1) min( , ) = AUB ,k k k k k k k         (2.1) 

where ALB stands for “absolute lower bound” and AUB for “absolute upper bound”. One obtains the lower 

and upper bounds for ( )E c  by applying the sum over all units k U  on the left and right side of Expression 

(2.1) (see Matei and Tillé, 2005): 

 ALB = ALB ( ) AUB = AUB.k k
k U k U

E c
 

    (2.2) 

If 1s  is drawn before 2 ,s  and 2s  is selected conditionally on 1s  using a probability 2 1( | ),P s s  one can 

obtain any value of ,12 [ALB , AUB ]k k k   using the conditional probabilities (Cotton and Hesse, 1992)  

 
2 1 ,12 1

2 1 2 ,12 1

( | ) = ,

( | ) = ( ) (1 ).

k k

k k k

P k s k s

P k s k s

 

  

 

   
  

We focus below on the negative coordination of two samples. Reaching the lower bound in Expression 

(2.1) for all units k U  is equivalent to creating the “best” possible degree of negative coordination between 

samples based on their overlap minimization. 

 
2.2 Sample coordination with PRNs 
 

As underlined in Section 1, sample coordination methods with PRNs are commonly used in practice. 

They are based on the following basic idea: one associates a uniform random number drawn independently 
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from the Unif (0,1)  distribution with each unit .k U  These numbers are called “permanent” since they 

are used in the selection process over time and over surveys for units which persist in the population. For a 

“birth” (a new unit which appears in the population), a new PRN is assigned; for a “death” (a unit which 

disappears from the population), the unit and its associated PRN are deleted from the corresponding survey 

frame. 

Introduced by Brewer et al. (1972), Poisson sampling with PRNs is widely used in sample coordination, 

especially as a base for coordination systems (see Qualité, 2019, for an example applied in Switzerland). In 

negative coordination it is implemented as follows: first, one generates the PRNs 1 2, , , Nu u u…  indepen-

dently from the Unif (0,1)  distribution. Next, if 1< , ,k ku k U   unit k  is included in 1.s  The sample 2s  

is selected in a similar manner, but using the numbers 1 ku  instead of :ku  if 21 <k ku   then unit k  is 

included in 2.s  Using Poisson sampling with PRNs to negatively coordinate 1s  and 2s  allows the bound 

ALBk  in Expression (2.1) to be reached for any unit .k U  This can be shown as follows: unit k  is selected 

in both 1s  and 2s  if 1<k ku   and 21 < .k ku   This is equivalent to 2 11 < < .k k ku   The probability that 

this occurs is 1 2 1 2max (0, (1 )) = max (0, 1) = ALB .k k k k k        

While Poisson sampling with PRNs is a very attractive scheme for sample coordination, it has an 

important drawback: the resulting samples have random sizes, increasing the variance of the estimates. For 

this reason, fixed-size sampling designs are sometimes preferred; see, for instance, Pareto sampling with 

PRNs (Rosén, 1997a, b). Nevertheless, the bounds provided in Expression (2.1) are in general not reached 

using sampling designs with fixed sample size and unequal inclusion probabilities; for some empirical 

results based on Monte-Carlo simulation, see Grafström and Matei (2018). Compared to Poisson sampling 

with PRNs which allows independent selection of units, such sampling designs impose more restriction on 

the unit selection mainly due to the fixed sample size, and fail in general to reach the bounds provided in 

Expression (2.1). Theoretical conditions to reach the two overall bounds given in Expression (2.2) are 

provided by Matei and Tillé (2005). 

 
2.3 Response burden and sample coordination 
 

Response burden is a difficult concept to define; it may include objective factors such as the time spent 

to provide questionnaire responses and subjective factors such as what is perceived as burden by the 

respondents, see for instance Natkowska and Modak (2014); Bottone et al. (2021). From the statistical 

perspective, we use the following definition provided by Sunter (1977). 

Consider several surveys = 1, 2, ,j M…  having associated populations of units 1 2, , , ,MU U U…  with 

=1= .M
j jU U  The response burden of unit k  in M  surveys is a random variable  

 
=1

RB = ,
M

k j kj
j

I    

with = 1kjI  if jk s  and 0 otherwise, and j  is the response load imposed by the thj  survey for all units 

selected to participate in this survey. The expected value of RBk  is given by 
=1

(RB ) = ,
M

k j kjj
E   ,k U  

where = ( ),kj jP k s   and js  is the thj  survey sample, = 1, , .j M…  When = 1,j  for all =1, , ,j M…  

we simply obtain that  
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=1

RB = ,
M

k kj
j

I   and  
=1

(RB ) = , .
M

k kj
j

E k U   (2.3) 

The response burden is commonly associated with a negative coordination of samples. Usually, a 

coordination method does not use any measure of response burden in the sampling process. If a negative 

coordination method is applied, the value of the response burden (seen as the realization of a random 

variable) diminishes for the units not included in the overlap: for instance, for two selected samples 1,s  2 ,s  

and considering the first part of Expression (2.3), the value of RBk  is 1 if 1 2\k s s  or 2 1\k s s  while it 

is 2 if 1 2.k s s   Minimizing the sample overlap size implies having fewer units with the value of RB = 2.k  

However, at the overall level, sample coordination methods do not affect (RB ),kE  but try to control for 

excessive burdens and to allocate burdens in a fair way, as well as to reduce the variance of RB .k  

In what follows, we use the expression cumulated response burden to denote the realized value of the 

RBk  given in the first part of Expression (2.3). 

 
2.4 Spatially correlated Poisson sampling 
 

Spatially correlated Poisson (SCP) sampling is a particular case of correlated Poisson sampling, a family 

of sampling designs introduced by Bondesson and Thorburn (2008). First, we review this method for a 

generic sample with given first-order inclusion probabilities; next, we give the modification provided by 

Grafström (2012) which produces SCP samples. 

Correlated Poisson sampling is a list sequential method used to draw a random sample s  from ,U  with 

prescribed inclusion probabilities ,k .k U  Consider the selection probability ( 1) ,k
k

  that allows unit k  

to be selected in s  at the thk  iteration of the following algorithm (see Step 3b): 
 

Step 1: set (0) = ,    for all ,U  

Step 2: set =1,k  

Step 3: while k N  do   

3a: generate ku  independently from the Unif (0,1)  distribution,  

3b: if ( 1)< k
k ku    then = 1kI  (k  is selected in )s  else = 0kI  (k  is not selected in ),s  where kI  

is the indicator variable associated to unit ,k U  

3c: update the selection probabilities for the remaining units = 1, ,i k N …  according to  

 ( ) ( 1) ( 1) ( )= ( ) ,k k k i
i i k k kI w       

where ( )i
kw  are some weights given by unit k  to other units = 1, , ,i k N …  

3d: increment .k  
 

The weights can be chosen freely in the following range  

 
( 1) ( 1) ( 1) ( 1)

( )

( 1) ( 1) ( 1) ( 1)

1 1
min , min , ,

1 1

k k k k
ii i i i

kk k k k
k k k k

w
   

   

   

   

    
     

    
 (2.4) 
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in order to assure that ( 1)0 1,k
i

  = 1, , .i k N …  The weights ( )i
kw  may depend on 1 2 1, , , kI I I …  but not 

on 1, , , .k k NI I I …  The choice of ( )i
kw  provides different sampling designs; for instance, Poisson sampling 

is obtained if all ( )i
kw  are zero, .k U  Bondesson and Thorburn (2008) showed that a fixed size sampling 

is obtained if for each ( )

= 1
: =1

N i
ki k

k U w


   and = ,kk U
n

 n  being the sample size. The prescribed 

inclusion probabilities are respected since ( ) = ,kP k s   ,k U  regardless of the choice of ( )i
kw  (see 

Remark 1 in Bondesson and Thorburn, 2008). This is due to the fact that  

 ( 1) ( 1) ( 2) ( 2)( ) = ( ( | )) = ( ) = = ,k k k k
k k k k kE E E E        …   for all  = 1, 2, , ,k N…   

as underlined by Grafström (2012). 

Grafström (2012) applied this method in spatial sampling, where the units in the population have 

associated geographical coordinates which can be used to compute distances between them. His goal was 

to draw a balanced sample, so that the selected units are spread over the space under study. To avoid 

clustering of similar units and to obtain well-spread samples, Grafström (2012) used positive weights ( )i
kw  

in Expression (2.4) chosen such that unit k  gives maximal weight to the unit closest to k  in (Euclidean) 

distance, among the units = 1, , ,i k N …  then as much weight as possible to the second closest unit, etc. 

with the restriction that ( )

= 1
=1

N i
ki k

w
  is fulfilled, for any ,k U  and respecting the upper bound for each 

weight ( )i
kw  in Expression (2.4). This method, called the maximal weight strategy, provides spatially 

correlated Poisson sampling, which is a balanced spatial sampling design of fixed sample size, assuming 

that = .kk U
n

  Moreover, if ,k k U   are proportional to a size measure, SCP sampling becomes a ps  

sampling design of fixed sample size. 

Grafström and Matei (2018) employed SCP sampling with PRNs to coordinate samples in a manner 

similar to Poisson sampling with PRNs (Brewer et al., 1972). Thus, for negative coordination, Step 3a of 

the previous algorithm is executed only once for 1,s  in order to associate a PRN ku  with each unit ,k U  

and ku  is replaced by .ku  Next, to select 1s  one uses ku  instead of ku  and the corresponding selection 

probabilities in Step 3a; to select 2 ,s  one uses 1 ku  instead of ku  and the corresponding selection 

probabilities in Step 3a. SCP sampling with PRNs is implemented in the function “scps_coord” of the R 

package “BalancedSampling” (Grafström, Lisic and Prentius, 2022). 

 
3. Targetted double control strategy 
 

3.1 Description of the strategy 
 

Due to the cumulated response burden, some units do not answer the survey questionnaires if they are 

selected in many samples (Lorenc, Kloek, Abrahamsson and Eckman, 2013). We assume that, over time, 

some such units with a large cumulated burden become “notorious” non-respondents. The same occurs with 

“hot-spots” in business surveys in Statistics Netherlands (see Section 3.4). We denote these units as non-

desired units, and we want to exclude them as much as possible from future selections, while respecting 

their prescribed inclusion probabilities. It is possible to classify the units of U  into two categories: desired 

(usually with a low cumulated response burden) and non-desired units (usually with a large cumulated 

response burden). 
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Our goal is to produce a double control of the response burden for the non-desired units: first by using a 

measure of the response burden in the sampling process, and second by using a method for negative sample 

coordination. 

To create a targetted double control of non-desired units, we modify spatially correlated Poisson 

sampling (Grafström, 2012), and use a negatively coordinated sampling scheme. We describe below how 

to adapt SCP sampling for the coordination framework with targetted double control. 

As explained in Section 2.4, in spatial sampling, the units in U  have associated geographical coordi-

nates. It is thus possible to compute distances between units, usually using Euclidean distance. Units close 

in distance provide, in general, similar information. Spatially balanced sampling allows the selection of 

units that are spread over the space, and thus avoids collecting similar information. 

We propose to replace the matrix of geographical coordinates in SCP sampling by the vector formed by 

a measure based on the response burden of each unit. Other information, such as the inclusion probabilities, 

can also be included, and the vector becomes a matrix. This could lead to an extra spread with respect to the 

inclusion probabilities. Similar units usually have inclusion probabilities close to each other and non-desired 

units often have larger inclusion probabilities. 

The Euclidean distances between units are next computed using this new vector or matrix. If a non-

desired unit is selected in the current sample, SCP sampling avoids selecting a similar unit. Next, we use a 

negative coordination method for samples. We call this method the targetted double control strategy, while 

a SCP sample used in this strategy is called an adapted SCP sample (ASCP sample). For adapted SCP 

sampling, a measure of the response burden for a unit can simply be defined as 1 if the unit is a non-desired 

unit and 0, otherwise; this represents a proxy for large and small cumulated response burdens respectively, 

and defines a measure of the unit status. Other measures of response burden can be used. For instance, we 

employ the cumulated response burden in Section 3.4. 

These two options (unit status and cumulated response burden respectively) are used in the algorithm 

given below which describes the adapted SCP sampling for two negatively coordinated samples 1s  and 2:s  
 

Step a: based on previous information (previous surveys), create the vector or matrix which includes the 

information about the unit status (desired or non-desired) or the cumulated response burdens of 

the units in ;U  

Step b: select 1s  using the corresponding inclusion probabilities, by applying SCP sampling with the 

maximum weight strategy. The Euclidean distances between units are computed using the vector 

or matrix created in Step a. If the cumulated response burdens of the units are used in the vector 

or matrix, update them, as well as the vector or matrix, after the selection of 1,s  according to the 

definition given in Expression (2.3);  

Step c: select 2 ,s  negatively coordinated with 1,s  using the corresponding inclusion probabilities, by 

applying SCP sampling with the maximum weight strategy. The Euclidean distances between 

units are computed using the same vector or matrix as for selection of 1s  if the unit status is used, 

or the updated ones if the cumulated response burdens are used.  
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If 1s  and 2s  are negatively coordinated using PRNs, 1s  is drawn using , ,ku k U  while 2s  using 

1 ,ku k U   ( ku  replaces ku  in Step 3b of the algorithm given in Section 2.4).  
 

Remark 1 As indicated in Section 2.3, the response burden is a random variable. The Euclidean distances 

in the previous algorithm are computed conditionally on the realized value of RB , .k k U  

 
3.2 Effectiveness of the targetted double control strategy 
 

We provide in the next two sections the results of a Monte-Carlo simulations to show the effectiveness 

of the proposed strategy, and use two methods to test its performance:   
 

• Method 1: two samples are negatively coordinated using PRNs;  

• Method 2: two samples are negatively coordinated but without using PRNs. One new sample 2s  

is drawn and negatively coordinated with an existing sample 1s  1(s  is fixed and the inclusion 

probabilities are known). It is possible that 1s  was selected using PRNs, but these numbers are 

not available for the second selection. Thus, conditional on 1,s  a new random number 2ku  is 

associated with unit :k U  if 1,k s  one generates 2ku  independently from the 1Unif (0, )k  

distribution; otherwise one generates 2ku  independently from the 1Unif ( ,1)k  distribution. Next, 

k  is selected in 2s  using the number 21 ,ku  and the probability 2 , .k k U    

 

In practice, Method 1 is applied in the general case when it is possible to draw new samples for both 

survey 1 and 2. Method 2 is applied if it is not possible to draw a new sample 1s  for practical reasons. For 

example, if the businesses have already received a questionnaire for survey 1, or when a new survey is added 

to a coordination system and the PRNs of the businesses cannot be extracted from the system. 

Five measures provided below are used to quantify the performance of the proposed strategy. Measures 

1 and 2 focus on the selection of non-desired units. Measure 1 quantifies the number of pairs 1 2( , )s s  with 

given numbers of non-desired units in common between 1s  and 2s  (that is, the number of non-desired units 

in the overlap), and it is the most important for the study of the proposed strategy application. We expect 

that the proposed strategy will reduce the variance of the number of non-desired units in the overlap 

compared to its competitors and independent sampling. Measure 2 is related to ALB ,k  with k  being a non-

desired unit. Ideally, one wants to reach the lower bound ALBk  given in Expression (2.1) for 1( ,P k s  

2 ,12) = ,kk s   for any .k U  As underlined in Section 2.2, we are able to reach it when both 1s  and 2s  are 

selected using Poisson sampling with PRNs (so when Method 1 is applied). Method 2 does not always allow 

it to be reached. We hope that the proposed strategy provides values of the estimated 1 2( , )P k s k s   of 

the non-desired units close to this bound, showing that such units have small chances to be selected in the 

two samples. In some cases, however, a direct comparison with ALBk  is not possible (see for example 

Method 2, framework 2 in Section 3.3), but we expect that the proposed strategy provides values of the 

estimated 1 2( , )P k s k s   lower than its competitors, or at least similar. 

Measures 3, 4 and 5 concern the overall performance of a negative coordination method. A value of 

Measure 3 close to ALB indicates an important degree of negative coordination of the two samples. 
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Measures 4 and 5 are measures of the overlap (relative) variance. As before, we expect that our strategy is 

able to provide lower values than its competitors for Measures 3, 4, and 5, or at least similar. 

The five measures are:   
 

• Measure 1: number of pairs of samples 1 2( , ),s s  with 1s  and 2s  containing in common a number 

of given non-desired units through simulations;  

• Measure 2: values of the estimated 1 2( , )P k s k s   of the non-desired units through simulations;  

• Measure 3: the Monte-Carlo expected overlap  

 1,2
sim

=1

1
( ) = ,

m

E c c
m
 


  

where 1,2
1 2= | |,c s s    and 1 ,s  2 ,s   are the samples drawn in the th  run, and 1 2| |s s   

represents the number of common units of 1s   and 2 ,s  m  is the number of runs; for Method 2, 

when 1s  is fixed (as in some simulations below), 1,2
1 2= | |,c s s   where 2 ,s   is the sample drawn 

in the th  run, where 1 2| |s s   represents the number of common units of 1s  and 2 ;s   

• Measure 4: the Monte-Carlo variance of the overlap  

 1,2 2
sim sim

=1

1
Var ( ) = ( ( )) ;

1

m

c c E c
m



 


  

• Measure 5: the Monte-Carlo coefficient of variation of the overlap  

 sim

sim

sim

( )
CV ( ) = .

( )

V c
c

E c
  

 
3.3 Simulation with MU284 population 
 

We consider as U  region 2 of the well-known MU284 data (see Appendix B in Särndal et al., 1992). 

Samples 1s  and 2s  with expected sizes 1 = 10n  and 2 = 6n  are selected respectively from this region which 

contains in total = 48N  units. No births or deaths are used. The inclusion probabilities 1k  and 2 ,k k U   

are respectively proportional to variables P75 and P85, the population size of Swedish municipalities in 

1975 and 1985. We call this setting the “MU284 population”. Six units from U  (with labels 4, 12, 21, 22, 

32 and 44) are declared non-desired units for both 1s  and 2.s  As a measure of the response burden of a unit 

k  we use a binary variable to compute the Euclidean distances in adaptive SCPS: 1, if unit k  is a non-

desired unit, and 0 otherwise (the unit status). 

We provide below the results of the Monte-Carlo simulations using Methods 1 and 2 and different 

sampling schemes. In the simulations 100,000 runs are used. 

In Method 1, both 1s  and 2s  are random in each run and have the same type (the same sampling scheme 

is used), but different inclusion probabilities. They are negatively coordinated with PRNs in the first 5 cases 

below, while the th6  case refers to independent sample selections. In each run of the Monte-Carlo 

simulation, we draw:   
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1. two Poisson samples;  

2. two Pareto samples;  

3. two adapted SCP samples; for 1 2, ,s s  only 1  and respectively 2  are used to compute the 

Euclidean distances between the units (this case is indicated ASCP_  in the following tables; 

ASCP stands for adapted SCP);  

4. two adapted SCP samples; for 1,s 1  and the values of the unit status are used to compute the 

Euclidean distances; for 2 ,s 2  and the values of the unit status are used to compute the Euclidean 

distances (this case is indicated by ASCP_ _inf in the following tables);  

5. two adapted SCP samples; for 1 2, ,s s  the values of the unit status are used to compute the 

Euclidean distances (this case is indicated by ASCP_inf in the following tables);  

6. two independent adapted SCP samples (without negative coordination); for 1 2, ,s s  the values of 

the unit status are used to compute the Euclidean distances (this case is indicated by “ASCP_inf 

without coordination” in the following tables).  
 

Pareto sampling is introduced in the Monte-Carlo simulation because it provides fixed sample sizes, as 

well as the adaptive SCPS. The inclusion probabilities are used in the adaptive SCPS in cases 3 and 4 above 

to compare with case 5, which only uses the binary information to compute the Euclidean distances. 

Method 2 is applied in two different frameworks in order to make the connection with the application 

given in Section 3.4 which uses real data:   
 

1. framework 1: both 1s  and 2s  are random in each run; 1s  is a Poisson sample, while 2s  is a sample 

of the type enumerated for Method 1 (Poisson, Pareto, etc.);  

2. framework 2: the first sample 1s  is fixed  1 = {4, 6,12,18, 22, 35, 44}s  and is a Poisson sample, 

and only 2s  is random in each run; 2s  is a sample of the type enumerated for Method 1 (Poisson, 

Pareto, etc.).  
 

Note that Measure 2 1 2
ˆ( ( , ))P k s k s   can be compared to ALB ,k k U  for Method 1 and Method 2 

(but only in framework 1). In Method 2, framework 2, 1s  is fixed and we are not able to reconstruct by 

simulation 
1 1 2 2

1 2 1 2, ,
( , ) = ( , ).

s k s s k s
p s s P k s k s

 
    Thus, we only estimate 

2 2
1 2,

( , ).
s k s

p s s
  A 

conditional ALBk  cannot be used in this case. The corresponding tables below do not include values of 

ALB .k  

The tables in Section 3.3.1 present the results for Method 1, while for Method 2, they are given in 

Section 3.3.2 (framework 1) and Section 3.3.3 (framework 2). Using Measure 1 (see Tables 3.1, 3.4 and 

3.7), the possible number of non-desired units common to 1s  and 2s  is between 0 and 6 for Method 1 and 

Method 2, framework 1, and between 0 and 4 for Method 2, framework 2. Both Poisson and Pareto sampling 

reach the maxima of the ranges. In contrast, adaptive SCPS (even without PRNs) shrinks the distribution of 

the possible number of non-desired units in common, and avoids the selection of a large number of non-

desired units, resulting in a decreased variance of their number, compared with its competitors. 

The use of the binary variable (without any supplementary information, such as the inclusion 

probabilities) in the adaptive SCPS seems to be the best choice to compute the Euclidean distances between 
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units (the case ASCP_inf). For this setting, in general, ASCP_inf performs the best, and selects mostly 1 

(see Table 3.7) or 2 non-desired units in common (see Tables 3.1 and 3.4), that is, fewer than the other two 

methods. However, no pairs 1 2( , )s s  provide 0 non-desired units in common in Method 1 or Method 2, 

framework 2 (see Tables 3.1 and 3.7), as shown by Poisson and Pareto sampling. 

For Measure 2, in Method 1 and Method 2 (framework 1), Poisson sampling is able to reach the ALBk  

for any non-desired unit ,k  as expected (Tables 3.2 and 3.5). ASCP_inf and Pareto sampling perform 

similarly in the case of these two methods, and provide values of 1 2
ˆ ( , )P k s k s   equal to ALBk  or slightly 

larger. In Method 2, framework 2, 1 2
ˆ ( , )P k s k s   cannot be compared to ALB ,k  because of the way the 

samples are simulated. For this method, ASCP_inf presents values of Measure 2 in agreement with Poisson 

and Pareto sampling, and no sampling method is the best. 

In Tables 3.3 and 3.6, Pareto sampling shows lower values for the expected overlap (Measure 3; 

excepting Poisson sampling which reaches ALB as expected), indicating a very good overall degree of 

negative sample coordination. However, it displays a large estimated variance of the overlap (Measure 4), 

comparable to that of Poisson sampling. Compared to Pareto sampling, ASCP_inf shows a larger value for 

Measure 3 in Method 1 and Method 2, framework 1, but substantially reduces the values of Measures 4 and 

5, indicating a better precision in estimating the overlap between 1s  and 2.s  In Method 2, framework 2, 

ASCP_inf again performs the best for all Measures 3, 4 and 5 (see Table 3.9). 

 
3.3.1 Method 1: both 1s  and 2s  are random in each run; 1 2,s s  are samples of the 

same type, but with different inclusion probabilities 

 
Table 3.1 
MU284 population, Method 1, Measure 1: number of pairs 1 2( , )s s  by possible number of non-desired units in 
common over 100,000 runs (so the row sums are equal to 100,000). 
 

  Possible number of non-desired units in common 
Design  0 1 2 3 4 5 6 
Poisson  7,469 27,170 36,007 21,879 6,536 919 20 
Pareto  5,225 25,946 38,965 23,534 5,784 541 5 
ASCP_   49 8,646 69,411 21,145 749 0 0 
ASCP_ _inf  0 3,614 93,807 2,575 4 0 0 
ASCP_inf  0 3,443 93,406 3,140 11 0 0 
ASCP_inf without coordination 0 831 45,796 53,127 246 0 0 

 
Table 3.2 
MU284 population, Method 1, Measure 2: 1 2

ˆ ( , ),P k s k s   with k  being a non-desired unit, 100,000 runs. 
 

   1 2
ˆ ( , )P k s k s   

Non-desired unit k   4 12 21 22 32 44 
Poisson  0.63 0.03 0.26 0.35 0.34 0.34 
Pareto  0.63 0.07 0.27 0.35 0.34 0.34 
ASCP_   0.63 0.12 0.30 0.35 0.36 0.38 
ASCP_ _inf  0.63 0.03 0.27 0.35 0.35 0.35 
ASCP_inf  0.63 0.06 0.26 0.35 0.35 0.35 
ASCP_inf without coordination  0.64 0.25 0.38 0.42 0.42 0.42 
ALBk   0.63 0.03 0.26 0.35 0.34 0.34 
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Table 3.3 
MU284 population, ALB = 1.96, Method 1, Measures 3, 4, 5: sim ( ),E c simVar ( ),c simCV ( ),c  100,000 runs. 
 

Design  sim ( )E c  simVar ( )c  sim100 CV ( )c  

Poisson  1.96 1.13 54.44 
Pareto  2.00 0.99 49.53 
ASCP_   2.18 0.34 26.53 
ASCP_ _inf  2.03 0.09 15.08 
ASCP_inf  2.01 0.08 13.70 
ASCP_inf without coordination  3.06 0.68 26.91 

 
3.3.2 Method 2, framework 1: both 1s  and 2s  are random in each run; 1s  is a 

Poisson sample 

 
Table 3.4 
MU284 population, Method 2, framework 1, Measure 1: number of pairs 1 2( , )s s  by possible number of non-
desired units in common, both 1s  and 2s  are random in each run over 100,000 runs (so the row sums are equal 
to 100,000). 
 

  Possible number of non-desired units in common 
Design  0 1 2 3 4 5 6 
Poisson  114,060 51,724 125,551 157,299 108,236 37,832 5,298 
Pareto  5,995 26,389 37,893 23,216 5,931 569 7 
ASCP_   1,053 16,383 45,920 34,313 2,331 0 0 

ASCP_ _inf  1,025 16,950 48,830 33,175 20 0 0 

ASCP_inf  1,663 20,987 44,084 33,266 0 0 0 
ASCP_inf without coordination  315 6,178 34,797 58,418 292 0 0 

 
Table 3.5 
MU284 population, Method 2, framework 1, Measure 2: both 1s  and 2s  are random in each run; 100,000 runs. 
 

  1 2
ˆ ( , )P k s k s   

Non-desired unit k   4 12 21 22 32 44 
Poisson  0.63 0.03 0.26 0.35 0.34 0.34 
Pareto  0.63 0.06 0.26 0.35 0.34 0.34 
ASCP_   0.63 0.13 0.34 0.35 0.36 0.40 
ASCP_ _inf  0.63 0.03 0.35 0.35 0.37 0.41 
ASCP_inf  0.63 0.06 0.26 0.35 0.37 0.41 
ASCP_inf without coordination  0.64 0.25 0.38 0.43 0.42 0.42 
ALBk   0.63 0.03 0.26 0.35 0.34 0.34 

 
Table 3.6 
MU284 population, ALB = 1.96, Method 2, framework 1, Measures 3, 4, 5: sim ( ),E c simVar ( ),c simCV ( ),c  both 

1s  and 2s  are random in each run; 100,000 runs. 
 

Design sim( )E c  simVar ( )c  sim100 CV ( )c  

Poisson 1.96 1.12 54.41 
Pareto 1.98 1.03 51.03 
ASCP_  2.24 0.63 35.38 
ASCP_ _inf 2.18 0.56 34.28 
ASCP_inf 2.10 0.61 37.20 
ASCP_inf without coordination 3.05 0.82 29.78 
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3.3.3 Method 2, framework 2: 1 = {4, 6, 12, 18, 22, 35, 44}s  is fixed and is a Poisson 

sample, while 2s  is random in each run 

 
Table 3.7 
MU284 population, Method 2, framework 2, Measure 1: number of pairs 1 2( , )s s  by possible number of non-
desired units in common, 1 = {4, 6, 12, 18, 22, 35, 44}s  is fixed in each run over 100,000 runs (so the row sums 
are equal to 100,000). 
 

 Possible number of non-desired units in common 
Design 0 1 2 3 4 
Poisson 11,970 38,609 36,849 12,033 539 
Pareto 14,497 47,328 33,006 5,085 84 
ASCP_  2,449 69,047 24,291 4,183 30 
ASCP_ _inf 0 81,609 17,689 702 0 
ASCP_inf 0 84,227 15,773 0 0 
ASCP_inf without coordination 0 18,869 60,320 20,802 9 

 
Table 3.8 
MU284 population, Method 2, framework 2, Measure 2: 1 = {4, 6, 12, 18, 22, 35, 44}s  is fixed in each run; 
100,000 runs. 
 

  1 2
ˆ ( , )P k s k s   

Non-desired unit k   4 12 21 22 32 44 
Poisson  0.64 0.05 0 0.41 0 0.40 
Pareto  0.59 0.04 0 0.33 0 0.33 
ASCP_   0.64 0.13 0 0.32 0 0.21 
ASCP_ _inf  0.64 0.05 0 0.36 0 0.14 
ASCP_inf  0.64 0.09 0 0.32 0 0.11 
ASCP_inf without coordination  0.65 0.37 0 0.50 0 0.50 

 
Table 3.9 
MU284 population, Method 2, framework 2, Measures 3, 4, 5: sim ( ),E c simVar ( ),c simCV ( ),c 1 = {4, 6, 12, 18, 22,s  
35, 44}  is fixed in each run; 100,000 runs. 

 

Design  sim( )E c  simVar ( )c  sim100 CV ( )c  

Poisson  1.51 0.76 57.99 
Pareto  1.29 0.60 60.19 
ASCP_   1.30 0.35 45.12 
ASCP_ _inf  1.19 0.17 34.47 
ASCP_inf  1.16 0.13 31.48 
ASCP_inf without coordination  2.31 0.64 34.66 

 
3.4 Simulation with business surveys: Application to “hot-spot units” at 

Statistics Netherlands 
 

Statistics Netherlands (CBS) operates a sample coordination system for business surveys. Despite the 

sample coordination, each year several businesses are still heavily sampled, mainly because of the number 

of drawn samples, different stratification schemes and large sampling fractions. This results in a large 

cumulated response burden for these specific businesses. Therefore, CBS started monitoring the number of 

surveys for which a business was sampled within the last twelve months to identify so-called “hot-spot 
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units” (equivalent to non-desired units, see Section 3.1). CBS classifies businesses with 0-9 employees (size 

classes 0-3) as hot-spot units if they are sampled 3  times within the last twelve months. Businesses with 

10-19 employees (size class 4) are classified as “hot-spot units” if they are sampled 4  times within the 

last twelve months. For larger businesses, no hot-spot units were defined despite the large sample fractions 

that are required for these businesses. Businesses with more than 50 employees are usually sampled with 

inclusion probability 1. These large businesses usually have dedicated staff to fill in the questionnaires. The 

impact on daily business is therefore lower for these businesses. Moreover, sample coordination is generally 

not suitable for businesses with a sampling fraction of 1. 

For the application we consider the population of Dutch businesses in 2021 with 0-19 employees ( =N

1,810,581), the Structural Business Survey (SBS) with sample size SBS =n 54,491, the Investment Survey 

(INV) with INV =n 30,090 and the Finance Monitor (FIN) with FIN =n 6,977. In this population there are 

1,693 hot-spot units. Table 3.10 shows the distribution of businesses by size class (columns) and number of 

samples (rows). The hot-spot units are highlighted in italics. In 2021, there were no businesses with 0-19 

employees that were selected in more than nine surveys by the Dutch coordination system. 

All three surveys are annual surveys with a stratified sample design with equal probability within strata. 

The strata are defined by a combination of industrial classification according to NACE (Nomenclature 

statistique des Activités économiques dans la Communauté Européenne, the standard European industrial 

classification.) and size class. SBS and INV are coordinated by the Dutch coordination system (see Smeets 

and Boonstra, 2018) and use the same stratification. FIN is independent from SBS and INV, but the system 

coordinates the samples for FIN from year to year. FIN only selects businesses with 2  employees (size 

class 2 and larger) and uses different combinations of NACE codes than SBS and INV to define the strata. 

We consider the following scenarios using Methods 1 and 2 (see Section 3.2) and different combinations 

of the surveys:   
 

1. Method 1, where both samples 1s  and 2s  are drawn for SBS. Both samples use the SBS allocation 

of 2021 (scenario 1);  

2. Method 1, where 1s  is drawn for SBS and 2s  is drawn for INV. Both samples use the allocation 

of the corresponding survey of 2021 (scenario 2);  

3. Method 2, where 2s  is drawn for SBS, conditional on the existing SBS sample 1s  of 2021, i.e., 

1s  is fixed. Sample 2s  uses the SBS allocation of 2021 (scenario 3);  

4. Method 2, where 2s  is separately drawn for SBS, INV and FIN, conditional on sample 1,s  that 

is obtained by combining the existing samples of SBS, INV and FIN of 2021, i.e., 1s  is fixed. 

The samples for 2s  use the allocation of the corresponding survey of 2021. It is possible that a 

unit is drawn for each of the three separate samples (scenario 4).  
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Table 3.10 
Distribution of all Dutch businesses with 0-19 employees in 2021 by size class and number of surveys; hot-spot 
units are highlighted in italics. 
 

Number of surveys  Size class 
0 1 2 3 4 Total 

0 381,591 1,051,551 202,137 39,544 8,047 1,682,870
1 4,832 40,580 35,529 16,640 11,732 109,313
2 85 985 2,509 3,196 7,194 13,969
3 8 34 125 423 2,736 3,326
4 0 4 6 46 785 841
5 0 1 1 3 167 172
6 0 0 1 1 56 58
7 0 0 0 1 22 23
8 0 0 0 0 7 7
9 0 0 0 0 2 2

Total 386,516 1,093,155 240,308 59,854 30,748 1,810,581

 

In this simulation, method 2 (in scenarios 3 and 4) is only considered under framework 2 (see 

Section 3.3). Scenarios 1 and 3 represent coordination over time for one survey. Scenario 2 represents 

coordination over time and over two surveys with common stratification. Scenario 4 represents coordination 

over time and over two surveys with different stratifications. Because of the large population sizes and since 

the majority of the strata do not contain any hot-spots at all, in all scenarios a selection of strata is used for 

the simulation. First, in scenarios 1 and 3 the take-all strata  1 2= =1k k   are excluded and in scenarios 2 

and 4 both the take-all  2 =1k  and take-none strata  2 = 0k  are excluded. In scenario 4, a stratum is 

only excluded if 2 = 0k  or 1 in this stratum for all three surveys. Second, strata are selected based on the 

population size and the expected number of sampled hot-spot units, such that the total population size N  is 

around 1,000. In scenarios 1 and 3, strata with less than 300 businesses in the population and at least 10 

expected hot-spots in the sample are selected. In scenario 2, strata with less than 500 businesses and at least 

six expected hot-spots are selected. In scenario 4, all strata with at least one expected hot-spot in the sample 

for all three surveys are selected. Table 3.11 gives the population size and sample information for the 

considered scenarios. The populations of businesses and hot-spot units are a subset of the populations shown 

in Table 3.10. The sample size of the combined samples in scenario 4 is denoted by comb.n  

Both the information of whether a particular business is considered a hot-spot (binary information as 

used in Section 3.3) and the number of surveys for which the business was sampled within the last 12 months 

are measures of its cumulated response burden. In the simulation with CBS business surveys, we use both 

measures to compute the Euclidean distance between the units. However, because of the stratified sampling 

with equal inclusion probabilities within the strata, the inclusion probabilities of the surveys are not used to 

compute the Euclidean distances between the units in this simulation, as in Section 3.3. 

 

Table 3.11 
Population and sample information for the scenarios. 
 

scenario  method N strata hot-spots

sample 1s   sample 2s  

SBSn  combn   SBSn  INVn  FINn  

1 1 894 5 97 617   617   
2 1 1,053 8 161 659    487  
3 2 894 5 97 617   617   
4 2 418 34 62  418  384 278 37 
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We provide the results of a Monte-Carlo simulation for the considered scenarios and different sampling 

schemes. The sampling schemes are applied per stratum. Due to the substantial computational burden, 5,000 

runs are used. In each run of the Monte-Carlo simulation we draw:   

• two Poisson samples for Method 1 and one Poisson sample for Method 2;  

• two Pareto samples for Method 1 and one Pareto sample for Method 2;  

• two adapted SCP samples for Method 1 and one adapted SCP sample for Method 2; for 1 2,s s  the 

measure of cumulated response burden based on hot-spot status is used to define the Euclidean 

distances between the units (indicated by ASCP_inf);  

• two adapted SCP samples for Method 1 and one adapted SCP sample for Method 2; for 1 2,s s  the 

measure of cumulated response burden given by the number of surveys is used to compute the 

Euclidean distances between the units (indicated by ASCP_inf_svy);  

• two independent adapted SCP samples (without negative coordination) for Method 1 and one 

independent adapted SCP sample for Method 2; for 1 2,s s  the measure of cumulated response 

burden based on the hot-spot status is used to compute the Euclidean distance between the units 

(indicated by ASCP_inf without coordination).  
 

In the tables and figures below, we use the following notation: ASCP_inf indicates results based on 

adapted SCP sampling with hot-spot status used to define the Euclidean distances between the units and 

negative coordination, ASCP_inf_svy for adapted SCP sampling with cumulated response burden and 

negative coordination (svy stands for survey), while “ASCP_inf without coordination” for adapted SCP 

sampling and independent sample selection. The results of scenarios 1, 2, and 3 are shown in Figure 3.1 and 

Table 3.12. The results of scenario 4 are shown in Figure 3.2 and Table 3.13 (for ASCP_inf hot-spot status 

is used as the burden measure and for ASCP_inf_svy the number of surveys is used). In scenarios 1, 2 and 

3 all measures give similar results to the simulation with the MU284 population. The results of Measure 2 

are in line with the results presented for the MU284 population and are not shown here to save space. In 

these scenarios, adapted SCP sampling with the measure of cumulated response burden based on hot-spot 

status is the best sampling strategy. This is because ASCP_inf leads to the smallest variation of the overlaps, 

not only for all businesses but also for the hot-spot units. This implies that the overall response burden is 

most evenly spread by ASCP_inf. In scenario 4 the differences between the sampling schemes are smaller. 

This is caused by FIN using different strata than SBS and INV, which leads to small strata when adapted 

SCP sampling is applied as a coordination method for the three surveys together. When 2s  is drawn for SBS 

or INV, the ASCP_inf_svy sampling scheme is slightly better than ASCP_inf. When in scenario 4 sample 

2s  is drawn for the SBS, the adapted SCP sampling and independent sampling perform similarly. This has 

to do with the selection of the strata in this scenario. The inclusion probabilities of SBS and INV are large 

in these strata, while the inclusion probabilities of FIN are small. Moreover, 28 strata are take-all strata for 

SBS and 17 strata are take-all for INV, while FIN has no take-all strata in this selection. When Method 2 is 

applied as the coordination method and if 1,k s  the random number 2ku  is generated from 1Unif (0, ).k  

If 1k  is close to 1 then 2ku  is generated from a distribution that is approximately equal to Unif (0,1).  

Generating 2ku  from Unif (0,1)  implies independent sampling.  
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Figure 3.1 Scenarios 1, 2, 3; Measure 1: number of pairs of samples 1 2( , )s s  (bullets) by possible number of 
hot-spot units in common (y-axis), 5,000 runs. The size of the bullets is an indication of the number 
of sampled pairs. 
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                                                       Design – Scenario 3 
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Figure 3.2 Scenario 4; Measure 1: number of pairs of samples 1 2( , )s s  (bullets) by possible number of hot-spot 
units in common (y-axis), 5,000 runs. The size of the bullets is an indication of the number of 
sampled pairs. 
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Table 3.12 
Scenarios 1, 2 and 3; Measures 3, 4, 5: sim sim sim( ), Var ( ), CV ( ),E c c c  5,000 runs. 
 

Design – Scenario 1 sim( )E c  simVar ( )c  sim100 CV ( )c  

Poisson 352 109.0 2.97 
Pareto 352 20.3 1.28 
ASCP_inf 357 0.7 0.23 
ASCP_inf_svy 365 2.5 0.45 
ASCP_inf without coordination 455 35.2 1.31 

Design – Scenario 2 sim( )E c  simVar ( )c  sim100 CV ( )c  

Poisson 211 136.0 5.53 
Pareto 211 49.9 3.35 
ASCP_inf 212 0.6 0.38 
ASCP_inf_svy 214 2.4 0.73 
ASCP_inf without coordination 300 35.4 1.98 

Design – Scenario 3 sim( )E c  simVar ( )c  sim100 CV ( )c  

Poisson 352 68.7 2.36 
Pareto 352 14.3 1.07 
ASCP_inf 357 1.4 0.34 
ASCP_inf_svy 365 3.6 0.52 
ASCP_inf without coordination 455 35.5 1.31 

 
Table 3.13 
Scenario 4; Measures 3, 4, 5: sim sim sim( ), Var ( ), CV ( ),E c c c  5,000 runs. 
 

Design – Scenario 4 SBS sim( )E c  simVar ( )c  sim100 CV ( )c  

Poisson 375 11.10 0.890 
Pareto 378 0.00 0.000 
ASCP_inf 379 0.91 0.252 
ASCP_inf_svy 379 0.87 0.246 
ASCP_inf without coordination 379 0.92 0.254 

Design – Scenario 4 INV sim( )E c  simVar ( )c  sim100 CV ( )c  

Poisson 271 36.00 2.210 
Pareto 274 0.00 0.000 
ASCP_inf 273 1.93 0.508 
ASCP_inf_svy 273 1.99 0.516 
ASCP_inf without coordination 274 1.57 0.584 

Design – Scenario 4 FIN sim( )E c  simVar ( )c  sim100 CV ( )c  

Poisson 21 12.20 17.00 
Pareto 24 0.00 0.00 
ASCP_inf 21 3.65 8.95 
ASCP_inf_svy 21 3.71 9.13 
ASCP_inf without coordination 24 5.11 9.40 

 
4. Discussion 
 

The strategy developed in Section 3.1 provides an approach to negative coordination of samples which 

fulfils the requirement to reduce the overlap size between two or more samples, and additionally reduces 

the variance of the number of nondesirable units (units with particular characteristics) in the overlap 

compared to its competitors. Thus, a double control of the response burden is targetted at this specific set of 

units. The coordination strategy results in a more even spread of the response burden of these units. The 
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targetting can be achieved through an indicator variable, or through a continuous variable demonstrating the 

size of a unit for the characteristic of interest (such as the cumulative response burden). 

We consider several variants of the approach, depending on the kind of information used to designate 

non-desired units. In general ASCP_inf performs the best because it uses only binary information and non-

desired units are therefore as similar as possible to each other on this characteristic, and as different as 

possible from other units. This approach is therefore better at avoiding samples with clusters of non-desired 

units. Other variants may however be better in situations where there is a gradation of non-desirability. In 

our simulations, the proposed strategy shows a smaller variance of the number of non-desired units in the 

overlap (especially for ASCP_inf) compared to Poisson and Pareto sampling. This is due to the spread of 

the units in the space generated by the measure of response burden used (spread obtained by using the 

algorithm given in Section 2.4), as indicated in the tables and figures related to Measure 1. On the other 

hand, similar results to the competitor methods were obtained for the expected overlap size, while the 

variance of the overlap size was smaller than for Poisson and Pareto sampling with PRNs in most cases. A 

single exception concerning this variance was provided by Pareto sampling with PRNs in Table 3.12. 

Targetted double control is an effective strategy for managing situations where some businesses are 

selected for relatively many surveys in a short period, as demonstrated by the application to hot-spot units 

in Statistics Netherlands. The problem of hot-spots is not eliminated, but it is reduced because the response 

burden is more controlled within the constraints of the survey designs. 

The targetted double control strategy can therefore be used to formalise an approach to dealing with 

businesses that complain that they have been selected in too many surveys. Without such a system, these 

are sometimes dealt with in an ad hoc way by moving them (explicitly or implicitly) to a take-none stratum, 

to relieve the burden. But this approach is not fair in that it can be different for businesses with the same 

characteristics depending on whether they complain or not. For a single sample selected at any given 

moment, targetted double control is “fair” in that it minimises the number of such units included in the 

sample by spreading the selected units through the space generated by the measure of the response burden 

used (and thus avoids the clustering of non-desired units) and because it respects the inclusion probabilities 

so that unbiased estimates can be obtained. Statistics Canada have considered extending a take-none stratum 

to deal with small units which may receive a disproportionate burden (Landry, 2011), but we consider that 

using targetted double control would be a better solution in this case too. Targetted double control therefore 

addresses an important practical problem in the coordination of multiple samples in a finite population. 

Applications of targetted double control are not restricted to selection hot-spots, however, and any kind 

of undesirable unit could in principle be the target of the method, as long as the undesirability property is 

observable or predictable from available data sources. 
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QR prediction for statistical data integration 

Estelle Medous, Camelia Goga, Anne Ruiz-Gazen, Jean-François Beaumont, 
Alain Dessertaine and Pauline Puech1 

Abstract 

In this paper, we investigate how a big non-probability database can be used to improve estimates of finite 
population totals from a small probability sample through data integration techniques. In the situation where the 
study variable is observed in both data sources, Kim and Tam (2021) proposed two design-consistent estimators 
that can be justified through dual frame survey theory. First, we provide conditions ensuring that these estimators 
are more efficient than the Horvitz-Thompson estimator when the probability sample is selected using either 
Poisson sampling or simple random sampling without replacement. Then, we study the class of QR predictors, 
introduced by Särndal and Wright (1984), to handle the less common case where the non-probability database 
contains no study variable but auxiliary variables. We also require that the non-probability database is large and 
can be linked to the probability sample. We provide conditions ensuring that the QR predictor is asymptotically 
design-unbiased. We derive its asymptotic design variance and provide a consistent design-based variance 
estimator. We compare the design properties of different predictors, in the class of QR predictors, through a 
simulation study. This class includes a model-based predictor, a model-assisted estimator and a cosmetic 
estimator. In our simulation setups, the cosmetic estimator performed slightly better than the model-assisted 
estimator. These findings are confirmed by an application to La Poste data, which also illustrates that the 
properties of the cosmetic estimator are preserved irrespective of the observed non-probability sample. 

 
Key Words: Cosmetic estimator; Dual frame; GREG estimator; Non-probability sample; Probability sample; Variance 

estimator. 

 
 

1. Introduction 
 

In the field of economics and social sciences, surveys are usually based on probability sampling methods. 

At the French postal service (La Poste) for example, the postal traffic is estimated through quarterly 

probability surveys. Controlling the sampling design allows for design-based inference without resorting to 

modeling of the study variables; this feature is attractive to many survey statisticians. Neyman (1934) is 

usually known as the founding paper of probability sampling theory. Since then, the literature on this topic 

has grown rapidly with an interplay between theory and practice (see Rao (2005) for the most important 

contributions). 

Recently, survey statisticians have observed a decline in response rates together with an increase of the 

survey costs, which make probability sampling more challenging. In addition, large non-probability 

samples, such as administrative data or web-based surveys, become available often at low cost (see, e.g., 

Beaumont (2020) and Rao (2021) for more details). These observations are also true at La Poste where, for 

cost reasons, the size of probability samples is bound to decrease while a big database containing the 

automatically processed postal mail is available. Even if non-probability samples are associated with 
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unknown selection mechanisms and may suffer from selection bias and measurement errors, they provide 

timely information on the population of interest. This context leads survey statisticians to study the 

integration or combination of data from probability and non-probability samples. 

The literature on data integration in survey sampling has grown rapidly recently, and the reader may 

refer to several reviews on the subject (see Beaumont (2020), Yang and Kim (2020), Rao (2021), Kim 

(2022) and Wu (2022)). If we focus on the problem of combining probability and non-probability samples, 

the different data integration methods can be divided into three groups depending on whether the study 

variable is observed in the probability sample only, in the non-probability sample only, or in both samples 

(see e.g., Rao (2021)). Most methods tackle the problem of the study variable observed in the non-

probability sample only, e.g., Kim (2022). In this context, the objective is to address the selection bias by 

combining data from the non-probability sample with auxiliary data available in a probability sample. 

At La Poste, the problem is rather that the study variables (such as the different types of mails sent) are 

only available in the probability sample whereas auxiliary information is only available in the non-

probability database. Such a context is rather rare in practice and has therefore not been studied in detail so 

far. The aim of the present paper is to study this particular context thoroughly. The method we recommend 

and study in detail is applicable nicely if (i) the overlap between the probability and the non-probability 

samples is ideally large but at least non-empty, and (ii) it is possible to accurately match observations from 

both samples. At La Poste, the non-probability sample represents more than 80% of the population; as a 

result, its intersection with the probability sample is large. The matching, however, is a difficult task that La 

Poste is still investigating. 

In the situation where the study variables are measured in both samples, Kim and Tam (2021) propose a 

design-based dual frame approach to improve the efficiency of the Horvitz-Thompson estimator (Horvitz 

and Thompson, 1952), which uses the probability sample only. The total of the study variable over the whole 

population is estimated by summing the true total over the non-probability sample and an estimator of the 

total over the complementary of the non-probability sample. Kim and Tam (2021) propose several 

estimators that can be deduced from a calibration perspective. 

In Section 2, we revisit the approach of Kim and Tam (2021) and derive general results on the efficiency 

of their proposed dual frame estimators. In the situation where the study variable is not measured in the non-

probability sample, we propose to replace the true unknown total over the non-probability sample by some 

prediction. In Section 3, we adapt the general class of QR predictors, introduced in Wright (1983), to data 

integration. This class of estimators includes the well-known model-assisted (GREG) and model-based 

estimators, but also the cosmetic estimator (Särndal and Wright, 1984). We first exhibit a condition under 

which the QR predictors can be written in a projection form. We then derive a QR condition such that these 

predictors are identical to model-assisted predictors. In Section 4, we look at the asymptotic properties of 

the QR estimators. We show that they are asymptotically unbiased under the model and the sampling design. 

We also prove that, under the QR condition, the predictors are asymptotically design-unbiased. We derive 

their asymptotic design variance and provide a design-consistent variance estimator. In Section 5, we use 
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Monte Carlo simulations to compare several QR predictors and show that the cosmetic estimator is a good 

compromise for several setups. In Section 6, we consider an application to La Poste data and illustrate the 

impact of the non-probability sample on the estimators. Finally we conclude and give perspectives in 

Section 7. 

 
2. Study variable observed in both samples 
 

We are interested in estimating the population total = ,kk U
T y

  where ky  is the value of the variable 

of interest Y  for unit k  of the population .U  A probability sample Ps  is drawn from U  using a sampling 

design ( | ),Pp s Z  where the population matrix Z  contains design information such as strata identifiers. The 

sample inclusion indicator, ,kI  ,k U  takes the value 1 if unit k  is selected in ,Ps  and 0 otherwise. The 

probability that a given population unit k  is selected in Ps  is = E ( | ).k p kI Z  We assume in the present 

section that the variable of interest Y  is observed for each unit of the probability sample but also for each 

unit in the non-probability sample NP .s U  The inclusion indicator in NPs  for the population unit k U  is 

denoted as k  (i.e., = 1,k  if NP ,k s  and = 0,k  otherwise). We assume that k  is available for each unit 

of the probability sample .Ps  Denote by N  (resp. NP )N  the size of U  (resp. NP )s  and by n  the expected 

size of .Ps  Let HT
ˆ =

P
k kk s

T d y
  be the well-known expansion or Horvitz-Thompson estimator of T  with 

the sampling weights = 1 .k kd   If > 0,k  for all ,k U  HTT̂  is a design-unbiased estimator of .T  

The non-probability sample NPs  is usually a cheap and large source of data. Its selection mechanism is 

unknown, and its selection bias cannot be ignored when making inference. On the other hand, the probability 

sample Ps  is assumed representative (without selection bias), yet often expensive and of relatively small 

size. By combining information from the two samples, we can expect to find an estimator more precise than 

the expansion estimator obtained using .Ps  

Kim and Tam (2021) propose two estimators using combined data from Ps  and NPs  and we propose to 

revisit the properties of these estimators. The total can be decomposed as:  

 NP= ,CT T T   

where 
NP

NP = =k k kk s k U
T y y

    and 
NP

= = (1 ) .C k k kk U s k U
T y y

  
   Since ky  is measured for all 

units of NP ,s NPT  is known, and we only have to estimate .CT  Kim and Tam (2021) propose the following 

estimator:  

 DI NP
ˆ = (1 ) ,

P

k k k
k s

T T d y


   (2.1) 

where CT  is estimated using the expansion estimator. As pointed out by Beaumont (2020), this can be 

viewed as a dual frame problem, with frames U  and NP ,s  where the sample Ps  is randomly selected from 

U  and a census is taken from NP.s  In this context of two sampling frames, DIT̂  is an estimator that results 

from a direct application of the method proposed by Bankier (1986). One may think that DIT̂  is more efficient 



388 Medous, Goga, Ruiz-Gazen, Beaumont, Dessertaine and Puech: QR prediction for statistical data integration 

 

 
Statistics Canada, Catalogue No. 12-001-X 

than HT
ˆ ,T  especially if the size of the non-probability sample is large, but this is not true in general. The 

following proposition shows that, while the variance of DIT̂  is always smaller than the variance of HTT̂  for 

Poisson sampling, the property is only true under a condition on the study variable for simple random 

sampling without replacement. 

 

Proposition 2.1 
 

(i) For Poisson sampling, the variance of DIT̂  is less than or equal to the variance of HT
ˆ .T  

(ii) For simple random sampling without replacement, the variance of DIT̂  is less than or equal to 

the variance of HTT̂  if and only if  

 2 NP NP
NP

NP NP

CV 1 2 ,
1

UN N Y

N N Y

 
    

  
  

where 1=U kN k U
Y y

  is the mean of Y  over ,U
NP

1
NP = k kN k U

Y y
  is the mean of Y  over 

NP ,s  and 2
NP ,NP NPCV = YS Y  is the coefficient of variation of Y  in NP ,s  with 2

, NP =YS  

NP

21
NP1 ( ) .k kN k U

y Y 
  

 

The proof of Proposition 2.1 is given in the appendix. Intuitively, the result (ii) of Proposition 2.1 can be 

explained by the fact that the size of Ps  is fixed for simple random sampling without replacement in the 

expression of HTT̂  while the size of NPPs U s   is random for DI
ˆ .T  In other words, the estimator DIT̂  is 

calibrated on NPN  and NP ,T  but not on N  while HTT̂  is calibrated on .N  

If the size of the population U  is known, Kim and Tam (2021) propose to improve DIT̂  by using the 

following estimator:  

 
(Ha)

PDI NP
ˆ ˆ= ,CT T T   

where  

 (Ha)
NP

(1 )
ˆ = ( )

(1 )
P

P

k k kk s

C

k kk s

d y
T N N

d

















  

is a Hájek-type estimator of the total .CT  Kim and Tam (2021) proved that PDIT̂  is a Generalized Regression 

(GREG) estimator calibrated on ,N NPN  and NP.T  Its expression can be further generalized by including 

additional calibration variables. 

Following Kim and Tam (2021), it is possible to use the linearization approach and derive the 

approximate variance of PDI
ˆ ,T  denoted as PDI

ˆAVar( ).T  For Poisson sampling, the independence of the 

inclusion indicators reduces the comparison of PDIT̂  and DIT̂  to the comparison of Horvitz-Thompson and 

Hájek estimators of the total = (1 ) .C k kk U
T y


  The Hájek estimator can be significantly more efficient 

than the Horvitz-Thompson estimator but it is not true in general (see, e.g., Särndal, Swensson and Wretman 

(1992)). 
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For Poisson sampling, the estimator PDIT̂  can be substantially more efficient than the Horvitz-Thompson 

estimator HT
ˆ ,T  as illustrated in our simulation study in Section 5. For simple random sampling without 

replacement, the approximate variance of PDIT̂  can be compared to the variance of HTT̂  in more general 

conditions than in Kim and Tam (2021). Proposition 2.2 below shows that the approximate variance of PDIT̂  

is smaller than the variance of HTT̂  for simple random sampling without replacement, and gives the 

expression of the difference between the variances. 

 

Proposition 2.2 For simple random sampling without replacement with sampling fraction ,f n N  

 
2

2 2
HT PDI

(1 )ˆ ˆVar ( ) AVar ( ) = ( ) (1 )( ) ,
( 1)

k k U k C U
k U k U

N f
T T y Y Y Y

N n
 

 

  
       

    

where 1=U kN k U
Y y

  is the mean of Y  over ,U  and 1= (1 )
NPC k kN N k U

Y y 
  is the mean of Y  over 

NP.U s  

 

In the present section, the study variable Y  is assumed to be measured in both samples, Ps  and NP.s  In 

the next section, we alleviate this assumption by considering that the study variable is not known in the non-

probability sample. This situation is the one encountered at La Poste where not all variables of interest are 

measured in the automatically processed postal mail. The big non-probability database is based on an image 

recognition process and covers around 80% of the postal mails. This database contains some relevant 

auxiliary information such as the departure dates from the sending post office. However, such data are 

subject to selection bias (e.g., mails with atypical shape are not automatically processed), and measurement 

errors (e.g., errors in barcode scanning during the image recognition process). In such a situation, we propose 

to use the intersection between the big database and the probability sample, where the auxiliary variables 

together with the study variable are available, and predict the unknown ky  for NP .Pk s s   

 
3. Prediction estimators for study variable unobserved in the non-

probability sample 
 

Recall that the finite population total of Y  can be decomposed as NP= .CT T T  The total CT  is estimated 

as in Section 2 by the Hájek-type estimator 
(Ha)ˆ .CT  In the present section, ky  is unknown for NP ,k s  and 

contrarily to Section 2, the total NPT  has to be estimated. In order to do so, we introduce a working model 

for Y  and the general QR class of predictors of NPT  that does not require ky  to be known for units in NP.s  

We assume that a vector of auxiliary variables 1= ( , , )k k kpX Xx …   is available for each unit k  of a non-

probability sample NP .s U  We also assume that k  and k k x  are available for each unit k  of the 

probability sample .Ps  Table 3.1 gives a summary of the characteristics of the data we consider in the 

remainder of this paper. 
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Table 3.1 

Data characteristics in the data integration context of Section 3. 
 

Sample ky  measured  k  available known selection 
mechanism 

Auxiliary variables 
available 

Ps  Yes Yes Yes No 

NPs  No Yes No Yes 

 
The variable Y  is not available in NPs  and we cannot use anymore PDIT̂  since the total NP = k kk U

T y
  

is unknown. The idea behind the class of estimators introduced in this section is to predict ky  for NPk s  

by using regression modelling between Y  and the auxiliary variables, and then predict NP .T  We assume the 

following working model between the study variable Y  and the vector of auxiliary variables :kx  

 NP= , ,k k ky k s x β  (3.1) 

where the errors k  are independent with expectation E ( ) = 0m k  and variance Var ( )m k  proportional to 

( ) =k kv x  for some known positive constants .kv  The subscript m  indicates that the expectation and 

variance are taken with respect to model (3.1) conditionally on observed auxiliary variables ,kx NP.k s  

Note that model (3.1) only needs to hold for units in the non-probability sample. A model for Y  does not 

need to be explicitly specified for units NPk U s   as we always make inferences conditional on ,ky  

NP.k U s   

We define a predictor ˆky  of ky  for NPk s  by ˆˆ =k ky x β  with  

 

1

ˆ = ,
P P

k k k k k k k k
k s k s

q q y 



 

   
      
   
 β x x x  (3.2) 

where kq  are known positive constants for NP.k s  We assume that the p p  dimensional matrix 

P
k k k kk s

q 
 x x  is nonsingular for all possible samples .Ps  

We propose to estimate NP = k kk U
T y

  by a QR predictor as suggested in Wright (1983):  

 

(QR )
NP
ˆ ˆ ˆ= ( )

ˆ ˆ= ( ),

P

P

k k k k k k
k U k s

k k k k k k
k U k s

T y r y y

r y

 

 

 

 

 

 

 

 x β x β 
 (3.3) 

where 0kr   are predefined constants. The initials Q and R refer to the constants kq  and .kr  The final 

estimator of T  is then given by  

 
(QR) (QR) (Ha)

NP
ˆ ˆ ˆ= .CT T T  (3.4) 

Various choices of kq  and kr  yield predictors 
(QR)

NPT̂  with familiar forms as detailed below.   
 

1. For 1=k k kq d v  and = ,k kr d  we obtain the model-assisted or GREG-type estimator:  
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 (MA) (MA) (MA)
NP
ˆ ˆ ˆ= ( ),

P

k k k k k k
k U k s

T y d y y 
 

     

where (MA) (MA)ˆˆ =k ky x β  with    
1

(MA) 1 1ˆ = .
P P

k k k k k k k k k kk s k s
d v d v y 


 

  β x x x  

2. For 1=k kq v  and = 1,kr  we obtain the model-based type estimator:  

 
(MB) (MB) (MB)

NP
ˆ ˆ ˆ= ( ),

P

k k k k k
k U k s

T y y y 
 

     

where (MB) (MB)ˆˆ =k ky x β  with    
1

(MB) 1 1ˆ = .
P P

k k k k k k k kk s k s
v v y 


 

  β x x x   
 

3. For 1= ( 1)k k kq d v  and = 1,kr  we obtain the cosmetic-type estimator (Särndal and Wright, 

1984; Brewer, 1999):  

 
(Cos) (Cos) (Cos)

NP
ˆ ˆ ˆ= ( ),

P

k k k k k
k U k s

T y y y 
 

     

where (Cos) (Cos)ˆˆ =k ky x β  with  

 

1

(Cos) 1 1ˆ = ( 1) ( 1) .
P P

k k k k k k k k k k
k s k s

d v d v y 



 

 

   
       

   
 β x x x   

 

Let us derive some properties for this class of QR predictors. Proposition 3.1 gives a general condition 

on the constants kq  and kr  such that the QR predictor can be defined as a sum of predictions over the 

population. Proposition 3.2 gives another general condition on the constants kq  and kr  such that the QR 

predictor is a model-assisted type estimator. The proofs are given in the Appendix.  
 

Proposition 3.1 (projection form) Consider the QR  predictor 
(QR)

NPT̂  given by (3.3). Under the condition 

that there exists a vector pμ R  such that  

 (Proj): =k k kq rμ x   for all  NP ,k s  (3.5) 

we have ˆ( ) = 0.
P

k k k kk s
r y y


  In this case, 

(QR)
NPT̂  can be written in the projection form:  

 (QR )
NP
ˆ ˆ= .k k

k U

T y


   

 

The model-assisted estimator 
(MA)

NPT̂  and model-based estimator 
(MB)

NPT̂  satisfy Condition (Proj) if there 

exists a vector pμ R  such that =k kvμ x  for all NP.k s  This condition is satisfied when kv  is one of the 

auxiliary variables in the model. If = 1,kv  it is satisfied provided that the intercept is included in the model. 

Condition (Proj) holds for 
(Cos)

NPT̂  if 1= ( 1)k k kv d μ x  for all NP.k s  A consequence of Proposition 3.1 is 

that, for equal probability sampling design such as simple random sampling without replacement, the model-

assisted, the model-based and the cosmetic estimators are all equal. 
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Using Theorem 2 from Wright (1983), we derive the following proposition. For kr  satisfying Condition 

(QR) below and any given ,kq  the QR predictor of NPT  is identical to the model-assisted predictor of NPT  

with the same .kq   
 

Proposition 3.2 Suppose that the constants kr  and kq  are such that there exists some vector pλ R  such 

that  

 (QR): 1 =k k k k kr q  x λ   for all  NP .k s  (3.6) 

Then:  

 (QR) (Q )
NP NP
ˆ ˆ= ,T T    

where  

 
(Q )

NP
ˆ ˆˆ = ( )

P

k k k k k k
k U k s

T d y  
 

  x β x β 
 (3.7) 

is the model-assisted type predictor of NPT  with β̂  given by (3.2).  

 

Following Wright (1983), we note that the (QR) condition always holds for (MA)
NP
ˆ .T  This condition also 

holds for the model-based estimator 
(MB)

NPT̂  if and only if there exists a vector pλ R  such that 

( 1) = ,k k kv d  x λ  for all NP.k s  This condition is true if we take ( 1)k kv d   among the auxiliary variables 

.kx  Condition (QR) holds for the cosmetic estimator (Cos)
NPT̂  if and only if there exists a vector pλ R  such 

that = ,k kv x λ  for all NP.k s  This condition is true if kv  is included in the vector of auxiliary variables. 

 
4. Asymptotic properties and variance estimation of QR predictors 
 

Let us consider the class of QR predictors (QR )T̂  given in (3.4) and start by studying the prediction error 
(QR)T̂ T  under the model (3.1) and the sampling design ( ).p   We have  

    (QR) (QR) (Ha)
NP NP

ˆ ˆ ˆ= .C CT T T T T T      

The first right-hand term depends on the model and the sampling design, while the second right-hand term 

only depends on the sampling design. Assuming that the sampling design is not informative with respect to 

the model (3.1), we can prove that the expectation of 
(QR)

NP NPT̂ T  computed with respect to the model is 

equal to 0. Indeed, the model bias of 
(QR)

NPT̂  is given by:  

 
(QR)

NP NP
ˆ ˆˆE ( ) = E ( ) E ( ),

P

m k m k k k k m k k
k U k s

T T y r y 
 

    x β x β 
  

with    
1

ˆ = .
P P

k k k k k k k kk s k s
q q y 



  β x x x  Under the model (3.1), E ( ) =m k ky x β  for all NP ,k s  
ˆE ( ) =m β β  and ˆE ( ) = 0,m k kyx β  implying that  
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 (QR)
NP NP
ˆE ( ) = 0.m T T  (4.1) 

The estimator (Ha)ˆ
CT  is a Hájek-type estimator of CT  and is not design-unbiased for .CT  Following Särndal 

(1980), we rather look at its asymptotic design-unbiasedness. An estimator T̂  is said to be asymptotically 

design-unbiased for the finite population total T  if 1 ˆlim [E ( ) ] = 0,N pN T T
   where E ( )p   is the 

expectation computed with respect to the sampling design. The asymptotic framework from Isaki and Fuller 

(1982) can be considered to allow for the population and sample sizes to grow to infinity. Assuming that 

the probability of observing an empty intersection set NPPs s  is negligible, then (Ha)ˆ
CT  is asymptotically 

design-unbiased for .CT  Combining this property with relation (4.1), and considering a non-informative 

sampling design, we get that (QR)T̂  is asymptotically mp -unbiased for T  under model (3.1). 

 
4.1 Bias properties of (Q )ˆ T  
 

Let us consider now the QR class of predictors that satisfy the (QR) condition given by (3.6). For this 

class of predictors, the final estimator of T  is  

 
(Q ) (Q ) (Ha)

NP
ˆ ˆ ˆ= CT T T     

and the standardized total error is given by:  

      (Q ) (Q ) (Ha)
NP NP

1 1 1ˆ ˆ ˆ= .C CT T T T T T
N N N

       

The estimator (Q )T̂   is not exactly design-unbiased because of the nonlinearity of β̂  and of the Hájek 

estimator 
(Ha)ˆ .CT  Wright (1983) proved that the (QR) condition given in Proposition 3.2 is a sufficient 

condition for 
(Q )

NPT̂ 
 to be asymptotically design-unbiased for NP ,T  provided that  

 
1 ˆlim E ( ) = 0,

P

p k k k k k
N

k U k s

d
N

 


 

  
       
 x x β β



 (4.2) 

where  
1

= ,k k k k k k k k k kk U k U
q q y   



  β x x x   and assuming that k k k k kk U
q 

 x x  is nonsingular. 

Following Breidt and Opsomer (2000), if the sampling fraction n N  converges to a constant different from 

0, assuming mild conditions on the first and second-order inclusion probabilities of the sampling design, 

and on the auxiliary information vectors kx  for all NP ,k s  it can be shown that:  

 

2

1lim E = 0,
P

p k k k k k
N

k U k s

N d 


 

 
  

 
 x x   

where || ||  is the usual Euclidian norm. Equation (4.2) follows by assuming that the regression coefficient 

estimator satisfies 
2

ˆlim E = 0N p β β  (see Cardot, Goga and Lardin (2013) for more details). The 

estimator 
(Ha)ˆ

CT  is a Hájek-type estimator which can be shown to be asymptotically design-unbiased for CT  
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if the probability to observe the empty set for NPPs s  is negligible. We conclude that the QR predictor 
(Q )T̂   is asymptotically design-unbiased for .T  

 
4.2 Asymptotic variance and variance estimation of (Q )ˆ T  
 

Because the QR estimator (Q )T̂   is asymptotically design-unbiased, we estimate its asymptotic design 

variance rather than its design mean square error. We can write the standardized total error as  

 (Q )
1 2

1 1ˆ( ) = ( ) ( ) ,
P

k k k k k
k s k U

T T d E e E e R R
N N



 

 
       

 
    

where  

 
NP

(1 )
= ( ), = (1 ) ,

k kk U
k k k k k k k

y
E y e y

N N


 

 
 

     


x β   

 1

1 ˆ= ( )
P

k k k k k
k s k U

R d
N

 
 

 
    

 
 x x β β



  

and  

 

1

2 NP

1 1 1
= (1 ) (1 ) .

P P P

k k k k k k k
k s k s k s k U

R d N N d d e e
N N N

 



   

     
              

     
      

As in Section 4.1, we assume the usual conditions on the sampling fraction ,n N  on the first and second-

order inclusion probabilities, on the variable of interest ky  and on the auxiliary information vector .kx  We 

use the Landau notations big pO  and little .po  If 2ˆ|| || = (1)poβ β  and  
1

(1 ) = (1),
P

k k pk s
d N O




  

then 1/2
1 = ( ),pR o n  1

2 = ( )pR O n  and the standardized total error can be approximated by  

 (Q )1 1ˆ( ) ( ) ( ) ,
P

k k k k k
k s k U

T T d E e E e
N N



 

 
      

 
    

where the right-hand side of the above expression is of order 1/2( ).pO n  Since ( )
P

k k kk s
d E e


  is the 

Horvitz-Thompson estimator of the total ( ),k kk U
E e


  the asymptotic variance of the QR estimator (Q )T̂   

is given by:  

 (Q )ˆAVar ( ) = ( ) ( ).kl k l k k l l
k U l U

T d d E e E e

 

     

Assuming that > 0kl  for all , ,k l U  an estimator of the asymptotic variance is given by  

 
(Q )ˆ ˆ ˆ ˆˆ ˆ( ) = ( ) ( ),

P P

kl
k l k k l l

k s l s kl

V T d d E e E e
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where ˆˆ = ( )k k k kE y  x β  and NP
ˆ = (1 ) ( (1 ) ( )).

P
k k k k k kk s

e y d y N N   
     We can show, under 

assumptions detailed in Breidt and Opsomer (2000) and Goga, Deville and Ruiz-Gazen (2009), that this 

estimator is design-consistent for (Q )ˆAVar( )T   in the sense that 2 (Q ) (Q )ˆ ˆ ˆ( ( ) AVar ( )) = (1).pN n V T T o    

 
5. Simulations 
 

In this section, we show the results of a Monte-Carlo study that compares the efficiency of three special 

cases of the QR predictor, (QR) (QR) (Ha)
NP

ˆ ˆ ˆ= ,CT T T  given in Section 3, namely the model-assisted, the model-

based and the cosmetic estimators, assuming that = 1kv  in model (3.1). We also compare these estimators 

with the expansion estimator and the PDI estimator defined in Section 2. To illustrate that the relative 

superiority of estimators depends on the data structure, we define three different setups based on different 

artificial populations. As mentioned in Section 3, if the probability samples are drawn using simple random 

sampling without replacement, the three QR estimators are all equal. Therefore, we focus on Poisson 

sampling with inclusion probabilities proportional to an auxiliary variable.  

 

5.1 Populations and setups 
 

The variables are generated using Gamma distributions to ensure their positiveness. Similar simulation 

results were obtained with Gaussian distributions but are not reported below. All populations have a size 

=N 1,000. We generate two auxiliary variables 1X  and 2 ,X  where 1X  (resp. 2 )X  follows a Gamma 

distribution with mean 20 (resp. 30) and standard deviation (Std) 15 (resp. 20). We use different models to 

generate the variable Y  for all population units. For each model, 1 2| ,Y X X  follows a Gamma distribution 

with constant variance 
1 2

2
| ,Y X X  and mean 

1 2| ,Y X X  which depends on the model. 

1. For Model 1, 
1 2| ,Y X X  is a linear function of 1X  and 2 :X  

 
1 2| , 0 1 1 2 2= .Y X X a a X a X     

 

2. For Model 2, 
1 2| ,Y X X  is a quadratic function of 1X  and a linear function of 2 :X  

 
1 2

2
| , 0 1 1 1 2 2= ( )Y X X b b X X b X      with  1X   the mean of  1X   over  .U   

 

3. For Model 3, 
1 2| ,Y X X  is a linear function of 2 :X  

 
1 2| , 0 2 2= .Y X X c c X    

 

To make the results comparable between the three models, we determine the constants 0 ,a  1,a  2 ,a  0 ,b  

1,b  2 ,b  0 ,c  2 ,c  and 
1 2

2
| ,Y X X  in such a way that the following characteristics are the same:   

• the unconditional mean   and variance 2  of the variable ,Y  

• the coefficient of determination of the model, denoted as 2 ,R  

• the ratio of variances for the explanatory variables:  
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 2
1 1 2 2 1 1 1 2 2= Var ( ) Var ( ) = Var ( ( ) ) Var ( ).a X a X b X X b X    

 

This ratio is only relevant for models 1 and 2 since 1X  is not included in Model 3. 

In the following, we set =100, 2 = 100,  and = 0.5. In Section 5.2, the 2R  value is either fixed to 

0.8 or varies between 0.1 and 0.96. The main characteristics of the three population models are summarized 

in Table 5.1. 

 
Table 5.1 

Population models with 100,   2 100,   and   0.5. 
 

Model Mean of 1 2( , )X X  Std of 1 2( , )X X  Mean of 1 2| ,Y X X  2R  

1 

(20, 30) (15, 20) 

0 1 1 2 2=Y a a X a X    equal 

2 
2

0 1 1 1 2 2= ( )Y b b X X b X     between 

3 0 2 2=Y c c X   populations 

 
A non-probability sample of size 900 is drawn using simple random sampling without replacement and 

is the same for all populations. The probability samples are drawn using Poisson sampling with expected 

size 200 or 50 and probabilities proportional to 1.X  We consider three setups. In each setup, we generate 

1 2| ,Y X X  using one of the three different population models, and we compute NP
ˆ ,ky k s  for different QR 

predictors. The variables used as explanatory variables in the prediction models differ between setups as 

follows:   

1. Setup 1: Informative case. Population Model 1 is used to generate population Y  values and only 

2X  is used as explanatory variable in the prediction model along with the intercept.  

2. Setup 2: Quadratic case. Population Model 2 is used to generate population Y  values and both 

auxiliary variables 1X  and 2X  are used as explanatory variables in the prediction model along 

with the intercept.  

3. Setup 3: Non-informative case. Population Model 3 is used to generate population Y  values and 

only 2X  is used as explanatory variable in the prediction model along with the intercept.  

 

For the informative and quadratic setups, the prediction model differs from the population model for ,Y  

while the correct model is used in the non-informative setup. Table 5.2 gives a summary of the three setups.  

 
Table 5.2 

Studied setups. 
 

Setup Population Variables used in prediction Model correctly specified 

Informative 0 1 1 2 2=Y a a X a X    
2= (1, )k kxx  No 

Quadratic 2
0 1 1 1 2 2= ( )Y b b X X b X     1 2= (1, , )k k kx xx  No 

Non-informative 0 2 2=Y c c X   
2= (1, )k kxx  Yes 
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5.2 Results 
 

Let us consider the three setups defined above and compare the following estimators:   

• HT
ˆ = ,

P
k kk s

T d y
  

• PDI NP NP

(1 )
ˆ = ( ) ,

(1 )
P

P

k k kk s

k kk s

d y
T T N N

d










 






 

• (MB) (MB) (MB)
NP

(1 )
ˆ ˆ ˆ= ( ) ( ) ,

(1 )
P

P

P

k k kk s

k k k k kk U k s
k kk s

d y
T y y y N N

d


 




 




   




 


 

• (MA) (MA) (MA)
NP

(1 )
ˆ ˆ ˆ= ( ) ( ) ,

(1 )
P

P

P

k k kk s

k k k k k kk U k s
k kk s

d y
T y d y y N N

d


 





 




   




 


 

• 
(Cos) (Cos) (Cos)

NP

(1 )
ˆ ˆ ˆ= ( ) ( ) .

(1 )
P

P

P

k k kk s

k k k k kk U k s
k kk s

d y
T y y y N N

d


 




 




   




 


 

 

For each setup, =L 10,000 probability samples Ps  are drawn according to Poisson sampling as detailed 

above and several Monte Carlo measures are computed. We compute the Monte Carlo relative bias of a 

given estimator T̂  (either HT
ˆ ,T (MB)ˆ ,T (MA)ˆ ,T (Cos)T̂  or PDI

ˆ )T  as  

 
( )

1
MC

=1

ˆ
ˆRB ( ) = 100 ,

lL

l

T T
T L

T
 

    

where ( )ˆ lT  is an estimate of T  computed for the thl  sample, =1, , .l L…  

As a measure of efficiency, we compute the Monte Carlo relative mean square error (RMSE) of an 

estimator T̂  (relative to (Cos)ˆ ) :T  

 MC
MC (Cos)

MC

ˆMSE ( )ˆRMSE ( ) = 100 ,
ˆMSE ( )

T
T

T
   

where  

  
2

1 ( )
MC

=1

ˆ ˆMSE ( ) = .
L

l

l

T L T T    

We also compute the Monte Carlo relative variance (RVar) of an estimator T̂  (relative to 
(Cos)ˆ ) :T  

 MC
MC (Cos)

MC

ˆVar ( )ˆRVar ( ) = 100 ,
ˆVar ( )

T
T

T
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where  

  
2

2
1 ( ) 1 ( )

MC
=1 =1

ˆ ˆ ˆVar ( ) = .
L L

l l

l l

T L T L T  
  
 

    

Table 5.3 contains the simulation results for the three setups when 2 =R 0.8. In all setups, we confirm 

that both PDIT̂  and HTT̂  have a small Monte Carlo bias, as expected. In terms of MSE, PDIT̂  is the most precise 

estimator, while HTT̂  is the least precise estimator among all estimators. This result is expected since the 

expansion estimator does not make use of any auxiliary information, while PDIT̂  takes into account the true 

values of the study variable ky  for NP ;k s  i.e., it takes into account the true values of Y  for 900 units out 

of the 1,000 population units. In our context, where the study variable is not observed in NP ,s  the estimator 

PDIT̂  is however not computable and serves more as a gold standard. 

 
Table 5.3 

Relative bias (in % of the true value), percent relative (to (Cos)ˆ )T  variance and MSE of the different estimators 

for the three different setups; the expected size of the probability sample is 200 and the size of the non-

probability sample is 900. 
 

Population parameters Setup Monte Carlo measures HTT̂  (MB)T̂  (MA)T̂  (Cos)T̂  PDIT̂  

=100  
2 = 100  
2 = 0.8R  

= 0.5  

Setup 1 

RB MC  -0.13 3.34 0.11 0.11 0.03 

RVar MC  23,566.93 55.62 114.06 100.00 20.97 

RMSE MC  22,897.58 2,715.21 113.91 100.00 20.65 

Setup 2 

RB MC  -0.07 -1.65 -0.06 -0.05 0.02 

RVar MC  36,947.99 84.94 118.21 100.00 23.17 

RMSE MC  36,638.27 1,056.44 118.42 100.00 23.15 

Setup 3 

RB MC  0.03 -0.01 0.01 0.01 0.01 

RVar MC  41,088.93 58.38 100.49 100.00 33.47 

RMSE MC  41,080.51 58.39 100.48 100.00 33.51 

Notes: RB = relative bias; RVar = relative variance; RMSE = relative mean square error; MC = Monte Carlo. 

 
The Monte Carlo bias of (MA)T̂  and (Cos)T̂  is negligible in the three setups whereas (MB)T̂  is biased in 

the informative and quadratic setups. In these two setups, the prediction model differs from the population 

model used to generate Y  values. In the non-informative setup, where the prediction model is correctly 

specified, the bias of (MB)T̂  is also negligible. The estimator (MA)T̂  has the largest variance of the QR 

predictors in the informative and quadratic setups, while (MB)T̂  has the smallest variance in all setups. In 

the quadratic setup, the variance of (MB)T̂  is similar to the variance of (Cos)T̂  but (MB)T̂  has the highest MSE 

amongst the QR predictors in both informative and quadratic setups. This means that the bias of (MB)T̂  

degrades its MSE a lot despite its small variance. In the non-informative setup, (MB)T̂  has the lowest MSE 

amongst the QR predictors. We can see in Table 5.3 that this comes from the absence of bias for (MB)T̂  in 

this setup together with its small variance. 
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In the informative and quadratic setups, (Cos)T̂  is more precise in term of variance than (MA)ˆ .T  The 

estimators (MA)T̂  and (Cos)T̂  are similar in the non-informative setup. Both estimators use weighted 

regression with slightly different weights ( kd  for (MA)T̂  and 1kd   for (Cos)ˆ ).T  

To summarize, when the prediction model is incorrectly specified, as in the informative and quadratic 

setups, both (MA)T̂  and (Cos)T̂  are significantly more efficient than (MB)T̂  because of the bias of (MB)ˆ ,T  even 

though the bias is not large. On the opposite, if the model is correctly specified but the design weights and 

Y  are uncorrelated, as in the non-informative setup, (MB)T̂  is better than (MA)T̂  and (Cos)T̂  in terms of MSE. 

In all setups, (Cos)T̂  is more efficient or similar to (MA)ˆ .T  

To better understand the impact of the 2R  on the results, we also plot, on the y -axis of Figures 5.1, 5.2 

and 5.3, the MCRMSE  for 10 different values of 2R  on the x -axis: 0.1, 0.2 , ,…  0.9, 0.96. In order to do 

that, we generate for each setup ten populations, one for each 2R  value. Figure 5.1 (resp. Figure 5.2 and 

5.3) gives the results for Setup 1 (resp. 2 and 3) with the sample size equal to 200 (resp. 50) on the left (resp. 

right) column plots. On all plots, the curves correspond to the different estimators with a red curve at 100 

for (Cos)T̂  (since the RMSE are relative to (Cos)ˆ )T  and different colors for HT
ˆ ,T  (MA)ˆ ,T  (MB)T̂  and PDI

ˆ .T  The 

plots on the top row of the figures include all the estimators while for the second row (and third row for 

Figures 5.1 and 5.2), HTT̂  (and (MB)T̂  for Figures 5.1 and 5.2) is removed in order to zoom in and ease the 

comparison between 
(Cos)ˆ ,T (MA)ˆ ,T (MB)T̂  and PDI

ˆ .T  The scale on the y -axis is kept fixed for the two 

columns (sample sizes). 

As expected, PDIT̂  is by far the best estimator with the smallest MSE in all setups. In all figures, HTT̂  has 

a very bad relative MSE, especially when 2R  is high. Note that in fact the absolute MSE of HTT̂  remains 

stable when 2R  increases (results not reported), while the MSE of the other estimators improves. This result 

is expected because HTT̂  does not depend on the distribution of 1 2| , ,Y X X  but depends on   and 2  which 

are constant across the populations. 

Figure 5.1 (resp. 2) shows the evolution of MCRMSE  with respect to 2R  in the informative setup (resp. 

quadratic setup) for sample Ps  of expected size 200 (left column) and 50 (right column). In these two setups, 

not only is (Cos)T̂  better than (MB)T̂  or 
(MA)ˆ ,T  as seen in Table 5.3, but its gain compared to its competitors 

increases the most with 2.R  The precision of (MA)T̂  also increases, but at a slightly slower pace. The MSE 

of (MB)T̂  worsens with 2R  because the prediction model differs too much from the population model in 

these setups. This fact implies a larger bias of (MB)T̂  when 2R  increases. For informative and quadratic 

setups, a smaller size reduces the difference between MC
ˆRMSE ( )T  of QR predictors. 

Figure 5.3 shows the evolution of the MCRMSE  with respect to the 2R  in the non-informative setup. 

This time, (MB)T̂  does not lose precision when 2R  increases because the prediction model is the same as 

the population model. All QR predictors show an increase in precision with 2 ,R  with (Cos)T̂  and (MA)T̂  

having similar precision for all values of 2.R  In this setup, the plots are comparable for the two sample 

sizes, because the model is correctly specified for all prediction models. 
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Figure 5.1 Relative MSE (in %), with the MSE of the cosmetic estimator as the baseline, versus 2R  in the 
informative setup.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: RMSE = relative mean square error. 
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Figure 5.2 Relative MSE (in %), with the MSE of the cosmetic estimator as the baseline, versus 2R  in the 
quadratic setup.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: RMSE = relative mean square error. 
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Figure 5.3 Relative MSE (in %), with the MSE of the cosmetic estimator as the baseline, versus 2R  in the non-
informative setup.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: RMSE = relative mean square error. 
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100,000

75,000

50,000

25,000

0

100

75

50

25

0

                                0.25                         0.50                        0.75                        1.00                                                                                0.25                           0.50                         0.75                          1.00 

                                                  R2                                                                                                                                      R2 

100,000

75,000

50,000

25,000

0

100--

75--

50--

25--

0--

    n = 200                                                                                                                                  n = 50 

    n = 200                                                                                                                                  n = 50 

     Variable 
 

              Cosmetic 
 

              HT 

 

              MA 
 

              MB 
 

              TPDI 
 
 
 
 
 
 
                        
 
 
 
 
 
 
 
 
 
 
 

       Variable 
 

                 Cosmetic
  

                 MA 

 

                 MB 
 

                 TPDI 

   
   

   
   

   
   

   
   

   
   

   
 R

M
SE

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  R
M

SE
   

   

   
   

   
   

   
   

   
   

   
   

   
 R

M
SE

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  R
M

SE
   

   
   

   
  

                              0.25                          0.50                           0.75                        1.00                                                                              0.25                          0.50                           0.75                          1.00 

                                                R2                                                                                                                                        R2 



Survey Methodology, December 2023 403 

 

 
Statistics Canada, Catalogue No. 12-001-X 

6. Application to La Poste data 
 
6.1 Data presentation 
 

In France, more than 90% of letters sent are sorted out using automatic sorting machines. The information 

collected by the machines is based on pictures of the letters and form the non-probability database. La Poste 

has also access to a probability sample and wants to use both databases to estimate monthly totals of different 

types of letters using the data integration methods proposed above. Some letters such as “lettres vertes” 

(letters with a green stamp and ecologically transported) are not recognized by the sorting machines, which 

only take black and white pictures, meaning that the variable of interest is not available in the non-

probability database. The auxiliary information associated with the letters automatically sorted is not easily 

linked to the probability sample. This issue is currently being investigated at La Poste. Thus, the illustration 

below is based on data from previous surveys made over the years at La Poste. 

Data from these surveys are collected from postmen rounds and contain in particular the number of 

lettres vertes, the number of letters named “produits 1b” (which include different types of letters, including 

lettres vertes) and the total number of letters in the round. The idea is to mimic the situation at La Poste 

where the number of lettres vertes is available in the probability sample but not on the non-probability 

database whereas the number of produits 1b and the total number of letters are available in the non-

probability database but not in the probability sample. 

The goal of this section is on one hand to see if the conclusion drawn with simulated populations holds 

with real data and on the other hand to see if the selection method for the non-probability sample has an 

impact on the estimators. The population of interest consists in 11,906 rounds from historical data. In the 

following, we assume that the variable of interest is the number of lettres vertes and the explanatory variable 

1X  (resp. 2 )X  is the total number of letters (resp. the number of produits 1b). 

We consider three configurations. For each configuration, a non-probability sample of size 9,524 is 

drawn from the population; the non-probability sampling fraction is thus 80%. In the first configuration, the 

non-probability sample is drawn using SRSWOR. For the second (resp. third) configuration, the non-

probability sample contains the 9,524 rounds with highest (resp. lowest) values of .Y  Only 2X  is used as 

explanatory variable in the prediction model along with the intercept. 

We compare the same estimators as in Section 5.2. For each of the 3 non-probability samples, we draw 

=L 1,000 probability samples Ps  of expected size 2,000 using Poisson sampling with probabilities 

proportional to 1.X  The same Monte-Carlo measures as those in Section 5.2 are computed. 

 
6.2 Results 
 

Table 6.1 contains the simulation results for La Poste data for the three non-probability samples. For all 

configurations, the prediction model appears to be significantly misspecified, which causes (MB)T̂  to be less 

efficient, both in terms of variance and MSE, than in the simulations of Section 5.2. Different diagnostic 
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statistics could be computed beforehand to highlight the misspecification problem and alternative prediction 

models could be proposed. The assessment of such models is not in the scope of this paper. 

 
Table 6.1 

Relative bias (in % of the true value), percent relative (to (Cos)ˆ )T  variance and MSE of the different estimators 

for the three different non-probability samples; the expected size of the probability sample is 2,000 and the size 

of the non-probability sample is 9,524. 
 

NPS  Monte Carlo measures HTT̂  (MB)T̂  (MA)T̂  (Cos)T̂  PDIT̂  

SRSWOR 

RB MC  0.08 8.30 0.08 0.08 0.06 

RVar MC  253.67 122.66 102.21 100.00 87.41 

RMSE MC  252.95 5,489.24 102.18 100.00 87.31 

Highest Y  values 

RB MC  0.03 5.51 0.03 0.03 0.01 

RVar MC  1,528.57 197.54 101.82 100.00 3.78 

RMSE MC  1,528.57 13,676.65 101.87 100.00 3.82 

Lowest Y  values 

RB MC  -0.02 1.23 0.13 0.13 0.41 

RVar MC  197.09 100.67 100.26 100.00 93.17 

RMSE MC  195.36 184.83 100.24 100.00 92.95 

Notes: RB = relative bias; RVar = relative variance; RMSE = relative mean square error; MC = Monte Carlo; SRSWOR = simple random 
sampling without replacement. 

 
For all configurations, the results are similar to those obtained in the informative and quadratic setups of 

Section 5.2 with (MA)T̂  and (Cos)T̂  having similar efficiency and being both more efficient than 
(MB)ˆ ,T  

which is the only biased estimator. It can be noted that, although the choice of NPs  does not impact the 

relative efficiency of 
(MA)ˆ ,T  it impacts the relative precision of the HT and PDI estimators. 

In all configurations, Ps  is drawn using Poisson sampling and the variance of the data integration 

estimators can be simplified as follows:  

 
(Ha)

NP
ˆ ˆ ˆVar( ) = Var( ) Var( )CT T T   

with NPT̂  the predictor of the total NPT  and 
(Ha)ˆ

CT  the Hájek estimator of the total .CT  To further understand 

the impact of the selection of NPs  on the estimators, we study the variance of 
(MA)

NP
ˆ ,T  

(Cos)
NPT̂  and 

(Ha)ˆ ,CT  and 

the variance of the Hájek estimator (Ha)
NP NP
ˆ =

P P
k k k k kk s k s

T N d y d 
    of the total NP.T  

Table 6.2 contains the relative variance of HT
ˆ ,T (MA)

NP
ˆ ,T (Cos)

NP
ˆ ,T (Ha)ˆ

CT  and 
(Ha)

NPT̂  for the second and third 

configurations, when NPs  contains the highest or lowest values of ,Y  relative to their variance in the first 

configuration (SRSWOR). As expected, the precision of the HT estimator does not depend on NPs  and is 

fixed for the three configurations. In the second configuration, 
(Ha)ˆ

CT  has a much smaller variance than in 

the other configurations, since only the smallest values of Y  are left in NP.U s  Similarly, its variance is 

greater in the third configuration, when only the largest values of Y  are left in NP.U s  A similar reasoning 

explains the ratio of variances between configurations for 
(MA)

NP
ˆ ,T (Cos)

NPT̂  and 
(Ha)

NP
ˆ .T  The important point is 

that both 
(MA)

NPT̂  and 
(Cos)

NPT̂  are not very sensitive to NPs  in terms of variance.  
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Table 6.2 

Percent relative variance of the estimators when NPs  contains the highest or lowest Y  values, relative to their 

variance when NPs  is drawn with SRSWOR. 
 

NPS  
HTT̂  (MA)

NPT̂  (Cos)
NPT̂  ( Ha)

NPT̂  (Ha)ˆ
CT  

Highest Y  values 101.97 111.39 110.38 101.61 0.92 

Lowest Y  values 104.61 73.07 69.03 15.43 181.29 
Note: SRSWOR = simple random sampling without replacement. 

 
We could argue that the non-probability samples selected in the second and third configurations are not 

realistic. Yet, the results observed for more realistic non-probability samples, selected using Poisson 

sampling proportional to 1X  or ,Y  were not significantly different from the results observed when NPs  is 

drawn using SRSWOR and are not reported. Similarly, using both auxiliary variables in the prediction 

model only impacts the bias of (MB)ˆ ,T  and the results are again not reported.  

To further improve the precision, other estimators of CT  may be used. As mentioned before, the data 

integration methods proposed in this paper can be used when the overlap between the probability and the 

non-probability samples is non-empty and, ideally, large. In this context, we recommend, based on our 

empirical results, the choice of the cosmetic or the model-assisted estimators. 

 
7. Conclusion 
 

Most of the literature on data integration in finite population tackles the problem of unobserved study 

variable in the probability sample. In this paper, we have proposed to fill the gap and considered the problem 

of unobserved study variable in the non-probability sample, assuming that it is observed in the probability 

sample and that auxiliary information is available in both samples. We have defined a general class of 

prediction estimators, based on the already known QR class, which includes the model-assisted, model-

based and cosmetic estimators, and studied theoretically their bias and variance properties. We have also 

derived a variance estimator and compared the three types of estimators with the usual Horvitz-Thompson 

estimator in different simulation setups, both in terms of bias and MSE, and concluded that the cosmetic 

estimator is a good compromise in general. 

The main conclusion of our experiments is that significant efficiency gains can be achieved by leveraging 

a big non-probability database that contains auxiliary information associated with the main study variables. 

For large domains, the efficiency gains obtained from using model-assisted estimators, including the 

cosmetic estimator, may be sufficient to obtain high-quality estimates of the population parameters of 

interest. For smaller domains, these estimators may not achieve precision targets. However, they could be 

used as direct estimates in a small area estimation model, such as the well-known Fay-Herriot area level 

model. This model requires area level auxiliary information. The big non-probability database would be a 

natural candidate for providing the auxiliary information required for producing small area estimates. Small 
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area estimation methods often yield significant precision gains over direct estimators at the expense of 

introducing model assumptions. 
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Appendix 
 
Proof of Proposition 2.1 
 

We recall that DI
ˆ = (1 )

P
k k k k kk U k s

T y d y 
 

    and HT
ˆ = =

P P
k k k k kk s k s

T d y d y
 

   

(1 ) .
P

k k kk s
d y


  Thus, we have:  

 HT DI
ˆ ˆVar ( ) Var ( ) = Var 2Cov , (1 ) .

P P P

k k k k k k k k k
k s k s k s

T T d y d y d y  
  

   
        

   
     

(i) For Poisson sampling, we have:  

 2Cov , (1 ) = (1 ) ( 1) = 0
P P

k k k k k k k k k k
k s k s k U

d y d y d y   
  

 
    

 
     

and  

 2
HT DI
ˆ ˆVar ( ) Var ( ) = Var = ( 1) 0,

P

k k k k k k
k s k U

T T d y d y 
 

 
    

 
    

which proves the first part of the proposition. 

(ii) For simple random sampling without replacement, let = ,U kk U
Y y N

 NP NP= ,k kk U
Y y N

  
2 2

, NP NP NP= ( ) ( 1)Y k kk U
S y Y N


   and 2 2 2

NP , NP NPCV = .YS Y  Using some simple calculus, we have:  

   2 2
NP , NP NP NP NPVar = ( 1) ,

( 1)
P

k k k Y
k s

N N n
d y N N S N Y N N

n N N




  
      

   

  NP NP NP NPCov , (1 ) = ,
( 1)

P P

k k k k k k U
k s k s

N N n
d y d y N Y NY N Y

n N N
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and thus  

   2
HT DI NP , NP NP NP NP NP
ˆ ˆVar ( ) Var ( ) = ( 1) ( ) 2 .

( 1)
Y U

N N n
T T N N S N Y N N Y NY

n N N


    


  

We conclude that HT
ˆVar ( )T  is larger than or equal to DI

ˆVar ( )T  if and only if  

  2
NP , NP NP NP NP NP( 1) ( ) 2 0,Y UN N S N Y N N Y NY       

which is equivalent to:  

 2 NP NP
NP

NP NP

CV 1 2 ,
1

UN N Y

N N Y

 
    

  
  

and proves the second part of the proposition.  

 
Proof of Proposition 2.2 
 

We have:  

 

2
,2

HT
ˆVar ( ) = Var = (1 ) ,

P

Y U

k k
k s

S
T d y N f

n

 
  

 
   

 

2

,2
PDI
ˆAVar ( ) = Var (1 ) ( ) = Var = (1 )

P P

Y U

k k k C k k
k s k s

S
T d y Y d y N f

n


 

   
        

   
 


   

where  

 

2 2
,

2 2 2

,

1
= ( ) ,

1

= (1 ) ( ),

1 1
= ( ) = .

1 1

Y U k U
k U

k k k C

k C kY U
k U k U

S y Y
N

y y Y k U

S y Y y
N N




 




  


 



 



 

  

Using some basic but tedious calculus, we obtain:  

 

2 2
, ,2

HT PDI

2 2 2
NP

2 2 2
, NP NP NP NP

NP

ˆ ˆVar ( ) AVar ( ) = (1 )

1 1
= (1 ) ( ) ( ) ( )

1

1 1
= (1 ) ( 1) ( ) .

1

Y U Y U

k k U C U
k U

Y U

S S
T T N f

n

N f y Y N N Y Y
n N

N
N f S N N Y Y

n N N N
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Proof of Proposition 3.1 
 

Let = diag( ) ,
P Ps k k k sr  R = ( ) ,

P Ps k k sX x = ( )
P Ps k k sy y  and = diag ( ) .

P P Pxs s k k k sq  Q X   Then ˆ =β  
1( ) .

P P P Pxs s xs s
Q X Q y 

 We can write the sum ˆ( )
P

k k k kk s
r y y


  in a matrix form as follows:  

 ˆˆ( ) = ( ),
P P P P

P

k k k k s s s s
k s

r y y


  1 R y X β
  

where 
Ps1  is a vector of ones with dimension the size of .Ps  If the condition = 0k k kq rμ x  is fulfilled for 

all NP ,k s  then ( ) = 0k k k kq r μ x  for all Pk s  and as a consequence, = .
P P Pxs s sμ Q 1 R    We get then 

ˆ( ) = 0.
P P P Ps s s s1 R y X β  

 

Proof of Proposition 3.2 
 

We have  

 

(QR) (Q )
NP NP

ˆˆ ˆ = ( ) ( )

ˆ= ( ) = 0.

P

P

k k k k k
k s

k k k k k
k s

T T r d y

q y

 







  

 





x β

λ x x β
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Constructing all determinantal sampling designs 

Vincent Loonis1 

Abstract 

In this article, we use a slightly simplified version of the method by Fickus, Mixon and Poteet (2013) to define a 
flexible parameterization of the kernels of determinantal sampling designs with fixed first-order inclusion 
probabilities. For specific values of the multidimensional parameter, we get back to a matrix from the family P  
from Loonis and Mary (2019). We speculate that, among the determinantal designs with fixed inclusion 
probabilities, the minimum variance of the Horvitz and Thompson estimator (1952) of a variable of interest is 
expressed relative to .P  We provide experimental R programs that facilitate the appropriation of various 
concepts presented in the article, some of which are described as non-trivial by Fickus et al. (2013). A longer 
version of this article, including proofs and a more detailed presentation of the determinantal designs, is also 
available. 

 
Key Words: Determinantal process; Balanced sampling; Semidefinite optimization. 

 
 

1. Introduction 
 

In sampling theory, a random sample S  is a random variable whose realizations are elements of the set 

2U  of the parts of a finite population U  of size ,N  indexed by =1, , .k N…  Each part s  of 2U  is called a 

sample. The probability law of S  is called sampling design (Tillé, 2001). Apart from the terminology, these 

concepts are the same as those used in point processes on a finite population, in probability or statistics. 

Among point processes, determinantal processes have been the subject of many studies because they appear 

in various fields: random matrices, mathematical physics or machine learning. Using these processes in the 

context of sampling theory and finite populations leads to the concept of determinantal sampling design 

studied by Loonis and Mary (2019). 

Determinantal sampling designs directly inherit properties from determinantal processes established in 

different frameworks. They are parameterized by Hermitian matrices whose eigenvalues lie between 0 and 

1 (Macchi, 1975; Soshnikov, 2000). These are called contracting Hermitian matrices. Such a matrix will 

then be notated ,K  called the kernel, and the associated determinantal sampling design will be notated 

DSD( ).K  The inclusion probabilities of such designs are known at all orders and are parameterized by .K  

This feature differentiates determinantal designs from most of the usual, somewhat complex, designs giving 

them a real practical interest, beyond their theoretical curiosity. Usually, if the first-order inclusion 

probabilities are known, the second-order inclusion probabilities are often approximated and the others are 

most often unknown. For determinantal designs, the first- and second-order inclusion probabilities are given, 

respectively, by the diagonal and non-diagonal terms of the kernel. Higher-order inclusion probabilities are 

also expressed directly in terms of .K  

Moreover, the distribution of the size of a determinantal random sample is that of a sum of independent 

Bernoulli variables, where the parameters are the eigenvalues of K  (Hough, Krishnapur, Peres and Virág, 
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2006). There are algorithms for selecting determinantal random samples (Hough, Krishnapur, Peres and 

Virág, 2006; Scardicchio, Zachary and Torquato, 2009; Lavancier, Møller and Rubak, 2015). Determinantal 

designs are negatively associated (Lyons, 2003). In other words, if A  and B  are two disjointed parts of ,U  

then pr ( ) pr ( ) pr ( ).A B A B    S S S  As a result, determinantal designs satisfy the Sen-Yates-

Grundy conditions (Sen, 1953; Yates and Grundy, 1953), which correspond to the case where A  and B  are 

singletons. They also satisfy the strong Rayleigh property (Yuan, Su and Hu, 2003; Brändén and Jonasson, 

2012; Pemantle and Peres, 2014). From this technical property, stronger than negative association, a central 

limit theorem as well as deviation and concentration inequalities (Soshnikov, 2000, 2002; Pemantle et Peres, 

2014) directly follow for the Horvitz-Thompson estimator of the total of a variable of interest y  (Horvitz 

and Thompson, 1952). 

The specifics of sampling theory lead Loonis and Mary (2019) to focus on novel properties of 

determinantal designs, such as the necessary and sufficient conditions for the perfect estimation of a total 

with the Horvitz-Thompson estimator, the search for optimal kernels, or the explicit construction of families 

of particular contracting Hermitian matrices, such as fixed-diagonal orthogonal projection matrices. These 

matrices are associated with the important practical case of fixed-size determinantal sampling designs with 

given first-order inclusion probabilities. More practically, the authors observe that the simplest 

determinantal designs can be mobilized for populations of several thousand individuals. The size of the 

population that is compatible with more sophisticated constructions, particularly those associated with 

optimization issues, is several hundred.  

Constructing a fixed-diagonal orthogonal projection matrix is a specific case of the more general problem 

of constructing Hermitian matrices, whose diagonal and spectrum are fixed. This problem has been the 

subject of many studies in the literature, some of which are recent. Schur (1911), Horn (1954) and Kadison 

(2002) studied the necessary and sufficient conditions for the existence of such matrices in complex and 

real cases. However, these studies do not specify how to construct such matrices. Dhillon, Heath Jr., Sustik 

and Tropp (2005) propose algorithms for constructing some of these matrices. The algorithm by Fickus 

et al. (2013) makes it possible to construct them all. In the previous two cases, the results are not known 

analytically. Loonis and Mary (2019) explicitly show several examples of projection matrices, whose 

diagonal terms are constant. Building on the work of Kadison (2002), they present formulae for specifically 

constructing a family P  of real orthogonal projection matrices of any diagonal ,  provided that 
=1

N

kk
  

is an integer.  

In this article, we focus specifically on the method by Fickus et al. (2013), in the context of determinantal 

designs, and draw connections with the family .P  In the first section, we introduce some algebraic 

notations and concepts that are useful for the overall understanding of the article. In the second section, we 

reiterate the main properties of determinantal sampling designs. More precisely, we present the properties 

of the family of designs associated with matrices .P  The results of this section are taken directly, without 

proof, from Loonis and Mary (2019). Readers who wish to understand the foundations of these results or 

are interested in extensions, such as asymptotic properties, are encouraged to refer to the original article. 

Algorithm 3.1 and theorem 3.1 are new, and their proofs are provided in the longer version of the article.  
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In the third section, we present the main principles and parameters of the method by Fickus et al. (2013). 

The latter are not easy to handle directly. We show that, at the cost of simplification, it is possible to modify 

them to describe the semidefinite positive Hermitian matrices K  of diagonal   with a triplet ( , , ).M   

M  is an integer giving the number of strictly positive eigenvalues of .K    and   are matrices with 

respective sizes ( )M N  and ( ( 1)),M N   all of whose coefficients have value in [0,1].  In terms of 

sampling theory, the columns of matrix   directly influence the variability of the sample size falling into 

domains of the form = {1, , },kD k… =1, , .k N…  As for the matrix ,  it determines the value of the non-

diagonal coefficients of the constructed matrices and, as such, the second-order inclusion probabilities of 

the associated determinantal designs.  

In the fourth section, for a probability vector   such that *

=1
= ,

N

kk
n  N  we examine the choices 

( )( = , = 0 , )n NM n   and ( )( = , =1 , ).n NM n   We show that the first is directly related to the family 

P  and explain the coefficients of the matrices obtained for the second choice. 

In the final section, we carry out simulations and applications. We limit ourselves to real fixed-diagonal 

orthogonal projection matrices. In this set, we minimize the variance of the Horvitz-Thompson estimator of 

a variable’s total. Given the specificity of the eligible set, we rewrite the problem in the form of an 

optimization problem on manifolds and mobilize adapted algorithms (Absil, Mahony and Sepulchre, 2009; 

Boumal, Mishra, Absil and Sepulchre, 2014; Townsend, Koep and Weichwald, 2016). We find that the 

result is also associated with the family .P  From this we deduce a conjecture defining the lower bound of 

the variance of the Horvitz-Thompson estimator of the total of variable ,y  among the determinantal designs 

with fixed first-order inclusion probabilities.  

In addition to appropriating and programming the method by Fickus et al. (2013) for use in determinantal 

sampling designs, the main contributions of this document are algorithm 3.1, theorems 3.1, 5.1 and 5.2, and 

conjecture 6.1. The points considered important for interpreting certain results are presented in the form of 

remarks or examples. The proofs, which are long and technical, are provided in a long version of the article. 

The latter also provides a comparison of the performances, in terms of balancing, of the determinantal 

designs with those of equivalent designs (Deville and Tillé, 2004; Chauvet and Tillé, 2006; Leuenberger, 

Eustache, Jauslin and Tillé, 2022). 

 
2. Algebraic notations and reminders 
 

In the rest of the article, K  is a contracting Hermitian matrix of size ( ).N N  A random variable, whose 

distribution is a determinantal design with kernel ,K  will be notated DSD( ).KS∼  The coefficients of K  

are complex. The conjugate of the complex number z  is z  and its modulus is | | .z  K  is such that =K K   

(Hermitian) and its eigenvalues are in the interval [0,1]  (contracting). If all eigenvalues are 0 or 1, K  is an 

orthogonal projection matrix. The strictly positive eigenvalues of K  are M  in number. The main submatrix 

of order =1, ,k N…  of K  is the square matrix made up of the upper left corner of size k  of .K  The 

submatrix of order =k N  is K  itself.  
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The set of eigenvalues, called spectrum, of the main submatrix of order k  is represented by the vector 

.k  The spectrum of K  is .N  Each k  has at most M  strictly positive eigenvalues, which are also less 

than or equal to 1. Each main submatrix is also Hermitian and contracting. By convention, k  is truncated 

to its own strictly positive coefficients at first. If applicable, it is supplemented with 0s to be of constant size 

.M  The coefficients of k  are notated , = 1, , , = 1, ,k
j j M k N … …  and are, again by convention, sorted 

from lowest to highest: 10 1k k k
j M       … …  with 1 > 0.N  

The ,k  as spectra of the main submatrices, satisfy the Cauchy interlacing conditions (Horn and Johnson, 

1991). By placing 0 = 0k  for = 1, , ,k N…  these conditions are written  

 1 1
1= 1, , , = 1, , 1: .k k k

j j jj M k N    
    … …  (2.1) 

The letter k  is used to index both the individuals of the population and the steps of the algorithm by 

Fickus et al. (2013). This choice is justified by the fact that step k  determines individual k ’s contribution 

to the inclusion probabilities of all orders involving it. In general, the first-order inclusion probability of 

individual = 1, ,k N…  is ,k  the coefficient of vector .  In some cases, which leave no room for doubt, 

the letter   is used based on its conventional usage. The notations k  and   will be used when we want 

k  to take the value ,k  set in advance. For example, =k n N  or k  is proportional to a size criterion, 

like the number of employees for companies. The various inclusion probabilities contained in vector   are 

not necessarily ordered. This is true for constructing matrices P  from Loonis and Mary (2019). For the 

method by Fickus et al. (2013), these probabilities will be sorted from highest to lowest, without losing 

generality. In this case, we will use the notation ,  specifying that 11 > > 0.k N      … …  The 

notation 


 refers to a permutation matrix such that = .   

 

To be consistent with sampling theory, the notations N  and M  are inverted, compared with those from 

Fickus et al. (2013). The ordering convention of k  also differs from the one chosen by these authors. This 

seemed to simplify the appropriation of the methods from a programming perspective. This choice can 

occasionally make the wording of the Schur (1911) and Horn (1954) theorem, as well as some formulae that 

derive from it, less intuitive. In this context, this theorem stipulates that there is a Hermitian matrix 
, , NM

NK 

 

with diagonal   and spectrum N  if and only if  

 
=1 =1

= 1 =1 =1

,

, 1, , 1.

N M N
k jk j

N M j j N
s s ss M j s s

j M

 

 


 

   


      

 

  



  …
 (2.2) 

By adapting the notations, this theorem also applies to all the main submatrices of a Hermitian matrix 

because they are also Hermitian.  

Finally, a matrix A  of size ( )P P  is unitary if = ,PA A I
 where PI  is the identity matrix. The square 

matrix of size ( ),P P  all terms of which equal 1, is notated .PJ  The symbol   indicates Hadamard’s 

matrix product: = = .kl kl klA B C A B C  The notation ( )P Qx   indicates a matrix of size ( ),P Q  all 

coefficients of which equal .x  The notation Px  is used for vectors of size ,P  all coefficients of which equal 

.x  xD  is a diagonal matrix, the diagonal of which is .x  
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3. Reminders about determinantal sampling designs 
 
3.1 Definition and inclusion probabilities 
 

A random variable S  over 2U  has as law a determinantal sampling design if there is a contracting 

Hermitian matrix K  such that  

 |2 , pr ( ) = det ( ),U
ss s K   S  (3.1) 

where |sK  is the submatrix constructed by extracting the rows and columns of K  indexed by the elements 

of .s  This definition directly results in the calculation of the inclusion probabilities for all orders, particularly 

those of orders 1 and 2: 

 
|{ }

2
|{ , }

= pr ({ } ) = det ( ) = ,

= pr ({ , } ) = det ( ) = = = | | .
k k kk

kl k l kk ll kl lk kk ll kl kl kk ll kl

k K K

k l K K K K K K K K K K K K








   

S

S
 (3.2) 

The diagonal terms kkK  correspond to the first-order inclusion probabilities of design DSD( ),K  whereas 

the modulus of the non-diagonal terms is used in the expression of the second-order inclusion probabilities. 

The properties of the trace matrix application give rise to a relationship between inclusion probabilities and 

eigenvalues, which frequently appear in the proofs:  

 
=1 =1 =1

Tr ( ) = = = .
N N M

N
kk k j

k k j

K K      (3.3) 

Matrix ,  of size ( ),N N  whose coefficients are = (1 )kk k k    and = ,kl kl k l     is expressed 

in terms of :K  

 
2

= (1 ),

= | | ,

= ( ).

kk kk kk

kl kl

N

K K

K

K I K

 

 
  

 (3.4) 

This matrix is used in precision calculations. It also makes it possible to see that the determinantal 

designs confirm the Sen-Yates-Grundy conditions (Sen, 1953; Yates and Grundy, 1953) because =kl kl   
2= | | 0k l klK     and, therefore, .kl k l    As such, the Sen-Yates-Grundy conditions provide an upper 

bound for the second-order inclusion probabilities of determinantal designs, function of single-order 

inclusion probabilities. 

 
3.2 Sample size, fixed-size determinantal designs and selection algorithm 
 

Let S  be the size of random sample DSD( ).KS∼  The distribution of S  is that of a sum of M  

independent Bernoulli variables, whose parameters are the M  strictly positive eigenvalues ,N
j =j  

1, , M…  of K  (Hough et al., 2006). The moments of order 1 and 2 of S  are deduced and equal 
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=1 =1

=1

( ) = ,

var ( ) = (1 ).

M N
N
j k

j k

M
N N
j j

j

 

 






 


 



E S

S





 (3.5) 

 

Remark 3.1 DSD( )KS∼  will be of fixed size, *( ) = = ,nE S S N   if and only if var ( ) = 0.S  In other 

words, if N
j  equals 1 for all = 1, , .j M…  Because K  is Hermitian, K  is an orthogonal projection matrix.  

 

Lavancier et al. (2015) propose an algorithm for selecting a random sample whose distribution is a 

determinantal design of fixed size. This algorithm requires a spectral decomposition of K  as input, which, 

when N  is large, can be computationally intensive. One of the challenges of then constructing kernels K  

will be to directly provide this decomposition. If K  is not a projection matrix, Hough et al. (2006) show 

that DSD( )K  can be written as a mixture of fixed-size determinantal designs. Thus, it is possible to refer 

to the case of projection matrices to select a random-sized determinantal sample. 

 

3.3 Estimating a total, variance of the estimators, balanced designs 
 

For any sampling design, whose first-order inclusion probabilities are strictly positive, the unknown total 

=1
=

N

y kk
t y  of a variable of interest ,y  assimilated to a vector of ,NR  is estimated without bias by the 

Horvitz-Thompson estimator (Horvitz and Thompson, 1952) such that ˆ =y k kk
t y 

 S
 and whose variance 

is  

 1 1ˆvar ( ) = = .k l
y kl

k U l U k l

y y
t y D D y 

 
 

 

    (3.6) 

If the design is determinantal, a consequence of (3.4) is that the variance of ŷt  is a function of :K  

 1 1ˆvar ( ) = ( ) [ ( )] ( ) .y N N Nt y I K K I K I K y     (3.7) 

For a set of inclusion probabilities fixed a priori, a balanced design is such that 

 ˆ ˆ= 1, , ,  = var ( ) = 0,q q q

q
k

x x x
k k

x
q Q t t t



  


…
S

 (3.8) 

where the ,qx =1, , ,q Q…  are a set of auxiliary variables, in other words, variables whose value is known 

for all individuals in the population, particularly via the sampling frame. Deville and Tillé (2004) propose 

an efficient approach for approximately resolving this problem. These authors use algebraic and probability 

methods. By staying within the determinantal family, another possibility is to use optimization techniques 

and to find optK  such that 

 opt

=1

=

ˆ= argmin var( ), s.c. diag ( ) =

0 ,

q

Q

q x
K q

N

K K

K t K

K I














 

 (3.9) 

where ˆvar ( )qx
t  is given by (3.7),   is fixed a priori, and 0 NK I   indicates that the eigenvalues of K  

are between 0 and 1. The coefficients q  make it possible to manage the relative importance of the variables. 
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The choice 2=1
qq xt  leads to minimizing the sum of the squares of the variation coefficients of the various 

estimators. Resolving such problems involves non-linear positive semidefinite optimization. Loonis and 

Mary (2019) propose heuristics to find approximate solutions. We will in the following use optimization 

methods on manifolds (Absil et al., 2009; Boumal et al., 2014; Townsend et al., 2016). 

 
3.4 A few examples of determinantal designs 
 

3.4.1 Constructing one design from another 
 

Below we present some general properties for constructing new determinantal designs from a given 

determinantal design. Let DSD( ),KS∼  then 
 

1. the complement cS  of S  in U  is determinantal and has as distribution DSD( ),NI K   

2. the restriction DS  of S  to the domain D  included in U  is determinantal of distribution 

|DSD( ),DK   

3. DSD( )K  is stratified if and only if K  is a block diagonal, up to a permutation of the rows and 

the columns,  

4. if 1U  is a unitary matrix, the matrix 1 1U KU   has the same eigenvalues as .K  Therefore, there is 

a determinantal design associated with it. Among the unitary transformations, rotations prove 

useful for defining optimization heuristics (Loonis and Mary, 2019).  

 
3.4.2 A family of fixed-size determinantal designs and any inclusion probabilities 

fixed a priori: The family P  
 

Loonis and Mary (2019) reiterate that the Poisson design is determinantal, whereas the simple random 

design is determinantal only in the cases = 1n  and = 1.n N   The authors provide examples of determi-

nantal designs with constant inclusion probabilities. They construct a family of fixed-size determinantal 

designs for any inclusion probabilities fixed a priori. To the extent that it will reappear in various contexts 

in the following sections, we specifically present the properties of the designs associated with this family in 

this section. 

Let   be a vector of ]0,1[ ,N  such that *

=1
= , .

N

kk
n n  N  Loonis and Mary (2019) mobilize a result 

from Kadison (2002) to exhibit an explicit formula of the coefficients of a real orthogonal projection matrix 

P  with diagonal   (Table 3.1). The determinantal design associated with this matrix is of fixed size and 

has inclusion probabilities .  The formula is based on the integers rk  ( = 1, , 1)r n …  such that 
1

=1
<rk

kk
r


  and 

=1
,rk

kk
r   the real numbers 

1

=1
= r

r

k

k kk
r


   and 

r
r

 such that  

 
= 1

( )
= ,

(1 ) (1 ( ))
j j j

j j j

r
k k kr

r
j r k k k

 


 






 

   
   

for < ,r r =1r
r


 otherwise. 
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Table 3.1 

Coefficients klP  of :P < .k l  
 

 l  
k  1= rl k   1< <r rk l k   

1< <r rk k k   (1 )

1 )
rl l

k r

l










 r
k l r

   

= rk k  (1 ) (1 ) ( )

1 1 ( )
rl l k k k
r

l k k

 


 
   


   

 (1 ) ( )

1 ( )
rk k k

l r

k k





  

 
  

 

 
Knowledge of the coefficients klP  makes it possible to deduce information about the inclusion 

probabilities of order greater than 1 of design DSD( ):P  

1. If { , }k l  is an element of 2
1] , [r rk k   then = 0kl  because = ,kl k lP    

2. If | |k l  is large 0klP   and kl k l    is maximal under the Sen-Yates-Grundy constraint,  

3. If 1] , [,r rj k k = ,rk k 1] , [,r rl k k   then = 0,jkl  

4. If there are integers 1, , Hr r…  such that 
=1

= , = 1, , ,rh
k

k hk
r h H …  then the design DSD( )P  is 

stratified based on the strata 
1

] , ],
h hr rk k


 

5. If n  divides N  and = ,k n N  then DSD( )P  is a 1-per-stratum design. It selects an individual 

from each of the n  groups of size N n  taken consecutively within the population: N n  first, 

and so on.  
 

Example 3.1 illustrates some of these properties and also shows that the construction of P  depends on 

the order of the individuals.  
 

Example 3.1 Construction of P  and P  for = 7,N = 4n  and  3 3 31 1 2 4
2 4 4 5 5 5 5= , , , , , , .


  is the 

vector of probabilities sorted from highest to lowest:  3 3 34 1 2 1
5 4 4 5 2 5 5= , , , , , , . 

 

 

1 1 1
0 0 0 0

2 2 2 2 2

1 3 1
0 0 0 0

4 42 2

1 1 3
0 0 0 0

4 42 2

1 2 2 2
0 0 0( ) : = ,

5 5 5 3 5 3

2 2 2 2 2
0 0 0

5 5 5 3 5 3

2 2 2 3 2
0 0 0

5 55 3 5 3

2 2 2 4
0 0 0

5 55 3 5 3

a P

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

  



Survey Methodology, December 2023 419 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 

4 1 1 3 1 2 1 2

5 15 72 5 2 5 5 7 210 15 7

1 3 1 3 1 1 1

4 42 5 2 35 2 42 3 35 3 70

1 1 3 3 1 1 1

4 42 5 2 35 2 42 3 35 3 70

3 3 3 3 1 2 2
( ) : =

5 15 155 7 2 35 2 35 30

1 1 1 1 1 2 1

2 15210 2 42 2 42 30 15

2 1 1 2 2 2 2

15 15 5 515 7 3 35 3 35

1 2 1 1 2 1 2 1

15 7 15 5 53 70 3 70 15

b P

 


    



    



 

   


 


  




.









 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

If the initial order of the population, {1, 2, 3, 4, 5, 6, 7}  corresponds to vector ,  then the determinantal 

design associated with P  applies to the population in the order (7, 2, 3, 6,1, 5, 4)  (or (7, 3, 2, 6,1, 5, 4)).  

In connection with the previous properties, we see that 1 2 3 = 2.    The determinantal design 

associated with P  is indeed stratified based on the strata (1, 2, 3)  and (4, 5, 6, 7).  For example, we have 

25 = 0P  and 
2

25 2 5 25 2 5= = ,P       according to (3.2). The design associated with P  is not stratified 

because it is impossible to rearrange the rows and columns of this matrix to obtain a block diagonal matrix. 

The designs associated with P  and P  are different, even up to a permutation of the rows and the 

columns.  
 

We conclude this part with two new results pertaining to matrices .P  The first provides a basis of 

eigenvectors of .P  This basis can be used as input for the algorithm of Lavancier et al. (2015).  
 

Algorithm 3.1 (Construction of ,
N  orthonormal eigenbasis of )P  

 

1. Set 0 = 0.k  Define the integers rk  ( =1, , 1)r n …  such that 
1

=1
<rk

kk
r


  and 

=1

rk

kk
r   and 

the real numbers 
1

=1
= ,r

r

k

k kk
r


   

2. For every ,k U  calculate ks  and kc  such that  

- if there is r  such that = ,rk k
1

1= kr

r kr
ks 



   

- otherwise for 1< < ,r rk k k  1

=1
1

= k
k

ii

k r
s 



  



  

- 2= 1 ,k kc s   for every ,k  
 

3. Construct ,N  matrix of size ( )n N  of which all coefficients are nil except in ( 1, 1)rr k   (for 

= 0, , 1)r n …  where they equal 1. Let k  be the column k  of ,N  

4. Incrementally update the columns of N  as follows, for = 1, , 1:k N …   

(a) calculate 1 1= k k k kC s c     
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(b) calculate 2 1= k k k kC c s     

(c) respectively replace k  and 1k   with 1C  and 2 ,C  
 

5. = N NK  


 is such that = ,NK H P   where NH  is a real symmetric matrix whose diagonal 

terms equal 1 and non-diagonal terms equal 1 or 1.  N


 is an orthonormal eigenbasis of ,K  

6. The matrix proposed by Loonis and Mary (2019) corresponds to the systematic choice of   in 

the choices   of step 2. Another choice leads to the same coefficients as those in Table 3.1, up 

to the sign. Regardless of the choices, all matrices K  have the same first- and second-order 

inclusion probabilities for a given vector .  
 

The new second result, below, shows that the matrix P  guarantees the lowest variability, among the 

determinantal designs, of the number of units sampled in the domains of the form = {1, , }kD k…  for 

=1, , .k N…  This optimality property of family P  is one of those on which conjecture 6.1 will be based.  
 

Theorem 3.1 Let   be a vector of ]0,1[N  such that *

=1
=

N

kk
n  N  and ,P  the Loonis and Mary 

matrix (2019). Let kP  be the main submatrix of order k  of ,P = 1, , ,k N…  and =1= { } ,k k n
j j   the vector 

of its strictly positive eigenvalues, supplemented where applicable by 0s to be of size ,n  then  

1. =1= { }k k n
j j   is composed of the eigenvalue 1 with multiplicity 

=1
,

k

ss
 
   the eigenvalue 

 =1

k

ss
  with multiplicity 1 and the eigenvalue 0 with multiplicity 

=1
1,

k

ss
n    

   where 

x   and { }x  indicate the whole and decimal parts of .x   

2. let DSD( )KS∼  with inclusion probabilities given by , kD  be the domain = {1, , }kD k…  and 

kDS  be the random number of individuals of S  that are in ,kD  then, for every .k   

 
=1 =1s.c.diag( )=

Min var ( ) = 1 .
k k

k s s
K

s sK

D


    
       

    
 S   

For every ,k  the minimum is reached, particularly for = .K P  

 
4. Constructing all determinantal sampling designs with fixed first-

order inclusion probabilities 
 
4.1 Introduction 
 

The method of Fickus et al. (2013) makes it possible to construct all Hermitian matrices with given 

diagonal and spectrum. For each of them, it provides an orthonormal eigenbasis. The method is described 

by the authors as non-trivial. The goal of this section is not to understand the whole process; we attempt to 

understand its broad strokes and identify its parameters and their constraints. We reformulate the latter to 

achieve parameterization involving mutually independent parameters. This section is technical and makes 
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it possible to justify and understand the notations of theorems 5.1 and 5.2, which introduce a new property 

of matrices P  and a new family of fixed-diagonal projection matrices, the coefficients of which are 

explicitly known.  

Given our topic, we limit ourselves to the case of contracting Hermitian matrices, whose diagonal is   

and spectrum, ,N  is a known element of ]0,1] ,M  with *.M N  The mobilization of N  can seem less 

intuitive to statisticians than that of .  In practice, provided that *

=1
= ,

N

kk
n  N  the natural choice will 

be =M n  and = 1 ,N n  which leads to orthogonal projection matrices and thus to fixed-size determinantal 

designs.  
 

Remark 4.1 An important point is that the algorithm directly constructs only matrices whose diagonal terms 

are ordered from highest to lowest. It will be able to directly construct matrix (b) of example 3.1, but not 

matrix (a) of the same example. For the latter, the algorithm will provide the matrix of example 4.1. The 

two matrices are the same up to a permutation   of their rows and columns. The properties of the 

associated designs are the same, but for a differently sorted population.  
 

Next, we assume that the population is sorted in a way that the inclusion probabilities are given by the 

vector .  The matrices that we are attempting to create are notated 
, , .

NM
NK 

 
 

Example 4.1 The algorithm of Fickus et al. (2013) will be able to construct matrix P  of example 3.1 up 

to a permutation. It will provide matrix K  such that  

 

4 2 2 2
0 0 0

5 5 5 3 5 3

3 1 1
0 0 0 0

4 4 2

1 3 1
0 0 0 0

4 4 2

2 3 2 2 2
0 0 0= = ,

5 5 5 3 5 3

1 1 1
0 0 0 0

22 2

2 2 2 2 2
0 0 0

5 55 3 5 3

2 2 2 1
0 0 0

5 55 3 5 3

K P   

 
 

 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 

 

  

where 



 is a permutation matrix, which transforms   into .  If DSD( )P
 applies to the population 

indexed by (1, 2, 3, 4, 5, 6, 7),  then DSD( )K

 applies to the population in the order (7, 2, 3, 6,1, 5, 4)  (or 
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(7, 3, 2, 6,1, 5, 4)  because the value 3 4  appears twice in the inclusion probabilities). The designs 

DSD( )P  and DSD( ),K  applied to the same population, based on a tailored order, are equivalent.  

 

4.2 Sequential construction of main submatrices 
 

Fickus et al. (2013) sequentially create all square matrices , , NM
kK   of size ( ),k k = 1, , ,k N…  which 

are main submatrices of order k  of at least one matrix of type , , .
NM

NK   The algorithm is put into the form 

 
, ,

, , , , 1
1 1= ( ), = , = 2, , ,

N

N N
M

M M k k
k

k k

K b
K K k N

b


 


  

 
  

  


 


…


  

where kb  is a vector of size 1.k   This vector kb  is constructed in such a way that the spectrum of , , NM
kK   

is equal to ,k  which is a construction parameter. The value of this parameter, chosen by the statistician, 

must be compatible with a process that ultimately yields, in = ,k N  a matrix , , NM
NK   with the initially 

desired diagonal   and spectrum .N  

At chosen ,k  the authors show that various kb  are possible. They therefore introduce a second matrix 

parameter: 1,kV   of size ( ),M M  which reflects the variability of the .kb  The index 1k   refers to the fact 

that the structure of matrix 1kV   depends on 1.k   The nature of the constraints on the parameters is 

explained later. The way kb  is derived from k  and 1kV   is detailed in the appendix (Section A.5). Example 

4.2 shows how the algorithm works. 
 

Example 4.2 (How the algorithm works) In example 4.1, we have = 4 = ,M n = 7.N  Because matrix 

K  is a projection matrix, it follows that 7 4= 1 .  According to Fickus et al. (2013), there are two 

sequences of multidimensional parameters 6
=1{ }k

k  and 6
=1{ }k

kV  that we do not intend to explain here, and 

that, in six steps, lead to the matrix renamed 
44, ,1

7= .K K  

 The first steps are 

 

3

2

1

44, ,1
1

44, ,1
2

44, ,1
3

spectre=

spectre=

spectre=
2 3 4

1 2 3

4 2
0 0

4 5 5
0 0

4 5 3 1
0 0 0

4 3 15 4 40
1 335 4 4

0 00
1 3 4 44 0
4 4 2 3

0 0
5 5

V V V

K

K

K






  







 
 

  
                              
  

 













4

44, ,1
4

spectre=

5

4V

K










 










   

Moving from step 1k   to k  depends, in practice, on parameters k  and 1.kV   A different choice at one 

of the steps would lead to a different final matrix, but it would still be a projection matrix with diagonal .  
 

Remark 4.2 In sampling theory, vector k  parameterizes the variance of the sample size in the domain 

= {1, , },kD k …  based on (3.5). The term ,kb  a function of k  and 
1,kV 

 is used in the expression of second-

order inclusion probabilities and, ultimately, in that of the variance of the Horvitz-Thompson estimator 

based on (3.7).  
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4.3 Reformulation of the constraints on vector parameters =1{ }k N
k  

 

For 1 1,k N    every spectrum k  is subject to two types of constraints. As a spectrum of a main 

submatrix of a Hermitian matrix, k  is subject to the Cauchy interlacing constraints (2.1) with vectors 1k   

and 1.k   As a spectrum of a Hermitian matrix with diagonal 1( , , ) ,k  …   k  satisfies the Schur-Horn 

theorem (2.2). Fickus et al. (2013) show that this set of constraints will be respected if and only if, for 

= 1, , 1,k N … = 1, , ,j M… [ , ],k k k
j j jA B   where the formulae explaining k

jA  and k
jB  are provided in the 

appendix (equations [A.1] and [A.2], Section A.3).  

For = ,k N  Fickus et al. (2013) consider that N  is given exogenously. Noting that, for fixed ,  the 

only constraints imposed on N  are those of the Schur-Horn theorem, we show that N  will be the spectrum 

of a Hermitian matrix with diagonal   if and only if for = 1, , ,j M… [ , ],N N N
j j jA B   where the formulae 

explaining N
jA  and N

jB  are provided in the appendix (proposition A.1, Section A.4).  

A feature of k
jA  and ,k

jB  for 1k N   and > 0,j  is that these two bounds are a function only of ,  
1k   and 1

=1{ } .k j
s s   Likewise, for =k N  and > 0,j N

jA  and N
jB  depend only on   and 1

=1{ } ,N j
s s   with the 

convention 0 = 0,k  for =1, , .k N…  These remarks introduce a new parameterization of all the eigenvalues 

used in the method of Fickus et al. (2013). 
 

Proposition 4.1 
 

1. By setting = ( ),k k k k
j j jk j jA B A    with [0,1],jk   all =

=1{{ } }k k N
k  of the spectra of the main 

submatrices of the contracting Hermitian matrices with diagonal ,  having M  strictly positive 

eigenvalues, can be parameterized by all the matrices of size ( ),M N  whose coefficients have 

value in [0,1].  Such a matrix is notated .  

2. According to this parameterization, the eigenvalue k
j  is a function only of   and  

 1 1( 1) ( 1) 1( 1) ( 1) 1{ , , , , , , , , , , , , }.N MN N M N k M k k jk          … … … … …   

3. The value = 0jk  (resp. = 1)jk  leads to the smallest (resp. largest) possible value ,k
j  

conditional on  

 1 1( 1) ( 1) 1( 1) ( 1) 1 ( 1){ , , , , , , , , , , , , }.N MN N M N k M k k j k           … … … … …   

4. The matrix ( )= 0 M N  (resp. ( )=1 )M N  leads to systematically retaining the smallest (resp. 

largest) possible eigenvalue ,k
j  conditional on 

 1 1( 1) ( 1) 1( 1) ( 1) 1 ( 1){ , , , , , , , , , , , , }.N MN N M N k M k k j k           … … … … …   

5. If *

=1
= = ,

N

kk
M n   N  this parameterization will lead to a projection matrix for any matrix 

: : ( ) =1 .N n   

 

An implementation of this parameterization appears in the appendix (Section A.3). 
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4.4 Reformulating the constraints on matrix parameters 1
=1{ }k N

kV   
 

According to Fickus et al. (2013), the matrix kV  can be arbitrarily chosen from the matrices that satisfy 

the following constraints:  

1. kV  is of size ( ),M M  

2. kV  is a block diagonal,  

3. The number of blocks of kV  is equal to the number of distinct eigenvalues of ,k  

4. A block’s size is equal to the order of multiplicity of the corresponding eigenvalue,  

5. Each block is a unitary matrix of some kind.  
 

The parameterization of matrices 1
=1{ }k N

kV   occurs through the parameterization of the blocks that 

constitute them and, therefore, through the parameterization of unitary matrices. We did not identify any 

easily workable parameterization of this type of matrix in the literature (Dita, 1982, 1994; Jarlskog, 2005; 

Spengler, Huber, and Hiesmayr, 2010). We therefore propose a simplification. We assume that each element 

of k  is of multiplicity 1. As a result, matrix kV  is unitary diagonal. Its thj  diagonal term can be written 

= exp (2 ),k
jj jkV i  with jk  element of [0,1].  Thus, all matrices 1

=1{ }k N
kV   can be obtained from a matrix   

of size ( ( 1)),M N   whose coefficients are independent and have value in [0,1].  The thk  column of   is 

used to construct the diagonal of .kV  
 

Example 4.3 In example 4.2, the matrix 2V  is constructed from the spectrum 2  of matrix 
44, ,1

2 ,K 

 which 

has two strictly positive eigenvalues: 3 4  and 4 5.  Because = 4,M 2  is supplemented with 0s so it is size 

4 and 2 = (0, 0, 3 4, 4 5) .  2V  has three blocks of respective sizes 2.1 and 1, corresponding to the multi-

plicities seen in 2.  Thus, we have 

 

12

2 2 22

simplification
32

42

exp(2 ) 0 0 00 0
0 exp(2 ) 0 00 0

= = .
0 0 exp(2 ) 00 0 0
0 0 0 exp(2 )0 0 0

ia b
ic d

V V
ie

if







  
  

   
     

   

  

The simplification is inconsequential because the block associated with the eigenvalue 0 is not, in 

practice, used in the calculations of Fickus et al. (2013). The simplification could be consequential if, for a 

,k  there were an eigenvalue of multiplicity greater than 1 in the interval ]0,1[.  If   is random, with each 

coefficient following a uniform distribution on [0,1],  an intuition is that this event is of zero measurement. 

The values of the coefficients 32  and 42  that led to 
44, ,1

3K 

 are not given. To find them, it would be 

necessary to use the reciprocal of Fickus et al. (2013), the principle of which is presented in the longer 

version of the article.  
 

Remark 4.3 In the algorithm of Fickus et al. (2013), the nature of 
, , ,

NM
NK 

 complex or real, depends on 

the choice of .kV  If at least one matrix kV  is complex, 
, , NM

NK 

 will be complex. Conversely, 
, , NM

NK 

 

will be real if and only if all matrices kV  are real. Based on our parameterization, this case corresponds 

to a choice of   with value in 
( ( 1))1

2{0; ;1} .M N 
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Remark 4.4 In the following, the notation ( , , )NK M  


 will refer to a Hermitian matrix with diagonal 

  and constructed according to the method of Fickus et al. (2013) with the parameters ( , , ).M   The 

reference to N  is omitted because this quantity is considered a parameter in the same way as the other 

spectra.  

 

5. Matrices ( , , )NK M  


 for specific values of   
 

5.1 Where we get back to P  
 

The construction of ,P  in Loonis and Mary (2019), relies the sequential modification of the columns 

of a matrix of size ( (= ) )M n N  using rotation matrices, which are also unitary matrices (algorithm 3.1). 

This approach is consistent with the spirit of the Fickus et al. method. (2013). However, the formalism of 

the two methods does not appear to be directly equivalent. In the theorem below, we specify some links 

between the two approaches. 
 

Theorem 5.1 Let   be a vector of size ,N  such that 0 < < 1,k *

=1
=

N

kk
n   N  and 1 k     … …  

.N  For any value of the parameter ,  

 
( )( = , = 0 , ) = ( ) ,n N N

NK M n H P   
 

   

where ( = , = 0 , )n N
NK M n  


 is constructed based on the method of Fickus et al. (2013), P  is the 

matrix defined by Loonis and Mary (2019) from the vector   and ( )NH   is an Hermitian matrix of size 

( )N N  where all diagonal terms equal 1 and non-diagonal terms have a modulus of 1.  
 

For point ( )b  in example 3.1, this theorem indicates that the method of Fickus et al. (2013), with 

parameters (4 10)( = = 4, = 0 ),M n   directly provides the matrix ,P  up to NH  for all .  According to 

this theorem, the modulus of the off-diagonal terms of ( = , = 0 , )n NK M n  


 does not depend on   

because they equal 
2( ) ( ) = ( ) .N N

kl kl kl kl klP H H P P     

 In terms of surveys, the variance of ŷt  is dependent 

on kl  and thus on the modulus of the klK

 when the design is determinantal, according to (3.7). The 

implication is that there is nothing to expect from changing the parameter   to change the variance obtained 

from .P  This is a very special feature among Hermitian matrices, and among matrices of the family .P  

When   is fixed, different from ( )0 ,M N  it is empirically observed that the variance of the estimators is 

usually affected by variations of .  
 

Remark 5.1 For a matrix ,P
 constructed from any vector ,  in other words, whose coefficients are not 

necessarily sorted, there is a matrix   that leads to P   


 with the method of Fickus et al. (2013). 

There is no reason, a priori, for   to be of the form ( )0 .n N  This is particularly true for the matrix P  of 

point ( )a  in example 3.1 and its reordered version given in example 4.1. 
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5.2 Where we discover Q  
 

The theorem below shows that it is also possible to find an explicit formulation of ( =K M  
( ), = 1 , ),n Nn   except for a few coefficients. 

 

Theorem 5.2 Let   be a vector of size ,N  such that 0 < < 1,k *

=1
=

N

kk
n   N  and 1 k     … …  

.N  Let =1 ={{ } }k n N
j j k n  be a sequence of reals such that =1N n  and  

 
1

1 1

1
1

= = , , 1,

= , = 2, , , = , , 1.

k k
n k

k k
j j

k n N

j n k n N

 

 







  




 …

… …
 (5.1) 

It is assumed that   is such that one of the following two conditions is satisfied:  

• C1: only 0 and 1 can appear multiple times in the ,k = , , .k n N…  

• C2: = ,k n N =1, , .k N…  
 

For any value of the parameter ,  we then have  

 ( = , =1 , ) = ( ) ,n N NK M n H Q   
 

   

where ( )NH   is a Hermitian matrix of size ( ),N N  where all diagonal coefficients equal 1 and non-

diagonal coefficients have a modulus of 1. The matrix Q

 is such that  

1. for ,k n  k  yields the n  largest eigenvalues of the main submatrix of order k  of ,Q

 for 

which no more than n  are strictly positive  

2. for any 2( , ) [ 1, ] ,k l n N   

(a) under 1:C  = ( mod )kl k lQ l k n   
  1  

(b) under 2 :C  = ( ( 1) mod 2 )klQ n N l k ou k N N l n     1   

3. under 2,C  if n  divides ,N  the formulae (5.1) and point 1 are true for 0 < < ,k n  the point 2( )b  

is true for k n  or .l n  
 

Figure 5.1 shows an example of matrix Q

 under 1.C  Table 5.1 shows the organization of the spectra 

of the main submatrices of Q

 based on .  The equivalents for 2,C  including in the case n  divides ,N  

are provided in the appendix (Section A.7).  

For 1,C  the constraint on the multiplicities, set out in the theorem, implies that in each column there are 

different values except, possibly, for the eigenvalues 0 and 1. If that is not the case, inextricable calculation 

difficulties arise. When < ,k n  the expression of the eigenvalues is more difficult to find. As a result, we do 

not arrive at an explicit formula of some coefficients of the matrices Q


 as a function of ,
 except under 

2C  and n  divides .N  
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Figure 5.1 Q  under 1C  for = 2,n = 8.N  
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The symbol   indicates that the explicit formula of the coefficient in question is unknown. 

 
Table 5.1 

Eigenvalues k
j  of the main submatrices of ,Q  for = = 5,n M  = 11, , .k N N …  

 

k  

N-11 N-10 N-9 N-8 N-7 N-6 

10 51 N N N       9 41 N N     8 31 N N     7 21 N N     6 11 N N     51 N N    

9 41 N N     8 31 N N     7 21 N N     6 11 N N     51 N N    41 N  

8 31 N N     7 21 N N     6 11 N N     51 N N    41 N  31 N  

7 21 N N     6 11 N N     51 N N    41 N  31 N  21 N  

6 11 N N     51 N N    41 N  31 N  21 N  11 N  

N-5 N-4 N-3 N-2 N-1 N 

41 N  31 N  21 N  11 N   1 N  1 

31 N  21 N  11 N  1 N  1 1 

21 N  11 N  1 N  1 1 1 

11 N  1 N  1 1 1 1 

1 N  1 1 1 1 1 

 
6. Applications 
 
6.1 The data 
 

The samples from Insee (Institut national de la statistique et des études économiques) household surveys 

are usually selected based on a two-stage design, when the collection method is face-to-face. In the first 

stage, primary units (PUs) are selected, from which the households to survey are then selected. The PUs 

consist of groups of the smallest nearby municipalities, with at least 2,000 principal residences. The 

sampling of PUs is stratified according to the 22 former metropolitan regions. Here we are interested in the 

sole first-stage selection of the PUs in the Provence-Alpes-Côte d’Azur region. They total = 148N  and are 
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described by auxiliary variables yielding, for each PU, the total population by sex, age, the total amount of 

certain incomes or the total number of dwellings by category (vacant, secondary residence, etc.). Inclusion 

probabilities are proportional to the number of principal residences of the PUs. 

 
6.2 A lower bound for the variance of the estimators in the determinantal 

situation? 
 

When a sampling design is of a fixed size, the variance of the estimators, given by (3.6), takes the 

following particular form: 

 

2

1ˆvar ( ) = .
2

k l
y kl

k l k k l

y y
t

 

 
   

 
  (6.1) 

In the determinantal case, (3.7) becomes  

 

2

21ˆvar ( ) = | | .
2

k l
y kl

k l k kk ll

y y
t K

K K

 
 

 
  (6.2) 

The determinantal variance will be low if the klK  modulus is low for the values of k kky K  distant from 

those of .l lly K  Assuming that the population is sorted according to = ,k k k kky y K  this situation is 

observed for the matrix P  because we have, for | |k l  large, kl k l    and therefore 2| | =kl k lK     

0kl   (see Section 3.4.2). Empirical results from Loonis and Mary (2019) suggest that matrices ,P  

constructed on a population sorted by ,k ky   perform well in terms of variance. Theorems 3.1 and 5.1 also 

show that matrices P  have special properties among all fixed-diagonal projection matrices, even though, 

in the case of theorem 5.1, the scope is limited to diagonals of the form .  

In this section, we characterize the performance of the designs associated with P  among all fixed-size 

determinantal designs and inclusion probabilities .  We limit ourselves to the case of real kernels. For this, 

we conduct the following experiment: 

• We create nested subpopulations of size = 20, 40, 60, 80,100,120N  associated with samples of 

size = 3, 6, 9,12,15,18.n  

• We consider three auxiliary variables, representing respectively the total amount of salaries, the 

number of tenants and the number of homeowners.  

• For each variable, population and sample size, 

- we minimize (6.2), in ,K  among the real projection matrices with diagonal .  We use 

optimization algorithms on manifolds (Absil et al., 2009; Boumal et al., 2014). We succinctly 

present the main principles of these procedures in the Appendix (Section A.8).  

- we calculate (6.2) for a matrix = ,q qx x
K P  where qx

P  was constructed on a population that 

was previously sorted by the values of .q
k kx   
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Figure 6.1 shows that the scatterplot obtained by crossing the previous two values, for each variable and 

sample size, is aligned with the first bisector. From this, we empirically deduce that the variance obtained 

with qx
P  corresponds to a minimum of the variance of ˆ ,qx

t  among determinantal designs. The proof of this 

result, or its refutation, seems to be out of reach. We therefore propose conjecture 6.1 below. 
 

Conjecture 6.1 Let y  be a positive variable and   be a vector of ]0,1[N  such that *

=1
= .

N

kk
n  N  Let 

P  be a determinantal sampling design with inclusion probabilities = ,k k   = 1, ,k N…  and ŷt  be the 

Horvitz-Thompson estimator of the total yt  of y  on that design. Without losing generality,   and y  are 

such that 1 1 ,k k N Ny y y      … …  then  

 1 1ˆvar ( ) [( ) ] ,y Nt y D I P P D y   
      

where 1 1[( ) ]Ny D I P P D y   
    is the variance of ŷt  obtained with design DSD( ),P  with P  matrix 

of Loonis and Mary (2019).  

 
Figure 6.1 Comparison, for three auxiliary variables and six population sizes, of the variation coefficients for 

variances obtained by minimizing (6.2) into K  and for a matrix qx
P  sorted based on the values of 

.q

k kx   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the classic configuration of a fixed-size design with constant inclusion probabilities, the previous 

conjecture makes it possible to find intuitive interpretations, when n  divides .N  

According to Section 3.4.2, if =k n N  and if n  divides ,N P  is a block diagonal with n  identical 

blocks. The coefficients of each block of size ( )N n N n  all equal .n N  The associated design involves 

selecting 1 individual in each of the n  strata of size .N n  After sorting based on the values of ,y  the first 

stratum 1U  combines the first N n  individuals, the second stratum 2U  combines the next N n  individuals, 
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and so on. Applying the variance formulae of the Horvitz-Thompson estimator for a stratified design 

(Särndal, Swensson, & Wretman, 2003) leads to the lower bound, in this case, to be equal to  

2
1 1 2

2
=1

[( ) ] = 1 ,
h

n

N yU
h

N n
y D I P P D y S

n N
   
 

 
  

 
  

where 2 2= ( )
h hyU yUS N N n   and 2

hyU  is the variance of y  in stratum .hU  

If the total you want to estimate is ,cN  the number of individuals who have a given characteristic ,c  the 

underlying variable y  equals 1 if the individual has the characteristic, otherwise it equals 0. After sorting 

this population based on this variable, in 1n   strata, the variance of y  will be zero because y  will still be 

0 or 1. In a single stratum, there will be cr  1 values, where cr  is the remainder of the Euclidean division of 

cN  by ,N n  and cN n r  0 values. The lower bound is then ( ).c cr N n r  

 
7. Conclusion 
 

In this article, we propose a workable parameterization of the kernels of determinantal sampling designs. 

We show that the family ,P  originally constructed by Loonis and Mary (2019) with the sole objective of 

having an example of a fixed-sized determinantal design with given first-order inclusion probabilities, turns 

out to have unexpected statistical properties. For any = 1, , ,k N…  it minimizes the variability of the sample 

size that falls within the fields = {1, , }kD k…  (theorem 3.1). It is directly associated with a very particular 

value of the parameter   in the construction of Fickus et al. (2013) (theorem 5.1). Finally, it appears 

empirically as a solution to a problem of minimizing the variance of the Horvitz-Thompson estimator 

(Section 6.2). This ubiquity leads to the conjecture that the lower bound of the variance of the Horvitz-

Thompson estimator, among determinantal designs, is expressed as a function of P  (conjecture 6.1).  

These results are obtained at the cost of theoretical or computational complexity, which can seem 

stimulating or bewildering. Bridges have been built between sampling theory and other fields, such as 

probabilities, algebra or semidefinite optimization. These bridges can be a source of new theoretical studies. 

However, the concepts and methods used are not part of the ordinary toolbox of survey statisticians of public 

institutes, even of the author initially. One of the challenges for developing studies around determinantal 

designs therefore lies in education, which can be facilitated through the provision of R  programs that make 

the various results tangible. Another possibility is, in the future, to focus on more practical applications. As 

such, indirect sampling, the search for alternatives to the Horvitz-Thompson estimator, or spatial sampling 

appear to be promising areas. 
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Appendix 
 
A.1 Determinantal designs and population order 
 

Matters of population order often arise in the article. Below, we provide a summary of the various 

findings, as well as some elements to assist in their interpretation. We first reiterate that exchanging two 

rows (or two columns) of a square matrix leads to multiplying its determinant by 1.  
 

1. Determinantal designs are not dependent on population order. We consider a population 

= {1, , }U N…  and a determinantal design DSD( ).K  Sorting U  involves applying a permutation 

to it, the matrix of which is notated .  The design DSD( )K  on U  is then equivalent to the 

design DSD( )K   on the sorted population. This property results from the fact that an even 

number of exchanges of rows and columns are applied to the matrix .K  Therefore, the 

determinants of the extracted matrices are not changed.  

2. An algorithm for constructing particular kernels can depend on the order of the units. This 

is true for matrices .P  Two different population orders will lead to two matrices 1P  and 2 .P  

In general, there will be no permutation matrix such that 1 2= .P P    The designs 1DSD( )P  

and 2DSD( )P  are not equivalent. However, the previous remark applies to each of them.  

3. The algorithm by Fickus et al. (2013) is not dependent on the order. Let K  be a contracting 

Hermitian matrix. For numerical reasons, the algorithm of Fickus et al. (2013) will construct the 

matrix = ,K K  
   where   transforms   into .  To find the original matrix, simply take 

= .K K  
   

4. The connection between the algorithm of Fickus et al. (2013) and the family P  arises from the 

fact that 
( )= ( , 0 , ),n NP K n  

 up to matrix ( ).NH   Theorem 5.1 does not say that there is 
( )= ( , 0 , ) ,n NP K n    

 
 for any ,  even up to matrix .NH  However, there are indeed many 

unknown parameters such that = ( , , ) .P K n      
 

 

5. The lower bound of conjecture 6.1 is a matrix P  constructed on a population sorted in such a 

way that 1 1 .k k N Ny y y      … …  

 
A.2 Programs 
 

The applications and simulations in this article were mostly obtained using SAS programs. We are 

gradually making their retranscription in R  available, experimentally, on the Insee Lab at 

https://github.com/InseeFrLab/Determinantal-Sampling-Designs. 

In particular, these will gradually be made available:  

1. The matrix P  and an eigenvector base constructed with algorithm 3.1 
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2. The matrix ( , , )K M  


 constructed following the method described in Section A.5 and an 

eigenvector base as obtained at the very end of algorithm A.2  

3. The selection algorithm of Lavancier et al. (2015) for selecting samples based on the 

determinantal designs associated with the kernels defined in the previous points.  
 

There will be programs for points not covered here, such as the reciprocal of (Fickus et al., 2013) or the 

construction of periodic determinantal designs with constant inclusion probabilities, such as described in 

Loonis and Mary (2019). A longer version of this article, which presents the determinantal designs in more 

detail and provides the proofs of algorithm 3.1, theorems 3.1, 5.1, 5.2, and proposition A.1, is available at 

the same address. 

 
A.3 Constructing the sequence = 1

=1{ }k k N
k   from   

 

According to Fickus et al. (2013), k
j  can be arbitrarily chosen in the interval [ , ],k k

j jA B  with 

 
1

1 1
1 1

=1 =1

= max , ,
j j

k k k k
j j s s k

s s

A   


 
 

 
  

 
    (A.1) 

 
11

1 1

= , ,
= 1 = =1

= min , min ,
jk i

k k k k
j j s s s

i j M
s M i s j s

B   


 

 

   
    

   
  

…
 (A.2) 

for = 1, , 1,k N …  =1, ,j M…  and where 0 = 0k  and, by convention, the sums over empty sets equal 0.  

Here we describe how to construct the sequence = 1
=1{ }k k N

k   from the formulae (A.1) and (A.2) and 

proposition 4.1. The vector ,  of size = 10,N  is such that 6(11 )

10*11= ,k

k

  =1, ,10k …  and 
=1

= 3.
N

kk
   

We choose = 7M  and set the value of 10  at  3 3 3 3 6 6 6
10 10 10 10 10 10 10, , , .


 The matrix   is of size (7 10).  We 

choose to have all its coefficients equal 0.5 for the first nine columns, which are the ones used in the 

calculations of 9
=1{ } .k

k  Table A.1 gives the final result for this sequence of eigenvalues. We then show how 

to arrive at the particular value 357 704  for 5
5 .  According to proposition 4.1, this value results from the 

calculation 5 5 5 5 5
5 5,5 5 5 5 5( ) = 0,5 ( )A B A A B    with 5

5 = 219 400A  and 5
5 = 909 1,760.B  Table A.2 shows 

how 5
5 = 219 400A  is arrived at by applying formula (A.1). Table A.3 shows how to arrive at 

5
5 = 909 1,760B  by applying formula (A.2). Since the logic is the same, we don’t show how to apply the 

formulae from proposition (A.1), which would make it possible to construct 10  from the 10th column of 

.  However, we specify that the values in this latter column do not necessarily equal 0.5. 
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Table A.1 

Final values of .k
j   

 

 k 
j 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 
3

22
 

12

55
 

3

11
 

3

10
 

2 0 0 0 0 0 
93

440
 

111

440
 

63

220
 

3

10
 

3

10
 

3 0 0 0 0 
213

880
 

3

11
 

129

440
 

3

10
 

3

10
 

3

10
 

4 0 0 0 
927

3,520
 

501

1,760
 

261

880
 

3

10
 

3

10
 

3

10
 

3

10
 

5 0 0 
5,583

14,080
 

669

1,408
 

357

704
 

909

1,760
 

21

40
 

6

11
 

63

110
 

3

5
 

6 0 
13,623

28,160
 

909

1,760
 

477

880
 

3,969

7,040
 

2,001

3,520
 

63

110
 

129

220
 

3

5
 

3

5
 

7 
6

11
 

15,561

28,160
 

7,881

14,080
 

4,041

7,040
 

4,113

7,040
 

2,073

3,520
 

261

440
 

3

5
 

3

5
 

3

5
 

Total 
6

11
 

57

55
 

81

55
 

102

55
 

24

11
 

27

11
 

147

55
 

156

55
 

162

55
 3  

k  
6

11
 

27

55
 

24

55
 

21

55
 

18

55
 

3

11
 

12

55
 

9

55
 

6

55
 

3

55
 

 
Table A.2 

How to obtain 5 5 5 3571
5 2 5 5 704= ( ) =A B   in Table A.1 calculating 5

5A  with formula (A.1). 
 

6
4  

5
6

=1
s

s

  
4

5

=1
s

s

  
6  b-c-d 

5
5A  

(a) (b) (c) (d) (e) max( , )a e  

261

880
 

93 3 261 909
+ + +

440 11 880 1,760
 

213 501
+

880 1,760
 

3

11
 

219

440
 

219

440
 

 
Table A.3 

How to obtain 5 5 5 3571
5 2 5 5 704= ( ) =A B   in Table A.1 calculating 5

5B  with formula (A.2). 
 

i 
6
5  

5

=8
s

s i

   
1

6

=5

i

s
s




  g-h-c 

 (f) (g) (h)  

5 
909

1,760
 

24 21 18

55 55 55
   0 

99

160
 

6 
909

1,760
 

27 24 21 18

55 55 55 55
    

909

1,760
 

261

440
 

7 
909

1,760
 

6 27 24 21 18

11 55 55 55 55
     

909 2,001
+

1,760 3,520
 

2,007

3,520
 

5
5

909 2,007 261 99 909
= min , , , = ,

1,760 3,520 440 160 1,760
B

 
 
 

5
5

1 219 909 357
= + =

2 440 1,760 704
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A.4 Expression of the constraints on N  
 

Here we give an expression of the constraints applying to N  in the same form as those applying to 
1

=1{ } .k N
k   The difference is that N  is subject only to the Schur-Horn theorem.  

 

Proposition A.1 Let   be a vector of ]0,1[N  such that 1 k N        … …  and 
=1

= .
N

kk
   Let 

M  be an integer such that M N    and N  be a vector of ]0,1] .M  There is a positive semidefinite 

Hermitian matrix with diagonal   and whose strictly positive eigenvalues are given by N  if and only if  

  1

1 =1

1 1

=1 =1

=1, , 1

[ , ], =1, ,

= max , ( )

= min ,

N N N
j j j

jN N N
j j ss

j M j iN
s sN s s

j
i M j

A B j M

A M j

B
i



  

 





   

 

 

   

    
  
  



  

…

…

 (A.3) 

where 0 = 0N  and, by convention, the sums over empty sets equal 0.  

 
A.5 The method by Fickus et al. (2013) 
 

The general method is based on two subalgorithms for constructing the various quantities used in 

equations (A.7) and (A.8). For a given vector ,  it is assumed that values were set for the parameters 

, , ,M   which made it possible to construct the sequences =1{ }k N
k  and 1

=1{ } .k N
kV   In its original form, the 

method of Fickus et al. (2013) also depends on any unitary matrix 1U  of size ( ).M M  This matrix does 

not directly influence the final matrices. It influences only the choice of one of their eigenvector bases. 
1 = MU I  will be taken in practice.  

 

Algorithm A.1 (Fickus et al. [2013]) 
 

For = 2k  to ,N  

1. set 1
1 2= = {1, , }k kE E M …   

2. for 1j   to ,M  

- if 
1

1 { },k

k k
j E

    where
1

{ }k

k

E
  is the set of distinct values of the subvector of k  indexed by 

1 ,kE  then 

• 
1 1

2 2= \{ }k kE E j  ( \  meaning “deprived of” here)  

• 1 1= \{ },k kE E j  where 1
1= min{ | = }k k k

j jj j E   
    

 

3. construct 
1

2
kE 

 and 1 ,kE  complementary in {1, , }M…  of 
1

2
kE 

 and 1 .kE  
 

Algorithm A.2 (Fickus et al. [2013]) 
 

1. Set 1 1
1= u   where 1u  is the first column of 1.U  

2. for = 2k  to ,N  
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- construct the sets 1 1
1 2 1 2, , , ,k k k kE E E E   such that 1 1

1 1 2 2= = {1, , }k k k kE E E E M   …  and 
1 1

1 1 2 2= =k k k kE E E E     based on the principles of algorithm A.1  

- let 1
1 2= card( ) = card( )k k

kr E E   

- let 1 1= ( 1)1 krk kE M E    (resp. 1
2 ),kE 

1 1= ( 1)1 kM rk kE M E    (resp. 1
2 )kE   

- let 1
k  (resp. 2 )k  be the unique permutation of {1, , }M…  increasing in 1

kE  and 1
kE  (resp. 

1
2
kE   and 1

2 )kE   and such that 1 ( ) {1, , }k
kj r  …  for any 1

kj E  (resp. 1
2 ( ) {1, , }k

kj r   …  

for any 1
2 ).kj E   Let 1

k  (resp. 1
2 )k  be the associated permutation matrices  

- let 1
2 1

1

| |
= ( , )k k

k

k k k
r E E

R  

J  be a matrix of size ( 2),kr   where 1
2

1

| k

k

E
 


 (resp. 

1|
),k

k

E
  the vector 

extracted from 1k   (resp. )k  whose rows are indexed by 1
2
kE   (resp. 1 ),kE  and 

kr
J  refers 

to the anti-diagonal matrix of size :kr  

 3

0 0 1

= 0 1 0

1 0 0

 
 
 
 
 

J   

- let ,kv kw  be two vectors of size kr  and kW  be a matrix k kr r  such that 

 
1 2=1

=

1 1
=1

( )
=

( )

k

k

r k k
i ik i

i i r k k
i i i i
i

R R
v

R R




 










 (A.4) 

 
2 1=1

=

2 2
=1

( )
= ;

( )

k

k

r k k
i ik i

i i r k k
i i i i
i

R R
w

R R




 









 (A.5) 

 [ 1]
.2 .1= ( ) ( );

k k

k k k k k
r rW e R e R v w  

   (A.6) 

where [ 1]  refers to the matrix inverse in the sense of the Hadamard product  

- set  

 1 1 1
2= ,

0
k

k

k k k k

M r

v
U V   



 
  

  



 (A.7) 

 
( , )1 1 1

2 1

( , ) ( , )

0
= ,

0

k k

k k k k

k
r M rk k k k k

M r r M r M r

W
U U V

I

  

  

 
  

  



 (A.8) 

and construct k  the matrix whose columns are the 
=
=1{ } .s s k

s   
 

The theorem of Fickus et al. (2013) states that, for = 2, , ,k N…  

• 
kU  is a basis of orthonormalized eigenvectors of 

k k 


 whose spectrum is k   

• = k k
kK  
 

 is a positive semidefinite Hermitian matrix whose diagonal is 1( , , )k  … 
and 

whose strictly positive eigenvalues are given by .k  
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In practice, we are interested in the result at the end of the process, in other words, for = .k N  In this 

case, the matrix NK  has the desired properties. The authors demonstrate that, by varying the different 

parameters, all the matrices with a fixed diagonal and spectrum N  are obtained. Conversely, any matrix 

of this type can be constructed based on this procedure.  

It is inferred from these results that a basis of orthonormalized eigenvectors of NK  is given by 
1
2 .N

N NU D



 



 This basis can be used directly as input to the selection algorithm of Lavancier et al. (2015) in 

the case of projection matrices, and with a slight adaptation for determinantal designs of random size (Loonis 

and Mary 2019).  

 
A.6 Constructing the elements of algorithms A.1 and A.2  
 

We show here how to obtain the various quantities of algorithms A.1 and A.2 from the example in 

Table A.1 for = 9k  and = 7.M  

 
8 9
2 1

8 9
2 1

= {1, 2, 5, 6} = {1, 4, 5, 7}

= {2, 3, 6, 7} = {1, 3, 4, 7}

E E

E E 
  

 9
9

12 3 129 3

55 11 220 5
0 0 0 1 63 3 6 63
0 0 1 0 220 10 11 110

= 9, = 4, = =
0 1 0 0 6 63 63 3

11 110 220 101 0 0 0
129 3 12 3

220 5 55 11

k r R

   
   
   

                          
   
   
   

  

 9
1

3 129 63 129 3 129 3 129

5 220 110 220 10 220 11 220
=

6 129 63 129 12 129

11 220 220 220 55 220

v

    
       

    
   

     
   

  

 8 9
2 1= {1, 4, 5}, = {2, 5, 6}E E    

 
8 9
2 1

1 1

2 1

3 2 3 2

4 3

6 3

7 4 7

6

1 5

2 5

= , = .4

5 7 5 6

6 7

4

 

       
       
       
       
       
       
       
       
       
       
       

  



Survey Methodology, December 2023 437 

 

 
Statistics Canada, Catalogue No. 12-001-X 

It should be noted that 8
2  (resp. 9

1 )  is indeed increasing in 8
2E  (resp. 9

1 ).E  In addition, for any 8
2j E  

(resp. 9
1 ),j E  we indeed have 8

2 ( ) {1, , }kj r  …  (resp. 9
1 ( ) {1, , }).kj r  …  For a given permutation ,  

the associated matrix is such that  

 
1 if ( )

=
0 otherwise

ij

i j
 


  

 8 9
2 1

0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0

= , = .0 0 0 0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0

   
   
   
   
   

    
   
   
   
   
   

  

 

A.7 Matrices Q  for = n N  
 

Table A.4 

Eigenvalues k
j  of the main sub-matrices of ,Q  for =k n N  and n  does not divide :N  Example of = 5n  

and = 12.N  
 

k 
1 2 3 4 5 6 7 8 9 10 11 12 

0 0 0 0 
2

1
n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 

0 0 0   
2

1
n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 

0 0     1
n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 1 

0       1
n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 1 1 

n

N
       1

n

N
  1

n

N
  1

n

N
  1 1 1 1 1 

 
Table A.5 

Eigenvalues of the main submatrices of ,Q  for =k n N  and n  divides :N  Example of = 4n  and = 12.N  
 

k 
1 2 3 4 5 6 7 8 9 10 11 12 

0 0 0 
2

1
n

N
  

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 

0 0 
2

1
n

N
  

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 

0 
2

1
n

N
  

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 1 

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 1 1 
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Figure A.1 Q  under 2.C  
 

(a) General case: 3, 10,n N  k n N   

 
0 0 0

0 0 0

0 0

=

0

0 0 0

0 0 0 0

n N

n N

n N

Q
n N n N

n N n N

n N n N

n N n N

n N



       
 

       
       
 

   
   
 

   
   
 
    


  

(b) Specific case: n  divides : 2, 10,N n N  k n N   

 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
= .

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

n N n N n N n N

n N n N n N n N

n N n N n N n N

n N n N n N n N
Q

n N n N n N n N

n N n N n N n N

n N n N n N n N

n N n N n N n N



 
 
 
 
 
 
 
 
 
 
 
 
 


  

The symbol   indicates that the explicit formula of the coefficient in question is unknown. 

 
A.8 Optimization among real fixed-diagonal projection matrices 
 

Among real matrices of size ( ),N N  we attempt to solve a problem of the following type:  

 
1 1

2
=1 2

=
( ) [ ( )] ( )

Min s.c. diag ( ) =

= .
q

q qQ
N N N

K
q x

K K
x I K K I K I K x

K
t

K K

 


 










  
  

K  is a projection matrix, so there is a basis V  of orthonormalized vectors of size ( )N n  such that 

=K VV   and = .nV V I  It is possible to rewrite the problem in the following penalized form:  

 
1 1

2
=1=

( ) [ ( )]( )
Min Trace(( ) ( )).

q
n

q qQ
N N N

V
q xV V I

x I VV VV I VV I VV x
r VV D VV D

t

 

 


  

  






  
 

  

The objective of penalization via the trace function is for the diagonal of the optimal matrix to indeed 

be equal to .  The set of real matrices V  such that = nV V I
 is the Grassmannian manifold. The problem 

becomes a penalized optimization problem on varieties for which there are algorithms and powerful 
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problem-solving software, as long as the population size remains reasonable, around a few hundred (Absil 

et al., 2009; Boumal et al., 2014; Townsend et al., 2016). For the penalization parameter ,r  we set 

= 10 ,ir  for = 0, ,10i …  and retained the one that minimizes, to the optimum set at ,i  the function 

10 Trace(( ) ( )).i VV D VV D      
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Design-based conformal prediction 

Jerzy Wieczorek1 

Abstract 

Conformal prediction is an assumption-lean approach to generating distribution-free prediction intervals or sets, 
for nearly arbitrary predictive models, with guaranteed finite-sample coverage. Conformal methods are an active 
research topic in statistics and machine learning, but only recently have they been extended to non-exchangeable 
data. In this paper, we invite survey methodologists to begin using and contributing to conformal methods. We 
introduce how conformal prediction can be applied to data from several common complex sample survey designs, 
under a framework of design-based inference for a finite population, and we point out gaps where survey 
methodologists could fruitfully apply their expertise. Our simulations empirically bear out the theoretical 
guarantees of finite-sample coverage, and our real-data example demonstrates how conformal prediction can be 
applied to complex sample survey data in practice. 

 
Key Words: Conformal prediction; Machine learning; Cross validation; Predictive modeling; Complex sample survey 

designs. 

 
 

1. Introduction 
 

What is conformal prediction? Conformal prediction, also called conformal inference, is a family of 

general-purpose approaches to constructing prediction intervals or prediction sets, which can be wrapped 

around almost any predictive modeling algorithm. Specifically, imagine that we have fit a function ˆnf  to a 

set of training data ( , )i iX Y  for =1, ,i n…  that allows us to make a point prediction for a new observation’s 

response value 1nY   when ˆnf  is evaluated at the covariate value 1,nX   and our goal is to report a level 1   

prediction set for 1.nY   Let us require only that all 1n   of the points ( , )i iX Y  are an exchangeable sample 

from some common distribution ,P  and that the algorithm used to fit ˆnf  treats these points symmetrically 

(which rules out e.g. algorithms that give more weight to more-recent data over time). (A sequence of 

random variables is exchangeable when its joint probability distribution would not change if you permuted 

the random variables. More precisely, a sequence 1 2, ,X X …  is exchangeable if for each n  and each 

permutation   of {1, , },n…  the joint distribution of (1) ( )( , , )nX X …  is just the same as the distribution of 

1( , , )nX X…  (Durrett, 2019). Examples of exchangeability include iid sequences as well as simple random 

sampling (with or without replacement).) If so, we can use standard conformal prediction methods to 

construct ˆ
nC  which are either prediction intervals (for a regression problem) or prediction sets (for a 

classification problem), such that 1 1
ˆ[ ( )] 1 ,n n nY C X    P  where the probability is taken over repeated 

sampling of all 1n   points. In Section 2 we describe two standard approaches to conformal prediction and 

describe the intuition behind how they work. 

Although survey data analysis has traditionally focused on estimation and testing, predictive modeling 

with complex sample survey data is not uncommon. To name just a few examples: Hong and He (2010) use 

the Second Longitudinal Study on Aging (National Center for Health Statistics, 2016) to fit a predictive 
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model that can be used to monitor functional mobility status among the elderly. Kshirsagar, Wieczorek, 

Ramanathan and Wells (2017) use 2015 Living Conditions Monitoring Survey data (Central Statistical 

Office, Zambia, 2015) to build a model to classify households by poverty level, at a range of poverty 

thresholds. Krebs, Reeves and Baggett (2019) use Forest Inventory and Analysis data (Bechtold and 

Patterson, 2005) to build random-forest models that can predict understory vegetation structure, intending 

for these models to be implemented in the Forest Vegetation Simulator (Crookston and Dixon, 2005). In 

each case, there is interest in using the model to make unit-level predictions, not just to estimate regression 

coefficients or population means. Yet, with the exception of Hong and He (2010), many such papers have 

not been able to provide prediction intervals or sets. 
 

Why is this interesting to survey methodologists? For practitioners, survey data analysts who build 

predictive models ‒ like those mentioned above ‒ could apply conformal methods to provide design-based 

prediction intervals or sets (Section 3). Such prediction intervals or sets would have guaranteed coverage, 

even for novel machine learning algorithms. Conformal methods may not add much value to older methods 

like linear regression, which already has well-known Gaussian-based prediction intervals and has already 

been adapted to account for complex survey designs. But for newer methods ‒ such as prediction algorithms 

that have not yet been adapted to work optimally with survey designs, or non-probabilistic algorithms that 

do not come with “built-in” prediction intervals such as the simulation models of LeRoy and Schafer (2021) 

‒ we can apply conformal prediction methods that guarantee coverage based on the sampling design alone. 

Those who collect and pre-process the survey data may also find uses for conformal methods, for instance 

in nonresponse prediction, imputation, or data cleaning (Section 5). 

More philosophically, the principles behind conformal methods align with complex survey sampling 

inference. [a] Conformal methods and many design-based methods provide exact, finite-sample coverage 

guarantees, not asymptotic or approximate guarantees. [b] Unlike traditional model-based approaches (such 

as Gaussian-errors prediction intervals for regression), conformal prediction does not require assumptions 

about the distribution P  ‒ only exchangeable sampling. Likewise, design-based methods do not require 

assumptions about how the data values are distributed in the population ‒ only knowledge of the sampling 

design. Finally, [c] conformal guarantees hold even if the predictive model is not a good fit to P  (though 

of course the prediction intervals or sets may be larger then), and many model-assisted methods in design-

based inference also have guarantees that hold whether or not the model is a good fit to the population. 

Hence, we believe this is a good opportunity to cross-pollinate ideas between the survey methodology 

and machine learning research communities. The growth of conformal prediction indicates that machine 

learning practitioners are seeking methods that are guaranteed to work based only on the sampling design, 

not on the distribution of the data values. Survey methodologists, having the right expertise to meet that 

demand, may enjoy applying their skillset to this new challenge. 
 

Why is this not already in use for survey sampling? Despite the apparent affinities, conformal methods 

have not previously been studied under a complex sample survey framework. Conformal prediction has 
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been under development for several decades, initially by Vladimir Vovk and colleagues (Vovk, 

Gammerman and Shafer, 2022) and more recently by a wide range of statistical and machine learning 

researchers. Conformal methods are starting to be deployed in real-world settings, such as the Washington 

Post’s 2020 presidential election tracker, which reported prediction intervals of the votes for each party that 

were updated in real time as voting districts slowly reported their results (Cherian and Bronner, 2020). Yet 

the requirement of exchangeability has made traditional conformal methods inapplicable for complex 

sampling designs other than simple random sampling (with or without replacement). 

However, recently Tibshirani, Barber, Candes and Ramdas (2019) extended conformal prediction to 

what they call “weighted exchangeable” sampling, while Dunn, Wasserman and Ramdas (2022) derived 

several “hierarchical” conformal methods that can apply to cluster sampling. The present work builds on 

these two papers to begin providing conformal guarantees for complex sampling designs. 

Briefly, instead of assuming that all 1n   data points are exchangeable, we will assume that the n  

training points came from a known complex sampling design on a finite population, and the test point was 

selected uniformly at random from the same finite population. The latter assumption is simply a way of 

phrasing the guarantee of marginal coverage across the finite population. In Section 3, we summarize the 

complex survey settings in which such conformal prediction methods are currently known to have coverage 

guarantees. 

 
1.1 Related work 
 

Prediction intervals or tolerance regions have a long history in statistics; for a recent review, see Tian, 

Nordman and Meeker (2022). Section 13.3.3 of Vovk et al. (2022) connects conformal methods to much of 

this earlier work. However, conformal prediction is currently a broad and very active research area, and we 

encourage interested readers to look into the following general resources: Angelopoulos and Bates (2022) 

provide an introductory review article; Vovk and colleagues maintain a list of their own recent work at 

http://alrw.net/; Manokhin (2022) maintains a frequently updated list of conformal papers, tutorials, and 

software; and COPA, the Symposium on Conformal and Probabilistic Prediction with Applications, is an 

annual conference on conformal prediction and its extensions: https://copa-conference.com/. 

For dependent data, our paper builds largely on the work of Dunn et al. (2022) and Tibshirani et al. 

(2019). Fong and Holmes (2021) give a distinct, Bayesian approach to conformal prediction for hierarchical 

data. Barber, Candès, Ramdas and Tibshirani (2022) relax the usual conformal-prediction requirement that 

the fitted prediction model must treat data points symmetrically, and Fannjiang, Bates, Angelopoulos, 

Listgarten and Jordan (2022) address “feedback covariate shift”, where the choice of which test data to 

sample depends on results from the training data, which could be useful in addressing adaptive sampling 

for surveys (Thompson, 1997). Conformal methods for nonstationarity over time (Chernozhukov, Wüthrich 

and Yinchu, 2018; Oliveira, Orenstein, Ramos and Romano, 2022), including distribution drift (Gibbs and 
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Candes, 2021), would be useful in developing conformal methods for panel surveys. Recently, Lunde (2023) 

developed conformal methods for network data under non-uniform sampling, with implications for 

respondent-driven sampling in surveys. 

Few papers have applied conformal methods to survey samples. Bersson and Hoff (2022) do use 

conformal prediction for small area estimation problems which rely on survey data. However, they work in 

a model-based framework and assume that sampled units are exchangeable within each small area, rather 

than focusing on design-based inference under a complex sampling design. Romano, Patterson and Candes 

(2019) and several followup papers (Sesio and Candes, 2020; Sesio and Romano, 2021; Feldman, Bates and 

Romano, 2021; Bai, Mei, Wang, Zhou and Xiong, 2022) illustrate conformal prediction methods using unit-

level records from a complex survey: the Medical Expenditure Panel Survey (Agency for Healthcare 

Research and Quality, 2017). However, they appear to ignore the documented sampling design and treat it 

as exchangeable. 

Apart from conformal methods, there has been increasing interest in applying machine learning methods 

to complex survey data. Dagdoug, Goga and Haziza (2022) summarize the current state of the art for using 

survey data with many machine learning algorithms: penalized regression (McConville, Breidt, Lee and 

Moisen, 2017), k nearest neighbors (Yang and Kim, 2019), random forests (Dagdoug, Goga and Haziza, 

2021), and others. However, along with Sande and Zhang (2021), they focus on estimation of means and 

totals, rather than on predicting individual response values. Even when such algorithms have been adapted 

to make individual predictions that account for the survey design, many still do not offer procedures for 

creating prediction intervals, which design-based conformal methods could provide. 

 
1.2 Our contributions 
 

We introduce survey methodologists to key definitions and intutions behind standard conformal methods 

under exchangeable sampling as well as their extensions to complex sampling (Section 2). Furthermore, we 

derive exact, finite-sample, design-based coverage guarantees for applying conformal inference to data from 

several fundamental sampling designs, building on results from the weighted exchangeable or hierarchical 

frameworks (Section 3). 

Next, we illustrate our design-based guarantees through simulations and a real-data example (Section 4). 

We show that results can differ on real data depending on whether or not conformal methods account for 

the survey design, and we show how conformal methods are affected by different sampling designs. We 

then discuss several practical considerations and future challenges to be addressed in applying conformal 

methods to survey data (Section 5). We also suggest ways that conformal methods might be useful in 

conducting surveys. Finally, we invite survey researchers to contribute to the literature on conformal 

methods (Section 6). We anticipate that advances from the design-based perspective will turn out to be 

useful to the general community of conformal researchers. 
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2. Introduction to conformal inference 
 
2.1 Definitions 
 

Because one of our main contributions is a corollary of results in Tibshirani et al. (2019), we restate 

without proof some of their notation, definitions, and results here and in Section 3. 

Let Quantile( ; )F  denote the level   quantile of distribution ,F  so that for ,Y F∼  

 Quantile( ; ) = inf { : { } }.F y Y y  P   

We allow for distributions on the augmented real line, { }. R  We use 1: 1= { , , }n nv v v…  to denote a 

multiset, meaning that it is unordered and can allow the same element to appear several times. We use a  

to denote a point mass at the value .a  If 1:nv  is an exchangeable sample, its empirical probability measure 

is 1

=1
,

i

n

vi
n    and the level   quantile of its empirical distribution is 1:Quantile( ; )nv  which is the n   

smallest value in 1: ,nv  where   is the ceiling function. 

Now we can state the general-purpose “quantile lemma” that forms the foundation for conformal 

inference in the exchangeable setting. For instance, if we apply this lemma directly to data from an 

exchangeable sample of scalar random variables 1, , ,nV V…  we obtain a level   one-sided prediction 

interval for a new observation 1.nV   
 

Lemma 1 (Tibshirani et al. (2019)). If 1 1, , nV V …  are exchangeable random variables, then for any 

(0,1),   we have  

   1 1:Quantile ; .n nV V    P   

Furthermore, if ties between 1 1, , nV V …  occur with probability zero, then the above probability is upper 

bounded by 1 ( 1).n    
 

In order to use this lemma to do conformal prediction for nontrivial regression or classification problems, 

we must also choose a score function ,S  which takes the following arguments: a point ( , ),x y  and a multiset 

Z  (meaning that S  must treat the points in Z  as unordered). The points in Z  will typically be the n  

observations = ( , )i i iZ X Y  for =1, , ,i n…  possibly along with one additional hypothetical observation or 

test case; ( , )x y  is typically one of the points in .Z  S  should return a real value, such that lower values 

indicate that ( , )x y  “conforms” to Z  better. Finally, use S  to define nonconformity scores  

  ( , )
1:= , {( , )} , = 1, , ,x y

i i nV Z Z x y i n …S   and   ( , )
1 1:= ( , ), {( , )} .x y

n nV x y Z x y S  (2.1) 

The reason we require Z  to be an unordered multiset is to ensure that if the observations ( , )i iX Y  are 

exchangeable, then the scores 
( , )x y

iV  will be too. 

For instance, in a regression context, we might choose   ˆ( , ), = ( )x y Z y f xS  where f̂  is some 

regression function fitted using all of ,Z  including ( , ).x y  If the absolute-residual nonconformity score 
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( , )
1
x y

nV   is small relative to all of the scores ( , ) ,x y
iV  this suggests that ( , )x y  conforms well to the overall trend 

in .Z  

In a classification setting, we might choose   ˆ( , ), =1 ( ) yx y Z f xS  where f̂  is the probability of class 

y  estimated by some classification function fitted using all of ,Z  again including ( , ).x y  A small value of 

this nonconformity score ( , )
1
x y

nV   suggests that ( , )x y  conforms well to ,Z  in the following sense: This 

observation with covariates x  has a high estimated probability of being in class y  based on trends in ,Z  

and it does indeed belong to class .y  

We will also use following common abbreviations: SRS (simple random sampling), WR (with 

replacement), WOR (without replacement), PPS (probability proportional to size sampling). N  denotes a 

population size and n  typically denotes a sample size, except for the “split conformal” methods (defined in 

Section 2.4) which split the data into a “proper training set” of size m  and a “calibration set” of size .n  

 
2.2 Intuition under exchangeable sampling 
 

Quantile lemma: The lower bound in Lemma 1 has a simple rationale. First, let 1
ˆ

nq   be the ( 1)n    

smallest value in 1:( 1) ,nV   and let confq̂  be the ( 1)n    smallest value in 1: .nV   By exchangeability, the 

rank of 1nV   among all the iV  is uniformly distributed over {1, , 1},n …  so 1nV   is at or below 1
ˆ

nq   with 

probability exactly .  Then since conf 1
ˆ ˆ ,nq q  1nV   is at or below confq̂  with probability at least .  Note 

that these probabilities are marginal (over exchangeable sampling of all the 1 1, , nV V …  together) ‒ not 

conditional on the first n  observations nor conditional on the test observation. 

This is an exact finite-sample result that only relies on exchangeability. By contrast, if we used instead 

ˆ ,nq  the n   smallest value in 1: ,nV  then it may be an asymptotically good estimate of the population 

quantile, but it would require stronger conditions on the data distribution. Even then, the probability that 

1nV   is at or below ˆnq  would be only approximately .  

To see why conf 1
ˆ ˆ ,nq q   imagine an empirical cumulative distribution function (eCDF) plot of just the 

first n  datapoints, with step heights of 1 n  at each observed value. (See the top left subplot of Figure 2.1.) 

If we add one more datapoint, the step heights of the eCDF will be 1 ( 1)n   instead, and the lower   

quantile will be 1
ˆ

nq   as above. It may be larger or smaller than the lower   quantile of the first n  datapoints, 

depending on how large the last datapoint is. The lower   quantile is largest if we choose a th( 1)n  value 

that is larger than any of the first n  observed values, say at .  That is because if the added datapoint is 

larger than any of the others, it pushes the rest of the eCDF down, so the horizontal line with y -intercept of 

  crosses the eCDF at an x  value further to the right. In this most extreme case, the lower   quantile is 

confq̂  as above, and therefore conf 1
ˆ ˆ .nq q   (See the bottom left subplot of Figure 2.1.) By contrast, if instead 

of   we had chosen to add a value smaller than some of the first n  observations, it would have pushed part 

of the eCDF upward and may have caused the lower   quantile to become smaller than 1
ˆ .nq   
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Figure 2.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Top left: eCDF for an iid sample with values {1, 2, 3, 4}. At each value there is a vertical jump of 1 n  0.25. The 75th percentile is at 3.  

 Bottom left: same eCDF but padded with an extra value at .  Now at each value there is a vertical jump of 1 1n   0.20. The 75th 
percentile is between 3 and 4, so we round up to 4.  

 Top right: eCDF for a survey sample with values {1, 2, 3, 4} and corresponding survey weights {4, 3, 2, 1}. At each value there is a vertical 
jump proportional to its survey weight. The 75th percentile is between 2 and 3, so we round up to 3.  

 Bottom right: same eCDF but padded with an extra value at ,  corresponding to a not-yet-observed unit in the population that would have 

a survey weight of 3 if it were to be sampled. The vertical jumps at each value are still proportional to the survey weights, but now rescaled 
to make room for the weight of the extra value at .  The 75th percentile is between 3 and 4, so we round up to 4. 

 
Put another way, the probability that {we take an exchangeable sample of size 1n   in which the last 

observation is greater than the (1 ) ( 1)n     smallest of the first n  observations} is at most .  This is a 

strict inequality, not approximate or asymptotic. 
 

Regression prediction intervals: Next, we can apply this quantile lemma in a regression setting. (In 

Section 2.5 we describe an approach for classification problems.) Imagine that we are given a fixed 

regression function f̂  for making predictions of some real-valued random variable Y  from some covariate 

vectors X  for data from this population. (For the moment, assume f̂  is not data-dependent; perhaps it was 

chosen a priori.) Also imagine that we have some residuals from applying f̂  to a “calibration set” of n  

different data points 1 1( , ), , ( , ).n nX Y X Y…  (We recognize that the term “calibration” traditionally has a 

completely different meaning in survey sampling. In this paper, we will use “calibration” only in this 

conformal inference sense.) Finally, we have one other covariate vector 1,nX   drawn exchangeably from 

the same population, but we do not know its Y  value. We want to get a level (1 )  prediction interval for 

1nY   at this test-case 1.nX   
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We can simply apply the “quantile lemma” logic to the n  absolute residuals from the calibration set. 

These absolute residuals are our nonconformity scores. If we let q̂  be the (1 ) ( 1)n     smallest absolute 

residual, then 1 1
ˆˆ ˆ( ) = ( )n nC X f X q    is a prediction interval for 1nY   with guaranteed coverage of at least 

1 .  
 

Marginal vs. conditional coverage: This coverage is marginal across all samples of size ( 1),n   with a 

size- n  calibration set plus one new test case. It is not conditional on the specific test case 1nX   we chose; it 

assumes that both the calibration set and the test case together are exchangeable. Nonetheless, it is an exact 

finite-sample result. Barber, Candès, Ramdas and Tibshirani (2021) show that although no conformal 

method could generally guarantee “exact conditional coverage” (conditioning on the exact value of ),X  

certain relaxed versions of conditional coverage are achievable. Angelopoulos and Bates (2022) review 

approaches to assessing and controlling various forms of conditional coverage, noting that marginal 

coverage alone may be insufficient, e.g. if it happens to be achieved by low coverage in a rare but important 

subpopulation and high coverage elsewhere. In Appendix A we review links between conditional coverage 

and the related idea of “adaptive” prediction regions. 

 
2.3 Intuition under complex sampling 
 

When the data are not exchangeable, Tibshirani et al. (2019) have extended conformal prediction to a 

setting called “covariate shift”, in which the distribution of X  is differerent for the training and/or 

calibration sets than for the test set, but the conditional distribution of Y X  remains the same. They define 

a condition called “weighted exchangeability” and show how to make conformal inference work for such 

data. In the present paper, we will show that certain classic finite-population sampling designs can be treated 

as a special case of covariate shift, and therefore the results of Tibshirani et al. (2019) apply. 

Specifically, imagine we sample n  cases with replacement from a finite population with known but 

unequal sampling probabilities; for instance, we may be using PPS sampling. Assume also that we take a 

SRS of just one test case from the full finite population. Now, we need a “survey weighted quantile lemma” 

that tells us how to find an adjusted quantile q̂  of the complex sample, such that a test case nonconformity 

score is no larger than q̂  with probability at least 1 .  We will plug the n  complex sample observations 

from our calibration set into a regression function f̂  and find q̂  for the absolute residuals. Then the 

probability of our test case 1 1( , )n nX Y   having a larger absolute residual is at most ,  and so 1
ˆ ˆ( )nf X q   

is a level 1   prediction interval for 1.nY   

In Section 3 we will show that in this unequal-probabilities setting, it is enough to mimic the 

exchangeable setting, except that instead of using an equal-weights eCDF to get the quantiles, we use a 

survey-weighted eCDF; see e.g. Section 5.11 of Särndal, Swensson and Wretman (1992). The additional 

observation at   will simply be assigned the known sampling weight that the test case 1 1( , )n nX Y   would 

have had, under the complex sampling design used to sample the first n  units. See the right half of Figure 2.1 

for an illustration. 
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We acknowledge that there is a long-running debate in the survey sampling literature about whether and 

how to use sampling weights for model fitting and inference (Fienberg, 2010; Lumley and Scott, 2017). Our 

goal in the present paper is not to take a stance in this debate, but simply to show how conformal inference 

can be applied if the data analyst is taking a design-based perspective. In a model-based analysis, if the 

design features can justifiably be ignored, standard conformal inference methods may be used. 

 
2.4 Split vs. full conformal 
 

Above, for simplicity we have assumed that a f̂  has been provided for us. More typically, we will need 

to fit f̂  using data from the sample at hand. In the “split conformal” approach (Lei, G’Sell, Rinaldo, 

Tibshirani and Wasserman, 2018), also called “inductive conformal” (Papadopoulos, Proedrou, Vovk and 

Gammerman, 2002), we start with an exchangeable dataset of m n  observations, and we split them at 

random into a “proper training set” of size m  to be used for training ˆ ,f  plus a calibration set of size n  as 

described above. In this situation, coverage is still marginal over the calibration set plus one test case, but 

now it is conditional on the proper training set. 

An optimal sample splitting ratio m n  for split conformal is not known. Larger m n  should lead to 

better estimates of ˆ ,f  and therefore shorter conformal prediction interval lengths on average. On the other 

hand, larger m n  also leads to a smaller calibration set, and therefore more-variable conformal prediction 

interval lengths. 

If we do not wish to lose statistical efficiency by splitting our data, we can use a more computationally-

intensive “full conformal” approach (Vovk et al., 2022). In that approach, we no longer need a separate 

calibration set, and we let n  denote the total number of our complete-data training cases. We also have one 

test case with only the covariates 1nX   known. Then we repeat the following process for many y  values: 

• Choose a hypothetical response value .yR  

• Fit ˆ
yf  to an augmented dataset in which we pretend this y -value is correct: 1 1( , ), ,X Y …  

1( , ), ( , ).n n nX Y X y  Find the 1n   nonconformity scores, e.g. the absolute residuals: , =y iR  

ˆ ( )i y iY f X  for =1, ,i n…  and , 1 1
ˆ= ( ) .y n y nR y f X   Find their 1   quantile: ˆyq  is the 

(1 ) ( 1)n     smallest value of ,y iR  for =1, , 1.i n …  

• If , 1
ˆ ,y n yR q   we say y  “conforms” to the rest of the data, and we add y  to our prediction 

interval.  
 

In terms of notation, refer back to (2.1). Full conformal nonconformity scores are calculated using 

1: 1= {( , )}n nZ Z X y  and refitting a new prediction model ˆyf  for each new y  or 1.nX   By contrast, split 

conformal nonconformity scores use a fixed f̂  conditional on the proper training set. Each of the first n  

nonconformity scores is calculated only using that data point ( , )i iX Y  and the fixed ˆ ,f  and there is no need 

to calculate a 
th( 1)n  nonconformity score. Under the notation in (2.1), we allow Z  to be ignored and 

( , )
1
x y

nV   to be undefined for split conformal. 
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Compared to split conformal, the full conformal procedure reduces the variance in the reported prediction 

interval endpoints. On the other hand, full conformal is far more computationally intensive than split 

conformal, as ˆyf  has to be refit for every candidate y  at a given test point 1,nX   and the entire interval 

needs to be refit for every test point. 

In empirical comparisons, Lei et al. (2018) found that split conformal and full conformal often produce 

very similar prediction intervals. They recommend using split conformal, on the grounds that it is faster to 

compute with little loss of efficiency, although full conformal avoids randomness in the data split. 

 
2.5 Classification problems and prediction sets 
 

For brevity, we focus on regression prediction intervals, but classification prediction sets are another 

common use case. For instance, consider split conformal inference for a multi-class probabilistic classifier. 

Examples range from simple logistic regression to deep neural networks. First, fit the classifier to the proper 

training set to get a function ˆ ( ) ,yf x  whose outputs are the estimated probabilitity of class y  for an input x

. Then, using the calibration set, each calibration “residual” or nonconformity score iV  is calculated as 

ˆ1 ( )
ii Yf X  for each calibration observation = 1, , .i n…  Next, find the corrected 1   quantile of these 

probabilities: let q̂  be the (1 ) ( 1)n     smallest value of iV  for = 1, , .i n…  Finally, for a new test case 

1,nX   find its estimated probability for each class ,y  and choose all the classes whose nonconformity scores 

are below the corrected quantile: 1 1
ˆˆ ˆ( ) = { : 1 ( ) }.n n yC X y f X q    Romano, Sesia and Candes (2020) and 

Angelopoulos and Bates (2022) discuss refinements to this approach. 

 
3. Methods 
 

For the reader’s convenience, we restate several of the key results from Tibshirani et al. (2019) below. 

Next we prove that we can apply these results to unequal-probability sampling with replacement. We follow 

by discussing methods for sampling without replacement, cluster sampling based on Dunn et al. (2022), 

stratified sampling, and post-stratification. 

Most of the methods below apply both to full and split conformal. However, for split conformal, we 

recommend using the design-based approach of Wieczorek, Guerin and McMahon (2022) to split survey 

data into a proper training set and a calibration set. This way, both the proper training set and the calibration 

set will mimic the original sampling design, which ensures that the methods below are safe to apply to your 

calibration set. By contrast, a simple random split can cause the calibration set to have different properties 

than a clustered or stratified sampling design. 

 
3.1 Previous results for covariate shift (Tibshirani et al., 2019) 
 

Tibshirani et al. (2019) define the “covariate shift” setting as follows:  
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iid

|( , ) = , =1, , ,i i X Y XX Y P P P i n …∼   

 1 1 |( , ) = ,n n X Y XX Y P P P   ∼  independently. (3.1) 

Note that the conditional distribution of Y X  remains the same as the marginal distribution of X  changes. 

Assuming that XP  and XP  are known, we can define likelihood ratio weight functions = d d .X Xw P P  

We use these to define a second set of weights:  

 

=1

( )
( ) = , = 1, , ,

( ) ( )

w i
i n

jj

w X
p x i n

w X w x
…   and  1

=1

( )
( ) = .

( ) ( )

w
n n

jj

w x
p x

w X w x



 (3.2) 

In this setting, we can state a weighted, nonexchangeable counterpart to Lemma 1. Although Tibshirani 

et al. (2019) give and prove a more general version, here we only state a version tailored to the covariate 

shift setting. 
 

Lemma 2.  Assume data from the model (3.1). Assume XP  is absolutely continuous with respect to ,XP  and 

denote = d d .X Xw P P  For any (0,1),   

 1 1
=1

Quantile ; ( ) ( ) ,
i

n
w w

n i V n
i

V p x p x     

  
    

  
P   

where ( , ) ,x y
iV = 1, , 1i n …  are as defined in (2.1), and ,w

ip =1, , 1i n …  are as defined in (3.2).  
 

Proof. Apply Lemma 3 of Tibshirani et al. (2019) in the covariate shift setting of (3.1).  
 

This weighted quantile lemma allows conformal inference in the covariate shift setting. 
 

Corollary 1 (Tibshirani et al. (2019)). Assume data from the model (3.1). Assume XP  is absolutely 

continuous with respect to ,XP  and denote = d d .X Xw P P  For any score function ,S  and any (0,1),   

define for ,dxR  

 ( , )

( , )
1 1

=1

ˆ ( ) = : Quantile 1 ; ( ) ( ) ,x y
i

n
x y w w

n n i nV
i

C x y V p x p x    

  
     

  
R   

where ( , ) ,x y
iV = 1, , 1i n …  are as defined in (2.1), and ,w

ip =1, , 1i n …  are as defined in (3.2). Then ˆnC  

satisfies  1 1
ˆ ( ) 1 .n n nY C X    P  

 

This is the weighted “full conformal” approach. For the “split conformal” approach, we restate part of 

Section A.3 from the supplement to Tibshirani et al. (2019). Let 0 0 0 0
1 1( , ), , ( , )m mX Y X Y…  be a proper training 

set of size ,m  used for fitting the regression function 0
ˆ .f  Also let 1 1( , ), , ( , )n nX Y X Y…  be the calibration set 

of size n  and let 1 1( , )n nX Y   be the test case. Then weighted split conformal prediction is a special case of 

Corollary 1 in which 0f̂  is treated as fixed, and e.g. if we use the absolute-residual score function, the 

prediction interval simplifies to  
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0
ˆ0 1| ( )|

=1

ˆˆ ( ) = ( ) Quantile 1 ; ( ) ( ) ,
i i

n
w w

n i nY f X
i

C x f x p x p x   

 
   

 
   

with weights w
ip  as defined in (3.2). By Corollary 1, this has coverage at least 1   conditional on the 

proper training set 0 0 0 0
1 1( , ), , ( , ).m mX Y X Y…  Similar results apply for other score functions and for classifi-

cation problems. 

Finally, Remark 3 of Tibshirani et al. (2019) notes that the results above still hold if the likelihood ratio 

weights have an unknown normalization constant, i.e. if d d ,X Xw P P   because this constant cancels out in 

the final weights in (3.2). 

 
3.2 Unequal probability sampling with replacement 
 

Now, consider independently sampling WR from a finite population where each unit has unequal but 

known sampling probabilities, such as in PPS sampling. Assume no stratification, clustering, or other design 

constraints. Our goal is to use this survey sampling design to get prediction intervals that cover Y  for most 

of the N  units in the finite population. 

Below, we show that this is a special case of the covariate shift setting of Tibshirani et al. (2019). Their 

distribution XP  is replaced with the sampling probabilities for each unit in the finite population, and XP  is 

replaced with a uniform distribution over the same population units. The only randomness is in the sampling; 

all covariates and response variables are fixed in the population, as is usual in design-based inference. 

Let j  index the universe of population units from 1 to .N  Once a sample S  is selected, it can be written 

as a length- n  vector of sampled unit IDs, so that the elements of S  take values in {1, , }.N…  Often, survey 

researchers find it easier to work with the random vector S  by rewriting it as a length- N  vector of sampling 

indicators = {1jZ  if ,j S  and 0 otherwise}. However, in the covariate shift setting, it will be easier to 

work with S  directly. While using j  to index the population units, we use i  for indexing the elements of 

.S  For example, 1 = 4S  would mean that the first unit we sampled was the fourth member of the population. 
 

Lemma 3. Assume our training sample is a sample WR of size n  where each unit is drawn independently 

from a finite population of size ,N  with possibly-unequal but nonzero and known sampling probabilities 

j  for each population ID 1, , .j N …  Also assume our test case is a single observation sampled uniformly 

at random from the population. Let S  be a vector whose first n  elements are the population IDs of our n  

training cases, and whose last element is the population ID for our test case.   

• Let our finite population consist of N  units, each with its own fixed data vector ( , )j jX Y  and 

sampling probability j  for = 1, , .j N…  The conditional distribution ( , )|X Y SP  is a deterministic 

lookup table: Once we have sampled a random iS  for some {1, , 1},i n …  we observe its 

corresponding covariate and response values ( , ).
i iS SX Y  

• Let the training distribution SP  correspond to our complex survey design, which consists of n  

iid draws from a categorical distribution whose categories are simply the unit IDs {1, , },j N …  

with known probabilities .j  (The sampling indicator vector Z  is a draw from a multinomial 
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distribution (sampling WR) or a multivariate hypergeometric distribution (sampling WOR), 

where the thj  element counts how often that unit was selected. Sampling from a categorical 

distribution is identical, but instead of recording counts, we record each of the selected unit IDs 

individually (Tu, 2014).) 

• Let the “covariate-shifted” test distribution SP  consist of one draw from the same set of unit IDs 

as the training distribution, but with uniform probability: let = 1j N  for all = 1, , .j N…  
 

Then this is a special case of the covariate shift setting, with S  and ( , )X Y  playing the roles that X  and 

Y  respectively played in (3.1):  

 
iid

( , )|( , ( , )) = , = 1, , ,
i ii S S S X Y SS X Y P P P i n …∼   

 
1 11 ( , )|( , ( , )) = ,

n nn S S S X Y SS X Y P P P
   ∼  independently, (3.3) 

and ( ) 1 .
ii Sw S   

 

Proof. In the training data sampling design, units are sampled with replacement from a fixed population, 

and thus they are iid. Even though individual population units have different sampling probabilities, each 

unit in a training sample is drawn from the same categorical distribution. Also, because each ( , )j jX Y  is 

paired with a fixed j  for all =1, , ,j N…  the conditional distribution ( , )|X Y SP  is the same for training and 

test data. Hence, these training and test distributions match the requirements in (3.1). 

Furthermore, since j  is nonzero for all population units, we have = d d = (1 ) 1 .
i iS S S Sw P P N    

By Remark 3 of Tibshirani et al. (2019), it is safe to ignore the normalization constant and set ( ) = 1
ii Sw S   

directly.  
 

Corollary 2. Assume that n  training cases and one test case are drawn as described in Lemma 3. Then 

Lemma 2, the weighted full conformal results from Corollary 1, and the weighted split conformal results 

from Section A.3 of Tibshirani et al. (2019) hold, with w
ip  defined by using the inverse-probability sampling 

weights 1
iS  for the likelihood ratio weight function w  in (3.2).  

 

Proof. In this setting, SP  and SP  are discrete distributions with identical support, so SP  is absolutely 

continuous with respect to .SP  All other conditions of Corollary 1 and Section A.3 of Tibshirani et al. (2019) 

are met by Lemma 3.  
 

As suggested by the intuition in Section 2.3, we carry out conformal inference by replacing the 

exchangeable eCDF with a survey-weighted eCDF in which the first n  observations (the training sample) 

have their usual inverse-probability sampling weights. The 
th( 1)n  sample (the test case) is assigned the 

known sampling weight 
1

1
nS 

 that population unit 1nS   would have had under the original sampling 

design. The assumption of uniform sampling of test cases simply lets us guarantee marginal coverage across 

the entire finite population. We do need to know what j  would have been for every unit in the population, 
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which may be reasonable for the organization carrying out the survey but not for end users of the data; 

Section 5.1 discusses ways to address this issue. 

In a situation with no covariates, we can replace X  with a constant in Lemma 3, and apply Lemma 2 to 

get a prediction interval for Y  that is not conditional on ,X  although it may depend on 
1
.

nS 
 

 
3.3 Unequal probability sampling without replacement 
 

SRSWOR is exchangeable, so the usual conformal methods apply directly. But other kinds of sampling 

WOR are not a special case of the covariate shift setting above, because the training data are no longer 

independent. While Tibshirani et al. (2019) do provide more general results under a relaxed condition they 

call “weighted exchangeability”, it is not immediately clear that this condition can account for sampling 

WOR. 

However, if ,n N  then statistical properties derived under sampling WR are often fairly good 

approximations to the actual properties under assuming sampling WOR. Our simulations in Section 4.2, in 

which we sample WOR, suggest that this is likely to hold true for conformal methods as well. 

 
3.4 Cluster sampling 
 

We cannot apply the covariate shift results to cluster sampling, because the data are not independent. 

Cluster sampling with unequal probabilities will require further research. 

However, in the special case where the clusters themselves are sampled by SRS and the ultimate units 

are sampled by SRS within each cluster, then we can apply the methods of Dunn et al. (2022). Their paper 

is framed in terms of a more general two-layer hierarchical setting. They do not explicitly consider a finite-

population setting, but their assumptions do allow for it (except for some restrictions in their CDF pooling 

method). 

In the framework of Dunn et al. (2022), let 1, , kP P … ∼  be k  random distributions drawn iid from .  

From each of the sampled distributions P  for =1, , ,k …  we draw n  iid observations 1 1( , ), ,X Y  …  

( , ).n nX Y
    

The corresponding setup in survey sampling would be cluster sampling, where our finite population of 

size N  is partitioned into a fixed number K  of clusters or Primary Sampling Units (PSUs), and we take a 

sample of these clusters. SRSWR from a finite population is a special case of iid sampling. Hence, if we 

take a SRSWR of <k K  clusters 1, , kP P…  from the finite population, and then take a SRSWR of n  

ultimate units from cluster   for each =1, , ,k …  then this is a special case of the setup above, and we can 

apply most of the results in Dunn et al. (2022). We outline one of their approaches briefly here, and the 

others in Appendix B, but refer readers to their full paper for details. 

Although Dunn et al. (2022) state their results in terms of iid sampling, it seems likely that they could 

be relaxed to exchangeable sampling of the distributions P  as well as exchangeable sampling within each 



Survey Methodology, December 2023 457 

 

 
Statistics Canada, Catalogue No. 12-001-X 

.P  If so, these results would also apply to SRSWOR, not just SRSWR. Similarly, we conjecture that some 

of their results could be extended to the “weighted exchangeable” setting of Tibshirani et al. (2019). 
 

Subsampling: By subsampling, Dunn et al. (2022) change the sampling design to become exchangeable. 

Start with the design above, but then subsample our dataset by choosing one unit at random from each 

cluster. Then any test case from any new cluster is exchangeable with our subsample. We can treat the k  

subsampled training cases and the one test case as being generated exchangeably by the process: “Take a 

cluster at random, then take one observation at random from that cluster”, and it is valid to use standard 

conformal methods. 

However, although this process guarantees exact marginal coverage 1   across training sets, it ignores 

most of the data and leads to wider variability in achieved coverage from training set to training set. An 

alternative is to carry out repeated subsampling B  times and combine the results appropriately across 

subsamples. Dunn et al. (2022) show how to do this in a way that is guaranteed to have coverage of 1 2 ,  

but in practice tends to achieve coverage close to 1 .  

 
3.5 Stratified sampling 
 

Again, we cannot apply the covariate shift results to stratified sampling, because even though strata are 

independent of each other, the n  samples are not independent. 

However, we can safely apply the conformal methods from previous subsections within each stratum 

separately, if within each stratum independently we have used one of the sampling methods with conformal 

guarantees. In other words, if the full population is partitioned into H  strata, we can treat each stratum 

=1, ,h H…  as its own population. To form a prediction interval for a test case from stratum ,h  we apply 

conformal methods to only the hn  training cases from that stratum. Clearly this will guarantee conditional 

coverage by stratum. If the same coverage level is used simultaneously across all strata, it will also guarantee 

marginal coverage. This is an example of “group-balanced conformal prediction” or “object-conditional 

Mondrian conformal prediction” (Vovk, 2013; Vovk et al., 2022; Angelopoulos and Bates, 2022). 

This stratum-by-stratum approach will lead to a loss of statistical efficiency, since each stratum’s 

conformal quantiles will be estimated using a sample size < .hn n  On the other hand, in some situations, 

prediction intervals may be more useful if we allow their sizes to vary by stratum than if their size has to be 

constant across strata. Further, guaranteeing coverage conditional on stratum may be more desirable than 

only guaranteeing marginal coverage, which could be achieved by overcoverage in some strata at the 

expense of undercoverage in others. 

 
3.6 Post-stratification 
 

Imagine our first n  observations were drawn SRSWR, but we wish to post-stratify after data collection, 

and the population size hN  of each post-stratum is known. We could reweight each sampled observation 
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by the relative stratum sizes: unit-level post-stratification weights are proportional to ,h hN n  where hn  is 

random rather than fixed in advance (Lohr, 2021). 

We cannot use such weights for conformal inference and retain our exact finite-sample guarantees under 

the justifications in the present paper, because it would induce dependence between the training set and test 

case. However, Fannjiang et al. (2022) extend conformal methods to allow for “feedback covariate shift”, 

where the test distribution is allowed to depend on the observed training data, and this may be a promising 

direction for future work on post-stratified conformal prediction. 

In the meantime, we can treat post-stratification as an approximation to estimating the covariate-shift 

likelihood ratio weights. Although we lose the exact conformal guarantees, using such an approximation 

would be just as reasonable as the estimation of covariate-shift weights in general. Specifically, imagine we 

are sampling SRSWR from two different finite populations: a training population of size ,M  and a test 

population of size .N  Both populations have the same ( , )|X Y SP  and the same set of post-strata 1, , ,H…  but 

different (and known) post-stratum sizes ,h hM N  for = 1, , .h H…  In both cases, our sampling design is 

equivalent to first choosing a post-stratum at random with probability proportional to post-stratum size, then 

a unit from within that post-stratum at random. 

Now, we apply Lemma 3 ‒ except that we let SP  and SP  depend on the post-stratum ID 1, , ,h H …  

not the population unit ID. Then = ( ) ( ),S S h hdP dP M M N N  so ( ) .
i ii h hw S N M  So far, we have exact 

guarantees. If we now assume that we do not actually know the true post-stratum sizes for the training 

population, we can replace hM M  with training-sample estimates hn n  and get post-stratification weights 

( ) .
i ii h hw S N n  If we further assume that both populations are actually the same, we are now justified in 

using conformal methods with the standard post-stratification weights. Our guarantees are approximate only 

because we estimated the “training” post-stratum sizes. 

Similar types of weighting could also be developed in order to apply conformal inference when we do 

not we wish to assume that test cases will be sampled uniformly but with some other sampling design. For 

instance, instead of guaranteeing prediction interval coverage across people, perhaps we want to guarantee 

coverage across visits to the doctor, and we use a sampling distribution to encode our knowledge of different 

people’s propensities to visit the doctor. 

 
4. Examples 
 

Our R code and knitted RMarkdown output are available at https://github.com/ColbyStatSvyRsch/ 

surveyConformal-paper-code. 

 

4.1 Real data 
 

We have claimed that conformal methods may work better when they account for the sampling design 

of the data. As a simple demonstration, we turn to an extract of the Medical Expenditure Panel Survey or 
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MEPS (Agency for Healthcare Research and Quality, 2017), which is a nationally representative survey 

about the cost and use of health care among the U.S. civilian noninstitutionalized population. 

We chose the MEPS because it has already been used as a benchmark dataset in several conformal 

inference papers, starting with Romano et al. (2019) and followed by others (Sesio and Candes, 2020; Sesio 

and Romano, 2021; Feldman et al., 2021; Bai et al., 2022). In each of these papers, the authors randomly 

partition MEPS data into proper training, calibration, and test sets, then report the coverage and length of 

conformal prediction intervals (PIs) for various models across many such random partitions. However, none 

of these papers report accounting for the complex sampling design of MEPS, which includes stratification, 

clustering, and oversampling of selected subgroups. 

At present, we do not attempt a full correction of these earlier analyses of MEPS. We only wish to 

illustrate that there can be noticeable differences in the conformal PIs depending on whether or not we 

account for the sampling design, even in a very simple analysis. We use a portion of the public-use dataset 

for calendar year 2015. We subset to only those respondents who filled out the self-administered 

questionnaire (SAQ) portion of the survey, and we use the person-level weight variable designed to be used 

with the SAQ for persons age 18 and older during the interview. 

In the poster associated with Romano et al. (2019), available at https://github.com/yromano/cqr/blob/ 

master/poster/CQR_Poster.pdf, the authors explain that they are predicting “health care utilization, 

reflecting # visits to doctor’s office/hospital”. Following their GitHub code, we define a “utilization” 

response variable as the sum of five counts for 2015: total number of office-based visits reported; total 

number of reported visits to hospital outpatient departments; count of all emergency room visits reported; 

total number of nights associated with hospital discharges; and total number of days where home health care 

was received from any type of paid or unpaid caregiver. 

Unlike the earlier conformal analyses of MEPS, we do take into account the public-use variables for 

strata, PSUs, and person-level weights. In the 2015 SAQ-eligible subset that we work with, there are 165 

strata, and most have 2 or 3 PSUs. First we drop the 4 strata which had no observations in either PSU 1 or 

PSU 2. Next, for simplicity, we set aside every observation whose PSU is labeled 3 (regardless of stratum) 

and treat them as our test set. We treat the rest (PSUs 1 and 2) as our overall training set. We split this 

training data into proper-training and calibration sets under two different approaches. The first approach is 

a 50/50 SRS split that ignores the survey design. The second approach is to form a random split by PSU 

within each stratum, so that in each stratum independently, we randomly assign either PSU 1 to proper-

training and PSU 2 to calibration or vice versa. These approaches result in proper-training and calibration 

sets with around 10,000 people each and a test set with 1,659 people. 

For each split, we fit a linear regression model to the proper-training set to predict utilization from a 

subset of the covariates used by Romano et al. (2019): age; sex; indicators for diabetes diagnosis, private 

insurance coverage, and public insurance coverage; and quantitative summaries of answers to the Physical 

Component Summary (PCS), the Mental Component Summary (MCS), and the Kessler Index (K6) of 
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non-specific psychological distress. Higher PCS and MCS scores represent better health, while lower K6 

scores represent less distress. We calculate PIs for each test case by combining it with the calibration set 

and finding conformal quantiles. Developing conformal methods for designs with only one or two PSUs per 

stratum is still an open problem, not yet addressed by the methods of Sections 3.4 and 3.5. Collapsing strata 

into pseudo-strata could be a reasonable solution if we had subject matter knowledge of the strata, but the 

public-use MEPS data uses anonymized stratum IDs. For this reason, our quantiles do not use these methods 

to handle the clustering and stratification, but they do apply the survey weights as in Section 3.2. 

Because we ended up with such large proper-training and calibration sets, relative to the smaller test set, 

we only saw small differences between the exchangeable and design-based conformal approaches at 

moderate PI levels. On the other hand, we have enough proper-training and calibration data to estimate 99% 

PI levels too, and there we do see substantial differences in the average PI length. Our main takeaways, 

based on Tables 4.1 and 4.2: 

1. When we used a conformal pipeline that assumed exchangeability (data splits at random; no weights in 

model-fitting; no weights in the conformal quantiles on the calibration set), we tended to over-cover. If 

we also ignored the weights when using the test set to estimate coverage, these calculations under-

estimated just how much over-coverage there was. By taking survey-weighted means on the test set, we 

found slightly higher estimates of coverage. We believe these higher estimates are more appropriate, 

since the survey-weighted means ought to generalize to the rest of the population better than un-

weighted means do.  

2. When we did use design-based methods (design-based splits; design-based and survey-weighted model 

fits; and survey-weighted conformal quantiles on the calibration set), this reduced our over-coverage a 

little, according to the survey-weighted means of coverage on the test set. Similarly, it also made our 

PIs a little narrower (around one to three fewer utilizations/year) for moderate PI levels, and 

substantially narrower (around forty fewer utilizations/year) for 99% PIs.  
 

This brief MEPS example demonstrates that the estimated PI coverages and lengths can differ when 

conformal methods account for the survey design. In the next subsection, we study these effects in more 

detail, by repeatedly sampling under known sampling designs from a complete finite population. We also 

use smaller sample sizes, to see more pronounced differences between using vs. ignoring the survey design. 

 
Table 4.1 

Linear regression models’ PI coverage, estimated on the MEPS dataset.  
 

Split/fit/conformal Test set 80% PI covg 90% PI covg 95% PI covg 99% PI covg 
SRS SRS (0.824, 0.826) (0.910, 0.911) (0.951, 0.951) (0.993, 0.994) 
SRS Svy-wtd (0.836, 0.838) (0.914, 0.915) (0.950, 0.951) (0.995, 0.995) 
Svy-wtd Svy-wtd (0.829, 0.831) (0.911, 0.913) (0.949, 0.950) (0.992, 0.993) 
Notes: SRS = simple random sampling; PI = prediction interval; MEPS = Medical Expenditure Panel Survey. 
 Coverages reported as approximate 95% CIs for the average, based on 100 random proper-training/calibration splits at each setting, using 

the same test set each time. When data splits, proper-training-set model fits, and calibration-set conformal quantiles ignored the survey 
design, we over-covered (especially for lower PI levels); but when test-set estimates of coverage also ignored the sampling design, they 
underestimated the amount of overcoverage, compared to test-set estimates that did account for the sampling design. However, when splits, 
fits, and conformal quantiles accounted for the survey design, there was slightly less over-coverage.   
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Table 4.2 

Linear regression models’ PI lengths, estimated on the MEPS dataset.  
 

Split/fit/conformal Test set 80% PI length 90% PI length 95% PI length 99% PI length 
SRS Either (28.9, 29.2) (43.9, 44.3) (60.2, 60.7) (250.5, 256.6) 
Svy-wtd Svy-wtd (27.3, 27.7) (40.9, 41.4) (57.4, 58.0) (202.0, 211.1) 
Notes: SRS = simple random sampling; PI = prediction interval; MEPS = Medical Expenditure Panel Survey. 
 PI lengths reported as approximate 95% CIs for the average, based on 100 random proper-training/calibration splits at each setting, using 

the same test set each time. When data splits, proper-training-set model fits, and calibration-set conformal quantiles ignored the survey 
design, our PI lengths tended to be slightly larger than when splits, fits, and conformal quantiles did account for the survey design ‒ or 
much larger when the PI level is very high. In the Table’s first row, it does not matter whether or not test-set estimates were survey-
weighted, because these PI lengths are constant across test-set cases for a given data split and PI level. 

 
4.2 Simulations 
 

For our design-based simulations, we used the Academic Performance Index (API) data (California 

Department of Education, 2018) from R’s survey package (Lumley, 2021). The apipop dataset contains 

information on 37 variables for all 6194 California schools (elementary, middle, or high school) with at 

least 100 students. The dataset vintage is not documented, but appears to be the 1999-2000 academic year, 

since the data includes API scores for each school for 1999 and 2000. 

We used the apipop dataset as the finite population, and repeatedly took samples (with around = 200n  

ultimate sampling units) using various designs. When we evaluated our results on test sets, we used the 

entire finite population ‒ including those cases that had already been used to fit models or find conformal 

quantiles ‒ because this corresponds to the guarantees that our paper makes in Section 3. Simulation details:   

• In all simulations, sampling was done without replacement. Although our results in Section 3 assume 

sampling with replacement, we conjectured that sampling without replacement would still lead to 

conformal coverage close to nominal, and we wanted to check this empirically.  

• All simulations were run 1,000 times. All 95% confidence intervals are calculated as the estimate   2 

times the SD over 1,000.  

• After dropping the rows with missing values for enroll and mobility, the full “finite population” 

consisted of the 6,153 schools without missing values for any variables used in the simulations.  

• Most simulations used a sample size of = 200n  schools. However, the cluster samples had 200n   

schools on average but varied across samples. The regression model simulations took PPS samples of 

size = 400,m n  then split the samples at random into a proper training set of = 200m  and a 

calibration set of = 200.n  

• The response variable was usually api00, the school’s API in 2000. The exception is Table 4.5, where 

the response variable was enroll, the same variable used to create the PPS weights. For the non-

regression simulations, we simply sought “unsupervised” prediction intervals for the marginal 

distribution of the response variable (with no covariates). For the regression simulations, we found 

quantiles of ˆ| ( ) |y f x  on the calibration set and sought prediction intervals for the response variable 

at the covariate values for each unit in the population.  
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• PPS sampling probabilities (if used) were usually proportional to enroll, the number of students 

enrolled at the school. The exception is parts of Tables 4.8 and 4.9, where PPS probabilities were 

proportional to 1 plus the square root of the residuals from the full-population linear regression model, 

in order to see the effects of over-sampling cases that are hard to fit well. Conformal quantiles for the 

PPS simulations were calculated as in Section 3.2.  

• Clusters (if used) were based on dnum, the school district number. Cluster samples always took a SRS 

of 24 school districts. 24 was chosen because it led to an average of = 198n  schools (close to the 

= 200n  used in other sampling designs). For the “survey-design-aware” results in Table 4.6, we 

calculated quantiles using the “subsampling once” method as in Section 3.4, while the design-unaware 

results ignored clustering and calculated quantiles on the whole dataset.  

• Strata (if used) were based on stype, the school type. Stratified samples always took 100 elementary, 

50 middle, and 50 high schools, with an SRS within each school type. For the “survey-design-aware” 

results in Table 4.7, we calculated quantiles separately by stratum as in Section 3.5, while the design-

unaware results ignored strata and calculated quantiles on the whole dataset.  

• Linear regression models always predicted api00 using a linear combination of ell (the percentage 

of English language learners), meals (the percentage of students eligible for subsidized meals), and 

mobility (the percentage of students for whom this is the first year at the school).  
 

Our main takeaways: 
 

1. Across many settings, using the naive quantile (the n   order statistic) instead of the conformal 

quantile (the ( 1)n     order statistic) tended to give slight undercoverage. The conformal quantile 

helped partly to fix this; but in non-SRS settings it was not enough of a fix on its own.  

2. For SRS designs, the conformal quantile lemma worked as advertised. See Table 4.3.  

3. For PPS designs, ignoring the weights gave slight undercoverage when weights were not highly 

informative about the response variable. On the other hand, ignoring the weights led to extreme over-

coverage when weights were highly informative. In both cases, weighted conformal quantiles fixed the 

problem. See Tables 4.4 and 4.5.  

4. For clustered designs, as well as for stratified designs, ignoring the design undercovered but accounting 

for the design (including conformal-quantile padding) did fix it. The one exception was for one of the 

cluster-design simulations, where the design-based conformal PIs did not reach the target coverage. 

This might have been due to the small number of clusters, large variation in cluster sizes, and our choice 

of “subsampling once” as the conformal method. See Tables 4.6 and 4.7.  

5. For simple models and split-conformal inference, if the weights were not highly informative about 

model variables or the fit of the model, then it did not make much difference whether or not the weights 

were used for quantiles. But when the weights were informative, we saw that unweighted conformal 

quantiles over-covered (and PIs were too wide). Using survey-weights in model-fitting was not enough 

to fix it, but weighting the quantiles was. See Tables 4.8 and 4.9.  



Survey Methodology, December 2023 463 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 

Table 4.3 

SRS. Average PI coverage of api00, at two different PI levels, under 1,000 SRS samples of = 200n  each from 

API dataset.  
 

Conformal? 80% PI coverage 90% PI coverage 
no (0.794, 0.801) (0.945, 0.949) 
yes (0.800, 0.807) (0.949, 0.953) 
Notes: Coverages reported as 95% confidence intervals. Naive quantiles undercover, but conformal quantiles achieve target coverage. 

 
Table 4.4 

Uninformative PPS. Average PI coverage of api00, at two different PI levels, under 1,000 PPS samples of 

= 200n  each from API dataset where probability   enroll.  
 

Survey-weighted? Conformal? 80% PI coverage 90% PI coverage 
no no (0.752, 0.760) (0.927, 0.932) 
no yes (0.759, 0.767) (0.935, 0.940) 
yes no (0.795, 0.803) (0.944, 0.949) 
yes yes (0.803, 0.811) (0.953, 0.958) 
Notes: Coverages reported as 95% confidence intervals. Naive quantiles under-cover; conformal quantiles alone or survey-weighting alone do not 

fix it; but survey-weighted conformal quantiles achieve target coverage. 

 
Table 4.5 

Informative PPS. Average PI coverage of enroll, at two different PI levels, under 1,000 PPS samples of 

= 200n  each from API dataset where probability   enroll.  
 

Survey-weighted? Conformal? 80% PI coverage 90% PI coverage 
no no (0.933, 0.935) (0.986, 0.987) 
no yes (0.934, 0.937) (0.988, 0.989) 
yes no (0.792, 0.798) (0.946, 0.949) 
yes yes (0.796, 0.802) (0.948, 0.951) 
Notes: Coverages reported as 95% confidence intervals. Naive quantiles over-cover; conformal quantiles alone do not fix it, while survey-

weighting alone under-covers; but survey-weighted conformal quantiles achieve target coverage. 

 
Table 4.6 

Clustering. Average PI coverage of api00, at two different PI levels, under 1,000 clustered samples of 24 

clusters ( 200)n   each from API dataset.  
 

Survey-design? Conformal? 80% PI coverage 90% PI coverage 
no no (0.785, 0.805) (0.934, 0.943) 
no yes (0.791, 0.811) (0.940, 0.949) 
yes no (0.799, 0.817) (0.916, 0.930) 
yes yes (0.799, 0.817) (0.959, 0.968) 
Notes: Coverages reported as 95% confidence intervals. Due to high variability in cluster sizes, these 95% CIs are wider than in previous tables, 

but overall trend is generally similar to other tables: Naive quantiles appear likely to under-cover; conformal quantiles alone or survey-
design-aware analyses alone do not necessarily fix it; but survey-design-aware conformal quantiles achieve target coverage. 

 
Table 4.7 

Stratification. Average PI coverage of api00, at two different PI levels, under 1,000 stratified samples of 

= 200n  each from API dataset.  
 

Survey-design? Conformal? 80% PI coverage 90% PI coverage 
no no (0.769, 0.777) (0.933, 0.938) 
no yes (0.775, 0.783) (0.940, 0.944) 
yes no (0.787, 0.795) (0.939, 0.944) 
yes yes (0.800, 0.808) (0.953, 0.956) 
Notes: Coverages reported as 95% confidence intervals. Naive quantiles under-cover; conformal quantiles alone or survey-design-aware analyses 

alone do not fix it; but survey-design-aware conformal quantiles achieve target coverage. 
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Table 4.8 

Linear regression models’ PI coverage. Average PI coverage of api00, at two different PI levels, under 1,000 

PPS samples of = 200n  each from API dataset.  
 

PPS probs Svy-wtd conformal? Svy-wtd regression? 80% PI covg 90% PI covg 
enroll no no (0.807, 0.810) (0.955, 0.957) 
enroll yes no (0.803, 0.807) (0.954, 0.956) 
residuals no no (0.874, 0.876) (0.973, 0.974) 
residuals no yes (0.875, 0.878) (0.973, 0.974) 
residuals yes no (0.798, 0.802) (0.950, 0.951) 
residuals yes yes (0.798, 0.801) (0.950, 0.951) 
Notes: Coverages reported as 95% confidence intervals. For weights proportional to enroll (uninformative for the regression), it makes little 

difference whether or not we weight the conformal quantiles. For informative weights proportional to full-pop residuals, un-weighted 
conformal quantiles over-cover, and this is fixed by survey-weighted conformal quantiles; but it makes little difference whether or not we 
fit survey-weighted regression models. 

 
Table 4.9 

Linear regression models’ PI lengths. Average length of PIs for api00, at two different PI levels, under 1,000 

PPS samples of = 200n  each from API dataset.  
 

PPS probs Svy-wtd conformal? Svy-wtd regression? 80% PI length 90% PI length 
enroll no no (192.6, 194.1) (294.5, 297.3) 
enroll yes no (190.8, 192.7) (293.7, 297.2) 
residuals no no (214.1, 215.6) (328.2, 331.5) 
residuals no yes (211.8, 213.3) (331.4, 334.8) 
residuals yes no (179.4, 180.8) (285.4, 287.7) 
residuals yes yes (175.1, 176.3) (286.1, 288.3) 
Notes: Lengths reported as 95% confidence intervals. For weights proportional to enroll (uninformative for the regression), it makes little 

difference whether or not we weight the conformal quantiles. For informative weights proportional to full-pop residuals, PIs from un-
weighted conformal quantiles are much wider than PIs from survey-weighted conformal quantiles; but it makes little difference whether or 
not we fit survey-weighted regression models. 

 
Overall, the survey-conformal quantiles we proposed mathematically in Section 3 also appear to work 

empirically. Data analysts will likely get coverage closer to nominal when they account for the weights or 

other survey design features. 

 
5. Extensions 
 

We discuss several practical considerations: What if the sampling design does not quite match the 

situations above? What if the sampling probabilities are not all known? We also suggest other possible use 

cases for conformal inference in survey methodology. 

 
5.1 Practical considerations 
 

Weighting adjustments: Most surveys are not released with inverse-probability sampling weights alone. 

The final survey weights have been adjusted for nonresponse, post-stratification, and other considerations. 

Tibshirani et al. (2019) found that their conformal methods still maintained coverage close to nominal even 

when they only estimated the likelihood ratio weights, instead of using true likelihood ratios. We anticipate 
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similar outcomes for conformal methods that use adjusted sampling weights instead of the true inverse-

probability sampling weights. 
 

Distribution shift: Surveys are typically assumed to be sampled from a well-defined finite population, in a 

specific time and place. We may not be guaranteed coverage if we make predictions for units at future times 

or from distinct populations. If model-based (rather than design-based) inference makes more sense for the 

application at hand, we may still be able to estimate the covariate shift likelihood ratio and apply the 

conformal techniques of Tibshirani et al. (2019); it will simply no longer be strictly design-based inference, 

though a joint superpopulation/design-based framework may be a fruitful topic for future work (Isaki and 

Fuller, 1982; Rubin-Bleuer and Şchiopu-Kratina, 2005; Han and Wellner, 2021). 
 

Unknown sampling probabilities for test cases: Our conformal methods of Section 3.2 require the 

sampling probabilities for each test case. However, in practice the sampling probabilities are not typically 

known for every population unit. Even if they are known internally within the survey organization, public 

release of the entire population’s sampling probabilities can increase the risk of unit re-identification and 

privacy breaches. 

Instead, the survey organization could report a set of population categories for which the sampling 

probabilities are approximately equal within each category, along with their approximate probabilities. 

There may be categories that are broad enough to minimize privacy risks, but fine enough to approximate 

the real sampling probabilities well. Or instead of discrete categories, the survey organization could report 

a kind of generalized variance function or GVF (Wolter, 2007), but used to estimate each population unit’s 

sampling probabilities rather than variances, based on covariates available for each unit. This may be 

especially reasonable for PPS. 

Alternatively, the survey organization could release only the value of the single largest inverse-

probability sampling weight for the whole population. Then, using that one weight for every test case during 

conformal prediction would be strictly conservative. Or as an approximation, users could use the largest 

sampling weight in the public-use dataset. Users could also try a range of plausible weights for a desired 

test case, based on the weights of similar in-sample units, and report a sensitivity analysis. 

Finally, if a user is interested in predictions for a population unit with the same vector of covariates X  

as one of the sampled cases in the dataset, they could simply use that sampled case’s survey weight. 

 
5.2 Other uses for conformal methods in survey methodology 
 

National statistical offices, polling agencies, and any others who collect and pre-process survey data may 

find their own use cases for conformal methods: 

• Build a response propensity model based on internal metadata from past surveys. For the next survey, 

build conformal prediction sets for each sampled unit’s most likely mode of response (or ultimate status 

of nonresponse). Use these sets to help choose the mode of initial contact for each sampled unit.  
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• As part of automated quality control checks, use conformal prediction intervals or sets for each variable 

to flag potential outliers for followup (Bates, Candès, Lei, Romano and Sesia, 2023).  

• To impute for item nonresponse, or to generate synthetic microdata, draw at random from a conformal 

prediction interval or set for that variable.  

 
6. Conclusion 
 

There is growing interest in extending machine learning (ML) methods to complex survey data, as well 

as a distinct body of work around developing prediction intervals for new predictive methods such as those 

arising from the ML community. While this ongoing work is valuable, design-based conformal inference 

provides an alternative approach for both needs: We can apply a novel predictive algorithm to complex 

survey data (even if that algorithm has not been specifically adapted to account for the survey design yet), 

and automatically get conformal intervals compatible with the fitted prediction function (even if native 

prediction-interval methods have not been developed for that algorithm yet), and still manage to provide 

exact, finite-sample, design-based coverage guarantees. 

Of course, design-based conformal methods are not a panacea. First, for methods that do have well-

understood design-based adaptations, the design-based version fitted to complex-survey-design training 

data is likely to be a better predictive model for the conditional mean and consequently to have narrower 

conformal prediction intervals than when that method ignores the sampling design. As a simple example, in 

certain cases a survey-weighted linear model may generalize better than an unweighted linear model fit to 

the same data, so the survey-weighted model’s smaller residuals will lead to narrower conformal prediction 

intervals than for the unweighted model. In this sense, it is still important to develop survey-weighted 

equivalents of novel ML algorithms. 

Second, for models that do have native prediction intervals, if we can justifiably trust that the underlying 

model assumptions are met, then we may be able to get narrower or less-variable prediction intervals 

natively than from conformal inference. And in some cases, native methods can give us conditional 

prediction intervals rather than marginal ones. In this sense, it is still important to develop native prediction 

intervals for specific models. 

But when either of these conditions is not yet met, conformal inference is a practical and assumption-

lean way to fill in the gap. We also note that Lei et al. (2018) found in simulations that conventional methods 

are so noisy for high-dimensional regression that conformal prediction intervals can actually be narrower 

than native ones. 

We have also discussed several pragmatic limitations to conformal inference with survey data: Sampling 

weights are not truly known in advance, nor can they be reported for every population unit. Our suggested 

solutions are only a starting point. 

Still, we hope that this paper spurs interest in conformal inference among survey statisticians. Survey 

data analysts might find these methods directly applicable. Furthermore, research into conformal methods 
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from the design-based perspective could bring new insights back to the wider statistics/ML community of 

conformal inference researchers. 

As one example, Vovk (2013) shows that the distribution of achieved coverage levels has a Beta 

distribution across calibration sets when data are exchangeable. In order to gauge how much variability to 

expect from this Beta distribution, Angelopoulos and Bates (2022) suggest one estimate of the effective 

sample size effn  for weighted conformal methods, but their estimate is not appropriate for all sampling 

designs nor for all estimators. Survey statisticians may be able to suggest better estimates of effn  or 

recommend other ways to study and control the variability in achieved coverage for non-exchangeable data. 

Other open problems include conformal methods for unequal-probability sampling WOR; unequal-

probability cluster sampling; strata with few PSUs; combining strata rather than analyzing each stratum 

separately; exact coverage guarantees for post-stratification; panel survey designs; or joint superpopu-

lation/design-based frameworks. We encourage survey researchers to contribute to conformal methodology 

and find new areas of application for these methods. 
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Appendix 
 

A. Adaptive prediction regions 
 

In the simple approach to conformal prediction for regression described in our paper, we have used a 

constant-width prediction band everywhere, which might be unrealistic for many scenarios. If the true 

conditional distribution of Y X  is heteroscedastic for instance, marginal coverage will still be correct, but 

it will be achieved by overcovering at some regions of X  and undercovering at others. For “adaptive” 

alternatives, where the PI is wider at regions of X  with more variability in ,Y  see recent work on locally-

weighted conformal inference (Lei et al., 2018) and conformalized quantile regression (Romano et al., 

2019). 

For classification problems, even the simple approach of Section 2.5 produces adaptive prediction sets: 

for hard test cases where f̂  is uncertain about the right class, prediction sets will be larger than for easy 

test cases where f̂  confidently assigns most of the probability to one class. See also Romano et al. (2020) 

and Angelopoulos and Bates (2022). 
 

Varying PI widths due to survey weighting: Note that in the survey-weighted setting, we will auto-

matically get slightly different prediction interval widths at different test cases, because the survey weights 

can differ for each unit being predicted. However, the effect of survey weighting is to widen slightly the 
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prediction intervals for regions of X  with a smaller effective sample size. This is distinct from adaptivity 

to regions with more variability in .Y  

Loosely, a sampled unit with a larger sampling weight represents more population units, so we are more 

uncertain about units “like” this one. When we apply Lemma 3 to a test case with a larger weight, its survey-

weighted eCDF is pushed down farther than if it had a small weight; so the nonconformity score quantile is 

estimated farther to the right; so the conformal prediction interval is wider for units with larger weights, all 

else being equal. 

On the other hand, consider optimal allocation designs, in which strata with higher variance of Y  are 

oversampled. When we construct conformal intervals separately within each stratum, the high-variance 

strata will have their eCDFs padded by a smaller 1 hn  than low-variance strata do, so the quantile 

adjustment is less conservative. But this should be more than offset by the fact that high-variance strata also 

have wider spread in ,Y  so that ultimately their prediction intervals will end up wider than those of low-

variance strata. 

 
B. Other conformal methods for cluster samples 
 

Beyond Section 3.4, we briefly note how Dunn et al. (2022)’s other methods relate to cluster designs in 

survey sampling. 
 

Prediction for an observed cluster: If we only need a prediction interval for new observations from one 

of the clusters we already sampled, we can simply apply standard conformal methods by only using that 

cluster’s data, which will be exchangeable. 
 

Double conformal: For unsupervised prediction (where we want a prediction interval for Y  without 

conditioning on covariates )X  for a new cluster, one could create conformal prediction intervals separately 

within each cluster, then combine their endpoints appropriately into a single interval. This lines up with the 

design-based spirit: construct valid estimates within each cluster, then combine them sensibly across 

clusters. Dunn et al. (2022) derive such a method that is guaranteed to have coverage at least 1 .  

However, in simulations it overcovers, with coverage of nearly 1 and wider intervals than other approaches. 
 

Pooling CDFs: We could first construct eCDFs within each cluster and average them together into one 

pooled eCDF. Then we could apply standard conformal methods using this pooled eCDF. Dunn et al. (2022) 

only prove that this is asymptotically valid, requiring a continuous distribution for Y  as well as a growing 

number of sampled clusters .k   This is not possible in the traditional design-based setting of a fixed 

finite population, although we could construct a superpopulation model and a sequence of growing finite 

populations that satisfies their requirements. 

In simulations, Dunn et al. (2022) find that CDF pooling tends to have coverage closest to nominal as 

well as shortest length of prediction intervals across most settings. But if we do not wish to rely on 
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asymptotic arguments and continuous Y  data, repeated subsampling appears to work better than single 

subsampling or the double conformal method. 
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Sample designs and estimators for multimode surveys with 
face-to-face data collection 
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Abstract 

Survey researchers are increasingly turning to multimode data collection to deal with declines in survey response 
rates and increasing costs. An efficient approach offers the less costly modes (e.g., web) followed with a more 
expensive mode for a subsample of the units (e.g., households) within each primary sampling unit (PSU). We 
present two alternatives to this traditional design. One alternative subsamples PSUs rather than units to constrain 
costs. The second is a hybrid design that includes a clustered (two-stage) sample and an independent, unclustered 
sample. Using a simulation, we demonstrate the hybrid design has considerable advantages. 

 
Key Words: Bias; Multi-stage; Subsampling; Two-phase; Web-push. 

 
 

1. Introduction 
 

Many surveys use web and mail data collection modes due to their relatively low costs, but the overall 

response rates may be lower than desired, and the estimates may be subject to considerable nonresponse 

bias (Dillman, 2017; Brick, Kennedy, Flores-Cervantes and Mercer, 2021). Introducing face-to-face (ftf) 

interviewing as a follow-up mode can substantially increase response rates, although at a higher cost. The 

increased response rates achieved through ftf follow-up typically also result in reduced nonresponse bias, 

due to the introduction of the ftf mode resulting in increased response propensities for subgroups that are 

less likely to respond to the web or mail modes. A sampling approach to make multimode data collection 

with ftf interviewing more cost-efficient is two-phase sampling. Hansen and Hurwitz (1946) introduced 

two-phase sampling as a method of dealing with nonresponse based on the two-phase sampling theory of 

Neyman (1938). Hansen and Hurwitz applied their method with a first phase sample of retail establishments 

that were sent a mail questionnaire, with non-respondents subsampled for ftf. Since their ftf efforts resulted 

in virtually 100% response after weighting for subsampling, the estimates from the survey were unbiased.  

A well-known application of this sampling strategy is the American Community Survey (ACS) where a 

sample of households is selected within tabulation areas and the households are requested to respond to a 

web or mail questionnaire; a subsample of nonrespondents within the area are followed up ftf (U.S. Census 

Bureau, 2014; U.S. Census Bureau, 2019). Like other surveys today, the ACS does not achieve full response 

so the survey weights must be further adjusted for nonresponse and the estimates are still subject to potential 

nonresponse bias.  

This article examines two new sample designs for multimode household surveys that uses ftf 

interviewing to increase response rates. Surveys with this type of multimode design may be more common 

in the U.S. and Canada. The standard two-phase sampling approach selects a sample of primary sampling 

units (PSUs) and households within the PSU for the low-cost mode(s) and then subsamples within each 
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PSU for ftf follow-up. The two new approaches alter the designs for the low cost (web/mail) to improve the 

efficiency of the estimates while retaining the basic ftf design. Designs that use more expensive modes 

before the lower cost modes are not considered (e.g., Bayart and Bonnel, 2015). The first new sample design 

we explore is a variant where a large sample of PSUs is sampled and households in each PSU are recruited 

by low-cost modes in the first phase, but the ftf follow-up is only done in a subsample of PSUs. This 

approach reduces the clustering effect by spreading the respondents from the first phase sample over a larger 

number of PSUs. We also consider a second approach that selects two independent samples – one an 

unclustered sample of households that is recruited by low-cost modes and a second clustered sample where 

all sampled households are recruited sequentially using all modes. The estimates are created by compositing 

the data from the two samples. We do not discuss nonsampling errors that may arise when more than one 

mode data collection is used (e.g., Goodman, Brown, Silverwood, Sakshaug, Calderwood, Williams and 

Ploubidis, 2022).  

In Section 2, we describe the two new sample designs in more detail. We present estimators and describe 

their properties under different nonresponse models in Section 3. Section 4 describes and gives the results 

of a simulation study we conducted. We conclude in Section 5 with some discussion of the implications of 

the design options and estimators, recommendations, and areas for future research. 

 
2. Sampling designs 
 

All the applications of two-phase household sampling for nonresponse where ftf interviewing is used 

that we have identified begin with a first phase sample of PSUs (clustered geographically) and then 

subsample nonrespondents for the second phase from each of the first phase PSUs. In many cases, the 

subsampling for nonresponse is an adaptive or responsive design feature rather than an initial design 

approach (Groves and Heeringa, 2006; Heeringa, Wagner, Torres, Duan, Adams and Berglund, 2004; 

Wagner, Arrieta, Guyer and Ofstedal, 2014). The first phase is a sample of PSUs with a sample of 

households from an address-based sampling (ABS) frame. All sampled households are subject to the initial 

data collection protocol that may involve web and/or mail as a low-cost mode.  
 

Two-phase unit subsampling. The nonrespondents to the first-phase sample are subsampled within each 

PSU and ftf interviewing is the mode for the second phase. The ACS uses this design. We refer to this 

standard approach as two-phase unit subsampling. Särndal and Swensson (1987) extended the theory of 

Hansen and Hurwitz to designs where the first phase sample was not a simple or stratified random sample.  

Two statistical issues arise in two-phase unit subsampling design. One concern is the increase in variance 

of estimates due to subsampling (Kish, 1992) since the weights account for the subsampling. The second 

issue is the increase in variance due to clustering, assuming a positive intraclass correlation for the 

characteristics of interest, because all responses are clustered within the sampled PSUs. In addition, a related 

cost and operational issue is limiting the number of sampled PSUs to make the ftf data collection within the 

PSUs effective.  
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Two-phase PSU subsampling. An alternative two-phase design is to select a large number of PSUs and 

households in the first phase and then select a subsample of the PSUs and all of the households within those 

PSUs for the second phase. All households sampled in the first phase are recruited by web, but only the 

nonrespondents in the subsample of PSUs are followed up in the second phase by ftf. We refer to this 

approach as two-phase PSU subsampling. We have not identified any surveys using this approach. This 

approach has benefits and concerns similar to those with two-phase unit subsampling, but has the advantage 

of reducing the clustering effect by spreading the respondents from the first phase sample over a larger 

number of PSUs.  
 

Hybrid sampling. A different design with fewer restrictions than two-phase PSU subsampling selects two 

independent samples and then composites the estimates from the two samples to produce final estimates. 

The first sample is an unclustered sample of households from the ABS frame and those households are 

recruited only by low-cost modes. The second sample uses a two-stage design to reduce data collection 

costs, with a sample of PSUs and households within the PSUs. The data are collected from households in 

this second sample by sequentially using web and then ftf modes. This design builds on both dual frame 

(Lohr, 2011) and two-phase methods. Like dual frame methods it selects two samples, although from the 

same frame in this case, and then combines the data from the two samples. Like two-phase sampling, only 

a subsample of the full sample of households is subject to the full data collection protocol. We refer to this 

as hybrid two-phase sampling or more concisely as hybrid sampling. When discussing the two samples, we 

refer to them as the unclustered and clustered samples, respectively, for ease of discussion.  
 

Example. Here, we present an illustration of each design and consider the effects on precision; later, for 

each of these design alternatives, we will examine the bias of various estimators. As a simple example of 

the three approaches, suppose the goal is to complete 10,000 household interviews with 70 percent done by 

web and 30 percent by ftf. For illustration, we ignore nonresponse weighting adjustments and details about 

costs that are discussed later.  

The three approaches for this simple example are illustrated in Figure 2.1. The two-phase unit 

subsampling approach selects a sample of 200 PSUs with probability proportionate to the number of 

households, and then an equal number of households is selected in each PSU. All sampled households are 

pushed to web and a subsample of web nonrespondents in each PSUs are followed by ftf. Assuming a 25% 

web response rate and 50% ftf response rate, then sampling 140 households per PSU yields 35 web 

completes. Subsampling roughly 30 of the approximately 105 nonrespondents per PSU results in 15 ftf 

completes for a total of 50 responses (35 by web and 15 by ftf). The design effect due to subsampling 

(differential weighting) is approximately 1.44 (Kish, 1992) and reaches this maximum value when the 

outcome and the weights are uncorrelated. The design effect due to clustering is approximately 1 ( 1),m   

where m  is the average number of completed households per PSU and   is the intraclass correlation. With 

50 completes per PSU and   0.02, the clustering design effect is about 2.0. The overall design effect is 

the product of the weighting and clustering effects, or 2.9, and results in an effective sample size of about 

3,500 (10,000/2.9). 
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Figure 2.1 Illustration of three follow-up approaches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Notes: PSUs = primary sampling units; NRs = nonrespondents. 

  

PSUs     Households (hhs) 

     Unit Subsampling          PSU Subsampling                                 Hybrid Sample 

Initial Sample 

Nonrespondents to Web 

Subsample for FtF 

     200 PSUs & 140 hhs in each          700 PSUs & 40 hhs in each             200 PSUs & 40hhs in each               Unclustered of 20,000 hhs 

                  200 PSUs,  
   105 NRs (expected) to web  

                  700 PSUs,  
     30 NRs (expected) to web  

                  200 PSUs,  
   30 NRs (expected) to web  

                   
      Unclustered NRs to web 

              30 of 105 hhs in 
             each PSU-average 

                   
      All hhs in 200 of 700 PSUs 

                   
           All hhs in 200 PSUs 

                   
                     None 
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In the two-phase PSU subsampling approach, a sample of 700 PSUs is selected with probability 

proportional to the number of households, and 200 PSUs are subsampled with equal probability. The number 

of PSUs for the subsample was chosen to equal the number in the unit subsampling design, and 700 total 

PSUs allows taking all nonrespondents within the 200 subsampled PSUs without further subsampling. In 

each PSU an equal probability sample of 40 households is selected. All the sampled households are sent to 

web, resulting in approximately 7,000 web completes (700*40*0.25). All of the web nonrespondents in the 

200 PSU subsample are followed up ftf, yielding 3,000 ftf completes. The design effect due to weighting is 

still 1.44. Due to the unequal number of completes per cluster, we use the approximate design effect 

suggested by Holt (1980), with 2
i im m m    instead of m  where im  is the number of completes in 

PSU .i  In this design im  10 in 500 PSUs and is im  25 in 200 PSUs, so m  17.5 and the design effect 

due to clustering is 1 ( 1)m    1.33 when   0.02. The overall design effect is 1.9 and the effective 

sample size is just over 5,200, a substantial increase in precision over the traditional two-phase approach. 

With the hybrid approach a sample of 200 PSUs (equal to the number of PSUs where ftf is done in the 

other designs) is selected and 40 households per PSU in the clustered sample, yielding 2,000 web completes 

and 3,000 ftf completes. The unclustered sample is 20,000 to yield 5,000 web completes. The design effect 

due to clustering in the clustered sample is 1.48 when   0.02 and there is no differential weighting effect 

(assuming a uniform nonresponse adjustment is applied to all respondents). In all, there are 7,000 web and 

3,000 ftf completes. The two samples are composited using, for example,   0.7 for the unclustered sample 

(since it 70% of the total) and 1   0.3 for the clustered sample, so the overall design effect is 1.14. (An 

optimal compositing factor, which also takes into account the clustering effect on precision for the clustered 

sample, could be determined and applied; however, for simplicity in this illustration, we chose compositing 

factors proportional to the number of completes from the particular mode. We examine the effects of 

alternative compositing factors later in the manuscript.) The effective sample size is 8,770, a substantial 

increase in precision over both two-phase approaches. 

 
3. Estimation and nonresponse models 
 
Nonresponse models 
 

In the literature on models of survey nonresponse, two frameworks have emerged: a deterministic 

framework that partitions the population into two mutually exclusive, exhaustive groups, respondent and 

nonrespondents (as described on pages 359-363 of Cochran, 1977); and a stochastic framework in which 

each member of the population has a probability of responding to a particular survey (see, for example, 

Brick and Montaquila, 2009).  

Using the deterministic view of nonresponse under a given data collection protocol, the population 

contains a set of households who will respond to the web request, a set of households that will respond to 

the ftf request after not responding on the web, and a set of households that will not respond at all. With this 

model, the population total is 
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 (1 ) ,W W F F W F NY N Y Y Y           (3.1) 

where W  is proportion responding by web, F  is proportion responding by ftf but not by web, and ,WY  

,FY  and NY  are the corresponding population means of the characteristic of interest for the web, ftf, and 

nonresponding sets. The deterministic view with the fixed partitioning of the population by response mode 

under the data collection protocol is conceptualized from a post-data collection perspective, where repeated 

implementations of the same protocol could be used to determine these constants.  

A stochastic model that aligns with this deterministic model assumes each unit in the population has a 

response propensity vector with the first element the probability of responding by web and the second 

element the probability of responding by ftf and not by web, say , ,( , ) ,k k W k F     where ,0 1;k W 

, , ,0 1; 0 1.k F k W k F        Note that if we define 
,

C
k F W
  to be the conditional probability unit k  

responds by ftf given that they did not respond by web, then , , ,
(1 ) .Ck F k W k F W

     In addition, taking 

expectations over this response distribution gives , ,;R k W W R k W k Wk U k U
E N E y Y  

 
    where U  

denotes the population, ,W W WY NY  and , ,;R k F F R k F k Fk U K U
E N E y Y  

 
    where .F F FY NY  

With full response (i.e., 
,

1,C
k F W
   so that , , 1 ),k W k F k     we have [ ].W W F FY N Y Y    

 
Estimators 
 

First, suppose we follow all web nonrespondents by ftf, i.e., a two-stage sample with no subsampling. 

The typical approach to estimation is to use the Horvitz-Thompson (HT) estimator with an adjustment for 

nonresponse. (Here, we consider a single overall adjustment, ignoring more complex nonresponse and 

calibration adjustments for simplicity.) This estimator of the total is 

 

1 1
1

ˆ ˆˆ ( ) ( )

ˆ ˆˆ ,
ˆ ˆ ˆ ˆ

k k k k k k
k S k S

W F
W F

W F W F

t d W R y d F R y

N y y

 

 

   

 

 

 

 
  

  

 
 (3.2) 

where S  denotes the sample, kd  is the reciprocal of the probability of selection of household k  (accounting 

for both stages of selection), ( ) 1k W   if household k  responds to the web survey and is 0 otherwise, 

( ) 1k F   if household k  responds to the ftf survey and is 0 otherwise, ˆ ,kk S
N d


  and ˆ ˆ

WR R   

ˆ ˆ(1 )W FR R  where ˆ ( )W k k kk S k S
R d W d

 
   and ˆ ( ) (1 ( ))F k k k kk S k S

R d F d W 
 

    are the 

observed web and ftf response rates. Note that ˆFR  is the conditional response rate given no response to web. 

Throughout, we estimate ˆˆ
W WR   and ˆ ˆˆ (1 )F W FR R    by the observed response rates where those depend 

upon the specific design.  

The estimator 1̂t  is unbiased if N F WY Y Y   or if the ftf conditional response rate is 100%. This property 

is easily shown by taking expectations with respect to both the sampling and response distributions (Särndal 

and Swensson, 1987). We assume throughout that standard conditions for the appropriate full response 

estimator to be unbiased also hold. 
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In contrast to 1̂,t  which applies a constant adjustment 1R̂  to all respondents, we also consider an 

estimator commonly used in the two-phase sampling context, which adjusts only the ftf respondents, as 

follows: 

 

 

1
2

ˆˆ ( ) ( )

ˆ ˆ ˆ(1 ) .

k k k k k F k
k S k S

W W W F

t d W y d F R y

N y y

 

 



 

 

  

 
 (3.3) 

The estimator 2̂t  is unbiased if N FY Y  or if the ftf conditional response rate is 100%. 

Next, we consider the subsampling designs and extend these estimators to incorporate the subsampling. 

Let   denote the conditional probability of selection into the subsample for ftf interviewing. With two-

phase unit subsampling with the second phase subsampling rate of   (0 1),   the extensions of these 

estimators are  

 

1 1 1
1
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 (3.4) 

and  
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 (3.5) 

In this expression the subsampling rate is accounted for in estimating W  (Table 3.1 shows how this and 

other estimators are written in terms of weights). Note that the estimators given in equations (3.2) and (3.3) 

are a special case of those in equations (3.4) and (3.5), respectively, where 1.   

 
Table 3.1 

Estimators, weights and nonresponse models for two-phase and hybrid sampling. 
 

Estimator Design Respondent weight Nonresponse model 

1̂t  Two stage 
1ˆ

kd R
  

1 1ˆ
kd R 

  

Web respondents in BS  

Ftf respondents in BS  

N F WY Y Y   

2̂t  Two phase kd   
1 1ˆ

k Fd R 
  

Ftf respondents in BS  

Ftf respondents in BS  

N FY Y  

Ât  One stage, unclustered 
1ˆ

k Wd R
  All (web) respondents in AS  N F WY Y Y   

,1d̂ft  Hybrid 
1ˆ

k Wd R 
  

1ˆ(1 ) kd R    

All (web) respondents in AS  

All respondents in BS  

N F WY Y Y   

,2d̂ft  Hybrid kd   

(1 ) kd   
1ˆ

k Fd R
  

All (web) respondents in AS  

Web respondents in BS  

Ftf respondents in BS  

N FY Y  

Note: Ftf = face-to-face. 
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For the subsampling designs, both estimators are unbiased if the ftf conditional response rate is 100%; 

2̂t  is unbiased if ,N FY Y  while 1̂t  requires the more stringent condition that .N F WY Y Y   This result 

applies to both two-phase unit and PSU subsampling. While Särndal and Swensson (1987) did not consider 

two-phase PSU subsampling, their proof of the unbiasedness applies since the subsampling they consider is 

not specific to a phase. Thus, the two-phase extension of the estimator 2̂t  shown in equation (3.5) can be 

used with either two-phase unit subsampling or two-phase PSU subsampling.  

In the PSU subsampling design, the weighting adjustment in 2̂ ,t  1,  is the ratio of the number of first 

phase PSUs to the number of PSUs in the second phase. An alternative subsampling adjustment is 

 1

sub-PSU

(1 ( ))
,

(1 ( ))

k kk S
s

k kk

d W

d W





 











 (3.6) 

where the numerator is the sum of the weights of all sampled cases that did not respond by web and the 

denominator is the sum of the weights of the web nonrespondents in the subsampled PSUs. This adjustment 

incorporates the size of the subsampled PSUs, where size is the number of subsampled households.  

For hybrid sampling, we use dual frame notation to simplify the presentation. Let AS  be an unclustered 

sample of households, and BS  be a two-stage sample with households sampled within PSUs. The protocol 

for AS  just uses web, while for BS  web is followed by ftf for all web nonrespondents.  

Since AS  is a single stage web data collection, the Horvitz-Thompson estimator or (3.2) with only web 

respondents is  

 ˆˆ ( ) ,
( )

A

A

A
A

kk S

A k k k S WA
k Sk kk S

d
t d W y N y
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where ˆ
A A

S kk S
N d


  and WAy  is the estimated mean for web respondents based on the unclustered sample 

.AS  This unclustered estimator is unbiased if N F WY Y Y   as discussed for 1̂.t  

Rewriting 1̂t  for a clustered sample BS  gives 

 ,1

ˆ ˆˆˆ ,
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where ˆ ,
B B

S kk S
N d


  and WBy  and FBy  are the estimated means for web respondents and ftf respondents, 

respectively, based on the clustered sample .BS  

Compositing the two estimators for the hybrid samples gives (assuming ˆ ˆ ˆ )
A BS SN N N   
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This estimator, like (3.2), does not place more weight on the ftf respondents and is unbiased when 

N F WY Y Y   as discussed previously. The more stringent nonresponse model is required for unbiasedness 

because while ,1B̂t  estimates the total for the population consisting of both the web and ftf domains, Ât  

estimates the total for only the web domain. 

Another option is to composite two estimators but to use the two-phase version of (3.5) for the clustered 

sample. First, we composite the web respondents from AS  and BS  and then adjust the weight of ftf 

respondents to account for the remaining nonresponse. This composite estimator (where only the web 

samples are composited) is 

  ,2
ˆ ˆˆ ˆ ˆ(1 ) (1 ) .df W WA WB W FBt N y y N y         (3.10) 

This estimator is unbiased when N FY Y  or when the ftf conditional response rate is 100% using the 

same arguments as for (3.5). This estimator is efficient since it includes both the clustered and unclustered 

sample observations. The estimate of Ŵ  is the observed proportion of web respondents based on both 

samples. 

If the assumed nonresponse model is N FY Y  or with full ftf response, then 2̂t  is an unbiased estimator 

when the design is either two-phase unit subsampling or two-phase PSU subsampling and ,2d̂ft  is an 

unbiased estimator when the design is hybrid sampling. More efficient estimators 1̂(t  and ,1
ˆ )dft  are available 

but require the more stringent assumption .N F WY Y Y   

The only remaining parameters that need to be specified for the hybrid estimators are the compositing 

factors. The usual approach is a composite factor  (0 1)   equal to the effective relative sample size 

and this is often a reasonable approximation. For ,1
ˆ ,dft    might be set to be the ratio of the effective number 

of respondents in AS  divided by the sum of that and the effective number of respondents in ,BS  where the 

design effect for BS  is estimated as described in the earlier example. A similar approach could be used for 

,  but since only the web respondents are being composited, the effective sample sizes are only those for 

the web respondents. We explore different compositing factors in the simulation and find that reasonable 

choices have little effect on the variances of the estimates. 

 
Variance estimation 
 

Variance estimation methods for most of the estimators are well-known or require only minor 

adjustments to handle the approaches proposed here for nonresponse follow-up (i.e., two-stage, unclustered 

estimators and hybrid sampling). For example, hybrid sampling is covered by dual-frame estimation theory 

(Lohr, 2011). Variance estimation for two-phase sampling with complex sampling schemes has been the 

subject of several recent theoretical developments including Hidiroglou (2001), Hidiroglou, Rao and Haziza 

(2009) and Beaumont, Béliveau and Haziza (2015).  

Variance estimation for two-phase PSU subsampling requires some extensions of Beaumont, Béliveau 

and Haziza (2015) to ensure the variances are appropriately estimated. The only design we considered here 
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involves sampling a large number of PSUs in the first phase and then taking all the nonrespondents in the 

second phase in a subsample of the PSUs. The subsampling of PSUs for the second phase does not depend 

on the outcomes of the first phase sample (we also assume that every sampled first phase PSU has some 

nonrespondents). Since this design selects all the nonrespondents in the subsampled PSU it satisfies the 

invariance and independence conditions (see Särndal, Swensson and Wretman, 1992, pages 134-135) for 

two-stage sampling. Provided the first stage sampling fraction is negligible, the standard with replacement 

variance estimation can be applied.  

We used Taylor series linearization for our simulation but Beaumont, Béliveau and Haziza (2015) 

describe how replication methods apply equally well in this situation. The sample design for two-phase PSU 

subsampling typically selects a stratified sample of PSUs. (Our simulation used an unstratified sample, but 

the generalization to a stratified sample is straightforward.) In each stratum, the number of PSUs selected is 

determined so that the units treated as variance strata (or clusters) are balanced with respect to the 

subsampling for follow-up. This combining of PSUs gives an unbiased estimate of the variance (Lu, Brick 

and Sitter, 2006). For example, with a 50% subsample of PSUs for the second phase, one approach is to 

sample 4 PSUs in each stratum and pair these to form 2 variance units so that each variance unit has one 

PSU subsampled for follow-up and one with no follow-up. With a 33% subsample of PSUs, 6 PSUs are 

sampled per stratum in the first phase and 2 variance units are formed and each contains 2 PSUs not 

subsampled for follow-up and 1 subsampled for follow-up. 

 
4. Simulation study 
 

To examine the three sample designs and estimators, we conducted a simulation study. In this section, 

we begin by describing the approach we used to generate the populations for this simulation. Next, we lay 

out our simulation design, including a description of the measures we used to evaluate and compare the 

designs and estimators. Finally, we present the simulation results, beginning with those for the hybrid design 

scenarios, followed by a comparison of the subsampling designs to the hybrid design. 

 

Generating the population 
 

For this simulation, we used the 2015-2019 ACS Public Use Microdata Sample (PUMS) data for the 50 

States and D.C., treating all ACS respondents residing in households as our population. ACS data collection 

begins with a mailed invitation to complete the survey on the web. Nonrespondents are followed up first by 

mailing a paper questionnaire (mail), then by computer-assisted telephone interviewing (CATI) or 

computer-assisted personal interviewing (CAPI) for a subsample of nonrespondents (ftf). (Although CATI 

was dropped as a follow-up mode for ACS after September 2017, that is not relevant to our simulation, as 

all CATI and CAPI respondents are treated as ftf respondents for our simulation purposes.) On the ACS 

PUMS files, each household is associated with a geographic cluster called a Public Use Microdata Area 

(PUMA). We used PUMAs as primary sampling units (PSUs) for the clustered samples. In selecting 
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clustered samples, we sampled PSUs with probabilities proportional to the number of households in the 

PSU, and sampled households with equal probabilities within PSUs, where the conditional probabilities of 

selection were proportional to the reciprocal of the PSU selection probabilities. For each unclustered sample, 

we sampled households using a simple random sample without replacement. 

In the previous section, we discussed the nonresponse model under which the estimator is unbiased for 

each estimator. To examine each estimator’s performance under various response models, we created four 

different pseudopopulations (A, B, C, and D) by varying the approach used to identify respondents and 

nonrespondents. For pseudopopulations A, B, and C, we considered all ACS web respondents to be our 

web-push respondents. For pseudopopulation A, we designated all ACS mail respondents to be our ftf 

respondents, and all ACS ftf respondents to be our nonrespondents. For pseudopopulation B, among the 

ACS mail and ftf respondents, we randomly identified half to be our ftf respondents and the other half to be 

our nonrespondents. Pseudopopulation C has a 100% response with the ftf follow-up, where all ACS mail 

and ftf respondents were our ftf respondents. Our motivation for constructing pseudopopulation D was to 

create a population with a lower response rate to the initial mode of contact; thus, we defined all ACS mail 

respondents as our web respondents, and as we did in creating pseudopopulation B, we randomly identified 

half of the remainder to be our ftf respondents and the other half to be our nonrespondents.  

We included several demographic and socioeconomic variables at the household level in this simulation. 

Figure 4.1 gives brief descriptions of each of the variables and displays the population means of each of the 

variables by ACS mode of completion, where the full ACS PUMS dataset is the population. For 

pseudopopulation A, we expect all estimators to be biased to some extent since the nonrespondents differ 

from both groups of respondents. The ftf follow-up, when properly accounted for in the estimator, would 

be expected to reduce bias in estimates for variables v1, v3, v8, and v11 based on Figure 4.1. For 

pseudopopulations B and D, the response model N FY Y  holds by design, so estimators based on that 

response model should be unbiased. For pseudopopulation C, there is no nonresponse after the ftf follow-

up so estimators that appropriately weight the follow-up should be unbiased. 

 
Simulation design 
 

The simulations involved selecting samples from the various pseudopopulations (depicted in Table 4.1) 

and, for each variable, computing estimated totals using each of the estimators presented in Section 3. The 

simulation scenarios are listed in Table 4.2. The scenarios are labeled according to the combination of 

parameters; e.g., scenario B2U is the scenario that uses pseudopopulation B, selects a clustered sample only, 

and uses two-phase unit subsampling for ftf nonresponse follow-up. 

For scenarios A1A, B1A, C1A, and D1A, each of which examines the hybrid design with different 

pseudopopulations, we selected clustered and unclustered samples of size 2,500 each, with 50 PSUs for the 

clustered sample. To allow for a direct comparison of the hybrid design approach (specifically, scenario 

B1A) to the unit subsampling and PSU subsampling approaches, we included scenarios B2P and B2U. 
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Figure 4.1 Population means for variable from American Community Survey 2015-2019 PUMS, by mode. Of 
all responses, web is 49.3%, mail is 29.1%, and ftf is 21.7%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: ACS = American Community Survey; CAPI = Computer-assisted personal interviewing; CATI = Computer-assisted telephones 

interviewing. 
Variable definitions: v1-high school graduate; v2-some college; v3-Bachelor’s or higher; v4-1-person household; v5-2-person household; 
v6-3 or more person household; v7-Hispanic reference person; v8-Black, nonHispanic reference person; v9-renter; v10-person 60 years or 
older; v11*-household income/110,000; v12- percent urban. 

 
Table 4.1 

Pseudopopulation definitions. 
 

Pseudo-
population 

Pseudopopulation Response Category by ACS Response Mode 

ACS Web Respondents ACS Mail Respondents ACS CATI/CAPI Respondents 

A Web Ftf NR 

B Web 50% Ftf, 

50% NR 

50% Ftf, 

50% NR 

C Web Ftf Ftf 

D 
50% Ftf, 

50% NR 
Web 

50% Ftf, 

50% NR 

Notes: ACS = American Community Survey; CAPI = Computer-assisted personal interviewing; CATI = Computer-assisted telephones 
interviewing; Ftf = face-to-face; NR = nonrespondent. 

 
More details on the sample sizes and subsampling fractions used in each of these designs are given in 

the Appendix (Table A.1). These designs were constructed to yield the same expected total number of 

completes (3,127.7) and the same number by mode.  

We ran 5,000 independent iterations of each scenario. For the hybrid design scenarios, we computed 

each of the estimators shown in Table 3.1 1̂( ,t  2̂ ,t  ˆ ,At  ,1
ˆ ,dft  and ,2
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we computed 1̂t  and 2̂.t  For the two-phase PSU subsampling scenario (B2P), we also computed the variant 

on the estimator 2̂t  that uses the alternative subsampling adjustment 1
s
  given in (3.6). 

 
Table 4.2 

Simulation scenarios. 
 

Scenario Pseudo-population Design Nonresponse follow-up 

A1A A 1 (independent clustered and unclustered samples) A (all) 

B1A B 1 (independent clustered and unclustered samples) A (all) 

C1A C 1 (independent clustered and unclustered samples) A (all) 

D1A D 1 (independent clustered and unclustered samples) A (all) 

B2P B 2 (clustered sample only) P (two-phase primary sampling 
unit (PSU) subsampling) 

B2U B 2 (clustered sample only) U (two-phase unit subsampling) 

 
For each iteration, we computed the relative bias (RB), coefficient of variation (CV), relative root mean 

squared error (RRMSE), and an indicator of whether the confidence interval (CI) covered the population 

total (for a normal 95 percent CI) for each estimator, and averaged each of those measures across iterations. 

The relative bias (RB) and RRMSE were computed relative to the population parameter (i.e., by dividing 

the bias and RMSE, respectively, by the population total). We used Taylor series linearization to compute 

the variance estimates as discussed previously. The RB, CV, RRMSE, and CI coverage are the measures 

we used to evaluate the estimators.  

 
Results: Hybrid design scenarios 
 

Figures 4.2 and 4.3 present the RB and RRMSE results, and the CV and CI results are shown in 

arXiv:2303.13303v1 [stat.ME], for each of the hybrid design simulation scenarios. For scenario A1A, the 

scenario with the most inherent bias due to the way the pseudopopulation is defined, the simulation results 

demonstrate that all of the estimators are biased for at least some characteristics. For characteristics such as 

v1, v3, v8, and v11, where bringing in the ftf follow-up is expected to reduce bias, we see that the estimators 

that appropriately incorporate the ftf follow-up 2̂(t  and ,2
ˆ )dft  are generally less biased; for variables such as 

v5, v7, and v9, where we would expect the ftf follow-up to increase bias (see Figure 4.1), no increase in 

bias is apparent for the estimators that incorporate ftf follow-up. In this scenario, CI coverage is generally 

very poor (well below the nominal 95 percent level) due to the bias in the estimates. The hybrid composite 

estimator ,2d̂ft  is generally comparable to the estimator 2̂t  in terms of RRMSE. 

For pseudopopulations B and D, the web respondents differ from the ftf respondents and the nonrespon-

dents, but the assumption N FY Y  holds in expectation. A key difference between these two pseudopopu-

lations is that the expected web response rate is considerably higher in pseudopopulation B than in 

pseudopopulation D (49 percent vs. 29 percent). As expected with this nonresponse model, the estimators 

2̂t  and ,2d̂ft  have the smallest relative bias and the best confidence interval coverage rates. For most 
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characteristics examined, estimator ,2d̂ft  has the smallest relative RRMSE. The estimators that adjust the 

weights of web respondents for nonresponse, 4̂ ,t  ,1
ˆ ,dft  and 1̂,t  exhibit more bias and poor confidence interval 

coverage. 

 
Figure 4.2 Relative biases of each estimator for each of the hybrid design scenarios. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
With pseudopopulation C, complete response is attained after the ftf follow-up. However, the character-

istics of the web respondents generally differ from the characteristics of the ftf respondents. In scenario 

C1A, the relative bias is negligible for 2̂t  and ,2
ˆ ,dft  the estimators that assume .N FY Y  In this scenario, 

because 1,R   the estimator 1̂t  reduces to the Horvitz-Thompson (base-weighted) estimator and exhibits 

properties similar to 2̂t  and ,2
ˆ .dft  Additionally, the confidence interval coverage is closest to nominal levels 

for these three estimators, whereas the confidence interval coverage of the other estimators is generally very 

poor. 

As noted in Section 1, a further consideration is the choice of compositing factors for the hybrid 

estimators. To examine this, we computed ,2
ˆ ,dft  for each iteration of the hybrid design scenarios two ways‒

once using the near optimal compositing factor described in Section 2 and once using the compositing factor 

fixed at   0.2, which is far from the optimum. The results, presented in arXiv:2303.13303v1 [stat.ME], 

demonstrate that the choice of compositing factor has virtually no effect on the bias; for all scenarios except 
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A1A, the same is true for the effect of the compositing factor on confidence interval coverage. The choice 

of compositing factor does have a small effect on CV and RRMSE, with the optimal factor resulting in less 

variable estimates. 

 
Figure 4.3 Relative root mean squared error of each estimator for each of the hybrid design scenarios. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Results: Comparison of subsampling designs to hybrid design scenario 
 

Next, we consider the scenarios that involve subsampling for nonresponse follow-up, scenario B2U 

(subsampling units) and scenario B2P (subsampling PSUs). Because these scenarios involve clustered 

sample only, the only estimators that are relevant to these scenarios are 1̂t  and 2̂.t  The hybrid design is an 

alternative to these subsampling designs, and in the previous section we demonstrated that for the hybrid 

design, as expected based on dual-frame estimation theory, the composite estimator ,2d̂ft  performed best. 

For all three scenarios, the estimator 2̂t  has negligible bias while the bias in 1̂t  is evident. (See Table A.2 in 

the Appendix.) Thus, our evaluation involves a comparison of the results involving 2̂t  for scenarios B2U 

(subsampling units) and B2P (subsampling PSUs) to the results for ,2d̂ft  in scenario B1A (hybrid design, no 

subsampling). For these comparisons, Figures 4.4 and 4.5 present the RB and RRMSE. The CV and CI 

coverage results are given in arXiv:2303.13303v1 [stat.ME].  
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Figure 4.4 Relative biases of each estimator for the hybrid design scenario vs. the subsampling scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Relative root mean squared error of each for the hybrid design scenario vs. the subsampling 

scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are no appreciable differences in bias for ,2d̂ft  and 2̂t  across the designs. The estimator 2̂t  with the 

subsampling designs is generally more variable than the composite estimator ,2d̂ft  with the hybrid design, 

based on the CV and RRMSE. Confidence interval coverages are comparable for all three scenarios with 

their associated estimators. 
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For the PSU subsampling scenario, we evaluated the variation of the estimator 2̂t  that uses the alternative 

subsampling adjustment 1
s
  given in equation (3.4) by comparing it to the estimator that uses the reciprocal 

of the PSU subsampling rate as the adjustment 1.  The results of this comparison, presented in 

arXiv:2303.13303v1 [stat.ME], are that the estimators are comparable with respect to bias, but the alter-

native estimator performs marginally better with respect to CV, RRMSE, and CI coverage. 

Table A.2 in the Appendix presents summaries, averaged across variables, for all of the estimators 

considered under each scenario. 

 
5. Discussion 
 

As response rates have declined and survey costs have increased, survey researchers have sought 

approaches to combat these trends. In this paper, we have presented design and estimation approaches for 

multimode data collection and have used a simulation study to examine their effectiveness. While our focus 

is on web for the first phase of data collection, our findings and recommendations also pertain to designs in 

which mail (used alone or in combination with web, as in a web-push approach) is used in the first phase. 

Data collection protocols that incorporate ftf interviewing have long been held as a gold standard, 

typically achieving higher response rates than other modes and reducing bias by eliciting response from 

subgroups that are generally missed by other modes (e.g., non-telephone households missed by telephone 

surveys or households without internet access missed by web surveys). However, ftf interviewing is 

expensive relative to other modes, and as a result has been cost-prohibitive for many studies that have turned, 

instead, to web, phone, or paper survey administrations, or combinations of these lower-cost modes. 

We presented two sample designs and associated estimators that are alternatives to two-phase unit 

subsampling and may open the door to ftf data collection for some studies; for other studies, the approaches 

we described may facilitate more discriminating use of ftf interviewing as a way of constraining costs while 

maintaining high standards for quality. The PSU subsampling approach uses only a clustered sample, 

selecting initially a larger number of PSUs, but only uses ftf follow-up in a subsample of PSUs. The 

estimator 2̂t  performed well for both subsampling designs, whereas 1̂t  exhibited substantial bias and poor 

CI coverage. Clearly, trying to reduce the variance by using 1̂t  is likely to result in biases in many situations. 

The hybrid design approach blends two independent samples, an unclustered sample and a clustered 

sample, with the less costly initial mode(s) of data collection applied to both samples but the more costly ftf 

nonresponse follow-up used only in the clustered sample. As a result, the hybrid design approach offers the 

advantage of the same number of completes at a lower cost, while achieving the same overall weighted 

response rate and bias reduction as a design with complete nonresponse follow-up. With the hybrid design, 

the hybrid estimator ,2d̂ft  is unbiased under the nonresponse model N FY Y  or if the ftf achieves 100% 

response. 

With the combination of parameters used in the simulation study, the composite estimator ,2d̂ft  in the 

hybrid design scenario had a RRMSE that was, on average, 8 percent lower than 2̂t  in the PSU subsampling 

design scenario and 14 percent lower than 2̂t  in the unit subsampling design scenario. All three scenarios 
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were designed to have about the same cost by having the same expected number of completes by mode and 

with ftf follow-up administered in the same number of PSUs.  

The simulation findings suggest that the hybrid design and ,2d̂ft  is superior to either of the two-phase 

designs in the conditions we examined, and the two-phase PSU subsampling is superior to the two-phase 

unit subsampling. In addition, the hybrid design has practical benefits, especially when there is uncertainty 

regarding response rates by mode. With the hybrid design, increasing the sample size in the unclustered 

sample to deal with a lower-than-expected web response rate is relatively simple. With the two-phase 

designs, there are more complications such as the cost and schedule implications of the ftf follow-up due to 

increasing the first-phase sample. 

The simulation consistently demonstrated the well-known shortcomings of the estimator 1̂t  that is 

commonly used in practice, where there is no distinction in respondents by mode during the computation of 

weighting adjustments. Implicit in this estimator is the nonresponse model that assumes equality of means 

among the web respondents, the ftf respondents, and the nonrespondents. This is more restrictive than the 

model of equality of means between the ftf respondents and the nonrespondents that underlies the estimator 

2̂t  and the hybrid estimator ,2
ˆ .dft  Brick et al. (2021) discuss this issue and partially account for imbalances 

in the respondent composition by using an adaptive mode adjustment. In a study involving web with ftf 

follow-up, the Brick et al. (2021) approach may be implemented by adjusting both the web and ftf 

respondents’ weights to retain some of the bias reduction qualities of the adjustment of the ftf respondents 

while reducing variances by adjusting the weights of the web respondents as well. More research is needed 

to explore this approach with ftf surveys. 

We have included discussion of theoretical properties of the estimators in the context of the sample 

designs presented here. However, as with any simulation, we have not examined every possible scenario. 

In designing our simulation, we focused on aspects we believed to be most likely to affect the relative 

performance of the estimators. 

The estimators we presented incorporate a single adjustment, effectively treating the sample as a single 

weighting class. In practice, we would not expect the assumption N FY Y  to hold in general, but this 

assumption might be better approximated within classes, i.e., ,
C CN FY Y  where the subscript C  denotes the 

class. If auxiliary variables can be identified and are available for both respondents and nonrespondents 

such that this nonresponse model holds (at least approximately), then these classes would typically be used 

in computing the weighting adjustments in order to reduce bias. Further research is needed to extend the 

estimators we presented to this situation, using weighting class-specific adjustments for nonresponse, for 

both the hybrid design and the PSU subsampling design. Similarly, calibrated estimators need to be 

evaluated. 

We conclude with a few thoughts about another design we believe warrants further examination ‒ an 

unclustered design in combination with a sample of existing PSUs – where the design that begins with web 

and uses ftf follow-up of the web nonrespondents in the sampled PSUs. One possible application of this 

design is for sample replenishment in a longitudinal study in which the original sample was a clustered 

sample of PSUs. Another application is where trained staff are available only in an existing sample of PSUs. 

In such contexts, one could consider selecting an unclustered sample, attempting the survey by web first, 
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and using ftf follow-up for the web nonrespondents in the unclustered sample that are located within the 

particular PSUs. We believe the extension of the estimator 2̂t  shown in (3.5), with a modification to the 

second term so that the 1  is replaced by the reciprocal of the PSU probability of selection, is suitable in 

this context. Further work is needed to more fully examine this design and the properties of the estimator in 

this context. 
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Supplementary material 
 

In the supplementary material (available at https://doi.org/10.48550/arXiv.2303.13303), we include 

additional results from the simulation. Specifically, this material presents CVs and CI coverage results for 

all comparisons, shows the results of the examination of alternative compositing factors, and gives results 

for the alternative subsampling adjustment in equation (3.4). 

 
Appendix 
 

Table A.1 

Parameters for nonresponse follow-up designs in simulation. 
 

 Total for unclustered sample Total for clustered sample 
Per PSU Overall 

No subsampling for NRFU (Scenario B1A) 
Unclustered sample size 2,500   
# PSUs   50 
# units sampled per PSU   50 
Expected # completes    
  Web  24.0 1,201.0 
  Ftf (in all 50 PSUs)  14.5 725.7 
  Total 1,201.0 38.5 1,926.7 
Two-phase unit subsampling (Scenario B2U) 
Unclustered sample size 0   
# PSUs   50 
# units sampled per PSU   100 
  Nonresponse follow-up subsampling fraction   0.5 
Expected # completes    
  Web  48.0 2,402.1 
  Ftf (in all 50 PSUs)  14.5 725.7 
  Total 0 62.6 3,127.7 
Notes: PSU = primary sampling unit; NRFU = nonresponse followup; Ftf = face-to-face. 

  

https://doi.org/10.48550/arXiv.2303.13303
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Table A.1(continued) 

Parameters for nonresponse follow-up designs in simulation. 
 

 Total for unclustered sample Total for clustered sample 
Per PSU Overall 

Two-phase PSU subsampling (Scenario B2P) 
Unclustered sample size 0   
# PSUs    
  total PSUs in sample   100 
  PSUs subsampled for NRFU   50 
# units sampled per PSU   50 
Expected # completes per PSU    
  Web  24.0 2,402.1 
  Ftf (in only the 50 PSUs subsampled for NRFU)  14.5 725.7 
  Total in subsampled PSUs  38.5  
Expected total # completes 0  3,127.7 
Notes: PSU = primary sampling unit; NRFU = nonresponse followup; Ftf = face-to-face. 

 
Table A.2 

Mean of summary measures of estimators by scenario. 
 

Statistic Scenario 2-phase Unclustered 2-stage df-1 df-2 (opt) df-2 (not opt) 2-phase (PS) 

RB A1A -3.76% -5.36% -4.20% -4.66% -3.73% -3.76% 
 

B1A -0.02% -5.34% -1.78% -3.19% 0.01% -0.01% 
 

C1A -0.03% -5.35% -0.03% -1.79% -0.01% -0.03% 
 

D1A 0.00% -2.19% -0.49% -1.02% 0.01% 0.00% 
 

B2P -0.01% 
 

-1.78% 
   

-0.02% 
B2U -0.07%   -1.82%         

CV A1A 7.31% 4.28% 7.19% 4.74% 5.95% 6.69% 
 

B1A 8.16% 4.27% 7.70% 4.96% 6.82% 7.55% 
 

C1A 7.79% 4.27% 7.79% 5.44% 6.39% 7.15% 
 

D1A 8.51% 5.61% 8.23% 5.98% 7.76% 8.17% 
 

B2P 7.37% 
 

6.39% 
   

7.18% 
B2U 8.15%   7.54%         

RRMSE A1A 12.78% 20.81% 13.25% 14.40% 11.69% 12.27% 
 

B1A 9.12% 20.77% 11.43% 13.58% 7.66% 8.45% 
 

C1A 8.71% 20.75% 8.71% 9.53% 7.16% 8.00% 
 

D1A 9.48% 22.47% 11.03% 12.80% 8.66% 9.11% 
 

B2P 8.18% 
 

10.27% 
   

7.97% 
B2U 9.08%   11.33%         

CI A1A 72.58% 12.86% 75.06% 39.85% 65.24% 68.93%  
B1A 94.96% 12.89% 81.40% 39.46% 94.66% 94.60%  
C1A 94.05% 12.95% 94.05% 63.57% 93.42% 93.43%  
D1A 94.70% 18.48% 83.41% 49.66% 94.36% 94.30%  
B2P 94.72%  75.19%    95.31% 
B2U 94.91%   79.97%         

ABS(RB) A1A 8.85% 20.12% 9.99% 13.16% 8.86% 8.85%  
B1A 0.09% 20.08% 6.57% 11.95% 0.07% 0.08%  
C1A 0.05% 20.06% 0.05% 6.63% 0.05% 0.05%  
D1A 0.06% 21.03% 4.75% 9.81% 0.08% 0.06%  
B2P 0.06%  6.64%    0.07% 
B2U 0.09%   6.64%         

NormCIL A1A 1.16 0.71 1.16 0.76 0.93 1.04  
B1A 1.20 0.71 1.18 0.76 0.99 1.08  
C1A 1.08 0.71 1.08 0.75 0.85 0.96  
D1A 1.23 0.93 1.18 0.85 1.12 1.16  
B2P 1.07  0.95    1.07 
B2U 1.19   1.13         

Notes: For the CIL, values for each variable divided by the mean of the CIL across scenarios. 
RB = relative bias; PS = primary sampling; CV = coefficient of variation; RRMSE = relative root mean squared error; CI = 
confidence interval; ABS (RB) = absolute standardized bias (relative bias). 
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Dealing with undercoverage  
for non-probability survey samples 

Yilin Chen, Pengfei Li and Changbao Wu1 

Abstract 

Population undercoverage is one of the main hurdles faced by statistical analysis with non-probability survey 
samples. We discuss two typical scenarios of undercoverage, namely, stochastic undercoverage and deterministic 
undercoverage. We argue that existing estimation methods under the positivity assumption on the propensity 
scores (i.e., the participation probabilities) can be directly applied to handle the scenario of stochastic under-
coverage. We explore strategies for mitigating biases in estimating the mean of the target population under 
deterministic undercoverage. In particular, we examine a split population approach based on a convex hull 
formulation, and construct estimators with reduced biases. A doubly robust estimator can be constructed if a 
followup subsample of the reference probability survey with measurements on the study variable becomes 
feasible. Performances of six competing estimators are investigated through a simulation study and issues which 
require further investigation are briefly discussed. 

 
Key Words: Auxiliary information; Calibration method; Convex hull; Doubly robust estimator; Inverse probability 

weighting; Model-based prediction; Outcome regression; Propensity score; Split population. 

 
 

1. Introduction 
 

Probability survey samples and design-based inference have been widely used in official statistics and 

many other scientific fields as a standard tool for data collection and analysis. In recent years, however, 

“there has been a wind of change and other data sources are being increasingly explored” (Beaumont, 

2020). One of the major reasons for looking at other data sources is the decreasing response rates for 

probability survey samples, and the seriousness of the undercoverage problem due to nonresponse as well 

as challenges in dealing with it for valid statistical inference. 

Non-probability survey samples are one of the emerging data sources. Their ascent in popularity started 

with surveys based on web panels but the more broad definition extends to any volunteer-based and/or 

convenient samples or even administrative records. Statistical analysis of non-probability survey samples 

faces many hurdles, with the unknown sample selection and participation mechanism and the unknown 

coverage of the target population as the most pressing ones. Non-probability samples are biased and do not 

represent the target population in any tractable way, unlike probability survey samples where the survey 

design information is available. Valid statistical inferences with non-probability samples require additional 

auxiliary information at the population level and suitable inferential frameworks. A popular framework is 

to assume that the required population auxiliary information is available in an existing probability survey 

sample from the same target population. This two-sample framework has been used in several 

methodological developments, including the sample matching method (Rivers, 2007) and mass imputation 

(Kim, Park, Chen and Wu, 2021), the weighted logistic regression for propensity score estimation using the 
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pooled sample (Valliant and Dever, 2011), the pseudo maximum likelihood method (Chen, Li and Wu, 

2020), the pseudo empirical likelihood approach (Chen, Li, Rao and Wu, 2022), and the Bayesian approach 

(Wisniowski, Sakshaug, Ruiz and Blom, 2020), among others. 

Statistical inferences with non-probability samples under the two-sample framework also require another 

critical assumption: the propensity score or the participation probability is positive for all the units in the 

target population. This is the so-called positivity assumption and is the foundation for the validity of several 

estimation methods proposed in the literature; see Section 2 for further discussion. With probability survey 

samples, this is equivalent to having a complete sampling frame without nonresponses. The positivity 

assumption is typically violated in practice for non-probability samples, due to limited geographic coverage 

of the population of interest and/or failing to reach subgroups of the population that are not as easily 

observable through convenient sampling methods. Violations of the positivity assumption lead to 

undercoverage problems and invalid results based on existing estimation methods. Undercoverage is a 

notoriously challenge problem in finite population sampling, and there is an added layer of complications 

with non-probability survey samples; see Elliott and Valliant (2017) for some extended discussion on the 

topic. 

This paper discusses two typical scenarios of undercoverage in practice for non-probability survey 

samples: stochastic undercoverage and deterministic undercoverage. We argue in Section 3 that methods 

developed under the positivity assumption can be applied directly to handle stochastic undercoverage for 

valid inferences. Deterministic undercoverage involves a subpopulation for which certain crucial informa-

tion is missing and no rigorous and valid estimation procedures can be developed under the existing two-

sample framework. In Section 4, we first discuss strategies for mitigating biases due to deterministic under-

coverage using existing methods, and identify conditions under which existing methods lead to valid 

estimation results. We then explore estimation procedures under the split population through a convex hull 

formulation. We show that the correct specification of the outcome regression model is essential to several 

estimation procedures and a doubly robust estimator can be constructed if a followup subsample of the 

reference probability sample with measurements on the study variable can be obtained. Performances of six 

competing estimators of the finite population mean are evaluated through a simulation study and the results 

are reported in Section 5. Brief discussions on issues which require further investigation and some 

concluding remarks are given in Section 6. 

 
2. Assumptions and existing approaches 
 

There have been exciting methodological developments in recent years on valid statistical inference with 

non-probability survey samples. One of the key assumptions used by several authors is the non-zero 

probability of participation in the non-probability survey of all units in the target population. Let =U  

{1, 2, , }N…  be the set of N  labelled units for the target population. Let iy  and ix  be the values of the 

study variable y  and the vector of auxiliary variables x  for the thi  unit in the population. Estimation 
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procedures are developed for a univariate y  with the focus on the population mean 1

=1
=

N

y ii
N y    but 

extensions can be made to other inferential problems similar to the theory of the Horvitz-Thompson 

estimator for design-based inference with probability survey samples. 

Let AS  be the set of An  participating units in the non-probability survey sample and {( , ), }i i Ay ix S  

be the sample dataset. The most crucial feature of non-probability survey samples is the unknown sample 

inclusion or participation mechanism. The recent literature on the topic assumes that the mechanism is 

guided by an underlying stochastic process. Let = ( )i AR I iS  be the indicator variable for unit i  being 

included in the non-probability sample .AS  Let  

 = ( | , ) = ( =1| , ), =1, 2, , .x xA
i A i i i i iP i y P R y i N  …S   

The term “propensity scores” from the missing data literature (Rosenbaum and Rubin, 1983) was used for 
A
i  by Chen et al. (2020), among several other authors. Some authors preferred to use the term 

“participation probabilities” for ;A
i  see, for instance, Beaumont (2020) and Rao (2021), among others. 

 
2.1 Assumptions 
 

The following assumptions have been used in the recent literature on statistical inference with non-

probability survey samples; see, for instance, Wu (2022) and several key references therein. 

A1 The sample inclusion and participation indicator iR  and the study variable iy  are independent 

given the set of auxiliary variables ,ix  i.e., ( ) | .i i iR y x  

A2 All the units in the target population have non-zero propensity scores, i.e., > 0,A
i = 1,i  

2, , .N…  

A3 The indicator variables 1 2, , ,
N

R R R…  are independent given the set of auxiliary variables 

1 2( , , , ).
N

x x x…  

A4 There exists a probability survey sample BS  of size Bn  with information on the auxiliary 

variables x  (but not on )y  available in the dataset {( , ), },B
i i Bd ix S  where 

B
id  are the design 

weights for the probability sample .BS  
 

Assumption A1 is similar to the concept of missing-at-random (MAR) widely used for missing data 

analysis. Assumption A3 is more of a convenient tool for likelihood-based estimation of propensity scores, 

and it is not crucial to the validity of several existing estimating procedures (Wu, 2022). Assumption A4 is 

on the two-sample framework where auxiliary information on the target population is available from an 

existing probability survey sample. It is the basic setting for most estimation procedures proposed in the 

literature on non-probability survey samples. 

Assumption A2 refers to the so-called positivity condition. For probability surveys, this is equivalent to 

conditions that the sampling frames are complete and there are no hardcore nonrespondents. In other words, 

the sampled population is identical to the target population, and statistical inferences based on the survey 
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sample are valid for the target population. In practice, assumption A2 is often violated for non-probability 

survey samples due to the voluntary and convenience nature of survey participation, resulting in 

undercoverage problems and invalid statistical statements on the target population. 

 
2.2 Approaches to inference 
 

There are three main approaches to inference using non-probability survey samples under assumptions 

A1-A4: (i) inverse probability weighting (IPW) based on an assumed model q  for the propensity scores; 

(ii) model-based prediction based on an assumed outcome regression model ;  and (iii) doubly robust (DR) 

procedures using both the estimated propensity scores and the outcome regression model. 

Under assumption A1, the propensity scores = ( =1| ) = ( )A
i i i iP R x x  are a function of the auxiliary 

variables ix  with an unknown form ( ).   Let = ( , )A
i i  x α  be a specified parametric form with unknown 

model parameters .α  Under the two-sample setting where the population auxiliary information is supplied 

by the reference probability sample ,BS  the pseudo log-likelihood function for α  proposed by Chen et al. 

(2020) is given by  

 *( ) = log log(1 ).
1

α
A B

A
B Ai
i iA

i ii

d



 

 
  

 
 
S S

 (2.1) 

The maximum pseudo-likelihood estimator α̂  is the maximizer of *( )α  and can be obtained as the solution 

to the pseudo score equations given by *( ) = ( ) = . U α α α 0  If the logistic regression model is assumed 

for the propensity scores where 1=1 {1 exp( )} ,A
i i   x α  the pseudo score functions are given by  

 ( ) = ( , ) .
A B

B
i i i i

i i

d 
 

 U α x x α x
S S

 (2.2) 

The estimated propensity scores are obtained as ˆˆ = ( , ),A
i i  x α .AiS  The inverse probability weighted 

(IPW) estimator of y  is computed as  

 IPW

1
ˆ = ,

ˆ ˆ
A

i
y AA

i i

y

N




S

 (2.3) 

where 1ˆ ˆ= ( )
A

A A
ii

N  

 S
 is the estimated population size. The estimator IPW

ˆ
y  is consistent under the joint 

randomization of the propensity score model q  and the probability sampling design p  for the reference 

probability sample .BS  

The model-based prediction approach to inference also relies heavily on the first assumption. Under 

assumption A1, the conditional distribution of y  given x  for units in the non-probability sample AS  (i.e., 

=1)R  is the same as the conditional distribution of y  given x  for units in the target population. It allows 

a valid model on y  given x  to be built using the non-probability sample dataset {( , ), }.i i Ay ix S  Under 

the semiparametric outcome regression model   as described in Wu (2022) with the first conditional 

moment specified as ( | ) = ( , ),i i iE y m x x β  the model parameters β  can be consistently estimated by β̂  
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using the non-probability sample. Let * ˆ= ( , )i iy m x β  be the fitted value of y  for unit AiS  or predicted 

value of y  for unit .AiS  A general form of the model-based prediction estimator of y  is computed as  

 *
MI

1
ˆ = ,

ˆ B

B

B
y i i

i

d y
N




S

 (2.4) 

where ˆ = .
B

B B
ii

N d
 S

 The subscript “MI” refers to “Mass Imputation”, since the estimator is constructed 

based on the reference probability sample BS  with the unobserved y  treated as 100% missing for the sample 

and imputed for all the units in the sample. The estimator MI
ˆ

y  is consistent under the joint randomization 

of the outcome regression model   and the probability sampling design p  for .BS  

The doubly robust estimator of y  is computed by using the estimated propensity scores ˆˆ = ( , )A
i i  x α  

and fitted or predicted values * ˆ= ( , )i iy m x β  and is given by (Chen et al., 2020)  

 
*

*
DR

1 1
ˆ = .

ˆ ˆˆ B

A B

Bi i
y i iAA

i ii

y y
d y

N N


 


 

S S

 (2.5) 

The estimator DR
ˆ

y  is consistent under the probability sampling design p  for BS  and one of the correctly 

specified models, q  or .  

 
3. Two practical scenarios with undercoverage 
 

It is known in design-based inference that there exists an unbiased estimator of y  in a subclass of the 

so-called Godambe class of linear estimators if and only if the first order inclusion probabilities are non-

zero for all the units in the finite population (Wu and Thompson, 2020). For probability survey samples, 

zero-inclusion probabilities are the consequences of incomplete sampling frames and nonrespondents, 

leading to undercoverage problems for the target population. 

The positivity assumption A2 which states that = ( =1| , ) > 0A

i i i iP R y x  for all i  in the target population 

is indeed the same condition for the validity of the IPW estimator, which is adapted from the Horvitz-

Thompson estimator for probability survey samples, under the propensity score model .q  The positivity 

assumption used in missing data analysis and causal inference is not an issue since the propensity scores are 

only defined for units in the sample. For non-probability survey samples, assumption A2 is often violated 

in practice for two major reasons: incomplete sampling frame(s) and voluntary participation. The sampling 

frame(s) used for selecting a non-probability survey sample is typically a convenient list such as a web 

panel, and it is almost surely incomplete for the target population. Participation in a non-probability survey 

sample is voluntary and nonresponse and refusals are an inherent part of the recruiting process. 

Let U  be the set of N  units for the target population. Let 0 = { |i iU U  and > 0}.A
i  It is apparent that 

0 U U  and 0 U U  when assumption A2 is violated. Let 1 = { |i iU U  and = 0}.A
i  It follows that 

0 1= .U U U  Let 0 1=N N N  where 0N  and 1N  are the sizes of the two subpopulations 0U  and 1.U  Let 

0

1
0 0=y ii

N y 

 U
 and 

1

1
1 1= .y ii

N y 

 U
 We have 0 0 1 1= ,y y yW W    where =k kW N N  for = 0,1.k  If 
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AS  is a sample from 0 ,U  and ˆ yA  is an “unbiased estimator” based on ,AS  we usually have 0
ˆ( ) = ,yA yE    

and the bias of using ˆ yA  to estimate y  is given by  

 1 0 1
ˆ( ) = ( ).yA y y yE W       

The two major factors for the amount of bias are (i) the size of the subpopulation (i.e., 1)N  not represented 

by the sample ;AS  and (ii) the difference (i.e., 0 1)y y   between all potential participants of the sample 

and those who have no chances to be included in the sample. We discuss two practical scenarios for 

undercoverage problems and their implications on inference. 

 
3.1 Stochastic undercoverage 
 

The first scenario is termed as stochastic undercoverage, where the non-probability sample AS  is 

selected from a subpopulation 0U  and the 0U  itself can be viewed as a random sample from U  (Chen, 

2020; Wu, 2022). A typical example for this scenario is when the contact list of an existing large probability 

survey sample is used to recruit participants for the non-probability survey sample. Another example is 

when the participants for the non-probability sample are selected from a very large commercial panel, and 

the composition of the panel mimics the distributions of the target population in terms of key demographical 

variables. One can argue that it falls into the scenario of stochastic undercoverage. A less obvious example 

is a convenient sample of respondents recruited from shoppers at local shopping centers over certain period 

of time. If the target population consists of certain types of consumers in the region and there is a belief that 

such consumers have a non-trivial chance to visit one of the shopping centers during the time period, then 

it is also a case of stochastic undercoverage. 

Let =1iD  if 0iU  and = 0iD  otherwise, = 1, 2, , .i N…  Noting that = ( ),i AR I iS  we have  

 ( = 1| , , = 1) > 0i i i iP R y Dx   and  ( = 1| , , = 0) = 0i i i iP R y Dx   

for = 1, 2, , .i N…  If the subpopulation 0U  is formed with an underlying stochastic mechanism such that 

( = 1| , ) > 0i i iP D yx  for all ,iU  we have  

 = ( =1| , ) = ( =1| , , =1) ( =1| , ) > 0A
i i i i i i i i i i iP R y P R y D P D y x x x   

for = 1, 2, , .i N…  The positivity assumption A2 is indeed satisfied under scenarios of stochastic 

undercoverage, and estimation procedures developed under the assumption can be used directly to provide 

valid inferences. A practical issue with stochastic undercoverage is how to specify a model for propensity 

scores due to the two-phase arguments involving iR  and .iD  See Section 5 for further discussion. 

 
3.2 Deterministic undercoverage 
 

Many non-probability samples are volunteer-based convenience samples, and the potential participants 

often possess certain characteristics which are unique to the group. For instance, if participation in a survey 
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requires the use of a computer and access to the Internet, then those who do not have Internet access or 

never used a computer will have no chance to be included. The severity of undercoverage in this case 

depends largely on the proportion of the population being excluded. 

The subpopulation 1 = { |i iU U  and = 0}A
i  may be conceptually defined through an accessibility 

function. Let ( )i x  be a function of ix  that measures the accessibility of unit i  to the survey. An individual 

with a small value of ( )i x  will have (practically) no access to the survey. More formally, we have 

= ( | , ) = 0A
i A i iP i y  xS  if ( )i c x  for an unknown cut-off value c  on accessibility. The two subpopu-

lations can alternatively be defined as  

 0 = { |i iU U   and  ( ) > }i c x   and  1 = { |i iU U   and  ( ) }.i c x  (3.1) 

The truncation on ( )i x  to exclude certain units from the non-probability survey can be viewed as a 

deterministic process, which motivates the use of the term “deterministic undercoverage”. An overly 

simplified example is when ix  represents the “age” of unit i  and all young individuals (i.e., ix c  for a 

chosen )c  are excluded from the survey. 

If the two subpopulations 0U  and 1U  can be clearly identified, valid statistical inferences can be claimed 

for the subpopulation 0.U  Extending the results to the target population U  may be possible for certain 

scenarios but has the risk of overstretching with unrealistic assumptions. 

 
4. Strategies for dealing with deterministic undercoverage 
 

Deterministic undercoverage has similarities to frame and nonresponse undercoverage for probability 

survey samples. There are two major difficulties with inferences on the target population: the identification 

of the two subpopulations 0U  and 1U  and the lack of information on 1.U  In this section, we discuss 

approaches to mitigating biases of estimation due to the undercoverage and potential issues with these 

methods. 

 
4.1 Calibrated IPW approach 
 

Under the positivity assumption A2 and the specified parametric form = ( , ),A
i i  x α  the pseudo score 

functions given by 
*( ) = ( ) U α α α  from (2.1) can be replaced by a set of unbiased estimating equations 

(Chen et al., 2020; Wu, 2022)  

 ( ) = ( , ) ( , ) ( , ),
A B

B
i i i i

i i

d 
 

 G α h x α x α h x α
S S

 (4.1) 

where ( , )ih x α  is a user-specified vector of functions with the same dimension of .α  If we let 

( , ) = ( , ) ,h x α x x α  the estimating functions given in (4.1) reduce to  

 ( ) = .
( , )

A B

Bi
i i

i ii

d
 

 
x

G α x
x αS S

 (4.2) 
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Note that ( ) =G α 0  becomes the calibration equations ( , ) =
A B

B
i i i ii i

d
  x x α x
S S

 with the population 

totals 
=1

N

ii x  estimated by the probability sample .BS  Let ˆ Cα  be the solution to ( ) = ,G α 0  where the 

subscript “ C ” indicates “Calibration”. Let ˆˆ = ( , ).C
i i C  x α  It is assumed that the first component of x  is 1 

so that  

 1ˆ ˆˆ= ( ) = = .
A B

A C B B
C i i

i i

N d N 

 
 
S S

  

The calibrated IPW estimator of y  is computed as 1
IPW

ˆˆ ˆ= ( ) .
A

C A C
y C i ii

N y 

 S
 The term “Calibrated 

IPW” was first used by Chen (2020). The idea was discussed by several other authors, including Rao (2021). 

Under deterministic undercoverage, the parametric form with the restriction = ( , ) > 0A
i i  x α  for all i  

is clearly misspecified. As a consequence, the conventional IPW estimator IPW
ˆ

y  given by (2.3) is no longer 

consistent. The calibrated IPW estimator IPW
ˆC

y  can reduce the bias if the outcome regression model is linear, 

i.e., ( | ) = .i i iE y
x x β  The calibrated IPW estimator under this scenario is an approximately model-unbiased 

prediction estimator (with the estimated population totals from the probability sample )BS  since  

 
1 1 1

= = ( ).
ˆ ˆ ˆˆ ˆ

B

C C B

A A B

i i
p p p i i yA A

i i ii iC C

y
E E E E d E

N N N
  

   

           
     
          

  
x

β x β
S S S

   

The approximate equal sign in the last step amounts to estimating N  by ˆ .BN  

A question of both practical and theoretical interest is whether the solution to ( ) =G α 0  exists, where 

( )G α  is given in (4.2). The answer depends on the chosen parametric form of ( , ).i x α  Under a generalized 

linear model with = ( | ) = ( ),i i i iE R g x x α  where ( )g   is the so-called (monotone increasing) inverse link 

function, we have  

 
2

( )
( ) = ( ) = ,

{ ( )}
A

i
i i

i i

k

g







x α
H α G α x x

α x αS

  

where ( ) = ( ) > 0.k t dg t dt  The matrix ( )H α  is negative definite, as long as the data matrix { , }i Aix S  is 

of full rank, and the usual Newton-Raphson iterative procedures for solving ( ) =G α 0  is guaranteed to 

converge. 

The calibrated IPW estimator can also be constructed when a linear regression model is not appropriate 

but there are sufficient grounds to use a nonlinear model in the form of ( | ) = ( , )i i iE y m x x β  with a known 

function ( , ).m    For instance, if iy  is a binary variable, then ( , )im x β  no longer has a linear form but may 

be chosen as the inverse logit function. Let β̂  be an estimator of β  obtained by using suitable estimation 

method and the non-probability sample dataset {( , ), }.i i Ay ix S  Let ˆˆ = ( , ).i im m x β  The calibrated 

propensity scores are computed as 
1ˆ = ( ) ,C C

i iw 
 where the calibrated weights 

C
iw  are obtained in two steps: 

(1) Compute the initial propensity scores ˆˆ = ( , ),O

i i  x α ,AiS  where α̂  is the solution to the pseudo 

score equations from (2.2). Let 
1ˆ= ( ) ,O O

i iw  
.AiS  
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(2) Obtain the model-calibrated weights ,C
iw AiS  by minimizing the distance measure =D  

2{ }C O O

A
i i ii

w w w


 S
 subject to constraints  

 ˆ=
A

C B
i

i

w N


S

  and  ˆ ˆ= .
A B

C B
i i i i

i i

w m d m
 
 
S S

 (4.3) 

 

The constraints used in (4.3) follow the general model-calibration procedures of Wu and Sitter (2001). 

The calibrated IPW approach uses the outcome regression model to mitigate the potential bias of the 

IPW estimator with deterministic undercoverage. When a linear outcome regression model can be justified, 

the calibration step does not involve estimation of the model parameters β  and hence leads to a more robust 

estimator than the model-based prediction estimator. The model-calibrated IPW estimator under a nonlinear 

outcome regression model requires the estimator β̂  which is obtained by fitting the model with the non-

probability sample. There is a risk of extrapolation in computing ˆˆ = ( , )i im m x β  for .BiS  See Section 4.2 

for further discussion. 

 
4.2 Model-based prediction approach 
 

A common scenario for deterministic undercoverage is that units lacking of certain features have no 

access to the non-probability survey, and the features are reflected in values of certain auxiliary variables. 

In practice, the first step for analyzing a non-probability survey dataset is to check the (unweighted) 

empirical marginal distributions of auxiliary variables which are potentially related to survey participation, 

and compare them to the weighted sample distributions of the variables using the reference probability 

sample. In particular, the observed range (or the support) of each auxiliary variable from the non-probability 

sample should be compared to those from the probability sample. 

Model-based prediction approach through mass imputation relies on a conditional model of y  given .x  

While the conditional moment structure ( | ) = ( , ),i i iE y m x x β  which is assumed for the target population, 

most likely holds for any samples, there are two problematic consequences with fitting the model using a 

sample which has a limited range in the observed auxiliary variables. The first is unreliable estimation of 

the model parameters with inflated variances for the estimators. The second is the danger of extrapolation 

in using the fitted model for prediction. These observations have been sufficiently documented in the 

existing literature on regression modelling and analysis. Tan (2007) expressed concerns on extrapolation in 

using a fitted outcome regression model with a biased sample in the construction of doubly robust estimators 

for missing data analysis and causal inference. 

If the non-probability sample includes all the important auxiliary variables which are required for 

characterizing the participation behaviour and the outcome regression, and if the observed ranges of the 

auxiliary variables are similar to those from the reference probability sample, a model-based prediction 

estimator may be preferred over the IPW estimator in the presence of deterministic undercoverage. The 

calibrated IPW estimator discussed in Section 4.1 is especially attractive under a linear regression model 
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since estimation of the model parameters β  is not needed and therefore the two issues with model-based 

prediction estimators, namely, the inflated variances for parameter estimates and the danger of extrapolation, 

become non-issues. 

 
4.3 The split population approach 
 

The conceptually defined two subpopulations 0U  and 1U  play a central role in the discussion of 

deterministic undercoverage. The non-probability sample AS  can be viewed as coming from 0U  and 

satisfying the positivity assumption. It is tempting to develop tools to separate units in the reference 

probability sample BS  that belong to 0U  or 1,U  and to further develop strategies for dealing with the split 

population. 

The accessibility function ( ) x  introduced in Section 3.2 is a useful tool for the task. Suppose that 

( ) x  is a convex function of x  and 0U  and 1U  are defined in (3.1) with an unknown threshold c  that 

separates units from the two subpopulations. Let kH  be the convex hull generated by { : }i kix U  for 

= 0,1.k  It follows that ( ) > c x  if 0x H  and ( ) c x  if 1.x H  There are no overlaps between 0H  and 

1.H  

Let AH  be the convex hull formed by { : }.i Aix S  We have 0A
H H  and the difference between the 

two becomes negligible when An  is large. Similarly, the convex hull BH  formed by { : }i Bix S  approxi-

mates 0 1H H  when Bn  is large since BS  represents the entire target population .U  The two subpopu-

lations 0U  and 1U  can be identified through a split among units in the reference probability sample =BS  

,0 ,1,B BS S  where  

  ,0 = andB B j Aj j xS S H   

and ,1 ,0= \ .B B BS S S  Note that verifying j Ax H  is equivalent to checking if there exists a sequence of 

constants 0ia   for AiS  such that  

 = 1
A

i
i

a


S

  and  = .
A

i i j
i

a

 x x
S

  

It can be done with existing computational packages. The sizes 0N  and 1N  of the two subpopulations 0U  

and 1U  can be estimated by  

 
,

ˆ = , = 0,1,
B k

B B
k i

i

N d k


S

  

which satisfy 0 1
ˆ ˆ ˆ= .B B BN N N  

Kim and Rao (2018) described an idea on splitting the population using a modified nearest neighbour 

method. They defined ,0BS  as the set of units in BS  which have a “close neighbour” in .AS  More formally, 

they define  

  ,0 = and < ,min
A

B B i j
i

j j


 x x ε
S

S S   
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where > 0ε  is a pre-specified tolerance measuring similarities in x  among units. Choosing a value for ,ε  

however, is difficult in practice and the idea has not been developed further in the literature. 

 
4.4 Estimation for the split population 
 

Estimation for the split population involves separate treatments for 0U  and 1.U  Note that 0 0=y yW    

1 1.yW   Estimation procedures developed under the assumptions A1-A4 can be applied directly for the 

estimation of 0y  by treating ,0BS  as the reference probability sample. Let 0 0 1 1
ˆ ˆˆ ˆ ˆ= ,y y yW W    where 

ˆ ˆ ˆ= B B
k kW N N  for = 0,1.k  The severity of the deterministic undercoverage from using 0

ˆ
y  as an estimator 

for y  is partially reflected by the value of 1
ˆ .W  When 1Ŵ  is small as compared to 0

ˆ ,W  we may ignore the 

issue with undercoverage and proceed with estimation under the assumption that > 0A
i  for all .i  

It is apparent that valid estimation of 1y  requires additional information on y  since the only relevant 

data in the two samples AS  and BS  on the subpopulation 1U  are the auxiliary information ,1{ , }i Bix S  from 

the split reference probability sample. In the absence of any additional information on y  for units in 1,U  

we propose a hybrid estimator of y  as follows. We first estimate the propensity scores under the assump-

tion that > 0A
i  for 0.iU  Let 0 0

ˆˆ = ( , )A
i i  x α  under a parametric propensity score model = ( , ),A

i i  x α  

where 0α̂  is the pseudo maximum likelihood estimator of .α  If a logistic regression model is used, then 0α̂  

is the solution to  

 
,0

( , ) = .B

A B

i i i i
i i

d 
 

 x x α x 0
S S

  

A calibration-based estimator of α  in the form of (4.2), with BS  replaced by ,0 ,BS  can also be used. In this 

latter case we have 1
0 0 0
ˆ ˆˆ= ( ) =

A

A A B
ii

N N 

 S
 if x  contains 1 as the first component. Let ˆˆ = ( , ),i im m x β  

where β̂  is an estimator of β  obtained by using suitable estimation method and the non-probability sample 

dataset {( , ), }i i Ay ix S  under the assumed outcome regression model ( | ) = ( , ).i i iE y m x x β  The doubly 

robust estimator of 0y  is computed as  

 
,0

0,DR

00 0

ˆ1 1
ˆ ˆ= .

ˆ ˆˆ
A B

Bi i
y i iAB B

i ii

y m
d m

N N


 


 

S S

 (4.4) 

Note that we used 0
ˆ BN  instead of 0

ˆ AN  in the first term. It leads to a simplified form of the hybrid estimator 

given below. Let  

 
,1

1,REG

1

1
ˆ ˆ=

ˆ
B

B
y i iB

i

d m
N




S

 (4.5) 

be the model-based prediction estimator for 1.y  A hybrid estimator of 0 0 1 1=y y yW W    is constructed 

by using the two estimators given in (4.4) and (4.5):  

 HYB 0 0, DR 1 1, REG

0

ˆ1 1ˆ ˆˆ ˆ ˆ ˆ= = .
ˆ ˆˆ

A B

Bi i
y y y i iAB B

i ii

y m
W W d m

N N
  

 


  

S S

 (4.6) 
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The form of HYB
ˆ

y  is similar to the doubly robust estimator DR
ˆ

y  given in (2.5), with the major difference 

of estimating the propensity scores through the split population. 

The hybrid estimator does not have the double robustness interpretation and has the risk of extrapolation 

in estimating 1y  using the model-based prediction estimator 1, REG
ˆ .y  Suppose that the split of BS  into ,0BS  

and ,1BS  using the convex hull formulation on 0U  and 1U  is done correctly, and the propensity score model 

on > 0A
i  for 0iU  is correctly specified, then the hybrid estimator HYB

ˆ
y  has the asymptotic expression  

 *
HYB 0 0 1 1

ˆ = (1),y y pW W m o      

where 
1

* 1 *
1 1= ( , )ii

m N m

 x β
U

 and *β  satisfies * 1 2ˆ = ( ),p AO nβ β  regardless of the correctness of the 

outcome regression model (Chen, 2020). The potential bias of the hybrid estimator depends largely on the 

model-based prediction estimator 1, REG
ˆ

y  for estimating 1,y  and the estimator has the advantage of the 

doubly robust estimator 0,DR
ˆ

y  for estimating 0.y  

Under ideal situations where it is possible to take a small subsample from ,1BS  and obtain measurements 

on y  for the selected units, a rigorous development on estimation methods for 1,y  and consequently for 

,y  can be carried out without much difficulties. Let 
(2)

2 ,1{( , ), }B

i i By d iS  be the additional dataset where 
(2)
,1BS  is a subsample from ,1BS  and 2

B
id  are the sampling weights for the subsample conditional on the given 

,1.BS  Let β  be the estimated parameters for the outcome regression model using the combined dataset 
(2)
,1{( , ), }.i i A By i x S S  Let = ( , ).i im m x β  A model-assisted difference estimator (Wu and Sitter, 2001) for 

the subpopulation mean 1y  can be constructed as  

 
( 2)

,1,1

1,SS 2
ˆ1 1

1 1
ˆ = ( ) ,

ˆ ˆ
BB

B B B
y i i i i i iB B

ii

d d y m d m
N N




   
SS

 (4.7) 

where the subscript “SS” indicates “subsample”. This estimator is approximately unbiased for 1y  under 

the survey designs for BS  and 
(2)
,1BS  regardless the correctness of the outcome regression model. The final 

estimator of y  can then be computed as SS 0 0, DR 1 1, SS
ˆ ˆˆ ˆ ˆ= .y y yW W    The estimator SS

ˆ
y  is doubly robust 

and is given by  

 
( 2)

,1

SS 2

0

1
ˆ = ( ) .

ˆ ˆ
A BB

B B Bi i
y i i i i i iAB

i iii

y m
d d y m d m

N


 

  
   

  
  


 

S SS

 (4.8) 

 
5. Simulation studies 
 

We evaluate the finite sample performances of several estimation strategies with deterministic under-

coverage. Additional simulation results under stochastic undercoverage can be found in Chen (2020). We 

consider a finite population of size =N 20,000, with three auxiliary variables 1,x 2x  and 3.x  Independent 

copies of 1 2 3( , , )i i ix x x  are generated from 1 (0,1),ix N∼ 2 Exp(1),ix ∼  and 3ix ∼ Bernoulli (0.5). The 

response variable iy  follows the regression model,  
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 2
1 2 3 1= 3 , =1, 2, , ,i i i i i iy x x x x i N      …  (5.1) 

where   is the coefficient for the high order term 2
1ix  with values representing the degree of departure from 

the standard linear regression model. The error terms i  are generated from (0,1)N  and the value of   is 

chosen to control the correlation coefficient   between the response iy  and the linear predictor 13 ix   
2

2 3 1.i i ix x x   The simulation results reported in this section correspond to = 0.5. The parameter of 

interest is the finite population mean .y  

The accessibility function ( ) x  is specified through an inverse logit function involving the three 

auxiliary variables,  

 1 2 3

( )
log = 1 0.6 0.5 0.8 , = 1, 2, , .

1 ( )
i

i i i

i

x x x i N
 

   
 

x

x
…   

Note that the inverse logit function is not a convex function. However, it can be shown that the function is 

convex within the subspace { : ( ) <0.5},x x  which is sufficient for our proposed split population approach 

with the choices = 0.00, 0.20 and 0.40 used in the simulation. Let ( )Q   be the th100  sample quantile of 

1 2{ ( ), ( ), , ( )}.
N

  x x x…  The deterministic split of the population is decided by the measure on accessi-

bilities. Let = {1, 2, , }N…U  and  

 0 = { |i iU U   and  1( ) ( )}, = { |i Q i i  x U U   and ( ) < ( )}.i Q  x   

We set = 0A
i  if 1,iU  and the size of the subpopulation 1U  is given by 1 =N N  (i.e., 1 = ).W   The size 

of the subpopulation 0U  is given by 0 1= .N N N  

The true propensity scores A
i  for 0iU  are generated from a logistic regression model,  

 1 2 3log = 0.3 0.3 0.5 ,
1

A
i

i i iA
i

x x x





 
   

 
  

where the intercept   is chosen such that 0

=1
= ,

N A
i Ai

n  where An  is the planned size of the non-probability 

survey sample .AS  We use the Poisson sampling method with inclusion probabilities 
A
i  to select units for 

AS  from the subpopulation 0.U  The actual sample size of AS  varies from sample to sample with An  as the 

expected size. 

The reference probability sample BS  with a fixed sample size Bn  is drawn from the entire finite 

population U  by the randomized systematic PPS sampling method; see Section 4.4.2 of Wu and Thompson 

(2020) for further detail. The inclusion probabilities 
B
i  are proportional to 2= ,i iz c x  where the constant 

c  is chosen to control the variation of the survey weights such that = 50.max min ii i iz z UU  

We consider six estimators of the population mean y  discussed in Sections 2 and 4, plus the naive 

estimator of the sample mean of the non-probability sample, and evaluate their performances through 

repeated simulation samples: 

(1) ˆ ,yA  the naive estimator of the sample mean of the non-probability sample ;AS  

(2) IPW
ˆ ,y  the IPW estimator given in (2.3);  
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(3) MI
ˆ ,y  the model-based prediction (mass imputation) estimator given in (2.4);  

(4) DR
ˆ ,y  the doubly robust estimator given in (2.5);  

(5) IPW
ˆ ,C

y  the calibrated IPW estimator described in Section 4.1;  

(6) HYB
ˆ ,y  the hybrid estimator given in (4.6) introduced in Section 4.4;  

(7) SS
ˆ ,y  the estimator specified in (4.8) using a subsample (2)

,1BS  from ,1.BS  

 

For each iteration of the simulation with samples AS  and ,BS  the working propensity score model for 

the estimators IPW
ˆ

y  and DR
ˆ

y  is chosen as 0 1 1 2 2 3 3log{ (1 )} = ,A A
i i i i ix x x          the working 

outcome regression model for MI
ˆ

y  and DR
ˆ

y  as well as HYB
ˆ

y  uses 0 1 1 2 2 3 3= .i i i i iy x x x      ε  The 

splitting of BS  into ,0BS  and ,1BS  is done through the convex hull method. The rates of correct identification 

of units belonging to 0U  and 1U  are higher than 97% for all the settings used in the simulation. The 

subsample (2)
,1BS  is selected from ,1BS  using simple random sampling without replacement and the sampling 

fraction is fixed at 20%. Noting that for =Bn 500 used in the simulation, the size of the subsample is around 

20 for 1= =W 0.2 and 40 for = 0.4. 

The amount of misspecification of the working regression model is reflected by the value of   used in 

the true model (5.1) for generating the finite population 1 2 3{( , , , ),i i i iy x x x = 1, 2, , }.i N…  The deterministic 

undercoverage is represented by the value of 1= .W  We consider 3 3 = 9  different settings for the 

simulation, with the true values of the population and the subpopulation means 0 1( , , )y y y    given in 

Table 5.1. The setting ( = 0.0, = 0.0) represents the ideal situation of no model misspecifications and no 

issues with undercoverage. 

 
Table 5.1 

Population and Subpopulation Means ,1 ,0( , , ).y y y    
 

  = 0.0 = 0.2 = 0.4 

= 0.0 (4.53, NA, NA) (4.53, 4.49, 4.72) (4.53, 4.53, 4.52)  

= 0.5 (4.03, NA, NA) (4.03, 4.06, 3.91) (4.03, 4.06, 3.97) 

= 1.0 (3.52, NA, NA) (3.52, 3.63, 3.11)  (3.52, 3.59, 3.42)  

 
The performance of an estimator ˆ y  is measured by the simulated Relative Bias (RB%, in percentage) 

and the simulated Mean Squared Error (MSE), which are computed as  

 RB%
( )

=1

ˆ1
= 100 ,

bB
y y

b yB

 



 
  
 
   MSE

( ) 2

=1

1
ˆ= ( ) ,

B
b

y y
bB

    

where 
( )ˆ b
y  is the estimator ˆ y  computed from the thb  simulation samples. Results for =An 1,000 and 

=Bn 500 based on =B 5,000 simulation runs are presented in Table 5.2. The values of MSE are multiplied 

by 100. 
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Table 5.2 

Simulated RB% and MSE 2( 10 )  of Seven Estimators of .y  
 

 Estimator = 0 = 0.2 = 0.4 

RB% MSE RB% MSE RB% MSE 
= 0.0 ˆ

yA  17.23 61.90 18.47 70.99 21.79 98.48 

IPW
ˆ

y  -0.09 1.67 0.00 1.39 0.66 1.64 

MI
ˆ

y  -0.03 1.55 -0.04 1.45 0.36 1.70 

DR
ˆ

y  -0.01 1.59 0.00 1.47 0.39 1.75 

IPW
ˆC

y  0.00 1.58 -0.01 1.49 0.49 2.37 

HYB
ˆ

y  0.00 1.59 0.04 1.48 0.42 1.72 

SS
ˆ

y  NA NA -0.03 4.83 0.08 7.14 

= 0.5 ˆ
yA  16.91 47.40 23.56 91.03 27.82 126.59 

IPW
ˆ

y  -0.13 2.19 3.44 3.60 4.16 4.77 

MI
ˆ

y  2.82 2.88 3.71 3.81 4.83 5.75 

DR
ˆ

y  -0.10 2.02 3.39 3.57 4.71 5.73 

IPW
ˆC

y  0.01 1.91 3.85 4.10 5.79 8.11 

HYB
ˆ

y  -0.02 2.03 2.14 2.57 3.66 4.31 

SS
ˆ

y  NA NA -1.10 6.61 -0.65 9.39 

= 1.0 ˆ
yA  16.53 35.44 30.17 114.40 35.68 159.43 

IPW
ˆ

y  -0.19 3.34 7.87 10.08 8.70 12.19 

MI
ˆ

y  6.48 7.58 8.53 11.14 10.63 16.81 

DR
ˆ

y  -0.23 3.35 7.76 9.84 10.35 16.39 

IPW
ˆC

y  0.03 2.83 8.82 11.99 12.69 23.80 

HYB
ˆ

y  -0.04 3.45 4.85 5.67 7.91 10.96 

SS
ˆ

y  NA NA -2.49 11.79 -1.60 16.17 

 
The simulation results can be summarized as follows. The naive estimator ˆ yA  using the sample mean 

from the non-probability sample is biased under all the settings and is not included in any further 

comparisons with other six estimators. (1) All five estimators (the sixth estimator SS
ˆ

y  using a subsample 

is not applicable) under the setting of no model misspecification and no undercoverage (i.e., = 0.0 and 

= 0.0) perform well with no biases and similar MSEs; (2) Without issues of undercoverage (i.e., = 0.0), 

the model-based prediction estimator MI
ˆ

y  starts to show biases as the outcome regression model is 

misspecified (e.g., RB% = 6.48 for = 1.0), while the other four estimators show no biases with similar 

small MSEs, including the hybrid estimator HYB
ˆ

y  under the split population approach; (3) The estimators 

MI
ˆ ,y DR

ˆ ,y HYB
ˆ

y  using the correctly specified outcome regression model (i.e., = 0.0) show no biases and 

similar small MSEs in the presence of undercoverage (i.e., = 0.2 or 0.4). The calibrated IPW estimator 

IPW
ˆ ,C

y  which requires a linear outcome regression model to justify, also shows no biases with 

undercoverage; (4) When the outcome regression model is misspecified (i.e., = 0.5 or 1.0) and there is an 

undercoverage problem (i.e., = 0.2 or 0.4), all five estimators (excluding the last one SS
ˆ ),y  which rely 

on the correctness of one of the two working models, demonstrate clear biases and deteriorated MSEs; (5) 
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The estimator SS
ˆ ,y  which uses additional information on y  through a subsample from ,1,BS  shows 

negligible biases for all scenarios but the values of MSE are larger than several other estimators. Part of the 

reasons is the very small size of the subsample (2)
,1BS  used in the simulation since the estimator SS

ˆ
y  involves 

the key component 1,SS
ˆ

y  given in (4.7), and the latter has variance depending on the size of (2)
,1 .BS  

 
6. Concluding remarks 
 

The undercoverage problem with non-probability survey samples is closely attached to issues with 

modelling on propensity scores, and parametric models usually fail without the positivity assumption. In 

practice, most non-probability samples do not represent the entire target population, rendering propensity 

score based weighting methods invalid under such scenarios. Model-based prediction approach is sensitive 

to model specification, and the quality of the model on the response variable y  depends largely on the 

auxiliary variables which are available in both the non-probability sample and the reference probability 

sample. If the analyst is confident with the prediction model, the model-based prediction approach can be 

reliable in dealing with undercoverage problems when the support (i.e., the range) of each auxiliary variable 

in the non-probability sample matches the one from the probability sample. Otherwise there is a risk of 

extrapolation leading to biased estimation. From the theoretical view point, the deterministic undercoverage 

is a consequence of the violation of the positivity assumption A2. It leads to issues with fitting the outcome 

regression model using the non-probability sample data since ( | , = 1) = ( | )E y R E yx x  implicitly requires 

( = 1) 0P R   even if A1 holds. This is why the calibrated IPW estimator may have some advantages under 

a linear outcome regression model since the estimation of the model parameters β  is not required. 

The undercoverage problem is intrinsically related to the sample selection and participation mechanism 

for non-probability samples, which can be further complicated by the so-called non-ignorable selection bias. 

Dealing with non-ignorable selection bias for non-probability samples is itself an active research topic and 

has been investigated in several recent publications; see, for instance, Andridge, West, Little, Boonstra and 

Alvarado-Leiton (2019), Boonstra, Little, West, Andridge and Alvarado-Leiton (2021), and West, Little, 

Andridge, Boonstra, Ware, Pandit and Alvarado-Leiton (2021), among others. Sensitive analysis and 

quantitative measures on selection bias developed in these papers can be valuable tools for dealing with 

undercoverage problems. 

The split population approach has been used in survey sampling to analyze and combine data from 

different sources; see, for instance, Zhang (2019) for further discuss and related references. Our proposed 

convex hull formulation in splitting the population into two subpopulations shows some potential in dealing 

with undercoverage problems, but a complete removal of biases in estimation after the split requires 

additional information on one of the subpopulations. The modified nearest neighbour method of Kim and 

Rao (2018) for splitting the target population seems to be a promising idea and may deserve some conscious 

efforts in future research. 
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Another important topic which is not addressed in the paper is on variance estimation under the strategies 

discussed in the paper. We are currently undertaking a separate research project on variance estimation and 

we hope to report our progresses in the near future. 

The literature on missing data and causal inference includes methodological developments in dealing 

with the impact of very small but positive estimated propensity scores on the estimation of the main 

parameters through inverse probability weighting. Some of these developments may be useful for addressing 

undercoverage problems with non-probability samples, such as the stable weights approach of Zubizarreta 

(2015). It is hoped that discussions presented in this paper will add insights to the growing field of data 

integration and combining data from multiple sources. 
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Bayesian small area models under inequality constraints 
with benchmarking and double shrinkage 

Balgobin Nandram, Nathan B. Cruze and Andreea L. Erciulescu1 

Abstract 

We present a novel methodology to benchmark county-level estimates of crop area totals to a preset state total 
subject to inequality constraints and random variances in the Fay-Herriot model. For planted area of the National 
Agricultural Statistics Service (NASS), an agency of the United States Department of Agriculture (USDA), it is 
necessary to incorporate the constraint that the estimated totals, derived from survey and other auxiliary data, are 
no smaller than administrative planted area totals prerecorded by other USDA agencies except NASS. These 
administrative totals are treated as fixed and known, and this additional coherence requirement adds to the 
complexity of benchmarking the county-level estimates. A fully Bayesian analysis of the Fay-Herriot model 
offers an appealing way to incorporate the inequality and benchmarking constraints, and to quantify the resulting 
uncertainties, but sampling from the posterior densities involves difficult integration, and reasonable approxi-
mations must be made. First, we describe a single-shrinkage model, shrinking the means while the variances are 
assumed known. Second, we extend this model to accommodate double shrinkage, borrowing strength across 
means and variances. This extended model has two sources of extra variation, but because we are shrinking both 
means and variances, it is expected that this second model should perform better in terms of goodness of fit 
(reliability) and possibly precision. The computations are challenging for both models, which are applied to 
simulated data sets with properties resembling the Illinois corn crop. 

 
Key Words: Devroye method; Fay-Herriot model; Grid method; Hierarchical Bayesian model; Metropolis sampler. 

 
 

1. Introduction 
 

For many problems in official statistics, it is necessary to incorporate constraints in model-based 

inference. For example, in small area estimation, there may be constraints on the model estimates, which 

are to be benchmarked to a target. These may be known lower (or upper) bounds for county estimates, which 

should “add up” to the state estimate, obtained earlier. One practical example is the estimation of planted 

acres for counties within states, with a state estimate obtained earlier, when there are survey data and 

administrative data that can provide lower bounds to the county estimates, which are required to add up to 

the state estimate. While we focus on an application in agriculture, we develop a methodology to solve the 

problem in which small area estimates are needed to satisfy certain lower bounds and these estimates are 

further benchmarked to an estimate at a higher level via the top down approach. 

In the United States, official county-level estimates of crop yield, total production, and total acreage 

published by National Agricultural Statistics Service (NASS), an agency of the United States Department 

of Agriculture (USDA) are important. These official estimates may determine the amount of payments to 

be made to farmers and ranchers enrolled in several programs administered by other USDA agencies 

including the Farm Service Agency (FSA) and the Risk Management Agency (RMA). Accordingly, NASS 

strives to improve the accuracy, reliability, and coverage of its official crop county estimates. As described 
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in a report titled Improving Crop County Estimates by Integrating Multiple Data Sources (National 

Academies of Sciences, Engineering, and Medicine, 2017), one way to do so is to use defensible models 

that include multiple sources of variability and other auxiliary data. The report highlighted many of the 

challenges faced by NASS and emphasized the role model-based inference can play in the publication of 

official county estimates. The findings of the report were further discussed in Cruze, Erciulescu, Nandram, 

Barboza and Young (2019), and the authors identified coherence of crop area estimates with known, same-

year administrative acreage totals as a significant need for the NASS crops county estimates program. 

Constraints on estimates may enter in the form of order or shape restrictions (e.g., Nandram, Sedransk 

and Smith, 1997; Silvapulle and Sen, 2005; Chen and Nandram, 2022) or in the form of inequality 

constraints (Sen and Silvapulle, 2002). The latter type of restriction is of particular interest as it relates to 

the coherence of tabulated crop estimates in the presence of available administrative data curated by USDA. 

Benchmarking estimates for smaller geographic domains to those of larger geographic areas is one common 

form of equality constraint encountered in official statistics. For example, several past NASS studies have 

achieved this by ratio adjustment (raking) made after model output analysis (e.g., Erciulescu, Cruze and 

Nandram, 2018, 2019, 2020); see also Steorts, Schmid and Tzavidis (2020) and the references therein for 

an informative review on benchmarking. While the emphasis of the present work is methodological, we 

note the recent NASS-authored case study and companion paper (Chen, Nandram and Cruze, 2022) on the 

constrained planted area problem, single shrinkage model. Also, we note that in the current paper our main 

contributions are on the inequality constraints; see also NASS’s RDD Research Report, Number RDD-22-

02 (Nandram, Cruze, Erciulescu and Chen, 2022). 

Non-probability data are not devoid of errors. First, it is understood that while participation in 

agricultural support programs is popular in the United States, the voluntary enrollment in FSA and RMA 

programs contributes to potential under-coverage (a downward bias) in these administrative acreage totals. 

Moreover, rates of participation in these support programs may differ each year, by commodity crop, by 

state, or even more locally within state. Other nonsampling errors, however, are believed to be minimized 

through FSA and RMA quality controls. For example, farmers certify their enrolled acreages with FSA 

agents on geolocated field boundaries, and farmers are subject to penalties for falsifying their reports. With 

these properties in mind, the available administrative totals are viewed by NASS and USDA as informative 

lower bounds and publication of coherent tabular data on planted area requires: 1) that county acreage totals 

sum to the state acreage totals that are published prior to the release of county estimates, and 2) that official 

county-level planted area estimates honor the lower bound constraint in each county. 

Additionally, we consider possible gains from double shrinkage by borrowing strength from means and 

variances simultaneously. Both frequentist and Bayesian model-based estimation techniques for the 

sampling variances have been considered in the literature for the area-level models. For example, see Wang 

and Fuller (2003); You and Chapman (2006); Gonzalez-Manteiga, Lombardia, Molina, Morales and 

SantaMaria (2010); Maiti, Ren and Sinha (2014); and Dass, Maiti, Ren and Sinha (2012). Recently, 

Erciulescu, Cruze and Nandram (2019) incorporated double shrinkage in estimates of unconstrained 

harvested area totals. 
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Let ˆ , =1, , ,i i …   denote the observed direct estimates of total acreage for   counties, and 2 , =is i  

1, , ,…   denote the corresponding observed variances for the   counties. The Fay-Herriot (area-level) 

model (Fay and Herriot, 1979; see also, Rao and Molina, 2015) is a standard model in small area estimation 

for the ˆ ,i  where, 

 
ind

2ˆ Normal( , ), = 1, , ,i i i is i   … ∼  (1.1) 

and at the second stage,  

  
ind

2 2, Normal , , = 1, , ,β x βi i i   … ∼  (1.2) 

where xi  is a p -vector of covariates with an intercept and β  is a p -vector of regression coefficients. In a 

full Bayesian analysis of this model, prior distributions of model parameters are assumed; a priori we take 
2 2( , ) = ( ) ( ),β β      where 2( )   is proper but ( ) = 1β  is improper. 

Procedurally, NASS state estimates of planted area (denote these state targets by the scalar )a  are 

determined and published prior to the publication of county-level estimates. Nandram, Erciulescu and Cruze 

(2019) developed a full Bayesian Fay-Herriot model incorporating the benchmarking constraint 
=1

=ii
a


 

directly into the model. This was achieved by deleting the last area to accommodate the benchmarking 

constraint. They empirically showed that, in practice, it does not really matter much which area is deleted 

in order to incorporate the benchmarking constraint. However, it is more convenient in the current paper to 

use an alternative approach, which does not use deletion. 

We now want to refine this model to accommodate benchmarking and inequality constraints on the .i  

In addition to the benchmarking constraint, we need to add the county-specific inequality constraints  

 , = 1, , ,i ic i  …   (1.3) 

where the ic  are fixed, known quantities that represent administrative values provided by FSA or RMA. (In 

practice, when both data sources are present, the larger of the two is used to establish the lower bound, .)ic  

In NASS planted acres data, some of the direct estimates of planted area totals may be more than one or two 

standard errors below their corresponding ,ic  thereby creating some difficulties for the model estimates to 

be larger than the .ic  It is worth noting that 
=1 =1

= .i ii i
a c c   

 
 That is, the estimation processes that 

generate state targets also respect the available administrative totals at state level, however, the bench-

marking constraint can create additional difficulties when the target is only slightly larger than ,c  i.e., as 

1c
a   from below. We need to add the inequality constraints to the Fay-Herriot model specified in (1.1), 

(1.2) and the priors to get the joint posterior density of , =1, , .i i …   In order to incorporate the inequality 

constraints into the Bayesian Fay-Herriot model, we propose the following simplification. In departure from 

Nandram, Erciulescu and Cruze (2019), we incorporate the inequality constraints directly while only 

partially incorporating the benchmarking constraint into the Bayesian Fay-Herriot model. That is, we will 

incorporate the constraints, , =1, , ,i ic i …   together with the restriction that 
=1 ii

a 


 into the model. 



520 Nandram et al.: Bayesian small area models under inequality constraints with benchmarking and double shrinkage 

 

 
Statistics Canada, Catalogue No. 12-001-X 

When the latter inequality is enforced, a raking of model estimates to the state total a  in an output analysis 

will still satisfy all individual county inequality constraints. Incorporating double shrinkage into the 

inequality-constrained model entails additional computational considerations. Therefore, our key contri-

butions are to provide small area estimates, which are subjected to inequality constraints, benchmarked to a 

target, and we describe a single shrinkage model (sample variances fixed) and two double shrinkage models 

(sample variances random). 

In this paper, we discuss a novel methodology to solve these dual problems by modifying the Bayesian 

Fay-Herriot model described in Nandram, Erciulescu and Cruze (2019) to accommodate both benchmarking 

and inequality constraints into the Bayesian area-level models of Equations (1.1) and (1.2). Additionally, 

we extend the model to accommodate double shrinkage of means and variances. In Section 2, we introduce 

the methodology for single-shrinkage model in the presence of inequality constrained totals. In Section 3, 

we describe the methodology for the double-shrinkage model, gamma regression, and the log-linear model 

is discussed in Appendix B; again double-shrinkage models incorporate inequality constrained totals. 

Special emphasis is given to the computation that facilitates these approaches. In Section 4, as 

confidentiality of USDA survey and administrative data is a concern, simulated data sets with properties 

resembling those of the Illinois corn crop are generated and used to fit and assess these models. We offer 

concluding remarks in Section 5, noting that constrained acreage methodologies were successfully 

incorporated in NASS official statistics beginning with the 2020 crop year. 

 
2. Methodology under the single shrinkage model 
 

In this section, we develop the methodologies and computational strategies to incorporate inequality 

constraints and benchmarking procedures into the Bayesian area-level models of Equations (1.1) and (1.2). 

This provides the single shrinkage model in which the sampling variances are assumed fixed and known. 

Our strategy is to use the composition rule (i.e., multiplication rule of probability) to draw samples from 

the posterior density  2 2ˆ ˆ, ,β θ σ   and then to draw samples from  2 2ˆ ˆ, , , .θ β θ σ   Both of these 

problems are difficult. In this section, we have used the shrinkage prior for 2  (i.e., 
2 2 2( ) =1 (1 ) ,    

2 0)   to avoid impropriety of the posterior density. Letting 
2=1 (1 ),   then Beta (1,1) ∼  (i.e., 

uniform). Note that if x  has a half Cauchy density, then the density of 2  after the transformation 
2=x   is the Cauchy-based prior, 

2 2

2 1

(1 )
( ) = ,

  
 


 which translates to Beta (0.5, 0.5). ∼  In addition, 

both densities are in the Snedecor’s f  distribution form, where the first density is a (2, 2)f  and the Cauchy 

version is a (1,1);f  the (2, 2)f  is mathematically a bit more convenient when we transform to (0,1).  

Let  =1
= : , =1, , , .θ i i ii

V c i a  


…   Here, this conditional posterior density,  2 2ˆ ˆ, , , ,θ β θ σ   

is subject to the inequality constraint and the constraint 
=1

,ii
a 


 where a  is the benchmarking target. 

Note that the inequality is strict because with the equality, one of the i  becomes redundant. This 

redundancy has to be taken into consideration when the model is fit (a much more difficult problem), but 

with the inequality constraint we do not need to do so (a much easier problem). That is, we need to draw 

1, , …  subject to the constraints , =1, ,i ic i  …   and 
=1

.ii
a 


 Note again that the benchmarking 
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constraint is only partially included in the Fay-Herriot model. We will use a Gibbs sampler to carry out this 

sampling procedure, and the benchmarking constraint will be fully incorporated in an output analysis from 

the Gibbs sampler using a raking procedure. 

The joint prior density is  

    
 

 
2 2 =1

=1

( )
, , = , , ,

( )
θ

x β
θ β β θ

x β θ

i ii

i iiV

V
d

  
   

  












  (2.1) 

where ( )   is the standard normal density. Indeed, this is a very awkward joint prior density with the 

normalization constant a function of 2( , ).β   Then, using Bayes’ theorem, the joint posterior density is  

    
 

 
 2 2 2 =1

=1
=1

( )
ˆ ˆ, , , , ( ) , .

( )
θ

x β
θ β θ s β θ

x β θ

i ii
i i i

ii iiV

s V
d

  
      

  


  
   

  









  (2.2) 

It is difficult to use Markov chain Monte Carlo methods to efficiently draw samples from 2 2ˆ( , , , )θ β θ s   

in (2.2). 

We now show how to draw samples from 2 2ˆ( , , , )θ β θ s   using numerical integration, the Gibbs 

sampler and the Metropolis sampler. [Note that in the discussion below, apart from 
=1

,ii
a 


 it does not 

matter whether we use “less than or equal” symbols because the i  are continuous random variables.] 

We first show how to draw the i  using the Gibbs sampler. For the constraints, we have , =i ic i  

1, , ,…   and 
=1

.ii
a 


 This means that 

=1 =1
,i ii i

c a  
 

 and so  =1 =1,
max ,i j j ij j j i

c c  


   
 

 

=1,
, = 1, , .jj j i

a i





…   Therefore, the support of the conditional posterior density of i  given ( ) =iθ  

1 1 1( , , , , , ) ,i i    


… …  is  

 
=1 =1, =1,

max , , =1, , .i j j i j
j j j i j j i

c c a i  
 

 
    

 
  
  

…    

It is easy to show that the conditional posterior density is  

  2 2 2 2 2 2
( )

ˆ ˆ, , , , Normal (1 ) , (1 ) , = ( ),θ β θ s x βi i i i i i i i is           ∼   

 
=1 =1, =1,

max , = , =1, , .i i j j i j i
j j j i j j i

u c c a v i  
 

 
     

 
  
  

…   (2.3) 

Now, we want to draw i  subject to the constraint, .i i iu v   To sample 
2Normal( , ),X  ∼  

,a X b   we have the following result (see Devroye, 1986),  

 1 (1 ) ,
a b

X U U
 

 
 

      
          

    
  



522 Nandram et al.: Bayesian small area models under inequality constraints with benchmarking and double shrinkage 

 

 
Statistics Canada, Catalogue No. 12-001-X 

where Uniform(0,1)U ∼  and ( )   and 1( )   are respectively the cdf and the inverse cdf of the standard 

normal density. We use the Gibbs sampler to draw a sample θ  in (2.3). This is obtained by drawing 

, =1, , ,i i iu v i n  …  each in turn. 

The final step is to rake up 1, , …  to the target a  for each iterate. So that the final iterates are  

 

=1

= , = 1, , ,i i

jj

a
i 




 …    

and posterior inference can be made about 1, , …  using these raked vectors of iterates. It is now clear 

why 
=1

.ii
a 


 Note again that this is a straight forward output analysis from the Gibbs sampler. 

We next show how to draw samples from 2 2ˆ( , , )β θ s   using numerical integration and the Metropolis 

sampler. The joint posterior density of 2( , )β   is  

 
   

 
=12 2 2

=1

ˆ( ) ( )
ˆ( , , ) ( , ) ,

( )
θ

x β θ
β θ s β

x β θ

i i i i iiV

i iiV

s d

d


     

   
  





 









   

which, by completing the squares, can be simplified to  

  2 2 2 2 2

=1

ˆ ˆ( , , ) ( , ) ( ) ( , ),β θ s β x β βi i i
i

R        
 

  
 



 (2.4) 

with  

 
 

 
=12

=1

( )
( , ) = ,

( )

θ

θ

θ
β

x β θ

i i iiV

i iiV

d
R

d

   


  














   

where ˆ= (1 ) x βi i i i i      and 
2 2= (1 ) ,i i   = 1, , .i …   We will use the Metropolis sampler to fit 

(2.4). There are two key issues, which are to construct an efficient proposal density and to compute the ratio, 
2( , ),βR   of the two integrals in (2.4). 

First, we consider how to construct a proposal density. We have samples of 
2( , )β   from the Fay-Herriot 

model. We can now transform 2  to 2
1 = log ( )p   and add it as the last component to get a new vector β  

with 1p   components. Now fit a multivariate normal density to the samples, 2ˆ ˆNormal( , ),β β  ∼  where 

β̂  and ̂  are the posterior mean and covariance matrix of the samples from the Fay-Herriot model, and 
2 Gamma( 2, 1 2)  ∼  to complete the ( 1)p  -variate Student’s t  density on   degrees of freedom, 

where   is a tuning constant. 

Second, we describe how to estimate the ratio of the integrals in (2.4). Let ={ : ,i iV c  θ  

= 1, , };i …   we have actually selected an upper bound for each .i  Note that ,V V   and perhaps V  is not 

much bigger than .V  Let ( ) =1θI V  if θ V  and ( ) = 0θI V  otherwise. Then,  

 
=12

=1

( ) {( ) }
( , ) = .

( ) {( ) }

θ

θ

θ θ
β

θ x β θ

i i iiV

i iiV

I V d
R

I V d

   


  





 

 












  



Survey Methodology, December 2023 523 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Now, 2( , )βR   can be calculated using Monte Carlo methods. As an importance function, we use the 

conditional posterior densities of the , =1, , ,i i …   constrained on .V  That is,  

 
ind

2 2, Normal( , ), , = 1, , .βi i i i ic i       … ∼  (2.5) 

It is now easy to draw samples ( ) , 1, , ,θ h h M …  in (2.5), where M  1,000 or so; see Devroye (1986). 

Then, a Monte Carlo estimator of 2( , )βR   is  

 

 
 

( )

2 =1

( )

( )

( )=1 =1

( )
( , ) = .

( )
( )

( )

θ
β

x β
θ

M h

h

h
M i ih

hh i
i i i

I V
R

I V


  

   



 
  

  



 


  

Note that for each ,h  once ( ) , =1, , ,h
i i …   are drawn from the proposal density, we simply need to check 

that ( )

=1
.h

ii
a 


 However, it is possible that this Monte Carlo estimator does not exist, and this clearly 

occurs when ( ) , =1, ,θ h V h M …  (all ),M  and in this case we use the modified estimator,  

   
 

1
( )

2

( )
=1 =1

( )1
( , ) = .

( )

x β
β

hM
i i

m h
h i i i i

R
M

  


   


 
 

  




  

That is, we simply replace V  by V  to form an approximation in the case that the Monte Carlo estimator 

might not exist. In either case, we have drawn the i  as in (2.5), where 
ind

2 2, Normal( , ),i i i   β ∼  

, =1, , .i ic i   …   It is possible for some of the ( )θ h  to be in ,V  and in this case if the number of 
( )θ h V  is at least 2,M  we use the former estimator. 

Our procedure gives us 1,000 samples from the posterior density of 
2( , )β   using the Metropolis 

sampler. Then the more important samples of 1, , …  are obtained using the Gibbs sampler. For each of 

the 1,000 iterates of 
2( , )β   from the Metropolis sampler, we run the Gibbs sampler to say, 100 iterations 

or so, and pick the last set of 1, , . …  This is the so-called Gibbs-within-Metropolis sampler. This is not 

too expensive and it is reasonably efficient; we have seen similar difficulties in some of our projects (e.g., 

Nandram and Choi, 2010; Chen, Nandram and Cruze, 2022). 

In this method, it is not really necessary to monitor the Gibbs sampler for convergence because we need 

only one value but a “burn-in” is required. 

 
3. Methodology under the double shrinkage models 
 

Two double shrinkage models are introduced, where we model both the sample variances and the means. 

The inequality constraints are also included. Here borrowing of strength occurs via both the means and the 

variances. For the specification of variances, the first uses a gamma regression model and the second uses 

a log-linear model. In Section 3, we model the sample variances using gamma regression; Section 3.1 

describes the method and Section 3.2 describes the computation; further computations are shown in 

Appendix A. In Appendix B, we describe the second double shrinkage model for the sample variances using 
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the log-linear model. Even a full Bayesian treatment of the log-linear model offers remarkable 

computational advantages relative to the gamma regression model. 

We discuss the reasons for two double shrinkage models. The computations in both models are difficult. 

We prefer the gamma model because it is more accurate within MCMC standards. Unfortunately, the 

computations are too time-consuming and it is not operational at NASS. We thought that if we move to a 

log-linear model, we can make some mathematical approximations, which will allow the double-shrinkage 

procedure to be operationalized at NASS and many other government agencies. Within the log-linear model, 

we made two approximations, which allow the computations to go very fast (in seconds) with reasonable 

accuracy. It is mathematically more difficult to make approximations within the gamma model, but some 

researchers might still prefer it. 

 
3.1 Gamma regression model 
 

For   areas, we have the survey estimates ˆ ,i  their standard errors ,is  and the sample sizes 2in   

(sample sizes must be at least 2). We start with a convenient model that builds upon our work on the Fay-

Herriot model. We assume that  

 

ind
2 2

2 ind
2

2

ˆ , Normal( , ), = 1, , ,

( 1) 1 1
Gamma , , = 1, , ,

2 2

i i i i i

i i i
i

i

i

n s n
i

    




  
 
 

… 

… 

∼

∼
  

where Gamma ( , )X a b∼  means that 
1( ) ( ), 0.a a bxf x b x e a x     Note that, given i  and 

2 ,i  we are 

assuming ˆi  and 
2
is  are independent. Under the first assumption, the i  and 

2
i  are not estimable, but the 

first and second assumptions together make i  and 
2
i  estimable. Here, the chi-square assumption is 

reasonable, but the degrees of freedom may be a little smaller than the original sample size because it should 

be the effective sample size. The effective sample size is not normally presented at NASS, and in fact, it is 

the number of reports with positive responses that is presented. So we have used the original sample size; 

see Erciulescu, Cruze and Nandram (2019) for a similar model without the inequality constraint, of course. 

A priori, we assume that  

 

ind
2 2

ind
2

, Normal( , ), 1, , ,

, Gamma , , = 1, , .
2 2

x γ

β x β

γ
i

i i

i

i

e
i

  

 
 




 

 
 
 

… 

… 

∼

∼
  

These assumptions on i  and 
2
i  provide double shrinkage (shrinking both means and variances). Here, we 

have assumed that the two sets of covariates are the same, but they can, of course, be different. 

It is worth noting that the prior for 
2
i  is conjugate providing some simplicity in the computations; see 

Nandram and Erhardt (2004) for similar specifications for the corresponding binomial and Poisson models. 

Our prior for the hyperparameters is  
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 2 2

2 2 2

1 1
( , , , ) , , 0.

(1 ) (1 )
β γ    

 
 

 
  

That is, flat priors are assumed for β  and ,γ  shrinkage priors (proper) are assumed on 2  and ,  and all 

parameters are independent. Note that 2  and   are nonnegative, and so we prefer to use a shrinkage prior. 

At this point, there are virtually no mathematical, computational or scientific benefits using other 

noninformative priors for .  

In our model, we include the inequality constraint, 
=1

, = 1, , , ,i i ii
c i a  


…   where a  is the target. 

Note again that we only partially include the benchmarking constraint. It is convenient that this is the same 

region as for single shrinkage model,  =1
= : , = 1, , , .θ i i ii

V c i a  


…   Therefore, the prior densities 

for the i  remain the same,  

 
 

 
2 2 =1
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( )
θ

x β
θ β β θ

x β θ

i ii

i iiV

V
d

  
   

  












   

where ( )   is the standard normal density. It is convenient to define 2( , , , ).β γ    Then, the joint prior 

density is  
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=1

( 2 )2 2 2 1
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 (3.1) 

By independence, the joint density of 2ˆ( , ),θ s  is  
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Finally, using Bayes’ theorem, the joint posterior density is proportional to the product of (3.1) and (3.2) 

and it can be shown to be  
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where 
2 2 2= ( ), 1, , .i i i     …   

It now follows from (3.3) that the conditional posterior densities of the i  are  
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ind

2 2 2ˆ ˆ, , , Normal (1 ) , (1 ) , 1, , , .σ θ s x β θi i i i i i i V         … ∼  (3.4) 

Now, one can integrate out the i  from (3.3) to get the joint conditional posterior density of 2 ,σ  
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Note that the term,  
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x β θi iiV
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 is not a function of the 2

i  and has been eliminated together 

with other such terms. 

Now, one can integrate out the 2
i  from (3.3) to get the joint posterior density of ,  
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where = ( 1) 2i ia n    and  2= ( 1) 2x γi

i i ib n s e    and IG ( , )c a b  is the inverse gamma density, 

which is given by  
11( ) = ( ) , 0.

aa b c
cf c b e a c

     

 

3.2 Computation for the gamma regression model 
 

Our strategy is to draw samples from the joint posterior density of   in (3.6). This is a difficult task, but 

once this is accomplished, we can use the multiplication rule to draw samples of the 
2
i  from (3.5) and then 

the i  from (3.4). This strategy is useful if there are a large number of counties; the state of Texas has 254 

counties. We draw the i  in the same manner as described in Section 2. It is more difficult to draw samples 

of 
2.i  We describe how to draw samples from   in (3.6). The basic strategy has two key steps. 

First, we fit the double shrinkage model without the inequality constraints and the benchmarking. This 

gives an approximate sample of size M  1,000 iterates from the posterior density of   that we obtained 

using a Metropolis sampler. The details of this first step are given in Appendix A. 

Second, we convert this approximate sample to a sample from the posterior density with the inequality 

constraint and the benchmarking. We use the M  iterates from the first step to construct a multivariate 

Student’s t  density for  2, log ( ), , log ( ) .β γ   At each of the iterate obtained from the first step, we run a 

Metropolis sampler with the multivariate Student’s t  density 100 times and picked the last one; see 

Nandram and Choi (2010) for a similar procedure. In this divide-and-conquer manner, we minimize the 
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chance of the Metropolis sampler getting stuck. We want the Metropolis sampler to move from the starting 

value at least once; no other monitoring is necessary; if it does not move at least once, we discard this run. 

It is good that this procedure gives a sample of M  independent iterates of .  However, this step is time-

consuming and for the current simulated data it took roughly sixteen hours. 

Now, we describe how to use the accept-reject algorithm to draw samples of 2.i  We can rewrite (3.5) as  
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where V V  and V  is a larger rectangular set. 

Note that the first and third terms in (3.7) are probabilities. It is also true that the second term in (3.7) is 

a probability because  
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Therefore, we can use an accept-reject sampler to draw the 
2.i  

Note that, by construction, the first term in (3.7) is a product over 1, , .i  …   This is also true for the 

second term. So if we ignore the third term, we can independently draw 
ind

2 IG ( , ), 1, ,i i ia b i  … ∼  

(unrestricted distributions) and take it with probability,  
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to complete the accept-reject algorithm. It is possible that there are several rejections before an acceptance, 

but this rarely happens. If there are 25 rejections, we simply draw the 
2
i  from their unrestricted 

distributions, 
ind

2 IG ( , ), 1, , .i i ia b i  … ∼  

The remaining question then is how to calculate  
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A Monte Carlo estimator of C  is  

  ( )

=1

1ˆ = ,θ
M

h

h

C I V
M

   

where 

 
ind

( ) 2 ( )ˆNormal (1 ) , (1 ) , , = 1, , = 1,000, 1, , .x βh h
i i i i i i i ic h M i           … … ∼  

However, the term,  ( )1

=1
,θ

M h
M h

I V  is difficult to incorporate into the accept-reject sampler. We 

have overcome the difficulty in the following manner. We have computed Ĉ  and found that more than 60% 

of the Ĉ  leads to acceptance of all the 2 , 1, , .i i  …   When the 2
i  are not accepted, we draw samples 

from their unrestricted distributions, 
ind

2 IG ( , ), 1, , .i i ia b i  … ∼  

 
4. Comparisons using simulated examples 
 

We compare our models using simulated examples. We are not performing a simulation study, where 

replication is important because the models are already complicated. We use the coefficient of variation as 

a measure of reliability for the comparisons. We also show graphically how the observations in the simulated 

data violate the lower bound constraints and how this problem is corrected by our models. 

Both NASS survey data and USDA administrative acreage data are subject to confidentiality protections, 

therefore, we describe a means of simulating data with similarity to Illinois corn crop data that have been 

used extensively in recent NASS studies on crop county estimates and we use it to show the key features of 

our benchmarking procedure with inequality constraints. As a practical matter, participation in farm support 

programs can vary by crop and by state. Some of the survey estimates may already satisfy the lower bound 

constraint, i.e., some ˆ ,i ic   so that the lower bound constraints imposed on model estimates for these areas 

may be loose or non-binding restrictions in those counties. However, in states with high rates of enrollment 

in farm support programs, like the corn crop in Illinois, administrative totals may capture large parts of the 

population, so that direct estimates, subject to sampling error, fall below to the administrative totals in many 

counties. The model estimates of the counties must be constrained by the lower bounds and the 

benchmarking target as well. 

In Section 4.1, we describe several simulated data sets. In Section 4.2, we present results under the single 

shrinkage model with the inequality constraints. In Section 4.3, we present results under the double 

shrinkage model for the gamma regression model and the log-linear model, again with the inequality 

constraints. At the same time, we have compared these models with the direct estimates (DE), the estimates 

from the Bayesian Fay-Herriot model (ME), without benchmarking or inequality constraints, and the 

Bayesian Fay-Herriot model with random benchmarking (MERB) at both the county level and at the level 

of agricultural statistic districts (discussed below). 

It is worth noting that all computations were performed on a machine with CentOS (version 6.10) 

operative system using an Intel CPU Xeon E5-2690 at 2.90GHz having 16 logical cores, 128GB of RAM, 

and the software was compiled with ifort version 11.1. 
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4.1 Description of the simulated data sets 
 

Nandram, Erciulescu and Cruze (2019) simulated a data set similar to the one in Battese, Harter and 

Fuller (1988); see also Toto and Nandram (2010) and Nandram, Toto and Choi (2011). These data are on 

planted acres of corn and soybeans for 37 segments with 12 counties in the state of Iowa and there are two 

covariates. (Like Illinois, Iowa is a large corn producing state in the United States.) A Bayesian version of 

the small area model of Battese, Harter and Fuller (1988) is described in Toto and Nandram (2010); see also 

Molina, Nandram and Rao (2014).  

By simulating from these data, we can create a data set with as many areas we please. In particular 

Illinois has = 102 counties grouped in 9 smaller-than-state regions called Agricultural Statistics Districts 

(ASDs). The data are processed to obtain the survey estimates and standard errors. In our simulated data, 

based on the actual sizes of the ASDs, we have taken the first set of counties to be in the first ASD, the 

second set to be in the second ASD and so on so that the first 12 counties correspond to the first ASD, the 

next 11 correspond to the second, and the remaining ASDs have 9, 11, 7, 13, 15, 12, 12 counties, 

respectively. In the process of simulating acreage data, we also added a random effect for each ASD. The 

sample sizes within the counties are chosen uniformly in (2, 74), a realistic range of sample sizes across the 

state comparable to actual Illinois corn data reported during the 2014 crop year (Erciulescu, Cruze and 

Nandram, 2018, 2019). Additionally, county-level coefficients of variation CVi  will be simulated uniformly 

from within the range of (0.08, 0.93); these extremes are comparable to values reported in Erciulescu, Cruze 

and Nandram (2020) in reference to the 2015 crop year. Given simulated survey estimates and coefficients 

of variation, computed standard errors are obtained ˆˆ CV .i i i    Thus, we have a data set with the survey 

estimates, ˆ ,i  survey standard error, ˆi  and sample sizes, in  for the thi  county, 1, , .i  …   

The last piece to be simulated is the data corresponding to the administrative acreage values, i.e., lower 

bounds, .ic  For simplicity, we call these the FSA values throughout the simulation. In order to reflect the 

relationship between the FSA values and the survey estimates for Illinois, we assume the following equation 

holds,  

 ˆ ˆ , 1, , ,i i i ic U i     …    

where 
iid

Uniform ( , )iU s s∼  and s  is taken to be a suitable value (e.g., s  0.10). However, the key 

problem is how to set the benchmarking target. In the real problem, we will know the target, but the target 

has to be larger than the sum of the lower bounds. Therefore, it is sensible to take the target to be = ,a c d  

where 
=1 ii

c c


 and specify 0 1.d   The completeness of the administrative data relative to the state 

total can vary by state and crop, but in Illinois, this value will often be close to 1. 

 
4.2 Results under the single shrinkage model 
 

In applying the methodology for an inequality-constrained model with fixed variances developed in 

Section 2, we specify a plausible value of =d 0.99 indicating the simulated administrative data embody 

99% of the state-level planted area total for corn in Illinois. In this first instance, we restrict the range of 
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coefficients of variation to (0.05, 0.25). Figure 4.1 shows the simulated survey estimates of ˆi  versus the 

FSA values ic  (top panel) and the posterior mean of i  versus the FSA values ic  under the Bayesian 

Fay-Herriot model with inequality constraint and benchmarking, not including double shrinkage (call this 

model MFSA-NDS). In the top panel, we can see many points are above or below the o45  straight line 

through the origin. (This resembles a realistic pattern shown in Figure 4.4 of Erciulescu, Cruze and Nandram 

(2020), as applied to the 2015 Illinois corn crop.) Where the survey estimates for many counties are below 

their corresponding FSA values, all points in the bottom are immediately above the o45  straight line through 

the origin, indicating that all MFSA-NDS estimates are no smaller than their corresponding FSA values. 

Moreover, the sum of the 102 MFSA is equal to the state total, satisfying the benchmarking requirement by 

raking to the state target. 

In Table 4.1, we present results for Illinois simulated data. We compare the results with our new model 

that incorporates the inequality constraints (FSA values are lower bounds of the model estimates). 

Specifically, we compare estimates from DE, ME and MERB and the single shrinkage Bayesian Fay-Herriot 

model with inequality constraint and benchmarking (MFSA-NDS). 

The minimum, median and maximum posterior coefficients of variation (expressed as percents, %) are 

smaller than the other two models (ME, MERB), even more so for the direct estimates (DE). Of course, as 

expected, the coefficients of variation for the ASDs are smaller than those for the counties; there is one 

exception (5.13 versus 5.31 in Table 4.1, but this is a minor difference). It is worth noting that county 

minimum and ASD minimum are not comparable as the county with the minimum CV is not necessarily 

nested in the ASD with the minimum CV. We note that, as expected, the coefficients of variation are in 

decreasing order (DE, ME, MERB, MFSA), and modeling appears beneficial, but more importantly we can 

accommodate the FSA values in our model (MFSA) and provide much smaller coefficients of variation. 

 
Table 4.1 

Coefficients of variation (%) for Illinois simulated data for 102 counties and 9 Agricultural Statistical Districts, 

fixed variances. 
 

Level Statistic DE ME MERB MFSA-NDS 
County min 5.13 4.76 4.79 0.57 

median 15.57 10.67 10.58 0.97 
max 24.93 15.80 15.34 5.22 

ASD min 5.31 2.54 2.39 0.24 
median 10.60 3.25 3.01 0.30 

max 14.81 3.92 3.51 0.42 
Notes: MFSA is the new benchmarking model with FSA values as lower bounds for the model estimates, CV(0.05 - 0.25) and =d 0.99. 

ASD = Agricultural Statistics Districts; CV = Coefficient of variation; DE = Direct estimates; FSA = Farm Service Agency; ME = Bayesian 

Fay-Herriot model; MERB = Bayesian Fay-Herriot model with random benchmarking; MFSA = Bayesian Fay-Herriot model with 
inequality constraint and benchmarking; NDS = Not including double shrinkage. 
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Figure 4.1 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-NDS for   

versus FSA values for Illinois and the simulated data, not double shrinkage, CV(0.05 - 0.25) and 
=d 0.99. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Notes: CV = Coefficient of variation; FSA = Farm Service Agency; MFSA = Bayesian Fay-Herriot model with inequality constraint and 
benchmarking; NDS = Not including double shrinkage. 
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4.3 Results under the double shrinkage model 
 

Fitting the double shrinkage model with the inequality constraints of Section 3 and denoting these 

estimates as MFSA-DS, we fit the model to the data already generated for Section 4.2. That is, data for 

which the simulated CVi  (0.05, 0.25) and =d 0.99. Summaries of the coefficients in variation for the 

MFSA-DS are given in Table 4.2, with the first four columns duplicated from Table 4.1. We notice a small 

difference between the double shrinkage model and the single shrinkage model. Over counties the maximum 

CV  under the double shrinkage model is a bit smaller than the one under the MFSA-NDS models, 3.58% 

versus 5.22% for the fixed-variances case, but over ASDs (aggregates of counties within) there are smaller 

differences between the two approaches. 

The top panel in Figure 4.2 once again plots the survey estimates versus FSA values (identical to top 

panel, Figure 4.1), and the lower panel is a plot of the posterior means versus the FSA values under the 

double shrinkage model with benchmarking and inequality constraints. The lower panel of Figure 4.2 is 

only slightly different from that of Figure 4.1, in part because the value =d 0.99 implies that there is little 

slack between the state target and the total of administrative data summed over all counties in the state. 

 
 
Table 4.2 

Coefficients of variation (%) for Illinois simulated data for 102 counties and 9 Agricultural Statistical Districts, 

double shrinkage, gamma model. 
 

Level Statistic DE ME MERB MFSA-NDS MFSA-DS 
County min 5.13 4.76 4.79 0.57 0.55 

median 15.57 10.67 10.58 0.97 1.01 
max 24.93 15.80 15.34 5.22 3.58 

ASD min 5.31 2.54 2.39 0.24 0.26 
median 10.60 3.25 3.01 0.30 0.34 

max 14.81 3.92 3.51 0.42 0.41 
Notes: MFSA is the new benchmarking model with FSA values as lower bounds for the model estimates. MFSA-DS refers to the double 

shrinkage model with benchmarking and inequality constraint, CV(0.05 - 0.25) and =d 0.99. 

ASD = Agricultural Statistics Districts; CV = Coefficient of variation; DE = Direct estimates; DS = Double shrinkage; FSA = Farm Service
Agency; ME = Bayesian Fay-Herriot model; MERB = Bayesian Fay-Herriot model with random benchmarking; MFSA = Bayesian Fay-
Herriot model with inequality constraint and benchmarking; NDS = Not including double shrinkage. 
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Figure 4.2 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-DS for   

versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression, 
CV(0.05 - 0.25) and =d 0.99. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: CV = Coefficient of variation; DS = Double shrinkage; FSA = Farm Service Agency; MFSA = Bayesian Fay-Herriot model with inequality 
constraint and benchmarking. 
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For the purposes of demonstrating the log-linear model, a second data set with slightly different features 

has been generated. Namely, we specify lower coverage of the FSA values ( = 0.95)d  and allow a higher 

range of values of survey coefficients of variation, (0.08, 0.93), comparable to the actual survey coefficients 

of variation observed during the 2015 crop year. We present summaries of the CVs in Table 4.3. Again we 

notice a small difference between the log-linear double shrinkage model and the single shrinkage model at 

the ASD level. Differences in coefficients of variation at the county level are minimal for the lower half of 

all counties, but the maximum county CV obtained from the double shrinkage model (23.94%) is 

substantially smaller than the maximum CV obtained under the single shrinkage model (fixed-variances 

case) (44.92%). Of course, as expected, the coefficients of variation for the ASDs are smaller than those for 

the counties; there is one exception for DE (8.57 versus 18.90 in Table 4.3). Again, it is worth noting that 

county minimum and ASD minimum are not comparable as the county with the minimum CV is not 

necessarily nested in the ASD with the minimum CV. Yet the models correct this problem. 

In its upper panel, Figure 4.3 depicts the new simulated survey estimates versus their corresponding FSA 

values, while the lower panel shows the posterior means of the log-linear MFSA-DS model versus the 

corresponding FSA values. In contrast to the =d 0.99 data set of the previous sections, the present =d

0.95 data set represents a looser lower-bound constraint. Accordingly, the resulting county acreage 

estimates, which also sum to the state total, are all visibly above the o45  line. For comparison, the MFSA-

DS estimates obtained under gamma regression are plotted in the lower panel of Figure 4.4. The two 

approaches to double shrinkage yield similar (not identical) point estimates given the same state target and 

administrative lower bound constraints. 

In contrast to the computationally expensive gamma regression which required in excess of 16 hours of 

run time, results of the log-linear model were obtained in a matter of minutes, and additional opportunities 

to speed up the process may be possible through approximate Bayesian computation described in 

Appendix B. 

 
Table 4.3 

Coefficients of variation (%) for Illinois simulated data for 102 counties and 9 Agricultural Statistical Districts, 

double shrinkage, log-linear model. 
 

Level Statistic DE ME MERB MFSA-NDS MFSA-DS 
County min 8.57 7.73 7.90 2.57 2.54 

median 52.90 17.83 17.16 4.56 4.92 
max 92.70 24.25 24.82 44.92 23.94 

ASD min 18.90 5.11 3.78 1.17 1.11 
median 37.70 6.15 4.71 1.83 1.43 

max 52.10 7.19 5.81 2.65 1.63 
Notes: MFSA is the new benchmarking model with FSA values as lower bounds for the model estimates. MFSA-DS refers to the double 

shrinkage model with benchmarking and inequality constraint, CV(0.08 - 0.93) and =d 0.95. 

ASD = Agricultural Statistics Districts; CV = Coefficient of variation; DE = Direct estimates; DS = Double shrinkage; FSA = Farm Service 
Agency; ME = Bayesian Fay-Herriot model; MERB = Bayesian Fay-Herriot model with random benchmarking; MFSA = Bayesian Fay-
Herriot model with inequality constraint and benchmarking; NDS = Not including double shrinkage. 
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Figure 4.3 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA for   versus 

FSA values for Illinois and the simulated data, double shrinkage, log-linear model; CV(0.08 - 0.93) 
and =d 0.95. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: CV = Coefficient of variation; FSA = Farm Service Agency; MFSA = Bayesian Fay-Herriot model with inequality constraint and 
benchmarking.  
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Figure 4.4 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-DS for   

versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression, 
CV(0.08 - 0.93) and =d 0.95. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: CV = Coefficient of variation; DS = Double shrinkage; FSA = Farm Service Agency; MFSA = Bayesian Fay-Herriot model with inequality 

constraint and benchmarking.   
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5. Concluding remarks 
 

Beginning with the 2020 crop year, NASS successfully converted its county-estimates data product into 

a system model-based estimates of planted area, harvested area, total production, and yield per harvested 

acre. It is true that our methods can be applied to yield directly; only a small adjustment is needed in the 

benchmarking in the output analysis. The official estimates for 13 different commodity crops grown 

nationwide now include a benchmarking of county estimates to predetermined state targets, and lower bound 

constraints on planted area. Motivated by the needs of the NASS crop estimation program to produce 

coherent published tables across all parameters and with respect available administrative data, we have 

shown how to incorporate the area-specific inequality constraints and benchmarking into the Fay-Herriot 

model. Single shrinkage model and double shrinkage models are available. Because there are difficulties in 

performing full Metropolis samplers, we overcame these computational difficulties by making additional 

reasonable approximations in the double shrinkage model. 

It is possible to extend the hierarchical Bayesian model so that all the constraints are actually included 

in it. That is, θ  is in  =1
= : , = ,θ

n

i i ii
V c a    where a  is the benchmarking target and 1, , nc c…  are the 

FSA values. So that the hierarchical Bayesian model (i.e., extended version of the Bayesian Fay-Herriot 

model) has .θ V  We have attempted to do so for the simplest model, the Bayesian Fay-Herriot model, but 

the problem is extremely difficult. It requires the computation of orthant probabilities (e.g., Ridgway, 2016; 

Geweke, 1991; Genz, 1992) at each step of a Markov chain Monte Carlo sampler. There are no such 

problems mentioned in Rao and Molina (2015), although they have used the raking procedure for bench-

marking only, not the inequality constraints, where the ,i ic   the FSA problem. 

Nevertheless, incorporating the total constraint into the hierarchical Bayesian model will be beneficial 

because it will help protect against model failure so prominent in small area estimation, and one needs to be 

careful with this. Toto and Nandram (2010), Nandram and Sayit (2011) and Nandram, Toto and Choi (2011), 

Nandram, Erciulescu and Cruze (2019) and Janicki and Vesper (2017) were able to incorporate a much 

simpler constraint (i.e., 
=1

= )
n

ii
a  in a complete Bayesian analysis. But as is evident, it is much more 

difficult to incorporate the constraint ,θ V  and it is a problem we would like to solve in the future. We 

can add random effects on both means and variances to accommodate sub-areas (counties within ASDs). 

However, the computations are difficult and approximations beyond those based on Markov chain Monte 

Carlo methods need to be considered. Currently, we are doing research in this area. 

In Appendix C, we have comments on generalizion. It is possible to avoid the inequality constraint using 

a logarithmic transformation, but this method looses generality or it makes unnecessary approximation. Our 

solution remains strong for both the single shrinkage model and the double shrinkage model. 

 
Appendix 
 

A. Double-shrinkage model fitting ‒ Gamma regression 
 

Dropping the inequality constraint of the double shrinkage model (see (3.3)), the joint posterior density is  
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 (A.1) 

where 2 2 2= ( ), 1, , .i i i     …   Conditional on 2ˆ, , ,θ s  it is clear that 2( , )i i   are independent over 

1, , .i  …   This is the key difference between the double-shrinkage model with and without the inequality 

constraints. 

Our strategy is to first sample the posterior density  2ˆ , .θ s   Once this is done, we draw samples 

from the joint conditional posterior density of  2 2ˆ, , .σ θ s   Then, finally we obtain the required samples 

from  2 2ˆ, , , .θ σ θ s   Thus, after draws are obtained for ,  we use the multiplication rule to get the 2
i  

and i  (i.e., ,  the 2
i  and i  are drawn simultaneously). 

It follows from (A.1) that the conditional on 2 2ˆ, , , ,σ θ s  the i  are independent and  

  
ind

2 2 2ˆ ˆ, , , Normal (1 ) , (1 ) , = 1, , .σ θ s x βi i i i i i i        … ∼  (A.2) 

Conditional on 2ˆ, , ,θ s  the 
2
i  are independent. Therefore, integrating out the i  from (A.1), we have 

the conditional posterior density of 2
i  is  

     22( 1) 2 1 2( 1)2 2 2
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 (A.3) 

= 1, , .i …   Note unnecessary constants are dropped (e.g., parameters conditioned on). 

Now, one can integrate out the i  and 
2
i  from (A.1) to get the joint posterior density of ,  
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 (A.4) 

where = ( 1) 2i ia n    and  2= ( 1) 2.x γi

i i ib n s e    Here, IG ( , )x a b  is the inverse gamma density 

and is given by  
1

1( ) = ( ) , 0.
aa b x

xf x b e a x
     

It is easy to sample the 
2
i  in (A.3) using the accept-reject sampler; simply draw 2 ˆ, ,i  θ  

2 IG ( , )i ia bS ∼  and take it with probability  2

ˆ
.x βi i

i
i



 
 


 Then, clearly the i  are easy to draw from (A.2). 

The main problem now is how to sample the joint posterior density of   in (A.4). We will use the 

Metropolis sampler to do so. 
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Once we obtain a sample from (A.4), we convert it to a sample from (3.6), our main objective. This is 

accommodated by another Metropolis sampler that we execute in a novel manner. We prefer to use proposal 

densities that will provide independent chains. This is obtained by taking draws from a multivariate 

Student’s t density (to be constructed). We will not use a long run because with a Metropolis sampler, the 

chain tends to get stuck a long time, introducing long-range dependence to the sample, thereby giving poor 

mixing that is inefficient. Instead we run several chains, say =M 1,000 chains. Each chain is run with a 

random start from an approximate density for 100 iterates, and the last one is taken. Only minor monitoring 

is needed to ensure reasonable jumping rates. If the chain does not move from the initial random start, it is 

not used in the final sample. In the end, we get a random sample of M  iterates from the required density in 

(A.4). 

We describe how to obtain samples from the posterior density of 2= ( , , , ).β γ   There are three steps. 

The first step obtains a sample of M  starting values, the second step is to obtain a proposal density for 

Metropolis sampler at each of the starting values, and the third step is to make a short run of 100 iterates of 

each of the Metropolis samplers in second step. 

First, we integrate out the i  and we replace the 
2
i  by 

2, =1, , .is i …   Given 2ˆ, ,θ s  then 
2( , )β   and 

( , )γ   are independent; so they can be sampled separately to get =M 1,000 independent starts. We have 

obtained these M  starts using simple approximations. 

Second, at each start, we run a Gibbs sampler to get 
2 , =1, , ,i i …   and .  This is done by drawing the 

2
i  from their exact conditional posterior densities using rejection sampling. Then, given 

2 2 2, , ( , )σ s β   and 

( , )γ   are again independent, and draws from their respective joint posterior densities are taken in a similar 

manner. It is worth noting that given 2 ,  the distribution of β  is multivariate normal and β  can be integrated 

out to get the conditional posterior density of 2  that can be sampled using a grid. However, this is not the 

case for ( , )γ   because the conditional posterior density of γ  given   is nonstandard (i.e., not multivariate 

normal). Thus, we approximate the posterior density of γ  using a multivariate normal density, and with this 

approximation, sampling of ( , )γ   takes place in the same manner as for 
2( , ).β   

Third, we run the second step 1,100 times with a “burn-in” of 100 runs and we use the =M 1,000 

samples to construct a multivariate Student’s t  density for 
2= ( , log( ), , log( )),β γa    which we use as a 

proposal density in a Metropolis sampler to sample the exact posterior density. This is performed 100 times 

and the last iterate is selected. Each random start contributes to the sample of =M 1,000 iterates of a  or 

  from the posterior density under the double shrinkage model without the inequality constraint and the 

benchmarking. 

To complete the entire procedure, for each ,a  we sample 
2
i  from their conditional posterior densities 

using rejection sampling to access the posterior densities more efficiently. Then, more importantly, the i  

are drawn from their conditional posterior densities (normal is this case). The entire procedure took roughly 

four hours, and the jumping rates are mostly larger than 5%. 
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B. Double shrinkage model fitting ‒ Log-linear model 
 

We describe the double shrinkage log-linear model and show how to fit. The main purpose is to show 

that there are additional gains in computational speed using approximate Bayesian computation. 

Our model is similar to the one in Section 3, where assuming that ˆi  and 2
is  are pairwise independent,  

 

ind
2 2

2 ind
2

2

ˆ , Normal ( , ), = 1, , ,

( 1) 1 1
Gamma , , = 1, , .

2 2

i i i i i

i i i
i

i

i

n s n
i

    




  
 
 

… 

… 

∼

∼

  

However, a priori, we assume that  

 
ind

2 2
1 1 1 1, Normal( , ), =1, , , ,β x β θi i i V   … ∼   

with the log-linear model on the 2,i  

 
ind

2 2 2
2 2 2 2ln ( ) , Normal( , ), =1, , ,β x βi i i   … ∼   

where we also assume that i  and 
2
i  are pairwise independent. Note that we also have the restriction .θ V  

Because we will use an approximate Gibbs sampler to fit the model, we assume that 2
1 2 1( , , , β β  

2 2
1 2

2 1 1
2 )

 
   (i.e., posterior propriety is not an issue provided that the design matrix is full rank). 

Then, letting 2ˆ= ( , ),θ sD  the joint posterior density of 
2 2 2

1 1 2 2, , , , ,θ σ β β   is given by  
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Our strategy in the computation is to sample the exact conditional posterior density of , =1, , ,i i …   and 
2 , =1, , .i i …   However, we want to replace the conditional posterior densities of 

2
1 1,β   and 

2
2 2,β   by 

approximate posterior densities. The main issue now is how to do this latter task. 

We consider the two simpler models for ˆi  and 
2 ,is = 1, , .i …   These are  

 
ind

2 2 2 2
1 1 1 1 1 1 1

ˆ , Normal( , ), = 1, , , ( , ) 1 ,β x β βi i i      … ∼   

and  

 
ind

2 2 2 2 2
2 2 2 2 2 2 2ln ( ) , Normal( , ), = 1, , , ( , ) 1 .β x β βi is i     … ∼   
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Note that in the full model, we simply replace the i  by ˆi  and 2
i  by 2.is  Here, the posterior densities of 

2
1 1( , )β   and 2

2 2( , ),β   which are independent, have simple forms. Letting X  denote the n p  design 

matrix, then  

  
2

2 1 2 2 1=1
1 1 1 1 1

ˆ ˆ( )ˆ ˆ ˆ, Normal , ( ) , IG ,,
2 2

x
β θ θ

n

i iin pX X
        

 

∼ ∼   

where 1
1
ˆ ˆ= ( ) .θX X X    Therefore, the posterior density of 1β  is a multivariate Student’s t  density, and, in 

this case, it is easy to draw samples of 1β  and 2
1 .  In addition, letting 2ln ( ), 1, , ,i iz s i  …   then  

  
2

22 1 2 2 =1
2 2 2 2 2

ˆ( )
ˆ, Normal , ( ) , IG , ,

2 2

x
β z z

n

i ii
zn p

X X


   
  

  
  


∼ ∼   

where 1
2
ˆ ( ) .zX X X    Again, the posterior density of 2β  is a multivariate Student’s t  density, and it is 

easy to draw samples of 2β  and 
2
2 .  Our approximate Gibbs sampler runs by taking these posterior densities 

as the conditional posterior densities. We need to do so because the computation is difficult and time-

consuming. 

The joint density of 
2( , ), 1, , ,i i i   …   is  
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Additional difficulties in the computation reside in this joint conditional posterior density. Observe that 

because ,θ V  the i  are not independent, the 
2
i  are not independent and i  and 

2
i  are not pairwise 

independent. However, note that the 
2
i  are independent in their joint conditional posterior density, but the 

i  are not independent in their joint conditional posterior density. The 
2
i  are drawn using the grid method 

with range  2 21
10 ,10 ,i is s  fairly wide, and the i  are drawn using Devroye’s method. 

For the Gibbs sampler, we used 2,500 iterates as a burn-in and took every third iterate to get a random 

sample of 1,000 iterates. We found that the Geweke tests for all the i  and the 
2
i  are not significant and 

the effective sample sizes are all near the actual sample size of 1,000 (mostly all of them are 1,000). 

Therefore, we have an efficient Gibbs sampler and amazingly the computation took less than 20 seconds. 

Next, we describe a slightly different computational method from the one described above. However, 

we just need to say how to draw samples from the conditional posterior densities of 
2

1 1( , )β   and 
2

2 2( , ).β   

The conditional posterior density of 
2

2 2( , )β   is straight forward (i.e., we simply need to replace 
2
is  by 

2).i  So that, letting 
2= ln( ),i iz   
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It is more difficult to sample the conditional posterior density of 2
1 1( , ),β   
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We started by using the Metropolis sampler. After we have used two different proposal densities, we found 

long-range dependence with low jumping rates, so we abandoned the Metropolis sampler. We decided to 

use grid samplers as follows. We fit the simpler model, where letting X  denote the n p  design matrix,  

  
2

2 1 2 2 1=1
1 1 1 1 1

ˆ ˆ( )ˆ ˆ ˆ, Normal , ( ) , IG ,,
2 2

x
β θ θ

n

i iin pX X
        

 

∼ ∼   

with 1
1
ˆ ˆ= ( ) .θX X X    Therefore, we can now sample 1β  and 

2
1  using the multiplication rule. Then, we 

find the posterior means (PM) and standard deviations (PSD) of each component of 1β  and 
2

1 ;  we choose 

their supports to be PM 6 * PSD  with the lower bound for 
2

1  being max (0, PM 6*PSD).  [Almost the 

entire support of a unimodal density is within this range; actually we have found the procedure to be 

nonsensitive to the choice of 6 to inference about the 1].  We now run the grid method within the Gibbs 

sampler to draw 1β  and 
2

1  with the supports mentioned above for β  and 
2

1 .  

For the Gibbs sampler, we used 3,500 iterates as a burn-in and took every fourth iterate to get a random 

sample of 1,000 iterates. We found that the Geweke tests for all the i  and the 
2
i  are not significant and 

the effective sample sizes are all near the actual sample size of 1,000 (mostly all of them are 1,000). 

Therefore, we have an efficient Gibbs sampler and amazingly the computation took less than 40 seconds. 

This is double the time (still fast) for the approximate Gibbs sampler above. 

 
C. Discussions on generalization 
 

We show that the problem is more ubiquitous than we have stated in this paper. Then, we discuss issues 

with standard solutions using the logarithmic transformation. Recall that our problem is to provide estimates 

subjected to the lower bound inequality constraints and an equality benchmarking constraint. We discuss 

mainly the inequality constraint. 

The Fay-Herriot model is  

 
ind

2ˆ Normal( , ),i i i is  ∼   

 
ind

2 2, Normal( , ), =1, , ,β x βi i i   … ∼   

with prior 
2( , ).β   This is subjected to the inequality constraint, , 1, , ,i ic i   …   and the benchmarking 

constraint, 
=1

= ,ii
a


 where a  is the target. Letting ˆ ˆ= , =1, , ,i i ic i   …   and 

=1
= .ii

c c


 Then,  
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ind

2ˆ Normal( , ),i i i is  ∼  (C.1) 

 
ind

2 2, Normal( , ), 0, =1, , ,β x βi i i i     … ∼  (C.2) 

with 
=1

= ;ii
a c 


 note that there is a change in the regression coefficients. Therefore, we have a general 

problem with positivity constraints and a benchmarking constraint, and the problem is not specific to 

agriculture. The solution of problem remains the same as we have done in this paper, but we can use the 

logarithmic transformation to avoid the positivity constraint. 

There are two ways to proceed without the positivity constraints. 

a) Transform the ˆ ,i  replacing ˆi  by ˆlog( )i  in (C.1). Note that some of the ˆi  can be negative, 

thereby loosing some generality. For the case when they are positive, we can approximate the 

means and the variances of the normal distribution in (C.1) using a first-order Taylor’s series 

approximation. That is,  2

2

ind

ˆ
ˆlog ( ) Normal log ( ), .i

i

s

i i i 
  ∼  One can proceed in (C.2) with either 

a log-normal regression or another distribution for positive size data (e.g., gamma regression).  

b) Transform the ,i  replacing i  by ie


 in (C.1). This introduces non-conjugacy with (C.2), thereby 

creating difficulties in computation.  
 

Note again that benchmarking is done in an output analysis as we have done in this paper, and both single 

shrinkage models and double shrinkage models can be done. When the logarithmic transformation is used, 

back transformation to the original i  is problematic (e.g., Manandhar and Nandram, 2021). However, the 

methodology in this paper provides our front line solution. 
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Small area prediction of general small area parameters for 
unit-level count data 

Emily Berg1 

Abstract 

We investigate small area prediction of general parameters based on two models for unit-level counts. We 
construct predictors of parameters, such as quartiles, that may be nonlinear functions of the model response 
variable. We first develop a procedure to construct empirical best predictors and mean square error estimators of 
general parameters under a unit-level gamma-Poisson model. We then use a sampling importance resampling 
algorithm to develop predictors for a generalized linear mixed model (GLMM) with a Poisson response 
distribution. We compare the two models through simulation and an analysis of data from the Iowa Seat-Belt 
Use Survey. 

 
Key Words: Poisson; Bootstrap; Small area estimation. 

 
 

1. Introduction 
 

Small area estimation is the problem of constructing estimators for domains where sample sizes are too 

small to support reliable direct estimators. The standard approach to small area estimation is to use model-

based estimators instead of direct estimators. Model-based estimators garner efficiency gains for small area 

estimation through restrictions that different areas share common distributional properties and through the 

incorporation of population-level auxiliary information. Extensive reviews of small area models are 

available in Rao and Molina (2015), Jiang and Lahiri (2006), and Pfeffermann (2013). More recent reviews 

include Ghosh (2020) and Molina, Corral and Nguyen (2022). The small area literature has focused heavily 

on the situation in which the parameter of interest is a small area mean. Many small area parameters are not 

simple means but are nonlinear functions of the model response variable. Molina and Rao (2010) develops 

a simulation-based procedure for constructing predictors of small area parameters that may be nonlinear 

functions of the model response variable. We refer to the types of parameters of interest in Molina and Rao 

(2010) as “general parameters”. Molina, Nandram and Rao (2014), Hobza, Marhuenda and Morales (2020), 

Rojas-Perilla, Pannier, Schmid and Tzavidis (2020), Marhuenda, Molina, Morales and Rao (2017) and 

Guadarrama, Molina and Rao (2018) extend Molina and Rao (2010) to Bayesian inference, generalized 

linear mixed models, data transformations, two-fold models, and complex sampling. We develop predictors 

of general small area parameters for unit-level count data. 

The two primary small area models for count data are (1) the gamma-Poisson model and (2) the Poisson 

generalized linear mixed model (GLMM). In the context of the area-level model, Reluga, Lombardía and 

Sperlich (2021) and Boubeta, Lombardía and Morales (2016) develop small area prediction procedures for 

the gamma-Poisson model and the Poisson GLMM, respectively. We focus on unit-level models. Tzavidis, 

Ranalli, Salvati, Dreassi and Chambers (2015) develops an M-quantile based procedure for prediction of 
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small area means for unit-level count data. As demonstrated in Tzavidis et al. (2015), this procedure is less 

efficient than model-based methods if the model assumptions hold. Jiang and Lahiri (2006) develops an 

empirical best predictor of the mean for a unit-level Poisson GLMM. Berg (2022) develops empirical best 

predictors of the mean under a unit-level gamma-Poisson model. We refer to Berg (2022) for a more 

complete review of unit-level models and area-level models for count data. Jiang and Lahiri (2006), Tzavidis 

et al. (2015), and Berg (2022) emphasize prediction of means. We develop procedures that are applicable 

to nonlinear parameters, such as quantiles. 

We propose empirical best predictors of general parameters under two unit-level models. The first is a 

unit-level gamma-Poisson model. The second is a unit-level Poisson GLMM. We establish a common 

notation that we use for both models. Let = 1, ,i D…  index the small areas, and let =1, , ij N…  index the 

units in the population for small area .i  Let ijy  be the observed count for unit j  in small area ,i  where 

{0,1, 2, }.ijy  …  Let 1= ( , , )ij ij ijpx x x …  be a vector of covariates that does not include an intercept. We 

consider prediction of a general parameter defined as  

 1= ( ) = ( , , ),
ii i i i iNQ y y  y …  (1.1) 

where ( )Q   is a real-valued, measurable function, and 1= ( , , ) .y
ii i iNy y …  Common choices of ( )Q   are the 

finite population mean or quantile. Molina and Rao (2010) gives several examples of the function ( ).Q   

Assume ijy  is observed only for the elements in the sample. The covariate ijx  is required for every element 

of the population. In this probabilistic framework, the population U  is partitioned into two parts as 

= ,U A R  where A  is the index set of the sample and R  is the index set of the non-sampled elements. 

We partition A  and R  as =1= D
i iA A  and =1= ,D

i iR R  where iA  is the index set of sampled elements for 

area ,i  and iR  is the index set of non-sampled elements in area .i  Without loss of generality, it can be 

assumed that = {1, , },i iA n…  and = { 1, , }.i i iR n N …  With this convention, = ( , ) ,y y yi is ir
    where 

1= ( , , ) ,y
iis i iny y …  and 1= ( , , ) .y

i iir in iNy y
…  

We compare the predictors of i  and corresponding MSE estimators based on the gamma-Poisson model 

to the predictors and MSE estimators based on the Poisson GLMM through simulation. We simulate data 

from both the Poisson GLMM and the gamma-Poisson model. For each simulation model, we calculate the 

predictors and MSE estimators based on both the Poisson GLMM and the gamma-Poisson model. This 

allows us to evaluate the properties of the procedures for situations where the model is correctly specified 

and under model misspecification. 

We illustrate the methods using a subset of data collected in the 2018 Iowa Seat-Belt Use survey. Berg 

(2022) constructs predictors of county-level means using this same data set. We extend the analysis of Berg 

(2022) to include predictors of the median and the inter-quartile range (IQR), using the gamma-Poisson 

model as well as the Poisson GLMM. The data analysis is somewhat contrived to suit our interest in count 

data. The actual parameters of interest are proportions of belted occupants. In Berg (2023a), we conduct a 

more extensive analysis of the data that is geared toward the practical needs of the seat-belt use survey. That 

analysis motivated our interest in developing methodology for small area models for counts. The analysis 
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in this paper allows us to effectively illustrate the proposed methodology. The methods that we propose are 

of practical interest beyond the illustrative application. Count data appear frequently in the small area 

estimation literature (Tzavidis et al., 2015). Applications often benefit from estimates of parameters that are 

more general than the mean (Molina and Rao, 2010; Hobza et al., 2020). The method that we propose 

uniquely provides estimates of a broad range of parameters for count data. 

Our primary contribution is the development of predictors of nonlinear small area parameters, such as 

those considered in Molina and Rao (2010), for a situation in which the response variable is a count. The 

models in this paper are not new, but to our knowledge, the proposed prediction algorithms are novel. Our 

development of predictors of nonlinear parameters builds on work in Hobza et al. (2020). The methods of 

Hobza et al. (2020) apply to a general GLMM specification, but their simulations and data analysis focus 

on the gamma response distribution. We provide detailed steps to construct predictors of nonlinear 

parameters for count data. Also, Hobza et al. (2020) restricts attention to additive parameters of the form 
1

=1
( )iN

i ijj
N q y   for a specified function .q  The class of nonlinear parameters that we define in (1.1) is more 

general than the class of additive parameters discussed in Hobza et al. (2020). The class of parameters that 

we define is broad enough to encompass quantiles. It also includes other parameters of practical importance, 

such as the small area skewness and kurtotsis. The method of Hobza et al. (2020) is not immediately 

applicable to estimation of non-additive parameters, such as quantiles, the skewness, and the kurtosis. While 

the mean provides an indication of the central tendency within a small area, estimates of the quantiles and 

higher moments provide a more complete picture of the distribution of the characteristic at the small area 

level. 

Our approach has two limitations which are important to assert. First, we assume that the sample design 

is noninformative for the specified model. If the sampling weights are correlated with the model response 

variable, after conditioning on model covariates then the design is informative. The methods that we propose 

will render biased inferences under informative sampling. In ongoing work, Berg and Eideh (2023) extend 

the proposed methods to a complex sample design. We refer the reader to Parker, Janicki and Holan (2019) 

for a comprehensive review of small area estimation under informative sampling. A second limitation is 

that we require the covariate for every unit in the population. In many applications, it may be difficult to 

satisfy this assumption. If only area-level covariates are available, then area-level models may be preferable. 

The rest of this manuscript is organized as follows. In Section 2, we develop empirical best predictors 

of nonlinear parameters for the unit-level gamma-Poisson model. In Section 3, we develop empirical best 

predictors of nonlinear parameters for a GLMM with a Poisson response distribution. In Section 4, we 

compare the two procedures through simulation. In Section 5, we apply both procedures to the seat-belt 

survey data. We conclude with a discussion highlighting the strengths and weaknesses of the two models 

Section 6. 

 
2. Unit-level gamma Poisson model and predictor 
 

We define the unit-level gamma-Poisson model as in Berg (2022). Assume  
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ind

Poisson ( ), = 1, , ; = 1, , ,ij ij ij iy i D j N  … …∼  (2.1) 

where = ,ij ij iu   
iid

Gamma ( , ),iu  ∼  = ( ),x γij ijg   1= ( , , )γ p  …  is a fixed vector of regression coeffi-

cients, and ( )g   is a specified link function. We let ( ) = exp ( ).x γ x γij ijg    The notation Gamma ( , )a b  

denotes a gamma distribution with shape parameter a  and rate parameter b  such that [ ] = .iE u    

We develop an empirical best predictor of .i  As in Berg (2022), the assumptions of the model (2.1) 

imply that the conditional distribution of iu  given the observed data satisfies,  

 
ind

. .Gamma ( , ),i is i iu y    y ∼  (2.2) 

where . =1
= in

i ijj
y y  and . =1

= .in

i ijj
   Note that (2.2) holds exactly for any sample size and does not require 

approximations. The conditional distribution (2.2) is the crux of the development of the empirical best 

predictors. The conditional distribution (2.2) depends on the unknown ,  ,  and .γ  To operate with the 

conditional distribution, we use the maximum likelihood estimators of these fixed parameters. As demon-

strated in Berg (2022), the log likelihood for ,  ,  γ  is of the form ( , , ) =γ   
=1

log ( , , ) ,γ
D

ii
L    

where  

 
.

=1 .

.
=1

( )
( , , ) = .

( )( ) !
γ

i ij

i i

n y

ijj i
i n y

iijj

y
L

y





  
 

 


 
  





  

Define the maximum likelihood estimator by  

 ( , , )
ˆˆ ˆ( , , ) argmax ( , , ).γ γ          

Berg (2022) discusses the theoretical properties of the maximum likelihood estimator for the gamma-

Poisson model. 

The known conditional distribution for iu  in (2.2), combined with the maximum likelihood estimator, 

motivates a computationally simple procedure for predicting .i  The procedure is an application of the 

general method of Molina and Rao (2010) to the gamma-Poisson model (2.1). The best predictor of i  under 

squared error loss is = , , , .γ yi i sE     
  By mutual independence of 1 , , ,y ys Ds…  the best predictor 

simplifies as = ( , , , ) = , , , ,γ y γ yi i is i isE        
   where  

  
1 0 =0

= , , , ( ) ; , , ,γ y y y y γ
in iNi i

i i is i i ir is
y y

E f      


 



         

and  

  
 
   

.

1

=1= 1 .

= 1 =1
=1

( )
; , , .

!
y y γ

ii ij
i

i

Nii i ijji
i

NN y
y

ijij jj n i
ir is N n yN

ij ijj n j
ijj

y
f

y y
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The notation ( , , , )γ yi is    emphasizes dependence of the best predictor on the unknown , ,   and .γ  An 

empirical best predictor is obtained by substitution of the unknown parameters defining the best predictor 

with the maximum likelihood estimators. That is, the empirical best predictor is defined as  

  
1=0 =0

ˆ ˆ ˆˆ ˆ ˆ ˆ, , , = ( ) ; , , .γ y y y y γ
in iNi i

i i is i i ir is
y y

E f      


 

       (2.3) 

The infinite sum defining the empirical best predictor is analytically intractable. We define a Monte Carlo 

(MC) approximation for the empirical best predictor of ,i  as in Molina and Rao (2010). 

We define L  simulated populations. For = 1, , ,L …  we set ( ) =ij ijy y  for =1, , .ij n…  For non-sampled 

elements, = 1, , ,i ij n N …  we generate ( )
ijy   as  ( ) ( ) ( )Poisson ,ij ij ijy    ∼  where  

 
 

 

( ) ( )

( )
. .

ˆ= exp ,

ˆ ˆˆGamma , ,

ij ij i

i i i

u

u y



  



 

x 

 ∼


  

and  . =1
ˆ ˆ= exp .x γin

i ijj
   An MC approximation for the empirical best predictor of i  is then  

   1 ( )
, ,

=1

ˆ ˆ ˆˆ ˆ= , , , = ,γ y
L

i L i L is iL      



 (2.4) 

where  ( ) ( ) ( )
1= , , .

ii i iNQ y y   …  We express the predictor ,
ˆ
i L  as a function of ˆ ,  ˆ,  ˆ ,γ  and isy  to emphasize 

dependence of the predictor on the parameter estimators and the observed counts for the area. 

 

2.1 MSE Estimation 
 

We use the bootstrap method of González-Manteiga, Lombardía, Molina, Morales and Santamaría 

(2007) and Molina and Rao (2010) to estimate the MSE of ,
ˆ .i L  For = 1, , ,b B…  we repeat the following 

steps:   

1. For = 1, , ,i D…  generate 
*( ) *( )
1{ , , }

i

b b
i iNy y…  from the model in (2.1) with parameters equal to the 

maximum likelihood estimate ˆˆ ˆ( , , ) .γ    Define a bootstrap version of the population parameter 

by  *( ) *( ) *( )
1= , , .

i

b b b
i i iNQ y y …  Let *( ) *( ) *( )

1= ( , , ) .y
i

b b b
is i iny y …  The bootstrap sample is then *( ){ : =b

is iy  

1, , }.D…  

2. Use the bootstrap sample,  *( ) : = 1, , ,y b
is i D…  to obtain a maximum likelihood estimator denoted 

as  *( ) *( ) *( )ˆ .ˆ ˆ, , ( )γb b b 


  Specifically,  *( ) *( ) *( )ˆˆ ˆ, , ( )γb b b 


  satisfies  

  *( ) *( ) *( ) *( )
( , , )

ˆˆ ˆ, , argmax ( , , ),γ γ
b b b b

    
   

 
   

where  

   *( ) *( )

=1

( , , ) log , , ,γ γ
D

b b
i

i

L       
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*( )

*( )
.

*( )
=1 .*( )

*( )
.=1

( , , ) = ,
( )( ) !

γ

b
i ij

b
i i

n y
b

ijj ib
i n yb

iijj

y
L

y





  
 

  

 
  






  

and *( ) *( )
. =1

= .inb b
i ijj

y y  

3. Construct the MC approximation for the empirical best predictor using the bootstrap sample and 

the bootstrap maximum likelihood estimator. Denote the bootstrap version of the empirical best 

predictor by  *( ) *( ) *( ) *( ) *( )
,
ˆ ˆ ˆˆ ˆ= , , , .γ yb b b b b
i L i is     We construct *( )

,
ˆ b
i L  as follows. We define L  

simulated populations. For = 1, , ,L …  we set ( ) *( )= b
ij ijy y  for =1, , .ij n…  For non-sampled 

elements, = 1, , ,i ij n N …  we generate ( * )b
ijy   as  ( * ) ( * ) ( * )Poisson ,b b b

ij ij ijy    ∼  where  

 
( * ) *( ) ( * )

( * ) *( ) *( ) *( ) *( )
. .

ˆ= exp( ) ,

ˆ ˆˆGamma ( , ),

x γb b b
ij ij i

b b b b b
i i i

u

u y



  



 

 

 ∼
  

*( ) *( )
. =1

= ,inb b
i ijj

y y  and *( ) *( )
. =1
ˆ ˆ= exp( ).x γinb b
i ijj
   We then define *( ) *( ) *( ) *( )

, ,
ˆ ˆ ˆˆ ˆ= ( , , ,γb b b b
i L i L     

*( ) 1 ( * )

=1
) = ,y

Lb b
is iL   


 where 

( * ) ( * ) ( * )
1= ( , , ).

i

b b b
i i iNQ y y   …  

 

Define a bootstrap estimator of the MSE by  

   
2

*( ) *( )
,

=1

1 ˆ ˆMSE = .
B

b b
i i L i

bB
   (2.5) 

 

3. Poisson GLMM 
 

We next define an empirical best prediction procedure for a GLMM with a Poisson response distribution. 

The Poisson GLMM assumes that  

 
ind

Poisson ( ), = 1, , ; = 1, , ,ij ij ij iy i D j N  … …∼  (3.1) 

 0 1( ) = ,x βij ij ih b      

and 
iid

2(0, )i bb N ∼  for = 1, , .i D…  The function ( )ijh   is a specified link function. We assume that 

( ) = log ( ).ij ijh    

We estimate the parameters of the Poisson GLMM using the method of Schall (1991). This method is 

applicable to a very general GLMM. The method of Schall (1991) is used in the context of binomial data in 

González-Manteiga et al. (2007). The supplementary material of Berg (2022) describes the steps of the 

Schall (1991) procedure for the specific Poisson GLMM. Because the method has the form of an iteratively 

reweighted least squares (IRLS) procedure, we refer to the algorithm of Schall (1991) as the IRLS algorithm. 

Let 0
ˆ ,  1

ˆ ,β  ˆib  and 
2ˆ
b  be the estimators and predictors obtained upon completion of the IRLS algorithm. 

 

Remark: The R function glmer is a widely used alternative to the IRLS algorithm. We emphasize the IRLS 

algorithm in the main document because the IRLS algorithm is reproducible in programming languages 

other than R. We present results using glmer in Section 2 of the supplementary material (Berg, 2023b). 
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3.1 Empirical best predictor for Poisson GLMM 
 

The best predictor of i  under squared error loss is  

  
1

2
0 1

=0 =0

; , , ( ) ,y β y y y
in iNi i

i is b i i ir is
y y

E f   


 

        

where  

 

   

 
 

 

= 1

=1

=1

= exp( ) ! ,

exp( ) !
= ,

exp( ) !

i

ij

i

i ij

i ij

N
y

ir is ij ij ij i is i
j n

n y

ij ij ij i b bj

i is n y

ij ij ij i b b ij

f y f b db

y b
f b

y b db

 

    

    










 
 

 

 
 

 
 







y y y

y

  

and   is the pdf of a standard normal distribution. The empirical best predictor is then 
2

0 1
ˆ ˆ ˆ; , , .y βi is bE    

   

The conditional distribution of ib  given the data does not have a known form for the GLMM. We 

therefore require a Monte Carlo procedure to approximate this conditional distribution. We use a method 

called sampling importance resampling (SIR) to obtain a Monte Carlo approximation for the empirical best 

predictor of (1.1) under the assumptions of the model (3.1). The SIR algorithm is traditionally used to sample 

from posterior distributions in a Bayesian context (Smith and Gelfand, 1992). We use SIR for the purpose 

of obtaining an MC approximation for the empirical best predictor. The SIR algorithm involves simulating 

from a proposal distribution and then accepting a proposed value with probability proportional to the ratio 

of the target and proposal distributions. The SIR algorithm is a general algorithm, and the details of 

implementation depend on the context. We describe how we implement the SIR algorithm for the specific 

Poisson GLMM in steps 1-2 below. 

For = 1, , ,l L…  repeat the following steps:   

1. Generate 
iid

( ,1) ( , ) 2ˆ ˆ, , ( , )T
i i i bb b N b  … ∼  for = 1, , .i D…  

2. Define  

 
 

 

( , )

( , ) ( , ) ( , )
1 1 ( , )

=1

ˆ1
= exp ,

ˆ ˆ( )

tT
i bt t t

i i i t
t i i b

b
p

T b b

 

 

 
  

   
    




  


    

where  

 
( , ) ( , )

( , )
1

=1

exp( )
= log ,

!

i
t tn

ij ijt
i

j ijy

    
      


 

   

and 
( , ) ( , )

0 1
ˆ ˆlog( ) = .x βt t

ij ij ib    
 Set  
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( , )

( , )

( , )

=1

.
t

t i
i T t

it

p
p

p







   

Set ( ) ( , )= t
i ib b   with probability ( , )t

ip   for = 1, , .i D…  

3. Generate  ( ) ( )Poisson ,ij ijy  ∼  where  ( ) ( )
0 1
ˆ ˆlog = β x βij ij ib     for = 1, , ,i D…  and = ij n   

1, , .iN…  Set ( ) =ij ijy y  for = 1, , .ij n…  

4. Define  ( )GLMM ( ) ( )
1= , , .

ii i iNQ y y   …  
 

Finally, define the predictor of i  by  

  GLMM GLMM 2 1 ( )GLMM
0 1

=1

ˆ ˆ ˆ ˆ ˆ, , , = .β y
L

i i b is iL      



 (3.2) 

 
3.2 Bootstrap MSE estimator for Poisson GLMM 
 

We use the parametric bootstrap for MSE estimation. The bootstrap procedure is essentially that of 

Molina and Rao (2010) and González-Manteiga et al. (2007), applied to the Poisson GLMM. For =b  

1, , ,B…  repeat the following steps: 

1. Generate a bootstrap population from the model (3.1), with parameters equal to the estimated 

parameters. Specifically, for = 1, , ,i D…  and =1, , ,ij N…  generate  

 ( ) ( ) ( )Poisson ( ),b b b
ij ij ijy  ∼   

where ( ) ( )
0 1
ˆ ˆlog ( ) = ,x βb b

ij ij ib     and 
iid

( ) ( ) 2
1

ˆ, , (0, ).b b
D bb b N … ∼  Define the bootstrap version of 

the population parameter by 
*( ) *( ) *( )

1= ( , , ).
i

b b b
i i iNQ y y …  

2. Let 
*( ) *( ) *( )

1= ( , , )y
i

b b b
is i iny y…  denote the generated values for the index set in the sample. We call 

*( ) *( )
1{ , , }y yb b

s Ds…  the bootstrap sample. 

3. Apply the IRLS method of Schall (1991), described above, to the bootstrap sample, *( )
1{ , ,b

sy …  
*( )},b
Dsy  to obtain bootstrap versions of the parameter estimates. Denote the estimates obtained 

from the bootstrap sample by *( ) *( ) *( )2
0 1
ˆ ˆ ˆ( , ( ) , ) .βb b b

b    

4. Implement the procedure of Section 3.1 with the bootstrap sample and the bootstrap estimates 
*( ) *( ) *( )2
0 1
ˆ ˆ ˆ( , ( ) , )βb b b

b    to obtain a bootstrap version of the predictor. The bootstrap version of the 

predictor is 
*( )GLMM GLMM *( ) *( ) *( )2 *( )

0 1
ˆ ˆ ˆ ˆ ˆ= ( , , , ).β yb b b b b
i i b is     

 

Define the bootstrap MSE estimator by  

   
2GLMM

*( )GLMM *( )

=1

1 ˆMSE = .
B

b b
i i i

bB
   (3.3) 
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4. Simulations 
 

The simulation study has primary and secondary objectives. The primary objectives of the simulation 

study are two-fold. The first is to evaluate the performance of the small area predictors based on the gamma-

Poisson model relative to the small area predictors based on the Poisson-GLMM. The second goal is to 

evaluate the quality of the proposed bootstrap MSE estimators. The two secondary goals of the simulation 

study are (1) to evaluate the computational time of the alternative procedures, and (2) to assess the choice 

of T  for the SIR algorithm. We present output related to the primary objectives of the simulation in this 

main document. We relegate further discussion of the secondary objectives of the simulation to the 

supplementary material (Berg, 2023b). We refer the reader to Berg (2022) for a study of the properties of 

the estimators of the fixed parameters.  

We generate data from both the gamma-Poisson model defined in (2.1) and from the unit-level Poisson 

GLMM defined in (3.1). For each simulation model, we calculate predictors based on the gamma-Poisson 

model and the GLMM. This permits an evaluation of the procedures under model misspecification. We 

simulate a univariate covariate as 
iid

(0.5,1)ijx N∼  for = 1, , ,i D…  and =1, , ,ij N…  where =100iN  for 

= 1, , ,i D…  and =100.D  The covariate is held fixed across simulation runs. We simulate a population 

from either the gamma-Poisson model (2.1) or the GLMM (3.1). For the gamma-Poisson model, we set 

=1  and = 2.  We use two values of   for the gamma-Poisson model. We first use = 5.  We then 

generate a more skewed distribution by setting = 0.5. For the GLMM, we set 0 = 0.5 and 1 = 0.5. We 

use 0.5 and 1.5 as the two values for 2
b  for the GLMM. The combination of two model forms (gamma-

Poisson and GLMM) with two values for each of 2
b  and   results in a total of four data generating models. 

We select a simple random sample from each area with a common sampling rate of 5%. The use of a constant 

sampling rate is fairly unrealistic but is chosen intentionally for two reasons. The first is simplicity. The 

second is to construct a situation with sample sizes that are small enough to reflect the challenges in real 

small area problems. We construct predictors of three small area parameters of interest: the area mean, the 

area median, and the area inter-quartile range (IQR). The area IQR is defined as the difference between the 

75-percentile and the 25-percentile for the area.  

We construct the two main proposed predictors of each parameter. We use Gam-Pois to denote the 

empirical best predictor for the gamma-Poisson model. The Gam-Pois predictor is defined in (2.4), where 

it is denoted as ,
ˆ .i L  We use GLMM to denote the empirical best predictor for the Poisson-GLMM. The 

GLMM predictor is denoted GLMMˆ
i  where it is defined in (3.2). When implementing the GLMM procedure, 

we use = 200T  for the Monte Carlo SIR algorithm. The choice of T  is discussed in the supplementary 

material (Berg, 2023b). For both the GLMM and Gam-Pois predictors, we use =L 1,000. The choice of L  

is based on a comparison of =100L  to =L 1,000. The results for =100L  are presented in Section 5 of the 

supplementary material (Berg, 2023b).  

We also compute a direct estimator of each parameter. The direct estimator of the mean is the sample 

mean for the area. The direct estimator of the median is the sample median. The direct estimator of the IQR 

is calculated as the difference between the sample 75-percentile and the sample 25-percentile for the area. 
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For the GLMM, we further define plug-in (PI) predictors. The PI predictor of the mean is defined as  

 PI PI

=1

1ˆ ˆ= ,
iN

i ij
ji

y y
N
  (4.1) 

where PIˆ =ij ijy y  for =1, , ,ij n…   PI
0 1

ˆˆ ˆˆ = expij ij iy x b    for = 1, , ,i ij n N …  and  0 1
ˆˆ ˆ, , ib   is 

obtained from the IRLS algorithm used for the GLMM model (3.1). We define a PI predictor of the median 

as the median of  PIˆ : = 1, , .ij iy j N…  We define the PI predictor of the IQR as the difference between the 

75-percentile of  PIˆ : = 1, ,ij iy j N…  and the 25-percentile of  PIˆ : =1, , .ij iy j N…  A PI predictor of the form 

(4.1) is compared to the M-quantile predictor in Tzavidis et al. (2015). 

For the mean, we also calculate the closed form expression for the empirical best predictor based on the 

gamma-Poisson model. This predictor is defined in Berg (2022). We refer to the predictor of Berg (2022) 

as Gam-Pois-Alt in the tables below. 

The procedures for the median and the IQR require calculating percentiles of a set of numbers. Many 

procedures to calculate percentiles exist. We calculate all percentiles using the default method in the R 

function quantile. 

 

4.1 Comparison of efficiency of alternative predictors 
 

We compare the predictors using two criteria. To define the criteria, let ( )ˆ m
i  and ( ) ,m

i  respectively, 

denote a predictor of i  and corresponding population parameter obtained in MC simulation ,m  where 

= 1, , .m M…  The first criterion is the average relative root mean square error defined by  

 
=1

1
%RRMSE = 100 RMSE ,

D

i
iD
  (4.2) 

where 
1

( )1
MC =1

RMSE MSE ,
M m

i i iM m



 
   and  

  
2

1 ( ) ( )
MC

=1

ˆMSE .
M

m m
i i i

m

M     (4.3) 

The second criterion is the percent average absolute relative bias defined by  

 
=1

1
%RB = 100 RB ,

D

i
iD
  (4.4) 

where 
1

1 ( ) ( ) 1 ( )

=1 =1
ˆRB = ( ) .

M Mm m m
i i i im m

M M  


  
    We report the %RRMSE and %RB. We use a 

Monte Carlo (MC) simulation size of = 500.M  

We first simulate data from the gamma-Poisson model defined in (2.1). Table 4.1 contains the %RRMSE 

and %RB of the alternative predictors when the data are generated from the model (2.1). The direct estimator 

is very inefficient for this simulation because the area sample size is only 5. For this configuration, the 

gamma-Poisson model is the true model, so it is not surprising that the Gam-Pois-Alt predictor has the 

smallest %RRMSE for the mean. Likewise, the Gam-Pois predictor is the most efficient predictor for the 
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median and IQR. Unlike the Gam-Pois-Alt predictor, the Gam-Pois predictor is constructed from L  

simulated samples and is therefore subject to an extra layer of Monte Carlo variability. The difference 

between the Gam-Pois predictor and the Gam-Pois-Alt predictor shows the effect of the Monte Carlo error 

from the L  simulated samples on the efficiency of the Gam-Pois predictor. Even though the GLMM is mis-

specified, the loss of efficiency from using the GLMM for the IQR and the median is much less than the 

loss from using the direct estimator. The PI predictor is a poor predictor of the median and the IQR. For the 

median and the IQR, the %RRMSE of the PI predictor exceeds the %RRMSE of the GLMM and Gam-Pois 

predictors. The bias makes an important contribution to the MSE for the PI predictor of the median and the 

IQR. The bias is negligible for the Gam-Pois and GLMM predictors, indicating that for these predictors, the 

contribution from the variance to the MSE is more important than the contribution from the bias. 

Second, we simulate data from the GLMM defined in (3.1). Table 4.2 contains the %RRMSE and %RB 

when the true model is the Poisson GLMM defined in (3.1). The direct estimator is inefficient, compared to 

the model-based predictors. The PI predictor is efficient for the mean when 2 =b 0.5, and the GLMM 

predictor has the smallest %RRMSE when 2 =b 1.5. The GLMM predictor has smaller %RRMSE than the 

Gam-Pois and Gam-Pois-Alt predictors. This is not surprising because the GLMM is the true model for the 

simulation used to construct Table 4.2. Even though the Gam-Pois model is incorrectly specified, the loss 

of efficiency from using the Gam-Pois predictor is much smaller than the loss of efficiency from using the 

direct estimator, relative to the predictors based on the GLMM. For the GLMM and Gam-Pois predictors, 

the %RB is negligible compared to the %RRMSE, indicating that the contribution from the variance to the 

overall MSE of the predictor is more important than the contribution from the bias. The PI predictor is less 

efficient than the Gam-Pois predictor or the GLMM predictor for the median and for the IQR. The PI 

predictor has a severe bias for predicting the median and the IQR. 

The comparison of predictors leads to three main conclusions. First, the relative efficiencies of the 

predictors depend on the data generating model. If the gamma-Poisson model is true, then the Gam-Pois-

Alt predictor is most efficient for the mean, and the Gam-Pois predictor is most efficient for nonlinear 

parameters. When the GLMM is true, the PI/GLMM predictors are most efficient. Second, the Gam-Pois 

and GLMM predictors appear to have reasonable efficiency, even under model mis-specification. When the 

Gam-Pois model is correctly specified, the loss of efficiency from incorrect use of the GLMM predictor is 

slight. Similarly, the ratio of the %RRMSE of the Gam-Pois predictor to the %RRMSE of the GLMM 

predictor when the GLMM is true is usually about 1.01. The loss of efficiency from use of the Gam-Pois 

predictor when the GLMM is true is greater than the loss from the use of the GLMM when the Gam-Pois is 

true, but not by much. The third conclusion concerns the properties of the PI predictor. The PI predictor is 

not an estimator of an optimal predictor but nonetheless has good properties for predicting the mean in our 

simulations. For predicting the median and the IQR, the PI predictor has a substantial enough bias that the 

PI predictor is less efficient than the GLMM or Gam-Pois predictor. Given our interest in a broad range of 

parameters, we prefer the GLMM predictor over the PI predictor. 
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Table 4.1 

%RB and %RRMSE of alternative predictors when the true model is the gamma-Poisson model and =L 1,000. 
 

2
b  Mean Med. IQR 

%RRMSE %RB %RRMSE %RB %RRMSE %RB 

Gam-Pois 5.000 17.362 0.667 20.263 0.798 19.406 0.764 

Gam-Pois-Alt 5.000 17.355 0.670     

GLMM 5.000 17.452 0.711 20.340 0.877 19.473 0.782 

PI 5.000 17.450 0.718 20.837 3.209 23.004 10.676 

Direct 5.000 60.966 2.026 79.232 15.558 78.220 16.629 

Gam-Pois 0.500 55.451 1.882 109.729 3.929 64.552 2.145 

Gam-Pois-Alt 0.500 55.431 1.888     

GLMM 0.500 56.584 2.850 110.644 4.558 65.023 2.332 

PI 0.500 56.508 2.222 121.632 45.899 79.661 26.730 

Direct 0.500 106.654 3.906 237.870 38.205 127.712 17.089 

Notes: Gam-Pois = gamma-Poisson; GLMM = Generalized linear mixed model; IQR = Inter-quartile range; PI = Plug-in;

RB = Relative biases; RRMSE = Relative root mean square error. 

 
Table 4.2 

%RB and %RRMSE of alternative predictors when the true model is the Poisson-GLMM model and =L 1,000. 
 

  2
b  Mean Med. IQR 

%RRMSE %RB %RRMSE %RB %RRMSE %RB 

Gam-Pois 0.500 24.571 0.816 29.014 1.014 25.128 0.977 

Gam-Pois-Alt 0.500 24.555 0.810     

GLMM 0.500 24.249 0.847 28.688 1.036 24.900 0.967 

PI 0.500 24.239 0.820 29.306 4.696 42.980 34.347 

Direct 0.500 38.820 1.399 53.578 4.722 64.172 24.574 

Gam-Pois 1.500 19.995 0.624 22.728 0.758 24.107 0.825 

Gam-Pois-Alt 1.500 19.971 0.627     

GLMM 1.500 19.781 0.642 22.526 0.747 23.940 0.827 

PI 1.500 19.788 0.609 23.140 3.220 35.215 23.591 

Direct 1.500 52.486 1.938 67.632 4.636 95.293 24.036 

Notes: Gam-Pois = gamma-Poisson; GLMM = Generalized linear mixed model; IQR = Inter-quartile range; PI = Plug-in;

RB = Relative biases; RRMSE = Relative root mean square error. 

 
4.2 Properties of bootstrap MSE estimator 
 

We next consider the properties of the MSE estimators for the gamma-Poisson and GLMM models. The 

MSE estimator is defined in (2.5) for the gamma-Poisson model and in (3.3) for the GLMM. We calculate 

both MSE estimates under each data generating model. This allows us to evaluate the properties of the MSE 

estimates under model misspecification and when the model is correctly specified. The bootstrap sample 

size is = 200.B  The choice of = 200B  follows from a recommendation in Hobza et al. (2020) that the 

bootstrap sample size be at least 200. To reduce the computational requirements, we use =100L  for the 

simulations in this section. To evaluate the MSE estimators, we conduct a simulation with = 250M  

simulated samples using the same ijx  used for the first simulation. We calculate the relative bias of the MSE 

estimator as well as empirical coverages of normal theory 95% prediction intervals. 
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We first define the relative bias of the MSE estimator. Let 
( )

MSE
m

i  denote an MSE estimate from 

simulated sample m  for = 1, , ,m M…  where = 250.M  We then define the % relative bias of the MSE 

estimator for area i  by  

 
 ( )

1

=1

MC

MSE
RB 100 1

MSE

mM
iM m

i

i

 
  
 
 


  

where MCMSE i  is defined in (4.3) and is based a separate simulation with =M 5,000. We use the output 

from a separate simulation with =M 5,000 to define the denominator of the RBi  to reduce the variance of 

RB .i  

Figure 4.1 contains box-plots of the relative biases for the four simulation configurations and the three 

parameters. The relative biases of the bootstrap MSE estimator (depicted in Figure 4.1) depend on the 

simulation model and the parameters. We first consider the Gam-Pois model with = 5.  For this 

configuration, the Gam-Pois MSE estimator has a slight negative bias, but the relative bias is usually 

between -10% and 10%. The GLMM MSE estimator is nearly unbiased for the MSE of the GLMM predictor 

in the sense that the relative biases for the GLMM MSE estimator are symmetric around zero and are usually 

between -10% and 10%. It is interesting that the GLMM MSE estimator performs well for this simulation 

configuration because the GLMM model is incorrectly specified. We next consider the Gam-Pois model 

with = 0.5. The Gam-Pois MSE estimator remains nearly unbiased, in the sense that the median relative 

bias is close to zero and the relative biases are usually below 10% in absolute value. The GLMM MSE 

estimator for the GLMM predictor tends to have a positive bias under the Gam-Pois model with = 0.5. 

We next consider the GLMM simulation model with 2 =b 0.5. The GLMM MSE estimator for the GLMM 

predictor is nearly unbiased, with most relative biases between -10% and 10%. The Gam-Pois MSE 

estimator tends to underestimate the MSE of the Gam-Pois predictor for the GLMM simulation 

configuration with 2 =b 0.5. The relative bias of the Gam-Pois MSE estimator is only about -5% for this 

configuration. Increasing 2
b  to 1.5 has little impact on the properties of the GLMM MSE estimator for the 

GLMM predictors. For the GLMM simulation model with 2 =b 1.5, the Gam-Pois MSE estimator can 

exhibit extreme values. 

We define the relative root mean square error of the MSE estimator as  

 

 
2( )

1
MC=1

MC

MSE MSE
RRMSEMSE .

MSE

mM
i im

i

i

M  



  

Figure 4.2 contains boxplots of the RRMSEMSE .i  The two MSE estimators have consistently similar 

relative root mean square errors. The biases observed for certain simulation configurations seem to have a 

negligible effect on the MSE of the MSE estimator.  
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Figure 4.1 Relative biases (RB )i  of MSE estimators for four simulation configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: GLMM = Generalized linear mixed model; GP = gamma-Poisson; IQR = Inter-quartile range; MSE = Mean square error. 

 
Figure 4.2 Boxplots of relative root mean square errors of mean square error estimators (RRMSEMSEi) for 

four simulation configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: GLMM = Generalized linear mixed model; GP = gamma-Poisson; IQR = Inter-quartile range. 
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We define the empirical coverage of prediction intervals for area i  by  

  ( ) ( )

=1

1
CR CI ,

M
m m

i i i
m

I
M

    

where  ( ) ( )
( ) ( ) ( )ˆ ˆCI 1.96 MSE , 1.96 MSE .

m m
m m m

i ii i i 
 

      The empirical coverages of the nominal 95% 

prediction intervals are depicted in Figure 4.3. A surprising result is that the GLMM procedure tends to 

produce superior coverage rates than the Gam-Pois procedure under the Gam-Pois configuration with =

0.5. Generally, the departures of the coverage rates from the nominal level are not severe. The empirical 

coverages of prediction intervals tend to fall between 92% and 98%. 

In summary, the gamma-Poisson MSE estimator has reasonable properties when the gamma-Poisson 

model is the true model, and likewise, the GLMM MSE estimator has reasonable properties when the 

GLMM model is the true model. The properties of the MSE estimator under model misspecification depend 

on the parameter configuration. The GLMM MSE estimator is approximately unbiased under the Gam-Pois 

configuration when = 5  but has positive bias when = 0.5. The Gam-Pois MSE estimator tends to have 

a median relative bias of about -5% under the GLMM configuration when 2 =b 0.5 and can be erratic when 
2 =b 1.5. 

 
Figure 4.3 Empirical coverages of nominal 95% prediction intervals (CR )i  for four simulation configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: GLMM = Generalized linear mixed model; GP = gamma-Poisson; IQR = Inter-quartile range. 
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5. Illustration with modeling observed vehicle occupants 
 

We apply both the GLMM predictor and the Gam-Pois predictor to data from the 2018 Iowa Seat-Belt 

use survey. This is the same data set used in Berg (2022). While Berg (2022) only constructs predictors of 

means, we construct predictors of more general small area parameters. 

The population consists of =N 65,313 road segments in Iowa. The road segments are nested in =15D  

counties that define the small areas. The area sample sizes are = 5in  road segments for all but one county 

in which =14in  such that the total sample size is = 84.n  Due to the small county sample sizes, this is 

clearly a small area estimation problem. Each road segment in the sample is observed for 45 minutes, and 

the response variable is defined as  

 =ijy number of vehicle occupants observed during the 45-minute period on road segment j  of county .i   

Two covariates are available for every road segment in the population from the sampling frame. The 

first is the road type of the road segment, where the three road types are primary, secondary, and local. The 

second is the vehicle miles traveled. As in Berg (2022), we define the model to contain indicators for road 

type as well as interactions between road type and VMT. We refer to Berg (2022) for estimates of the fixed 

model parameters. 

For this analysis, our objective is to compare the two models. In practice, however, an analyst may need 

to select one of the two models. We recommend diagnosing the goodness of fit of the two models using 

standardized residuals. We define a residual for the Gam-Pois model by  

 
ˆ ˆ

,
ˆ ˆ

ij ij i

ij i

y u
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Note that ˆiu  is an estimate of i isE u  y  (Berg, 2022). The standardized residual for the GLMM is defined 

as  

 

PI

PI

ˆ
.

ˆ

ij ij

ij

y y

y


  

Figure 5.1 contains plots of the standardized residuals against the predicted values for the Gam-Pois and 

GLMM models. The residuals for the two models are strikingly similar. The standardized residuals do not 

exhibit systematic trends, and the variance of the residuals remains constant as the mean increases. The 

residuals clearly do not have a standard normal distribution; however, normality is not one of the model 
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assumptions. It is possible that the residuals indicate that the data are over-dispersed relative to the specified 

Poisson models. Incorporating over-dispersion in the proposed framework is a possible direction for future 

research. 

 

Figure 5.1 Standardized residuals against predicted values for gamma-Poisson (gam-Pois) and generalized 
linear mixed models (GLMM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

We consider three county-level parameters of interest: the mean number of occupants per road segment, 

the median number of occupants, and the interquartile range of the number of occupants per road segment. 

We apply the methods of Sections 2 and 3 to obtain predictors and associated estimates of the mean square 

error. Because we are interested in parameters other than the mean, we use the predictor (2.4) for the gamma-

Poisson model. We use the predictor (3.2) for the GLMM. We report the predictors and the coefficients of 

variation for each procedure. The coefficient of variation is the ratio of the square root of the estimated mean 

square error to the predictor. The MSE estimators are defined in (2.5) and (3.3), respectively, for the gamma-

Poisson and GLMM models. We use a bootstrap sample size of = 200.B  Table 5.1 contains the county 

level predictors and corresponding coefficients of variation based on the gamma-Poisson and GLMM 

models. 

The two models produce consistently similar predictors. The predictors based on the gamma-Poisson 

model are nearly the same as the predictors based on the GLMM model. This empirical result is consistent 

with the finding in the simulation that both predictors tend to perform well, regardless of the true data 

generating model. For the data analysis, we do not know the “true” data generating model. Therefore, it is 

reassuring that the predictors based on the two models are similar.  
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Table 5.1 

County predictors (pred) and coefficients of variation (cv) based on gamma-Poisson (Gam-Pois) and GLMM 

models. 
 

 Mean Median IQR 
 Gam-Pois GLMM Gam-Pois GLMM Gam-Pois GLMM 

County pred cv pred cv pred cv pred cv pred cv pred cv 
1 60.37 0.46 59.99 0.49 34.71 1.38 34.27 1.46 104.8 0.26 103.56 0.28 
2 60.29 0.04 60.18 0.04 26.31 0.05 26.54 0.10 57.86 0.14 58.40 0.14 
3 62.97 0.1 63.01 0.09 24.54 0.11 24.53 0.08 63.58 0.55 63.70 0.56 
4 87.82 0.45 87.60 0.45 46.34 1.25 46.31 1.26 163.53 0.3 163.52 0.31 
5 54.67 0.24 54.91 0.23 24.5 1.05 24.39 1.03 60.26 0.76 59.94 0.76 
6 77.08 0.17 77.47 0.17 31.23 0.99 31.50 0.97 136.85 0.07 137.57 0.08 
7 65.79 0.15 66.03 0.13 30.27 0.34 30.20 0.30 67.68 0.63 67.32 0.61 
8 99.65 0.02 99.34 0.03 41.53 0.05 41.56 0.05 118.65 0.21 118.05 0.23 
9 68.12 0.17 68.19 0.16 25.98 0.2 26.07 0.17 73.11 0.36 73.14 0.37 

10 97.24 0.27 97.29 0.27 41.26 0.42 41.40 0.40 153.54 0.36 154.04 0.38 
11 96.99 0.06 96.83 0.05 41.9 0.09 42.02 0.07 91 0.18 91.07 0.18 
12 55.73 0.05 56.14 0.05 24.39 0.3 24.47 0.26 97.05 0.1 97.15 0.10 
13 53.43 0.04 53.09 0.05 18.36 0.07 18.19 0.13 53.52 0.22 53.12 0.23 
14 122.55 0.16 123.69 0.15 47.28 0.17 47.78 0.15 131.63 0.38 132.73 0.39 
15 96.98 0.09 96.89 0.09 48.34 0.52 48.28 0.53 91.33 0.41 91.40 0.42 

Notes: GLMM = Generalized linear mixed model; IQR = Inter-quartile range. 

 
The coefficients of variation based on the two models are also strikingly similar. This also reflects the 

results of the simulation in that the two procedures tend to produce reasonable means square error estimates, 

even under model misspecification. The coefficients of variation are not uniformly below 20%, a common 

threshold for determining an acceptable level of precision. Several of the coefficients of variation for the 

median and interquartile range exceed 30%. The coefficients of variation can exceed 100% for the median. 

For both the gamma-Poisson model and the GLMM, the effect of the variance due to estimating the fixed 

parameters on the mean square error of the small area predictors is substantial. This data set only has 15 

counties. This leads to substantial variation in 0
ˆ ,  2ˆ ,b  ˆ ,  and ˆ.  

 
6. Discussion 
 

We develop predictors of nonlinear parameters based on two unit level models for count data. We first 

define procedures for a gamma-Poisson model with unit-level covariates. We compare the gamma-Poisson 

model to a standard generalized linear mixed model. We use standard parametric bootstrap procedures for 

both models. 

A limitation of the bootstrap procedure that we employ is that the bootstrap MSE estimator is not second-

order unbiased. One can use the double bootstrap to construct a bias-corrected MSE estimator (Hall and 

Maiti, 2006a,b; Erciulescu and Fuller, 2014). We do not pursue the double bootstrap in this work because 

the proposed MSE estimator has adequate properties for the simulation configurations that we considered. 

We study the empirical properties of the small area predictors when the model is correctly specified and 

under model misspecification. The main conclusion from the simulations is that the empirical best predictor 
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for the gamma-Poisson model is superior when the gamma-Poisson model is true, and the PI and GLMM 

predictors are superior when the GLMM is true, as expected. This illustrates the importance of validating 

the model assumptions in model-based small area estimation. However, an interesting result is that the loss 

of efficiency from using the GLMM or gamma-Poisson predictor when the other model is true is consistently 

small. The MSE estimators exhibit more bias when the model is incorrectly specified than when the model 

is correctly specified. Nonetheless, the relative biases of the MSE estimators are usually between -20% and 

20%, regardless of which model is the true model. The coverage rates of confidence intervals do not exhibit 

severe and systematic over-coverage or under-coverage, even under model misspecification. The PI 

predictor has reasonable properties for the mean but is inefficient for nonlinear parameters.  

The data analysis re-affirms the results of the simulation study. The gamma-Poisson and GLMM 

procedures lead to similar predictors in the data analysis. This result echoes an empirical finding of Clayton 

and Kaldor (1987) that estimates of lung cancer rates based on gamma-Poisson and Poisson-lognormal 

models are similar. 

The gamma-Poisson model has two main strengths relative to the Poisson GLMM. An important benefit 

of the gamma-Poisson procedure is computational simplicity. Maximum likelihood estimation is easy for 

the gamma-Poisson model because calculation of the marginal likelihood does not require numerical 

integration. We do not use maximum likelihood estimation for the GLMM model. Instead, we use an IRLS 

algorithm (Schall, 1991) for computational simplicity. A formal comparison of maximum likelihood 

estimation to the IRLS algorithm for the purpose of small area estimation of count data is a possible future 

research direction. We present output using the glmer R function in Section 2 of the supplementary 

material (Berg, 2023b). Given estimates of the fixed parameters, the predictors are easier to calculate for 

the gamma-Poisson model than for the Poisson GLMM. The computing time to implement the gamma-

Poisson predictor is roughly half the time required to implement the GLMM predictor (see Section 4 of the 

supplementary material (Berg, 2023b) for further detail). A second strength of the gamma-Poisson 

procedure is that the estimators of fixed model parameters are consistent. In contrast, the IRLS estimators 

for the Poisson GLMM are known to be inconsistent. The bootstrap procedure for the GLMM relies on 

consistency of the model parameter estimators, an assumption that does not hold for our estimation 

procedure. The procedures for the GLMM model require approximations, and we evaluate the validity of 

these approximations through simulation.  

The GLMM exhibits different strengths, relative to the gamma-Poisson procedure. The loss of efficiency 

from incorrect use of the GLMM is slightly below the loss from incorrect use of the Gam-Pois model. The 

coverage rates of confidence intervals for the GLMM predictor are somewhat closer to 95% than the 

coverage rates for the Gam-Pois model for certain parameters and configurations. 

In practice, the analyst may need to choose one of the two models. We propose to use residuals to 

diagnose the goodness of fit of the models. Our experience is that it can be very difficult to distinguish 

between the two models. The two models differ only with respect to the distribution of the random effect 

and generate very similar types of data. Fortunately, the analysis in this paper suggests that the proposed 
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methods are fairly robust to specification of the incorrect distributional form. The methods for the gamma-

Poisson model work well when the Poisson GLMM is true and vice versa. Our analysis suggests that both 

the gamma-Poisson and Poisson GLMM will lead to similar results for many parameter configurations. We 

expect the conclusions for a specific application to be fairly insensitive to the choice of model. We 

encourage the analyst to consider the strengths and weaknesses of the two models for particular applications 

when selecting one of them in practice. We also note that an alternative to model selection is model 

averaging (Aitkin, Liu and Chadwick, 2009). An investigation of model averaging for the two models 

proposed here is a possible direction for future research.  

Based on this analysis, we prefer the gamma-Poisson model for computational simplicity. The conjugate 

form of the model makes the predictor and MSE estimator straightforward to calculate. If one is only 

interested in the mean, then we recommend the closed-form predictor and MSE estimator of Berg (2022). 

For prediction of general parameters, we recommend the simulation-based predictor defined as ,
ˆ
i L  in (2.4). 

The gamma-Poisson predictor is straightforward to implement and has acceptable efficiency, even if the 

GLMM true. 
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A method for estimating the effect of classification errors on 
statistics for two domains 

Yanzhe Li, Sander Scholtus and Arnout van Delden1 

Abstract 

Being able to quantify the accuracy (bias, variance) of published output is crucial in official statistics. Output in 
official statistics is nearly always divided into subpopulations according to some classification variable, such as 
mean income by categories of educational level. Such output is also referred to as domain statistics. In the current 
paper, we limit ourselves to binary classification variables. In practice, misclassifications occur and these 
contribute to the bias and variance of domain statistics. Existing analytical and numerical methods to estimate 
this effect have two disadvantages. The first disadvantage is that they require that the misclassification 
probabilities are known beforehand and the second is that the bias and variance estimates are biased themselves. 
In the current paper we present a new method, a Gaussian mixture model estimated by an Expectation-
Maximisation (EM) algorithm combined with a bootstrap, referred to as the EM bootstrap method. This new 
method does not require that the misclassification probabilities are known beforehand, although it is more 
efficient when a small audit sample is used that yields a starting value for the misclassification probabilities in 
the EM algorithm. We compared the performance of the new method with currently available numerical methods: 
the bootstrap method and the SIMEX method. Previous research has shown that for non-linear parameters the 
bootstrap outperforms the analytical expressions. For nearly all conditions tested, the bias and variance estimates 
that are obtained by the EM bootstrap method are closer to their true values than those obtained by the bootstrap 
and SIMEX methods. We end this paper by discussing the results and possible future extensions of the method. 

 
Key Words: Bias; Variance; Misclassification; Binary classifier; Gaussian mixture model; EM algorithm. 

 
 

1. Introduction 
 

Accurate published output is crucial, especially in official statistics (Eurostat, 2009, page 32), where 

most outcomes are used for policy making. One of the important errors affecting the accuracy of output are 

measurement errors in the variable that is used to group output into subpopulations. The simplest type of 

estimator for which the effect of misclassifications has been studied are proportions in contingency tables. 

Bross (1954) gave an expression for the bias of an estimated proportion of a binary variable in the case of 

misclassifications, which is a special case of expression (C.1) in Appendix C. A more complicated situation 

concerns the accuracy of level estimators (totals, means) and ratios thereof as affected by misclassifications. 

For instance, one may be interested in the average risk of poverty for working persons by categories of 

educational level (Eurostat, 2022), while part of those education values are misclassified. Estimating 

population parameters of a continuous variable in each class is referred to as domain statistics. The current 

study focuses on estimation of the bias and variance of totals or means as affected by misclassifications. 

There is a large amount of literature on misclassifications, for instance Buonaccorsi (2010), Keogh, Shaw, 

Gustafson, Carroll, Deffner, Dodd, Küchenhoff, Tooze, Wallace, Kipnis and Freedman (2020) and Shaw, 

Gustafson, Carroll, Deffner, Dodd, Keogh, Kipnis, Tooze, Wallace, Küchenhoff and Freedman (2020). 

Van den Hout and Van der Heijden (2002) provide an extensive overview of literature on bias and variance 
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in the case of misclassifications. These references underline that quantifying the effect of misclassifications 

on population estimates is relevant for a wide range of disciplines, including medicine, epidemiology, 

statistical astronomy, sociology, land cover mapping, randomised response studies and data confidentiality. 

The latter two cases are special in the sense that their misclassifications are deliberately added to the data 

by a known mechanism. 

Official statistics often make use of statistical registers to identify their target population and divide it 

into subpopulations. One example is a statistical business register containing a list of statistical units over 

time, with background variables such as economic activity and size class to stratify them into subpopulations 

(United Nations, 2015). Another example is a population register, with background variables such as date 

of birth, gender, place of residence and highest attained level of education (Bakker, Van Rooijen and 

Van Toor, 2014). These registers are often created with one or more administrative sources. Errors in the 

classification variables can occur due to errors during registration into those administrative sources, 

administrative delays, errors in the linkage of the administrative sources or changes in circumstances of the 

units which are not reported. Another source of error are differences between concepts used by register 

owners and those used in official statistics (Magnusson, Palm, Branden and Mörner, 2017). Sometimes 

classification variables are derived by applying machine learning algorithms [see, e.g., Meertens, Diks, 

Van den Herik and Takes (2020)] and errors made by those algorithms subsequently lead to misclassifi-

cations. 

In practical situations where output is produced for official statistics, one tries to reduce the number of 

misclassifications for instance by automatic or manual editing. In the case of business statistics, economic 

activity codes are known to be prone to errors. In that case, manual editing is applied which is usually limited 

to the most influential units – the largest enterprises – while the remaining units are left uncorrected. One 

often hopes that errors in the smaller units do not have a large impact on the published figures. 

Unfortunately, this need not be true. Van Delden, Scholtus and Burger (2016) showed that in a particular 

case study, observed levels of misclassification in smaller and medium-sized enterprises resulted in 

considerable bias of turnover totals for some publication cells. The reason for this bias was that the inflow 

of turnover from units unjustly classified into the target class was not balanced by the outflow of turnover 

from units unjustly not classified into the target class. In the context of contingency tables, Schwartz (1985) 

underlined the importance of misclassifications on output accuracy by framing it as “a neglected problem”. 

Analytical expressions for the bias and variance of means or totals of subpopulations as affected by 

misclassifications have been published by Selén (1986) and Van Delden et al. (2016). Furthermore, the bias 

and variance of totals of subpopulations were discussed by Kooiman, Willenborg and Gouweleeuw (1997) 

in the context of data confidentiality. These analytical expressions have two disadvantages. The first 

disadvantage is that they rely on the assumption that the probabilities of all types of misclassification are 

known, or that they have been accurately estimated by means of a sample. In the context of data 

confidentiality these probabilities are known, because misclassifications are applied on purpose to avoid 

disclosure (Kooiman et al., 1997). In most applications, however, the probabilities of misclassification are 
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unknown. Estimated classification error probabilities are often obtained from previous knowledge or a 

comparable dataset (Edwards, Bakoyannis, Yiannoutsos, Mburu and Cole, 2019; Edwards, Cole and Fox, 

2020), or from an audit sample (Gravel and Platt, 2018). Accurately estimating these probabilities using 

sufficiently large sample sizes requires a considerable amount of manual labour. The second disadvantage 

is that the bias and variance estimates based on those analytical expressions are biased themselves. This is 

mentioned by Kooiman et al. (1997) and worked out in more detail by Van Delden et al. (2016). The main 

reason is that the expressions for the bias and variance depend on true population totals which are unknown. 

When estimating the bias and variance, these true population totals are replaced by their biased estimators 

of the population totals, leading to biased estimates of the bias and (to a lesser extent) of the variance of the 

totals. In the special case that one is only interested to estimate a proportion without a numerical variable, 

different methods to correct for bias can be found in Kloos, Meertens, Scholtus and Karch (2021). 

As an alternative to the use of analytical expressions, numerical approaches have been developed. The 

bootstrap approach may be used to estimate output accuracy in the case of misclassifications. Zhang (2011) 

used the bootstrap method to measure the variance of observed totals of subpopulations caused by 

misclassification of households. Van Delden et al. (2016) presented a bootstrap approach to estimate the 

bias and variance of means or totals of subpopulations. The bootstrap approach is very flexible and can be 

adapted to many estimators. Unfortunately, the bootstrap approach has the same two disadvantages as the 

analytical approach: it requires that the probabilities of misclassification are accurately known and, in 

general, it leads to biased estimates of bias and variance. In fact, for simple domain parameters such as totals 

and proportions, the bootstrap method and the analytical expressions lead to near-identical results; see for 

instance Van Delden et al. (2016). For non-linear domain parameters such as ratios, the bootstrap results are 

generally more accurate in the case of skewed distributions because some underlying assumptions of the 

approximation used in the analytical bias and variance expressions might be violated; see Van Delden, 

Scholtus, Burger and Meertens (2023). 

Another numerical method that has been proposed for misclassifications is the SIMEX (“SIMulation and 

Extrapolation”) method, which was first introduced by Cook and Stefanski (1994). It was developed to 

estimate the impact of measurement errors and is adapted in the field of misclassification by Küchenhoff, 

Mwalili and Lesaffre (2006) and Hopkins and King (2010). Similarly to the bootstrap approach, the SIMEX 

method starts with applying misclassifications to the observed data after which the estimators (totals, means) 

are recalculated. Additionally, the SIMEX method applies a simulation process that introduces multiple sets 

of extra errors to estimate the effect of misclassifications. Finally, one extrapolates the estimates to the error-

free condition. Here we have applied the ideas behind this SIMEX procedure to test whether it can be used 

to overcome the bias in the estimates of the bias and variance of means and totals by misclassifications. 

In the current study, we present a new method that uses a mixture model to estimate the bias and variance 

of means and totals by misclassifications. An Expectation-Maximisation (EM) algorithm is used to estimate 

the mixture model. Since the true classes of units are unknown in the case of misclassifications, these true 

classes can be regarded as an unobserved (“latent”) variable in the mixture model. We model the numerical 
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target variable in each class as a mixture of different normal distributions (a Gaussian mixture), which can 

also accommodate target variables that do not have a normal distribution; see McLachlan and Peel (2000). 

The method is referred to as “the EM bootstrap method”. In the current study we limit ourselves to a binary 

classification variable. Our approach can be extended to a situation with multiple classes, which is further 

treated in the discussion. 

The new method performs better with respect to the two mentioned disadvantages than the bootstrap and 

the SIMEX method. First of all, it does not require an estimate of the misclassification probabilities 

beforehand, although in more complicated cases it is computationally efficient to have a rough estimate of 

the misclassification rates since it can be used as an informed start for the EM algorithm. Second, we will 

show that – at least in the binary case – the new method leads to more accurate estimates of the bias and 

variance of means and totals affected by misclassifications than the bootstrap and the SIMEX method. 

In the current paper we evaluate the accuracy of bias and variance estimates under misclassification, by 

comparing the proposed EM bootstrap method with the bootstrap method and with the adapted SIMEX 

method (referred to as “the SIMEX bootstrap method”) in a simulation study and in a case study. In both 

studies, the proportions of two classes are varied as well as the misclassification rates. In the simulation 

study the data distribution in each class is a Gaussian mixture. The case study uses empirical distributions 

from a dataset with log turnover per enterprise in the Netherlands. For the empirical data we use a Gaussian 

mixture model in which the optimal number of components has to be estimated. In both studies we compare 

true bias and variance values with their estimates. 

The remainder of this paper is organised as follows. Section 2 describes the details of the three methods. 

The evaluation of the methods for the simulation study is given in Section 3 and for the case study in 

Section 4. Section 5 discusses the results of our study and proposes future directions. Furthermore, 

Appendices A, B and C provide additional material. Appendix A discusses three different extrapolation 

functions in the SIMEX method. Appendix B compares the difference of using BIC and sBIC as a criterion 

for selecting the optimal number of components in the case study. Appendix C includes some theoretical 

properties of the bootstrap and the EM bootstrap method. R code that implements the methods used in this 

study can be found at https://github.com/Yanzhee/EM-bootstrapping. 

 
2. Methodology 
 

2.1 General settings 
 

We consider a situation where a population of N  units is classified into two classes. The indicator 

variable for the true membership of one of these classes is denoted as {0,1}.z  For convenience, from now 

on we will refer to the classes of interest as class 1 and class 0 and use the indicator z  interchangeably with 

the classification itself. The values of z  are assumed to contain no classification errors and are considered 

to be fixed for the population of interest. In practice, we do not know the true classes of all units. We can 
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only infer them through, for example, manual checking by experts, automatic classification from multiple 

machine-learning algorithms, etc. The true proportion of class 1 in the population is denoted by 1;  the true 

proportion of class 0 is 11 .  

The observed classification variable is denoted as ˆ {0,1}.z  In practice, the observed classes of units 

contain classification errors. The classification errors can be from misunderstandings of class definition, 

miscommunication or simply typos. 

In practice, one is often interested in estimating population parameters of a continuous variable y  in 

each class, referred to as domain statistics. For example, when y  represents turnover of enterprises in 

various industries, the total turnover of each industry will be an interesting indicator. We use   to denote a 

true population parameter, based on y  and the true classification variable .z  In what follows, the continuous 

variable y  is assumed to be error-free. 

Examples of common domain parameters   that are included in our study are: the total sum of y  for 

class 1 1( ),T  the proportion of class 1 1( ),  and the standard deviation of y  for class 1 1( ).  Table 2.1 lists 

the formulas for   given variables y  and .z  Since our study is under the setting of a binary classifier, the 

accuracy of domain statistics in class 0 is directly related to the accuracy of the corresponding estimates in 

class 1. 

 
Table 2.1 

List of formulas for examples of domain parameters .  
 

Statistics of Interest Notation Formula given y  and z  

Total sum of y  for class 1 1T  
i ii

z y  

Proportion of class 1 1  
ii

z N  

Standard deviation of y  for class 1 1  
2

1

1
( )i ii

ii

z y
z




 

Notes: 1. i  stands for a unit in the population. 

 2. 1 1 1= = ( )i i ii i
z y z T N    is the mean of y  for class 1. 

 3. By replacing iz  with ˆiz  in the formulas, 1
ˆ ,T 1

ˆ ,  and 1̂  can be calculated.  

 
The parameter   requires the true values of z  and therefore cannot be computed in practice. An obvious 

estimator is obtained by replacing the unknown true z  with the observed ẑ  in the expressions for ;  this 

yields the domain statistic ˆ.  For example, by replacing iz  with îz  in Table 2.1, formulas are obtained for 

the domain statistics 1
ˆ ,T 1

ˆ ,  and 1
ˆ .  Note that the hat in ̂  signifies an estimator, whereas in îz  it has no 

meaning other than to distinguish the observed indicator from the true indicator .iz  

Our study uses bias and variance to measure the effects that classification errors bring to ˆ.  Bias is 

defined as the difference between the expected values of the estimated output and the true value of domain 

parameters. Variance is a measure of the expected amount that the estimated domain statistics will change 

if different classification variables with the same error distribution are used. Mathematically, we define:  
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  2

ˆ= E( ),

ˆ ˆ ˆ= Var( ) = E E( ) .

Bias

Variance

 

  




 (2.1) 

Besides classification errors, for simplicity we assume that no other errors occur. In line with a common 

type of application in official statistics, we are interested here in bias and variance due to classification 

errors for a fixed finite population. That is to say, in (2.1) we implicitly condition on the realised values of 

1, , Nz z…  and 1, , .Ny y…  

 
2.2 Mixture model 
 

2.2.1 Model setup 
 

Our proposed new method to estimate the bias and variance of ̂  requires a model for the observed 

values 1, , Ny y…  and 1̂ ˆ, , .Nz z…  Here, we propose to use a mixture model, where the distributions in class 

= 1z  and class = 0z  may be different. For simplicity, we assume that the values of units =1, ,i N…  are 

drawn independently of each other. In addition, we assume that classification errors in îz  occur with the 

same probabilities for all units, which also means that they are independent of the continuous variable .iy  

The latter assumption allows us to model the observed values iy  and îz  separately, since it implies that, 

within each true class, the joint density of iy  and îz  is factorised as follows:  

 ˆ ˆ( , = | = ) = ( | = ) ( = | = )i i i i i i if y z b z a f y z a P z b z a  (2.2) 

for all = 1, , ,i N…  with , {0,1}.a b  Here, ˆ( = | = )P z b z a  denotes a classification error probability and 

( | = )f y z a  denotes the density of the continuous variable in class .a  We will now describe these two parts 

of the model in more detail. 
 

Probability matrix. The probabilities of classification errors are modelled by a 2 2  transition matrix P  

(Formula 2.3). It describes the relationship between the true classes z  (rows) and the observed classes ẑ  

(columns).  

 
11 11

00 00

1
= .

1

p p

p p

 
 
 

P  (2.3) 

The value abp  indicates the probability of observing a unit in class b  when its true class is .a  Thus, for unit 

,i  if its true class is 1, its probability to be observed in class 1 is 11ˆ( =1| =1) = ,i iP z z p  and its probability 

to be observed in class 0 is 11ˆ( = 0 | =1) =1 ;i iP z z p  similarly, for a unit in true class 0, ˆ( = 0 | = 0) =i iP z z  

00p  and 00ˆ( =1| = 0) =1 .i iP z z p  For reasonable classifiers, the values of 11p  and 00p  should be above 0.5. 
 

Gaussian mixture model. We assume that the distribution of y  for each class z  follows a Gaussian 

mixture model. The number of Gaussian components in class 1 is 1,q  and the number in class 0 is 0.q  Note 

that this means that the overall model for y  can be seen as a “mixture of mixtures”, with the first mixing 
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level given by the true class z  and the second mixing level by the Gaussian mixture components within a 

true class. 

For better explanation, a component variable m  is defined to identify which component of the Gaussian 

mixture model each unit belongs to. The variable m  is unobserved. The distribution of iy  depends on the 

class it belongs to (the value of )iz  and also which component in this class it belongs to (the value of );im  

we make the conventional assumption that each unit i  belongs to a unique class-component pair ( , ).i iz m  

By the law of total probability, the density of iy  conditional on iz  is:  

  
   

   

1

0

=1

=1

 = | = 1 | = 1, = ,  if = 1,

| = =

 = | = 0 | = 0, = ,  if = 0,

q

i i i i i
j

i i q

i i i i i
k

P m j z f y z m j a

f y z a

P m k z f y z m k a






 





  

where  = | =1P m j z  is the mixture weight of a component in class 1, denoted as 1 j  1( {1, , });j q …  

 = | = 0P m k z  is the mixture weight of a component in class 0, denoted as 0k  0( {1, , }).k q …  These 

mixture weights satisfy 1

1=1
= 1

q

jj
  and 

0

0=1
= 1.

q

kk
  

In a Gaussian mixture, it is assumed that each component follows a normal distribution. Hence, in this 

case we obtain:  

  
 

 

1

0

2
1 1 1

=1

2
0 0 0

=1

 ; , ,  if = 1,

| = =

 ; , ,  if = 0,

q

j i j j
j

i i q

k i k k
k

y a

f y z a

y a

   

   






 





 (2.4) 

where 1 j  is the mean of component j  in class 1 and 1 j  is its standard deviation; 0k  is the mean of 

component k  in class 0 and 0k  is its standard deviation;  2 1 1 2 2 2( ; , ) = (2 ) exp ( ) (2 )y y           

denotes the density of a normal distribution with parameters   and 2.  

Let 
1 1 1 0 0 01 11 00 11 11 11 1 1 1 01 01 01 0 0 0= ( , , , , , , , , , , , , , , , , )θ q q q q q qp p             … …  denote the vector of 

unknown parameters of the Gaussian mixture model. The identification of all parameters in θ  requires that 

the order of the components in each class is fixed. For simplicity, we assume here that 11 1< < < <j … …  

11q  and 
001 0 0< < < < .k q  … …  

In practice, the appropriate numbers of components in the Gaussian mixture models for class 1 and class 

0, 1q  and 0 ,q  are not known and need to be determined from the observed data. Here, the main purpose of 

the mixture model is to provide a flexible way to model the distribution of y  in each class. For this type of 

application, a commonly-used approach is to fit several mixture models to the data with different numbers 

of components and use the Bayesian information criterion (BIC) to select the optimal number of components 

(McLachlan and Peel, 2000, page 175 and pages 209-210). However, more recent research suggests that 

when the components in a mixture model have a very similar mean and variance, the Fisher information 

matrix may become singular and the BIC is no longer justified as a criterion (Drton and Plummer, 2017). 
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For such situations, Drton and Plummer (2017) proposed a modified BIC, referred to as the sBIC. In the 

case study to be discussed in Section 4, we compare the optimal number of components according to the 

BIC and sBIC criteria. 

 
2.2.2 EM algorithm 
 

Maximum likelihood estimation of the above Gaussian mixture model can be achieved using an EM 

algorithm (Dempster, Laird and Rubin, 1977; Little and Rubin, 2002). This type of algorithm is often applied 

when there are unobserved variables in statistical models. As illustrated by its name, it contains two steps: 

an E step and an M step. The E step builds the expected value of the complete-data log-likelihood function, 

conditional on the observed data. The M step then estimates the model parameters, which in turn provide 

input for the next E step. The algorithm proceeds in an iterative way until convergence. 

It should be noted that the EM algorithm can estimate all parameters of the mixture model (including the 

matrix )P  from a data set of observations ˆ( , );i iz y  thus, it is not necessary to have observed the true class 

iz  for any unit. Loosely stated, this is possible because, on the one hand, the probability that an observation 

ˆ( , )i iz y  belongs to class 1 or class 0 can be predicted based on differences in the distribution of y  for class 

1 and class 0 (which is done during the E step) and, on the other hand, the distributions of y  and ẑ  within 

each true class can be estimated based on these predicted probabilities (which is done during the M step). 

Technically, estimation is possible because (under normal circumstances) there exists a unique set of 

parameter values for θ  for which the complete-data log-likelihood function achieves its global maximum. 

In other words: the model is identified; see McLachlan and Peel (2000) for more details. 

To derive the complete-data log-likelihood function, we note from expressions (2.2), (2.3), and (2.4) that  

 
01

( ) ( )(1 )

1 0
=1 =1

ˆ( , , , ; ) = ,
1 1

θ i m j i m ki i

qq
z z

i i i i ji ki
j k

f z m z y   

    

where  

  
 

2

ˆ1 11ˆ

1 1 11 11 2
11

1 exp ,
22

ii
z i jjz

ji

jj

y
p p


 

 


  

  
  

   

    
 

2
ˆ ˆ1 00

0 1 00 00 2
00

1 1 exp ,
22

i i
z z i kk

ki

kk

y
p p


 

 


  

   
  

   

and the indicator functions for im  are defined as: 

 ( = ) ( = )

1 = 1 = ,
= ; = .

0 0i i

i i

m j m k

i i

m j m k

m j m k

 
 

  
1 1   

Note that 
1

( = )=1
=1

i

q

i m j ij
z z  and 

0

( = )=1
(1 ) =11

i

q

i m k ik
z z   for all units .i  
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It follows that the complete-data log-likelihood of the Gaussian mixture model can be written as:  

 
01

( = ) 1 ( = ) 0
=1 =1 =1 =1

ˆLL( ) = log ( , , , ; ) = log (1 ) log ,θ θ 1 1
i i

qqN N

i i i i i m j ji i m k ki
i i j k

f z m z y z z 
 

  
 

     (2.5) 

where we used the assumption that the units are drawn independently of each other. 
 

E step. In the E step of the algorithm, the unobserved quantities ( = )1
ii m jz  and   ( = )1 1

ii m kz  in (2.5) are 

replaced by their conditional expectations, given the observed values îz  and :iy  

    
1 0

1

( = ) 1

1 0=1 =1

ˆ ˆ ˆ ˆE = , = = = 1, = = , = = ;1
i

ji

i m j i i i i i i jiq q

ji kij k

z z z y y P z m j z z y y A


  
   

    
1 0

0
( = ) 0

1 0=1 =1

ˆ ˆ ˆ ˆE (1 ) = , = = = 0, = = , = = .1
i

ki
i m k i i i i i i kiq q

ji kij k

z z z y y P z m k z z y y A


 


 
   

During iteration t  of the algorithm, these expressions are evaluated using the current parameter estimates 
( 1)ˆ ,t  yielding the values 

( )
1

t
jiA  and ( )

0 .t
kiA  

 

M step. In the M step of the algorithm, the log-likelihood function (2.5) is maximised with respect to the 

model parameters, with the unobserved quantities replaced by 
( )
1

t
jiA  and ( )

0
t
kiA  from the most recent E step. 

By setting the first-order partial derivatives of this expected log-likelihood equal to zero, the following 

formulas are obtained to update the model parameters: 

 
 1 ( )

1=1 =1( 1)
1
ˆ = ;

N q t
jii jt
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As noted above, the EM algorithm can be used to estimate the mixture model even when the true class 

iz  is never observed in the available data. In general, however, the EM algorithm will merely converge to 
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a local maximum of the log-likelihood function. To ensure that the global maximum is found, it may be 

necessary to run the algorithm multiple times using different (randomly chosen) starting values and retain 

the best solution. For general suggestions on how to choose suitable random starting values for mixture 

models, see McLachlan and Peel (2000, Section 2.12). 

Alternatively, observations ˆ( , , )i i iz z y  including the true class may have been obtained for a random 

subsample of the data (an audit sample). If available, an audit sample can be used to improve the conver-

gence of the EM algorithm to the global maximum of the likelihood function, reducing the need for re-runs 

with different starting values. First, the parameters 1, 11p  and 00p  can be estimated directly from the audit 

sample to provide reasonable starting values for the EM algorithm. In addition, improved starting values for 

the other parameters (related to the components of the Gaussian mixture inside each class) could be obtained 

by applying a k -means clustering algorithm to each true class in the audit sample (Li, 2020b). Finally, for 

observations from the audit sample, 1 jiA  and 0kiA  can be replaced during the E step by more narrowly 

defined expected values:  

    
1

1

( = ) 1

1=1

ˆ ˆ ˆ ˆE = 1, = , = = = = 1, = , = = ;1
i

ji

i m j i i i i i i i jiq

jij

z z z z y y P m j z z z y y Q



   

    
0

0
( = ) 0

0=1

ˆ ˆ ˆ ˆE (1 ) = 0, = , = = = = 0, = , = = ;1
i

ki
i m k i i i i i i i kiq

kik

z z z z y y P m k z z z y y Q






   

whereas    ( = ) ( = )ˆ ˆ ˆ ˆE = 0, = , = = E (1 ) = 1, = , = = 0.
i ii m j i i i i m k i i iz z z z y y z z z z y y1 1  

 
2.3 Methods 
 

In this study we will compare three methods that try to estimate the bias and variance of a domain statistic 

̂  as defined in (2.1): the bootstrap method, the EM bootstrap method and the SIMEX bootstrap method. 

We did not compare the outcomes with analytical expressions, since we already know that for domain 

statistics those expressions yield results that are either similar to those of the bootstrap method or less 

accurate (see Introduction). 

As noted at the end of Section 2.1, we are interested here in bias and variance due to classification errors 

for a finite population, conditional on the values 1, , Nz z…  and 1, , .Ny y…  Due to assumption (2.2), this 

means that the bias and variance of interest are completely determined by the random process described by 

the matrix ,P  applied to the fixed values 1, , .Nz z…  

An important practical consideration is that the bootstrap and SIMEX bootstrap methods assume that (an 

estimate of) the matrix P  is available beforehand, whereas an estimate of P  is obtained as part of the EM 

bootstrap method. For the other methods, P  could be estimated in practice from an audit sample or by 

running the EM algorithm separately. In our study to be discussed in Sections 3 and 4, we used the estimated 

P  from the EM algorithm as input for the bootstrap and SIMEX bootstrap methods. 
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2.3.1 Bootstrap method 
 

The bootstrap method as applied here originates from Van Delden et al. (2016). It is summarised in 

Algorithm 1. The classification matrix P  is applied to the observed class ẑ  and bootstrapped classes *z  are 

obtained. The probability that the bootstrapped class is 1 given the observed class 1 is *
11ˆ( =1 =1) =i iP z z p  

and given the observed class 0 is *
00ˆ( =1 = 0) =1 .i iP z z p  Through bootstrapping, random classification 

errors are introduced to observed classes. As a result, estimated bias is computed by comparing bootstrapped 

statistics *  to the observed statistic ˆ,  and the variance of the bootstrapped statistics *  is an estimate of 

the variance of the observed domain statistic ˆ.  In practice, the theoretical bootstrap bias and variance are 

usually approximated using a finite number ( )S  of bootstrap samples. For certain simple statistics such as 

1  and 1,T  it is also possible to derive an exact formula for the theoretical bootstrap bias and variance 

(Van Delden et al., 2016). 

 
Algorithm 1  The bootstrap method 

Input: Observations ˆ( , )i iy z  for =1, , ,i N…  matrix P  and .S  

1: for = 1s S…  do 

2: Generate *
iz  by ,P  conditional on ˆ ,iz  for every unit i  in the data set 

3: Calculate the corresponding *  based on *( , )i iy z  instead of ˆ( , )i iy z  

4: end for 

5: Calculate * ˆˆ= E( ) ,z bootBias
* ˆ= Var( )zbootVar  based on S  simulations 

Output: bootBias  and bootVar  

 
It is known that, in general, the bias and variance estimates from Algorithm 1 are biased, due to the fact 

that the observed classes îz  are used as a starting point for the bootstrap. This problem is illustrated in 

Appendix C.1 using the parameter 1= ,T  for which an exact analysis is possible. The next two methods 

attempt to correct for this bias. 
 

2.3.2 EM bootstrap method 
 

In the EM bootstrap method, the observed data ˆ( , )y z  are assumed to follow the Gaussian mixture model 

from Section 2.2. The EM algorithm estimates the parameters θ  of the model, which include the 

classification probabilities 11p  and 00.p  Then we apply a nested simulation process; see Algorithm 2. The 

purpose of the first level of simulation is to restore (in expectation) an error-free status. It generates classes 

z  from ˆˆ( | , ; ),P z y z θ  leading to unbiased statistics .  [Note that the required probabilities are available 

directly from the EM algorithm, since 
1

1=1
ˆˆ( = 1| , ; ) =θ

q

i i i jij
P z y z A  and 

0

0=1
ˆˆ( = 0 | , ; ) = .]

q

i i i kik
P z y z Aθ  

After that, classes 
*z  are generated by a bootstrapping process with matrix ,P  which leads to bias and 

variance estimation similar to Algorithm 1. Finally, the results of this inner bootstrap simulation are 

averaged over the first level of simulation, to reduce the effect of noise due to drawing z  from a probability 

distribution.  
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Algorithm 2  The EM bootstrap method 

Input: Observations ˆ( , )i iy z  for =1, ,i N…  and 1 2, .S S  

1: Estimate model parameters ,θ  including 11p  and 00 ,p  from the EM algorithm, conditional on ẑ  and y  

2: Calculate ˆˆ( | , ; )i i iP z y z θ  for every unit i  in the data set 

3: for 1 1= 1, ,s S…  do 

4: Generate iz  by ˆˆ( | , ; )i i iP z y z θ  for every unit i  in the data set 

5: Calculate the corresponding   based on ( , )i iy z  instead of ˆ( , )i iy z  

6: for 2 2=1, ,s S…  do 

7: Generate *
iz  by ,P  conditional on ,iz  for every unit i  in the data set 

8: Calculate the corresponding *  based on *( , )i iy z  instead of ˆ( , )i iy z  

9: end for 

10: end for 

11: Calculate * ˆ ˆ= E (E( | , ) | )z z z z combBias 
   and * ˆ ˆ= E (Var( | , ) | )z z z zcombVar 

   based on 1S  and 2S  

simulations 

Output: ,combBias combVar  and estimated matrix P  

 
It is shown in Appendix C.2 that, for 1 2, ,S S   Algorithm 2 indeed yields approximately unbiased 

bias and variance estimators in the special cases 1= T  and 1= ,   provided that the observed data follow 

the assumed mixture model. For other, non-linear parameters such as 1= ,   no exact proof is available, 

but we will investigate the behaviour of Algorithm 2 in a simulation study. 

 
2.3.3 SIMEX bootstrap method 
 

SIMEX was introduced by Cook and Stefanski (1994) for numerical variables. It uses a bootstrapping 

process to add various extra errors, through which a sequence of estimates under different error-included 

conditions is obtained. Then a function is applied to extrapolate the sequence back to the estimate without 

error. Here, we use an extension of the SIMEX method to categorical variables that was introduced by 

Küchenhoff et al. (2006). 

Traditionally, the SIMEX method would be applied to obtain a bias-corrected estimate of the target 

parameter itself (  in our notation). Here, we use it to obtain bias-corrected bootstrap estimates of the bias 

and variance of ˆ.  We will refer to this approach as the SIMEX bootstrap method. 

The SIMEX bootstrap method simulates multiple conditions where classification errors are added to the 

data according to the matrix P  [with P  given by (2.3)], for different values of 0.   For each value of 

,  the bootstrap method of Algorithm 1 is applied to the adjusted data to obtain bias and variance estimates. 

Finally, the SIMEX bias and variance estimates are obtained by extrapolating the sequence of bias and 

variance estimates as functions of   to the value = 1.   This can be understood as follows. The available 

observed data can be viewed as one realisation of applying the matrix P  to the true data. So, starting from 

the observed data at = 0  we want to extrapolate the sequence of bias and variance estimates back to what 
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would have been found at the unobserved point of zero misclassifications, which corresponds to = 1.   

The SIMEX bootstrap method is summarised in Algorithm 3. 

 
Algorithm 3  The SIMEX bootstrap method 

Input: Observations ˆ( , )i iy z  for =1, , ,i N…  matrix P  and 1 2, .S S  

1: for   ranging from 0 to 5 with increments of 0.5 do 

2: Calculate P  

3: for 1 1= 1, ,s S…  do 

4:  Generate ( )
iz   by ,P  conditional on ˆ ,iz  for every unit i  in the data set 

5:  Calculate the corresponding ( )  based on ( )( , )i iy z   instead of ˆ( , )i iy z   

6:  for 2 2=1, ,s S…  do 

7:     Generate ( )ˆ
iz   by ,P  conditional on ( ) ,iz   for every unit i  in the data set 

8:     Calculate the corresponding ( )ˆ   based on ( )ˆ( , )i iy z   instead of ˆ( , )i iy z  

9:  end for 

10: end for 

11: Calculate ( )

( ) ( ) ( )ˆ ˆ ˆ= E (E ( | , ) | )
z

z z z

   ( )
simexBias   and ( )

( ) ( )ˆ ˆ ˆ= E (Var ( | , ) | )
z

z z z

 ( )
simexVar   based on 1S  and 2S

simulations 

12: end for 

13: Extrapolate ( )
simexBias   and ( )

simexVar   to = 1   to get simexBias  and simexVar  

Output: ,simexBias simexVar  

 
Calculate P .  When = 0, 0P  is an identity matrix. In this special case, no additional classification errors 

are introduced in line 4 of the SIMEX bootstrap algorithm. For any real-valued > 0, P  can be computed 

using the eigenvalue decomposition of .P  Through it, we get 1= ,P QAQ  where A  is a diagonal matrix 

of eigenvalues and Q  is a matrix of eigenvectors of .P  Then P  is calculated by 
1= .  P QA Q  The 

corresponding probabilities ( )
11p   and ( )

00p   are obtained:  

 
( ) ( )
11 11

( ) ( )
00 00

1
= ,

1
P

p p

p p

 


 

 
 
 

  

where ( )
11p   is the probability of ( ) =1z   when ˆ =1,z  and ( )

00p   is the probability of ( ) = 0z   when ˆ = 0.z  

These probabilities are used to draw ( ) ,iz   given ˆ ,iz  in line 4 of the algorithm. Note that this procedure 

works only if P  is a true probability matrix in the sense that ( ) ( )
11 000 , 1.p p    For 0,   this is guaranteed 

provided that 11 00 >1p p  (Küchenhoff et al., 2006). For < 0  this property does not hold; hence, 

extrapolation is a necessary step of the SIMEX method. 
 

Extrapolation functions. A SIMEX method yields a consistent estimator of a parameter of interest (in our 

case: bias and variance of ˆ)  when the extrapolation function, which describes how the uncorrected 

estimator varies as a function of ,  is correctly specified; see Küchenhoff et al. (2006) for more details. In 
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the literature on SIMEX, extrapolation functions that have been suggested include: local linear regression 

(LOESS) on   (Hopkins and King, 2010) and standard regression on a quadratic or cubic polynomial of   

(Küchenhoff et al., 2006). We have compared all three approaches in the simulation study of Section 3. 

 
3. Simulation study 
 

3.1 Settings 
 

We simulated a population of size =N 2,000 with two classes. For target variable y  we used the 

following Gaussian mixture distribution: Class 0 has one component with 0 =15, 0 = 3;  class 1 has two 

components with 11 12( , ) =  (0.5, 0.5), 11 12( , ) =  (2, 4), and 11 12( , ) =  (1, 2). 

With respect to the true classification variable ,z  we tested two different proportions of class 1: 1  is 

0.3 or 0.5. The observed classification variable ẑ  was generated from z  by using the transition matrix P  

given in equation (2.3). In the simulation study, values of 11p  and 00p  were set at 0.6, 0.75, or 0.9. For each 

setting of 1, 11p  and 00 ,p  we used 0 =S 100 implying that 100 sets of ẑ  were generated from .z  In each 

set 0s , 5% of the units from the population (so 100 in total) were randomly selected as an audit sample 

which was used to obtain the starting values for the EM algorithm of 11
ˆ ,p 00p̂  and the other class-level 

parameters. The starting values of the component-level parameters were obtained by k-means; see Li 

(2020b) for more details. In a preliminary study, we have also tested the EM algorithm without an audit 

sample (see Section 3.3). 

For each set 0 ,s  the bootstrap method, the SIMEX bootstrap method and the EM bootstrap method were 

applied to estimate the corresponding bias and variance of the estimated domain parameters ̂  that are 

given in Table 2.1: the total sum for class 1 1( ),T  the proportion of class 1 1( )  and the standard deviation 

for class 1 1( ).  The bias and variance estimates are given here as the average over the 0S  sets. 

With respect to the SIMEX bootstrap method, we tested the above settings of the simulation study for 

three different extrapolation functions, as noted in Section 2.3.3; see also Appendix A. The estimates of the 

bias and of the standard error of the LOESS function and of the third order polynomial were closer to the 

true values than those of the second order polynomial. Since the LOESS function was used in a previous 

study on misclassifications (see Hopkins and King (2010)) we used this extrapolation function in the 

remainder of this paper. 

The EM algorithm was stopped either when none of the parameter estimates changed by more than 0.001 

between two iterations, or after 5,000 iterations. In practice, both in this simulation study and in the case 

study of Section 4, this maximum number of iterations was never reached. For about 1% of the simulated 

data sets, the EM algorithm did not converge properly due to numerical issues. These were caused by an 

unfortunate choice of starting values estimated from the audit sample, for instance a starting value of 11p  

exactly equal to 1. In principle, this problem could be avoided easily by a slight change of starting values. 

However, as this issue only affected a small number of cases, for convenience we ignored these cases in the 

results below. 
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The number of iterations in the methods, ,S 1S  and 2S  were all set at 100. To obtain a benchmark for 

the true bias and variance of the estimated domain parameters ˆ,  1,000 sets of ẑ  were simulated. 

 
3.2 Results 
 

Bias estimation. Figure 3.1 shows the bias of 1
ˆ ,T 1̂  and 1̂  for 1 = 0.3 (row 1, 3 and 5 respectively) and 

for 1 = 0.5 (row 2, 4 and 6 respectively). Each column shows results under the three 11p  settings. In each 

subplot, the horizontal axis indicates values of 00 ,p  the vertical axis defines the estimates under different 

conditions and methods. Furthermore, the different methods are given by different symbols: the true values 

(•), the bootstrap ( ),  the SIMEX bootstrap ( )  and the EM bootstrap method ( ).  Figure 3.2 shows the 

standard error (square root of the variance) of 1
ˆ ,T 1̂  and 1̂  for 1 = 0.3 and 1 = 0.5 for the same settings. 

Overall, for a given value of 11,p  the bias of 1
ˆ ,T 1̂  and 1̂  decreased with a larger value of 00.p  For a 

given value of 00 ,p  the bias increased with a larger value of 11.p  This result can be understood as follows. 

In the case of the total, an analytical expression for the bias of 1T̂  is given by (C.1). Normally, this expression 

cannot directly be computed since 0T  and 1T  are unknown in real situations, but in the simulations we know 

their values. In our example, at 1 = 0.3 one finds that 0 =15 (1 0.3) 2,000 = 21,000T     and 1 = (0.5 2T    

0.5 4) (0.3) 2,000 =1,800.    An increase of 00p  from 0.6 to 0.9 for a given value of 11p  reduces the bias 

since the contribution 00 0(1 )p T  drops from 8,400 to 2,100. This refers to units with true class 0 that are 

erroneously observed as class 1 (overestimation). Conversely, an increase of 11p  from 0.6 to 0.9 for a given 

value of 00p  leads to a small increase of the bias due to an increase in the contribution 11 1( 1)p T  from 

720  to 180.  This contribution refers to units with true class 1 that erroneously have an observed class 0 

(underestimation). Generally, for a given value of 11p  the bias of the statistics of interest 1
ˆ( ,T 1̂  and 1

ˆ )  

decreases with a larger value of 00p  because their overestimation decreases. Conversely, for a given value 

of 00p  the bias of the statistics increases with a larger value of 11p  because its underestimation decreases. 

With respect to the three estimation methods (see Figure 3.1), we found that the bias estimates for the 

statistics of interest from the EM bootstrap method were closest to the true values. The bias estimates from 

the SIMEX method were closer to the true values than the estimates from the bootstrap method, but they 

still had a considerable distance to the true bias. Furthermore, we found that the bias estimates from all three 

methods were closer to their true bias for 1T  and 1  when the misclassification probabilities were reduced 

11( p  or 00p  values closer to 1). When 11p  and 00p  were equal to 0.9, bias estimates from the bootstrap 

method and the SIMEX bootstrap method even overlapped with the corresponding true bias. Finally note 

that when 1 = 0.5 and 00 11= ,p p  then the true bias of 1̂  equals 0 and all three methods estimated this bias 

correctly. 
 

Variance estimation. Figure 3.2 shows the true and estimated standard error of 1
ˆ ,T 1̂  and 1̂  for 1 = 0.3 

(row 1, 3 and 5 respectively) and for 1 = 0.5 (row 2, 4 and 6 respectively). The true standard errors of 1T̂  

and of 1̂  were reduced with less misclassifications with 00p  and 11p  going from 0.6 to 0.9. This result 

follows from the analytical expression (C.2) for the variance of 1
ˆ .T  
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Figure 3.1  Bias estimation in the simulation study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Rows represent different domain parameters 1( ,T 1, 1)  for two settings of 1: 1 = 0.3 and 1 = 0.5. Columns represent different 11p  

values, within each column different 00p  values are given. 
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Figure 3.2  Standard error estimation in the simulation study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure 3.1. 
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With respect to the three estimation methods (see Figure 3.2) we found, similar as with the bias, that the 

standard error estimates for the statistics of interest from the EM bootstrap method were closest to the true 

values. For 1T̂  and 1
ˆ ,  the standard error estimates from all three methods were almost equally good in most 

conditions. In the other conditions, the bootstrap method estimates were least accurate, followed by those 

of the SIMEX bootstrap method which were close to the true values. The estimated standard errors of 1̂  

were close to their true values in the case of the EM bootstrap method, much closer than for the other two 

methods. Larger values of the standard error of 1̂  lead to larger estimation differences among the three 

methods. 
 

3.3 Additional simulation studies 
 

Below we summarise the results of three additional simulation studies. 
 

Audit sample. In a preliminary study we have compared the estimation of bias and standard error with and 

without an audit sample (Li, 2020a). We tested 00p  and 11p  values of 0.6, 0.75 and 0.9, N  2,000, 1  

equal to 0.1, 0.3, 0.5, 0.7 and 0.9; a single Gaussian component in each class, with 1  values of 2, 10, 12 

and 15, 0  fixed at 15, 1  1 and 0  2. In situations without an audit sample, different starting values 

were tested for the EM algorithm. For 00p  and 11,p  starting values of 0.6, 0.75 and 0.9 were used, leading 

to nine combinations for the pair 00( ,p 11).p  By choosing different values for 00p  and 11,p  the starting 

points can be seen as representative in the parameter space. The starting value of 1  was set according to 

1 11 00 00ˆ= (3 ) (1 )iz N p p p       which is an unbiased estimate of 1  (Kloos et al., 2021). Means and 

variances were started by robust statistics obtained from observed classes, where g  for the two classes 

was initialised at the median of the corresponding target variable, and g  started with k  MAD where 
1= 1 (3 4)k   1.48 and MAD is the median absolute deviation; see Rousseeuw and Croux (1993). 

We found that the estimated bias of the statistics of interest using the EM bootstrap with and without an 

audit sample yielded nearly the same results, except for difficult estimation conditions. These difficult 

conditions were when 0 1=   combined with lower values for 1  and smaller 00p  and 11p  values (not 

shown). Under those conditions the bias estimates were less accurate, but the true (relative) bias was small. 

The bias estimates were close to zero while the true relative bias was up to 0.03. For the standard error of 

the statistics of interest, the EM bootstrap with and without an audit sample yielded nearly the same results 

under all tested conditions. 
 

Results for 1.  Besides the estimated bias and standard error of 1
ˆ ,T 1̂  and 1̂  for 1 = 0.3, we have also 

computed them for 1
ˆ .  Note that 1 1 1

ˆ ˆˆ = ( ),T N    so results for 1̂  follow from those of 1T̂  and 1
ˆ .  With 

respect to the comparison of the three methods, we concluded that the true bias and standard error were 

estimated most accurately by the EM bootstrap method. The specific results can be found in Li (2020a). 
 

Confidence intervals. So far, we have presented the results as averaged over 0 =S 100 sets of ẑ  that were 

generated from .z  In a practical situation one would have only a single set of ẑ  values. This raises the 

question whether the EM bootstrap method also leads to more accurate bias estimates than the other two 
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methods in the case of a single sample or only on average. To that end, we estimated a 95% confidence 

interval for the bias estimates of the statistics of interest for the three methods using the 0 =S 100 replicates. 

This interval was estimated as 1.96 times the standard error of the estimated bias which in turn was derived 

from the 0 =S 100 bias estimates. 

From Section 3.2 we have already concluded that in some settings all three methods yielded accurate 

bias estimates for 1T̂  and 1
ˆ ,  but otherwise the bias estimate by the EM bootstrap method was clearly closer 

to the true value than that of the SIMEX bootstrap and bootstrap method, as averaged over 0S  replicates. 

Since the 95% confidence intervals were very small for all three methods (see Figure 3.3), in most settings 

also for a single set of ẑ  values, the EM bootstrap estimate of the bias was closer to the true bias than the 

estimates from the SIMEX bootstrap and bootstrap method. 

 
Figure 3.3  Bias estimation in the simulation study with 95% confidence interval. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notes: For row and column settings see in Figure 3.1. 
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4. Case study 
 
4.1 Data 
 

In order to assess the performance of our methods in real applications, a case study was conducted. In 

the case study, the bias and variance of the estimated domain statistics 1
ˆ ,T 1̂  and 1̂  were estimated, using 

the same methods as in the simulation study. 

For the case study, we started with a data set that contains the logarithm of the yearly turnover for a 

population of enterprises for which we know their website address; see Oosterveen (2020). The enterprises 

are classified by economic activity codes, according to the European NACE rev. 2 classification (Eurostat, 

2008). The enterprises, their NACE codes and the website addresses were obtained from a statistical 

business register (SBR). For some enterprises we obtained the website address from a data set with URLs 

that we retrieved from an external company DataProvider. 

These NACE code values are prone to classification errors. NACE codes of larger and more complex 

enterprises are checked manually and corrected if needed. For the case study we therefore limited ourselves 

to the simpler enterprises, that are composed of three legal units or fewer, since those are the enterprises 

whose NACE codes are the most prone to misclassification in practice. Furthermore, we started with a 

shortlist of 25 economic activities; the NACE codes are given in Figure 4.1. This shortlist contains a few 

groups of NACE codes with similar classes within a group, such as wholesale of clothes and retail trade of 

clothes, and dissimilar to others, such as taxi operation. 

Similar to the simulation study, in the case study we wanted to start with a data set that was free of 

misclassifications, and then introduce the misclassifications on purpose in order to test the performance of 

the three methods. However, the data that we extracted from the SBR concerned observed NACE codes that 

could already contain misclassifications. We therefore did not use all smaller enterprises with a website 

(76,270 enterprises), but we used a selection of enterprises that had a relatively high probability of having 

the correct NACE code. This selection was made by predicting the NACE code of the enterprises based on 

the text of the main page of the website of the enterprise. These texts were scraped and preprocessed; see 

Oosterveen (2020) on how this was done. Three different machine learning algorithms (Naïve Bayes, 

Support Vector Machine and Random Forest) were trained to predict the NACE code, using a ten fold cross-

validation procedure. In each fold, the model was trained on 90% of the data and the fitted model was used 

to predict the remaining 10% of the data. An observed NACE code was considered to be correct when the 

fitted models of all three algorithms predicted the same code or when it was predicted by two of the 

algorithms and the prediction confidence of the models was relatively high; see Oosterveen (2020) for a 

more detailed description of the selection. This selection led to 45,965 enterprises. 

In the present paper we limit ourselves to binary misclassifications. We therefore made a further selection 

of pairs of two NACE codes out of the shortlist of 25 NACE codes. We selected different pairs, where each 

selected pair is referred to as a “case”. The pairs differed in the extent of overlap between the log-turnover 

distributions and in the shapes of the distributions. Furthermore, we ensured that the two group sizes were 
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not too small and not too unbalanced, which meant that 1  was not close to 0 or 1. The full set of tests that 

we did can be found in Li (2020b). Here we present only the results for the two most interesting pairs which 

are given in Table 4.1. 

 
Figure 4.1  Density distribution of log turnover for all groups.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The labels refer to NACE codes. NACE = Nomenclature générale des activités économiques dans les Communautés européennes. 

 
Table 4.2 gives some basic statistics of each of the four subpopulations defined by the NACE codes 

selected in Table 4.1: the size, total, mean and standard deviation of the log yearly turnover per enterprise. 

Case 1 has two well-separated distributions and a large number of enterprises per class. By contrast, in case 

2 the two distributions are less well-separated and they have a smaller number of enterprises per class. 
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Table 4.1 

The selected groups and their allocations in the case study. 
 

NACE Code Description of Economic Activity Case Class 
56101 Restaurants Case 1 Class 1 
96022 Beauty treatment, pedicures and manicures, make-up and image consulting Case 1 Class 0 
4932 Taxi operation Case 2 Class 1 
8121 General cleaning of buildings Case 2 Class 0 

Note: NACE = Nomenclature générale des activités économiques dans les Communautés européennes. 

 
4.2 Settings 
 

In contrast to the simulation study, here the number of components in the Gaussian mixture model is not 

known, and needs to be determined. To that end, we fitted a standard Gausian mixture model (i.e. without 

a misclassification component) for each class per case separately. We then determined the BIC and sBIC of 

these fitted models, since those measures could be used to select the number of components, see Section 2.2. 

For convenience, we fitted this Gausian mixture model to the true data rather than to the generated data with 

misclassifications, thereby avoiding that we had to run it for 100 0( )S  sets times nine misclassification 

conditions (see below). In practice, one has to fit the standard Gaussian mixture model to observed data 

containing misclassifications, which is expected to result in slightly more components than when the model 

is run on true data. In Appendix B, the estimated optimal number of components for case 1 and 2 are shown 

according to the BIC and sBIC criteria. The optimal number of components in class 0 of case 2 was two 

using sBIC and one using BIC. For the other three classes no differences in the optimal number of 

components were found. For the remainder, we used the number of components according to the sBIC 

criterion, shown in Table 4.2. 

Similar to the set up of the simulation study (Section 3.1), the observed classification variable ẑ  was 

generated from z  by using P  (equation 2.3) with values of 11p  and 00p  of 0.6, 0.75, or 0.9. For each setting 

of 11p  and 00 ,p  we generated 0 =S 100 sets of ẑ  from .z  In each set 0 ,s  5% units from the population 

were randomly selected as the audit sample, which was used to estimate 11p̂  and 00
ˆ .p  These estimates were 

used as starting values for the EM algorithm. The final estimates of 11p̂  and 00p̂  by the EM algorithm were 

input for the bootstrap and SIMEX bootstrap methods. The number of iterations ,S 1S  and 2S  was 100. The 

overall bias and variance estimates of the three methods were computed as the average over 0S  bias and 

variance estimates. As before, the estimated true bias and variance of the estimated domain parameters were 

based on 1,000 sets of ˆ.z  

 
Table 4.2 

Domain statistics for each class in the case study. 
 

Case Class Number of 
Components 

Size Total Mean Standard 
Deviation 

Case 1 
Class 1 1 3,076 17,415 5.66 0.358 
Class 0 2 6,993 30,377 4.34 0.501 

Case 2 
Class 1 2 642 3,294 5.13 0.597 
Class 0 2 1,067 5,847 5.48 0.687 
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4.3 Results 
 

The pattern of the bias (see Figures 4.2 and 4.3) and of the standard error (Figures 4.4 and 4.5) as a 

function of 00p  and 11p  is the same as has been found previously in the simulation study. For most settings 

tested, the estimation of the bias of 1
ˆ ,T 1̂  and 1̂  was most accurate by the EM bootstrap method, followed 

by the SIMEX bootstrap method, while the bootstrap led to the least accurate results. An exception occurred 

in case 2, 00 =p 0.9 for 1̂  where the SIMEX bootstrap method was most accurate followed by the EM 

bootstrap method. In some of the settings with 00 =p 0.75 the EM bootstrap method and the SIMEX 

bootstrap method yielded near-identical results for the bias. 

The bias estimates by the EM bootstrap method almost overlapped with the corresponding true values. 

Only in case 2, the bias estimates of 1̂  showed some distance from the true values, while the bias for 1T̂  

and 1̂  remained accurate. It is seen in Figure 4.1 that the true distribution of y  in class 1 in this case 

(NACE code 4932) is more right-skewed than the other distributions considered in this study. This may 

particularly affect the statistic 1
ˆ ,  which is relatively sensitive to values in the right tail of the distribution. 

A follow-up analysis showed that the EM bootstrap method performed somewhat better in this example 

when the number of components per class was increased from two to three (see Figures B.1 and B.2 in 

Appendix B). This suggests that it may be beneficial to choose a relatively large number of mixture 

components if the distribution is known to be asymmetrical and if non-linear, non-robust parameters such 

as 1  are of interest. Note, however, that the statistic 1̂  is not directly published as output in official 

statistics. Overall, the results suggest that the EM bootstrap method usually has accurate performance even 

in difficult situations, when the two classes contain fewer units and their distributions overlap. 

 
Figure 4.2  Bias estimation in case 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Rows represent different domain parameters 1( ,T 1, 1).  Columns represent different 11p  values, within each column different 00p  

values are given.  
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Figure 4.3  Bias estimation in case 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure 4.2. 

 
Figure 4.4  Standard error estimation in case 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure 4.2. 
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Figure 4.5  Standard error estimation in case 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure 4.2. 
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the bias and variance of the (given) estimates are obtained, one either concludes that those estimates are 

sufficiently accurate and publishes them, or one aims to first improve the accuracy of the estimates. In the 

latter case one might apply data editing first to reduce the rate of misclassifications. Alternatively, the 

mixture model could then be used to construct an improved estimate, if the model is considered sufficiently 

trustworthy. 

We compared how well one can estimate the bias and variance of statistics in the presence of 

misclassification with the EM bootstrap method, the bootstrap method and the SIMEX bootstrap method 

using simulated data sets and real applications. The simulated data concerned (mixtures of) normal 

distributions whereas the real data concerned empirical distributions. For most of the conditions tested, we 

found that the EM bootstrap method outperformed the bootstrap and the SIMEX bootstrap method. The 

estimated bias of statistics from the EM bootstrap method was closer to the true bias than for the bootstrap 

and the SIMEX bootstrap method. The estimated variance of statistics based on the EM bootstrap method 

was also more accurate than for the other methods, but here the relative differences between the estimated 

values of the three methods were smaller than for the bias. Only in situations where the means of the two 

distributions were very close together, and populations were small the 1̂  statistic was better estimated with 

SIMEX, but still the bias estimate of the total remained accurate. 

Based on the results obtained we expect that the EM bootstrap outperforms the bootstrap for a binary 

variable as long as the model parameters are well estimated and the distribution of y  is captured well. We 

found that the EM algorithm only had difficulties in estimating the model parameters well when the two 

distributions had means that were close together while the population size was small. Still, under those 

difficult conditions the bias of the total was estimated well. We expect that the combination of similar class 

means and large standard deviations is also more problematic. The SIMEX method only works well when 

the parameter of interest is a smooth function of   that can be extrapolated well. Since our estimation 

method does not depend on these conditions we expect it to perform better than SIMEX for binary 

classification variables. When the distribution of y  is very skewed and contains a number of outliers, then 

the SIMEX algorithm might outperform the EM algorithm. 

The above results were obtained by averaging over 100 simulation runs. By comparing the 95% 

confidence intervals of the bias estimated in the simulation study, we showed that even in a practical 

situation where there is only one single set of ˆ,z  the EM bootstrap method leads to better bias estimates 

than the bootstrap method and the SIMEX bootstrap method. We obtained these results, by using the 

classification error probabilities as estimated by the EM algorithm as input for the bootstrap and SIMEX 

bootstrap. That way, we gave the bootstrap and SIMEX bootstrap the best possible starting position to 

compete with the EM bootstrap. As an alternative, we also used estimated probabilities from an audit sample 

as input to the bootstrap and SIMEX bootstrap methods, which resulted in poorer results than before (not 

shown here). 

Besides giving more accurate bias and variance estimates, the EM bootstrap method has two further 

advantages over the bootstrap and the SIMEX bootstrap method. The first advantage is that the EM bootstrap 

does not require that classification error probabilities 11p  and 00p  are accurately estimated beforehand; in 

fact, the EM algorithm provides estimates of these probabilities as part of its output. In previous studies 

these misclassification probabilities could only be obtained from audit samples (Van Delden et al., 2016). 
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The results of Li (2020a) and Li (2020b) suggest that the EM bootstrap also works well without an audit 

sample, except in some extreme cases (where two classes had the same mean). When there is no audit 

sample available, one should use multiple starting values to avoid finding a local maximum. If an audit 

sample is available, it is useful to incorporate it into the EM algorithm (Li, 2020a). In our study, the starting 

values obtained from the audit sample were sufficient to obtain accurate bias and variance estimates. The 

second advantage of the EM bootstrap method is that its output includes unit-specific probabilities 
1

1=1
ˆˆ( = 1| , ; ) =θ

q

i i i jij
P z y z A  and 0

0=1
ˆˆ( = 0 | , ; ) = ,

q

i i i kik
P z y z Aθ  which could be used to predict the 

probability of a classification error in îz  for each unit in the data set. That outcome could subsequently be 

used to manually check and correct units with a potentially incorrect code, in an efficient way. This might 

save considerable time and effort compared to simply checking all units in a (sub)population based on 11p  

and 00.p  

There are two points of attention with respect to the practical use of the EM bootstrap method. First, the 

EM bootstrap method assumes that the actual distribution can be described with a Gaussian mixture model. 

According to McLachlan and Peel (2000) a Gaussian mixture model can accommodate various distributions 

for the continuous variable. In the case studies we found that the empirical distributions could already be 

approximated with 2-3 components. We do not expect that the Gaussian mixture assumption will pose great 

limits to its application in practice, although a caveat should be made that we did not test our method in 

situations that require more than three Gaussian components per class. Furthermore, in our case studies the 

number of components per class was determined using sBIC on the true data, whereas in practice it would 

have to be determined on data with misclassifications. The results in Section 4.3 suggest that, for skewed 

data, it could be beneficial in practice to err on the side of including too many components rather than too 

few. These matters could be investigated further. 

Second, the number of iterations of the two loops will need to be determined with care since it will 

influence the accuracy of the bias and variance estimates of the EM bootstrap method. (This similarly holds 

for the other two methods.) In our study, we used a fixed number of iterations for the experiments. Based 

on the results, we judged that we had performed enough iterations to draw valid conclusions. In practice 

though, the number of iterations should be adjusted according to properties of the data sets, such as size, 

distribution of each class, distance between the two classes, etc. Efron and Tibshirani (1993) provide some 

theoretical considerations to take into account when choosing the number of iterations in a bootstrap 

algorithm; for instance, more iterations are usually needed for a smaller population size (op. cit., 

Section 6.4). In addition, it has been shown for similar nested algorithms that the number of iterations in the 

outer for-loop has the strongest effect on convergence (Chang and Hall, 2015), which suggests that 

increasing 1S  in Algorithm 2 is more beneficial than increasing 2.S  However, as each application is 

different, it is good practice to examine the convergence of bootstrap estimates, e.g., by plotting intermediate 

results against the number of iterations to check when they become sufficiently stable. Finally, when one is 

only interested to estimate the bias, and not the variance, then the inner bootstrap loop within the EM 

bootstrap method is not needed, which saves computation time; see the “EM method” in Li (2020b). 

In a future study, a number of extensions of our approach would be useful. A first, important, extension 

would be to generalise the bias and variance estimation to a situation with a classification variable with 

2D   classes. With D  classes, the probabilities of misclassification will be given by a D D  matrix P  
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with ( 1)D D   probabilities that are to be estimated. For each additional domain {1, , },d D …  the number 

of other parameters in the mixture model increases linearly according to ( 1) 2 1= 3d d dq q q    where dq  

is the number of components per additional domain .d  Because the number of parameters increases with 

the number of domains the audit sample becomes more important to give the model reasonable starting 

values. It is also important to test whether such a D  class EM bootstrap converges well. Furthermore, it 

needs to be tested whether the mixture model performs better than the existing SIMEX and bootstrap 

methods for > 2.D  

A second extension would be to account for sample data rather than census data. In that case output 

quality is affected by both classification error and sampling error. In the case of simple random sampling 

the estimated bias will not be affected by the sampling error. For the variance one could use two approaches. 

One approach is that the sampling procedure is also bootstrapped by including it in the EM bootstrap 

procedure. Alternatively, a hybrid approach could be used in which the EM bootstrap estimate is used for 

the classification errors while an analytical expression is used for the sampling error. 

A third extension would be to relax the assumptions for the probabilities of classification errors. In our 

study, the probabilities of making classification errors, 11p  and 00 ,p  were assumed independent of the 

continuous variable. However, in real situations, this assumption does not always hold, at least not without 

conditioning on other covariates. It would therefore be interesting to make an extension in which the 

misclassification probabilities depend on covariates. 

A fourth extension would be to use multiple numerical target variables, such as height and weight of 

patients in medical records. Then there will be more than one target variable in the general model. A 

multivariate Gaussian mixture model can be a suitable model for this case (McLachlan and Peel, 2000). A 

fifth possible extension is to take missing values in the target variable(s) into account. 

Finally, we note that Algorithm 1 in our study is a standard, single bootstrap method. In the literature, 

double and higher-order bootstraps have also been proposed as a way of correcting for bias in the bias and 

variance estimators from a single bootstrap (Chang and Hall, 2015; Hall and Martin, 1988). These methods 

do not require an explicit model for the data but, like the single bootstrap, they do require (an estimate of) 

the matrix P  as input. It would be interesting to compare the performance of the EM bootstrap method and 

a double bootstrap in a future study, in particular for the extended problem with 2D  classes and/or 

several numerical target variables, for which estimating a Gaussian mixture model may become challenging. 
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Appendix 
 

A. Extrapolation function in the SIMEX bootstrap method 
 

In this appendix, three extrapolation functions used in the SIMEX bootstrap method are compared: a 

local polynomial regression (LOESS), a second order polynomial regression (poly2) and a third order 
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polynomial regression (poly3). For the LOESS function we used default settings of the loess function in R 

(span = 0.75 and nls.control(maxiter = 1000)). 

The bias and standard error estimates from the LOESS function and of the third order polynomial 

regression were similar, see Figures A.1 and A.2. The estimates of both models were closer to the true values 

than those of the second order polynomial regression. Considering that the LOESS function had been used 

in a previous study on misclassifications (Hopkins and King, 2010), we decided to apply the LOESS 

function in the present paper. 

 
Figure A.1  Comparison of the bias estimation performance of the three extrapolation functions in the SIMEX 

bootstrap method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes:  Rows represent different domain parameters 1( ,T 1, 1, 1)  for two settings of 1: 1 = 0.3 and 1 = 0.5. Columns represent different 

11p  values, within each column different 00p  values are given. 
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Figure A.2  Comparison of the standard error estimation performance of the three extrapolation functions in 
the SIMEX bootstrap method.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Notes: For row and column settings see Figure A.1. 
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only for case 2, we compared the bias and the standard error estimates, using two (sBIC) or one (BIC) 

component for class 0. 

 
Table B.1 

The optimal number of components selected by BIC and sBIC. 
 

Case No. Class Optimal Number 
BIC sBIC 

Case 1 
Class 1 1 1 
Class 0 2 2 

Case 2 
Class 1 2 2 
Class 0 1 2 

 
Using two components for class 0 led to more accurate bias estimates than using one component; see 

Figure B.1. For some of the settings the standard error estimates based on two components were also more 

accurate than those based on one component, see Figure B.2, although the accuracy differences were smaller 

for the standard error than for the bias. We therefore decided to use the sBIC in our case study to estimate 

the optimal number of components. 

For case 2, we also tried a model with three components in both classes instead of two. The resulting 

bias estimates and standard errors are also shown in Figures B.1 and B.2 (“comp3”). As mentioned in 

Section 4.3, it is seen that increasing the number of components to three led to more accurate results. 

 
Figure B.1  Bias estimation using BIC vs. sBIC in case 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure A.1. 
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Figure B.2  Standard error estimation using BIC vs. sBIC in case 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure A.1. 

 
 

C. Theoretical properties of Algorithms 1 and 2 
 
C.1 Algorithm 1: The bootstrap method 
 

In general, Algorithm 1 yields biased estimates of the bias and variance of ˆ.  We will illustrate this 

using the estimated domain total 1T̂  as an example. Note that the results below also apply to 1
ˆ ,  since it is 

obtained as a special case of 1T̂  with 1 .iy N  

For 1
ˆ ,T  it can be derived that its true bias equals  

 1 00 0 11 1
ˆBias( ) = (1 ) ( 1) ,T p T p T    (C.1) 

whereas, for ,S   the bootstrap bias estimator from Algorithm 1 converges to 00 0 11 1
ˆ ˆ(1 ) ( 1) ;p T p T    

see, e.g., Burger, van Delden and Scholtus (2015). Thus, in general, the bootstrap bias estimator is biased 

unless 1T̂  itself happens to be an unbiased estimator of 1.T  The latter situation occurs only for particular 

combinations of 11 00( , )p p  (Kloos et al., 2021). 

Similarly, it can be derived that the true variance of 1T̂  is  

 1 00 00 0 11 11 1
ˆVar( ) = (1 ) (1 ) ,T p p K p p K    (C.2) 

with 2
1 =1

=
N

i ii
K z y  and 2

0 =1
= (1 ) ,

N

i ii
K z y  whereas the bootstrap variance estimator converges to the 

same expression with 1K  and 0K  replaced by 2
1 =1
ˆ ˆ=

N

i ii
K z y  and 2

0 =1
ˆ ˆ= (1 ) ,

N

i ii
K z y  respectively 
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(Burger et al., 2015). Note that, in general when 1 1= ,T   the conditions under which the bootstrap bias 

estimator and bootstrap variance estimator are unbiased are not equivalent. 

 
C.2 Algorithm 2: The EM bootstrap method 
 

As suggested in Section 2.3.2, the purpose of generating 0-1-values iz  in the outer for-loop of 

Algorithm 2, with 1

1=1
ˆ ˆˆ ˆ( = 1| , ; ) = ( = 1| , ; ) = ,

q

i i i i i i jij
P z y z P z y z Aθ θ  is to correct the bootstrap bias and 

variance estimators for the bias that occurs in Algorithm 1. To illustrate the underlying idea, we will show 

here that in the case of the estimated domain total 1
ˆ ,T  for which exact analytical expressions are available, 

bias correction is indeed achieved by both combBias  and combVar  provided that the assumed mixture model 

holds. A simplified version of the derivation below can be given for the estimated proportion 1
ˆ .  

Denote 1 =1
=

N

i ii
T z y   and 0 =1

= (1 ) ;
N

i ii
T z y   also denote * *

1 =1
=

N

i ii
T z y   and * *

0 =1
= (1 ) .

N

i ii
T z y   It 

can be derived analogously to (C.1) that *
1 1 00 0 11 1ˆE ( | , ) = (1 ) ( 1) .T T z z p T p T        Hence, for 1 2, ,S S   

the expected value of the bias estimator in the EM bootstrap method is  

      1 00 0 11 1
ˆ ˆ ˆE ( ) = (1 ) E E ( | ) ( 1) E E ( | ) .combBias z zT p T z p T z   

   (C.3) 

Furthermore, it is seen that  

 
1 1

1 1 1 1 1
=1 =1 =1 =1 =1

ˆ ˆˆ ˆˆ ˆ ˆE ( | ) = E( | ) = ( =1| , ; ) = = ,
q qN N N

z i i i i i i i ji i j j
i i i j j

T z z z y P z y z y A y N     
    

where the last expression follows from the formulas applied during the M step of the EM algorithm (see 

Section 2.2.2). Under the assumption that the mixture model holds, it follows that  

  
1 1

1 1 1 1 1 1 1 1 1 1
=1 =1

ˆˆ ˆˆE E ( | ) = E = = ;
q q

z j j j j
j j

T z N N N T       
 

 
 

 
   

cf. note 2 at Table 2.1 for the final two equalities. Similarly, it can be shown that  0 0
ˆE E ( | )z T z T

  if the 

model holds. Substituting both results into (C.3) and recalling (C.1), we conclude that 1
ˆE{ ( )}T combBias  

1
ˆBias( ).T  

For the variance estimator, we can proceed in a similar fashion. Denote 2
1 =1

=
N

i ii
K z y   and 0 =K  

2

=1
(1 ) .

N

i ii
z y   Analogously to (C.2) it can be shown that *

1 00 00 0 11 11 1ˆVar ( | , ) = (1 ) (1 ) .T z z p p K p p K      

Hence, for 1 2, ,S S   

      1 00 00 0 11 11 1
ˆ ˆ ˆE ( ) = (1 ) E E ( | ) (1 ) E E ( | ) .combVar z zT p p K z p p K z   

   (C.4) 

From the formulas applied during the EM algorithm, it follows that  

 
1 1

2 2 2 2 2
1 1 1 1 1 1

=1 =1 =1 =1 =1

ˆ ˆˆ ˆ ˆˆ ˆ ˆE ( | ) = E( | ) = ( =1| , ; ) = = ( ).θ
q qN N N

z i i i i i i i ji i j j j
i i i j j

K z z z y P z y z y A y N      
    

Hence, assuming that the mixture model holds, we obtain:  
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1

2 2 2 2
1 1 1 1 1 1 1 1 1

=1

ˆE E ( | ) ( ) = ( ) = .
q

z j j j
j

K z N N K        
   

In the same way, it can be derived that 0 0ˆE{E ( | )} .z K z K
  Thus, it is seen using (C.2) that 1

ˆE{ ( )}T combVar  

1
ˆVar( )T  if the mixture model holds. 
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Model-based stratification of payment populations in 
Medicare integrity investigations 

Don Edwards, Piaomu Liu and Alexandria Delage1 

Abstract 

When a Medicare healthcare provider is suspected of billing abuse, a population of payments X  made to that 
provider over a fixed timeframe is isolated. A certified medical reviewer, in a time-consuming process, can 
determine the overpayment =Y X   (amount justified by the evidence) associated with each payment. 
Typically, there are too many payments in the population to examine each with care, so a probability sample is 
selected. The sample overpayments are then used to calculate a 90% lower confidence bound for the total 
population overpayment. This bound is the amount demanded for recovery from the provider. Unfortunately, 
classical methods for calculating this bound sometimes fail to provide the 90% confidence level, especially when 
using a stratified sample. 

 

In this paper, 166 redacted samples from Medicare integrity investigations are displayed and described, along 
with 156 associated payment populations. The 7,588 examined  ,Y X  sample pairs show (1) Medicare audits 
have high error rates: more than 76% of these payments were considered to have been paid in error; and (2) the 
patterns in these samples support an “All-or-Nothing” mixture model for  ,Y X  previously defined in the 
literature. Model-based Monte Carlo testing procedures for Medicare sampling plans are discussed, as well as 
stratification methods based on anticipated model moments. In terms of viability (achieving the 90% confidence 
level) a new stratification method defined here is competitive with the best of the many existing methods tested 
and seems less sensitive to choice of operating parameters. In terms of overpayment recovery (equivalent to 
precision) the new method is also comparable to the best of the many existing methods tested. Unfortunately, no 
stratification algorithm tested was ever viable for more than about half of the 104 test populations. 

 
Key Words: Medicare fraud; All-or-nothing mixture model; Dalenius-Hodges stratification; Anticipated moments; 

Neyman allocation. 

 
 

1. Introduction 
 

According to the U.S. Centers for Medicare and Medicaid Services (CMS) 2022 Trustees Report 

(https://www.cms.gov/files/document/2022-medicare-trustees-report.pdf), the Medicare Trust Fund Hospi-

tal Insurance trust is estimated to be depleted by 2028. In an effort to extend the depletion date, over the last 

decade the CMS and the legislatures have focused efforts on eliminating fraud, improving quality and 

reducing overall cost of care (Huffman, 2021; Salmond and Echevarria, 2017). The CMS uses the 

Comprehensive Error Rate Testing (CERT, https://www.cms.gov/Research-Statistics-Data-and-Systems/ 

Monitoring-Programs/Improper-Payment-Measurement-Programs/CERT) program to estimate the Medicare 

Fee-for-Service (FFS) program’s improper payment rate each year by sampling claims to determine whether 

they were paid properly under Medicare coverage, coding and payment rules. In 2022, the improper payment 

rate was estimated at 7.46 percent, representing $31.46 billion in improper payments. It is clear that even 

with the focused effort on eliminating fraud, waste, and abuse from the Medicare FFS program that there 

are still program integrity concerns related to improperly paid claims, and that these will continue 

(Clemente, McGrady, Repass, Paul III and Coustasse, 2018). 
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In this paper, a “provider” is any entity that bills Medicare: physicians, home health providers, hospitals, 

hospice providers, durable medical goods providers, ambulance services, etc. The CMS uses contractors at 

multiple levels to investigate providers suspected of abusing the system. The current guidelines governing 

the investigation process are given in the Medicare Program Integrity Manual (MPIM), Chapter 8: 

https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/Downloads/pim83c08.pdf 

When there is reason to suspect that a provider is billing improperly to Medicare FFS, a Unified Program 

Integrity Contractor (UPIC), often a subsidiary of an insurance company, conducts a sampling investigation. 

First, the UPIC obtains detailed information on all Medicare claims paid to that provider for a specified 

period, usually 1-2 years: a population of payments. A sampling unit is chosen and a probability sample is 

designed and implemented. A Certified Medical Reviewer then examines the evidence in support of each 

sampled payment, obtaining the overpayment amount Y as  

 =Y overpayment = (amount paid X) – (amount justified by the evidence).  

Note that since the amount justified by the evidence is non-negative, the overpayment amount is bounded 

above by the payment amount. The medical review usually requires several months for a sample of moderate 

size such as those displayed in Section 2. The UPIC then uses the overpayment amounts to “extrapolate”: 

the UPIC calculates a 90% lower confidence bound for the total overpayment made to the provider over the 

specified time period. This lower bound is the amount demanded for recovery from the provider. (If the 

point estimate achieves “high precision”, it can be used as the demand amount. This is very rare).  

The sampling unit in these investigations is usually either the paid claim or all claims paid for services 

to a particular beneficiary (more precisely, to a Medicare identification number, formerly called a Health 

Insurance Claim Number HICN). The sampling plans are nearly always simple random samples or stratified 

random samples with strata determined by payment amounts. The extrapolation method is usually the “mean 

per unit” approximate method based on the finite population Central Limit Theorem (Hájek, 1964; Li and 

Ding, 2017). 

Specifically, consider a stratified random sample with L strata, denote stratum sizes by lN  and sample 

sizes by ,ln  for = 1, 2, , .l L…  Let 
=1

=
L

ll
N N  and 

=1
= .

L

ll
n n  For each ,l  let =l lW N N  and let lY  and 

lS  be the sample mean and standard deviation of stratum l  overpayments, respectively. The CLT-based 

extrapolation has the form  

 
2

2

=1 =1

1
L L

l l
l l l

l l l l

S n
N W Y t N W

n N


   
    

   
   (1.1) 

where t  is the 90th percentile of Student’s t-distribution with   degrees of freedom. Some contractors use 

the approximate degrees of freedom due to Satterthwaite (1946), though some use the less conservative 

choices  n L  or infinite degrees of freedom (i.e., the standard Normal percentile point). The Satterthwaite 

degrees of freedom are at most  ,n L  so it is the most conservative of the three choices. For simple 

random sampling, equation (1.1), suppressing subscript ,l  reduces to  
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The provider has the right to appeal the reviewer’s overpayment determinations and the sampling 

methods employed by the UPIC. In this event, an independent Medicare Administrative Contractor (MAC) 

conducts a review of the sampling plan and overpayment determinations as the first level of appeal. If the 

provider further appeals the MAC’s decision, a Qualified Independent Contractor conducts another review 

as the second level of appeal. If the provider is still unsatisfied, the matter can be appealed to the third level 

and heard in a formal Administrative Law Judge hearing. Further appeals are also possible. At any level of 

appeal, the provider may submit additional documentation to support payment on their claims. 

Section 2 of this paper examines the raw data for 166 redacted samples examined by a single reviewer 

at a MAC during the period 2013-2020. This data motivates a statistical model for Medicare sample 

overpayments, discussed in Section 3. Section 4 discusses appropriate Monte Carlo testing methods for 

sampling plans given the model. Section 5 reviews existing methods for stratifying populations and 

proposes a new class of stratification methods. Section 6 gives the results of a Monte Carlo efficiency study 

comparing these stratification methods, conducted using 104 of the payment populations. 

 
2. Honor the data: An exploration of 166 Medicare samples 
 

The redacted samples, in rough chronological order 2013-2020, are numerically summarized and 

graphically displayed using scatterplots of overpayment versus payment amount at: https://drive.google. 

com/drive/folders/1CIzQKzN4-RIIY38WonSAU7ydICwb76wh. The reader is encouraged to take a few 

minutes to page through the plots to form his/her own opinions on patterns in the data. The investigations 

summarized here were conducted by four different program integrity contractors. Sixty-eight percent (113) 

of the samples were simple random samples and the remaining 32% (53) were stratified by payment amount. 

Total sample sizes varied between 25 and 159 with 90% of the samples having between 30 and 70 total 

payments. Seventy-five percent (124) of these samples were from home health providers, 16% (27) were 

from hospice providers, and the remaining 9% (15) included physicians, skilled nursing facilities, ambu-

lance services, etc. Nine of the samples used the beneficiary’s HICN as the sampling unit, 149 used the paid 

claim, and 8 were drawn and analyzed as pennysamples (Edwards, Gilliland, Ward-Besser and Lasecki, 

2015). 

Define the “taint” for a sample payment as the ratio of overpayment to payment. Figure 2.1 provides a 

schematic classifying the 7,588 sample points from the 166 samples into four zones based on taint value: 

Zone 1 (taint   0.95), Zone 0 (0   taint   0.05), the Negative Zone (taint <  0), and the Partial Zone. Some 

observations:   

1. More than 76% of these payments were adjudged to have been paid either partially or totally in 

error. The conventional “wisdom” that auditing error rates are typically low does not apply to 

Medicare investigations.  
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2. Only one negative overpayment occurred in 7,588 reviewed payments.  

3. Except for “complete error” samples (overpayment equals payment, 24 samples), overpayment 

amount is not linearly related to payment amount in any of these samples, though the two 

variables are sometimes highly correlated (the important distinction between “correlated” and 

“linearly related”, so eloquently sung by Anscombe’s (1973) quartet, is unfortunately blurred at 

times in the literature, and by some data analysts). A handful of samples have numerous partial 

overpayments, in which case the overpayment-payment relationship is essentially formless 

within the triangle formed by Zones 0 and 1. For the majority of these samples, though, the 

relationship is best described as approximately bilinear, with a horizontal line in Zone 0, a 45º 

line in Zone 1, and possibly a handful of partial overpayments in between. 

4. It is less obvious to the naked eye, but there is no evidence in this data that larger payments are 

more likely to have larger taints. Figure 2.2, admittedly crowded, shows a plot of taint versus the 

logarithm base 10 of payment amount, showing no obvious monotone trend. Figure 2.3 displays 

the results of a generalized additive model fit of taint on 10log (payment) using a separate intercept 

for each sample and a common smooth function for the taint vs. 10log (payment) relationship. 

The figure includes Scheffé-style simultaneous 95% confidence bands for the true regression 

function; these bands include a horizontal line. Analogous results were obtained using payment 

amounts instead of 10log (payment amounts) as regressor.  

 
Figure 2.1 A classification of the 7,588 overpayment-payment pairs in the 166 samples. 
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Figure 2.2 Taint versus log10 (Payment amount) for 7,588 sample points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3 Graphical summary of a generalized additive model analysis of taint vs. log10 (payment). Gray 

shading is a 95% Scheffé-style confidence region for the true nonparametric regression function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. A model for Medicare sample data 
 

The patterns in the 166 samples suggest a simple mixture model for Medicare sample data. This model 

has previously been discussed by several authors, including King (1996), Edwards, Ward-Besser, Lasecki, 

Parker, Wieduwilt, Wu and Moorhead (2003), and King and Madansky (2013). The population payments 

, = 1, 2, ,iX i N…  are known constants. Let =1iZ  with probability ,EP  0 1,EP   and = 0iZ  otherwise, 

regardless of the value of .iX  The “All or Nothing” mixture model with error rate ,EP  here abbreviated AN
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with probability 1 EP  the overpayment is zero. The majority of the 166 samples discussed in Section 2 

conform to this model with negligible numbers of partial or negative overpayments. 

Let X  and 2
X  denote the known population mean and variance of payment amounts. Under the AN

 EP  model it is straightforward to derive the mean and variance of overpayment Y for a randomly selected 

X (King, 1996):  

 
2 2 2

( ) = =

Var ( ) = = (1 ) .
Y E X

Y X E E E X

E Y P

Y P P P

 

   
 (3.1) 

Note that the variance of the overpayment amounts can be dramatically different from the variance of the 

payment amounts. To illustrate, Figure 3.1 shows histograms of three payment populations. We include 0 

on the horizontal axis of these histograms in order to help envision the shape of the corresponding 

overpayment population under a given error rate ,EP  as explained below. For population B, for values of 

EP  near 1 2,  the variance of overpayment amounts 2
Y  is more than 800 times the variance of payment 

amounts 
2 .X  For populations C and A the ratio 

2 2
Y X   reaches a maximum of 4.7 and 1.5 respectively. 

Hence, the common practice of using the variance of payment amounts as an estimate of the variance of 

overpayment amounts in sample-size determination formulas has no relevance except when EP  is very near 

to 1.  

 

Figure 3.1 Example payment populations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: (A) N = 59,804 hospice HICN payments; (B) N = 249 power wheelchair claim payments; (C) N = 570 hospice claim payments. 
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4. Monte Carlo testing of sample designs under the AN model 
 

Consider a sampling-and-extrapolation plan proposed for a particular payment population. The  AN EP  

model motivates a simple Monte Carlo testing procedure for the plan, implemented by the freely-distributed 

R (R Core Team, 2021) function samptest available from the authors. The testing proceeds as follows: for 

each choice of EP  on a grid spanning the interval (0,1], 

1. A plausible overpayment population is created by randomly choosing a proportion EP  to have 

overpayment = payment, leaving the remaining proportion 1 EP  to have zero overpayment.  

2. The sampling plan is applied to the created overpayment population. The extrapolation is 

computed and compared to the total overpayment for the population.  
 

Steps 1 and 2 are repeated independently a large number of times, enough to estimate achieved confidence 

level to high accuracy. The plan investigated can be a simple random sample or a stratified random sample. 

The function summarizes the testing with plots of the estimated achieved confidence level, and the average 

percent of overpayment recovery for the plan, versus error rate EP  (the latter quantity is equivalent to 

average precision, as explained in Section 6). For most payment populations, the samptest results are 

returned in a few seconds, even using a computer of modest computing power. 

For example, Figure 4.1 shows samptest results on achieved confidence levels for a simple random 

sample of 30 payments using the standard extrapolation (1.2) applied to the Figure 3.1 payment populations. 

The plot tells us that this modest sampling plan provides confidence level above or near the MPIM-required 

90% level for population A for all error rates, but for populations B and C it fails to provide the 90% 

confidence level if the error rate EP  exceeds 0.6. 

 
Figure 4.1 Achieved confidence levels (%) versus error rate for the Figure 3.1 populations, using a simple 

random sample of 30 payments with the standard extrapolation (1.2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Estimates are accurate to 1%  with 95% confidence. 
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These results illustrate the strong effect of skewness in the overpayment population on the achieved 

confidence level of the bound (1.2). Cochran (1977, pages 39-44) noted that a right-skewed population 

yielded a conservative lower bound and a liberal upper bound for a two-sided confidence interval for the 

population mean. Using this “principle of skew”, which in our experience is pervasive, the conservatism of 

the lower bound (1.2) for Population A at all error rates can be anticipated: at any error rate EP  the over-

payment population has a “spike” of zeros of (approximate) size  N 1 ,EP  with the remaining N EP  

overpayments having the same shape as the payment population. Hence at any error rate the overpayment 

population for population A is also right skewed; hence the bound (1.2) is conservative. At any error rate 

,EP  overpayment population B has two spikes, with  N 1 EP  zeros and N EP  payments near $4,000. For 

values of EP  above 1 2  the spike at 0 is the shorter of the two, hence the overpayment population is left-

skewed, hence the bound (1.2) is liberal. Finally, payment population C is left-skewed. For small values of 

EP  the large spike at 0 in the overpayment population will counterbalance this left skew and yield a 

conservative lower bound, but the spike at 0 gradually disappears as EP  grows, yielding a liberal lower 

bound at high error rates. 

If problems with the achieved confidence level occur using extrapolation (1.2) they invariably occur at 

high error rates due to left skew in the overpayment population. For this reason, the presence of partial 

overpayments improves the achieved confidence level: at any particular > 1 2,EP  partial overpayments 

reduce the severity of any left skew. This has been repeatedly confirmed in our experience using samptest, 

which has the capability to flexibly model the occurrence of partial overpayments. We conjecture that any 

sampling plan which achieves the 90% confidence level under the  AN EP  model for a given error rate EP  

will also achieve it in the presence of partial overpayments at that value. That is, the presence of partial 

overpayments tends to improve the confidence level of the bound (1.2). This effect is usually modest since 

the frequency of partial overpayments is usually modest. 

Right-skewed payment populations such as Population A occur frequently in Medicare investigations. 

For such a population, a simple random sample will usually achieve confidence level above 90% for all 

error rates. This conservatism signals the potential for improving the sampling plan via stratification. Care 

must be taken, however, for in a sample stratified by payment amount the effects of skew are mixed. For 

example, particularly for 3,L   stratification by payment amount creates payment subpopulations similar 

in shape to that shown in Figure 3.1B. These strata give rise to left-skewed overpayment strata at high error 

rates, which will not preserve the confidence level. King and Madansky (2013) say it well: “it is quite 

possible to destroy the achieved confidence level by stratifying carelessly. We therefore underscore the 

cautionary note that a misapplication of stratification (e.g., not using the appropriate stratification 

boundaries) will do more than invalidate the precision of the bounds; it can invalidate the normal confidence 

coefficient as well”. Any stratification scheme must be tested using Monte Carlo. 

Note that in some situations a transformation (e.g., the log transformation) may normalize the 

distribution well enough to provide a viable 90% confidence bound for the population mean of log(Y), but 

this cannot be back-transformed to obtain a confidence bound for the population mean of Y: the mean of 
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the logs is not the log of the mean. If the transformation symmetrizes the distribution, the back-transformed 

lower bound is a confidence bound for the population median of Y, not the population mean, and when 

multiplied by N does not provide a bound for the population total, but something much smaller. The same 

argument applies to other non-linear transformations, e.g., the square root transformation, inverse 

transformation, etc.  

 
5. Methods for constructing strata using an auxiliary variable X 
 

Assume that X  is known for all sampling units. In Medicare investigations, X  is usually the total paid 

amount for the sampling unit. This section reviews some existing methods for stratifying the population 

using X  and defines a new method. 

In some designs, a few of the largest payment amounts are examined in their entirety in a “take all” or 

“certainty” stratum. This reduces the severity of right skew in the remaining population. If such a certainty 

stratum is used, the question remains as to how one should stratify the remaining population, and that is our 

focus here. 

It should be stated at the outset that there is no need to use an algorithm from the peer-reviewed literature 

to determine values of X  (“cutpoints”), 1 2 1< < < LXC XC XC …  defining the 2L   strata. In practice, any 

a priori choice achieving confidence level very near to or above 90% for all error rates is viable, regardless 

of how it was obtained. The time required to find such cutpoints by trial and error, testing each choice using 

Monte Carlo, may be prohibitive, however. Also, it is sometimes useful to cite the use of an existing 

algorithm from the peer-reviewed literature when creating a stratified design.  

 
5.1 Existing methods 
 

Several popular methods to determine cut points or stratum boundaries using X exist. With Y  the 

measured variable of interest, Tschuprow (1923) and Neyman (1934) proved that the variance of the linear 

population mean estimator 
=1

=
L

s l ll
y W y  is minimized for a fixed total sample size n  when the sample 

size ln  in stratum l  is proportional to the product of stratum size lN  and stratum standard deviation 

, =1, 2, , .Yl l L …  This “Neyman allocation” is the goal for several stratification algorithms under various 

assumptions. Methodological research in this area dates back to Dalenius and Gurney (1951) and Cochran 

(1977, Chapter 5A). Relevant literature is extensive, including Ekman (1959), Serfling (1968), Singh 

(1971), Wang and Aggarwal (1984), Hidiroglou and Srinath (1993), Hidiroglou (1994), Hedlin (2000), 

Kozak and Verma (2006), Jurina and Gligorova (2017), Hidiroglou and Kozak (2018) and Reddy and Khan 

(2019). 

When the auxiliary variable X  is linearly related to ,Y  and highly correlated with ,Y  the well-known 

Dalenius and Hodges (1959) method can achieve approximate Neyman allocation. The method begins with 

a frequency distribution f  for .X  Under the additional assumption that the distribution of X  within the 
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frequency distribution cells is approximately uniform, choosing stratum boundaries that equate the cumu-

lative f  between strata achieves approximate Neyman allocation for equal stratum sample sizes. 

Lavallée and Hidiroglou (1988) take an iterative approach to choosing stratum cutpoints to minimize the 

total sample size n  given a specified relative coefficient of variation for the point estimator of the population 

total; this problem is equivalent to minimizing the relative coefficient of variation for fixed ,n  which is our 

goal. Their approach assumes that the auxiliary variable X  is “closely related to” ,Y  and they warn that 

their method will not achieve desired efficiency if X  and Y  are not “highly correlated”. The iterative 

algorithm they use, due to Sethi (1963), was improved by Kozak (2004). 

For sampling plans where the stratification variable X  is not linearly related to the survey variable ,Y  

the “anticipated moments” under a model (for example, Dayal (1985), Sigman and Monsour (1995) and 

Sweet and Sigman (1995)) is a critical concept. Generalizing the algorithm in Lavallée and Hidiroglou 

(1988) and using “anticipated moments” of Y  given ,X  Rivest (1999, 2002) proposed stratification 

algorithms and models that account for discrepancies between Y  and ,X  in particular (1) a Log-Linear 

(LL) model, i.e., log( )Y  is linearly related to log( )X  and (2) a “random replacement” model. The latter 

models =Y X  with high probability, but otherwise Y  is equal to a randomly selected value of .X  The 

algorithms in Rivest (1999, 2002) choose sample size to achieve a pre-specified level of precision, or to 

maximize precision for a fixed sample size, allowing for different sample allocation rules. The statistical 

models and anticipated moment approach in Rivest (1999, 2002) provide a very general and flexible method 

covering a wide range of survey scenarios. 

Baillargeon and Rivest (2009) extend the Log-Linear (LL) model in Rivest (2002) to include a survival 

probability that models the probability of survey variable Y  taking on value 0 (equation (5.1)). The survival 

probability can be specified to vary by stratum. This model is particularly helpful for business surveys where 

a business is no longer in operation when the survey takes place but the X  variable has been collected 

resulting in a zero value for .Y  Let lp  denote survival probability for the thl  stratum; assuming 
2(0, ),N ε∼  the LL model is 

 
exp( log ), with probability

=
0, with probability 1 .

l

l

X p
Y

p

  




ε
 (5.1) 

For business surveys, the lp  values typically increases with ,X  which means a greater chance of business 

survival or Y being non-zero when the value of X  is large. When a constant survival probability is specified 

across all strata, the probability of Y  being zero is the same for all sampling units. In this case, if 
2= 0, = 0,   the model in equation (5.1) is equivalent to the All-or-Nothing model in Section 2 of this 

paper. This is a testimony to the generality of the models proposed by Rivest (1999, 2002) and Baillargeon 

and Rivest (2009). 

A simpler method for determining cut points of stratification for right-skewed populations is due to 

Gunning and Horgan (2004) and Gunning, Horgan and Yancey (2004). The method is based on an 

observation of Cochran (1961) that the coefficients of variation across different strata are comparable in 
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near-optimum stratification. Assuming the coefficient of variation is constant across all strata, boundary 

points can be written as terms in a geometric series. Once the minimum and maximum values of the set of 

cut points are specified, the geometric relationship produces cutpoints for all strata. Gunning and Horgan 

state that their method assumes that Y  is “highly correlated with” .X  It also assumes that distributions 

within strata are uniform for efficiency. 

 

5.2 Sample allocations 
 

For a given sample size n  or a precision level, values of the boundary points are affected by the sample 

allocation scheme (Lavallée and Hidiroglou, 1988; Hidiroglou and Srinath, 1993; Horgan, 2006). Common 

allocation schemes include but are not limited to the power allocations, such as the Y-proportional and N-

proportional power allocations (Lavallée and Hidiroglou, 1988; Hidiroglou and Kozak, 2018). A general 

expression of allocation schemes is described in equation (5.2) below, which is included in the R package 

stratification. For stratum ,l  the sample size is = .l ln na  Combinations of parameters 1 2,q q  and 3q  produce 

different sample allocations, where 1 20 2 1, 0 2 1q q     and 30 2 1.q   ,l lN Y  and lS  are the size, mean 

and standard deviation of stratum ,l  respectively. 

 
31 2

31 2

22 2

22 2

=1

= .
qq q

l l l
l L qq q

l l ll

N Y S
a

N Y S
 (5.2) 

For instance, using the Dalenius-Hodges method where equal sample size achieves the goal of 

approximating the Neyman allocation, setting 1 2 3= = = 0q q q  imples allocating an equal number of 

observations across the strata. For a power allocation where the power is 0.7, one specifies 1 2= =q q 0.35 

and 3 = 0.q  For a Y-proportional power allocation, the combination of parameters 1 3= = 0,q q  and 2 =q

0.35 yields a power of 0.7. 

To implement the aforementioned stratification methods under various sample allocation schemes, 

the R package stratification (see Baillargeon and Rivest, 2011) provides functions strata.cumrootf(), 

strata.LH() and strata.geo() to implement the Dalenius-Hodges, Lavallée-Hidiroglou, and Gunning-Horgan 

methods to produce cut points for a specified number of strata, respectively. The package also implements 

the alternatives studied by Rivest (2002) and Baillargeon and Rivest (2009). 

 

5.3 A simple new method using anticipated AN-model moments and equal 
sample sizes  

 

The well-known stratification method due to Dalenius and Hodges, under the model Y X,  chooses 

stratum cutpoints to achieve near-equality of the quantities .l YlN   In that case, using equal sample sizes 

corresponds to Neyman allocation. The relatively simple new method described in this section mimics this 

approach using the AN model at a particular value .EP  For a given value ,EP  the  ESS EP  algorithm 

determines cutpoints by nearly equalizing the quantities l YlN   determined by the AN-model moments (3.1). 
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Thus, for equal sample sizes and this value of ,EP  the  ESS EP  method provides Neyman allocation, 

maximizing precision for a given .n  

For example, when = 2,L  a specified cutpoint 1XC  determines 1N  and 2N  as well as 2
1 1 2, ,X X X    

and 2
2 .X  Specifying ,EP  we then use equation (3.1) to compute 2

1Y  and 2
2 .Y  The final cutpoint is found 

by iterating on 1XC  until 2
1 1 2 2( )Y YN N   is minimized. For general L, our algorithm (available from the 

second author) uses a nonlinear search through the R function optimize for univariate optimization when 

= 2,L  and constrOptim for higher-dimensional optimization when 3,L   to find cut points to minimize 

the corrected sum of squares for the quantities .l lYN   Exhaustive searches are available but computationally 

feasible only for 3.L   

The question remains: how does one choose ?EP  Fortunately, as will be seen in the next section, the 

operating characteristics of  ESS EP  seem rather robust to the choice. An idea worth exploring, suggested 

by the Associate Editor, is to initially choose EP  to maximize (3.1). We recommend exploring the properties 

of a grid of choices using Monte Carlo prior to making the final choice. 

 
6. Efficiency comparisons for the stratification methods 
 

Equations (1.1) and (1.2) can be written informally as  

 (overpayment recovery) = (point estimate) – (margin of error). (6.1) 

The precision of a sample is defined to be its margin of error expressed as a percentage of its point estimate, 

with precision being considered “high” if this percentage is small. Some would not define precision to 

include the t  critical point; the gist of what is said below (that the average percent of overpayment recovered 

is inversely related to average precision) still holds under different definitions of precision. Traditionally, 

analysts seek to create a sample design having high average precision. Averaging (6.1) over all possible 

samples, and using the fact that the point estimator is unbiased, we obtain  

 (Average overpayment recovery) = (true totol overpayment) – (average margin of error).  

Dividing both sides of the above by true total overpayment and multiplying by 100%, we obtain  

 (Average overpayment recovery percent) = 100% – (average precision),  

Therefore, seeking a design with high average precision is equivalent to seeking a design with high average 

overpayment recovery. For example, a sample design with 10% average precision has 90% average 

overpayment recovery. For any sample design, both quantities will vary dramatically depending on the error 

rate .EP  

We prefer quantifying the efficiency of a design in terms of the average overpayment recovery as 

opposed to average precision. This facilitates determination of the cost-effectiveness of certain design 

decisions, such as increasing sample size or paying an analyst to spend an extra hour searching for efficient 

stratification schemes. In this section, we compare the efficiency of the major stratification algorithms 

discussed in Section 5. 
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Of the 166 samples discussed in Section 2, a total of 156 payment populations, matched by number, were 

available for study. These populations are numerically summarized and graphically depicted at https://drive. 

google.com/drive/folders/1-7M-4R3KPcCgfPmPWOo24Qc5AOAdOfV7?usp=sharing. Of these, 104 payment 

populations were selected as candidates for stratification. For these 104 test populations, simple random samples 

(SRS) of size 30 achieved estimated confidence level above 89% across all 7 tested error rates EP  0.10, 

0.30, 0.50, 0.70, 0.9, 0.95, and 1.0 using 10,000 generated overpayment populations, each with its sample 

and extrapolation. It is assumed without loss of generality that, if a certainty (or “take-all”) stratum is to be 

used that these few largest payments have already been removed, to be examined in their entirety. 

Stratification strategies apply only to the remaining payments 

In our testing, designs with total sample sizes 30, 60, or 90 were considered, with L = 2, 3, or 4 strata, 

for a total of 104*9 = 936 test cases. The stratification methods due to Delanius-Hodges (DH), Lavallée-

Hidiroglou (LH), Gunning-Horgan (Geo) and the Log-Linear (LL) models were tested using the R package 

stratification to generate cutpoints. Three sample allocations were tested for the LH, Geo and LL methods: 

Y-proportional and N-proportional power allocations with power =p 0.7 as well as a power allocation 

where 1 2= =q q 0.35, 3 = 0q  are specified in equation (5.2). The stratum sample sizes were determined by 

the R functions that generated the cutpoints. For the other methods, stratum sample sizes were taken to be 

equal, except when = 4L  and = 30n  or 90, where slight inequalities occurred. 

To fully define an ESS stratification method, we must choose a value for .EP  Hopefully the choice will 

be viable and have good recovery properties regardless of the true value of ,EP  and that is what the 

simulation testing is meant to answer. In this study, the ESS cutpoint algorithm was tested at EP  0.2 

(ESS20), EP  0.5 (ESS50), EP  0.8 (ESS80). The LL models are also tested with survival probabilities 

0.2, 0.5 and 0.8. The Monte Carlo testing for all cases and methods with 10,000 iterations at each error rate 

required approximately 27 hours on Bentley University’s High Performance Computing cluster. The 

conservative Satterthwaite (1946) degrees of freedom were used for all methods. 

For each of the 936 test cases, a stratification method was considered viable if it achieved estimated 

confidence above 89% for all 7 tested error rates. Table 6.1 shows, for each of the nine sample size ‒ number 

of strata combinations, the number of test populations for which each method produced a viable stratification 

scheme. Only simulation results from the Y-proportional power allocation are reported as these allocation 

methods yielded better viability than the other two sample allocations. The table shows that stratification is 

more likely to be viable for small L  and large .n  The Geo method is viable more often than any other 

stratification method; unfortunately, it will also be seen that it is usually less efficient than a simple random 

sample of the same size. Of the other stratification methods, the LL20 method, the ESS20 and the ESS50 

methods were comparable in terms of viability and noticeably better in this respect than the other methods 

tested (see the last column of Table 6.1). Notably, these three methods were viable almost twice as often as 

the Dalenius-Hodges method, and almost three times as often as the Lavallée-Hidiroglou method. 

Unfortunately, in no case did any algorithm (except Geo) achieve viability for more than about half of the 

test populations. 

In order to measure the efficiency of (for example) the Dalenius-Hodges method relative to simple 

random sampling, for each sample size, L-value, and population for which the DH method was viable, the 
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difference in average overpayment recovery in the order DH-SRS was computed for each error rate. 

Analogous differences were computed for the other stratification methods. Figure 6.1 shows boxplots of 

these differences. It is evident from this graphic that the Geo method improved on SRS for less than half of 

the cases for which it was viable. Additionally, when the DH, LH, LL and ESS methods were viable, they 

improved the overpayment recovery compared to SRS by a median amount of 4-6%. In more than a few 

cases they improved the recovery dramatically, by 10-22%. However, the recovery using DH can sometimes 

be worse than SRS by more than 9%. In contrast, SRS was never better than any LL method by more than 

1.5%, and never better than any ESS method by more than 3%. Both the LL and ESS methods can improve 

on SRS by up to 22%. 

 
Table 6.1 

Method viability: number of test populations for which a stratification method (see text) achieved estimated 

confidence at least 89% over all tested error rates, versus number of strata L  and total sample size n  under Y-

proportional power allocation with power value 0.7. 
 

Methods L = 2 L = 3 L = 4 Total viability frequency 
 n = 30 n = 60 n = 90 n = 30 n = 60 n = 90 n = 30 n = 60 n = 90  

DH 22 30 37 5 8 10 1 3 4 120 
LH 19 22 25 4 5 5 0 0 0 80 
Geo 90 91 83 52 62 61 5 15 23 482 

LL20 31 43 57 19 19 26 9 12 15 231 
LL50 28 42 47 14 18 20 5 11 10 195 
LL80 21 28 36 7 9 14 2 4 5 126 
ESS20 33 41 51 17 22 27 10 13 13 227 
ESS50 33 44 45 18 23 24 8 8 12 215 
ESS80 30 33 44 11 13 17 5 5 6 164 
SRS 104 104 104 104 104 104 104 104 104 936 

Notes: DH = Dalenius-Hodges; ESS = Equal sample sizes; Geo = Gunning-Horgan; LH = Lavallée-Hidiroglou; LL = Log-linear; 
SRS = Simple random samples. 

 
Figure 6.1 Improvement in overpayment recovery versus a simple random sample of the same size for each 

viable method (see text for details). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: DH = Dalenius-Hodges; ESS = Equal sample sizes; Geo = Gunning-Horgan; LH = Lavallée-Hidiroglou; LL = Log-linear. 
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The top three algorithms were further compared via calculating differences in the order ESS50-ESS20, 

ESS50-LL20, and ESS20-LL20 whenever the differenced algorithms were both viable, for all error rates 

and test cases. These differences are displayed in Figure 6.2. The figure shows that the ESS50 and ESS20 

methods had similar efficiency, suggesting that choice of EP  in this range is not of critical importance for 

efficiency. Overall, the ESS methods and LL20 yielded similar expected overpayment recovery. On 

average, the ESS methods produced slightly higher medians than those of the LL20. However, the LL20 

method had slightly higher mean expected overpayment recovery. In some cases, the ESS methods 

outperformed the LL20 method by over 4% while in other cases they were worse-off than the LL20 method 

by a little bit over 6%. 

 
Figure 6.2 Relative efficiency of the ESS50, ESS20 and LL20 methods (see text for details). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: ESS = Equal sample sizes; LL = Log-linear. 

 
7. Discussion and conclusion 
 

This paper’s major accomplishment is its unprecedented sharing of raw data from Medicare investi-

gations. Despite this, these 166 shared samples cannot be considered representative of all such investi-

gations. In particular these samples are taken from the first level of appeal; error rates tend to decrease at 

higher levels of appeal as providers challenge the overpayment determinations. The samples displayed here 

are also primarily from home health or hospice providers, a major shortcoming. 

We see no reason why similar sharing of thoroughly redacted sample and payment population data could 

not be done by all MACs and at higher levels of appeal. If this was done, say, on a triannual basis, the 

anonymity of the individual providers and UPICs would be protected. More data sharing would allow for 

further refinement of models for the overpayment ‒ payment relationship. It would also be very useful to 

know if negative overpayments are as rare and negligible at other levels of appeal, and for other provider 

lines of business, as they were for our samples. 
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Our data showed 24 “complete error” samples, i.e., samples where every overpayment equaled its 

payment. Use of the bounds (1.1) or (1.2) based on the finite population Central Limit Theorem can be 

problematic in these cases: at very high error rates, it is not unusual for these lower confidence bounds for 

total overpayment to exceed the total payment amount, which renders the bound indefensible. The bounds 

(1.1) and (1.2) can also fail to provide confidence level at least 90% at high error rates for payment 

populations similar to populations B and C in Figure 3.1. Alternative extrapolation methods based on the 

hypergeometric probability distribution (Edwards et al., 2003; Gilliland and Feng, 2010; Edwards et al., 

2015) have been developed for situations where the bounds (1.1) and (1.2) tend to fail. These alternative 

methods always provide lower 90% confidence bounds less than the total payment amount. They are 

mathematically conservative ‒ guaranteed to provide confidence level at least 90% ‒ as long as negative 

overpayments do not occur with any great frequency or severity. More sharing of data is needed to shed 

light on the safety of this assumption. 

With Medicare data, the frequency for which extrapolations using (1.1) and (1.2) are not viable is 

disappointing, to say the least. Alternative approaches using empirical likelihood confidence bounds (Chen, 

Chen and Rao, 2003; Rao and Wu, 2009) hold great promise. Unfortunately, simulation studies on empirical 

likelihood methods to date have not included error rates greater than 40%, which are the norm for Medicare 

samples. A comprehensive study of empirical likelihood approaches using Medicare data is beyond the 

scope of this paper but is the focus for an ongoing project by the authors. 

This paper proposes a new stratification method as a special case of the anticipated moment method 

based on the All-or-Nothing model. The efficiency study provided here found this new ESS method to be 

competitive with the best of the many existing methods tested from the R package stratification. 

Specifically, the Log-Linear model with survival probability of 0.2 (LL20) under the Y-proportional power 

allocation ( p  0.7) showed a slight advantage in viability over the best ESS methods. Finding this 

particular choice of operating parameters in the wide range available in stratification required the advice of 

an expert and hours of testing, however. In contrast, the near-equivalent ESS choices ( EP  0.2 or 0.5) were 

among the first methods we tested. However, no one method dominated all other methods in all situations. 

And, for every choice of n  and ,L  there were many test populations for which no stratification algorithm 

was viable. 

As is often the case, these results lead to new questions. Are there aspects of the payment population that 

can provide clues as to when stratification will lead to improved efficiency? Are there aspects of the payment 

population that can provide clues as to which method is the best choice? The authors will be pursuing these 

and other questions and invite collaboration from others. 

 
Acknowledgements 
 

The authors thank the CMS for permission to use and display the data from these samples and 

populations, and thank the associate editor and reviewers for their hard work and helpful suggestions. 



Survey Methodology, December 2023 623 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Piaomu Liu thanks Bentley University for providing High Performance Computing capabilities to perform 

efficiency studies in the research. 

 
References 

 

Anscombe, F.J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17-21. 

 

Baillargeon, S., and Rivest, L.-P. (2009). A general algorithm for univariate stratification. International 

Statistical Review, 77(3), 331-344. 

 

Baillargeon, S., and Rivest, L.-P. (2011). The construction of stratified designs in R with the package 

stratification. Survey Methodology, 37, 1, 53-65. Paper available at https://www150.statcan.gc.ca/n1/en/ 

pub/12-001-x/2011001/article/11447-eng.pdf. 

 

Chen, J., Chen, S.-Y. and Rao, J. (2003). Empirical likelihood confidence intervals for the mean of a 

population containing many zero values. Canadian Journal of Statistics, 31(1), 53-68. 

 

Clemente, S., McGrady, R., Repass, R., Paul III, D.P. and Coustasse, A. (2018). Medicare and the affordable 

care act: Fraud control efforts and results. International Journal of Healthcare Management, 11(4), 356-

362. 

 

Cochran, W.G. (1961). Comparison of methods for determining stratum boundaries. Bulletin of the 

International Statistical Institute, 35, 345-358. 

 

Cochran, W.G. (1977). Sampling Techniques. New York: John Wiley & Sons, Inc. 

 

Dalenius, T., and Gurney, M. (1951). The problem of optimum stratification. ii. Scandinavian Actuarial 

Journal, 1951(1-2), 133-148. 

 

Dalenius, T., and Hodges Jr., J.L. (1959). Minimum variance stratification. Journal of the American 

Statistical Association, 54(285), 88-101. 

 

Dayal, S. (1985). Allocation of sample using values of auxiliary characteristic. Journal of Statistical 

Planning and Inference, 11(3), 321-328. 

 

Edwards, D., Gilliland, D., Ward-Besser, G. and Lasecki, J. (2015). Conservative penny sampling. Journal 

of Survey Statistics and Methodology, 3(4), 504-523. 
 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2011001/article/11447-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2011001/article/11447-eng.pdf


624 Edwards, Liu and Delage: Model-based stratification of payment populations in Medicare integrity investigations 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Edwards, D., Ward-Besser, G., Lasecki, J., Parker, B., Wieduwilt, K., Wu, F. and Moorhead, P. (2003). The 

minimum sum method: A distribution-free sampling procedure for medicare fraud investigations. Health 

Services and Outcomes Research Methodology, 4(4), 241-263. 

 

Ekman, G. (1959). An approximation useful in univariate stratification. The Annals of Mathematical 

Statistics, 30(1), 219-229. 

 

Gilliland, D., and Feng, W. (2010). An adaptation of the minimum sum method. Health Services and 

Outcomes Research Methodology, 10(3), 154-164. 

 

Gunning, P., and Horgan, J.M. (2004). A new algorithm for the construction of stratum boundaries in 

skewed populations. Survey Methodology, 30, 2, 159-166. Paper available at https://www150.statcan. 

gc.ca/n1/en/pub/12-001-x/2004002/article/7749-eng.pdf. 

 

Gunning, P., Horgan, J.M. and Yancey, W. (2004). Geometric stratification of accounting data. Contaduría 

y Administración, (214), 0. 

 

Hájek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite 

population. The Annals of Mathematical Statistics, 1491-1523. 

 

Hedlin, D. (2000). A procedure for stratification by an extended ekman rule. Journal of Official Statistics, 

16(1), 15. 

 

Hidiroglou, M.A. (1994). Sampling and estimation for establishment surveys: Stumbling blocks and 

progress. Proceedings of the Survey Research Methods Section, American Statistical Association, 693-

698. 

 

Hidiroglou, M.A., and Kozak, M. (2018). Stratification of skewed populations: A comparison of 

optimisation-based versus approximate methods. International Statistical Review, 86(1), 87-105. 

 

Hidiroglou, M.A., and Srinath, K. (1993). Problems associated with designing subannual business surveys. 

Journal of Business & Economic Statistics, 11(4), 397-405. 

 

Horgan, J.M. (2006). Stratification of skewed populations: A review. International Statistical Review, 74(1), 

67-76. 

 

Huffman, M. (2021). Value-based care: An executive briefing. Nurse Leader, 19(1), 82-86. 

 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2004002/article/7749-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2004002/article/7749-eng.pdf


Survey Methodology, December 2023 625 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Jurina, I., and Gligorova, L. (2017). Determination of the optimal stratum boundaries in the monthly retail 

trade survey in the croatian bureau of statistics. Romanian Statistical Review, (4). 

 

King, B. (1996). Sampling design issues when dealing with zeros. Proceedings of the Survey Research 

Methods Section, 400-405. 

 

King, B., and Madansky, A. (2013). On sampling design issues when dealing with zeros. Journal of Survey 

Statistics and Methodology, 1(2), 144-170. 

 

Kozak, M. (2004). Optimal stratification using random search method in agricultural surveys. Statistics in 

Transition, 6(5), 797-806. 

 

Kozak, M., and Verma, M.R. (2006). Geometric versus optimization approach to stratification: A 

comparison of efficiency. Survey Methodology, 32, 2, 157-163. Paper available at https://www150. 

statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9550-eng.pdf. 

 

Lavallée, P., and Hidiroglou, M.A. (1988). On the stratification of skewed populations. Survey 

Methodology, 14, 1, 33-43. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-

x/1988001/article/14602-eng.pdf. 

 

Li, X., and Ding, P. (2017). General forms of finite population central limit theorems with applications to 

causal inference. Journal of the American Statistical Association, 112(520), 1759-1769. 

 

Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified 

sampling and the method of purposive selection. Journal of the Royal Statistical Society, 97(4), 558-625. 

 

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL http: //www.R-project.org/. 

 

Rao, J., and Wu, C. (2009). Empirical likelihood methods. Elsevier, Handbook of Statistics, 29, 189-207. 

 

Reddy, K.G., and Khan, M.G. (2019). Optimal stratification in stratified designs using weibull-distributed 

auxiliary information. Communications in Statistics-Theory and Methods, 48(12), 3136-3152. 

 

Rivest, L. (1999). Stratum jumpers: Can we avoid them. Proceedings of the Survey Research Methods 

Section, American Statistical Association, 64-72. 

 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9550-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9550-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1988001/article/14602-eng.pdf


626 Edwards, Liu and Delage: Model-based stratification of payment populations in Medicare integrity investigations 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Rivest, L.-P. (2002). A generalization of the Lavallée and Hidiroglou algorithm for stratification in business 

surveys. Survey Methodology, 28, 2, 191-198. Paper available at https://www150.statcan.gc.ca/n1/en/ 

pub/12-001-x/2002002/article/6432-eng.pdf. 

 

Salmond, S.W., and Echevarria, M. (2017). Healthcare transformation and changing roles for nursing. 

Orthopedic Nursing, 36(1), 12. 

 

Satterthwaite, F.E. (1946). An approximate distribution of estimates of variance components. Biometrics 

Bulletin, 2(6), 110-114. 

 

Serfling, R. (1968). Approximately optimal stratification. Journal of the American Statistical Association, 

63(324), 1298-1309. 

 

Sethi, V. (1963). A note on optimum stratification of populations for estimating the population means. 

Australian Journal of Statistics, 5(1), 20-33. 

 

Sigman, R.S., and Monsour, N.J. (1995). Selecting samples from list frames of businesses. Business Survey 

Methods, 133-152. 

 

Singh, R. (1971). Approximately optimum stratification on the auxiliary variable. Journal of the American 

Statistical Association, 66(336), 829-833. 

 

Sweet, E.M., and Sigman, R.S. (1995). Evaluation of model-assisted procedures for stratifying skewed 

populations using auxiliary data. Proceedings of the Section on Survey Research Methods, 1, 491-496. 

 

Tschuprow, A.A. (1923). On the mathematical expectation of the moments of frequency distributions in the 

case of correlated observations. Metron, 2(461-493), 646-683. 

 

Wang, M., and Aggarwal, V. (1984). Stratification under a particular pareto distribution. Communications 

in Statistics-Theory and Methods, 13(6), 711-735. 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2002002/article/6432-eng.pdf
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2002002/article/6432-eng.pdf


 627 

 

Statistics Canada, Catalogue No. 12-001-X 

ACKNOWLEDGEMENTS 
 

 
Survey Methodology wishes to thank the following people who have provided help or served as referees 

for one or more papers during 2023. 
 

 
 B. Baffour, Australian National University 
 C. Bayart, University Claude Bernard Lyon 1 
 Béliveau, University of Waterloo 
 Bell, U.S. Census Bureau 
 E. Berg, Iowa State University 
 K. Blocksom, US EPA 
 Bocci, Statistics Canada 
 H.-J. Boonstra, Statistics Netherlands Heerlen 
 Boulet, Statistics Canada 
 J. Breidt, NORC at the University of Chicago 
 J.M. Brick, Westat Inc. 
 J. Brown, University of Technology Sydney 
 P.J. Cantwell, U.S. Census Bureau 
 G. Chauvet, École nationale de la statistique et de l’analyse de 

l’information 
 S. Chen, University of Oklahoma Health Sciences Center 
 Y. Cheng, USDA National Agricultural Statistics Service 
 J. Chipperfield, Australian Bureau of Statistics 
 M. Cohen, American Institutes for Research 
 M. Dagdoug, Laboratoire de Mathématiques de Besançon 
 G. Datta, University of Georgia 
 N. Dean, Emory University 
 M. DeBell, Stanford University 
 M. del Mar Rueda, University of Granada 
 P. Duchesne, Université de Montréal 
 J.L. Eltinge, US Census Bureau 
 N. English, National Opinion Research Center 
 Erciulescu, Westat Inc. 
 Franco, NORC at the University of Chicago 
 W.A. Fuller, Iowa State University 
 M. Ghosh, University of Florida 
 Girard, Statistics Canada 
 K.C.M. Gonçalves, Universidade Federal do Rio de Janeiro 
 Han, Westat Inc. 
 Haziza, University of Ottawa 
 M.A. Hidiroglou, Statistics Canada 
 P. Hoff, Duke University 
 Judkins, ABT Associates Inc Bethesda 
 J.K. Kim, Iowa State University 
 H. Kitada Smalley, Willamette University 
 S. Kolenikov, NORC at the University of Chicago 
 P.S. Kott, RTI International 
 P. Lahiri, University of Maryland 
 D. Lee, The University of Alabama 

 S. Lee, University of Michigan 
 É. Lesage, L’Institut national de la statistique et des études 

économiques 
 T. Lewis, George Mason University 
 P. Lugtig, Utrecht University 
 J.M. Marin, University Carlos III of Madrid 
 Matei, Université de Neuchâtel 
 K. McConville, Reed College 
 T. McElroy, US Census Bureau 
 T. Merly-Alpa, INED 
 Molina, Universidad Complutense de Madrid 
 J. Moore, University of Essex 
 R. Münnich, University of Trier 
 Nandram, Worcester Polytechnic Institute 
 Nettel Aguirre, University of Wollongong 
 J. Opsomer, Westat Inc. 
 Pfeffermann, University of Southampton 
 J.N.K. Rao, Carleton University 
 R. Rapley, Defence Science and Technology Laboratory 
 L.-P. Rivest, Université Laval 
 Ruiz-Gazen, Toulouse 1 University Capitole 
 T. Saegusa, University of Maryland at College Park 
 F.J. Scheuren, National Opinion Research Center 
 Schouten, Statistics Netherlands 
 N. Shlomo, The University of Manchester 
 P.L.d.N. Silva, Escola Nacional de Ciências Estatísticas 
 P. Smith, University of Southampton 
 Steel, University of Wollongong 
 Struminskaya, Utrecht University 
 Y. Tillé, University of Neuchatel Faculty of Sciences 
 R. Tiller, US Bureau of Labor Statistics 
 M. Torabi, University of Manitoba 
 Toth, U.S. Bureau of Labor Statistics 
 J. van den Brakel, Statistics Netherlands 
 J. Wagner, University of Michigan 
 J. Wakefield, University of Washington 
 L. Wang, National Cancer Institute 
 Z. Wang, Xiamen University 
 B. West, University of Michigan 
 Wu, University of Waterloo 
 W. Yung, Statistics Canada 
 L.-C. Zhang, University of Southampton 
 Y. Zhao, Georgia State University 

 

 
 
 
Acknowledgements are also due to those who assisted during the production of the 2023 issues: 
Céline Ethier of Economic Statistics Methods Division; Patrick O’Leary of Social Statistics Methods 
Division; the team from Dissemination Division, in particular: Chantal Chalifoux, Kathy Charbonneau, 
Sophie Pilon, Travis Robinson, Niruja Sivalingam and Karo-Lynn Audy as well as our partners in the 
Communications Division. 



 
 
 
 
 
 
 
 
 



 629 

 

Statistics Canada, Catalogue No. 12-001-X 

ANNOUNCEMENTS 
 

 

Nominations Sought for the 2025 Waksberg Award  
The journal Survey Methodology has established an annual invited paper series in honor of the late 

Joseph Waksberg to recognize his outstanding contributions to survey statistics and methodology. Each year a 
prominent survey statistician is chosen to write a paper that reviews the development and current state of an 
important topic in the field of survey statistics and methodology. The paper reflects the mixture of theory and 
practice that characterized Joseph Waksberg’s work. 
 

The recipient of the Waksberg Award will receive an honorarium and give the 2025 Waksberg Invited 
Address at the Statistics Canada Symposium, expected to be held in the autumn of 2025. The paper will be 
published in an upcoming issue of Survey Methodology (targeted for December 2025). 
 

The author of the 2025 Waksberg paper will be selected by a four-person committee appointed by Survey 
Methodology and the American Statistical Association. Nomination of individuals to be considered should 
be sent by email before February 15, 2024 to the chair of the committee, Denise Silva 
(denisebritz@gmail.com). Nominations should include a CV and a nomination letter. Nominations will 
remain active for 5 years. 
 
 

Members of the Waksberg Paper Selection Committee (2023-2024)  
Denise Silva, Brazilian Institute of Geography and Statistics (Chair) 
Jae-Kwang Kim, Iowa State University 
Paul Smith, University of Southampton 
Kristen Olson, University of Nebraska-Lincoln 

 
Past Chairs: 
 
Graham Kalton (1999-2001) 
Chris Skinner (2001-2002) 
David A. Binder (2002-2003) 
J. Michael Brick (2003-2004) 
David R. Bellhouse (2004-2005) 
Gordon Brackstone (2005-2006) 
Sharon Lohr (2006-2007) 
Robert Groves (2007-2008) 
Leyla Mojadjer (2008-2009) 
Daniel Kasprzyk (2009-2010) 
Elizabeth A. Martin (2010-2011) 
Mary E. Thompson (2011-2012) 
Steve Heeringa (2012-2013) 
Cynthia Clark (2013-2014) 
Louis-Paul Rivest (2014-2015) 
Tommy Wright (2015-2016) 
Kirk Wolter (2016-2017) 
Danny Pfeffermann (2017-2018) 
Michael A. Hidiroglou (2018-2019) 
Robert E. Fay (2019-2020) 
Jean Opsomer (2020-2021) 
Jack Gambino (2021-2022) 
Maria Giovanna Ranalli (2022-2023) 

mailto:denisebritz@gmail.com


 
 
 
 
 
 
 
 
 



 631 

 

JOURNAL OF OFFICIAL STATISTICS 
 

An International Review Published by Statistics Sweden 
 
JOS is a scholarly quarterly that specializes in statistical methodology and applications. Survey methodology and other 
issues pertinent to the production of statistics at national offices and other statistical organizations are emphasized. All 
manuscripts are rigorously reviewed by independent referees and members of the Editorial Board. 
 

Contents 
Volume 39, No. 2, June 2023 

 
 
Effects of Changing Modes on Item Nonresponse in Panel Surveys 
 Oliver Lipps, Marieke Voorpostel and Gian-Andrea Monsch .......................................................................................................... 139 
 
Adjusting for Selection Bias in Nonprobability Samples by Empirical Likelihood Approach 
 Daniela Marella ..................................................................................................................................................................................... 151 
 
Design and Sample Size Determination for Experiments on Nonresponse Followup using a Sequential Regression Model 
 Andrew M. Raim, Thomas Mathew, Kimberly F. Sellers, Renee Ellis and Mikelyn Meyers ........................................................ 173 

 
Estimating Intra-Regional Inequality with an Application to German Spatial Planning Regions 
 Marina Runge ........................................................................................................................................................................................ 203 
 
Constructing Building Price Index Using Administrative Data 
 Masahiro Higo, Yumi Saita, Chihiro Shimizu and Yuta Tachi ......................................................................................................... 229 

 
From Quarterly to Monthly Turnover Figures Using Nowcasting Methods 
 Daan Zult, Sabine Krieg, Bernd Schouten, Pim Ouwehand and Jan van den Brakel ...................................................................... 253 
 
 

All inquires about submissions and subscriptions should be directed to jos@scb.se 

mailto:jos@scb.se


632  

 

JOURNAL OF OFFICIAL STATISTICS 
 

An International Review Published by Statistics Sweden 
 
JOS is a scholarly quarterly that specializes in statistical methodology and applications. Survey methodology and other 
issues pertinent to the production of statistics at national offices and other statistical organizations are emphasized. All 
manuscripts are rigorously reviewed by independent referees and members of the Editorial Board. 
 

Contents 
Volume 39, No. 3, September 2023 

 
Letter to Editor Quality of 2017 Population Census of Pakistan by Age and Sex 
 Asif Wazir and Anne Goujon .............................................................................................................................................................. 275 
 
Looking for a New Approach to Measuring the Spatial Concentration of the Human Population 
 Federico Benassi, Massimo Mucciardi and Giovanni Pirrotta .......................................................................................................... 285 
 
Predicting Days to Respondent Contact in Cross-Sectional Surveys Using a Bayesian Approach 
 Stephanie Coffey and Michael R. Elliott ............................................................................................................................................. 325 
 
Towards Demand-Driven On-The-Fly Statistics 
 Tjalling Gelsema and Guido van den Heuvel ..................................................................................................................................... 351 
 
Database Reconstruction Is Not So Easy and Is Different from Reidentification 
 Krishnamurty Muralidhar and Josep Domingo-Ferrer ....................................................................................................................... 381 
 
Comment to Muralidhar and Domingo-Ferrer (2023) – Legacy Statistical Disclosure Limitation Techniques Were Not An  
Option for the 2020 US Census of Population And Housing 
 Simson Garfinkel .................................................................................................................................................................................. 399 
 
A Rejoinder to Garfinkel (2023) – Legacy Statistical Disclosure Limitation Techniques for Protecting 2020 Decennial US Census:  
Still a Viable Option 
 Krishnamurty Muralidhar and Josep Domingo-Ferrer ....................................................................................................................... 411 
 
A Note on the Optimum Allocation of Resources to Follow up Unit Nonrespondents in Probability Surveys 
 Siu-Ming Tam, Anders Holmberg and Summer Wang ..................................................................................................................... 421 

 
 

All inquires about submissions and subscriptions should be directed to jos@scb.se 

mailto:jos@scb.se


 633 

 

The Canadian Journal of Statistics La revue canadienne de statistique  
  
CONTENTS TABLE DES MATIÈRES 
 

 

Volume 51, No. 1, March/mars 2023 
 
Issue Information .............................................................................................................................................................................. 1 
 
 

Research Articles 
 
A new test for high-dimensional regression coefficients in partially linear models 
 Fanrong Zhao, Nan Lin and Baoxue Zhang ......................................................................................................................... 5 
 
Economic variable selection 
 Koji Miyawaki and Steven N. MacEachern ....................................................................................................................... 19 
 
Doubly robust weighted composite quantile regression based on SCAD-L2 
 Zhimiao Cao, Xiaoning Kang and Mingqiu Wang ............................................................................................................. 38 
 
Nonparametric confidence regions via the analytic wild bootstrap 
 Katherine L. Burak and Adam B. Kashlak ......................................................................................................................... 77 
 
Graphon estimation via nearest-neighbour algorithm and two-dimensional fused-lasso denoising 
 Oscar Hernan Madrid Padilla and Yanzhen Chen .............................................................................................................. 95 
 
Multivariate online regression analysis with heterogeneous streaming data 
 Lan Luo and Peter X.-K. Song ......................................................................................................................................... 111 
 
Bayesian clustering for continuous-time hidden Markov models 
 Yu Luo, David A. Stephens and David L. Buckeridge..................................................................................................... 134 
 
Zero-inflated Poisson model with clustered regression coefficients: Application to heterogeneity learning of field  
goal attempts of professional basketball players 
 Guanyu Hu, Hou-Cheng Yang, Yishu Xue and Dipak K. Dey ........................................................................................ 157 
 
A model-averaging treatment of multiple instruments in Poisson models with errors 
 Xiaomeng Zhang, Xinyu Zhang and Yanyuan Ma ........................................................................................................... 173 
 
Penalized likelihood ratio test for a biomarker threshold effect in clinical trials based on generalized linear models 
 Parisa Gavanji, Wenyu Jiang and Bingshu E. Chen ......................................................................................................... 199 
 
Regression analysis of multivariate current status data under a varying coefficients additive hazards frailty model 
 Yanqin Feng, K.D. Prasangika and Guoxin Zuo .............................................................................................................. 216 
 
Estimation of conditional cumulative incidence functions under generalized semiparametric regression models with  
missing covariates, with application to analysis of biomarker correlates in vaccine trials 
 Yanqing Sun, Fei Heng, Unkyung Lee and Peter B. Gilbert ............................................................................................ 235 
 
Minimax A-, c-, and I-optimal regression designs for models with heteroscedastic errors 
 Hanan Abousaleh and Julie Zhou ..................................................................................................................................... 258 
 
Better experimental design by hybridizing binary matching with imbalance optimization 
 Abba M. Krieger, David A. Azriel and Adam Kapelnerr ................................................................................................. 275 
 
Two-dimensional projection uniformity for space-filling designs 
 Sixu Liu, Yaping Wang and Fasheng Sun ........................................................................................................................ 293 
 
Statistical data integration using multilevel models to predict employee compensation 
 Andreea L. Erciulescu, Jean D. Opsomer and Benjamin J. Schneider ............................................................................. 312 
 
On asymptotic approximation of ratio models for weakly dependent sequences 
 Yi Wu, Wei Yu, Wenzhi Yang, Saisai Ding and Xuejun Wang ...................................................................................... 327 
 
 

Acknowledgement 
 
Acknowledgement of Referees’ Services/Remerciements aux membres des jurys ....................................................................... 344 

  



634 

 

The Canadian Journal of Statistics La revue canadienne de statistique  
  
CONTENTS TABLE DES MATIÈRES 
 

 

Volume 51, No. 2, June/juin 2023 
 
Issue Information .......................................................................................................................................................................... 351 
 
 

Research Article 
 
Integrating information from existing risk prediction models with no model details 
 Peisong Han, Jeremy M.G. Taylor and Bhramar Mukherjee ........................................................................................... 355 
 
Distributed estimation with empirical likelihood 
 Qianqian Liu and Zhouping Li ......................................................................................................................................... 375 
 
Divide and conquer for accelerated failure time model with massive time-to-event data 
 Wen Su, Guosheng Yin, Jing Zhang and Xingqiu Zhao .................................................................................................. 400 
 
Optimal subsampling for large-sample quantile regression with massive data 
 Li Shao, Shanshan Song and Yong Zhou ......................................................................................................................... 420 
 
Causal inference for multiple treatments using fractional factorial designs 
 Nicole E. Pashley and Marie-Abèle C. Bind .................................................................................................................... 444 
 
Dynamic treatment regimes with interference 
 Cong Jiang, Michael P. Wallace and Mary E. Thompson ................................................................................................ 469 
 
Reducing bias due to misclassified exposures using instrumental variables 
 Christopher Manuel, Samiran Sinha and Suojin Wang .................................................................................................... 503 
 
Nonparametric tests for treatment effect heterogeneity in observational studies 
 Maozhu Dai, Weining Shen and Hal S. Stern .................................................................................................................. 531 
 
Subgroup analysis for functional partial linear regression model 
 Haiqiang Ma, Chao Liu, Sheng Xu and Jin Yang ............................................................................................................ 559 
 
Classified generalized linear mixed model prediction incorporating pseudo-prior information 
 Haiqiang Ma and Jiming Jiang ......................................................................................................................................... 580 
 
Efficient multiple change point detection for high-dimensional generalized linear models 
 Xianru Wang, Bin Liu, Xinsheng Zhang, Yufeng Liu, for the Alzheimer’s Disease Neuroimaging Initiative ................ 596 
 
Missing data analysis with sufficient dimension reduction 
 Siming Zheng, Alan T.K. Wan and Yong Zhou ............................................................................................................... 630 
 
Weighted lens depth: Some applications to supervised classification 
 Alejandro Cholaquidis, Ricardo Fraiman, Fabrice Gamboa and Leonardo Moreno ........................................................ 652 
 
The EAS approach for graphical selection consistency in vector autoregression models 
 Jonathan P. Williams, Yuying Xie and Jan Hannig.......................................................................................................... 674 
 
Composite bias-reduced Lp-quantile-based estimators of extreme quantiles and expectiles 
 Gilles Stupfler and Antoine Usseglio-Carleve ................................................................................................................. 704 



GUIDELINES FOR MANUSCRIPTS 

 
Authors are invited to submit their articles through the Survey Methodology hub on the ScholarOne Manuscripts website 

(https://mc04.manuscriptcentral.com/surveymeth). Before submitting the article, please examine a recent issue of Survey 

Methodology as a guide and note particularly the points below. Articles must be submitted in Word or Latex, preferably in Word 

with MathType for the mathematical expressions. A pdf version is also required for formulas and figures. 
 
1. Layout 
 

1.1 Documents should be typed entirely double spaced with margins of at least 1½ inches on all sides. 

1.2 The documents should be divided into numbered sections with suitable verbal titles. 

1.3 The name (fully spelled out) and address of each author should be given as a footnote on the first page of the manuscript. 

1.4 Acknowledgements should appear at the end of the text. 

1.5 Any appendix should be placed after the acknowledgements but before the list of references. 
 
2. Abstract and Introduction 
 

2.1 The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words. Avoid 

mathematical expressions in the abstract. 

2.2 The last paragraph of the introduction should contain a brief description of each section. 
 
3. Style 
 

3.1 Avoid footnotes and abbreviations. 

3.2 Limit the use of acronyms. If an acronym is used, it must be defined the first time it occurs in the paper. 

3.3 Mathematical symbols will be italicized unless specified otherwise except for functional symbols such as “exp(·)” and 

“log(·)”, etc. 

3.4 Short formulae should be left in the text but everything in the text should fit in single spacing. Long and important equations 

should be separated from the text and numbered with arabic numerals on the right if they are to be referred to later. Use a 

two-level numbering system based on the section of the paper. For example, equation (4.2) is the second important equation 

in Section 4. 

3.5 Bold fonts should normally be used to distinguish vectors and matrices from scalars. 
 
4. Figures and Tables 
 

4.1 All figures and tables should be numbered with arabic numerals, with titles that are as self explanatory as possible, at the top 

of tables or figures. Use a two-level numbering system based on the section of the paper. For example, Table 3.1 is the first 

table in Section 3. 

4.2 A detailed textual description of figures may be required for accessibility purposes if the message conveyed by the image is 

not sufficiently explained in the text. 
 
5. References 
 

5.1 References in the text should be cited with authors’ names and the date of publication. If part of a reference is cited, indicate 

after the reference, e.g., Cochran (1977, page 164). 

5.2 The first time a reference is cited in the text, the name of all authors must be written. For subsequent occurrences, the names 

of all authors can again be written. However, if the reference contains three or more authors, the names of the second and 

subsequent authors can be replaced with “et al.”. 

5.3 The list of references at the end of the manuscript should be arranged alphabetically and for the same author 

chronologically. Distinguish publications of the same author in the same year by attaching a, b, c to the year of publication. 

Journal titles should not be abbreviated. Follow the same format used in recent issues. 
 
6. Short Notes 
 

6.1 Documents submitted for the short notes section must have a maximum of 3,000 words, including tables, figures and 
references. 

https://mc04.manuscriptcentral.com/surveymeth

	12-001-x2023002-eng
	Page 1
	Page 2
	Insert from: "2023002-49-2_Waskberg-Series-eng.pdf"
	Waksberg Invited Paper Series
	2023 Waksberg Invited Paper


	Insert from: "2023002-00018-49-2_Chambers(Waksberg)-eng.pdf"
	The missing information principle ‒ A paradigm for analysis of messy sample survey data
	Abstract
	1. Introduction
	1.1 Descriptive and analytical inference with multiple data sources
	1.2 Weighting and complex sample designs
	1.3 Analysis of complex survey data
	1.4 Multiple surveys and auxiliary data
	1.5 Summary of the paper

	2. The missing information principle and its use
	2.1 Messy data structures
	2.2 Using the Missing Information Principle to combine data sources

	3. Combining survey data and marginal population information – Comparing the MIP with calibrated weighting
	3.1 Calibration weighting in surveys
	3.2 Application to data from two sources
	3.3 Imprecise benchmarks
	3.4 Comparing the efficiency of MIP with that of calibration for data integration

	Table 3.1
	Table 3.2
	3.5 Another example of the use of the MIP for analysis based on integrated data sources

	4. Using the MIP under informative sampling
	4.1 What do we mean by saying that a method of sampling is informative?
	4.2 Applying the MIP to size-biased and cut-off sampling
	4.3 Maximum pseudo-likelihood under size-biased and cut-off sampling
	4.4 Maximum sample likelihood under size-biased and cut-off sampling
	4.5 Comparison of MIPmle, MPLE and MSLE

	Table 4.1
	Table 4.2
	Table 4.3
	Table 4.4
	4.6 Other examples of the use of the MIP under informative sampling

	Table 4.5
	5. Modelling using non-deterministically linked data
	5.1 Using the MIP when there is data linkage error
	5.2 Application to small area estimation using non-deterministically linked data

	Table 5.1
	Figure 5.1 Boxplots showing the distributions of parameter estimate values in the simulations of the ELE linkage error scenario.
	Figure 5.2 Boxplots showing the distributions of area specific mean squared error (Area-MSE) and mean absolute error (Area-MAE) for the 40 areas in the ELE linkage error simulations.
	6. Discussion
	References


	Insert from: "2023002-00017-49-2_Ardilly-Haziza-Lavallee-Tille-eng.pdf"
	Jean-Claude Deville’s contributions to survey theory and official statistics
	Abstract
	1. Introduction
	2. Unequal and balanced probability sampling
	2.1 Innovations in sampling algorithms

	Figure 2.1 Simplex bringing together samples of size  in a population of size within a cube where the samples are the vertices. Here, the simplex is an equilateral triangle.
	2.2 Balanced sampling using the cube method

	Figure 2.2 Polytope  in cases where the polytope vertices are not the vertices of the cube.
	2.3 Implementation, method applications and research extensions

	3. Calibration
	3.1 Calibration in the absence of non-sampling errors

	Table 3.1
	3.2 Adjustment of non-response by calibration

	4. The weight-sharing method
	4.1 The very beginning: Longitudinal surveys
	4.2 A generalization of the problem

	Figure 4.1 Longitudinal links (“one-to-one”).
	Figure 4.2 Arbitrary links (“many-to-many”).
	Figure 4.3 Pre- and post-renovation dwellings (left) and indirect sampling of renovated dwellings (right).
	4.3 Properties of the Generalized Weight-Share Method
	4.4 Calibration
	4.5 Optimization of the links

	5. The development of variance expression and its estimation for complex estimators
	5.1 The theoretical framework
	5.2 The tools
	5.3 A few applications

	6. Quota sampling
	6.1 The general framework
	6.2 A sampling model
	6.3 Models for the variable of interest
	6.4 Operational conclusion

	7. Conclusion
	References


	Insert from: "2023002-00016-49-2_Ardilly et al.(Comments-Chauvet)-eng.pdf"
	Comments on “Jean-Claude Deville’s contributions to survey theory and official statistics”
	Abstract
	1. Introduction
	2. Calibration
	3. Balanced sampling
	4. Weight-share method
	5. In conclusion
	Acknowledgements
	References


	Insert from: "2023002-00015-49-2_Ardilly et al.(Comments-Christine)-eng.pdf"
	Comments on “Jean-Claude Deville’s contributions to survey theory and official statistics”
	Abstract
	A man and his career
	Calibration
	Balanced sampling
	Weight sharing
	Calculating the variance of complex estimators
	Quotas
	Conclusion

	References


	Insert from: "2023002-00014-49-2_Ardilly et al.(Comments-Dupont)-eng.pdf"
	Comments on “Jean-Claude Deville’s contributions to survey theory and official statistics”
	Abstract
	Creation of the Statistical Methodology Unit
	Journées de Méthodologie Statistique

	References


	Insert from: "2023002-00013-49-2_Ardilly et al.(Comments-Goga-RuizGazen)-eng.pdf"
	Comments on “Jean-Claude Deville’s contributions to survey theory and official statistics”
	Jean-Claude Deville: Mathematics lover, high-flying
	researcher, and visionary
	Abstract
	1. Introduction
	2. Deville and functional data analysis: A visionary of big data
	2.1 Independent functional data
	2.2 Dependent functional data from sample surveys

	Figure 2.1 A sample of 20 electricity consumption curves measured every half an hour over a period of one week.
	2.2.1 FPCA with survey data
	2.2.2 Design-based estimators of FPCA
	2.2.3 Asymptotic approximation and variance estimators
	2.2.4 Why use FPCA?

	3. Revisiting and going beyond Deville’s ideas on indirect sampling
	3.1 The survey sampling problem of La Poste
	3.2 MtO indirect sampling

	Figure 3.1 Small example with 10 MtO links for a unit sampled in the target population from a unit sampled in the frame population.
	3.3 MtO-MtO double indirect sampling

	Figure 3.2 Same example as on the previous figure, but with an intermediate population. On the left panel, 12 links necessary for global standardization. On the right panel, only 7 links necessary for double standardization.
	4. Conclusion
	Acknowledgements
	References


	Insert from: "2023002-00012-49-2_Ardilly et al.(Comments-Sarndal)-eng.pdf"
	Comments on “Jean-Claude Deville’s contributions to survey theory and official statistics”
	Abstract
	Introduction
	Meeting
	Randomization theory
	Auxiliary information
	Generalized regression estimator
	Reoriented thought process
	Model-assisted survey sampling
	The gee-weights
	The rise of calibration theory
	The calibration theory: Implications and interpretations
	An image

	References


	Insert from: "2023002-00011-49-2_Rivest-eng.pdf"
	Statistical methods for sampling cross-classified populations under constraints
	Abstract
	1. Introduction
	Figure 1.1 Sample units, in black, drawn out of a  population matrix.
	2. The properties of the matrix sampling design with fixed row and column totals
	2.1 Extensions to unequal column sample sizes

	3. A conditional matrix sampling design
	4. A new estimator for the between row covariance
	4.1 A Monte Carlo investigation of the sampling properties of the new variance estimators

	Table 4.1
	5. A multi-level matrix design
	Figure 5.1 A sample drawn from a  population matrix using a two level matrix sampling design.
	5.1 A Monte Carlo investigation

	Table 5.1
	5.2 A complex example

	Table 5.2
	6. Discussion
	Acknowledgements
	Appendix:
	Proof of (4.2)
	The matrices of sample indicators needed to construct Figure 5.1
	Section 5.2: Some matrices of sample indicators for a three level sampling problem

	References


	Insert from: "2023002-00010-49-2_Matei-Smith-Smeets-Klinqwort-eng.pdf"
	Targetted double control of burden in multiple surveys
	Abstract
	1. Introduction
	2. Sample coordination and SCP sampling
	2.1 Framework and notation
	2.2 Sample coordination with PRNs
	2.3 Response burden and sample coordination
	2.4 Spatially correlated Poisson sampling

	3. Targetted double control strategy
	3.1 Description of the strategy
	3.2 Effectiveness of the targetted double control strategy
	3.3 Simulation with MU284 population
	3.3.1 Method 1: both  and  are random in each run;  are samples of the same type, but with different inclusion probabilities


	Table 3.1
	Table 3.2
	Table 3.3
	3.3.2 Method 2, framework 1: both  and  are random in each run;  is a Poisson sample

	Table 3.4
	Table 3.5
	Table 3.6
	3.3.3 Method 2, framework 2:  is fixed and is a Poisson sample, while  is random in each run

	Table 3.7
	Table 3.8
	Table 3.9
	3.4 Simulation with business surveys: Application to “hot-spot units” at Statistics Netherlands

	Table 3.10
	Table 3.11
	Figure 3.1 Scenarios 1, 2, 3; Measure 1: number of pairs of samples  (bullets) by possible number of hot-spot units in common (y-axis), 5,000 runs. The size of the bullets is an indication of the number of sampled pairs.
	Figure 3.2 Scenario 4; Measure 1: number of pairs of samples  (bullets) by possible number of hot-spot units in common (y-axis), 5,000 runs. The size of the bullets is an indication of the number of sampled pairs.
	Table 3.12
	Table 3.13
	4. Discussion
	Acknowledgements
	References


	Insert from: "2023002-00009-49-2_Medous-etal-eng.pdf"
	QR prediction for statistical data integration
	Abstract
	1. Introduction
	2. Study variable observed in both samples
	3. Prediction estimators for study variable unobserved in the non-probability sample
	Table 3.1
	4. Asymptotic properties and variance estimation of QR predictors
	4.1 Bias properties of
	4.2 Asymptotic variance and variance estimation of

	5. Simulations
	5.1 Populations and setups

	Table 5.1
	Table 5.2
	5.2 Results

	Table 5.3
	Figure 5.1 Relative MSE (in %), with the MSE of the cosmetic estimator as the baseline, versus  in the informative setup.
	Figure 5.2 Relative MSE (in %), with the MSE of the cosmetic estimator as the baseline, versus  in the quadratic setup.
	Figure 5.3 Relative MSE (in %), with the MSE of the cosmetic estimator as the baseline, versus  in the non-informative setup.
	6. Application to La Poste data
	6.1 Data presentation
	6.2 Results

	Table 6.1
	Table 6.2
	7. Conclusion
	Acknowledgements
	Appendix
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Proof of Proposition 3.1
	Proof of Proposition 3.2

	References


	Insert from: "2023002-00008-49-2_Loonis-eng.pdf"
	Constructing all determinantal sampling designs
	Abstract
	1. Introduction
	2. Algebraic notations and reminders
	3. Reminders about determinantal sampling designs
	3.1 Definition and inclusion probabilities
	3.2 Sample size, fixed-size determinantal designs and selection algorithm
	3.3 Estimating a total, variance of the estimators, balanced designs
	3.4 A few examples of determinantal designs
	3.4.1 Constructing one design from another
	3.4.2 A family of fixed-size determinantal designs and any inclusion probabilities fixed a priori: The family


	Table 3.1
	Algorithm 3.1 (Construction of  orthonormal eigenbasis of

	4. Constructing all determinantal sampling designs with fixed first-order inclusion probabilities
	4.1 Introduction
	4.2 Sequential construction of main submatrices
	4.3 Reformulation of the constraints on vector parameters
	Proposition 4.1

	4.4 Reformulating the constraints on matrix parameters

	5. Matrices  for specific values of
	5.1 Where we get back to
	5.2 Where we discover

	Figure 5.1  under  for
	Table 5.1
	6. Applications
	6.1 The data
	6.2 A lower bound for the variance of the estimators in the determinantal situation?

	Figure 6.1 Comparison, for three auxiliary variables and six population sizes, of the variation coefficients for variances obtained by minimizing (6.2) into  and for a matrix  sorted based on the values of
	7. Conclusion
	Acknowledgements
	Appendix
	A.1 Determinantal designs and population order
	A.2 Programs
	A.3 Constructing the sequence  from

	Table A.1
	Table A.2
	Table A.3
	A.4 Expression of the constraints on
	A.5 The method by Fickus et al. (2013)
	Algorithm A.1 (Fickus et al. [2013])
	Algorithm A.2 (Fickus et al. [2013])

	A.6 Constructing the elements of algorithms A.1 and A.2
	A.7 Matrices  for

	Table A.4
	Table A.5
	Figure A.1  under
	A.8 Optimization among real fixed-diagonal projection matrices

	References


	Insert from: "2023002-00007-49-2_Wieczorek-eng.pdf"
	Design-based conformal prediction
	Abstract
	1. Introduction
	1.1 Related work
	1.2 Our contributions

	2. Introduction to conformal inference
	2.1 Definitions
	2.2 Intuition under exchangeable sampling

	Figure 2.1
	2.3 Intuition under complex sampling
	2.4 Split vs. full conformal
	2.5 Classification problems and prediction sets

	3. Methods
	3.1 Previous results for covariate shift (Tibshirani et al., 2019)
	3.2 Unequal probability sampling with replacement
	3.3 Unequal probability sampling without replacement
	3.4 Cluster sampling
	3.5 Stratified sampling
	3.6 Post-stratification

	4. Examples
	4.1 Real data

	Table 4.1
	Table 4.2
	4.2 Simulations

	Table 4.3
	Table 4.4
	Table 4.5
	Table 4.6
	Table 4.7
	Table 4.8
	Table 4.9
	5. Extensions
	5.1 Practical considerations
	5.2 Other uses for conformal methods in survey methodology

	6. Conclusion
	Acknowledgements
	Appendix
	A. Adaptive prediction regions
	B. Other conformal methods for cluster samples

	References


	Insert from: "2023002-00006-49-2_Brick-DeMatteis-eng.pdf"
	Sample designs and estimators for multimode surveys with face-to-face data collection
	Abstract
	1. Introduction
	2. Sampling designs
	Figure 2.1 Illustration of three follow-up approaches.
	3. Estimation and nonresponse models
	Nonresponse models
	Estimators

	Table 3.1
	Variance estimation

	4. Simulation study
	Generating the population
	Simulation design

	Figure 4.1 Population means for variable from American Community Survey 2015-2019 PUMS, by mode. Of all responses, web is 49.3%, mail is 29.1%, and ftf is 21.7%.
	Table 4.1
	Table 4.2
	Results: Hybrid design scenarios

	Figure 4.2 Relative biases of each estimator for each of the hybrid design scenarios.
	Figure 4.3 Relative root mean squared error of each estimator for each of the hybrid design scenarios.
	Results: Comparison of subsampling designs to hybrid design scenario

	Figure 4.4 Relative biases of each estimator for the hybrid design scenario vs. the subsampling scenarios.
	Figure 4.5 Relative root mean squared error of each for the hybrid design scenario vs. the subsampling scenarios.
	5. Discussion
	Acknowledgements
	Supplementary material
	Appendix
	Table A.2
	Mean of summary measures of estimators by scenario.
	References


	Insert from: "2023002-00005-49-2_Chen-Li-Wu-eng.pdf"
	Dealing with undercoverage  for non-probability survey samples
	Abstract
	1. Introduction
	2. Assumptions and existing approaches
	2.1 Assumptions
	2.2 Approaches to inference

	3. Two practical scenarios with undercoverage
	3.1 Stochastic undercoverage
	3.2 Deterministic undercoverage

	4. Strategies for dealing with deterministic undercoverage
	4.1 Calibrated IPW approach
	4.2 Model-based prediction approach
	4.3 The split population approach
	4.4 Estimation for the split population

	5. Simulation studies
	Table 5.1
	Table 5.2
	6. Concluding remarks
	Acknowledgements
	References


	Insert from: "2023002-00004-49-2_Nandram-Cruze-Erciulescu-eng.pdf"
	Bayesian small area models under inequality constraints with benchmarking and double shrinkage
	Abstract
	1. Introduction
	2. Methodology under the single shrinkage model
	3. Methodology under the double shrinkage models
	3.1 Gamma regression model
	3.2 Computation for the gamma regression model

	4. Comparisons using simulated examples
	4.1 Description of the simulated data sets
	4.2 Results under the single shrinkage model

	Table 4.1
	Figure 4.1 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-NDS for  versus FSA values for Illinois and the simulated data, not double shrinkage, CV(0.05 - 0.25) and 0.99.
	4.3 Results under the double shrinkage model

	Table 4.2
	Figure 4.2 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-DS for  versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression, CV(0.05 - 0.25) and 0.99.
	Table 4.3
	Figure 4.3 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA for  versus FSA values for Illinois and the simulated data, double shrinkage, log-linear model; CV(0.08 - 0.93) and 0.95.
	Figure 4.4 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-DS for  versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression, CV(0.08 - 0.93) and 0.95.
	5. Concluding remarks
	Appendix
	A. Double-shrinkage model fitting ‒ Gamma regression
	B. Double shrinkage model fitting ‒ Log-linear model

	C. Discussions on generalization
	Acknowledgements and disclaimers
	References


	Insert from: "2023002-00003-49-2_Berg-eng.pdf"
	Small area prediction of general small area parameters for unit-level count data
	Abstract
	1. Introduction
	2. Unit-level gamma Poisson model and predictor
	2.1 MSE Estimation

	3. Poisson GLMM
	3.1 Empirical best predictor for Poisson GLMM
	3.2 Bootstrap MSE estimator for Poisson GLMM

	4. Simulations
	4.1 Comparison of efficiency of alternative predictors

	Table 4.1
	Table 4.2
	4.2 Properties of bootstrap MSE estimator

	Figure 4.1 Relative biases  of MSE estimators for four simulation configurations.
	Figure 4.2 Boxplots of relative root mean square errors of mean square error estimators (RRMSEMSEi) for four simulation configurations.
	Figure 4.3 Empirical coverages of nominal 95% prediction intervals  for four simulation configurations.
	5. Illustration with modeling observed vehicle occupants
	Figure 5.1 Standardized residuals against predicted values for gamma-Poisson (gam-Pois) and generalized linear mixed models (GLMM).
	Table 5.1
	6. Discussion
	Acknowledgements
	References


	Insert from: "2023002-00002-49-2_Li-Scholtus-vanDelden-eng.pdf"
	A method for estimating the effect of classification errors on statistics for two domains
	Abstract
	1. Introduction
	2. Methodology
	2.1 General settings

	Table 2.1
	2.2 Mixture model
	2.2.1 Model setup
	2.2.2 EM algorithm

	2.3 Methods
	2.3.1 Bootstrap method
	2.3.2 EM bootstrap method
	2.3.3 SIMEX bootstrap method


	3. Simulation study
	3.1 Settings
	3.2 Results

	Figure 3.1  Bias estimation in the simulation study.
	Figure 3.2  Standard error estimation in the simulation study.
	3.3 Additional simulation studies

	Figure 3.3  Bias estimation in the simulation study with 95% confidence interval.
	4. Case study
	4.1 Data

	Figure 4.1  Density distribution of log turnover for all groups.
	Table 4.1
	4.2 Settings

	Table 4.2
	4.3 Results

	Figure 4.2  Bias estimation in case 1.
	Figure 4.3  Bias estimation in case 2.
	Figure 4.4  Standard error estimation in case 1.
	Figure 4.5  Standard error estimation in case 2.
	5. Discussion
	Acknowledgements
	Appendix
	A. Extrapolation function in the SIMEX bootstrap method

	Figure A.1  Comparison of the bias estimation performance of the three extrapolation functions in the SIMEX bootstrap method.
	Figure A.2  Comparison of the standard error estimation performance of the three extrapolation functions in the SIMEX bootstrap method.
	B. BIC vs. sBIC

	Table B.1
	Figure B.1  Bias estimation using BIC vs. sBIC in case 2.
	Figure B.2  Standard error estimation using BIC vs. sBIC in case 2.
	C. Theoretical properties of Algorithms 1 and 2
	C.1 Algorithm 1: The bootstrap method
	C.2 Algorithm 2: The EM bootstrap method


	References


	Insert from: "2023002-00001-49-2_Edwards-Liu-Delage-eng.pdf"
	Model-based stratification of payment populations in Medicare integrity investigations
	Abstract
	1. Introduction
	2. Honor the data: An exploration of 166 Medicare samples
	Figure 2.1 A classification of the 7,588 overpayment-payment pairs in the 166 samples.
	Figure 2.2 Taint versus log10 (Payment amount) for 7,588 sample points.
	Figure 2.3 Graphical summary of a generalized additive model analysis of taint vs. log10 (payment). Gray shading is a 95% Scheffé-style confidence region for the true nonparametric regression function.
	3. A model for Medicare sample data
	Figure 3.1 Example payment populations.
	4. Monte Carlo testing of sample designs under the AN model
	Figure 4.1 Achieved confidence levels (%) versus error rate for the Figure 3.1 populations, using a simple random sample of 30 payments with the standard extrapolation (1.2).
	5. Methods for constructing strata using an auxiliary variable X
	5.1 Existing methods
	5.2 Sample allocations
	5.3 A simple new method using anticipated AN-model moments and equal sample sizes

	6. Efficiency comparisons for the stratification methods
	Table 6.1
	Figure 6.1 Improvement in overpayment recovery versus a simple random sample of the same size for each viable method (see text for details).
	Figure 6.2 Relative efficiency of the ESS50, ESS20 and LL20 methods (see text for details).
	7. Discussion and conclusion
	Acknowledgements
	References


	Insert from: "2023002-49-2_CanadianJournal-eng.pdf"
	Doubly robust weighted composite quantile regression based on SCAD-L2
	Minimax A-, c-, and I-optimal regression designs for models with heteroscedastic errors



