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Preface to the special issue for papers presented at the 29th 
Morris Hansen Lecture on the use of nonprobability samples 

Partha Lahiri1 
 
 

Neyman’s seminal paper transformed survey sampling, leading to widespread adoption of probability 

sampling and associated design-based methods, particularly within national statistical offices. However, 

perfect implementation of design-based methods relies on a perfect sampling frame of the target finite 

population, well-designed samples with known non-zero selection probabilities, no nonresponse, no 

measurement errors, and the use of sampling weights to correct for unequal probabilities. Under these 

conditions, consistency of traditional design-based estimators and their variance estimators can be assured 

for large samples, irrespective of the validity of any model that may have been used to construct the 

estimators. For large sample sizes, the probability sampling approach is indeed attractive to survey 

practitioners because the same estimation procedure can be used to handle different kinds of outcome 

variables without the need to model them separately. 

Probability sample surveys encounter challenges, including noncoverage, measurement errors, declining 

participation rates, and high costs. Conversely, nonprobability surveys like voluntary surveys gain traction 

due to their convenience and cost-effectiveness. In nonprobability sampling, the selection probability 

mechanism is unknown. Moreover, often selection probabilities are zero for a subset of finite population 

units. Thus, traditional design-based methods cannot be used to construct estimates or their uncertainty 

measures, and one needs to rely on models whose assumptions may not always be verifiable. There is now 

a growing interest in integrating non-probability data with probability surveys, aiming to mitigate these 

challenges and leverage the strengths of both approaches. 

Due to the increasing importance of nonprobability surveys, the Morris Hansen Lecture committee 

decided to organize the 29th Morris Hansen Lecture on the topic of “Working with Nonprobability Samples: 

Assessing and Remediating Bias.” The Washington Statistical Society inaugurated the Morris Hansen 

Lecture Series in 1990, supported by a grant from Westat. Subsequently, the National Agricultural Statistics 

Service (NASS) joined as a co-sponsor of the event, and since then, has consistently hosted the lecture series 

nearly every year in Washington, D.C. 

Given the ongoing Covid pandemic, the 29th Morris Hansen Lecture was conducted as a virtual event on 

March 1, 2022. The committee extended invitations to Jean-François Beaumont, Courtney Kennedy, and 

Yan Li, three esteemed experts in the field of nonprobability surveys, to deliver lectures based on their 

recent research in this area. This special issue features revised versions of three papers presented in the 

29th Morris Hansen Lecture event along with discussions and rejoinders. 

The first paper authored by Kennedy, Mercer and Lau investigates the measurement issues associated 

with nonprobability opt-in surveys, frequently utilized to generate estimates for rare domains due to cost 
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considerations. Through an extensive benchmarking study, the authors identify population subgroups 

characterized by significant bias in opt-in surveys, attributing a portion of this bias to bogus responses. Their 

findings underscore the importance of scrutinizing errors arising from bogus responses in nonprobability 

surveys, emphasizing the need to address not only selection bias but also the issue of erroneous responses. 

The second paper authored by Li examines the conditional exchangeability assumption, which serves as 

a pivotal assumption in propensity score-based adjustment methods. Specifically, Li explores the validity 

of the exchangeability assumption under various balancing scores and devises an adaptive balancing score 

aimed at achieving unbiased estimation of finite population means. 

The third paper authored by Beaumont, Bosa, Brennan, Charlebois and Chu represents a significant 

advancement in the field of inverse probability weighting methods for nonprobability samples aimed at 

mitigating selection bias. Their research encompasses data integration techniques incorporating both 

parametric and Classification and Regression Trees (CART) methods, with particular emphasis on 

accounting for the probability sample design. Of note is their substantial focus on variable selection within 

the context of their proposed methodologies. 

I extend my sincere gratitude to Jean-François Beaumont, Editor of Survey Methodology, for graciously 

agreeing to dedicate a special issue of Survey Methodology and inviting me to serve as its Guest Editor. I 

also express my appreciation to the Morris Hansen lecturers – Jean-François Beaumont, Courtney Kennedy, 

and Yan Li – for accepting my invitation to contribute papers to this special issue based on their 

presentations. 

Furthermore, I am grateful toauthors of all three papers – Jean-François Beaumont, Keven Bosa, 

Andrew Brennan, Joanne Charlebois, Kenneth Chu, Yan Li, Courtney Kennedy, Andrew Mercer, 

Arnold Lau – as well asthe discussants of the papers – Vladislav Beresovsky, J. Michael Brick, 

Michael R. Elliott, Julie Gershunskaya, Jae Kwang Kim, Yonghyun Kwon, Takumi Saegusa, Aditi Sen, 

and Changbao Wu – for their insightful commentary on the papers. Their contributions have stimulated 

valuable discussion and enhanced the depth of the research presented. 

I believe that the papers, discussions, and rejoinders will serve as an invaluable reference for future 

research in this dynamic and challenging field. 

 
Partha Lahiri 

Guest Editor 
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Exploring the assumption that commercial online 
nonprobability survey respondents are  

answering in good faith 

Courtney Kennedy, Andrew Mercer and Arnold Lau1 

Abstract 

Statistical approaches developed for nonprobability samples generally focus on nonrandom selection as the 
primary reason survey respondents might differ systematically from the target population. Well-established 
theory states that in these instances, by conditioning on the necessary auxiliary variables, selection can be 
rendered ignorable and survey estimates will be free of bias. But this logic rests on the assumption that 
measurement error is nonexistent or small. In this study we test this assumption in two ways. First, we use a large 
benchmarking study to identify subgroups for which errors in commercial, online nonprobability samples are 
especially large in ways that are unlikely due to selection effects. Then we present a follow-up study examining 
one cause of the large errors: bogus responding (i.e., survey answers that are fraudulent, mischievous or otherwise 
insincere). We find that bogus responding, particularly among respondents identifying as young or Hispanic, is 
a significant and widespread problem in commercial, online nonprobability samples, at least in the United States. 
This research highlights the need for statisticians working with commercial nonprobability samples to address 
bogus responding and issues of representativeness – not just the latter. 

 
Key Words: Nonprobability; Online surveys; Measurement error; Benchmarking. 

 
 

1. Introduction 
 

Survey statisticians have long understood that raw samples from commercial online nonprobability 

panels or marketplaces are apt to be unrepresentative (e.g., Rivers, 2007; Dever, Rafferty and Valliant, 

2008). The statistician’s task then is combining the respondents’ answers with auxiliary information to 

adjust away differences between the sample and the target population. Various approaches have been 

developed for this purpose (see Elliott and Valliant, 2017 for a review). These approaches work, at least in 

theory, when the answers from nonprobability respondents are genuine and reasonably accurate. But there 

is growing evidence that sizable shares of nonprobability respondents provide bogus data, including on 

variables statisticians use for adjustment.  

 

1.1 Focusing on commercial, online nonprobability surveys 
 

Nonprobability samples can take many forms, such as people recruited from a social media platform or 

a snowball sample of a rare, at-risk population. In American public opinion polling, however, one general 

form of nonprobability sampling dominates. Over 80% of U.S. public opinion polling is currently conducted 

using commercial, online nonprobability panels (Kennedy, Hatley, Lau, Mercer, Keeter, Ferno and Asare-

Marfo, 2021). Public opinion surveys using commercial online nonprobability samples almost never feature 
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a companion probability-based sample for purposes of calibration, a characteristic distinguishing them from 

studies statistically blending probability and nonprobability samples (e.g., Elliott and Haviland, 2007).  

Since “commercial online nonprobability panel” is cumbersome, we will use the shorthand “opt-in 

panel”. We urge caution in not conflating such commercial data with other, qualitatively different 

nonprobability sources, such as those in Beaumont (2022) and Li (2022). Commercial opt-in samples have 

a set of unique issues, which are the focus of this study. 

In Section 2 we provide some background on the nonprobability survey benchmarking literature as well 

as the bogus respondent literature. In Section 3 we present a new benchmarking study comparing average 

error levels in six different online survey panels. We observe that errors are particularly large for certain 

subgroups and that those same subgroups are prone to claiming highly unusual characteristics. In Section 4 

we present a follow-up study to tease out whether the claims of unusual characteristics are credible or 

evidence of bogus responding. In Section 5 we discuss some limitations of these data collections. In 

Section 6 we provide concluding remarks reflecting on the implications of this research. 

 
2. Background 
 

Two lines of methodological research have developed around data quality in opt-in panels. The first is 

focused on quantifying the average size of errors and comparing them to the levels in probability-based 

samples. The second line of research is focused on measurement error in individual survey responses caused 

by fraudulent, mischievous or otherwise insincere respondents in opt-in panels. Our goal in this paper is to 

connect these literatures using new data and highlight ways that we see them informing each other.  

 

2.1 Benchmarking literature  
 

Many of the studies focused on representativeness have explored the relative accuracy of nonprobability 

and probability-based survey estimates compared to available population benchmarks. For example, 

MacInnis, Krosnick, Ho and Cho (2018) found that weighted estimates from a probability-based online 

sample had significantly smaller root mean square errors than estimates from six different opt-in panels. 

Overall, the number of studies finding greater accuracy for probability sample estimates (Malhotra and 

Krosnick, 2007; Chang and Krosnick, 2009; Yeager, Krosnick, Chang, Javitz, Levendusky, Simpser and 

Wang, 2011; Szolnoki and Hoffmann, 2013; Erens, Burkill, Couper, Conrad, Clifton, Tanton, Phelps, Datta, 

Mercer, Sonnenberg, Prah, Mitchell, Wellings, Johnson and Copas, 2014; Sturgis, Baker, Callegaro, Fisher, 

Green, Jennings, Kuha, Lauderdale and Smith, 2016; Dutwin and Buskirk, 2017; Pennay, Neiger, Lavrakas 

and Borg, 2018) outnumber those finding similar accuracy in nonprobability estimates (Vavreck and Rivers, 

2008; Ansolabehere and Schaffner, 2014) by about five to one.  

Other studies in this vein have examined the efficacy of different statistical methods for reducing 

selection bias in estimates from online opt-in samples. One consistent finding in these studies is that even 

after employing more sophisticated statistical approaches, such as machine learning or doubly-robust 
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methods, there often remain sizable errors in nonprobability survey estimates (Dutwin and Buskirk, 2017; 

Mercer, Lau and Kennedy, 2018). For example, Dutwin and Buskirk (2017) note that “advanced techniques 

such as propensity weighting and sample matching did not improve these (nonprobability) measures, and in 

some cases made matters worse”.  

One question raised by this literature is why, even with extensive modeling, do opt-in panel estimates 

often contain large errors? Is it because the models are mis-specified or missing key covariates, or is the 

opt-in data flawed in ways immune from statistical modeling correction? In addition to leaving open these 

questions, the benchmarking literature has another limitation. Most benchmarking studies only consider 

estimates for the full population (e.g., all U.S. adults). They do not explore the possibility that the accuracy 

of opt-in estimates may vary between major subgroups (e.g., based on age, race, or ethnicity). Our 

benchmarking study (presented in Section 3) seeks to address this gap by examining subgroup variation and 

then using those results to better understand a second body of literature on nonprobability surveys.  

 

2.2 Bogus respondent literature 
 

A separate line of research has documented fraudulent, mischievous, or insincere respondents in 

commercial opt-in panels. The scale of this problem is alarming. The Insights Association (2022) estimates 

that researchers should anticipate removing 15% to 25% of opt-in completes due to poor data quality. Geraci 

(2022) put that rate even higher, noting that “just 10 years ago, researchers would need to remove 5%-10% 

of all interviews from online samples because of poor quality. That proportion is now in the 35%-50% 

range”. This line of research focuses not on whether opt-in respondents are representative of a broader 

population, but on whether their answers are credible.  

It is increasingly clear that bogus respondents are not merely a nuisance (e.g., adding noise to estimates, 

requiring replacement interviews). Instead, bogus respondents can lead to highly biased estimates and false 

conclusions. For example, Litman, Rosen, Rosenzweig, Weinberger-Litman, Moss and Robinson (2021) 

showed that Centers for Disease Control (CDC) reports of high rates of Americans ingesting bleach to 

protect against COVID-19 were an artifact of bogus respondents in an opt-in sample. Lopez and Hillygus 

(2018) found that bogus respondents erroneously inflated estimates of public belief in conspiracies by a 

factor of two. More recently, Westwood, Grimmer, Tyler and Nall (2022) found that bogus respondents 

erroneously inflated estimates of support for political violence in the United States by over a factor of two.  

While data quality concerns with opt-in samples are not a new phenomenon (e.g., Downes-Le Guin, 

2005; Baker, Blumberg, Brick, Couper, Courtright, Dennis, Dillman, Frankel, Garland, Groves, Kennedy, 

Krosnick, Lavrakas, Lee, Link, Piekarski, Rao, Thomas and Zahs, 2010), research about the extent and 

impact of insincere responding has accelerated in recent years for several reasons. These include concerns 

about survey bots (Baxter, 2016; Shanahan, 2018; McDowell, 2019; Puleston, 2019; Geraci, 2022), foreign 

workers concealing their identity to qualify for U.S. surveys (Kennedy, Clifford, Burleigh, Waggoner and 

Jewell, 2018; Moss, 2018; Ahler, Roush and Sood, 2019), and people taking a survey multiple times on 

different devices to evade panel security checks (Ahler et al., 2019; Kennedy et al., 2021). While the 
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companies running commercial opt-in panels are aware of and attempt to address many of these challenges, 

fraudulent respondents continue to make up a sizeable share of cases in online, opt-in samples. 

 

2.3 Connecting the literatures on commercial nonprobability samples 
 

Statistical approaches developed for nonprobability survey data (e.g., Rivers, 2007; DiSogra, Cobb, 

Chan and Dennis, 2011; Valliant and Dever, 2011; Valliant, 2020) assume that the task at hand is leveraging 

on the most effective auxiliary variables. In other words, the problem to be solved is addressing the relevant 

ways in which the opt-in respondents differ from the target population. Well-established theory states that 

one can remove selection bias by conditioning on the right set of auxiliary variables (Elliott and Valliant, 

2017; Mercer, Kreuter, Keeter and Stuart, 2017; Kohler, Kreuter and Stuart, 2019). There is an implicit 

assumption in this literature that failure to eliminate error in opt-in estimates simply means we haven’t found 

the right auxiliary variables or they are not available. By this logic, progress comes from finding new sources 

of auxiliary data or developing statistical methods that can better leverage whatever auxiliary data is 

available. But this logic only holds if measurement error is nonexistent or small, and in general, the 

conventional wisdom has been that while satisficing – perhaps the most frequently studied source of 

measurement error – may be somewhat worse in opt-in surveys, it is not a major contributor to error.  

The second line of research discussed raises the possibility that bogus respondents actually introduce 

much larger measurement error than previously thought. When 15% to 50% of the data collected should be 

discarded for poor quality, then focusing on auxiliary variables risks missing the bigger picture. Sampling 

quotas and weighting are unlikely to be effective if the variables they use contain large errors introduced on 

purpose by bad faith respondents.  

To be clear, we do not assert that bogus respondents are the only error source for opt-in panels. Instead, 

it is far more likely that both bogus respondents (i.e., those answering erroneously) and unrepresentative 

respondents (i.e., those answering genuinely but who, in aggregate, differ from the target population) 

contribute to error. Our goal in this study is two-fold: (1) to show how the bogus respondent literature helps 

explain the benchmarking literature, and (2) highlight the need for statisticians working with opt-in samples 

to address bogus responding and issues of representativeness – not just the latter.  

 
3. Benchmarking study 
 

We initially set out to conduct a benchmarking to examine the extent to which the accuracy of online 

survey estimates differs by subgroups. The results led us to develop a hypothesis about bogus responding. 

The benchmarking component was not designed to detect bogus responding, and so we designed a follow-

up data collection to address that hypothesis directly. We discuss each data collection in turn. 

 

3.1 Sample design for the benchmarking 
 

The benchmarking study featured samples of U.S. adults from each of six online platforms (Table 3.1). 

Responding sample sizes ranged from 4,912 to 5,147. Three of the samples came from commercial opt-in 
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panels. The opt-in survey vendors, which routinely use quotas, were provided with the quota targets for 

age   gender, race   Hispanic ethnicity, education. We computed the quota targets from the 2019 

American Community Survey. 

 
Table 3.1 

Sample sizes and field dates, by source. 
 

Source n Field dates 

ABS panel 1 5,027 June 14 - 28, 2021 
ABS panel 2 5,147 June 14 - 27, 2021 
ABS panel 3 4,965 June 29 - July 21, 2021 
Opt-in panel 1 4,912 June 15 - 25, 2021 
Opt-in panel 2 4,931 June 11 – 27, 2021 
Opt-in panel 3 4,955 June 11 – 26, 2021 
Note: “ABS” refers to an online panel that is recruited using probability, address-based sampling. “Opt-in panel” refers to a commercial online 

nonprobability panel or marketplace. 

 
The three other sources are probability-based survey panels that interview online but recruit panelists 

offline. Most if not all the panelists in these three sources were recruited using address-based sampling 

(ABS) from the U.S. Postal Service Computerized Delivery Sequence File. Before adopting ABS 

recruitment, two of these panels recruited offline using random digit dial samples of telephone numbers.  

One of the ABS panel samples was used for this methodological study as well as substantive research 

that is not part of this project. The substantive research required a larger sample size. For that study, the 

entire panel was invited to participate, out of which 10,606 panelists completed this questionnaire. We did 

not want this larger sample size confounding the analysis (i.e., by allowing that one sample to be double the 

size of the other five). To address this, we drew a stratified random sample from the full panel following the 

panel’s standard procedure for a target sample size of 5,000 completes. Only respondents that were selected 

as part of this subsample were included in this study. These are the cases that would have been obtained if 

only that subsample had been invited to participate. The subsampling process was conducted independently 

from any analysis of the data. As reported below, all three ABS panels performed in a similar manner, giving 

us confidence that subsampling from the larger panel did not impair this study by rendering its performance 

meaningfully different.  

ABS panels 1, 2 and 3 had study-specific response rates of 61%, 90%, and 71%, respectively. The 

cumulative response rate to the surveys (accounting for nonresponse to recruitment, to the current survey 

and for panel attrition) was 5% for ABS panel 1, 3% for ABS panel 2, and 7% for ABS panel 3. Comparable 

response rates cannot be computed for the opt-in samples. Ipsos was the data collection firm. A common 

questionnaire was administered in English or Spanish for all six samples. 

Each survey panel has their own approach for weighting a national survey of U.S. adults. This project is 

focused on data quality, and so it was necessary to avoid having different weighting protocols confound 

comparisons between the samples. We employed a standard weighting approach for all six samples. For the 
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ABS samples, the weighting protocol began with panel base weights adjusting for differential probabilities 

of selection. Because design weights do not exist for the opt-in samples, these cases were assigned a starting 

weight of 1 and treated as if they were simple random samples.  

The second step was to calibrate the starting weights for each sample to a common set of population 

control totals. The population targets were age   sex, education   sex, education   age, race/ethnicity   

education, born inside versus outside the U.S. among Hispanics and Asian Americans, years lived in the 

U.S., Census region   metro/non-metro, volunteered in past year, voter registration status, political party 

affiliation, frequency of internet use, and religious affiliation. The first six benchmarks came from the 

American Community Survey. The next three benchmarks came from the Current Population Survey 

supplements, and the last three came from Pew Research Center National Public Opinion Reference Survey.  

 
3.2 Benchmarking analysis 
 

In total, 25 benchmark measurements were used in this study. They touch on many different topics 

including smoking, military service, vehicle ownership, health care coverage, income, social program 

participation, household composition, and more. The benchmarks were derived from high quality federal 

sources based either on national surveys or administrative data. None of the 25 benchmark variables were 

part of the weighting protocol. The full list of benchmarks and sources is provided in the appendix. 

To estimate survey error relative to benchmarks, we computed the mean absolute value of the difference 

between the weighted online survey estimate and the benchmark. For a categorical benchmark variable Y  

with categories 1  , , ,c k   let cY  denote the “true” population value and cy  denote the survey estimate for 

the share of the population belonging to category .c  For a given survey, the mean absolute error (MAE) for 

Y  is  

 1MAE  .
c

k

cc
Y

k

y






 (3.1) 

In other words, each panel’s MAE reflect a two-step process. First, we averaged the difference between 

the survey and the benchmark across all the answer categories for the question. Second, we computed the 

average of those 25 averages. We did this separately for each of the six online panels. This way, all the 

benchmarks have equal influence in the analysis. We see no theoretical justification to do otherwise. Refusal 

and “Not sure” responses are not included as a benchmarking category. These responses are, however, 

reflected in the denominator of the online survey estimates because that reflects actual practice. It is unusual 

for public opinion researchers to re-base estimates just on those providing an answer other than “Refused” 

or “Not sure”.  

The average benchmark deviations (Table 3.2) reveal familiar findings as well as new ones. Consistent 

with prior studies, the estimated average absolute error is systematically lower in the probability-based 

samples (3.0 percentage points) relative to the nonprobability samples (6.8 percentage points). Within those 
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two groupings, the samples performed roughly the same. The average absolute errors ranged from 2.6 to 3.5 

among the probability ABS samples, and it ranged from 5.9 to 7.3 among the nonprobability opt-in samples.  

 
Table 3.2 

Average absolute error in online survey estimates for 25 benchmarks. 
 

 All 
adults 

Ages 
18-29 

Ages 
30-64 

Ages 
65+ 

High 
school 
or less 

Some 
college 

College 
grad 

White Black Hispanic 

ABS Mean 3.0 4.0 3.2 3.1 4.0 3.1 2.5 2.7 4.4 4.2 
 (0.08) (0.31) (0.11) (0.16) (0.16) (0.17) (0.13) (0.09) (0.35) (0.34) 

Opt-in Mean 6.8 11.6 7.4 3.3 7.2 6.4 7.1 5.9 7.6 11.5 
 (0.09) (0.27) (0.12) (0.13) (0.14) (0.17) (0.18) (0.11) (0.27) (0.29) 

ABS 1 2.6 2.9 2.9 2.7 3.2 2.8 2.3 2.4 4.1 3.4 
 (0.10) (0.32) (0.15) (0.18) (0.19) (0.19) (0.18) (0.12) (0.47) (0.32) 

ABS 2 3.5 5.7 3.5 3.6 4.6 3.6 2.8 3.1 4.9 4.7 
 (0.11) (0.45) (0.16) (0.22) (0.23) (0.22) (0.15) (0.12) (0.42) (0.42) 

ABS 3 2.9 3.3 3.3 2.8 4.2 2.9 2.5 2.7 4.2 4.4 
 (0.16) (0.50) (0.21) (0.27) (0.34) (0.30) (0.17) (0.15) (0.55) (0.63) 

Opt-in 1 7.1 11.9 8.1 3.4 7.0 7.3 7.9 6.4 8.2 11.7 
 (0.16) (0.45) (0.21) (0.17) (0.26) (0.25) (0.31) (0.17) (0.44) (0.48) 

Opt-in 2 7.3 12.8 8.1 3.5 7.3 6.6 8.5 6.6 8.6 11.7 
 (0.15) (0.47) (0.22) (0.20) (0.25) (0.28) (0.33) (0.18) (0.41) (0.47) 

Opt-in 3 5.9 10.2 6.1 3.0 7.3 5.3 5.0 4.8 6.1 11.2 
 (0.15) (0.53) (0.19) (0.19) (0.25) (0.31) (0.25) (0.18) (0.44) (0.48) 
Note: Standard errors are shown in parentheses. Estimates for White and Black adults are based on those who do not identify as Hispanic. 

 
More novel, and perhaps under-appreciated in the field, is the substantial variation by subgroup. For the 

opt-in samples, the average absolute error in estimates for young adults (ages 18-29) is more than three 

times larger than the error for adults ages 65 and older (11.6 versus 3.3 percentage points). For the ABS 

samples, by contrast, the average absolute error for estimates based on younger and older adults is far more 

similar (4.0 versus 3.1 percentage points).  

Table 3.2 shows a similar pattern with respect to Hispanic ethnicity. For the opt-in samples, the average 

absolute error in estimates for Hispanics is nearly double that for (non-Hispanic) White adults (11.5 versus 

5.9 percentage points). For the ABS samples, by contrast, the average absolute error for estimates based on 

Hispanic and White adults is more comparable (4.2 and 2.7 percentage points).  

Put differently, after extensively weighting each of the opt-in samples, the estimates for young adults 

and for Hispanic adults were off by more than 10 percentage points on average. Those are large errors, and 

it is not clear from the literature why they are concentrated in those two groups. The opt-in estimates for 

adults ages 65 and over, for example, are relatively accurate, departing from the benchmarks by only about 

3 percentage points. Other demographic variables could be examined, of course. We also carried out this 

analysis by gender and educational attainment, but the variance across those dimensions was much more 

muted than the differences by age and ethnicity, and so education and gender are not considered further in 

this study. Instead, the remaining analysis considers why these errors are so concentrated among those self-

identifying as young or Hispanic.  
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3.3 Benchmarks with the largest errors 
 

To investigate why commercial online nonprobability survey errors are concentrated in certain 

subgroups, we take a closer look at variables where the errors are largest. Table 3.3 presents weighted 

estimates for the share of U.S. adults receiving four different government benefits: Supplemental Nutritional 

Assistance Program (SNAP), Social Security, Unemployment Compensation, and Worker’s Compensation. 

The key finding is not simply that the survey estimates contain error, but the errors are all in one direction. 

Namely, the commercial online nonprobability surveys contain proportionately too many respondents 

claiming to receive these benefits. The same pattern is observed for the ABS samples, but the magnitude of 

the errors is dramatically different.  

 

Table 3.3 

Estimates for receipt of four different government benefits. 
  

SNAP Social security Unemployment 
Compensation 

Worker’s 
Compensation 

Benchmark 11.1% 21.8% 9.3% 0.4% 
     
ABS 1 14.0% 25.6% 12.4% 1.3% 
 (0.57) (0.55) (0.52) (0.20) 

ABS 2 19.0% 27.7% 17.2% 2.9% 

 (0.71) (0.60) (0.68) (0.35) 

ABS 3 18.4% 25.6% 13.0% 1.6% 

 (0.83) (0.63) (0.72) (0.31) 

Opt-in 1 29.9% 38.7% 18.8% 10.0% 

 (0.77) (0.74) (0.68) (0.50) 

Opt-in 2 30.0% 37.5% 21.0% 11.8% 

 (0.81) (0.72) (0.71) (0.51) 

Opt-in 3 21.7% 34.7% 16.9% 7.6% 

 (0.67) (0.73) (0.65) (0.47) 
Note: Standard errors are shown in parentheses. SNAP is the Supplemental Nutritional Assistance Program. 

 

For example, receipt of Worker’s Compensation is an incredibly rare characteristic among U.S. adults. 

The population incidence is less than 1%. But according to the commercial online nonprobability samples, 

the incidence is closer to 10%. Similarly, for receipt of nutritional assistance, the commercial online 

nonprobability samples estimate the incidence at 22% to 30%, while the true population rate is just 11%. 

These results suggest that commercial online nonprobability respondents are prone to saying “Yes” they 

have certain characteristics. To further distill that phenomenon, Table 3.4 presents the weighted share of 

respondents in each sample who claimed to receive at least three of the four government benefits measured 

in the survey. 

Again, it is important to note that receiving at least three of these benefits is incredibly rare (0.1% 

population incidence). The probability-based ABS samples reflect these dynamics, with estimates for the 

share of adults receiving three or more of these benefits ranging from 0% to 1%. According to the 

commercial online nonprobability samples, however, the incidence ranges from 6% to 11%.  
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Table 3.4 

Percentage of adults who self-report receiving at least three of four different government benefits. 
 

 All 
adults 

Ages 
18-29 

Ages 
30-64 

Ages 
65+ 

HS or 
less 

Some 
college 

College 
grad 

White Black Hispanic 

Benchmark 0.1% 0.1% 0.1% 0.2% 0.2% 0.1% 0.0% 0.1% 0.2% 0.1% 
           
ABS 1 0.8% 1.1% 0.8% 0.4% 1.2% 0.9% 0.3% 0.3% 2.7% 1.1% 
 (0.16) (0.51) (0.20) (0.17) (0.33) (0.33) (0.11) (0.09) (0.96) (0.50) 

ABS 2 1.2% 2.0% 1.2% 0.7% 2.2% 1.2% 0.3% 0.4% 3.1% 2.7% 
 (0.24) (0.78) (0.28) (0.39) (0.55) (0.38) (0.10) (0.15) (1.08) (0.86) 

ABS 3 1.4% 2.4% 1.4% 0.4% 2.0% 1.7% 0.3% 1.0% 2.3% 2.9% 
 (0.30) (1.08) (0.39) (0.18) (0.68) (0.63) (0.21) (0.32) (1.17) (1.33) 

Opt-in 1 7.8% 17.8% 6.9% 0.8% 5.1% 7.5% 11.1% 4.3% 12.4% 17.2% 
 (0.44) (1.44) (0.58) (0.35) (0.69) (0.77) (0.96) (0.46) (1.60) (1.47) 

Opt-in 2 9.0% 18.0% 8.9% 0.2% 6.0% 7.7% 13.7% 6.9% 10.8% 16.9% 
 (0.42) (1.42) (0.59) (0.12) (0.60) (0.85) (0.87) (0.48) (1.47) (1.47) 

Opt-in 3 5.9% 14.7% 4.9% 0.7% 6.9% 5.5% 5.1% 3.1% 6.8% 18.6% 
 (0.41) (1.60) (0.45) (0.25) (0.81) (0.77) (0.62) (0.37) (1.36) (1.78) 
Note: Standard errors are shown in parentheses. The four government benefits are the Supplemental Nutritional Assistance Program (SNAP), 

Social Security, Unemployment Compensation and Workers’ compensation. Estimates for White and Black adults are based on those who 
do not identify as Hispanic. 

 
Table 3.4 shows these estimates for the subgroups with the largest errors: young adults and Hispanics. 

For these groups, the error in the commercial online nonprobability estimates is staggering. According to 

the commercial online nonprobability samples, about 20% of young adults and 20% of Hispanics receive at 

least three of these benefits. These results beg our central question: What is more likely – that these young 

and/or Hispanic nonprobability cases actually have this rare characteristic, or that these cases are 

misrepresenting themselves (i.e., providing bogus answers). As mentioned above, the answer is critical 

because statistical techniques for commercial online nonprobability data are premised on the first 

explanation, even though it strains credulity. 

 
3.4 Removing apparently bogus respondents from estimates 
 

A natural question is how the accuracy evaluation changes if the apparently bogus respondents are 

dropped from analysis. To examine this, we repeated the benchmarking exercise in Section 3.2, but this time 

we removed all respondents who reported receiving the four government benefits measured (SNAP, Social 

Security, Unemployment Compensation, and Worker’s Compensation). We then re-weighted each sample 

according to the procedure described above. This yielded some accuracy improvement but was far from a 

panacea. The results are provided in the appendix. The average benchmark deviation for the nonprobability 

samples improved by 21% (from 6.8 percentage points on average to 5.4). The nonprobability estimates for 

young adults and Hispanics improved, but the average errors remained higher than for other demographic 

groups (8.6 and 8.3 percentage points on average for young adults and Hispanics, respectively). Removing 

the apparently bogus respondents did not close the accuracy gap between the probability and nonprobability 

samples, as the average benchmark deviation for the probability samples (2.8 percentage points) remained 

smaller. 
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In sum, removing respondents with an egregiously suspicious response pattern helps rather than hurts 

accuracy, but we do not view this as a robust solution. Those claiming to have received four disparate 

government benefits are just one subset of all the possible bogus respondents in the nonprobability samples. 

Prior research (e.g., Kennedy et al., 2021) indicates that other tests for bogus responding would flag a 

different, if partially overlapping, set of problematic respondents. Relying on a single test or single response 

pattern is unlikely to completely diagnose bogus responding.  

 
4. Examining bogus responding directly 
 

Results from the benchmarking study suggest that some opt-in subgroups are prone to giving data that 

is not credible. However, the benchmarking study was not designed to distinguish credible from non-

credible responses. A more direct test of bogus responding would be needed to definitively determine if the 

patterns in the benchmarking analysis stemmed from “unusual but genuine” opt-in respondents or from 

bogus respondents. Again, we feel this distinction matters because statistical approaches for opt-in data 

assume opt-in respondents may be unusual but are genuine.  

 

4.1 Sample design for the follow-up 
 

In February of 2022 we conducted a short (14 question) survey of n  569 U.S. adults using a different 

opt-in panel from the three in the benchmarking study. We refer to this as the “follow-up survey” out of 

recognition that its purpose was to follow-up on and further probe intriguing findings from the 

benchmarking study. If the patterns from the benchmarking study replicated in this fourth, separate opt-in 

panel, that would be strong evidence of a systemic problem in the U.S. opt-in panel space. No probability-

based samples were included in this follow up because neither the benchmarking study nor other studies 

(e.g., Kennedy et al., 2021) find meaningful levels of bogus respondents in probability-based samples.  

The goal of the follow-up study was to determine if purportedly Hispanic and/or young opt-in 

respondents are prone to saying “Yes” no matter what is asked. To assess this, we selected questions for 

which a “Yes” answer is not credible. One question asked, “Are you licensed to operate a class SSGN 

submarine?” and offered Yes or No as responses. A class SSGN is a nuclear-powered U.S. naval submarine 

equipped with cruise missiles, of which there are only four in operation by the U.S. Navy. With 

approximately 425,000 active duty and reserve personnel, the entire U.S. Navy comprises less than 0.2% of 

the U.S. adult population, making the share of U.S. adults qualified to operate such a vessel is approximately 

0%. A separate question in the follow-up survey was formatted as a battery asking “which of the following 

did you do in the past week? Check all that apply”. The list of activities included two common activities 

(watched TV, read a book) and four extraordinarily uncommon activities (purchased a private jet, climbed 

a peak in the Karakoram Mountains, learned to cook halušky, and played jai alai).  

The goal of the follow-up study was to determine how many opt-in respondents would select the non-

credible answers and whether that behavior was concentrated among respondents identifying as Hispanics 
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and young adults, as it was in the benchmarking component. Making inferences about the U.S. public was 

not the research goal, and so this analysis is not weighted.  

 

4.2 Results of the follow-up survey 
 

The follow-up experiment bore out the post-hoc hypothesis from the benchmarking: opt-in respondents 

identifying as young or Hispanic were prone to giving bogus responses. They are prone to reporting 

affirmatively that they have some characteristic when that is simply not possible in the aggregate numbers 

observed. The first column of Table 4.1 shows that overall, 5.3% of the follow-up survey respondents 

claimed to be licensed to operate a class SSGN nuclear submarine. Echoing the benchmarking study, the 

incidence of this bogus claim was particularly high among Hispanics (23.7%) and those under age 30 

(12.1%).  

The pattern was the same for claims of doing at least one of the extremely uncommon activities in the 

past week. The share reporting at least one extremely uncommon activity in the past week (buying a private 

jet, climbing the Karakoram Mountains, learning to cook halušky, or playing jai alai) was significantly 

higher among those age 18 to 29 than those age 30 and over (t  2.99, p  0.01). Likewise, the share 

reporting at least one extremely uncommon activity in the past week was significantly higher among 

Hispanics than non-Hispanics (t  5.11, p  0.01). These findings make clear what the benchmarking 

suggested: that commercial opt-in respondents in these subgroups are prone to giving bogus answers.  

 

Table 4.1 

Commercial online nonprobability estimates of extremely rare population characteristics. 
 

 Licensed to operate 
a nuclear submarine 

Extremely low 
incidence behavior 

All adults 5.3% 8.4% 
 (0.94) (1.17) 

Ages 18-29 12.1%* 17.2%* 
 (3.03) (3.51) 

Ages 30+ 3.5% 6.2% 
 (0.87) (1.13) 

Hispanic 23.7%* 28.0%* 
 (4.41) (4.66) 

Non-Hispanic 1.5% 3.6% 
 (0.56) (0.87) 

Note: Standard errors are shown in parentheses. Extremely low incidence behavior was defined as having done any of the following activities 
in the past week: purchasing a private jet, climbing a peak in the Karakoram Mountains, learning to cook halusky, or playing jai alai. 
Asterisk (*) indicates that the proportion is significantly higher ( p  0.01) than for the complementary group based on 2-tailed t -test 
assuming unequal variances. 

 

4.3 Implications for statisticians working with opt-in data 
 

These results raise an important question. If Hispanic opt-in cases are clearly answering falsely when 

self-reporting things like operating a nuclear submarine, might they be answering falsely when they 

self-report being Hispanic? With opt-in data it is generally not possible to validate respondents’ ethnicity. 

That said, the weight of evidence for bogus responding presented here suggests that all answers from 

respondents making implausible claims should viewed with skepticism. Indeed, the follow-up survey was a 
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mere 14 questions, eliminating excuses along the lines of “maybe some people get tired near the end of long 

surveys”. That is not what the data show. Instead, we see people claiming Hispanic ethnicity also claiming 

a series of implausible characteristics. Critically, this replicated in four different commercial nonprobability 

panels. The simplest explanation, which we also consider to be the most credible, is that some opt-in 

respondents are prone to saying “Yes” no matter what the question is asking, and this holds for adjustment 

variables as well as survey outcome variables.  

The implication for statisticians working with these data is that some of the variables they use to reduce 

bias (especially variables measured with a Yes/No format) may contain large errors. Moreover, those errors 

may be concentrated in certain subgroups, rather than distributed randomly within the responding sample. 

Consequently, statistical techniques for estimation with commercial opt-in data may not work as well as 

previously thought. Studies ignoring the existence of bogus respondents in these types of samples are at 

high risk of overstating the performance of various modeling approaches.   

It is less clear why bogus responding is also prevalent among young opt-in respondents. Age is not 

measured with a Yes/No question, and so we would not expect the same positivity bias that appears to be at 

play with Hispanic ethnicity. In the benchmarking survey, respondents were asked to select their year of 

birth from a dropdown menu with years ordered from highest to lowest. In the follow-up study, a binned 

age variable was provided by the sample vendor. Bogus responders may be simply selecting answers toward 

the top of the list. It is also possible that the choices are strategic, with bogus responders choosing answers 

that make them more likely to qualify for a survey or potentially to receive higher incentives. While it seems 

possible that bogus respondents may in fact skew young, there is little reason to believe that demographics 

and other auxiliary variables are measured any more accurately than substantive ones. Indeed, the distinction 

between these two types of variables is only meaningful to statisticians.  

 

5. Limitations 
 

This study addresses one class of nonprobability surveys (i.e., commercial online opt-in panels or 

marketplaces) in one country (the United States). We would not expect the types of errors observed here to 

be present in nonprobability samples fielded under qualitatively different circumstances. In commercial 

nonprobability sources, bogus respondents are rewarded for their bad behavior because they often received 

incentives with monetary value, but there may be no such reward structure in, for example, a bespoke, 

offline sample of an at-risk population. We also cannot know from our data whether the findings from this 

study generalize to commercial nonprobability panels in other countries. 

Another limitation of this study concerns the benchmarking analysis presented in Section 3. While 

benchmarking analysis is useful as a means of evaluating the accuracy of survey estimates, it has its 

limitations. The benchmarks in this study are drawn from government-funded surveys that are conducted at 

considerable expense and with great attention to survey quality. But they are surveys nevertheless and 

subject to some of the same problems facing the online surveys. The surveys used as benchmarks have high 

response rates, on the order to 60% or more. Accordingly, the risk of nonresponse bias is generally thought 

to be lower for these surveys, though it still exists. Also relevant is the fact that all surveys, no matter the 

response rate, are subject to measurement error. Questions asked on government-funded surveys are 
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carefully developed and tested, but they are not immune to some of the factors that create problems of 

reliability and validity in all surveys. The context in which a question is asked (e.g., the questions that come 

before it) often affects responses to it. Similarly, all survey items may be subject to some degree of response 

bias, most notably social desirability bias. Especially when an interviewer is present, respondents may 

sometimes modify their responses to present themselves in a more favorable light (e.g., by overstating their 

frequency of voting). All of these factors can affect the comparability of seemingly identical measures asked 

on different surveys. Assessing the quality of data is an inexact process at best. It is therefore important to 

bear in mind that benchmarking provides measures of estimated bias and is dependent on the particular set 

of measures included. 

 
6. Discussion 
 

This study is the first to use benchmarking to identify subgroups where bogus responding is concentrated. 

It is also the first to demonstrate that high rates of bogus data among young adults and self-identified 

Hispanics appears to be an industry-wide phenomenon, at least in the United States. Four different 

commercial nonprobability panels or marketplaces all showed the same pattern. By contrast, opt-in 

estimates for adults ages 65 and older were relatively accurate (mean absolute error of 3.3 percentage 

points). This suggests that nonprobability approaches, such as hybrid designs, may be differentially effective 

depending on the subgroup of interest. 

This study also raises the question of whether Hispanic adults are more prone to providing bogus answers 

than other adults. We do not think that is a credible explanation for the results observed. To our minds, 

realizing that many of these “Hispanic” cases are, in all likelihood, not actually Hispanic is the single most 

important finding. Its implications for survey statisticians are profound. The implication is that we should 

not be relying exclusively on techniques like sample matching, propensity models, or hierarchical 

regressions to fix errors in commercial nonprobability samples. All such approaches assume that 

respondents are who they say they are; that their demographic information is measured with little to no 

error. This study demonstrates that with certain types of nonprobability data (namely commercial, online 

panels), that is not a safe assumption.  

Some researchers working with commercial online data are aware of the threat from bogus respondents 

and take steps to mitigate it. However, more research is needed around the efficacy of current practices 

because there is some evidence that they are inadequate. Kennedy et al. (2021) found that 84% of bogus 

respondents passed an attention check (or “trap” question), 87% passed a check for too-fast response time, 

and 76% of bogus respondents passed both of those popular data quality checks. More sophisticated 

detection techniques have been proposed (e.g., Jones, House and Gao, 2015), but they do not appear to be 

widely adopted.  

A related concern is that public reporting of results from commercial nonprobability panels rarely 

discloses whether and how the threat from bogus respondents was addressed. At a minimum, researchers 

reporting results based on this type of data should disclose what measures were taken to guard against bogus 

respondents and to what effect. While some organizations may already provide this information, robust 
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disclosure is far from common. Greater awareness and transparency around the existence of bogus 

respondents in commercial nonprobability samples may help to reduce instances of erroneous findings (e.g., 

Litman et al., 2021; Westwood et al., 2022) and promote greater caution when interpreting findings from 

nonprobability samples.  
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Appendix 
 

Table A.1 

Benchmarking variables and source. 
 

Variable  Benchmark Source Question Wording 

English proficiency 2019 American 
Community Survey 

Do you speak a language other than English at home? [Ask if speaks a language 
other than English at home] How well do you speak English? Very well; Well; 
Not well; Not at all 

Citizenship 2019 American 
Community Survey 

Are you a citizen of the United States?  

Parent of child in household 2020 National Health 
Interview Survey 

Are you the parent or guardian of any children under age 18? [Ask if parent or 
guardian of child under age 18] Are any of those children under 18 now living in 
your household?  

Marital status 2021 Current Population 
Survey March 
Supplement 

Which of these best describes you? Married; Living with a partner; Divorced; 
Separated; Widowed; Never been married 

Number of adults in 
household 

2019 American 
Community Survey 

How many people, including yourself, live in your household? [Ask if more than 
one person in household] How many, including yourself, are adults, age 18 and 
older?  

Number of children in 
household 

2019 American 
Community Survey 

How many people, including yourself, live in your household? [Ask if more than 
one person in household] How many, including yourself, are adults, age 18 and 
older?  

Health insurance 2020 National Health 
Interview Survey 

Are you currently covered by any form of health insurance or health plan? 

Retirement account 2021 Current Population 
Survey March 
Supplement 

At any time during 2020 did you have any retirement accounts such as a 401(k), 
403(b), IRA, or other account designed specifically for retirement savings?  

Received food stamps 2021 Current Population 
Survey March 
Supplement 

At any time during 2020, did you or anyone in your household receive benefits 
from SNAP (the Supplemental Nutritional Assistance Program) or the Food 
Stamp program, or use a SNAP or food stamp benefit card?  

Received social security 2021 Current Population 
Survey March 
Supplement 

During 2020 did you receive any Social Security payments from the U.S. 
Government?  

High blood pressure 2020 National Health 
Interview Survey 

Have you ever been told by a doctor or other health professional that you had 
hypertension, also called high blood pressure?  

Food allergy 2009-2010 National 
Health and Nutrition 
Examination Survey 

Do you have any food allergies? 

Smoking history 2020 National Health 
Interview Survey 

Have you smoked at least 100 cigarettes in your entire life? [Ask if ever smoked 
100 cigarettes] Do you now smoke cigarettes... Every day; Some days; Not at all 

Vaping history 2020 National Health 
Interview Survey 

Have you ever used an e-cigarette or other electronic vaping product, even just 
one time, in your entire life? [Ask if ever used e-cigarette] Do you now use e-
cigarettes or other electronic vaping products… Every day; Some days; Not at all 



Survey Methodology, June 2024 17 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Table A.1(continued) 

Benchmarking variables and source. 
 

Variable  Benchmark Source Question Wording 

Moved in last year 2021 Current Population 
Survey March 
Supplement 

Were you living in this house or apartment 1 year ago?  

Type of residence 2019 American 
Community Survey 

Which best describes the building where you currently live? (Include all 
apartments, flats, etc., even if vacant). A mobile home; A one-family house 
detached from any other house; A one-family house attached to one or more 
houses; A building with 2 or more apartments; Boat, RV, van, etc.  

Home ownership 2019 American 
Community Survey 

Which of the following describes the house, apartment or mobile home where 
you live? Owned by you or someone in your household with a mortgage or loan 
(include home equity loans); Owned by you or someone in your household free 
and clear (without a mortgage or loan); Rented; Occupied without payment of 
rent 

Number of cars 2019 American 
Community Survey 

How many automobiles, vans, and trucks of one-ton capacity or less are kept at 
home for use by members of your household?  

Job status last week 2021 Current Population 
Survey March 
Supplement 

Last week, did you do any work either for pay or profit? [Ask if did not work last 
week or refused] Last week, did you have a job either full or part time? Include 
any job from which you were temporarily absent. 

Work affected by Covid-19 2021 Current Population 
Survey March 
Supplement 

At any time in the last 4 weeks, were you unable to work because your employer 
closed or lost business due to the Coronavirus?  

Had a job last year 2021 Current Population 
Survey March 
Supplement 

Did you work at a job or business at any time during 2020?  

Union membership 2021 Current Population 
Survey March 
Supplement 

Are you a member of a labor union or of an employee association similar to a 
union?  

Received unemployment 
compensation 

2021 Current Population 
Survey March 
Supplement 

At any time during 2020, did you receive any State or Federal unemployment 
compensation?  

Received worker’s 
compensation 

2021 Current Population 
Survey March 
Supplement 

During 2020 did you receive any Worker’s Compensation payments or other 
payments as a result of a job-related injury or illness?  

Military/veteran status 2019 American 
Community Survey 

Have you ever served on active duty in the U.S. Armed Forces, Reserves, or 
National Guard? 

 
Table A.2 

Average absolute error in online survey estimates for 25 benchmarks, after removing apparently bogus cases. 
 

 All 
adults 

Ages 
18-29 

Ages 
30-64 

Ages 
65+ 

High 
school or less 

Some 
college 

College 
grad 

White Black Hispanic 

ABS Mean 2.8 3.7 3.1 3.0 3.7 2.9 2.5 2.7 4.1 3.8 
 (0.08) (0.30) (0.10) (0.17) (0.16) (0.18) (0.13) (0.09) (0.37) (0.32) 

Opt-in Mean 5.4 8.6 6.1 3.3 6.2 5.3 5.0 4.9 6.4 8.3 
(0.09) (0.25) (0.12) (0.14) (0.14) (0.17) (0.14) (0.10) (0.24) (0.24) 

ABS 1 2.5 2.7 2.8 2.7 3.1 2.7 2.2 2.4 3.7 3.2 
(0.09) (0.33) (0.13) (0.18) (0.19) (0.18) (0.18) (0.12) (0.45) (0.30) 

ABS 2 3.3 5.3 3.4 3.5 4.3 3.5 2.8 3.0 4.6 4.3 
(0.11) (0.42) (0.16) (0.22) (0.24) (0.23) (0.16) (0.13) (0.38) (0.40) 

ABS 3 2.6 3.2 3.0 2.8 3.7 2.6 2.5 2.6 3.9 3.8 
(0.15) (0.43) (0.19) (0.28) (0.31) (0.29) (0.18) (0.15) (0.60) (0.57) 

Opt-in 1 5.8 8.5 6.9 3.3 6.2 6.1 5.5 5.6 6.6 8.2 
(0.15) (0.39) (0.21) (0.18) (0.26) (0.23) (0.25) (0.17) (0.38) (0.40) 

Opt-in 2 5.6 9.4 6.4 3.6 6.3 5.3 5.6 5.0 7.4 8.5 
(0.15) (0.41) (0.21) (0.19) (0.27) (0.29) (0.23) (0.16) (0.40) (0.44) 

Opt-in 3 4.8 7.8 5.2 3.0 6.2 4.4 3.9 4.2 5.2 8.2 
(0.15) (0.44) (0.19) (0.18) (0.23) (0.29) (0.23) (0.16) (0.41) (0.41) 

Note: Apparently bogus cases are defined here as those who claimed to have received all four government benefits measured. 
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Comments on “Exploring the assumption that commercial 
online nonprobability survey respondents are answering in 

good faith” 

J. Michael Brick1 

Abstract 

Nonprobability samples are quick and low-cost and have become popular for some types of survey research. 
Kennedy, Mercer and Lau examine data quality issues associated with opt-in nonprobability samples frequently 
used in the United States. They show that the estimates from these samples have serious problems that go beyond 
representativeness. A total survey error perspective is important for evaluating all types of surveys. 

 
Key Words: Total survey error; Fit-for-use; Fabrication. 

 
 

Kennedy, Mercer and Lau (KML) make a valuable contribution to our understanding of the quality of 

estimates from opt-in panels. The clarity of the article is noteworthy since much of the literature associated 

with opt-in panels is related to selection bias and is so technically sophisticated that it may hinder 

practitioners from fully appreciating the key assumptions and their implications.  

KML’s research was intended to examine the accuracy of opt-in estimates for producing domain 

estimates. The ability to produce estimates for rare domains is a potentially significant benefit of opt-in 

panels because costs are so much lower for these samples. Most earlier studies had not looked closely at 

domain estimates. KML’s findings reveal disturbing features of opt-in panels that are consistent with 

existing literature but may not be well-known to many users of opt-in panels. In essence, large fractions of 

opt-in interviews are of such poor quality that some researchers suggest dropping 15 to 50 percent of all 

interviews. I can only imagine what Dr. Deming would have thought of this solution to the problem where 

the supplier hides the “defects” and it is the customer’s job to inspect and remove them. The typical Deming 

approach of working on the process or system to avoid the defects in the first place is not feasible for opt-

in panels because the process is a black box that is unavailable to the customer. 

Their initial study led KML to develop hypotheses about bogus respondents that could be tested in a 

smaller follow-up study. The follow-up survey clearly shows that a substantial portion of the respondents 

in opt-in panels are not credible respondents. Here again, they provide the evidence that users of opt-in 

panels should not ignore. 

Before discussing some of the details, a subtext of KML is that the “assumption” that respondents in opt-

in panels behave like respondents in probability samples is just an assumption – and a faulty assumption. 

For decades, surveys conducted with probability samples have been examined for multiple sources of error 

using the Total Survey Error (TSE) framework. Does it make sense to ignore this framework just because 
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the source of the sample is different? Traditional criteria like coverage and response rates in TSE may not 

directly apply to opt-in surveys, but many other error sources do.  

The most recent American Association of Public Opinion Research report (AAPOR, 2022) on quality 

metrics reveals the struggle to identify quality online samples is ongoing although progress is limited. Users 

have little reason to be comfortable with the quality of any opt-in panel. KML only briefly discuss the 

relative merits of their different opt-in panels. The search for a high-quality opt-in panel is something that 

many pursued for over a decade, but the evidence thus far suggests this is a chimera.   

KML do not attempt a comprehensive review of all sources of error for opt-in surveys, but they clearly 

show that traditional survey assumptions may not apply to opt-in panels. Speed and low-cost data collection 

– the main advantages of opt-in panels – should not be the only criteria when deciding on how to conduct a 

survey. Accuracy of the estimates matters, or at least it should matter! Two important messages in KML are 

that (1) opt-in panels perform poorly compared to ABS probability-based panels in terms of the accuracy of 

estimates for domains, and (2) one of the reasons for the poor quality of opt-ins panels is the presence of 

bogus respondents. Every potential customer of an opt-in panel should understand these facts before 

deciding whether an opt-in panel is an appropriate source of data.  

An opt-in panel could be fit-for-use if all that is needed is a general idea about the size of an estimate 

(“is it bigger than a breadbox?”). But customers should be very aware that increasing the sample size of the 

opt-in panel will not improve the accuracy of the estimates because bias does not decrease with sample size. 

Furthermore, KML show that increasing sample sizes to produce accurate domain estimates is not effective. 

The presence of bogus respondents adds noise that distorts estimates for domains.  

 
Assumptions 
 

KML show that sampling and selection biases are not the only differences between probability sample 

surveys and opt-in panel surveys. Let’s begin by considering respondents. Two active lines of research on 

the quality of respondents in opt-in panels focus on concerns regarding professional respondents, or more 

generally panel conditioning (are opt-in panel respondents conditioned by responding to other surveys?), 

and validity (are respondents who they say they are?). Hillygus, Jackson and Young (2014) and Baker, 

Miller, Kachhi, Lange, Wilding‐Brown and Tucker (2014) are examples of this work. However, many users 

act as if opt-in panel respondents are like probability sample respondents. KML show this assumption is 

unjustified. 

Why wouldn’t respondents to opt-in panels behave like respondents to probability samples? Perhaps the 

better question is why would we ever believe they are similar? Opt-in panel respondents choose to join a 

panel or respond without being asked to respond to a specific survey. The motivations of probability sample 

respondents and opt-in panel respondents are likely to be very different (Keusch, Batinic and Mayerhofer, 

2014). Those who argue that choosing to respond to a panel is like choosing to respond to direct survey 

request in a probability sample are making a large and unsubstantiated assumption. My unverified 

assumption is that the act of reaching out and actively requesting a household to join is perhaps the major 
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quality advantage that probability-based panels have over opt-in panels. Similarly, the literature of panel 

conditioning from probability samples may not have much relevance to opt-in panels (or probability-based 

panels) because that literature examines the effects on responses over time to the same general set of 

questions rather than every survey request being different. 

In Table 3.3 KML provide striking evidence of much greater bias in the opt-in panels than the 

probability-based panels. Suppose we assume a simple measurement error model where the survey response 

is subject to error but the benchmark is error-free. This model is  

 , , ,s i i s iy      

where ,s iy  is the 0-1 response to having the government benefit for survey s  and respondent ,i i  is the 

true value for respondent ,i  and ,s i  is the error in survey s  for respondent .i  In this simple case, the 

measurement error bias is  

  me FP FN ,bias 1        

where   is the finite population mean of the ,i FP  is the false positive probability, and FN  is the false 

negative probability. Table 3.3 shows the opt-in panel absolute biases for the 4 different government 

benefits range from 1.3 to 5.1 times higher than those for the ABS samples suggesting poor quality for the 

opt-in panels. 

If we assumed FP FN ,   we might think these findings are reasonable, but there is a substantial 

literature on these rates from probability samples that show FP  is negligible compared to FN .  As a result, 

Table 3.3 in KML also raises serious questions about the overestimation of benefits for the probability-

based samples. Celhay, Meyer, and Mittag (2022) report the SNAP estimates from the Survey of Income 

and Program Participation (a longitudinal probability sample) has FN  0.180 and FP  0.013 resulting in 

an underestimation of SNAP participation. This finding suggests that the assumption that a probability-

based panel behaves like a probability sample may not hold. Survey conditions do matter, and we should be 

wary of importing an assumption from one setting into another without evidence. The data alone do not 

allow us to assess whether the unexpected overestimation of benefits in the ABS samples is due to a 

particular cause or some aggregation of causes. More careful studies of probability-based panels are needed. 

 
Bogus respondents 
 

In the follow-up study, KML confirm their hypothesis that Hispanics and young respondents are much 

more likely to be bogus respondents. They also rightly question whether these respondents are even Hispanic 

or young since their responses to these items might also be fabricated.  

They suggest that the high rate of fabrication in these subgroups might be related to the motivation to 

opt into the sample since young and Hispanic respondents are needed for many surveys. Bogus respondents 

might be motivated to state they are members of these subgroups to obtain incentives or other rewards. This 
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idea seems plausible given the high probability of bogus responses to other “test” items for members of 

these subgroups. 

KML do not discuss bogus respondents in opt-in panels for those who are not members of these 

subgroups in any depth. But isn’t that the implication from the findings that 3.5 percent of those 35 and 

older are licensed to operate a nuclear submarine? At the least, the user should be aware of the possibility 

that a high fraction of all responses are bogus.  

Is the solution to try to find a way to drop these bogus cases? KML do not endorse that solution and 

show that even if we wanted to do this, there is no simple way to do it effectively. I completely agree with 

them. If there is adequate motivation, people will find ways to defeat inspection tools. If opt-in panels wish 

to be accepted as producing high quality results, then they have considerable work to do. KML have done 

us a service by clarifying what choices in sample sources really entail. 

 
References 

 

AAPOR (2022). Data Quality Metrics for Online Samples: Considerations for Study Design and Analysis. 

Downloaded March 13, 2023 https://aapor.org/wp-content/uploads/2023/02/Task-Force-Report-

FINAL.pdf. 

 

Baker, R., Miller, C., Kachhi, D., Lange, K., Wilding‐Brown, L. and Tucker, J. (2014). Validating 

respondents’ identity in online samples. Online Panel Research: Data Quality Perspective, A, 441-456.  

 

Celhay, P.A., Meyer, B.D. and Mittag, N. (2022). What Leads to Measurement Errors? Evidence from 

Reports of Program Participation in Three Surveys, (No. w29652). National Bureau of Economic 

Research. 

 

Hillygus, D.S., Jackson, N. and Young, M. (2014). Professional respondents in nonprobability online panels. 

Online Panel Research: Data Quality Perspective, A, 219-237.  

 

Keusch, F., Batinic, B. and Mayerhofer, W. (2014). Motives for joining nonprobability online panels and 

their association with survey participation behavior. Online Panel Research: Data Quality Perspective, 

A, 171-191. 



Survey Methodology, June 2024 27 
Vol. 50, No. 1, pp. 27-28 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Michael R. Elliott, Department of Biostatistics, University of Michigan, M4124 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109. 

E-mail: mrelliot@umich.edu. 

 

Comments on “Exploring the assumption that commercial 
online nonprobability survey respondents are answering in 

good faith” 

Michael R. Elliott1 

Abstract 

Kennedy, Mercer, and Lau explore misreporting by respondents in non-probability samples and discover a new 
feature, namely that of deliberate misreporting of demographic characteristics. This finding suggests that the 
“arms race” between researchers and those determined to disrupt the practice of social science is not over and 
researchers need to account for such respondents if using high-quality probability surveys to help reduce error in 
non-probability samples. 
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Kennedy, Mercer, and Lau (KML) are to be commended for an excellent article discussing an 

underappreciated problem with non-probability samples: the presence of bogus respondents. While theirs is 

not the only discussion of this topic – Jamieson, Lupia, Amaya, Brady, Bautista, Clinton, Dever, Dutwin, 

Goroff, Hillygus, Kennedy, Langer, Lapinski, Link, Philpot, Prewitt, Rivers, Vavreck, Wilson and McNutt, 

2023 note evidence of similar respondents in studies of ingesting bleach to protect against COVID-19 

(Litman, Rosen, Hartman, Rosenzweig, Weinberger-Litman, Moss and Robinson, 2023), belief in 

conspiracies like PizzaGate (Lopez and Hillygus, 2018), support of political violence (Westwood, Grimmer, 

Tyler and Nall, 2022), or favorable views of Vladimir Putin (Kennedy, Hatley, Lau, Mercer, Keeter, Ferno 

and Asare-Marfo, 2021) – they further highlight the intensity of the problem and discover a new facet: 

intentional misreporting of basic demographics. This latter point is quite important as these quantities, which 

are often known reasonably accurately for populations of interest from the US Census or other government 

survey sources, are often used for calibration, to mitigate selection and/or non-response bias. 

I and others have advocated for careful and continued funding of a set of major high quality surveys to 

serve as benchmarks to calibrate non-probability surveys (Wu, 2022). KML suggest such studies might also 

need to include measures to help detect bogus respondents, in addition to whatever steps might be taken to 

directly identify such respondents in the non-probability survey itself, such as inclusion of bogus 

identification questions (Petzel, Johnson and McKillip, 1973; Chandler, Rosenzweig, Moss, Robinson and 

Litman, 2019). Given that non-probability surveys can easily become the target of individuals trying to 

influence study outcomes for a wide variety of reasons, we have probably not seen the last of this growing 

“arms race” between researchers and those determined to disrupt the practice of social science. 
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Abstract 

This discussion summarizes the interesting new findings around measurement errors in opt-in surveys by 
Kennedy, Mercer and Lau (KML). While KML enlighten readers about “bogus responding” and possible patterns 
in them, this discussion suggests combining these new-found results with other avenues of research in 
nonprobability sampling, such as improvement of representativeness. 
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KML in their seminal research focus on the important aspect of measurement error in nonprobability 

surveys, especially commercial online ones, referred to as “opt-in-surveys”. Advanced methods of 

estimation of population characteristics from nonprobability surveys are commonly developed under the 

assumption of accuracy of survey responses. In the presence of inaccurate responses, where this assumption 

is violated, those methods may be inadequate. Thus, when KML question the accuracy of individual survey 

responses in opt-in surveys, our attention is drawn to this serious issue that calls for further research on the 

problem. 

The most popular type of web survey is based on the so-called “opt-in” or volunteer panel. Unlike 

probability surveys where a sample, representative of the population, is drawn from a frame, opt-in panels 

are not constructed using a probability-based design. In such a panel, volunteers are recruited through 

various convenient but nonprobability methods like quota sampling, snowball sampling etc. and people 

often join to receive some kind of incentive. Issues like increasing cost and declining response rates of 

probability surveys are well talked about. In the age of big data and fast and efficient computer programming 

capabilities, opt-in surveys are receiving much interest. These surveys cost less and panel recruitment as 

well as receiving responses from volunteers can be achieved quickly. However, there is no guarantee that 

such samples properly represent the target population. In addition, as KML point out, there is a concern that 

responses may not be genuine. There is a chance that some respondents might be driven by the incentive or 

may intentionally provide nonsensical responses. KML highlight these issues of opt-in surveys and find 

interesting pathways for future research in nonprobability surveys.  

Groves and Lyberg (2010) discuss the total survey error framework starting from error typology from 

Deming’s 1944 American Sociological Review article where bias components of error versus variance 

components of error are clearly noted. It is also noted that earlier sampling theories and methods are most 

applicable when nonsampling errors are small. Nonsampling errors include nonresponse errors, 
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measurement errors and so on that are not related to the sample selection. Hansen, Hurwitz and Bershad 

(1961) in their paper mention that the collection and processing operations of sample surveys constitute the 

measurement process and are the sources of measurement error. KML quantify measurement error in 

individual responses by comparing the average size of errors of opt-in surveys with probability surveys and 

thus connect two areas of methodological research around data quality in opt-in panels. 

KML’s paper focuses on the not-so-talked about area of nonsensical responses in opt-in-surveys, which 

are termed as “bogus responses”. The use of benchmarking helps to formulate the hypothesis that these 

answers to survey questions are nonsensical. This hypothesis is further tested using a “follow-up survey” 

where questions based on rare events are asked, to which an affirmative response is highly unlikely. In total 

they work with six surveys; three of them are commercial opt-in surveys where vendors used quota sampling 

(with the 2019 American Community Survey, ACS, as target) to select the samples. The other three are 

probability surveys where panelists are recruited using address-based sampling (ABS). In the benchmarking 

study responses to 25 questions common to all these surveys (treated as estimates) are compared with those 

from government surveys (treated as true values) like the ACS, the Current Population Survey (CPS) and 

the National Health Interview Survey (NHIS) in terms of Mean Absolute Error (MAE). A thought along the 

lines of the follow-up survey is as follows: suppose that the main survey questionnaire could be planned in 

such a way as to include a set of special “detective” questions (in addition to the main questions). Responses 

to these questions would be used to measure “probabilities of a bogus response” given covariates. These 

probabilities of a bogus response could be used to downweight individual responses. For example, we 

provide the extreme values of the weight adjustment, which is between 0 and 1, using the following 

conditions: if the probability that a response is bogus is 1 then the weight adjustment is 0, again if the 

response is well trusted then the weight adjustment is 1. A method could be developed to incorporate these 

probabilities along with the usual response participation probability weighting, to simultaneously improve 

representativeness and account for the probability of a bogus answer. 

Most interestingly, thankfully to the research of KML, we learn about the presence of patterns in such 

bogus responding. As the authors indicate, theirs is the first paper that uses benchmarking to identify 

subgroups that have a high probability of bogus responses. When sub-grouped by demographic variables of 

respondents, one at a time, primarily age and race-ethnicity, it is observed from the three opt-in-surveys that 

young (age 18-29 years) and Hispanic respondents are more prone to such trends. Of course, these groupings 

are subjective; there are other variables like gender, education that are not found to be very impactful in 

distinguishing those stark differences. It is understandable that considering interaction and subdivision into 

multiple domains would decrease sample size considerably. In such scenarios one can think of applying 

small area techniques. Ghosh (2020) provides a great review of different small area models and methods. 

Here a question can be raised: can a statistical tool be developed, using machine learning methods like 

regression trees and such, that would help find significant variables to identify bogus responding? This 

might help to discover the interaction effect between variables unlike considering one at a time, as done by 

KML. In the context of grouping using machine learning, Loh (2011) reviews some widely available 

algorithms on classification and regression trees. 
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Literature on nonprobability surveys has focused on the improvement of representativeness, i.e., to 

reduce selection bias to make the sample more representative of the population. Much work has been done 

on the inverse propensity score weighting (IPSW) methods where the propensity is defined by the 

participation probability of population units in the nonprobability sample. Valliant and Dever (2011), Chen, 

Li and Wu (2020), Wang, Valliant and Li (2021), Savitsky, Williams, Gershunskaya, Beresovsky and 

Johnson (2023) derive methods involving combining/stacking nonprobability surveys with 

probability/reference surveys to estimate participation probabilities, which are otherwise unknown for 

nonprobability surveys due to their unknown selection mechanism. Here assumptions about ignorability and 

strict positivity of propensity scores need to be made. These methods generally define a log-likelihood upon 

creating an indicator variable defining success if a unit is present in the nonprobability sample. The 

information about the whole finite population being unknown, the subsequent modification of the likelihood 

into a pseudo-likelihood and use of the reference survey depend on the combining methodology. 

Researchers thus estimate the propensity score with the help of different data integration techniques and 

support the performances of estimators in terms of bias and variance with the help of simulation studies and 

real-life datasets. To be specific, Chen, Li and Wu (2020) compute a doubly robust estimator for finite 

population means where the name doubly robust comes from two models: one is the propensity score model 

and the other is the outcome regression model. 

To put all these into the context of discussion of the paper by KML, it would be of interest to see the 

effect of using the ideas developed in the aforementioned papers to estimate the weights for opt-in surveys. 

Currently the weights in question are developed using calibration to match with population characteristics, 

but will such estimation procedures involving data integration affect the measurement errors due to bogus 

responding? KML’s paper throws light on the fact that it is not advisable to directly use the responses from 

opt-in surveys. Researchers should check the credibility of such responses with the help of available 

probability surveys, like benchmarking with government surveys. For survey statisticians it would be 

beneficial to know how to properly combine opt-in-surveys with other sources which help validate their 

credibility and help improve responses or eliminate bogus responding. In essence, the outstanding ideas 

developed by KML throw the readers into a unique direction of thought, focusing on nonsampling errors. 

This, combined with the recent development of methodologies on improved representativeness of 

nonprobability samples, provide us with innovative research outcomes to look forward to.  
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Our comments respond to discussion from Sen, Brick, and Elliott. We weigh the potential upside and downside 
of Sen’s suggestion of using machine learning to identify bogus respondents through interactions and improbable 
combinations of variables. We join Brick in reflecting on bogus respondents’ impact on the state of commercial 
nonprobability surveys. Finally, we consider Elliott’s discussion of solutions to the challenge raised in our study. 
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We thank the journal’s leadership for hosting this dialogue and the discussants for offering their 

thoughtful comments. Each brings a unique perspective. Sen connects our study to other trends in survey 

statistics. Brick offers sobering reflections on the state of commercial non-probability surveys and helps to 

situate our work within that. Elliott advances discussion of solutions to the challenge raised in our study. 

Sen observes that the demographic groups highlighted in our study were subjective and not exhaustive, 

as researchers could also look at education, geography, etc. We agree with the overall point and 

acknowledge that new insights could be gained from casting a wider net for variables correlating with bogus 

response. We also appreciate her pointing to machine learning as a possible means of identifying bogus 

respondents through interactions and improbable combinations of variables. The fact that machine learning 

is scalable and may be adaptive to changing respondent behavior makes it a potentially fruitful avenue for 

future research. On the other hand, we are skeptical that small area modeling and doubly robust estimators 

are likely to move the needle on accuracy. Past studies have found that for opt-in samples, such methods 

offer only marginal improvements over more common calibration methods (Mercer, Lau and Kennedy, 

2018; Valliant, 2020). It may be that their limited utility stems from the fact that while such methods are 

excellent for correcting problems related to selection, they are poorly suited to address the problem of bogus 

respondents, which is fundamentally about measurement error.  

Brick offers several high-level industry reflections that resonate with us. He notes, “The search for a 

high-quality opt-in panel is something that many pursued for over a decade, but the evidence thus far 

suggests this is a chimera.” Indeed, our study along with Geraci (2022), Enns and Rothschild (2022) and 

others suggest that the emergence of such an opt-in panel is growing less likely not more. Previously, 

statisticians in this space focused on modeling to make commercial nonprobability samples more 

representative. Now they face the added challenge of determining which interviews are real and which are 

bogus. 
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We also appreciate Brick highlighting the role of the data supplier and how remarkable it is that the client 

(e.g., the researcher) bears the burden of identifying and remedying the types of errors we document. Our 

study suggests that data cleaning claims appearing on supplier websites give a false sense of protection from 

this threat. Indeed, if the suppliers’ quality checks worked, bogus respondent wouldn’t appear in client 

samples, and studies like ours wouldn’t exist. It is imperative that researchers are aware of the threat posed 

by bogus respondents, particularly to domain estimates and full population estimates of rare outcomes. In 

our view, this threat has become so severe that researchers publishing point estimates using commercial 

non-probability samples should include a fulsome discussion of their approach for dealing with bogus 

respondents. Journal editors likely have a role in fostering that practice.  

One of Brick’s comments specific to our study was particularly intriguing. Reflecting on Table 3.2, he 

notes how the literature on program participation shows that the likelihood of false negative reporting tends 

to be significantly higher than the likelihood of false positive reporting. But Table 3.2 shows the opposite 

pattern in dramatic fashion for opt-in samples and in a more muted but still noticeable fashion for online 

panels recruited via address-based sampling (ABS). We agree with Brick that this contrarian finding 

indicates that online panels (both opt-in and ABS-recruited) perform differently than more rigorous 

probability-based samples on these outcomes. For opt-in panels, we have a reasonably strong hypothesis: 

bogus respondents tend to report in the affirmative (e.g., “Yes”, “Agree”) regardless of their true status 

because they want to qualify for future surveys and make more money. For online panels recruited by ABS, 

however, we are not aware of any hypothesis that would predict false positive reporting. Our suspicion is 

that the differences between rigorous probability samples and probability-based online panels are not 

fundamental differences in kind, and are likely a function of mode differences, panel conditioning and other 

well-known phenomena from the survey methods literature. That being said, we agree with Brick that 

identifying the precise mechanisms driving these differences seems like fertile ground for theoretical 

development and future research.  

All discussants offered thoughts on possible solutions to the data quality problem explored in our study. 

As Brick’s remarks suggest, one solution is to simply decide not to use commercial nonprobability samples. 

While they are undisputedly cheaper and faster, a sizable literature (e.g., Dutwin and Buskirk, 2017; KML; 

MacInnis, Krosnick, Ho and Cho, 2018; Pennay, Neiger, Lavrakas and Borg, 2018; Yeager, Krosnick, 

Chang, Javitz, Levendusky, Simpser and Wang, 2011) shows they are less accurate. With Brick, we do not 

endorse using opt-in samples and assuming one can weed out the bogus cases. We agree with his observation 

that, given sufficient motivation, bad actors will continue to find ways to circumvent inspection tools in 

online sources that allow people to opt-in to the process.  

Sen raises the possibility of down-weighting respondents found likely to be bogus using detective 

questions. Prospects for that approach seem to depend on how much of the data provided by the bogus 

respondents is valid. For nonprobability samples in which the measurement error is likely to stem more 

from satisficing than fraud, this approach sounds promising. For commercial opt-in samples showing signs 
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of bogus responding (e.g., cases answering “yes” regardless of the question), it is less clear that retaining 

bogus cases even in a down-weighted capacity would improve mean square errors. Fortunately, these are 

testable questions, and with Sen, we’d welcome a deeper look into this.  

Elliott joins Wu (2022) in advocating for ongoing surveys rigorous enough to produce high quality 

benchmarks for use in calibrating less rigorous surveys. We enthusiastically second this proposal. At Pew 

Research Center, we have taken modest steps along these lines, creating an annual, multi-mode address-

based survey designed to produce timely benchmark estimates for Americans’ political party affiliation, 

religious affiliation, and technology use (Pew Research Center, 2022). This multi-modal study reflects the 

highest rigor we can achieve with our institution’s resources, but much more enhanced designs (e.g., with 

an in-person stage of data collection) could be possible with the type of investment Elliott proposes. It is 

clear to us that such new benchmarking studies are needed to improve very low response rate probability-

based samples like the three in our study. Whether benchmarking studies can rescue commercial non-

probability samples is, to our minds, an open question given the challenge posed by respondents 

intentionally misreporting their status on both weighting and outcome variables.  
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Nonprobability samples emerge rapidly to address time-sensitive priority topics in different areas. These data are 
timely but subject to selection bias. To reduce selection bias, there has been wide literature in survey research 
investigating the use of propensity-score (PS) adjustment methods to improve the population representativeness 
of nonprobability samples, using probability-based survey samples as external references. Conditional 
exchangeability (CE) assumption is one of the key assumptions required by PS-based adjustment methods. In 
this paper, I first explore the validity of the CE assumption conditional on various balancing score estimates that 
are used in existing PS-based adjustment methods. An adaptive balancing score is proposed for unbiased 
estimation of population means. The population mean estimators under the three CE assumptions are evaluated 
via Monte Carlo simulation studies and illustrated using the NIH SARS-CoV-2 seroprevalence study to estimate 
the proportion of U.S. adults with COVID-19 antibodies from April 01 ‒ August 04, 2020. 
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1. Introduction 
 

Nonprobability samples have emerged rapidly to address time-sensitive priority topics in different areas 

(Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and Tourangeau, 2013; Kennedy, Mercer, Keeter, 

Hatley, McGeeney and Gimenez, 2016). These data are timely but subject to selection bias. Participants are 

often self-selected and volunteer to participate without preassigned selection probabilities. Examples 

include epidemiological samples that consist of volunteers who are not randomly selected and therefore 

generally are not representative of any population. Furthermore, volunteers often are subject to “healthy 

volunteer effects” (Pinsky, Miller, Kramer, Church, Reding, Prorok, Gelmann, Schoen, Buys, Hayes and 

Berg, 2007), usually resulting in lower estimates of disease incidence and mortality in the volunteer sample 

than in the general population. Another example is data collected from probability-sampled web panels, 

which can result in high attrition and nonresponse rates are often found to be 90% or higher (Baker et al., 

2013). Although high nonresponse is not necessarily indicative of response bias (Groves and Peytcheva, 

2008; Brick and Tourangeau, 2017), selection bias has been of great concern because the composition of 

web panels often differs from that of the underlying population.  

In contrast to nonprobability samples, population-based probability surveys are designed to generate 

nearly unbiased estimates of population characteristics. They employ probability sample designs, such as 

stratified multi-stage cluster sampling, to select samples. The resulting samples, when appropriately 



38 Li: Exchangeability assumption in propensity-score based adjustment methods for population mean estimation… 

 

 
Statistics Canada, Catalogue No. 12-001-X 

weighted by the survey weights, can closely represent the target population and therefore are less susceptible 

to selection bias.  

To reduce selection bias of nonprobability samples, there has been wide literature in survey research 

investigating the use of propensity-score (PS)-based adjustment methods to improve the population 

representativeness of nonprobability samples, using probability-based survey samples as external references 

(Elliott and Valliant, 2017). Various PS-based adjustment methods have been developed and can be grouped 

into two categories: 1) inverse PS weighting (e.g., Chen, Li and Wu, 2020; Elliott, 2013; Valliant and Dever, 

2011) or inverse odds weighting (e.g., Wang, Valliant and Li, 2021) methods (PS-weighting); and 2) PS or 

log-odds of PS matching methods (PS-matching) (e.g., Lee and Valliant, 2009; Wang, Graubard, Katki and 

Li, 2022; Rivers, 2007).  

PS-weighting methods construct a pseudoweight for each nonprobability sample unit as the inverse of 

its propensity of participation. The PS-weighting method corrects for selection bias under the true propensity 

models, while it can be sensitive to the misspecification of the propensity model (Valliant, 2020) and 

produce estimates with large variances due to extreme weights (Stuart, 2010). In contrast, the PS-matching 

method uses the propensity score as a measure of similarity in the distributions of covariates that are 

included in the propensity model between the probability survey and the nonprobability sample, and thus 

tend to be less sensitive to the propensity model misspecifications. In addition, the PS-matching method 

avoids extreme weights, and therefore yields estimates with smaller variances. For recent comprehensive 

review papers on alternative methods for nonprobability sample analysis and data integration see the papers 

(Beaumont, 2020; Rao, 2021; Valliant, 2020). 

PS-based adjustment methods (e.g., Chen et al., 2020) require the following key assumptions to make 

nonprobability sample inferences. First, the reference survey sample, through weighting, properly 

represents the finite population (FP) of interest. Second, all FP units have a positive participation propensity 

(i.e., everyone in the population has a positive propensity to participate in nonprobability samples). Third, 

conditional exchangeability (CE) holds without unmeasured covariates, that is, the probability for everyone 

in the FP to participate in the nonprobability sample is not related to his/her outcome, after conditional on 

all measured covariates. Fourth, being sampled into the reference survey and participating in nonprobability 

sample are independent. All these assumptions are critical. In this paper, we focus on the CE assumption 

and examine various balance scores (i.e., functions of covariates) that satisfy the CE assumption.  

In observational studies for causal inferences, researchers typically attempt to adjust for all measured 

covariates, to mimic a completely randomized experiment and assume that such adjustments are sufficient 

for unbiased estimates of the treatment effects. This assumption is known as “exchangeability of treatment 

assignment” (Rubin, 1978). In survey research, however, the aim is to make inference about FP parameters 

and there is little research on the sufficiency of the above-mentioned assumption. Some studies (e.g., Wang 

et al., 2021) mentioned the need to make assumptions about participation propensity being ignorable given 

a set of adjustment variables, but aside from noting the presence or absence of biased estimates, there is 

rarely any additional exploration into whether and to what extent the CE assumption is violated when we 

make inference about the FP parameters.  
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The contribution of this paper is to 1) explore the validity of the CE assumption that is conditional on 

various balancing score estimates that are used in existing PS-based adjustment methods, including both 

PS-weighting and PS-matching methods, for nonprobability sample inferences; and 2) develop an adaptive 

balancing score for the CE assumption to improve the efficiency. In this paper, we are not developing new 

PS-based adjustment methods but study various balancing scores that satisfy the CE assumption. The PS-

weighting ALP method is used for illustration purposes. The developed balancing score can also be used in 

PS-matching methods such as Kernel smoothing method (Wang et al., 2022). The ALP estimators, assuming 

exchangeability of the outcome conditional on various balancing scores, are evaluated via Monte Carlo 

simulation studies and illustrated using the NIH SARS-CoV-2 seroprevalence study to estimate the 

proportion of U.S. adults with COVID-19 antibodies from April 01 ‒ August 04, 2020. 

 
2. Conditional exchangeability (CE) assumption 
 
2.1 Notation 
 

Consider a target finite population (FP) as a random sample of N  individuals from a superpopulation 

model, indexed by {1, 2, , },U N   with observations on a study variable y  and a vector of covariates .x  

Let { , : }xi iy i C  be the observations in the nonprobability sample of individuals, where C U  with size 

.cn  We are interested in estimating the FP mean 1
N iN i U

Y y


   using the nonprobability sample .C  The 

challenge is that we observe ,C  which, however, may not be a representative sample from .U  As a result, 

,|( )C NE y U Y  where the subscript C  refers to the randomness due to unknown nonprobability sample 

participation process from .U  Let ( ( ))( | ) |U CE y C E E y U  and ,( )| () U NE y U E Y  where the subscript 

U  refers to the expectation with respect to the superpopulation model. The expectation of y  in C  may 

differ from that in ,U  that is, ( | ) ( | )E y C E y U  due to the selection bias of the nonprobability sample .C  

 
2.2 CE assumption and balancing score 
 

To obtain a design-consistent estimator of NY  using ,C  the CE assumes 

 { | ( ), } { | ( ), },E y b C E y b Ux x  (2.1) 

where ( )xb  is a function of covariates ,x  so-called balancing score.  

The CE assumption (2.1) states that conditional on the balancing score ( ),b x  i.e., a function of measured 

covariates, the outcome has the same expectation in C  as in .U  In other words, the nonprobability sample 

units who carry the same value of balancing score ( )xb  would represent the same number of FP units. 

Intuitively, if two persons have the same participation propensity, they would represent the same number of 

FP units. Therefore, a natural choice of ( )xb  is the participation propensity ( | , ),P i C U x  i.e., the 

probability for the FP unit i  participating in C  conditional on the value of .x  
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More generally, the basic criterion for choosing a balancing score is that ( )xb  is finer than, if not equal 

to ( |   , ),P i C U x  to assure the validity the CE assumption (2.1). Therefore, the finest choice of balancing 

score is ( )x xb   and the coarsest choice is ( ) ( | , )x xb P i C U   or its monotone function. As a result, the 

chosen ( )xb  should be able to distinguish C  units with different participation propensities.  

In causal inference (Rosenbaum and Rubin, 1983), the conditional exchangeability assumption states 

that the outcome is exchangeable between the treated group vs the control group, conditional on all 

measured covariates. The distribution of covariates in treated group is matched to that in the control group 

via PS-weighting or PS-matching methods, under a treatment assignment propensity model. Treatment 

effect is then estimated by comparing the two group means after weighting or matching. Analogously, in 

nonprobability sample inferences, the covariate distribution in the nonprobability sample is matched to that 

in the FP under a (nonprobability sample) participation propensity model. Instead of estimating treatment 

effect, FP mean is estimated assuming the exchangeability of the outcome between the nonprobability 

sample and the FP after PS-weighting or PS-matching. Interested readers please refer to Mercer, Kreuter, 

Keeter and Stuart (2017) for details regarding parallels between causal inference and nonprobability sample 

inference. 

 
3. Existing balancing scores 
 
3.1 Estimation of ( |  x, )P i C U  
 

One can directly estimate the participation propensity ( | , )xP i C U  if covariates x  are known for all 

individuals in .U  Unfortunately, we don’t have x  measured for the entire ,U  whose distribution, however, 

can be estimated from a probability sample S  of size ,sn  { : }.i i Sx  Using S  as the reference survey, 

different propensity modeling approaches have been proposed (Chen et al., 2020; Kern, Li and Wang, 2021). 

For illustration purposes, we assume a logistic regression model  

 
( )

log ( ),
1 ( )

x
B x

x
Ti

i

i

p
g

p

 
 

 
   for ,i U  (3.1) 

where the propensity score ( )xip  is the propensity of unit i  being in the nonprobability sample versus the 

finite population as approximated by the weighted survey sample, denoted by .wS  Equivalently, 
( )

1 ( ) ( | , ).i

i

p

ip P i C U  x

x x  The ( )xig  is a known function of observed covariates, and B  the unknown 

regression coefficients to be estimated; see Wang et al. (2021, Section 2.3) for justification of propensity 

model (3.1). Define iw  is the sample weight of unit .i S  Solving  ( )( ) (1 ( ))B x xi ii C
S p g 

   

 0)( ) (x xi i ii S
w p g


  for ,B  the estimate is denoted as ˆ .wB  The subscript w  indicates that the reference 

survey weights are used to estimate B  in the propensity model (3.1). The participation propensity 

( |   , )xP i C U  for i C S   can be estimated by 
( ,  )

1

ˆ

( , 

ˆ

ˆˆ )
exp( )ˆ ,i w

i w

p

i w p
 x B

x B
x B  with ( ,  )ˆˆ x Bi wp  the estimate of the 

propensity score ( ).ip x  
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3.2 CE assumption conditional on (x; )B̂wb  
 

To satisfy the CE assumption (2.1), the balancing score should be, as fine as or finer than, the estimated 

participation rate. Following Wang et al. (2022), the linear predictor, i.e., a natural log transformation of the 

estimated participation propensity, is used as the balance score, i.e., ( ; ) ( ) log ( | , ).ˆ ˆ ˆx B B x xT
i w w i ib g p i C U    

Therefore, under the propensity model (3.1), let ( ) ( ; )ˆx x Bwb b  in (2.1), that is, 

 { | ( ; ), } { | ( ; ), }ˆ ˆx B x Bw wE y b C E y b U   

approximately holds. As follows, we estimate population mean by various existing PS-based adjustment 

methods. For example, the PS-weighting method ALP (Wang et al., 2021) weights the unit i  in C  by 

inverse of ( | , ) exp( ( ; )).ˆˆ
i i wp i C U b x x B  Another example is the PS-matching method KW (Wang et al. 

2022), which matches the units in C  and S  based on the similarity in .ˆ( ; )wb x B  It has been proved that 

both the ALP and the KW estimates are approximately unbiased under the CE assumption conditional on 

.ˆ( ; )wb x B  

A severe drawback of this method, however, is the potentially large variance inflation in ( )ˆ;x Bwb  due 

to the variability (Scott and Wild, 2001; Li, Graubard and DiGaetano, 2011) of the differential reference 

survey weights versus the nonprobability sample weights (= 1) in estimating the model parameter .B  For 

variance reduction, the survey weights have been ignored in estimating B  (Wang, Graubard, Katki and Li, 

2020; Lee and Valliant, 2009). 

 
3.3 CE assumption conditional on 0(x; )B̂b  
 

Assume the propensity model (3.1) is fitted to the combined nonprobability sample and unweighted 

survey data ( )C S  and the resulting estimated balancing score is 0 0( , ) ( )ˆ ˆx B B xT
i ib g  with 0B̂  obtained 

by solving the estimating equation  ( ) (1 ( )) ( ( ) ( 0) )B x x x xi i i ii C i S
S p g p g       for ,B  without 

considering probability sample weights. Accordingly, the CE based on 0
ˆ ,B  assumed by existing PS-

weighting or PS-matching methods (Wang et al., 2020; Lee and Valliant, 2009; Kern et al., 2021), is  

 0 0{ | ( ; ), } { | ( ; ), }.ˆ ˆE y b C E y b Ux B x B   

Without using the survey weights, the estimated balancing score 0( , )ˆx Bb  can be more stable than the 

.ˆ( , )wb x B  The question is how plausible is the CE assumption conditional on 0( , )ˆx Bb  in real problems.  

Note 0( , )ˆx Bb  produces balanced x  distribution between C  and ,S  and therefore exchangeability of 

the y  distribution (with all x  balanced) holds between C  and ,S  which, however, is not sufficient to 

obtain an unbiased estimate of the FP mean. Instead, the exchangeability of y  distribution between C  and U  

conditional on 0( , )ˆx Bb  is required. We know from Section 2.2 that ( | , )xP i C U  is the coarsest balancing 

score that satisfies (2.1) and ( )ˆ,x Bwb  approximately produce a balanced y  distribution between C  and .U  

According to the basic criteria for choosing balancing score, the 0( , )ˆx Bb  needs to be as fine as or finer than 

( )ˆ,x Bwb  One example is that 0 0( ; ) ( )ˆ ˆx B B xT
i ib g  is a linear function of ,ˆ ˆ( ; ) ( )T

i w w ib gx B B x  that is, 
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0 .consˆ . ˆtT T
w  B B  Suppose the reference survey S  oversamples, by design, a minority group, say, African 

American females. This linear relationship requires that the distribution of the same minority group, defined 

by race/ethnicity and gender, in the nonprobability sample should be proportional to that in the reference 

survey. In reality, however, we have no control over the nonprobability sampling, and therefore the linear 

relationship may hold only by chance. The estimator based on 0( ; )ˆx Bb  is efficient but can be biased.  

 
A hypothetical example 
 

For illustration purpose, suppose a nonprobability sample and a survey sample are selected by probability 

proportional to size (PPS) sampling with the measure of size for FP unit ,i  defined by, respectively, 

1 1 2 2exp( )ic i is x B x B   for the nonprobability sample participation and 1 1 3 3exp( )is i is x B x B   for the survey 

sample selection. Suppress the subscript i  and let 1 1.B B  The probability of a FP unit participating in the 

nonprobability sample ( )cp  versus being selected into the survey ( )sp  is  

 

1 1 1 2 2 3 3 0 ,

log log log ,

const.  const. ( )

c sc U cc c s s

c ss s c sU U U

T

n sp sn s n s

s sp n s s

x B B x B x B

   
              

      


  

x B

  

where 1 2 3( , ,  )x Tx x x  and 0 1 1 2 3 .( , , )TB B B B  B  By fitting a logistic model, including all variables ,x  

to the combined (nonprobability and unweighted survey) sample, an estimated balancing score would be 

 0 0.( ; )ˆ ˆTb x B x B   

Note 0B̂  includes the attenuated 1x  effect in constructing 0( ; )ˆx Bb  due to the similar 1x  distribution in 

S  and in .C  As a result, the estimated balancing scores cannot distinguish the C  units with different 

participation propensities by 1,x  and thus 0 0{ | ( ; ), } { | ( ; ), },ˆ ˆE y b C E y b Ux B x B  leading to biased estimation 

of   .NY  

In next section, we propose an adaptive balancing score that adjusts 0( ; )ˆx Bb  to be a monotone function 

of the estimated ( | , )xP i C U  for unbiased estimation of the FP mean.  

 
4. Adaptive balancing score  
 

We propose an adjusted balancing score in three steps. The first step is to fit a logistic regression model 

to the combined C S  sample without weights, given by (Wang et al., 2020) 

 
 
 

*

0*
)

| ,
log log

)

| ,

(

1
(

( )

x x
B x

x x
i

i

 

 
Ti

i

i

p i C U p
g

p i S U p

    
    

     
   for  i U  (4.1) 

and the estimates of the model parameter 0B  are denoted as 0
ˆ ,B  where 

* ( )xip  is the propensity of being 

in C  vs. in S  for unit .i  As discussed in Section 3.3, 0 0 )ˆ ˆ( ; ) (x B B xT
ib g  balances the x  distribution 
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between C  and .S  Without considering sample weights in the analysis, 0B̂   tends to be more efficient than 

ˆ .Bw  The CE assumption (2.1), however, can be violated when 0( ; )ˆx Bb  fails at balancing the distribution 

in x  between C  and .U  

The second step aims to develop a bias correction factor to adjust 0( ; )ˆx Bb  so that the balanced 

distribution in x  between C  and U  (approximated by the weighted reference survey )wS  can be achieved. 

As a computational device, a pseudo-population of *S U  is constructed, where *S  is a duplicate of S  

that has the same joint distributions of covariates x  and outcome y  as the original .S  In the pseudo-

population * ,S U  *S  and S  are treated as two different sets. We model ( )xiq  as the probability for unit 

i  to be included in S  from the pseudo-population, that is, 

 * ( | , )
( ) ( | ) .

1 ( )
,

| ,
i

i i

i

p i S U
q p i S S U

p i S U


   

 

x
x x

x

 
 

 
  

Assume a logistic model  

 
( )

log{ ( | , )} log ( ),
1 ( )

x
x γ x

x
  Ti

i i

i

q
p i S U g

q

 
   

 
   for i U  (4.2) 

where γ  denotes the model parameters, estimated by solving the estimating equation ( ) (1
i S

S


 γ  

( ) ( )) ( ) 0x x xi i i iq w q g   for .γ  The estimate is denoted by ˆ ,wγ  measuring the effects of ( )xg  on the 

sample S  selection. We use it for the correction of distorted or missing effects of ( )xg  on the 

nonprobability sample C  participation propensity in 0 ,ˆ( ; )b x B  especially for those variables involved in 

both S  sampling and C  participating processes. 

At step 3, the new balancing score estimate is constructed as 

  0 0( ; , ) (ˆ ˆ ˆ   )ˆx B γ γ B xT T
i w w ib g     for .i U   

As noted, adding up models (4.1) and (4.2) yields model (3.1), with the left side equal to  

  
( | , )

log log ( | , ) log{ ( | ,   )},
( | , )

i
i i

i

p i C U
p i S U P i C U

p i S U

 
    

 

x
x x

x

 
 

 
  

a monotone function of participation propensity, and the right side the same functional form ( )xig  as in 

model (3.1). We know that ( )ˆ;x Bwb  under model (3.1), although satisfying the CE assumption (2.1), can 

be inefficient due to differential weights in the analysis. Instead of fitting the model (3.1) directly to the 

combined nonprobability and weighted survey data ( )wC S  to obtain ˆ ,wB  we construct the adjusted 

balancing score 0( ; , )ˆ ˆx B γwb  based on 0B̂  and ˆ wγ  in three steps. This adjusted balancing score is a 

monotone (natural logarithm) function of sample C  participation propensity, and therefore the y  

distribution is exchangeable between C  and ,U  that is,  

 0 0{ | ( ; , ), } { | ( ; , }ˆ ˆ ,ˆˆ )x B γ x B γT T
w wE y b C E y b U   

approximately holds. 
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As follows, PS-based adjustment methods can be conducted to create pseudoweights for units in C  

based on the new adaptive balancing score 0( ; , ).ˆ ˆ T
wb x B γ  PS-weighting methods weight each unit in C  by 

the inverse of estimated participation rate. In contrast, PS-matching methods match C  and S  units based 

on the adaptive balancing score and then distributes the sample weights in S  to C  units according to their 

similarities. For example, ALP weighting method (Wang et al., 2021) creates pseudoweights 

 ALP 1
0exp ( )ˆ; , ˆ( )ˆ x B γT

j j ww b    for .j C   

Kernel smoothing method (Wang et al., 2022) creates pseudoweights by adding up the fractional weights 

distributed from each survey unit ,i S   

 KWˆ
j i ij

i S

w w K


    with   

ij

ij
il

l C

d
K

h
K

d
K

h

 
 
 
 
 
 


   for ,j C   

where ( )K   is an arbitrary kernel function such as standard normal density function, h  is the bandwidth 

associated with ( ),K   and the distance 0 0( ; , ) ( ; , )ˆ ˆˆ ˆx B γ x B γT T
ij i w j wd b b   measures the similarity in x  

distribution between the nonprobability sample unit j C  and the survey unit .i S  

The population mean can then be estimated by  

 ,
ˆ

1
ˆ

j j
j Cjj C

y w y
w 

 


 (4.3) 

where ˆ jw  can be 
ALPˆ
jw  or 

KWˆ .jw  

To estimate the variance of ,y  we assume the FP size N    and consider the randomness due to 

sampling of S  and participation process of C  from .U  Taylor linearization (TL) variance estimator is 

developed to account for the variability due to estimating propensity scores *( )xip  and ( )xiq  in steps 1-2. 

The TL technique is commonly employed in the survey literature to derive design-consistent variance 

estimators (Li, Graubard, Huang and Gastwirth, 2015; Li and Graubard, 2012). Assuming independence 

between being sampled to the reference survey and participating in the nonprobability sample, the variance 

of  y  can be approximated by (Korn and Graubard, 1999) 

 TLvar var var ,( ) j i
j C i S

y z z
 

   
    

  
   (4.4) 

where jz  (or )iz  is the Taylor deviate (TD) for 
thj  (or 

th )i  unit in C  (or in )S  derived by taking the 

derivative of  y  with respect to the sample weight (Shah, 2004). For example, when 
ALPˆ ˆ ,j jw w  the TD for 

unit j C  is  

 
ˆ ( )

ˆ
ˆ

)

ˆ

( lj j l C
j l

j l l jl C l C

y yw y y
z y w

w w w w


 

  
       


 
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and  

 ˆ ˆˆ ,ˆ ˆ
ˆl l l l

j j j

w w w x
w w w

 


       
                 

  

where ̂  is the estimated model parameters, which can be 0
ˆ ,B  ˆ ,wB  or 0

ˆ ˆ ,wB   e.g., 

 

1

* * *
0
ˆ ˆ ˆ ˆ ˆ( ) ,( ) (1 ) 1 T

w j j j j j j
j C Sj

B p x p p x x
w




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 

 
       

   

where *ˆ
jp  for j C  is the estimated propensity score for unit j  under model (4.1).  

For unit ,i S  the TD is  
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and  
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 

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    
  

where ̂  can be 0
ˆ ,B  ˆ ,wB  or 0

ˆ ˆ
wB   e.g., 
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where îq  for i S  is the estimated propensity score for unit i  under model (4.2). TD for each unit measures 

the change of the nonlinear estimator, in our case ,y  as if the unit was deleted from the sample. TL variance 

estimator of y  is then approximated by (4.4), where  var ii S
z

  accounts for variability due to complex 

sampling of .S  Following Wang et al. (2021), it can be proved that y  is design-consistent and 

   1 1
TLvar .( )

c sn ny O O   Sections 5 and 6 report the ALP estimates for illustration of the exchangeability 

assumptions conditional on various balancing scores. Similarly, the variance estimators of KW estimates 

with the adaptive balance scores can be derived, which will be given in a future paper.  

 
5. Simulation studies 
 
5.1 Population generation 
 

Simulation studies are conducted to evaluate the ALP estimates based on the adjusted balancing score 

0( ; , ),ˆ ˆ T
wb x B γ  along with 0( ; )ˆx Bb  and ( )ˆ;x Bwb  for comparison purpose. We generate a finite population 
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(FP) of size N  1,000,000 with three independent covariates 1,x  2 ,x  3 ,x  each following a standard normal 

distribution (0,1).N  The binary outcome Y  is generated with mean defined by  

 1 2 1 2

1 2 1 2

0 1 2 1 2

0 1 2 1 2

exp( )
( 1) ,

1 exp( )

x x x x

x x x x

x x x x
P Y

x x x x

   

   

  
 

   
 (5.1) 

where 
1 2 1 20( , , , )T

y x x x x      are the outcome model parameters specified as 0 1,    
1x

  0.8, 
2x 

0.2, 
1 2x x  0.5. The average of the binary outcome is about 30%. The results showed a similar pattern when 

0 2    or 3  and hence are not shown.  

 
5.2 Probability sample S  selection 
 

We select a random probability sample S  of size sn  with replacement from the FP using probability 

proportional to size (PPS) sampling with the measure of size for the thk  FP individual (mos )k  defined by 

 
1 2 3 1 2 1 30 1 2 3 1 2 1 3mos exp ( )k k x k x k x k k x x k k x xa x x x x x x x                (5.2) 

so that the inclusion probability is 

 
mos

( | ; ) ,
mos

s k

kk U

n
p k S x U




 


  

and the corresponding sample weight is the inverse of the inclusion probability, i.e., 
mos

mos .
kk U

s kk nw 



  We 

specify  
1 2 3 1 2 1 30 , , , , , ( 1,x X x x x x x         0.5, 0, 0.5, 0, 0.2)  and let a  0.5, 1, or 1.5 to vary the 

coefficient of variation (CV) of the sample weights in S  (denoted by ),sw  corresponding to CV( )sw 

0.38, 0.86, or 1.5, respectively. Note the selection variables in sampling S  are 1x  and 3 ,x  and the kw -

weighted probability sample S  approximates the FP.  

 
5.3 Nonprobability sample C  selection 
 

The underlying selection process for sampling C  is unknown. We select C  of size cn  2,500 from the 

FP using PPS sampling with mos ,k  given by (5.2) and specified to include three scenarios: 1) quota sample 

that has the same joint distribution of 1x  and 2x  as in the FP, denoted by Quota. 1 2;x x  2) quota sample that 

has the same distribution of 2x  as in the FP, denoted by Quota. 2;x  and 3) a volunteer sample with different 

distributions in 1 x  or 2x  from those in the FP, denoted by Volunteer. Variable 3x  is not predictive of the 

outcome and therefore induce no bias in FP mean estimation (Li, Irimata, He and Parker, 2022). Table 5.1 

summarizes the model parameters for the outcome generation in (5.1), the probability sample S  selection 

and three nonprobability samples selection in (5.2). We vary the probability sample size sn  1,250; 2,500; 

3,750 and the nonprobability sample size is fixed at cn  2,500. Sample weights associated with C  units 

are masked in the analysis.  
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Table 5.1 

Model parameter specifications for outcome generation, probability sample (S) selection, and nonprobability 

sample (C) selection. 
 

Model Intercept 1x  2x  3x  1 2x x  1 3x x  

Outcome -1 0.8 0.2 0 0.5 0 

Sample S  Selection -1 0.5 0 0.5 0 -0.2 

Sample C  Participation       
Quota. 1 2x x  -1 0 0 0.5 0 0 

Quota. 2x  -1 0.5 0 0 0 -0.2 

Volunteer -1 0.5 0.5 0.5 0 -0.2 

 
The three ALP estimates (4.3) based on the adaptive balancing score 0( ; , ),ˆ ˆ T

wb x B γ  unweighted 0( ; )ˆx Bb  

and weighted ( )ˆ;x Bwb  are computed for each of the R  1,000 simulation runs and evaluated by  

 Relative Bias (RelBias%) = Bias (= average of R  simulated means   population mean) divided by 

population mean 100%.  

 Empirical Variance (EV) = Variance of R  simulated means 4.10  

 Variance Ratio (VR) = TL Variance/Empirical Variance. 

 

To construct the three balancing score estimate, the function ( )xig  in (3.1)-(4.2) includes not only the 

main effects of 1,x  2 ,x  3x  but also their pairwise interaction effects. It is expected that ALP estimates with 

( )ˆ;x Bwb  are approximately unbiased but with inflated variance due to differential weights; ALP estimates 

with 0( ; )ˆx Bb  have the smallest variance but can be biased. In contrast, it is expected that the ALP estimates 

with the adaptive balancing score 0( ; , )ˆ ˆx B γT
wb  are approximately unbiased with smaller variance under the 

true propensity models.  

 
5.4 Results 
 

Table 5.2 presents the relative bias (%) of ALP estimates with the three balancing scores using 

nonprobability samples of Quota. 1 2,x x  Quota. 2 ,x  and Volunteer. For comparison purpose, we also include 

the unweighted estimates. We make three observations: 1) As expected, unweighted estimates are unbiased 

for Quota. 1 2,x x  but badly biased for Quota. 2x  and Volunteer samples. This result is consistent with the 

findings in Li et al. (2022). 2) As a remedy, the balance scores of ( )ˆ;x Bwb  or 0( ; , )ˆ ˆx B γT
wb  match the Quota.

2x  or the Volunteer sample to the joint distribution of 1x  and 2x  in the FP and therefore produce 

approximately unbiased estimates across all three nonprobability samples. 3) In contrast, the unweighted 

score 0( ; )ˆx Bb  leads to biased estimates since it is not a monotone or finer function of the estimated 

participation propensity of all three nonprobability samples. 
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Table 5.2 

Relative Bias (%) of ALP estimates of population mean ( 0.3)Y   with the probability and nonprobability 

sample sizes s cn n  2,500 and CV( )sw  0.86. 
 

  Quota. 1 2x x  CV( )cw  0.53 Quota. 2x  CV( )cw  0.6 Volunteer CV( )cw  1.10 

Unweighted -1.33 24.33 33.67 

( )ˆ;x Bwb  -1.33 -1.33 -1.33 

0( ; )ˆx Bb  19.33 19.33 19.33 

0( ; , )ˆ ˆx B γT
wb  -1.33 -1.33 -1.33 

 
Next, we compare in Table 5.3 the two unbiased ALP estimates with 0( ; , )ˆ ˆx B γT

wb  and ( )ˆ;x Bwb  in terms 

of their efficiency when varying the coefficients of variation (CV) of the probability sample weights 

CV( )sw  0.38, 0.86, or 1.50. We make three observations. First, as the CV( )sw  increases, the variance 

increases as expected. For example, when using ( )ˆ;x Bwb  the empirical variance increases from 1.00 to 

1.12 to 1.30 for Quota. 1 2.x x  Second, as the CV( )sw  increases, the efficiency gain of 0( ; , )ˆ ˆx B γT
wb  over 

( )ˆ;x Bwb  becomes larger. For example, the relative difference of the two empirical variances increases from 

1% (= (1   0.99) / 1.00) to 4% (= (1.12   1.07) / 1.12) to 12% (= (1.3   1.14) / 1.30) when CV( )sw  

increases from 0.38 to 0.86 to 1.5 for Quota. 1 2.x x  Third, comparing the three nonprobability samples, the 

efficiency gain of 0( ; , )ˆ ˆx B γT
wb  over ( )ˆ;x Bwb  is largest for Quota. 1 2.x x  Intuitively, the pseudoweights 

created for Quota. 1 2x x  are noninformative and thus add extra variance due to estimating .ˆ( ; )wb x B  

 
Table 5.3 

Empirical Variance 4( 10 )  of two unbiased ALP estimates by varying coefficients of variation of probability 

sample weights CV( ),sw s cn n  2,500. 
 

  Quota. 1 2x x  Quota. 2x  Volunteer 

  CV( ) sw  0.38  
Unweighted 0.81 0.94 0.81 

( )ˆ;x Bwb  1.00 0.97 1.44 

0( ; , )ˆ ˆx B γT
wb  0.99 0.98 1.45 

  CV( ) sw  0.86  
Unweighted 0.85 0.90 0.99 

( )ˆ;x Bwb  1.12 1.00 1.62 

0( ; , )ˆ ˆx B γT
wb  1.07 1.02 1.64 

  CV( ) sw  1.50  
Unweighted 0.85 0.90 0.99 

( )ˆ;x Bwb  1.30 1.11 1.72 

0( ; , )ˆ ˆx B γT
wb  1.14 1.07 1.68 

 
Table 5.4 presents the empirical variance (EV) in the left panel and the variance ratio (VR) in the right 

panel for the ALP estimates when varying the probability sample sizes ( sn  1,250; 2,500; 3,750) with a 

fixed nonprobability sample size cn  2,500. We make the following three observations. First, EV 

decreases as sn  increases, e.g., EV of ALP estimates with ( )ˆ;x wb B  for Quota. 1 2x x  decreases from 1.33 to 

1.08 to 0.99. However, the difference becomes smaller, i.e., a larger EV drop of 0.25 (= 1.33   1.08), as 
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sn  increases from 1,250 to 2,500, compared to a moderate drop of 0.09 (= 1.08   0.99), as sn  increases 

from 2,500 to 3,750. This result is because      1 1Var
c sn ny O O   is dominated by  1

cnO  when s cn n  

and therefore the efficiency gain is moderate by increasing sn  once .s cn n  Second, comparing the two 

balancing scores, 0( ; , )ˆ ˆx T
wb B   is more efficient than ˆ( ; )x wb B  when sn  is small. Intuitively, when ,s cn n  

the variance of ALP estimates is dominated by the probability sample ,S  which has differential sample 

weights sw  and therefore induces large variability when estimating ˆ .wB  This occurs especially for quota 

samples where sample weights used in estimating ( )ˆ;x wb B  are approximately noninformative and thus add 

extra variance. Third, the proposed TL variance estimator generally performs well with variance ratio’s 

close to one (see right panel in Table 5.4). The TL variance with 0( ; , ),ˆ ˆx T
wb B   however, overestimates the 

variance for Quota. 1 2x x  when sn  is small. It is found that the VR for 0( ; , )ˆ ˆx T
wb B   is closer to one as sn  

increases or when CV( )sw  is small (results not shown).  

 
Table 5.4 

Empirical Variance 4( 10 )  and Variance Ratio of two unbiased ALP estimates with varying probability sample 

sizes , CV ( )s sn w  0.86 and cn  2,500. 
 

  Empirical Variance (EV) Variance Ratio (VR) 

 Quota. 1 2x x  Quota. 2x  Volunteer Quota. 1 2x x  Quota. 2x  Volunteer 

Unweighted 0.81 0.87 1.03 1.02 0.95 0.86 

 sn  1,250 

( )ˆ;x Bwb  1.33 1.18 1.77 1.02 0.98 0.96 

0( ; , )ˆ ˆx B γT
wb  1.17 1.08 1.80 1.41 1.35 1.14 

 sn  2,500 

( )ˆ;x Bwb  1.08 0.98 1.65 1.06 1.01 0.93 

0( ; , )ˆ ˆx B γT
wb  1.00 0.96 1.69 1.31 1.23 1.03 

 sn  3,750 

( )ˆ;x Bwb  0.99 0.94 1.60 1.08 1.00 0.93 

0( ; , )ˆ ˆx B γT
wb  0.95 0.94 1.63 1.26 1.15 1.00 

 
In summary, via simulation studies, it is observed ALP estimates with 0( ; , )ˆ ˆx B γT

wb  and ( )ˆ; wb x B  are 

approximately unbiased and comparably efficient when the reference probability sample has large sample 

size sn  or stable sample weights with small CV( ).sw  In contrast, when the reference probability sample has 

small sn  or variable sample weights, 0( ; , )ˆ ˆx B γT
wb  tend to produce more efficient estimates, especially for 

quota samples. Survey practitioners should choose a reference survey with sufficiently large size and stable 

sample weights, and note that the efficiency gain by increasing sn  is moderate once .s cn n  

 
6. NIH SARS-CoV-2 seropositivity data analysis 
 

The primary purpose of the SARS-CoV-2 Seropositivity Study is to estimate the prevalence of 

seropositivity to the SARS-CoV-2 virus antibody in the target population consisting of adults 18+ years old 

living in the US who had not been diagnosed with Covid during the early phase of the pandemic from April 
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to August 2020. Within weeks of the study recruitment announcement, more than 460,000 individuals 

volunteer. The study, however, could only afford a subset of these volunteers. A quota sample were selected 

based on six quota variables, age group, race, sex, ethnicity, population density, and geographic region, to 

approximately match the US adults’ distribution of these variables. There were 8,058 participants who 

responded to the questionnaire about clinical factors and provided blood samples for assessing 

seropositivity. The sample collected from the SARS-CoV-2 Seropositivity Study will be called “covid 

sample”. Although the covid sample was a random sample with known selection probabilities from the pool 

of volunteers Kalish, Klumpp-Thomas, Hunsberger, Baus, Fay, Siripong, Wang, Hicks, Mehalko, Travers, 

Drew, Pauly, Spathies, Ngo, Adusei, Karkanitsa, Croker, Li, Graubard, Czajkowski, Belliveau, Chairez, 

Snead, Frank, Shunmugavel, Han, Giurgea, Rosas, Bean, Athota, Cervantes-Medina, Gouzoulis, 

Heffelfinger, Valenti, Caldararo, Kolberg, Kelly, Simon, Shafiq, Wall, Reed, Ford, Lokwani, Denson, 

Messing, Michael, Gillette, Kimberly, Reis, Hall, Esposito, Memoli and Sadtler (2021), this pool of 

volunteers is a nonrandom sample of the targeted US population and has potentially large selection bias.  

To help adjust for selection bias, we use the Behavioral Risk Factor Surveillance System (BRFSS) survey 

(Centers for Disease Control and Prevention, 2022) as the reference survey. The BRFSS is comprised of 

annual state-level surveys that are combined into a national representative survey with large state-level 

observations. In addition to the six quota variables, there are ten demographic and health variables collected 

in the BRFSS that are also predictive of seropositivity but not used in the quota sampling. After removing 

observations with missing values on any of the sixteen variables, a total of sn  367,165 participants were 

included in the analysis. The CV of the BRFSS sample weights is CV( )sw  1.92. 

Table 6.1 shows the sample weighted distribution for the 16 variables in the BRFSS and the covid 

sample. As expected, the distributions of the six quota variables in the two samples are very close. For the 

ten demographic and health related variables, most of the distributions differ considerably between the two 

samples. In general, the covid sample participants tend to be more educated, homeowners, employed and 

healthier. For example, 84% of the covid sample vs. 29% in weighted BRFSS have a college or higher 

degree. Hence, selection bias exists in the covid sample, and our aim is to reduce the selection bias in the 

estimation of undiagnosed SARS-CoV-2 seropositivity. 

Table 6.2 shows the ALP estimates of the prevalence of undiagnosed seropositivity with the three 

balancing scores. As noted, the ALP estimate with ( )ˆ;x Bwb  detected a 4.65% seropositivity rate, close to 

the rate of 4.67% detected by 0( ; , ).ˆ ˆ T
wb x B γ  The corresponding two standard errors are also close (0.78 vs. 

0.77). In contrast, the unweighted 0( ; )ˆx Bb  yields a seropositivity rate of 3.95%, close to the unweighted 

mean of 3.77%, both are subject to selection bias. It is noteworthy that the adaptive balancing score 

0( ; , )ˆ ˆx B γT
wb  produced stable pseudoweights for the covid sample with CV( ˆ )cw  2.24, close to the 2.25 by 

the unweighted 0 ,ˆ( ; )b x B  and both are smaller than CV( ˆ )cw  2.33 produced by the weighted .ˆ( ; )wb x B  
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Table 6.1 

Covariate distribution (%) in the Covid sample vs. weighted BRFSS. 
  

Covid 
Survey 

Weighted 
BRFSS 

 
Covid 

Survey 
Weighted 

BRFSS 

 
Covid  

Survey 
Weighted 

BRFSS 

Age Group Urban/Rural Flu Vaccinated 

18-44 41.6 42.9 Urban 94.7 93.2 Yes 73.8 51.3 

45-69 42.6 41.8 Rural 5.3 6.8 No 26.2 48.7 

70-95 15.8 15.2 Children present Cardiovascular 

Sex Yes 32.5 34.7 Yes 4.1 9.5 

Male 47.4 47.8 No 67.5 65.3 No 95.9 90.5 

Female 52.6 52.2 Education Pulmonary 

Race <=HS 2.6 39.4 Yes 18.8 18.7 

White only 77.5 74.8 College 13.8 31.5 No 81.2 81.3 

Black only 9.4 12.6 >=College 83.6 29.1 Immune 

Others 13.1 12.5 Homeowner Yes 23.4 31.1 

Ethnicity Own 75.2 68.8 No 76.6 68.9 

Hispanic 15.9 14.1 Rent 20.2 25.6 Diabetes 

Not Hispanic 84.1 85.9 Other 4.7 5.6 Yes 5.5 11.9 

Region Employment No 94.5 88.1 

Northeast 16.7 17.1 Employed 71.2 57.4 Health Insurance 

Midwest 15.8 17.6 Not in Labor Force 23.8 32.2 Yes 97.4 89.0 

Mid-Atlantic 20.8 17.3 Unemployed 5.0 10.4 No 2.6 11.0 

South/Central 14.2 15.7       
Mountain/Southwest 15.5 15.3       

West/Pacific 17.0 16.9       

 
Table 6.2 

Undiagnosed seropositivity rate among US adults 04/01-08/04/2020. 
 

  CV ( ˆ )cw  Estimates (%) SE*
2( )10  

Unweighted 0.00 3.77 0.22 

0( ; )ˆx Bb  2.25 3.94 0.52 
( )ˆ;x Bwb  2.33 4.65 0.78 

0( ; , )ˆ ˆx B γT
wb  2.24 4.67 0.77 

*: account for the variability due to estimating ,B  0B  or .γ  

 
7. Conclusion and discussion 
 

In this paper, we examine the exchangeability of the outcome conditional on weighted ( )ˆ;x Bwb  and 

unweighted 0( ; )ˆx Bb  that are used in existing PS-based weighting/matching methods for nonprobability 

sample inferences. An adaptive balancing score 0( ; , )ˆ ˆx B γT
wb  is proposed to correct for the potential bias in 

0( ; )ˆx Bb  in three steps: 1) estimate unweighted 0 ;ˆ( ; )b x B  2) estimate bias correction factor ;ˆ( ; )wb x  and 

3) construct 0 0( ; , ) ( ; ) ( ; ),ˆ ˆˆ ˆx B γ x B x γT
w wb b b   which is a monotone function of the estimated participation 

propensity.  

The basic criterion for choosing balancing score is that it should be finer than, if not equal to, the 

participation propensity in order to balance the distribution of x between the nonprobability sample and the 

finite population. Both 0( ; , )ˆ ˆx B γT
wb  and ( )ˆ;x Bwb  produce unbiased and comparably efficient estimates 



52 Li: Exchangeability assumption in propensity-score based adjustment methods for population mean estimation… 

 

 
Statistics Canada, Catalogue No. 12-001-X 

with 0( ; , )ˆ ˆx B γT
wb  more efficient for quota samples when the reference survey is small or has variable 

sample weights. Survey practitioners should choose as the reference survey a sample that is sufficiently 

large with stable sample weights. Note that the efficiency gain by increasing the probability sample size sn

is moderate once .s cn n  

Two limitations are identified: 1) the adaptive balancing score is constructed by assuming the correctness 

of the logistic regression propensity model in steps 1 and 2 to obtain the unweighted balancing scores and 

the bias correction factor. Furthermore, 2) the logistic regression in both steps was assumed to have the 

same functional form. Accordingly, two extensions can be made for future research: 1) Allowing for a 

different functional form in step 2, where we model the probability for the reference sample selection, from 

the functional form assumed in step 1. With known selection variables and the selection probability for each 

reference survey unit, model diagnostics such as a ROC curve can be implemented to assist in the model 

selection. 2) Constructing various propensity models. A logistic regression model was fitted to estimate the 

propensity scores at steps 1 and 2 in Section 4. However, misspecification of the logistic regression model 

might lead to poorly estimated propensity scores that violate the assumption (2.1), and therefore yield biased 

estimates. Nonparametric approaches such as machine learning methods can offer alternatives, which relax 

the assumed parametric model specifications regarding variable selection, functional form, and selection of 

polynomial terms and multiple-way interactions specified in parametric modeling.  

In this paper, we discussed how to construct balancing scores that satisfy the CE assumption so that the 

outcome distribution is exchangeable between the nonprobability sample and the finite population. Note 

that the balancing score is a function of observed covariates x  that are collected in both the nonprobability 

sample C  and the reference survey .S  If important covariates are missing in S  or ,C  then no matter which 

balancing score is chosen, the FP mean estimates will be unavoidably biased. Important considerations 

remain such as which variables need to be collected in both C  and ,S  how will the survey questions be 

harmonized in C  and S  data collection, and how can measurement or reporting error be minimized in 

questionnaire design? How these questions are addressed can be critical to satisfying the CE assumption in 

PS-based adjustment methods for nonprobability sample analysis. In summary, as required by the 

conditional exchangeability assumption, it is important to have high-quality reference surveys that collect 

comprehensive sets of variables with minimal measurement and reporting errors, have sufficiently large 

sample size, and are well designed with informative and stable sample weights.  
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Abstract 

Pseudo weight construction for data integration can be understood in the two-phase sampling framework. Using 
the two-phase sampling framework, we discuss two approaches to the estimation of propensity scores and 
develop a new way to construct the propensity score function for data integration using the conditional maximum 
likelihood method. Results from a limited simulation study are also presented. 

 
Key Words: Data integration; Propensity score function; Pseudo weight; Two-phase sampling. 

 
 

1. Introduction 
 

We would like to congratulate Yan Li for being selected as a Morris Hansen lecturer and for giving an 

interesting presentation on data integration. Data integration is an emerging area of research to combine 

multiple data sources in a defensible way. In data integration, by using an independent probability sample 

as a calibration sample, the selection bias in the convenient sample can be reduced. However, statistical 

tools for data integration are limited. Thus, I welcome Li’s attempt to develop an additional statistical tool 

for data integration. 

Using the balancing score function to control selection bias in the nonprobability sample is a reasonable 

idea. How to construct the balancing score function in the context of data integration can be more tricky. Li 

recognized that the propensity score (PS) estimation method of Chen, Li and Wu (2020) can be inefficient, 

as the estimation procedure involves using the survey weights in the probability sample. Instead of using 

weighted estimation, Li proposed an unweighted estimation method and then developed a method for bias 

correction. The unweighted estimate of PS is also considered by Elliott and Valliant (2017) and has been 

adopted by some practitioners. In this discussion, we would like to clarify two existing approaches to the 

estimation of propensity scores and develop a defensible way of constructing the propensity score function 

for data integration. 

The paper is organized as follows. In Section 2, we present a two-phase sampling framework for data 

integration and the conditional PS model approach is introduced. In Section 3, another approach, called the 

unconditional model approach, is introduced. The simulation study is presented in Section 4. Some 

concluding remarks are made in Section 5. 
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2. Conditional PS model approach 
 

We use the set-up considered in Yang, Kim and Hwang (2021) where sample A is a probability sample 

observing x  and sample B is the nonprobability sample observing ( , ).yx  Table 2.1 presents the general 

setup of the two sample structures for data integration. As indicated in Table 2.1, sample B  is not 

representative of the target population. 

 
Table 2.1 

Data structure for data integration and data fusion. 
 

Data Integration 
Sample Type X  Y  Representative? 

A  Probability Sample ✓  Yes 

B  Non-probability Sample ✓ ✓ No 

 
The formulation is somewhat similar to the two-phase sampling: 

1. The first-phase sample 1S A B   is selected from U  and ix  is observed for all units in 1.S  

2. The second-phase sampling 2 =S B  is selected from 1S  and iy  is observed for all units in 2.S  

 

Unlike classical two-phase sampling, we do not know the first-order inclusion probability of 1S . Instead, 

we only know the first-order inclusion probability of the sample .A  That is, ( ) = ( | )A
i P i A i U    is the 

(known) first-order inclusion probability of sample .A  

Let ( ) = ( | )B
i P i B i U    be the (unknown) first-order inclusion probability of sample .B  Note that the 

first-order inclusion probability of 1S  can be written as  

 

1

( ) ( ) ( ) ( )

( | ) = ( | )

= ( | ) ( | ) ( | ) ( | )

= A B A B
i i i i

P i S i U P i A B i U

P i A i U P i B i U P i A i U P i B i U

   

    

         

 

 (2.1) 

where the last equality follows from the independence of two samples. Thus, we can express the conditional 

inclusion probability for the second-phase sample as  

 
( )

2 1 ( ) ( ) ( ) ( )

( | )
( | ) = = .

( | )

B
i

A B A B
i i i i

P i B i U
P i S i S

P i A B i U



   

 
 

    
 (2.2) 

Now, since we observe ix  for 1 = ,i S A B   we can make a statistical model for the conditional 

inclusion probability in (2.2) as a function of x . Let  

 2 1( | ) = ( ; )iP i S i S p   x  (2.3) 



Survey Methodology, June 2024 59 

 

 
Statistics Canada, Catalogue No. 12-001-X 

be the statistical model for the conditional inclusion probability with unknown parameter .  We can 

estimate   by unweighted analysis. That is,  

  
1

ˆ = arg max log ( ; ) 1 log{1 ( ; )} ,i i i i
i S

p p


    


      x x   

where = ( )i i B I  is the indicator function of the event .i B  If a logistic regression model with 

logit{ ( ; )} =i ip  x x  is used in (2.3), then ̂  can be obtained by solving  

 {1 ( ; )} ( ; ) = .i i i i
i B i A

p p 
 

  x x x x 0   

This unweighted estimation is fully justified, as the conditional inclusion probability model (2.3) is 

conditional on the first-phase sample 1 = .S A B  Since the propensity model in (2.3) is conditional on the 

first-phase sample, it can be called the conditional propensity score (PS) model. 

Now, since (2.3) is the model for the conditional inclusion probability in (2.2), we can obtain  

 
( )

( ) ( ) ( ) ( )
ˆ= ( ; ),

B
i

iA B A B
i i i i

p



    

x   

which implies that  

 
( ) ( )

1 1 1
= 1 1 .

ˆˆ ( ; )
B A

i i ip  

  
  

  x
 (2.4) 

Thus, ( ) ( )ˆ ˆ= 1/B B
i iw   in (2.4) can be used as the final pseudo-weight for the elements in sample .B  

In practice, we cannot use (2.4) directly as the first-order inclusion probabilities are unknown outside 

the sample. One way to handle this problem is to estimate ( ) ( )= 1/A A
i iw   by  

 ( ) ( ) ( )= { | , = 1}A A A
i i i iw E w Ix  (2.5) 

following the result of Pfeffermann and Sverchkov (1999). Thus, (2.4) can be changed to  

 ( )

( )

1 1
= 1 1 .

ˆˆ ( ; )

A
iB

i i

w
p 

  
  

  x
  (2.6) 

Li used a parametric model for ( ) ( )( | ) = ( ; )A AE   x x  and developed a pseudo maximum likelihood method 

for estimating   from the sample. Once ̂  is obtained, we can use (2.6) with ( ) ˆ= 1/ ( ; ).A
i iw  x   

Instead of using (2.6), Elliott and Valliant (2017) proposed using  

 
( ) ( )

1 1 1
= 1

ˆˆ ˆ ( ; )
B A

i i ip  

  
 

  x
 (2.7) 

where  
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 ( ) ( ) ( )ˆ = { | , = 1}.A A A
i i i iE I  x  (2.8) 

However, ( ) ( )ˆ1/A A
i iw   in general and the pseudo weight in (2.7) is not theoretically justified. 

 
3. Unconditional PS model approach 
 

Another approach to the PS model is to assume a statistical model for ( ) = ( | )B
i P i B i U    such as  

 ( ) = ( ; )B
i B i  x  (3.1) 

for some parameter .  This unconditional PS model has been considered by Chen et al. (2020) and Wang, 

Valliant and Li (2021), where the pseudo maximum likelihood method was used to estimate .  

If we wish to improve the efficiency of estimators of ,  we can consider the maximum likelihood method 

as follows. First, if ( )A
i  are available in 1,S  using (3.1), we can derive the following conditional inclusion 

probability model:  

 2 |1 ( ) ( )

( ; )
( ) = .

( ; ) ( ; )
B i

i A A
i B i i B i

 
 

       

x

x x
 (3.2) 

In the second step, we can compute the conditional maximum likelihood estimator of   from the combined 

sample by  

  
1

2 |1 2 |1
ˆ = arg max log ( ) 1 log{1 ( )} ,i i i i

i S


      


      (3.3) 

where 2 |1( )i   is defined in (3.2). The conditional maximum likelihood estimator in (3.3) is based on the 

assumption that we can identify the units that belong to the intersection of A  and .B  Once ̂  is obtained 

from the conditional maximum likelihood method, we can use 
( ) ( ) ˆˆ =1/ ( ; )B B
i iw  x  as the pseudo weights 

for sample .B  This conditional maximum likelihood method was also considered by Savitsky, Williams, 

Gershunskaya, Beresovskyl and Johnson (2022) under the assumption that ( )A
i  are available in sample B. 

If ( )A
i  are not available outside the sample ,A  we cannot construct the conditional inclusion probability 

in (3.2). In this case, we can replace ( )A
i  by ( ) ( )= 1/ ,A A

i iw   where ( )A
iw  is defined in (2.5), and compute  

 2 |1 ( ) ( )

( ; )
( ) =

( ; ) ( ; )
B i

i A A
i B i i B i

 
 

       

x

x x 
 (3.4) 

to apply the above conditional maximum likelihood method in (3.3). The final pseudo weights are given by 
( ) ˆˆ =1/ ( ; )B
i B iw  x  and ̂  is computed by (3.3). 

Instead of the maximum likelihood method, the pseudo weights for sample B can be constructed to 

satisfy  

 
( )

1 1
= .

( ; )
i iA

i B i AB i i   

 x x
x

 (3.5) 
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Condition (3.5) is often called the calibration property. The calibration property is a desirable property for 

any pseudo-weights. Once ̂  is calculated from the calibration equation in (3.5), the final pseudo weight 

for sample B  is given by ( ) ˆˆ =1/ ( ; ).B
i B iw  x  

 
4. Simulation study 
 

A limited simulation study is conducted to compare the performance of estimators, including the 

methods suggested by the paper of Li. In the simulation, we generate a finite population with 

1 2 1 2Bernoulli ( ), = expit ( 1 0.8 0.2 0.5 )i i i i i i iy p p x x x x   ∼  with 1 2 3( , , )x x x  follows from the standared 

normal distribution. The finite population size is =N 5,000. 

From the finite population, sample A  is generated repeatedly by the PPS sample with measure of size  

 1 3 1 3= exp( 1 0.5 0.5 0.2 )i i i i imos x x x x      

with sample size =An 250. In addition, sample B  is selected repeatedly by stratified random sampling with 

two strata, where stratum 1 is 1 1= : > 0iU i U x  and stratum 2 is 2 1= : 0.iU i U x   In stratum 1, 

1 = 0.7B Bn n  samples are selected by simple random sampling. In stratum 2, 2 = 0.3B Bn n  samples are selected 

by simple random sampling. The sample size of B  is chosen to be either =Bn 250 or =Bn 2,500 so that 

the sampling ratio is either 5% or 50%. The design weights for sample A are available in sample ,A  but not 

in sample .B  The study variable y  is available only in sample .B  The covariate of the main effects and 

their pairwise interaction effects 1 2 3 1 2 1 3 2 3( , , , , , )x x x x x x x x x  are available in .A B  

We compare the following estimators: 

Mean C Sample mean of the nonprobability sample .C  Unweighted in the paper.  

WBS ALP(Adjusted Logistic Propensity) estimator using weighted balancing score method, proposed 

by Wang et al. (2021). 

ABS ALP estimator using adaptive balancing score method, proposed by Li.  

CLW Chen et al. (2020)’s IPW(Inverse Probability Weighting) estimator using logistic regression 

model for ( ).B
i   

Cal Calibration estimator that satisfies (3.5) using logistic regression model for ( ).B
i  

CPS The proposed pseudo weight estimator (2.6) using the conditional inclusion probability model and 

the smoothed weights in (2.5). The logistic regression model is used for the conditional inclusion 

probability model, and Poisson regression was used for smoothing weights of sample A in (2.5).  

UCPS The pseudo weight estimator proposed in Section 3 using the logistic regression model for ( )B
i  

with ̂  estimated by the conditional maximum likelihood method in (3.3).  

 

While the sample B  is selected using stratified sampling, the propensity scores of WBS, ABS, CLW, CPS, 

and UCPS were fitted from the logistic model, and we allowed model misspecification on the response 

model of ( ).B  
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The simulation results after 1,000 simulation runs are summarized in Table 4.1. When =Bn 250, the 

ABS, the CPS, and the UCPS estimators tend to outperform all other estimators considered. When =Bn

2,500, the CPS and UCPS estimators are better than the other estimators considered. The ABS and WBS 

methods are developed based on the assumption that the overlap between the two samples is negligible, but 

this assumption does not hold for =Bn 2,500, as the sampling rate for sample B, / =Bn N 0.5, is non-

negligible. 

 
Table 4.1 

Bias, standard error, and root mean square error after 1,000 repetitions. 
 

 =Bn 250 =Bn 2,500 

BIAS SE RMSE BIAS SE RMSE 
Mean C 0.0533 0.0252 0.0589 0.0514 0.0052 0.0517 

WBS 0.0087 0.0275 0.0289 0.0053 0.0139 0.0149 
ABS 0.0097 0.0264 0.0281 0.0097 0.0130 0.0162 

CLW 0.0084 0.0278 0.0291 -0.0081 0.0234 0.0248 
Cal 0.0061 0.0284 0.0291 0.0080 0.0140 0.0161 

CPS 0.0095 0.0263 0.0279 0.0035 0.0116 0.0121 
UCPS 0.0094 0.0263 0.0280 0.0035 0.0116 0.0121 

 
5. Concluding remark 
 

In constructing pseudo-weights, model assumptions for the nonprobability sample are used. The model 

assumptions can be classified into two groups, one is the conditional PS model approach and the other is 

the unconditional PS model approach. The conditional PS model approach is computationally attractive but 

the smoothing weights for sample A should be constructed correctly. In the unconditional PS model 

approach, the pseudo maximum likelihood method of Chen et al. (2020) has been used. Li’s method is more 

efficient than the pseudo maximum likelihood method as long as the sampling rate for sample B is 

negligible. In this paper, we propose an alternative approach using the conditional maximum likelihood 

method as an efficient estimation method, which can be justified even when the sampling rate for sample B 

is non-negligible. The computation for the conditional maximum likelihood method is somewhat involved. 

Beaumont, Bosa, Brennan, Charlebois and Chu (2024) independently proposed a very similar method, 

which was called the maximum sample likelihood method. Further investigation of the proposed method 

will be presented elsewhere. 
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Abstract 

In some of non-probability sample literature, the conditional exchangeability assumption is considered to be 
necessary for valid statistical inference. This assumption is rooted in causal inference though its potential 
outcome framework differs greatly from that of non-probability samples. We describe similarities and differences 
of two frameworks and discuss issues to consider when adopting the conditional exchangeability assumption in 
non-probability sample setups. We also discuss the role of finite population inference in different approaches of 
propensity scores and outcome regression modeling to non-probability samples. 
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1. Introduction 
 

I congratulate Professor Yan Li on another important addition to her active research on non-probability 

samples. In her paper, Professor Li classified existing research on non-probability samples into (1) the 

propensity score weighting methods and (2) the propensity score matching methods, and discussed that the 

conditional exchangeability (CE) assumption is required for the former. After reviewing existing methods 

in view of the CE assumption, Professor Li proposed the novel adaptive balancing score to ensure that the 

CE assumption holds. As the crystallization of accumulating literature on non-probability samples and 

causal inference, her paper demands a fair amount of background knowledge in order to understand complex 

concepts. The focus of our discussion here is to examine basic concepts and foundational issues which 

Professor Li’s sophisticated presentation touched only lightly. 

This discussion is organized as follows. In Section 2, we review the conditional exchangeability 

assumption in causal inference. We describe differences of probabilistic frameworks in causal inference and 

non-probability samples, and discuss issues to consider when adopting the conditional exchangeability 

assumption in non-probability samples. In Section 3, we describe two major approaches in missing data 

problems including causal inference. Then we discuss issues of the role of finite population inference arising 

from the conditional exchangeability assumption in different approaches. 
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2. Causal inference 
 

First, we discuss the relationship between the CE assumption and causal inference. In the paper, the CE 

assumption is formulated as the equality  

 [ | ( ), ] = [ | ( ), ]E y b x C E y b x U  (2.1) 

where ( )b x  is a function of covariates x  referred as a balancing score, U  is a finite population, and C U  

is a non-probability sample. Though simply defined, the criterion of its choice in the paper indicates that the 

balancing score seems to be implicitly defined to satisfy the CE assumption. Moreover, it is stated as a fact 

without much discussion that any quantity (including the propensity score) finer than the propensity score 

satisfies the CE assumption as a balancing score. An important literature that helps understand these 

concepts is the one coauthored by Professor Li (Wang, Graubard, Katki and Li, 2022), which is, to the best 

of our knowledge, the first paper that explicitly introduced balancing scores and conditional exchangeability 

in causal inference to the non-probability sample literature. In Wang, Graubard, Katki and Li (2022), 

however, these concepts were directly borrowed from the work of Rosenbaum and Rubin (1983) on causal 

inference, and results on propensity scores were claimed to hold in the non-probability setting without 

formal discussion. Because the definitions of the CE assumption and balancing score in the paper are 

different from those in Rosenbaum and Rubin (1983), and because the counterfactual framework of 

Rosenbaum and Rubin (1983) is fairly different from the setting of non-probability samples, it is worthwhile 

to pay a close attention to similarities and differences between causal inference and non-probability samples. 

To this end, we first briefly summarize Rosenbaum and Rubin (1983) where variables of interest are 

potential outcomes ( (0), (1)),Y Y  covariates ,X  and treatment assignment {0,1}.Z   The balancing score 

( )b x  in Rosenbaum and Rubin (1983) was defined as the function of covariates =X x  that satisfies the 

conditional independence between X  and treatment assignment Z  given ( )b X  (i.e., | ( )).X Z b X  It was 

shown that the propensity score into treatment is a balancing score, and that any function of x  that can get 

mapped into the propensity score is also a balancing score. As the definition suggests, there is no 

requirement on the relationship between potential outcomes and covariates. The assumption that connects 

these variables is the conditional exchangeability with respect to covariates (or strong ignorability of 

Rosenbaum and Rubin (1983)), defined differently as the conditional independence between the potential 

outcomes and treatment assignment given covariates (i.e., ( (0), (1)) | )).Y Y Z X  The main result is that 

conditional exchangeability with respect to covariate X  implies conditional exchangeability with respect 

to a balancing score ( ).b X  In other words, starting from the key conditional exchangeability assumption 

given covariates x  one can reduce the information of x  to a balancing score. Balancing scores ( )b x  are 

only meaningful in the presence of conditional exchangeability with respect to covariates .x  An implication 

of this result is that the difference between two potential outcomes are explained only by treatment 

assignment. 
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A natural way to apply these results to the non-probability sample setting is to consider selection to the 

non-probability sample as treatment assignment, and outcomes in the non-probability sample C  and the 

rest in the finite population (i.e., \ )U C  as two potential outcomes. In this setting, the conditional 

exchangeability of Rosenbaum and Rubin (1983) implies the conditional exchangeability with respect to 

the propensity score so that C  and \U C  are comparable given the propensity score. In contrast, Professor 

Li immediately assumes comparability of C  and U  given the propensity score. From the causal inference 

perspective, comparability of Rosenbaum and Rubin (1983) is a consequence of a conceptually checkable 

assumption while Professor Li begins with the desired comparability by assuming it. If, instead, one starts 

from conditional exchangeability as in Rosenbaum and Rubin (1983), a result still may not be satisfactory 

because two samples (i.e., C  and \ )U C  remain different by “treatment” of participation in a non-

probability sample. For example, if non-probability samples are hospital records or participants of a certain 

educational program, both samples differ due to receipt of care by the hospital or the educational effect. 

Even if we do not find such “treatment” that differentiates the non-probability sample and the rest, the 

conditional comparability between C  and \U C  does not necessarily correspond to the finite population 

.U  To achieve the correct target population, one needs to obtain a distribution of the propensity score in the 

finite population .U  This task is not simple to carry out as described below in relation to the odds 

representation of the propensity score. 

Another approach is to deviate from causal inference by starting from the conditional independence 

between Y  and selection Z  into C  given X  instead of the conditional exchangeability with potential 

outcomes. In this case, all derivations in fact remain valid to conclude the result that |Y Z X  implies 

| ( )Y Z b X  as desired. However, a new conditional independence assumption is simply the standard 

missing at random (MAR) assumption in the missing data problem, which is also adopted by Chen, Li and 

Wu (2020) on their non-probability sample research. The MAR assumption is familiar to many statisticians 

and easier to examine than the conditional exchangeability assumption of Professor Li. If this approach is 

the one implicitly adopted in Wang, Graubard, Katki and Li (2022), as well as the current paper, it is 

worthwhile to discuss additional benefits of this approach over the MAR assumption in addition to the 

discrepancy between \U C  and U  for comparability. If a different approach is adopted, an unverified 

relationship between balancing scores and the CE assumption (2.1) should be explicitly derived. As an aside, 

we would like to point out that Chen, Li and Wu (2020), is not the only literature that does not use the CE 

assumption of Professor Li for the propensity score weighting methods (see e.g. Kim and Morikawa (2023) 

for the non-ignorable missing case). 

As mentioned above, the comparability of C  and \U C  allows reliable estimation of the regression 

model based on C  for items in \U C  but the estimation of NY  requires consistent estimation of propensity 

scores for U  to bridge regression given X  to the entire population .U  However, simple estimation of the 

propensity score is not possible because X  is not available for all items in \ .U C  The variable X  is 

available in a reference sample S  from U  with a known design but S  is not a simple alternative to \U C  

because items in S  can be also in a non-probability sample .C  To address this challenging issue, Wang, 
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Valliant and Li (2021) found the relationship between the propensity score into C  relative to U  and the 

propensity score into C  relative to the stacked sample of C  and U  where the same items in C  and S  are 

treated differently (for a rigorous derivation, see Savitsky, Williams, Gershunskaya, Beresovsky and 

Johnson (2023)). Using this relationship, Professor Li modeled the latter propensity score by binary 

regression to estimate the former. The event for the latter propensity score for a stacked sample is artificially 

constructed and conceptually difficult to model. This issue enhances the higher possibility of model 

misspecification, which would invalidate design-consistent estimation of .NY  The event for the former 

propensity score is the original event, and is natural to model. This approach was adopted by Savitsky, 

Williams, Gershunskaya, Beresovsky and Johnson (2023). 

 
3. Finite population inference 
 

Another concept we want to discuss is the role of the finite population in non-probability samples. The 

goal of the paper is to develop a design-consistent estimator of the finite population average .NY  For design 

consistency, one assumes series of conditions on the sequence of finite populations with all variables except 

selection into samples treated non-random. In contrast, the model-based approach treats the finite population 

as a random realization from the super population, and models the stochastic relationship among variables. 

In the missing data research, on the other hand, two major approaches (and their combinations) for 

estimation are the propensity score modeling and the outcome regression modeling. A more suitable 

approach to the design-based approach is the propensity score modeling that models selection into samples 

given covariates. This is because one can consider random selections while all other variables can be treated 

fixed. On the other hand, the outcome regression modeling assumes a distribution for Y  given ,X  and is 

suitable for the model-based approach. 

Professor Li made a difficult attempt to bridge the outcome regression approach to the design-based 

approach. Note that the conditional expectation can be considered as regression with conditioning variables 

as covariates. From this view, the approach in the paper seems to be purely the model-based approach based 

on the outcome regression. However, Professor Li attempted to carefully develop the conditional 

expectation step by step beginning a finite population and a non-probability sample. If the condition was 

purely model-based, the variable y  in the condition (2.1) is simply a random variable from the super 

population. In the conditional approach of the paper, this variable y  should be clearly defined in relation to 

the finite population U  and the non-probability sample C  through indices. If y  is a random choice of a 

variable from a sample S  from ,U  [ | ] =S i ii U
E y U Y

  where i  is the inclusion probability for the unit 

.i  In this case, the self-weighting sample S  satisfies [ | ] =S NE y U Y  but a stratified sample ,S  for example, 

does not satisfy this equality in general. In other words, the claimed issue of bias may not be unique to a 

non-probability sample. To fully appreciate the conditional exchangeability condition, a clear definition of 

y  in C  and/or U  is much desired. Moreover, it is desirable to elucidate how the model-based condition of 

the CE assumption leads to the design-based result despite conceptual discrepancy. 
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assumption in propensity-score based adjustment methods 

for population mean estimation using  
non-probability samples” 
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Abstract 

In this rejoinder, I address the comments from the discussants, Dr. Takumi Saegusa, Dr. Jae-Kwang Kim and 
Ms. Yonghyun Kwon. Dr. Saegusa’s comments about the differences between the conditional exchangeability 
(CE) assumption for causal inferences versus the CE assumption for finite population inferences using 
nonprobability samples, and the distinction between design-based versus model-based approaches for finite 
population inference using nonprobability samples, are elaborated and clarified in the context of my paper. 
Subsequently, I respond to Dr. Kim and Ms. Kwon’s comprehensive framework for categorizing existing 
approaches for estimating propensity scores (PS) into conditional and unconditional approaches. I expand their 
simulation studies to vary the sampling weights, allow for misspecified PS models, and include an additional 
estimator, i.e., scaled adjusted logistic propensity estimator (Wang, Valliant and Li (2021), denoted by sWBS). 
In my simulations, it is observed that the sWBS estimator consistently outperforms or is comparable to the other 
estimators under the misspecified PS model. The sWBS, as well as WBS or ABS described in my paper, do not 
assume that the overlapped units in both the nonprobability and probability reference samples are negligible, nor 
do they require the identification of overlap units as needed by the estimators proposed by Dr. Kim and 
Ms. Kwon. 

 
Key Words: Conditional Exchangeability; Causal inferences; Propensity score; Randomized trials; Observational studies; 

SARS-CoV-2 seroprevalence study. 

 
 

I want to thank the discussants for their insightful comments of my paper and for the excellent additional 

references they cite. I will begin by addressing Dr. Saegusa’s discussion on two major points. The first 

contrasts the differences between the conditional exchangeability (CE) assumption for causal inferences 

versus the CE assumption for finite population inferences using nonprobability samples. The second point 

focuses on distinguishing between design-based versus model-based approaches for finite population 

inference using nonprobability samples.  

 
1. Response to comments by Dr. Saegusa 
 

The CE assumption in causal inference and in finite population inference 
 

Dr. Saegusa provided a thorough explanation of the CE assumption for estimating causal effects of 

treatments in randomized trials and observational studies. The key condition is that conditional 

exchangeability is satisfied in order to make causal inferences. In randomized trials, CE of potential 

outcomes is achieved through random assignment of treatments. Conversely, in the analysis of observational 
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studies, CE is assumed rather than guaranteed to draw causal conclusions. The CE assumption in 

observational studies asserts that the distribution of potential outcomes (for different treatments), given all 

observed covariates, are exchangeable across treatment groups. In this case, there are no unobserved 

covariates that influence both the treatment assignment and the outcome of interest; see Rubin (2007) for 

causal effect estimation using randomized trials and observational studies. Note that unlike for randomized 

trials, in the context of finite population (FP) inference using nonprobability samples, CE is presumed rather 

than guaranteed, which is similar to the CE assumption needed for causal inference in observational studies.  

Dr. Saegusa adeptly linked self-selection into nonprobability samples to treatment assignment in causal 

inference, and defined that being self-selected into the non-probability sample C  versus in the rest in the 

finite population (i.e., U\C) as the two treatments. However, in FP inference using nonprobability samples, 

we are interested in estimating the FP mean for a single outcome, rather than the treatment effects, i.e., the 

difference between two potential outcomes under the treatments of C and U\C. There are no multiple 

treatments applied to “like” groups to obtain multiple potential outcomes. Instead, only one single potential 

outcome is realized. As a result, the CE assumption in FP inference differs from CE in observational studies, 

where it asserts that the distribution of the (single) outcome is exchangeable between the nonprobability 

sample C and the finite population ,U  given all observed covariates. Under this CE assumption, the FP 

mean can then be inferred using C  without observing the outcome in U\C. 

In summary, CE in FP inference is similar to CE in causal inference using observational studies. 

However, unlike in causal inference, the exchangeability pertains to a single outcome between C and U in 

FP inference. 

 
Model-based vs. design-based methods for FP inferences 
 

Dr. Saegusa effectively outlined the fundamental differences of model-based vs. design-based methods 

for FP inference. Model-based methods treat the outcome as the random variable while the design-based 

methods consider the selection (into the sample) indicator as random (with the outcome constant). In this 

paper, a set of design-based pseudoweights were constructed for the nonprobability sample to estimate FP 

mean under the CE assumption of { | ( ), } { | ( ), },E y b C E y b Ux x  where the expectation (.)E  is with 

respect to two levels of randomness of 1) random realization of the FP from a superpopulation, and 2) 

random self-selection into C  from the finite population U. Dr. Saegusa further indicated that “a clear 

definition of y  in C and/or U is desired”. The results, however, for obtaining unbiased estimation of the FP 

mean, apply as long as the FP is a random realization of a superpopulation. Only the existence of a 

distribution function with appropriate finite moments of variables is needed for the superpopulation. There 

is no need to specify a specific form of the parametric model; see for example Graubard and Korn (2002) 

for further details.  
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2. Response to comments by Dr. Jae-Kwang Kim and 
Ms. Yonghyun Kwon 

 

In the following, I address the thoughtful discussion by Dr. Kim and Ms. Kwon in which they first 

presented a comprehensive framework established for categorizing existing approaches for estimating 

propensity scores (PS) into conditional and unconditional approaches. They further conducted simulation 

studies comparing different estimators, and I am glad to see our proposed ABS estimator worked well in 

their simulations.  

In the conditional approaches two phases are involved with the first phase of sampling 1S A B   from 

U and the second phase of sampling B from 1.S  The model parameters   of the conditional inclusion 

probability for the second phase 2 1( | ) ( ; )iP i S i S p x     is estimated by 

  
1 

,ˆ arg max log ( ( ; )) (1 )log (1 ( ; ))  i i i i
i S

p x p x    


      

where ( )i I i B    is the indicator function of the event .i B  Under a statistical model, say logistic 

regression model logit{ ( ; )} ,i ip x x   the ̂  can be obtained by solving for   

  
 and 

1 ( ; ) ( ; ) 0.i i i i
i B i A i B

p x x p x x 
  

      

Note the overlapped units that are selected into both samples of A and B need to be identified and removed 

from the sample A for the second summation above. There was an accidental omission of “ and ”i B  

under the second summation in the discussion. Based on the estimate ˆ,  Dr. Kim and Ms. Kwon proposed 

the CPS pseudoweight for the thi  unit in B, given by  

 ( ) ( ) ,ˆ
1

1 1
( ; )ˆ

B A
i i

i

w w
p x 

 
    

 
  

where ( )A
iw  is often unknown and estimated under a parametric model in practice.  

In the unconditional approaches, only one step was involved. The conditional maximum likelihood 

estimator of   was estimated from the combined sample 1 .S A B   Same as the CPS estimator, the 

proposed unconditional propensity score (UCPS) approach is also based on the assumption that the units 

that belong to the intersection of A and B can be identified.  

The proposed CPS and UCPS were evaluated by simulation studies, considering varying sample sizes in 

sample B selected using stratified simple random sampling (SSRS) with one categorical stratification 

variable. This design, although simple, is clever. It aligns with the true underlying PS model for all methods 

considered, ensuring a fair comparison. To further evaluate the performance of the proposed estimates, we 

expanded the simulation studies by including an additional estimator under the same SSRS sampling design 

but with varying sampling weights. Recall the population size is N  5,000, sample A size An  250, and 

varying sample B sizes Bn  250 and 2,500. We consider the three estimators that have the smallest root 
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mean squared errors (RMSE) in Table 4.1 of their discussion: WBS, ABS and CPS. The UCPS performs 

similarly to CPS, and therefore not considered. Recall that WBS refers to the adjusted logistic propensity 

estimator, proposed by Wang et al. (2021). In the same paper, the authors also proposed the scaled WBS 

estimator, denoted by sWBS, where the scaled weights are the value of one for sample B units and 
( ) ( )

A

A A
s i ii S

n w w
  for unit i  in sample A. Sampling fractions vary within sampling strata. In stratum1, 

1 1B Bn f n  samples are selected by simple random sampling. In stratum 2, 2 1(1 )B Bn f n   samples are 

selected by simple random sampling. The value of 1f  is varied as 0.7, 0.8, and 0.9 to produce different 

values of the coefficient of variation of the SSRS sampling weights (CVWT). In the PS analysis, we consider 

two models: M1) the main effects of 1 2 3( , , )x x x  and their pairwise interaction effects; M2) the main effects 

1 2 3( , , )cx x x  and their pairwise interaction effects, where 1 1{ 0},cx I x   the indicator function of the event 

1 0x   where 1 x  are generated from a (0,1).N  Note that M2 aligns with the SSRS design while M1 is 

misspecified by including the continuous variable 1x  in the PS analysis. 

Four observations are made: 1) All the four estimators are approximately unbiased under the true PS 

model. 2) ABS and CPS perform similarly for a small sample size of Bn  250 under both models. 3) When 

the sample size is large Bn  2,500, CPS consistently has smallest SE and RMSE under the true model. 

These results are as expected, given that there is a large percentage of overlapped units in both samples. 

Therefore, efficiency is gained by the CPS method, which assumes that the overlapped units can be 

identified. 4) Under the misspecified PS model, sWBS consistently has the smallest bias, especially when 

CVWT is large. In contrast, CPS has the largest bias and SE when CVWT and Bn  is large. The biasness 

and the loss of efficiency from CPS can be attributed to the misspecified modeling of ( | ),P i B i A B    

the limited sample size by removing overlapped units (~50%) from sample A, and the variable sampling 

weights. CPS is sensitive to model misspecification, especially when Bn  and CVWT are large.  

In summary, under true PS model, ABS and CPS perform similarly when Bn  is small; when Bn  is large, 

CPS estimator is more efficient due to increasing number of units that are selected and identified in both 

samples A and B. Under the misspecified PS model, sWBS (Wang et al., 2021) overperformed or was 

comparable to the other estimators. Effects of various misspecified PS models or scalers on the performance 

of sWBS require further investigation. Secondly, the estimators ABS, WBS, sWBS, as well as CPS, are 

developed without assuming that the overlapped units in both samples are negligible. For large sample size 

Bn  2,500, the sampling rate for sample B, Bn N  50%, is non-negligible. All estimators, as shown in 

Table 1, are approximately unbiased under the true PS model, which empirically proves that all the four 

methods do not require the assumption that the overlapped units in both samples are negligible. Finally, it 

is of practical importance for the reader to be aware that the CPS estimator requires the identification of 

overlap units. This may not be feasible in many situations. For example, in the NIH SARS-CoV-2 

Seropositivity Study discussed in my paper, this identifying information was not collected.  
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Table 1 

Bias, standard error, and root mean square error ( 100) under SSRS with varying CV of sample weights 

(CVWT) after 5,000 repetitions. 
 

  Correctly Specified PS model 1( )cx  Misspecified PS model 1( )x  

  Bn  250 Bn  2,500 Bn  250 Bn  2,500 

  BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE 

  CVWT = 0.44 

Mean C -3.25 2.98 4.41 -3.33 0.94 3.46 4.84 2.87 5.63 4.74 0.93 4.83 

WBS 0.04 3.60 3.60 -0.04 1.42 1.42 0.51 3.06 3.10 0.23 1.54 1.56 

sWBS 0.02 3.56 3.56 -0.05 1.41 1.41 0.33 3.05 3.07 0.18 1.62 1.63 

ABS 0.02 3.54 3.54 -0.04 1.38 1.38 0.56 2.98 3.04 0.56 1.45 1.55 

CPS 0.01 3.53 3.53 0.01 1.20 1.20 0.55 2.99 3.04 0.12 1.36 1.36 

  CVWT = 0.75 

Mean C -4.97 2.89 5.76 -4.99 0.92 5.07 7.10 2.97 7.70 7.10 0.95 7.16 

WBS -0.03 4.16 4.16 0 1.56 1.56 1.03 3.18 3.34 0.47 1.55 1.62 

sWBS -0.08 4.09 4.09 -0.03 1.55 1.55 0.39 3.23 3.25 0.18 1.64 1.65 

ABS -0.08 4.08 4.08 -0.02 1.52 1.52 1.13 3.15 3.34 1.11 1.52 1.88 

CPS -0.08 4.07 4.07 0.05 1.34 1.34 1.10 3.16 3.34 -0.41 1.64 1.69 

 CVWT = 1.33 

Mean C -6.58 2.88 7.19 -6.66 0.90 6.72 9.49 3.07 9.98 9.45 0.97 9.50 

WBS 0.11 5.65 5.65 0.00 1.91 1.91 2.74 3.49 4.44 1.39 1.67 2.17 

sWBS 0.06 5.54 5.54 -0.03 1.89 1.89 1.07 3.78 3.93 -0.05 1.85 1.85 

ABS 0.03 5.49 5.49 -0.04 1.86 1.86 2.60 3.50 4.36 1.94 1.69 2.58 

CPS 0.03 5.49 5.49 0.03 1.71 1.71 2.54 3.54 4.36 -3.00 3.10 4.31 
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Handling non-probability samples through inverse 
probability weighting with an application to Statistics 

Canada’s crowdsourcing data 
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Abstract 

Non-probability samples are being increasingly explored in National Statistical Offices as an alternative to 
probability samples. However, it is well known that the use of a non-probability sample alone may produce 
estimates with significant bias due to the unknown nature of the underlying selection mechanism. Bias reduction 
can be achieved by integrating data from the non-probability sample with data from a probability sample provided 
that both samples contain auxiliary variables in common. We focus on inverse probability weighting methods, 
which involve modelling the probability of participation in the non-probability sample. First, we consider the 
logistic model along with pseudo maximum likelihood estimation. We propose a variable selection procedure 
based on a modified Akaike Information Criterion (AIC) that properly accounts for the data structure and the 
probability sampling design. We also propose a simple rank-based method of forming homogeneous post-strata. 
Then, we extend the Classification and Regression Trees (CART) algorithm to this data integration scenario, 
while again properly accounting for the probability sampling design. A bootstrap variance estimator is proposed 
that reflects two sources of variability: the probability sampling design and the participation model. Our methods 
are illustrated using Statistics Canada’s crowdsourcing and survey data. 

 
Key Words: Akaike Information Criterion; Classification and Regression Trees; Logistic model; Participation probability; 

Statistical data integration; Variable selection. 

 
 

1. Introduction 
 

Non-probability samples are being increasingly explored at Statistics Canada and in other statistical 

agencies around the world. Indeed, Statistics Canada has recently conducted several non-probability surveys 

to evaluate the impacts of the COVID-19 pandemic on different aspects of life of the Canadian population. 

Data of these non-probability surveys were collected from visitors of Statistics Canada’s website who 

responded voluntarily to an online survey questionnaire. The main motivation for considering this non-

probability approach, called crowdsourcing at Statistics Canada, over probability surveys is the significant 

reduction in time and cost that can be achieved in the production of survey statistics. Another important 

advantage is the non-intrusive nature of crowdsourcing since participation is made on a voluntary basis. 

However, it is well known that the use of a non-probability sample alone, such as a crowdsourcing sample, 

may produce estimates with significant bias due to the unknown nature of the underlying selection (or 

participation) mechanism. To reduce this participation bias, data from a non-probability sample can be 

combined with data from a probability sample, ideally a large one. Estimation methods that combine data 

from probability and non-probability samples fall under the area of statistical data integration.  

We consider the data integration scenario for which the variables of interest are available only in the 

non-probability sample. However, a vector of auxiliary variables is observed in both samples and used to 
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reduce bias. A possible approach to inference under this scenario relies on a model for the variables of 

interest along with the assumption that the non-probability sample is not informative with respect to the 

model. The prediction approach for finite populations (e.g., Royall, 1970; Valliant, Dorfman and Royall, 

2000) is one possible avenue for data integration. If a linear model between the variables of interest and the 

auxiliary variables holds, it can be implemented by weighting the non-probability sample through 

calibration on known population totals or totals estimated from the probability survey (e.g., Elliott and 

Valliant, 2017; Valliant, 2020). Another model-based method is statistical matching (see Yang, Kim and 

Hwang, 2021, for a recent reference). It consists of imputing the missing values of the variables of interest 

in the probability sample using non-probability sample data. The method is called sample matching (e.g., 

Rivers, 2007) when donor imputation is used to fill in the missing values. The prediction approach with 

estimated totals and statistical matching lead to identical estimators under linear models with error variance 

linearly related to auxiliary variables (Beaumont, 2020). Since both methods rely on a model for the 

variables of interest, they may become impractical when there are multiple variables of interest as a model 

needs to be determined and validated for each of them. 

An alternative approach to inference relies on a model for the participation indicator rather than a model 

for the variables of interest. This approach is more appealing when there are multiple variables of interest 

as there is only one participation indicator, and thus only one model to choose and validate. Estimates are 

obtained by weighting each participant in the non-probability sample by the inverse of its estimated 

participation probability. This is often called inverse probability weighting or propensity score weighting in 

the literature. We focus on this approach. If the values of the auxiliary variables are observed for the entire 

population, the problem is basically identical to weighting for survey nonresponse, and nonresponse 

weighting methods can be applied directly to weight the non-probability sample.  

In general, the auxiliary variables are observed only for the participants in the non-probability sample. 

Chen, Li and Wu (2020) proposed a simple and attractive method to address this issue. It requires the 

auxiliary variables to be also observed in a probability sample and assumes that the logistic function is used 

to model the participation probability. An alternative to Chen, Li and Wu (2020) consists of creating a 

pooled sample from the probability and nonprobability samples and modelling the participation indicator 

under the assumption that there is no overlap between the two samples (e.g., Lee, 2006; Valliant and Dever, 

2011; and Ferri-Garcia and Rueda, 2018). Chen, Li and Wu (2020) noted that this pooling method leads to 

a biased estimator of the participation probability. However, Beaumont (2020) pointed out that it yields 

estimated participation probabilities approximately equivalent to those of Chen, Li and Wu (2020) when all 

the participation probabilities are small and the probability sample is properly weighted. Wang, Valliant and 

Li (2021) proposed an extension of the pooling method to account for a non-negligible overlap between the 

probability and non-probability samples. Elliott and Valliant (2017) proposed another inverse probability 

weighting method based on the pooled sample. It also assumes no overlap between both samples and 

requires the probability survey weights to be available in the non-probability sample. Recent reviews of 

statistical data integration methods are given in Beaumont (2020), Lohr (2021), Rao (2021), Valliant (2020), 

Wu (2022) and Yang and Kim (2020). 
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The choice of auxiliary variables is key for bias reduction. They should ideally be related to both the 

participation indicator and the variables of interest. Chen, Li and Wu (2020) supposed that the auxiliary 

variables were given. In practice, there may be a number of auxiliary variables available in both samples, 

often categorical, and it may not be obvious to determine the relevant ones along with proper interactions. 

Variable selection tools could be useful but need to be adapted to the data integration scenario considered 

in this paper. In particular, they need to account for the sampling design used to select the probability sample 

and for any adjustments to the design weights, such as nonresponse and calibration adjustments. We propose 

a stepwise selection procedure that achieves this goal. It is based on a modification of the Akaike 

Information Criterion (AIC) similar to the one Lumley and Scott (2015) developed for the estimation of 

model parameters from probability survey data. The Least Absolute Shrinkage and Selection Operator 

(LASSO) is an alternative that is considered by Bahamyirou and Schnitzer (2021). This technique usually 

involves cross-validation for the determination of the penalty parameter. The development of cross-

validation methods that handle a combination of a probability and non-probability sample, and that properly 

account for the probability sampling design, requires further research.  

The logistic model may sometimes produce a few estimated probabilities that are very small leading to 

very large weights and potentially unstable estimates. A common solution to this problem in the context of 

survey nonresponse is to create homogeneous groups and weight each respondent (participant) in a given 

group by the inverse of the estimated response (participation) rate in the group. The resulting weights 

possess a calibration property (see Section 3.3), which tends to limit the magnitude of the largest weights. 

The creation of homogeneous groups also provides some robustness to model misspecifications, as 

illustrated by Haziza and Lesage (2016) in the context of survey nonresponse.  

A possible avenue to the creation of homogeneous groups is to adapt the Classification and Regression 

Trees (CART) algorithm, developed by Breiman, Friedman, Olshen and Stone (1984), to the data integration 

scenario studied in this paper. A nice advantage of tree-based methods is that auxiliary variables and their 

interactions are chosen automatically. Chu and Beaumont (2019) developed an algorithm for growing a tree 

that accounts for the survey weights. They called the algorithm “nppCART” because it integrates data from 

both a non-probability and probability sample. Pruning is an important aspect of CART that is used to avoid 

overfitting and to improve the efficiency of the resulting estimates. Pruning is often based on cross-

validation techniques but, as pointed out above, these techniques have yet to be extended to the data 

integration scenario studied in this paper. Instead, we consider a modification of the AIC, similar to Lumley 

and Scott (2015), that properly accounts for the probability sampling design and any design weight 

adjustments, and use it to develop a pruning procedure. 

In Section 2, we introduce the data integration problem along with some notation. The estimation of 

participation probabilities is discussed in Sections 3 and 4. In Section 3, we consider more specifically the 

logistic model and describe our proposed variable selection procedure as well as a simple rank-based 

method, called the Frank method, for the creation of homogeneous groups. In Section 4, we describe 

nppCART and our proposed pruning procedure. Bootstrap estimation of the variance of our estimators is 

discussed in Section 5. An empirical evaluation of our methods using real data is shown in Section 6. The 

last section contains some concluding remarks.  
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2. Data integration scenario 
 

Let us consider the estimation of the population total ,kk U
y


  where U  is the set of population 

units and ky  is the value of a variable of interest y  for population unit .k  We assume that ky  is observed 

without error in a non-probability sample NP .s U  Along with ,ky  a vector of auxiliary variables xk  is 

also observed for each unit NP .k s  The indicator of participation in the non-probability sample is denoted 

by ,k  i.e., 1,k   if NP ,k s  and 0,k   otherwise. A probability sample ,Ps  drawn using some 

probability sampling design, is also available. The auxiliary variables xk  are observed for each unit ,Pk s  

but the variable of interest ky  and the participation indicator k  are missing in the probability sample. 

The objective is to estimate   under the above data integration scenario, i.e., using the y  values 

observed in the non-probability sample along with the x values observed in both samples. Inverse probability 

weighting involves modelling the participation probability Pr ( 1 ),k k kp   x  which is assumed to be 

strictly greater than 0. The estimator of   under this approach is 
NP

NP
NP
ˆ ˆ ,k kk s

w y


  where NP 1ˆ ˆ
k kw p  is 

the non-probability survey weight, also called the pseudo survey weight, of participant ,k  and ˆ kp  is a 

consistent estimator of .kp  A critical assumption for the validity of this approach is that the participation 

mechanism is not informative, i.e., Pr ( 1 , ) Pr ( 1 ).k k k k ky   x x  The availability of auxiliary 

variables associated with both k  and ky  is key to making this assumption plausible and reducing the 

participation bias. 

The non-probability survey weight NPˆ
kw  can then be calibrated (e.g., Deville and Särndal, 1992) to 

achieve greater efficiency gains as well as a double robustness property (e.g., Chen, Li and Wu, 2020; 

Valliant, 2020). Calibration of the non-probability survey weight NPˆ
kw  may be particularly efficient when 

auxiliary variables strongly predictive of ky  are available, which were excluded from the modelling of .kp  

We focus next on the modelling and estimation of the participation probability .kp  

 
3. Estimation of the participation probability using a logistic model 
 

The most common model for the participation probability Pr ( 1 )xk k kp    is the logistic model 

 
1

( ) 1 exp( ) ,k kp


  α x α  where α  is a vector of unknown model parameters. Assuming xk  is observed 

for all ,k U  and k  are mutually independent, an estimator of α  can be found by solving the unbiased 

maximum likelihood estimating equation:   

  
NP

( ) ( ) ( ) .k k k k k kk U k s k U
p p

  
      U α α x x α x 0  (3.1) 

The resulting maximum likelihood estimator is denoted by α  and satisfies ( ) .U α 0  The estimated 

participation probability is denoted by ( ).k kp p α  

The estimating equation (3.1) cannot be used when the vector of auxiliary variables xk  is only observed 

for NPk s  and missing for NP.k U s   Chen, Li and Wu (2020) proposed to estimate ( )α xk kk U
p

  in 

(3.1) using a probability survey. The resulting pseudo maximum likelihood estimating equation is 
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NP

ˆ ( ) ( ) ,
P

k k k kk s k s
w p

 
   U α x α x 0  (3.2) 

where kw  is the probability survey weight for unit .Pk s  For simplicity, we assume in our theoretical 

developments that 1,k kw    where k  is the probability that population unit k  is selected in .Ps  This 

weight ensures that ˆ[ ( )] ( ),dE U α U α  where the subscript d  indicates that the expectation is taken with 

respect to the probability sampling design. As a result, the estimating equation (3.2) is unbiased with respect 

to both the participation model and the probability sampling design. In practice, the survey weight kw  is 

often obtained after adjusting the basic design weight, 1,k
  for nonresponse and calibration. The estimating 

equation (3.2) requires knowing the vector xk  for all NPk s  and all Pk s  but not for all .k U  Its solution 

yields the pseudo maximum likelihood estimator ˆ ,α  which satisfies ˆ ˆ( ) .U α 0  The resulting estimated 

participation probability is denoted by ˆˆ ( ).k kp p α  Note that the estimating equation (3.2) may not have a 

solution. This is more likely to occur when NPn N  is large and the probability sample is small (see 

Beaumont, 2020). This was not an issue in our experimentations since NPn N  was smaller than 1%. 

Beaumont (2020) argued that the occurrence of inexistent solutions may be reduced by replacing the logistic 

model with the exponential model.  

Chen, Li and Wu (2020) considered the case where the auxiliary variables are given. In practice, it may 

be necessary to choose relevant auxiliary variables and their interactions among a large set of candidate 

auxiliary variables. In the applications we have experimented with so far, the candidate auxiliary variables 

are often categorical (e.g., education, marital status, etc.). Blindly crossing all these variables may lead to a 

huge number of groups with many small groups, even empty. This was our motivation for finding methods 

that could select relevant auxiliary variables and their interactions.  

We consider a stepwise selection procedure that attempts to minimize a modified version of the AIC, 

which properly accounts for the probability sampling design used to draw .Ps  The justification for this 

modified AIC is provided in Section 3.1, and our selection procedure is described in Section 3.2. Section 3.3 

considers an important special case of the logistic model: the homogeneous group model. In Section 3.4, a 

simple rank-based method for creating homogeneous groups is proposed. Finally, in Section 3.5, the recent 

method of Wang, Valliant and Li (2021) is discussed and contrasted with the method of Chen, Li and Wu 

(2020). 

 
3.1 A modified AIC for the logistic model that accounts for the probability 

sampling design 
 

Let us first consider the case where xk  is known for all the population units .k U  Assuming k  are 

mutually independent, we can write the log likelihood function as 

 

NP

( ) log[ ( )] (1 ) log[1 ( )]

( )
log log[1 ( )].

1 ( )

k k k kk U

k
kk s k U

k

l p p

p
p

p

 


 

   

 
   

 



 

α α α

α
α

α
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Let us define 0 ( ) [ ( )],ml E lα α  where the subscript m  indicates that the expectation is taken with respect 

to the true unknown participation model. The maximum likelihood estimator α  maximizes ( )αl  and we 

denote by 0 ,α  the value of α  that maximizes 0 ( ).l α  Under regularity conditions, the maximum likelihood 

estimator α  is consistent for 0α  under the model, i.e.,  0 (1),pN O α α  where N  is the population 

size. 

The AIC is an estimator of 02 [ ( )].mE l α  It is well known that a consistent estimator of 02 [ ( )]αmE l   is 

 AIC 2 ( ) 2 ,l q  α  (3.3) 

where q  is the number of model parameters (or the number of auxiliary variables). Equation (3.3) is the 

original AIC expression and the most widespread in practice. 

Let us now consider the case where xk  is known only for NPk s  and .Pk s  Chen, Li and Wu (2020) 

proposed the pseudo log likelihood function 

 
NP

( )ˆ( ) log log[1 ( )].
1 ( ) P

k
k kk s k s

k

p
l w p

p 

 
   

 
 

α
α α

α
 (3.4) 

Using 1
k kw    ensures that ˆ[ ( )] ( )α αdE l l  and 0

ˆ[ ( )] ( ).mdE l lα α  Under regularity conditions, the pseudo 

maximum likelihood estimator ˆ ,α  which maximizes ˆ( )αl  in (3.4), is consistent for 0α  under both the 

model and the sampling design, i.e., 0
ˆ( ) (1),P

pn O α α  where Pn  is the size of the probability sample. 

Under pseudo maximum likelihood estimation, the AIC can be defined as an estimator of  

0 0
ˆ ˆˆ ˆ ˆ ˆ2 [ ( )] 2 [ ( )] 2 [ ( ) ( )].md md mdE l E l E l l    α α α α  

In Appendix 1, we provide a sketch of the proof that 

 1
0 0 0 0

ˆ ˆˆ ˆ[ ( ) ( )] tr {var [ ( )]}[ ( )] ,md m dE l l q E      α α U α H α  (3.5) 

where the function ˆˆ ( ) ( )U α α αl    is given in (3.2) for the logistic model, and 2
0 0( ) ( ) .l    H α α α α  

Our derivations follow closely those of Lumley and Scott (2015). From (3.5) and (A.3) in Appendix 1, a 

consistent estimator of 0
ˆ2 [ ( )]mdE l α  is 

  10
ˆ ˆ ˆˆ ˆˆAIC 2 ( ) 2 2tr [ ( )][ ( )] ,dl q     α v U α H α  (3.6) 

where 0
ˆˆ [ ( )]v U αdd  is any design-consistent estimator of 0

ˆvar [ ( )]U αd  and 2 ˆˆ ( ) ( ) .l    H α α α α  For the 

logistic model, 

 ˆ ( ) ( ) [1 ( )] .
P

k k k k kk s
w p p


  H α α α x x  (3.7) 

The AIC expression (3.6) is similar to the one given in Lumley and Scott (2015) but they omitted the 

term 2 .q  This term is negligible compared with the third term on the right-hand side of (3.6) when the 

sampling fraction Pn N  is negligible. However, the term 2q  may not always be negligible compared with 

the third term of (3.6), even when Pn N  is small. This would tend to occur when the participation 
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probabilities ( )αkp  are small, which is typically the case of online volunteer-based surveys like Statistics 

Canada’s crowdsourcing surveys. Therefore, the term 2q  should generally not be neglected unless the non-

probability sample size is significantly larger than the probability sample size. Another reason for keeping 

2q  in the expression (3.6) is that it reduces to the standard AIC expression (3.3) when the probability sample 

is a census. The last term on the right-hand side of (3.6) can thus be interpreted as a penalty for using a 

probability sample instead of a complete census in the estimating equation (3.2). The smaller the probability 

sample, the larger the effect of the penalty on the AIC (3.6).  

 
3.2 Stepwise selection of auxiliary variables and pairwise interactions 
 

In the empirical Section 6, we use a stepwise procedure based on the AIC (3.6) to select auxiliary 

variables (main effects) and pairwise interactions. Our procedure starts with the naïve model, which only 

includes the intercept. At each step of the procedure, a variable (main effect or pairwise interaction) is either 

included in the model or, if it was previously included, removed from the model. The inclusion or removal 

of the variable that yields the largest reduction of the AIC (3.6) is selected. An interaction is only eligible 

for inclusion when both main effects have already been selected, and a main effect is only eligible for 

removal when it is not supporting any interaction. The procedure stops when no variable can be added or 

removed from the model, i.e., no further reduction of the AIC (3.6) is possible.  

One issue with the selection of auxiliary variables in a participation model is that it ignores the 

relationships between auxiliary variables and the variables of interest. As a result, an auxiliary variable that 

would be weakly associated with participation but strongly associated with some of the variables of interest 

could be discarded from the final participation model. This could have a negative effect on the bias reduction 

of the estimator NP̂  of the finite population parameter .  It is thus advisable to consider variable selection 

methods that lean towards overfitting, such as the AIC, to reduce the risk of omitting a relevant auxiliary 

variable. Moderate overfitting may better control for bias at the expense of a possible increase in variance. 

Our intent is to avoid gross overfitting so as to stabilize NP
ˆ .  As pointed out in Section 2, the above variable 

selection issue can also be dealt with by calibrating inverse probability weights NPˆ
kw  using calibration 

variables that are predictive of the variables of interest.  

 
3.3 The homogeneous group model 
 

Consider a partition of the population U  into G  groups, ,gU 1,..., ,g G  and let NP, gs  and ,P gs  be the 

sets of units gk U  that fall in the non-probability and probability samples, respectively. In the 

homogeneous group model, the participation probability is assumed to be constant for all units ,gk U  i.e., 

,k gp p  ,gk U  1,..., .g G  The homogeneous group model can be viewed as a special case of the logistic 

model with ,q G  1( , , , , )α g G    … …  and 1( , , , , ),k k gk Gkx x x x … …  where gkx  is a binary variable 

that equals 1 if ,gk U  and that equals 0, otherwise. Therefore, for a unit ,gk U ( ) ( )k g gp p p  α  
1[1 exp( )] ,g
   and thus log[ (1 )].g g gp p    For this model, the pseudo log likelihood function (3.4) 

reduces to    
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 NP

1

( )ˆ ˆ( ) log log[1 ( )]
1 ( )

α
G

g

g g g
g g

p
l n N p

p






 
   

  
 , (3.8) 

where NP
gn  is the size of NP, gs  and 

,

ˆ
P g

g kk s
N w


  is the estimated population size in group g  obtained 

from the probability sample. The pseudo maximum likelihood estimator 1
ˆ ˆ ˆ ˆ( , , , , ),g G   α … …  which 

maximizes ˆ( )αl  in (3.8), is such that ˆ ˆ ˆlog[ (1 )],g g gp p   1, , ,g G …  where 

 

NP

ˆ .
ˆ
g

g

g

n
p

N
  (3.9) 

From (3.8), we can write ˆ ˆ( )αl  as  

 
1

ˆ ˆˆ ˆ ˆ ˆ ˆ( ) [ log ( ) (1 ) log (1 )].
G

g g g g g
g

l N p p p p


   α  (3.10) 

For the homogeneous group model, the estimating function ˆ ( )U α  in (3.2) reduces to 1 1
ˆ ˆ[ ( )] [ ( ), ,U  U α …  

ˆ ˆ( ), , ( )],g g G GU U …  where 

 NPˆ ˆ( ) ( ).g g g g gU n N p    (3.11) 

Also, from (3.7), the matrix ˆ ˆ( )H α  reduces to a diagonal matrix with the thg  element on the diagonal given 

by   

 ˆ ˆˆ ˆ ˆ( ) (1 ).g g g g gH N p p     (3.12) 

Let 0 0,1 0, 0,( , , , , ).g G   α … …  Using (3.11) and (3.12), the AIC (3.6) becomes  

 
0,

1

ˆˆ [ ( )]ˆ ˆAIC 2 ( ) 2 2 ,
ˆ ˆ ˆ(1 )

G
d g g

g g g g

v U
l G

N p p





   


α  (3.13) 

where 0,
ˆˆ [ ( )]d g gv U   is a design-consistent estimator of 0,

ˆvar [ ( )].d g gU   Using (3.11), a consistent variance 

estimator is   

 2
0,

ˆ ˆˆ ˆ ˆ[ ( )] ( ),d g g g d gv U p v N   (3.14) 

where ˆˆ ( )d gv N  is a design-consistent estimator of ˆvar ( ).d gN  Using (3.14), the AIC (3.13) can be rewritten 

as 

 

2

NP

1

ˆ[cv ( )]ˆ ˆAIC 2 ( ) 2 2 ,
ˆ1

G
d g

g
g g

N
l G n

p

   


α  (3.15) 

where ˆ ˆ ˆˆcv ( ) ( )d g d g gN v N N  is the estimated coefficient of variation of ˆ .gN  Again, the last term on the 

right-hand side of (3.13) or (3.15) can be interpreted as a penalty for estimating the unknown population 

sizes ,gN 1, , ,g G …  using a probability sample.  
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Using (3.9), we obtain the non-probability survey weight of a unit NP, gk s  as   

 
NP 1

NP

ˆ
ˆ ˆ .g

k k

g

N
w p

n
   (3.16) 

The non-probability survey weight (3.16) shows the importance of avoiding groups for which NP
gn  is very 

small, even zero, so as to reduce the occurrence of extreme weights. Using (3.16), the inverse probability 

weighted estimator of the population total   can be written as 

 
NP

NP NP
NP

1

ˆ ˆˆ ,
G

k k g gk s
g

w y N y




    (3.17) 

where 
NP,

NP NP

g
g k gk s

y y n


  is the average of variable of interest y  over units in NP, .gs  The estimator 

(3.17) is simply a post-stratified estimator and satisfies the calibration equations 
NP,

NP ˆˆ ,
g

k gk s
w N


  

1, , .g G …  The groups (post-strata) are constructed to be homogeneous with respect to the participation 

indicator. If they are also homogeneous with respect to the variable of interest then the post-stratified 

estimator (3.17) has a double robustness property (e.g., see Chen, Li and Wu, 2020; and Valliant, 2020). 

We have assumed so far that the group membership is pre-determined for every population unit. In 

practice, homogeneous groups are often defined after observing sample data. There are several methods of 

constructing sample-dependent homogeneous groups. In Section 3.4, we propose a simple rank-based 

method that partitions the non-probability sample with respect to estimated participation probabilities from 

a logistic model. An extension of CART, nppCART, is described in Section 4. Once the non-probability 

and probability samples have been partitioned into sample-dependent groups, weights can be computed 

using (3.16) as if the group memberships were fixed.   

 

3.4 A rank-based method for creating homogeneous groups 
 

The first step of this method consists of estimating participation probabilities using a logistic model (with 

or without stepwise selection). We denote by logistic ˆˆ ( )αk kp p  these estimated participation probabilities, 

which are computed for each NPk s  and .Pk s  The idea is then to form G  groups that are homogeneous 

with respect to logisticˆ
kp  so as to make the homogeneous group model plausible. Once the groups are formed, 

the estimated probabilities logisticˆ
kp  are discarded and the non-probability survey weights are computed using 

(3.16).  

There are many methods for partitioning NPs  into homogeneous groups. A simple and popular method 

is to form groups with an equal number of participants (e.g., Eltinge and Yansaneh, 1997, formed groups 

with an equal number of sample units in the context of survey nonresponse). This method is equivalent to 

determining group boundaries from equal-width intervals in the range of ,kr NP ,k s  where kr  is the rank 

of logisticˆ .kp  We propose below a generalization of this method that retains the simplicity of assigning units 

based on their rank, but allows some flexibility so that the classes do not need to be equal-sized.  

Rather than making equal-width bins in the range of ,kr  we propose to form G  equal-width bins in the 

range of ( ),kf r  a monotone function of the rank .kr  We call it the Frank method. All the non-probability 

sample units that fall in a given bin are assigned to the same group. Any non-linear function f  would thus 
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make smaller groups (fewer units) where the slope is steeper and larger groups where the slope is flatter. 

We propose the function  

 
NP

( ) log 1 ,k
k

r
f r a

n

 
  

 
  

NP ,k s  where NPn  is the size of the non-probability sample and a  is a non-negative pre-specified constant 

that determines the degree of non-linearity. This function is concave down, with a larger slope and smaller 

groups for the lower-ranked units. The constant a  determines the size of this effect, with a large value (e.g., 

100)a   providing groups that are more unequal in size. The limit as a  approaches 0 from above renders 

this function linear and so returns the equal-sized groups. The rank can be defined in ascending order of 
logisticˆ
kp  ( 1kr   for the smallest logisticˆ ,kp 2kr   for the second smallest logisticˆ ,kp  etc.), in which case the units 

with smaller estimated probabilities will be in the smaller groups, or in descending order of logisticˆ
kp  ( 1kr   

for the largest logisticˆ ,kp 2kr   for the second largest logisticˆ ,kp  etc.), in which case the units with larger 

estimated probabilities will be in the smaller groups. The Frank method is somewhat similar to forming 

equal-width groups but with the groups bunched toward one end or the other, depending on whether logisticˆ
kp  

are sorted in ascending or descending order. Figure A.1(A) in Appendix 2 illustrates the Frank method for 

10,a  15G   and NPn  31,415, which is the size of the non-probability sample used in our empirical 

study in Section 6. 

Once the non-probability sample has been partitioned into groups, each probability sample unit must 

then be assigned to one of the groups. Because the function f  is monotone, each group contains non-

probability sample units with values of logisticˆ
kp  within a certain interval, and the intervals of any two different 

groups do not overlap so that the groups can be sorted based on their average value of logisticˆ .kp  The boundary 

between any two consecutive groups is taken as the midpoint between the largest logisticˆ
kp  from the group 

with the smaller average and the smallest logisticˆ
kp  from the other group. Once all the boundaries have been 

determined, each probability sample unit Pk s  is assigned to the group with boundaries that cover logisticˆ .kp  

The application of the Frank method requires determining suitable values of a  and G  as well as sorting 
logisticˆ ,kp NP ,k s  in ascending or descending order before computing the ranks .kr  Each possible choice leads 

to a different set of groups. We propose to determine the values of a  and ,G  and the sorting order, by 

looking at different options and choosing the one that yields the smallest value of the AIC (3.15). This is 

investigated empirically in Section 6.3. 

 

3.5 Adjusted logistic propensity weighting  
 

As pointed out in the introduction, Wang, Valliant and Li (2021) proposed an extension of the pooling 

method to account for a non-negligible overlap between the probability and non-probability samples. The 

justification of their method, called Adjusted Logistic Propensity (ALP) weighting, is not based on a true 

likelihood approach, but still yields an md-unbiased estimating equation given by 

 
NP

ALP
ALP

ALP ALP

1 ( )ˆ ( ) ,
1 ( ) 1 ( )P

k
k k kk s k s

k k

p
w

p p 
  

 
 

α
U α x x 0

α α
 (3.18) 
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where ALP ( ) exp ( ).k kp α x α  The estimating equation (3.18) is not equivalent to (3.2). However, if all the 

participation probabilities are small, both estimating equations should yield similar estimates of the 

participation probabilities.  

An important difference between Wang, Valliant and Li (2021) and Chen, Li and Wu (2020) is the choice 

of the participation model. Chen, Li and Wu (2020) modelled the participation probability using a logistic 

function whereas Wang, Valliant and Li (2021) considered an exponential function. The logistic model is 

more natural as it ensures that estimated participation probabilities are always within the (0,1)  interval. This 

is to be contrasted with the exponential model, which may produce estimated probabilities greater than 1. 

Wang, Valliant and Li (2021) conducted a simulation study to evaluate their method. Their results show 

that (3.18) yields estimates of population means that are more robust to model failure than (3.2). This 

robustness could be explained by the use of the exponential model. 

For the homogeneous group model, we have seen in Section 3.3 that the solution of (3.2) yields 
NP ˆˆ ˆ( ) ,k g g gp p n N α  for every unit .gk U  It is straightforward to show that the solution of (3.18) for 

the homogeneous group model also yields ALP NP ˆˆ ˆ( ) ,k g g gp p n N α  for every unit .gk U  The equivalence 

between (3.2) and (3.18) for the homogeneous group model suggests that, in general, the two methods may 

produce similar estimates of ,  particularly when estimated probabilities are used only for the purpose of 

creating homogeneous groups (e.g., using the Frank method described in Section 3.4). 

Wang, Valliant and Li (2021) also proposed a scaled version of their ALP method. Although the scaled 

estimating equation is not md-unbiased anymore, the authors showed its effectiveness in a simulation study 

for the estimation of population means. We tested the ALP method, including its scaled version, in our 

empirical experiments. The resulting estimates (not reported) were close to the pseudo maximum likelihood 

estimates of Chen, Li and Wu (2020), particularly after creating homogeneous groups. This observation is 

not surprising considering that the non-probability sample size is smaller than 1% of the population size in 

our experiments and that the estimated participation probabilities tend to be quite small. A thorough 

comparison of ALP and pseudo maximum likelihood estimation is left for future research. 

One of the objectives of this paper was to develop a variable selection procedure applicable to the data 

integration scenario described in Section 2. Wang, Valliant and Li (2021) did not tackle the problem of 

variable selection. An AIC based on Lumley and Scott (2015) is not appropriate with ALP (or its scaled 

version) because the underlying estimating equation is not justified through a true likelihood approach. 

However, if ALP were preferable in a given context, variable selection could first be based on the pseudo 

likelihood method of Chen, Li and Wu (2020) and then ALP could be applied using the selected auxiliary 

variables. 

 
4. Estimation of the participation probability using nppCART 
 

The CART tree-growing procedure, developed by Breiman, Friedman, Olshen and Stone (1984), is a 

recursive binary partitioning algorithm that minimizes a certain objective function. For a binary dependent 

variable such as ,k  a suitable objective function is the entropy impurity. For a given partition, ,gU  

1, , ,g G …  the entropy impurity is given by 
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1

[ log( ) (1 ) log(1 )],
G

g

g g g g
g

N
I p p p p

N

           

where gN  is the size of ,gU  
1

G

gg
N N


  and NP .g g gp n N  The entropy impurity cannot be computed 

when gN  is unknown. We propose to replace gN  with the survey-weighted estimator ˆ .gN  This yields the 

computable objective function 

 
1

ˆ
ˆ ˆ ˆ ˆ ˆ[ log ( ) (1 ) log (1 )],

ˆ

G
g

g g g g
g

N
I p p p p

N

      (4.1) 

where ˆ gp  is given in (3.9) and 
1

ˆ ˆ .
G

gg
N N


  The estimated entropy impurity (4.1) is proportional to the 

pseudo log likelihood function (3.10) under the homogeneous group model since ˆˆ ˆˆ( ) .I l N  α  

The recursive binary partitioning algorithm starts by examining all the possible splits of the non-

probability sample NPs  into two groups. A split is any binary partition of NPs  based on the categories or 

numerical values of one of the candidate auxiliary variables. For instance, a split could be “SEX = male” 

and “SEX = female” or “AGE < 25” and “AGE ≥ 25”. For each split of NP ,s  the probability sample Ps  is 

also split using the same binary partition. A split is said to be inadmissible and is rejected if it satisfies any 

of the following three stopping criteria:  

i) NP
NP ,gn C  for 1g   or 2,g   where NP 1C   is a pre-determined constant specifying the 

minimum number of participants in a group; 

ii) NP ˆ ,g gn N  for 1g   or 2;g   

iii) ,P
g Pn C  for 1g   or 2,g   where P

gn  is the size of ,P gs  and 1PC   is a pre-determined 

constant specifying the minimum number of probability sample units in a group.       
 

Then, the estimated entropy impurity (4.1) with 2G   is computed for each admissible split, and the 

best of those admissible splits, i.e., the one that has the smallest value of (4.1), is selected to form the first 

two groups. If all the splits are inadmissible or the best split does not decrease the objective function (4.1) 

then partitioning into two groups is not done.  

After the determination of the first two initial groups, the same splitting operation is repeated for each 

of the two groups, and so on and so forth, layer by layer, until all the groups cannot be split further based 

on the stopping criteria. We say that this process results in a fully grown tree although it is a slight abuse of 

language as there are stopping criteria that limit its growth. The above procedure, the earlier version of 

which was called nppCART by Chu and Beaumont (2019), is essentially identical to the original CART 

algorithm, except for the use of the estimated entropy (4.1) and the three stopping criteria above. The 

stopping criterion (i) ensures that the non-probability survey weight NPˆ
kw  in (3.16) does not become extreme. 

The stopping criterion (ii) ensures that the estimated probability ˆ gp  is always smaller than 1. The last 

criterion is added to ensure that the estimator ˆ gN  is not too unstable.  

Chu and Beaumont (2019) developed an R program that implements the nppCART algorithm. They 

showed in a simulation study that this algorithm was effective for reducing the participation bias although 

the resulting post-stratified estimator (3.17) had a variance somewhat larger than its competitors. This 
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instability might be explained by overfitting, i.e., the creation of too many groups. The usual 

recommendation to avoid overfitting is to prune the tree after it has been grown. Pruning is usually applied 

in two steps. In the first step, a finite sequence of nested subtrees of decreasing size and increasing impurity 

is determined, starting with the fully grown tree that has the maximum number of groups and ending with 

the degenerate subtree that contains only one group. In the second step, the best of these nested subtrees is 

selected, often through K -fold cross-validation. This pruning approach is equivalent to penalizing the 

objective function with an additive penalty term defined as the product of a positive penalty parameter and 

the number of groups. Cross-validation is then typically used to determine an optimal value for the penalty 

parameter. Greater detail on pruning can be found in Breiman, Friedman, Olshen and Stone (1984); see also 

Izenman (2008, Chapter 9). In the context of survey nonresponse, classification and regression trees have 

been explored by Phipps and Toth (2012) and Lohr, Hsu and Montaquila (2015).  

However, as pointed out in the introduction, classical cross-validation methods cannot be directly applied 

to the data integration scenario studied in this paper, and this topic requires further research. As an 

alternative to cross-validation for the selection of the best subtree, among a set of nested subtrees of 

decreasing size and increasing impurity, we propose to choose the subtree that minimizes the AIC (3.15). 

This AIC takes the probability sampling design into account through the estimation of the design variance 

of ˆ
gN  (see Section 5). This variance could be readily estimated in our experiments in Section 6 using 

available bootstrap weights. Similar to variable selection, discussed in Section 3.2, pruning is intended to 

avoid gross overfitting so as to stabilize NP
ˆ .  

 
5. Bootstrap variance estimation 
 

It is not enough to produce inverse probability weighted estimates of finite population parameters; it is 

also important to provide users with indicators of the quality of those estimates. We propose a bootstrap 

procedure to estimate the variance of inverse probability weighted estimators with a focus on the post-

stratified estimator (3.17). The variance may be useful but has some limitations since it is derived under the 

assumption that the participation model is correctly specified and that the inverse probability weighted 

estimators are unbiased. The absence of bias depends critically on the availability and proper choice of 

auxiliary variables so as to make the non-informative participation assumption reasonable. Although some 

amount of bias seems unavoidable in practice, the computation of variance estimates may nonetheless 

provide some useful information for comparison and evaluation purposes, as illustrated in Section 6.  

The bootstrap variance estimator that we propose accounts for two sources of variability: the probability 

sampling design and the participation model. We suppose that B  bootstrap weights ( ) ,b
kw 1, , ,b B …  are 

available for each unit ,Pk s  and that these bootstrap weights properly capture the variability due to the 

probability sampling design. For instance, we assume that these bootstrap weights can be used to obtain a 

design-consistent estimator of ˆvar ( )d gN  as   

 boot ( ) 2

1

1ˆ ˆ ˆˆ ( ) ( ) ,
B

b
d g g g

b

v N N N
B 

   (5.1) 



90 Beaumont et al.: Handling non-probability samples through inverse probability weighting with an application to… 

 

 
Statistics Canada, Catalogue No. 12-001-X 

where 
,

( ) ( )ˆ
P g

b b
g kk s

N w


  is the thb  bootstrap replicate of ˆ .gN  The Rao, Wu and Yue (1992) bootstrap 

weights are often used in social surveys conducted by Statistics Canada. They are applicable for stratified 

multistage designs when the first-stage sampling fractions are small and can incorporate weight adjustments, 

such as nonresponse adjustments and calibration. Beaumont and Émond (2022) proposed an extension of 

the method that removes the requirement of small first-stage sampling fractions.  

The unknown participation mechanism is modelled as a Poisson sampling design, where population units 

are assumed to participate independently of one another with probability ,kp .k U  For Poisson sampling, 

Beaumont and Patak (2012) pointed out that valid bootstrap weights for sample units NPk s  can be written 

as 1 ( ) ,b
k kp a 1, , ,b B …  provided that the bootstrap factors ( )b

ka  are generated independently of one another 

using a distribution that is not too heavily skewed with a mean of one and a variance of 1 .kp  For a non-

probability sample, the true participation probability kp  is unknown but can be replaced with a consistent 

estimator ˆ .kp  Following Beaumont and Émond (2022), who studied bootstrap under survey nonresponse, 

we thus suggest generating the bootstrap factors ( ) ,b
ka NPk s  and 1, , ,b B …  independently of one another 

using the gamma distribution with a mean of one and a variance of ˆ1 .kp  The choice of the gamma 

distribution is to ensure non-negative bootstrap factors ( ).b
ka  

The bootstrap estimator of the variance of the inverse probability weighted estimator NP
ˆ , NP

ˆvar ( ),md   is 

given by  

 boot ( ) 2
NP NP NP

1

1ˆ ˆ ˆˆ ( ) ( ) ,
B

b
md

b

v
B

  


   (5.2) 

where ( )
NP
ˆ b  is the thb  bootstrap replicate of NP

ˆ .  Assuming the logistic model is used with fixed auxiliary 

variables, the thb  bootstrap replicate of 
NP

NP
NP
ˆ ˆ ,k kk s

w y


  with NP 1ˆˆ [ ( )] ,k kw p  α  is 
NP

( ) NP, ( )
NP
ˆ ˆ ,b b

k kk s
w y


  

where NP, ( ) ( ) ( )ˆˆ ( ) ,b b b
k k kw a p α  and ( )α̂ b  is the solution of the thb  bootstrap replicate of estimating equation 

(3.2):   

 
NP

( ) ( ) ( )ˆ ( ) ( ) .
P

b b b
k k k k kk s k s

a w p
 

   U α x α x 0   

Assuming now that the homogeneous group model is used, the thb  bootstrap replicate of the post-stratified 

estimator (3.17) can be written as  

 
NP

( ) NP, ( ) ( ) NP, ( )
NP

1

ˆ ˆˆ ,
G

b b b b
k k g gk s

g

w y N y




    (5.3) 

where 
NP, ( ) ( ) ( ) NP, ( )ˆˆ ,b b b b
k k g gw a N n  for NP, ,gk s

NP,

NP, ( ) ( )

g

b b
g kk s

n a


  and 
NP,

NP, ( ) ( ) NP, ( ) .
g

b b b
g k k gk s

y a y n


  

The bootstrap replicate (5.3) is valid provided that the homogeneous groups are fixed. This simplification 

is often made when estimating the variance of estimators adjusted for survey nonresponse, even when the 

homogeneous groups are determined adaptively from the observed sample data. In our context, it would not 

be straightforward to develop a bootstrap procedure that correctly accounts for variable selection or pruning. 

In particular, a double bootstrap might be required if the design variance estimators involved in the AIC 

(3.6) or (3.15) were obtained through bootstrap weights. Treating auxiliary variables or homogeneous 
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groups as fixed, when they are not, should tend to underestimate the variance NP
ˆvar ( ).md   Although the 

magnitude of the underestimation is expected to be small to moderate, further research is needed on this 

topic. 

 
6. Empirical evaluation of methods using real data 
 

We evaluated and compared inverse probability weighting methods, discussed in Sections 3 and 4, using 

real data. In Section 6.1, we present the three data sources used in our investigations. Methods are described 

in Section 6.2 and results are given in Sections 6.3 and 6.4.  

 

6.1 Data sources and variables 
 

After the beginning of the COVID-19 lockdown in March 2020, Statistics Canada conducted a series of 

crowdsourcing surveys to respond to urgent information needs about the life of the Canadian population. 

Each crowdsourcing survey collected data from visitors of Statistics Canada’s website who responded 

voluntarily to a short online questionnaire. Renaud and Beaumont (2020) provide greater detail on 

crowdsourcing experiments conducted by Statistics Canada. 

We investigated the use of the Labour Force Survey (LFS) as a means of reducing the participation bias 

of crowdsourcing estimates. Except for the Census, the LFS is the most important social probability survey 

conducted by Statistics Canada with a sample containing around 56,000 selected households each month. 

Data are collected for all eligible persons within responding households. The household response rate was 

around 90% before the pandemic but fell to around 70% in June 2020. In our empirical study, we used data 

of the June 2020 LFS sample, which contains responses for 87,779 persons. The LFS is based on a stratified 

multistage design and a regression composite estimator (see Gambino, Kennedy and Singh, 2001). Rao, Wu 

and Yue (1992) bootstrap weights are produced and made available to users for variance estimation.   

In parallel to crowdsourcing experiments, Statistics Canada also started a series of probability web panel 

surveys: the Canadian Perspective Survey Series (CPSS). The CPSS sample is obtained from previous LFS 

respondents. The June 2020 CPSS initial probability sample was relatively large with over 30,000 selected 

persons but the overall recruitment/response rate was quite low at around 15%; this resulted in 4,209 

respondents in June 2020. Greater detail on the CPSS can be found in Baribeau (2020).  

In June 2020, participants from previous crowdsourcing experiments were also randomly chosen and 

sent the same questionnaire as CPSS respondents; 31,415 participants responded to the questionnaire. This 

allowed for a comparison of estimates from this crowdsourcing non-probability sample with those from the 

CPSS probability sample.  

Table 6.1 shows naïve crowdsourcing estimates and CPSS estimates for nine selected proportions. For 

the first two proportions, LFS estimates are also available and very close to the corresponding CPSS 

estimates. This is not unexpected as nonresponse in the CPSS is adjusted using education and employment 

status. Both probability surveys show large differences with naïve crowdsourcing estimates for these two 
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proportions. The following five proportions also show significant differences between naïve crowdsourcing 

and CPSS estimates whereas estimates from both sources are similar for the last two proportions.  
 

Table 6.1 

Proportions of interest. 
 

Proportion Description Naïve 
crowdsourcing 

estimate 

CPSS 
estimate 

LFS 
estimate 

1  Proportion of people having a university degree. 64.5% 30.6% 30.2% 

2  Proportion of people who worked at a job or business during the 
reference week. 

65.4% 50.1% 50.3% 

3  Proportion of people whose usual place of work is a fixed location 
outside the home. 

50.2% 40.2% - 

4  Proportion of people who worked most of their hours at home during the 
reference week. 

45.6% 19.3% - 

5  Proportion of people who report having “more than enough” income to 
meet their household needs. 

32.1% 15.9% - 

6  Proportion of people who are “very likely” to get COVID-19 vaccine 
when available. 

74.2% 57.3% - 

7  Proportion of people who are “very concerned” about the health risk 
posed by gathering in large groups. 

70.0% 54.4% - 

8  Proportion of people who “fear being a target for putting others at risk” 
because they do not always wear a mask in public. 

9.9% 9.8% - 

9  Proportion of people who report ordering the same amount of take-out 
food as before. 

45.6% 46.2% - 

 
In a first step, we used June 2020 LFS data to reduce the participation bias of naïve crowdsourcing 

estimates using inverse probability weighting methods discussed in Sections 3 and 4. The candidate 

auxiliary variables available in both the crowdsourcing and LFS samples were: age group (13 levels), sex 

(2 levels), economic region (56 levels), education (8 levels), immigration status (3 levels), household size 

(6 levels), marital status (6 levels) and employment status (3 levels). Greater detail on these eight auxiliary 

variables is given in Appendix 3. Then, we used non-probability survey weights to compute adjusted 

crowdsourcing estimates for the nine proportions defined in Table 6.1 and compared them to those obtained 

using the CPSS probability sample alone. These results are provided in Section 6.3. Note that a proportion 

is defined as 1 ,kk U
N y 


   where ky  is a binary variable of interest, and is estimated by NP̂   

NP NP

NP NPˆ ˆ .k k kk s k s
w y w

    For the first two proportions in Table 6.1, the variable of interest ky  can be 

derived from auxiliary variables. We thus expect weighting methods to successfully remove the 

participation bias for these proportions.  

In a second step, we obtained adjusted crowdsourcing estimates using June 2020 CPSS data instead of 

LFS data with the same candidate auxiliary variables as above. Our objective was to evaluate the effect on 

bias reduction of using a smaller probability sample. These results are provided in Section 6.4. 

 

6.2 Methods 
 

We investigated the eight methods described in Table 6.2 below. For methods 3, 5 and 6, which involve 

a logistic model with the stepwise selection procedure described in Section 3.2, all main effects and pairwise 

interactions were considered as candidate variables to be included or removed from the model. For these 
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methods, the estimator 0
ˆˆ [ ( )],dv U α  required to compute the AIC (3.6), was obtained using bootstrap weights 

as 

 *( ) *( )
0

1

1ˆ ˆ ˆˆ ˆˆ [ ( )] [ ( )] [ ( )] ,
B

b b
d

bB 

 v U α U α U α   

where 

 
NP

*( ) ( )ˆ ˆ ˆ( ) ( ) .
P

b b
k k k kk s k s

w p
 

  U α x α x   

For methods 4, 5, 6 and 8, the estimator ˆˆ ( ),d gv N  required to compute the AIC (3.15), is obtained from (5.1). 

For methods, 6, 7 and 8, which use nppCART, we set NP 5C   and 5PC   in the stopping criteria (i) and 

(iii) given in Section 4. 

 
Table 6.2 

Description of methods. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

Description 

1 Intercept - - Naïve logistic model with only the intercept (or homogeneous group 
model with only one group). 

2 Logistic - - Logistic model including all main effects but no interaction.  

3 Logistic Yes - Logistic model with stepwise selection of main effects and pairwise 
interactions by minimizing the AIC (3.6). 

4 Logistic - Frank Method 2 followed by creation of homogeneous groups using the 
Frank method, described in Section 3.4, with sorting in ascending 
order, a  10 and the number of groups roughly minimizing the 

AIC (3.15). 

5 Logistic Yes Frank Method 3 followed by creation of homogeneous groups using the 
Frank method, described in Section 3.4, with sorting in ascending 
order, a  10 and the number of groups roughly minimizing the 

AIC (3.15). 

6 Logistic Yes nppCART  
with pruning 

Method 3 followed by creation of homogeneous groups using 
nppCART with pruning minimizing the AIC (3.15); only one 
auxiliary variable is provided to nppCART: the estimated 
participation probability from the logistic model. 

7 - - nppCART 
without pruning 

nppCART based on all candidate auxiliary variables without 
pruning. 

8 - - nppCART  
with pruning 

nppCART based on all candidate auxiliary variables with pruning 
minimizing the AIC (3.15). 

 
6.3 Results when integrating crowdsourcing data with the LFS probability 

sample 
 

Stepwise selection results for the logistic model 
 

Using the LFS as the probability sample, our stepwise selection procedure described in Section 3.2 

resulted in the selection of all main effects along with 15 pairwise interactions for a total of 395 model 

parameters. Six main effects entered the model before any interaction in the following order: education, 

economic region, immigration status, sex, age group and household size. Together, they accounted for more 

than 95% of the total AIC reduction (difference between AIC of methods 1 and 3). The variable education 

alone accounted for more than 40% of the total AIC reduction. For these data, it thus appears that 
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interactions are not as important as the main effects to reduce the AIC. This suggests that a model including 

all the main effects but no interaction might be reasonable.   

 
Comparisons of AIC values 
 

Table 6.3 shows values of the Relative AIC (RAIC) for the eight methods described in Table 6.2. The 

Relative AIC is defined as  

 0

0

AIC AIC
RAIC 100%,

AIC


    

where 0AIC  is the value of the AIC (3.6) for the naïve model containing only the intercept. For methods 1, 

2 and 3, the RAIC is computed using the AIC (3.6) whereas it is computed using the AIC (3.15) for methods 

4 to 8 assuming the groups are fixed. The RAIC can be interpreted similarly to the coefficient of 

determination in linear regression: it is 0 for the naïve model, it increases as the AIC decreases, and it is 

always smaller than 1. However, it can take negative values unlike the coefficient of determination. A model 

that has a larger RAIC than a competitor suggests that its auxiliary variables are better predictors of 

participation. Table 6.3 also shows the number of model parameters q  or the number of groups ;G q  is 

shown for methods 1, 2 and 3, and G  is shown for methods 4 to 8.  

 
Table 6.3 

RAIC values in percentage. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

RAIC 
(%) 

q  or 

G  

Proportion 
(%) of AIC 
from the 1st  

term 

Proportion 
(%) of AIC 
from the 2nd  

term 

Proportion 
(%) of AIC 
from the 3rd  

term 
1 Intercept - - 0 1 100.00 0.00 0.00 
2 Logistic - - 10.7 90 99.90 0.04 0.06 
3 Logistic Yes - 11.1 395 99.59 0.18 0.23 
4 Logistic - Frank 10.7 100 99.89 0.05 0.07 
5 Logistic Yes Frank 11.3 100 99.88 0.05 0.07 
6 Logistic Yes nppCART  

with pruning 
12.2 1,276 97.99 0.59 1.42 

7 - - nppCART  
without pruning 

11.9 3,165 96.23 1.45 2.33 

8 - - nppCART  
with pruning 

12.5 1,772 97.58 0.82 1.60 

 
The RAIC varies from 10.7% to 12.5% for methods 2 to 8; thus, all these methods provide a meaningful 

improvement over the naïve method. Comparing methods 2 and 3, we observe that accounting for pairwise 

interactions yielded only a small improvement of the RAIC, as noted above. Using the Frank method to 

create homogeneous groups did not significantly improve the RAIC. This is an indication that the logistic 

model was reasonable for these data. The use of nppCART resulted in an increase of RAIC, albeit not 

substantial. This may indicate that nppCART has achieved some robustness. However, nppCART also 

resulted in a number of groups significantly larger than other methods, even after pruning. Given the AIC 

(3.15) assumes the groups are fixed (although they are not), this improvement of RAIC should not be over-

interpreted.  
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Table 6.3 also shows the proportion of the AIC that comes from each of the three terms on the right-

hand side of (3.6) or (3.15). Not surprisingly, the first term, ˆ ˆ2 ( ),l α  is the dominant component of the AIC. 

The relative importance of the other two terms increases with q  or .G  Both terms have similar importance 

although the third term is always slightly larger than the second term. In this application, none of the terms 

should be omitted in the computation of the AIC. 
 

The Frank Method  
 

Figures A.1(B) and A.1(C) in the Appendix 2 illustrate the Frank method of creating homogeneous 

groups for method 5 in Table 6.2. Figure A.1(B) shows a graph of logisticˆ
kp  as a function of the rank kr  for 

both the non-probability and probability samples. It also shows the corresponding boundaries, in terms of 

the ranks, for 15G   and different values of ,a  and for both sorting orders. Figure A.1(B) illustrates that 

the groups containing smaller values of logisticˆ
kp  are under-represented in the non-probability sample, 

compared with the probability sample, because these units are less likely to participate. Figure A.1(B) also 

illustrates that sorting in ascending order produces groups that are closer to being equal-sized in the 

probability sample, particularly when a  is large. This has the advantage of reducing the occurrence of 

groups that contain too few probability sample units, which could lead to unstable weights. A value of 5a   

or 10,a   along with sorting in ascending order, seems to offer a suitable compromise for both samples.  

Figure A.1(C) shows the values of the AIC (3.15) as a function of the number of groups G  for a few 

values of a  and both sorting orders. It appears that the sorting order makes a significant difference on the 

AIC, with lower values obtained when logisticˆ ,kp NP ,k s  are sorted in ascending order. Figure A.1(C) does 

not show much sensitivity to the choice of a  but the best values seem to occur near 10.a   Notably, the 

optimal number of classes is near 100 in this application, much larger than the value of 5 that is often 

recommended (e.g., Eltinge and Yansaneh, 1997). Based on these results, we chose to sort in ascending 

order and used 10a   and 100G   when applying the Frank method with LFS data. A smaller number of 

groups was chosen with the CPSS data (see Section 6.4).  

With these data, forming groups with an equal number of participants ( 0)a   was slightly inferior to 

a  10 in terms of AIC (see Figure A.1(C)). However, both values of a  led to similar estimates (results not 

shown). 
 

Comparisons of estimates 
 

Table 6.4 shows estimates and their bootstrap standard errors (in italic) for each of the nine proportions 

in Table 6.1 and each method described in Table 6.2. The bootstrap standard error is the square root of the 

bootstrap variance estimate given in (5.2). The thb  bootstrap replicate of the estimated proportion 

NP NP

NP NP
NP
ˆ ˆ ˆ

k k kk s k s
w y w

 
   is 

NP NP

( ) NP, ( ) NP, ( )
NP
ˆ ˆ ˆ .b b b

k k kk s k s
w y w

 
   For methods 4 to 8, the bootstrap 

weights NP, ( )ˆ b
kw  are obtained under the simplification that the homogeneous groups are fixed. Bootstrap 

standard errors are not computed for methods 2 and 3. The CPSS estimates and their design-based standard 

errors are also provided for comparison purposes in the last row of Table 6.4. The CPSS estimates are 

believed to be less biased than adjusted crowdsourcing estimates since they are obtained from a probability 
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survey, albeit with a small response rate (around 15%), with nonresponse weight adjustments and 

calibration. 

From the estimates and standard errors in Table 6.4, we make the following observations:  

 Methods 2 to 8 are all roughly equivalent.  

 For the first seven proportions, where the naïve estimates (method 1) are significantly different from 

the CPSS estimates, methods 2 to 8 yield adjusted crowdsourcing estimates closer to CPSS 

estimates, which suggests a non-negligible bias reduction. Indeed, for the first three proportions, 

the adjusted crowdsourcing estimates are not markedly different from the CPSS estimates. It is not 

surprising for the first two proportions since the variables of interest can be derived from auxiliary 

variables. This observation is particularly interesting for the third proportion. For proportions 4 to 

7, the bias reduction is not so spectacular, albeit not negligible; the adjusted crowdsourcing 

estimates lie in between the naïve and CPSS estimates.  

 For the last two proportions, the naïve, adjusted crowdsourcing and CPSS estimates are all similar. 

A slight but not alarming discrepancy between adjusted crowdsourcing and CPSS estimates is 

observed for the last proportion for methods 2 and 3, which do not use homogeneous groups. 

Overall, it is reassuring to observe that inverse probability weighting did not introduce significant 

biases for the last two proportions.  

 Finally, the standard errors for the naïve method are much smaller than those for the other methods. 

This indicates that naïve estimates are likely more stable. However, the standard error does not 

account for bias and should not be the main criterion for choosing an appropriate method. 

 
Table 6.4 

Estimates and standard errors (in italic) in percentage. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

1  2  3  4  5  6  7  8  9  

1 Intercept - - 64.5 65.4 50.2 45.6 32.1 74.2 70.0 9.9 45.6 
0.27 0.26 0.27 0.28 0.27 0.24 0.26 0.17 0.28 

2 Logistic - - 29.7 50.2 40.4 28.0 23.5 67.9 62.4 11.4 43.5 
- - - - - - - - - 

3 Logistic Yes - 28.9 48.2 39.8 26.6 23.3 68.1 64.1 10.2 42.3 
- - - - - - - - - 

4 Logistic - Frank 32.4 52.1 40.6 29.5 23.5 68.0 63.5 10.7 44.9 
0.41 0.76 0.70 0.58 0.60 0.74 0.78 0.49 0.77 

5 Logistic Yes Frank 30.8 51.4 39.8 28.5 22.4 67.9 64.0 10.3 44.4 
0.35 0.86 0.78 0.63 0.59 0.82 0.89 0.54 0.87 

6 Logistic Yes nppCART  
with pruning 

30.9 50.7 39.5 28.4 22.9 67.8 63.7 10.4 44.5 
0.36 0.84 0.78 0.70 0.79 1.02 1.00 0.62 1.02 

7 - - nppCART  
without pruning 

30.2 52.7 40.6 28.0 24.3 69.3 65.4 9.4 46.8 
0.29 0.88 0.91 0.46 0.82 0.91 0.96 0.42 0.74 

8 - - nppCART  
with pruning 

30.2 52.5 40.5 28.0 23.8 69.4 65.2 9.3 47.0 
0.29 0.87 0.91 0.47 0.81 0.90 1.03 0.39 0.78 

CPSS estimate 30.6 50.1 40.2 19.3 15.9 57.3 54.4 9.8 46.2 
0.87 1.25 1.14 0.97 0.87 1.41 1.33 0.86 1.42 
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With these data, methods 2 to 8 performed similarly. This may be due to the large size of the LFS 

probability sample. In order to study the behaviour of inverse probability weighting methods when the 

probability sample is smaller, we replaced the LFS by the CPSS probability sample. Results for this case 

are discussed below.  

 
6.4 Results when integrating crowdsourcing data with the CPSS probability 

sample 
 
Stepwise selection results for the logistic model 
 

When we used the CPSS as the probability sample, our stepwise selection procedure selected again all 

main effects but only 10 pairwise interactions for a total of 254 model parameters. All but one main effect 

entered the model before any interaction in the following order: education, household size, economic region, 

sex, immigration status, age group and marital status. For these data, pairwise interactions were again not 

as important as the main effects to reduce the AIC.  

 
Comparisons of AIC values 
 

Table 6.5 shows values of the RAIC for the eight methods described in Table 6.2. Comparing methods 

2 and 3, we observe that accounting for pairwise interactions yielded only a small improvement of the RAIC. 

For these data, the creation of homogeneous groups resulted in a non-negligible increase of the RAIC. In 

particular, when a logistic model is used along with stepwise selection, the RAIC is 12.1 and it increases to 

18.5 after forming homogeneous groups with nppCART. The use of nppCART without a logistic model 

(methods 7 and 8) also yielded a larger RAIC than methods 2 and 3. The effect of pruning remains negligible 

with these data since the RAIC of methods 7 and 8 are similar. However, pruning reduced the number of 

groups from 600 to 451. The replacement of the LFS sample by the CPSS sample resulted in a reduction of 

the number of groups for methods 4 to 8; this is not surprising since the CPSS sample size is significantly 

smaller than the LFS sample size. 

Table 6.5 also shows the proportion of the AIC that comes from each of the three terms on the right-

hand side of (3.6) or (3.15). Again, the first term, ˆ ˆ2 ( ),l α  is the dominant component of the AIC, and the 

relative importance of the other two terms increases with q  or .G  Given the small CPSS sample size, the 

third term, which can be viewed as a penalty for using a probability sample instead of a census, is now 

relatively much larger than the second term 2q  (or 2 ).G  The second term could thus be omitted, as in 

Lumley and Scott (2015), although there is no computational advantage of neglecting it.  

 
Comparisons of estimates 
 

Table 6.6 shows estimates and their bootstrap standard errors (in italic) for each of the nine proportions 

in Table 6.1 and each method described in Table 6.2. We make the following observations: 

 For the first two proportions, the variables of interest can be derived from auxiliary variables, and 

we expect inverse probability weighting methods to entirely remove bias. Methods 7 and 8 
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(nppCART without a logistic model) basically eliminated the discrepancy between the naïve and 

CPSS estimates. Other methods were not so successful although method 4 (logistic model with main 

effects followed by the Frank method) performed relatively well.  

 Method 2 appeared to over-adjust the naïve estimates for the first three proportions. Forming 

homogeneous group (method 4) corrected for this over-adjustment.  

 Methods 2 and 3 (logistic model without homogeneous groups) were somewhat erratic. This may 

be explained by variable and extreme non-probability survey weights, particularly for method 3. 

The coefficient of variation of the non-probability survey weights is provided in Table 6.7 for each 

method. It is 7.5 and 39.7 for methods 2 and 3, respectively, whereas it is no greater than 5.5 for all 

the other methods. This shows the importance of forming homogeneous groups to reduce extreme 

weights. By comparison, when the LFS is used as the probability sample, the coefficient of variation 

of the non-probability survey weights is 4.7 and 6.3 for methods 2 and 3, respectively, and it is no 

greater than 4.0 for all the other methods.    

 Methods that use stepwise selection tended to under-adjust when homogeneous groups were formed 

(methods 5 and 6), particularly for the first proportion. This was not expected given their large 

values of RAIC in Table 6.5. However, the RAIC only indicates the strength of the association 

between the auxiliary variables and participation. It does not account for the strength of the 

association between the auxiliary variables and variables of interest, which can affect the magnitude 

of participation bias and variance.  

 Comparing methods 5 and 6, we observe that the creation of homogeneous groups using the Frank 

method and nppCART yielded similar estimates with nppCART estimates tending to be slightly 

closer to CPSS estimates, possibly due to the larger number of groups with nppCART.  

 Pruning did not show significant improvements in our experiments since methods 7 and 8 produced 

similar estimates. 

 Overall, nppCART with or without pruning (methods 7 and 8) appeared to be the most stable and 

reliable method for reducing participation bias followed closely by method 4 (logistic model with 

main effects only along with the Frank method).  
 

It is interesting to observe that nppCART estimates in Table 6.6 (methods 7 and 8) were not markedly 

different from the corresponding estimates in Table 6.4 based on the LFS probability sample. This suggests 

that a small probability sample can succeed at reducing bias even though it remains preferable to use a larger 

probability sample. For nppCART, using the LFS as the probability sample was just slightly better than 

using the CPSS. For other methods, the differences were sometimes much larger and using the LFS provided 

better estimates. This may be an argument to favour nppCART when the probability sample size is small. 
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Table 6.5 

RAIC values in percentage. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

RAIC (%) q  or 

G  

Proportion 
(%) of AIC 

from the 
1st term 

Proportion 
(%) of AIC 

from the 
2nd term 

Proportion 
(%) of AIC 

from the 
3rd term 

1 Intercept - - 0 1 100.00 0.00 0.00 

2 Logistic - - 11.2 90 98.45  0.04  1.50 

3 Logistic Yes - 12.1 254 96.27  0.12  3.62  

4 Logistic - Frank 13.4 20 98.18  0.01  1.80  

5 Logistic Yes Frank 15.9 16 99.35  0.01  0.64  

6 Logistic Yes nppCART  
with pruning 

18.5 384 96.43 0.19 3.38 

7 - - nppCART 
without pruning 

14.3 600 95.93 0.28 3.78 

8 - - nppCART 
with pruning 

14.4 451 96.27 0.21 3.51 

 
Table 6.6 

Estimates and standard errors (in italic) in percentage. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

1  2  3  4  5  6  7  8  9  

1 Intercept - - 64.5 65.4 50.2 45.6 32.1 74.2 70.0 9.9 45.6 

0.28 0.28 0.29 0.29 0.28 0.25 0.25 0.17 0.28 

2 Logistic - - 21.3 44.4 34.4 24.4 22.8 69.1 61.3 10.2 44.9 

- - - - - - - - - 

3 Logistic Yes - 29.4 43.4 28.3 29.8 27.4 78.4 71.8 10.1 27.6 

- - - - - - - - - 

4 Logistic - Frank 34.1 50.9 39.4 30.2 25.8 70.8 66.6 9.8 45.1 

0.59 0.61 0.56 0.51 0.50 0.55 0.58 0.36 0.59 

5 Logistic Yes Frank 43.6 54.6 41.8 34.3 27.4 71.7 67.9 9.7 44.6 

0.67 0.54 0.50 0.55 0.43 0.44 0.47 0.30 0.47 

6 Logistic Yes nppCART with 
pruning 

42.0 54.0 41.2 34.2 27.3 70.8 67.4 10.1 44.6 

0.81 0.77 0.73 0.71 0.63 0.69 0.66 0.44 0.70 

7 - - nppCART 
without pruning 

30.8 48.9 39.1 28.5 27.7 71.5 64.9 8.9 47.1 

0.98 1.38 1.41 0.80 1.35 1.23 1.46 0.56 1.49 

8 - - nppCART with 
pruning 

30.8 49.8 38.7 29.3 27.1 71.5 65.2 9.3 46.8 

0.98 1.27 1.28 0.78 1.24 1.20 1.41 0.80 1.35 

CPSS estimate 30.6 50.1 40.2 19.3 15.9 57.3 54.4 9.8 46.2 

0.87 1.25 1.14 0.97 0.87 1.41 1.33 0.86 1.42 

 
Table 6.7 

Coefficients of variation of the non-probability survey weights. 
 

Probability 
sample 

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 

CPSS 0 7.5 39.7 1.8 1.4 2.2 5.5 5.0 
LFS 0 4.7 6.3 2.6 3.0 3.6 4.0 3.9 
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7. Conclusion 
 

We extended the pseudo maximum likelihood method of Chen, Li and Wu (2020) that integrates data 

from a non-probability and probability sample: We developed a variable selection procedure for the logistic 

model and an extension of CART, nppCART. Inspired by Lumley and Scott (2015), our extensions use a 

modified AIC that properly accounts for the probability sampling design. In our investigations, we observed 

that the additional penalty term for using a probability sample instead of a census was not negligible.  

Not surprisingly, our experimentations illustrated that inverse probability weighting methods can reduce 

participation bias, but sometimes a significant bias remains. For the large LFS probability sample, all the 

methods performed similarly. Significant differences between methods were observed when the smaller 

CPSS probability sample was used. In particular, our experimentations showed the importance of creating 

homogeneous groups to reduce the occurrence of extreme weights and improve the stability and robustness 

of estimates. For the small probability sample, accounting for pairwise interactions somewhat reduced the 

AIC but was generally not beneficial for the estimates. Main effects appeared more important than pairwise 

interactions to reduce the AIC with our data. Overall, the best method for bias reduction was nppCART 

followed closely by the use of a logistic model with main effects only along with the creation of 

homogeneous groups. However, different conclusions could potentially be drawn with smaller domains or 

other datasets. 

It is well known that inverse probability weighted estimators may be inefficient, particularly when the 

variables of interest are weakly related to the weights. This can be addressed through calibration on known 

population totals or totals estimated from the probability sample. Calibration will be particularly efficient 

when auxiliary variables strongly related to the variables of interest are available and excluded from the 

participation model. This was not the case in our experimentations. Weight smoothing is an alternative 

aiming to improve the efficiency of inverse probability weighted estimators, which may be useful when 

such powerful calibration variables are not available. It consists of replacing the weights with predictions 

obtained by modelling the weights conditionally on the variables of interest. In the context of integrating 

non-probability and probability samples, weight smoothing was studied by Ferri-Garcia, Beaumont, Bosa, 

Charlebois and Chu (2021). 

Tree-based methods more sophisticated than the CART algorithm, such as random forests, are available 

in the literature. Given the good performance of nppCART in our experimentations, it could be worthwhile 

to extend those methods to the data integration scenario considered in this paper and evaluate them. Further 

developments are needed on this topic. 

There is most likely no inverse probability weighting method that is uniformly better than all the other 

methods. All the techniques are useful and can be part of the statistician’s toolkit. However, there is a need 

for the development of bias reduction indicators that would help statisticians in choosing the best method 

for a given non-probability and probability sample. The relative AIC and the coefficient of variation of the 

non-probability survey weights are two useful indicators but they do not tell the full story as they do not say 

anything about the strength of the association between the auxiliary variables and variables of interest. One 
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idea that could be explored would be to use statistical matching methods with nonparametric models (e.g., 

random forests) for each variable of interest conditionally on the auxiliary variables. The resulting estimates 

would be expected to be more efficient than inverse probability weighting methods because they would be 

tailored to each variable of interest. In practice, this statistical matching strategy would be tedious to apply 

as a different model would need to be developed and validated for each estimate produced. However, a few 

statistical matching estimates could be computed and used to evaluate inverse probability weighting 

methods. We might expect that a better inverse probability weighting method would generally tend to yield 

estimates closer to statistical matching estimates. A possible procedure to reconcile the two methods would 

be to calibrate inverse probability weights so that the resulting estimates agree exactly with selected 

statistical matching estimates. 

 
Appendix 1 
 

Sketch of the proof of equation (3.5) 
 

Using first-order Taylor expansions, we have   

  0 0 0 0 0 0 0 0
ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )α α α α U α U α α α p P

N
l l l l o

n

                
 (A.1) 

and 

  0 0 0
ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ,p P

N
o

n

 
     

 
U α U α H α α α  (A.2) 

where 0 0( ) ( ) .l  U α α α  In addition to (A.1) and (A.2), we also assume that  

  0
ˆ ( ) ( )H α H α po N   (A.3) 

under the model and the sampling design. Noting that 0 0( )U α 0  and ˆ ˆ( ) ,U α 0  we obtain from (A.1), 

(A.2) and (A.3),   

     0 0 0 0 0 0 0 0
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) .p P

N
l l l l o

n

              
α α α α α α H α α α  (A.4) 

Ignoring the smaller order term and taking the expectation of both sides of (A.4) yield: 

 0 0 0
ˆ ˆ ˆ ˆ[ ( ) ( )] tr[ ( ) var ( )],md mdE l l  α α H α α  (A.5) 

where 0 0
ˆ ˆ ˆvar ( ) [( ) ( ) ].md mdE   α α α α α  Using (A.2) and (A.3), and ignoring the smaller order terms, we 

can approximate this variance as 
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where ( ) ( )U α α αl    is given in equation (3.1) for the logistic model. The last equation in (A.6) results 

from a well-known property of the Fisher information matrix 0 0( )H α  (assuming the true model is in the 

same parametric family as the postulated model). Using (A.6) in (A.5) yields result (3.5). 

 
Appendix 2 
 
Illustration of the Frank method 
 

Figure A.1 below contains three sub-figures, Figures A.1(A), A.1(B) and A.1(C), that illustrate the 

behaviour of the Frank method for the data described in Section 6.1 and for method 5 described in 

Section 6.2 when the LFS is used as the probability sample. The description of each sub-figure is provided 

below: 
 

(A) Frank method with 10,a  15G   and NPn  31,415. The rank, ,kr  is on the horizontal axis and the 

function of the rank, NP( ) log (1 ),k kf r a r n   is on the vertical axis. The bins are equal-width in the 

range of ( ).kf r  The constant a  determines the shape of the function. As a  increases, it becomes 

increasingly non-linear and the groups are more bunched to one side.  

(B) The top panels show the sorted values of logisticˆ
kp  for the non-probability (left) and probability (right) 

samples. Fifteen groups are formed based on the non-probability sample using Frank with different 

values of a  and both sorting orders, resulting in different group boundaries as represented by the 

coloured bars in the bottom panels. For the non-probability sample (bottom left panel), when the rank 

is defined in ascending order of logisticˆ ,kp  the groups are smaller for small values of logisticˆ .kp  When the 

rank is defined in descending order of logisticˆ ,kp  the groups are smaller for large values of logisticˆ .kp  

Increasing a  increases the bunching, while 0a   gives equal-sized groups.  

(C) The AIC (3.15) versus the number of groups for different values of a  and both sorting orders. Sorting 
logisticˆ
kp  in ascending order leads to smaller values of AIC, without much sensitivity to changes in the 

value of .a  The AIC is minimized with around 100 groups for all parameterizations. The right panel 

smooths the left panel using a centered moving average filter with window size 81. The smoothed 

curves show the Frank method performs slightly better than equal-sized groups ( 0),a   especially 

when the number of groups is higher than optimal, adding some robustness to the choice of the number 

of groups. When the number of groups is large and logisticˆ
kp  are sorted in descending order, it occurs that 

some groups do not contain any probability sample unit. As a result, ˆ gp  is undefined for those groups, 

and the AIC cannot be computed.  
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Figure A.1  Illustration of the Frank method. 
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Appendix 3 
 

Auxiliary variables 
 

Age Group: 5-year age groups, starting from 15-19 and ending with 75+. 

Sex: Male/Female. 

Education:  8 categories (Less than high school; High school; Some post-secondary; Trades 

certificate or diploma; Community college, CEGEP, etc.; University certificate 

below Bachelor’s; Bachelor’s degree; Above Bachelor’s degree). 

Economic Region: Sub-provincial geography partitioning the country. It contains 73 levels, but some 

were collapsed due to insufficient respondent counts; 56 levels were used in the 

models. 

Immigration:  3 levels (Born in Canada; Landed immigrant; Not a landed immigrant). 

Household Size:  Number of people in the household, regardless of age, capped at 6.  

Marital Status:  6 levels (Married; Common-law; Widow or widower; Separated; Divorced; Single, 

Never married). 

Employment Status: 3 levels (Employed and at work at least part of the reference week; Employed but 

absent from work; Not employed). 
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Abstract 

Beaumont, Bosa, Brennan, Charlebois and Chu (2024) propose innovative model selection approaches for 
estimation of participation probabilities for non-probability sample units. We focus our discussion on the choice 
of a likelihood and parameterization of the model, which are key for the effectiveness of the techniques developed 
in the paper. We consider alternative likelihood and pseudo-likelihood based methods for estimation of 
participation probabilities and present simulations implementing and comparing the AIC based variable selection. 
We demonstrate that, under important practical scenarios, the approach based on a likelihood formulated over 
the observed pooled non-probability and probability samples performed better than the pseudo-likelihood based 
alternatives. The contrast in sensitivity of the AIC criteria is especially large for small probability sample sizes 
and low overlap in covariates domains. 
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Building on recent developments in data integration methods, Beaumont et al. (2024) propose and apply 

to real data innovative model selection approaches for estimation of participation probabilities for non-

probability sample units. We congratulate the authors for their inspiring and timely contribution and 

appreciate the opportunity to comment and discuss the methods considered in the paper. 

Survey statisticians are increasingly faced with the need to extract useful information from data collected 

without a well-planned probability survey design. At the same time, we witness rapid developments of 

machine learning methods capable to efficiently handle multidimensional sets of covariates. There is the 

growing realization that machine learning can be useful for handling estimation from non-probability 

samples. The current paper leads the way in adapting these methods for the combined non-probability and 

probability samples setup. The authors propose a general modified AIC formula that accounts for the 

probability sampling design in the combined samples setup. They also derive the AIC expression for the 

special case of homogeneous groups and apply it to choose among partitions in rank-based methods for 

forming the groups. Finally, the authors adapt the CART tree-growing algorithm by using a pseudo-

likelihood as an objective function and applying the modified AIC to prune the tree. 

We focus our discussion on the choice of a likelihood and parameterization of the model, which are key 

for the effectiveness of the techniques developed in the paper. In Section 1, we review several approaches 

for estimation of participation probabilities proposed in recent years and provide AIC expressions for the 

homogeneous groups case. In Section 2, we present simulations implementing and comparing the AIC based 

variable selection for these approaches. We provide some concluding remarks in Section 3. 
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1. Approaches to estimation of participation probabilities 
 

We start with the two pseudo-likelihood based approaches considered in the paper, then we discuss an 

exact likelihood based approach and propose a modification to the ALP method of Wang, Valliant and Li 

(2021), see also a related discussion in Gershunskaya and Lahiri (2023). We then consider the case of 

homogeneous groups and derive and compare the AIC expressions for each of the approaches for this 

important and relatively simple special case. Throughout, unless explicitly stated, we follow the notation of 

the current paper. 

 
1.1 CLW method 
 

Assuming that both non-probability and probability samples are selected from the same finite population 

,U  Chen, Li and Wu (2020) (hereafter CLW) start by writing a log-likelihood over units in ,U  with respect 

to Bernoulli variable :k  

     CLW ( ) = log ( ) (1 ) log 1 ,k k k k
k U

p p 


          (1.1) 

where k  is unit’s k  non-probability sample inclusion indicator, ( ) = { = 1| },k kp P k kx x  and   is the 

parameter vector in a logistic regression model for ,kp  where logit( ( )) = .T
kp kx   

Since finite population units are not observed, CLW re-group the sum in (1.1) by presenting it as a sum 

of two parts: part 1 involves the sum over the non-probability sample units, NP ,s  and part 2 is the sum over 

finite population :U  

 
 

 
NP

CLW ( )
( ) = log log 1 .

1
k

k
k s k Uk

p
p

p 

 
       

 


 


 (1.2) 

CLW employ a pseudo-likelihood approach by replacing the sum over the finite population with its 

probability sample based estimate:  

 
 

 
NP

CLW ( )ˆ ( ) = log log 1 ,
1

P

k
k k

k s k sk

p
w p

p 

 
       

 


 


 (1.3) 

where weights 1=k kw    are inverse values of the reference sample inclusion probabilities .k  Estimates 

are obtained by solving respective pseudo-likelihood based estimating equations. 

Note that the likelihood under this approach is formulated with respect to indicator ,k  although this 

variable is not observed. 
 

1.2 ALP method 
 

For their Adjusted Logistic Propensity (ALP) weighting method, Wang et al. (2021) introduce an 

imaginary construct consisting of two parts: they stack together non-probability sample NPs  (part 1) and 

finite population U  (part 2). Since non-probability sample units belong to the finite population, they appear 
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in the stacked set twice. They formulate a Bernoulli likelihood for variable ,kR  where = 1kR  if unit k  

belongs to part 1 of the stacked set; and = 0kR  otherwise:  

    
NP

ALP ( ) = log ( ) log 1 ,Rk Rk
k s k U

p p
 

          (1.4) 

where   is the parameter vector in a logistic regression model for ( ) = { = 1| }.Rk kp P Rk kx x  Since the finite 

population is not available, they apply a pseudo-likelihood approach:  

    
NP

ALPˆ ( ) = log ( ) log 1 ,
P

Rk k Rk
k s k s

p w p
 

          (1.5) 

leading to an estimate of .Rkp  However, the actual goal is to find probabilities kp  rather than .Rkp  At the 

second step of the ALP method, estimates of kp  are derived from identity  

 = .
1

k
Rk

k

p
p

p
 (1.6) 

Wang et al. (2021) noted that in their simulations the ALP estimator was more efficient than the CLW, 

especially when the non-probability sample size was much larger than the probability sample size. 

 
1.3 ILR method 
 

Let us now consider an exact likelihood approach formulated over the pooled non-probability and 

probability samples. Savitsky, Williams, Gershunskaya and Beresovsky (2023) propose to stack together 

the two samples and consider indicator variable = 1kz  if unit k  belongs to the non-probability sample (part 

1), and = 0kz  if unit k  belongs to the probability sample (part 2). Under this stacked sample construction, 

if there is an overlap between the two samples, NPs  and ,Ps  then the overlapping units are included into the 

stacked set, s , twice: once as part of the non-probability sample (with = 1)kz  and once as part of the 

reference probability sample (with = 0).kz  We do not need to know which units overlap or whether there 

are any overlapping units. They use first principles to prove a relationship between probabilities 

( ) = { = 1| }zk kp P zk kx x  of being in part 1 of the stacked set, on the one hand, and inclusion probabilities, 

kp  and ,k  on the other hand:  

 = .k
zk

k k

p
p

p 
 (1.7) 

Elliott (2009) and Elliott and Valliant (2017) derived expression (1.7) under the assumption of non-

overlapping samples NPs  and .Ps  The derivation given in Savitsky et al. (2023) does not require this 

assumption. 

To obtain estimates of ,kp  Beresovsky (2019) proposed an approach, labeled Implicit Logistic 

Regression (ILR), to allow the estimation of kp  directly from the likelihood formulated on the combined 

sample. In ILR, probabilities = ( )k kp p   are parameterized as logit( ( )) = T
kp kx   (as in CLW), and 
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identity (1.7) is used to present zkp  as a composite function of ;α  that is, = ( ( )) =zk zk kp p p   

( ) ( ( )).k k kp p    The log-likelihood for observed Bernoulli variable kz  is  

    
NP

ILR ( ) = log ( ( )) log 1 ( ) .
P

zk k zk k
k s k s

p p p p
 

          (1.8) 

The score equations are obtained from (1.8) by taking the derivatives, with respect to ,  of composite 

function = ( ( )).zk zk kp p p   This way, the estimates of kp  are obtained directly from (1.8) in a single step. 

Note that for the ILR approach, the probability sample inclusion probabilities k  are supposed to be 

known for all units in the combined set. This is possible for many probability surveys. If not immediately 

available, probabilities k  for units in NPs  can be determined if probability sample design variables are 

available for non-probability sample units. As discussed in Elliott and Valliant (2017), k  can be estimated 

using a regression model. Savitsky et al. (2023) used the Bayesian modeling technique to obtain both k  

and .kp  On the other hand, if probabilities k  are not available for the non-probability part of the combined 

sample, one can apply a pseudo-likelihood approach labeled “pseudo-ILR”, as discussed below in 

Section 1.4. 

 
1.4 Pseudo-ILR method 
 

The estimation method of Wang et al. (2021) can be modified to a one-step estimation procedure similar 

to ILR: kp  can be parameterized using the logistic link function as logit( ( )) = ,T
kp kx   while probabilities 

Rkp  in (1.6) could be viewed as a composite function, = ( ( )) = ( ) (1 ( )).Rk Rk k k kp p p p p    The pseudo-

likelihood takes the form:  

    
NP

PILRˆ ( ) = log ( ( )) log 1 ( ( )) .
P

Rk k k Rk k
k s k s

p p w p p
 

       (1.9) 

This change in estimation of model parameters makes the approach more efficient and less biased than ALP. 

It also avoids cases where estimates of kp  become greater than 1, as may occur under the ALP approach 

where the estimation is performed in two steps. 

Note that pseudo-likelihood based (1.3) and (1.9) use exactly the same set of observed data and yet these 

expressions are quite different. We expect the pseudo-ILR approach to give more efficient estimates because 

it is based on a likelihood properly formulated with respect to observed Bernoulli variable ,kR  while the 

CLW likelihood is given with respect to unobserved .k  Our simulations (not included in the discussion) 

confirm a better performance of the pseudo-ILR relative to the CLW approach. The effect on the AIC 

performance is shown in simulations Section 2. 

 
1.5 Homogeneous groups 
 

The authors presented the log-likelihood and AIC expressions under the CLW approach for the special 

case of homogeneous groups. We now extend their approach to pseudo-ILR and ILR methods. 
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For the pseudo-ILR approach, it is easy to see that, for a given partition, estimates of group g  

participation probabilities gp  are NP ˆˆ = ,g g gp n N  where ˆ =
P

g kk s
N w

  (the same as in the CLW approach.) 

The AIC is given by  

 

2

PILR PILR NP

=1

ˆˆ ( )ˆ1ˆ ˆAIC = 2 ( ) 2 2 ,
ˆ ˆ1 1

G
d gg

g
g g g

cv Np
G n

p p

        
   

   (1.10) 

where the log-likelihood is  

 PILR

=1

ˆ 1ˆ ˆˆ ˆ( ) = log log .
ˆ ˆ1 1

G
g

g g
g g g

p
N p

p p

 
 

   
   (1.11) 

Note that last terms in formulas for AIC under the CLW and pseudo-ILR approaches differ by a factor 

ˆ ˆ(1 ) (1 ) <1.g gp p   That is, for a given partition, the penalty term in the pseudo-ILR approach is always 

smaller than the one in the CLW approach. 

In the ILR approach, estimates of gp  are not available in closed form. They can be found by solving 

equations:  

 = ,gk P
g

k s gk gg

n
p



 
  (1.12) 

where gk  are assumed known, gs  is the part of combined sample that belongs to group ,g = 1, , .g G…  

Since ILR is based on an exact likelihood, the AIC formula for ILR does not have the third term and is a 

standard AIC expression:  

 ILR ILRˆ ˆAIC = 2 ( ) 2 ,G    (1.13) 

where  

 
NP

ILR

=1

ˆ
ˆ ˆ( ) = log log .

ˆ ˆP
g g

G
g gk

g k s k sgk g gk g

p

p p



  

 
 

   
     (1.14) 

Let us compare the penalty terms of the three methods for a given set of homogeneous groups. (The 

partitioning itself depends on the likelihood used, but we do not consider this effect at the moment.) We 

suppose that, all other factors being equal, the smaller the penalty term, the better AIC works. Thus, we 

expect the ILR based criteria to perform better than the pseudo-ILR or CLW. In turn, the pseudo-ILR is 

expected to work better than CLW, especially when the non-probability sample is relatively large and ˆ gp  

in (1.10) and in formula (3.15) of the discussed paper are closer to 1. Simulations results of Section 2 support 

this reasoning. 
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2. Simulations 
 

We conducted a simulation experiment to study performances of the AIC based on CLW, pseudo-ILR, 

and ILR approaches. 

For each unit =1 ,k N…  in a finite population U  of size =N 10,000, we generated covariates 1kx  and 

2kx  as independent standard normal variables. 

We use Poisson sampling with participation probabilities kp  to select non-probability sample from 

population .U  Probabilities kp  are generated as  

 0 1 1 2 2logit( ) = ,k k kp x x     (2.1) 

where we set specific coefficient values for different simulation scenarios, as follows: 

• setting 0 = 5   produces sample NPs  of approximate size NP = 100;n  setting 0 =  2.5 produces 

sample NPs  of approximate size NP =n 1,000;  

• 1  was set to 1 for all scenarios;  

• 2  is set to values on a grid from  0.3 to 0.3, corresponding to a series of scenarios. Note that 

setting 2 = 0  corresponds to the case where kp  is independent of 2 ;kx  larger values of 2  

produce stronger dependence on 2 .kx  
 

For probability sample ,Ps  we considered scenarios where sample sizes are =Pn 100 or =Pn 1,000. 

The probability sample is generated using the probability proportional to size (PPS) without replacement 

design, where the measure of size is defined as  

 1logit( ) = 1 .k km x  (2.2) 

In multivariate models with a large number of auxiliary variables and interactions, it is likely that non-

probability and probability samples would have very little overlap in some of the variable-defined domains. 

Firth (1993) and Heinze and Schemper (2002) demonstrated that little overlap, or separation, may result in 

unstable estimates of model parameters. This is the case where it is essential to use an effective method for 

variables selection. Therefore, in our simulations, we included scenarios of low and high overlap in variables 

domains. Values of coefficient   are set to regulate the degree of the overlap across the range of covariate 

1.x  To simulate the “high” overlap, we set =1  (so that 1= );   for the “low” overlap scenario, we set 

= 1.   

Table 2.1 presents a summary of considered simulation scenarios, S1-S4, characterized by combinations 

of high or low overlap and different sample sizes. We applied three approaches, CLW, pseudo-ILR, and 

ILR, for each scenario to choose between two models:  

 Full Model: 0 1 1 2 2logit( ) = ,k k kp x x      

  (2.3) 

 Abbreviated Model: 0 1 1logit( ) = .k kp x    
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Table 2.1 

Summary of considered simulation scenarios. 
 

  Overlap   Pn    NPn   

S1   High   100   100  
S2   Low   100   100  
S3   Low   100   1,000  
S4   Low   1,000   100  

 

In each case, we compute AIC for the Full and Abbreviated models and choose the model with the lower 

AIC. We repeat this test = 500B  times for each scenario and the value of 2  and find the percentage of 

times r  the Full Model is chosen, = 100 .p r B  

Plots in Figure 2.1 correspond to the four scenarios in Table 2.1. We plot percentage p  against the values 

of coefficient 2.  For larger absolute values of 2 ,  the higher percentage p  would be preferable; when 

2  is close to 0, the lower values of p  would indicate a better performance. The line with red dots shows 

the CLW results, the line with blue squares is for pseudo-ILR, and the line with green triangles shows results 

for ILR. 

 

Figure 2.1 Relative AIC performances under S1-S4 scenarios for CLW (red dots), ILR (green triangles), and 
pseudo-ILR (blue squares). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     -0.3        -0.2        -0.1         0.0         0.1          0.2         0.3                -0.3        -0.2        -0.1         0.0         0.1         0.2          0.3 
 
      S3                                                                                                           S4 

     -0.3        -0.2        -0.1         0.0         0.1          0.2         0.3                -0.3        -0.2        -0.1         0.0         0.1         0.2          0.3 
                                   Model coefficient value                                                                 Model coefficient value 

                                                                    Method      CLW          ILR        PILR 
  
S1                                                                                                           S2  

100 

 

80 

 

60 

 

40 

 

20 

 

 

 

100 

 

80 

 

60 

 

40 

 

20 

 
100

80

60

40

20

100

80

60

40

20

   
   

 C
o

va
ri

at
e 

se
le

ct
io

n
 r

at
e 

(%
) 

   
   

   
   

   
   

   
   

   
   

   
   

  C
o

va
ri

at
e 

se
le

ct
io

n
 r

at
e 

(%
) 

   
   

   
   

   
  

   



114 Gershunskaya and Beresovsky: Comments on the Beaumont et al. (2024) paper 

 

 
Statistics Canada, Catalogue No. 12-001-X 

For all scenarios considered, the ILR approach performs the best: for larger absolute values of 2 ,  the 

ILR based AIC most frequently chooses the Full Model; when 2  is closer to 0, the ILR based criteria 

selects the Full Model the least number of times. In the high overlap (S1) or relatively large probability 

sample size (S4) scenarios, all three approaches produce close results. However, when the probability 

sample is relatively small and the overlap is low (S2 and S3), the performance of ILR based test is 

significantly better than the other two methods. In most cases, the pseudo-ILR based test is slightly better 

than the CLW approach. When the non-probability sample size is large relative to the probability sample 

size (S3), the difference in performances increases: when absolute value of 2  is close to 0.3, the CLW 

based criteria chooses the Full Model in only about 40-50% of times, whereas the pseudo-ILR based criteria 

chooses it in about 60%, and the ILR based test chooses it in roughly 85% of cases. 

 
3. Concluding remarks 
 

We commend the authors on their contribution in adapting model selection algorithms to data integration 

problems. The choice of an objective function is important for this task. In our discussion, we considered 

several recently proposed alternative likelihood functions. The exact likelihood based ILR method 

performed better than the pseudo-likelihood based alternatives in the important practical situation of small 

probability sample sizes and low overlap in covariates domains. 

We note disadvantage of the CLW method when the probability sample is small and the non-probability 

sample is relatively large. In this case, we also noticed convergence problems with the Newton-Raphson 

algorithm in the CLW method. 

The ILR requires that the probability sample inclusion probabilities be available for non-probability 

sample units. If these probabilities can be derived based on available design variables, then ILR would be 

the preferred method. Otherwise, the pseudo-ILR appears to be a viable option. 
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some brief comments on homogeneous groups and post-stratification. 

 
Key Words: Inverse probability weighting; Participation probability; Pooled sample; Poststratification; Pseudo maximum 

likelihood; Reference probability sample. 

 
 

Beaumont, Bosa, Brennan, Charlebois and Chu (2024) provided a thorough examination of inverse 

probability weighting methods for non-probability samples, including parametric approaches and tree-based 

classification methods, with a major focus on variable selection. This is an important research topic, as the 

demands on using non-probability samples in applied fields and official statistics have been steadily 

increasing in recent years. The current paper is a timely contribution to investigating and comparing 

different methodologies using a real world dataset. I would like to thank the Guest Editor, Dr. Partha Lahiri, 

for the invitation and I appreciate the opportunity for a short discussion. In Section 1, I provide comparisons 

among three parametric methods for the estimation of participation probabilities and for inverse probability 

weighting. I also provide some brief comments on the use of homogeneous groups for post-stratification in 

Section 2. 

 
1. The methods of Chen, Li and Wu (2020), Valliant and Dever 

(2011), and Wang, Valliant and Li (2021) 
 

These are three parametric methods frequently cited in recent literature on inverse probability weighting 

(IPW) using estimated participation probabilities for non-probability samples. There are conceptual 

differences among the three methods as well as similarities in numeric results when sample sizes are small 

relative to the population size. 

The foundation for IPW estimators has been built under probability sampling with the Horvitz-

Thompson estimator. Follow the notation of Beaumont et al. (2024), let = {1, 2, , }U N…  be the finite 

population of size .N  Let d  denote the probability sampling design for selecting a probability sample .s  

Under the probability sampling design, the sample inclusion indicator variable = ( )k I k s   is defined for 

every unit k  in the target population ,U  i.e., for = 1, 2, , ,k N…  where ( )I   is the indicator function, and 

the sampling inclusion probabilities = ( =1| ) = ( | )k kP U P k s U    can be computed based on the given 
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sampling design, .d  The joint distribution of 1 2( , , , )
N

  …  under repeated sampling characterizes the 

sampling design features, and the Horvitz-Thompson estimator 
HT

ˆ = k kk s
y 

  for the population total 

= kk U
y

  is uniquely design-unbiased among a class of linear estimators. The establishment of this 

fundamental result in probability sampling involves (i) the positivity assumption, i.e., > 0k  for all k  in 

,U  so that 
HT

̂  can be re-written as 
HT

ˆ = ;k k kk U
y  

  and (ii) the sample inclusion indicator k  is 

independent of ky  and ( | ) = ,d k kE U   where the expectation dE  is with respect to the sampling design 

.d  

Let 
NP

s  be a non-probability sample of size 
NP

n  from the population .U  Let 
NP

{( , ), }k ky k sx  be the 

non-probability sample dataset. Once again, the sample participation indicator 
NP

= ( )k I k s   is defined for 

every unit k  in the target population ,U  i.e., for =1, 2, , .k N…  Unlike probability sampling, the 

participation probabilities = ( =1| )k kp P U  for the non-probability sample 
NP

s  are unknown and hence 

need to be estimated, which requires assumptions on the form of kp  and an assumed model, denoted as ,q  

for the participation mechanism. The model q  leads to specifications of the joint distribution of 

1 2( , , , ).
N

  …  There are two commonly assumed components for model :q  (i) the participation 

probabilities satisfy = ( =1| , ) = ( | ) > 0,k k k k k kp P y P x x =1, 2, , ;i N…  and (ii) the sample inculsion 

indicators 1 2, , ,
N

  …  are conditionally independent given 1 2( , , , ).
N

x x x…  

It should be emphasized that IPW estimators for non-probability samples need to be constructed and 

evaluated under the assumed model q  on participation mechanism and under the induced distribution on 

1 2( , , , ).
N

  …  It is where conceptual differences among the three methods can clearly be identified. The 

method of Chen et al. (2020) for estimating kp  is based on the full likelihood function 1

=1
(1 ) .k k

N

k kk
p p   

With a pre-specified parametric form = ( , ),k kp p x α  the maximum pseudo likelihood estimator α̂  is 

derived and assessed under an assumed parametric model q  on 1 2( , , , )
N

  …  as well as the sampling 

design, ,d  for the reference probability sample .
P

s  The IPW estimator 
IPW

NP

ˆ ˆ= ,k kk s
y p

  where 

ˆˆ = ( , ),k kp p x α  is consistent for   under the joint randomization of model q  and the sampling design .d  

The results are rigorously established with no restrictions on the “sampling fraction” 
NP

n N  or the 

parametric form for = ( , ),k kp p x α  whether it follows from a logistic regression model or any other models 

suitable for a binary response variable. 

The paper by Valliant and Dever (2011) was the first serious attempt in addressing estimation of 

participation probabilities under the two-sample setup as described in Beaumont et al. (2024). It inspired 

several followup papers, including Chen et al. (2020) and Wang et al. (2021). The proposed method was 

based on fitting a survey weighted logistic regression model to the pooled sample 
NP P

s s  with the 

“response variable” defined as =1kD  if NP
k s  and = 0kD  if ,

P
k s  for NP

,
P

k s s   assuming there are 

no overlaps between NP
s  and .

P
s  It is apparent that the ’siD  are defined with the given NP

s  and P
s  and are 

conceptually different from the sample participation indicators 1 2( , , , ).
N

  …  Under an assumed 

parametric model   on the ’skD  with NP
( , ) = ( =1| ),

Pk kP D s s x γ  the “theoretical IPW estimator” 

NP

ˆ = ( , )x γk kk s
y 

  should be evaluated first against model ,  leading to 
NP

ˆ( | , ) =
P

E s s   

 NP
NP NP

( , ) | , = .x γ
P

P P
k k k kk s s k s s

E D y s s y 
      In creating a set of weights for the pooled sample 
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NP P
s s  for “survey-weighted” logistic regression analysis on the ’skD  and without any prior knowledge 

of how 
NP

s  was selected, Valliant and Dever (2011) simply assigned “1” to each 
NP

,k s  which essentially 

assumes that units in 
NP

s  are exchangeable with respect to model .q  The IPW estimator of Valliant and 

Dever (2011), when assessed under model q  for 1 2( , , , ),
N

  …  is inconsistent unless 
NP

s  is a simple 

random sample from the population as shown by Chen et al. (2020). 

The more recent paper by Wang et al. (2021) adapted a strategy which is on the opposite direction of 

Valliant and Dever (2011). Instead of pooling the two samples together, the authors first created an enlarged 

population *
NP ,s U  where *

NPs  consists of the same set of units in 
NP

s U  but these units are viewed 

differently in the union of *
NPs  and .U  The authors defined the indicator variable =1kR  if *

NPk s  and 

= 0kR  if ,k U  and further defined the probability * * *
NP NP NP= ( =1| ) = ( | ),k kP R s U P k s k s U      for 

all *
NP .k s U   I had some real difficulty in putting this formulation into a suitable conceptual framework, 

since the indicator variable kR  depends on 
NP

= { |s i i U  and =1},i  which depends on the full vector of 

sample inclusion indicators 1 2( , , , ).
N

  …  It is unclear what kind of probability model is behind ( )P   in 

defining *
NP= ( =1| ).k kP R s U   This further led to my struggle in understanding the arguments behind the 

identity = ( =1| ) = (1 )k k k kp P U    (Wang et al., 2021, page 5241, equation (9)). The identity implies 

that a logistic regression model on the ’skR  would lead to a model on the ’sk  with the log-link function, a 

potential source of concerns when the sampling fraction 
NP

n N  is large. 

It turns out that the three methods produce similar numeric results for the estimated participation 

probabilities when the sampling fraction 
NP

n N  is small. This can be explained by checking computational 

details for each of the methods. Under a parametric model = ( , )k kp p x α  and the assumption of conditional 

independence of 1 2( , , , )
N

  …  given 1 2( , , , ),
N

x x x…  the full log-likelihood function for   is given by  

 
NP NP

( ) = log{ ( , )} log{1 ( , )}.k k
k s k U s

p p
  

  α x α x α  (1.1) 

The second term on the right hand side of (1.1), denoted as  

 
NP

2 = log{1 ( , )},k
k U s

L p
 

 x α   

is not computable based on the non-probability sample 
NP

s  since it involves kx  for all k  not in the sample 

NP
.s  The three methods, although conceptually distinctive, differ computationally only in terms of how the 

term 2L  is handled. 

Let {( , ), }
Pk kd k sx  be the reference probability sample dataset, where the ’skd  are the survey weights 

for .
P

s  Treating 2L  as a total of a population of size NP
,N n  the method of Valliant and Dever (2011) is 

equivalent to estimating 2L  by  

 (1)
2
ˆ = log{1 ( , )},

P

k k
k s

L w p


 x α   
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where 
NP

ˆ ˆ= ( )k kw d N n N  are the rescaled weights satisfying 
NP

ˆ=
P

kk s
w N n


  and ˆ =

P
kk s

N d
  is the 

estimated population size for .U  Noting that 2L  can be re-written as 2 = log{1 ( , )}kk U
L p


  x α  

NP

log{1 ( , )},kk s
p


 x α  the method of Chen et al. (2020) replaces 2L  by  

 
NP

(2)
2
ˆ = log{1 ( , )} log{1 ( , )},

P

k k k
k s k s

L d p p
 

   x α x α   

which is design-unbiased (or design-consistent, depending on whether the ’skd  are the basic design weights 

or calibrated/adjusted weights) regardless of the sampling fraction 
NP

.n N  The method of Wang et al. 

(2021) for estimating 
NP

= ( =1| )k kP R s U   amounts to replacing 2L  by  

 (3)
2
ˆ = log{1 ( , )}.

P

k k
k s

L d p


 x α   

This clearly overshoots the target since (3)
2L̂  is an estimate for log{1 ( , )}kk U

p


 x α  (or “undershoots” if 

we consider the fact that log{1 ( , )} < 0kp x α  for all ).k  However, the use of (3)
2L̂  to replace 2L  in ( )α  

results in a log-likelihood function that resembles a hypothetical scenario where the sample 
NP

s  is taken 

from a larger population 
NP

.s U  The resulting k  needs to be adjusted to make it closer to the actual 

participation probability .kp  

It is apparent that the three quantities (1)
2
ˆ ,L (2)

2L̂  and (3)
2L̂  do not differ too much when the sampling fraction 

NP
n N  is small, leading to similar estimated participation probabilities under these scenarios. The final 

adjustment step from the method of Wang et al. (2021), i.e., = (1 ),k k kp    also gives similar results, 

since we typically have 
NP

= ( ),k O n N  which implies =1 (1)k kp o   when 
NP

= (1).n N o  

 
2. Homogeneous groups and post-stratification 
 

In practice, auxiliary variables which are included in probability or non-probability surveys are often 

categorical or ordinal, especially for surveys on human populations where basic information on 

demographic variables and social-economic indicators is routinely collected. When relevant variables for 

characterizing the participation mechanism are discrete, the IPW estimator is equivalent to a post-stratified 

estimator; see, for instance, Section 5 of Wu (2022) for a detailed discussion. A post-stratified (IPW) 

estimator uses uniform participation probabilities within the same post-stratum, which effectively removes 

the impact of extreme values of estimated participation probabilities often appearing with a parametric 

model when there are continuous auxiliary variables, and the estimator has a simple and easy-to-use form. 

There are two major challenges, however, in forming homogeneous groups as post-strata. The first is the 

large number of initial groups when there are many discrete auxiliary variables that are available in the 

datasets. The variable selection methods discussed in Beaumont et al. (2024) have the potential to be 

practically useful in reducing the number of groups for the final IPW estimator. The second are scenarios 

where there are a large number of mixed discrete and continuous auxiliary variables. There exist 

methodologies developed in the missing data and causal inference literature that could be adapted for non-
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probability samples. Section 5 of Wu (2022) contains a brief discussion on rank-based methods. The rank-

based method described in Beaumont et al. (2024) has similar spirits. This is an important topic that requires 

further research. 

Variable selection using AIC or other similar criteria requires a true likelihood function. Beaumont et al. 

(2024) demonstrated the usefulness of the pseudo likelihood function of Chen et al. (2020) in the context of 

variable selection. I am excited to see such development and look forward to seeing more research effort in 

that direction. 
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non-probability samples through inverse probability 
weighting with an application to Statistics Canada’s 

crowdsourcing data”: 
 

Some new developments on likelihood approaches  
to estimation of participation probabilities for 

non-probability samples 

Jean-François Beaumont, Keven Bosa, Andrew Brennan,  
Joanne Charlebois and Kenneth Chu1 

Abstract 

Inspired by the two excellent discussions of our paper, we offer some new insights and developments into the 
problem of estimating participation probabilities for non-probability samples. First, we propose an improvement 
of the method of Chen, Li and Wu (2020), based on best linear unbiased estimation theory, that more efficiently 
leverages the available probability and non-probability sample data. We also develop a sample likelihood 
approach, similar in spirit to the method of Elliott (2009), that properly accounts for the overlap between both 
samples when it can be identified in at least one of the samples. We use best linear unbiased prediction theory to 
handle the scenario where the overlap is unknown. Interestingly, our two proposed approaches coincide in the 
case of unknown overlap. Then, we show that many existing methods can be obtained as a special case of a 
general unbiased estimating function. Finally, we conclude with some comments on nonparametric estimation of 
participation probabilities. 

 
Key Words: Best linear unbiased estimation; Best linear unbiased prediction; Estimating equation; Population likelihood; 

Pseudo likelihood; Sample likelihood. 

 
 

1. General remarks 
 

We would first like to thank the discussants for taking the time to read our paper and share their 

thoughtful and insightful observations on inverse probability weighting for non-probability samples. Dr. Wu 

shed light into three common weighting methods for non-probability samples whereas Dr. Gershunskaya 

and Dr. Beresovsky introduced two new methods to us: Implicit Logistic Regression (ILR), see also 

Beresovsky (2019), Savitsky, Williams, Gershunskaya, Beresovsky and Johnson (2022) and Gershunskaya 

and Lahiri (2023), and Pseudo-ILR. We have greatly enjoyed reading both discussions, which have helped 

us improve our knowledge on the field and stimulated us to have further thoughts on the topic. In what 

follows, we will share these thoughts along with some new developments.  

Sections 2, 3 and 4 are devoted to the methods of Chen, Li and Wu (2020), Wang, Valliant and Li (2021) 

and Elliott (2009), see also Elliott and Valliant (2017), respectively. We provide additional observations on 



124 Beaumont, Bosa, Brennan, Charlebois and Chu: Authors’ response to comments 

 

 
Statistics Canada, Catalogue No. 12-001-X 

these methods and make connections with the ILR and Pseudo-ILR methods. We show that all three methods 

are valid in the sense that they lead to unbiased estimating functions for the parameters of the participation 

model, regardless of the size of the probability and non-probability samples as well as the size of the overlap 

between both samples. However, only the Chen-Li-Wu (CLW) method has the property of reducing to the 

maximum likelihood method when the probability sample is a census, which we refer to as the Census 

Likelihood (CL) property. In Section 2, we also show that the CLW method does not fully leverage the 

available auxiliary information, which may result in an inefficient estimating function, particularly when 

the non-probability sample is larger than the probability sample. Using Best Linear Unbiased (BLU) 

estimation theory, we propose an improvement of the CLW method that addresses this issue and still 

satisfies the CL property. In Section 5, we propose a sample likelihood approach, similar in spirit to the 

Elliott/ILR method, that properly accounts for the overlap between both samples provided that it can be 

identified in one of the samples. Our sample likelihood approach satisfies the CL property. Using BLU 

prediction theory, we obtain an “optimal” estimating function applicable when the overlap cannot be 

identified in any of the samples. Interestingly, it is identical to the estimating function underlying our 

improved CLW method. In Section 6, we unify existing methods that do not require identifying the overlap 

and show their equivalence for the homogeneous group model. A brief summary is given in Section 7 along 

with a few comments on nonparametric estimation of participation probabilities. 

 
2. A population likelihood approach and the method of Chen, Li and 

Wu (2020) 
 

We use the notation in our main paper: the vector of auxiliary variables for unit k  of the finite population 

U  is denoted by ,kx  and the participation indicator (indicator of participation in the non-probability sample 

NP )s U  for population unit k U  is denoted by .k  The participation probability  Pr 1 0k k kp   x  

is modelled using a parametric model, such as the logistic model  
1

( ) 1 exp ,k kp


     α x α  where α  is a 

vector of unknown model parameters. We make the following standard independence assumption: 
 

A1) ,k ,k U  are mutually independent given ,kx .k U  
 

Ideally, we would have access to both  NP;k k sx  and  ; .k k Ux  These two data sets would not need 

to be linked. Under that ideal scenario and assumption (A1), the population log likelihood function is 

      
NP

(1 ) ( )
( ) log ( ) 1 ( ) log log 1 ( )

1 ( )
k k k

k k kk s k U
k U k

p
l p p p

p

 

 


  
       

   
 

α
α α α α

α
  

and the population likelihood estimating function (or score function) is 

 
   NP

1 ( ) ( )
( ) ,

( ) 1 ( ) 1 ( )
k k

k s k U
k k kp p p 

 
 

 
g α g α

U α
α α α

 (2.1) 
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where ( ) ( ) .k kp  g α α α  In particular,  ( ) ( ) 1 ( )k k k kp p g α α α x  for the logistic model.  
 

In many real cases, the vector kx  is not known for the entire population, but is at least available in a 

probability sample Ps  in addition to the non-probability sample NP .s  As a result, the term 

 log 1 ( )kk U
p


 α  in the population log likelihood function ( )l α  is not computable as it depends on 

unknown values of .kx  Chen, Li and Wu (2020) proposed to address this issue by estimating this term using 

the probability sample. This leads to the pseudo log likelihood function: 

  
NP

( )ˆ( ) log log 1 ( ) ,
1 ( ) P

k
k kk s k s

k

p
l w p

p 

 
   

 
 

α
α α

α
 (2.2) 

where 1k kw   is a probability survey weight for unit Pk s  and k  is its selection probability. We focus 

on this basic weight for simplicity although more complex weighting methods, involving nonresponse and 

calibration adjustments, are often used in real surveys. Taking the derivative of (2.2) with respect to ,α  we 

obtain the pseudo likelihood estimating function 

 
   NP

1 ( ) ( )ˆ ( ) .
( ) 1 ( ) 1 ( )P

k k
kk s k s

k k k

w
p p p

  
 

 
 

g α g α
U α

α α α
 (2.3) 

It is easy to see that the estimating function (2.3) is md  unbiased, conditional on k  and ,kx ,k U  i.e., 

ˆ ( ) ,mdE 
   U α 0  provided that the following assumption holds: 

 

A2)    , ( ),m k k k m k k kE E p   x x α .k U  
 

The subscript m  refers to the participation model and the subscript d  refers to the probability sampling 

design. Conditioning on ,k ,k U  makes sense when k  is available in both samples since it can be treated 

as a potential auxiliary variable. Indeed, assumption (A2) is automatically satisfied if k  is included in the 

vector .kx  In Section 2.1, we will condition on ,k .k U  Then, in Section 2.2, we will consider the case 

where k  is treated as random and inferences are conditional only on ,kx .k U  

 
2.1 Improvement of the CLW estimating function using BLU estimation 

theory 
 

The second term on the right-hand side of (2.3) is an estimator of the corresponding term in (2.1), 

 ( ) ( ) 1 ( ) .k kk U
p


 Φ α g α α  It is an inefficient estimator of ( )Φ α  because it uses only probability 

sample data and ignores relevant non-probability sample auxiliary data. A more efficient estimator would 

thus use auxiliary data from both samples. Such an estimator could be obtained by applying the Missing 

Information Principle (MIP). The MIP was introduced by Orchard and Woodbury (1972), see also Chambers 

(2023) for a recent reference on applications of the MIP with survey data. The MIP consists of replacing the 

population likelihood estimating function (2.1) with its expectation conditional on observed data, or 

equivalently replacing ( )Φ α  with its best predictor. However, this would involve modelling the vector of 

auxiliary variables, and the MIP solution would generally not be easy to implement.  
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As an alternative to applying the MIP, we propose to estimate ( )Φ α  using BLU estimation theory. We 

consider the following linear unbiased estimator that uses auxiliary data from both samples: 

 
   NP

( ) ( )ˆ ( ) (1 ) ,
( ) 1 ( ) 1 ( )P

k k k
k kk s k s

k k k

w
p p p




 
  

 
 

g α g α
Φ α

α α α
 (2.4) 

where ,k ,k U  are constants. It is easy to show that ˆ ( )Φ α  is md  unbiased for ( ),Φ α  i.e., 

ˆ ( ) ( ),mdE    Φ α Φ α  provided that assumption (A2) holds. Replacing the second term on the right-hand side 

of (2.1) with the right-hand side of (2.4), we obtain the md  unbiased estimating function 

 
   NP

1 (1 ) (1 )ˆ ( ) ( ) ( ).
( ) 1 ( ) 1 ( )P

k k
k k kk s k s

k k k

w
p p p




 
 

 
 

 
 U α g α g α

α α α
 (2.5) 

It is easy to see that the CLW estimating function (2.3) is the special case of (2.5) obtained by specifying 

0k   for all .k U  

The BLU estimator of ( )Φ α  is obtained by finding ,k ,k U  that minimize ˆvar ( )md
 
 c Φ α  for any 

fixed vector .c 0  We make the following assumptions: 
 

A3) ,kI ,k U  are mutually independent given k  and ,kx ,k U  where kI  is the indicator of inclusion in 

the probability sample .Ps  
 

A4)    , , , ,d k k k k d k k k kE I E I    x x .k U  
 

Assumption (A3) implies that the probability sample is selected using Poisson sampling. It is used to 

simplify the derivations of ˆvar ( )md
 
 c Φ α  even though we recognize that other sampling designs may be 

used in practice. Note that neither assumption (A3) nor assumptions (A1) and (A4) are needed to prove that 

the estimating function (2.5) is md  unbiased. Under (A1)-(A4), it is straightforward to show that 
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2 2

2 21 ( ) ( ) (1 ) ( )ˆvar ( ) (1 ) .
( ) 1 ( ) 1 ( )
k k k k

md k kk U k U
k k k k

p

p p p


 

 

     
             

 
α c g α c g α

c Φ α
α α α

 (2.6) 

The variance (2.6) is minimized when 

 
 

opt
, 1

(1 ) ( ) 1
( ) ,

(1 ) ( ) 1 ( ) ( 1) ( ( ) 1)
k k k

k k

k k k k k k

p w

p p w p



 

  

 
  
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α
α

α α α
.k U  (2.7) 

Plugging 
opt

, ( )k α  in (2.4) leads to the BLU estimator of ( ).Φ α  

We have the following properties associated with 
opt

, ( ):k α  
 

i) If ( )k kp  α  then 
opt

, ( ) 1 2;k α  

ii) If ( )k kp  α  then 
opt

,0 ( ) 1 2;k α  

iii) If ( )k kp  α  then 
opt

,1 2 ( ) 1;k α  

iv) If 1k   or ( ) 0kp α  then 
opt

, ( ) 0;k α  and 

v) If 0k   or ( ) 1kp α  then 
opt

, ( ) 1.k α  
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As a result of properties (iii) and (v), when the probability sample is small compared with the non-

probability sample, opt
, ( )k α  is expected to be large for many population units, and the CLW method ( 0)k   

may become inefficient relative to the optimal solution (2.7). The inefficiency of the CLW method in that 

scenario was shown in the empirical study of Savitsky et al. (2022). The explanation for this inefficiency is 

that the CLW method ignores the large non-probability sample for the estimation of the population total 

( ).Φ α  From properties (ii) and (iv), the CLW method should perform better in the reverse scenario where 

the probability sample is much larger than the non-probability sample as it possesses the CL property, i.e., 

the estimating function (2.3) reduces to the population likelihood estimating function (2.1) when the 

probability sample is a census. This scenario is not unrealistic in practice. For example, the Canadian Long-

Form Census, randomly administered to 25% of the Canadian population, could be an effective probability 

sample for the estimation of participation probabilities for a smaller non-probability sample. 

If we plug (2.7) in the estimating function (2.5), we obtain the “optimal” estimating function: 

 
 

 

NP

opt 1ˆ ( ) ( )
( ) ( ) 2 ( )

1
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( ) 2 ( )P
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kk s

k k k k k

k
kk s

k k k k k
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


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

  






 


 





U α g α
α α α

g α
α α

 (2.8) 

It is straightforward to show that 
optˆ ( )U α  is the BLU predictor of ( )U α  given in (2.1). Like the CLW 

estimating function (2.3), it possesses the CL property.  

 
2.2 Weight smoothing 
 

As discussed above, the possible inefficiency of (2.3) can be mostly explained by the omission of 

relevant non-probability sample auxiliary data for the estimation of ( ).Φ α  Another possible source of 

inefficiency may be attributable to the variability of the survey weights ,kw .Pk s  Indeed, it is well known 

that pseudo likelihood estimation can be inefficient for the estimation of model parameters from probability 

survey data (e.g., see Chambers, 2023, for a recent reference). Weight smoothing (Beaumont, 2008) can be 

used to address this issue. In this context, it consists of replacing the survey weight kw  in (2.3) with the 

smoothed weight  , ,k k P kw E w k s  x  where the subscript   indicates that the expectation is taken with 

respect to a model for k  (or ).kw  The smoothed weight kw  is often unknown but can be estimated using 

the probability sample along with parametric or nonparametric models. If k  is available in the non-

probability sample and included in the vector ,kx k kw w  and weight smoothing does not bring any 

efficiency gain.  

Using a relationship in Pfeffermann and Sverchkov (1999), the smoothed weight can be expressed as 

  
 

1 1
, ,k k P k

kk k

w E w k s
E



 
   x

x



 (2.9) 
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where    Pr .k k k P kE k s   x x  Using this relationship, it is straightforward to show that the 

estimating function (2.3) is md  unbiased, regardless of the validity of assumption (A2) and whether kw  

or kw  is used in (2.3), i.e., ˆ ( )mdE 
   U α 0  and ˆ ( ) ,mdE 

   U α 0  where ˆ ( )U α  is the estimating function 

(2.3) with kw  replaced by .kw  Note that md  expectations are conditional only on ,kx ,k U  so that k  

is treated as random. Relationship (2.9) can also be used to obtain an estimator of ,k  i.e., a consistent 

estimator of  k k kE  x  is ˆ ˆ1 ,k kw    where ˆ kw  is a consistent estimator of  , .k k P kw E w k s  x  

Using kw  instead of kw  in the estimating function (2.3) increases its efficiency at the expense of 

requiring the validity of a model for kw  and estimation of .kw  A similar argument can be made to improve 

the efficiency of ˆ ( )Φ α  by replacing kw  by kw  in (2.4). The resulting estimator is md  unbiased, i.e., 

ˆ ( ) ( ),mdE
   Φ α Φ α  and its variance ˆvar ( )md

 
 c Φ α  takes the same form as (2.6), with k  replaced by 

,k  provided that assumptions (A1)-(A4) hold as well as the following assumption: 
 

A5) ,k ,k U  are mutually independent given ,kx .k U  
 

As a result, the optimal value of ,k  denoted by 
opt

, ( ),k α  and the optimal estimating function, denoted 

by 
optˆ ( ),U α  are again given by expressions (2.7) and (2.8), respectively, with k  replaced by .k  

Using k  in (2.8) is not possible if it is not observed in the non-probability sample, a likely scenario in 

practice. In that case, an estimate of k  can be used in (2.8) to replace .k  If k  is observed in the non-

probability sample but not included in ,kx  it may still be desirable to replace k  with an estimate of k  to 

improve the efficiency of the optimal estimating function (2.8). 

 
2.3 Variable selection 
 

The estimating function (2.8) is not the derivative of a pseudo log likelihood function. Therefore, the 

methodology that we used in our main paper to derive an Akaike Information Criterion (AIC), based on 

Lumley and Scott (2015), is not directly applicable. For variable selection, one option is to use our proposed 

AIC along with the CLW method. Once auxiliary variables are selected, the estimating function (2.8), 
optˆ ( ),U α  or its smoothed version 

optˆ ( ),U α  could be used to estimate α  instead of the CLW estimating 

function. Otherwise, variable selection methods that are not likelihood-based could be envisioned. 

As a side remark, the methodology developed in this section to obtain an optimal estimator (or BLU 

estimator) of ( )Φ α  could also be used to combine two independent probability samples from the same 

population. This is left for future research.  

 
3. The method of Wang, Valliant and Li (2021) and Pseudo-ILR 
 

The method of Wang-Valliant-Li (WVL) consists of creating an artificial population AU  by stacking the 

non-probability sample NPs  on top of the population .U  Each element of AU  is considered distinct even 

though non-probability sample units are present twice in .AU  An indicator iR  is defined for each element 
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;Ai U  1,iR   if NP ,Ai s U   and 0,iR   if .Ai U U   We use the subscript i  to refer to elements of the 

artificial population AU  so as to distinguish them from the units of the population .U  For any given unit 

NP ,k s  there are two distinct elements of AU  that are labelled differently from that unit ;k 0R   for one 

element and 1R   for the other. The probability sample is assumed to be selected from the elements in 

AU U  for which 0.iR   The authors also assumed that the indicators ,iR ,Ai U  are mutually 

independent given ,ix ,Ai U  and obtained a pseudo log likelihood function similar to CLW by modelling 

 Pr 1 ,i A iR i U  x  using a logistic model. Then, they established the relationship  Pr 1 ,xi A iR i U    

(1 ),i ip p  which allowed them to estimate the participation probability .ip  Because they used a logistic 

model for  Pr 1 , ,i A iR i U  x  they implicitly modelled ip  using the exponential model ( )αip   

 exp ,x αi  which has the undesirable feature of admitting estimates greater than 1. However, nothing in 

their theory would have prevented them from using another model for ,ip  such as the logistic model, and 

thereby implicitly obtaining a model for  Pr 1 , .i A iR i U  x  This is exactly what Dr. Gershunskaya and 

Dr. Beresovsky proposed in their discussion. They call their method Pseudo-ILR, which is simply the WVL 

method with a logistic model for .ip  

For an arbitrary parametric model for ,ip  the WVL or Pseudo-ILR estimating function can be expressed 

as 

 
   NP

WVL-PILR 1 ( ) ( )ˆ ( ) .
( ) 1 ( ) 1 ( )P

k k
kk s k s

k k k

w
p p p

  
 

 
 

g α g α
U α

α α α
 (3.1) 

Similar to the CLW method, the estimating function (3.1) can possibly be improved by replacing the survey 

weight kw  with the smoothed weight .kw  The resulting estimating function is denoted by WVL-PILRˆ ( ).U α  

Dr. Gershunskaya and Dr. Beresovsky pointed out that, unlike ,k  the indicator iR  is fully observed 

once the probability and non-probability samples are observed. However, this characteristic of iR  is 

deceiving. The indicators iR  for elements in the probability and non-probability samples do not bring any 

new information about the participation mechanism than what is observable about k  and used in the CLW 

method. In other words, both methods use the same observed information:  , ;k k Pw k sx  and 

 NP, ; .k k k s x  In addition, we see two main issues with the WVL method, which are described below. 
 

Issue 1: The assumption that ,iR ,Ai U  are mutually independent given ,ix ,Ai U  is not valid as each non-

probability sample unit is present twice in :AU  0iR   for one element and 1iR   for the other (see greater 

detail below). 
 

Issue 2: The estimating function (3.1) does not have the CL property as it does not reduce to the population 

likelihood estimating function (2.1) when the probability sample is a census. When ,Ps U  the CLW 

method uses the same amount of information as if  , ;k k k U x  were known, but the WVL log likelihood 

fails to recognize this information.  
 

Despite the above two issues, it is easy to show that the estimating function (3.1) is md  unbiased 

provided that assumption (A2) holds. Both 
WVL-PILRˆ ( )U α  and 

WVL-PILRˆ ( )U α  are also md  unbiased, 
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regardless of the validity of assumption (A2); the estimating function (3.1) is thus valid. It can be written in 

the form (2.5) with  WVL-PILR ( ) 2 ( ) 1 ( ) .k k k kp p   α α α  It is easy to see that WVL-PILR0 ( ) 1;k α  it thus 

uses non-probability sample auxiliary data to some extent for the estimation of ( ).Φ α  

The variance (2.6) is a quadratic function of k  that is minimized when opt
, ( ),k k  α .k U  Therefore, 

if opt
, ( )k α  is closer to WVL-PILR ( )k α  than to 0 for most population units, i.e., opt WVL-PILR

, ( ) 0.5 ( ),k k α α  the 

WVL estimating function (3.1) is expected to be more efficient than the CLW estimating function ( 0),k   

but still less efficient than the optimal estimating function (2.8). It is easy to show that 
opt WVL-PILR

, ( ) 0.5 ( )k k α α  is satisfied when  
1

2 ( ) .k kp


  α  However, if  
1

2 ( )k kp


  α  for most 

population units, the CLW estimating function (2.3) is expected to become more efficient than (3.1), in 

particular when the probability sample is a census ( 1, ).k k U    Since  
1

2 ( ) 0.5,kp


 α  the condition 

 
1

2 ( )k kp


  α  is typically more common in social surveys than  
1

2 ( ) ,k kp


  α  at least for most 

population units. It is also straightforward to show that 
opt WVL-PILR

, ( ) ( )k k α α  when 1 3k   whereas 
opt

, ( ) 0k α  when 1.k   The WVL estimating function should thus be close to the optimal estimating 

function when the probability sample size is around one third of the population size and the selection 

probabilities k  are not too variable. 

Like Prof. Wu in his discussion, we had trouble understanding the probabilistic framework underlying 

the relationship  Pr 1 , (1 ).i A i i iR i U p p   x  However, it appears that the clever setup proposed by 

Savitsky et al. (2022) provides a correct justification of this relationship. These authors imagined a fixed 

augmented population *U  obtained by stacking population 1U  on top of population 2 ,U  where 1U  and 2U  

are two populations identical to U  of size ,N  but uniquely labelled so that each of the 2N  elements of 
*U  is viewed as distinct. First, one of the two populations is chosen at random with probability ½. We 

denote that randomly selected population by NP ,U  which is either 1U  or 2 .U  The other population is 

denoted by .PU  The non-probability sample NPs  is observed from NP ,U  and the probability sample Ps  is 

randomly selected from .PU  Using this setup, it is easy to show that 

  
 

 
NP

NP

NP

Pr 1 2
Pr 1 , .

1 2 1 2 (1 )Pr

i i i
i P i

i iP i

i s p p
R i s U

p pi s U


     

  

x
x

x
  

Note that the random splitting of *U  into NPU  and PU  is not explicitly stated in Savitsky et al. (2022) but 

is necessary to obtain the above equation. 

This setup seems to solve the problem but the two issues noted above remain. In particular, it is easy to 

show that the independence assumption is not satisfied since, for any pair of elements 1i U  and 2 ,j U  

  NPPr 1, 1 , , , 0 .
(1 ) (1 )

ji
i j P i j

i j

pp
R R i j s U

p p
     

 
x x   

For two different elements i  and j  in the same population, either 1U  or 2 ,U  we have  

  NPPr 1, 1 , , , .
1 (1 ) (1 )

i j ji
i j P i j

i j i j

p p pp
R R i j s U

p p p p
     

  
x x   
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provided (A1) holds for elements NP .i U  Therefore, the independence assumption is reasonable only when 

all (or at least many of) the participation probabilities are small, and thereby the overlap is a small portion 

of the probability sample. In this situation, the WVL and CWL estimating functions should be roughly 

equivalent. If most of the participation probabilities are large, the pseudo log likelihood function proposed 

by WVL is based on an incorrect independence assumption. In principle, an AIC based on an incorrect 

(pseudo) log likelihood function is not valid. How small should the participation probabilities be to make 

this independence assumption reasonable? The simulation study of Dr. Gershunskaya and Dr. Beresovsky 

is a first step in that direction, but further studies are needed. Note that the CLW pseudo log likelihood 

function is valid regardless of the magnitude of the participation probabilities as long as assumption (A1) 

holds.  

 
4. The method of Elliott (2009) and ILR 
 

In the method of Elliott (2009), see also Elliott and Valliant (2017), a combined sample *s  is obtained 

by stacking the non-probability sample NPs  on top of the probability sample Ps  while ignoring the possible 

(unknown) overlap. A population unit k U  that is selected in Ps  and observed in NPs  is thus present twice 

in *.s  Elliott (2009) implicitly assumed that the overlap between both samples is negligible. Similar to 

Wang, Valliant and Li (2021), an indicator ,iz *,i s  is created such that 1,iz   if *
NP ,i s s   and 0,iz   

if *.Pi s s   Elliott (2009) proposed to model  *Pr 1 ,i i iz i s    x  using a logistic model and, 

assuming the sampling fractions are small (Elliott and Valliant, 2017), established the relationship 

(1 )i i i ip K     used to estimate ,ip  where K  is an unknown constant of proportionality. This implies 

that ( ).i i i ip K p    In practice, i  is typically unknown but can be estimated, as discussed in 

Section 2. 

In this section and the next one, we condition on ix  and treat i  as random. The theory remains valid if 

we condition on both ix  and i  provided that i  is replaced with i  in the developments below and 

assumption (A2) holds. Conditioning on i  makes sense only if it is observed in both samples, so that it 

can be treated as a potential auxiliary variable and included in .ix  If i  is included in ,ix i i   and 

assumption (A2) is satisfied. For complex probability surveys, it is unlikely that i  would be observed in 

the non-probability sample. In that case, it must be treated as random. 

Using the setup introduced by Savitsky et al. (2022), also described in Section 3, it is easy to show that 

    
 

NP*

*

Pr
Pr 1 , .

( )Pr

i i
i i i

i ii

i s p
z i s

pi s





    



x
x

x 
  

Note that the relationship does not require a constant of proportionality ( 1)K   and is valid regardless of 

the size of the sampling fractions. When the logistic model  
1

( ) 1 expi i


     α x α  is used, it is easy to 

see that the resulting implicit model for ip  is  ( ) exp ,i i ip  α x α  which admits estimates greater than 1. 

Other models for ip  can be considered, such as the logistic model. Beresovsky (2019), see also 

Gershunskaya and Lahiri (2023), called this method ILR, which is essentially the Elliott method with a 

logistic model for ip  and results in an implicit model for .i  
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A log likelihood function is derived by assuming that ,iz *,i s  are mutually independent given ,ix  
*.i s  For an arbitrary parametric model for ,ip  the resulting Elliott/ILR estimating function is 

 
   NP

-ILR 1 1ˆ ( ) ( ) ( ).
( ) ( ) ( )P

E k k
k kk s k s

k k k k k kp p p


 

   
 

 
 U α g α g α

α α α


 

  
 (4.1) 

The estimating function (4.1) is md  unbiased. If k  is replaced by k  in (4.1), the resulting estimating 

function is denoted by -ILRˆ ( ).E
U α  It is both md  and md  unbiased provided that assumption (A2) holds. 

The estimating function (4.1) has a form similar to the optimal estimating function optˆ ( )U α  given by (2.8) 

with k  replaced by .k  Both optˆ ( )U α  and -ILRˆ ( )E
U α  are expected to be roughly equivalent in general, 

except for scenarios where the sampling fraction in both samples is large and the overlap is not small. It is 

thus not surprising that the estimating function (4.1) performed better than the CLW and WVL estimating 

functions in the simulation study of Savitsky et al. (2022). 

The two issues noted in Section 3 for the WVL/Pseudo-ILR method also apply for the Elliott/ILR 

method. The estimating function (4.1) does not have the CL property since it does not reduce to the 

population likelihood estimating function (2.1) when the probability sample is a census. Indeed, it reduces 

to the WVL/Pseudo-ILR estimating function (3.1).  

Also, the assumption that ,iz *,i s  are mutually independent given ,ix *,i s  is not valid since, using 

the setup of Savitsky et al. (2022) along with the random splitting of *U  described in Section 3, 

  *Pr 1, 1 , , , 0 ,
( ) ( )

ji
i j i j

i i j j

pp
z z i j s

p p 
    

 
x x

 
  

for any pair of elements 1i U  and 2.j U  For two different elements i  and j  in the same population, 

either 1U  or 2 ,U  we also have  

  *Pr 1, 1 , , , ,
( ) ( )

i j ji
i j i j

i j i j i i j j

p p pp
z z i j s

p p p p   
    

  
x x

   
  

when (A1) holds for elements NPi U  as well as (A3) and (A5) for elements .Pi U  Even under these 

assumptions, the mutual independence of ,iz *,i s  is not tenable unless many of the ’sip  are small, and 

thereby the overlap is a negligible portion of the probability sample. This condition appears to be reasonably 

satisfied in the simulation study of Dr. Gershunskaya and Dr. Beresovsky and may explain the good 

performance of the AIC for the ILR method. In principle, an AIC based on an incorrect log likelihood 

function is not valid and may not be effective for variable selection. 

 
5. A sample likelihood approach 
 

5.1 Known overlap between both samples 
 

A sample likelihood function (e.g., Pfeffermann, Krieger and Rinott, 1998) in the data integration 

scenario studied in our paper is a likelihood function based on observations from sample units NP .Pk s s   
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Let us first assume that we have access to  NP;s k Pk s s  X x  in addition to  NP; .k k sx  These two 

data sets do not need to be linked, but the overlap between the probability and non-probability samples 

needs to be known to create sX  from auxiliary data of the two samples. We thus assume that either 

 , ;k k Pk s x  or  NP, ;k kI k sx  is known. This assumption will be relaxed in Section 5.2. 

Under assumptions (A2) and (A4), it is easy to show that the probability of participation given 

NP Pk s s   is 

  
 

 
NP

, NP

NP

Pr
Pr 1 , .

Pr

k k
s k k P k

k k k kP k

k s p
p k s s

p pk s s


 


     

  

x
x

x  
 (5.1) 

This conditional participation probability reduces to , ( )s k k k kp p p     when the overlap is negligible, 

which is the implicit assumption made by Elliott (2009). Note that our assumptions (A2) and (A4) do not 

necessarily imply a negligible overlap, in particular when the sampling fractions are large. 

Under the independence assumptions (A1), (A3) and (A5),  , ,k kI 
NP ,Pk s s   are mutually 

independent given ,kx NP .Pk s s   Assuming a parametric model for ,kp  the sample likelihood function 

can be written as 

 
NP

(1 )

, ,( ) ( ) 1 ( ) ,
k k

P

s s k s k
k s s

L p p
 

 

       α α α  (5.2) 

where , ( )s kp α  is given by (5.1) with ( ).k kp p α  If Poisson sampling is not used to select the probability 

sample, assumption (A3) does not hold. It remains to be verified if the sample likelihood function (5.2) 

would remain approximately valid for sampling designs used in practice beyond Poisson sampling. In the 

context of modelling probability sample data only, Pfeffermann, Krieger and Rinott (1998) showed the 

asymptotic independence of sample observations for common sampling designs provided that the population 

observations are independent. It is possible that a similar result would also hold when combining probability 

and non-probability sample data. 

Using (5.2) and reorganising terms, we obtain the sample log likelihood function 

 
NP NP

, , ,( ) log ( ) log 1 ( ) log 1 ( ) .
P P

s s k s k s k
k s k s k s s

l p p p
   

                α α α α  (5.3) 

Taking the derivative of ( )sl α  with respect to ,α  we obtain, after straightforward algebra, the sample 

likelihood estimating function  

 
 
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k s k sk k k k k

p p

p p p p

 

 
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 
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U α g α g α Ψ α
α α α α

 


 (5.4) 

where  
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 (5.5) 

The estimating function (5.4) satisfies the CL property and, under assumptions (A2) and (A4), is md  

unbiased conditional on .sX  From (5.5), we observe that the use of estimating function (5.4) requires 
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knowing the overlap only in one of the two samples, i.e., observing either  NP, ;k kI k sx  or  , ;k k Pk s x  

is sufficient. This information could be obtained via additional questions in the probability or non-

probability survey, or via record linkage, with auxiliary variables being possible matching variables. For 

instance, if the vector kx  is distinct for each population unit k U  (e.g., there is at least one continuous 

auxiliary variable), it is possible to gain knowledge of  , ;k k Pk s x  and  NP, ;k kI k sx  by matching 

each unit of one sample with all the units of the other sample. That is, if the vector kx  for a unit Pk s  is 

identical to the vector lx  of a unit NP ,l s  we then know that 1k   (and 1).lI   Otherwise, if there is no 

match with ,kx  then 0.k   This matching can be repeated for each unit Pk s  to identify the entire overlap 

 , ; .k k Pk s x  A similar procedure can be used to identify  NP, ; .k kI k sx  If sufficient information is 

available to implement the estimating function (5.4) then the classical AIC can be used for variable selection 

using the sample log likelihood function (5.3), i.e., ˆAIC 2 ( ) 2 ,s sl q  α  where ˆ sα  is the solution of 

( )s U α 0  and q  is the number of model parameters. This is the ideal solution if the overlapping units can 

be accurately identified. Kim and Kwon (2024) independently proposed an unconditional propensity score 

model approach that appears to be very similar to our sample likelihood approach. 

 
5.2 Unknown overlap between both samples 
 

In practice, we may observe neither  , ;k k Pk s x  nor  NP, ; .k kI k sx  One way to address this issue 

is by a direct application of the MIP. It consists of replacing the unobserved estimating function (5.4) with 

its expectation conditional on observed data,     obs NP; , ; .k k P sk s k s   X x x X  This leads to the 

estimating function 
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 (5.6) 

Using the last term on the right-hand side of (5.5), the expectation  obs( )mdE Ψ α X  in (5.6), which is the 

best predictor of ( ),Ψ α  can be written as 

  
 

,obs
obs

( ) ( )
( ) ,

( ) 1 ( )
P

s k k
md k

k s k k

p
E p

p p
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where  obs
obs ,k md kp E  X .Pk s  Under our assumptions, it can be shown that 

 obs NP NP ,k md k k k kp E n n N    where 
NP ,kn ,Pk s  is the number of units NPl s  for which ,l kx x  and 

,kN ,Pk s  is the number of units l U  for which .l kx x  The result follows by noting that 
NP
kn  obeys a 

binomial distribution with number of trials kN  and probability ( ).kp α  The application of the MIP in this 

context requires knowing ,kN .Pk s  This information is typically unknown, but if we can assume that the 

population vectors kx  are all distinct (i.e., 1,kN  ),k U  we can identify the entire overlap, as explained 

above, and thus 
obs ,k kp  ,Pk s  and  obs( ) ( ).mdE Ψ α X Ψ α  In other less trivial cases, kN  could be 

modelled using, for example, the Poisson distribution.  
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As a simpler alternative to modelling ,kN  for situations where the overlap cannot be identified in any of 

the samples, we propose to replace ( )Ψ α  in (5.4) by its BLU predictor. This may lead to somewhat reduced 

efficiency compared with the best predictor  obs( ) ,mdE Ψ α X  but at least it does not depend on unknown 

values ,kN ,Pk s  as shown below.  

We consider the following linear unbiased predictor of ( )Ψ α  that uses the available auxiliary data from 

both samples: 

 
   
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  (5.7) 

where ,k NP ,Pk s s   are constants. The estimator (5.7) is conditionally unbiased in the sense that 

 ˆ ( ) ( ) ,md sE  Ψ α Ψ α X 0  provided that assumptions (A2) and (A4) hold. Replacing ( )Ψ α  in (5.4) by the 

right-hand side of (5.7), we obtain the estimating function 
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 (5.8) 

It is md  unbiased conditional on .sX  

The BLU predictor of ( )Ψ α  is obtained by determining ,k NP ,Pk s s   that minimize the prediction 

variance  ˆvar ( ) ( ) .md s
 c Ψ α c Ψ α X  Under our three independence assumptions, this prediction variance 

is minimized when  NPvar (1 ) ( ) ,α xmd k k k k k k k k P kp I I k s s           is minimized for each 

NP .Pk s s   The constant k  is thus determined so that (1 ) ( )k k k k k kp I     α  predicts as accurately as 

possible ,k kI   i.e., whether unit k  is in the intersection of the two samples or not. Adding assumptions (A2) 

and (A4), it can be shown, after straightforward algebra, that the value of k  that minimizes the prediction 

variance is 
opt opt
, ,( ) 1 ( ),k k k     α α  NP ,Pk s s   where 

opt
, ( )k α  is given by (2.7) after replacing k  by 

.k  Using 
opt
, ( )k k  α  in (5.8), it turns out that the estimating function (5.8) reduces exactly to the optimal 

estimating function 
optˆ ( ),U α  which is given by (2.8) with k  replaced by .k  It is thus interesting to see 

that using BLU estimation theory under a population likelihood approach (see Section 2) is equivalent to 

using BLU prediction theory under a sample likelihood approach.  

If the selection probability k  is observed for all the probability and non-probability sample units, it can 

and should be considered as a potential auxiliary variable to be included in .kx  If k  is included in ,kx  

k k   and thus using k  or k  in (2.8) does not make any difference. If k  is not included in ,kx  because 

it does not appear to explain k  after conditioning on ,kx  then the above theory still remains valid and k  

can be used in (2.8) as if k  were unknown. It would also be possible to condition on both k  and ,kx  

which would result in replacing k  by k  in the above developments. The optimal estimating function (2.8) 

would be md  unbiased conditional on sX  (and unconditionally) provided that assumption (A2) holds.  
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5.3 Variable selection 
 

The estimating function (2.8) is not the derivative of a sample log likelihood function, and thus the 

classical AIC is not applicable. Further research is needed on variable selection when optˆ ( )U α  or optˆ ( )U α  

is used to estimate the participation probabilities. However, if many of the ’skp  are small, the overlap is a 

negligible portion of the probability sample and the sample likelihood estimating function (5.4) becomes 

approximately equivalent to the estimating function optˆ ( ).U α  As a result, the sample log likelihood function 

(5.3), ignoring the negligible intersection term, can be used along with optˆ ( )U α  to compute the classical 

AIC and select relevant auxiliary variables. It appears to be similar to the AIC Dr. Gershunskaya and 

Dr. Beresovsky used in their simulation study for the ILR method, except for the use of the estimating 

function -ILRˆ ( )E
U α  given in (4.1). Both -ILRˆ ( )E

U α  and optˆ ( )U α  should be similar when the overlap is 

negligible. It is reassuring to see that their AIC performed well in their simulation study. We expect the 

performance to deteriorate as the non-probability sample size increases and the overlap becomes non-

negligible. 

 
6. A unified estimating function 
 

Let us continue with the realistic scenario where neither  , ;k k Pk s x  nor  NP, ;k kI k sx  is known. 

In that scenario, we have described several methods in previous sections that led to different estimating 

functions. Assuming k  is used rather than ,k  they are all special cases of the general estimating function 

    
NP

1ˆ ( ) , ( ) ( ) , ( ) ( ),
( ) P

h
k k k k k k kk s k s

k

h p w h p
p

  
 

  U α α g α α g α
α

     (6.1) 

where  , ( )k kh p α  is a function that depends on the method. Table 6.1 provides the expression of 

 , ( )k kh p α  for the methods described in previous sections.  

 
Table 6.1 

Expression of   , (α)k kh p  for different methods. 
 

Method Estimating function   , (α)k kh p  

CLW ˆ ( ):U α  (2.3)*   
1

1 ( )kp


 α  

WVL/Pseudo-ILR 
WVL-PILRˆ ( ):U α  (3.1)*   

1
1 ( )kp


 α  

Elliott/ILR 
-ILRˆ ( ):E

U α  (4.1)  
1

( )k k kp 


 α   

BLU estimation/prediction 
optˆ ( ):U α  (2.8)**  

1
( ) 2 ( )k k k k kp p  


 α α    

* kw  is replaced with kw  in (2.3) and (3.1). 
** k  is replaced with k  in (2.8). 

 
Some authors (e.g., Beaumont, 2020; Chen, Li and Wu, 2020; and Rao, 2021) considered the calibration 

estimating function 
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NP

cal 1ˆ ( ) .
( ) P

k k kk s k s
k

w
p

  
  U α x x

α
 

Its smoothed version calˆ ( ),U α  obtained by replacing kw  with kw  in the above equation, is also a special 

case of (6.1). For example, if a logistic model for ( )kp α  is used, the estimating function (6.1) reduces to 
calˆ ( )U α  when     

1
, ( ) ( ) 1 ( ) .k k k kh p p p


 α α α  The calibration estimating function does not have the 

CL property but has an implicit double robustness property when a linear model between the survey 

variables and auxiliary variables holds. It could also be easily generalized to the scenario where different 

auxiliary variables are available in different probability samples as long as all the auxiliary variables are 

observed in the non-probability sample. The calibration estimating function calˆ ( )U α  is the special case of 

(2.5) with  CAL( ) 1 ( ) ( ) 0.k k k kp p     α α α  It is thus expected to be inefficient for the estimation of 

( ).kp α  

The estimating function (6.1) is md  unbiased, both unconditional and conditional on .sX  The 

probability k  in (6.1) can also be replaced by k  if it is available in the non-probability sample. The 

estimating function (6.1) remains (conditionally) md  unbiased provided that assumption (A2) holds (e.g., 

if k  is included in ).kx  If ,k ,k U  are treated as fixed, (6.1) is also (conditionally) md  unbiased under 

assumption (A2). A hybrid estimating function that does not require the availability of k  in the non-

probability sample is 

    
NP

,

1ˆ ( ) , ( ) ( ) , ( ) ( ).
( ) P

h
k k k k k k kk s k s

k

h p w h p
p

   
 

  U α α g α α g α
α

    (6.2) 

It is (conditionally) md  unbiased without requiring the validity of a model for ,k  but may be less efficient 

than (6.1) due to the variability of the probability survey weights .kw  

In practice, whether (6.1) or (6.2) is used, k  is unknown and must be estimated. As pointed out in 

Section 2, the probability sample can be used to estimate  ,k k P kw E w k s  x  by ˆ ,kw  perhaps using 

nonparametric methods, such as machine learning methods. Using the relationship (2.9), k  is estimated by 
ˆ ˆ1 .k kw    Note that  k k kE  x  cannot be estimated by modelling  ,k P kE k s   x  and ignoring 

the probability sampling design, as is sometimes suggested in the literature (e.g., Elliott, 2009; Elliott and 

Valliant, 2017). This is because the probability sampling design is (strongly) informative with respect to the 

distribution of k  given .kx  

Let us now consider the homogeneous group model for which the auxiliary variables partition the 

population into G  groups and ( )k gp pα  for a unit k  in group .g  The smoothed weight for a unit k  in 

group g  is  , ,g k P gw E w k s   where ,P gs  is the set of probability sample units that fall in group .g  It 

can simply be estimated by the average of the weights in group ,g  i.e., ˆ ˆ ,P
g g gw N n  where 

,

ˆ
P g

g kk s
N w


  

and 
P
gn  is the probability sample size in group .g  For a unit k  in group ,g ˆ ˆ ˆ .P

k g g gn N     Replacing 

k  by ˆk  in (6.1) or (6.2) and solving the estimating equations (either ˆ ( )h
 U α 0  or ,

ˆ ( ) )h
  U α 0  for any 

choice of  , ( )k kh p α  yield 
NP ˆˆ ,g g gp n N  the estimate of ,gp  where 

NP
gn  is the non-probability sample 

size in group .g  Instead, if k  is replaced by k  in (6.1) or (6.2) and  , ( )k kh p α  depends on both k  
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and ( ),kp α  the resulting estimated participation probability in group g  is not NP ˆˆ
g g gp n N  anymore and 

does not have a closed form.  

Note that NP ˆˆ
g g gp n N  can be larger than 1. It is more likely to happen for large non-probability samples 

and small probability samples. For a general vector ,kx  this may suggest that a solution may exist less 

frequently with the logistic model ˆ( ( )kp α  bounded by 1) than with the exponential model ˆ( ( )kp α  

unbounded). However, the exponential model may not be accurate for large non-probability samples.  

For the homogeneous group model, solving the sample likelihood estimating equation ( ) ,s U α 0  where 

( )sU α  is given in (5.4), yields 

 SL
ˆ

ˆ

ˆ 1

g

g I
g

g P
g

p
p

n
p

n


 

   
 

  

as the estimate of ,gp  where I
gn  is the number of units in the intersection NP Ps s  that fall in group g  and 

NP ˆˆ .g g gp n N  As expected, SLˆ
gp  is close to ˆ gp  when ˆ gp  and the overlap rate I P

g gn n  are small. The sample 

likelihood estimate SLˆ
gp  cannot be greater than 1 unlike ˆ .gp  This is a desirable property of the sample 

likelihood estimating function (5.4), which results from exploiting information on the overlap between both 

samples.  

 
7. Concluding remarks 
 

In previous sections, we described three likelihood approaches for the estimation of participation 

probabilities and selection of relevant auxiliary variables that are valid regardless of the size of the 

probability and non-probability samples as well as the size of the overlap between both samples: the 

population and pseudo likelihood approaches, described in Section 2, and the sample likelihood approach, 

described in Section 5. If the probability sample is a census, the population likelihood approach is the most 

efficient and should be the preferred choice. If the probability sample is not a census, but the overlap is 

known in at least one of the samples, the sample likelihood approach should be preferred over the pseudo 

likelihood approach for efficiency considerations. If the overlap is unknown, the pseudo likelihood approach 

of Chen, Li and Wu (2020) can be used both for the estimation of participation probabilities and computation 

of an AIC for variable selection. However, the CLW estimating function (2.3) may not be efficient, 

especially when the non-probability sample is larger than the probability sample, because it does not fully 

leverage the available auxiliary data. Our optimal estimating function (2.8), 
optˆ ( ),U α  or its smoothed version 

optˆ ( ),U α  is expected to be more efficient than existing alternatives, although it remains to be demonstrated 

in an empirical study. Variable selection in the case of unknown overlap requires further research when 
optˆ ( )U α  or 

optˆ ( )U α  is used, except for the case where many of the participation probabilities are small and 

the overlap can be neglected. In that case, the sample log likelihood function (5.3), ignoring the overlap 

term, along with 
optˆ ( )U α  can be used to compute the classical AIC. 
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In practice, estimated participation probabilities from a parametric model are rarely used directly to 

compute estimates of finite population parameters. Groups homogeneous with respect to these estimated 

probabilities are often created to protect against model misspecifications and extreme inverse probability 

weights. It is possible that the choice of an estimating function does not have a major impact on the estimates 

of finite population parameters if homogeneous groups are used before computing those estimates. 

Nevertheless, it seems reasonable to choose the most efficient estimating function for the estimation of 

participation probabilities before creating homogeneous groups. 

Nonparametric estimation of participation probabilities using, for example, machine learning methods 

could be useful to protect against possible model misspecifications. Existing machine learning methods can 

be directly used to model kp  if  , ;k k k U x  is known. Otherwise, if  NP, ;k k Pk s s  x  is known, the 

conditional probability ,s kp  can be modelled using existing machine learning methods and kp  can then be 

estimated using relationship (5.1). The most difficult case is when the overlap is unknown. In our main 

paper, we proposed nppCART as a means of creating homogeneous groups and obtaining protection against 

model misspecifications. Our procedure is inspired from the pseudo likelihood approach of Chen, Li and 

Wu (2020) and does not require a negligible overlap between both samples. An alternative would be to 

consider machine learning methods along with the Elliott/ILR method, as suggested in Elliott and Valliant 

(2017) and Elliott (2022). The idea would consist of modelling  *Pr 1 ,i i iz i s    x  using a machine 

learning method, ignoring the overlap and thus the lack of independence between observations. Then, ip  

would be estimated for the non-probability sample units using the relationship ( ) ,i i i ip p    whose 

validity was shown in Section 4 using the setup of Savitsky et al. (2022). If most of the participation 

probabilities are small, the overlap is a negligible portion of the probability sample and can thus be ignored. 

Therefore, this approach would be equivalent to our suggestion above of modelling ,s kp  using a machine 

learning method and then using relationship (5.1) to estimate .kp  It remains to be evaluated how that 

machine learning version of the Elliott/ILR method would perform when the overlap is not negligible. 

In our main paper and in this rejoinder, we have focussed on the estimation of the participation 

probability kp  for non-probability sample units. Once the estimates ˆ ,kp NP ,k s  are computed, they can be 

used to estimate finite population parameters, such as population totals or means. The basic inverse 

probability weighted estimator of finite population parameters consists of weighting non-probability sample 

units by ˆ1 .kp  Of course, there are estimators that more efficiently use ˆ ,kp  for instance, by taking 

advantage of a model for the survey variables to achieve a double robustness property (e.g., Chen, Li and 

Wu, 2020; Chambers, Ranjbar, Salvati and Pacini, 2022). The simplest, but common, example is when the 

inverse probability weights ˆ1 kp  are calibrated on known or estimated population totals of auxiliary 

variables. The resulting estimator of population totals is doubly robust in the sense that it is valid under 

either the participation model or a linear model between survey variables and auxiliary variables.  

Our point of view is that survey statisticians should start with the most efficient estimates of ,kp NP ,k s  

possible before using them for the estimation of finite population parameters. This is exactly the same point 

of view many survey statisticians take for the estimation of finite population parameters using data from a 
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probability sample; they start with their best estimate of the probability of selection in the sample, ,k  and 

then use it to derive efficient estimators of finite population parameters (e.g., using calibration techniques). 

It just happens that the probability k  is usually known for probability samples and does not require to be 

estimated. 

In this final remark, we would like to take this opportunity to sincerely thank Prof. Partha Lahiri, the 

guest editor of this special issue, for all his efforts in organizing such a nice collection of papers, which were 

presented at the 2022 Morris Hansen lecture event, along with their discussion. 
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