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Waksberg Invited Paper Series 
 
 

The journal Survey Methodology has established in 2001 an annual invited paper series in honor of the late 

Joseph Waksberg to recognize his outstanding contributions to survey statistics and methodology. Each year a 

prominent survey statistician is chosen by a four-person selection committee appointed by Survey Methodology and 

the American Statistical Association. The selected statistician is invited to write a paper for Survey Methodology that 

reviews the development and current state of an important topic in the field of survey statistics and methodology. The 

paper reflects the mixture of theory and practice that characterized Joseph Waksberg’s work. The recipient of the 

Waksberg Award is also invited to give the Waksberg Invited Address, usually at the Statistics Canada Symposium, 

and receives an honorarium. 

Please see the announcements at the end of the Journal for information about the nomination and selection 

process of the 2026 Waksberg Award. 

This issue of Survey Methodology opens with the 24th paper of the Waksberg Invited Paper Series. The 

editorial board would like to thank the members of the selection committee Maria Giovanna Ranalli (Chair), 

Denise Silva, Jae-Kwang Kim and Kristen Olson for having selected Richard Valliant as the author of 2024 

Waksberg Award paper. 

 

2024 Waksberg Invited Paper 

Author: Richard Valliant 
 

Richard Valliant is a Research Professor Emeritus at the University of Michigan and the Joint Program for 

Survey Methodology at the University of Maryland. He received his PhD from Johns Hopkins University in 

Biostatistics and an MS in statistics from Cornell University. He has over 45 years of experience in survey 

sampling, estimation theory, and statistical computing. He was formerly an Associate Director at Westat and a 

mathematical statistician with the Bureau of Labor Statistics (BLS). He has a range of applied experience in 

survey estimation and sample design on a variety of establishment, institutional, and household surveys, 

including the Consumer Price Index, the Current Population Survey, and other surveys done by BLS, the National 

Center for Education Statistics, the Consumer Product Safety Commission, the Department of Energy, and the 

National Agricultural Statistical Service among others. He is a Fellow of the American Statistical Association 

and an elected member of the International Statistical Institute. He was an associate editor of the Journal of the 

American Statistical Association‒Theory and Methods Section (1989-1993) and the Applications and Case 

Studies Section (1996-1999), Journal of Official Statistics (2003-2010), and Survey Methodology (1996-2007). 

He is the co-author of three books: Finite Population Sampling and Inference: A Prediction Approach (2000) 

with A. Dorfman and R.M. Royall; Survey Weights: A Step-by-step Guide to Calculation (2018) with J.A. Dever; 

Practical Tools for Designing and Weighting Survey Samples, (2018, 2nd edition) with J.A. Dever and F. Kreuter. 

The first edition of the Practical Tools book was the winner of the 2020 Book Award from the American 

Association for Public Opinion Research. He is also the author of the R packages: PracTools and svydiags. 
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1. Richard Valliant, Research Prof. Emeritus, Universities of Michigan & Maryland U.S.A. E-mail: valliant@umich.edu. 

 

Sample design using models 

Richard Valliant1 

Abstract 

Joseph Waksberg was an important figure in survey statistics mainly through his applied work in the design of 
samples. He took a design-based approach to sample design by emphasizing uses of randomization with the goal 
of creating estimators with good design-based properties. Since his time on the scene, advances have been made 
in the use of models to construct designs and in software to implement elaborate designs. This paper reviews uses 
of models in balanced sampling, cutoff samples, stratification using models, multistage sampling, and 
mathematical programming for determining sample sizes and allocations. 

 
Key Words: Anticipated variances; Balanced samples; Cutoff samples; Design-based; Mathematical programming; 

Model-assisted; Model-based. 

 
 

1. Introduction 
 

Joseph Waksberg importantly influenced the practice of survey sampling and official statistics in several 

ways. At the US Census Bureau in the 1950-1970s, he led early studies of recall error, coverage error, small 

area estimation, sampling rare populations, advancements in household sampling including use of address 

lists, rotation of sample areas, use of administrative data, and improvements in telephone sampling methods. 

The interview with him by David Morganstein and David Marker in Statistical Science covers many of the 

areas he contributed to (Morganstein and Marker, 2000). 

He mainly worked on sample design issues, but his thinking was not limited to mathematical 

considerations. Depending on the application he adapted methods to account for practicalities. In the early 

1960’s he and Neter studied telescoping in a consumer expenditure survey (Neter and Waksberg, 1964). 

Although response errors in expenditure surveys were a known problem (e.g., see Cole and Utting, 1956; 

Ferber, 1955), it had not often been studied directly. Neter and Waksberg (1964) conducted an experiment 

sponsored by the US Census Bureau to study the tendency of persons to misreport the time period when 

expenditures occurred. Large expenditures, in particular, were often reported to have occurred nearer to the 

present than when they actually occurred, i.e., they were telescoped forward. Based on their findings, they 

were the first to propose bounded recall as a potential solution. In the second or later interview in a 

continuing survey the respondent is told the expenditures that had been reported in the previous interview 

then asked for the additional expenditures since then. 

Faulty data used in designing a sample was another topic he studied. When he became the head 

statistician on the Current Population Survey (CPS) in the early 1960’s, the area probability methods were 

well established. But, the survey had to face new problems caused by the expanding American economy. 

The migration to the suburbs from cities was in full swing and data from the 1960 census was becoming 

progressively more stale. Maps being used for fieldwork were out-dated, and some area segments that had 
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a few farm houses in the census were found with major housing developments built on them. Such fast 

growing neighborhoods led to bad measures of size based on the last census, which, in turn, led to intolerably 

expensive workloads if the original sampling plan was implemented. This led to his instituting the use of 

building permit samples to identify new construction in advance and avoid such “surprise” sample segments. 

Coverage errors were recognized problems for censuses and surveys on which he also led research. In 

the 1960s decade, while he was head of the CPS, that survey and others at the Census Bureau introduced 

address-list sampling as a way of reducing the number of households inadvertently omitted by field listers. 

Their method for compiling an address list began with purchasing one from the Donnelley Corporation. As 

Waksberg explained in Morganstein and Marker (2000), “the post office had the mailing addresses in little 

slots. Dummy mailing pieces were prepared for all addresses on the Donnelley list and the postal carriers 

put the mail into these little slots and checked for missing addresses, filling out a card for each missing 

address.” With this method plus some special procedures, like checking buildings that had been converted 

into apartments but with no apartment number designated, they compiled a more complete list to use for 

sampling within selected areas. This kind of inventiveness was characteristic of the way that he, Morris 

Hansen, and colleagues at Census solved practical problems. 

 
Figure 1.1 Joseph Waksberg ca. 1998. 

 

 

 
The Mitofsky-Waksberg (MW) method of random digit dialing (Waksberg, 1978) was another solution 

to a practical problem. In the early 1970s unrestricted random sampling of telephone numbers in the US 

was extremely inefficient for household sampling since about 80% of 10-digit phone numbers were assigned 

to businesses, institutions, government agencies, or were unassigned. The MW method treated the first eight 

digits in the sorted list of phone numbers as clusters (known as 100-blocks), screened clusters by phoning a 

randomly selected number in a sample 100-block, and retaining a cluster only if the contacted number was 
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residential. In a retained cluster additional 2-digit numbers were appended to the 8-digit cluster number and 

phoned to obtain the desired sample size. The MW method does not require knowledge of either the first- 

or second-stage selection probabilities, but it does produce an equal probability sample of telephone 

numbers. Because a high percentage of 100-blocks had no residential numbers, MW sampling is 

substantially more cost-efficient than unrestricted random sampling. This is another example of his very 

practical approach to sampling: given a specific problem, he devised a clever solution specific to the 

application. 

One of his most important contributions to the field was training dozens of young statisticians. On-the-

job training was his main way of doing this rather than formal teaching, as anyone who was fortunate enough 

to work with him can attest. He was adept at reducing complicated technical issues to intuitive, 

understandable explanations, which was especially valuable to clients and novices learning the field. One 

lesson that he emphasized was the importance for a sampling statistician to think not only about the specific 

questions that are asked, but also the broader aspects of these questions: whether the questions make sense 

and can be solved, or whether they should be modified or changed. 

His approach to sample design was randomization-based with repeated sampling properties being 

paramount. The explicit use of models has gradually become a part of survey design and estimation over 

the years since Waksberg and his colleagues at the Census Bureau and Westat were at work. Their use of 

auxiliary data in sample design certainly has some model flavor, but they rarely, if ever, formally appealed 

to models for their work. Models have, of course, played a central role in the allied field of experimental 

design for many years (e.g., see Box, Hunter and Hunter, 2005; Wu and Hamada, 2021). This paper reviews 

some of the more explicit use of models to guide design for finite population samples in the last few decades. 

Section 2 reviews balanced sampling motivated by models. Cutoff sampling, discussed in Section 3, is 

sometimes used in establishment surveys when large units account for the bulk of a population total. 

Formation of strata using models is commonly used in business surveys and is covered in Section 4. 

Multistage sampling using models to estimate variance components is described in Section 5. Mathematical 

programming in Section 6 is very useful for finding efficient allocations in multipurpose surveys. Finally, 

Section 7 is a summary. 

 
2. Balanced samples 
 

Practitioners have long used systematic sampling from lists sorted by auxiliaries available on a sampling 

frame as a way of exercising control over the distribution of a selected sample. This technique is especially 

useful when there are several auxiliary variables ( ’s)x  on a frame, but the sample size is too small to allow 

all ’sx  to be crossed to form separate strata. For example, a frame of schools might be stratified by 

geographic area and sorted within stratum by enrollment size as a way of controlling the sample distribution 

by area and size of school. A frame of city blocks can be numbered in a serpentine fashion so that blocks 

that are near each other in the serial numbering are also geographically close (Hansen, Hurwitz and Madow, 

1953a; U.S. Census Bureau, 2006). A frame of hospitals might be stratified by number of emergency room 
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visits and sorted geographically within strata (Schroeder and Ault, 2001). Business establishments can be 

stratified by geography and industry code and then sorted by employment size within strata. Selecting 

systematically from each sorted list will, in expectation, produce a sample with a type of balance that 

depends on whether the sample is selected with equal probability or with probabilities proportional to a 

measure of size. The concept of balanced samples has been formalized by various authors as described 

below. 

Balanced sampling was presented in the 1970s as a method of protecting against prediction bias (Royall 

and Herson, 1973a, b) using the model-based approach to sampling. For notation, let s  denote the set of 

sample elements; U  the population of N  elements; n  is the sample size; iy  is an analysis variable for 

element ;i  and ix  is an auxiliary variable known for every element in the population. As an example, take 

the ratio estimator,  ˆ =R s U sy y x x  where = ,s ii s
y y n

 = ,s ii s
x x n

  and = .U ii U
x x N

  The ratio 

estimator is the best linear unbiased (BLU) predictor of the mean, = ,U ii U
y y N

  under a model with 

mean   =M i iE y x  and variance   2= .M i iV y x  However, if the model mean is   = ,M i iE y x  ˆ
Ry  has 

a model-bias (or prediction-bias), defined as  ˆ ,M R UE y y  equal to  1 .U sx x   Thus, if the model has 

an intercept rather than being through the origin, the ratio estimator has a model-bias. This bias is zero in 

any sample that is balanced in the sense that = .s Ux x  This result extends to more complicated cases where, 

e.g., the correct model is polynomial rather than straight-line with an intercept (Valliant, Dorfman and 

Royall, 2000, Section 3.1). Under a simple random sampling (srs) design,   = 0,s UE x x   where E  

is the expectation with respect to repeated sampling, and 0
p

s Ux x   in large srs’s, under some standard 

conditions on how the population and sample grow as n  and N  get large. If there are other covariates, ,z  

that should be in the model for ,y  srs does on average balance on their means also, even though the ’sz  

may be unknown at the time of sampling. These results extend to other probability sampling designs that 

yield design-unbiased or asymptotically design-unbiased estimators of N  and .Ux  

A key requirement for the model-based calculations above is that the sample not be informative in the 

sense defined by Pfeffermann and Sverchkov (2009). A sample is informative if the model that fits in a 

sample is different from the one that fits the population even after accounting for covariates. In symbols, 

being informative means that    | , | ,i i i if y x i s f y x i U    where ( )f   is a density. Informativeness 

can be caused, for example, by the sampling itself or by response to the sample that depends on .y  

The fact that the sample mean of x  does aim at its population mean provides an argument for why srs 

or other probability sampling designs can be useful methods of sample selection to protect against unknown 

biases. These properties might suggest that using a probability design removes the need to worry about 

model-bias. Nonetheless, if the point estimator has a model-bias, the model-bias squared may not diminish 

fast enough to become a negligible part of the model mean squared error ‒ reinforcing the notion that correct 

modeling is critical. In the example above, the model-bias squared of the ratio estimator in an srs design is 

 1 ,PO n  where pO  is order with respect to the probability sampling design, and so is the model-variance. 

Royall and Cumberland (1985) illustrated that in srs a predictable percentage of samples will be poorly 
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balanced on any auxiliary regardless of how large the sample is. In those badly balanced samples, even 

confidence intervals constructed with a variance estimator, like the jackknife, that is robust to some types 

of model misspecification will have poor coverage. Thus, to eliminate worries about model-bias, a sampling 

plan is needed that reduces the order of the bias-squared faster than does srs. Kott (1986) did just that by 

showing that equal probability, systematic sampling from an ordered list was a way of achieving balance 

faster than the srs rate. 

These model-bias results plus the cosmetic appeal of using “nicely distributed” samples provide an 

impetus for restricting samples at the design stage to ones that are in some sense balanced. Royall (1992) 

generalized the idea of balanced sampling to linear models of the form  

     2= ; =Y Xβ Y VM ME V   (2.1) 

where Y  is an N -vector of analysis variables, X  is an N p  matrix of covariates, and = diag{ }V i i Uv   is 

an N N  diagonal covariance matrix. Model (2.1) is reasonably flexible since covariates can be interactions 

or transformations of auxiliaries. 

The error variance or prediction variance of an estimator, ˆ,  of a population quantity, ,U  is 

 
2

ˆ .M UE    For specificity, we consider estimators, t̂  of the population total, = .U iU
t y  The BLU 

predictor of Ut  is  

 BLU
ˆ ˆ ˆ ˆ= =i i i Mi

s U s i U i s

t y y y e
  

      (2.2) 

where ˆˆ = ,x βT
i iy  ˆ ˆ= ,Mi i ie y y  xT

i  is the thi  row of ,X  and  
1ˆ =β x x xT

i i i i i is s
v y v



   is the 

generalized least squares estimator of .β  

Define 1N  to be an N -vector of all 1’s and 1s  to be an n -vector of 1’s. Then, when both V1N  and 
1/2V 1N  are in the column space of ,X  the sample that yields the minimum error variance for the BLU 

predictor is a weighted-balanced sample that satisfies  

 1/2

1/2

1
=

N

1 X
1 V X

1 V 1

T
T N
s s s T

Nn
    or, equivalently   

1/2 (1/2)

1
=

x xi U

s i Un v v
  (2.3) 

where Vs  is the n n  covariance matrix for the n  sample units, Xs  is the n p  matrix of covariates for 

the sample units, and 
(1/2) 1 1/2= .U ii U

v N v

  Identifying a set of elements that satisfies (2.3) in advance of 

sampling requires a frame with the individual ’six  and ’s.iv  If the latter depend on some function of the 

’s,x  it may be possible to derive them. If the iv  are all equal, then (2.3) reduces to simple balance, = .x xs U  

With a weighted-balanced sample, the BLU predictor of the total of the ’sy  reduces to  

 
(1/2)

BLU 1/2
ˆ = U i

i s i

N v y
t

n v

  (2.4) 

See Valliant et al. (2000, Theorem 4.2.1) for details. Notice that (2.3) depends on y  only through the 

covariance matrix V  but the reduction to (2.4) requires that 1/2
iv  and iv  be linear combinations of the 
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columns of .X  Thus, if different ’sy  have this same structure, weighted balance will be optimal for them 

also. Tam (1995) extended the idea of balance to clustered populations where elements within clusters have 

a model correlation. His results seem more difficult to implement in practice because the balance on 

auxiliary variables must account for the intracluster correlations which will depend on the .y  

Model-assisted sample design uses both a model and random sample selection for analyses. A main tool 

in this approach is an anticipated variance (AV) of the form,  

      
22

ˆ ˆ ˆAV = .M U M Ut E E t t E E t t 
        

  

When t̂  is  -unbiased, i.e., ˆ( ) = 0,UE t t   the anticipated variance reduces to ˆ( ).M UE V t t   The 

optimality of weighted balanced sampling is closely related to earlier AV results on unequal probability 

sampling. The reduced form of the BLU predictor in (2.4) is equal to the  -estimator when the sample is 

selected with probabilities proportional to 1/2.iv  Godambe and Joshi (1965) and Isaki and Fuller (1982) 

presented circumstances where the anticipated variance of a regression estimator of the population mean is 

minimized when selection probabilities are proportional to the square root of a model variance. A key 

assumption is that the model errors are uncorrelated. 

In the context of probability sampling, Deville and Tillé (2004) and Fuller (2009) give methods that 

restrict random samples to ones where weighted sample means of auxiliary variables are close to the 

corresponding population means, i.e.,  

 1 x
xi

U
s i

N


    (2.5) 

where i  is the selection probability of element i  in a probability sample. (Also, see Ardilly, Haziza, 

Lavallée and Tillé (2024)). An estimator of the form on the left-hand side of (2.5) is generally called the -

estimator (Särndal, Swensson and Wretman, 1992). The Deville-Tillé method selects probability samples 

directly that approximately satisfy (2.5); Fuller’s method rejects probability samples where (2.5) is not 

satisfied within a specified tolerance. In the terminology of Cumberland and Royall (1981) and Royall 

(1992), samples that satisfy (2.5) are - balanced. Deville and Tillé (2004, 2005) cover calculation of 

weights and variance estimators for probability samples balanced using what they term the “cube” method 

that have a design-based interpretation. Nedyalkova and Tillé (2008) generalized the Godambe-Joshi and 

Fuller-Isaki results to show that an optimal model-assisted strategy (i.e., one that minimizes the AV) for the 

  estimator under model (2.1) is to select a fixed size, - balanced sample on the ’sx  in the model. A fixed 

size sample can be achieved by including =xi i  in the balance conditions. 

The R package sampling (Tillé and Matei, 2023) will select weighted or unweighted balanced samples 

that satisfy either (2.3) or (2.5). If a probability sample is designed so that 1/2 (1/2)= ( ),i i Unv N v  the result 

will be both model and design optimal, at least for the key y  variable used to assign the selection 

probabilities. A variance estimator like the jackknife that has both good design and model properties can 

then be used. If  M i iV y v  for some ’s,y  then a probability sample selected with  1/2 (1/2)=i i Unv N v  
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may be somewhat model inefficient for those ’sy  but will still allow for design-unbiased or consistent 

estimation. 

The French Institut National de la Statistique et des Études Économiques (INSEE) has used the cube 

method to select a master sample of PSUs (Costa, Guillo, Paliod, Merly-Alpa, Vincent, Chevalier and 

Deroyon, 2018) and in its census to select samples of municipalities with equal probabilities that are 

balanced on a set of demographic variables (see Deville and Tillé, 2004). The INSEE application has a key 

feature that many applications lack: municipalities cannot be nonrespondents in the census. In cases where 

units can nonrespond, the initial balance of a sample may be lost, which, at best, is a nuisance, and, at worst, 

leads to biases. In principle, substituting for a nonrespondent with an element with the same xi  value will 

preserve model unbiasedness and optimality under (2.1). However, this would perturb design properties 

because a substitution is an imputation that adds variance and, possibly, bias. 

Restricting the geographic configuration of first-stage sample units has long been a desire when 

designing area samples (Kish, 1965, Section 12.8) and is related to balancing. Having the sample PSUs 

spread over a map of the universe is especially pleasing in area probability samples. In addition, there may 

be a number of potential stratification variables like population density, education level, and concentration 

of ethnic groups whose use could improve efficiency of estimators but cannot be fully used because of a 

limited sample size ‒ much like the cases of systematic sampling noted above. Goodman and Kish (1950) 

proposed a one-PSU per stratum method called controlled selection geared toward these types of 

restrictions. This method and others, like Latin squares (Frankel and Stock, 1942), restrict the configurations 

of sample units and assign a probability of selection to each allowable configuration (Hansen et al., 1953a, 

Section 11.4). Although these methods can achieve sample restriction, the variance estimators that were in 

use at that time did not reflect gains in precision (if any) due to the restricted sampling. 

Grafström, Lundström and Schelin (2012) and Grafström (2012) introduced other methods that control 

the spread of a sample over a population. Instead of a mapping, these methods use distance between units 

to create small joint inclusion probabilities for nearby units, forcing the samples to be well spread. Grafström 

and Tillé (2013) proposed a method that is doubly balanced in the sense of selecting samples that are 

balanced on a number of auxiliary variables and also are well spread for other variables like topographical 

coordinates. Grafström and Tillé (2013) used a linear model of the form = .x βT
i i iy   The model errors are 

assumed to have the covariance structure, cov ( , ) = ijd

i j i j       where ijd  is a measure of distance 

between elements i  and j  and 0 < < 1.  As a result, the correlation diminishes as elements get farther 

apart. In area sampling, a latitude/longitude centroid is often associated with each first-stage unit and can 

be used for computing the distance between any pair of units. 

All of the balancing methods are available in the R package BalancedSampling (Grafström, Lisic 

and Prentius, 2023). Since the balancing methods are probability samples with known single and joint 

selection probabilities, standard design-based variance estimators can be used. Practical limitations often 

mean that exactly balanced samples cannot be selected. In such cases or ones where additional ’sx  are found 

to be predictive of the analysis variables, either general regression (GREG) or purely model-based 
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estimators of means and totals can be used along with variance estimators in Valliant et al. (2000); Valliant 

(2002) or Särndal et al. (1992). 

The discussion above uses linear models, so the question naturally arises whether any balancing results 

extend to nonlinear models like    = ,x θM i iE y   with    = θM i iV y v  where  ,x θi  is a function of 

a vector of covariates and an unknown parameter .θ  The mean,  , ,x θi  can be linear or nonlinear in xi  

so that quantitative or categorical ’sy  are covered. A model-assisted estimator of a total, designed for this 

nonlinear model, is (Breidt and Opsomer, 2009) 

 MA
MA
ˆ ˆ= i

i
U s i

e
t 


    

where MA
ˆ= .i i ie y   Although similar in form to BLUt̂  in (2.2), no balancing results are available for MAt̂  

or for the model-calibrated estimator of Wu and Sitter (2001), which is also based on a nonlinear model. 

 
3. Cutoff samples 
 

In applications where a few units account for an inordinate share of population totals, the standard 

approach is to include the large units in the sample with certainty and select a random sample from the 

remainder of the population. A more extreme method is to select a cutoff sample. Cutoff samples are ones 

in which only elements with a specified characteristic are sampled. The cutoffs are often quantitative like 

amounts of revenue in business establishments or production levels of oil refineries. If estimates are desired 

for a full population, they can be justified if (a) the sample and nonsample units follow the same 

superpopulation model or (b) there is some randomness to the cutoff so that the propensity of being included 

in the sample can be modeled based on element-level covariates. Cutoff samples can also be considered as 

special cases of stratified designs that have take-none, take-some, and take-all strata as discussed in 

Section 4. 

Such samples are even mentioned in Hansen et al. (1953a, pages 486-490), who note that this design can 

be effective in establishment populations where a small number of large units account for a large percentage 

of the totals being estimated and where collecting data from small units would be uneconomical. Restricting 

a sample in some way may be unavoidable if some members of a target population are inaccessible. For 

example, if data collection must be done by telephone, non-telephone households are excluded; 

institutionalized persons (e.g., incarcerated or in nursing homes) may be excluded from household surveys 

because of difficulties in collecting their data. If estimates are needed for the whole population, a critical 

requirement for justifying (a) above is that predictions for the nonsample units can be made from the sample 

units. This can be done when the same model holds for the sample as for the nonsample. Inclusion in the 

cutoff sample must also be ignorable, i.e., it cannot depend directly on the ’sy  to be analyzed. 

In some applications, a nonrandom cutoff sample will be model-optimal for estimating a total. For example, 

consider the ratio model,   =M i iE y x  and   2=M i iV y x  with the ’sy  being independent. Assume that the 
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goal is to estimate the total of the ’sy  for the full population. Values for nonsample units are predicted as 
ˆ ,ix  and the error variance of the ratio estimator is  ˆ =M R UV y y    21 r U sn N x x nx  where 

 
1

= .r ii U s
x N n x



 
   In this case, the optimal sample design that minimizes the error variance is 

nonrandom and consists of taking the n  units with the largest values of .x  If y  is a current period value 

and x  is a census value for the same variable at a previous time period and economic conditions have not 

changed radically from the census, the ratio model may fit well. 

In extremely skewed populations where the largest units account for a high percentage of the population 

total, making poor predictions for smaller units is less of a worry. However, this type of cutoff sampling is 

risky because it eliminates the possibility of testing how well the model fits for smaller units. If domain 

estimates for small and medium sized units are required, a cutoff sample should not be used because of the 

risk that the domains follow a different model from the one that fits the cutoff sample. Another worry is 

misclassification. If a large unit that should be in the cutoff sample is erroneously classified as part of the 

take-none part of the population, the cutoff sample can exclude an important contributor to the population 

total. Model breakdown over time is also a concern. In volatile economic times, a model may fit well for a 

while but fail when a recession or other downturn occurs. As partial protection against this, Benedetti, Bee 

and Espa (2010) extended the cutoff idea by stratifying the population into three strata ‒ take-all, take-some, 

and take-none ‒ and developed an algorithm for dividing a population into the strata and allocating the 

sample to them. 

Another concern is nonresponse. If one or more extremely large units do not cooperate, adjusting for 

that nonresponse can be difficult in either cutoff samples or more conventional samples. If a large unit is 

unique, weighting up the respondents or imputing for a nonrespondent may not be a workable solution. For 

example, in an agricultural survey of crop production if farms owned by a large agribusiness refuse to 

provide data, a big part of production of corn, wheat, etc. will be missing. Values for respondents may have 

limited use as sources for imputation in such cases. Having large, nonresponding units that were sampled 

with certainty may scuttle the goal of estimating for the entire population unless a good method of imputing 

for them can be devised. In the US, a Census of Agriculture is conducted every five years of all farms and 

ranches. The census data may be useful for imputing missing crop production data in noncensus-year sample 

surveys provided all large units respond to the census. Other surveys of business establishments or other 

institutions may not have this luxury, though. 

Yorgason, Bridgman, Cheng, Dorfman, Lent, Liu, Miranda and Rumburg (2011) review some 

applications of cutoff sampling by US federal government agencies. In particular, the Energy Information 

Administration (EIA) of the US Department of Energy conducts monthly surveys of crude oil and natural 

gas producers using cutoff samples that cover at least 85 percent of the total oil and gas production of each 

state (U.S. Energy Information Administration, 2018). Production for nonsample companies is implicitly 

imputed using a ratio estimator. EIA also surveys electric utilities each month using similar cutoff samples 

of large producers (Kirkendall, 1992; Knaub, 2008). Rapid changes in the energy economy in 2008 illustrate 

the riskiness of cutoff samples. Per Yorgason et al. (2011, page 3): “When petroleum and natural gas prices 
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began to rise rapidly in 2008, the large (in-sample) natural gas well operators increased their production 

rates faster than did the smaller (non-sample) operators. In addition to the production incentive created by 

rising prices, technological advances allowed some large companies to increase their shale gas extraction 

rates. The actual EIA-914 sample coverage rates increased, and the estimated coverage rates, based on prior 

data, failed to reflect the changes quickly enough. As a result, EIA overestimated natural gas production for 

some states.” Industry analysts claimed that the overstated production estimates had artificially deflated 

market prices for natural gas. 

Haziza, Chauvet and Deville (2010) cite a Statistics Canada tax data example from Fecteau and Jocelyn 

(2005). Unincorporated Canadian businesses may declare their financial statement either on paper or 

electronically. Owing to the high costs of converting data collected on paper to an electronic format, the 

paper filers are deliberately excluded from possible selection in the sample. Population estimates are based 

on a sample selected from the electronic-filers only. In this tax example, if it is reasonable to conceive of 

the situation as one where there is a probability of filing a return either via paper or electronically, the 

propensity of being an electronic filer can be estimated based on covariates. (Note the covariates must not 

include the variable that determines whether an element is in the cutoff sample or not.) Then, inverse 

propensity weighting of electronic filers can be used for estimation as is sometimes done in nonprobability 

samples (e.g., see Elliott and Valliant, 2017). If there is zero probability that an electronic filer would file 

via paper, inverse propensity weighting would fail, but knowing that in a given situation seems dubious. 

This would be similar to having hardcore nonrespondents who have a zero probability of responding. 

 
4. Stratification using models 
 

Suppose the population is divided into = 1, ,h H…  strata with hN  elements in stratum .h  The 

population of elements in stratum h  is denoted by .hU  The proportion of units in stratum h  is = ,h hW N N  

and the population mean of y  is 
=1

=
H

U h Uhh
y W y  where Uhy  is the population mean of y  within stratum 

.h  For design-based analyses assume that a simple random sample is selected without replacement in each 

stratum (stsrswor). The sample size in stratum h  is ,hn  the set of sample units in h  is ,hs  and the total 

sample size is 
=1

= .
H

hh
n n  An estimator of the population mean is then 

=1
=

H

st h shh
y W y  where shy  is the 

sample mean in stratum .h  The design variance of sty  is    2 1 1 2

=1
=

H

st h h h yUhh
V y W n N S

   where 
2
yUhS  is 

the population variance of y  in stratum .h  The design relvariance of sty  is defined as   2 ;st UV y y  the 

coefficient of variation (CV) of sty  is the square root of the relvariance. Basic design questions are how 

best to form the strata and how to allocate the sample to the strata. 

Models are most useful in forming strata in populations where single-stage sampling, like stsrswor, is 

used. These include populations of business establishments, schools, hospitals, or other institutions. In some 

samples, strata may be dictated by publication goals in which models may have limited use. For example, 

in a business survey, separate statistics may be needed for retail, wholesale, manufacturing, and other 

sectors. However, within a sector a model might be used to form substrata using methods described below. 
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When a y  variable is related to a single, quantitative auxiliary ,x  known for all elements in a population, 

a model can be used to guide the formation of strata. This line of reasoning is often used in business or 

institution surveys and is referred as stratification by size. There is a large literature on how to form strata; 

e.g., see Rivest (2002) and his list of references. The usual formulation is to sort the sampling frame by ,x  

divide the population into strata, and determine an optimal allocation of an stsrswor to the strata. With that 

scenario the goal is to find stratum boundaries, 1( , ]h hb b  for =1, , 1,h H …  that lead to the design-variance 

of the  -estimator of a mean or total being minimized or to n  being minimized subject to a target CV. 

 
4.1 Model-assisted analyses 
 

Lavallée and Hidiroglou (1988) present iterative algorithms for finding strata boundaries that will 

minimize the total sample size subject to a constraint on the coefficient of variation (CV) of ,sty  assuming 

that the allocation to strata is a power allocation (Bankier, 1988). In a power allocation, the proportion of 

the total sample size allocated to strata h  is proportional to  
p

h UhW y  for (0,1].p  

Rivest (2002) extended the algorithm of Lavallée and Hidiroglou (1988) when either (i) log( ) =y  

logx     where   is normally distributed with mean 0 and a constant variance that does not depend on 

,x  or (ii) lin=y x   with   having mean 0 and variance 2
lin x  where   is non-negative. Rivest gave 

results for both power and Neyman allocations. Rivest assigns stratum H  to be a take-all (or certainty) 

stratum ‒ a procedure often used in business surveys for large units ‒ so that = .H Hn N  For <h H  the 

sample size in stratum h  can be written as  H hn n a  where n  is the total sample size and =ha  

   
1

=1

Hp p

h Uh h Uhh
W y W y



  for a power allocation and 
1

=1
=

H

h h yUh h yUhh
a W S W S



  for Neyman allocation. 

Solving  stV y  for n  and using variances conditional on stratum membership leads to  
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 (4.1) 

where MV  denotes model-variance, Uy  is the population mean of ,y  2c  is the target relvariance for ,sty  

and hXa  is written using the model relationship between y  and .x  Expression (4.1) leads to differential 

equations for hn b   and 1 ,hn b    which are solved iteratively using an algorithm of Sethi (1963). A 

practical limitation of the Lavallée-Hidiroglou (LH) and Rivest iterative algorithms is that they may 

converge to boundaries that do not give the true minimum of n  or may not converge at all for some 

configurations of y  (Slanta and Krenzke, 1994, 1996; Rivest, 2002). 

Gunning and Horgan (2004) and Horgan (2006) presented another algorithm for finding the stratum 

boundaries, 1( , ],h hb b  based on a single, skewed measure of size .x  Their solution was to compute the 

stratum boundaries as 0= h
hb b r  ( = 1, , )h H…  where  

1/

0=
H

Hr b b  with Hb  and 0b  being the maximum 

and minimum values of .x  That is, the boundaries follow a geometric progression. If the distribution of x  

is uniform within each stratum, this set of boundaries approximately equalizes the stratum coefficients of 

variation of x  defined as ,xh hS x  where xhS  is the standard deviation among units in the frame for stratum 
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h  and hx  is the frame mean for the stratum h  units. The algorithm is not motivated by a model but was 

competitive with the LH algorithm and the cum( )f  method of Dalenius and Hodges (1959) and is 

computationally easier to implement. 

Baillargeon and Rivest (2009) extended Rivest (2002) to account for stratum-specific non-response rates 

and allow take-none, tale-some, and take-all strata. Excluding some units from the sample via a take-none 

stratum may be reasonable when some units have y  values near zero or are so small relative to the large 

units that they contribute little to a population total. (The extreme case of this is cutoff sampling in 

Section 3.) A take-none stratum can be a way of reducing the relative root mean square error of sty  but does 

lead to it being biased. They allocate the sample to the strata using a general rule that features proportional, 

Neyman, and power allocations as special cases. As noted in Baillargeon and Rivest (2009), their solution 

for n  requires an iterative solution for which they use an algorithm due to Kozak (2004). When non-

response is accounted for in the take-all stratum or when there is a take-none stratum, an unconstrained 

solution can be negative. Thus, a constrained minimization for n  is found over the boundaries { }hb  that 

give a positive sample size. 

The R package stratification (Baillargeon and Rivest, 2011) implements several methods of 

stratification, including cum ,f  geometric, and LH. The LH algorithm that finds stratum boundaries that 

minimize the total sample size n  while achieving a target CV can be implemented with either the Sethi or 

Kozak algorithms. With Kozak’s algorithm the package will also find stratum boundaries that minimize the 

CV of sty  for a fixed sample size n  rather than minimizing n  for a predetermined CV. 

 
4.2 Purely model-based analyses 
 

Dorfman and Valliant (2000) investigated the model-based properties of stratification by size from a 

purely model-based point-of-view. Some of their results are summarized here. When a common model holds 

for the entire population as in (2.1) and V1N  and 1/2V 1N  are in the column space of ,X  the BLU predictor 

with a weighted balanced sample is the best strategy, as noted in Section 2. Stratification by size is then, at 

best, a mechanism for selecting a weighted balanced sample. Nonetheless, further model-based analyses 

will illuminate the justification for different variations on stratification by size that are sometimes used in 

practice. 

First, consider a stratified version of model (2.1) in which parameters may depend on strata:  

     2= ; = ; =1, ,Y X β Y VM h h h M h h hE V h H …  (4.2) 

where Yh  is 1,hN   Xh  is ,h hN p  2
h  is a positive scalar,  = diagVh hiv  is ,h hN N  and βh  is a 1hp   

parameter vector. The BLU predictor is then the sum of the BLU predictors in each stratum. 

In stratum h  define a weighted balanced sample to be one that satisfies  

 1/2

1/2

1
=

1 X
1 V X

1 V 1

T
T Nh h
sh sh sh T

h Nh h Nhn
  (4.3) 
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where 1sh  is a vector of hn  1’s, 1Nh  is a vector of hN  1’s, Vsh  is the h hn n  diagonal covariance matrix for 

the sample units, and X sh  is the h hn p  matrix of auxiliaries for the sample units. Any stratum sample 

satisfying (4.3) will be denoted by  : ,X Vh hB  and, when (4.3) is satisfied in each stratum, the entire sample 

is a stratified weighted balanced sample. 

If both V 1h Nh  and 1/2V 1h Nh  are in the column space of ,Xh  then the BLU predictor achieves its minimum 

variance when each stratum sample is  : .X Vh hB  In that case, the BLU predictor reduces to  

 (1/2)
BLU (1/2)

=1

1ˆ =
H

hi
h h

h i sh hih

y
t N v

n v
   (4.4) 

and the error variance is  

    
2(1/2) 2

BLU

1ˆ =M U h h h h h
h h

V t t N v N v
n


 

  
 

  (4.5) 

where (1/2) 1 1/2=
h

h h hiU
v N v   and 1= .

h
h h hiU

v N v   

Thus, in a stratified weighted balanced sample, the optimal estimator reduces to a sum of mean-of-ratios 

estimators. As in the unstratified case, a weighted balanced sample is the best that can be selected in the 

sense of making the error variance of the BLU predictor small. The estimator of the total, BLU
ˆ ,t  is also the 

- estimator when each within-stratum sample is selected with probabilities proportional to 1/2.hiv  Although 

a probability sample selected with probabilities proportional to 1/2
hiv  is balanced in expectation, the model-

based result does not require that the balanced sample be obtained via probability sampling. However, if a 

probability sample is desired, the methods of Deville and Tillé (2004) can be used. 

The optimal, cost-constrained allocation to strata can be computed using standard methods. Assume that 

the cost function is 0= h hh
C C c n  where C  is the total cost, 0C  is the cost that does not vary with sample 

size, and hc  is the cost per unit in stratum .h  Suppose that V 1h Nh  and 1/2V 1h Nh  are in the column space of 

Xh  and that a weighted balanced sample,  : ,X Vh hB  is selected in each stratum. In that case, the allocation 

that minimizes the variance of BLUt̂  subject to a fixed total cost is  

 
(1/2)

(1/2)
= .h h h hh

h h h hh

N v cn

n N v c



   
 (4.6) 

When all costs are equal, the BLU with the optimal, balanced sample allocation is then equal to  

 
(1/2)

BLU 1/2

1ˆ = .
h

hi
h h h

h h s h h

y
t N v

n v




 
 
 
   (4.7) 

and its error variance is  

  
2

(1/2) 2
BLU

1ˆ = .M U h h h h h h
h h

V t t N v N v
n

 
 

  
 
   (4.8) 
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To investigate how to form strata, take the case of a single model fitting the entire population, i.e., the 

special case of (2.1) and (4.2) defined by  

     2= , = .Y X β Y VM h h M h hE V   (4.9) 

Suppose we select a stratified weighted balanced sample and use the optimal allocation given in (4.6) for 

the equal cost case. Using (4.7) with =h   and (1/2) 1 1/2= ,
h

hih U
v N v    the BLU predictor with the 

optimal allocation is  

    1/2 1/2
BLU 1/2 1/2

1 1ˆ = =
h h

hi hi
h h

h h s h shi hi

y y
t N v Nv

n v n v

 
 
 
     

which is the form of the BLU in (2.4) in a weighted balanced sample for an unstratified sample. In other 

words, stratification with optimal allocation of a stratified weighted balanced sample here gains nothing at 

all compared to the strategy of selecting an unstratified sample with overall weighted balance. 

An important special case of a single population model occurs when there is a single x  and the model 

is polynomial:  

     2
0 0 1 1= , =J

M hi hi J J hi M hi hiE y x x V y x           

where =1j  if the thj  order term is in the model and 0 if not; and the ’sj  are regression parameters. 

Among the models in this class is the one for the ratio estimator:     2
1= , = .M hi hi M hi hiE y x V y x   With the 

variance specification,   2= ,M hi hiV y x  the optimal, cost-constrained allocation is given by specializing 

(4.6):  

 
( /2)

( /2)
= .h h hh

h h hh

N x cn

n N x c




  

  

where ( /2) 1 /2= .
h

h h hiU
x N x    The error variance with that allocation is  

      22 ( /2)
BLU

1ˆ = .M U h h h h
h h

V t t N x N x
n


 

  
 

  (4.10) 

The problem of how to create strata is most conveniently studied when an equal number of sample units, 

0 ,hn n  is allocated to each stratum. In that case,  

    
2

2( /2) ( ) 2
BLU

0

ˆ =M U h h
h

V t t N x N x
n

 
   (4.11) 

with ( ) 1= .
h

hih U
x N x     

Let ( /2)= .h h hZ N x   Optimal stratification occurs when the leading term in (4.11), 
2 =hh

Z  

 
2( /2) ,h hh

N x   is minimized. Adding and subtracting 2 2
0 ,HZ n  where 

=1
= ,

H

hh
Z Z H  gives  
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2( /2)2 2
2 2 ( )

BLU

0 0

ˆ =M U Z

N x
V t t S N x

n n H



 
    (4.12) 

where  
22 = .Z hh

S Z Z  The one term in (4.12) that depends on the formation of the strata is the first, 

which is eliminated by making the hZ  all equal. Expression (4.12) then becomes  BLU
ˆ =M UV t t  

 2 2( /2) 2 ( ) .n N x N x    

Equalizing ( /2)=h h hZ N x   leads to several “equal aggregate size” rules for forming strata found in the 

literature, for example, Cochran (1977, page 172), Godfrey, Roshwalb and Wright (1984), and Hansen et al. 

(1953a, page 382). When = 0,  equal values of /2
h hN x   correspond to equal numbers of units hN  in each 

stratum. When =1,  we have equal aggregate square root of size, and = 2  gives equal aggregate .x  Thus, 

model-based analyses clarify when the different methods of stratification by size will be efficient. 

The results in subsections 4.1 and 4.2 refer to a single y  and a pre-determined number of strata ,H  but 

extensions without those restrictions have been done. For practical reasons, a single set of strata is usually 

used with the understanding that it will not be equally efficient for all estimates. Consequently, a 

compromise set of strata and an allocation are needed that does reasonably well for different estimates while 

adhering to budget, workload, and other constraints on the design. Mathematical programming, discussed 

in Section 6, is especially useful in that regard. Benedetti, Espa and Lafratta (2008) and Ballin and Barcaroli 

(2013) address the problem of design for multipurpose surveys, i.e., ones with multiple ’s,y  using tree and 

genetic algorithms. Their solutions identify an optimal set of strata based on crossing a set of categorical 

covariates and an allocation to those strata. The total number of strata H  is a byproduct of their solutions. 

The Ballin and Barcaroli (2013) algorithms are implemented in the SamplingStrata R package 

(Barcaroli, Ballin, Odendaal, Pagliuca, Willighagen and Zardetto, 2022). 

 
5. Multistage sampling and anticipated variances 
 

For decades multistage sampling has been a standard tool in household surveys that require in-person 

data collection. A nested sequence of geographic areas is selected until, at the last stage, households or 

persons within households are sampled. Multistage sampling is also common in education surveys where 

schools and students within schools are the stages and in business surveys where establishments then 

employees are sampled. To design these surveys, estimates of variance components are needed. Anticipated 

variances can be useful to avoid the problem of negative variance estimates as described below. 

 
5.1 Two-stage designs 
 

Take the case of a two-stage sample in which primary sampling units (PSUs) are selected with varying 

probabilities and with replacement (ppswr) while the second-stage elements are selected by simple random 

sampling without replacement. With-replacement designs may not often be used in practice but have simple 

variance formulae which facilitate sample size calculation. Let ky  be the value of an analysis variable for 
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element ,k  m  be the number of sample PSUs, M  the number of PSUs in the population, s  the set of 

sample PSUs, iN  the number of elements in the population for PSU ,i  in  the number of sample elements 

in sample PSU ,i  and is  the set of sample elements in PSU .i  The “probability with replacement” pwr-

estimator of the total of the ’sy  is  

 pwr

ˆ1ˆ = i

i s i

t
t

m p
   

where ˆ = i

i i

N

i kn k s
t y

  is the estimated total for PSU i  from a simple random sample, and ip  is the one-

draw selection probability of PSU .i  The design variance of pwrt̂  from Cochran (1977, pages 308-310) is 

  
2

2
2

pwr 2

1ˆ = 1i i i
i U U i

i U i Ui i i i

t N n
V t p t S

m p mp n N


 

   
     

   
   (5.1) 

where Ut  is the population total of y  and    
1 22

2 = 1
i

U i i k Uik s
S N y y




   with Uiy  being the population 

mean of y  in PSU .i  

Computing sample sizes when the in  are allowed to vary is difficult, but, to control workloads, samples 

are often designed to select the same number of elements in each PSU. Making the assumption that n  

elements are selected in each PSU and that the within-PSU sampling fraction, ,in N  is negligible, the 

design relvariance of pwr
ˆ ,t  defined as   2

pwr
ˆ ,UV t t  is approximately (Valliant, Dever and Kreuter, 2018, 

Section 9.2.4): 

 
 

 
2 2

pwr

2

ˆ
= 1 1

U

V t B W V
k n

t m mn mn


     


  (5.2) 

where  

  
2 2 2

1 pwr
= ,UU

B S t    
2

2

1 pwr
= ,i

i

t

i UpU i U
S p t


   

it  is the population total of y  for PSU ,i   

 
2

22 2 2= ,U i

i

S

U i pi U
W t N

 2 2= ( ) ,k B W V    

and  2 2 2= B B W   is a measure of homogeneity. The unit (i.e., population) relvariance is 2 2= U UV S y  

with 2
US  being the population variance of y  and Uy  the population mean of .y  

The design-based variance component estimator of 2B  found in, e.g., Särndal et al. (1992), can be 

negative, depending on the configuration of the data. Using anticipated variances permits the relvariance of 

the pwr-estimator to be written in terms of model variance components. The model components can be 

estimated using algorithms that avoid the numerical problems that the basic design-based, analysis of 

variance formulas have. Examples in the literature of using model-based variance component estimates in 

survey design seem limited, even though practitioners often employ the technique. A few examples are 
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Chromy and Myers (2001), Hunter, Bowman and Chromy (2005), Judkins and Van de Kerckhove (2003), 

Valliant and Gentle (1997), and Waksberg, Sperry, Judkins and Smith (1993). Searle, Casella and 

McCulloch (1992) review the methods that are available, including minimum variance quadratic unbiased 

estimation (MIVQUE0), maximum likelihood, and restricted maximum likelihood (REML). The use of 

anticipated variances also clarifies the key role, noted below, that PSU and SSU sizes have in determining 

measures of homogeneity. 

As noted in Section 2, when the estimator is design-unbiased or approximately so, i.e., pwr
ˆ( ) ,UE t t   

the anticipated variance is    pwr pwr
ˆ ˆAV = .M Ut E V t t

    Thus, the model expectation ME  of a formula 

like (5.2) can be computed, giving model variance components that can be estimated using standard 

software. In a clustered population, the simplest model to consider is one with common mean, ,  and 

random effects for clusters, ,i  and elements, :ij  

 = , ,k i ik iy k U      (5.3) 

with 2(0, ),i  ∼  2(0, ),ik  ∼  and the errors being independent. This model is overly simple, but results 

can be extended to a case with ( ) = .x βT
M k kE y  

The case of sampling clusters with probability proportional to the size iN  is of particular practical 

importance, i.e., = ( )i ip N MN  where = ii U
N N M

  is the average number of elements per cluster. In 

that special case, after some algebra, the model expectations of 2B  and 2W  are  

 
   

 

2
2 2 2

2 2

2 2 2

1 1 1
= 1 2 1

= ,

M N

M

E B
M N N

E W







 



 

   
      

      

   
22 2= 1N ii U

N N M N


     is the relvariance of the cluster sizes. When M  is large, the 

anticipated measure of homogeneity is approximately  

  
 

2 2 2

2 22 2
.

1 1
M

N
E

N
  

  

  


  



 
   (5.4) 

Expression (5.4) is the correlation under model (5.3) of any two elements in the same cluster. Note that there 

is no assumption that all PSUs have the same size  iN N  to obtain (5.4). As long as M  is large, 2
N  has 

a limited effect on 2B  and .  This contrasts to the result when both stages are selected via srs where the 

variation in PSU sizes plays an important role in determining   even when M  is large (see Valliant et al. 

(2018, equation (9.43)), Valliant, Dever and Kreuter (2015)). 

 
5.2 Three-stage designs 
 

Maze (2021) has extended the analysis above to three-stage sampling where both secondary sampling 

units (SSUs) and third stage elements are stratified. Consider a three-stage design in which the stages are 

PSUs, SSUs, and housing units (HUs). Using HUs as the third stage units is illustrative. The formulation 

below also applies to other applications. Suppose that m  PSUs are selected with ppswr, the SSUs are 
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stratified within each PSU and ian  are selected with ppswr within PSU ,i  SSU stratum .a  Housing units 

are stratified within each SSU and iajbq  are selected via simple random sampling without replacement 

(srswor) from the population total of iajbQ  HUs within PSU ,i  SSU j  in SSU stratum ( = 1, , ),a a A…  and 

HU substratum ( = 1, , ).b b B…  Assume that SSU strata are defined the same in each PSU and that HU strata 

definitions are the same in every PSU/SSU. 

The SSU strata might be defined based on the percentage of the SSU population in some domain (e.g., 

Hispanics) that is important to the survey. HU strata could be defined by the race-ethnic group of the head-

of-household. For example, the University of Michigan’s Health and Retirement Study (HRS, 

https://hrs.isr.umich.edu/about) is a longitudinal panel study of persons aged 50 and older, supported by the 

US National Institute on Aging and the Social Security Administration. Its PSUs are counties or groups of 

counties and its SSUs are census blocks or groups of blocks. SSUs are stratified by the concentration of 

African Americans and Hispanics. Periodically, HRS recruits a new age cohort of persons who become age-

eligible. In 2016 the “Late Baby Boom” cohort (birth years 1960-65) was recruited with HUs stratified by 

the race-ethnicity of the head of household as coded on a commercial list of housing units (Valliant, 

Hubbard, Lee and Chang, 2014). The availability of commercial lists in the US and household panels like 

NORC’s AmeriSpeak panel at the University of Chicago  

(see https://amerispeak.norc.org/us/en/amerispeak/about-amerispeak/panel-design.html) 

make such targeted samples feasible for non-governmental organizations. In other countries, population 

registries allow government agencies to implement similar designs. 

The pwr estimator of a population total, ,Ut  of ’sy  is  

 
1

pwr
=1 =1|

1 1 1 1ˆ =
ia iajb

A B
iajb

k
i s a j s b k si ia j ia iajb

Q
t y

m p n p q  
      (5.5) 

where ip  is the 1-draw probability of selecting PSU ;i 1s  is the set of sample PSUs; |j iap  is the conditional 

1-draw probability of selecting SSU j  within PSU ,i  SSU stratum ;a ias  is the set of sample SSUs in PSU 

,i  SSU stratum ;a iajbs  is the set of sample HUs in PSU ,i  SSU j  in SSU stratum a  and HU stratum .b  

To simplify design-based variance and sample size calculations, a standard workaround is to suppose 

that the same number of SSUs, ,an  is selected in each PSU and SSU stratum and that the same number of 

HUs, abq  is sampled in each iajb  combination. Also, define U  to be the universe of PSUs, iaU  the universe 

of SSUs in ,ia iajbU  the universe of HUs in ,iajb =a Ua UK t t  to be the proportion of the population total of 

y  that is in SSU stratum ,a  and =ab Uab UK t t  to be the proportion in the strata combination .ab  After some 

calculation, the design relvariance of the estimator can be written as the sum of three terms, which are 

similar to those in Hansen, Hurwitz and Madow (1953b, Chapter 9): 

 
  2 2 2

pwr 2 22 3
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=1 =1 =1
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     (5.6) 

where  
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1 pwr
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and 

  
2

2 1
3 1= .

iajbiajb iajb
U iajb k UQ k U

S y y 
   

The population totals, Uit  and ,Uiajt  are for the ’sy  in PSU i  and SSU ;iaj
iajbUy  is the mean per element in 

.iajb  This assumes that the sampling fraction at the third stage is negligible. Details of the derivation are in 

Maze (2021, Section 2.3). The coefficient of variation of pwrt̂  is  

     2
pwr pwr
ˆ ˆCV = .Ut V t t    

For a differentiable, nonlinear function, pwr
ˆ ,  like a ratio mean, a linear approximation to pwr̂  can be 

made and a formula analogous to (5.6) derived. A complication not dealt with here is that some PSUs may 

be certainties (i.e., selected with probability 1). The relvariance in (5.6) is then split between certainties and 

non-certainties with no PSU variance component used for the certainties. The non-certainty PSUs are also 

typically stratified by geography or other characteristics. The extension to these other complications is 

straightforward. 

A well-known limitation of (5.6) is that estimates of 2B  and 2
2aW  involve subtractions so that the 

estimates can be negative in some samples. As in two-stage sampling, anticipated variances can be used to 

circumvent this problem. Existing routines for estimating model variance components can then be used that 

constrain parameter estimates to be positive. 

In the three-stage case, a simple model for ky  has a common mean, ,  and random effects i  for PSUs, 

iaj  for SSUs, and iajbk  for HUs in SSU/HU substratum :ab  

 =k i iaj iajbky         

with  

 20, ,i  ∼  20, ,iaj  ∼  20,iajbk ab ∼  

and the errors being independent, such that   2 2 2=
abM kV y        and   =M kE y   for .iajbk U  

Extensions to models where ( ) = x βT
M k kE y  are possible. 

 
6. Mathematical programming solutions for sample allocations 
 

Most national surveys of households, establishments, and institutions have multiple goals. Separate 

estimates for demographic groups or types of business are often desired. These may be implemented as 

target sample sizes for subgroups or target coefficients of variation for estimates. In addition, there are 
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usually constraints on the budget, workload assignments for data collectors, maximum number of attempts 

to contact a sample unit for cooperation, among other things. One way to determine a sample allocation to 

strata, PSUs, SSUs, and other stages of sampling is trial and error. By trying enough combinations, a 

designer may iteratively find an allocation that meets most goals. A more formal and accurate way of finding 

an allocation is mathematical programming (MP), which can be applied with either model-based or design-

based calculations. MP is an extremely useful technique for finding allocations in complex problems where 

it is impossible to obtain a direct, closed-form solution. 

Methods for finding approximate solutions have been developed in the field of operations research. 

Although MP does appear in the literature for sample allocation, it seems underused in practice. Some of 

the strata formation methods in Section 4 can be considered MP algorithms. Bethel (1989) gave a specialized 

nonlinear algorithm for some stratified allocation problems. Ballin and Barcaroli (2008) extended Bethel’s 

algorithm to the tasks of creating strata for stsrs and finding an efficient allocation. Hughes and Rao (1979) 

covered optimum allocation to strata with multiple constraints. Chromy (1987) presented a specialized 

algorithm for finding sample sizes that minimize cost subject to various constraints. Valliant and Gentle 

(1997) described allocation in a two-stage sample with smoothed anticipated variances used for components 

and with constraints on sample sizes and CVs of a set of estimators. Choudhry, Rao and Hidiroglou (2012) 

use nonlinear programming in stsrs to solve allocation problems with constraints on CV’s of stratum and 

domain estimators for domains that cut across strata. More recently, de Moura Brito, Silva, Semaan and 

Maculan (2015) examined stsrs allocations using integer programming. Valliant et al. (2018, Chapter 5) 

give an introduction to MP along with a number of examples of the use of MP for sample allocation. An 

especially intricate application is allocating outlets and items for pricing in the US Consumer Price Index 

(Gomes and Johnson, 2016; Leaver and Solk, 2005). This section gives two examples ‒ one simple and the 

other more complex ‒ of using MP to determine multicriteria allocations. 

Solving MP problems requires specialized software that implements the sophisticated algorithms 

developed in operations research. A shortcoming of the early papers is that they were not accompanied by 

publicly available software ‒ that is no longer the case. Schwendinger and Borchers (2023) give a long list 

of R packages that have optimization functions. The alabama (Varadhan, 2023) and nloptr (Ypma, 

Johnson, Borchers, Eddelbuettel, Ripley, Hornik, Chiquet, Adler, Dai, Stamm and Ooms, 2022) packages 

in R, in particular, solve the types of nonlinear problems needed for sample allocation. Also useful are the 

procedures NLP and OPTMODEL in SAS® (http://www.sas.com) and the Solver add-on 

(http://www.solver.com) that comes bundled with Microsoft Excel® ‒ the latter especially so because of its 

user-friendly interface. 

Valliant et al. (2014) give a fairly simple application of MP to finding sample sizes using data from the 

2011-12 US National Survey of Family Growth (NSFG). We sketch the application here; more details are 

in the paper. Using a national probability sample of households, the NSFG gathers information on family 

life, marriage and divorce, pregnancy, infertility, use of contraception, and men’s and women’s health for 

persons age 15-44 (Groves, Mosher, Lepkowski and Kirgis, 2009). The goal of the example here is to obtain 
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target sample sizes for one age group using an imperfect commercial list of addresses for sampling 

households. In the US, survey organizations can purchase these address lists from private vendors. In 

European and other countries with population registries, governmental agencies may have access to better 

lists with extensive auxiliary data. 

One approach to obtaining a target sample size for a particular age (or other demographic) group is to 

select an equal probability sample of HUs, roster all persons in the HU, and retain all or a subset of any that 

are in the desired group. With no advance information about the HUs, this may be the only option. The 

drawback to this approach that is many HUs may have to be screened especially when the target domain is 

small. An alternative, less expensive tactic is to use an address list that eliminates some screening by 

pinpointing HUs that are likely to be in the desired group. Even when the list is not altogether accurate, this 

may be more efficient than equal probability sampling. 

In the NSFG screener, a roster of all persons is collected from each responding HU along with limited 

demographic data. In particular, the age of each person is obtained and is the variable used to define a 

domain in this example. Although the target age range in NSFG is 15-44, the age of each person in the HU 

is obtained during screening. The 2011-12 NSFG respondents’ addresses were sent to a commercial list 

vendor for matching. The NSFG screener data were considered to be correct and could then be compared to 

demographic data on the commercial list to assess the list’s accuracy in classifying people by age and in 

designing future editions of the survey. 

In this illustration, we want to obtain a target sample size in the 65+ age group by stratifying HUs using 

age data from the commercial list. To formulate the problem, define the following notation:  
 

d  = target age domain (65+); 

h  = sampling stratum based on commercial list information on individual addresses; 

= 1, , 4h …  as given in Table 6.1; 

( )hp d  = proportion of HUs in sampling stratum h  that have at least 1 person in the age 

65+ domain based on NSFG; 

( )ha d  = average number of persons per HU in sampling stratum h  that are actually in 

domain d  based on NSFG data; this average is based on all HUs, including those 

with no persons in the domain; 

hn  = number of sample HUs allocated to stratum ;h  

( ) = ( )h hh
n d n a d  = expected number of sample persons eligible by being in domain .d  

 
As shown in the strata descriptions in Table 6.1 here, the commercial list may not have a record for an 

address. When the list has a record, it may or may not show that the HU has persons that are 65+. In fact, 

from Valliant et al. (2014, Table 1) 36.8% of the records had no age information; and in the 65+ group, 

overall the list included 74.6% of the persons found in NSFG. In stratum 2, “List has record; 1 or more 

persons in age group”, 67.1%  ( )hp d  of HUs actually do have someone 65+ with an average of 0.947 
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 ( )ha d  persons aged 65+ per HU. Although stratum 2 has, by far, the highest incidence of persons 65+, 

about 1/3 of the HUs in that stratum do not have anyone in the target age group. The other three strata do 

have small percentages of HUs with someone 65+, even though the list does not say that. Thus, an efficient 

allocation will assign the most units to stratum 2, but the other strata should be sampled to ensure complete 

coverage of the age group. 

 
Table 6.1 

Strata based on whether commercial list has persons within the 65+ age group. Proportions and averages are 

estimated from NSFG data. 
 

Stratum h  Description Proportion of HUs with 1+ 

persons 65+, ( )hp d  

Average no. of 65+  

persons per HU, ( )ha d  

1 List has record; 0 persons in age group 0.062 0.071 
2 List has record; 1 or more persons in age group 0.671 0.947 
3 List has record; no age information 0.122 0.159 
4 No list record 0.102 0.128 
 Total 0.176 0.236 

 
To approximate costs, suppose that the cost of screening and dropping an ineligible HU is Sc  and the 

average cost of screening an HU and interviewing all persons in an eligible HU is .S Ic   The expected cost 

of a randomly selected sample HU in sampling stratum ,h  when screening is done to locate a member of 

domain ,d  is  

      = 1 .h h S I h Sc d p d c p d c        

Define the design effect due to using unequal weights (Kish, 1992) as    2 2

=1
deff = 1

n

w ii
w w nw   

where n  is the sample size, iw  is the sampling weight for element ,i  and w  is their mean. The effective 

sample size is eff = deffwn n  and the expected domain sample size in an equal probability sample of HUs 

is eq ( ).n d  The statement of the optimization problem is:  

 

Objective: Find 
4

=1{ }h hn  to minimize total screening and interviewing cost, 
4

=1
= ( ).d h hh

C n c d  

Subject to the constraints:  

(1) Minimum stratum sample size of HUs: min ;hn n  

(2) Effective sample size of persons:    eff eq= ;n d n d  

(3) Maximum stratum sample size of HUs: h hn N  with hN  being the number of HUs in the 

population in stratum ;h   

(4) Design effect for person weights:   0deff ,w d d  a fixed constant.  
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The second constraint is used to facilitate comparing the MP allocation to one using an equal probability 

sample of HUs. If the two did not have the same effective sample size and the MP sample size is much 

smaller, the MP allocation would look unrealistically good compared to equal probability. The third 

constraint has no effect in the large US household population, but in some applications could be necessary. 

The constraint parameters were set to be eq ( ) =n d 2,000, min =n 250, and 0 =d 1.5. The unit costs in 

terms of person-hours were =Sc 3 and =S Ic  10. Although the objective function is linear in the substratum 

sample sizes, the design effect, deff ( ),w d  has the sample sizes in the denominators of the sampling weights, 

making this a nonlinear programming (NLP) problem. 

The national NSFG estimate of the average number of persons 65+ per HU was 0.236. The approximate 

number of HUs to screen in an equal probability sample to locate 2,000 persons 65+ would be 8,475

2,000 / 0.236. On the other hand, the MP solution to obtain an effective sample size of 2,000 persons was 

4,746, i.e., 56% of the equal probability sample. The expected cost of the MP allocation was 19% less than 

that of the equal probability sample. Valliant et al. (2014) also presented results for the 18-44 age group. 

Because that age is much more prevalent, MP using the imperfect HU list was less efficient than equal 

probability sampling for that age group. 

Mathematical programming can be applied to situations much more complex than the NSFG example, 

which does not consider precision of estimates. A household survey like the HRS, introduced in Section 5.2, 

will serve as a motivating example. This survey has many goals, including estimating statistics for income 

sources, assets, and health status for financial units, which are similar to households, and persons. The HRS 

has sample size targets for a set of domains denoted = 1, , .d D…  The HRS also relies on commercial HU 

lists for each PSU that classify an HU by race-ethnicity and age of the head of household. These are used to 

assign HUs to the b  substrata. However, the lists are not always accurate ‒ a problem that needs to 

accounted for in the sample allocation. Define ( )abp d  to be the proportion of HUs in SSU stratum/HU 

substratum ab  that are correctly identified by the commercial list data as being in domain .d  

Assume there are costs per sample PSU, sample SSU in stratum ,a  and sample HU in substratum ,ab  

denoted as 1,C 2 ,aC  and 3 ,abC  respectively. Using the formulation that an  SSUs are selected in stratum a  

in every PSU and abq  HUs are sampled in every ab  substratum in each PSU/SSU, a simple cost function 

is  

 0 1 2 3
=1 =1 =1

= .
A A B

a a ab a ab
a a b

C C C m C mn C mn q     (6.1) 

Let ˆ , = 1, , L …  be a set of estimators that are important in the sample design. The optimization 

problem is to find  , , ; =1, , , =1, ,a abm n q a A b B… …  that minimize the weighted sum of the relvariances 

(i.e., the objective function),  

  2

=1

ˆ= CV
L
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where the ̂  are estimates to be computed from the sample and   is an importance weight for estimate .  

The size of the importance weight, ,  assigned to each analysis variable   included in the optimization, 

depends on the goals of the survey. In some surveys it may be possible to identify variables that are the main 

outcomes of interest, giving them more weight in the optimization. For example, the HRS variables, income, 

assets, and health status might be given more weight in the objective function above. The CVs are computed 

with (5.6) and are used rather than variances because CVs are unitless. This permits estimates that are 

measured on different scales, like mean income, mean value of owned homes, and proportions of people 

with poor health or who donate to charities to be included in   without some of them dominating its value 

as they would if variances of estimators were used. 

A variety of constraints can be used on individual CV’s and sample sizes at different stages. The ones 

below are based on a household survey but could be adapted to other types of samples. 

(a) Maximum PSU sample size: max ,m m  a maximum set by the sample designer;  

(b) Minimum PSU sample size: min ,m m  e.g., min = 2m  to accommodate variance estimation;  

(c) Maximum SSU strata sample size: min { | = 1, , }a ian N i m …  for all ,a  i.e., the number of 

sample SSUs cannot exceed the population count of SSUs in ;ia  

(d) Minimum SSU strata sample size: , mina an n  for all a ;  

(e) Maximum HU substrata sample size: min{ | =1, , ; =1, , }ab iajb aq Q i m j n … …  for all ,ab  i.e., 

abq  is bounded above by the smallest value of iajbQ  across the PSU/SSU combinations;  

(f) Minimum HU substrata sample size: , min ;ab abq q  

(g) Minimum and Maximum sample size of HUs per PSU: minHU i a aba b
q n q     

maxHU ,  i.e., a minimum and maximum number of HUs sampled per PSU; this might be set 

considering workload requirements for data collectors;  

(h) Fixed costs: Total variable cost is less than a budgeted amount 0 budget ;C C C   

(i) Target sample sizes for analytical domains =1, ,d D…  accounting for inaccuracy of listings 

in commercial list data: The expected number of sample HUs found to be eligible by being in 

analytical domain d  is 
=1 =1

( ) = ( ).
A B

a ab aba b
q d m n q p d   Constraints can be set on this 

number, e.g., 0( ) = ( ).q d q d  Alternatively, constraints can be set on the proportion of HUs 

allocated to each domain without constraining their totals. For example, if about the same size 

HU samples are desired in each domain, the constraint might be  

                   

=1

( ) 1
=

( )
D

d

q d

Dq d



ε   

for some tolerance ;ε  

(j) Maximum design effects for weights in each domain: maxdeff ( ) deffw d   where deff ( )w d  is 

the (Kish, 1992) design effect due to differential weighting in domain .d  
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The last constraint may or may not be useful. Its intent is to keep base weights from varying too much. 

However, constraining deff ( )w d  in every domain may conflict with other constraints like target sample 

sizes for domains. A variation on the above problem would be to use a pre-selected sample of PSUs and 

optimize the sample allocation within that set. This might be done in a continuing survey that uses the same 

PSU sample for extended periods of time. Setting up a math program with conflicting constraints is a fairly 

common issue and will lead to a problem with no feasible solution. Good software will let you know this. 

The application in Maze (2021) uses HRS data and incorporates 11 different estimators into the objective 

function, .  The results are lengthy and are not shown here, but an allocation of PSUs SSUs, and HUs, 

using anticipated variance component estimates, could be found that meets all of the sample size constraints 

within a specified, realistic budget. 

Putting the above MP into practice requires a number of steps: 

(1) Estimate variance components, 2 ,B  2
2 ,aW  and 2

3 ,abW  to use in the relvariance formula (5.6). 

These will be different for each ;y  

(2) Estimate the proportions, aK  and ,abK  of population totals of ’sy  in the a  and ab  strata;  

(3) Estimate the accuracy rates, ( ),abp d  of the list being used;  

(4) Obtain the population counts, ,iajbQ  of HUs within PSU ,i  SSU j  in SSU stratum ,a  and HU 

substratum ;b  

(5) Obtain the unit costs, 0 ,C  1,C  2 ,aC  and 3abC  needed for the cost function. 
 

All of the above will be facilitated if previous additions of a survey have been conducted, and their data are 

available for analysis. Even when an MP problem has been carefully formulated, a solution may yield 

unusual or perplexing results. Meticulous review of the outputs is always wise and may lead to reformulating 

the problem. 

The designer of the sample generally has some leeway in how to formulate an MP problem for sample 

size allocation. The budget is almost always the most important constraint. How to achieve estimation goals 

within a fixed budget comes second. The goals may be stated in terms of target sample sizes for analytic 

subgroups or CV’s for important estimates. Constraints, other than budget, may be determined by workloads 

that data collectors can handle and, also, the need to estimate variances of estimators from the collected 

data. The last can, for example, dictate that at least two first-stage units be selected within each stratum of 

PSUs. There is invariably flexibility in how to formulate the allocation problem, the solution to which is 

part of the craft of sample design. Sample designers have to account for the concerns above one way or 

another. MP is a formal way of doing so and can often find more efficient solutions than less systematic 

approaches. 

 
7. Summary 
 

Using models for finite population estimation has gotten much more attention than their use in sample 

design in the literature. Valliant (2024) reviews many of the alternatives that have been studied, including 
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model-based estimation (e.g., best linear unbiased prediction and multilevel regression with poststratifi-

cation) and model-assisted estimation (e.g., general regression, model calibrated, and empirical likelihood 

estimators). However, models can also play an important role in designing efficient samples. In the design 

of finite population samples, models provide a way of formally accounting for the effects of auxiliary data 

available prior to selection of the sample. Often the predictive power of auxiliaries is considered informally 

in sample design when creating strata or determining selection probabilities, but explicit appeal to models 

can help create more efficient designs and clarify how efficient a sample will be for different analytic 

variables to be collected in a sample. 

Even in the age of big data, when huge amounts of data can be scraped from the web, sample design still 

has a place. Editing costs of cleaning web-scraped data may be exorbitant since a survey may have its own 

specialized definitions for variables like employment status and quality adjusted prices for a price index. 

Web-scraped data may not be in the form required by a survey, leading to extensive and expensive editing. 

A well-designed subsample from the big dataset can reduce editing requirements and provide as much 

information at a lower cost. 

The techniques considered here are balanced sampling, cutoff sampling, strata creation, and multistage 

sampling. In surveys with multiple goals, mathematical programming is a useful technical tool that can 

formally account for a variety of constraints that sample designers must consider. One area that relies heavily 

on models but is not covered here is adaptive design as presented in Groves and Heeringa (2006), Schouten, 

Shlomo and Skinner (2011), Tourangeau, Brick, Lohr and Li (2017), Wagner and Raghunathan (2010), and 

many other papers. An excellent review and critique of adaptive methods is the Waksberg paper by 

Tourangeau (2021). 

Joe Waksberg was adroit at meeting the challenges of survey design, relying on experience and a sharp 

intuition. Since his time, there have been advances that, relying on well chosen models, make many 

sophisticated tools available for designing surveys for an expanded array of challenging goals. This is 

especially true of mathematical programming, now available in several R packages and spreadsheets. Such 

software permits complicated, single and multistage sample allocations to be found, subject to many 

practical constraints. 
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Design consistent random forest models for data collected 
from a complex sample 

Daniell Toth and Kelly S. McConville1 

Abstract 

Random forest models, which are the result of averaging the estimated values from a large number of tree models, 
represent a useful and flexible tool for modeling the data nonparametrically to provide accurately predicted 
values. There are many potential applications for these types of models when dealing with survey data. However, 
survey data is usually collected using an informative sample design, so it is necessary to have an algorithm for 
creating random forest models that account for this design during model estimation.  

 

The tree models used in the forest are typically obtained by estimating tree models on bootstrapped samples of 
the original data. Since the models depend on the observed data and the values observed in the sample depend 
on the informative sample design, the usual method for estimation is likely to lead to a biased random forest 
model when applied to survey data. 

 

In this article, we provide an algorithm and a set of conditions that produce consistent random forest models 
under an informative sample design and compare this method to the usual random forest modeling method. We 
show that ignoring the design can lead to biased model estimates. 

 
Key Words: Machine learning; Nonparametric; Sample design; Survey data; Tree models. 

 
 

1. Introduction 
 

Recursive partitioning algorithms were first suggested by Morgan and Sonquist (1963) as a method for 

analyzing survey data because of the complicated relationships, including interaction effects, among 

variables that are typical of these datasets. Variables collected from a survey are often highly correlated 

(even collinear) with each other, are frequently categorical, and can contain many missing values. These 

complications can make it difficult to make inference about the target population with this data using 

traditional parametric models. Tree models, which are estimated by applying a recursive partitioning 

algorithm to the dataset, handle this type of data easily. The variables used in the model along with any 

interaction effects are selected automatically and the resulting binary split structure makes these models 

easy to interpret and identifies complicated interaction effects between the variables in the dataset (Phipps 

and Toth, 2012; Earp, Toth, Phipps and Oslund, 2018). 

Given a set of n observations =1{( , )} ,x n
i i iy  of a random response variable Y  and d  random predictor 

variables 1= ( , , ),dX XX …  from an informative sample, we want to estimate k  new values = 1{ ,} ,n k
i i ny 

  

given predictor values = 1{ }x n k
i i n


  for non-sampled units in the population. By estimating the mean function 

[ | = ] = ( )X x xE Y h  from the observed data we can get predictions of iy  from the model = ( ).iy h x  

Using survey data to estimate a model in order to obtain good predictions rather than estimates of a finite 

population parameter is a topic with increasing interest (Wieczorek, 2023). For example, Hong and He 

(2010) use longitudinal study data to fit a model that can be used to predict the functional mobility status 
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among the elderly. Meanwhile, Kshirsagar, Wieczorek, Ramanathan and Wells (2017) and Krebs, Reeves 

and Baggett (2019) both use machine learning models to predict poverty levels and under-story vegetation 

structure respectively. Similarly, we are interested in estimating the regression function using a machine 

learning approach using data from an informative sample design. Like Nalenz, Rodemann and Augustin 

(2024) we propose an approach to modeling random forests using survey data. 

A tree model, ( ),h x  is a nonparametric model obtained from an algorithm that recursively partitions the 

observed data and then estimates the desired statistic for each final partitioning box (end node) separately. 

The recursive partitioning algorithm consists of choosing a variable jX  among all the available d  variables 

given by vector X  and a value a  in which to split the set of observations into two nodes: the observations 

where x j a  and > .j ax  This procedure is then repeated for each node until there are not enough 

observations to split or some stopping criteria have been reached (Hothorn, Hornik and Zeileis, 2006). This 

algorithm results in a set of q  boxes, 1={ , , }n
qQ B B…  which completely partition the support of X  and 

depend on the values of the observed data. 

Though tree models are easy to interpret, making them ideal for many inference applications, they are 

not very efficient models for producing point estimates. They are particularly inefficient for models that 

have linear effects (Loh, 2008). A random forest model, in contrast to the easily interpretable tree model, 

estimates the expected value of the response variable conditionally on the predictor variables, by averaging 

the estimates from a set of regression tree models. 

Given a set of M  regression tree models, =1{ } ,M
j jh  the random forest estimator of ( )xh  is  

 0
=1

1
( ) = ( ),x xF

M

j
j

h
M
   (1.1) 

where each tree model, ,jh  is fit using a random subset of the predictor variables on a bootstrap sample of 

the observed data (Breiman, 2001). Though these models lose the feature of easy interpretation that tree 

models possess, they are known to provide very accurate predictions and still retain the applicability to a 

wide range of data types (Breiman, 2001). This provides a useful and flexible tool for accurately modeling 

the response variable of a given dataset which could have many applications in analyzing data from an 

informative sample. 

For example, Buskirk (2018) and Bilton, Jones, Ganesh and Haslett (2017) present applications of 

regression trees and random forests on data collected using a complex sample design. Unfortunately, the 

standard random forest algorithms are meant for independent and identically distributed (i.i.d.) data and 

many surveys use a complex sample design to collect observations, violating the i.i.d. assumption and in 

many applications of tree-based models, the available sample design information is often ignored, likely 

leading to biased estimates as demonstrated by the results in Toth and Eltinge (2011). 

Dagdoug, Goga and Haziza (2021) extended the work of McConville and Toth (2019) by using a forest 

model instead of a single tree as the assisting model in a model assisted estimator to estimate a finite 

population total. They point out that, if the variables used to determine the sample design are available, it is 
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possible much of the bias could be reduced by including them in the model. These variables are extremely 

useful for estimation of population parameters in the context of model assisted estimation, but these 

variables are not available for making predictions of values for units outside of the sample. 

It is desirable then to have an algorithm that allows consistent estimation of a regression function for the 

population, estimated using data from an informative design, that can be used for prediction. For example 

work being done at the BLS requires a model to predict respondent-burden for households selected in the 

Consumer Expenditure Survey from household characteristics which are believed to be associated with 

burden Yang and Toth (2022). 

In this article, we propose a design consistent random forest model for the regression function that uses 

a weighted average of end-nodes obtained from a set of purely random trees that incorporate sampling 

weights in their estimation. This process avoids having to produce sensible bootstrap samples from a general 

sample design. Forests constructed from completely random trees have been studied in the literature with 

the method commonly referred to as the uniform random forest algorithm (Biau, Devroye and Lugosi, 2008; 

Scornet, 2016; Arlot and Genuer, 2014) but these models are generally not effective in practice. They are 

used primarily to study the theoretical properties and to understand the behavior and limits of ensemble 

methods. In the standard uniform random forest algorithm, the end-node estimates are simple averages 

whereas the end-node weights of our method enables good predictive properties. 

To our knowledge our algorithm is the first to propose using weights at the end-node, rather than at the 

tree level. Because the trees are produced using completely random splits of the predictor space all the real 

work comes from these weights, providing an adaptive and more efficient estimator. We show that this 

model provides design consistent estimates and is, therefore, more appropriate for use with data collected 

using an informative sample design. 

In Section 2 we introduce the tree model and provide the necessary assumptions for its design 

consistency. Section 3 contains the method for using tree models in a random forest model that requires 

weighting each tree model estimate and the statement of the main theoretical result of the article, which is 

that the proposed random forest estimator is design consistent estimator of the regression function. 

Appendix contains all necessary auxiliary lemmas and proofs of the results. Section 4 summarizes 

simulation studies where we compare the performance of our proposed method to the standard random forest 

estimator on data from simple random samples (SRS) and from probability proportional to size (PPS) 

samples. In particular, we apply our proposed random forest model to the Academic Performance Index 

(API) score data from standardized test results of students computed for all California schools with at least 

100 students and the U.S. Bureau of Labor Statistics’ (BLS) Consumer Expenditure (CE) data. These results 

demonstrate that ignoring the sample weights using data from an informative sample design could lead to 

biased forest estimators. Lastly, also in Section 4, we conduct a simulation study on generated data to 

explore consistency of our proposed method and the standard random forest model. 
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2. Design consistent tree models 
  

Consider a finite population of size ,N  =1{( , , )} ,N
i i i iY X Z  generated from a super-population model ,  

where iY  is the variable of interest associated with unit i  and Xi  is a d -vector of potential predictors 

variables associated with unit i  that are part of the released data available to the analyst. We use Z i  to 

denote a *d -vector of variables associated with unit ,i  known by the survey designer but not released with 

the survey data for analysis. 

A random sample = {1, , }S U N …  of size n  is selected using a sample design with inclusion 

probabilities = ( ).i P i S   The sample design, defined by the inclusion probabilities, can depend on 

variables associated with the unit where some are known and some are unknown to the analyst, =i  

( | , ).x zi iP i S  If these inclusion probabilities are associated with ,Y  the design can affect the estimates 

and inference for the population that result from using the sample data. Such sample designs are called 

informative sample designs. If the sample design only depends on variables available to the data analyst, 

= ( | , ) = ( | ),i i i iP i S P i S  x z x  design-consistent models may be able to be obtained by incorporating 

all of these variables used to define the inclusion probabilities into the modeling process (Gelman, King and 

Liu, 1998; Little, 2004). However, in most publicly released survey datasets, many of the variables used in 

the survey design are not released to the data analyst. Instead, the data is released with a set of survey 

weights { }i i Sw   intended to be used by the data analyst to account for the survey design in the analysis 

(Lavallée and Beaumont, 2015; Pfeffermann, 1993). Besides accounting for the probability of selection into 

the sample, these weights often include adjustments for nonresponse and/or known totals of key auxiliary 

information. Though our arguments in this article could be used for general survey weights, for simplicity 

of exposition, we assume that the weight associated with unit i  is the inverse of the probability of selection 

for that unit, 1.i
  

In order to study large sample properties of the estimator in this context, it is necessary to consider a 

sequence of populations that are increasing in size and distributed i.i.d. from super-population and a 

sequence of associated sample designs. From each population-design pair a corresponding sequence of 

samples is drawn, also increasing in size and each selected according to the sample design. More concretely, 

suppose we have a sequence of finite populations 1 1{( , ), , ( , )},N NY Y
 

X X…  indexed by ,  so that 

1 , ,U U …  with sizes 1 .N N …  Each finite population is generated by taking i.i.d. draws from the 

distribution of the super-population .  The random samples, 1 1, ,S U S U  …  are drawn from each 

finite population using the corresponding sample design, with increasing sizes 1 .n n …  It is the behavior 

of the sequence of estimates obtained from these samples that is considered. 

If a tree model, ( ),h x  is obtained by recursively partitioning the observed sample data and then 

estimating the mean in each box, the resulting tree model is an estimator of the conditional mean function 

( ) = [ | ].h E Yx x  Toth and Eltinge (2011) provide an algorithm for estimating ( )xh  and a set of conditions 

for which this estimator is an 2L  consistent estimator of ( ).h x  In this article, we intend to propose a random 

forest model that is constructed from a weighted average of these design consistent tree models. For the rest 

of this section, we review the notation and results necessary to establish a design consistent algorithm for 
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random forest models including a discussion of the conditions and the main result for the tree model given 

in Toth and Eltinge (2011). 

Let 1={ , , }n n n
qQ B B  …  be the set of partitioning boxes that result from applying a recursive partitioning 

algorithm to the observed sample .S  To facilitate discussion of the predicted value of an observation with 

predictor variables x  for a given tree, we now define some functions that help simplify the notation. Let 

( )xnB   denote the box in nQ   containing the value .x  The functions 
{ ( )}

# ( ) =
x x

x I n
i

n

Bi S
B 

  and # ( ) =xnB   
1

{ ( )}xn
i

i x Bi S 
 

 I  provide the number of observed sample units and estimated number of population units 

in box ( )xnB   respectively. The estimated mean of the box containing the value x  is define as  

 
1

1

{ ( )}
( ) = # ( ) .n

i

n
i i B

i S

B y


 







 
   x x

x x I  (2.1) 

Note that this is the standard Hájek estimator of the mean for population units contained in the partitioning 

box ( )xnB   (Hájek, 1960). 

Each box nB   in a given partition nQ   has two corresponding index vectors which define the borders of 

the box in all d  dimensions. Given a box of a partition, ,nB   let 
1

( ) = ( ( ), , ( ))a
d

n n nB a B a B  …  and 

1
( ) = ( ( ), , ( )),

d

n n nB b B b B  b …  where for every ,nB x ( ) < ( ),
l l l

n na B x b B   for = 1 .l d…  

For a given value x  in the support of ,X  we use the notation ( )iF   to denote the empirical marginal 

distribution function of 
l

x  conditioned on the partition. That is, for a constant ,c  and given value x  the 

empirical marginal distribution function of lx  conditioned on the partition is  

 

 

  
1

1
{ } { ( )}

( | ) | ( )

= # ( ) .
x x

x

x I I n
li i

n n
l l

n
N i x c B

i S

F c Q F c B

B

 







 





 







 


 (2.2) 

The left continuous conditional empirical marginal distribution function lF   is defined by replacing the 

indicator function { }I
lix x  in the above definition with { < }.lix xI  We will also use the empirical probability 

function ( )AnP


  of a given event .A  The empirical probability function is defined as  

 1 1
{ }( ) = ( ),n i i

i S

P N




 
 


 x  I AA  (2.3) 

where { }( ) = 1,ixI A  if the event A  is satisfied for observation xi  and where 1= .ii S
N


  

  

Next we define the l -norm of partition nQ   relative to lF  by  

     = ( ) ( ) ( )x 
l l l l

n n

n n n nF
l

B Q

Q F b B F a B P B   

 

   
     (2.4) 

and the l -norm of partition nQ   relative to F    

     = ( ) ( ) ( ) .x 
l l

n n

n n n nF
l l l

B Q

Q F b B F a B P B   

 

  



   
     (2.5) 
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The following conditions on the super-population model, sample design and partition created from the 

algorithm are sufficient to show that a regression tree model based on the sample data is an 2L  - consistent 

estimator of the true conditional mean of the variable of interest, .Y  In Section 3, we show that these 

conditions (with the strengthening of one condition) are sufficient to obtain consistent forest estimators as 

well. The proofs for consistent regression trees require only a finite second moment of the variable of 

interest, but we require a finite fourth moment to prove consistency of the proposed forest estimator. 

Many of the conditions to obtain consistency require understanding the rate at which things converge. 

Before specifying the conditions on the population, sample design and algorithm, we first define two scalar 

functions that will be used as the rates of convergence. Let ( )x  and ( )k x  be functions bounded above 0 

for all > 0x  satisfying: 

1: ( )x    

2: 1 ( ) 0x k x    

3: 1 1/2( ) ( ) 0,k x x x   
 

as .x   These constraints require both functions to be unbounded where ( )x  grows to   slower than 

,x  while ( )k x  grows faster than ,x  but slower than .x  Note that there are an infinite number of function 

pairs that satisfy these three constraints. Below we use these functions to specify the relative speeds at which 

different terms converge relative to the sizes of the population N  and sample .n  We will also use the 

sampling fraction, defined as = / .f n N    
 

Condition 1: 1 4

=1
<lim

N

ii
N Y

 


   
 

Condition 2: 
1 1( ) = ( )lim sup mini U iN O n

     
  

 

Condition 3: 1
, 1 = ( )lim sup max

ij

i j
i j U i j O N

  



 


 
   

 

Condition 4: 1 1/2 1= ( ( ) )f O n n      
 

Condition 5: [ | ] = ,n
p i j ijE Q i j U

         
 

Condition 6:  1( ) # ( ( ))  1   1xn
n pP k n B 


    

 

Condition 7:   0  nFn
l pQ   


 and   0,  nFn
l pQ  






 for =1, ,l d…  
 

where the above conditions are all assumed with  -probability 1. 

Condition 1 is the only condition directly on the distribution of the super-population model. The data do 

not need to follow any predefined distribution, requiring only that the outcome variable, ,Y  has a finite 

fourth moment. This generality makes these models applicable to a wide class of problems. We use this 

condition on the fourth moment for establishing design consistency of the proposed forest estimator, but as 

mentioned above, this condition could be weakened to require only a finite second moment in the case of 

design consistent tree estimators. 
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Conditions 2 through 4 are standard conditions on the sample design requiring that every unit in the 

population can be selected with some minimum probability, the effect of clustering shrinks relative to the 

population size and a mild requirement on the sampling rate (Isaki and Fuller, 1982; Breidt and Opsomer, 

2000). Condition 4 is a weak limit on how big the finite populations can grow relative to the sample size in 

the sense that it allows for an arbitrarily small sampling rate. 

Condition 5 is a condition from Toth and Eltinge (2011) requiring that the selection probabilities are 

independent of the given partition. The partitioning set nQ   is a function of an algorithm applied to the 

selected data, so this condition on both the algorithm and the sample design limits the influence any selected 

unit can have on the resulting partition. 

Condition 6 and 7 are both conditions on the partitioning algorithm. The first requires that the number 

of observations in each partitioning box grows at a certain rate relative to the sample size, while the second 

requires the l-norms of the partitioning boxes, defined by 5 and 6, shrink toward zero as the sample size 

grows. 
 

Proposition 2.1 (Toth and Eltinge, 2011). Let {( , )} ,i i i UY
X  be a sequence of finite populations, indexed by 

  and distributed i.i.d. from the super-population model   and let S  denote a random sample from U  

selected using the sample design. Given ,nQ   the collection of partitioning boxes created from the algorithm 

applied to the sample data, ,S  define  

 1 1

{ ( )}
( ) = (# ( )) .

x x
x x I n

i

n

n i i B
i S

h B y




  



   (2.6) 

If 1 2

=1
<lim

N

ii
N Y

 


   and Conditions 2 through 7 are satisfied with  -probability 1, then  

 
2

( ) ( )  = 0.lim x xp nE h h


 

 
  
   

Notice that the right hand side of equation (2.6) is the Hájek estimator of the mean of the box containing 

x  given by (2.1). Since the set of boxes partition the data, each observation falls into exactly one box and 

the model predicted value of Y  for an observation with auxiliary variables =X x  is simply  

 ( ) = ( ).nh


x x   (2.7) 

Therefore, Proposition 2.1 tells us that a regression tree model that estimates the mean of Y  in each end 

node is an 2L  - consistent estimator of the function [ | ],E Y x  so  

 2( ) [ | ].x x
L

E Y   (2.8) 

We will rely on this result in the following section to show that the proposed random forest estimator is 

consistent as well as the following corollary.  
 

Corollary 2.1. For a given tree ,j  if Conditions 1 through 7 are satisfied, then  
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1

1 2 2

{ ( )}
# ( ) [ | ].

x x
x xI n

i j

n

j i i pB
i S

B y E Y











  
     

Proof in Appendix. 

 
3. Design consistent forest models 
 

Random forest model estimates are obtained by averaging the estimates of M  tree models. This requires 

using a procedure for producing several different tree models using the same data; it does not improve the 

estimate to average over the same model. The tree models used in the forest are typically obtained by 

estimating tree models on bootstrapped samples of the original data and using a random subset of the 

predictor variables at each split (Breiman, 2001). However, a bootstrap sample of a dataset is not always 

easy or possible to produce for a general informative sample design (Mashreghi, Haziza and Léger, 2016). 

The typical approach of ignoring the sample design during estimation is likely to lead to a biased random 

forest model when applied to survey data. 

That is, given an estimator ˆ nm  of the regression function m  and a point ,x  

 Bias ˆ ˆ( ( )) := [ ( )] ( ),x x xEn nm m m  (3.1) 

where the expectation is taken with respect to the joint distribution of the super-population model and the 

sample design. 

We now propose a forest model that is design consistent for a family of informative sample designs 

provided that the sample design, super-population distribution, and recursive partitioning procedure satisfy 

Conditions 1 through 7 in Section 2. In order to obtain different regression tree models from a given sample, 

at each step of the recursive partitioning we select the variable completely at random from the d  possible 

predictor variables and the splitting point at random from the observed support of the selected variable. This 

algorithm is outlined in Figure 3.1. 

 
Figure 3.1 Recursive partitioning algorithm to produce random tree models. 

 

Recursive Partitioning Algorithm 

1. Let end = max (5,n  floor 
7{10 }).n

 

2. If the dataset contains at least end2n  observations continue to the next step; otherwise stop. 

3. Among the auxiliary variables ,lx  1= 1, , ,l d…  randomly choose a variable on which to split the data. 

4. Split the data into two sets LS  and RS  by randomly selecting a value of the selected variable lx  that results in each sub-
dataset containing at least endn  observations. 

5. Apply the algorithm beginning at step 2 to each of the two resulting subsets LS  and .RS  

Note: Notice that endn  is defined so that the end-nodes of each tree satisfies Conditions 6 and 7. 
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Note that endn  is defined in such a way as to satisfy Condition 6, because it is linear in n  and thus 

dominates ,n  but still allows for a relatively small number of observations. This is important because in 

practice a small number of observations is effective in getting accurate estimates. 

 
3.1 Extended notation for forests 
 

Because we are interested in forests, which require a set of trees, we extend some of the notation and 

functions used in Section 2 to facilitate this discussion. For instance, rather than one set of partitioning boxes 

for instance ,  we will have one for each of the M  trees in the model. Denote the partition for the j -th 

tree by 1= { , , }.
j

n n n
j j jqQ B B  …  Note that the number of partitioning boxes ,q  created using the sample ,S  

can be different for the different trees in the forest model, so depends on .j  Let =1= { }Q
n n M

j jQ   be the set 

of all the partitions making up the forest model. 

The function ( )xn
jB   will denote the box in the j -tree that contains the value ,x  while # ( )xn

jB   and 

# ( )xn
jB   are the number of observed sample units and estimated number of population units in box ( )xn

jB   

respectively. Likewise, the estimated mean of the observations in the box containing the value ,x  defined 

by equation (2.1), for the j -th tree is denoted ( ).j x  

 
3.2 Weights for averaging estimates 
 

Notice that the algorithm and therefore the structure of each tree depends only on the observed values of 

the modeling variables =1{ } ,n
i iX  resulting in a k -nearest neighbor estimate of Y  based on the closeness of 

a random sub-sample of modeling variables. The forest model is then an average over M  k -nearest 

neighbor estimates. However, because the trees are built based on randomly selected splits, the homogeneity 

of Y  will likely vary across boxes, resulting in more or less informative boxes. So while the simple average 

of the random tree estimates given by (1.1) leads to an asymptotically unbiased estimator, it will also be 

rather inefficient. 

In order to improve the efficiency of the forest estimator, we use a weighted average, with the goal of 

giving more weight to estimates from tree models with greater predictive accuracy. Let =1{ } ,n M
j jh   denote the 

set of regression tree models. Then a weighted forest model would have the form  

 
=1

( ) = ( ) ( ),x x xF
M

n
w j j

j

h    (3.2) 

where ( )xj  is a weight that depends on the end-node of tree j  that x  belongs to. 

Methods for using a weighted average of tree estimates to produce a forest estimate have been considered 

(Gajowniczek, Grzegorczyk, Ząbkowski and Bajaj, 2020; Shahhosseini and Hu, 2020; Winham, Freimuth 

and Biernacka, 2013) but these involve using a weight based on the fit of each tree only. In testing several 

different approaches, we found using a weight that depends on the final end node produced the best results. 

However, this approach induces bias in the estimates which needs to be adjusted for. 
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For our proposed method, we weight each tree estimate using a weight that is inversely proportional to 

the estimate of one plus the end node variance, 
( )

= Var ( | ( ))
x

X xn
j

n
jB

V Y B 

    similar to resulting weights 

used in some adaptive methods (Williams, Neilley, Koval and McDonald, 2016). If we knew the true mean, 

( ) = [ | ( )],n
j jE Y B  x x  of the Y -values for the observations in box ( ),n

jB  x  then a design consistent 

estimator of ( )xn
jB

V


 is given by  

 
1

1 2

{ ( )}
# ( ) ( ( )) .

x x
x x I n

i j

n
j i i j B

i S

B y


 







       

However, because the true ( )xj  is unknown, we use the estimator  

 
1

1 2

( ) { ( )}
= # ( ) ( ( )) ,n n

j i j

n
j i i jB B

i S

V B y

 
 







    x x x
x x  I  (3.3) 

where the estimated value ( )xj  replaces the true mean. 

Given ( ),n
jB x x  then the weight for tree j  in the forest is set to  

 

1

( )

1

=1 ( )

( 1)
( ) = .

( 1)

n
j

n
j

B

j M

j B

V

V














x

x

x




 (3.4) 

so that the weights 
1

( )
( ) ( 1)n

j
j B

V


  
x

x   and they sum to 1. 

The forest estimated value of y  given the x  is  

 
=1 =1

( ) ( ) = ( ) ( ).x x x x
M M

n
j j j j

j j

h       (3.5) 

noting again the equivalence between the j -th tree estimate and the estimated mean of the end-node that 

contains x  for tree .j  For a given set of sample data, each ( )xj  and ( )xj  are functions of the random 

partitioning process, so can be seen as M  independent observations of the random vector, ( ( ), ( )).x x   

Therefore, the expression given by (3.5) can be seen as a sum of products of the components of these M  

random vectors. 

 
3.3 Estimate of bias from weights 
 

Using this weighted average does increase the efficiency of the estimator, but also makes the estimator 

potentially biased under the sample design. In particular, if we explore the expectation of the weighted forest 

model with respect to the selection probability and the randomness of the recursive partitioning algorithm 

(Figure 3.1) denoted by *,pE  then we get  

 

 

 

* * * *
=1 =1 =1

*
*

=1 =1

( ) ( ) = ( ) ( ) cov ( ), ( )

= ( ) cov ( ), ( ) ,

x x x x x x

x x x

M M M

p j j p j p j p j j
j j j

M M

p j p j j
j j

E h E E h h

h E
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where *
*[ ] =p jE h h   for each .j  

Therefore,  

 * *
=1 =1

( ) ( ) = [ | ] cov ( ( ), ( )),x x x x x
M M

p j j p j j
j j

E h E Y  
 

 
 
     

because *( ) [ | = ] = [ | ]x X x xh E Y E Y   by Proposition 2.1 and 
=1

( ) =1x
M

jj
  by design. 

Since each ( )xj  and ( )xj  are observations of random variables ( )x  and ( ),x  for a given value ,x  

the bias term is  

 
=1

cov( ( ), ( )) = cov( ( ), ( )).
M

j j
j

M    x x x x   (3.6) 

In order to correct for this bias for a fixed sample, we estimate cov( ( ), ( ))x x   using the M  

observations by  

 cov̂ 1

=1

( ( ), ( )) = ( 1) ( ( ) ) ( ( ) ),x x x x
M

j j
j

M          (3.7) 

where 1

=1
= ( )x

M

jj
M    and 1

=1
= ( ).

M

jj
M   x  Therefore the proposed forest estimator for the 

function ( )xh  is  

 
=1

( ) = ( ) ( )x x xF
M

n j j
j


    Mcov̂ ( ( ), ( )).x x   (3.8) 

The following result is the main theoretical result of the article. It states that the proposed forest 

estimator, ( ),n
xF  defined by equation (3.8) is asymptotically design-unbiased which converges in 

probability to ( ) = [ | = ].h E Yx X x  This result provides theoretical justification for using this random-forest 

estimation method on data collected from an informative sample design. 
 

Proposition 3.1. For a fixed > 0,M  if Conditions 1 through 7 are satisfied for each tree in the forest, then  

 ( ) [ | ],x xFn p E Y
   

for all x  as .n   

 
4. Relative performance of the estimators 
 

In order to understand how the proposed random forest method compares to the typical i.i.d. random 

forest of Breiman (2001), we test the two methods over repeated samples of two publicly available datasets 

using two different sample designs, simple random sampling (SRS) and sampling with probability 

proportional to size (PPS). We evaluate the efficiency and bias of the predictions of each methods 

empirically and compare them to the standard Hájek estimator. The proposed random forest approach given 

by the algorithm in Figure 3.1, was tested using the algorithm available in the R-package rpms (Toth, 2024), 
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and for the method (RF), proposed by Breiman (2001), we use the algorithm available in the R-package 

randomForest (Liaw and Wiener, 2002). 

For the finite populations, we use the two datasets described below. In each dataset description, we also 

identify the variable of interest, the predictor variables, and the variable used as the measure of size for the 

PPS sample design. 
 

API The California Academic Performance Index (API) dataset available in the survey package 

(Lumley, 2020) contains data on 5,973 schools including the school average score on the API 

standardized test as well as demographic and administrative data about the school and the 

neighborhood it serves. We treat the school’s average test score in the 2000 academic year as the 

variable of interest with five school level predictor variables including 1.) the average education 

level attained by the parents of the students in the school, 2.) the percentage of students that are 

English language learners, 3.) the percentage of students enrolled in a subsidized lunch program, 

4.) the percentage of teachers with full qualifications, and 5.) whether or not the school was 

eligible for an awards program. To compare the methods on an informative PPS design, we 

sample proportionally by the size of the school’s enrollment. 
 

CEx A subset of the Consumer Expenditure Survey public use interview data file from the US Bureau 

Labor of Statistics which is available in the rpms package. This dataset contains information from 

2015 on 45,308 households with total expenditures greater than $0. We consider the total 

household expenditures for the current quarter as the variable of interest with five predictor 

variables including 1.) whether or not the household lives in a home which they own (with or 

with a mortgage), rent, or is part of student housing; 2.) the region in which the household is 

located; 3.) whether or not the household lives in an urban location; 4.) whether or not a member 

of the household currently earns a wage; and 5.) the age of the person identified as the primary 

earner of the household. To compare the methods using an informative PPS design, we sample 

proportionally to the size (number of residents) of the household.  
 

Treating each dataset as a finite population, we take =D 500 repeated samples of size n  from the 

population where =n 600 for API and =n 1,000 for CEx. For each random sample, we fit the random 

forest models with 500 trees to the sample data using the default settings of both algorithms and all the 

available predictor variables. The default settings require that each end node of every tree contains at least 

5 observation. Using these models we predict the values of the variable of interest for every unit in the finite 

population and the predicted values are compared to the true values. 

Specifically, for each sample ,ls = 1, , ,l D…  we find the estimated model ( ) ( )lh x  and calculated the 

empirical mean error  

 ( )

=1

1
= ( ( ) ),

N
l

l i i
i

b h y
N

 x  (4.1) 
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the empirical mean relative error, / ,lb y  where 1

=1
= ,

N

ii
y N y   and the empirical mean squared error  

 ( ) 2

=1

1
= ( ( ) ) .

N
l

l i i
i

m h y
N

 x  (4.2) 

Notice the empirical mean error is an estimate of the average bias, which is defined as  

 ABias ˆ ˆ( ( )) := [ [ ( )] ( )],n p nm m m  x x xE E  (4.3) 

where the first expectation is taken with respect to the joint distribution of the population and sample 

distribution and the second is with respect to the population distribution. 

Since on of the biggest risk of ignoring an informative sample design when modeling a dataset is the 

introduction of bias in the model, it important to assess the potential bias of each of the estimators. The 

empirical distributions of the empirical relative mean errors over repeated samples for two data sets using 

two sample designs for the two forest algorithms as well as the Hájek estimator are shown in Figure 4.1. 

 
Figure 4.1 Distribution of the mean relative errors of the three estimators over 500 repeated samples from the 

two datasets.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The yellow histogram is the distribution of the RME for the Hájek estimator, the green is the unweighted random forest and the blue is the 

weighted forest method. The top graphs are the distributions of the mean relative errors using the API dataset and the bottom two using the 
CEx dataset. 
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When an SRS design is used, the two distribution of relative error given on the left side of Figure 4.1, 

show that all three estimators produce relatively unbiased estimates as their errors are centered very close 

to zero. In addition, the distribution of the errors of the two forest models have a smaller range than the 

Hájek estimator which shows that using these models leads to an increase in efficiency. This gain of 

efficiency is especially seen in the distributions using the API data. 

Since the RF algorithm ignores the design weights, one would expect that there could be more bias from 

estimates of values using this model compared to values obtained from the Hájek estimator or the forest 

model using the algorithm in the rpms package, when the sample design is informative. The plotted 

distributions of the mean relative errors over repeated PPS samples, shown on the right hand side of 

Figure 4.1, confirm this. Under repeated PPS samples, the Hájek estimator still appears unbiased and the 

distribution of the relative errors are still wider than both forest models. Though the distribution of the 

relative errors of the RPMS model (in blue) appears to be centered close to zero, the relative errors of the 

RF model ignoring the weights is centered close to -2% for the API dataset and around 6% for the CEx 

dataset. This suggests that ignoring the weights leads to much more bias than the proposed method under 

the PPS design. 

Table 4.1 contains the average relative mean errors and average mean squared error 1

=1
=

D

ll
m D m   

over the 500 random samples for each of the three models, the two datasets, and the two sample designs. 

The relative mean error statistic is presented as a percentage, ( / )b y 100% and the mean square error statistic 

is given relative to that of the Hájek estimator, / ,Hm m  where Hm  is the average mean squared errors of 

the Hájek estimator over the 500 samples. 

 
Table 4.1 

Averages over 500 random samples comparing the prediction error using the Hájek estimator and the two 

random forest methods on two datasets and for two sample designs.  
 

 API CEx 

N  5,973 
n  600 

N  45,308 
n  1,000 

% Rel. Error RMSE % Rel. Error RMSE 
Method  SRS PPS SRS PPS SRS PPS SRS PPS 
Hájek  -0.010 -0.007 1.000 1.000 -0.206 0.066 1.000 1.000 
RF  0.043 -1.945 0.209 0.218 0.806 6.111 0.862 0.865 
RPMS  0.021 -0.210 0.204 0.204 -0.056 0.878 0.844 0.844 
Note: The percent relative error is the mean error of the estimated values for the full population relative to the population mean of the variable of 

interest, multiplied by 100. The relative RMSE is the mean over the 500 samples of the calculated mean squared error of the estimated values 
for the full population, relative to that of the Hájek estimator. 
API = Academic Performance Index; CEx = Consumer Expenditure Survey; PPS = Probability proportional to size; RPMS = Recursive 
Partitioning for Modeling Survey Data; SRS = Simple random samples. 

 
One can see from the results in Table 4.1 that relative mean squared error of the two estimators using 

the forest modeling methods are smaller than that of the Hájek estimator for both datasets under the SRS 

and PPS sample designs. However, the RF procedure that ignores the sample weights produces biased 

estimates under the PPS design for both datasets while both the proposed random forest modeling procedure 

and the Hájek estimator provide relatively unbiased estimates. 
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4.1 Demonstration of consistency 
 

So far, we have been examining the efficiency and bias of our forest estimator compared to the usual 

i.i.d. random forest algorithm and the standard Hájek mean estimator by focusing on the difference between 

the model estimates and the true value of the variable of interest y  using two real datasets as our finite 

population. An estimator ( )xh  is consistent if  

 2[( ( ) [ | ]) ] 0pE h E Y  x x  as ,   (4.4) 

which requires knowing the true mean function ( ) = [ | ]h E Yx x  and letting the size of the sample and 

population go to .  When using a real dataset as the finite population, you don’t know ( ).h x  Therefore, to 

explore consistency we use simulated data =1( , ) ,N
iY X  where the values are obtained through random draws 

from a known distribution and we study the behavior of the estimators for a sequence of sample sizes. 

For each randomly generated observation i  we generate a random vector  

 1 2 3 1 2 3= ( , , , , , )i i i i i i iX X X V V VX   

of 6 independent random variables. Variables 1iX  and 2iX  both follow a uniform distribution ( 10, 20),U   

and 3 ( 100, 200)iX U ∼  while 1iV  through 3iV  are categorical random variables with equal probability 

among categories. Both 1iV  and 2iV  take one of 5 categories and 3iV  takes one of 14 categories. These are 

the auxiliary variables available to the analyst for every unit in the population and can be used in the model 

for the variable of interest .Y  

Because random forests are known to be very flexible, nonparametric models, rather than testing this 

method on a set of standard parametric models, we show the results for data that follows the mean model 

= ( ) εy x   where  

 
11 1 1 { { , }}( ) = 0.2 ( 12) 0.5exp{( 15)} .V A BX X X   x I   

The left side of Figure 4.2 shows the mean function, ( ) x  and the right side shows a graph of the population 

values that were randomly generated from the model. 

We also generate a variable ,Z  that we use for the size variable in order to test the methods under a PPS 

sample design. The values of the size variable Z  are independently generated from the model =Z  
1
2 ( ) 5 ,x   where   has a chi-squared distribution with 5 degrees of freedom. The correlation between 

the size variable and Y  is of 0.663, and so, in this example, the PPS design is informative. 

For this simulation, we generate random finite populations with 1, 2, 4, 8, 16, and 32 thousand units. We 

then draw 500 repeated samples from each of these six finite populations. For each random sample we 

sample 5% of the units, which is 50, 100, 200, 400, 800, and 1,600 observations respectively. Again we use 

the sample data to estimate the forest model, use the forest model to predict the values of Y  for the non-

sampled units given the values of X  in the population, and then use these values to estimate the population 

mean. 
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Figure 4.2 The values of [ | x]E Y  with respect to the variable 1 .X  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The color denotes the values for the two groups of observations which is based on the value of the categorical variable 1V . Group 1 consists 

of observations where 1 { , }V A B  and Group 2 are all other observations. 

 
By drawing random samples of increasing size and comparing our estimator to the true mean function, 

we evaluate the behavior of the accuracy and the variance of our estimator with respect to sample size. For 

instance, for a consistent estimator, one would expect the empirical confidence interval of average 

differences between the estimated values and values generated from the true mean function to contain zero. 

In addition, as the sample size increases, the variance of the average difference should decrease toward zero. 

We can see that this is the case with the SRS design shown in Figure 4.3. shows the average over the 

250 samples of the mean relative errors of the estimated population values as the sample size increases from 

50 to 1,600. The distribution of the mean errors over the 500 repeated samples is centered right around 0 

for every sample size for both forest modeling methods. In addition, the variance of the mean errors goes to 

zero as the sample size increases at about the same rate for both modeling methods. 

As we might expect, the story gets more interesting when the sample is drawn using a PPS design and 

the size variable is related to the variable of interest. In Figure 4.4, we see that the averages of the percent 

relative errors over the 250 repeated samples are longer as near zero for either method. Zero is contained 

within the middle 95% of values of percent relative errors when the sample size is below 800 for both 

methods because of the large variances in these values at small sample sizes. This interval no longer contains 

zero for the standard random forest algorithm as deviation of errors decrease with the increasing sample 

sizes. However, the proposed random forest method contains zero for every sample size for the proposed 

method. 
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Figure 4.3 Percent relative error by sample size for the regular (top) and the design consistent (bottom) 
random forest algorithms over repeated simple random samples.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The solid line is the mean percent relative error over all the samples while the dashed lines give the 2.5 and the 97.5 percentile values.  

 
Figure 4.4 Percent relative error by sample size for the regular (top) and the design consistent (bottom) 

random forest algorithms over repeated probability proportional to size samples.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The solid line is the mean percent relative error over all the samples while the dashed lines give the 2.5 and the 97.5 percentile values.  

 
These simulation results confirm the main result of the paper. That is, the proposed algorithm satisfying 

certain conditions that has been shown theoretically to be asymptotically design unbiased and consistent, 

has demonstrated over repeated samples to converge toward the true mean and be relatively unbiased. 
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5. Conclusions 
 

Traditionally, complex survey data are collected to estimate finite population quantities. However, with 

the rise of machine learning methods, there is now greater interest in employing survey data in predictive 

problems and so the adaptation of machine learning methods to handle unequal probability data is now a 

vibrant area of research. In this paper, we present a new algorithm for estimating random forest models. 

This method which relies on independent random trees and a weighting procedure based on the weighted 

variability of the y-values is more appropriate for survey and other data collected from an informative 

design. We provide a set of conditions under which we show the method is design consistent for the 

conditional expectation of the variable of interest. The theoretical asymptotic unbiasedness and consistency 

of this algorithm is demonstrated through a simulation. The simulation studies are performed using real and 

generated data; we show that in practice the proposed method greatly reduces the bias of a random forest 

algorithm under an informative sample designs. In contrast, the estimates from the usual random forest 

method, which does not account for the sample design, are not unbiased under repeated informative samples. 

The estimates of both methods exhibited fairly similar mean squared errors. To ensure the individual trees 

are independent, our algorithm constructs truly random trees where a random variable and a random cut 

point are selected for each split.  

Nalenz et al. (2024)’s approach of adjusting for an informative sample design is straight forward and 

interesting but it came out while this article was in review and so we have not compared it to our random 

trees method. Rather than avoid bootstrap sampling Nalenz et al. (2024) use a Hájek bootstrap. In their 

application this works very well as the outliers occur in the over sampled part of the population (units with 

low weights) and thus these units are down-weighted by the algorithm. However, in a general dataset, 

outlying values can also be associated with highly weighted survey units. Future work should compare the 

methods and, in the spirit of model aggregation, should consider blending the two approaches. 
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Appendix 
 
Proofs and minor results 
 

Proof of Corollary 2.1. Condition 1 requires the variable Y  to have a finite fourth moment, then the random 

variable 2Y  has a finite second moment. Therefore, by taking 2Y  as the variable of interest in Proposition 

2.1, we get a consistent estimator of 
2[ | ].E Y x  

 

Lemma 6.1. For a given tree ,j  if Conditions 1 through 7 are satisfied, then  
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by equation (2.1). 

By Proposition 2.1, ( ) [ | ],j p E Y x x  so the term 
2[ | ]pII E Y x  for each =1j M…  and by 

Lemma 2.1,  
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x  and by Condition 1, both the quantity I  and II  are 

finite with   probability 1. 
 

Lemma 6.2. If Conditions 1 through 7 are satisfied for each tree in a given forest with > 0M  trees, then  
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This lemma states that because the variance converge to [ | ]V Y x  and so all end-node weights converge 

to 1 / M  asymptotically. However, note that for finite ,n  the weights will differ substantially depending on 

the efficiency gain from the random splits resulting in the end-node. This is the adaptiveness that has been 

added to the procedure and where all the real work is being done. 
 

Lemma 6.3. For a fixed > 0,M  if Conditions 1 through 7 are satisfied for each tree in the forest of M  

trees, then  

 Mcov̂ ( ( ), ( )) 0,p  x x   

for all x  as .   
 

Proof of Lemma 6.3. Since 1( )j p M x  by Lemma 6.2, 1 1
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M   x  by the Continuous 

Mapping Theorem. Likewise, 1

=1
= ( ) [ | ]

M

j pj
M E Y   x x  since each ( ) [ | ]j p E Y x x  by 

Proposition 2.1. Therefore, each of the terms of equation (3.7),  

 ( ( ) ) ( ( ) ) 0.j j p     x x   
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gives the result. 
 

Proof of Proposition 3.1. Since each 1( )j p M x  by Lemma 6.2, ( ) [ | ]j p E Y x x  by Proposition 2.1 

and Mcov̂ ( ( ), ( )) 0,p  x x  by Lemma 6.3, we can apply the Continuous Mapping Theorem to get that  

 
=1

( ) = ( ) ( )
M

n j j
j


  x x xF Mcov̂

=1

1
( ( ), ( )) [ | ] 0 = [ | ].

M

p
j

E Y E Y
M

    x x x x   

 
References 

 

Arlot, S., and Genuer, R. (2014). Analysis of purely random forests bias. arXiv preprint arXiv:1407.3939. 

 

Biau, G., Devroye, L. and Lugosi, G. (2008). Consistency of random forests and other averaging classifiers. 

Journal of Machine Learning Research, 9(9). 

 

Bilton, P., Jones, G., Ganesh, S. and Haslett, S. (2017). Classification trees for poverty mapping. 

Computational Statistics & Data Analysis, 115, 53-66. 

 



Survey Methodology, December 2024 205 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Breidt, F.J., and Opsomer, J.D. (2000). Local polynomial regression estimators in survey sampling. Annals 

of Statistics, 28, 1026-1053. 

 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. 

 

Buskirk, T.D. (2018). Surveying the forests and sampling the trees: An overview of classification and 

regression trees and random forests with applications in survey research. Surv Pract, 11, 2709. 

 

Dagdoug, M., Goga, C. and Haziza, D. (2021). Model-assisted estimation through random forests in finite 

population sampling. Journal of the American Statistical Association, 1-18. 

 

Earp, M., Toth, D. Phipps, P. and Oslund, C. (2018). Assessing nonresponse in a longitudinal establishment 

survey using regression trees. Journal of Official Statistics, 34(2), 463-481. 

 

Gajowniczek, K., Grzegorczyk, I., Ząbkowski, T. and Bajaj, C. (2020). Weighted random forests to improve 

arrhythmia classification. Electronics, 9(1), 99. 

 

Gelman, A., King, G. and Liu, C. (1998). Not asked and not answered: Multiple imputation for multiple 

surveys. Journal of the American Statistical Association, 93(443), 846-857. 

 

Hájek, J. (1960). Limiting distributions in simple random sampling from a finite population. Publications 

of the Mathematics Institute of the Hungarian Academy of Science, 5, 361-74. 

 

Hong, H.G., and He, X. (2010). Prediction of functional status for the elderly based on a new ordinal 

regression model. Journal of the American Statistical Association, 105(491), 930-941. 

 

Hothorn, T., Hornik, K. and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference 

framework. Journal of Computational and Graphical Statistics, 15(3), 651-674. 

 

Isaki, C.T., and Fuller, W.A. (1982). Survey design under the regression superpopulation model. Journal of 

the American Statistical Association, 77, 89-96. 

 

Krebs, M.A., Reeves, M.C. and Baggett, L.S. (2019). Predicting understory vegetation structure in selected 

western forests of the United States using fia inventory data. Forest Ecology and Management, 448, 509-

527. 

 

Kshirsagar, V., Wieczorek, J., Ramanathan, S. and Wells, R. (2017). Household poverty classification in 

data-scarce environments: A machine learning approach. arXiv preprint arXiv:1711.06813, 2017. 
 



206 Toth and McConville: Design consistent random forest models for data collected from a complex sample 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Lavallée, P., and Beaumont, J.-F. (2015). Why we should put some weight on weights. Survey Methods: 

Insights from the Field (SMIF). 

 

Liaw, A., and Wiener, M. (2002). Classification and regression by randomforest. R News, 2(3), 18-22. 

URL: https//CRAN.R-project.org/doc/Rnews/. 

 

Little, R.J. (2004). To model or not to model? competing modes of inference for finite population sampling. 

Journal of the American Statistical Association, 99(466), 546-556. 

 

Loh, W.-Y. (2008). Classification and regression tree methods. Encyclopedia of Statistics in Quality and 

Reliability, 1, 315-323. 

 

Lumley, T. (2020). survey: analysis of complex survey samples, 2020. R package version 4.0. 

 

Mashreghi, Z., Haziza, D. and Léger, C. (2016). A survey of bootstrap methods in finite population 

sampling. Statistics Surveys, 10, 1-52. 

 

McConville, K.S., and Toth, D. (2019). Automated selection of post-strata using a model-assisted regression 

tree estimator. Scandinavian Journal of Statistics, 46(2), 389-413. 

 

Morgan, J.N., and Sonquist, J.A. (1963). Problems in the analysis of survey data, and a proposal. Journal 

of the American Statistical Association, 58(302), 415-434. 

 

Nalenz, M., Rodemann, J. and Augustin, T. (2024). Learning de-biased regression trees and forests from 

complex samples. Machine Learning, 113(6), 3379-3398. 

 

Pfeffermann, D. (1993). The role of sampling weights when modeling survey data. International Statistical 

Review/Revue Internationale de Statistique, 317-337. 

 

Phipps, P., and Toth, D. (2012). Analyzing establishment nonresponse using an interpretable regression tree 

model with linked administrative data. The Annals of Applied Statistics, 772-794. 

 

Scornet, E. (2016). On the asymptotics of random forests. Journal of Multivariate Analysis, 146, 72-83. 

 

Shahhosseini, M., and Hu, G. (2020). Improved weighted random forest for classification problems. 

International Online Conference on Intelligent Decision Science, 42-56. Springer. 

 

Toth, D. (2024). rpms: Recursive Partitioning for Modeling Survey Data. R package version 1.0.0. 
 



Survey Methodology, December 2024 207 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Toth, D., and Eltinge, J. (2011). Building consistent regression trees from complex sample data. Journal of 

the American Statistical Association, 106, 1626-1636. 

 

Wieczorek, J. (2023). Design-based conformal prediction. Survey Methodology, 49, 2, 443-473. Paper 

available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2023002/article/00007-eng.pdf. 

 

Williams, J.K., Neilley, P.P., Koval, J.P. and McDonald, J. (2016). Adaptable regression method for 

ensemble consensus forecasting. Thirtieth AAAI Conference on Artificial Intelligence. 

 

Winham, S.J., Freimuth, R.R. and Biernacka, J.M. (2013). A weighted random forests approach to improve 

predictive performance. Statistical Analysis and Data Mining: The ASA Data Science Journal, 6(6), 496-

505. 

 

Yang, D.K., and Toth, D.S. (2022). Analyzing the association of objective burden measures to perceived 

burden with regression trees. Journal of Official Statistics, 38(4), 1125-1144. 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2023002/article/00007-eng.pdf


 
 
 
 
 
 
 
 
 



Survey Methodology, December 2024 209 
Vol. 50, No. 2, pp. 209-234 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Glen Meeden, Emeritus, School of Statistics, University of Minnesota, Minneapolis, MN 55455. E-mail: gmeeden@umn.edu; Muhammad 

Nouman Qureshi, School of Statistics, University of Minnesota, Minneapolis, MN 55455. E-mail: qures089@umn.edu. 

 

Adaptive cluster sampling, a quasi Bayesian approach 

Glen Meeden and Muhammad Nouman Qureshi1 

Abstract 

Adaptive cluster sampling designs were proposed as a method that could be used when sampling rare populations 
whose units tend to appear in clusters. The resulting estimator is not based on any model assumptions and is 
design unbiased. It can have smaller variance than the standard estimator which does not incorporate the fact that 
one is dealing with a rare population. Here we will demonstrate that, when adaptive cluster sampling is 
appropriate, its estimator does not take into account all the available information in the design. We present a 
quasi Bayesian approach which incorporates the information which is now ignored. We will see that the resulting 
estimator is a significant improvement over the current methods. 

 
Key Words: Adaptive cluster sampling; Bayesian inference; Finite population sampling; Prior information. 

 
 

1. Introduction 
 

Consider the problem of estimating the total number of a plant or animal species that live in a specified 

geographical area where the area has been partitioned into a collection of equally sized squares. Further-

more, assume that the species of interest is rare in this area so that most of the squares will contain none of 

the species. In addition assume that the few squares that do contain some of the species tend to cluster 

together in just a few neighborhoods of adjacent squares. 

For this problem Thompson (1990) introduced the notion of adaptive cluster sampling, ACS. An initial 

simple random sample of squares is taken and the number of the species in each selected square is observed. 

Most of these observed counts will typically be zero. But whenever the count in a square is greater than 

zero, the adjacent squares, those to the left, right, above and below are added to the sample. When any of 

these squares have a count greater than zero then all of its unobserved adjacent squares are also observed. 

This process is continued until we obtain a set of contiguous nonempty squares surrounded by empty 

squares. A set of contiguous nonempty squares is called a network and the surrounding empty squares its 

edges. By definition an empty square is a network of size one. For this adaptive cluster sampling plan the 

usual estimator of the population total based on the counts in all the observed squares will be biased upwards. 

Thompson (1990) developed an unbiased estimator for the population total along with an estimator of its 

variance. More detail along with more references can be found in Thompson (2012). Many field researchers 

have adopted various versions of adaptive cluster sampling and it is used in a variety of disciplines. Turk 

and Borkowski (2005) describes several such examples. Latpate, Kshirsagar, Gupta and Chandra (2021) 

discuss some modifications of the standard ACS approach. 

In the Bayesian approach to survey sampling prior information about the population of interest is 

incorporated in a prior distribution. After units in a sample have been observed inferences about the 

population are based on the posterior distribution of the unobserved units given the observed units. 

Moreover, this posterior distribution does not depend on how the units in the sample were selected. The 
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details of this approach have been described by Basu (Ghosh, 1988). Three Bayesian approaches to adaptive 

cluster sampling are given in Rapley and Welsh (2008), Pacifici, Reich, Dorazio and Conroy (2016) and 

Goncalves and Moura (2016). In these approaches the authors construct a Bayesian model for possible 

populations consistent with the assumptions underlying adaptive cluster sampling. Nolau, Goncalves and 

Pereira (2022) introduce a Bayesian model which includes auxiliary variables which could include 

additional information about the count in a square. 

Given an ACS sample, our goal is to find a point estimator and an upper bound for the total number of 

the species in the population which have good frequentist properties. Since we are considering rare species 

we will assume that the ratio of the number of units with counts greater than zero to the total number of 

units in the population is small. We will break the problem into two parts. First we specify a prior distribution 

for the number of squares or units in the population with counts greater than zero, say   an unknown 

parameter. This prior will reflect our assumption that the number of such units is small. Given the sample 

and our prior we have a posterior for .  So our first step is to simulate a possible value for ,  say ˆ.  Then 

conditional on ˆ,  we find an estimate for the total of all counts greater than zero by using a distribution 

which assumes exchangeability among all the observed and unobserved counts greater than zero. This 

distribution does not arise from a prior distribution but is specified after the ACS sample has been observed. 

This is not a standard Bayesian procedure because this second “posterior” distribution does not follow from 

any prior distribution defined on the unknown finite population. This explains the terminology “quasi 

Bayesian” in our title. Two other recent examples where inferences are based on pseudo posterior 

distributions are given in Si, Pliiai and Gelman (2015) and Savitsky and Toth (2014). This makes sense 

when there is information in the sampling design which cannot be incorporated into a prior distribution. But 

we then combine these two distributions to simulate complete copies of the unknown population. We will 

see that the resulting point and interval estimators of the population total have better frequentist properties 

than the standard ACS estimators. 

In Section 2 we briefly review the adaptive cluster sampling approach and outline our approach to the 

problem. In Section 3 we explain our approach in detail and present our estimators. We developed our 

estimator by doing simulations on a set of six populations where ACS sampling would be appropriate. In 

Section 4 we describe these six populations. In Section 5 we present simulations to compare our approach 

to the standard ACS approach. This is done for the six populations in Section 4 and six new populations 

which were not used in the development of our method. In Section 6 we discuss some possible extensions 

when more prior information is available about the population of interest. Section 7 contains some 

concluding remarks. 

 
2. Adaptive cluster sampling 
 

2.1 The basic setup 
 

We begin by introducing some notation. We assume that the unknown population is a rectangular area 

consisting of rN  by cN  squares or units. So = r cN N N  is the population size. For integers ( , )i j  where 

1 ri N   and 1 cj N   let , ,i jy  denote the number of the species in the ( th,i th)j  square. Note ,i jy  is a 
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non negative integer. Let Y  denote the matrix of the ,i jy  values. Given a square, the neighbors of a square 

are those squares just above and below it and those squares just to the right and left of it, with obvious 

modifications for squares on the boundary of the population. 

In adaptive cluster sampling for each square in the initial random sample with a y  value greater than 

zero all its neighbors are also observed and if any of them have a y  value greater than zero then their 

neighbors are also observed and so on. This process is continued until only zero values are observed. For a 

given square the resulting set of squares found this way with y  values greater than zero is called a network. 

Hence a network consists of a set of non zero squares with the property that if one of them appears in the 

sample then all of them will. The set of squares with a y  value of zero that were observed in the process 

are called the edges of a network. As we noted in the introduction the network for a square whose y  value 

is zero is just itself. For square ( , )i j  let ,i j  be all squares in its network. 

Suppose now an initial simple random sample without replacement of size 1n  is taken. For 1= 1, ,k n…  

let ,k ki j  denote the network of the square which appears on the k th draw of the sample. Note that if two 

squares, which are in the same network, are in the first sample then their networks are identical and they 

each will be included when estimating the population total. For each k  we let km  be the number of squares 

in ,k ki j  and *
ky  the mean of the counts for the units that appear in , .

k ki j  For ACS (adapted cluster) 

sampling Thompson (1990) gave an unbiased estimator of the population total and an unbiased estimator of 

its variance. Given an ACS sample this estimate, ˆacT  and its estimated variance, ˆacv  are given by  

 

1 *

=1

1

ˆ =

n

kk
ac

y
T N

n
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1 * 2
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1 1
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 (2.1) 

We see that the ACS estimators, point and interval, depend only on the network means. This means that 

the variability of counts within a given network plays no role. In effect it is assuming that all the counts 

within a given network are the same. In addition, the fact that there were just a few squares with counts 

greater than zero in the population seems to play no explicit role in the inference stage after the ACS sample 

has been selected. 

There is an alternative way to think about the ACS estimator in the above equation which is described 

in Dryver and Chao (2007). They consider a second but related version of the population. To form this 

second population they proceed as follows. For each network in the population we replace each y  value by 

the average of all the y  values in that network. If a network contains just one square then its y  value is 

unchanged. But if a network contains more than one square then each of its y  values are changed to the 

mean of all the y  values of the squares making up the network. 

Clearly this alternative population has the same total as the original population. Moreover, the observed 

ky  values in the second population, for the units in the initial sample, are identical to the *
ky  in equation 

(2.1). This makes it clear that the ACS estimator is an unbiased estimator but it also makes it clear that at 

the inferential stage the ACS estimator does not make use of the fact that we are sampling from a rare 

population. 
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Finally, some might consider it surprising that ˆacT  depends on N  and that it includes the networks with 

a mean of zero. But a similar thing happens when estimating a domain total when the domain size is 

unknown and one has a random sample from the entire population. See for example the discussion on 

domain estimation in Cochran (1977). 

 
2.2 A new approach 
 

The ACS approach is based on two basic assumptions; there are only a few squares with counts greater 

than zero and these squares tend to be grouped in clusters. Although the sampling design is based on these 

two assumptions, as we have just noted at the end of previous section, the ACS estimator never seems to 

make use of the information that the proportion of squares with counts greater than zero is small at the 

inference stage. One should be able to do better if one incorporates this information when constructing an 

estimator. 

Let bD  be the set of all the units in the population with counts greater than zero and let   be the number 

units in .bD  For us   is an unknown parameter and it will play an important role in what follows. Let bT  

be the total of all the units in .bD  Of course bT  is also the total of all the units in the population. But we 

introduce this notation to emphasize the fact that our approach focuses on .bD  We break the problem into 

two parts. In the first part we find an estimate for   using the information contained in the initial random 

sample of size 1.n  Given this estimate and all the counts in the observed networks we then find an estimate 

for .bT  

As far as we know the notion of rare has never been explicitly defined in the literature. In some sense it 

is the analog for a few items of the Sorites paradox for many items. One version of which is “How many 

stones are needed to be considered a pile?”. If we remove a single stone from a pile it should still be 

considered a pile but if we repeat this enough times we will no longer have a pile. Similarly if a species is 

rare in our population adding one positive count to a zero square would not change our perception that it is 

rare. But if we add enough positive counts then the species would no longer be rare. Let K  be the largest 

integer less than or equal to 10.N  We will begin by assuming that our parameter space for   is the set of 

integers  

 = { : = 0, = 1, , = }.i i i i K …  (2.2) 

One could argue that this choice is somewhat arbitrary but it is consistent with the notion of rarity and it 

holds for many of the examples considered in the literature. Later we will see that we can relax this 

assumption. 

We do not make any other assumptions about the population except that the squares or units with counts 

greater than zero tend to appear in clumps and form networks. Where the networks are located in the 

population plays no role when ACS sampling is used. We make no explicit assumption about the range of 

possible counts. Anyone who wants to use ACS sampling and assumes that the number of positive counts 

is rare, as we described in the previous paragraph, could use our approach. 
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To develop our estimator we considered six possible populations. Three of them have appeared in the 

literature and the other three we constructed. They will be described in detail in Section 4 when we discuss 

our simulation results. Our estimator was found by trial and error by doing simulations from these six fixed 

populations. 

It needs to be emphasized that finding sensible point and interval estimators for bT  is not an easy problem 

when   is small. In such cases an ACS sample may contain zero or one or two counts greater than zero. In 

such cases we believe, finding sensible estimators is only possible when one has additional prior 

information. But here we are assuming that no such information is in hand. In the spirit of our objective 

approach we decided to ignore such samples in our simulation studies. 

In the next section we will present our estimators and will explain the underlying logic and intuition that 

led to them. 

 
3. A new estimator 
 

Recall that bD  is the subset of Y  consisting of all the squares with a y  value greater than zero. If T  is 

the population total of Y  then T  is equal to ,bT  the total of the units belonging to .bD  Our goal is to 

estimate .bT  Remember that   denotes the size of ,bD  the number of , ’si jy  in the population which are 

greater than zero. For us   is an unknown parameter and we take as its parameter space, ,  the set of 

integers which are greater than or equal to zero and less than or equal to .K  

Let X  be the number of units that belong to bD  in the first simple random sample without replacement 

of size 1.n  Then X  has a hypergeometric distribution which depends on ,N 1n  and the unknown parameter 

.  Given =X x  we can use the resulting likelihood function when estimating .  Let by  be the values of 

all the units in the ACS sample with values greater than zero. Let bn  be the number of units in .by  Note that 

.bn x  Let 'b
y  be the remaining members of bD  which were not observed in the ACS sample. Note that if 

= bn  then 'b
y  is the empty set. 

From the Bayesian perspective one can break the problem of estimating bT  into two stages. First one 

simulates a possible value for   from its posterior. Then given this value, one simulates possible counts for 

the 1bn    set of possible values for the unobserved values making up .'b
y  Combining this simulated set 

of values with the observed by  we have generated one complete copy of bD  and its corresponding value of 

.bT  Repeating these two steps many times we can use the resulting totals, in a Bayesian way, to find a point 

estimate and upper bound for the total of the units belonging to .bD  

We will now present our prior distribution for   and explain how we simulate complete copies of bD  

after the ACS sample has been observed. 

 
3.1 Estimating the number of counts greater than zero 
 

Given =X x  one natural estimate of   is the maximum likelihood estimate. But one sees in simulations 

that the likelihood function tends to give too much weight to larger values of   for the smaller values of x  
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we are likely to observe with ACS sampling. An alternative would be the standard Bayesian approach where 

one could specify a prior distribution over .  One possible non informative prior would be the uniform 

distribution over ,  defined in equation (2.2). Its prior expectation is approximately 20N  which could be 

a good default guess for the value of .  However, simulations demonstrate that it has the same weakness 

as the maximum likelihood estimator. They both tend to overestimate   for ACS samples. 

Our goal was to find a good default distribution for   that will work well for a variety of populations 

where ACS sampling would be used. Rather than putting our distribution on   we considered distributions 

on ,N  the population proportion of , ’si jy  greater than zero. Any such distribution can then be thought 

of as a distribution on .  

Recall that the beta distribution with parameters > 0  and > 0  is defined on the unit interval and its 

density function is given by  

 1 1
,

( )
( ) = (1 )

( ) ( )
f z z z 
 

 

 
  


 

   for   0 1.z   (3.1) 

If for any choice of the parameters   and   we take the values of the above function, for all the members 

of   in ,  and then divided them by their sum the resulting set of numbers is a probability distribution 

defined on .  After much experimentation on our six test populations we chose as our prior distribution on 

  the re-normalized beta density with = 1  and = 90.  

To help understand this choice consider the case when = 400.N  The prior mean for our choice is 3.92 

while the choice of = =1   has a prior mean of 20. When the true value of N  is around 0.02 or 0.03 

the later choice will give an over estimate of the size of .  Our choice will help to decrease the upward bias 

of the likelihood function for the initial random sample. This will be discussed in more detail when we 

present the simulations in Section 5. 

This is related to a similar problem with the ACS estimator ˆacT  (defined in equation (2.1)) that we saw 

in our simulations. Under the ACS design an important property of ˆacT  is that it is an unbiased estimator of 

the population total. If 1,n  the size of the original random sample, is small and   is small then there is a 

non-trivial probability that one observes samples where each count is zero. For such samples, ˆacT  gives an 

estimate of zero for the population total. This will be an underestimate except when the population total is 

in fact zero. To compensate for this underestimate, we saw that ˆacT  overestimates when the sample contains 

“lots” of units with counts greater than zero. It gets closest to the true value of   when the number of units 

in the sample, with counts greater than zero, is close to 2.  

We need to emphasize that our estimator of   does not depend on the fact that our basic units are squares 

and that the population is a rectangle. In addition it is not based on any assumptions about the form or shape 

of the networks or the values of the counts within a network. It depends only on the fact that we have a 

random sample from the basic units of the population. It should work whenever the basic units are 

approximately of the same size and the notion of neighbor can be defined in a sensible fashion. The overall 

form of the configuration of the population is immaterial. In addition it is not based on any assumptions 

about the values in ,by  the counts in the ACS sample greater than zero. 



Survey Methodology, December 2024 215 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 

3.2 Estimating the population total  
 

Given a value for ,  say ˆ,  generated from our posterior distribution, and bn  the number of observed 

counts in by  we need to define a distribution which simulates possible values for the remaining ˆ 1bn    

units whose counts must be greater than zero. We are assuming that little is known about the shape of the 

networks and how the size of a network may affect its y  values. In this case a simple assumption is to 

assume that ,by  all the counts greater than zero in the full ACS sample, is approximately a “representative” 

sample of the values in .bD  Under this assumption a sensible way to simulate the unobserved members of 

bD  is to use Polya sampling. 

Specifically, place bn  balls into an urn where each ball represents one of the counts belonging to .by  

Give each of the balls the weight > 0.w  Pick a ball at random from the urn. Return it to the urn along with 

another ball which is assigned the count of the selected ball. This new ball is given the weight one. Now 

another ball is selected from the urn, which now has 1bn   balls, with probability proportional to their 

weights. The selected ball is returned to the urn along with another ball whose count is equal to that of the 

selected ball. This new ball is given a weight of one and the urn now contains 2bn   balls. This process is 

continued until the urn contains ̂  balls. Under this distribution the expected value to the total of all the 

counts in the simulated urn does not depend on w  and is ˆ ,by  where by  is the mean of the counts in .by  

The variance, however, does depend on w  and decreases as w  increases. It is demonstrated in Meeden 

(1999), (equation 2.5), that the variance is given by  

 
ˆvar( ) 1ˆ ˆ ˆVar( | , , , ) = ( )

ˆ1
b b b b

b b b b

b b

y n n w n
T y n w n

n n w


  



  



 (3.2) 

where var( )by  is the sample variance of the counts in .by  

Now we need to specify a value for ,w  the weight of each ball in the urn at the beginning of this process. 

Note that w  only appears in the last two fractions in equation (3.2). It is easy to check that the value of the 

product to these two fractions is one if we take as our value of w   

 *
ˆ ˆ( 1) 2

= .
ˆ( 1)

b b

b b

n n
w

n n

 



  

 
 (3.3) 

It is easy to check that * > 0w  when > 2.bn  

With this choice of *w  and for a fixed by  and fixed value of ̂  our conditional variance is given by  

 * var( )ˆ ˆ ˆVar( | , , , ) = ( ) .b
b b b b

b

y
T y n w n

n
     (3.4) 

This reflects our assumption that we are viewing the values in by  as exchangeable and arising from 

something approximating a random sample. Now if bn  is reasonably large, say around 20, and by  is 

approximately a random sample then the above should be a reasonably good estimate of variance. But for 

smaller values of ,bn  say less than five, it will not work well. In the following we will describe a way to 

handle this problem. 
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But first let ˆabT  denote our quasi or approximate Bayes estimator of ,bT  the total number of the species 

in the population, that is based on our two stage simulation procedure. Let by  be the mean of all the units 

in .by  Then our estimate of bT  is  

 1.90
ˆˆ = ( ) = ( ( | )) = ( ) =ab b b b bT E T E E T E y y    (3.5) 

where 1.90̂  is the mean of our posterior distribution for .  

To find the variance of ˆabT  we use the well known formula that a variance can be written as the variance 

of a conditional expectation plus the expectation of a conditional variance. So for a fixed ACS sample we 

have that  
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 (3.6) 

We still need to find a way to use the variance of our estimator to produce a good interval estimator of 

the total number of the species in the population. In ACS sampling the initial random sample will consist of 

mostly zero counts. Recall x  is the number of counts greater than zero in the initial sample of size 1n  and 

bn  is the number of units in the full ACS sample with counts greater than zero. Note that x  is less than or 

equal to .bn  A very naive upper bound would be our point estimate plus the product of 1.96 and the square 

root of ˆVar( ).abT  But, as we have already noted, it is no surprise that this works poorly because in ACS 

sampling the values of x  and bn  can be quite small. 

Consider a case where a population contains one or two networks of size one or two with counts much 

larger than the rest of the counts in the population. For such populations, when x  is small, these networks 

are unlikely to be observed and our estimate of variance will be too small. To help protect against this 

possibility we need to increase the naive upper bound given just above, especially when bn  is small. To this 

end we let  

 (2.5 )= 10 .bn  (3.7) 

Note that   will decrease as bn  increases. We are not claiming that this is an optimal choice for adjusting 

upwards our upper bound. We just found that it seemed to work well for our test populations. 

When calculating upper bounds for our estimate we will use  

 ˆ ˆ1.96 Var( )ab abT T   (3.8) 

as our approximate 95% upper confidence bound. Because of the small sample sizes in ACS sampling 

assuming that ˆabT  has, approximately, a normal distribution might seem surprising. But we will see in the 
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simulations that this seems to work reasonably well for most cases where ACS sampling is appropriate 

because of our choice for .  

The second part of our two stage simulation process is clearly not Bayesian since our choices for *w  and 

  depend on bn  which comes from the observed data . It does not arise from some prior distribution 

although the fact that the initial ACS was a random sample is important information for us. As we noted in 

the Introduction two other examples where “posterior” distributions are defined without a prior distribution 

and which are based in part on the sampling design can be found in Si et al. (2015) and Savitsky and Toth 

(2014). This seems to make sense when there is available prior information that cannot be incorporated into 

a prior distribution. 

A sensible lower bound for bT  is just the sum of all the ACS sample counts greater than zero. For the 

ACS estimator we will use the same lower bound and for its upper bound we will use its estimate plus the 

product of 1.96 and its estimated variance. Again assuming that the ACS estimator has, approximately, a 

normal distribution. 

One might object that our assumption that by  is approximately a “representative” sample of the values 

in bD  is too strong. But recall that at the end of Section 2.1 we saw that the only information used in the 

ACS estimator is the mean of the counts in a network and by considering the alternative population of 

Dryver and Chao (2007), we saw that the ACS estimator is essentially assuming exchangeability among the 

network means. We believe that all the observed counts can contain some additional information and that 

our assumption that the observed sample is approximately a representative sample is no stronger than 

assuming the exchangeability among the network means. 

The way we found our estimator was by doing simulations on a set of six populations where ACS 

sampling would be appropriate. Three of them had appeared in the literature and the other three we 

constructed. We then used simulation studies to see how different choices of a prior and an estimated 

variance would work. What we have described above is the best that we have found. We found others that 

worked almost as well but these are our best choices at this time. In the next section we describe these six 

populations. 

 
4. The populations 
 

In our simulations we used three different populations that have appeared in the literature. One is the 

first example discussed in Thompson (1990). He presents it as a typical example where ACS sampling could 

be used. He gives no further details so presumable it was constructed by him. The population has 400 units 

with three networks whose sizes are 6, 11 and 4 and whose means are 6.0, 9.73 and 11.75 respectively. The 

mean of all the counts greater than zero is 9.4 and the largest count is 39 which appears in the network of 

size 11. We denote this population by thmp. Gattone, Mohamed and Di Battista (2016) describe two samples 
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of African buffalo and African hartebeest taken in 2010. We denote these two populations by afrbuf and 

afrhart. 

We also constructed three more populations. To construct a population we considered a grid of points 

on the surface of the earth. Assume that their latitudes and longitudes are equally spaced, although the 

successive differences in the two directions need not be the same. Depending on the topography of the 

location of the points, their altitudes, measured in meters, can exhibit the clumping behavior which is the 

underlying assumption of ACS sampling. 

To find the altitude on a grid we used the function, elevation, in the R  (R Core Team, 2023) package 

rgbif (Chamberlain, Ram, Mcglinn and Barve, 2019). To get the final set of “counts” we did three things. 

First we rounded every altitude in the set to its closest integer value. Next we choose an > 0,ε  but close to 

zero, and found the 1ε  percent quantile of our set of integer values, say .qε  We set every count less than 

qε  to zero. Finally, we subtracted some integer, less than ,qε  from every count greater than zero. The 

number of resulting counts greater than zero would then be small enough to represent counts of a rare 

species. For example, if we set =ε 0.05 the resulting set of counts will have five percent of it’s values 

greater than zero. So in the resulting population, the counts or the ,i jy  values, are either zero if their rounded 

altitude falls below a certain level or the difference between their rounded altitude and some constant. 

Depending on the topography of an area, the resulting grid of “counts” can exhibit the clumping behavior 

that makes ACS sampling a sensible choice. This is a flexible method that allows one to find many realistic 

populations to use in simulation studies of ACS sampling. 

Next we describe the three grids we used to construct the three populations used in our simulation studies. 

For the first we chose a grid in Paris, France, the second a grid at Niagara Falls, on the border between 

Canada and the United States and the third a grid near Devil’s Tower in the western United States. For the 

first two we used a 23 by 23 grid while for the third we used a 26 by 45 grid. We denote these three 

populations by paris, nfalls and devt. Summary information for the six populations are give in Table 4.1. 

Note the proportion of counts greater than zero range from 0.038 to 0.084. Three dimensional plots of the 

populations are given in the six figures on the next two pages. 

 
Table 4.1 

Summary information for the populations used in the simulations. 
 

Population  N  ntwN    N   maxy  bT   bT 

afrbuf   391  5  15  0.038  99  334  22.3
nfalls   529  5  20 0.038  59  368  18.4 
thmp   400  3  21  0.053  39  190  9.4
devt   1,170  10  85  0.073  34  868  10.2
paris   529  6  43  0.081  63  1,112  25.9 
afrhart   391  9  33  0.084  20  171  5.18 
Notes: Recall that N  is the population size,   is the number of units greater than zero and bT  is their sum. We let ntwN  be the number of 

networks in the population and maxy  be the maximum y  value in the population. 
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Figure 4.1 A three dimensional plot of the population afrbuf. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 A three dimensional plot of the population nfalls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 A three dimensional plot of the population thmp. 
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Figure 4.4 A three dimensional plot of the population devt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 A three dimensional plot of the population paris. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 A three dimensional plot of the population afrhart. 
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5. The simulations 
 
5.1 Doing the simulations 
 

Near the end of Section 2.1 we explained why we would only consider ACS samples which had at least 

three counts greater than zero. For this reason, in our simulations, we will only consider samples where 

> 2.bn  In other words, our frequency of coverage is a conditional one; it is conditional on seeing at least 

three counts greater than zero. So the results given in the Tables 5.1 through 5.8 and 5.10 through 5.13 for 

the adaptive cluster sampling estimator and our quasi Bayes estimator, ACS and BAY respectively, are 

conditional. For each method the tables give the average value of an estimator, Est, its average relative bias, 

Rbias, its average absolute error, ABerr, the average lower bound of its interval estimate, Lowbd, the 

average length of its interval, Len, and the frequency which its upper bound was larger than .bT  

In our adaptive cluster sampling simulations we used two different initial sample sizes; ten percent and 

twenty percent of the population size. Here we will present just the ten percent results. How the two methods 

compare is essentially the same for the two different initial sample sizes but of course they both do better 

for the larger initial sample size. 

Finally, someone might be concerned about what would happen if the true size of bD  was slightly bigger 

than 10N  and hence violating our definition of a rare species. In practice it is unlikely that the observed 

bn  would be bigger than this bound. But to allow for this possibility, when doing the simulations, we defined 

our prior on the integers between 0.01 N  and 0.15 .N  The results hardly differ from what happens if the set 

of possible integers are the non negative integers less than or equal to 0.1 .N  This happens because as we 

move away from bn  the posterior decreases very quickly and points far out in the tail contribute little 

probability. So even though we developed our “posterior” with the smaller upper bound in mind it works 

almost as well with the much larger and imprecise upper bound. Hence to use our method one does not need 

a good guess for the upper bound of .  

 
5.2 Results for the six populations 
 

There are several things to note about the simulation results given in Tables 5.1 through 5.6. For all the 

populations the BAY estimator has smaller average absolute error than the ACS estimator, sometimes 

dramatically so. Overall the BAY upper bounds perform better than the ACS upper bounds. The population 

afrbuf is the only case where the ACS upper bound is superior. The BAY upper bound is too large. For 

population nfalls the two methods behave about the same. For populations thmp, devt and paris the BAY 

upper bound is clearly the best. The only population where its frequency of coverage falls below 0.90 is 

population afrhart. In this case its frequency of coverage is only 0.892 but its upper bound was much smaller 

than the ACS bound which had a frequency of coverage of 0.861. Some of the information in the tables is 

presented graphically in Figure 5.1. 
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Table 5.1 

Population afrbuf. 
 

   Est  Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   489  0.464  187.2  195  974  0.98 
BAY   334  -0.000  69.3  195  1,644  0.98 
Notes: For 1,000 simple random samples of size 39, there were 660 samples with at least three counts greater than zero. The average total number 

of positive values observed was 6.96. 

 
Table 5.2 

Population nfalls.  
 

   Est  Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   448  0.217  198.9  319  706  0.924
BAY   447  0.214  126.5  319  724  0.998 
Notes: For 1,000 simple random samples of size 53, there were 819 samples with at least three counts greater than zero. The average total number 

of positive values observed was 13.57. 

 
Table 5.3 

Population thmp. 
 

   Est   Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   211  0.112  87.9  118  341  0.921 
BAY   157  -0.173  45.7  118  274  1.000 
Notes: For 1,000 simple random samples of size 40, there were 887 samples with at least three counts greater than zero. The average total number 

of positive values observed was 12.98. 

 
Table 5.4 

Population devt. 
 

   Est  Rbias   Abserr  Lowbd  Len  Freqcov 
ACS   874  0.007  224  723  708  0.942 
BAY   857  -0.012  89  723  548  0.972
Notes: For 1,000 simple random samples of size 117, there were 1,000 samples with at least three counts greater than zero. The average total 

number of positive values observed was 65.98. 

 
Table 5.5 

Population paris. 
 

   Est  Rbias  Abserr   Lowbd  Len  Freqcov 
ACS   1,119  0.006  389.5  970  1,119  0.909 
BAY   1,114  0.002  69.2  969  603  0.984 
Notes: For 1,000 simple random samples of size 53, there were 983 samples with at least three counts greater than zero. The average total number 

of positive values observed was 34.19. 

 
Table 5.6 

Population afrhart. 
 

    Est  Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   175  0.021  78.4  96  261  0.861
BAY   119  -0.305  52.4  96  120  0.892 
Notes: For 951 simple random samples of size 39, there were 968 samples with at least three counts greater than zero. The average total number 

of positive values observed was 18.74. 
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Figure 5.1 The above represents, graphically, some of the information in Tables 5.1 through 5.6 for the six 
populations afrbuf(1), nfalls(2), thmp(3), devt(4), paris(5) and aftrhart(6).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The number in parentheses is their location on the horizontal axis. The true population total is denoted by .  The ACS estimator and its 

upper bound are denoted by e  and u.  For the BAY estimator these quantities are in the color black and along with the common lower 
bound, o. 

 
For the six populations in Table 4.1 the one for which the BAY estimator had the most extreme negative 

bias, -0.305, was population afrhart. Looking more closely at afrhart we see it has 33 units greater than zero 

in 9 networks with an average value of 5.18. The three largest values in the population are 17, 15 and 20. 

These latter two each appear in a network of size one while the first appears in the largest network which 

has 16 units. Most of the rest of the values in the population are 5 or less. The mean of these remaining 30 

units is 3.97. With the choice of = 1  and = 90  the average value of our estimator of = 33  was 23.5. 

This helps to explain the large negative bias of our estimator for this population. One way to improve its 

performance would be to increase the estimate of   by a different choice of the prior distribution. More 

generally, having good prior information about the size of   can lead to improved results. 

It is not surprising that the ACS estimator is biased upwards. This is because we are ignoring all ACS 

samples with less than three counts greater than zero. If they were included then the ACS estimator would 

always be unbiased. On the other hand our BAY estimator can be both biased upwards or downwards. It 

can be biased upwards when we over estimate the size of .bD  It can be biased downwards when we 

underestimate the size of bD  or when there is a very small network whose counts are much larger than the 

counts in the remaining networks. But this latter case is also a problem for the ACS estimator. We will 

discuss this in more detail in Section 5.3. 

We see from Table 4.1 that population paris has 43 units greater than zero in 6 networks with an average 

value of 25.9. Checking the networks we find that just one network contains 31 units whose average value 
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is 30.0. We see from Table 5.5 that on the average we observed 39.4 units. This means the ACS sample 

almost always contained the units in this network. This helps to explain our excellent results for this 

population. 

A similar thing happens with population devt. In this population there are 10 networks containing 85 

units with counts greater than zero. The total of these units is 868. The two biggest networks contain 31 and 

23 units respectively and their respective means are 11.3 and 12.8. The next biggest network contains 13 

units and all the rest have 5 or less units. From Table 5.4 we see that the average number of units in the final 

ACS samples was 65. This means that most of the ACS samples contained the two largest networks. This 

is not surprising, but the fact that these two largest networks are good representative samples of bD  explains 

why our estimators perform so well for this population. 

From Table 4.1 we see that for our six populations the ratio ,N  the proportion of units with positive 

counts in the population, ranges from 0.038 to 0.084. Recall that given an ACS sample, the adjusted factor 

,  defined in equation (3.7), was introduced to increase our estimate of variance when the number of counts 

greater than zero in the ACS sample was quite small. For populations afrbuf and nfalls, the populations with 

the smallest values of the ratio ,N  the average value of   was 1.42 and 1.20 respectively while for the 

two largest populations, devt and paris, these averages were 1.01 and 1.02 respectively. This shows that our 

choice of the   is working as expected. 

 
5.3 Six more populations 
 

As we have mentioned, we settled on our estimator by simulation studies on these six populations. They 

were chosen because they represent a variety of situations where ACS sampling would be used. A reader 

might be worried that our estimator was too dependent on the populations we used in our study even though 

they are quite different. In an attempt to show that this is not the case we now present six new populations 

that were not used in the development of our estimator. We constructed the first two populations on a grid 

of 400 squares with just two networks. The first network had three members with values 50, 60 and 70. The 

second network had twelve members with the values 14, 15 and 16 each appearing four times. Let ref1 

denote this population. Let ref2 denote the population where 14, 15 and 16 appear in the smaller network 

and 50, 60 and 70 each appear four times in the larger network. Tables 5.7 and 5.8 give the results for 1,000 

samples of size 40 for the two populations. The same set of samples was generated for both populations. 

We see that in the 789 samples with at least two counts greater than 0 the average number of observed 

counts was 11.67. This means that in the majority of these samples only the larger network was observed. 

Note however that our results for population ref1 are quite good, even though such samples only contain 

the small counts. Our average estimate of   was 15.93, a slight overestimate. Because we have observed 

the larger network this helps to compensate for the fact that only the units with the smaller count size are in 

the sample. While for population ref2, having all the larger counts in the larger network, means that our 

estimator is biased upwards but less so than the ACS estimate. 
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Table 5.7 

Population ref1. 
 

   Est   Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   464  0.290  269.6  223  892  1 
BAY   330  -0.084  129.8  223  704  1 
Notes: For 1,000 simple random samples of size 40, there were 789 samples with at least three counts greater than zero. The average total number 

of positive values observed was 11.67. 

 
Table 5.8 

Population ref2. 
 

   Est   Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   957  0.251  444  653  1,574  0.885
BAY   865  0.131  244  653  962  1.000 
Notes: For 1,000 simple random samples of size 40, there were 789 samples with at least three counts greater than zero. The average total number 

of positive values observed was 11.67. 

 
Reasoning similarly to the discussion of population ref2 just given we can explain the upward bias of 

our estimator for population nfalls in Table 5.2. This population has seven networks containing a total of 

= 20  units. Here one network contains 13 of the units and it contains all the largest units as well. The 

average number of observed counts greater than zero was 13.57 so that the network containing 13 units was 

almost always in the sample. The average value of our estimator for   was 19.5, which is quite good. But 

it cannot compensate for the fact that the ACS samples almost always include the larger counts. 

Remember that ˆacT  would be unbiased if we used all possible samples and not just those with at least 

three counts greater than zero. When all the observed counts are zero then it will estimate zero. This event 

will happen with positive probability and will be an underestimate except when the population total is in 

fact zero. To compensate for this underestimate, ˆacT  overestimates when the sample contains “lots” of 

neighborhoods with counts greater than zero. This also helps to explain why BAY does better than ACS. 

To see this we will look more closely at the two populations ref1 and ref2. First consider the three cases 

where only the second network was either observed once or twice or three times. For population ref1, whose 

total is 360, the corresponding estimates BAY(ACS) ranged from 226(150) to 257(450). Next consider the 

three cases where the first network was observed just once and the second network was observed either once 

or twice or three times. For these three cases the estimates ranged 446(750) to 500(1,050). For population 

ref2 whose population total is 765 the corresponding values of the estimates for the first three cases ranged 

from 903(600) to 1,029(1,800) and for the second set of cases the corresponding values of the estimates 

ranged from were 949(750) to 1,063(1,950). Note that the range of values for the ACS estimator is much 

larger than the range for the BAY estimator. This also explains why in all our simulations ˆacT  is biased 

upwards. It is because we are ignoring all the samples with less than three counts greater than zero. 

We will now describe the remaining four new populations, mich, rome, afrdeer and sunspt. Summary 

information about the four populations are given in Table 5.9. Plots of the four populations are given in 

Figures 5.2 through 5.5. 
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Table 5.9 

Summary information for the new populations rome, mich, afrdeer and sunspt.  
 

Population    N  ntwN    N   maxy  bT   bT 

rome   1,600  16  48  0.03  495  7,927  165.1 
mich   400  10  20  0.05  3,577  24,740  1,237
afrdeer   391  13  76  0.19  140  1,309  16.6 
sunspt   500  14  27  0.05  98  434  16.1
Notes: Recall that N  is the population size,   is the number of units greater than zero and bT  is their sum. We let ntwN  be the number of 

networks in the population and maxy  be the maximum y  value in the population. 

 
 

Figure 5.2 A three dimensional plot of the population rome. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3 A three dimensional plot of the population mich. 
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Figure 5.4 A three dimensional plot of the population afrdeer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5 A plot of the population sunspt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The first population is based on a 40 by 40 grid in Rome, Italy. The second is based on a 20 by 20 grid 

in the state of Michigan in the United States. We denote these two populations by rome and mich 

respectively 

For population rome we see that there are 16 networks which contain 48 counts greater than zero. Four 

of the networks, that range in size from 6 to 11, contain 34 of the 48 counts greater than zero. The means of 

these networks range from 139.3 to 219. The mean of these four means is 176.8 which is quite close to 

165.1, the mean of all the counts greater than zero. The remaining 12 networks contain either one or two 

values and most of them quite small. The two largest are 335 and 301. This explains the excellent behavior 
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of our estimator BAY in Table 5.10. With high probability the ACS sample will contain one of the four 

larger networks. 

 
Table 5.10 

Population rome. 
 

   Est   Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   8,206  0.035  2,793  4,044  11,107  0.923 
BAY   7,459  -0.059  1,731  4,044  12,673  1.000 
Notes: For 1,000 simple random samples of size 160, there were 986 samples with at least three counts greater than zero. The average total number 

of positive values observed was 22.81. 

 
For population mich we see that there are 10 networks containing 20 counts greater than zero. Of these 

counts, 11 are in 6 networks where the maximum count is 695 and the six smallest range from 105 to 190. 

The largest network contains 5 counts and its mean is 969.2. The largest count is 3,077 and is in a network 

of size one. So although there are just a few units with counts greater than zero the actual counts can be 

quite large. We include this example to see what could happen when this is the case. The large negative bias 

of the BAY estimator in Table 5.11 occurs because the largest count is a network of size one. Even with this 

bias it still has significantly smaller average absolute error than the ACS estimator. Both of their upper 

bounds perform poorly however. It is difficult to get a sensible upper bound when there is one network with 

one or two values which are significantly larger than the rest of the counts in the population. Both will 

underestimate if the big counts are not included in the sample and overestimate when they are. Unless there 

is additional prior information we believe that it is very difficult to find sensible estimates without 

approximate exchangeability across the counts in the networks when we only observe a very small number 

of counts greater than zero. 

 
Table 5.11 

Population mich. 
 

    Est  Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   32,657  0.320  14,333  8,065  63,114  0.964 
BAY   16,805  -0.321  8,602  8,065  64,281  1.000 
Notes: For 1,000 simple random samples of size 40, there were 686 samples with at least three counts greater than zero. The average total number 

of positive values observed was 6.49. 

 
For the next new population we consider a third population given in Gattone et al. (2016). We let afrdeer 

denote this population and summary information is given in Table 5.9. The majority of the units belong to 

the three largest networks of sizes 13, 17 and 21. Their respective means are 29.3, 8.8 and 25.8. The next 

largest remaining network is of size 5 and the remaining values are mostly small. The largest value in these 

other networks is 34. Note that for this population the true value of   is 76 so that the ratio =N  

76 391 = 0.19  is greater than 0.15 the upper bound used in defining our prior. 
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So the natural question is how does our estimator work in this case? The results of this simulation are 

given in Table 5.12. We see that as in the other examples we do reasonably well and better than the ACS 

estimator. This happens because the ACS samples tend to include the larger networks and the smaller 

networks tend to have smaller counts. 

 
Table 5.12 

Population afrdeer. 
 

    Est  Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   1,307  -0.001  406  962  1,304  0.917 
BAY   1,213  -0.073  214  962  1,269  0.970 
Notes: For 1,000 simple random samples of size 39, there were 1,000 samples with at least three counts greater than zero. The average total number 

of positive values observed was 49.76. 

 
At the end of Section 3.1 we noted that our posterior distribution for   does not depend on the fact that 

our basic units are squares and that the population is a rectangle. But it is important that the basic units be 

approximately the same size and that neighbors can be defined in a sensible manner. To demonstrate this 

point we now consider a population defined on a set of successive intervals of equal length. The neighbors 

of an interval are just the two adjacent intervals to the left and to the right except the end points which have 

only one neighbor. To get the counts we use the population of sunspots that is available in R  (R Core Team, 

2023). These are the monthly mean relative sunspot numbers from 1,749 to 1,983 and they have the 

clumping behavior which should make ACS sampling appropriate. We took the first 500 values of sunspots 

and subtracted 141 from each one. The resulting negative numbers were set to zero. Summary information 

for this new population, sunspt, is given in Table 5.9. In sunspt there are 14 networks: 8 of size 1, 1 of size 

2, 3 of size 3 and 2 of size 4. so theta = 27. The range of the 27 counts greater than zero range from 1 to 98. 

The next largest count is 36. The largest count appears in a network of size four with a mean of 36.25 which 

is quite a bit larger than =bT  16.1. We see in Table 5.13 that the behavior of the two estimators is very 

similar to what we have seen in our two dimensional examples. This example demonstrates that our 

approach could be useful when studying longitudinal data which satisfies our assumptions of rareness and 

clumping. 

 
Table 5.13 

Population sunspt. 
 

    Est  Rbias  Abserr  Lowbd  Len  Freqcov 
ACS   497  0.144  217.8  140  930  0.952 
BAY   304  -0.299  159.3  140  1,369  0.999 
Notes: For 1,000 simple random samples of size 50, there were 874 samples with at least three counts greater than zero. The average total number 

of positive values observed was 7.29. 

 
Three dimensional plots of the populations mich, rome and afrdeer are given in Figures 5.2, 5.3 and 5.4. 

A plot of sunspt is given in Figure 5.5. 
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6. R code for calculating our estimator 
 

Here we argued for a particular quasi Bayes estimator when little is known about the population of 

interest except that the species of interest is rare. But in fact we have defined a whole family of possible 

estimators by considering different choices of the parameters in the beta density and different choices for 

the definition of the parameter space .  Any of these possible estimators is very simple to compute in R 

(R Core Team, 2023). What follows below is an R function which calculates one of these estimates for the 

population total, along with an upper bound and the lower bound. One just needs to specify the parameter 

space ,  the beta distribution which one uses to define their prior distribution on   and some of the 

information from a full ACS sample. One does not need to know the edges of the observed networks. 

More formally here is what you need to specify;   

• n, the size of the initial random sample, 

• nbiginrs, the number of counts greater than zero in the initial random sample, 

• bigsmp, all the counts greater than zero in the full ACS sample, 

• bds, used to define the parameter space ,  

• alp and bet, the parameters for the beta distribution used to define our prior distribution, 

• N, the population size. 

 

Next we give the code for the function 
 

qbay<-function(n,nbiginrs,bigsmp,bds,alp,bet,N) 

  { 

klw<-floor(bds[1]*N) 

kup<-ceiling(bds[2]*N) 

theta<-klw:kup 

nbigsmp<-length(bigsmp) 

dtheta<-theta[theta>=nbigsmp] 

ntheta<-length(dtheta) 

llike<-lchoose(dtheta,nbiginrs) + lchoose(N-dtheta,n-nbiginrs) 

lprior<-log(dbeta(dtheta/N,alp,bet)) 

dum<-lprior + llike 

post<-rep(0,ntheta) 

for(i in 1:ntheta){ 

post[i]<-1/sum(exp(dum-dum[i])) 

     } 

pstmnth<-sum(dtheta*post) 

est<-pstmnth*mean(bigsmp)#the point estimate in equation (5.6) 

pst2ndmnth<-sum(dtheta^2*post) 

pstvrth<-pst2ndmnth - pstmnth^2 
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nbig<-length(bigsmp) 

mnbg<-mean(bigsmp) 

lwbd<-nbig*mnbg 

vr1<-(mnbg)^2*pstvrth 

nb<-length(bigsmp) 

d1<-var(bigsmp) 

d2<-sum(post*(dtheta-nb)^2) 

vr2<-d1*d2 

vr<-vr1+vr2  #the variance in equation (5.7) 

lam<-10^(2.5/nbig) #the adjustment factor in equation (5.8) 

upbd<-est+sqrt(vr)*lam*1.96 

ans<-c(est,lwbd,upbd) 

return(ans) 

} 

 
This function allows one to explore a better choice of a quasi Bayes estimator when one has some 

additional prior information about the population. Note that one can also easily change our adjustment 

factor, ,  that appears in equation (3.7). In the next section we will briefly discuss some possible extensions. 

 
7. Possible extensions 
 

Thompson (1990) introduced ACS sampling for biological applications where one was interested in a 

rare species that tended to appear in clumps. As we noted in Section 2.2 we could not find in the literature 

any definition of rare. But as our simulations demonstrated our approach can work well for a fairly wide 

range of rareness. Our prior for the number of counts greater than zero does not depend on how large they 

are. From one point of view this is sensible because the notion of rareness can depend on the species under 

study. In some cases one might have good prior information about the number of counts greater than zero. 

In this case one could select different values of   and   in the prior distribution that better reflects this 

information. 

As far as we know there is no formal definition of clumping in the literature. An extreme form of 

clumping would be if only one unit contains the total bT  elements of the species of interest. But this is 

clearly not in the spirit of ACS sampling. It seems to us that ACS sampling presumes that such a large 

concentrated count is not possible. Instead it assumes that such a large count would tend to spread out into 

neighboring squares forming a network. As we saw in our description of population thmp at the beginning 

of Section 4 its three networks are of this form. When the size of the networks tend to be larger and counts 

within a network are representative of all the counts in the population we will have good results. 

When this is not true and there is a large count, compared to the rest, in a small network then both the 

ACS and BAY upper bounds perform poorly. We saw this for populations afrbuf and mich. Our choice of 
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the adjustment factor   in equation (3.7) is based on an implicit clumping assumption about the range of 

possible values for the counts and on how likely it is to have a small network with extremely large counts. 

In some cases one could have information about what is a “big” count for the population and the proportion 

on such “big” counts in the population. Depending on the size of the counts in the ACS sample one could 

let the adjustment factor, ,  depend on the value of the counts in the sample and the prior information. One 

could also weaken our assumption of approximate exchangeability and use prior information to replace the 

mean of the observed counts by a different estimator. Prior information could improve our estimator but 

will result in poorer estimators when it is incorrect. How to make use of additional prior knowledge in a 

more formal manner needs further study. 

Rapley and Welsh (2008) developed interesting models for the study of the type of populations where 

ACS sampling is used. In particular they modeled how networks and edges could be formed. Our approach 

is much simpler because we are ignoring the networks and only consider the number of nonempty units in 

the population. Our suggested prior distribution for the size of the bD  is very similar to a prior that is used 

in a slightly different context in their model. Here we have been interested in showing that one can improve 

on the standard ACS approach without making any model assumptions. It would be interesting to compare 

our approach to Bayesian approaches to the problem. How much better a Bayesian approach can do than 

what we have presented here when one has in hand good prior information is a question that needs further 

study. 

Rapley and Welsh also noted that the sampling could be done sequentially. That is, a unit is selected at 

random from the population. If its count is greater than zero then one observes all the units in its network 

and its edges. At each step we only selected one unit at random from the remaining unobserved units. We 

continue in this way until our stopping rule tells us the sampling is finished. Our approach can be extended 

to such sequential sampling plans. Assuming that the order in which the sample was taken is known then 

the form of the likelihood function would change but one could use the same prior distribution for .  From 

a theoretical point of view sequential sampling makes a lot of sense but it is not clear if it would be practical 

in many of the problems where ACS sampling would be used. 

 
8. Concluding remarks 
 

Adaptive cluster sampling was introduced to improve sampling efficiency for populations with a special 

type of structure. It is appropriate when the statistician knows that the population has just a few cells with a 

y  value greater than zero and that they tend to appear in clusters. It is an interesting approach which has 

been widely adopted when studying biological populations in the field. We showed however that in its focus 

on finding an estimator which is design unbiased it has ignored some of the available information. Here we 

introduced a quasi Bayesian approach to the problem that makes use of this information. We showed that 

our point estimator and our 95% upper confidence bound for the population total gave much better results 

than the standard approach. 
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Inference from sampling with response probabilities 
estimated via calibration 

Caren Hasler1 

Abstract 

A solution to control for nonresponse bias consists of multiplying the design weights of respondents by the 
inverse of estimated response probabilities to compensate for the nonrespondents. Maximum likelihood and 
calibration are two approaches that can be applied to obtain estimated response probabilities. We consider a 
common framework in which these approaches can be compared. We develop an asymptotic study of the behavior 
of the resulting estimator when calibration is applied. A logistic regression model for the response probabilities 
is postulated. Missing at random and unclustered data are supposed. Three main contributions of this work are: 
1) we show that the estimators with the response probabilities estimated via calibration are asymptotically 
equivalent to unbiased estimators and that a gain in efficiency is obtained when estimating the response 
probabilities via calibration as compared to the estimator with the true response probabilities, 2) we show that 
the estimators with the response probabilities estimated via calibration are doubly robust to model 
misspecification and explain why double robustness is not guaranteed when maximum likelihood is applied, and 
3) we highlight problems related to response probabilities estimation, namely existence of a solution to the 
estimating equations, problems of convergence, and extreme weights. We present the results of a simulation 
study in order to illustrate these elements. 

 
Key Words: Maximum likelihood estimation; Nonresponse; Two-phase estimation; Weighting adjustment. 

 
 

1. Introduction 
 

Under complete response the Horvitz-Thompson (HT) estimator is unbiased (Horvitz and Thompson, 

1952). With nonresponse, however, this estimator is unavailable. Nonresponse can be seen as a second phase 

of the survey, where the mechanism that yields the nonresponse, called the response mechanism, is unknown 

(Oh and Scheuren, 1983; Särndal and Swensson, 1987). If the response probabilities were known, a two-

phase estimator with response probabilities as inclusion probabilities of the second phase would be 

unbiased. Unfortunately, the response probabilities are unknown in practice. A solution to control for 

nonresponse bias is to postulate a model for the response probabilities, estimate these probabilities based on 

the postulated model, and use the estimated response probabilities in a two-phase estimator. The resulting 

estimator is called two-phase Nonresponse Weighting Adjusted (NWA) estimator or empirical double 

expansion estimator. Särndal and Lundström (2005) and Haziza and Beaumont (2017) provide overviews 

of some NWA estimators and weighting systems adjusted for nonresponse. 

Two general approaches to NWA estimators are Maximum Likelihood Estimation (MLE) and calibration 

(Deville and Särndal, 1992). In the first approach, a model such as the logistic regression model is postulated 

(Cassel, Särndal and Wretman, 1983; Ekholm and Laaksonen, 1991). The parameters of the model are 

estimated via MLE and fitted response probabilities are obtained based on the estimated parameters. In the 

second approach, calibration weights are found so that the resulting NWA estimator of some auxiliary 

variables is equal to its full sample HT estimator (calibration at the full sample level) or its population total 
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(calibration at the population level). The calibration weights can be viewed as the design weights times the 

inverse of the estimated response probabilities. To the best of our knowledge, the first author to suggest the 

use of what would later be called calibration weighting to estimate the response probabilities is Folsom 

(1991), shortly followed by Deville and Dupont (1993) and Dupont (1993). Lundström and Särndal (1999) 

further study point and variance estimators for both levels of calibration, sample and population. 

The first approach is studied in depth in Kim and Kim (2007), which presents asymptotic properties of 

the NWA estimator under a general response model. Two main results of their paper are: 1) the NWA 

estimator with response probabilities estimated via MLE is asymptotically equivalent to an unbiased 

estimator and 2) a gain in efficiency is obtained when estimating the response probabilities via MLE as 

compared to the estimator with the true response probabilities. The second result is also shown by Beaumont 

(2005) under the logistic response model. 

The second approach can be divided into two levels: calibration at the sample level and calibration at the 

population level. The NWA estimator obtained when the response probabilities are estimated via calibration 

at the sample level is a particular case of the propensity-score-adjustment estimator of Kim and Riddles 

(2012). These authors develop the asymptotic properties of this estimator in a theoretical framework 

different from that considered in Kim and Kim (2007). This estimator is also considered in Iannacchione, 

Milne and Folsom (1991) which focuses on practical aspects of NWA estimation with calibration at the 

sample level. It does not provide any theory. 

The main goal of both approaches is to reduce the nonresponse bias and, if possible, the variance of 

population estimators. The second approach, calibration, also ensures consistency between estimated and 

known population totals. This is not the case of the first approach, MLE. However, the second approach, 

i.e., direct estimation of the response probabilities via calibration, called one-step approach, is sometimes 

criticized as it tends to yield biased estimates when the response model is misspecified (Haziza and Lesage, 

2016). An alternative consists of first estimating the response probability via MLE and then applying 

calibration to ensure consistency between estimated and known totals. This alternative is called two-step 

approach. The reader may refer to Haziza and Lesage (2016) and Haziza and Beaumont (2017), page 222, 

for a discussion of the one- and two-step approaches. 

In this paper, we study MLE and the one-step approach to calibration for nonresponse weighting 

adjustment. We build on Kim and Kim (2007) and develop asymptotic properties of the NWA estimator 

under the second approach, calibration at both the sample and the population levels. For the first time, a 

common theoretical framework is considered for both approaches to NWA estimation, namely MLE and 

calibration. This allows us to compare the asymptotic behavior of the resulting NWA estimators in terms of 

bias and variance under common assumptions. We postulate a logistic regression model for the response 

probabilities. We suppose that the data are missing at random (see Rubin, 1976, for a detailed definition) 

and unclustered. Two main theoretical results are 1) the NWA estimators with the response probabilities 

estimated via calibration are asymptotically equivalent to unbiased estimators and 2) a gain in efficiency is 

obtained when estimating the response probabilities via calibration as compared to the estimator with the 

true response probabilities. These results are valid for both levels of calibration. 
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Another main contribution of this work is the study of the double-robustness of the NWA estimators. 

Indeed, both approaches assume, implicitly or explicitly, two models: 1) a model that links the variable of 

interest and the auxiliary variables, called superpopulation model, and 2) a model for the response 

probabilities, called response model. We show that the NWA estimators with response probabilities 

estimated via calibration are doubly robust. That is, these estimators are consistent even if one of the two 

aforementioned models is misspecified. We also explain why double robustness of the NWA estimator with 

response probabilities estimated via MLE is not guaranteed. To the best of our knowledge, only Kott and 

Liao (2012) discusses double robustness of NWA estimation via calibration in probability sample surveys. 

In their article, the emphasis is put on an exponential form for the response probabilities. Finally, one last 

main contribution of this work is a discussion about problems of convergence and extreme weights. Indeed, 

it may happen that the estimating equations used to obtain estimated response probabilities do not admit a 

solution or that a solution to the estimating equations exists but the resulting weights, that is, the inverse of 

the estimated response probabilities, are very large. We illustrate this phenomenon. Results of a simulation 

study confirm the theoretical results and practical considerations presented. A longer version of this paper 

with additional technical and practical elements is available on ArXiv at 

https://doi.org/10.48550/arXiv.2202.03897. 

The current paper is organized as follows: Section 2 contains pieces of notation and important concepts. 

In Section 3, we present both approaches to response probabilities estimation. We describe some asymptotic 

properties of the NWA estimators of interest in Section 4 with some technical elements left in the Appendix 

of the longer version of this article (Hasler, 2023). We discuss double robustness to model misspecification 

in Section 5. In Section 6, we present the variance and variance estimation of the NWA estimators of 

interest. Section 7 contains the results of a simulation study. A discussion closes the paper in Section 8. 

 
2. Framework 
 

Consider a finite population  = 1, 2, , , ,U i N… …  of size .N  A vector of v  auxiliary variables =xi  

 1 2, , ,i i ivx x x…  is attached to a generic unit .i  We suppose that the first auxiliary variable is constant and 

equal to 1. The parameter of interest is the population total  

 = ,i
i U

Y y


   

for some unknown variable of interest .y  A sample s  of size n  is selected from U  according to a non-

informative probabilistic sampling design ( )p   with the aim of observing iy  for .i s  A random sample 

S  is a random variable such that Pr ( = ) = ( ).S s p s  The random sample is also defined via an indicator 

variable  |ia i U


 where ia  is 1 if unit i  is in the sample and 0 otherwise. Consider  

 
;

= Pr( ) = ( ),i
s U s i

i S p s


 


  

https://doi.org/10.48550/arXiv.2202.03897


238 Hasler: Inference from sampling with response probabilities estimated via calibration 

 

 
Statistics Canada, Catalogue No. 12-001-X 

the first-order inclusion probability of unit i  and suppose that > 0i  for all .i U  Let E ( )p   and V ( )p   

denote the expectation and variance computed with respect to the sampling design ( ).p   Under complete 

response, the Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952) 

 ˆ = i

i S i

y
Y


  (2.1) 

is design-unbiased for ,Y  i.e., ˆE ( ) = .p Y Y  

Under nonresponse, each sampled unit i S  is classified as either respondent or nonrespondent 

depending on whether iy  is observed or missing. Consider the response indicator vector  |ir i S


 where 

ir  takes value 1 if iy  is observed and 0 if it is missing and = Pr ( =1| )i ip r i S  the response probability of 

a sampled unit .i  The set of respondents is written  = | =1r iS i S r  and its size .rn  In the presence of 

nonresponse, the HT estimator in (2.1) is unavailable and the total Y  could potentially be estimated via the 

two-phase (or double expansion) estimator  

 ˆ = ,
r

i
p

i S i i

y
Y

p

  (2.2) 

provided that ip  is known and strictly positive for all .i S  This estimator is unbiased since  

  ˆE ( ) = ,p q pE Y S Y   

where ( | )q S  is the probability distribution of rS  given a sample S  and subscript q  indicates that the 

expectation is computed with respect to probability distribution ( | ).q S  The response probabilities are 

unknown in practice. To address this issue, a model for the response probabilities, called the response model, 

is postulated. The response probabilities are estimated via this model, which yields estimated response 

probabilities ˆ ,ip  and the NWA estimator (or empirical double expansion estimator)  

 ˆ
ˆ =

ˆ
r

i
p

i S i i

y
Y

p

  (2.3) 

is used. The response probabilities are estimated via ˆˆ = ( ; )i ip f x λ  for some model ( ; )if x λ  and estimator 

λ̂  of .λ  A commonly used model for the response probabilities is the logistic regression model  

 
exp( ) 1

= ( ; ) = = ,
1 exp( ) 1 exp( )

i
i i

i i

p f
  

x λ
x λ

x λ x λ



   (2.4) 

where λ  is a parameter vector to be estimated. Two available estimation methods are maximum likelihood 

and calibration, see Section 3. Note that there are ways to use calibration weighting to adjust for nonresponse 

other than through an assumed logistic response model. For instance, other methods use a linear or logit 

function that bounds the probabilities of response between 0 and 1. More details can be found in Deville 



Survey Methodology, December 2024 239 

 

 
Statistics Canada, Catalogue No. 12-001-X 

and Särndal (1992), Deville, Särndal and Sautory (1993), and Haziza and Beaumont (2017), among others. 

In the current work, we focus on the logistic regression model in (2.4). 

Some required assumptions on the response mechanism are: 

(R1): The units respond independently of one another, i.e.,  

 Pr( , | , ) = .r i ji j S i j S p p    

(R2): The response probabilities are bounded below, i.e., there exists a constant 0c   such that 

ip c  for all .i U  

(R3): The response probabilities are 0= ( , )i ip f x λ  as defined in (2.4) for some true unknown 

parameter vector 0.λ  

 

Assumption (R3) implies that the data are missing at random (see Rubin, 1976, for a detailed definition). 

This means that  

 Pr ( | , , ) = Pr ( | , ).r i i r ii S i S y i S i S   x x   

That is, the propensity to respond is independent from the variable of interest when the auxiliary variables 

are taken into account. This assumption may fail in practice when the propensity to respond still depends 

on the variable of interest when all available auxiliary information has been taken into account. If this is the 

case, one may use generalized calibration (Deville, 2002; Kott, 2006; Lesage, Haziza and D’Haultfoeuille, 

2019; Ranalli, Matei and Neri, 2023) to estimate the response probabilities instead of the approaches 

presented in Section 3. 

 
3. Estimation 
 

We consider two approaches to obtain NWA estimators: MLE and calibration (Deville and Särndal, 

1992). Kim and Kim (2007) study NWA estimators via MLE of the response probabilities under a general 

response model. For the logistic regression model, the maximum likelihood estimator of 0λ  is the solution 
mleλ̂  to the estimating equation  

  mle ˆ ˆ( ) = ( ; ) = 0.i i i i
i S

Q k r f


λ x λ x  (3.1) 

When = 1,ik  the solution is the usual maximum likelihood estimator. When =1 ,i ik   we obtain a survey 

weighted estimating equation, which is often called pseudo-maximum likelihood. The idea is that one first 

unbiasedly estimates the population likelihood estimating equation and then maximizes it. Other choices of 

ik  are possible. We focus on the common two aforementioned choices. An efficiency gain of the NWA 

estimator in (2.3) as compared to the two-phase estimator in (2.2) with true response probabilities is claimed 
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when =1ik  (Beaumont, 2005; Kim and Kim, 2007). This choice yields the best estimate of 0λ  and the best 

estimate of the response probabilities. The efficiency of the NWA estimator may, however, be improved 

upon with other choices of ,ik  such as =1 ,i ik   for example. There is only very limited available literature 

on this choice. Kott (2012) discusses this choice and the impact on the efficiency of the NWA estimator for 

the case of response homogeneity groups. No general theory or guidelines about the choice of ik  have been 

suggested yet in the literature. This goes beyond the scope of this paper. 

Two levels of calibration are possible: calibration at the sample level and calibration at the population 

level. In the first case, the calibration estimator of 0λ  is the solution cal,ˆ Sλ  to the estimating equation  

 cal, ˆ( ) = = 0.
ˆ( ; )

r

S i i

i S i S ii i

Q
f  

 
x x

λ
x λ

 (3.2) 

Estimating equation (3.2) is suggested in Iannacchione et al. (1991). In the second case, the calibration 

estimator of 0λ  is the solution cal,ˆ Uλ  to the estimating equation  

 cal, ˆ( ) = = 0.
ˆ( ; )

r

U i
i

i S i Ui i

Q
f 

 
x

λ x
x λ

 (3.3) 

Both estimating equations (3.2) and (3.3) can be solved using a software for calibration in the complete 

response case, such as function calib of R package sampling (Tillé and Matei, 2021). 

When calibrating at the sample level, the aim is to find response probabilities so that the NWA estimated 

total of some auxiliary variables is equal to their HT estimator. When calibrating at the population level, the 

aim is to find response probabilities so that the NWA estimated total of some auxiliary variables is equal to 

their true total. Hence, the first approach attempts to correct the nonresponse error. The second approach 

attempts to correct both the nonresponse and sampling error. 

Both approaches, MLE and calibration, are here applied to estimate the response probabilities used in 

the NWA estimator in (2.3). They differ, however, in spirit and required information in the estimation 

process. The spirit of MLE is to maximize the likelihood that the postulated response model generated the 

data at hand. The focus is the estimation of the response probabilities with no explicit parameter of interest 

in mind. Moreover, MLE does not explicitly assume a superpopulation model, i.e., a model that links the 

variable of interest and the auxiliary variables. We will see in Section 4, however, that MLE assumes an 

implicit superpopulation model. The spirit of calibration is to estimate the total of some auxiliary variables 

as precisely as possible. As a result, the nonresponse bias of the total of the variable of interest is as small 

as possible when the variable of interest and the auxiliary variables are correlated. Calibration thus focuses 

on a particular parameter of interest, the total, and explicitly states a superpopulation model, a linear 

regression model. 

Both approaches also differ in the required information in the estimation process. MLE requires to know 

the values ix  for all sampled units .i S  Calibration at the sample level via estimation equation (3.2) 
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requires to know the values ix  for all respondent units ri S  and the HT estimator of ix  at the sample 

level. Calibration at the population level via estimating equation (3.3) requires to know the values ix  for all 

respondent units ri S  and the population total of .ix  For MLE and calibration at the sample level, no 

information is needed about the ix  out of the sample. 

We compare four NWA estimators: 1) mle,1
ˆ
ˆ

pY  obtained with response probabilities estimated via equation 

(3.1) with = 1,ik  2) mle,1
ˆ
ˆ

pY   obtained with response probabilities estimated via equation (3.1) with 

=1 ,i ik   3) cal,
ˆ
ˆ S

pY  obtained with response probabilities estimated via equation (3.2), and 4) cal,
ˆ
ˆ U

pY  obtained 

with response probabilities estimated via equation (3.3). 

 
4. Asymptotics I 
 

4.1 Theoretical framework 
 

In this section, we build on the results and assumptions of Kim and Kim (2007) to obtain some 

asymptotic properties of the NWA estimators obtained via calibration. We use the asymptotic framework 

of Isaki and Fuller (1982). Consider a sequence NU  of embedded finite populations of size N  where N  

grows to infinity. Consider a sequence of samples Ns  selected from NU  with sampling design ( ).Np   The 

first- and second-order inclusion probabilities associated with ( )Np   for some generic units i  and j  are 

,N i  and , ,N ij  respectively. In what follows, we will omit the subscript N  whenever possible to simplify 

notation. We consider the following common regularity conditions on the sequence of sampling designs to 

ensure consistent estimation of the HT estimator and its variance estimator. 

(D1): As ,N   we have * (0,1),n N    

(D2): For all ,N  1 0i    for all ,i U  

(D3): For all ,N  2 0ij    for all , ,i j U  

(D4): 
, ,

.lim sup max ij i j
i j U i jN

n   
 

    

 

where lim sup  is the limit superior. It is defined as the limit of the sequence of supremums. In the case of 

(D4), we can write  

  
, ,

= sup ,lim sup max limij i j k
Ni j U i jN

n u k N  
 

    

where  

 , , ,
, ,

= ,max
k

k k k ij k i k j
i j U i j

u n   
 

   

and kn  is the size of .ks  Assumption (D4) states that the dependence between sample inclusion indicators 

is small enough (Breidt and Opsomer, 2017). Intuitively, if we regard  

 
, ,
max ij i j

i j U i j

n   
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as a measure of dependence between the sample inclusion indicators, this measure should not increase to 

infinity. For instance, this assumption is satisfied for simple random sampling without replacement, 

Bernoulli sampling, and any stratified sampling that is not highly stratified. This assumption is not satisfied 

for cluster sampling or for highly stratified sampling designs. The next section summarizes the results of 

Kim and Kim (2007) about the asymptotics of the NWA estimator when Maximum Likelihood is applied 

to obtain estimated response probabilities. The two sections that follow extend these results for the case in 

which calibration is used. In this section, the reference probability distribution for the convergence is the 

one jointly defined by the sampling mechanism and the response mechanism. 

 
4.2 Maximum likelihood 
 

From Theorem 1 of Kim and Kim (2007), we have that under the regularity conditions (D1)-(D4), 

Assumptions (R2)-(R3) about the response mechanism, and additional regularity conditions stated in the 

Appendix of the longer version of this article (Hasler, 2023), the NWA estimator mle
ˆ
ˆ

pY  satisfies  

 mle mle 1
ˆ ˆ ,

1 1ˆ ˆ= ( ),p p l pY Y O n
N N

   

where  

 

 mle mle mle
ˆ,

1

mle

1ˆ = ,

1
= (1 ) .

i
p l i i i i n i i i i i n

i S i i

i
n i i i i i i i

i S i S i

r
Y k p y k p

p

p
k p p y

 








 

 
  

 

 
 

 



 

x γ x γ

γ x x x

 



  

 

Remark 1. The NWA estimator mle
ˆ
ˆ

pY  behaves asymptotically like the linearized estimator mle
ˆ,
ˆ ,p lY  which is 

unbiased for the population total .Y  
 

Remark 2. If there exists a vector β  such that =i i i i iy k p x β  for all i S  then  

 mle
ˆ,
ˆ = .i

p l
i S i

y
Y


   

This means that mle
ˆ
ˆ

pY  is asymptotically equivalent to the full sample unknown HT estimator in this case. 

When estimating the response probability via MLE, see equation (3.1), we implicitly assume a super-

population model, i.e., iy  is a linear combination of .i i i ik p x  

 
4.3 Calibration at the sample level 
 

Result 1. Let the sequence of sampling designs satisfy Assumptions (D1)-(D4), the response mechanism 

satisfy Assumptions (R2)-(R3), and the sequence of finite populations satisfy regularity conditions stated in 

the Appendix of the longer version of this article (Hasler, 2023). The NWA estimator cal,
ˆ
ˆ S

pY  satisfies  
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 cal, cal, 1
ˆ ˆ,

1 1ˆ ˆ= ( ),S S
p p l pY Y O n

N N
   

where  

 

 cal,
ˆ,

1

1ˆ = ,

1 1
= .

S i
p l i S i i S

i S i i

i i
S i i i i

i S i Si i

r
Y y

p

p p
y



 





 

 
  

 

  
 
 



 

x γ x γ

γ x x x

 



  

 

The proof is given in the Appendix of the longer version of this article (Hasler, 2023). 
 

Remark 3. The NWA estimator cal,
ˆ
ˆ S
pY  behaves asymptotically like the linearized estimator cal,

ˆ,
ˆ ,S

p lY  which is 

unbiased for the population total .Y  
 

Remark 4. If there exists a vector β  such that =i iy x β  for all i S  then  

 cal,
ˆ,
ˆ = .S i

p l
i S i

y
Y


   

This means that cal,
ˆ
ˆ S

pY  is asymptotically equivalent to the full sample unknown Horvitz-Thompson estimator 

in this case. When calibrating at the sample level via equation (3.2), we assume a superpopulation model, 

i.e., iy  is a linear combination of .ix  

 
4.4 Calibration at the population level 
 
Result 2. Let the sequence of sampling designs satisfy Assumptions (D1)-(D4), the response mechanism 

satisfy Assumptions (R2)-(R3), and the sequence of finite populations satisfy regularity conditions stated in 

the Appendix of the longer version of this article (Hasler, 2023). The NWA estimator cal,
ˆ
ˆ U

pY  satisfies  

 cal, cal, 1
ˆ ˆ,

1 1ˆ ˆ= ( ),U U
p p l pY Y O n

N N
   

where  

 

 cal,
ˆ,

1

ˆ = ,

= (1 ) (1 ) .

U i i
p l i U i i U

i U i i

U i i i i i i
i U i U

a r
Y y

p

p p y





 

 
  

 

 
  

 



 

x γ x γ

γ x x x

 



  

 

The proof is given in the Appendix of the longer version of this article (Hasler, 2023). 
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Remark 5. The NWA estimator cal,
ˆ
ˆ U

pY  behaves asymptotically like the linearized estimator cal,
ˆ,
ˆ ,U

p lY  which is 

unbiased for the population total .Y  
 

Remark 6. If there exists a vector β  such that =i iy x β  for all i U  then  

 cal,
ˆ,
ˆ = .U
p l i

i U

Y y

   

This means that cal,
ˆ
ˆ U

pY  is asymptotically equivalent to the unknown population total in that case. When 

calibrating at the population level via equation (3.3), we assume a superpopulation model, i.e., iy  is a 

linear combination of .ix  

 
5. Asymptotics II: Double robustness 
 

The results in Section 4 rely on Assumption (R3). That is, these results are valid if the response model 

is correctly satisfied. In this section, we show that the NWA estimators obtained with calibration may still 

be consistent when the response model is misspecified provided that a superpopulation model, i.e., a model 

that links the variable of interest to the auxiliary variables, is correctly specified. We say in this case that 

the resulting NWA estimators are doubly robust because consistency is maintained even when one of the 

two models, response model or superpopulation model, is misspecified. This is formalized by the results 

below. For the first result, two required assumptions about the response mechanism and estimated response 

probabilities are: 

(R4): The data are MAR.  

(R5): The estimated response probabilities are bounded below, i.e., there exists a constant 1 0c   

such that 1
ˆ

ip c  for all i S  and all .N  

 

Result 3. Consider the superpopulation model : =i i iy x β  where E ( ) = 0,i 
2E ( ) =i j       if 

=i j  and 0 otherwise, and subscript   means that the expectation and variance are computed with respect 

to model .  Suppose that assumptions (D1)-(D4), (R2), (R4), (R5) are satisfied. Then  

 

cal,
ˆ

cal,
ˆ

ˆ
= (1),

ˆ
= (1).

U
p

S
p

Y Y
o

N

Y Y
o

N





P

P

  

Subscript P  means that the reference probability distribution is that determined by the superpopulation 

model, the sampling design, and the response mechanism.  
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The proof is given in the Appendix of the longer version of this article (Hasler, 2023). This result states 

that when the response probabilities are obtained via calibration, the resulting NWA estimators are 

consistent estimators of the true total. Result 3 holds even when the response model in Assumption (R3) is 

misspecified. 
 

Result 4. Let the sequence of sampling designs satisfy Assumptions (D1)-(D4), the response mechanism 

satisfy Assumptions (R1)-(R3), and the sequence of finite populations satisfy Assumptions (P1)-(P6) in the 

Appendix of Hasler (2023). Then  

 

cal,
ˆ

cal,
ˆ

ˆ
= (1),

ˆ
= (1).

U
p

p

S
p

p

Y Y
o

N

Y Y
o

N




  

The proof is given in the Appendix of the longer version of this article (Hasler, 2023). This result states 

that when the response probabilities are obtained via calibration, the resulting NWA estimators are 

consistent estimators of the true total when the response model is correctly specified. Result 4 holds even 

when the superpopulation model stated in Result 3 is misspecified. Note that the probability distribution in 

Result 4 is that determined by the sampling design and the response mechanism. The two quantities in 

Result 4 are therefore also (1).oP  

From Results 3 and 4, we conclude that the NWA estimators obtained with calibration are doubly robust. 

That is, these estimators remain consistent even when one of the two models, superpopulation model or 

response model, is misspecified. When the response probabilities are estimated via MLE, however, 

consistency of the resulting NWA estimator is not guaranteed under the assumptions stated in the results. 

Indeed, when the response probabilities are obtained via MLE from equation (3.1), the resulting weights 

may not be calibrated. This plays a central role in the proof of Result 3. As a result, if the double robustness 

of the NWA estimator obtained with MLE holds, further assumptions are required. This goes beyond the 

scope of this paper. 

 
6. Variance and variance estimation 
 

We suppose throughout this section that Assumption (R1) holds. Under nonresponse, we can write the 

variance of a generic estimator ˆgY  as  

 sam nr
ˆ ˆ ˆV( ) = V ( ) V ( ),g g gY Y Y   

where the two terms are the sampling variance and the nonresponse variance, respectively, and are given 

by  
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sam

nr

ˆ ˆV ( ) = V E ( | ) ,

ˆ ˆV ( ) = E V ( | ) .

g p q g

g p q g

Y Y S

Y Y S
  

Based on this decomposition, the variance of the estimator with the true response probabilities can be written 

as  

 2

2

1 1ˆV( ) = V E .i i
p p p i

i S i Si i i

y p
Y y

p  

   
   

   
    

Based on the same decomposition, Kim and Kim (2007), page 507, write the variance of the linearized estimator 
mle
ˆ,
ˆ

p lY  as  

  mle mle mle
ˆ ˆ ˆ, sam , nr ,
ˆ ˆ ˆV = V ( ) V ( ),p l p l p lY Y Y   

where  

 

mle
ˆsam ,

mle mle 2
ˆnr , 2

ˆV ( ) = V ,

1 1ˆV ( ) = E ( ) .

i
p l p

i S i

i
p l p i i i i i n

i S i i

y
Y

p
Y y k p

p










 
 
 

 
 

 



 x γ
  

The first term is the variance of the full sample HT estimator. The second term vanishes if there exists a 

vector β  such that = .i i i i iy k p x β  This agrees with Remark 2 in Section 4 saying that mle
ˆ,
ˆ

p lY  matches the full 

sample HT estimator when this relationship holds. 

A similar decomposition holds for the case when calibration is applied. More details can be found in 

Hasler (2023). The variance of the linearized estimator cal,
ˆ,
ˆ S
p lY  can be written  

 cal, cal, cal,
ˆ ˆ ˆ, sam , nr ,
ˆ ˆ ˆV ( ) = V ( ) V ( ),S S S

p l p l p lY Y Y   

where  

 

cal,
ˆsam ,

cal, 2
ˆnr , 2

ˆV ( ) = V ,

1 1ˆV ( ) = E ( ) .

S i
p l p

i S i

S i
p l p i i S

i S i i

y
Y

p
Y y

p









 
 
 

 
 

 



 x γ
  

The first term is the variance of the full sample HT estimator. The second term vanishes if there exists a 

vector β  such that = .i iy x β  This agrees with Remark 4 saying that cal,
ˆ,
ˆ S

p lY  matches the full sample HT 

estimator when this relationship holds. 

Similarly, the variance of the linearized estimator cal,
ˆ,
ˆ U

p lY  can be written  
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 cal, cal, cal,
ˆ ˆ ˆ, sam , nr ,
ˆ ˆ ˆV ( ) = V ( ) V ( ),U U U
p l p l p lY Y Y   

where  

 

cal,
ˆsam ,

cal, 2
ˆnr , 2

1ˆV ( ) = V ( ) ,

1 1ˆV ( ) = E ( ) .

U
p l p i i U

i S i

U i
p l p i i U

i S i i

Y y

p
Y y

p









 
 

 

 
 

 





x γ

x γ





  

The first term is the variance of the full sample HT estimator of the differences .i i Uy  x γ  Both the first and 

second terms vanish if there exists a vector β  such that = .i iy x β  This agrees with Remark 6 saying that 
cal,
ˆ,
ˆ U

p lY  matches the true population total, which has zero variance, when this relationship holds. 

 

Remark 7. The sampling variance of the linearized estimators mle
ˆ,
ˆ

p lY  and cal,
ˆ,
ˆ S

p lY  is equal to the sampling 

variance of ˆ .pY  Their nonresponse variance is no greater than that of ˆ .pY  This means that the NWA 

estimators mle
ˆ
ˆ

pY  and cal,
ˆ
ˆ S

pY  are asymptotically equivalent to estimators that are at least as efficient as the 

estimator with the true response probabilities. This was shown in Kim and Kim (2007) for mle
ˆ
ˆ ,pY  see 

page 505. 

We expect the sampling variance of the linearized estimator cal,
ˆ,
ˆ U
p lY  to be smaller than the sampling 

variance of ˆpY  provided that the residuals i i Uy  x γ  have less variation than the ’ .iy s  The nonresponse 

variance of cal,
ˆ,
ˆ U

p lY  is no greater than that of ˆ .pY  Thus, cal,
ˆ
ˆ U

pY  is asymptotically equivalent to an estimator 

that is at least as efficient as the estimator with the true response probabilities under the condition stated 

above. 

Overall, there seems to be a gain in efficiency when using estimated response probabilities as compared 

to true response probabilities, at least for large enough populations and samples. A possible explanation is 

that estimating response probabilities can be viewed as a smoothing of the weights using an appropriate 

model. Such a smoothing has already been shown to improve the efficiency of the usual Horvitz-Thompson 

estimator, see Beaumont (2008) for instance.  

 

Remark 8. Now comparing the variance of the NWA calibration estimators cal,
ˆ
ˆ U

pY  and cal,
ˆ
ˆ .S
pY  We expect 

the sampling variance of the linearized estimator cal,
ˆ,
ˆ U

p lY  to be smaller than the sampling variance of the 

linearized estimator cal,
ˆ,
ˆ S

p lY  provided that the residuals i i Uy  x γ  have less variation than the ’ .iy s  

Moreover, we expect the nonresponse variance of cal,
ˆ,
ˆ U

p lY  to be close to that of cal,
ˆ,
ˆ ,S
p lY  since the only difference 

is that the population coefficient Uγ  in the nonresponse variance of the former is replaced by a sample 

estimator Sγ  in the latter. In practice, this means that we expect a gain in efficiency of the NWA estimator 

when estimating the response probabilities via calibration at the population level as compared to the sample 

level.  
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We suppose from this point and until the end of the current section that Assumptions (D1)-(D4), (R1)-

(R3), and additional regularity conditions stated in the Appendix of the longer version of this article (Hasler, 

2023) are satisfied. Using the decomposition of the variance above, the following estimator may be used for 

the variance of the NWA estimator mle
ˆ
ˆ ,pY  see Kim and Kim (2007), page 507, 

 mle mle mle
ˆ ˆ ˆsam , nr ,

ˆ ˆ ˆ ˆ ˆ ˆV ( ) = V ( ) V ( ),p p l p lY Y Y   

where  

 

2
mle
ˆsam , 2

, ,

mle mle 2
ˆnr , 2 2

1

mle

1ˆ ˆV ( ) = ,
ˆ ˆ ˆ

ˆ1 1ˆ ˆ ˆˆV ( ) = ( ) ,
ˆ

ˆ1 1
ˆ ˆ= (1 ) .

ˆ

r r

r

r r

ij i j ji i i
p l

i S i j S i ji i i j ij i j

i
p l i i i i i n

i S i i

i
n i i i i i i

i S i S i i

yy y
Y

p p p

p
Y y k p

p

p
k p y

p

  

   






  





 







   
 

  

 



 

x γ

γ x x x





  

We consider the same approach to derive a variance estimator of NWA estimators cal,
ˆ
ˆ S

pY  and cal,
ˆ
ˆ .U

pY  We 

obtain  

 cal, cal, cal,
ˆ ˆ ˆsam , nr ,

ˆ ˆ ˆ ˆ ˆ ˆV ( ) = V ( ) V ( ),S S S
p p l p lY Y Y   

where  

  

2
cal,
ˆsam , 2

, ;

2cal, cal
ˆnr , 2 2

1

cal

1ˆ ˆV ( ) = ,
ˆ ˆ ˆ

ˆ1 1ˆ ˆ ˆV ( ) =
ˆ

ˆ ˆ1 1 1 1
ˆ = .

ˆ ˆ

r r
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Similarly, we obtain  
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More details can be found in Hasler (2023). 
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7. Simulation study 
 
7.1 Simulation settings 
 

Five different populations are considered and obtained as follows. For each population, we generate 

=N 2,000 population units. The auxiliary variables are the same across all five populations and are 

= (1, )i ixx   where ix  are observations of independent and identically distributed (iid) uniform random 

variables with parameters, i.e., bounds, 0 and 100. The values of the variables of interest are obtained as 

follows:  

 

1 1

2 2

3

4 4

5 5

1,000 20 ,

1,500 500exp( 10 0.1 ) ,

1 with probability , 0.8 if > 75,
where =

0 otherwise, 0.2 otherwise,

= 1,000 ,

= 1,000 20 ,

i i

i i

i i

i i

i i

i i

y x

y x

x
y

y

y x












  

    

 
  
 



 

  

where 1 2 4, , ,i i i    and 5i  are observations of iid random normal distributions with mean 0 and standard 

deviation 750, 100, 750, and 50, respectively. In population 1, there is a linear relationship between x  and 

1y  with a correlation of approximately 0.6. In population 2, there is a non-linear relationship between x  

and 2.y  In population 3, 3y  is categorical and the values are obtained from independent Bernoulli random 

variables with parameter 0.8 for large values of x  and 0.2 for small values of .x  In population 4, there is 

no relationship between x  and 4.y  In population 5, there is a very strong linear relationship between x  and 

5y  with a correlation of approximately 0.99. 

Two vectors of response probabilities are created as follows  

 

1

2 2
1 1 1 1 1 1

2

1
= ,

1 exp( )

1 ( ) if ( ) > 0.01,
=

0.9 otherwise,

i

i

i i
i

p

a x k h a x k h
p

 

     



x λ

  

where 1 =a  0.0005, 1 =k 25.79116, 1 =h 0.9, and = ( 2, 0.04) .λ   Both vectors are constructed so that 

they yield a population mean response rate of approximately 50%. Note that depending on the selected 

sample, the sample mean response rate may be larger or smaller than 50% as units are not necessarily 

selected uniformly across all values of .x  For the first vector of response probabilities, the logistic regression 

model in equation (2.4) is correctly specified. For the second vector of response probabilities, this model is 

misspecified. For both vectors, large values of x  tend to have large response probabilities. Figure 7.1 shows 

the five populations and Figure 7.2 the response probabilities as a function of the values of .x  
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Two sampling designs are considered: 1) simple random sampling without replacement where =n 200 

units are selected; 2) stratified sampling where two strata are considered. The first stratum contains the units 

with a x -value smaller than the median value of ,x  the second stratum contains those units with a x -value 

larger the median. Forty units are selected from the first stratum using simple random sampling. The 

sampling fraction in the first stratum is 4%. One hundred and sixty units are selected from the second stratum 

using simple random sampling. The sampling fraction in the second stratum is 16%. 

Ten thousand simulations are run as explained in what follows for each population, each sampling 

design, and each vector of response probabilities. This results in 20 scenarios. A sample of size =n 200 is 

selected according to the sampling design. A set of respondents is generated with Poisson sampling design 

with the vector of response probabilities. Function optim is used to solve the estimating equations to obtain 

the parameters of the response model as presented in Section 3. The function minimizes the maximum of 

the absolute relative value of the left-hand-side of estimating equations (3.1), (3.2), and (3.3) over the 

auxiliary variables. We define that the algorithm converges if this maximum is less than 0.01. The initial 

value of the parameter vector is set to (0, 0)  so that the initial response probabilities are all 1/2. When 

comparing the performance of the NWA estimators and their variance estimators, only those simulation 

runs for which the algorithm converges are used for computing comparison measures of a given estimator. 

The total Y  is estimated via seven estimators listed below. 
 

1. Ŷ (HT): the Horvitz-Thompson estimator. Note that this estimator is unavailable in practice with 

nonresponse. It serves here as a comparison point.  

2. ˆ ( ):pY p  estimator with the true response probabilities in (2.2). This estimator is unavailable in 

practice. It serves here as a comparison point.  

3. naiveŶ (naive): estimator that ignores nonresponse, that is naive
ˆ = .i

r ir

yn
n i S

Y   

4. mle,1
ˆ
ˆ

pY (mle, 1): NWA estimator with response probabilities estimated via MLE, equation (3.1), 

with =1.ik  

5. mle,1
ˆ
ˆ
pY  (mle, 1 ):  NWA estimator with response probabilities estimated via MLE, equation 

(3.1), with =1 .i ik   

6. cal,
ˆ
ˆ U

pY (cal, ):U  NWA estimator with response probabilities estimated via calibration at the 

population level, equation (3.3).  

7. cal,
ˆ
ˆ S

pY (cal, ):S  NWA estimator with response probabilities estimated via calibration at the sample 

level, equation (3.2). 
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Figure 7.1 Five populations. 
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Figure 7.2 Two vectors of response probabilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.2 Performance of the NWA estimators 
 

The performance of the estimators is assessed through the following comparison measures defined for a 

generic estimator ˆ :gY  

• Absolute Monte Carlo relative bias (|RB|)  defined as  

 |RB| = ,
B

Y
  

where ( )ˆB = ,gY Y   ( )ˆ
gY   is the mean of the estimator over the L  simulation runs (or the L  

simulation runs for which the optimization algorithm converges if ˆgY  is a NWA estimator),  

 ( ) ( )

=1

1ˆ ˆ= ,
L

g gY Y
L

  



  

and ( )ˆ
gY   is the estimator ˆgY  obtained at the  th simulation,  

• Monte Carlo relative standard deviation (RSd) defined as  

 
1 2(VAR)

RSd = ,
Y

  

where  

 ( ) ( ) 2

=1

1 ˆ ˆVAR = ( ) .
1

L

g gY Y
L



 



  

 

The results are presented in Figure 7.3. The y-axes are displayed in logarithmic scales. For the plots of 

RSd, the maximum value on the y -axis is set to 0.5 for clarity reasons. One estimator has a value larger 

than 0.5 in scenario 4, population 2. This value is labeled on the graph. In scenarios 1 and 2, when the model 

for the response probabilities is correctly specified, all four NWA estimators show a RB of the same order 

of magnitude as the RB of the HT estimator and the estimator with the true response probabilities ˆ .pY  These 

last two estimators being unbiased, this result illustrates how the four NWA estimators are nearly unbiased, 

see Remarks 1, 3, and 5. In scenarios 3 and 4, when the model for the response probabilities is incorrectly 

specified, the two NWA estimators with response probabilities estimated via calibration show a RB of the 

same order of magnitude as the RB of the HT estimator and the estimator with the true response probabilities 
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ˆ .pY  The two estimators with response probabilities estimated via MLE show a larger RB. This illustrates 

how calibration may provide a stronger protection against misspecification of the model for the response 

probabilities as compared to MLE. In all four scenarios, the naive estimator yields the larger RB. 

 
Figure 7.3 |RB|  and RSd for seven estimators, five populations, and 4 scenarios. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In scenarios 1 and 2, when the model for the response probabilities is correctly specified, all four NWA 

estimators show a variance smaller than the variance of the estimator with the true response probabilities 
ˆ .pY  This confirms that a gain in efficiency of the total estimator is obtained when estimating the response 

probabilities via MLE or calibration as compared to using the true response probabilities, see Remark 7. In 

these two scenarios, all four NWA estimators show a RSd of the same order of magnitude. In scenarios 3 

and 4, when the model for the response probabilities is incorrectly specified, the two NWA estimators with 

response probabilities estimated via calibration show a RSd smaller than the RSd of the two NWA 

estimators with response probabilities estimated via MLE. This illustrates how calibration may provide a 

stronger protection against misspecification of the model for the response probabilities as compared to MLE. 
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7.3 Performance of the variance estimators 
 

The variance of the four NWA estimators is estimated for each simulation run with the formulae of 

Section 6. The performance of the variance estimators is assessed through the following comparison 

measures defined for a generic estimator ˆ :gY  

• Absolute Monte Carlo relative bias (|RB|)  defined as  

 
sim

| |
|RB| ,

ˆV ( )g

B

Y
   

where sim
ˆV ( )gY  is the variance of ˆgY  over the L  simulation runs for which the optimization 

algorithm converges, ( )
sim

ˆ ˆ ˆB = V ( ) V ( ),g gY Y   and ( )ˆ ˆV ( )gY   is the mean of ˆ ˆV( )gY  over these L  

simulation runs,  

• CR: the actual coverage rate of the 95% confidence interval, i.e., the proportion of simulation 

runs for which the 95% confidence interval contains the true total .Y  

 

The results are presented in Figure 7.4. The y-axes are displayed in logarithmic scales. To ease the 

reading of the graphs, four RB larger than 1 were set to 1 and five CR smaller than 0.5 were set to 0.5. In 

scenarios 1 and 2, when the model for the response probabilities is correctly specified, the RB of the variance 

estimator with response probabilities estimated via MLE tends to be smaller than the RB of the variance 

estimator with response probabilities estimated via calibration. In scenarios 3 and 4, when the model for the 

response probabilities is incorrectly specified, it is the opposite. In scenarios 1 and 2, all four variance 

estimators yield a CR generally close to the nominal coverage of 95%. In scenarios 3 and 4, the variance 

estimator with response probabilities estimated via MLE yields very low CR in several cases. 

 
7.4 Weights and convergence 
 

In some cases, the estimating equations used to obtain estimated response probabilities may not admit a 

solution. In other cases, a solution to the estimating equations exists but the resulting weights, that is, the 

inverse of the estimated response probabilities, may be very large. Section 6 of Hasler (2023) provides 

details and explanations. In order to illustrate these problems of convergence and extreme weights, the 

following three comparison measures are computed for each NWA estimator   

• Maximum weight: the largest final adjusted weight ˆ1 ( )i ip  over all 10,000 simulations,  

• Mean Relative Error (Mean RE): the mean over 10,000 simulations of the maximum of the 

absolute relative error of the estimating equation,  

• Rate calib: the proportion of simulations for which the Mean RE is smaller than the threshold of 

0.01. We define that the algorithm converges to a solution when the Mean RE is smaller than this 

threshold.   
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Figure 7.4 |RB|  and CR for four variance estimators, five populations, and 4 scenarios. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The results are presented in Figure 7.5. The y-axes are displayed in logarithmic scales. One estimator 

yields a Max weight of more than 400,000 in Scenario 4. To ease the reading of the graphs, this value is set 

to 15,000. In scenarios 1 and 2, when the model for the response probabilities is correctly specified, all four 

NWA estimators yield max weights close to one another. No extreme weights is noticeable. In scenario 3 

and 4, when the model for the response probabilities is incorrectly specified, very large weights are obtained 

with MLE, more so in Scenario 4. Calibration may protect against extreme weights when the response model 

is misspecified. In all four scenarios, the mean RE is smaller with MLE than with calibration. This difference 

is larger in scenarios 3 and 4, when the model for the response probabilities is incorrectly specified. 

Moreover, the algorithm yields a mean RE smaller than the threshold of 0.01 more often with MLE than 

with calibration. This illustrates how the algorithm applied to obtain the response model parameters 

converges more often to a solution to the estimating equations of MLE than to a solution to the estimating 

equations of calibration. 
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Figure 7.5 Max weight, mean relative error, and rate of calibration for four NWA estimators, five populations, 
and 4 scenarios. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
8. Discussion 
 

We build on Kim and Kim (2007) and develop asymptotic properties of the NWA estimator when 

calibration is applied to estimate the response probabilities. For the first time, a common theoretical 

framework is considered for both approaches to NWA estimation, namely MLE and calibration. This allows 

us to compare the asymptotic behavior of four estimators in terms of bias and variance under common 

assumptions. We postulate a logistic regression model for the response probabilities. We consider two levels 

of calibration: population and full sample. The main results are 1) the NWA estimators with the response 

probabilities estimated via calibration are asymptotically equivalent to unbiased estimators, 2) a gain in 

efficiency is obtained when estimating the response probabilities via calibration as compared to the 

estimator with the true response probabilities, 3) the NWA estimator with the response probabilities 
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estimated via calibration at the population level is generally more efficient than the NWA estimator with 

response probabilities estimated via calibration at the sample level, 4) calibration may better protect against 

model misspecification than maximum likelihood when applied to estimate the response probabilities used 

in the NWA estimator, and 5) we explain and illustrate the problems of convergence to a solution to the 

estimating equations and extreme weights. The paper studies and compares NWA estimators obtained either 

via MLE or direct calibration (one-step approach). Some authors suggest the two-step approach, i.e., first 

estimate the response probabilities via MLE in order to bypass the problem of extreme weights and then 

calibrate to further improve the efficiency of the NWA estimator, see Haziza and Lesage (2016) and Haziza 

and Beaumont (2017), page 222. This goes beyond the scope of this research and is the subject of future 

work. 
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Relaxed calibration of survey weights 

Nicholas T. Longford1 

Abstract 

Population surveys are nowadays rarely analysed in isolation from any auxiliary information, often in the form 
of population counts, totals and other summaries. Calibration, or benchmarking, by which the weighted sample 
totals of auxiliary variables are matched to their (known) population totals, is widely applied. Methods for 
adjusting the weights to satisfy these constraints involve iterative procedures with unknown finite-sample 
properties. We develop an alternative method in which the weights are calibrated by minimising a quadratic 
function, requiring no iterations and yielding a unique solution. The relative priority of each constraint is 
represented by a tuning parameter. The properties of the weights and of the calibration estimator, as functions of 
these parameters, are explored analytically and by simulations. A connection of the proposed method with ridge 
calibration is established. 

 
Key Words: Auxiliary information; Benchmarking; Priority; Ridge regression; Survey sampling; Weight adjustment. 

 
 

1. Introduction 
 

Calibration, or benchmarking, is generally regarded as an indispensable accompaniment of estimation 

of population summaries in large-scale surveys that are conducted in an environment in which other data 

sources provide auxiliary information. Such information has a potential to make estimation more efficient 

or for it to acquire some other valuable properties or attributes. Calibration has an important role in 

compensating for imperfections in the sampling design and its implementation, such as deficiencies in the 

sampling frame and nonresponse. 

Calibration has an extensive literature; Deville and Särndal (1992) is widely regarded as a landmark, 

reinforced by Lundström and Särndal (1999) for its application in the context of modern official statistics. 

Estevao and Särndal (2006) and Särndal (2007) review subsequent developments. For more recent literature 

surveys, see Kim and Park (2010), Brick (2013), Wu and Lu (2016) and Lohr and Raghunathan (2017). The 

monograph of Tillé (2020) contains a comprehensive treatment of the subject. Devaud and Tillé (2019) is 

an appraisal of the impact of Deville and Särndal (1992) on survey sampling, and official statistics in 

particular. Davies (2018) reviews a wide range of methods for calibration. In his terminology, hard 

calibration refers to optimisation while satisfying a set of constraints with no scope for any discrepancy. We 

prefer soft calibration in which a compromise is sought among the constraints and objectives of weight 

adjustment and subsequent estimation. 

Model-based and model-assisted approaches have found a fertile ground in survey sampling in general, 

and weight calibration in particular. Ordinary regression and its various generalizations have been widely 

applied; see Haziza and Beaumont (2017) and references therein. One such approach is motivated by ridge 
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regression (Hoerl and Kennard, 1970), in which the imperative of satisfying the benchmark constraints is 

moderated to promote stability of the solution (calibration weights), to avoid large adjustments, 

unacceptable and extreme values, and reduce the dispersion of the weights. Beaumont and Bocci (2008) 

relate the original proposal by Chambers (1996) to the likelihood-based approach of Chen, Sitter and Wu 

(2002). 

Calibration is especially challenging when a lot of auxiliary information is available, and many 

population totals are to be matched. Cardot, Goga and Shehzad (2017) and Vera, Sánchez Zuleta and Rueda 

(2023) address this problem by projecting the auxiliary data onto a manageable subspace for which 

established methods can be applied. See also Dagdoug, Goga and Haziza (2023) for a model-assisted 

approach. 

We introduce a method of benchmarking in which the goal of matching the calibration constraints is 

relaxed to reducing the discrepancies between the sample summaries and their targets in line with specified 

priorities. The algorithm we develop caters for the same constituency of problems as the established methods 

of calibration but permits integration of the analyst’s (or their client’s) priorities in a flexible and transparent 

manner. The algorithm requires no model-related assumptions but is closely related to ridge calibration, in 

which a model is implied (Chambers, 1996; Rao and Singh, 2009). The priorities turn out to be very much 

like the reciprocals of the ridge coefficients. This approach has some commonality with Guggemos and Tillé 

(2010) who combine hard calibration with penalisation and regard it as a design-based alternative to 

procedures based on mixed models. Our approach is based entirely on penalisation, although by relating it 

to ridge calibration we establish a link with linear models. 

The algorithm is computationally undemanding and some of its properties are derived analytically. 

Specification of the priorities as tuning parameters may seem like an additional burden; however, these 

parameters facilitate a control of the process of calibration that is not available with some established 

methods. 

For a similar computational approach in an unrelated context, namely, balancing in causal inference, see 

Longford (2024). It replaces the goal of achieving a balance of specified quality for two treatment groups 

on a set of background variables with the best balance that can be achieved given the analyst’s priorities ‒ 

the relative urgency or importance of reducing the imbalance for each background variable. 

The remainder of this section sets up the notation and presents the analytical context of the problem. The 

next section formulates the problem, derives its solution and relates it to ridge calibration. Section 3 

discusses how the tuning parameters are to be set. Section 4 illustrates the method on examples. Section 5 

presents a simulation study that demonstrates the efficiency of the proposed estimator and explores the value 

of auxiliary information and good implementation of the sampling design. The concluding section 

summarises the method, its strengths and full potential, and discusses some unresolved issues. 
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1.1 Notation and context 
 

In a population survey with a specified sampling design, we consider an estimator of the population total 

of a variable ,y  linear in the vector of its observed values 1= ( , , ) .ny yy …   For example, when the sample 

size n  is fixed, this may be the Horvitz-Thompson estimator (Horvitz and Thompson, 1952), HT
ˆ = , w y  

where 1= ( , , )nw ww …   is the vector of sampling weights, equal to the reciprocals of the probabilities of 

inclusion of the subjects in the sample. These probabilities are set by design and, possibly, adjusted after 

the sample is drawn. 

Suppose the population totals kt  are known for one or several variables ,kX = 1, , .k K…  Denote by X  

their collection. We use X  also for the n K  matrix formed by the values of these variables in the sample; 

kx  denotes column k  of .X  To simplify the discourse, we assume that every variable kX  in X  is either 

ordinal (continuous) or binary. A discrete variable with 2H   categories is represented in X  by H  binary 

(dummy) variables. Singularity of X  will raise no issues. We reserve the subscript 0 for the intercept, 

0 = (1, ,1) ,x …   and denote 0= ( , ).X x X  

Calibration is defined as a transformation of the weights, = ( ),Cu w  for which the weighted total kx u  

matches the population total kt  for every variable .k  That is, calibration arranges that = ,X u t   where 

1= ( , , ) .Kt tt …   Transformations of the original variables, including interactions (products), may be added 

to X  when their population totals are known or are estimated with negligible error. Other population 

summaries, such as variances and quantiles, can also be matched. 

We write ( ) = ( ; , )C Cw w X t   to indicate the auxiliary information involved; this is useful when we 

consider which variables to include in .X  We may qualify the estimator ̂  similarly, by writing ˆ ( ) u  and 

ˆ{ ( )}C w  or, more completely, ˆ{ ( ; , )}.C w X t   The outcomes y  play no role in the search for = ( ).Cu w  

Therefore, so long as y  is not inspected until we settle on a particular calibration ( ),C w  the properties of 

estimator ˆ ( ) u  can be assessed without any regard for how u  was derived. No concerns about capitalising 

on chance or data-snooping arise, even if calibration is explored using several matrices X  and parameters 

involved in .C  Of course, the properties of ˆ ( ) u  depend on .u  

In one perspective, when the estimation error ̂   and its stochastic summary, such as the bias or mean 

squared error (MSE), are the sole concern, calibration has a distinctly cosmetic quality. In another, 

prevailing in practice, it is essential for the credibility of the estimates, even at the expense of some bias and 

inflation of MSE. Only when this inflation is substantial, or the weights ( )C w  are much more dispersed 

than ,w  some improvisation is called for. This often happens for relatively large ,K  when there are many 

auxiliary variables and constraints associated with them. This problem is usually resolved by removing 

some variables from .X  

We regard the dichotomy of including or excluding a variable in the calibration process as too rigid, and 

develop an approach in which the calibration constraints are assigned priorities that reflect the importance 

or urgency to match the weighted sample total of auxiliary variable kX  with its (population) target .kt  

Priority is assigned also to other desirable properties: small alteration of the weights by the adjustment, 

preference for smaller dispersion of the elements of u  and aversion to a change of the total of the weights. 
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In brief, the established constraints of exact match (no discrepancy) are replaced by penalties for the 

discrepancies. These penalties allow for some slack or leeway; they involve user-defined coefficients that 

quantify the relative priority of the constraints. 

Our formulation of the problem leads to quadratic optimisation that has a closed-form solution. It 

involves no iterations and no large matrices have to be inverted (numerically), even with many margins 

being matched for large-scale data. For a set of tuning parameters, called priorities, the solution is unique, 

and its dependence on these priorities is easy to explore, dispensing with the need for any asymptotic theory 

and extensive experimentation with a black-box-like algorithm. 

The priorities have a natural interpretation as the importance or urgency of each calibration constraint. 

More precisely, these constraints are not satisfied exactly, as stipulated in hard calibration, but each 

discrepancy = ,k k kt x u  an element of = ,δ X u t    may be made negligible, 0,k   by setting the 

corresponding priority sufficiently high. At the other extreme, zero priority for variable k  is equivalent to 

dropping column kx  from .X  Such flexibility may be seen as a distraction, imposing the burden of 

declaring the priorities, and having to justify the choice in a subsequent report. However, it offers an 

opportunity to incorporate the client’s perspective, value judgements, insights and remits in the analysis. 

Also, one or a few outlying discrepancies | |k  can be reduced by increasing the corresponding priorities, 

possibly at the expense of increasing some other discrepancies. 

 
2. Unconstrained optimisation 
 

Denote by K0  the vector of zeros of length .K  The subscript K  is dropped when the length of the vector 

is obvious from the context. We use the symbols n1  and 1  similarly for the vector of ones, and I  for the 

identity matrix. For a population of (finite) size ,N  we consider a sample of (fixed or random) size n N  

with the vectors of observations y  and base weights .w  

A typical approach to calibration imposes the constraint = 0k  or specifies an upper bound k  on | |k  

for each = 1, , .k K…  These constraints can be replaced by a single upper bound for the sum of squares 
2 2

1= .K  δ δ    For larger K  we may distinguish variables k  for which the match, = 0,k  is more 

important than for the rest. Further, a separate priority coefficient may be assigned to each variable, or the 

variables may be partitioned to sets with constant coefficients within these sets. The squares in the sum 
2
kk

  may be associated with weights, imposing an upper bound on 2= ,k kk
p δ P δ     with the priorities 

> 0kp  set by the analyst; P  is the diagonal matrix with 1 , , Kp p …  on its diagonal. 

These ways of relaxing the calibration constraints and introducing priorities for reducing the 

discrepancies motivate our proposal. We assign a nonnegative priority kp  for each variable k  and consider 

first finding the minimum of the function  

 2

=1

( ; ) = ,
K

k k
k

F p u w    
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subject to the constraints of small deviation of u  from w  and of the weight total matching the population 

size ;N  = .n Nu 1  When N  is not known we replace it by its estimate .nw 1  Parameter kp  is confounded 

with the scale of ;kx  replacing kx  with 1
kc x  is compensated by replacing kp  with 2 .kc p  To avoid the 

associated ambiguity, we assume that each kx  is standardised, that is, linearly transformed to have zero 

mean and unit variance; kt  is adjusted accordingly. As an alternative the values kx  and kt  may be retained 

and the corresponding priority rescaled. 

We relax the constraint 0= ,tu 1  where 0 =t N  or 0 = ,t w 1  and incorporate it in the objective function 

.F   We define priority 0p  by the importance assigned to 2
0  attaining a small value. The adapted function 

F   includes the new term 2
0 0 ;p   that is, its summation is now from = 0k  to .K  It corresponds to attaching 

0 = nx 1  to X  as another column, forming the matrix .X  

We assign priority S  to small dispersion of the weights ,u  motivated by the desire for small variance of 
ˆ ( ) = , u u y  and R  to the desire for small alteration of the weights, which is indirectly related to bias 

reduction, preferring ˆ ( ) u  to remain close to estimator ˆ ( ) w  which would be unbiased if the weights w  

were correct and n  fixed. Note that small variance cannot be equated with efficiency. 

Instead of ( )F u  we find the (unconstrained) minimum of the function  

 

2

=0

2

=0

1
( ; ) = ( ) ( ) .

1
= ( ) 2 .

K

k k
k

K

k k
k

F p R S
n

R S S p R R
n





 
     

 

    





u w u w u w u u u 11 u

u u u 11 u u w w w





   

    

  

Since optimising cF  for positive constants c  constitutes identical problems, no generality is lost by 

assuming that = 1.R S  With this convention, and by expanding  

 2 2= 2k k k k k k k k k kp p p t p t  u x x u u x        

for = 0, , ,k K…  we can express F  compactly as  

 ( ) = 2 ,F D u u Hu u s    

where  

 
= 0

0

= 0

=  =

= (1 )  = ;

K

n k k k n
k

K

n k k k R
k

p

t
R R p t

n

 

   





H I x x I XPX

s w 1 x w XPt

 

 (2.1) 

1
0= (1 ) ,R nR R n t w w 1 1

0 0= ,np p S =k kp p  for = 1, , ,k K… = diag ( ),P p  where 0 1= ( , , , ),Kp p pp …  

and 2
0= (1 )D R R t n  t Pt w w   is a positive scalar not relevant to what follows. The minimum of 

( )F u  is attained for 1= ,u H s  and the minimum attained is 1( ) = .F D u s H s  The calibration estimator 

of   is 1ˆ ( ) = = . u y u y H s   Section 3 discusses how the values of the priorities kp  and R  should be set. 
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2.1 Inversion of H  
 

For large sample size ,n  numerical inversion of H  might seem like a nontrivial computational hurdle. 

We apply a recursive algorithm that exploits the form of H  as the sum of a matrix that is easy to invert, ,I  

and one, ,XPX  of (relatively) low rank, at most 1 .K n   We note in passing that singularity of the 

matrix 0= ( , )X x X  raises no computational issues, although it may have some consequences on the 

interpretation of the priorities in .p  For example, if =k lx x  for some ,k l  then the common variable is 

more appropriately associated with priority .k lp p  Also, a conflict arises when 0 = nx 1  is equal to the total 

of the set of columns of X  that correspond to the indicators for a categorical variable (prior to 

standardisation), but the total of the corresponding targets (population counts) kt  differs from 0 .t  The 

algorithm is not affected by such a conflict. 

Denote 1 = nH I  and 1= ,k k k k kp H H x x = 0, , ,k K…  so that = .KH H  We have the identity  

 1 1 1 1
1 1 11

1

= .
1

k
k k k k k k

k k k k

p

p
   

  





H H H x x H
x H x




  

Its validity is easy to check by evaluating the product of the expressions for kH  and 1.k
H  In the recursive 

evaluation of 1= u H s  we do not have to form any matrices kH  or 1
k
H  because we require only the vectors 

1=kl k l
h H x  and 1

, w = .k k
h H w  For the former we have the identities  

 
1,

1, 1,

1,

= ,
1

k k k l

kl k l k k

k k k k

p

p



 






x h
h h h

x h




  

and for the latter the same identities, with index l  replaced by w. Note that every denominator 
1
11 k k k kp 
 x H x  is positive. The solution,  

 0
, w 0

= 0

= (1 ) ,
K

K K k k Kk
k

t
R R p t

n
   u h h h   

is a linear combination of the vectors 1=Kk k
h H x  and 1

,w = .K
h H w  In summary, there is a unique solution 

u  and it is evaluated only by operations on vectors of length .n  Matrix H  involves neither R  nor .w  The 

vector s  is a linear function of both R  and ,w  and therefore so is the solution .u  For = 0,R u  does not 

depend on .w  

 
2.2 Relation to ridge calibration 
 

In this section we show that the priorities p  have a role similar to the ridging costs in Chambers (1996), 

equation (10), although function F  incorporates all constraints and aims of calibration, and therefore 

involves additional parameters. Just like ridging can be motivated as a compromise between applying no 

ridging and infinite ridging, our proposal is a compromise of =p 0  and infinitely large .p  Both approaches 

yield estimators that can be interpreted as shrinkage estimators. 
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In equation (2.1), Rw  is a convex combination of w  and 0 ,t n  interpreted as shrinking w  towards its 

mean or expectation. Write = ,R R Rw Xν ε  where = ( )R R
ν X X X w   is a projecting vector and Rε  is such 

that = .RX ε 0  Here ( )X X  is a generalised inverse of .X X  Its non-uniqueness is resolved below. We 

have the analogous decomposition = ,y Xγ ω  where = ( ) ,γ X X X y   so that = .X ω 0  The vectors Rν  

and γ  are respective least-squares fits for Rw  and y  in terms of .X  We do not assume any aspects of 

validity of the implied ordinary regressions R( | )w X  and ( | ).y X  Note that the residuals Rε  and ω  are 

unique, and = .R Rε y ε ω   

Let 0 = (1, 0, , 0)e …   be the vector comprising one unity and K  zeros. For a matrix A  with 1K   

columns, 0Ae  is equal to its first column. Owing to orthogonality, 0 = ,X x 0  arranged by standardisation, 

we have the identity 0 0( ) = ( ) = .n n X X X 1 X X e e    Hence  

   0
0

(1 )
= ,R

R t
R

n

 
ν X X X w e   (2.2) 

and by its substitution in (2.1), 

     
11= = .R R

   u H s I XPX X Pt ν ε   

The identity  
11 1( ) =
   I XPX I X P X X X    implies that 

 
       

   

1 11 1

11 1

=

= .

R R

R R

  

 

     

  

u X I P X X X X Pt ν I X P X X X ε

X P X X t P ν ε

   



  

Therefore the calibration estimator is 1 2 3
ˆ ˆ ˆ ˆ( ) = ( ) ( ),    u w w  where  

 

 

 

11
1

11 1
2

3

ˆ =

ˆ ( ) =

ˆ ( ) = .

R

R









 





t P X X X y

w ν P P X X X y

w ε ω

  

  



 (2.3) 

Here 1̂  is an estimator of the population total   based on the ridge regression prediction by the linear 

model ( | ).y X  Not involving the weights w  and based on ridging, 1̂  is unbiased only when the biases due 

to no weighting and ridging happen to cancel out. When = 0,Rε ω ˆ ( ) u  has the form of ridge calibration 

(Chambers, 1996; Goga and Shehzad, 2010), with P  in the role of the (diagonal) cost matrix and t  adjusted 

by 1 .R
P ν  However, the crossproducts X X  and X y  are evaluated without the weights .w  

As 1P  converges to the zero matrix, which corresponds to diminishing interest in the deviation of u  

from w  as well as in the dispersion of ,u ˆ ( ) u  approaches 1( ) R
 t X X X y ε ω     when X  is nonsingular. 

This reduces to the least-squares predictor when = 0.Rε ω  If X  has deficient rank and all priorities in p  are 

large, then 1 P X X  has one or more small eigenvalues, and so ˆ ( ) u  is unstable. 
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As each priority in p  converges to zero, ˆ ( ) u  converges to the shrinkage estimator =Rw y  

0(1 ) ,R R t y w y  where y  is the sample (unweighted) mean of .y  For = 0R  this is the trivial 

(unweighted) estimator 0t y  and for = 1R  it is the weighted mean .w y  Note that the elements of p  (the 

diagonal of )P  are not set by the usual considerations of ridge regression to reduce the sampling variance 

in exchange for a small bias. Introducing these considerations is not straightforward because of the 

contribution of 2 3
ˆ ˆ   to ˆ.  

Denote by ŷ  the projection vector ( )X X X X y   and by Pŷ  its “ridged” version 1 1( ) . X P X X X y   

Then 3 1
ˆ ˆ( ) = = ( )R R w ε ω w y y   and, owing to (2.2), 
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11 10
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w w X X X P P X X X y

e P P X X X y

w X X X P X X X y y 1

w y y

   

  

    



  

Hence the total 2 3
ˆ ˆ( ) ( ) w w  is  

   0
23 P

0

ˆ ˆ= (1 ) .
1

t y
R R

np
   


w y y   

It is a linear function of both w  and ,R  shrinking the weighted total of the prediction errors, P
ˆ( ),w y y  

toward a quantity that does not involve .X  Column 0 of 1 P X X  is equal to  0 01 ,p n e  and so, 

recalling the notation ,X P  and ,t ˆ ( ) u  can be expressed as  

    
11

P 0

0

ˆ 1 .
1

R
R t y

np

  
     

 
t P X X X y w y y          

It is useful to present ˆ ( ; )R u  as the linear interpolation of  
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0

0

w

ˆ ˆ( ; = 0) =
1

ˆ=

ˆ ˆ( ; =1) = ,

t y
R

np

t y

R












u t β

t β

u w y δ β

 





 

  

where  
11ˆ = ,
 β P X X X y  1 1ˆ = ( ) , β P X X X y      and w = δ X w t  is the discrepancy vector 

evaluated with weights .w  The 1K   vectors t  and β̂  are formed from t  and β̂  by dropping their 

respective first elements. Thus, ˆ ( ; = 0)R u  can be described as the trivial estimator 0t y  adjusted by ridge 

prediction at .t  For 0,R   



Survey Methodology, December 2024 269 

 

 
Statistics Canada, Catalogue No. 12-001-X 

   0

0

ˆ ˆ ˆ( ; = ) = ( ; = 0) ;
1

t y
R r R r

np
 

 
   

 
u u w y Xβ  (2.4) 

that is, ˆ ( ; = 0)R u  is adjusted by R -multiple of the estimator of the population-total error in the prediction 

of y  and a fraction of 0 .t y  Setting the value of R  matters more when the prediction errors ˆ ˆ= y Xβ y y  

are large and are correlated with the base weights .w  Note that ̂  is evaluated without using ( ) .X X  

The bias of ̂  is a linear function of ,R  so it is minimised either for = 0R  or 1. Even though ̂  does 

not involve w  when = 0,R  it would have the smallest bias when the effect of the weights is estimated well 

by the prediction model. This is the case when the weights are constructed using only variables in ,X  for 

which the population totals are available. We confirm this by simulations in Section 5. 

In Appendix A we derive and discuss an expression for ̂  in (2.4) when calibration is on a single 

categorical variable (and the population size). The estimator has a decomposition (1) ( )ˆ ˆ ˆ= ,Z    where (1)̂  

depends on ,μ p  and t  only through 0p  and 0 ,t  and ( )ˆ Z  does not depend on 0 .p  Also, ( )ˆ = 0Z  when 

1 = = = 0.Kp p…  In this case, calibrating only on the population size,  

 (1) 0
0

0 0

ˆ ˆ= = 1 .
1 1

n

n p R
R y t y

n p n p
 

  
    
     

w y w 1    

For = 0,R  we have ˆ = ot y  for any 0 .p  For = 1,R 0 0 0
ˆ = (1 ) ( ) ,nnp np t y    w y w 1   which 

converges to the “obvious” adjustment 0( )nt y w y w 1   as 0 .p   

 
3. Setting the priorities 
 

In some applications, the constraints are equally important for all the variables, but only after taking into 

account the dispersions of these variables. As stated earlier, we assume that every variable in X  is 

standardised. Setting the priorities 1, , Kp p…  to a common constant is a reasonable starting point or default. 

For large K  we may define a small number of groups of variables and assign a common priority within 

each group. For example, these groups of variables may be associated with distinct categorical variables. 

The intercept 0 =x 1  has a special status among the variables in .X  High priority 0p  corresponds to the 

desire for small 0| | .  When 0 =t N  and 0p  is set sufficiently large, .Nu 1   

By construction, 0 < < 1,R  so =R 0.5 might be a default. A more profound approach would weigh 

the relative importance of small change ( )R  and small variance ( )S  of the calibration weights. With greater 

,n  concerns about bias become dominant, so smaller S  and greater = 1R S  are appropriate. Setting R  to 

a very small value is usually unwise because then ̂  depends only weakly on .w  Reducing the difference 

u w  and the dispersion of the weights are both devices to avoid extreme (very large and negative) weights. 

These goals are given greater prominence by reducing the priorities, e.g., from p  to cp  for 0 < < 1.c  

These guidelines are admittedly rather vague and incomplete. However, the computational simplicity of 

the solution allows us to explore a range of plausible settings of p  and ,R  especially when p  involves only 
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a few distinct values. For example, when X  is based on a single discrete variable with H  categories, then 

1 = = ,Hp p…  and so we have only three tuning parameters, 0 ,p 1p  and .R  When there are two discrete 

variables four parameters are involved. When the entire two-way table of the population margins for these 

two variables is available, matching the univariate margins is usually more important than matching the 

two-way subtotals. 

Dependence of the fitted discrepancy =k k kt x u  on kp  can be explored analytically. By matrix 

differentiation we obtain the identity  
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and its special case,  
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2 1= 2 < 0,k
k k k

kp


 




x H x   

so that  

 
 2

1
log

= 2 .
k

k k

kp








x H x   

Hence, | |k  is a decreasing function of ,kp  in accord with the motivation of kp  as the relative importance 

of reducing | | .k  However, the decrease is slower when | |k  is smaller;  

 
 

 
2 2

21

2

log
= 2 ,

k

k k

kp







x H x   

so 2
k  is a log-convex function. Interpreted loosely, trying to wipe out a small discrepancy | |k  requires a 

sizeable change of ,kp  and that could inflate some other discrepancies | | .l  

The solution u  is a linear function of ,R  which is involved only in ;s  

 1 0= ,n

t

R n
  

 
  

u
H w 1   

and  

 1 0= .k
k n

t

R n

   
 

  
x H w 1  (3.2) 

The expression for s  in equation (2.1), as well as the original intent, imply that R  acts as a shrinkage factor, 

reducing the deviation of the weights u  from w  and 1 R  as reducing their dispersion. Indeed, when no 

auxiliary information is available and nu 1  is matched to ,nw 1 = nH I  and the solution is the convex 
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combination Rw  introduced in equation (2.1). In this case, we have a simple expression, E( ) =R w y  

(1 ) cov( , ),R w y   for the bias of the calibrated estimator when the weights w  are correct and w y  is 

unbiased. 

The bias of ˆ ( ) u  is likely to be largest when R  is set to zero, when u  does not depend on .w  At the 

same time, 0 = 0  only when = 0,R  unless 0= ;tw 1  see Appendix B for proof. So, focus on one goal of 

calibration to the detriment of others may be ill-advised. 

 
4. Examples 
 

In this section we demonstrate the control of the discrepancies 0= ( , , )K δ …   and dispersion of the 

calibrated weights u  by the priorities p  and parameter .R  We use a synthetic population of size =N

120,000 from which we draw a sample of expected size E( )n  1,000 according to a design with unequal 

probabilities and independent inclusions in the sample, without replacement. In the population, we have a 

discrete variable Z  with six categories and a continuous variable .X  

The six subpopulations defined by Z  have sizes between 13,000 and 26,000. The values of the sole 

continuous background variable X  are generated as random samples, one within each category ,k  from 

gamma distributions with shapes k  and common rate 5.0, where =ξ (6.4, 6.7, 6.1, 6.6, 6.9, 6.4), so that 

the within-category means of X  are in the range 1.22   1.28 and their standard deviations in the range 

0.244   0.276. The outcome Y  is generated as 1
2 exp( ),X   where   comprises independent random 

samples from the normal distributions with means k  in category k  and standard deviations (0.05, 0.07, 

0.04, 0.06, 0.08, 0.05). The entire setting has been selected arbitrarily, to generate a dataset in which the 

distributions of X  and Y  differ across the categories of ,Z  are skewed to the right, and X  and Y  are 

moderately correlated both overall (their correlation is 0.30), and within the six categories. The relevant 

summaries of ,X Y  and Z  are given in Table 4.1. 

 
Table 4.1 

Population summaries of the variables ,X  Y  and .Z  
 

 Category ( )k  of Z   

1 2 3 4 5 6 All 

1 6t t…  25,000 15,000 22,000 26,000 13,000 19,000 120,000 

X  31,949 20,053 26,710 34,329 17,890 24,421 155,352 

X  (sd) 1.28 (0.51) 1.34 (0.52) 1.21 (0.49) 1.32 (0.51) 1.38 (0.52) 1.29 (0.51) 1.29 (0.51) 

Y  117,449 92,376 79,480 146,142 96,201 89,336 620,984 

Y  (sd) 4.70 (0.32) 6.16 (0.47) 3.61 (0.27) 5.62 (0.39) 7.40 (0.60) 4.70 (0.33) 5.17 (1.18) 
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4.1 Sampling design 
 

For drawing a sample from this population we consider a design that would be planned, and from which 

the base weights are calculated. In this design, the probabilities of inclusion are constant within the six 

categories, set to 0.0075, 0.0093, 0.0070, 0.0090, 0.0110 and 0.0075. The inclusions are mutually 

independent. 

We inject realism into the simulated survey data collection by generating the “real” inclusion 

probabilities that reflect the imperfect implementation of the survey. The design probabilities are multiplied 

by a random sample from the log-normal distribution based on 2(0, ).N  No imperfection corresponds to 

= 0  and larger ,  with greater deviations from the base weights, to greater impact of the imperfections 

in the conduct of the survey. That is, ˆ ( ) w  is biased because the base weights w  have been distorted in the 

implementation of the design, which has led to an altered (perturbed) set of weights †.w  By applying 

ˆ{ ( )}C w  we aim to remedy this problem. In practice, the altered weights †w  cannot be recovered, nor 

estimated, but there may be some information (or well-founded opinion) about the extent of such 

perturbation. In our model, this perturbation is characterised by the variance 2  of the changes of the log-

weights, or equivalently, of the log-probabilities. 

In this section we use a sample drawn with = 0.1. This amounts to a substantial perturbation; the 

standard deviations of the perturbed weights in this sample are 13.3, 10.4, 14.4, 11.5, 9.7 and 12.3 within 

the respective categories 1, ,…  6, whereas the base weights are constant within the categories. The average 

base weight is w  122.44. The average of the perturbed weights is † =w 123.22. 

 
4.2 Calibration 
 

We calibrate a single sample and we are concerned solely with the discrepancies .δ  We use the tuning 

parameter values  

 0 =p 1.5, 1 6= = =p p… 0.15, 7 =p 0.5, =R 0.9, (4.1) 

and call them the reference setting. We use the notation Xp  for 7p  and X  for 7 .  When 1 6= = ,p p…  we 

denote the common value by Z .p  

We apply first calibration with values of R  in the range (0,1)  and the reference setting for .p  The 

discrepancies, as functions of ,R  are plotted in row A at the top of Figure 4.1. In the left-hand panel, the 

discrepancies are plotted for X  and the six categories of .Z  The plot confirms that these functions ( )k R  

are linear; see equation (2.4). The discrepancies are dispersed more for = 0R  than for = 1,R  although some 

of the functions ( )k R  cross zero at (0,1).R  

Function 0 ( )R  is plotted in a separate panel because a much narrower scale is required for the vertical 

axis. The match is perfect, 0 = 0,  for = 0,R  in accord with the proof in Appendix B. The standard 

deviations of u  and ,u w  marked by the respective symbols U and D, are drawn in the right-hand panel, 

together with the standard deviation of w  (W), which, of course, is constant. The standard deviation of u  
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increases and the standard deviation of u w  decreases with .R  Based on these three plots we would choose 

a large value of ,R  to reduce the values of k  overall, even at a small sacrifice of 0 .  We settle on =R

0.9, indicated by vertical dashes. 

 
Figure 4.1 Discrepancies δ  and standard deviations of the weights as functions of the parameter (0,1)R  in 

row A (top), of 0 (0,2)p   in row B, of Zp  (0.02, 0.25) in row C and of Xp  (0.05, 0.65) in row D, 
all adapted from the reference setting given by (4.1), indicated in the plots by long vertical dashes. 
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In row B, the discrepancies are plotted as functions of 0p  in the range (0, 2)  with the other parameters 

given by the reference setting. Apart from 0 0( ),p  each discrepancy and standard deviation is very close to 

a constant. Function 0 0| ( )|p  decreases rapidly for small values of 0p  and converges to zero very slowly 

for large values of 0 ,p  as discussed following equation (3.1). Based on this plot, we set 0p  to 1.5. 

In row C, the value of Z 1 6= = =p p p…  is varied in the range (0.02, 0.25), and the other parameters are 

held at their reference values. The discrepancies 1 6, , …  approach zero rapidly for small values of Zp  and 

converge to zero slowly for large values of Z .p  The other functions of Z ,p 0  and X ,  as well as the two 

standard deviations in the right-hand panel, are each in a very narrow range, and their curvature is 

appreciable only for very small values of Z .p  We set Z =p 0.15. Since 3| |,  equal to 39.9 at Z =p 0.15, is 

larger than the discrepancies for the other five categories, we increase 3p  to 0.25. Now 3 =  25.4, much 

smaller in absolute value. The second largest discrepancy is for category 5, 5 = 21.2, reduced from 23.7 

with the original setting. 

The panels in row D (bottom) present the setting with Xp  being varied while the other parameters are 

held at their reference values, except for 3 =p 0.25. The diagram confirms that X X| ( )|p  decreases rapidly 

for small values of Xp  and more slowly as it approaches zero for large values of X .p  The other 

discrepancies and the two standard deviations depend on Xp  very weakly. We set X =p 0.5. 

In summary, Figure 4.1 illustrates that we can reduce any one of the absolute discrepancies | |k  by 

increasing the corresponding priority .kp  Also, by altering ,R  we can trade off small dispersion of ,u  

essential for efficiency, for small alteration of the weights (small dispersion of ),u w  indirectly related to 

bias. Figure 4.1 confirms that eradicating a small discrepancy requires substantial increase of the 

corresponding priority. It suggests that such an increase would affect the other discrepancies only slightly. 

Equation (3.1) and its discussion imply that this is not the case in general, especially with many variables 

in ,X  some of them highly correlated, when several discrepancies are nontrivial. 

 
5. Simulations 
 

In this section we study the empirical bias and root-MSE (rMSE) of the calibration estimator 
ˆ{ ( ; , )} =C w X t u y  for several settings (p  and )R  and levels of imperfect implementation of the sampling 

design, characterised by the perturbation parameter .  We also assess the contribution a variable used in 

calibration makes to the reduction of rMSE. The simulations we describe involve sets of 1,000 replications. 

We checked that this number is sufficient by comparing the results with their re-runs using 2,000 replications 

for a selection of cases. We use the same population ( =N 120,000), planned design with E( )n  1,000 and 

the process of perturbing the base weights to represent the imperfect implementation of the design, as 

described in Section 4. The bias and rMSE are presented as functions of ,R  using the interpolation based 

on (2.4). These functions are evaluated for = 0, 0.02, ,…  0.10 and a selection of vectors .p  

Figure 5.1 presents by solid black lines the bias and the root-MSE of ˆ,  as functions of (0,1)R  for 

the reference setting of p  and = 0, 0.02, ,…  0.1, as indicated at the right-hand margin. For each value 
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of ,  the bias is smallest for = 1.R  The bias functions are parallel and for   0.02 differ only slightly. 

The rMSE functions have very little curvature, are nearly parallel and also attain their smallest values for 

= 1.R  The rMSE increases with   for all ,R  although not evenly. The bias and rMSE functions for 

priorities 2p  and 1
2 p  are drawn by grey lines with long and short dashes, respectively. All the functions 

have steeper gradients for 1
2 p  and lower gradients for 2 ,p  and differ from their counterparts for the 

reference value of p  at = 1R  only slightly. Table 5.1 presents the values of rMSE at = 0R  and 1 in a 

tabular form, together with some results discussed below. 

 

Table 5.1 

Root-MSEs of the calibrated estimators of the population total of .Y  The first column indicates the variables 

on which the design probabilities are based and, in brackets underneath, the variables used in calibration. 
 

Design 
[calibration] 

   

 0 0.02 0.04 0.06 0.08 0.10 
  p  (reference)     

,Z X  

[ , ]Z X  

= 0R  1,065.6 1,067.2 1,068.0 1,070.1 1,070.8 1,075.2 

=1R  1,064.9 1,066.5 1,067.2 1,069.3 1,070.0 1,074.5 

 2p      

= 0R  1,065.3 1,067.0 1,067.7 1,069.8 1,070.5 1,075.0 

=1R  1,064.9 1,066.7 1,067.4 1,069.4 1,070.2 1,074.6 

 1
2
p      

= 0R  1,066.6 1,068.1 1,068.9 1,071.1 1,071.7 1,076.1 

=1R  1,065.1 1,066.5 1,067.3 1,069.5 1,070.1 1,074.5 

 
3 =p 0.25     

= 0R  1,064.9 1,066.5 1,067.2 1,069.3 1,070.0 1,074.5 

=1R  1,065.6 1,067.2 1,068.0 1,070.1 1,070.8 1,075.2 

 
0 =p 15     

= 0R  1,064.9 1,066.5 1,067.2 1,069.3 1,070.0 1,074.5 

=1R  1,065.6 1,067.2 1,068.0 1,070.1 1,070.8 1,075.2 

 Ridge estimators     

1̂  1,082.5 1,100.4 1,103.7 1,103.1 1,103.1 1,105.4 

W
  1,082.3 1,100.6 1,103.8 1,103.1 1,103.3 1,105.5 

  p  (reference)     

,Z X  

[ ]Z  

= 0R  1,431.8 1,440.9 1,443.0 1,445.7 1,449.0 1,449.1 

=1R  1,431.3 1,440.3 1,442.3 1,445.1 1,448.4 1,448.4 

  p  (reference)     

, ,Z X U  

[ , ]Z X  

= 0R  1,397.2 1,403.1 1,403.9 1,405.5 1,408.2 1,408.1 

=1R  1,378.6 1,384.9 1,385.5 1,386.9 1,389.4 1,389.3 

 2p      

= 0R  1,396.7 1,402.6 1,403.3 1,404.9 1,407.6 1,407.4 

=1R  1,378.5 1,384.8 1,385.4 1,386.7 1,389.2 1,389.1 

 1
2

p      

= 0R  1,398.5 1,404.7 1,405.5 1,407.2 1,409.9 1,409.9 

=1R  1,379.1 1,385.6 1,386.2 1,387.6 1,390.1 1,390.1 

 Ridge estimators     

1̂  1,445.4 1,461.8 1,463.9 1,468.6 1,473.5 1,479.5 

W
  1,426.6 1,446.8 1,448.7 1,452.7 1,457.8 1,463.6 
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Figure 5.1 shows that rMSE depends on R  and the factor c  in the priorities cp  only weakly, much less 

than it depends on .  For R  much smaller than unity, the bias is a nontrivial fraction of the rMSE but the 

gradient of the bias is to a large extent ameliorated in rMSE. For example, if the sampling variance of ̂  

were equal to 1,065 2  for all (0,1)R  and the bias decreased from 100 at = 0R  to zero at = 1,R  then the 

rMSE would attain values 1,069.7 and 1,065.0 at = 0R  and 1, respectively, that is, 4.7 apart. The 

corresponding empirical values, 1,065.6 and 1,064.9, are only 0.7 apart. 

 
Figure 5.1 Bias and root-MSE as functions of the parameter R  for the reference setting and perturbation 

= 0, 0.02, ,… 0.1, indicated at the right-hand margin; settings with the reference values of p  
(solid black lines), 2p  (long grey dashes) and 1

2 p  (short grey dashes). Calibration on Z  and .X  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We compare our calibration estimators with two alternatives based on ridge regression,  
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where W  is the diagonal matrix with w  on its diagonal and = .n N  We selected 1̂  because it is a 

component in the decomposition of ̂  in (2.3); W
  is motivated by Chambers (1996). 

These ridge estimators have much greater biases, in the range 300 – 500, but their rMSE’s are greater 

than the rMSE’s of our calibration estimators by much smaller margins; the rMSE’s of 1̂  and W
  are in 

the range 1,082.3 – 1,105.5 for   (0, 0.1); details are given at the bottom of the first block of Table 5.1. 
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For any given setting, the rMSE’s of 1̂  and W
  differ by less than 0.1. The weighted estimator w y  and 

the Hájek estimator N w y w 1   have small biases but their rMSE’s are far greater, exceeding 2,000. 

By increasing 3p  from 0.15 to 0.25, as suggested in the discussion of Figure 4.1, the bias and rMSE 

functions are altered only slightly. The bias is reduced, by up to 0.05 but, contrary to expectation, the rMSE 

is increased for all values of ,  although by no more than 0.1. When 0p  is increased from 1.5 to 15, with 

3p  set to 0.15, the bias and rMSE are altered imperceptibly, by less than 0.01. 

In conclusion, Figure 5.1 suggests that calibration increases the efficiency of ˆ,  and the estimator is not 

very sensitive to the choice of the tuning parameters, even though the discrepancies δ  are sensitive to the 

choice. In all settings we used, = 1R  is the optimal choice; that is, the criterion of small change || ||u w  

should be ignored. It also results in small bias, much smaller than for = 0.R  This does not apply in general. 

Positive ,S  that is, < 1,R  is useful when the weights are much more dispersed and not highly correlated 

with the outcome. In small samples, variance reduction is relatively more important than bias reduction, and 

then S  should be set to a larger positive value. 

The value of a margin kt  can be quantified by calibration with the corresponding variable kX  omitted, 

or assigned very small priority. By dropping the margin Xt  from calibration the rMSE functions are inflated 

substantially, to the range (1,431.8, 1,449.1) for   (0, 0.1) at = 0R  and are smaller by between 0.5 and 

0.6 at = 1.R  Details are given in the middle block of Table 5.1. 

The sampling design and calibration setting explored so far are unrealistically congenial in that the base 

weights w  depend only on the variables for which the population totals in t  are available and therefore 

3
ˆ = 0  in equation (2.3). We generate a more realistic setting by including a variable U  correlated with the 

outcome variable ,Y  and define design probabilities that depend, apart from ,Z  also on .U  In particular, 

U  is generated as a random sample from the log-normal distribution based on N (1, 0.4), so that its mean 

is 2.94 and standard deviation is 1.23. Further, the design probabilities are set to  

 U 0

0.004 ( )
= ,

max ( ) min ( )

U




U
π π

U U
  

where 0π  are the design probabilities used thus far. The probabilities Uπ  are standardised to have population 

total equal to 1,000. The “new” outcome variable is set to 1
5 .Y U  The corresponding target is 

1
5( ) =NY U 1 691,516.8. The design probabilities Uπ  scaled to yield a sample of size n 1,000, have 

standard deviations around 2.0 410  within the six categories of .Z  (The average probability is =n N

8.33 410 ).  

Figure 5.2 presents the results using the same layout as Figure 5.1. It shows that the rMSE functions 

attain far greater values than in the setting without variable ,U  the rMSE functions attain their minima for 

= 1R  but the slopes of these functions are much steeper than with the original setting. 

The ridge estimators 1̂  and W
  are less efficient than ˆ,  although W

  is now discernibly more efficient 

than 1
ˆ ;  their rMSE’s differ by between 14 (for = 0.1) and 19 ( = 0);  see the bottom of the last block 

in Table 5.1. The bias of 1̂  is in the range (330, 370), comparable to the bias of ̂  at =R 0.6. The bias of 
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W
  is much smaller, in the range ( 15, 24).  Clearly, not involving the weights w  is a handicap of 1̂  when 

the regression model ( | )y X  is deficient. 

 
Figure 5.2 Bias and root-MSE as functions of the parameter R  for the reference setting and perturbation 

= 0, 0.02, ,… 0.1, indicated at the right-hand margin. Settings with the reference values of p  
(solid black lines), 2p  (long grey dashes) and 1

2 p  (short grey dashes). Calibration on ,Z X  and 
.U  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The simulations provide evidence that our calibration estimator ̂  is more efficient than the two ridge 

estimators 1̂  and W ,  but the gains in efficiency are rather modest. Although the priorities p  can be set 

with a view to minimising the discrepancies in ,δ  a careful choice is not always rewarded by greater 

efficiency. However, bias and efficiency are fairly insensitive to the setting of .p  We obtained very similar 

results using designs with fixed sample size and stratification on .Z  

We have identified two factors that have a strong impact on the efficiency of ̂  ‒ the imperfection in 

how the sampling design is implemented, governed in the simulations by the parameter ,  and the 

completeness of vector .t  That is, efficiency is enhanced by good implementation of the sampling design 

and by calibrating on all the variables on which the sampling design is based, or by constructing the base 

weights using only variables with known population totals. Conclusions based on our simulations do not 

warrant a generalisation to settings with much more extensive calibration vector t  and complex sampling 

designs. 
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6. Discussion and conclusion 
 

We have introduced a method of calibration that matches the prescribed margins (population and 

subpopulation sizes and totals) subject to small discrepancies, while attending to the concern of efficiency. 

The imperative of an exact match and the dichotomy of matching or ignoring each available margin is 

replaced by a set of priority coefficients that quantify the importance or urgency of matching each margin, 

together with limiting the adjustment of the base weights and preference for less dispersed weights. The 

algorithm for calibrating the weights entails no iterations, nor handling any large matrices, and so it can be 

applied multiple times, searching for the best compromise of the competing constraints. 

The calibration estimator ̂  is related to a ridge regression predictor. We derived two decompositions 

of this estimator, one to the sum of a ridge regression predictor that does not involve the sampling weights, 

a bias adjustment that also has the form of ridge prediction, and a residual term that vanishes in some 

congenial settings. The other decomposition leads to a linear interpolation between the values of ̂  for 

= 0R  and 1, both of which involve simple expressions. 

Our exploration, analytically and by simulations, indicates that reduction of an absolute discrepancy 

| |k  is achieved by a small alteration of the priority kp  while the discrepancy is large, but kp  has to be 

increased substantially when k  is close to zero. This suggests that relaxed calibration applied after a careful 

exploration of the settings for the priority coefficients may be much more constructive than the binary choice 

of matching exactly or ignoring the available margin. In our experiments with relatively simple settings, we 

showed that the discrepancies δ  are easy to control but refined control is not necessarily rewarded by greater 

efficiency of the calibration estimator. However, the efficiency is quite insensitive to the detailed setting of 

the vector of priorities p  and .R  

We identified three factors that influence efficiency of ̂  strongly. The first, the level or extent of the 

imperfection in how the sampling design is implemented comes as no surprise, even though calibration is 

meant to address this problem. It may do so to some extent, but does not compensate for it fully. The second 

is the availability of the population totals for the variables on which the design weights w  are based. The 

third is the residual variance of the linear model relating the outcome y  to the variables in .X  Of course, 

these conclusions have to be confirmed in more complex settings, sampling designs and information about 

population totals. 

Our method of calibration is entirely model-free but it does not preclude adaptations that involve models. 

For example, the base weights w  may be first adjusted by a model-based or model-assisted method, and 

the resulting weights subjected to relaxed calibration. The priorities p  (and maybe also the coefficient )R  

may be set by considerations related to models, in addition to the expert judgement that we presumed 

originally. 

The decompositions we derived involve ridge regression coefficients and predictors based on implied 

models. An avenue to explore in the future is whether and when it is advantageous to replace these terms 

using model-based considerations. Another challenge is to devise ways of incorporating known or 
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conjectured properties of the outcome variable(s) in the calibration. In regularly conducted surveys, they 

may be based on insights gained from their previous rounds. In some simple settings we have identified the 

correlation of the weights and outcomes as an important factor. We conjecture that these correlations are 

important also in more complex settings. 

Adaptation of the presented method to settings with imprecise auxiliary information (West and Little, 

2012; Opsomer and Erciulescu, 2021) is another outstanding challenge. The chi-squared distance for the 

weights used in optimisation may be replaced by alternatives, possibly at the price of a more complex 

(iterative) algorithm. One exception is the chi-squared distance for the log-weights (or another trans-

formation of the weights), which may be motivated by reference to multiplicative adjustments of the 

weights. 

We set out with no intention to posit a model for the outcome variable but derived an estimator that is 

related to a model. This suggests that we should reduce the emphasis on model validity in a model-based 

approach and focus on exploiting all the available information. The offset in the ridge regression to which 

the calibration estimator is related can be considered similarly, and set by the considerations of the trade-

off of bias and variance. Maybe the committment to an approach or paradigm is inferior to their well-devised 

combination or compromise, exploiting the strengths of each and ameliorating their weaknesses. 

All the computing described in this article was accomplished in R. The code developed can be obtained 

from the author on request. 

 
Appendix 
 
A. Calibration on a single categorical variable 
 

This appendix derives an expression for the estimator ̂  when calibrating only on the population size 0t  

and the subpopulation sizes kt  of the categories = 1, ,k K…  of a discrete variable .Z  We assume that the 

probability that a category does not appear in the sample is negligible. The starting point is equation (2.4), 

according to which we have to evaluate ˆw Xβ  and ˆ ,t β  where 1 1ˆ = ( ) β P X X  and X  is matrix of 

auxiliary variables after its columns 1, , K…  are standardised. 

The original ( 1)n K   matrix of auxiliary data, denoted by or ,X  comprises n1  in column 0 and the 

indicator of category k  in column = 1, , .k K…  Denote by 1= (0, , , )K μ …   the vector of sample 

proportions of the categories of ,Z  preceded by a zero, 2
0 =1s  and 2 = (1 )k k ks    for = 1, , ,k K…  and 

1= diag (1, , , ).Ks sS …  Then standardisation is the transformation 1
or= ( ) ;n

X X 1 μ S  it leaves column 0 

intact. Since the other columns of orX  are pairwise orthogonal indicators, 1 1ˆ = ( ) β P X X X y   is 

expressed in terms of or ,X μ  and S  as  

     
1

1 (1)
or

ˆ = diag ,nn n


   β S SP S μ μμ X 1 μ y
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where (1)
0= ;μ μ e  element 0 of (1)μ  is equal to 1 and its other elements are .k  Denote 1=  Π SP S  

(1)diag ( );n μ  its diagonal elements are 01 p n  and 2 ,k k ks p n = 1, , .k K…  The inverse involved in β̂  

is  

  
1 1 1 1=

n
n

G

    Π μμ Π Π μμ Π    

where, since = 1,μ 1   

 

1

2
2

=1 =1

= 1

=   = ,
(1 )

K K
k k

k k k
k kk k k k

G n

n p
g s

n p




  



 
 

  
 

μ Π μ

  

and = 1 (1 ),k k kg n p   = 1, , .k K…  

Denote 1 1= ( , , , ) ,K Ky y y Y …   where y  is the sample mean of y  and ky  the subsample mean of y  

in category k  of .Z  Define 1 1= ( , , , )K Kw w w W …   similarly. We have the identities 1( ) =n Π μμ μ  
11

G
Π μ  and 1

=1
=

K

k k kk
a p g a Π μ  for any vector 0 1= ( , , , ) .Ka a aa …   Therefore  
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w Xβ w X 1 μ Π μμ Y μ

W μ Π Y μ

W μ Π μ Y μ Π μ

   



 

  

(The sign   is added to emphasise that the multiplication is applied to two scalars.) The same sequence of 

operations yields the identity  
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t β t μ Π μμ Y μ
 

  

Hence, after substituting to (2.4), 
(1) ( )ˆ ˆ ˆ= ,Z    where  
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(1) 0
0

0 0

2
( )

=1 =1 =1

ˆ = 1
1 1

ˆ =        
K K K

Z
k k k k k k k k k k

k k k

n p R
R n w y t y

n p n p

n
n g p y y g p g p y y

G





  
          

       

w y

 (6.1) 

and 0 0= ( ) = ( ).k k k k k k k kt n R w t n R w t t nR w w          Note that (1)̂  depends on ,μ p  and t  only 

through 0p  and 0 ,t  whereas ( )ˆ Z  does not depend on 0 .p  In fact, ( )ˆ = 0Z  when calibrating only on the 

population size, when 1 = = = 0.Kp p…  We have ( )ˆ = 0Z  also when 1 = = = 0.K …  An example of such 

a reduction arises when the weights are constant, = nww 1  and the subsample sizes within the K  categories 

are fixed, 0= .k kt t   In general, ( )ˆ Z  can be regarded as an adjustment of (1)̂  for the priorities associated 

with .Z  

Estimator (1) ( )ˆ ˆ ˆ= Z    depends on w  and y  only through w y  and the K  pairs of within-category 

means kw  and .ky  The product = (1 )k k k k kg p p np   is an increasing function of kp  with its respective 

limits of 0 at = 0kp  and 1 n  as .kp   The denominator G  is a decreasing function of each .kp  It 

attains its maximum of 1 for 1 = = = 0Kp p…  and its limit as all K  priorities kp  diverge to   is zero. In 

the latter case ̂  becomes unstable. However, in practice 0p  is set higher than the other priorities, so this 

case is of little practical relevance. 

As 0p  diverges to , (1)̂  converges to  

 0 0( ) = ( 1) cov ( , ) .R n w y t y n R w y t y   w y   

This confirms that the weights are especially important when they are highly correlated with the outcome 

variable. 

 
B. = 0R  implies 0 = 0  
 

In the decomposition =R R Rw Xν ε  for 0 ,w  we have 0 0=ν e  and = .Rε 0  Hence  

  
11 10

0= .
t

n

  
  

 
u X P X X t P e   

Owing to standardisation, 0= ,n nX 1 e  and column 0 of X X  is also equal to 0.ne  Further, 1 1
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Therefore 0 0= = 0.t u 1  We explore when the slope of 0 ,  a linear function of ,R  vanishes. According 

to equation (3.2), this slope is  
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Hence 0 = 0  when = 0R  or 0= ,tw 1  as stated at the end of Section 3. Note that in most surveys with 

complex sampling design and nontrivial (random) sample size the probability that 0= tw 1  is very small or 

zero. 
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A hierarchical gamma prior for modeling random effects in 
small area estimation 

Xueying Tang and Liangliang Zhang1 

Abstract 

Small area estimation (SAE) is becoming increasingly popular among survey statisticians. Since the direct 
estimates of small areas usually have large standard errors, model-based approaches are often adopted to borrow 
strength across areas. SAE models often use covariates to link different areas and random effects to account for 
the additional variation. Recent studies showed that random effects are not necessary for all areas, so global-local 
(GL) shrinkage priors have been introduced to effectively model the sparsity in random effects. The GL priors 
vary in tail behavior, and their performance differs under different sparsity levels of random effects. As a result, 
one needs to fit the model with different choices of priors and then select the most appropriate one based on the 
deviance information criterion or other evaluation metrics. In this paper, we propose a flexible prior for modeling 
random effects in SAE. The hyperparameters of the prior determine the tail behavior and can be estimated in a 
fully Bayesian framework. Therefore, the resulting model is adaptive to the sparsity level of random effects 
without repetitive fitting. We demonstrate the performance of the proposed prior via simulations and real 
applications. 

 
Key Words: Adaptive shrinkage; Fay-Herriot model; Global-local priors; Normal-gamma priors. 

 
 

1. Introduction 
 

Small area estimation (SAE) aims at producing reliable estimates of crucial statistics at a finer 

geographic level or for a small subpopulation. The results often provide important information for public 

policy design and resource allocation. An example of SAE is the Small Area Income and Poverty Estimation 

(SAIPE) program conducted by the United States Census Bureau. The goal of the program is to provide 

estimates related to income and poverty at various levels including counties and school districts based on 

data collected from the American Community Survey. Small areas and small subgroups are often associated 

with small sample sizes in a survey, making direct estimates possess large standard errors and coefficients 

of variation. Therefore, model-based approaches are often used to produce estimates with desirable 

precision by borrowing strength across small areas. The models for SAE are often classified into unit-level 

models and area-level models. The focus of this article is the latter class and we refer readers to Pfeffermann 

(2013), Rao and Molina (2015), and Sugasawa and Kubokawa (2020) for detailed reviews of small area 

estimation models. 

In area-level models, the direct estimate of each small area is often written as the sum of the small area 

mean and sampling error. The sampling errors are often assumed to be independent normal random variables 

with mean zero and known variances. The small area means are further decomposed into fixed effects and 

area-specific random effects. The fixed effect part uses auxiliary information from administrative records 

and population census as covariates to link different small areas while the random effects characterize the 
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variation of small area means that is not captured by the fixed effects. The most famous area level model in 

the SAE literature is the Fay-Herriot (FH) model (Fay and Herriot, 1979) where the random effects are 

assumed to be independent normals with mean zero and a common unknown variance. These assumptions 

are convenient for theoretical analysis and application in practice, making the FH model one of the most 

popular models for SAE. 

Despite the convenience, the assumptions of the FH model have been questioned as they are often 

violated in practice. Various extensions have been made to relax the assumptions and further improve the 

model performance. Examples of these efforts include Datta and Lahiri (1995), Li and Lahiri (2007), Ybarra 

and Lohr (2008), Fabrizi and Trivisano (2010), and Porter, Wikle, and Holan (2015). A question that has 

been raised recently is whether the inclusion of random effects for all areas is necessary. The exploration 

starts with Datta, Hall and Mandal (2011) where a hypothesis testing procedure was designed to determine 

whether eliminating the random effects is appropriate. The null hypothesis is that the variance of the random 

effects equals zero. The test is based on the goodness-of-fit of the fixed effect model and works fine if there 

exists a small or moderate number of small areas. However, when the number of small areas is large, the 

null hypothesis is often rejected due to the large discrepancy between the fixed effect and the direct estimate 

in a few areas. Based on these observations, Datta and Mandal (2015) proposed to use spike-and-slab priors 

for modeling random effects. Under this model, the distribution of the random effects is assumed to be a 

mixture of a point mass at zero (the spike part) and a zero-mean normal distribution (the slab part). The 

spike part enables the removal of the random effects in areas where it is appropriate, and the slab part 

characterizes the non-zero random effects. This idea is further extended by Chakraborty, Datta and Mandal 

(2016) where a mixture of two normal distributions with different variances is used for modeling random 

effects. 

More recently, Tang, Ghosh, Ha and Sedransk (2018) proposed to use global-local (GL) shrinkage priors 

for describing the random effects with various sparsity structures. The model still assumes the random 

effects follow independent zero-mean normal distributions, but the variances are area-specific. Each 

variance is expressed as a product of an area-specific local parameter and a global parameter shared across 

small areas. A small global parameter tends to shrink all direct estimates to the synthetic estimator to account 

for the small or close-to-zero random effects while a large local parameter compensates for the shrinkage 

for areas that need a large random effect. Possible choices of the priors for the local parameters include a 

wide range of heavy-tailed distributions such as Laplace priors (Park and Casella, 2008), horseshoe priors 

(Carvalho, Polson and Scott, 2009), and three-parameter-beta priors (Armagan, Clyde and Dunson, 2011). 

The flexibility in the local priors enables the GL model to characterize random effects in various settings. 

Tang et al. (2018) showed that the performance of the GL model is often better than that of the spike-and-

slab model. 

The outstanding performance of the GL model relies on choosing the priors for the local parameters 

appropriately. The priors are often classified into exponential-tailed priors and polynomial-tailed priors in 

theoretical analysis. It has been shown that polynomial-tailed priors are more appropriate when random 
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effects are minimal in the majority of the areas, and exponential-tailed priors are more suitable otherwise. 

Using an inappropriate prior may lead to undesirable performance such as low estimation accuracy or low 

coverage rate of the credible intervals. Since the underlying structure of random effects is unknown for a 

given dataset, data-driven methods for prior selection are crucial for applying the GL model in practice. 

Tang et al. (2018) used the deviance information criterion (DIC; Spiegelhalter, Best, Carlin and 

Van Der Linde, 2002) for this purpose. This method can often select a reasonable prior. However, 

calculating the DICs and other model selection criteria requires fitting models multiple times, each time 

with a different choice of local priors. This requires substantial computing resources especially when the 

number of small areas is large. In addition, uncertainty quantification based solely on the selected model 

may underestimate the variation of the estimates since it does not take into account the variation brought by 

different models. 

In this paper, we propose a new model for the random effects of the area-level model. The model is 

adaptive to various sparsity levels and structures of random effects as the GL model while not requiring 

repeated fitting for prior selection. Similar to the GL model, we assume the normally distributed random 

effects with area-specific variances. A gamma prior is then placed on the variances. With different choices 

of the shape and rate parameters, the prior can have an exponential tail or (almost) polynomial tail, 

accommodating various sparsity levels and structures of the random effects in a way similar to the GL 

model. Since the tail behavior of the prior is indexed by the hyperparameters, the problem of selecting the 

most appropriate prior becomes the problem of estimating the hyperparameters. We further place hyper-

priors on the shape and rate parameters of the gamma distribution to estimate the hyperparameters in a fully 

Bayesian framework. In this way, fitting models with different priors can be avoided and the variation 

brought by different models can also be taken into account. 

The rest of the paper is organized as follows. In Section 2, we describe the hierarchical gamma model 

for achieving adaptive shrinkage in small area estimation and its connection with some existing models. An 

MCMC algorithm for drawing posterior samples is described in Section 3. The performance of the proposed 

model is demonstrated through simulation studies in Section 4 and applications to two real datasets in 

Section 5. We conclude with final remarks in Section 6. 

 
2. Model 
 

Let 1, ,… ny y  denote the direct estimates of small area means 1, ,… m   of m  small areas. We assume  

 = ,i i iy    and = ,i i iu x β  for = 1, , ,…i m  (2.1) 

where 1, ,… m   are independent sampling errors with (0, )i iN D ∼  and iD  being a known error variance, 

ix  is a p -dimensional vector of auxiliary variables, 1= ( , , )p β …   is the corresponding coefficient 

vector, and 1, ,… mu u  are independent area-specific random effects. The random effects characterize the 

variation in i  that cannot be explained by the auxiliary variables. Throughout the paper, we use the 
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following compact notation to denote the model components: 1= ( , , ) ,my yy … 
1= ( , , ) ,m θ …  =X  

1( , , ) ,x xm… 
1= ( , , ) ,mu uu …   and 1= diag{ , , }.mD DD …  The notation 2( , )N    represents the normal 

distribution with mean   and variance 2.  

We assume the random effects follow  

 
2 2

2

| N(0, )

| , Gamma( , )
i i i

i

u

a b a b

 



∼

∼
 (2.2) 

where 0 < < 1a  and > 0b  are two hyperparameters and Gamma( , )a b  denote the gamma distribution with 

shape parameter a  and rate parameter .b  The probability density function of Gamma( , )a b  is ( | , ) =x a b  
1( / ( )) exp( ).a ab a x bx   Unlike the classic Fay-Herriot (FH) model where the random effects follow 

independent normal distributions with a common variance 2  as  

 2 2| (0, ),iu N ∼  (2.3) 

we assign distinct variances for random effects of different areas and further place a gamma distribution on 

the variance parameters. Marginally, the scale mixture structure in (2.2) assumes a heavy tail distribution 

on .iu  Also, we constrain hyperparameter a  to the interval (0,1)  so that the marginal distribution of iu  has 

a significant amount of probability mass around zero. These features of iu  allow the model to capture the 

high variation in the random effects which typically occurs when the number of small areas is large. 

The scale mixture structure is also used in the Global-Local (GL) model proposed by Tang et al. (2018). 

There  

 
2 2 2 2

2 2 2 2

| , (0, ),

( ), ( ),
i i i

i L i G

u N   

     

∼

∼ ∼
 (2.4) 

where 2
i  and 2  are called the local and the global parameters, respectively, and L  and G  denote their 

respective priors. Our model is similar to the GL model in the sense that both models assume area-specific 

variances of random effects and place hyperpriors on the variance parameters. Although we do not explicitly 

include a global parameter in (2.4), 1 / b  is a scale parameter of i  and thus ,iu  playing the role of the 

global parameter. Our model can be rewritten as a GL model with 2 Gamma( ,1),i a ∼  which is one of the 

choices of L  considered in Tang et al. (2018). However, a  is treated as a hyperparameter to be estimated 

in our model while a known constant in the GL model. In our model, the tail heaviness of 2( )i   varies 

with the values of a  and .b  If a  is close to one, the exponential component 2exp( ) ib  in the gamma 

density dominates. If b  is close to zero, then the polynomial term 2 1( ) a
i  dominates. In the GL model, the 

authors of Tang et al. (2018) divided the choices of L  into polynomial-tailed priors and exponential-tailed 

priors. They showed the two groups of priors have their own best-performing scenarios in terms of 

estimating small area means. The polynomial-tailed priors perform better when only a few areas need 

random effects while the exponential-tailed priors are more suitable when more areas need random effects. 

By considering a gamma prior on 2
i  with varying a  and ,b  our model unifies the polynomial-tailed priors 
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and the exponential-tailed priors for 2
i  in the GL model. The problem of choosing L  in the GL model 

becomes the problem of estimating a  and b  in the proposed model. 

To estimate a  and ,b  we consider a fully Bayesian framework and further place hyperpriors on a  and 

.b  More specifically, we consider  

 a ∼  Uniform (0,1), b∼  Gamma 0 0( , ),s t  (2.5) 

where 0s  and 0t  are set to small positive values. Since 1 / b  is analogous to the global parameter, the gamma 

prior on b  is similar to a weakly informative inverse gamma prior on 2  in the GL model. Although other 

choices for the hyperpriors are possible, we choose the gamma prior for convenience as it is conditional 

conjugate. Following Tang et al. (2018), we set 10
0 0= =10 .s t   Because of the hierarchical structure (2.2) 

and (2.5), we call our model hierarchical gamma (HG) model. This prior is closely related to the normal-

gamma prior in the context of variable selection (Griffin and Brown, 2005, 2010). 

The model specification completes with a prior on .β  Following the literature in Bayesian small area 

estimation, we consider a flat prior  

 ( ) 1. β  (2.6) 

Although this prior is improper, one can easily show that the resulting posterior distribution is proper under 

minor regularity conditions. 
 

Theorem 1. The posterior distribution of the model specified by (2.1), (2.2), (2.5), and (2.6) is proper if 

rank( ) = < .p mX  

The proof of the theorem is included in the appendix. 

 
3. Computation 
 

Under the proposed HG model (2.1) (2.2), (2.5), and (2.6), the posterior density of ,β ,u
2 =

2 2
1( , , ) ,m … 

,a  and b  is  

 

2 1

2
2 1/2 2 1 2

2
=1

10
0

1
( , , , , | ) exp ( ) ( )

2

     ( ) exp ( ) exp( )
2 ( )

     exp( ).

am
ai

i i i
i i

s

a b

u b
b

a

b t b



  




 



 
       

   
    

   

 



β u y y u Xβ D y u Xβ 

 (3.1) 

We use Gibbs sampling (Gelfand and Smith, 1990) to draw samples from the posterior distribution. To this 

end, it is easy to find the full conditionals as   

• 2| , , , , ( , ),a b N β ββ y u   ∼  where 1= ,
β βX D w   1 1= ( ) , 

β X D X   and = ;w y u  



292 Tang and Zhang: A hierarchical gamma prior for modeling random effects in small area estimation 

 

 
Statistics Canada, Catalogue No. 12-001-X 

• 2| , , , , ( , ),a b N u uu y β   ∼  where = ( )( ), u I B y Xβ = ( ) ,u I B D mI  is the m -dimensional 

identity matrix, and 1= diag( , , )… mB BB  with 2= / ( );i i i iB D D   

• 2 2 3/2 2 2 2

=1
( | , , , , ) ( ) exp ( / 2 ) ;

m a
i i i ii

a b u b        y β u  

• 2| , , , ,b ay β u  ∼ Gamma 2
0 0=1

( , );
m

ii
am s t   

•  
1

2 2

( ) =1
( | , , , , ) .

ma

m

am
b

ia i
a a 




 y β u   

 
Hence, sampling ,β  ,u  and b  from their respective full conditional distribution is straightforward. For 2 ,  

its elements can be sampled independently. Noticing that the probability density function of a generalized 

inverse Gaussian distribution (denoted by GIG( , , ))    is 1( | , , ) exp[ / (2 ) / 2],f x x x x        we 

can sample 2
i  from 2GIG( 1/ 2, ,2 ).ia u b  The full conditional of a  is not a common distribution. We use 

a slice sampling (Neal, 2003) step to draw samples of a  within the Gibbs sampler. 

 
4. Simulations 
 
4.1 Settings 
 

In this section, we investigate the performance of the proposed model on simulated datasets. The datasets 

are generated from model (2.1). We consider three choices of the number of small areas =m 100, 500, 

1,000. For each area, the covariate vector consists of one and an element randomly generated from (10,2).N  

The covariate coefficient vector is fixed at = (20,1) .β   The candidate values of the error variance iD  are 

0.5, 1, 1.5, ,…  5. Each value is assigned to the same number of areas in each dataset. We consider five 

settings for generating the random effects ’s:iu  

(i) Normal: (0,4),iu N∼  

(ii) Mixture 0.2: (0,25), Ber(0.2),i i iu N ∼ ∼  

(iii) Mixture 0.5: (0,25), Ber(0.5),i i iu N ∼ ∼  

(iv) Mixture 0.8: (0,25), Ber(0.8),i i iu N ∼ ∼  

(v) Student’s T: 3 ,iu t∼  
 

where Ber( )p  denotes the Bernoulli distribution with mean .p  For ease of comparison, random effects 

generated from settings (ii)-(v) are rescaled to have the same standard deviation as those generated from 

setting (i). 

We generate 100 datasets for each combination of m  and the setting for .iu  The proposed HG model is 

fitted to each dataset. Posterior samples are obtained using the Gibbs sampler described in Section 3. The 

sampler is run for 20,000 iterations with the first half discarded as burn-in. The small area means ’si  are 

estimated by the corresponding posterior sample means. For comparison, we also use the FH model and the 

GL model to estimate the small area means. For the GL model, two choices of the priors of the local 



Survey Methodology, December 2024 293 

 

 
Statistics Canada, Catalogue No. 12-001-X 

parameters 2’si  are considered: the horseshoe (HS) prior 2 2 1/2 2 1( ) ( ) (1 )L i i i       (Carvalho, Polson 

and Scott, 2010) and the Laplace (LA) prior 2 2( ) = exp( ).L i i    They are chosen as the representatives of 

the polynomial-tailed and exponential-tailed priors, respectively. 

We use Average Absolute Deviance (AAD) and Average Squared Deviance (ASD) to quantify the 

difference between the estimated small area means and the true values. The two criteria are defined as  

 AAD
=1

ˆ= | |,
m

i i
i

   and ASD 2

=1

ˆ= ( ) .
m

i i
i

   (4.1) 

We also construct the 95% empirical credible intervals for i  and compute the coverage rates over 100 

datasets to examine the uncertainty quantification. 

 
4.2 Results 
 

The main results from our simulation study are presented in Figures 4.1-4.3. Among them, Figures 4.1 

and 4.2 provide the AAD and ASD of estimated small area means from different models and under different 

settings of generating random effects. Figure 4.3 presents the average coverage of empirical 95% credible 

intervals over all small areas. These figures show that, among the models we consider, the HG model has 

the most robust performance in terms of both estimation accuracy and uncertainty quantification. Note that 

the model producing the smallest deviation measurements varies across different settings. Although the HG 

model is not always the best model in terms of the two deviation measures, its performance is often close 

to that of the best model regardless of the number of small areas and the settings of generating random 

effects. For the FH, HS, and LA models, although each of them produces the smallest AAD and ASD under 

certain settings, their performance could be significantly worse than that of the HG model in other settings. 

For example, FH performs best under the Normal setting and LA performs best under the Mixture 0.8 

setting. However, under the Mixture 0.2 setting, they produce higher AAD and ASD than the HS model and 

the HG model. The HS model performs best under the Mixture 0.2 setting, but it produces the highest 

deviation measurements under the Normal setting and the Mixture 0.8 setting. Also, the coverage of the 

credible intervals from the HS model is significantly lower than that from other models and the nominal 

coverage rate under the two settings. 

The robust performance of the HG model is realized through the adaptive choice of the hyperparameters 

a  and .b  Figure 4.4 provides the posterior mean estimates â  and b̂  of the hyperparameters. Under the three 

Mixture settings, both â  and b̂  increase as the proportion of nonzero random effects increases. In the 

sparsest setting (Mixture 0.2), b̂  is close to zero and â  is significantly smaller than one, indicating that the 

polynomial component in the gamma density of 2
i  plays a critical role in describing the random effects. 

In the densest setting (Mixture 0.8), â  is close to one, meaning the exponential component plays a critical 

role. Tang et al. (2018) showed that in the GL model, polynomial-tailed local priors are better at char-

acterizing small random effects while the exponential tail priors are better at characterizing large random 

effects. Our results are consonant with theirs. 
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               Figure 4.1  AAD of estimated small area means from different models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
               Figure 4.2  ASD of estimated small area means from different models. 
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Figure 4.3 Average coverage of 95% empirical credible interval of small area means from different models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
           Figure 4.4  Estimated hyperparameters a  and b  in the HG model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.5 presents the posterior density of a  and b  under different settings for selected datasets. For 

both a  and ,b  the posterior distribution concentrates on larger values for settings with a higher proportion 

of nonzero random effects. 

       Normal                       Mixture 0.2                     Mixture 0.5                    Mixture 0.8                            T 
  

 
 
 
 
 

 

0.95 
 

 
 

 
 

0.90 
 

 
 

 

 

0.85 
 
 
 
 
 
 
 

 

0.95 
 
 
 
 

 

0.90 
 
 

 
 

 

0.85 
 
 
 
 
 
 

 
 
 
 
 

0.95 
 

 
 

 
 

0.90 
 
 
 

 
 

0.85 

  
  

  
m

 =
 1

,0
00

  
   

   
  

   
   

  
   

   
m

 =
 5

0
0 

  
   

   
  

   
   

  
   

   
  

m
 =

 1
00

 
  

  
   

co
v

er
ag

e 
  

   
  

   
   

  
   

   
  

co
v

er
ag

e 
  

  
   

   
  

   
   

  
   

  
co

v
er

ag
e 

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
    

F
H

  
L

A
   

H
S

   
H

G
 

 

 
 

 

1.00 
0.98 
0.96 
0.94 
0.92 
0.90 
0.88 

 
 
 
 

1.00 
0.98 

 

0.96 
0.94 
0.92 
0.90 
0.88 

 
 
 

 
1.00 

 

0.98 
0.96 
0.94 

 

0.92 
0.90 
0.88 

 
 

 

1.00 
 
 

 
 

 

0.95 
 

 
 
 

 
 

0.90 
 

 
 
 
 
 

0.85 
 
 
 
 
 

1.00 
 
 
 

 
 
 

 

0.95 
 

 

 
 
 
 

0.90 
 

 
 

 
 

 

0.85 
 
 
 
 
 

 

1.00 
 
 
 
 
 
 

0.95 
 
 

 
 
 

 

0.90 
 
 

 
 

 
 

0.85 

 
 

 
 

 
 

 

 
 
 
 

0.95
 

 
 

 

0.90
 

 
 

0.85
 
 
 

 

0.80

 

0.95
 
 
 
 

0.90
 
 

 

0.85
 
 

 
 

0.80

 
 
 
 

0.95
 

 
 

 

0.90
 

 
 

0.85
 

 
 

0.80

 
 
 
 
 

0.95
 
 

 
 

0.90
 
 
 

 

0.85
 

 

 
 

0.80

 
 
 

0.95
 
 
 
 

0.90
 

 
 
 

0.85
 
 

 

 

0.80

0.95
 
 

 
 

0.90
 
 
 
 

0.85
 
 

 
 

0.80

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
    

F
H

  
L

A
   

H
S

   
H

G
 

 

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
     

F
H

  
L

A
   

H
S

   
H

G
    

F
H

  
L

A
   

H
S

   
H

G
 

 

  
   

  
  

   
  

b̂

   
  

  
   

  
   

   
  

   
   

  
   

   
  

  
  

â
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â

 

  
  

   
  

   
   

b̂

   
  

  
   

  
   

   
  

   
   

  
   

  
   

  
  

â
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                    Figure 4.5  Posterior density of a  and b  in the HG model for a typical dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figures 4.4 and 4.5 also show that the variation in the two hyperparameters decreases as the number of 

small areas m  increases. More small areas provide more random effects and thus more information for 

characterizing the distribution of the random effects. 

The HG model achieves the robust performance without sacrificing much in computational cost. 

Table 4.1 presents the time used for obtaining small area mean estimates from different models. Because of 

the extra effort in estimating the hyperparameters a  and ,b  fitting the HG model often takes more time than 

the GL models. However, the increase is often no more than 15%. Also, for the GL models, as suggested in 

Tang et al. (2018), one can use the deviance information criterion (Spiegelhalter et al., 2002) to select the 

most appropriate prior for the local parameter. This requires fitting the GL models under several different 

local parameter priors, multiplying the computational cost while obtaining similar results as the HG model. 

 

Table 4.1 

The average (standard deviation) of computing time in seconds over 100 datasets under various settings. 
 

m Model 
Random Effect Setting 

 Normal  Mixture 0.2  Mixture 0.5  Mixture 0.8  Student’s T 

100 

FH 2.78 (0.11) 2.76 (0.16) 2.74 (0.11) 2.75 (0.12) 2.77 (0.13)
LA 16.37 (0.80) 16.32 (0.82) 16.34 (0.87) 16.28 (0.75) 16.24 (0.79)
HS 17.00 (0.79) 17.01 (0.97) 17.00 (0.82) 16.92 (0.76) 16.94 (0.84)
HG 17.43 (0.87) 17.72 (0.80) 17.61 (0.94) 17.44 (0.77) 17.50 (0.82)

500 

FH 3.96 (0.17) 3.92 (0.18) 3.95 (0.22) 3.90 (0.17) 3.93 (0.17)
LA 70.54 (3.84) 70.52 (3.76) 70.30 (3.61) 70.27 (3.66) 70.29 (3.62)
HS 73.15 (3.76) 73.17 (3.76) 72.97 (3.56) 72.92 (3.56) 72.95 (3.39)
HG 77.41 (3.87) 79.69 (4.12) 78.43 (4.00) 77.25 (3.57) 77.52 (3.79)

1,000 

FH 5.33 (0.20) 5.32 (0.21) 5.29 (0.20) 5.27 (0.20) 5.22 (0.24)
LA 138.12 (7.22) 138.06 (7.29) 137.38 (7.09) 137.03 (7.00) 134.73 (7.06)
HS 144.01 (7.65) 143.69 (7.84) 142.83 (7.52) 142.66 (7.51) 138.57 (6.83)
HG 152.88 (7.42) 157.93 (7.68) 154.94 (7.67) 152.45 (7.34) 151.80 (8.23)
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5. Real data analysis 
 

In this section, we estimate the state- and county-level poverty rates in the United States using the 

proposed model. The two datasets we analyze come from Datta and Mandal (2015) and Tang et al. (2018). 

The first dataset concerns the state-level child poverty ratio for age group 5-17. Besides the direct estimates 

obtained from the 1999 Current Population Survey, the dataset also includes the number of child 

exemptions, Internal Revenue Service non-filer rate, and the residuals of regressing 1989 census poverty 

rates on the two previous variables. We include the three variables as covariates and an intercept in our 

model. In the second dataset, we have direct estimates of five-year (2007-2011) pooled county-level poverty 

rates for 3,141 counties from the American Community Survey. Food stamp participation rate is used as a 

covariate in addition to intercept. 

Besides the proposed model, we also fit the FH model and the GL model with HS and LA priors to each 

dataset for comparison. Deviance Information Criterion (DIC; Spiegelhalter et al., 2002) is used for 

comparing the model fit and the values are presented in Table 5.1. In the state-level analysis, following 

Datta and Mandal (2015) and Tang et al. (2018), we treat the ratio benchmarked state-level poverty ratios 

obtained from the 2000 census as the “true” small area means and measure the errors of the estimated values 

using AAD and ASD defined in (4.1). The results are also presented in Table 5.1. 

For state-level estimation, the HG model is the most appropriate model in terms of DIC. The posterior 

median estimates of parameters a  and b  in the HG model are 0.53 and 0.22, respectively. The relatively 

small estimate of b  suggests that the polynomial component in the prior of random effects is important. 

This agrees with the DIC results that the HS prior is preferred over the LA prior in GL models. The values 

of the two deviation measures also suggest that the HG and HS models have similar performance with the 

HG model incurring slightly larger errors. It is worth noting that the LA model produces the smallest errors, 

especially in terms of ASD, although DIC is not in favor of it. 

 
Table 5.1 

Performance of various models for state-level and county-level data. 
 

 Measure HG FH HS LA

State Level 
DIC 271.52 273.29 273.09 275.92
AAD 1.05 1.19 1.01 0.99
ASD 2.19 2.55 2.04 1.68

County Level DIC -15,946.23 -15,883.34 -15,751.12 -15,946.96

 
The left and middle panels of Figure 5.1 present the posterior densities of a  and .b  Both distributions 

exhibit high variations. The density of a  does not vary much between 0.1 and 0.9. The density of b  has a 

very long tail although a significant portion of probability is distributed around zero. The high variation is 

mainly a result of the small number of small areas ( = 51),m  suggesting a high degree of uncertainty in 

determining a suitable model. This is also reflected in the close DIC values for different models. The 

uncertainty in the hyperparameters also has an impact on the variability of small area means. The right panel 

of Figure 5.1 shows a plot of the posterior standard deviations of small area means from the HS model 
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against those from the HG model. Because of the uncertainty in a  and ,b  the HG model produces a higher 

posterior standard deviation in most of the small areas. 

 
Figure 5.1 Results of state-level estimations: left: posterior densities of parameter ;a  middle: posterior 

densities of parameter ;b  right: posterior standard deviations from HG and HS models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For county-level estimation, Tang et al. (2018) showed that the LA prior performs the best among other 

choices of priors in the GL model. The DIC values presented in Table 5.1 indicate that the proposed HG 

model achieves a similar fit as the LA model. In fact, under the HG model, the posterior median of a  is 

0.97, which is very close to 1, and the posterior median of b  is 1073.25, indicating that the HG prior 

resembles the exponential tail LA prior in this case. Moreover, as a result of a much larger number of small 

areas in the county-level data, the posterior densities of a  and b  shown in the left and middle panels of 

Figure 5.2 have a smaller variation than those obtained in the state-level estimation. Correspondingly, as 

shown in the right panel of Figure 5.2, the posterior standard deviations of small area means produced by 

the HG and LA models are also close. 

 
Figure 5.2 Results of county-level estimations: left: posterior densities of parameter ;a  middle: posterior 

densities of parameter ;b  right: posterior standard deviations from HG and HS models. 
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The datasets and R code for producing the results in this section are available at 

https://github.com/xytangtang/HGSAE. 

 
6. Conclusion 
 

In this paper, we proposed a hierarchical gamma (HG) model for the random effects in small area 

estimation. It assumes the random effects follow a scale mixture of normal distributions with the mixing 

distribution being gamma. Hyperpriors are further placed on the shape and rate parameter of the gamma 

distribution. We showed through simulations and real data analyses that the proposed model is capable of 

characterizing heterogeneous random effects across small areas as the global-local (GL) model while not 

requiring fitting the model multiple times to choose the most appropriate priors for the local parameters. 

The HG model can be seen as a mixture of different global-local models. Because of such formulation, 

the posterior variation of small area means from the HG model takes into account model uncertainty (the 

variation in the estimation results from different models) to some degree. When the number of small areas 

is small, there is often not much information for the hyperparameters a  and ,b  leading to higher model 

uncertainty and thus higher variation of small area means compared to using the GL model with a specific 

choice of the priors for local parameters. For this reason, we recommend to use the proposed model when 

the number of small areas is large to avoid large estimation variance. 

In this article, we focus on the area-level models for small area estimation. Developing a similar method 

for unit-level models is a possible future direction. 

 
Appendix 
 

A. Proof of Theorem 1 
 

Under the proposed model, the posterior density can be written as  
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where K  is a generic constant that does not depends on ,β ,u 2 , ,a  and .b  It is sufficient to show the 

integral of 2( , , , , | )a b β u y  with respect to 2, , , ,aβ u   and b  is finite. 

First, consider integration with respect to .β  Let 1= ( , , )… mz zz   with = i i iz y u  for =1, , .i m…  Since 

X  is of full column rank, we can define 
1ˆ = ( ) .β X X X z    

 Note that  
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where 1= ( ) .P X X X X      Integrating 2( , , , , | )a b β u y  with respect to β  leads to  
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Note that the expression in the last two lines in (A.2) gives the joint prior of ,u 2 , ,a  and .b  Since the 

prior distribution is proper, the proof now completes. 
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Design-based estimation of small and empty domains in 
survey data analysis using order constraints 

Xiyue Liao, Mary C. Meyer and Xiaoming Xu1 

Abstract 

Recent work in survey domain estimation has shown that incorporating a priori assumptions about orderings of 
population domain means reduces the variance of the estimators and provides smaller confidence intervals with 
good coverage. Here we show how partial ordering assumptions allow design-based estimation of sample means 
in domains for which the sample size is zero, with conservative variance estimates and confidence intervals. 
Order restrictions can also substantially improve estimation and inference in small-size domains. Examples with 
well-known survey data sets demonstrate the utility of the methods. Code to implement the examples using the 
R package csurvey is given in the appendix. 

 
Key Words: Domain means; Isotonic; Order restrictions; R; Small area estimation; Survey. 

 
 

1. Background and Introduction 
 

Consider a finite population with labels = {1, , }U N…  and let ,dU = 1, ,d D…  denote a partition of the 

population into domains where dU  has dN  elements. For a study variable ,y  suppose interest is in 

estimating the population domain means  

 = d

d

kk U

U

d

y
y

N


  

for each ,d  and providing inference such as confidence intervals for each .
dUy  Given a survey design, a 

sample s U  is chosen; let =d ds s U  for = 1, , .d D…  The standard Hájek estimator 
1

= ( , , )
Ds s sy yy  … 

 

of the population domain means is a weighted average of the sample observations in each domain .d  

Specifically,  

 = ,
1

d

d

d

i ii s

s

ii s

y 










y   

where i  is the sampling probability for the thi  population element calculated from the sampling design 

(see Särndal, Swensson and Wretman (1992), page 185). 

Because the estimate for each domain uses only the observations within a domain, a small domain sample 

size results in unreliable estimators within that domain. Traditional small area estimation methods use 

observations in other domains to provide more information for the small sample size domains. The Fay-

Herriot estimator accomplishes this by imposing a parametric model on the domain means, with a domain 

random effect to account for the departure of domain means from the assumed overall model. See Rao and 

Molina (2015) and Pfeffermann (2013) for a comprehensive treatment of small area estimation methods. 
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We will consider a priori assumptions on the population domain means that can be expressed as a partial 

ordering of domains. For example, in a workplace survey we could assume that average salary increases 

with job rank, within job type and location. In an environmental survey, it might be reasonable to assume 

that amount of pollution decreases in the distance from the source. Orderings imposed in the examples of 

Section 4 include assuming that test scores decrease as poverty increases, and that average cholesterol level 

increases with the age and waist size of the subject. The orderings allow information to be shared across 

domains without parametric modeling. 

Let = {1, , }S D…  enumerate the domains; a partial ordering of S  is specified by a binary relation ,  

so that for id  and ,jd S  the expression i jd d  means that we assume .
i jU Uy y  The partial ordering 

must have the following properties: reflexive (d d  for all ),d S  anti-symmetric (if , ,i jd d S ,i jd d  

and ,j id d  then = ),
i jU Uy y  and transitive (for , , ,i j kd d d S  if ,i jd d  and ,j kd d  then ).i kd d  A 

complete ordering has the additional property that all pairs of points in S  are comparable (given , ,i jd d S  

then either i jd d  or j id d  or both). Orderings of interest in survey domain mean estimation include 

complete orderings, orderings in grids of domains, and block orderings. 

Wu, Meyer and Opsomer (2016) considered a complete ordering on the sequence of domain means, 

applying the pooled adjacent violators algorithm (Brunk, 1958) for domain mean estimation. They derived 

confidence intervals that have smaller width without sacrificing coverage, compared to the estimators that 

do not consider the ordering. Oliva-Aviles, Meyer and Opsomer (2020) developed methodology for partial 

orderings as well as more general linear constraints on domains.  

A partial ordering can be imposed on the domain mean estimators using linear inequality constraints in 

the form of an m D  constraint matrix ,A  and the constrained estimator   of the vector of domain means 

is found by minimizing  

 ( ) ( )min s s s


 y W y    such that .A 0  (1.1) 

The weight matrix Ws  is diagonal with thi  element ˆ ˆ ,iN N  where ˆ = 1 ,
d

i ii s
N 

  and 
=1

ˆ ˆ= .
D

ii
N N  

For a simple example of a constraint matrix, consider five domains with a complete ordering, where we 

assume 
1 2 3 4 5

.U U U U Uy y y y y     Perhaps these are average cholesterol levels over five age groups, or 

average wages over employee ranks. The constraint matrix is  

 

1 1 0 0 0

0 1 1 0 0
= .

0 0 1 1 0

0 0 0 1 1

 
 
 

 
  

A   

For complete orderings on D  domains, the constraint matrix is ( 1) .D D   For an example of a partial 

ordering, suppose we consider five age groups for women and for men, and we still want to order cholesterol 

level by age within the sexes, but not have any ordering between the sexes. If the first five domains represent 

the five age groups for women, and the domains 6-10 represent the age groups for men, then the 8 10  

constraint matrix is  
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1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0
=

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1

 
 
 

 
 
 
 

 
 
  

A   

where the first four rows set the constraints for the women’s age groups, and the last four rows are the 

constraints for the men’s age groups. The ordering is not complete, because, for example, domain 2 is not 

comparable with domain 8. 

The a priori assumptions about the ordering may be verified using the cone information criterion (CIC) 

developed by Oliva-Aviles, Meyer and Opsomer (2019). The CIC is similar to the familiar Akaike 

information criterion in that it is a measure of goodness of fit, with a penalty for effective degrees of 

freedom, and is provided by the csurvey package (see the code in Appendices A and B). The CIC is 

reported for both the constrained and unconstrained Hajék estimators, and if the CIC is smaller for the 

constrained estimator, this is evidence that the order assumptions are correct. 

The solution to (1.1) is the weighted projection of y s
  onto the subset C  of D  defined by :A  

  = : .DC  A 0   (1.2) 

This subset C  of D  is a cone because for any  C  and any 0,a  .a C  Oliva-Aviles, Meyer and 

Opsomer (2020) explained how such a cone projection leads to pooling of information across domains, 

which provides more precise estimators. The order-constrained estimator of domain means is constructed 

by an optimal pooling of the domains over which the unconstrained estimators violate the ordering, and the 

pooling reduces the estimated variance because the averages are over larger numbers of observations. They 

constructed a covariance estimator based on the observed pooling and showed how this produced smaller 

confidence intervals with good coverage. Xu, Meyer and Opsomer (2021) developed a variance estimator 

based on a mixture of covariance matrices, which we will call the mixture covariance estimator. Instead of 

constructing the covariance estimator using the observed pooling, the mixture covariance estimator 

recognizes that another data set might result in a different pooling, hence a weighted average of covariance 

matrices for all possible poolings is used. They provided some large sample theory and showed that the 

mixture covariance estimator improves coverage of confidence intervals while retaining smaller interval 

lengths. 

In this paper we extend the previous works, providing estimation and inference for empty cells that are 

not on the “boundary” of the assumed ordering. We generalize these ideas with a method for imposing order 

constraints on the upper and lower confidence bounds, which allows for smaller confidence intervals in 

small sample size domains. We show that the coverage of the adjusted confidence intervals is at least as 

good as that of the original confidence intervals provided by the mixture covariance matrix. 
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In Section 2 we propose a simple method for estimating domain means (and providing confidence 

intervals) where the sample size in the domain is zero, and a partial ordering is assumed. This is a design-

based estimator that does not incorporate a parametric model to assist estimation. In Section 3 we impose 

the assumed ordering on the upper and lower confidence interval bounds, leading to smaller confidence 

interval lengths for domains with small sample sizes. We also show that the method provides valid 

confidence intervals, and we provide some simulations comparing the proposed confidence intervals to 

those for the unconstrained Hájek estimator and the Fay-Herriot estimator. Examples of small area 

estimation using well-known data sets are given in Section 4, and some discussion is provided in Section 5. 

The methods are available in the csurvey package; the appendix contains the code to reproduce results 

from the examples in Section 4. 

 
2. Estimation for empty domains in a partial ordering 
 

One of the major advantages to implementing valid inequality constraints is that information is pooled 

across domains to construct the estimates, while for the unconstrained design-based estimator, each domain 

estimator uses only the observations in that domain. When the sample size within the domain is small, the 

unconstrained design-based variance estimates are unreliable, and for cells with only one observation, or 

for empty cells, the variance cannot be estimated at all without using additional assumptions such as in some 

small area estimation methods. See Rao and Molina (2015), preface, for a nice discussion of why and when 

small area estimation methods are needed. The order constraints, if appropriate, allow for a completely 

design-based approach to estimation of means in small sample size domains. 

If a domain d  has no observations it cannot be included in the estimation based on (1.1), but if we can 

assume some inequality constraints that involve ,
dUy  then an estimate for 

dUy  can be provided along with 

a conservative confidence interval. For an illustrating example, suppose there are 20 domains with a simple 

non-decreasing ordering, and only domain 16 has no observations. We can get estimates and confidence 

intervals for the 19 non-empty domains, and argue that the 16th population domain mean must not exceed 

the 17th but must be at least as big as the 15th. The bottom of the confidence interval for the 15th domain 

mean, combined with the top of the interval for the 17th domain mean, provides a conservative confidence 

interval for the 16th domain mean. The 16th domain mean estimator can be taken to be the center of its 

confidence interval, or as close to the center as possible while satisfying the constraints. If there are 

consecutive empty domains, the non-empty boundary domains provide the confidence intervals. 

For more complicated constraints, we can apply the same idea of getting upper and lower bounds for 

empty domains, using the estimates and confidence intervals calculated from observations in the other 

domains. Let D  be the number of domains and m  be the total number of constraints imposed on the 

domain means, using an m D   constraint matrix .A  Let D  be the number of non-empty domains and let 

m  be the number of constraints imposed on the non-empty domain means; then an m D  constraint matrix 

A  can be obtained by modifying .A  Using these, the constrained estimator   as well as the D D  mixture 

covariance matrix can be obtained for the D  non-empty domains. For an empty domain ,d  we look at the 
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thd  column of A  to find non-empty domains 
1d  and 

2d  such that 
1 2, , , .U d U d U dy y y   If two such domains 

do not exist, as for a “corner” domain, then the domain mean cannot be estimated, and the confidence 

interval will be unbounded at one end. If there is at least one 
1d  such that 

1, , ,U d U dy y  then we look at the 

confidence intervals for all such 1 ,d  and choose the largest lower bound as the lower bound for the 

confidence interval of the empty domain. Similarly, if there is at least one 2d  for which 
2, , ,U d U dy y  then 

we look at the confidence intervals for all such 2 ,d  and choose the smallest upper bound as the upper bound 

for the confidence interval of the empty domain. 

 
3. Ordering the confidence interval bounds 
 

For the constrained methods, the problem of small sample sizes in domains is mitigated because both 

the domain mean estimator and the mixture variance estimator use information from other domains. The 

adjustments of the confidence intervals proposed here, imposing the order constraints on the upper and 

lower confidence bounds as well as on the domain mean estimates, allow for more sharing of information 

across domains. 

The order constraints should also hold in the upper confidence interval bounds, and in the lower bounds. 

This can be seen by considering a case where the mean of domain 6, for example, is assumed to be not 

greater than the mean for domain 7. The upper confidence bound for domain 7 indicates a level of confidence 

that the population domain mean is smaller than this, so this level of confidence should apply also to the 

(smaller) population mean for domain 6. 

The confidence intervals provided by the mixture covariance matrix do not necessarily satisfy the 

constraints. Recall that this estimated covariance matrix is a weighted average of linear covariance matrices, 

and the upper and lower bounds calculated using this mixture covariance estimate do not necessarily follow 

the partial ordering assumed for the domains. This is illustrated in Figure 3.1, where domain 7 has a small 

sample size compared to the surrounding domains. The estimated domain means are marked with black 

dots, and the grey dots are the bounds for the unadjusted confidence intervals computed from the mixture 

covariance matrix. For the example in the figure, the estimated variance for domain 7 is larger, causing the 

lower bound to be less than the lower bound for domain 6. However, we are assuming that the 7th population 

domain mean is at least as large as the 6th, so we adjust the confidence bounds so that they satisfy the order 

constraints. 

More generally, if u  are the upper bounds for the confidence intervals computed from the variances 

given by the mixture covariance estimator, we project u  onto the cone (1.2), using the sample sizes (or 

effective sample sizes) as weights. The projection û  is the new set of upper bounds, satisfying the 

constraints. Similarly ̂  is the new set of lower bounds obtained by the weighted projection of the original 

lower bounds   onto the constraint cone. The   marks in Figure 3.1 indicate the new, order-constrained 

upper and lower bounds. Confidence intervals for domains with small sample sizes are adjusted more than 

those for larger domains, resulting in more precise small-domain estimation. 
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Figure 3.1 Example of confidence bound adjustment to ensure that the bounds follow the order constraints.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The domain mean estimates are marked with black dots; the confidence bounds provided by the mixture covariance matrix are given as 
grey dots; the adjusted confidence bounds marked with .  

 
The new upper bounds û  are the weighted projection of u  onto .C  That is, û  minimizes 

2

=1
( )

D

d d dd
n u u   over ,Cu  where dn  is the number of observations in domain .d S  Let cA S  be 

defined as ˆ{ : = }.dd S u c  The following Lemma is similar to Theorem 1.3.5 of Robertson, Wright and 

Dykstra (1988) and tells us that any ˆdu  is a weighted average of some subset of the 1, , .Du u …  
 

Lemma 1. If cA  is not empty, then  

 = .c

c

d dd A

dd A

u n
c

n









  

 

Proof: Let ˆ= { : < }c dL d u c  and ˆ= { : > }.c dU d u c  Let 1c  be the maximum of ˆ ju  for ,cj L  and let 2c  be 

the minimum of ˆ ju  for .cj U  Then 1 2< < .c c c  Write  

 2 2 2 2

=1

ˆ ˆ ˆ[ ] = [ ] [ ] [ ] ,
c c c

D

d d d d d d d d d d d
d d L d A d U

u u n u u n c u n u u n
  

              

and note that the value of c  that minimizes the middle term is given in the Lemma. If the result were not 

true, then the middle term could be made smaller by moving c  up or down, toward the given weighted 

average of the ,du  and if we stay within 1 2( , ),c c  the function would still satisfy the constraints. 

The confidence bounds ( , )d du   obtained from the mixture covariance matrix were shown by Xu, Meyer 

and Opsomer (2021) to have correct asymptotic coverage if the constraints hold strictly. If for any ,d  

ˆ ,d du u   then the upper coverage of 
dUy  is at least as good as for the unadjusted interval. Similarly, if 

ˆ
d d    then ˆ d Uy


  if .d Uy



  The coverage for the adjusted confidence intervals when ˆ <d du u  or 
ˆ >d d

   is addressed in the following.  
 

Theorem 1. For d S  such that ˆ < ,d du u  let ˆ= dc u  and define ˆ={ : =c jA j S u c   and }.d j  Then cA
 

has at least two elements, and if for any cj A  we have ,
jj Uu y  this guarantees ˆ .

dd Uu y  Similarly, for 
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d S  such that ˆ > ,d d
   let ˆ= dc   and define ˆ= { : =c jA j S c    and }j d  Then cA  has at least two 

elements, and if for any cj A  we have ,
jj Uy  this guarantees ˆ .

dd Uy  
 

Proof: Suppose for some domain ,d ˆ .d du u   If ˆ > ,d du u  then certainly ˆ .
d dd U d Uu y u y    If ˆ < ,d du u  let 

ˆ= .dc u  We know by Lemma 1 that 
cA  has more than one element. There is at least one cj A  such that 

< ;j du u   if not, then ˆdu  could be larger and closer to du  without changing other ˆ .ju  Because 
d jU Uy y  and 

ˆ ˆ< = ,j j du u u  

 ˆ ˆ ˆ .
j j j dj U j U d U d Uu y u y u y u y         

The proof for the lower bound is similar. 

To demonstrate the effectiveness of the empty-and-small domain methods, we generated a population of 

size 40,000 using a vector   of 50 domain means, so that each domain has 800 population values from a 

normal distribution with mean i  and variance 4. Suppose the units of the simulated population are workers 

in a certain field, and the values represent the log of the salaries. There are 10 job ranks and 5 locations 

comprising the 50 domains, and the domains with lower ranks have higher numbers of workers. We assume 

that within each location, the salaries are increasing in rank, and we impose a block ordering on the 

locations: For each rank, the mean salary in location 4 is higher than the mean salary of the corresponding 

rank in any of locations 1, 2, and 3, and the mean salaries for the ranks in location 5 are also higher than 

those in the first three locations. However, there is no ordering imposed within locations 1, 2, and 3; 

similarly we do not impose an order on the mean salaries of locations 4 and 5. A stratified design is used to 

sample from the population. 

A sample of size =n 400 from this population is shown as the gray dots in Figure 3.2. The true 

population means are shown as the diamonds, which are almost linear in the finite population. The estimates 

are shown as black dots, and the 95% confidence intervals are shown as well. The constrained estimator is 

compared to the unconstrained Hajék estimator, and to the Fay-Herriot estimate given by the sae package 

using rank and block as ordinal and nominal predictors, respectively. The average domain sample size is 8, 

but some domains corresponding to higher ranks are more likely to have smaller sample sizes. The 

confidence intervals for the constrained estimator appears to have better coverage and small length. 

 

Figure 3.2 A simulated data set from a population of workers where the study variable is log(salary). 
 
 
 
 
 
 
 
 
 
 

 
 
Notes: For the constrained estimator, salary is assumed to be increasing in ranks 1-10 within each location, and across locations salaries follow a 

block order, with locations 4 and 5 having higher mean salaries compared to locations 1, 2, and 3. The population means are shown as the 
lighter-colored diamonds, while the estimates are shown by the black dots. The approximate 95% confidence intervals are shows as the 
lines. The unconstrained estimator given by survey and the Fay-Herriot estimator given by sae are also shown. 
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To demonstrate the coverage and precision of the order-restricted estimates with small sample size, we 

sampled 1,000 data sets of size 400, using the stratified design. For each data set, we computed the 

constrained estimates, the Hajék estimates, the Fay-Herriot estimates, and the 95% confidence intervals for 

each. For each of the 50 domains, we determined the proportion of data sets for which the confidence 

interval captured the population mean, and we also determined the lengths of the confidence intervals. The 

coverage rates and interval lengths are summarized for both estimators in Figure 3.3. Because the Hajék 

estimate cannot be computed in empty domains, the reported percent coverage is limited to the data sets 

with non-empty domains. Similarly, the percent coverage for the model-based estimator is over the 

simulated data sets for which the estimator can be computed.  

For the Hajék estimator, the intervals for the higher ranks have poor coverage within each block, due to 

the smaller sample sizes. The model-based sae estimator is an improvement in that the coverage is higher 

than for the unconstrained estimator, and the lengths are considerably smaller. However, the sae coverage 

is near the target only for ranks 1-5, which have larger population and sample sizes. The coverage for the 

order-constrained estimator is still good for these domains, because information from the domains with 

larger sample sizes is used. The lengths of the constrained intervals are consistently smaller than for the 

Hajék estimator, while the coverage is consistently good. Complete code to produce these simulation results 

is available in the Supplemental Materials. 

 
Figure 3.3 Coverage probabilities (top) and interval lengths (bottom) for 95% confidence intervals for 50 

domain means with =n 400, with assumption that the domain mean is increasing in rank, and that 
blocks 4 and 5 have higher means than blocks 1, 2, and 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The higher ranks have smaller sample sizes, so the coverage is poor without the constraints. 

 
4. Applications 
 

The first example uses a complete ordering. The dataset apipop in the R package survey contains 

standardized testing data from =N 6,194 California schools. We will use this data set as a population from 
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which we sample, to compare the performance of the constrained estimator with the standard unconstrained 

estimator. Because we know the population domain means, we can compare the errors of fit and also 

determine coverage proportions for the confidence intervals. 

Suppose interest is in the average standardized test score for the school, called api00 in the data set, 

and how this might be related to a measure of affluence. The variable meals represents the proportion of 

students at the school who are eligible for subsidized meals; we categorize this measure into 20 levels of 

five percentage points each, and assume that the average test score is decreasing as the proportion of eligible 

students increases. 

Observations for a single sample of size =n 240 are shown as grey diamonds in Figure 4.1. The sample 

is stratified by type of school, with 60 each from elementary and middle schools, and 120 high schools. The 

population domain means shown as circles connected with dashed lines. On the left, the domain mean 

estimates constrained to be decreasing are shown as the dots connected by solid lines, and the 95% 

confidence interval bounds are shown as well. In the center, the unconstrained (Hajék) domain mean 

estimators are shown with their confidence interval bounds. The confidence interval lengths for the 

constrained estimators can be seen to be smaller, and for this sample, these confidence intervals all capture 

the population domain means. On the right are the estimates and confidence intervals for the model-based 

Fay Herriot estimator as provided by the sae package. The lengths of the confidence intervals are smallest 

for this estimator, but they do not capture all of the population means. 

 
Figure 4.1 Domain means and confidence intervals for a stratified sample in the R dataset api, =n 240.  
 
 
 
 
 
 
 
 
 
 
 

 
Notes: The population values are shown as circles, and the sample values as grey diamonds. The 95% confidence intervals are indicated. 

 
The actual coverage rates and interval lengths for various sample sizes can be established through 

repeated sampling. We use the same sampling scheme, and for each of 1,000 samples, determine the 

population domain estimates and their 95% confidence intervals. The average lengths of the confidence 

intervals and the coverage proportions are seen in Figure 4.2, where it is seen that the coverage rates for the 

unconstrained estimates are lower than the target, with reasonable coverage only for larger samples. We 

chose =n 160 for a “moderate” sized sample with an average of eight observations per domain, and =n

320 for a “large” sample. For sample size =n 160, the unconstrained estimators have poor coverage, which 
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is improved for =n 320. The constrained estimator, however, has coverage proportions that are often higher 

than the target. In addition, the lengths for the constrained intervals are consistently smaller than those for 

the Hajék estimator. 

 
Figure 4.2 Coverage probabilities and interval lengths for stratified samples of sizes 160 and 320 for 20 

domains.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The constrained estimators have consistently better coverage and smaller lengths, compared to the unconstrained estimators. 

 
We next choose a single stratified sample of size =n 60, with 15 each from elementary and middle 

schools, and 30 high schools. This sample size is small enough to result in empty and small-sample-size 

domains for each of the samples. The sample shown in Figure 4.3 has three empty domains and two domains 

with only one observation. For the unconstrained estimators, it is not possible to get design-based estimates 

for the empty domains, and the confidence intervals are unreliable for domains with small sample sizes. For 

the constrained estimator, information from other domains is used for the estimators of the domain means 

that are empty or have a small number of observations, resulting in valid confidence intervals with 

reasonable length. Results for repeated simulations at =n 60 are shown in Figure 4.4. For this sample size, 

there is an average of three observations per domain, but the coverage proportion is still good. 

For an example of a binary study variable, we use data from the NHANES study, which provides health 

data for a sample of the U.S. population, and is available to the public at http://www.cdc.gov/nchs/nhanes.htm. 

There are =n 1,680 observations with complete records for cholesterol level, age, height, and waist size for 

adults ages 21-40; we will use these to demonstrate a partial ordering by estimating proportion of the 

population with cholesterol level above 200, by age, waist size, and gender. The waist size is divided by 

height so that it is a measure of relative girth, then divided into four levels, with level one the smallest and 

level four the largest. There are 160 domains that represent age/waist/gender combinations for a 20 4 2   

grid of domains. The number of domains is large for this sample size, resulting in many domains with fewer 

than five observations. In the absence of order assumptions, domains would have to be pooled to obtain 
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reliable estimation and inference. It is reasonable, however, to assume that the probability of having higher 

cholesterol will increase in both age and waist size. The subset of the NHANES data used here is included 

in the object nhdat in the csurvey package. 

 
Figure 4.3 Domain means and confidence intervals for a stratified sample in the R dataset api, =n 60. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The population domain means are shown as circles, and the sample values are gray diamonds. The sample size is too small for design-

based estimation without constraints. 

 
 

Figure 4.4 Coverage probabilities and interval lengths, for 1,000 simulations from the apipop data set with 
sample size =n 60.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For the unconstrained estimator, the average length and coverage probability are computed over only the non-empty domains. 
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The estimates and 95% confidence intervals for the 160 domains are shown in Figure 4.5, where we see 

that the constrained estimates are more stable and tend to have smaller confidence intervals compared to the 

unconstrained Hájek estimators. (We did not include the Fay-Herriot estimators as a comparison because a 

binary response is not as straight-forward to implement with small sample sizes.) Although in this case we 

do not know the population domain proportions, it is unlikely that they “jump” up and down as age increases, 

within a waist category. The jumps in the unconstrained estimator are likely the result of random chance, 

due to small sample sizes within the 160 domains. 

 
Figure 4.5 Estimates of the probability of high cholesterol for =D 160 domains, with 95% confidence intervals 

by age, waist size, and gender, using the NHANES data with a sample size of =n 1,680 observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To verify the method we carried out simulations to compare coverage rates and interval lengths for the 

constrained and unconstrained estimates of the probability estimates. We have 160 domains as in the 

NHANES example, and sample sizes of =n 1,600 and =n 4,800. We specify true probabilities of high 

cholesterol as shown (for one of the genders) in Figure 4.6 (the other gender has slightly higher 

probabilities). The sample size =n 1,600 is too small to get reasonable estimates for the traditional 

unconstrained estimator; researchers would aggregate the domains to get larger domain sample sizes and 

smaller variances. 
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Figure 4.6 Simulated NHANES data with true probabilities of high cholesterol shown as the sigmoidal shapes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The estimates on the left for =D 80 domains are constrained to be increasing in waist size and in age, while the estimates on the right are 

unconstrained. 

 
The simulated data set shown in Figure 4.7 has a larger sample size. The jumps are not as drastic as for 

the smaller sample size, but the constrained estimator still produces more reasonable estimates and smaller 

confidence intervals. For the smaller sample size, many of the domain sample sizes are small; too small for 

the unconstrained fit to give much information. Imposing the constraints results in more precise estimates 

and tighter confidence intervals. The simulations results in Figure 4.8 show the coverage proportions and 

the lengths of the confidence intervals for the log odds of high cholesterol in each of the 160 domains; 

imposing the constraints gives a dramatic reduction in confidence interval length. The constrained estimator 

performs best for the domains that are in the “middle” of the partial ordering; that is, if the domain mean is 

constrained to be both lower than some domain main means and higher than others. The “edge” domains 

give coverage somewhat below the target, and larger confidence intervals. 

 
Figure 4.7 Simulated NHANES data with true probabilities of high cholesterol shown as the sigmoidal shapes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The estimates on the left are constrained to be increasing in waist size and in age, while the estimates on the right are unconstrained. This 

larger data set shows more precise estimates. 
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Figure 4.8 Coverage proportions and confidence interval lengths for the log-odds of high cholesterol, for =D
160 domains, over 1,000 simulated data sets.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The constrained estimates have consistently smaller lengths. 

 
5. Discussion 
 

We have introduced a novel method for design-based estimation and inference of domain means with 

small or zero sample size, given a priori inequality constraints. Estimation and inference for domain means 

with survey data can be substantially improved if estimators based on natural orderings and the mixture 

variance estimator are used, and the improvement is larger for smaller sample sizes. These estimators use 

information from other domains in a design-based approach. The constrained methods were introduced by 

Wu, Meyer and Opsomer (2016) and Oliva-Aviles, Meyer and Opsomer (2020), who emphasized that the 

order assumptions were imposed on an imaginary “super-population” or mechanism that generates the finite 

population, so that the finite population itself might not exactly satisfy the ordering. They showed through 

simulations that if the population contains small deviations from the ordering (as in the California school 

example), the inference is still improved over the unconstrained estimator. We have extended these methods, 

providing reliable estimates and confidence intervals for small sample size or empty cells. The simulations 

show that the confidence intervals computed with the proposed methods give consistently good coverage 

compared to the standard Hajék estimator and the Fay-Herriot estimator, and the length of the confidence 

intervals are smaller than for the Hajék estimator. The csurvey package implements these methods, 

allowing users to specify orderings on grids of domains, and obtain estimates of and confidence intervals 

for population domain means. The utility of the methods has been demonstrated with well-known survey 

data sets. 
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Appendix 

 
A. Code for California school data example 
 

The data set api in the package survey contains information about elementary, middle, and high 

schools in California. The unit is school and for this example we are concerned with the average 

standardized test score for the year 2000, api00. We expect the average scores to be decreasing over 20 

levels of the meals variable, the proportion of students qualifying for free or reduced-price lunch.  
 
mcat = apipop$meals 

M = 20 

for(i in 1:M){mcat[trunc(apipop$meals / 5) + 1 == i] = i} 

mcat[mcat == 100] = M 

mcat = as.factor(mcat) 
 

For purposes of comparison, we compute the true population domain means:  

tsc = 1:M 

for(i in 1:M){tsc[i] = mean(apipop$api00[mcat == i])}  
 

The stype variable indicates the type of school; we will choose a stratified sample based on this variable. 

The snum variable is the school ID number; the following code chooses a simple random sample from each 

school type, with 60 each from elementary and middle schools, and 120 from high schools.  
 
nsp = c(60, 60, 120) 

es = sample(apipop$snum[apipop$stype == "E" & !is.na(apipop$avg.ed) & 

!is.na(apipop$api00)], nsp[1])  

ms = sample(apipop$snum[apipop$stype == "M" & !is.na(apipop$avg.ed) & 

!is.na(apipop$api00)], nsp[2])  

hs = sample(apipop$snum[apipop$stype == "H" & !is.na(apipop$avg.ed) & 

!is.na(apipop$api00)], nsp[3]) sid = c(es, ms, hs)  
 

The probability weights and the finite population correction are computed next: 6,194 is the total number 

of schools in the data frame, of which there are 4,421 elementary schools, 1,018 middle schools, and 755 

high schools.  
 
pw = 1:6194 * 0 + 4421 / nsp[1] 

pw[apipop$stype == "M"] = 1018 / nsp[2] 

pw[apipop$stype == "H"] = 755 / nsp[3] 

fpc = 1:6194 * 0 + 4421 

fpc[apipop$stype == "M"] = 1018 

fpc[apipop$stype == "H"] = 755 
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The design is specified using the functions svydesign and as.svrepdesign in the survey package.  
 
strsamp = cbind(apipop, mcat, pw, fpc)[sid, ] 

dstrat = svydesign(ids = ~snum, strata = ~stype, fpc = ~fpc, data = strsamp, weight 

= ~pw) 

rds = as.svrepdesign(dstrat, type = "JKn")  
 

For more information about the design specification, see Lumley (2004), Lumley (2010), and Lumley 

(2023). 

To get the proposed constrained domain mean estimate, we use the csvy function in the csurvey 

package. In this example, the decr function is used to constrain the domain means of api00 to be 

decreasing for larger values of mcat. Arguments in the csvy function are similar to those required by the 

svyglm function in the R package survey. An additional argument is nD, which specifies total number 

of domains in a data set. The user must provide this argument such that the csvy function can do estimation 

and inference for empty domains.  
 

ans = csvy(api00 ~ decr(mcat), design = rds, nD = M)  
 

CIC value for the constrained and unconstrained estimator can be extracted as 
 
ans$CIC 

ans$CIC.un  
 

A smaller CIC shows a better fit. 

The confint function can be used to extract the confidence intervals for domain mean estimates from 

the object ans. The svyby and svymean functions in the survey package are used to get the 

unconstrained domain mean estimate together with the standard error. 
 
cstr = confint(ans, level = 0.95, type = "link") 

unc = svyby(formula = ~api00, by = ~mcat, design = rds, FUN = svymean, covmat = 

TRUE)  
 

The mseFH function in the sae package is used to get the Fay-Herriot estimate together with the 

standard error. We need to provide the unconstrained estimator and standard error from the svyby function 

in the survey package as the input values of the mseFH function.  
 
mhatu = unc$y 

seu = unc$se 

ysae = mhatu 

doms = expand.grid(1:10,1:5) 

x1sae = doms[,1] 

x2sae = doms[,2] 

anss = mseFH(ysae ~ x1sae*factor(x2sae), vardir = seu^2)  
 

The ebp function in the emdi package is used to get the Empirical Best Prediction estimate by mol10 

together with parametric bootstrapping standard error. We need to provide a population data set and a sample 



Survey Methodology, December 2024 319 

 

 
Statistics Canada, Catalogue No. 12-001-X 

data set. We also need to specify the name of a variable that indicates domains in the population data and 

the sample data. 
 
emdi_model = ebp(fixed = y ~ x1*factor(x2), pop_data = pop,  

pop_domains = "domain", smp_data = sample.stsi, smp_domains = "domain",  

MSE = TRUE, seed = NULL, na.rm = TRUE)  

 
B. Code for NHANES data example 
 

The data set nhdat in the package csurvey is a subset of the data collected in the National Health 

and Nutrition Examination Survey (NHANES), which combines in-person interviews and physical 

examinations to produce a comprehensive data set from a probability sample of residents of the U.S. 

Included in nhdat are observations from 1,680 subjects. We use this data set to estimate the probability of 

an individual having high cholesterol level with the assumption that the average cholesterol level will 

increase when age and waist size increase, but we have no ordering of gender. The response variable chol 

is coded as 1 if someone’s cholesterol level is larger than 200 mg/dl and 0 otherwise. Age is categorized 

and it takes integer values in between 21 and 40. Another variable wcat categorizes the ratio of an 

individual’s waist size and height. It has 4 categories and the 3 cut-off threshold values are .48, .55 and .66. 

Another covariate gender is coded as 1 and 2, where 1 represents male and 2 represents female. 

After we import the data set from csurvey, we use the svydesign function to specify a stratified 

sampling design with str being the stratas:  
 

library(csurvey) 

data(nhdat) 

dstrat = svydesign(ids = ~ id, strata = ~ str, data = nhdat, weight = ~ wt)  
 

To get the constrained estimator, we use the symbolic function incr twice as in incr*incr to specify 

that the domain mean of cholesterol level, i.e., the probability of getting high cholesterol, is increasing in 

both age and wcat, and the effects are not expected to be additive. When the response is binary, we specify 

family = quasibinomial(link = "logit") in csvy. Here, we use family = 

quasibinomial(link = "logit") for the same reason to avoid a warning about non-integer 

numbers of successes, which is recommended by author for the svyglm function in survey package. 

Finally, the total number of domains will be = 160M  and we need to provide it for estimating empty 

domains. 
 

M = 160 

ans = csvy(chol ~ incr(age) * incr(wcat) * gender, design = dstrat, nD = M,  

family = quasibinomial(link = "logit"))  
 

CIC value for the constrained and unconstrained estimator can be extracted as 
 

ans$CIC 

ans$CIC.un  
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A smaller CIC shows a better fit. 

To predict the probability of a person with a set of characteristics falling in the high cholesterol group, 

we call the predict function. The arguments are similar to those of the predict.glm function. For 

example, if we want to predict the probability of a person whose age = 40, wcat = 4 and 

gender = 2, we create a new data frame containing these characteristics and provide it to the predict 

function as: 
 

pred.muhat = predict(ans, newdata = data.frame(age = 40, wcat = 4, gender = 2),  

type = "response", se.fit = FALSE)  
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A small area estimation approach for reconciling differences 
in two surveys of recreational fishing effort 

Teng Liu, F. Jay Breidt and Jean D. Opsomer1 

Abstract 

Many studies face the problem of comparing estimates obtained with different survey methodology, including 
differences in frames, measurement instruments, and modes of delivery. The problem arises in multimode 
surveys and in surveys that are redesigned. Major redesign of survey processes could affect survey estimates 
systematically, and it is important to quantify and adjust for such discontinuities between the designs to ensure 
comparability of estimates over time. We propose a small area estimation approach to reconcile two sets of survey 
estimates, and apply it to two surveys in the Marine Recreational Information Program (MRIP), which monitors 
recreational fishing along the Atlantic and Gulf coasts of the United States. We develop a log-normal model for 
the estimates from the two surveys, accounting for temporal dynamics through regression on population size and 
state-by-wave seasonal factors, and accounting in part for changing coverage properties through regression on 
wireless telephone penetration. Using the estimated design variances, we develop a regression model that is 
analytically consistent with the log-normal mean model. We use the modeled design variances in a Fay-Herriot 
small area estimation procedure to obtain empirical best linear unbiased predictors of the reconciled estimates of 
fishing effort (requiring predictions at new sets of covariates), and provide an asymptotically valid mean square 
error approximation. 

 
Key Words: Coverage error; EBLUP; Fay-Herriot model; Log-normal model; MSE approximation; Nonsampling error. 

 
 

1. Introduction 
 

For decades, the National Marine Fisheries Service (NMFS) has conducted household surveys to count 

the number of recreational saltwater fishing trips from shore and private boat anglers in 17 US states along 

the coasts of the Atlantic Ocean and the Gulf of Mexico: Alabama, Connecticut, Delaware, Florida, Georgia, 

Louisiana, Maine, Maryland, Massachusetts, Mississippi, New Hampshire, New Jersey, New York, North 

Carolina, Rhode Island, South Carolina, and Virginia. Data collection occurs during a two-week period at 

the end of each two-month sample period (or “wave”), yielding six waves for each year. However, samples 

are not obtained for every wave in every state; for example, many states have no wave 1 sample, reflecting 

minimal fishing effort during January and February in those states. 

Until 2017, NMFS used the Coastal Household Telephone Survey (CHTS) to collect trip data. The CHTS 

frame was a list of full-time residential households with landline telephone service in coastal counties. The 

design was stratified simple random sampling, stratified by state and county. The CHTS used random digit 

dialing (RDD) for landlines of households in coastal counties. RDD suffers from several shortcomings in 

this context, such as the inefficiency at identifying anglers (National Research Council, 2006), the declining 

response rate for telephone surveys (Curtin, Presser and Singer, 2005), and the undercoverage of anglers due 

to the increase in wireless-only households (Blumberg and Luke, 2013). Thus, after some experimentation 

(Andrews, Brick and Mathiowetz, 2014), NMFS implemented the new Fishing Effort Survey (FES) in 2015. 
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Unlike CHTS, the FES is a self-administered mail survey that uses as its frame a directory of postal 

addresses in coastal states (not just coastal counties) serviced by the US Postal Service. In recent years, 

many studies have followed this same path from telephone to self-administered modes; see Olson, Smyth, 

Horwitz, Keeter, Lesser, Marken, Mathiowetz, McCarthy, O’Brien, Opsomer, Steiger, Sterrett, Su, Suzer-

Gurtekin, Turakhia and Wagner (2020) for a recent review. The FES design is stratified simple random 

sampling, stratified by state, proximity to the coast, and fishing license status, with status determined by 

matching addresses to the National Saltwater Angler Registry. The CHTS was discontinued after 2017, so 

that the two surveys have overlap in 2015-2017. 

The telephone-based CHTS and the mail-based FES have obvious methodological differences. The two 

surveys have different coverage properties because they use very different frames: RDD of landlines for 

CHTS versus address-based sampling, with oversampling of addresses matched to licensed anglers, for FES. 

They have different nonresponse patterns, with overall FES response rates nearly three times higher than 

CHTS response rates (Andrews et al., 2014). Finally, the measurement processes are fundamentally 

different, due to the differences in asking about angling activity over the phone versus a self-administered 

paper form. 

Due at least in part to these methodological differences, there is a large discrepancy between the trip 

estimates from the CHTS and the FES estimates, with FES estimates consistently higher. As we do not 

believe that either survey reflects the true number of trips exactly, whatever the reasons for the discrepancy, 

it is of interest to fisheries managers and stock assessment scientists to be able to convert from the “units” 

of the telephone survey estimates to those of the mail survey estimates, and vice versa. This conversion is 

known as “calibration” in this context, and is not to be confused with the calibration method common in 

complex surveys (Deville and Särndal, 1992). The calibration allows construction of a series of comparable 

estimates across time. 

The data used for the calibration exercise come from the CHTS for most states and waves from 1981 to 

2017, and from the FES for states and waves from 2015 to 2018. In what follows, we work on the scale of 

natural logarithms of trip counts, and refer to this log count as “effort.” For each survey, the data consist of 

estimated total effort for shore fishing and total effort for private boat fishing, along with estimated design 

variances and sample sizes, for each available state and wave. 

As discussed below, we formulate the calibration problem as an application of area-level small area 

estimation, for which we briefly review some related literature. Rao and Yu (1994) propose a small area 

estimation model involving autoregressive random effects and sampling errors with arbitrary known 

covariance matrix using both time-series and cross-sectional data. Datta, Lahiri, Maiti and Lu (1999) use a 

random walk model for the time component, with correlated sampling errors. Pfeffermann and Tiller (2006) 

add benchmark constraints to the state-space model with correlated measurements. Boonstra, 

van den Brakel and Das (2021); Boonstra and van den Brakel (2022) develop Bayesian hierarchical models 

for multilevel time series in small areas. Feder (2001) reviews various time series methods on cross-sectional 

survey data. 
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The literature on combining surveys is not as extensive as it is for a single survey. Merkouris (2010) 

proposes a model-assisted estimator by calibrating comparable domain estimates from various non-repeated 

surveys sharing the same domains. Lohr and Brick (2012) adopt a dual frame survey approach and explore 

methods for small area estimation from two surveys when one may be biased. Manzi, Spiegelhalter, Turner, 

Flowers and Thompson (2011) propose a series of Bayesian hierarchical models to combine prevalence 

estimates from multiple sources of data with additive biases. Wang, Holan, Nandram, Barboza, Toto and 

Anderson (2012) combine three surveys measured on different temporal supports and develop a Bayesian 

hierarchical model which produces better estimation of crop yield, with the assumptions that one of the three 

surveys analyzed is unbiased for the true yield. van den Brakel, Zhang and Tam (2020) review different 

methods to measure discontinuities due to a survey process redesign, classifying those methods according 

to whether there is an overlapping period between the old and new surveys, how long such a period lasts, 

and how the old survey switches to the new survey. For parallel data collection, where data is collected 

under the old and new designs alongside each other for a certain period, design-based methods in 

van den Brakel (2008, 2013), state-space models in van den Brakel (2008, 2010) and small area estimation 

models in Pfeffermann (2002, 2013) and Rao and Molina (2015) can be adopted, depending on the length 

of the parallel run and the sample sizes. Other related papers include Raghunathan, Xie, Schenker, Parsons, 

Davis, Dodd and Feuer (2007), who combine information from two surveys to correct noncoverage and 

nonresponse issues through adopting a hierarchical Bayesian model assuming unbiasedness of one of the 

surveys, and Erciulescu, Opsomer and Breidt (2021), who establish a Bayesian hierarchical model to 

account for discrepancies between two sets of survey estimates and produce reliable estimates at various 

aggregation levels. 

In Section 2.1, we build a model that assumes that both mail and telephone estimates have underlying 

“targets” of interest in the calibration. Both target series include a classical time series model consisting of 

trend, seasonal, and irregular components. This model specification supports calibration backward or 

forward in time. For a past time period, we can predict what the effort in “mail units” would have been by 

using the prior telephone estimate to predict the mail target. Similarly, for a future time period, we can 

predict what the effort would have been in “telephone units” by predicting the telephone target using the 

mail estimate. 

In Section 2.3, we show that the combined model for the two sets of estimates and the underlying targets 

is a linear mixed model of a type that commonly appears in the context of area-level small area estimation, 

where it is known as the Fay-Herriot model (Fay and Herriot, 1979). In Fay-Herriot, it is standard to treat 

design variances as known. Our design variances are based on moderate to large sample sizes (minimum 

size = 39)n  in each state and wave and so are well-estimated by the standards of small area estimation. A 

complication is that the original design variances are on the scale of trip counts rather than the scale of effort 

(log trip counts). As an alternative to standard Taylor linearization, we develop in Appendix B a novel 

approach to transforming the estimated design variances that ensures analytic consistency between our mean 

model and our variance model. 
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The Fay-Herriot methodology in Sections 3.1-3.2 leads to empirical best linear unbiased predictors 

(EBLUPs) of the mail target or the telephone target, and these constitute our calibrated effort series. Unlike 

the standard Fay-Herriot context, the EBLUPs require prediction at new sets of covariates. In Sections 3.3-

3.4, we adapt standard Mean Square Error (MSE) approximations and estimates to this non-standard 

situation, and evaluate their performance via simulation in Section 4.1. In Section 4.2, we apply the methods 

to the problem of reconciling past telephone survey estimates to the mail survey, and conclude with a brief 

discussion in Section 5. 

 
2. Model 
 

2.1 Mean model 
 

We fix attention on one type of fishing behavior, either shore or private boat: the model development is 

identical in both cases. Let = 1, 2, ,17s …  index the US states and let =1, 2,t …  index time in two-month 

waves, starting with January-February of 1981. We assume that the telephone effort estimate ˆstT  is a design-

unbiased estimator of the “telephone target” ,stT  which includes both the true effort and survey mode effects 

due to the telephone methodology, while the mail effort estimate ˆ stM  is a design-unbiased estimator of the 

“mail target” ,stM  which includes both the true effort and survey mode effects due to the mail methodology. 

We assume that both the telephone target and the mail target contain the true effort series, which is 

further assumed to contain state-specific trends, due in part to changing state population sizes, state-specific 

seasonal effects that vary wave to wave, and irregular terms that are idiosyncratic effects not explained by 

regular trend or seasonal patterns. We model state-specific trends by using annual state-level estimates of 

the population size from the US Census Bureau (2016) on a log scale. We model a general seasonal pattern 

via indicators for the two-month waves, and allow the seasonal pattern to vary from state to state. The 

remaining irregular terms, denoted { }st  below, represent real variation not explained by the regular trend 

plus seasonal pattern, and are modeled as independent and identically distributed (iid) random variables 

with mean zero and unknown variance, .  

The survey mode effects present in the telephone and mail targets are nonsampling errors, including 

potential biases due to coverage error (population   sampling frame), nonresponse error (sample   

respondents), and measurement error (true responses   measured responses). These effects may have their 

own trend and seasonality: for example, due to changes in the quality of the frame over time, changes in 

response rates over years or waves, changes in implementation of measurement protocols over time, etc. 

These nonsampling errors thus cannot be completely disentangled from the true effort series (a problem in 

every survey). 

Given suitable covariates that explain the change in measurement error, nonresponse error, or coverage 

error over time, the nonsampling errors could be modeled and removed. The changing proportion of 

wireless-only households is a potential covariate for explaining changes in coverage error over time for the 
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landline-only telephone survey. In Appendix A, we describe how we constructed a set of predicted 

proportions of wireless-only households, { },stw  for every state and wave in our data. 

Either trend or seasonal could contain survey mode effects. Accordingly, we allow for the possibility 

that trend and seasonal are different for mail versus telephone, and in particular we allow for the possibility 

that either trend or seasonal can change with the level of wireless. 

Our combined model for effort (natural logarithms of trip counts) then assumes  

 telephone effort estimate  ˆ= =st st TstT T e  

 telephone target  = =st Tst stT x β  

 mail effort estimate  ˆ= =st st MstM M e  

 mail target  = = ,st Mst stM x β  (2.1) 

where 

• β  is a vector of unknown regression coefficients;  

• the sampling errors { }Tste  are independent  20, TstN  random variables, with known design 

variances 2 ;Tst  

• the sampling errors { }Mste  are independent  20, MstN  random variables, with known design 

variances 2 ;Mst  

• the irregular terms { },st  representing real variation not explained by the regular trend plus seasonal 

pattern, are iid (0, )N  random variables, with unknown variance ;  

• { },Tste { }Mste  and { }st  are mutually independent.  

 

The assumed independence of the sampling errors is justified because the sample is stratified and 

independent samples are drawn state-to-state and wave-to-wave. The assumed normality is justified by 

central limiting effects of moderate to large-size stratified samples in each state and wave (as previously 

noted, the minimum sample size is 39). Further, we assume that because the mail and telephone surveys are 

selected and conducted independently, the sampling errors { }Tste  and { }Mste  are independent of one another. 

We use simulation to assess the sensitivity of some of our methods to the normality assumption on the 

random effects in  Section 4.1 below. The design variances 2{ }Tst  and 2{ }Mst  are for effort estimates 

(natural logarithms of trip count estimates), while the available design variance estimates ˆ{ }TstV  and ˆ{ }MstV  

are for trip count estimates; we address this discrepancy in Section 2.2 below. 

Let , ,T M
st st st    denote independent, zero-mean random effects where st  is measured by both surveys 

and represents true variation not explained by covariates, while ,T M
st st   denote mode-specific random 

effects. We considered various random effect specifications, including (a) both surveys measure true 

variation ( );st  (b) mail measures truth ( )st  while telephone measures truth plus telephone random effect 

( );T
st st   (c) telephone measures truth ( )st  while mail measures truth plus mail random effect, ( );M

st st   

(d) each survey measures truth plus its own mode-specific random effect, ( , );T M
st st st st      and (e) the 

two surveys have their own mode-specific random effects, independent of each other, with no true variation 
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(outside of fixed effects) measured by either ( , ).T M
st st   Independence is assumed in specifications (b)-(e) 

because any correlated effects in the two measurements should be true variation, not measurement error. 

Both models (b) and (c) require specification of one model to serve as the “gold standard”, which is 

inconsistent with the approach we have taken in this analysis. We do not pursue these models further. Model 

(d) is scientifically plausible, but it is the largest model considered and requires custom estimation software 

to account for both bivariate observations during overlapping periods and univariate observations during 

nonoverlapping periods. In some exploratory analysis not reported here, we found it difficult to fit this 

model with our limited overlapping data. Model (e) says that any random effects are purely mode-specific 

measurement error, unrelated to the true underlying phenomenon. While this is a possibility, the implication 

of such a model is that only the fixed effects are of interest for prediction, and even if we mis-specify the 

zero-mean random effects, we will still have reasonable estimates of the fixed effects. Consequently, we 

settled on model (a), in which both surveys measure a common st  that represents real variation. This is a 

standard specification in small area estimation and it allows us to obtain estimates using off-the-shelf 

software for univariate Fay-Herriot modeling, as we describe below. 

The sampling errors in our application are independent due to the stratification in the design. The random 

effects { }st  in our specification do not include either spatial or temporal autocorrelation. The spatio-

temporal scale of our data is state by wave, which we model with fixed effects. Any residual spatial or 

temporal autocorrelation is expected to be small, with temporal autocorrelation likely to be more important 

if any autocorrelation is present. However, our diagnostics (see Section 4.2) did not find support for residual 

temporal autocorrelation. 

Let = , , .β α μ γ  
     Then the fixed effects Tstx β  and Mstx β  can each be decomposed into three 

components,  

 
= , 0 , , = 0

= ,1 , 0 = 1 0 ,

Tst st st st st st st st st

Mst st st st st st st

w w     

       

x β a b c β a α b μ c γ

x β a b c β a α b μ c γ

      

      

 (2.2) 

where the known covariate vector sta  includes intercept, log(state population size), state indicators, wave 

indicators, and state by log(population) and state by wave interactions. In our application, the covariate 

vectors stb  and stc  are subvectors of ,a st  due to parsimony; details are provided in Section 4.2. Hence, 

sta α  describes state-specific trend and seasonal variation for the telephone data, st sta α b μ   describes state-

specific trend and seasonal variation for the mail data, and the wireless interaction term st stw c γ  models the 

impact of wireless telephone penetration on the telephone trend and seasonal and has no impact on mail. It 

is easy to verify that all parameters in this model are identified and admit unbiased estimates from the 

available data. 

 

2.2 Design variance model 
 

Under the effort models (2.1), the variances of the sampling errors on the original scale of untransformed 

trip counts can be derived from the log-normal distribution as  
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      2 2ˆ= Var exp( ) | = exp( ) 1 exp 2Tst st st Tst st TstV T T T    (2.3) 

and  

      2 2ˆ= Var exp( ) | = exp( ) 1 exp 2 .Mst st st Mst st MstV M M M    (2.4) 

We need to estimate 2
Tst  and 2

Mst  (the design variances on the scale of effort, or log trip counts), 

incorporating the approximately design-unbiased estimates ˆTstV  and ˆMstV  of TstV  and ,MstV  respectively. 

We follow an approach related closely to generalized variance function estimation (e.g., Chapter 7 of 

Wolter (2007)) by developing regression models for the logarithms of the empirical CV 2  (squared 

coefficients of variation) and using these fitted models to generate estimates of the design variances on the 

log scale, 2
Tst  and 2 ,Mst  that enforce analytical consistency between the mean model and the variance 

model. Details are provided in Appendix B. The sample sizes within states and waves are large in our 

application, so we treat these estimates as fixed and known in what follows, as is standard in the small area 

estimation techniques which we will apply in subsequent sections. 

 

2.3 Fay-Herriot small area estimation model 
 

Define  

             

if no mail estimate is available;

)

if no telephone estimate is available;

otherwise.

,

= ,

( 2,

x

x x

x x

Tst

st Mst

Tst Mst






 



 



  

Then it is convenient to write  

          

 

if no mail estimate is available;

if no telephone estimate is available;

otherwise.

if no mail estimate is available;

if no telephone est
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(2.5)

 

This model then follows exactly the linear mixed model structure of Fay and Herriot (1979), with direct 

estimates stY  equal to regression model plus random effect st  plus sampling error with “known” design 

variance, given by  
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It might seem natural to use a convex combination other than (1 2, 1 2)  to reflect unequal variances in 

the two data sources. Simple averaging could result in nontrivial loss of information for prediction of ,st  

but because our goal is calibration, prediction of st  is not required during the overlap period: we have both 

telephone and mail observations and no need for unit conversion. The only contribution of these overlap 

observations is therefore to the estimation of the regression parameters β  and random effect variance .  

Averaging the telephone and mail estimates results in a small loss of information for parameter estimation, 

since we are replacing two correlated observations with one observation, but this simple approach allows 

the use of standard software for estimation. 

 
3. Methods 
 

3.1 Estimation for the Fay-Herriot Model 
 

Define = {( , ): sts t YA  is not missing} to be the set of all state by year-wave combinations for which we 

have an estimate from either survey. Let m  denote the size of the set .A  Define ( , ): [ ] ,X xst s t  
A  

( , ) .: [ ]Y st s tY  A  We have  

 ( , ) ( , )= [ ] [ ] .st s t st s te   Y Xβ A A   

Then   ( , )( ) : Var = diag{ } .Σ Y st s tD    A  If   were known, the best linear unbiased estimator 

(BLUE) of β  would be  

  
11 1= ( ) ( ) .  

 β X Σ X X Σ Y    (3.1) 

Since   is not known, we replace it by a consistent estimator to obtain  

  
11 1ˆ ˆ ˆ= ( ) ( ) . 

 β X Σ X X Σ Y   (3.2) 

We will use the Restricted Maximum Likelihood (REML) estimate ̂  unless otherwise indicated. 

 
3.2 Prediction 
 

In the classical Fay-Herriot context, it is of interest to predict  

 st stx β   

from (2.5). In our setting, however, we seek to predict  
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 = ,st st st z β  (3.3) 

where stz  may not equal .x st  As noted in the introduction, it is of interest to convert from the “units” of 

one mode to those of the other mode. To convert a past telephone survey estimate to mail survey units, we 

can use  

 = = , ,st Mst st st
  z x a b 0       

to predict the mail target .stM  To convert a future mail survey estimate to historic telephone survey units, 

we may want to use  

 = , ,st st
  z a 0 0      

to predict the telephone target, corrected for the wireless effect: = .c γ a αst st st st stT w     

Let stλ  denote an 1m   vector with a one in the ( , )s t th position and zero elsewhere. Under normality, 

it is well-known that the best mean square predictor of st  in (3.3) is  

   1, = ( ) ( ),st st st X    β z β λ Σ Y β 
 (3.4) 

which is feasible only if both β  and   are both known. If only   is known, the best linear unbiased 

predictor (BLUP)  

   1, = ( ) ( )st st st      β z β λ Σ Y Xβ     (3.5) 

is obtained by plugging the BLUE from (3.1) into (3.4). Finally, if neither β  nor   is known, then the 

empirical best linear unbiased predictor (EBLUP) can be obtained by substituting a consistent estimator of 

  into (3.5): 

   1ˆ ˆ ˆˆ ˆ ˆ, = ( ) ( ),st st st    β z β λ Σ Y Xβ   (3.6) 

where β̂  is given by (3.2). These EBLUPs are the proposed calibrated values on the log scale. 

 

3.3 Mean square error approximation 
 

Mean square error approximation has been investigated widely; see Jiang and Lahiri (2006) for an 

excellent review. Our prediction approach is slightly nonstandard because we predict at new sets of 

covariates when converting our estimates from the “units” of one mode to those of the other mode. It can 

be shown that  
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where m  is the number of small areas,  
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The terms in this MSE approximation can be obtained from results in Section 5.3 of Rao and Molina (2015). 

 

3.4 Mean square error estimation 
 

As in Section 5.3 of Rao and Molina (2015), an approximately unbiased estimator of the MSE 

approximation in (3.7) is given by  

    1 2 3
ˆ ˆ ˆ ˆ ˆmse , = ( ) ( ) 2 ( ).βst st st stg g g         (3.8) 

We assess the quality of the asymptotic approximation (3.7) and its estimator (3.8) via simulation in 

Section 4.1 . 

 

3.5 Prediction on the original scale 
 

To compute predictors on the original scale, we back-transform by exponentiating the EBLUP from (3.6) 

and adjust for the nonlinearity of the back-transformation using the estimated MSE from (3.8):  

 exp (𝜙𝑠𝑡)     1ˆ ˆˆ ˆ= exp , mse , ,
2

β βst st   
 

  
 (3.9) 

which is an estimator of the best mean square predictor under the normal model, and a standard adjustment 

even without the normality assumption. The back-transformation of Slud and Maiti (2006) uses the leading 

term, 1
ˆ( ),stg   of (3.8) and is nearly identical to (3.9) in our application because the impact of parameter 

estimation is small. 

 
4. Empirical results 
 

4.1 Simulation 
 

In this section, we investigate the performance of our second-order approximation of MSE and the 

estimated MSE under a setting that mimics the reconciliation problem of this paper. We use a subset of the 
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original data consisting of shore mode for all 17 states and seven years: the three overlap years 2015-2017 

and four previous years (1985, 1995, 2005, 2010). By design, there are some missing state and wave 

combinations (e.g., January-February in Maine). There are 607 telephone estimates and 258 mail estimates, 

among which 257 have the same state and wave combinations as telephone. Hence, the number of small 

areas in this setting is = 607 258 257 = 608.m    We take the wireless values and population counts from 

the actual data. 

We use the covariates stated above to construct the design matrix and multiply it by the parameter 

estimates from the final model fitted by all the shore mode data as described in Section 4.2 to get the fixed 

effects as in (3.3). 

Following Datta, Rao and Smith (2005), we consider three distributions to simulate the normalized 

random effects:   

• 1/2{ } iid (0,1);st  N  

• 
1/2{ } iid Laplace(0, 1 2);st 

 

• 1/2{ } iid centered Exponential(1)st   (that is, exponential random variables centered to mean 

zero).  

 

Under each distribution,  E = 0st  and  Var = .st   We pick = 0.12, again from the fit of the 

model. We get true efforts by adding the random effects to the fixed effects as in (3.3). 

We consider three different patterns for the design variances { }.stD  First, we use the modeled design 

variances in Section 2.2 as true design variances to create pattern (b). We consider two additional settings, 

by multiplying pattern (b) by 0.5 to yield pattern (a), and multiplying pattern (b) by 2.0 to yield pattern (c). 

The simulated sampling errors { }ste  in (2.5) are then generated independently as (0, )stDN  under each 

pattern. 

For each combination of sampling variance pattern and random effect distribution, we generate 1,000 

data sets from model (2.5). For each simulated data set, we use the R package sae Molina and Marhuenda 

(2015) to compute ̂  via REML and ˆ.β  We compute the EBLUPs in (3.6) for the mail targets { },stM  

approximate their MSEs using (3.7), and estimate their MSEs using (3.8). We then compare the 

approximations and the estimates to the true (Monte Carlo) MSEs over the 1,000 simulated realizations. 

The simulation model is similar to the final model selected in Section 4.2 below except for removing 

certain nonexisting state and wave combinations in the subset of covariates. 

Figure 4.1 shows boxplots of the relative error (in percent) of the MSE approximation (3.7) and the 

Monte Carlo average of the MSE estimator (3.8) relative to Monte Carlo MSE evaluated with 1,000 

replicates. Each boxplot consists of relative error from the 608 state and wave combinations for normal, 

Laplace, or centered exponential random effects with sampling error pattern (a), (b) or (c) described above. 

As expected, the MSE estimator is nearly unbiased for the MSE approximation in all cases, so the pairs of 

boxplots are nearly indistinguishable at each setting. Across all settings, the MSE approximation is close to 
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the true MSE (as measured by Monte Carlo), hence most of the relative errors are close to zero and within 

the 10%  reference lines, with a few outside 10%  but within 20%.  

 
Figure 4.1 Boxplots of the relative error (in percent) of the MSE approximation (in light gray) and the Monte 

Carlo average of the MSE estimator (in light blue) relative to Monte Carlo MSE evaluated with 
1,000 replicates. Each boxplot consists of relative error from the 608 state and wave combinations 
for normal, Laplace, or centered exponential random effects with sampling error pattern (a), (b) or 
(c) as described in the text. Horizontal lines at 10%  and 20%  are drawn for reference.  
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4.2 Calibration of the CHTS and FES estimates 
 

For the data described in Section 1, we use the R package sae (Molina and Marhuenda, 2015) to fit a 

number of models via maximum likelihood for both shore fishing and private boat fishing, and compare the 

models via their AIC values. The smallest model considered includes intercept, log(population), state 

indicators, wave indicators, state by log(population) interaction, and state by wave interaction. That is, the 

smallest model includes no differences due to survey methodology and instead drops the terms stb μ  and 

st stw c γ  from (2.1). The largest model considered adds wireless and its interactions with log(population), 

state indicators, wave indicators, and state by log(population), together with an indicator for presence of a 

mail survey estimate and the mail indicator’s interactions with log(population), state indicators, and wave 

indicators.  

The largest model adds two main effects and seven interactions to the smallest model. We considered 

80 submodels between the smallest and largest, each starting from the smallest model plus wireless and mail 

main effects. The six two-way interactions were then included or excluded, leading to 62 = 64  possible 

models, and an additional 42 = 16  models were considered by including the three-way interaction, wireless 

by state by log(population), and the corresponding two-way interactions, wireless by state and wireless by 

log(population). This resulted in a total of 80 submodels for consideration. 

We use the data before 2018 as our training data, with sample size =m 3,174 for shore fishing and =m

3,164 for private boat fishing. The best five models and additional reference models are given in Table 4.1 

for shore fishing and Table 4.2 for private boat fishing. The tables are ordered by AIC values, with the best 

models at the top. The models that ignore some (largest minus all mail, largest minus all wireless) or all 

(smallest) of the survey mode differences are not competitive with the models that include these factors. 

The largest model considered is quite competitive, with the best models dropping a small number of 

interactions from that largest model. 

While not the best model in terms of AIC for either shore or private boat, the largest model minus the 

mail by log(population) and mail by state interaction is fifth best in both cases. It is operationally convenient 

to use a common model for both reconciliations, and this particular model is further convenient because, 

when extrapolating back in time, it involves only wave level shifts once the effect of wireless has died out. 

Using the fitted models, we conducted some diagnostics to assess the potential importance of temporal 

(wave to wave) autocorrelation in our random effects specification. We subtracted off the estimated fixed 

effects and computed empirical covariances at each of lags one through six within each state. These 

empirical covariances would include any covariance due to correlated random effects, but no covariance 

arising from the independent sampling errors. We also computed a version of a Ljung and Box (1978) 

statistic (normalized sum of squared autocorrelations) for shore fishing and for private boat fishing in each 

state. We compared each computed statistic to a null distribution (no autocorrelation) obtained by 

resampling the residuals. Among the 34 statistics, 11 were significant at the conventional 0.05 level, with 

first-order autocorrelation values ranging from -0.11 to 0.29. Because these estimated values were small 
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and inconsistent across states and fishing modes, we did not further pursue autocorrelated random effects in 

our modeling. 

 
Table 4.1 

Out-of-sample prediction MSE, AIC and number of fixed effect parameters for various models fitted to effort 

estimates for shore fishing. See text for description of largest model. 
 

Model is largest minus terms below:  MSE AIC Parameters 

mail:log(pop), mail:state, wireless:wave  0.0837 4,564.28 152 

mail:state, wireless:wave  0.0899 4,564.69 153 

mail:log(pop) and wireless:wave  0.1350 4,564.86 168 

wireless:wave  0.1354 4,566.85 169 

mail:log(pop) and mail:state  0.0840 4,570.45 157 

nothing (largest)  0.1343 4,573.28 174 

mail interactions  0.2104 4,580.51 152 

wireless interactions  0.3694 4,719.05 136 

all interactions  0.3341 4,742.84 124 

all wireless  0.4745 4,758.73 145 

all mail  1.9466 4,838.73 151 

all mail and all wireless (smallest)  2.7443 5,106.70 122 

 
Table 4.2 

Out-of-sample prediction MSE, AIC and number of fixed effect parameters for various models fitted to effort 

estimates for private boat fishing. See text for description of largest model. 
 

Model is largest minus terms below:  MSE AIC Parameters 

nothing (largest)  0.2068 3,314.55 174 

mail:log(pop)  0.2124 3,314.56 173 

mail:log(pop) and wireless:wave  0.2163 3,316.42 168 

wireless:wave  0.2241 3,316.47 169 

mail:log(pop) and mail:state  0.2050 3,322.73 157 

mail:state  0.1910 3,323.00 158 

mail interactions  0.2272 3,362.27 152 

all mail  0.7046 3,501.23 151 

wireless interactions  0.4004 3,520.33 136 

all interactions  0.4615 3,646.78 114 

all wireless  0.5421 3,750.03 135 

all mail and all wireless (smallest)  1.2677 3,901.82 112 

 
We use the first two waves of 2018 as our out-of-sample data for prediction; not every state has data in 

these waves, resulting in 18 out-of-sample observations each for shore fishing and private boat fishing. (The 

2018 data are mail-only, and were selected for out-of-sample prediction because predicting mail is the most 

interesting use case.) The selected model has the lowest out-of-sample MSE for private boats and is tied (to 

three decimal places) with the lowest for shore fishing. Finally, the selected model is one of the most 

parsimonious among the top models. We therefore choose this model as the final model for both modes of 
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fishing, and refit it using REML to estimate the unknown variance .  We then compute EBLUPs of the 

mail target { }stM  for all states and waves. 

The model effectively borrows strength and reduces the variance of the direct estimates. For shore 

fishing, the averaged design variance is 0.0792 and the averaged in-sample MSE is 0.0445; for private boat 

fishing, they are 0.0789 and 0.0317, respectively. 

An example of effort estimation by wave for Florida private boat fishing is shown in Figure 4.2. In each 

subfigure, we show the original point estimates from the telephone survey ˆ( :stT  gray dots) and from the mail 

survey ˆ( :stM  open triangles). The black curve shows the EBLUPs of the mail target, .stM  The gray curve 

shows the EBLUPs of the telephone target corrected for the wireless effect, .c γst st stT w   The curves within 

each panel show the trend in effort over time according to each survey mode. The curves across panels show 

the seasonal pattern from wave to wave, peaking in the summer months for the telephone survey (though 

the seasonal pattern is not strong in Florida and is hard to see for the mail survey). 

 
Figure 4.2 Effort estimates by wave for Florida private boat fishing. Gray dots are telephone effort estimates 

ˆ{ }stT  and open triangles are mail effort estimates ˆ{ }.stM  Black curve shows the EBLUPs of the mail 
effort, .stM  Gray curve shows the EBLUPs of the telephone effort corrected for the wireless effect, 

c γ.st st stT w   
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The EBLUPs can be seen as smoothed versions of the point estimates. The gray curve either passes 

through the gray dots or is a shrunken version of the gray dots prior to 2010. The gray curve diverges from 

the point estimates after 2010, which reflects the wireless effect on the coverage of the telephone survey. In 

every wave, there is a positive shift from the gray curve to the black curve, which shows the underlying 

difference between telephone and mail survey modes. 

 
5. Discussion 
 

The proposed methodology accounts for various sources of variation in the effort series from each 

survey, including trend, seasonality and irregular terms in the true effort series, together with survey mode 

effects in the two series. The model assumes that differences in measurement and nonresponse errors 

between the two surveys would be stable over time, while the changes in coverage error over time due to 

growth in wireless-only households is explicitly modeled. Further, the methodology accounts for uncertainty 

due to sampling error, using a novel approach to ensure analytical consistency in mapping design variances 

estimated on the original scale to design variances estimated on the log scale. 

As formulated in this paper, the reconciliation methodology turns out to follow a standard, well-

established procedure: Fay-Herriot small area estimation. This means that the calibrated values turn out to 

be empirical best linear unbiased predictors under a linear mixed model fitted using likelihood-based 

techniques. The method is flexible enough to provide optimal calibrated values for different problems: 

predicting mail targets for time points with telephone-only data, or predicting telephone targets for time 

points with mail-only data, for example. 

Uncertainty is quantified via a mean square error approximation of EBLUPs at new sets of covariates 

that adapts existing methods from the literature. Simulation results show that the mean square error 

approximation and its estimator are highly accurate for the kinds of sample sizes and sampling errors present 

in the calibration data. The methodology is readily implemented with standard software. 

As the data collection continues with the new mail methodology, there will be more data to explore other 

possible specifications of the calibration model. Of particular interest would be other random effects 

specifications, such as model (d) as described in the introduction, temporal autocorrelation, hetero-

skedasticity across states, or some combination of such features. The basic calibration approach would not 

be fundamentally altered with such alternative specifications, however. 
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Appendix 

 
A. Proportions of wireless-only households 
 

The changing proportion of wireless-only households is a potential covariate for explaining changes in 

coverage error over time for the landline-only telephone survey. Here, we describe how we constructed a 

set of predicted proportions of wireless-only households, { },stw  for every state and wave in our data. 

These proportions were approximately zero in every state prior to the year 2000, but have been steadily 

increasing over time. While these proportions are not available in every wave, the best available data are 

June and/or December wireless-only proportion estimates for each state from 2007-2014 from the National 

Health Interview Survey, conducted by the National Center for Health Statistics (Blumberg and Luke, 

2013). We transformed these proportions via empirical logits and fitted the transformed values as state-

specific, continuous, piecewise linear functions with a slope change in 2010. While the uncertainty in 

covariates that are themselves survey estimates could be formally addressed (e.g., Ybarra and Lohr (2008); 

Bell, Chung, Datta and Franco (2019)), the wireless estimates are precise and smoothly varying in this 

application, as partly reflected by the adjusted 2R  value of 0.9948 for the fitted model. We therefore ignore 

sampling uncertainty in the wireless estimates in what follows. Transforming back to proportions and 

extrapolating backward in time yields a set of predicted proportions of wireless-only households, { },stw  for 

every state and wave in our data. 

 
B. Design variance model 
 

We need to estimate 2
Tst  and 2

Mst  in the sampling error variance models (2.3) and (2.4), incorporating 

the approximately design-unbiased estimates ˆTstV  and ˆMstV  of TstV  and ,MstV  respectively. Modeling or 

smoothing design variances prior to incorporation in the Fay-Herriot methodology is standard practice; see, 

for example (You and Chapman (2006); You (2021); You and Hidiroglou (2023)). We follow an approach 

related closely to generalized variance function estimation (e.g., Chapter 7 of Wolter (2007)). 

Let Tstn  denote the telephone sample size in state s  and wave ,t  if non-zero, and let Mstn  denote the 

mail sample size, if non-zero. Assume that given stT  and ,stM  the empirical squared coefficients of 

variation are log-normally distributed, independent of the effort estimates ˆstT  and ˆ :stM  
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where Tstd  is a vector of known covariates (state, wave, and state by wave interaction) and 0 ,δT 1T  are 

unknown regression coefficients, and assume that  

 
2

0 1

ˆ
ln = ln( ) , (0, ),

ˆexp(2 )
Mst

Mst M M Mst Mst Mst M

st

V
n

M
   

 
  

 
d δ N∼  (B.2) 



340 Liu et al.: A small area estimation approach for reconciling differences in two surveys of recreational fishing effort 

 

 
Statistics Canada, Catalogue No. 12-001-X 

where Mstd  is a vector of known covariates (state, wave, and state by wave interaction) and 0 ,δM 1M  are 

unknown regression coefficients. These models can be rewritten as regression models for the design 

variance estimates, with known offsets:  

   2
0 1

ˆ ˆln = 2 ln ( ) , (0, )Tst st Tst T T Tst Tst Tst TV T n     d δ N∼  (B.3) 

and  

   2
0 1

ˆ ˆln = 2 ln ( ) , (0, ).Mst st Mst M M Mst Mst Mst MV M n     d δ N∼  (B.4) 

Empirically, each of these models fits very well: 94.54% adjusted 2R  value for telephone, and 98.01% 

adjusted 2R  value for mail. 

These empirical models may be of independent interest as generalized variance functions for variance 

estimation on the original scale: by plugging the point estimate, state, wave, and sample size into the fitted 

versions of (B.3) or (B.4), one obtains excellent point estimates of the log design variance. 

Assuming that ˆTstV  is exactly unbiased for ,TstV  we then have from the log-normal CV model (B.1) and 

the assumed conditional independence of ˆTstV  and ˆstT  given stT  that  
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and similarly  
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Thus, we have from (2.3) and (B.5) that  
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and from (2.4) and (B.6) that  



Survey Methodology, December 2024 341 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 

     

 

2
2 2 2

0 1

2 2

exp ln ( ) = exp( ) 1 exp 2 exp 2 2
2

= exp(4 ) exp 3 .

M
Mst M M Mst Mst st Mst st Mst

Mst Mst

n M M


   

 

 
      

 



d δ

 (B.8) 

The left-hand-side parameters of (B.7) can be estimated from (B.1) and the left-hand-side parameters of 

(B.8) can be estimated from (B.2). The resulting estimates of 2
Tst  and 2

Mst  can then be obtained by solving 

the equations (B.7) and (B.8), which are quartic polynomials in 2exp( )Tst  and 2exp( ).Mst  Using Descartes’ 

rule of signs, it can be shown that each of these quartic equations has one negative real root, two complex 

conjugate roots, and one positive real root. The solutions for 2
Tst  and 2

Mst  are then the logarithms of the 

unique, positive real roots, which can be obtained via standard numerical procedures. While these solutions 

are in fact estimates, we will treat them as fixed and known in what follows, as is standard in the small area 

estimation techniques which we will apply in subsequent sections. 

The resulting design variances on the log scale, 2
Tst  and 2 ,Mst  have strong correlations (0.798 and 0.803, 

respectively) with the variance approximations from Taylor linearization,  ˆ ˆexp 2Tst stV T  and 

 ˆ ˆexp 2 .Mst stV M  But they are not identical (see Figure B.1), and the method described forces analytical 

consistency between the mean model and the variance model and does some smoothing of the design 

variances. Further, the method produces sensible estimates for some cases in which the design variances 

have been artificially thresholded at a maximum value, as shown in the left panel of Figure B.1. 

 
Figure B.1 Estimated design variances for effort (log trips) via Taylor linearization versus solution of the 

quartic polynomial equations (B.7) for telephone (top panel) and (B.8) for mail (bottom panel).  
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Figure B.1(continued) Estimated design variances for effort (log trips) via Taylor linearization versus solution 
of the quartic polynomial equations (B.7) for telephone (top panel) and (B.8) for mail 
(bottom panel).  
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Fully synthetic data for complex surveys 

Shirley Mathur, Yajuan Si and Jerome P. Reiter1 

Abstract 

When seeking to release public use files for confidential data, statistical agencies can generate fully synthetic 
data. We propose an approach for making fully synthetic data from surveys collected with complex sampling 
designs. Our approach adheres to the general strategy proposed by Rubin (1993). Specifically, we generate 
pseudo-populations by applying the weighted finite population Bayesian bootstrap to account for survey weights, 
take simple random samples from those pseudo-populations, estimate synthesis models using these simple 
random samples, and release simulated data drawn from the models as public use files. To facilitate variance 
estimation, we use the framework of multiple imputation with two data generation strategies. In the first, we 
generate multiple data sets from each simple random sample. In the second, we generate a single synthetic data 
set from each simple random sample. We present multiple imputation combining rules for each setting. We 
illustrate the repeated sampling properties of the combining rules via simulation studies, including comparisons 
with synthetic data generation based on pseudo-likelihood methods. We apply the proposed methods to a subset 
of data from the American Community Survey. 

 
Key Words: Bootstrap; Confidentiality; Disclosure; Privacy; Weights. 

 
 

1. Introduction 
 

Many national statistics agencies, survey organizations, and researchers ‒ henceforth all called agen-

cies ‒ disseminate microdata, i.e., data on individual units, to the public. Wide dissemination of microdata 

greatly benefits society, enabling broad subsets of the research community to access and analyze the 

collected data (Reiter, 2009). Often, however, agencies cannot release microdata as collected, because doing 

so could reveal survey respondents’ identities or values of sensitive attributes, thereby failing to satisfy 

ethical or legal requirements to protect data subjects’ confidentiality (Reiter and Raghunathan, 2007). 

To manage these risks, several agencies have implemented or are considering synthetic data approaches, 

as first proposed by Rubin (1993). In this approach, the agency (i) randomly and independently samples 

units from the sampling frame to comprise each synthetic data set, (ii) imputes the unknown data values for 

units in the synthetic samples using models fit with the original survey data, and (iii) releases multiple 

versions of these data sets to the public. These are called fully synthetic data sets (Drechsler, 2011; 

Raghunathan, 2021). Releasing fully synthetic data can preserve confidentiality, since identification of units 

and their sensitive data can be difficult when the released data are not actual, collected values (Reiter and 

Drechsler, 2010). Methods for inferences from these multiply-imputed data files have been developed for a 

variety of statistical inference tasks (Raghunathan, Reiter and Rubin, 2003; Reiter, 2002, 2005a,b; Drechsler 

and Reiter, 2010; Si and Reiter, 2011). 

While prominent applications of fully synthetic data exist for censuses or administrative data (e.g., 

Kinney, Reiter, Reznek, Miranda, Jarmin and Abowd, 2011), many research data sets are based on surveys 



348 Mathur, Si and Reiter: Fully synthetic data for complex surveys 

 

 
Statistics Canada, Catalogue No. 12-001-X 

collected with sampling designs that use unequal probabilities of selection. Previous research on multiple 

imputation for missing data suggests that imputation models should account for the survey design features, 

such as stratification, clustering, and survey weights (Reiter, Raghunathan and Kinney, 2006). Similarly, 

when using multiple imputation for synthetic data, the models also should account for the survey design 

(Mitra and Reiter, 2006; Fienberg, 2010; Kim, Drechsler and Thompson, 2021). The key challenge is 

properly incorporating weights in the synthesis models, which relates to the long-standing debate about the 

role of survey weights in model-based inferences (Pfeffermann, 1993, 2011; Little, 2004). 

Researchers have proposed a variety of approaches for generating fully synthetic data in complex 

surveys. The suggestion in early work (Rubin, 1993; Raghunathan et al., 2003; Reiter, 2002) was to take a 

Bayesian finite population inference approach, in which the agency (i) builds predictive models for the 

survey variables conditional on design features like stratum/cluster indicators or size measures, which are 

assumed known by the agency for every unit in the population, (ii) imputes the missing survey variables for 

the nonsampled units in the population, and (iii) takes a simple random sample from the completed 

population to release as one synthetic data set. A related approach uses the weighted finite population 

Bayesian bootstrap (WFPBB) (Dong, Elliott and Raghunathan, 2014), in which the agency generates 

completed populations by replicating individuals from the confidential data in proportion to their survey 

weights and then releases the completed populations, forgoing the step of simple random sampling. More 

recently, it has been suggested to build synthetic data models that account for the sampling design directly, 

so that they estimate the joint distribution of the population data. For example, the agency can use a pseudo-

likelihood approach (Pfeffermann, 1993; Savitsky and Toth, 2016), in which each individual’s contribution 

to the likelihood function of a synthesis model is raised to a power that is a function of the survey weights 

(Kim et al., 2021). Departing from the proposal of Rubin (1993), a completely different approach is to create 

and attach new weights to synthetic data records simulated from models that are agnostic to the survey 

weights (United Nations Economic Commission for Europe, 2022). Here, the goal is to allow users to use 

weighted estimates that scale up to the finite population. The new weights can be created by treating the 

survey weights as a variable in the synthesis, so that the agency specifies a predictive model for the weights. 

The simulated weights may be adjusted by raking or calibration before inclusion in the released file. 

Each of these methods has its potential drawbacks. The Bayesian finite population inference approach, 

while theoretically principled, requires completing full populations, which can be cumbersome, and the 

availability of design variables for all records in the population, which may not be the case in some surveys. 

The WFPBB releases (multiple copies of) individuals’ genuine data records, which creates obvious 

disclosure risks. Pseudo-likelihood approaches may not estimate sampling variability correctly (Williams 

and Savitsky, 2021), and it is not clear how easily they can be implemented with machine learning 

synthesizers like classification and regression trees (Reiter, 2005c), which are commonly used in practical 

synthetic data projects (Raab, Nowok and Dibben, 2018). With synthesized weights, secondary analysts are 

expected to use the simulated weights to approximate design-based inference. This approximation does not 

have a theoretical basis; as such, it is unclear whether the synthetic weights approach facilitates accurate 

inferences in general. 
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In this article, we propose an approach to generate fully synthetic data from complex samples in the spirit 

of the original proposal of Rubin (1993), i.e., the agency releases simple random samples that do not require 

users to perform survey-weighted analyses with the synthetic data. To do so, we build on the WFPBB 

approach of Dong et al. (2014) by first creating pseudo-populations that account for the survey weights. We 

then take simple random samples (SRSs) from each pseudo-population, estimate synthesis models from 

each SRS, and generate draws from these models to create multiply-imputed, fully synthetic public use files. 

The latter step provides confidentiality protection, as the agency is not releasing genuine records. We 

consider two processes for the last step of generating the synthetic data. In Synrep-R, we generate multiple 

synthetic data sets from each SRS. In SynRep-1, we generate one synthetic data set from each SRS. 

SynRep-R releases more data sets than SynRep-1, which can result in reduced variances. However, the 

additional data sets can increase the overhead for the agency and secondary analysts, and they provide 

additional information for adversaries seeking disclosures. For both approaches, we derive multiple 

imputation combining rules that enable the estimation of variances. Using simulation studies, we illustrate 

the repeated sampling performances of the combining rules and compare them to fully synthetic data 

generated while disregarding the sampling design entirely. We also compare them against approaches that 

use synthesis models estimated with weighted pseudo-likelihoods (Kim et al., 2021). Finally, we illustrate 

the proposed methods using a subset of the American Community Survey (ACS) data. Code for the 

simulation studies and the ACS illustration is available at https://github.com/yajuansi-sophie/SynRep. 

The remainder of the article is organized as follows. Section 2 describes the two synthetic data generation 

processes in detail and presents the new combining rules. Section 3 presents the simulation studies. 

Section 4 presents the illustration with the ACS data. Section 5 suggests topics for future research. 

 
2. Proposed methods for generating fully synthetic survey data 
 

Let D  be a probability sample of size n  randomly drawn from a finite population comprising N  units. 

For = 1, , ,i N…  let i  be the selection probability for unit ,i  and let =1i iw   be the unit’s survey weight. 

Here, we are agnostic as to whether iw  is potentially adjusted, e.g., for normalization, calibration or 

nonresponse, although in our simulation studies we use pure design weights. For = 1, , ,i N…  let iY  be the 

1p   vector of survey variables. Hence, = {( , ) : =1, , }.i iw Y i n…D  For simplicity of exposition, we 

suppose that 1,p   so that iY  is a scalar. SynRep-R and SynRep-1, and their corresponding inferential 

methods, can be used with multivariate survey data as well. 

In Section 2.1, we describe the processes of generating synthetic data. In Section 2.2, we describe the 

inferential methods. As mentioned in Section 1 and following the proposal in Rubin (1993), we take as a 

goal allowing secondary users to analyze the released data sets as if they were simple random samples from 

the population.  
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2.1 Data generation process 
 

Figure 2.1 and Figure 2.2 display the processes of generating synthetic data for SynRep-R and SynRep-1, 

respectively. We now describe these steps in detail. 

 
Figure 2.1 Process for generating synthetic data with multiple data sets per simple random sample (SRS), 

which we call SynRep-R. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2 Process for generating synthetic data with one data set per simple random sample (SRS), which we 

call SynRep-1. 
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In either process, the first step is to generate pseudo-populations using the WFPBB (Dong et al., 2014). 

The WFPBB generates pseudo-populations by “undoing” the complex sampling design and accounting for 

the sampling weights. The idea is to draw from the posterior predictive distribution of non-observed data 

nob( )Y  given the observed data obs( )Y  and the survey weights, i.e., drawing from nob obs 1( | , , , ).nP Y Y w w…  

This distribution supposes that the population is comprised of the unique values of ,iY D  and that the 

corresponding counts for each value in the population follow a multinomial distribution. With a non-

informative Dirichlet prior distribution on the multinomial probabilities, the Pólya distribution can be used 

to draw the predictive samples in place of the Dirichlet-multinomial distribution. 

With this in mind, the process of generating the synthetic data is described below. 
 

1. Resample via Bayesian bootstrap: To inject sufficient sampling variability, using the data from 

the “parent” sample ,D  we generate M samples, (1) ( )( , , ),M…S S  each of size n  using indepen-

dent Bayesian bootstraps (Rubin, 1981). For each ( )S m  and for = 1, , ,i n…  let ( ) ( )= ,m m
i i iw cw r  

where ( )m
ir  is the number of times that element i  from D  appears in ( ).mS  The c  is a normalizing 

constant to ensure that the new weights sum to the population size .N  Thus, in each ( ) ,mS  for 

= 1, , ,i n…  we create    ( ) ( ) ( )= .m m m
i i i k kk

w Nw r w r  

2. Use the WFPBB to make pseudo-populations: For each ( ) ,mS  we construct an initial Pólya urn 

using the set of  ( ), .m
i iY w  We then draw N n  units using probabilities  ( ) ( )

1 , ,m m
np p…  

determined from  

 

( ) ( )
, 1( )

1 ( )
= ,

( 1) ( )

m m
i i km

i

w l N n n
p

N n k N n n

  

   
 (2.1) 

for the k th draw, {1, , },k N n …  where 
( )
, 1
m

i kl   is the number of bootstrap selections of iY  

among the elements present in the urn at the 1k   draw. The N n  draws combined with the 

data in ( )S m  comprise one pseudo-population, ( ) .mP  We repeat this for = 1, ,m M…  to create 
( )

pseudo = { : =1, , }.m m M…P P  When N  is very large, we can save memory and computational 

costs by creating a pseudo-population that is large enough to be practically the same for inference 

as a population of size ,N  which we operationalize by generating 50n  rather than N n  records.  

3. Draw SRS from each pseudo-population: For = 1, , ,m M…  take a simple random sample ( )D m  

of size n  from ( ) .mP  Let ( )
srs = { : = 1, , }.m m M…D D   

4. Generate synthetic data replicates: For = 1, , ,m M…  estimate a synthesis model using 
( ) ,mD  

and draw from the predictive distributions to form synthetic data replicates using either Step 4a 

or Step 4b. 

4a. SynRep-R: For = 1, , ,m M…  draw > 1R  synthetic replicates ( , )
syn

m rD  of size ,n  where =r  

1, , ,R…  using each ( ).D m  We release ( , )
syn syn= { : =1, , ; = 1, , }m r m M r R… …D D  including 

indicators of which m  each ( , )
syn

m rD  belongs to.  

4b. SynRep-1: For = 1, , ,m M…  draw one synthetic data sample ( )
syn

mD  of size n  from each ( ) .mD  

Release ( )
syn syn= { : = 1, , }.m m M…D D   
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The synthesis model for each ( )D m  can utilize plug-in values of model parameters, e.g., their 

maximum likelihood estimates. It is not necessary to use posterior distributions at this stage of 

the process (Reiter and Kinney, 2012). 
 

As these two processes for generating synthetic data differ from those of Raghunathan et al. (2003), as 

well as from other synthetic data scenarios such as those of Reiter (2003, 2004), we require new methods 

for inferences, to which we now turn. 

 
2.2 Inferences for SynRep-R and SynRep-1 
 

To derive the inferential methods, we follow the general strategy of multiple imputation (Rubin, 1987) 

and use a Bayesian inference approach. For any population quantity ,Q  such as the population mean ,Q Y  

we seek the posterior distribution syn( | ).P Q D  Following Raghunathan et al. (2003), we compute the 

following integral based upon each level of the data synthesis process from Figure 2.1 or Figure 2.2.  

 
syn syn srs pseudo syn srs pseudo

pseudo syn srs srs syn pseudo srs

( | ) = ( | , , , ) ( | , , )

( | , ) ( | ) .

P Q P Q P

P P d d d

D D D P D D D D P

P D D D D D P D
 (2.2) 

When we condition on ,D  the values of syn srs pseudo( , , )D D P  do not provide any additional information 

about .Q  Thus, we can simplify syn srs pseudo( | , , , ) = ( | ).P Q P QD D P D D  When we condition on pseudo ,P  the 

values of rep syn( , )D D  provide no additional information about .D  Thus, we simplify syn srs( | , ,P D D D  

pseudo pseudo) = ( | ).PP D P  When we condition on srs ,D  the value of synD  provides no information about 

pseudo.P  Hence, pseudo syn srs pseudo srs( | , ) = ( | ).P PP D D P D  With some re-arrangement to aid interpretation, we 

re-express (2.2) as  

 
syn pseudo pseudo srs pseudo

srs syn srs

( | ) = ( | ) ( | ) ( | )

( | ) .

P Q P Q P d P d

P d

  
    D D D P D P D P

D D D
 (2.3) 

We begin with pseudo pseudo( | ) = ( | ) ( | ) .P Q P Q P dP D D P D  We assume that, for large ,M  this is 

approximately a normal distribution. This should be reasonable in large samples, which are typical in 

settings where agencies want to release public use data. We only require the posterior distribution of Q  to 

be normal, not the distribution of the survey variables themselves; indeed, the underlying data can be 

categorical. We note that the inferential methods are not intended for quantities like medians or other 

quantiles; inferential methods for such quantities is a topic for additional research. 

We only require means and variances to characterize normal sampling distributions. Thus, we focus on 

estimating the distributions of the first two moments. For = 1, , ,m M…  let ( )mQ  be the computed value of 

Q  if we had access to ( ) .mP  Rubin (1987) shows that  

  1
pseudo 1( | ) , (1 ) ,MQ t Q M B

 P ∼  (2.4) 
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where ( )= m

m
Q Q M  and ( ) 2= ( ) ( 1).m

m
B Q Q M   Here 2( , )t    denotes a t -distribution with   

degrees of freedom, location ,  and variance 2 .  In the derivations, for convenience we approximate the 

t -distribution in (2.4) as a normal distribution, which should be reasonable for somewhat large .M  

We next turn to pseudo srs( | ).P P D  Here, we only need srs( , | ).P Q B D  For = 1, , ,m M…  let ( )mq  be the 

estimate of ( )mQ  and ( )mv  be the estimate of the sampling variance associated with ( ) ;mq  we could compute 

these if we had access to ( ) .mD  We assume that ( ) ( ){ , : = 1, , }m mq v m M…  are valid in the following sense. 

1) For each ,m  ( )mq  is approximately unbiased for ( )mQ  and asymptotically normally distributed, 

with respect to repeated sampling from the pseudo-population ( )P m  with sampling variance ( ) .mV  

That is, we have ( ) ( ) ( ) ( )( | ) ( , ).m m m mq N Q VP ∼  

2) The sampling variance estimate ( )mv  is approximately unbiased for ( ) ,mV  and the sampling 

variability in ( )mv  is negligible. That is, ( ) ( ) ( )( | ) .m m mv VP  

3) The variation in ( )mV  across the M  pseudo-populations is negligible; that is, ( ) ,mV V v   

where ( )= .m

m
v v M  

 

Using standard Bayesian arguments based on these sampling distributions, it follows that  

 ( ) ( ) ( )( | , ) ( , )m m mQ q v N q v∼  (2.5) 

 ( | , ) ( , ),Q q v N q v M∼  (2.6) 

where ( )= .m

m
q q M  

To obtain the distribution of srs( | ),Q D  we integrate the distribution in (2.4), which we approximate as a 

normal distribution, with respect to the distributions of Q  and .B  We only need the first two moments since 

the resulting distribution is a normal distribution. We have  

 srs srs srs( | ) = ( ( | ) | ) = ( | ) = .E Q E E Q Q E Q qD D D  (2.7) 

We also have  

 
srs pseudo srs pseudo srs

1
srs

Var ( | ) = (Var ( | ) | ) Var ( ( | ) | )

= (1 ) ( | ) .

Q E Q E Q

M E B v M



 

D P D P D

D
 (2.8) 

This is the variance estimator in Raghunathan et al. (2003), which analysts would use if the agency releases 

srsD  as the public use files. However, since we take an additional step of replacing each ( )D m  with simulated 

values, we need to average over the distributions of ( , , ).q v B  The result depends on whether we use 

SynRep-R or SynRep-1, as we now describe. 

 
2.2.1 Derivation with SynRep-R 
 

For each ( , )
syn ,m rD  let ( , )

syn
m rq  be the point estimate of ,Q  and let ( , )

syn
m rv  be the estimate of the variance 

associated with ( , )
syn .m rq  The analyst computes ( , )

syn
m rq  and ( , )

syn
m rv  acting as if ( , )

syn
m rD  is the collected data obtained 
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via a simple random sample of size n  taken from the population. The analyst needs to compute the following 

quantities.  

 ( ) ( , )
syn syn

=1

=
R

m m r

r

q q R  (2.9) 

 ( )
syn syn

=1

=
M

m

m

q q M  (2.10) 

 ( ) 2
syn syn syn

=1

= ( ) ( 1)
M

m

m

b q q M   (2.11) 

 ( ) ( , ) ( ) 2
syn syn syn

=1

= ( ) ( 1)
R

m m r m

r

w q q R   (2.12) 

 ( )
syn syn

=1

=
M

m

m

w w M  (2.13) 

 ( , )
syn syn

=1 =1

= .
M R

m r

m r

v v MR  (2.14) 

We now complete the derivation of the posterior distribution for syn( | )Q D  in the SynRep-R approach. 

To do so, we assume large-sample normal approximations for the sampling distributions of the point 

estimates. Specifically, for all ( , ),m r  we assume that  

 ( , ) ( ) ( )
syn ( , ),m r m mq N q W∼  (2.15) 

where ( )mW  is the sampling variance for ( , )
syn

m rq  over draws of synthetic data from ( ) .mD  The normality 

should be reasonable when n  is large. Assuming diffuse prior distributions and conditioning on ( ) ,mW  we 

have  

 ( ) ( ,1) ( , ) ( ) ( ) ( )
syn syn syn( | , , , ) ( , )m m m R m m mq W N q W R…D D ∼  (2.16) 

 syn syn( | , ) ( , ),q W N q W MRD ∼  (2.17) 

where ( )= .m

m
W W M  

Having now determined distributions for the point estimators, we put everything together for the 

posterior distribution of .Q  Since all the components are normal distributions, syn( | )P Q D  is a normal 

distribution. Thus, for the expectation, we use (2.7) and (2.17) to obtain  

 syn srs syn syn syn( | ) = ( ( | ) | ) = ( | ) = .E Q E Q E q qD D D D  (2.18) 

For the variance, we first write the variance in terms of ( , , )B v W  and then plug in point estimates of 

these terms. To emphasize the use of ( , , ),B v W  we write  
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1
syn syn syn

1

Var ( | , , , ) = (((1 ) ) | , , , ) Var ( | , , , )

= (1 ) .

MQ B v W E M B v M B v W q B v W

M B v M W MR





  

  

D D D
 (2.19) 

We now define the estimates for ( , , ),B v W  which we plug into (2.19). For ,v  we assume that syn .v v  

This assumption follows from the rationale in Raghunathan et al. (2003), who argue this is the case when 

the synthetic data are generated from the same underlying distribution as the data used to fit the models. 

For ,W  we note that (2.15) implies that, for = 1, , ,m M…  

 
( )
syn 2

1( )

( 1)
.

m

Rm

R w

W
 


∼  (2.20) 

We further assume that each ( ) .mW W  This assumption is in line with a similar assumption provided in 

Reiter (2004) regarding the variability of posterior variances. Essentially, as stated in Reiter (2004), this 

assumption stems from the observation that variability amongst posterior variances is generally smaller in 

magnitude than variability in posterior expectations. With this assumption and utilizing (2.20), we have  

 

( )
syn 2

( 1)
=1

( 1)
.

mM

M R
m

R w

W
 


 ∼  (2.21) 

Thus, we have  

 
( )
syn

=1

( 1)
E = ( 1).

mM

m

R w
M R

W

 
  

 
  (2.22) 

Utilizing a methods of moments approach to approximate ,W  we obtain syn .W w  

For approximating ,B  we note that the sampling distribution of a randomly generated ( )
syn

mq  over all steps 

in the data generation process is ( , ).N Q B v W R   Using this fact, we have  

 

( ) 2
syn syn=1 2

1

( )
,

M m

m

M

q q

B v W R
 



 


∼  (2.23) 

so that  

 

( ) 2
syn syn=1

( )
E = 1.

M m

m
q q

M
B v W R

 
  
  
 


 (2.24) 

Using a method of moments approach and the definition of synb  in (2.11), and the plug-in estimate synw  for 

,W  we have syn syn syn ,b B v w R    so that syn syn syn .B b v w R    

Putting all together, we can approximate synVar( | )Q D  with the estimate ,rT  where  
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 1

syn syn syn syn syn

1
syn syn syn

= (1 )

= (1 ) .

rT M b v w R v M w MR

M b v w R





    

  
 (2.25) 

We compute approximate 95% intervals for Q  as syn 0.975, 1 .M rq t T  The t -distribution is a simple 

approximation based on the degrees of freedom in (2.4). As with the variance estimator in Raghunathan 

et al. (2003), the estimate rT  can be negative, particularly for small .M  As an ad hoc adjustment when 

< 0,rT  we recommend replacing B  with v  in (2.19) and using  *
syn syn= 1 2 .rT M v w MR   

 
2.2.2 Derivation with SynRep-1 
 

With large M  and R , SynRep-R results in many synthetic data sets, which may be undesirable from the 

perspective of the agency and secondary data analysts. Instead, agencies may want to use SynRep-1. To 

obtain inferences for Q  in this setting, we leverage the methodology of Raab et al. (2018), who observed 

that when the source data come from a simple random sample, as is the case for each ( ) ,mD  we can obtain 

valid variance estimates with single implicates with adjustments of the combining rules. We now describe 

this derivation. 

For = 1, , ,m M…  let ( )
syn

mq  be the point estimate of Q  computed using ( )
syn ,mD  and let ( )

syn
mv  be the estimated 

variance associated with ( )
syn .mq  The analyst computes each ( ) ( )

syn syn( , )m mq v  by acting is if ( )
syn

mD  is a SRS of size 

n  from the population. We require the following quantities for inferences. To economize on notation, we 

re-use some of the notation introduced in Section 2.2.1. 

 ( )
syn syn

=1

=
M

m

m

q q M  (2.26) 

 ( ) 2
syn syn syn

=1

= ( ) ( 1)
M

m

m

b q q M   (2.27) 

 ( )
syn syn

=1

= .
M

m

m

v v M  (2.28) 

The pairs of equations (2.26) and (2.10), (2.27) and (2.11), and (2.28) and (2.14) can be viewed as equivalent 

when = 1.R  

To complete the derivation for SynRep-1, we follow the logic in Raab et al. (2018) and assume that 
( ) ( ) ( )
syn ( , ).m m mq N q V∼  Assuming ( )mV v  for all ,m  we have  

 ( ) ( ) ( )
syn syn( | , ) ( , )m m mq v N q vD ∼  (2.29) 

 syn syn( | , ) ( , ).q v N q v MD ∼  (2.30) 

We note, however, that one should not assume that B v  as well. As D  is a complex sample, it yields 

sampling variances that could differ from the simple random sampling variances associated with srs .D  
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Since all the components are approximately normal distributions, syn( | )P Q D  also is approximately a 

normal distribution. For its expectation, we use (2.7) and (2.30) to obtain  

 syn srs syn syn syn( | ) = ( ( | ) | ) = ( | ) = .E Q E E Q E q qD D D D  (2.31) 

For its variance, as with SynRep-R, we write the variance in terms of ( , )B v  and then plug in point 

estimates of these terms. We have  

 

1
syn syn syn

1 1

Var ( | , , ) = ((1 ) ) | , , ) Var ( | , , )

= (1 ) = (1 ) 2 .

Q B v E M B v M B v q B v

M B v M v M M B v M



 

  

    

D D D
 (2.32) 

We now define the estimates for ( , )B v  to plug into (2.32). For ,v  we use synv  defined in (2.28). This 

should be reasonable since we are replacing the entire set of each ( )D m  with synthetic values. To 

approximate ,B  we note that the sampling distribution of a randomly generated ( )
syn

mq  over all steps in the 

data generation process is ( , 2 ).N Q B v  Using this fact, we have  

 

( ) 2
syn syn=1 2

1

( )
,

2

M m

m

M

q q

B v
 






∼  (2.33) 

so that  

 

( ) 2
syn syn=1

( )
E = 1.

2

M m

m
q q

M
B v

 
  
 
 


 (2.34) 

Using a method of moments approach and the definition of synb  in (2.27), we have syn syn2 ,b B v   so that 

syn syn2 .B b v   

Thus, we can approximate synVar( | )Q D  with the estimate ,mT  where  

  1
syn syn= 1 2 .mT M b v   (2.35) 

We compute approximate 95% intervals for Q  as syn 0.975, 1 .M mq t T  When < 0,mT  as an ad hoc variance 

estimate we replace B  by v  in (2.32) and use  *
syn= 1 3 .mT M v  

 
3. Simulation studies 
 

In this section, we present simulation studies to illustrate the repeated sampling properties of the 

inferential methods in Section 2.2 for various finite population quantities. 

 

3.1 Simulation design 
 

We construct a finite population based on data from the Public Use Microdata Sample of the 2021 

American Community Survey (United States Bureau of the Census, 2021). This file comprises 3,252,599 
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individuals, which we treat as a population of size .N  The file also has person-level weights (named 

“PWGTP” in the data file). We do not treat these as survey weights, per se; rather, we treat them as size 

variables ,ix  where = 1, , ,i N…  for use in probability proportional to size (PPS) sampling. We also use 

these constructed size measures to generate two survey variables, 1 2( , ),i iy y  where = 1, , .i N…  Specifically, 

we let each 1iy  be a binary variable sampled from a Bernoulli distribution with probability 1Pr( =1) =iy  

 exp( 7 2log ) 1 exp( 7 2log ) .i ix x      We let each 2iy  be a continuous variable sampled from a normal 

distribution with mean 120 50 iy  and standard deviation 50. We estimate the finite population proportion 

1 1=1
=

N

ii
Y y N  0.765; the finite population mean 2 2=1

=
N

ii
Y y N  58.2; and, the finite population 

regression coefficient of 1Y  in the linear regression of 2Y  on 1,Y  which is 50.   

From this population, we sample D  using a PPS sample of size = 500n  survey units, setting =i  

=1

N

i ii
nx x  and using the function “ppss” in the R  package “pps” (Gambino, 2021). Under this PPS 

sampling design, we expect that unweighted inferences using D  should be badly biased for 1 2( , )Y Y  but 

perhaps not so for .  We repeat the sampling process to create 1,000 independent realizations of .D  

For each ,D  we implement SynRep-R and SynRep-1 with various ( , ).M R  Specifically, we examine 

( = 4, =5), ( =10, =5), ( =50, =5), ( =10, =10), ( =10, = 25),M R M R M R M R M R  and ( =10, =50).M R  The 

choice of R  only affects SynRep-R. We implement the WFPBB using the “polyapost” package in R  

(Meeden, Lazar and Geyer, 2020), creating pseudo-populations (1) ( )( , , )M…P P  each comprising 25,000 

individuals. From each ( )P m  where = 1, , ,m M…  we take a simple random sample of size n  to make a 

corresponding ( ) .mD  To make each synthetic data replicate stemming from each ( ) ,mD  we sample n  

synthetic values for 1Y  using a Bernoulli distribution with probability set to the empirical proportion of 1Y  

in ( ) .mD  We sample the corresponding synthetic values of 2Y  from normal distributions with means equal 

to the predicted values from the regression of 2Y  on 1,Y  computed using the synthetic values of 1Y  and the 

unbiased estimates of the coefficients computed with ( ) ,mD  and variance equal to the unbiased estimate of 

the regression variance computed with ( ) .mD  

To assist in evaluating the repeated sampling performances of SynRep-1 and SynRep-R, we also use 

results computed with pseudoP  and srs.D  Specifically, in each of the 1,000 simulation runs, we define Pseudo-

Pop as the procedure that uses a point estimator of Q  and variance estimator of (1 1 )M B  computed 

with the WFPBB-generated pseudo-populations (1) ( )( , , ).M…P P  We define Pseudo-SRS as the procedure 

that uses a point estimator of q  and variance estimator of Raghunathan et al. (2003) computed with 
(1) ( )( , , ).M…D D  As a comparison against what happens if we disregard the sampling design entirely, we 

define SRSsyn as the procedure that generates synthetic data by using (i) the unweighted sample proportion 

for 1Y  as the Bernoulli probability to generate n  synthetic values of 1Y  and (ii) the unweighted estimates of 

parameters in the regression of 2Y  on 1Y  as the parameters of the normal distribution to generate the 

corresponding n  synthetic values of 2.Y  

We also evaluate the repeated sampling performances of pseudo-likelihood approaches to making fully 

synthetic data. For each synthesis model, i.e., the Bernoulli and linear regression models, we start with a 

likelihood function defined as the product of the contributions from each individual in .D  We create the 
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pseudo-likelihood by raising each individual’s contribution to a power defined by the individual’s survey 

weight. We use these weighted pseudo-likelihoods to estimate synthesis model parameters. We implement 

this approach using the software Stan (Stan Development Team, 2024), which can generate posterior 

samples of model parameters based on user-specified likelihood functions. We run Stan to create four chains 

of 4,000 iterations and discard the first 2,000 iterations as burn-in. We randomly sample one of the resulting 

draws and use its parameter values in the Bernoulli and linear regression models to generate the synthetic 

data. We repeat this process M  times and apply the inference rules in Raghunathan et al. (2003). We call 

this method Wtreg. We note that that Kim et al. (2021) use the variance estimator in (2.8) from Raghunathan 

et al. (2003) with = 0.v  Kim et al. (2021) release synthetic populations (where = 0)v  rather than synthetic 

samples (where > 0).v  

We also consider a modification of Wtreg to address potential underestimation of variability in the 

parameter draws. We call this method Wtreg-Boot. First, we take a bootstrap sample of size n  from .D  We 

construct the pseudo-likelihood functions using the bootstrapped data and the calibrated survey weight for 

each resampled individual. Using this pseudo-likelihood function, we then generate and analyze synthetic 

data following the steps described for Wtreg. 

Finally, we define Direct as using the unweighted sample mean and standard deviation from ,D  i.e., 

ignoring the survey weights, and HT as using the Horvitz and Thompson (1952) estimator and its estimated 

variance using .D  We use these latter two procedures to assess the importance of accounting for the 

sampling design in inferences with .D  

Let superscript s  index the results from simulation run ,s  where = 1, ,s … 1,000. For any estimator q̂  

for any of the methods we examine, we compute the percent bias, 
1,000

=1
ˆ100 ( ) (1,000 ).s

s
q Q Q  We 

compute the proportion of the 1,000 95% confidence intervals based on q̂  and its corresponding variance 

estimate that cover .Q  We also compute the ratio of the empirical variance of the 1,000 values of q̂  to the 

empirical variance of the 1,000 values of the HT point estimator. To investigate the accuracy of variance 

estimators, for each method we compute the ratio of the average of the 1,000 variance estimates over its 

corresponding empirical variance. Finally, to examine the stability of the variance estimator for each 

method, we compute the standard deviation of the 1,000 variance estimates. We present results for the first 

four quantities in the main text and for the last quantity in the Appendix. 

 
3.2 Results 
 

We first investigate the properties of SynRep-R and SynRep-1 for the various settings of ( , ).M R  

Figure 3.1, Figure 3.2, and Figure 3.3 display results for 1 ,Y 2 ,Y  and ,  respectively, for these two methods 

as well as for Pseudo-Pop and Pseudo-SRS. All four methods offer approximately unbiased point estimates 

of the three finite population quantities, with simulated percent biases generally around 1% or lower. These 

small biases originate primarily from the step of completing populations, as the biases in Pseudo-Pop are 

close to the biases in the other three methods. As expected, compared to the variance for HT, the simulated 

variances are increasingly inflated as M  decreases. Holding =10M  constant, decreasing R  tends to 
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increase the simulated variances, although the effects are less pronounced than those from decreasing .M  

The variability in SynRep-1 results with fixed M  reflects Monte Carlo error. Taken together, these results 

suggest it is preferable to increase M  rather than R  when keeping MR  constant. For example, when we 

compare SynRep-R with ( = 10, = 5)M R  to SynRep-1 with = 50,M  the latter tends to result in smaller 

empirical variance with closer-to-nominal coverage rates. Similar benefits appear when comparing 

SynRep-R with ( = 10, = 25)M R  to SynRep-R with ( = 50, = 5).M R  This finding accords with results from 

Reiter (2008), who considered a similar trade-off for nested multiple imputation for partially synthetic and 

missing data. We note that using larger values of M  also offers smaller variability in the estimated 

variances, as shown in the Appendix. 

 
 
Figure 3.1 Repeated sampling properties of SynRep-1 and SynRep-R for 1Y  under different numbers of 

synthetic samples ( )M  and replicates ( )R  under a probability proportional to size design. 
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Figure 3.2 Repeated sampling properties of SynRep-1 and SynRep-R for 2Y  under different numbers of 
synthetic samples ( )M  and replicates ( )R  under a probability proportional to size design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By comparing the ratios of the empirical variances to the variances for HT, we can see the effect on 

efficiency of the steps in the synthesis process. The variances generally increase as we go from Pseudo-Pop 

to Pseudo-SRS to SynRep-R or SynRep-1; that is, they increase as we add more steps that involve 

randomness. The variances for SynRep-R generally are slightly smaller than those for SynRep-1, reflecting 

the benefit for efficiency of the additional information from MR  rather than M  synthetic data sets. We 

note that the variance inflation from using synthetic data procedures versus HT largely disappears when 

= 50.M  

Across all four synthetic data methods, the average variance estimates are reasonably similar to the 

empirical variances. Disparities from ratios of one apparently stem, once again, mainly from the step of 

completing the populations. The confidence interval coverage rates range from a low of 88% to a high of 

96%, with most slightly below nominal. Coverage rates for SynRep-R and SynRep-1 tend to be highest when 

= 50,M  further reflecting the benefits of using a larger .M  For 10,M   the coverage rates for SynRep-R 

tend to be higher than those for SynRep-1, although the difference is typically only a point or two. 

The combining rules in (2.35) and (2.25) do result in negative variance estimates, as evident in Table 3.1. 

In the simulations, we use *
rT  and *

mT  to make confidence intervals when needed. As M  increases, the 

number of negative variance estimates decreases. In fact, when = 50,M  all of the variance estimates are 
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positive, offering additional support for making M  large. The estimates of synb  become less variable as M  

increases, which helps avoid the negative variances. Negative variance rates tend to be lower for SynRep-R 

than for SynRep-1, reflecting the benefits of increased datasets to estimate variance parameters. Although 

not shown in Table 3.1, the negative variance rates when =10M  do not change much as we increase 5.R   

We note that the negative variance rates for SynReg-R are similar to those for Pseudo-SRS. Evidently, when 

MR  is large, the information available in synD  to estimate synb  is on par with the information available in 

srs.D  

 
 

Figure 3.3 Repeated sampling properties of SynRep-1 and SynRep-R for   under different numbers of 
synthetic samples ( )M  and replicates ( )R  under a probability proportional to size design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.1 

Proportion of negative variance estimates in the PPS simulation studies. When = 50,M  all variance estimates 

are positive. 
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We next turn to compare SynRep-R and SynRep-1 with other approaches, particularly Wtreg, Wtreg-

Boot, and SRSsyn. Here, we set =10M  and, where relevant, = 10,R  and draw 500 repeated samples. 

Figure 3.4 summarizes the repeated sampling performances of the methods that account for survey weights. 

For all these methods, the point estimators have simulated percent biases that typically are negligible. For 

SynRep-R and SynRep-1, the average variance estimates are close to their corresponding empirical 

variances, and the coverage rates are close to nominal. For Wtreg and Wtreg-Boot, the variance estimators 

can underestimate the corresponding empirical variances severely, especially for 1Y  and 2 ,Y  resulting in 

confidence interval coverage rates that can be substantially lower than the nominal 95% level. The bootstrap 

step in Wtreg-Boot results in more reliable variance estimates compared to Wtreg, but Wtreg-Boot is not as 

well calibrated as SynRep-R and SynRep-1, which have closer to nominal coverage rates. As expected, HT 

results in accurate estimates with near nominal coverage rates. We note that Figure 3.4 does not display 

results for Direct and SRSsyn because they perform poorly for 1Y  and 2.Y  For these two methods, the 

simulated biases for 1Y  and for 2Y  are around 16% and 11%, respectively, with coverage rates near 0 and 

near 30%, respectively. These results emphasize the importance of accounting for informative designs when 

generating fully synthetic data that can be analyzed as simple random samples. 

 

Figure 3.4 Repeated sampling properties of different quantities and procedures with = 10M  synthetic 
samples and = 10R  replicates under a probability proportional to size design.  
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Overall, the simulation studies suggest that SynRep-R and SynRep-1 can provide approximately valid 

inferences, and they are superior inferentially to fully synthetic data that ignore the complex design. The 

Appendix also includes results of simulation studies where we sample D  via simple random samples. These 

confirm that the combining rules offer reasonable performance even without unequal probabilities of 

selection. 

 
4. Illustration with ACS data 
 

We illustrate SynRep-R and SynRep-1 by letting D  be a subset of data from the 2021 ACS Public Use 

Microdata Sample for =n 84,128 individuals from the state of Michigan. The variables for our illustration 

include each participant’s person-level weight, age, and total income. To mimic the variables in the 

simulations, we create a binary indicator 1Y  from age that equals one when someone is at least 65 years old; 

we refer to this indicator as senior status. For purposes of synthesis, we transform income by taking its cubic 

root. The synthesis models are then a Bernoulli distribution for 1Y  and a linear regression of the cubic root 

of total income on 1.Y  After synthesizing values of the cubic root of income, we raise them to the third 

power to get incomes on the original scale. We implement each method following the procedures from 

Section 3. For SynRep-R and SynRep-1, we set =10M  and =10.R  

As population quantities, we estimate the population proportion of senior status individuals 1 ,Y  the 

population mean of the income values, 2 ,Y  and the coefficient   of 1Y  in the linear regression model of 

the cubic-root transformed income on senior status. 

Figure 4.1 presents the point estimates and 95% confidence intervals for the three population quantities. 

Since Direct and SRSsyn ignore the sample design, they result in relatively inaccurate results, especially for 

1.Y  In contrast, the point estimates for the synthetic data methods that account for survey weights are closer 

to the HT point estimates. Additionally, the 95% confidence intervals for these methods largely overlap with 

the HT confidence intervals. We note, however, that Wtreg appears to suffer from underestimation of 

variance, particularly for .  Additionally, the confidence intervals for the pseudo-likelihood approaches 

can be narrower than those for HT, SynRep-R, and SynRep-1. 

We also can examine potential disclosure risks for the synthetic data methods. Here, we mimic an attack 

scenario described by Kim et al. (2021), in which we consider an adversary who uses the synthetic data to 

estimate the largest income value in .D  Specifically, we examine differences between the maximum 

synthetic income in each synthetic dataset and the maximum income in .D  This evaluation is not intended 

to illustrate a rigorous and thorough process for assessing disclosure risks. Rather, we use this attack 

scenario mainly to compare the different synthesis procedures. 

Table 4.1 presents the distributions of the differences for the synthesis methods that account for the 

survey design. Overall, the results are reasonably similar across the methods, suggesting they offer similar 

levels of protection in this scenario. All result in substantial differences between the largest synthetic and 
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observed incomes. The results suggest that an adversary taking this attack strategy is not likely to estimate 

the largest income accurately. 

 
Figure 4.1 Point estimates and 95% confidence intervals for 1 ,Y  2 ,Y  and   in the ACS data illustration. 

Results based on = 10M  synthetic samples and = 10R  replicates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4.1 

Summaries of the differences ($) in the largest income value in the synthetic and American Community Survey 

data. The actual largest value is $1,029,000. 
 

Method Min. 1st Quartile Median Mean 3rd Quartile Max.
SynRep-R -424,323 -298,230 -252,984 -214,476 -139,874 465,380
SynRep-1 -371,466 -297,180 -287,199 -268,711 -267,428 -40,405
Wtreg -440,253 -297,689 -242,095 -218,810 -159,766 707,411
Wtreg-Boot -410,354 -275,398 -209,513 -174,444 -139,109 133,759
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5. Discussion 
 

SynRep-R and SynRep-1 represent a general strategy for constructing fully synthetic data that account 

for complex sample designs: use the WFPBB to “undo” the design, then replace the confidential values with 

simulated values. Releasing multiple synthetic data sets, i.e., setting > 1,MR  can increase statistical 

efficiency and facilitate variance estimation. However, agencies also can use the WFPBB approach with 

=1.MR  Although releasing a single synthetic data set may not enable approximately valid variance 

estimation for complex surveys, it still can be useful in certain settings, e.g., when the synthetic data are 

intended for code training or exploratory analyses where variance estimation is not essential. 

As noted by a reviewer, several agencies implementing synthetic data approaches also provide means 

for users to check the quality of their synthetic data inferences. For example, users can submit their code to 

the agency that released the synthetic data, which then can run the code and report back disclosure-protected 

outputs to the user. This is known as validation of results (Barrientos, Bolton, Balmat, Reiter, de Figueiredo, 

Machanavajjhala, Chen, Kneifel and DeLong, 2018). Alternatively, users can submit queries to a server that 

computes an analysis of the confidential and synthetic data, and reports back measures of similarity of the 

two analysis results, e.g., the overlap in the confidence intervals (Karr, Kohnen, Oganian, Reiter and Sanil, 

2006). This is known as verification of results (Barrientos et al., 2018). With validation or verification, users 

of SynRep-R and SynRep-1 may face an additional burden. If the agency directly runs the users’ submitted 

analysis code, the user may need to specify a survey-weighted version of the code for validation, even 

though they have used a simple random sample analysis for synthetic data. Of course, for many analyses, 

e.g., regression modeling, some users forego weighted analyses, in which case the issue is moot. It is also 

possible for the agency to automate validation or verification, in which case it may be able to turn users’ 

submitted queries into survey-weighted versions automatically in the background; this is an area for future 

research. 

We chose to develop methods that enable agencies to follow the idea in Rubin (1993): release data that 

can be analyzed as simple random samples. This can make analyses easier for users, as they do not have to 

figure out how to deal with any weights on the file, e.g., in variance estimation. Releasing simple random 

samples could also help mitigate disclosure risks that may arise from releasing survey weights. For example, 

if the weights released on the synthetic files are sampled directly from the weight values in D  without 

alteration, the weights may reveal information about data subjects that is considered an unacceptable 

disclosure risk (Fienberg, 2010). Finally, releasing simple random samples avoids the need to estimate 

relationships between the weights and the outcome variables, which could be complicated in practice. 

Nonetheless, it would be interesting to compare risk and utility profiles of these approaches with those 

developed here. 

There are many other topics related to the general strategy worth further investigation. First, in practice, 

survey weights can be highly variable and may not be strongly related to the survey variables of interest; 

this can cause survey-weighted estimates to have inflated variances. This can be remedied somewhat, for 

example, by using model-based approaches to smooth the weights (Beaumont, 2008; Xia and Elliott, 2016; 

Si, Trangucci, Gabry and Gelman, 2020). Synthetic data generation based on the WFPBB (or any other 
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approach) is not immune to these weighting issues. Thus, it would be interesting to examine if and how the 

synthesis model can reduce the effects of variance inflation from extreme weights. 

Second, we focus on developing the fully synthetic data framework and corresponding combining rules, 

using simple settings and synthesis models to illustrate the methods. Conceptually, agencies can apply 

SynRep-R and SynRep-1 to multivariate data and for various estimands of interest, e.g., subdomain means 

and multiple regression coefficients. In such cases, it may be advantageous to use flexible modeling 

approaches, such as tree-based models or other machine learning algorithms. Future work could investigate 

the performance of these synthesizers in combination with the pseudo-population and pseudo-SRS 

generation steps. 

Third, we derive the combining rules assuming the original survey data are complete. Agencies could 

impute missing survey data and generate synthetic replicates simultaneously, possibly accounting for the 

complex design in the imputation model and synthesis approach. This strategy may necessitate new 

combining rules akin to those in Reiter (2004). 

Fourth, we present ad hoc adjustments to deal with negative values of the variance estimates. We may 

be able to improve on those adjustments. For example, we may be able to adapt the strategy in Si and Reiter 

(2011), who develop inferential methods for fully synthetic data based on sampling from the distributions 

used in the derivations of the combining rules. Additionally, as pointed out by a reviewer, it may be 

beneficial to use the insight of Raab et al. (2018) for the sampling and synthesis components of the 

derivation in SynRep-R. This results in an alternative variance estimator, 
1 1

syn syn(1 ) (1 ) .M b R v     

Future work can investigate the performance of these alternative inference methods. 

Fifth, it would be informative to generalize the implementation of SynRep-R and Syn-Rep-1 to other 

complex designs, such as the stratified multi-stage cluster sampling designs that are common in practice. 

Zhou, Elliott and Raghunathan (2016) have extended the WFPBB to account for strata, clustering, and 

survey weights in synthetic population generation. We expect that one could take simple random samples 

from these pseudo-populations and generate synthetic replicates, possibly using synthesis models that 

capture design information as suggested in Reiter (2002), and extend the combining rules presented here. It 

would be a natural extension to comprehensively assess the repeated sampling performances of SynRep-R 

and Syn-Rep-1 in such multi-stage complex samples. 

Lastly, it would be useful to develop principled approaches to measuring disclosure risks for these 

methods. For SynRep-R and SynRep-1, conceptually one could estimate an adversary’s posterior distribution 

for confidential data values given the released synthetic values, e.g., as described for simple settings in 

Reiter, Wang and Zhang (2014) and Hu, Reiter and Wang (2015). However, this would be computationally 

challenging in practice. One would need to account for the entire synthetic data generation process ‒ 

including the bootstrapping, sampling, and synthesis ‒ when computing this posterior distribution. Indeed, 

as far as we are aware, agencies that release synthetic data use ad hoc approaches to assessing disclosure 

risks, such as comparing the similarity of outlier values in the confidential and synthetic data as we 

illustrated here (Kinney, Reiter and Miranda, 2014). Developing disclosure risk methods is a major area for 

future research for all approaches to generating fully synthetic data. 
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Appendix 
 
A. Additional simulation results 
 

Figure A.1 displays the variability of the 1,000 values of estimated variances of the point estimators for 

1, ,Y  and 2Y  for the simulation with the PPS design. The variability tends to decrease with .M  Increasing 

R  when M  is held constant seems not to have much impact on the stability of the results. We see increased 

variability as the procedures introduce more steps that involve randomness; that is, as we go from Pseudo-

Pop to Pseudo-SRS to SynRep-R and SynRep-1. The variability tends to be largest for SynRep-1. 

 
Figure A.1 Standard deviation (SD) of estimated (est) variances of different population quantities with 

different procedures for different numbers of synthetic samples ( )M  and replicates ( )R  under a 
probability proportional to size design. 
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As another check of the validity of the combining rules, we repeat the simulations from Section 3 using 

a SRS in place of a PPS design. Specifically, we use the population described in Section 3.1, but we use a 

SRS of = 500n  records for each .D  Figure A.2 displays the results. Overall, the performances of SynRep-R 

and SynRep-1 mirror the patterns seen for the PPS design in Section 3. 

 
Figure  A.2 Repeated sampling properties of different quantities and procedures with = 10M  synthetic 

samples and = 10R  replicates under a SRS design.  
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Models of linkage error for capture-recapture estimation 
without clerical reviews 

Abel Dasylva, Arthur Goussanou and Christian-Olivier Nambeu1 

Abstract 

The capture-recapture method can be applied to measure the coverage of administrative and big data sources, in 
official statistics. In its basic form, it involves the linkage of two sources while assuming a perfect linkage and 
other standard assumptions. In practice, linkage errors arise and are a potential source of bias, where the linkage 
is based on quasi-identifiers. These errors include false positives and false negatives, where the former arise when 
linking a pair of records from different units, and the latter arise when not linking a pair of records from the same 
unit. So far, the existing solutions have resorted to costly clerical reviews, or they have made the restrictive 
conditional independence assumption. In this work, these requirements are relaxed by modeling the number of 
links from a record instead. The same approach may be taken to estimate the linkage accuracy without clerical 
reviews, when linking two sources that each have some undercoverage. 

 
Key Words: Big data; Data integration; Data matching; Dual system estimation; Quality; Record linkage. 

 
 

1. Introduction 
 

The capture-recapture method is an important tool for estimating the coverage of administrative and big 

data sources that are increasingly used in official statistics (Zhang, 2015). In its simplest form, it estimates 

the coverage of two sources on the same finite population, by identifying the units selected in both sources, 

i.e., their intersection, under standard assumptions that include a perfect linkage. Then, the estimated 

coverage is based on the well-known estimator by Petersen (1896) and Lincoln (1930). However, linkage 

errors may arise because the linkage is often based on quasi-identifiers such as names and dates. These 

errors may bias the coverage estimate, which must be corrected. 

Regarding this accuracy, a linkage error is defined as a false negative or a false positive, where a false 

negative is failing to link records from the same unit, and a false positive is linking records from different 

units. In connection with these concepts, a record pair is called matched if its records are from the same unit 

(Fellegi and Sunter, 1969; Herzog, Scheuren and Winkler, 2007). Otherwise, it is called unmatched. The 

linkage accuracy may be measured by clerical review, a statistical model, or a combination of both 

approaches. Clerical reviews consist in the visual inspection of a probability sample of record pairs to 

determine if they are matched (Dasylva, Abeysundera, Akpoué, Haddou and Saïdi, 2016). They are very 

flexible and apply regardless of the linkage details. However, they are costly. The alternative to clerical 

reviews is fitting a statistical model of which quite a few have been proposed, including log-linear mixtures 

(Fellegi and Sunter, 1969; Thibaudeau, 1993; Winkler, 1993; Daggy, Xu, Hui, Gamache and Grannis, 2013; 

Chipperfield, Hansen and Rossiter, 2018; Winglee, Valliant and Scheuren, 2005; Chipperfield and 

Chambers, 2015; Haque, Mengersen and Stern, 2021; Haque and Mengersen, 2022), models of a pair 
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probabilistic linkage weight (Belin and Rubin, 1995; Sariyar, Borg and Pommerening, 2011), Bayesian 

models (Fortini, Liseo, Nuccitelli and Scanu, 2001; Tancredi and Liseo, 2011; Sadinle, 2017; Steorts, Hall 

and Fienberg, 2016), and models based on the number of links from a given record (Blakely and Salmond, 

2002; Dasylva and Goussanou, 2022). This latter modeling approach is of special interest in this work, 

because it is not limited to probabilistic linkages and implicitly accounts for all the interactions among the 

linkage variables. The modeling approach is not as costly as clerical reviews, but it is less flexible as it relies 

on assumptions about the linkage procedure. It is also quite challenging when the linkage is constrained to 

have at most one or exactly one link per record (Lahiri and Larsen, 2005, page 226). Chipperfield and 

Chambers (2015), and Sadinle (2017) have addressed this issue. However, the proposed methodologies are 

computer intensive and depend on the restrictive assumption that the linkage variables are conditionally 

independent, i.e., they are independent given that a pair is matched or unmatched. Indeed, this assumption 

is a potential source of bias, according to Newcombe (1988, Chapter E.6, page 149), Belin and Rubin (1995) 

and Blakely and Salmond (2002). Following Larsen and Rubin (2001), it is also possible to combine clerical 

reviews and statistical modeling to take advantage of the flexibility of the former and the low costs of the 

latter. However, the overall costs remain beyond the budget of many studies. From the point of view of the 

capture-recapture method, linkage errors are detrimental because they may bias the estimated coverage. 

Indeed, a false negative may lead to underestimating the coverage, while a false positive may produce a bias 

in the opposite direction. Of course, this bias must be removed to accurately estimate the coverage. 

Many error correction methods have been described, which make the standard capture-recapture 

assumptions except for the imperfect linkage, i.e., a closed population, independent units that are selected 

independently by each source, a homogeneous capture probability by at least one source, and no duplicates 

or out-of-scope units in either source. They include solutions that require clerical estimates of the linkage 

accuracy (Ding and Fienberg, 1994; Di Consiglio and Tuoto, 2015; de Wolf, van der Laan and Zult, 2019; 

Brown, Bycroft, Di Cecco, Elleouet, Powell, Račinskij, Smith, Tam, Tuoto and Zhang, 2020), and other 

solutions that rely on a statistical model under the conditional independence assumption (Tancredi and 

Liseo, 2011; Račinskij, Smith and van der Heijden, 2019). Ding and Fienberg (1994), Di Consiglio and 

Tuoto (2015) and de Wolf et al. (2019) describe three closely related solutions of the former kind, where 

they constrain the linkage to have at most one link per record, and assume that the false positive probability 

is negligible for units that are captured by both sources. However, they estimate the linkage accuracy 

through clerical reviews, which are costly but the only practical solution, given the linkage constraints. 

Brown et al. (2020) describe a different solution, which also relies on clerical estimates of the linkage 

accuracy, where the two sources must be linked twice with different linkage procedures, under the 

assumption that the related link indicators are independent in each matched pair. Instead, Tancredi and 

Liseo (2011), and Račinskij et al. (2019) use statistical models to jointly estimate the linkage accuracy 

and the coverage without clerical reviews. However, they make the restrictive conditional independence 

assumption. 

This work aims to jointly estimate the coverage and linkage accuracy without clerical reviews, while 

relaxing the assumption that the linkage variables are conditionally independent. To that end, a new 
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methodology is described, which extends a previous model of linkage error (Dasylva and Goussanou, 2022), 

under the standard capture-recapture assumptions except for the perfect linkage assumption. In this model-

based approach, the coverage is estimated by linking the records with a sufficiently high recall, or by 

specifying the interactions in the matched pairs, while allowing arbitrary interactions in the unmatched pairs. 

The same models may be used to estimate the recall and precision when linking two sources that each have 

some undercoverage. 

The remaining sections comprise the notations and assumptions, background, proposed methodology, 

simulations, and conclusion, in this order. 

 
2. Notations and assumptions 
 

In the basic version of the capture-recapture problem, the coverage of a list from a finite population must 

be estimated by exploiting a second list from the same finite population, under standard assumptions, which 

include a closed population, independent units that are selected independently by each list, homogeneous 

capture by at least one list, no duplicates or out-of-scope units in either list and a perfect linkage of the two 

lists. In general, these lists correspond to probability samples with unknown selection probabilities. In what 

follows, it is assumed that the standard capture-recapture assumptions hold except for the perfect linkage 

assumption that is relaxed. Each list is modeled by a Bernoulli sample, where each included unit is 

associated with a record that possibly contains typos. For example, with person lists, this record may contain 

the last name and the birth date. The record values are assumed to be independent across the units, but no 

assumption is made regarding the dependence of these values for records that are from the same unit, or the 

dependence of the variables within these records. To satisfy the homogeneous capture assumption, it is 

assumed that a unit is captured in the first list independently of the associated record values (e.g., the 

recorded last name and birth date). However, capture in the second list may depend on these values. In 

what follows, denote the cardinality of a set s  by | |,s  and for a tuple  1= , , … d
dx xx R  let | | =x  

1| | | | .dx x …  

 
2.1 Finite population and data sources 
 

The units are from a finite population U  with N  units that are labeled from 1 to .N  The units are 

selected according to two Bernoulli samples that are denoted by AS  and BS  and identified by two subsets 

of {1, , },N…  where it is assumed that the inclusion probability ( ) AP i S  does not depend on .N  For 

example, AS  may be the census of population and BS  may be a coverage survey. In each list where it is 

included, unit i  is associated with a record, whose value is its defining characteristic. In what follows, we 

let the term record also refer to this value where it is clear from the context. The record value is assumed to 

live in the record space ,NV  which is finite but possibly large. For example, the record space may comprise 

all the strings written with no more than 32 alphabetical characters, if linking with the surname. In ,BS  this 

record is denoted by .iV  For ,AS  the labeling of the records depends on a uniformly random permutation 
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(.)  of {1, , },N…  to model the complete lack of information about the records associated with the same 

unit. In this list, unit i  is associated with the record ( ).iV
  The use of a random unknown permutation is a 

common device in the record linkage literature (Lahiri and Larsen, 2005; Chambers, 2009). It is 

mathematically convenient to view the two lists as samples drawn from conceptual registers A  and ,B  

where each unit is associated with a record. Then, the recording and list inclusion processes are assumed to 

be such that the observations  

  ( )
1

( ), ( ), , 
 

   A B i i
i N

I i S I i S V V   

are independent and identically distributed and independent of the random permutation (.).  This means 

that the two lists are labeled independently and that one may consider only the case where the permutation 

(.)  is the identity (i.e., conditioning on (.)  being the identity in what follows), without loss of 

generality. Then, unit i  is associated with iV  in BS  and iV   in .AS  In the discussion that is to follow, all the 

arguments are conditional on (.)  being equal to the identity. However, this information is omitted to 

simplify the notation. To satisfy the homogeneous capture assumption, it is assumed that capture in AS  is 

independent of iV  and .iV   However, capture in BS  may depend on these records, i.e. we may have  

  , ( ).  B i i BP i S V V P i S   

For example, the capture probability may vary across post-strata based on .iV  

 
2.2 Record linkage and related errors 
 

The indicator of a link between iV  and 
jV  is denoted by ijL  and called linkage decision for the pair 

( , ).i j  Let in  denote the number of links from iV  in ,BS  i.e.,  

 = .



A

i ij
j S

n L  (2.1) 

The linkage is assumed to be such that ijL  is only a function of iV  and ,jV   i.e., the decision to link two 

records does not involve other records. In the current setup, this assumption precisely means that  

 
 

{1, , }\{ , }
( ), ( ), , ,

= ( , ) , , .
( , ) , ,


             

…A B k k k N i j
ij ij A B i j

A B i j

I k S I k S V V
E L E L i j S S V V

i j S S V V
  

This condition covers a wide range of practical linkage strategies that may be implemented with the 

probabilistic, deterministic or hierarchical methods. However, it excludes linkages that constrain the number 

of links per record (e.g., exactly one or at most one) even if such linkages may be built from simpler ones, 

which meet the condition. A record pair is denoted by an element ( , )i j  of .A BS S  As mentioned before, 

a pair is called matched if the two records are from the same unit. Otherwise, it is called unmatched. To 

discuss the linkage errors, a false negative is a matched pair that is not linked, a false positive is an 
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unmatched pair that is linked, and a true positive is a matched pair that is linked. For completeness, define 

a true negative as an unmatched pair that is not linked. For convenience, let FN, FP, TP  and TN  denote 

the total numbers of false negatives, false positives, true positives and true negatives, respectively. It is 

common to represent the different kinds of record pairs in a 2 2  table called a confusion matrix where the 

off-diagonal cells represent the errors, as shown in Table 2.1. The linkage accuracy is typically measured 

by the recall and the precision, where the recall is the proportion of matched pairs that are linked (i.e. 

TP / (TP + FN))  and the precision is the proportion of linked pairs that are matched (i.e. TP / (TP + FP)).  

It is also measured by the false negative rate, which is the proportion of matched pairs that are not linked 

(i.e., FN / (TP + FN)),  and the false positive rate (FPR), which is the proportion of unmatched pairs that are 

linked (i.e., FP / (TN + FP)).  With a perfect linkage, the precision and recall are equal to 1.0, while the FPR 

is null. In this ideal situation, the population size is estimated according to Petersen (1896) and Lincoln 

(1930) by  

 
| || |ˆ = .
| |

A B

A B

S S
N

S S
  

Consequently, the estimated coverage of AS  is given by | | / | |,A B BS S S  while that of BS  is given by 

| | / | |.A B AS S S  With linkage errors, the intersection of the two lists is not directly observed. Instead, the 

size of this intersection must be inferred from the observed links and the linkage accuracy that can be 

estimated by modeling the number of links from a given record. 

 
Table 2.1 

Confusion matrix.  
 

 Link No link 

Matched  TP FN 

Unmatched  FP TN 

 
3. Background 
 

This section provides some background on the error model (Dasylva and Goussanou, 2022), which is to 

be adapted for the problem in hand. This model applies when AS  is a census (i.e., = )AS U  and the linkage 

is such that the decision to link two given records involves no other record. In this case the linkage accuracy 

may be estimated by modeling the distribution of the number of links from a given record, without 

assumptions about the dependence of the linkage variables. 

 
3.1 How the errors relate to the number of links from a record 
 

In general, there is a strong connection between the number of links from a given record and the related 

linkage errors. This connection is described in Table 3.1 when AS  is a census (Dasylva and Goussanou, 
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2020). When = 0,in  it is known that there is no false positive but one false negative because AS  is a census. 

When = 1, , 1,in N …  there is either no or one false negative and thus in  or 1in  false positives, according 

to whether the record is linked to the matched census record or not, because AS  is a census and it has no 

duplicate records. When = ,in N  it is known that there are no false negatives and 1N  false positives, for 

the same reasons. As an illustration, consider the example shown in Table 3.2, where = 5,N = =AS U

{1, 2, 3, 4, 5}, = {2, 3}BS  and the nature of each record pair is also shown. In this example there are four 

links including (2,1), (2, 2), (3, 2)  and (3, 4).  It can be verified that in  is related to the linkage errors 

according to Table 3.2. When = 1, , 1,in N …  the errors are not fully known and may be predicted with a 

model.  

 
Table 3.1 

Connection between in  and errors when AS  is a census.  
 

in  False negatives False positives 

0 1 0 

1 1  in N  0 or 1 1in  or in  

N  0 1N  

 
Table 3.2 

Example, where = 5,N = = {1, 2, 3, 4, 5}AS U  and = {2, 3}BS  and the links are indicated by the check marks. 
  

=j  
   

 
1 2 3 4 5 in  # FN # FP 

=i 2 √ FP √ TP TN TN TN 2 0 1 

3 TN √ FP FN √ FP TN 2 1 2 

 
3.2 A model for homogeneous records 
 

Blakely and Salmond (2002) model in  by the sum of a Bernoulli variable (for the true positives) with an 

independent binomial variable (for the false positives) and they estimate the related parameters through a 

quadratic equation. However, the in  distribution must be the same for all the records. Otherwise, the 

estimator may be biased or fail to exist (Dasylva and Goussanou, 2022) if the quadratic equation has no 

solution. In practice, this issue may arise when linking with names or other characteristics, which occur with 

different frequencies in the population. 

 
3.3 A model for heterogeneous records 
 

To address the problem, Dasylva and Goussanou (2022) have extended the model from (Blakely and 

Salmond, 2002) into a finite mixture, which applies when N  gets large under regularity conditions. To 

describe these conditions, let  
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   = s.t. = > 0 .N N i Bv P V v i S  V V  (3.1) 

In other words, N
V  is the subset of record values that may be observed in ,BS  with a positive probability. 

At this point, it is useful to consider the subset of all record values (from )NV  that are linked to a particular 

record value with a positive probability, as well as a superset of this set, which is called neighborhood and 

denoted by ( )N vB  for the value .Nv V  Thus,  

   ( ) s.t. , , = ( , ) > 0 .N N ij B i jv v E L i S V V v v     
 

B V  (3.2) 

Informally, the neighborhood of a particular record value is a subset of record values that look like this value 

according to some criterion. For example, consider linking records based on the last name in capital letters 

and suppose that two records are linked if they agree exactly on this variable. In this case the record value 

( )v  “JARO” may be associated with the singleton neighborhood ( ( ) = { })N v vB  {“JARO”}. To refine this 

example, suppose now that two records are linked if the last names are identical, or they have the same 

length and differ by a single letter. In this case, the value “JARO” may be associated with the neighborhood  

 
   

   
“AARO”, “BARO”, , “ZARO” “JARO”, “JBRO”, , “JZRO”

“JAAO”, “JABO”, , “JAZO” “JARA”, “JARB”, , “JARZ” .

 



… …

… …
  

The concept of neighborhood is useful when characterizing the discriminating power of the linkage 

variables, and when articulating regularity conditions for the consistent estimation of the recall and precision 

without clerical reviews. To describe these conditions, define the functions (.),Np (.)N  and (0) (.),N  which 

give the true positive probability, the false positive probability and the probability that an unmatched record 

is in the neighborhood, i.e.  

                                                         ( ) = , = ,N ii B ip v E L i S V v    (3.3) 

                                                         ( ) = , = , ,N ij B iv E L i S V v j i      (3.4) 

                                                          (0) ( ) = , = .N j N i B iv P V V i S V v  B  (3.5) 

Then, the first two regularity conditions are given by the following equations, where   is positive and 

finite, F  is a bivariate distribution with support contained in [0,1] [0, ]   and neither depends on .N  

                                                              
*

(0)( 1) ( ) ,sup
N

N
v

N v


  
V

 (3.6) 

                                       ( ), ( 1) ( ) { } .
d

N i N i Bp V N V i S F    (3.7) 

The first condition implies that the expected number of false positives is bounded above for each record. 

When the true positive probability is bounded below by   (Dasylva and Goussanou, 2020, equation 6), it 

also implies that the precision is no less than / ( )     overall and for any post-stratum, which is defined 

based on iV  (Dasylva and Goussanou, 2020). The second condition means that the joint distribution of the 
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expected number of true positives and the expected number of false positives is approximately given by F  

when N  is large. When F  is discrete with G  atoms, these two conditions imply the following convergence 

in distribution (Dasylva and Goussanou, 2022, Lemma 1).  

 
=1

{ } Bernoulli( ) Poisson( ),   
Gd

i B g g g
g

n i S p  (3.8) 

where   denotes the convolution operator. This means that, in the limit, a record belongs to one of G  latent 

classes, where g  is the probability of class ,g  and gp  and g  are the expected numbers of true positives 

and false positives for the records in this class. The model parameters may be estimated by maximizing the 

composite likelihood of the ’s.in  They are related to the linkage accuracy through the expected numbers of 

true positives and false positives per record in ,BS  which are given by 
=1

= 
G

g gg
p p  and 

=1
= .

G

g gg
    

Indeed, the recall and precision converge in probability to p  and / ( ),p p   respectively, under the 

following two additional regularity conditions (Dasylva and Goussanou, 2022, Corollary 1), where i i  

and c  is a positive finite constant not depending on .N  

                                             ( ) ( ) { , } ,N i N i BNP V V i i S c    B B  (3.9) 

                          ( ) { , } , ( ) ( ) .i N i B N i N iNP V V i i S V V c     B B B  (3.10) 

These two conditions mean that records from different units are very likely to have disjoint neighborhoods 

(3.9), and that matched records are not far apart (3.10). With the other regularity conditions (i.e., (3.6)-

(3.7)), they also imply the consistency of the composite maximum likelihood estimators (Dasylva and 

Goussanou, 2022, Theorem 3). 

Overall, this methodology has several advantages over alternative model-based solutions, because it 

seamlessly accounts for the interactions among the linkage variables and the records’ heterogeneity. 

Besides, the model fit may be tested using the procedure described by Dasylva and Goussanou (2024), to 

account for the correlation of the ’s.in  When AS  is a census, the methodology may also serve to estimate 

the false negatives generated by the blocking procedure (Dasylva and Goussanou, 2021). However, it must 

be adapted when AS  has some undercoverage. 

 
4. Methodology 
 

The proposed methodology is based on two extensions of the model described in the previous section, 

which is subsequently called the univariate neighbor model or simply neighbor model. The first extension 

accounts for the undercoverage of AS  and only changes the interpretation of some model parameters. It is 

used to estimate the coverage when linking with a sufficiently high recall. The second extension is more 

substantial, as it replaces in  by a vector of such variables; each representing the number of links for a distinct 

linkage rule. The resulting model is called the multivariate neighbor model, which is used to estimate the 
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coverage by specifying the interactions in the matched pairs, while allowing arbitrary interactions in the 

unmatched pairs. The following paragraphs discuss the linkage strategy before delving into the details of 

the various extensions and how they are used to estimate the coverage. 

 
4.1 Linking the sources 
 

In their solutions, Ding and Fienberg (1994), Di Consiglio and Tuoto (2015) and de Wolf et al. (2019) 

constrain each record to have at most one link. Yet, this constraint greatly complicates the modeling of the 

linkage errors as mentioned before. Here, it is instead proposed to link the records without this constraint, 

with a rule such that the decision to link two records involves no other record. Thus, a record may have 

zero, one or many links. Such a linkage rule may be implemented with the deterministic, hierarchical or 

probabilistic methods of record linkage. 

 
4.2 Extending the univariate neighbor model 
 

When AS  is not a census, the connection between in  and the errors is according to Table 4.1, which 

differs from Table 3.1 when = 0in  and = | | .i An S  When = 0,in  there is no certainty about the occurrence 

of a false negative because it is not known if the corresponding unit is in ,AS  unlike what happens in 

Table 3.1. When = | |,i An S  the number of false positives is not known with certainty for the same reason. 

To account for the undercoverage of ,AS  redefine ( )N vB  as a subset of NV  such that  

   ( ) s.t. ( , ) , , = ( , ) > 0 .N N ij B A i jv v E L i j S S V V v v      
 

B V  (4.1) 

 
Table 4.1 

Connection between in  and errors when AS  is not a census.  
 

in  False negatives False positives 

0 0 or 1 0 

1 | | 1  i An S  0 or 1 1in  or in  

= | |i An S  0 | | 1AS  or | |AS  

 
Also, redefine (.),Np (.)N  and (0) (.)N  as  

                                                    ( ) = , = ,N A ii B ip v E I i S L i S V v     (4.2) 

                                                     ( ) = , = , ,N A ij B iv E I j S L i S V v j i       (4.3) 

                                                    (0) ( ) = , , = ,N A j N i B iv P j S V V i S V v   B  (4.4) 
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where ( )Np v  is the joint probability of including i  in AS  and having a true positive, ( )N v  is still the false 

positive probability and (0) ( )N v  is the probability of having an unmatched record in the neighborhood. With 

these updated definitions, it is easily shown that (3.8) applies, when N  under the regularity conditions 

given by (3.6)-(3.7) and F  is discrete with G  atoms. Indeed, the proof for the census case still applies with 

in  based on (2.1). See Dasylva and Goussanou (2022, Lemma 1) for the details. The parameters g  and g  

have the same interpretation, but gp  now corresponds to the product of the inclusion probability ( ) AP i S  

by the probability of a true positive for a record in class .g  As before, let 
=1

= 
G

g gg
p p  and =  

=1
,

G

g gg
   where p  is the expected number of true positives per record, which is also equal to 

( ) ,A ii BE I i S L i S     and   is the expected number of false positives per record. Thus, p  is a useful 

lower-bound on ( ).AP i S  The model parameters may be estimated by maximizing the composite 

likelihood of the ’sin  when G  is given, and by selecting this latter parameter through the minimization of 

Akaike’s information criterion as in the census case (Dasylva and Goussanou, 2022). Let p̂  and ̂  denote 

the resulting maximum likelihood estimators. In Appendix A, it is stated that the recall and precision (two 

finite population parameters) converge in probability to 1( ) =     A ii A BP i S p E L i S S  and / ( ),p p   

respectively, under the regularity conditions. Under the same conditions, p̂  and ̂  are also consistent 

estimators of p  and ,  so that 1 ˆ( ) AP i S p  and ˆˆ ˆ/ ( )p p  are consistent estimators of the recall and 

precision, respectively. 

 
4.3 Estimating the coverage with a high recall 
 

From the above discussion, it follows that a consistent estimator of the coverage ( ) AP i S  may be 

obtained as  

 

1

TP ˆ ,
TP + FN

p


 
 
 

  

if the recall (i.e., TP / (TP + FN))  is known. In particular, p̂  is consistent, if the recall is known to be perfect, 

i.e., TP / (TP + FN) = 1.0, which is equivalent to having no false negatives. However, it must be noted that 

the proposed model is of interest only where the linkage is not perfect, i.e., if either the precision, the recall 

or both are smaller than 1.0. Otherwise, the standard capture-recapture estimator would apply, including in 

the ideal situation where the linkage key is an error-free unique identifier, i.e., a perfect linkage key. Besides, 

the neighbor model is not advised with such a key, because some of the model assumptions may not hold. 

To use the above approach in practice, one would want to design the linkage rule such that it generates 

very few false negatives if any, and ideally with a false negative rate smaller than min ( ),AP i S  

1 ( )AP i S   by an order of magnitude. This may be inspired from blocking procedures, which are used in 

probabilistic linkages to select a small subset of the Cartesian product with the majority of the matched 

pairs. Christen (2012) provides a good review of these procedures, which are indispensable when the sources 

are large. However, achieving a sufficiently high recall may come at the expense of tolerating a very low 

precision, which can prevent the estimation of the coverage with the required accuracy. In such cases, it is 
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proposed to estimate the coverage by specifying the interactions in the matched pairs. However, this requires 

a multivariate extension of the neighbor model. 

 
4.4 Multivariate neighbor model 
 

The multivariate extension concerns finite collections of simple linkage rules that are also mutually 

exclusive, i.e., for each rule, the decision to link two records involves no other records, and each pair is 

linked by at most one rule. The need for this extension is best explained with an example. For simplicity, 

suppose that AS  is known to be a complete census and that the two sources are to be linked with the given 

name, last name and birth date. To do so, seven rules are to be evaluated, which are shown in Table 4.2, 

where   lives in the finite set 3= {0,1} \ {(0, 0, 0)},  and the components of   indicate whether there is an 

exact agreement on the last name, given name and birth date, in this order. For rule ,  denote by ( )
in  the 

corresponding number of links for the sample record ,i  e.g., (0, 0, 1)
in  is the number of links when linking 

based on having the same names but a different birth date. A simple way to evaluate the different rules is to 

fit a model of the form  

    
( )

( ) ( ) ( ) ( )

=1

{ } Bernoulli Poisson ,



     
G

i B g g g
g

n i S p∼  (4.5) 

separately for each ,  where the expected numbers of true positives and false positives per record are 
( )

( ) ( ) ( )

=1
=


  

G

g gg
p p  and 

( )
( ) ( ) ( )

=1
= ,

G

g gg


      respectively. Note that we necessarily have the constraint 

( ) 1,p 

 
  because the rules are mutually exclusive. However, the resulting estimators of the recall and 

precision may be inefficient because important information is ignored, such as the constraint ( ) 1,p 

 
  

or the correlation among the numbers of links from the different rules for the same sample record, which is 

not exploited either. Also, when choosing the number of classes ( )G  according to Akaike’s information 

criterion, the result ( )ˆ G  may vary across the different rules, which is counterintuitive. Besides, even in the 

best case where ( )ˆ G  is the same for all the rules, the classes may correspond to different latent partitions of 

the sample records across the different rules, which is also counterintuitive and undesirable. Furthermore, 

the above limitations apply in the more general situation where AS  is not a census and its coverage is 

unknown. 

 
Table 4.2 

Mutually exclusive rules based on the given name, last name and birth date. 
 

Rule index 1 2 3= ( , , )       Same last name   Same given name   Same birth date  

(0,0,1)   X X √ 

(0,1,0)   X √ X 

(0,1,1)   X √ √ 

(1,0,0)   √ X X 

(1,0,1)   √ X √ 

(1,1,0)   √ √ X 

(1,1,1)   √ √ √ 
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The solution is to model the joint distribution of the vector of counts ( )

 
  in  with a multivariate 

extension of the neighbor model, as follows, with further details in Appendix B. To describe this extension, 

it is convenient to define the following multivariate distributions. The first distribution is the joint 

distribution of mutually independent variables that are indexed over a finite set ,  where variable   follows 

the  ( )Poisson   distribution. Thus, the joint distribution is simply the product distribution. For notational 

convenience, we define ( )= 





    and denote this distribution by  PPoisson ,  where the first “P” 

stands for product. The second distribution corresponds to the joint distribution of the cell counts in a 

multinomial experiment with n  trials, where the last cell is excluded, the other cells are indexed over ,  

and the probability of observing cell   is denoted by ( ) ,p   such that ( ) 1.p 

 
  In this case, we define 

( )= 

 
  pp  and denote the joint distribution by  IMultinomial , ,pn  where the “I” stands for incomplete. 

In general, the multivariate extension may be considered for modeling the joint distribution of the numbers 

of links, which result from the application of mutually exclusive simple linkage rules that are indexed over 

some finite set ,  where ( )
in  denotes the number of links from rule   for the sample record i  and 

( )= .ni in 

 
    The multivariate model is a finite mixture of | | -variate discrete distributions, where each 

component is the convolution of an incomplete multinomial distribution with a product of independent 

Poisson distributions, i.e.,  

  
=1

{ } IMultinomial(1, ) PPoisson , 
G

i B g g g
g

i Sn p∼   (4.6) 

where G  is the number of record classes, g  is the probability that a sample record is from class ,g  and 
( )= 

 
  g gpp  and ( )= 





  g g  are the vectors of expected numbers of true positives and false positives 

for a record in the class. Furthermore, 
( )
gp  is the expected number of true positives and 

( )g  is the expected 

number of false positives, under rule .  Then, given ,G  the model is parametrized by  
1

, , .p g g g
g G


 

 
   

When the records are homogeneous,  

  { } IMultinomial(1, ) PPoisson , i Bi Sn p∼   (4.7) 

where ( )= 

 
  pp  and ( )= . 





    Furthermore, if 

( ) > 0min


   and ( )= ,t t 

 
    we have  
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 (4.8) 

Like before, the model is motivated by the convergence in distribution of the vector of counts =ni  
( ) ,in 

 
    when ,N   as stated by Lemma 2 in Appendix B. From the multivariate mixture, it follows 

that the marginal distribution of ( )
in  is still given by (4.5), except that ( )G  and 

( )g  are the same for all 
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the rules, as desired. Also, the record classes correspond across all the rules now. A restricted model is 

obtained when  =g gp   for each class, where (.)  is a known injective function and g  is a vector of 

regression coefficients of dimension smaller than | | .  This means that the | |  true positive probabilities 

for the different rules are not free but bound by fewer regression coefficients, for each record class. Such a 

restriction is useful when exploiting the information about the variables’interactions in the matched pairs, 

through a log-linear specification. Then, a multivariate mixture with G  components is parametrized by 

 
1

, , . g g g
g G


 

 
   According to Theorem 2 in Appendix B, the model parameters (for each proposed 

parameterization) is estimated consistently by maximizing the composite likelihood of the observed vectors 

of counts   ,n
B

i i S
 when G  is known or unknown. In the latter case, G  may be selected according to the 

minimum Akaike’s information criterion as before. 

 
4.5 Estimating the coverage through the correlation structure 
 

When the records are linked with a perfect recall, the coverage may be estimated with the univariate 

mixture model as discussed before. Otherwise, the coverage may be estimated with the multivariate 

neighbor model, where the true positive probabilities are constrained according to the correlation structure 

of the linkage variables through a log-linear specification. In detail, the proposed multivariate model is based 

on a collection of simple linkage rules (i.e., each rule is such that the decision to link two records involves 

no other record), which are themselves based on a first set of simple linkage rules that are divided into K  

groups. In group ,k  there are kH  mutually exclusive rules (i.e., a pair is linked by at most one rule from the 

group) and 
( , )k h
ijL  indicates whether the pair ( , )i j  is linked by rule .h  For example, each group may be 

based on a single variable, and the rules may correspond to different levels of agreement on this variable. 

For example, for the last name, these levels may comprise exact agreement, typo agreement (excluding 

exact agreement) and SOUNDEX agreement (excluding exact and typo agreements). However, a group may 

also involve many variables. A second set of rules is obtained by combining the rules from the first set as 

follows. Let the index set be 1= {0, , } {0, , } ,0K KH H   … … …  and for 1= ( , , ) ,K    …  let 
( )
ijL  

denote the indicator that rule   links the pair ( , ),i j  where 
( ) =1
ijL  only if 

( , ) =1 kk
ijL  for each k  such that 

1,k   and ( , )

=1
= 0 kH k h

ijh
L  for each k  such that = 0.k  The proposed model is the special case of the 

multivariate neighbor model (4.6), where 
( )
gp  has the following form, for a vector of covariates ( )z  and 

regression coefficients .ug  

 
 
 

( )

( )

( )

( ) exp
= .

1 exp

z u

z u

A g

g

g

P i S
p




















 (4.9) 

For a given number of classes ,G  the model parameters include  
1

, ,
 

 
 g g

g G
gu   and ( ).AP i S  The 

specific form of ( )z  and gu  depends on the model. This is illustrated in the following example, where the 

model includes all the main terms and no interactions. This is also saying that the components of   are 

independent in the matched pairs. In this case, the coefficient corresponding to the event { = } k kl  is denoted 
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by , ( ).kg k lu  By the dummy coding convention, the coefficient is set to zero if = 0.kl  The covariate 

corresponding to this coefficient is the indicator ( = ) k kI l  so that  

        ( )
1 1 1= = 1 = = 1 = ,      … … …K K KI I H I I Hz


 (4.10) 

                                      
1,1(1) ,1( ) , (1) , ( )= .  … … …

Kg g g H g K g K Hu u u uu


 (4.11) 

In the next example, the model includes all the main terms and second-order interactions, but no higher-

order interactions. For 1 21 < ,k k K   the coefficient of the interaction between the events 
1 1

{ = } k kl  and 

2 2
{ = } k kl  is denoted by 

 1 2 1 2
,

.
k kg k k l l

u  By the same coding convention, the coefficient is set to zero if 
1

= 0kl  

or 
2

= 0.kl  The covariate associated with the coefficient is the indicator     
1 2 1 2
, = , .k k k kI l l   In this case, 

( )z  and gu  have more complex expressions. In order to write them in a manner that is tidy, define  

    ( )
1 = = 1 = .    …k k k kI I Hz


  

Also, denote the right-hand side of (4.10) by ( )
1 ,z   the right-hand side of (4.11) by 

( )
1 ,ug


 and, for 

= 1, , 1,k K …  further define  

 

 

1

1 1

( ) ( ) ( ) ( )
2 1( 1) 1 1

interaction terms between interaction terms between
level 1 of and l
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where   is the Kronecker product and 2g ku  are the interaction terms between  k  and 1, , .k K  …  Then, 

we have  
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In general, for ,t K  the coefficient of the interaction between the events 
1 1

{ = }, ,{ = } …
t tk k k kl l  is denoted 

by 
 1 1

,
.

t k kt
g k k l l

u
… …

 As before, the coefficient is set to zero by convention if  1min , , = 0.tl l…  The covariate 

associated with the coefficient is the indicator     1 1
, , = , , .

t tk k k kI l l … …  When the model includes all 

the main terms and interactions of order d  or smaller, we have  
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According to Theorem 2 in Appendix B, this implies that the parameters of the limiting mixture 

(including the coverage ( ))AP i S  can be estimated consistently by maximizing the likelihood of the ’s,ni  

under the stated conditions. For example, this methodology may be of interest in the following simple setup, 

where the linkage is based on exact comparisons of the last name (first group), given name (second 

group) and birth date (third group), with = 3,K 1 2 3= = = 1,H H H 3= {0,1} \{(0, 0, 0)}  and | | = 7.  

The coverage may be estimated by maximizing the likelihood of the ’s,n i  if the different agreements have 

no interactions of the third order in matched pairs for each possible value of a record in ,BS  i.e., all main 

terms and second order interactions may be included (this adds up to six parameters besides the coverage 

( )).AP i S  In particular, this is true if the agreements are independent in matched pairs. In this case, the 

solution is related to that described by Račinskij et al. (2019). It is also related to the solution described by 

Brown et al. (2020) except that it does not resort to clerical reviews. Beyond this special case, the true 

positives distribution is associated with seven unknown parameters ( ( )AP i S  and the six log-linear 

parameters) and seven equations (one for ( )p  for each ),  for each mixture component. 

A few remarks are in order. The first remark is that the proposed model implicitly accounts for all the 

interactions among the linkage variables in the unmatched pairs, while accounting for all the interactions of 

order 1K  or smaller in the matched pairs, within each record class. Thus, it offers a far greater modeling 

flexibility than classical log-linear mixtures, while retaining the identification property (see Lemmas 3 and 

4) and the ability to consistently estimate the related parameters (see Theorem 2). This is best seen in the 

simpler case where the true positives distribution is homogeneous across the records and 1 = = = 1,KH H…  

i.e., K  dichotomous comparisons. In this case, it is clear that one cannot use a two-component K -variate 

log-linear mixture to model the record pairs, while accounting for all the interactions of order 1K  or 

smaller in the matched pairs. Indeed, this entails having at least 2K  free parameters, including 2 2K  

parameters for the matched pairs, one parameter for the mixing proportion and at least one parameter for 

the unmatched pairs. However, there are only 2K  observable patterns and thus only 2 1K  equations to 

determine the parameters. The same problem occurs when = 2,K  even when there are no interactions in 

the distribution of the matched pairs. The second remark is that the added modeling flexibility greatly 

facilitates the design of linkage rules, which meet the conditions for the consistent estimation of the coverage 

(see Theorem 2 and Lemma 4). 

 
4.6 Heterogeneous capture and incomplete records 
 

The methodology may be applied when the capture probability varies across post-strata according to 

covariates that are recorded without errors in each sample, so long as the stated assumptions (see 

Sections 2.1, 3.3 and the Appendix) hold within each post-stratum. In this case, AS  and BS  correspond to 

the subsets of records from a post-stratum, where the capture probability may be estimated using one of the 

neighbor models. Of course, the construction of the post-strata is an important practical question, which is 

deferred to future work. 
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Another practical concern is the occurrence of incomplete records in either sample. To discuss the issue 

without burdening the notation, let AS  and BS  now denote the two samples within a post-stratum, let 
AS  

and 
BS  denote the corresponding subsamples of complete records, and let ( ) AP i S  denote the coverage 

of 
AS  within the post-stratum, where i  is a unit located therein. Little and Rubin (1987, Chapter 1.2) have 

described different strategies for conducting a statistical analysis in the presence of incomplete records. A 

first option is to use only the complete records, with or without weighting them to account for the incomplete 

ones. Two other options include imputing the missing values and the model-based approach, which consists 

in maximizing the likelihood of the incomplete data. Here, the first option may be considered without 

reweighting the complete records, when the stated assumptions apply within each post-stratum, including 

the fact that the inclusion in 
AS  and that in 

BS  are independent and the inclusion probability in 
AS  is 

uniform. The main idea is to treat the missingness as a second stage of selection and estimate the coverage 

in two steps as follows. First, apply one of the two proposed methodologies within the post-stratum to obtain 

an estimate ˆ ( )AP i S  of the coverage of .AS   Second, estimate the coverage of AS  (within the post-stratum) 

by ˆ| | / (| | / ( )).A A AS S P i S   

 
5. Simulations 
 

The proposed methodology is evaluated with Monte Carlo simulations comprising 100 repetitions. In a 

repetition, a finite population is generated with 100,000 individuals, where each individual is assigned a 

surname and birth date. From this population two Bernoulli samples are drawn, where the surname and birth 

date are possibly recorded with typos. Then, the samples are linked and the coverage is estimated with the 

proposed models and according to Ding and Fienberg (1994), Di Consiglio and Tuoto (2015) and Račinskij 

et al. (2019), for comparison. Different scenarios are considered with different linkage rules, including some 

where the conditional independence assumption applies and the recall is perfect. The following paragraphs 

provide more details. 

 
5.1 Finite population and data sources 
 

For the surname and birth date, the frequencies are based on crossing the surname and age distributions 

from the 2010 US census of population (US Census Bureau, 2020, 2016). For the surname, the relative 

frequency is computed after excluding the observation “all other surnames”. For simplicity, the month is 

uniformly drawn from {1, ,12}…  and the day is independently and uniformly drawn from {1, , 30}.…  

Consequently, the surname and date components are mutually independent in the population. Two complete 

registers are created, where the variables are perturbed in the second register. This perturbation is described 

in terms of exact agreement on the surname, birth day, or birth month, and a baseline criterion, which is 

defined as having the same surname SOUNDEX and birth year, as well as an absolute difference that is 

smaller than 2 for both the day and the month. To be more specific, let 1, 2  and 3  denote the indicator 

variables, which correspond to the satisfaction of the baseline criterion in addition to having the same 
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surname, birth day or birth month, as shown in Table 5.1. For example, when 1 = 1,  the baseline criterion 

is satisfied and the surname is identical. When 1 = 0,  the baseline criterion is not met or it is met and the 

surname is different. In each case, the birth day and birth month may be identical or different. For a given 

individual, the related records in the first and second registers are hereafter called first and second records, 

respectively. The second record is obtained by first drawing 1 2 3= ( , , ),     and then choosing the record 

value according to the value of the first record and .  For example, when = (0,1,1),  the second record is 

such that it has the same birth date as the first record but a different surname with the same SOUNDEX 

code. Using the dummy coding convention, we can write the distribution of   in log-linear form as  

 
1 2 1 2

1 2

3

(1) (11) 1 2 3 123(111)
=1 1 < 3

( ) = exp ,      
 

 
    

 
 k k k k k k
k k k

P u u u u  (5.1) 

where the intercept u  is a function of the main terms and the interaction terms because 3{0, 1}
( ) = 1.P




  

For simplicity, we choose the parameters such that 1(1) 2(1) 3(1)= =u u u  and 12(11) 13(11) 23(11)= = .u u u  When 

1 = 0,  the surname in the second record is drawn from the other census surnames with the same SOUNDEX 

code, according to their frequencies. When 2 = 0,  the day in the second record is obtained by randomly 

increasing or decreasing the day of the first record by 1, with probability 1/2 for each alternative, except 

when the day is 1 or 30 in the first record, in which case the day is increased by 1 or decreased by 1, 

respectively. Likewise, when 3 = 0,  the month in the second record is obtained by randomly increasing or 

decreasing the month of the first record by 1, with probability 1/2 for each alternative, except when the 

month is 1 or 12 in the first record, in which case the month is increased by 1 or decreased by 1, respectively. 

From each register, an independent Bernoulli sample is drawn with an inclusion probability of 0.9, which 

is the actual coverage. 

 
Table 5.1 

Indicators of the perturbations in a record.  
 

Indicator Baseline criterion Same surname Same birth day Same birth month 

1  √ √ ? ? 

2  √ ? √ ? 

3  √ ? ? √ 

 
5.2 Linkage 
 

Two linkage rules are considered, where the first rule links the pairs that meet the baseline criterion, or 

the subset of these pairs where there is at least one exact agreement on the surname, day of birth or month 

of birth, depending on the scenario. The resulting links are used to estimate the coverage with the univariate 

and multivariate neighbor models, and a classical log-linear mixture model that incorporates the conditional 

independence assumption as described by Račinskij et al. (2019). For a given pair, the vector of outcomes 

is based on the indicators of exact agreement for the surname, day of birth and month of birth, e.g., (1,1,1)  
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for a perfect agreement on the surname and the two date components. In order to estimate the coverage with 

the methodologies proposed by Ding and Fienberg (1994), and Di Consiglio and Tuoto (2015), a second 

linkage rule is required, with at most one link per record as well as clerical estimates of the resulting linkage 

accuracy. This rule is derived from the first one by deleting a link, if at least one involved record has many 

links. The clerical estimates of the linkage accuracy are based on drawing a simple random sample of 1,000 

record pairs, which satisfy the baseline criterion, and using the truth deck. Note that this procedure ignores 

the false negatives generated by the baseline criterion (akin to a blocking criterion), where they exist. 

 
5.3 Scenarios 
 

Five scenarios are considered. In the first scenario, the conditional independence assumption is satisfied 

based on 1(1) =1,u 12(11) = 0u  and 123(111) = 0,u  and the first linkage rule is based on the baseline criterion and 

it has a perfect recall. In the second scenario, there is a departure from conditional independence due to 

interactions of the second order, based on 1(1) =1u  and 12(11) =1u  and 123(111) = 0,u  but the first linkage rule 

is still based on the baseline criterion. In the third scenario, there is also a departure from conditional 

independence due to interactions of the second and third order, based on 1(1) =1,u 12(11) =1u  and 

123(111) =1/ 4,u  but there is no change to the first linkage rule. The fourth scenario is identical to the second 

scenario, except that the first linkage rule now links the pairs that meet the baseline criterion and have at 

least one exact agreement on the surname, day of birth or month of birth. Finally, the fifth scenario is 

identical to the fourth scenario excepts that a third order interaction is added based on 123(111) =1/ 4.u  The 

characteristics of the different scenarios are summarized in Tables 5.2 and 5.3. In the latter table, the figures 

are based on averages across the repetitions. 

 

Table 5.2 

Simulation scenarios.  
 

 Log-linear parameters Conditional 

independence Scenario (1)ku  (11)
1 2

k ku  123(111)u  

1 1 0 0 √ 

2 & 4 1 1 0 X 

3 & 5 1 1 1/4 X 

 
Table 5.3 

Empirical averages of the rates of linkage error.  
 

Scenario Linkage Recall Precision False positive rate 

(FPR) 
910  

Perfect recall 

1 1 1.000 0.952 498.92 √ 

 2 0.944 1.000 4.15 X 

2 & 3 1 1.000 0.953 495.03 √ 

 2 0.950 1.000 4.17 X 

4 & 5 1 0.996 0.964 371.84 X 

 2 0.957 1.000 3.48 X 
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5.4 Estimators 
 

The neighbor models are applied under a homogeneous distribution of the true positives, to reflect the 

current setup and the situation in practice, where the heterogeneity of the false positives distribution is 

expected to be the dominant source of heterogeneity for the in  distribution (Dasylva and Goussanou, 2022). 

This means that the probability gp  and the vector ( )= 

 
  g gpp  are the same for all the classes. It also 

means that the parameter g  is the same across the classes, if gp  is of the form  g  for some known 

function (.).  For convenience, let ,p p  and   denote the common values of ,gp gp  and , g  respectively. 

Also let  

 
1 2 1 2

1 2

3
( ) 3

(1) (11)
=1 1 < 3

= exp , = {0,1} ,    
 

 
    

 
 k k k k k k
k k k

r u u u  (5.2) 

where 3

( )

{0,1}
= 1,r 

   the intercept u  is a function of the other parameters, and the right-hand side only 

includes interactions of the second order unlike that of (5.1). Then  

  1(1) 2(1) 3(1) 12(11) 13(11) 23(11)= , , , , , ,u u u u u u   

and the mapping (.)  is characterized by  

 ( ) ( ) 3= ( ) , = {0,1} \{(0, 0, 0)}.   Ap P i S r   

The estimates are computed by maximizing the likelihood numerically in R, where the number of classes is 

chosen by minimizing Akaike’s information criterion. For the univariate model, the estimates are based on 

capping the ’sin  by 10 (i.e., replacing in  by min (10, ))in  and maximizing the likelihood of the resulting 

observations, as described by Dasylva and Goussanou (2022). With the multivariate model, the coverage is 

estimated when only including the main terms, and when also including the second order interaction terms, 

while ignoring that the main terms are equal, and that the second order interaction terms are equal. In 

general, the numerical maximization of the likelihood is more challenging than with the univariate model, 

and the resulting estimates become less accurate when the linkage precision decreases. Consequently, a 

good initialization procedure is needed, which is described in the Appendix C. For comparison, we also 

compute the estimators proposed by Ding and Fienberg (1994), Di Consiglio and Tuoto (2015), and 

Račinskij et al. (2019), as well as the naive capture-recapture estimator, which ignores the linkage errors. 

Note that this latter estimator is computed as the ratio of the number of links by the second linkage rule over 

| |.BS  

 
5.5 Results 
 

The simulation results are shown in Table 5.4. In scenario 1, where the conditional independence 

assumption applies, the best performance is obtained with the estimators by Račinskij et al. (2019) and the 

neighbor estimators, both in terms of the relative bias and the mean square error, with an advantage for the 

neighbor estimators when looking at this latter performance measure. Among the neighbor estimators, the 
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univariate model offers the best performance in terms of bias, variance and mean square error. Without 

surprise, the naive estimator has the worst performance, while the estimators by Ding and Fienberg (1994), 

and Di Consiglio and Tuoto (2015) perform better but have a large variance, because they incorporate 

clerical estimates of the linkage accuracy. It is notable that the log-linear mixture proposed by Račinskij 

et al. (2019) has a larger bias, variance and mean square error, than the estimators based on the multivariate 

neighbor models, with one small exception. (In Table 5.4, the log-linear mixture has a relative bias slightly 

smaller that of the multivariate neighbor model with interactions.) Indeed, all these estimators aim to 

estimate the coverage by leveraging the correlation structure of the linkage variables, which the log-linear 

mixture does fully by incorporating the independence of the linkage variables both in the matched pairs and 

in the unmatched pairs. However, the multivariate neighbor models only exploit the information about the 

correlation structure in the matched pairs without constraint on the unmatched ones. Yet, they yield 

estimators that are significantly more accurate than the log-linear mixture in terms of mean square error. 

This illustrates the important difference between classical log-linear mixtures and the multivariate neighbor 

models, when the latter incorporate a log-linear specification of the correlation structure in the matched 

pairs. 

In scenario 2, the proposed estimators still offer the smallest mean square errors. As before, the univariate 

model offers the best overall performance in terms of bias, variance and mean square error. Of the two 

multivariate models, the one including the interactions performs better as one might expect, with a bias that 

is about forty times smaller and a mean square error that is about five times smaller. Without surprise, the 

estimator by Račinskij et al. (2019) has a worse performance than in the previous scenario, because the 

conditional independence assumption is violated in this scenario. However, this degradation is such that it 

has a worst performance than the naive estimator for each performance measure. An interesting observation 

is that it also performs much worse than the estimator based on the multivariate neighbor model without 

interactions, with a relative bias and mean square error that are bigger by more than an order of magnitude, 

while this latter estimator performs better than the naive estimator for each performance measure. A possible 

explanation is that the multivariate neighbor model implicitly accounts for the all the interactions in the 

distribution of the unmatched pairs, while the model by Račinskij et al. (2019) ignores these interactions. 

This is a further illustration of the difference between classical log-linear mixtures and multivariate neighbor 

models. As before, the estimators by Ding and Fienberg (1994), and Di Consiglio and Tuoto (2015) have a 

worse performance than the neighbor models, due to the variance of the estimated linkage accuracy. 

However, in terms of bias and mean square error, they perform better than the naive estimator and that from 

Račinskij et al. (2019). Scenario 3 differs from scenario 2 by adding a third order interaction with coefficient 

1/4. However, this change has a negligible impact on the obtained results and observed trends. 

In scenario 4, the first linkage rule has a small false negative rate of about 0.4% (i.e., an imperfect recall), 

by not linking the pairs that have no exact agreement on the surname, day of birth or month of birth. This 

has a direct impact on the univariate neighbor estimator, which now has the third smallest mean square 

error, behind the two multivariate neighbor estimators; the one with the interactions offering the best 
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performance. Excluding the pairs with no exact agreement further degrades the performance of the log-

linear mixture estimator (compared to the scenarios 3 and 4), which still has the largest mean square error 

and a worst performance than the naive estimator. However, this change has a limited impact on the 

performance of the estimators by Ding and Fienberg (1994), and Di Consiglio and Tuoto (2015). Scenario 5 

differs from scenario 4 by adding a third order interaction with coefficient 1/4. However, this change has a 

negligible impact on the results. 

In summary, the simulation results demonstrate that the proposed estimators may be used to estimate the 

coverage with a small relative bias and a smaller mean square error than the alternative estimators proposed 

by Ding and Fienberg (1994), Di Consiglio and Tuoto (2015), and Račinskij et al. (2019), when the false 

negatives are negligible or the true positive probabilities are constrained by a log-linear specification. 

 
Table 5.4 

Simulation results.  
 

Scenario Estimator Relative bias (%) Variance 710  Mean square error 710  

1 Naive -5.522 12.90 24,711.31 

 R -0.034 824.62 817.32 

 DF 1.618 2,377.74 4,475.68 

 DT 1.159 2,550.13 3,613.51 

 UN -0.003 8.43 8.35 

 MN with no interactions -0.023 28.25 28.41 

 MN with 2nd order interactions -0.119 27.06 38.25 

2 & 3 Naive -4.994 15.10 20,216.56 

 R -7.784 324.65 49,403.40 

 DF 1.667 3,381.80 5,598.43 

 DT 0.961 3,560.11 4,272.01 

 UN -0.004 8.31 8.24 

 MN with no interactions -0.423 21.05 165.44 

 MN with 2nd order interactions -0.091 23.70 30.12 

4 & 5 Naive -4.292 15.46 14,934.57 

 R -3.497 280,414.54 287,515.73 

 DF 1.760 2,255.34 4,740.96 

 DT 1.159 2,550.13 3,613.51 

 UN -0.393 9.30 134.50 

 MN with no interactions -0.423 21.05 165.44 

 MN with 2nd order interactions -0.091 23.70 30.12 
DF: estimator by Ding and Fienberg (1994) 
DF: estimator by Di Consiglio and Tuoto (2015) 
MN: estimator based on the multivariate neighbor model 
Naive: Lincoln-Petersen estimator that ignores the linkage errors 
R : estimator by Račinskij et al. (2019) 
UN: estimator based on the univariate neighbor model  
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6. Conclusion 
 

A new methodology has been described for capture-recapture estimation with linkage errors, which is 

based on modeling the number of links from a record, without clerical reviews, including a univariate model 

and a related multivariate model. With the univariate model, the coverage is estimated by linking the records 

with a sufficiently high recall. With the multivariate model, the coverage is estimated by constraining the 

interactions in the matched pairs through a log-linear specification, while allowing arbitrary interactions in 

the unmatched pairs; a major difference with classical log-linear mixtures. In this latter case, the records 

must be linked with a high precision to obtain a reliable estimate of the coverage. Simulations with public 

census data demonstrate the good performance of the proposed estimators, when compared to previous 

solutions. Future work will look at obtaining variances and confidence intervals, and at validating the log-

linear specification when the multivariate model is used. 
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Appendix 
 
A. Extension for undercoverage 
 

This appendix aims to extend the results from Dasylva and Goussanou (2022) to show that  
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The extension consists in accounting for the undercoverage in .AS  To proceed, some additional notation is 

needed. Call 
jV  a neighbor of ,iV  if unit j  is included in AS  and 

jV  is contained in the neighborhood of 

,iV  i.e., ( ).N iVB  The neighbor is called matched if both records are from the same unit. Otherwise, it is 

called unmatched. Also, define the following additional notation. For ,  Bi i S  such that ,i i  let  

                                                      (0) = ( ) ,
A

i j N i
j S

n I V V


 B  (A.1) 

                                                  (0) (0)
| |, = , { } ( ) , ( ) ,i U i U i i A i N i A iin n n n I i S V V I i S L    B  (A.2) 

                                                    (0)
|

: ,

= ( ) ( ) ,
A

ii U t N i N i
t S t i i

n I V V V
 

   B B  (A.3) 

where (0)
in  is the number of neighbors of ,iV

(0)
|i Un  is the number of unmatched neighbors of this record, |i Un  

is the number of unmatched records, which are linked to the same record, and 
(0)

|ii Un  is the number of 

unmatched neighbors, which are common to iV  and .iV   Corresponding to (0)
in  and (0)

| ,i Un  let =AiS  

  s.t.A t N it S V V B  denote the subset of units, which are included in AS  and have their record in the 

neighborhood, and let | = { }Ai U AiS S i  denote the subset of these units that are different from unit .i  These 

latter units are associated with the unmatched neighbors. Finally, for random variables (or vectors) ,X Y  

and ,Z  denote the independence of X  and Y  by ,X Y  and their conditional independence given Z  by 

| .X Y Z  

The following lemma extends Lemma 2 in Dasylva and Goussanou (2022). Note that all the proofs are 

found in the longer version of the paper (Dasylva, Goussanou and Nambeu, 2024). 

 

Lemma 1. Suppose that  
1

( ), ( ), ,
 

    A B i i i N
I i S I i S V V  are iid and let 1, ,… NZ Z  denote identically 

distributed random variables, such that they are conditionally independent given  ( ), ( ),A BI i S I i S    
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Also for any fixed ( , ) ,i i N Nv v  
  V V {0,1},ia  ( ),i N iw v B | {1, , } \{ , } …Ai Us N i i  and  

| Ai U
t t s

w  such 

that ( ) ( ) =N i N iv v  B B  and ( )t N iw vB  for all | Ai Ut s   

  

 

 

 
| |

| |

| |

| |

, = ,
( ) = , ( ) = ,= ,

, = ,= , = ,, =
= = ,= =( ) ( ) = ,
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( )

Ai U Ai U

Ai U Ai U

B i i

A i A i
AiU AiU

B i i
i i i i

B i i

Ai U Ai U
t tt s t sN i N i

i N it tt s t s

i N i

i S V v
I i S a I i S aS s

i S V vV w V wi S V v
P P S sV VV V

V
V Vw w
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B B

B

B

.

( )i N iv 

 
 
 
 
 
 
 

B

 (A.6) 

Hence  

 

(0)
|

(0)
|

, = , = ,

, = , = ,
= ( , ; ) ( , ; ),

( ) ( ) = ,

( ), ( )

B i i i U

B i i i U
i i i i i i

N i N i

i N i i N i

i S V v n k

i S V v n
E Z Z g v k v g v v

V V

V V V V

  
  



 

 
 

 
  
 

    




B B

B B

 (A.7) 

where  

 (0)
|

, = ,
( , ; ) = .

= , ( )
B i i

i i i
i U i N i

i S V v
g v k v E Z

n k V v


 
   B

 (A.8) 

The above lemma leads to the following theorem, which extends Theorem 1 in Dasylva and Goussanou 

(2022). 

 

Theorem 1. Consider ,NV (.),NB ,AS ,BS  and  
1 i i N

Z  identically distributed random variables such that 

the following conditions apply. 

 

(C.1)   =lim  N BP i S  for some positive .  
 

(C.2)  For 0   not depending on ,N  *
(0)( 1) .sup

N Nv V N v     
 

(C.3)  For 0c  not depending on N   

                                                    | { , } ,N i N i BNP V V i i S c     B B   

                              ( ) { , } , ( ) ( ) = .i N i B N i N iNP V V i i S V V c      B B B   

(C.4)  1, ,… NZ Z  are conditionally independent given  
1

( ), ( ), ,
 

    A B i i i N
I i S I i S V V  such that the 

marginal conditional distribution of iZ  is only a function of ( ),AI i S ( ),BI i S ,iV | ,Ai US  
|

,
Ai U

t t S
V


  

and .iV   
 



Survey Methodology, December 2024 399 

 

 
Statistics Canada, Catalogue No. 12-001-X 

(C.5)  (0)
|| | i N i UZ R n  where (.)NR  is a polynomial with a finite degree not depending on N  and 

nonnegative coefficients of   log ,
d

O N  where d  does not depend on N  either. 
 

(C.6) = ,limN i BE Z i S      where | | < .   
 

Then  

 
1

.
| |





B

p

i
i SB

Z
S

 (A.9) 

The next result shows the convergence of the recall and precision to 1( ) AP i S p  and / ( ),p p   

respectively. It extends Corollary 1 in Dasylva and Goussanou (2022) and is a direct consequence of 

Theorem 1.  
 

Corollary 1. Suppose that assumptions C.1-C.3 hold and that the linkage meets the following conditions  

 

(C.7) 1 1 1
, ,

   
      …j Njj N j N
L L  are conditionally independent given  

1
( ), ( ), , ,A B i i i N

I i S I i S V V
 

      

where the conditional distribution of 
1 

  ij j N
L  is only a function of ( ),AI i S ( ),BI i S ,iV | ,Ai US  

 
|

,
Ai U

t t S
V


  and .iV   

(C.8)  

    ( ), ( 1) ( ) = , .lim  


   N i N i B
N

E p V N V i S p  (A.10) 

Then  

 
TP TP

, , .
TP + FN TP + FP ( )

p

A

p p

P i S p 

  
   

    
 (A.11) 

In particular, (A.11) holds if C.8 is replaced by the condition  

    ( ), ( 1) ( ) (.,.)  
d

N i N i Bp V N V i S F   

with = ( , )p pdF p  and = ( , ).dF p    

 

Other results from Dasylva and Goussanou (2022) remain valid, based on Theorem 1 and Corollary 1, 

such as Lemma 2 (convergence in distribution of in  to a mixture as in the right-hand side of (3.8)), 

Theorem 2 (consistency of the estimator by Blakely and Salmond (2002) in the homogeneous case) and 

Theorem 3 (consistency of the maximum likelihood estimator). This is easily seen by inspecting the 

related proofs in Dasylva and Goussanou (2022). Therefore, the estimators p̂  and ̂  are consistent, and 
1 ˆ( ) AP i S p  and  ˆˆ ˆp p   are consistent estimators of the recall and precision, respectively. 
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B. Multivariate extension 
 

To describe the multivariate version of the neighbor model, let   denote the index set of a collection of 

rules and let ( )
ijL  indicate whether the pair ( , )i j  is linked by rule .   (To avoid any conflict with the 

previously defined notation, it is assumed that the rules are indexed such that   does not contain 0.) The set 

 may take various forms, such as a subset of consecutive integers starting from 1, or it can be a subset of 

{0,1}K  if linking the records with K  linkage variables and performing an exact comparison for each 

variable. For ,   let ( ) ( )= ,
A

i ijj S
n L 

 ( )= ,ni in 

 
    and redefine ( )N vB  to be a subset of ,NV  which 

satisfies the condition  

  ( )( ) s.t. ( , ) , , = ( , ) > 0 .N N ij B A i jv v E L i j S S V V v v



   
       

    
B V   

In words, ( )N vB  is a superset of record values, which are linked by at least one rule in the collection with a 

positive probability, given that  Bi S  and = .iV v  The function (0) (.)N  is still defined by (4.4), while (.)Np  

and (.)N  are replaced by the vectors ( )( ) = ( )

 
  N Nv p vp  and ( )( ) = ( ) , N Nv v





    with  

                                                     ( ) ( )( ) = , = ,N A ii B ip v E I i S L i S V v      (B.1) 

                                                     ( ) ( )( ) = , = , ,N A ij B iv E I j S L i S V v j i        (B.2) 

and ( ) ( ) 1

 
 Np v  for all .Nv V  In words, ( ) ( )

Np v  and ( ) ( )N v  are the expected numbers of true 

positives and false positives for rule ,  given that  Bi S  and = .iV v  The regularity condition of (3.7) is 

replaced by the following more general condition.  

  ( ), ( 1) ( ) { } .  
d

N i N i BV N V i S Fp   (B.3) 

A case of special interest is when ( )N vp  is of the form  ( ) ,N v  for some function : , m
N

 V R  and 

some injective function | |: [0,1] mR  independent of ,N  where < | |.m   In this case, (3.7) is replaced 

by the following condition instead.  

  ( ), ( 1) ( ) { } ,  
d

N i N i BV N V i S H   (B.4) 

where H  does not depend on .N  

The next lemma states the convergence of in  to a multivariate mixture, when N  under the 

conditions given by (3.6), and (B.3) or (B.4). The mixing distribution is given by F  or H  depending on 

whether (B.3) or (B.4) applies. In both cases, the component distributions come from | | -variate families 

of discrete distributions, which correspond to the convolution of a multinomial distribution with a product 

of independent Poisson distributions. To further describe the limiting distributions, let F  denote the family 

of the component distributions based on (B.3), where each member is of the form  
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 IMultinomial(1, ) PPoisson( ),p    

for ( )= 

 
  pp  and ( )= . 





    When (B.4) applies, the component distributions come from the subset 

F  of ,F  where = ( )p   for some . mR  A member of this family is a parametric distribution with 

parameters  mR  and | |(0, ) .     As before, note that all the proofs are found in the longer version of 

the paper (Dasylva et al., 2024). 
 

Lemma 2. Suppose that (3.6) applies. If (B.3) also applies, in  converges in distribution to the mixture of 

distributions from ,F  with mixing distribution .F  If (B.4) also applies, in  instead converges in distribution 

to the mixture of distributions from ,F  with mixing distribution .H  

 

The next lemma extends Lemma 4 from Dasylva and Goussanou (2022). It gives sufficient conditions 

for the identification of finite mixtures over F  (or );F  a key property for proving the consistency of 

maximum likelihood estimators. The lemma requires a lexicographic order over | |(0, ) .  To do so, order 

the elements of  based on some bijection from {1, , | |}…  into ,  which is denoted by (.)  with a slight 

abuse of the notation. Next, denote a tuple ( )





    equivalently by ( ( ))

1 | |
,t

t


  

    and write    (i.e., 

  greater than   if ( (1)) ( (1))>    or if there exists 0 = 2, , | |…t  such that ( ( )) ( ( ))=  t t  for 0<t t  and 
0 0( ( )) ( ( ))> .t t    Also, let max( , ) =    if    otherwise let max( , ) =     

 

Lemma 3. For positive integers G  and ,G  let 1 , G…  and 1 , G
 …  and denote by gh  and 

gh  

the members of F  with the parameters  ,g gp   and  , ,p g g
   respectively, and suppose that the mixtures 

=1
= 

G

g gg
h h  and 

=1
= 


  

G

g gg
h h  are equal, where g  and g  are positive for each .g  Then = ,G G  

=g g   and    , = , ,p p g g g g
   for = 1, , .g G…  Furthermore, if there exists an injective function 

| |: [0,1] mR  such that = ( )g gp   and = ( ) 
g gp   for each ,g  we also have = 

g g   for each .g  

 

The next theorem extends Theorem 3 from Dasylva and Goussanou (2022), which is about the 

consistency of the maximum likelihood estimators. In order to state this extension, more notation is needed. 

For 1,G   consider the finite mixture of G  distributions from ,F  where the -thg  component has 

probability g  and parameters gp  and . g  Also, denote by  
1

= , ,
 

 
 g g g

g G
p   the associated mixture 

parameters and by (.; )q   the corresponding PMF.  

         
 

 
 

 

( )( )

( ) ( )( ) ( )

( )

( )

( )
=1

1( ) ( )

( ) ( ) | |

( )( )
\{ }: >0

; = | | = 0 1 | | > 1 1
!

, = ,
!1 !

n n p n p

n




g

g

g g

n
G

g

g g g
g

n n

g g

g

n

e
q I e I

n

e e
p n

nn



  



 




  

 

 
 




 








  



 


 
    




     


 

  N

 (B.5) 

Define  
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1

( ) = log ; ,
| | 


B

N i
i SB

M q
S

n   (B.6) 

and for an integer > 0,N  define  

 

   

   
| |: | | 1

1
( ; ) = | | log ;

| |

| | 1 log ; .


 






  



 
     

 





B

N

N N i N i
i SB

i N

M I q
S

I q
n n

n n

n n
N

 



 (B.7) 

For  
1

= , , ,  g g g
g G


 

 
   let     

1
= , , .   g g g

g G


 

 
    Also for a positive integer ,d  let d0  

denote the d -tuple with all zeros. 

As before, the mixture parameters may be estimated by maximizing the log-likelihood of the ’s,ni  i.e., 

(.)NM  or (; ).N NM   The following theorem states that the resulting estimators are consistent under suitable 

conditions, which include (B.3) or (B.4). In the latter case, it is assumed that the mapping   is injective.  
 

Theorem 2. For * 2G  and (0,1),   let *1, , …
G

 denote compact subsets of 
*(2| | 1) 1  GR  such that  

 

 
 

 



*

*

*

(2| | 1) 1

1

| | | |

*
1

*
| | | |

1

, , . .

, , ( ,1] [0,1] [ , ] 1

1,

, , = (0, , ) ,

= 1 , =1, , .

p

p p

p 0 0





 



G
G g g g

g G

g g g g

g g

g g g

G

s t

and and

if g G G

if g G G

G G



   



 

  

 

 



 



    

     

  

 

 



… …

R

  

and let 
*

=1
= .

G

GG
 ∪  For an injective mapping | |: [0,1] ,m  R  also let *1, , …

G 
 denote compact 

subsets of 
*(| | 1) 1   m GR  such that  

 

 
   

 



*

*

*

(| | 1) 1

1

| |

*
1

*
| |

1

, , . .

, , ( ,1] [ , ] 1

1,

, , = (0, , ) ,

= 1 , = 1, , ,

0 0

 

  

 

 

m G
G g g g

g G

m
g g g g

g g

g g g m

G

s t

and and

if g G G

if g G G

G G



   



 

   

 









    

     

  

 

 



… …

R

R





  

and let 
*

=1
= .

G

GG
 ∪   Suppose that all the linkage rules are simple (i.e., each rule is such that the decision 

to link two records involves no other record), C.1-C.3 (from Theorem 1) apply, and (B.3) also applies with  

   
*

0 0 0
=1

( , ) = ( , ) = , ,
G

g g g
g

F Ip p p     
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* 00 0 0 0

1
= , ,

 
   g g g G

g G
p   and *

01 ,G G   and let 1 , N


2 N  and  3 N  denote the estimators, which 

respectively maximize (.)NM  over 
0
,G (.)NM  over ,  and (. ; )N NM  over ,  where  N  is a positive 

integer such that  N  and  = log .N O N  Then 1 , N


2 N  and  3 N  converge in probability to 0 .  

Furthermore, suppose that ( )N vp  is also of the form ( ( ))N v  for : , m
N N

 V R  which satisfies (B.4) 

with  

   
*

0 0 0
=1

( , ) = ( , ) = , ,
G

g g g
g

H I        

 0 0=g gp  for 0= 1, ,   …g G G G  and   * 00 0 0 0
1

= , , .  g g g G
g G


 

      Then, 0  is also 

estimated consistently by maximizing (.)NM  over 
0
,G (.)NM  over ,  or (. ; )N NM  over .  

 

In the above theorem, the mapping (.)  must be injective. The next lemma shows that this condition is 

met when (.)  is based on a nonsaturated log-linear specification of the interactions in the matched pairs. 

 
Lemma 4. For positive integers 1, , , ,KK H H…  let 1= {0, , } {0, , }   … … … K KH H 0  and =p  

( )p 

 
    be of the form ( ) ( )= ( ) ,Ap P i S r   where ( )

{ }
= 1

 
K

r
0

 and ( )r  has the following log-

linear form with no interactions of order greater than < .d K  

 
 1 1

1

( )

=1 1 < <

= exp ,

 
 

 
  

 
  … …

…
t k kt

t

d

k k
t k k K

r u u  (B.8) 

where the term 
 1 1
 … …t k kt

k k
u  is set to zero if one of 

1
, , …

tk k  is null, according to the dummy coding convention. 

Let   denote the vector that comprises ( ) AP i S  and the parameters of 
( ) ,r 

 which are not set to zero by this 

convention. Then the mapping :  p  is injective. 

 
C. Initialization procedure 
 

This section describes the initialization procedure for fitting the multivariate neighbor model in the 

simulations. The model parameters include the mixing proportions (the ’s),g  the parameters of the false 

positives distribution (the ’s) g  and those for the true positives distribution (the common value of the 

’s).pg  With G  classes, the mixing proportion g  is set to 1/ G  for each class. The other starting values 

are chosen as follows. 

For the false positives distribution, each g  is set to a common value that is denoted by ( )ˆ ˆ= , 

 

    

where 3= {0,1} \ {(0, 0, 0)}.  For ,  ( )ˆ   is set to the estimate of   that is obtained by fitting the 

univariate neighbor model, when the records are linked according to .  For example, when = (1, 0,1),  

this means linking a pair if it is linked by the first linkage rule, and there is exact agreement on the surname 

and birth month but disagreement on the birth day. 
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Based on ˆ ,  the starting values are chosen for the coverage probability ( ) AP i S  and the log-linear 

parameters (i.e., 1(1) ,u 2(1) ,u 3(1) ,u 12(11) ,u 13(11)u  and 23(11) ).u  These values are found in three steps as follows. 

In the first step, an estimate ( )ˆ ˆ= 

 
  pp  of the vector of true positives probabilities is computed by 

maximizing the log-likelihood of the multivariate model with a single class, where ̂  is plugged in, and the 

true positives probabilities are not constrained to have a log-linear form. This step corresponds to a convex 

optimization, because the log-likelihood of the multivariate model is concave with respect to the true 

positives probabilities, when the other parameters are given. In the second step, the starting values for the 

log-linear parameters of ( )r  (in (5.2)) are found by a method of moments, based on p̂  as follows. When 

fitting the model without interactions, let ( )

: =1
ˆ ˆ= 

 
k

kq p  (for =1, 2, 3)k  and 
1 2

1 2

( )

: = = 1
ˆ ˆ= 

  
k k

k kq p  

(for 1 21 < 3)k k   and choose the starting values as  

 12 13
1(1)

2 3

ˆ ˆ1
ˆ = logit ,

ˆ ˆ2

  
   

  

q q
u

q q
  

 12 23
2(1)

1 3

ˆ ˆ1
ˆ = logit ,

ˆ ˆ2

  
   

  

q q
u

q q
  

 13 23
3(1)

1 2

ˆ ˆ1
ˆ = logit ,

ˆ ˆ2

  
   

  

q q
u

q q
  

with 12(11) 13(11) 23(11)
ˆ ˆ ˆ= = = 0.u u u  When including the interactions, choose the starting values as  

 

(1,1,0) (1,0,1) (0,1,1) (1,0,0) (0,1,0)

1(1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)

(1,1,0) (1,0,1)

2(1) (1,1,1)

ˆ ˆ ˆ ˆ ˆ
ˆ log log log log log ,

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ log log

ˆ

          
              

          

 
  

 

p p p p p
u

p p p p p

p p
u

p

(0,1,1) (1,0,0) (0,0,1)

(1,1,1) (1,1,1) (1,1,1) (1,1,1)

(1,1,0) (1,0,1) (0,1,1)

3(1) (1,1,1) (1,1,1) (1,1,1)

ˆ ˆ ˆ
log log log ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ log log log log

ˆ ˆ ˆ

        
          

        

     
        

     

p p p

p p p p

p p p
u

p p p

(0,1,0) (0,0,1)

(1,1,1) (1,1,1)

(1,1,0) (1,0,1) (0,1,1) (1,0,0)

12(11) (1,1,1) (1,1,1) (1,1,1) (1,1,1)

13(11)

ˆ ˆ
log ,

ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ log log log log ,

ˆ ˆ ˆ ˆ

ˆ log

    
    

    

        
            

        

 

p p

p p

p p p p
u

p p p p

u
(1,1,0) (1,0,1) (0,1,1) (0,1,0)

(1,1,1) (1,1,1) (1,1,1) (1,1,1)

(1,1,0) (1,0,1) (0,1,1)

23(11) (1,1,1) (1,1,1) (1,1,

ˆ ˆ ˆ ˆ
log log log ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ log log log

ˆ ˆ ˆ

        
          

        

   
      

   

p p p p

p p p p

p p p
u

p p p

(0,0,1)

1) (1,1,1)

ˆ
log .

ˆ

    
    

    

p

p

  

Finally, let 
3

( )

{0,1}
ˆ ˆ= 

 
  rr  denote the vector of probabilities that correspond to the above starting values 

of the log-linear parameters (i.e., 
( )ˆ r  is equal to the right-hand side of (5.2), where the starting values are 

plugged in) and choose the starting coverage as  
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( )

( )

ˆ
ˆ( ) = .

ˆA

p
P i S

r
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Investigating mode effects in interviewer variances using two 
representative multi-mode surveys 

Wenshan Yu, Michael R. Elliott and Trivellore E. Raghunathan1 

Abstract 

As mixed-mode designs become increasingly popular, their effects on data quality have attracted much scholarly 
attention. Most studies focused on the bias properties of mixed-mode designs; few of them have investigated 
whether mixed-mode designs have heterogeneous variance structures across modes. While many characteristics 
of mixed-mode designs, such as varied interviewer usage, systematic differences in respondents, varying levels 
of social desirability bias, among others, may lead to heterogeneous variances in mode-specific point estimates 
of population means, this study specifically investigates whether interviewer variances remain consistent across 
different modes in mixed-mode studies. To address this research question, we utilize data collected from two 
distinct study designs. In the first design, when interviewers are responsible for either face-to-face or telephone 
mode, we examine whether there are mode differences in interviewer variances for 1) sensitive political 
questions, 2) international items, 3) and item missing indicators on international items, using the Arab Barometer 
wave 6 Jordan data. In the second design, we draw on Health and Retirement Study (HRS) 2016 core survey data 
to examine the question on three topics when interviewers are responsible for both modes. The topics cover 1) 
the CESD depression scale, 2) interviewer observations, and 3) the physical activity scale. To account for the 
lack of interpenetrated designs in both data sources, we include respondent-level covariates in our models. We 
find significant differences in interviewer variances on one item (twelve items in total) in the Arab Barometer 
study; whereas for HRS, the results are three out of eighteen. Overall, we find the magnitude of the interviewer 
variances larger in FTF than TEL on sensitive items. We conduct simulations to understand the power to detect 
mode effects in the typically modest interviewer sample sizes. 

 
Key Words: Interviewer effects; Mixed-mode design; Mode effects; Multimode study. 

 
 

1. Introduction 
 

Interviewers play a central role in survey data collection. Depending on the mode and sampling design 

of data collection, they may need to list addresses to generate sampling frames, recruit respondents, ask 

survey questions, and record participants’ responses. Therefore, from a total survey error framework, 

interviewers can affect survey data quality by generating or reducing coverage error, nonresponse error, 

measurement error, and processing error (West and Blom, 2017). Most research examining interviewers’ 

effects focuses on measurement error (Schuman and Converse, 1971; Hanson and Marks, 1958; Ehrlich and 

Riesman, 1961), which can be further decomposed into a systematic part, the bias due to interviewers (when 

respondents alter answers either because of the presence of interviewers or their observable traits), and a 

random component, interviewer variance. This interviewer variance inflates the uncertainty of the estimates, 

sometimes to an even greater degree than the correlation induced by geographical clustering (Schnell and 

Kreuter, 2003). This study focuses on determining the effect of different modes of data collection – 

specifically telephone (TEL) versus face-to-face (FTF) – on interviewer variances in mixed-mode surveys. 



410 Yu et al.: Investigating mode effects in interviewer variances using two representative multi-mode surveys 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Interviewer variances were first studied in the context of face-to-face interviews (Kish, 1962). When 

telephone surveys became an alternative to FTF interviews, researchers evaluated interviewer variances in 

telephone surveys and generally found that they were less substantial than those in personal surveys (Groves 

and Magilavy, 1986; Tucker, 1983; Groves and Kahn, 1979). Specifically, the intraclass correlation int ,  a 

common measure used to assess interviewer effects and defined by the ratio of interviewer variances to the 

total variance, ranged from 0.005 to 0.102 in FTF surveys, whereas those computed in centralized TEL 

surveys ranged from 0.0018 to 0.0184 (Groves and Magilavy, 1986; Groves and Kahn, 1979). The finding 

is aligned with theoretical expectations, as interviewers in the centralized TEL setting are more closely 

monitored and supervised than field interviewers are (Schaeffer, Dykema and Maynard, 2010). Since then, 

the research domain has received little scholarly attention. However, as mixed-mode designs become 

increasingly used, the subject of study calls for more research. There is a lack of first-hand evidence as the 

prior findings are mostly based on different surveys that employ one mode (FTF or TEL). Besides, mixed-

mode surveys naturally provide an opportunity where the survey context and the questionnaires are highly 

comparable (if not the same) when comparing interviewer variances in both modes. Furthermore, depending 

on whether interviewers are responsible for both modes in mixed-mode surveys, interviewers can potentially 

carry their influence from one mode to another. These factors can lead to different results in comparing 

interviewer variances between modes. 

Investigating mode effects in interviewer variances is also useful to facilitate mixed-mode designs and 

serve as an indicator of data quality. First, quantifying mode-specific interviewer variance can help 

researchers to determine and choose the mode with low interviewer variance in a multimode design. The 

current state-of-the-art mixed-mode inference strategy focuses on the bias property of modes (Elliott, 

Zaslavsky, Goldstein, Lehrman, Hambarsoomians, Beckett and Giordano, 2009; Kolenikov and Kennedy, 

2014), but little was done to incorporate the potential heterogeneous variance structure (Suzer-Gurtekin, 

Heeringa and Valliant, 2013). Part of the reason is that little literature sheds light on the variance properties 

of mixed-mode designs (Vannieuwenhuyze, 2015), especially what goes into the variances. Second, 

identifying the questions associated with large interviewer variance mode effects can inform how 

interviewer variance is generated and thus might be reduced. For example, researchers show that attitudinal, 

sensitive, ambiguous, complex, and open-ended questions are generally more vulnerable to interviewer 

effects (Schaeffer, Dykema and Maynard, 2010), as those questions introduce more opportunities for the 

interviewer to help the respondents (West and Blom, 2017). If sensitive questions only present a large 

interviewer effect in FTF but not in TEL, that may suggest the questions bring a burden to field interviewers. 

To address that, survey organizations can provide additional training to standardize how to ask the question 

or use other approaches [such as audio computer-assisted self-interviewing [ACASI] or the item count 

technique (Holbrook and Krosnick, 2010)] to collect information for sensitive items. Third, in mixed-mode 

designs where interviewers are responsible for both modes, we can potentially find specific interviewers 

that have a large effect on responses in both modes or only in one mode, which provide the basis for real-

time intervention and interviewer training at a more granular level. 
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In this paper, we consider two representative multi-mode studies: 1) the Arab Barometer Study (ABS) 

Wave 6 Jordan experiment and 2) the Health and Retirement Study (HRS) 2016. Drawing on both data 

sources, we consider mode effects in interviewer variances for interviewers in different countries, for 

different target populations, and for a variety of outcome variables. Additionally, the use of the two studies 

offers distinct perspectives for examining our research question. The ABS interviewer design is commonly 

used in surveys where different modes are managed by separate data collection agencies, resulting in 

different interviewers across modes. On the other hand, the HRS interviewer design, where the same 

interviewers are utilized in both modes, facilitates a more precise estimation of the differences in interviewer 

variances solely due to modes, by eliminating the portion of interviewer variances that result from using 

different interviewers across modes. 

The remainder of this paper is organized as follows. In Section 2, we describe the study design and 

analytical strategy, and present the results using our first data source – ABS. Section 3 introduces the second 

data source – HRS, along with the corresponding analytical approach and the results pertaining to 

interviewer variance associated with the HRS data. In Section 4, we conduct a simulation study to illustrate 

the power to detect mode effects in interviewer variances using both the ABS and the HRS setup. Finally, 

in Section 5, we discuss the implications of our study. 

 
2. The Arab Barometer Study 
 

2.1 Study description 
 

The ABS is the largest repository of public opinion data in the Middle East and North Africa (MENA) 

region. In wave 6, it embedded a mode experiment in Jordan between March and April 2021, where 

participants were randomly assigned to either a personal interview or a TEL recontact interview. Center for 

Strategic Studies in Jordan conducted the field work using the 2015 Population and Housing Census as the 

sampling frame. They implemented an area probability sample stratified on governorate and urban-rural 

cleavages. Separate interviewers were used in the FTF and TEL interviews. The TEL-assigned households 

were initially recruited via FTF for a short 5-minute survey, and the majority of the survey items were asked 

approximately a week later in a telephone follow-up. In the FTF mode, 31 interviewers collected data from 

1,193 respondents, while 13 interviewers interviewed 1,212 participants via phone. 

We focus on three types of outcome variables ( ):Y  1) sensitive political questions (6 items), 2) less 

sensitive international questions (3 items), and 3) whether reported do not know or refused to answer 

international relationship questions (3 items). Except for the item missing indicators, the other outcome 

variables were initially measured by four ordinal categories; we collapsed them into binary outcomes by 

setting the cutoff point in the middle. The original and collapsed categories are available in Appendix A of 

(Yu, Elliott and Raghunathan, 2024). 

Outcome variables ( )Y  can be subject to two types of mode effects: 1) mode effects that lead to a shift 

in the means of outcome variables (referred to as mode effects in means) and 2) mode effects in interviewer 
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variances. We consider, in total, q  interviewers collect information in only one of two modes (FTF and 

TEL) from n  sample units from a finite population. Interviewers also collect respondent-level covariates 

( )X  that are predictive of the outcome variables ( ).Y  The covariates ( )X  are assumed to be independent 

of any mode effects. We consider covariates ( )X  including respondents’ age, gender, marital status, house-

hold size, and regions in this paper. 

 

2.2 Analytical strategy 
 

First, to illustrate the descriptive statistics of interviewer variation in the collected responses, we compute 

the between-interviewer standard deviation (SD) and the average within-interviewer SD. Specifically, we 

calculate the average proportions for each variable and interviewer ( )( ).m jy  In the ABS setup, where inter-

viewers are nested within each mode, these statistics are inherently mode-specific; therefore, we enclose m  

in parentheses to emphasize this point. We then calculate the SD of these average proportions across 

interviewers, termed the between-interviewer SD. The within-interviewer SD ( )m
jv  is derived from the 

responses collected by each interviewer. The average within-interviewer SD is computed as the mean of the 

within-interviewer SDs across all interviewers for each mode. We show the formula to compute the relevant 

statistics in (2.1), where i  indexes respondents, j  indexes interviewers, m  indexes modes, ( )m jn  reflects 

the number of interviews conducted by interviewer j  using mode ,m  mn  represents the number of 

respondents in mode ,m  m
jn  indicates the number of interviewers using mode ,m  and ( )i m jy  indicates the 

responses provided by respondent i  interviewed by interviewer j  using mode .m  For survey data collection 

agencies, a small SD between interviewers and a large average within-interviewer SD are desirable, as this 

may indicate an interviewer assignment that is close to random and minimal effects from interviewers on 

the collected responses. We report the statistics for both the covariates and the outcomes of interest. The 

statistics for the covariates can suggest interviewer selection effects, thereby highlighting the importance of 

considering the covariates in the final analytical model. The statistics for the outcome variables may provide 

initial evidence of the presence of interviewer effects and justify further investigation. 
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To test whether interviewer variances are equal across modes, since all the outcome variables are binary, 

we fit the following probit model to each of the variables, where m  indexes modes ( f  for FTF and t  for 

TEL), M  and , = 1, , 1j j qJ …  are dummy variables (length of )n  to indicate modes ( = 1M  for the FTF mode 

and = 0M  for the TEL mode) and interviewers: 
 

*
( )ij mY 0 1 ( ) ( )= ,i j m ij mM b   ε   

( )ij mY 1  if *
( ) > 0ij mY  and ( ) = 0ij mY  if *

( ) 0,ij mY    

( )j mb 2(0, ),mN ∼  
(2.2)

( )ij mε (0,1),N∼  

,f t  ∼  half (3,1)T  (for Bayesian modeling),  

0 1, ,  6(0,10 )N∼  (for Bayesian modeling).  
 

In model (2.2), the interviewer random effects are represented as ( )j mb  as interviewers are nested within 

the modes. Our research question, “Are interviewer variances equal between modes in a randomized mixed-

mode design?” is addressed by evaluating if = log( ) log( )f t    is equal to zero for each variable in 

model (2.2). To determine this, we examine if the 95% confidence or HPD credible intervals of   include 

zero. If the intervals do not include zero for some variables, it suggests that the interviewer variances are 

not equal between modes for those variables. 

By fitting (2.2), we can also obtain estimates of mode effects 1( )  for each variable by computing and 

testing if the quantity differs from 0. Note that the estimates may include some mode selection effects; 

despite the random mode assignment, differential nonresponse can happen across the modes (West, Kreuter 

and Jaenichen, 2013). 

Suppose evidence suggests that 0,   we then consider whether the mode-specific interviewer variance 

is spurious due to the lack of interpenetrated designs by adding respondent-level covariates ( ,six  where s  

denotes covariate )s  to model (2.2): 
 

*
( )ij mY 0 1 ( ) ( ) ,

S

i j m s si ij m
s

M b x       ε   

( )ij mY 1  if *
( ) > 0ij mY  and ( ) = 0ij mY  if *

( ) 0,ij mY    

( )j mb 2(0, ),mN ∼  
(2.3)

( )ij mε (0,1),N∼  

,f t  ∼  half (3,1)T  (for Bayesian modeling),  

0 1, ,  6(0,10 )N∼  (for Bayesian modeling).  
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We implement the models using both likelihood (Proc Nlmixed) and Bayesian approaches (Proc 

MCMC) in the SAS programming language. In the likelihood approach, we take log transformation on 2
f  

and 2
t  to stabilize the variance of the parameters and improve the coverage property. We compute the 

variance of the estimated   using the delta method, given by 2 21 1
4 4var( ) = var (log( )) var (log( ))f t    

(see the derivations in the Appendix A), then use a normal distribution to estimate the 95% confidence 

interval. In the Bayesian approach, we use one chain with 200,000-300,000 draws, depending on the 

autocorrelation and effective sample size, and select every 100th value as the thinning rate. For the ease of 

illustration, we only report the results of the model with covariates added and estimated using Bayesian 

modeling model (2.3) in the later section. 

 
2.3 Results 
 

2.3.1 Descriptive statistics 
 

We assume interviewers are interchangeable in this paper. To partly evaluate this assumption, we present 

the interviewer workloads in the FTF and TEL modes in the ABS in Figure 2.1. In Figure 2.1, we note that 

in the FTF mode, each interviewer conducts a similar number of interviews. In contrast, both the mean and 

the variation in the number of interviews per interviewer are larger in the TEL mode. 

 
Figure 2.1 Interviewer workloads per mode in the Arab Barometer Study. 
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We report mode-specific sample means, between-interviewer SDs, and average within-interviewer SDs 

in Table 2.1. From Table 2.1. First, we observe that for sensitive political questions, the average proportions 

reported via TEL are generally higher than those reported in FTF interviews, suggesting that TEL may be 

associated with more positive reporting. Second, between-interviewer SDs in FTF are generally larger than 

those in TEL for most outcomes, while the average within-interviewer SDs are larger in TEL than in FTF 

for sensitive political questions and missing indicators. This provides some initial evidence that interviewers 

seem to have a larger effect in FTF than in TEL. We provide the distribution of the outcome variables per 

interviewer in Appendix C of (Yu, Elliott and Raghunathan, 2024). 

 
Table 2.1 

Distribution of outcome variables in the Arab Barometer Study across interviewers by modes. 
 

Questions Mean 
(FTF) 

Mean 
(TEL) 

Between 
interviewer 

SD (FTF) 

Between 
interviewer 

SD (TEL) 

Average within 
interviewer 

SD (FTF) 

Average within 
interviewer 

SD (TEL) 
Sensitive political questions 

1. Freedom of the media   0.403  0.588  0.191  0.117  0.455  0.480 

2. trust in government   0.356  0.533  0.165  0.122  0.455  0.487 

3. trust in courts   0.594  0.770  0.139  0.123  0.477  0.398 

4. satisfied with healthcare   0.491  0.592  0.155  0.071  0.482  0.489 

5. performance on inflation   0.140  0.243  0.146  0.142  0.291  0.406 

6. performance during COVID-19   0.402  0.576  0.171  0.161  0.464  0.470 

International Questions 

7. favorable of the United States  0.394  0.415  0.187  0.189  0.467  0.459 

8. favorable of Germany   0.488  0.560  0.224  0.186  0.464  0.464 

9. favorable of China   0.468  0.507  0.207  0.203  0.470  0.463 

Whether missing on international questions (constructed) 

10. missing on favorable of the United States  0.253  0.297  0.235  0.158  0.341  0.425 

11. missing on favorable of Germany   0.320  0.381  0.247  0.199  0.384  0.442 

12. missing on favorable of China   0.283  0.329  0.252  0.180  0.359  0.431 

Note: FTF = face-to-face; TEL = telephone; SD = standard deviation. 

 
We show unweighted sample characteristics in the FTF and the TEL modes in Table 2.2. Under the 

randomized mixed-mode design, the Jordan sample is roughly balanced on key demographic and 

socioeconomic variables (age, gender, education, marital status, household size, and region) across modes. 

However, there are slightly more males (0.55 vs 0.50) respondents in the TEL mode relative to the FTF 

mode, possibly due to differential nonresponse. We note that for these covariates, the between-interviewer 

SD in FTF is usually much larger than that in TEL, suggesting potentially larger selection effects in FTF, 

since we assume the covariates are not susceptible to measurement error. 
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Table 2.2 

Distribution of sample characteristics of the Arab Barometer Study across interviewers by modes. 
 

Respondent Variables Mean 
(FTF) 

Mean 
(TEL) 

Between 
interviewer 

SD (FTF) 

Between 
interviewer 

SD (TEL) 

Average within 
interviewer 

SD (FTF) 

Average within 
interviewer 

SD (TEL) 
Age 18-24  0.166 0.164 0.085 0.039 0.361 0.369 
Age 25-34  0.226 0.203 0.072 0.038 0.415 0.402 
Age 35-44  0.227 0.215 0.088 0.052 0.412 0.408 
Age 45-54  0.199 0.219 0.069 0.031 0.394 0.414 
Age 55+  0.183 0.198 0.071 0.032 0.381 0.399 
Male  0.497 0.549 0.291 0.041 0.369 0.499 
Less than secondary education  0.345 0.337 0.125 0.106 0.463 0.463 
Secondary education  0.365 0.357 0.098 0.082 0.477 0.474 
Higher than secondary education  0.290 0.307 0.101 0.051 0.445 0.461 
Unmarried  0.238 0.264 0.106 0.063 0.412 0.438 
Married  0.693 0.684 0.082 0.062 0.459 0.463 
Divorced, widows, separated  0.069 0.053 0.044 0.024 0.230 0.219 
Household size: Less than 3  0.208 0.222 0.083 0.040 0.399 0.416 
Household size: 4-5  0.345 0.349 0.081 0.061 0.475 0.475 
Household size: 6-7  0.281 0.288 0.079 0.072 0.447 0.449 
Household size: 8+  0.165 0.141 0.089 0.056 0.353 0.330 
Region: Central  0.523 0.509 0.154 0.255 0.482 0.429 
Region: North  0.261 0.282 0.101 0.188 0.424 0.388 
Region: South  0.216 0.209 0.175 0.119 0.333 0.367 

Note: FTF = face-to-face; TEL = telephone; SD = standard deviation. 

 
2.3.2 Mode effects in means and interviewer variances 
 

This section reports the modeling results that incorporate respondent information model (2.3) using 

Bayesian estimation in Table 2.3. With respect to the mode effects in means, we observe negative estimates 

for all sensitive items. For example, the probability of an unmarried male participant aged 18-24, with higher 

than secondary education, living in a household with fewer than three individuals, and residing in the North 

region of Jordan, reporting that media freedom is guaranteed to a great or medium extent, decreases by 

17.9% when interviewed via FTF compared to TEL interviews. The 17.9% is calculated using 0 1(     

1) ,
S

s sis
x   where   is the pdf of a standard normal distribution and S is the number of covariates ( ).x  

The estimates of s  are not provided in the paper but can be provided upon request. The negative mode 

effects in means suggest that respondents expressed lower opinions of the government when answering FTF 

interviews, which could be more honest responses given Jordan’s authoritarian regime. Table 2.3 also 

indicates that missing rates for international questions are lower in FTF interviews compared to TEL 

interviews (though this is not statistically significant at the 0.05 level). We did not incorporate sample 

weights in the analysis as our focus of inference is repeated sampling under the same survey design. 

Next, we turn our attention to the interviewer variances. Firstly, the magnitude of interviewer variances 

is generally large in the ABS. For sensitive political questions, the interviewer variances range from 0.03 to 

0.393 (Table 2.3). Previous literature examining interviewer effects usually reported interviewer intraclass 

correlation int( )  to reflect the proportion of variance due to interviewers. To compute mode-specific , int ,m  

we can use the formula , int

, int

var

, int 1 var= ,m

mm   since the residual variance in the probit model is 1. Consequently, 

the previously mentioned results correspond to int  ranging from 0.029 to 0.282. As a reference, based on 

the literature, a value of int  below 0.01 is considered small, while a value higher than 0.12 is regarded as 

large (West and Olson, 2010). In Table 2.3, we observe that , intf  and , intt  can vary substantially for the 
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same outcome. For example, for satisfaction with healthcare, , intf  is 0.125, while , intt  is 0.029. It is 

important to consider these differences when using the , intm  values to calculate the effective sample sizes 

associated with a specific data collection mode. 

For one sensitive item, performance in the healthcare system, we observe marginally significant 

difference in interviewer variances in Table 2.3 using Bayesian estimation. The results are significant when 

using likelihood estimation, as shown in Appendix D of (Yu, Elliott and Raghunathan, 2024). In this item, 

the estimates of interviewer variances are considerably larger in the FTF mode. For 5 out of 6 sensitive 

items, FTF interviewer variances are somewhat larger than TEL interviewer variances. The differences are 

not statistically significant, possibly due to the limited power determined by the small number of inter-

viewers in this study. The larger interviewer variances in FTF are consistent with theoretical expectations, 

as interviewers may exhibit greater heterogeneity in administering sensitive questions and establishing 

rapport with respondents during in-person interviews. 

 
Table 2.3 

Interviewer variances per mode for selected items in the Arab Barometer Study adjusting for covariates using 

Bayesian estimation. 
  

Questions  
2 f

2 t  , int f , int t  1

Sensitive political questions 

1. Freedom of the media  0.252
[0.122, 0.428]

0.135 
[0.036, 0.284] 

0.201
[0.109, 0.3]

0.119
[0.035, 0.221]

0.355
[-0.223, 0.898]

-0.526
[-0.795, -0.222]

2. trust in government  0.188
[0.083, 0.322]

0.127 
[0.029, 0.275] 

0.158
[0.077, 0.244]

0.113
[0.028, 0.216]

0.239
[-0.382, 0.838]

-0.504
[-0.768, -0.238]

3. trust in courts  0.113
[0.038, 0.201]

0.214 
[0.05, 0.445] 

0.102
[0.037, 0.167]

0.176
[0.048, 0.308]

-0.29
[-0.94, 0.318]

-0.555
[-0.881, -0.273]

4. satisfied with healthcare  0.143
[0.051, 0.251]

0.03 
[0, 0.075] 

0.125
[0.049, 0.201]

0.029
[0, 0.07]

0.906
[-0.054, 1.758]

-0.278
[-0.475, -0.085]

5. performance on inflation  0.393
[0.153, 0.672]

0.204 
[0.051, 0.435] 

0.282
[0.133, 0.402]

0.169
[0.049, 0.303]

0.361
[-0.275, 0.927]

-0.523
[-0.861, -0.153]

6. performance during COVID-19  0.202
[0.084, 0.34]

0.224 
[0.07, 0.443] 

0.168
[0.077, 0.254]

0.183
[0.065, 0.307]

-0.026
[-0.602, 0.508]

-0.51
[-0.841, -0.205]

International Questions 

7. favorable of the United States  0.198
[0.074, 0.34]

0.362 
[0.104, 0.719] 

0.165
[0.069, 0.254]

0.266
[0.094, 0.418]

-0.278
[-0.841, 0.282]

-0.057
[-0.45, 0.318]

8. favorable of Germany  0.292
[0.12, 0.514]

0.33 
[0.092, 0.663] 

0.226
[0.107, 0.339]

0.248
[0.084, 0.399]

-0.037
[-0.603, 0.548]

-0.147
[-0.551, 0.236]

9. favorable of China  0.205
[0.083, 0.361]

0.378 
[0.116, 0.787] 

0.17
[0.077, 0.265]

0.274
[0.104, 0.44]

-0.282
[-0.869, 0.245]

-0.15
[-0.549, 0.19]

Whether missing on international questions (constructed) 

10. missing on favorable of the United 
States 

0.995
[0.48, 1.71]

0.343 
[0.104, 0.668] 

0.499
[0.324, 0.631]

0.255
[0.094, 0.4]

0.557
[0.014, 1.121]

-0.298
[-0.805, 0.172]

11. missing on favorable of Germany  0.844
[0.404, 1.324]

0.464 
[0.16, 0.857] 

0.458
[0.288, 0.57]

0.317
[0.138, 0.461]

0.324
[-0.169, 0.839]

-0.287 (0.24)
[-0.765, 0.149]

12. missing on favorable of China  0.936
[0.434, 1.552]

0.452 
[0.118, 0.933] 

0.483
[0.303, 0.608]

0.311
[0.106, 0.483]

0.398
[-0.134, 0.949]

-0.244
[-0.73, 0.229]

Notes: Significant results are marked in bold. 1  refers to the mode effect estimates in means. 1  refers to the mode effect estimates in interviewer 
variances. 2

f  is the FTF interviewer variances. 2
t  is the TEL interviewer variance. , intf  and , intt  are interviewer intraclass correlation 

in FTF and TEL, respectively. 
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Counterintuitively, for substantive responses to nonsensitive international attitude questions (items 7-9), 

the interviewer variance estimates are generally larger in TEL compared to FTF (not significantly). The 

interviewer variances of whether reporting don’t know or refusing to answer the nonsensitive international 

questions are larger in FTF than in TEL (significant on the first item). This finding may be because 

interviewers assigned to FTF mode tried to persuade respondents to give substantive answers, and whether 

the persuasion happens or is successful can differ by interviewers. 

 
3. Health and retirement study 2016 
 

3.1 Study description 
 

The HRS is a longitudinal panel study that surveys people over age 50 (and their spouses) in the United 

States. It is conducted biennially, started in 1992, and has studied more than 43,000 people (Fisher and 

Ryan, 2018). The HRS is sponsored by the National Institute on Aging (grant number NIA U01AG009740) 

and is conducted by the University of Michigan. The HRS sample was drawn using a multistage, national 

area-clustered probability sample frame (Heeringa and Connor, 1995). Since 2006, The HRS has initiated 

the rotation of enhanced FTF and TEL across waves at the household level, except when the household 

includes participants aged 80 or older, who alternate between regular and enhanced FTF, or newly recruited 

participants, who are assigned to enhanced FTF in their first wave. In this study, we are interested in 

analyzing the HRS 2016 data, when the Late Baby Boomers (LBB) cohort was added to replenish the HRS 

sample. Although not every interviewer collects data in both modes, under the HRS design, interviewers 

are responsible for data collection in both FTF and TEL modes. The HRS 2016 was fielded from April 2016 

to April 2018, with a sample size of 20,912 [response rate: 82.8%, (HRS, 2023)]. In our analytical sample, 

we excluded respondents who were missing data on mode indicators, interviewer IDs, and covariates, 

resulting in a sample size of 20,868. 

We consider four types of outcome variables in the HRS study, including 1) nine items of the Center for 

Epidemiologic Studies Depression Scale (CESD), 2) six items of interviewer observations, and 3) a three-

item physical activity scale. The question wordings, the original response categories and categories used in 

the study can be found in Appendix E of (Yu, Elliott and Raghunathan, 2024). We consider eight 

respondent-level covariates ( ),X  including age, sex, race/ethnicity, interview language, education, whether 

respondents are coupled and working. All participants are included in our sample, unless they are missing 

data in either the outcome or predictor variables. Missing rates for predictor variables are minor, and those 

for outcome variables are less than 0.05. 

 
3.2 Analytical strategy 
 

Similar to the descriptive statistics reported in the ABS, we report the between-interviewer SD and the 

average within-interviewer SD to gain an intuitive understanding of the interviewer effects in the HRS. 
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Next, we fit multilevel models to each of the outcome variables using the same notation as in model (2.2). 

Unlike the ABS, interviewers are not nested in model hence a single interviewer can interview in both 

modes, and thus interviewer effects can be correlated across modes. Therefore we posit a bivariate normal 

model for the interviewer effects: 
 

*
ijmY 0 1= ,

S

i jm s si ijm
s

M b x      ε  
 

ijmY 1  if * > 0ijmY  and = 0ijmY  if * 0,ijmY    

jf

jt

b

b

 
 
 

2

2

0
, ,

0

f f t

f t t

N
  

  

   
          

∼  

ijmε (0,1),N∼  (3.1)

,f t  ∼  half (3,1)T  (for Bayesian modeling),  

 ( 1,1)U ∼  (for Bayesian modeling),  

0 1, ,  6(0,10 )N∼  (for Bayesian modeling).  

 
Similarly, we use = log( ) log( )f t    as a metric to answer our research question. To test if   is 

equal to zero for each variable, we assess if the 95% credible intervals or confidence intervals include zero. 

Additionally, to control for interviewer selection effects, we include respondent-level covariates as fixed 

effects in the model. 

We apply the Fisher Z transformation   11
2 1= lnz 



  when constructing the 95% confidence interval for 

  in the likelihood approach. We calculate the variance of   using the delta method, given by var( ) =  
2 2 2 21 1 1

4 4 2var (log( )) var (log( )) cov(log( ), log( )),f t f t      which is slightly different from the ABS (see 

the derivations in Appendix A). 

 
3.3 Results 
 

3.3.1 Descriptive statistics 
 

First, we illustrate the interviewer load in Figure 3.1. In HRS 2016, 382 interviewers were employed for 

data collection. The number of interviews conducted in FTF and TEL is very different across interviewers. 

Eighty-two (21.5%) interviewers exclusively conducted telephone interviews, while thirty-seven (9.7%) 

solely conducted in-person interviews. The remaining 263 (68.9%) interviewers conducted both types of 

interviews. All interviews are included in the analysis, although the estimation of the covariances between 

the FTF and TEL effects within interviewer is limited to the subsample of interviewers who conducted both 

types of interviews.  
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Figure 3.1 Interviewer workloads per mode in the Health and Retirement Study. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Second, we present unweighted sample characteristics for both FTF and TEL modes in Table 3.1. 

Compared to TEL respondents, a higher proportion of FTF respondents were under 60 or over 80 years old, 

belonged to minority groups, were not in a relationship, had not completed high school, and were employed. 

This unbalanced sample distribution underscores the importance of including demographic and 

socioeconomic status variables in the analytical model when analyzing interviewer effects. Comparing the 

statistics from the HRS to those from the ABS, we note that in the HRS, the between-interviewer SDs are 

generally higher and the average within-interviewer SDs are generally lower. This suggests that interviewer 

selection effects are potentially a larger threat when analyzing interviewer variance in the HRS. This is 

consistent with our expectations, as randomized mode assignment is applied in the ABS but not in the HRS. 

 
Table 3.1 

Distribution of sample characteristics in the Health and Retirement Study 2016 across interviewers by modes. 
 

Respondent characteristics Mean
(FTF)

Mean
(TEL)

Between
interviewer

SD (FTF)

Between
interviewer

SD (TEL)

Average within
interviewer

SD (FTF)

Average within
interviewer

SD (TEL)
Age: less than 60  0.449 0.305 0.359 0.315 0.294 0.363
Age: 60-69  0.188 0.343 0.156 0.239 0.260 0.398
Age: 70-79  0.181 0.287 0.150 0.255 0.240 0.342
Age: 80+  0.182 0.066 0.185 0.151 0.232 0.163
Currently Working  0.368 0.329 0.280 0.265 0.426 0.427
Male  0.414 0.415 0.177 0.198 0.503 0.503
Spanish-speaking Hispanic  0.091 0.085 0.194 0.212 0.087 0.072
English-speaking Hispanic  0.077 0.074 0.158 0.146 0.198 0.189
Black  0.219 0.200 0.274 0.246 0.315 0.344
White  0.613 0.641 0.315 0.300 0.376 0.397
Coupled  0.601 0.632 0.260 0.275 0.431 0.428
Education:less than 12 years  0.203 0.188 0.190 0.225 0.348 0.324
Education:12 years  0.303 0.290 0.188 0.218 0.420 0.416
Education:13-15 years  0.259 0.268 0.196 0.200 0.406 0.421
Education:16 years +  0.249 0.262 0.214 0.220 0.391 0.374

Note: FTF = face-to-face; TEL = telephone; SD = standard deviation. 
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Next, we present the descriptive statistics of the HRS, including mode-specific sample means, between-

interviewer SDs, and average within-interviewer SDs in Table 3.2. First, for the CESD scale, the prevalence 

rates are generally higher in FTF interviews than in TEL interviews, suggesting that FTF may be associated 

with more honest reporting. Second, the magnitude of the between-interviewer SDs appears larger in the 

interviewer observation and physical activity items compared to the CESD items, indicating potentially 

different levels of interviewer effects in different outcomes. 

 

Table 3.2 

Distribution of outcome variables in the Health and Retirement Study 2016 across interviewers by modes. 
 

Questions Mean

(FTF)

Mean

(TEL)

Between 

interviewer 
SD (FTF) 

Between

interviewer
SD (TEL)

Average within

interviewer
SD (FTF)

Average within

interviewer
SD (TEL)

CESD questions 

1. you felt depressed.  0.156 0.117 0.177 0.148 0.306 0.268
2. you felt that everything you did was an effort.  0.336 0.252 0.230 0.215 0.431 0.389

3. your sleep was restless.  0.352 0.301 0.222 0.219 0.442 0.428
4. you were happy (REVERSED CODE).  0.174 0.142 0.190 0.173 0.325 0.295
5. you felt lonely.  0.207 0.152 0.191 0.158 0.365 0.321

6. you enjoyed life (REVERSED CODE).  0.113 0.077 0.151 0.115 0.261 0.214
7. you felt sad.  0.246 0.192 0.218 0.184 0.381 0.353
8. you could not get going.  0.211 0.173 0.178 0.176 0.375 0.332

9. Depressed ( 4  symptoms)  0.182 0.117 0.185 0.138 0.338 0.275

Interviewer observations 

10. attentive to the questions  0.799 0.797 0.210 0.230 0.334 0.320
11. understanding of the questions  0.463 0.474 0.272 0.304 0.437 0.405
12. cooperation  0.716 0.660 0.259 0.284 0.377 0.396

13. difficulty remembering things  0.539 0.588 0.288 0.316 0.422 0.383
14. difficulty hearing you  0.803 0.741 0.202 0.254 0.325 0.359
15. quality of this interview  0.591 0.623 0.323 0.326 0.378 0.366

Physical activity 

16. vigorous sports or activities  0.352 0.347 0.218 0.221 0.443 0.454

17. moderately energetic sports or activities  0.673 0.651 0.216 0.234 0.426 0.441
18. mildly energetic sports or activities  0.806 0.771 0.168 0.207 0.362 0.379

Note: FTF = face-to-face; TEL = telephone; SD = standard deviation; CESD = Center for Epidemiological Studies Depression. 

 
3.3.2 Mode effects in means and interviewer variances 
 

Last, we discuss the modeling results presented in Table 3.3 using Bayesian estimation. Positive mode 

effects in means are found in four of the nine depression items. These items are felt depressed, everything 

was an effort, sleep was restless, and an overall indicator for depression. For example, for a female under 

60 years old, who is an English-speaking Hispanic, not in a relationship, not currently employed, and with 

less than a high school education, participating in a FTF interview increases the probability of being 

classified as depressive by 8.01%, compared to a TEL interview. Similarly, we compute 8.01% using 

0 1 1( ) ,
S

s sis
x       where   is the pdf of a standard normal distribution and S is the number of 

covariates ( ).x  Since depressive symptoms constitute sensitive information, and admitting to them might 

cause embarrassment for respondents, we believe that a higher level of reported depressive symptoms is 

closer to the truth. For the interviewer observation items, positive mode effects in means are present in three 

out of six items. In the FTF mode, interviewers rated respondents as more cooperative, with better hearing 

and overall quality of the interview, compared to the TEL mode (Table 3.3). Lastly, in the physical activity 
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items, respondents tend to report engaging in mildly energetic sports more often when responding via FTF, 

compared to TEL. 

We observe smaller interviewer variances in the substantive responses in the HRS (Table 3.3) compared 

to the ABS. For depression items, the interviewer variances in FTF and TEL range from 0.002 to 0.032, 

corresponding to ICCs between 0.002 and 0.032. In the physical activity items, the interviewer variances 

range from 0.007 (ICC: 0.007) to 0.031 (ICC: 0.030). When comparing the magnitude of interviewer 

variances across variables, we notice larger interviewer variances for the interviewer observation items 

(ranging from 0.271 [ICC: 0.213] to 0.881 [ICC: 0.468]). 

In terms of mode effects in interviewer variances, we find significant differences for three out of the 

eighteen questions examined in the HRS study, specifically one in the depression scale and two in the 

interviewer observation questions (Table 3.3). When asking participants if they felt sad, the results reveal 

that FTF is associated with larger interviewer variances. Additionally, interviewer variance in the FTF mode 

is marginally larger than in the TEL mode for the item everything was an effort. Generally, for the 

depression items, the interviewer variances in the FTF mode are larger than those in the TEL mode for seven 

out of nine items, though not always significantly. This outcome aligns with the Arab Barometer findings 

and may be due to interviewers approaching sensitive items differently in FTF compared to the TEL mode. 

In assessing whether respondents have any difficulty remembering and hearing things, the results suggest 

that TEL interviewer variances are larger than FTF interviewer variances. This finding may be attributed to 

interviewers having fewer cues to evaluate interview quality in TEL, as opposed to FTF, where interviewers 

can rely on respondents’ facial expressions or body language to infer participants’ ability to hear questions. 

This might lead to responses being primarily determined by interviewers’ subjective judgments and thus 

causing larger variances. Regarding the physical activity items, there is no evidence to reject the null 

hypothesis that interviewer variances are equal between modes. 

It is not surprising to find higher correlations ( > 0.8) between the random interviewer effects across 

modes for interviewer observation variables, which interviewers directly answer. In contrast, for the other 

two scales (CESD and physical activity scales), the effects of interviewers on responses are mediated 

through respondents, resulting in a smaller and less stable correlation between the FTF and TEL modes. 

Although we focus on reporting the Bayesian results, we provide the inferences from both the likelihood 

and the Bayesian procedures in Appendix B. We note that, in general, the estimates from the two procedures 

are similar, except when estimating the correlation ( ).  The correlations are associated with wide intervals 

in the CESD scales and the physical activity items. Moreover, the point estimates of the correlation are 

sometimes quite different between the two procedures, especially for the two types of items mentioned 

above. On two items, happy and felt sad, the correlation cannot be estimated using the likelihood approach. 

This might be due to the small interviewer variances in the scale, making the estimation of the covariance 

numerically challenging and thus unstable. Additionally, this might be attributed to the unbalanced 

interviewer burden between modes. Approximately 30% of interviewers only conduct interviews in one 

mode, and 51% of interviewers carry out fewer than five interviews in either FTF or TEL. This imbalance 

may result in insufficient information for estimating .  
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Table 3.3 

Interviewer variances per mode for selected items in Health and Retirement Study adjusting for covariates 

using Bayesian estimation. 
 

Questions  
2 f

2 t , int f  , int t  1 

CESD questions 

felt depressed  0.011
[0, 0.022]

0.013
[0, 0.03]

0.011 
[0.000, 0.022] 

0.013
[0.000, 0.029]

0.044
[-1.148, 1.533]

0.056
[0.005, 0.114]

0.07
[-0.551, 0.874]

everything was an effort 0.025
[0.013, 0.037]

0.007
[0.001, 0.016]

0.024 
[0.013, 0.036] 

0.007
[0.001, 0.016]

0.746
[-0.002, 1.496]

0.118
[0.071, 0.175]

-0.128
[-0.56, 0.254]

restless sleep  0.002
[0, 0.007]

0.005
[0, 0.012]

0.002 
[0.000, 0.007] 

0.005
[0.000, 0.012]

-0.486
[-1.89, 0.925]

0.053
[0.011, 0.095]

0.337
[-0.162, 0.849]

happy  0.011
[0.003, 0.021]

0.011
[0, 0.022]

0.011 
[0.003, 0.021] 

0.011
[0.000, 0.022]

0.128
[-0.889, 1.333]]

0.032
[-0.024, 0.083]

-0.518
[-0.989, -0.006]

lonely  0.006
[0, 0.014]

0.006
[0, 0.016]

0.006 
[0.000, 0.014] 

0.006
[0.000, 0.016]

0.178
[-1.455, 1.846]]

0.048
[-0.005, 0.099]

0.055
[-0.108, 0.218]

enjoyed life  0.01
[0.001, 0.021]

0.007
[0, 0.025]

0.010 
[0.001, 0.021] 

0.007
[0.000, 0.024]

0.551
[-1.096, 2.148]]

0.061
[-0.005, 0.134]

0.56
[0.223, 0.921]

felt sad  0.032
[0.018, 0.048]

0.003
[0, 0.009]

0.031 
[0.018, 0.046] 

0.003
[0.000, 0.009]

1.694
[0.463, 3.775]

0.046
[-0.01, 0.097]

0.296
[0.037, 0.577]

could not get going  0.02
[0.007, 0.029]

0.02
[0.006, 0.035]

0.020 
[0.007, 0.028] 

0.020
[0.006, 0.034]

-0.051
[-0.732, 0.515]

0.051
[-0.01, 0.109]

0.274
[-0.346, 0.797]

overall indicator  0.016
[0.002, 0.024]

0.012
[0.001, 0.027]

0.016 
[0.002, 0.023] 

0.012
[0.001, 0.026]

0.093
[-0.901, 1.075]

0.15
[0.102, 0.207]

0.244
[-0.18, 0.573]

Interviewer Observations 

attentive  0.298
[0.233, 0.356]

0.351
[0.262, 0.431]

0.230 
[0.189, 0.263] 

0.260
[0.208, 0.301]

-0.081
[-0.197, 0.038]

0.018
[-0.049, 0.088]

0.878
[0.803, 0.955]

understanding  0.413
[0.341, 0.493]

0.465
[0.366, 0.56]

0.292 
[0.254, 0.330] 

0.317
[0.268, 0.359]

-0.058
[-0.149, 0.043]

0
[-0.064, 0.061]

0.91
[0.861, 0.958]

cooperation  0.459
[0.378, 0.556]

0.41
[0.321, 0.51]

0.315 
[0.274, 0.357] 

0.291
[0.243, 0.338]

0.057
[-0.039, 0.138]

0.178
[0.108, 0.236]

0.931
[0.881, 0.971]

remembering  0.483
[0.392, 0.574]

0.605
[0.489, 0.721]

0.326 
[0.282, 0.365] 

0.377
[0.328, 0.419]

-0.112
[-0.205, -0.028]]

-0.062
[-0.124, 0.002]

0.931
[0.885, 0.972]

hearing  0.271
[0.212, 0.335]

0.375
[0.274, 0.462]

0.213 
[0.175, 0.251] 

0.273
[0.215, 0.316]

-0.161
[-0.284, -0.037]

0.151
[0.084, 0.229]

0.87
[0.795, 0.947]]

Overall quality  0.881
[0.749, 1.04]

0.788
[0.641, 0.949]

0.468 
[0.428, 0.510] 

0.441
[0.391, 0.487]

0.057
[-0.032, 0.14]

0.086
[0.014, 0.158]

0.94
[0.913, 0.983]

Physical activity 

vigorous sports  0.017
[0.007, 0.026]

0.007
[0, 0.015]

0.017 
[0.007, 0.025] 

0.007
[0.000, 0.015]

0.523
[-0.209, 1.45]

-0.037
[-0.081, 0.014]

0.36
[-0.446, 0.827]

moderate sport  0.015
[0.006, 0.024]

0.019
[0.004, 0.033]

0.015 
[0.006, 0.023] 

0.019
[0.004, 0.032]

-0.086
[-0.655, 0.464]

0.031
[-0.019, 0.078]

0.233
[-0.351, 0.698]

mild sport  0.02
[0.002, 0.03]

0.031
[0.014, 0.052]

0.020 
[0.002, 0.029] 

0.030
[0.014, 0.049]

-0.355
[-1.097, 0.324]

0.134
[0.073, 0.184]

0.144
[-0.264, 0.962]

Notes: 1  is the mode effects in means, computed as the mean of the FTF estimate minus the mean of the TEL estimate. 2
f  is the FTF interviewer 

variances. 2
t  is the TEL interviewer variance. , intf  is the interviewer intraclass correlation associated with the FTF mode. , intt  is the 

interviewer intraclass correlation associated with the TEL mode.   refers to the log differences between the FTF and TEL interviewer 
variances.   is the correlation between the FTF and TEL random interviewer effects. CESD = Center for Epidemiological Studies

Depression. 

 
To address the numerical challenges and evaluate whether the estimation of other parameters (e.g., 2 ,f  

2 ,t  and )  is sensitive to ,  we set   to 0 and to the posterior mean obtained with the Bayesian 

procedure, and rerun model (3.1) for the CESD items. We find that the estimates of the interviewer variances 

remain nearly unchanged when specifying   to different values or estimating .  The results can be found 

in Appendix G of (Yu, Elliott and Raghunathan, 2024). Thus, we conclude that there is little sensitivity in 

the inferences provided by the likelihood estimation to .  
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4. Simulation study 
 

To understand the repeated sampling properties of our proposed method, including the power to detect 

mode effects in the typically modest interviewer sample sizes available, we conducted simulation studies 

using the ABS and the HRS setup. 

 
4.1 Arab Barometer Study 
 

This simulation study is designed such that the number of respondents ( =n 2,521) and interviewers (13 

in the TEL mode and 31 in the FTF mode) are the same as the ABS, as well as how respondents are matched 

to interviewers. We consider four scenarios, 1) no difference scenario where the FTF interviewer variance 

is equal to the TEL interviewer variance 2 2( = =f t  0.14, 0 =  0.98 and = 0),  2) small differences 

where 2 =f 0.20, 2 =t 0.14, 0 =  0.98 and = 0.18, 3) medium differences where 2 =f 0.24, 2 =t 0.14, 

0 =  0.98 and = 0.27, and 4) large differences where 2 =f 0.50, 2 =t 0.14, 0 =  0.98 and = 0.64. 

We consider the true data generation model as follows:  
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where i  indexes respondents, j  indexes interviewers, m  indicates modes ( f  or ),t  ()  is the cumulative 

distribution function of the standard normal distribution, and M  is a 1n  vector of the mode that each 

participant used to participate in the survey. 

We fit the same analytical model (2.2) to the simulated data, implemented separately using Proc Nlmixed 

and Proc MCMC in the SAS programming language. The simulation is repeated =K 200 times, where for 

each iteration, the point estimates, standard errors, and 95% confidence intervals or credible intervals of 1,  
2 ,f  2 ,t  and   are computed and saved. Based on these statistics, we report the bias, coverage rate, SE 

ratio, and power in each scenario for the parameters. 
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where   refers to the parameters that we are interested in estimating (i.e., 2 ,f  2 ,t  1,  and ),  k̂  is the 

estimated point estimate of   obtained in iteration k, , lwk̂  and , upk̂  is the lower bound and upper bound 

of the estimated parameter. 

Table 4.1 displays the simulation results using the ABS setup. When = 0,  the power reported in 

Table 4.1 represents the Type 1 error rate. We observe that the power to reject the null hypothesis stating 

that interviewer variances are equal ( = 0)  is limited across the scenarios. However, as the differences 

grow larger (0.18-0.64), the power does increase from 0.075 to 0.520 in the Bayesian procedure and from 

0.110 to 0.633 in the frequentist approach. There are some differences in the power provided by the 

likelihood and Bayesian approaches. This is because the likelihood procedures do not offer nominal 

coverage rates in Scenarios 1 to 3; as a result, the power obtained from the likelihood and Bayesian 

procedures is based on different significance levels. The small power of   is primarily due to the very 

limited number of interviewers in both FTF and TEL modes. Conversely, the power of rejecting the null 

hypothesis that there are no mode effects in means 1( )  when the alternative hypothesis is true is 

considerably higher (around 0.90). However, as   becomes larger and the interviewer variances increase 

simultaneously, we observe a declining power of 1,  due to the decline in effective sample size from the 

increased ICC. 

 
Table 4.1 

Simulation study using the Arab Barometer Study setup. 
 

Parameters  
Likelihood results  Bayesian results 

Bias Coverage rate SE ratio Power Bias Coverage rate SE ratio Power

Scenario 1: No differences 
2 =f 0.14  -0.002 0.950 1.000 N/A 0.017 0.940 1.059 N/A
2 =t 0.14  -0.001 0.955 1.014 N/A 0.049 0.975 1.346 N/A

1 = 0.5  -0.003 0.965 1.023 0.935 0.006 0.955 1.121 0.930

= 0 0.028 0.930 0.888 0.070 -0.033 0.985 1.107 0.015

Scenario 2: Small differences 
2 =f 0.20  -0.012 0.960 0.948 N/A 0.028 0.975 1.105 N/A
2 =t 0.14  -0.007 0.935 0.974 N/A 0.059 0.955 1.161 N/A

1 = 0.5 -0.002 0.940 0.926 0.950 -0.001 0.950 1.078 0.900

= 0.18 0.042 0.920 0.928 0.110 -0.020 0.950 0.955 0.075

Scenario 3: Medium differences 
2 =f 0.24 -0.002 0.920 0.947 N/A 0.039 0.920 0.980 N/A
2 =t 0.14 -0.013 0.955 1.009 N/A 0.061 0.980 1.311 N/A

1 = 0.5 0.004 0.935 0.940 0.920 -0.010 0.960 1.184 0.860

= 0.27 0.079 0.905 0.922 0.230 -0.042 0.960 1.075 0.085

Scenario 4: Large differences 
2 =f 0.50 -0.007 0.970 1.058 N/A 0.078 0.950 1.093 N/A
2 =t 0.14 -0.009 0.960 1.055 N/A 0.054 0.935 1.231 N/A

1 = 0.5 0.022 0.935 0.965 0.824 -0.016 0.980 1.097 0.690

= 0.64 0.079 0.945 0.906 0.633 0.012 0.955 0.882 0.520

Notes: 1  is the mode effects in means, computed as the mean of the FTF estimate minus the mean of the TEL estimate. 2
f  is the FTF interviewer 

variances. 
2
t  is the TEL interviewer variance.   refers to the log differences between the FTF and TEL interviewer variances. 
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4.2 Health and Retirement Study 
 

In the simulation study using the HRS setup, we consider the following data generation model using the 

same notations as in the ABS simulation study. We use jfb  to represent random interviewer effects in the 

FTF mode and jtb  to represent random interviewer effects in the TEL mode:  
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We consider four scenarios: 1) 2 2= =f t  0.03, 0 =  1.75 and = 0;  2) 2 =f 0.05, 2 =t 0.03, 

0 = 1.75,   and = 0.26; 3) 2 =f 0.06, 2 =t 0.03, 0 =  1.75, and = 0.35; 4) 2 =f 0.09, 2 =t 0.03, 

0 = 1.75   and = 0.55. Across all scenarios, 1 = 0.5 and = 0.5. We report bias, coverage rate, SE 

ratio, and power for these parameters and the logarithmic differences of interviewer variances between FTF 

and TEL ( )  in Table 4.2. 

 
Table 4.2 

Simulation study using the Health and Retirement Study setup. 
 

Parameters  
Likelihood results  Bayesian results 

Bias Coverage rate SE ratio Power Bias Coverage rate SE ratio Power

Scenario 1: No differences 
2 =f 0.03  -0.000 0.980 1.085 N/A 0.003 0.965 1.704 N/A
2 =t 0.03  -0.001 0.975 1.049 N/A 0.002 0.935 1.469 N/A

1 = 0.5  -0.002 0.940 1.029 1.000 -0.000 0.960 1.128 1.000

= 0.5  0.012 0.965 1.009 0.470 -0.020 0.925 1.061 0.690

= 0 0.022 0.965 1.019 0.035 0.047 0.965 0.928 0.035

Scenario 2: Small differences 
2 =f 0.05 0.000 0.940 0.999 N/A 0.001 0.955 1.507 N/A
2 =t 0.03 -0.000 0.975 1.125 N/A 0.002 0.945 1.249 N/A

1 = 0.5 0.003 0.960 0.996 1.000 0.001 0.950 0.983 1.000

= 0.5 0.020 0.980 1.084 0.695 -0.021 0.925 1.032 0.755

= 0.26 0.018 0.940 0.978 0.270 0.008 0.940 0.934 0.295

Scenario 3: Medium differences 
2 =f 0.06 -0.001 0.945 0.999 N/A 0.001 0.950 1.268 N/A
2 =t 0.03 -0.001 0.975 1.045 N/A 0.002 0.940 1.103 N/A

1 = 0.5 -0.001 0.920 0.993 1.000 0.001 0.965 1.007 1.000

= 0.5 0.011 0.970 1.030 0.665 -0.009 0.930 1.014 0.815

= 0.35 0.024 0.910 0.919 0.510 0.008 0.945 0.949 0.530

Scenario 4: Large differences 
2 =f 0.09 0.000 0.930 0.983 N/A 0.002 0.950 1.201 N/A
2 =t 0.03 -0.001 0.955 1.054 N/A -0.001 0.915 1.089 N/A

1 = 0.5 0.004 0.950 1.009 1.000 -0.002 0.955 1.031 1.000

= 0.5 0.009 0.985 1.085 0.750 0.004 0.970 1.121 0.860

= 0.55 0.029 0.915 0.977 0.935 0.070 0.950 0.955 0.990

Notes: 1  is the mode effects in means, computed as the mean of the FTF estimate minus the mean of the TEL estimate. 2
f  is the FTF interviewer 

variances. 
2
t  is the TEL interviewer variance.   refers to the log differences between the FTF and TEL interviewer variances.   is the 

correlation between the FTF and TEL random interviewer effects. 
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Table 4.2 illustrates that as   rises from 0 to 0.55, the power correspondingly increases from 0.035 to 

0.990 using the Bayesian procedure, and from 0.035 to 0.935 employing the likelihood approach. The 

findings suggest that When   is large enough, we can achieve a reasonably high power using the HRS 

setup. Upon comparing Table 4.1 and Table 4.2, we observe that the power to reject the null hypothesis 

asserting equal interviewer variances, when the alternative hypothesis holds true, surpasses that in the ABS 

simulation. This outcome aligns with expectations, given the larger number of interviewers involved in the 

HRS. In addition, we note that the likelihood approach may not always reach the 95% nominal coverage 

rates (in Scenarios 3 and 4), thus the power computed using the likelihood and the Bayesian procedures are 

based on different significance levels. 

 
5. Discussion 
 

This paper explores the presence of mode effects in interviewer variances across multiple items in two 

national surveys. In the ABS, we find statistical evidence for differing interviewer effects between the FTF 

and TEL modes in one (marginally) out of six sensitive items and one out of three item missing indicators. 

Besides, for sensitive items and missing indicators in the ABS, interviewer variances from the FTF mode 

are generally larger than those from the TEL mode. Meanwhile, we should interpret the ABS results with 

caution. Due to the small number of interviewers used in the study, null findings cannot be translated into 

small or no effects, somewhat hampering the strength of the evidence. Utilizing the 2016 HRS data, we 

observe significant mode effects in interviewer variances on two depression items (one marginally) and two 

interviewer observation item. For sensitive depression items, a similar pattern emerges, with larger 

interviewer variances in FTF than in TEL. These findings indicate that sensitive questions and item missing 

items are crucial challenges when stabilizing interviewer variances between modes. Besides, the magnitude 

of interviewer variances is much larger on interviewer observation items than substantive responses. In 

addition, evidence suggests that TEL interviewer variances are larger than FTF interviewer variances on 

these items. This could be because these questions involve more subjective evaluations and may offer 

greater opportunities to reduce interviewer variances by standardizing interviewer protocols for such items, 

especially in the TEL mode. 

Simulation studies suggest that it is possible to achieve reasonable power with the ABS or HRS setup if 

there are substantial mode effects in interviewer variances. However, with small mode effects, the power is 

limited, especially in the ABS setup. The observation of significant mode effects in interviewer variances 

in both the ABS and HRS data highlights the importance of considering the role of modes on interviewer 

effects, particularly when addressing sensitive topics and item nonresponse. Given the typically limited 

number of interviewers employed in most surveys, a null finding may not necessarily indicate equal 

interviewer variance. However, it is still useful for survey agencies to consider such investigation as a 

positive finding is valid and should capture the attention of researchers. Moreover, in the presence of 

multiple underpowered studies that employ few interviewers, a meta-analysis can be conducted to combine 

the inferences made from these studies and better explore the mode effects in interviewer variances. 
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The literature has extensively documented whether modes affect measurement errors at the respondent 

level (Tourangeau and Smith, 1996; Kreuter, Presser and Tourangeau, 2008). However, few studies have 

investigated whether and how modes influence interviewer-related measurement errors, particularly 

following the widespread adoption of mixed-mode designs. This paper addresses this gap by analyzing two 

national surveys with distinct mixed-mode design features, such as the number of interviewers and whether 

the interviewers are nested under modes. When interviewers are nested under modes, it is hard to determine 

if the observed differences are attributable to modes or interviewers. The current modeling approach 

presumes that all systematic differences between responses collected in TEL and FTF are a consequence of 

modes, not interviewers. If survey organizations possess information on interviewer characteristics, they 

can evaluate this assumption by comparing the characteristics of interviewers between modes. Such an 

analysis would help disentangle the effects of modes from those of interviewers, providing valuable insights 

for survey data quality. 

For designs that allow interviewers to collect data in both modes, the models presented in this paper 

enable the estimation of individual interviewer effects in each mode. This is useful for detecting interviewers 

with a substantial impact on responses in one or both modes. Utilizing these estimated interviewer effects, 

we can further identify if specific interviewers consistently exhibit large effects across variables, potentially 

signaling the need for intervention by interviewer supervisors. If particular variables are associated with 

significant interviewer variances in a certain mode, this may warrant improved interviewer training for those 

items. For instance, based on this study’s findings, a more standardized interview protocol could be 

considered for sensitive items and when respondents answer don’t know to questions in FTF mode. As such, 

we recommend that survey agencies incorporate these analyses into their routine data quality assessments. 

Future research could investigate whether interviewer characteristics can explain the differential interviewer 

effects observed across modes, potentially shedding light on the underlying mechanisms at play. 

When determining which mode to use for generating population estimates in mixed-mode studies, it is 

desirable to have smaller bias and lower interviewer variances, which might result in smaller mean squared 

error. However, in reality, the mode with smaller bias and lower interviewer variance may not always be 

the same, as shown in this paper. For instance, FTF interviews may be linked with less bias but larger 

interviewer variance. How to balance the trade-offs between bias and variance in a formal method will be a 

topic for future research. This study showcases two survey examples to evaluate mode effects both in means 

and interviewer variances. If such analyses are routinely adopted by researchers who design and implement 

mixed-mode studies, more evidence can be accumulated about whether and how interviewers could have 

performed differently in different modes of data collection. This can become the basis for developing future 

mixed-mode protocols. When reporting the results of the analysis, we recommend that survey agencies 

explain how their interviewers are assigned to or self-select different modes and clarify whether the observed 

mode effects in interviewer variances are consistent with their expectations. 

In this paper, we observe some discrepancies between the results obtained from the maximum likelihood 

procedure and the Bayesian procedure implemented in the SAS programming language. When interviewer 
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variances are small, fitting the analytical model with correlated interviewer random effects across modes 

using the likelihood approach can be challenging. In this situation, the Bayesian approach can be particularly 

useful, as employing proper and informative priors helps ensure that we draw inferences from proper 

posterior distributions. 

This study has three main limitations. First, like other similar studies (West, Ong, Conrad, Schober, 

Larsen and Hupp, 2022; Groves and Magilavy, 1986), it faces the issue of limited statistical power, as 

demonstrated in the simulation study. Second, we consider dichotomized outcomes in this study due to 

computational reasons; however, this may not be an optimal approach for studying interviewer variance, as 

collapsing categories may reduce variances. Future studies can explore this research question using different 

types of outcomes and larger sample sizes. Last, both surveys lack randomization in the interviewer 

assignment scheme. Ideally, when estimating interviewer variances, interpenetrated designs should be used 

to ensure that the variability is solely due to the interviewer measurement process, rather than differences 

among respondents. As a workaround for the absence of randomization, we included respondent 

characteristics in the analysis model. However, interviewer variances might still be overestimated due to 

unobserved covariates not accounted for in the models. 
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Appendix A 
 

Derivations of the variance of   using Delta Method 
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We express var( )  as a function of 2var (log( )),f  2var (log ( )),t  and 2 2cov(log( ), log( )),f t   as we 

apply a log transformation to 2
t  and 2

f  to stabilize their variances. The covariance between 2log( )f  and 
2log ( )t  can be assumed to be 0 when the random interviewer effects of FTF and TEL are not correlated, 

as is the case in the ABS. In contrast, in the HRS, when the random interviewer effects are correlated across 

modes, the covariance between the two estimates should be considered when calculating var ( ).  

 
Appendix B 
 

Full results on interviewer variances in the Health and Retirement Study 
 

Table B.1 

Interviewer variances per mode for selected items in Health and Retirement Study adjusting for covariates. 
 

Questions 
Likelihood  Bayesian 

2 f
2 t   1  2 f

2 t   1 

CESD questions 

Felt depressed 0.011
(0.006)
[0.004,
0.031]

0.014
(0.008)
[0.004, 
0.045]

-0.095 
(0.389) 

[-0.857, 
0.667] 

0.056
(0.029)

[-0.001, 
0.113]

0.222
(0.448)

[-0.603, 
0.818]

0.011
(0.006)

[0, 
0.022]

0.013 
(0.009) 

[0, 
0.03] 

0.044
(0.643)

[-1.148, 
1.533]

0.056
(0.029)
[0.005, 
0.114]

0.07
(0.391)

[-0.551, 
0.874]

Everything was an effort 0.022
(0.006)
[0.013, 
0.037]

0.004
(0.005)

[0, 
0.052]

0.893 
(0.682) 

[-0.445, 
2.23] 

0.116
(0.025)
[0.066, 
0.165]

-0.099
(0.618)

[-0.867, 
0.809]

0.025
(0.014)
[0.013, 
0.037]

0.007 
(0.005) 
[0.001, 
0.016] 

0.746
(0.38)

[-0.002, 
1.496]

0.118
(0.029)
[0.071, 
0.175]

-0.128
(0.264)
[-0.56, 
0.254]

Restless sleep 0.003
(0.003)

[0, 
0.02]

0.004
(0.004)

[0, 
0.032]

-0.13 
(0.719) 
[-1.54, 
1.279] 

0.057
(0.022)
[0.013, 

0.1]

-0.698
(1.018)

[-1, 
0.995]

0.002
(0.002)

[0, 
0.007]

0.005 
(0.004) 

[0, 
0.012] 

-0.486
(0.754)
[-1.89, 
0.925]

0.053
(0.021)
[0.011, 
0.095]

0.337
(0.312)

[-0.162, 
0.849]

happy  0.007
(0.015)

[0, 
0.019]

0.010
(0.014)

[0, 
0.023]

-0.253 
(1.519) 

[-2.348, 
2.915] 

0.033
(0.032)

[-0.019, 
0.085]

NA
(NA)
[NA, 
NA]

0.011
(0.005)
[0.003, 
0.021]

0.011 
(0.007) 

[0, 
0.022] 

0.128
(0.539)

[-0.889, 
1.333]

0.032
(0.027)

[-0.024, 
0.083]

-0.518
(0.314)

[-0.989, 
-0.006]

lonely  0.006
(0.004)
[0.001, 
0.025]

0.004
(0.006)

[0, 
0.12]

0.223 
(0.973) 

[-1.685, 
2.131] 

0.046
(0.026)

[-0.004, 
0.097]

-0.208
(1.053)

[-0.983, 
0.96]

0.006
(0.004)

[0, 
0.014]

0.006 
(0.005) 

[0, 
0.016] 

0.178
(0.878)

[-1.455, 
1.846]

0.048
(0.028)

[-0.005, 
0.099]

0.055
(0.084)

[-0.108, 
0.218]

Enjoyed life 0.009
(0.006)
[0.002, 
0.037]

0.011
(0.009)
[0.002, 
0.052]

-0.124 
(0.528) 
[-1.16, 
0.911] 

0.07
(0.033)
[0.006, 
0.134]

-0.823
(0.718)

[-1, 
0.997]

0.01
(0.006)
[0.001, 
0.021]

0.007 
(0.009) 

[0, 
0.025] 

0.551
(0.944)

[-1.096, 
2.148]

0.061
(0.036)

[-0.005, 
0.134]

0.56
(0.187)
[0.223, 
0.921]

Felt sad 0.03
(0.007)
[0.018, 
0.048]

0
(0.001)

[0, 
1.263]

2.475 
(2.213) 

[-1.863, 
6.813] 

0.047
(0.025)

[-0.003, 
0.097]

NA
(NA)
[NA, 
NA]

0.032
(0.008)
[0.018, 
0.048]

0.003 
(0.003) 

[0, 
0.009] 

1.694
(0.951)
[0.463, 
3.775]

0.046
(0.027)
[-0.01, 
0.097]

0.296
(0.137)
[0.037, 
0.577]

Could not get going 0.016
(0.005)
[0.008, 

0.03]

0.019
(0.008)
[0.008, 
0.044]

-0.098 
(0.274) 

[-0.635, 
0.439] 

0.05
(0.027)

[-0.003, 
0.103]

0.314
(0.318)

[-0.351, 
0.768]

0.02
(0.032)
[0.007, 
0.029]

0.02 
(0.008) 
[0.006, 
0.035] 

-0.051
(0.339)

[-0.732, 
0.515]

0.051
(0.033)
[-0.01, 
0.109]

0.274
(0.307)

[-0.346, 
0.797]

Overall indicator 0.012
(0.005)
[0.005, 
0.029]

0.012
(0.007)
[0.004, 

0.04]

0.006 
(0.37) 

[-0.718, 
0.731] 

0.152
(0.028)
[0.096, 
0.207]

-0.264
(0.428)

[-0.825, 
0.558]

0.016
(0.028)
[0.002, 
0.024]

0.012 
(0.008) 
[0.001, 
0.027] 

0.093
(0.487)

[-0.901, 
1.075]

0.15
(0.027)
[0.102, 
0.207]

0.244
(0.211)
[-0.18, 
0.573]

Notes: 1  is the mode effects in means, computed as the mean of the FTF estimate minus the mean of the TEL estimate. 2
f  is the FTF interviewer 

variances. 
2
t  is the TEL interviewer variance.   refers to the log differences between the FTF and TEL interviewer variances.   is the 

correlation between the FTF and TEL random interviewer effects. We use N/A to mask estimates that cannot be estimated due to numerical 
difficulties. CESD = Center for Epidemiological Studies Depression.   
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Table B.1(continued) 

Interviewer variances per mode for selected items in Health and Retirement Study adjusting for covariates. 
 

Questions 
Likelihood  Bayesian 

2 f
2 t   1  2 f

2 t   1 

Interviewer Observations 

attentive  0.29
(0.032)
[0.233, 
0.361]

0.342
(0.043)
[0.268, 
0.438]

-0.082 
(0.063) 

[-0.205, 
0.041] 

0.013
(0.035)

[-0.056, 
0.081]

0.893
(0.036)
[0.795, 
0.946]

0.298
(0.032)
[0.233, 
0.356]

0.351 
(0.044) 
[0.262, 
0.431] 

-0.081
(0.062)

[-0.197, 
0.038]

0.018
(0.035)

[-0.049, 
0.088]

0.878
(0.039)
[0.803, 
0.955]

understanding  0.408
(0.04)

[0.336, 
0.494]

0.461
(0.05)

[0.373, 
0.571]

-0.062 
(0.049) 

[-0.158, 
0.033] 

-0.003
(0.032)

[-0.066, 
0.059]

0.921
(0.023)

[0.86, 
0.956]

0.413
(0.039)
[0.341, 
0.493]

0.465 
(0.051) 
[0.366, 

0.56] 

-0.058
(0.049)

[-0.149, 
0.043]

0
(0.032)

[-0.064, 
0.061]

0.91
(0.041)
[0.861, 
0.958]

cooperation  0.45
(0.043)
[0.373, 
0.542]

0.404
(0.044)
[0.327, 

0.5]

0.053 
(0.047) 

[-0.039, 
0.145] 

0.174
(0.031)
[0.113, 
0.234]

0.941
(0.021)
[0.884, 
0.971]

0.459
(0.047)
[0.378, 
0.556]

0.41 
(0.048) 
[0.321, 

0.51] 

0.057
(0.047)

[-0.039, 
0.138]

0.178
(0.032)
[0.108, 
0.236]

0.931
(0.025)
[0.881, 
0.971]

remembering 0.482
(0.047)
[0.398, 
0.584]

0.593
(0.065)
[0.478, 
0.735]

-0.103 
(0.047) 

[-0.195, 
-0.011] 

-0.065
(0.032)

[-0.128,
-0.001]

0.941
(0.019)

[0.89, 
0.969]

0.483
(0.047)
[0.392, 
0.574]

0.605 
(0.059) 
[0.489, 
0.721] 

-0.112
(0.047)

[-0.205, 
-0.028]

-0.062
(0.033)

[-0.124, 
0.002]

0.931
(0.029)
[0.885, 
0.972]

hearing  0.27
(0.03)

[0.217, 
0.336]

0.372
(0.046)
[0.291, 
0.476]

-0.161 
(0.063) 

[-0.285, 
-0.038] 

0.152
(0.034)
[0.084, 
0.219]

0.888
(0.035)
[0.796, 

0.94]

0.271
(0.032)
[0.212, 
0.335]

0.375 
(0.048) 
[0.274, 
0.462] 

-0.161
(0.065)

[-0.284,
-0.037]

0.151
(0.038)
[0.084, 
0.229]

0.87
(0.064)
[0.795, 
0.947]

Overall quality 0.879
(0.08)

[0.736, 
1.051]

0.782
(0.079)
[0.642, 
0.953]

0.058 
(0.04) 

[-0.019, 
0.136] 

0.09
(0.034)
[0.023, 
0.156]

0.96
(0.014)
[0.923, 

0.98]

0.881
(0.077)
[0.749, 

1.04]

0.788 
(0.08) 

[0.641, 
0.949] 

0.057
(0.046)

[-0.032, 
0.14]

0.086
(0.038)
[0.014, 
0.158]

0.94
(0.088)
[0.913, 
0.983]

Physical activity 

Vigorous sports 0.015
(0.004)
[0.008, 
0.027]

0.008
(0.006)
[0.002, 
0.032]

0.298 
(0.381) 
[-0.45, 
1.045] 

-0.036
(0.022)

[-0.079, 
0.007]

0.642
(0.41)

[-0.541, 
0.972]

0.017
(0.011)
[0.007, 
0.026]

0.007 
(0.004) 

[0, 
0.015] 

0.523
(0.406)

[-0.209, 
1.45]

-0.037
(0.026)

[-0.081, 
0.014]

0.36
(0.372)

[-0.446, 
0.827]

Moderately energetic sports 0.013
(0.004)
[0.007, 
0.026]

0.015
(0.006)
[0.006, 
0.035]

-0.043 
(0.274) 

[-0.581, 
0.494] 

0.028
(0.023)

[-0.017, 
0.073]

0.478
(0.326)

[-0.297, 
0.873]

0.015
(0.008)
[0.006, 
0.024]

0.019 
(0.008) 
[0.004, 
0.033] 

-0.086
(0.28)

[-0.655, 
0.464]

0.031
(0.025)

[-0.019, 
0.078]

0.233
(0.248)

[-0.351, 
0.698]

Mildly energetic sports 0.015
(0.005)
[0.007, 

0.03]

0.03
(0.009)
[0.016, 
0.056]

-0.353 
(0.238) 

[-0.819, 
0.114] 

0.135
(0.028)

[0.08, 
0.19]

0.107
(0.278)

[-0.416, 
0.577]

0.02
(0.042)
[0.002, 

0.03]

0.031 
(0.01) 

[0.014, 
0.052] 

-0.355
(0.361)

[-1.097, 
0.324]

0.134
(0.028)
[0.073, 
0.184]

0.144
(0.29)

[-0.264, 
0.962]

Notes: 1  is the mode effects in means, computed as the mean of the FTF estimate minus the mean of the TEL estimate. 2
f  is the FTF interviewer 

variances. 2
t  is the TEL interviewer variance.   refers to the log differences between the FTF and TEL interviewer variances.   is the 

correlation between the FTF and TEL random interviewer effects. We use N/A to mask estimates that cannot be estimated due to numerical 
difficulties. CESD = Center for Epidemiological Studies Depression. 
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Robust adaptive survey design for time changes in  
mixed-mode response propensities 

Shiya Wu, Harm-Jan Boonstra, Mirjam Moerbeek and Barry Schouten1 

Abstract 

Adaptive survey designs (ASDs) tailor recruitment protocols to population subgroups that are relevant to a 
survey. In recent years, effective ASD optimization has been the topic of research and several applications. 
However, the performance of an optimized ASD over time is sensitive to time changes in response propensities. 
How adaptation strategies can adjust to such variation over time is not yet fully understood. In this paper, we 
propose a robust optimization approach in the context of sequential mixed-mode surveys employing Bayesian 
analysis. The approach is formulated as a mathematical programming problem that explicitly accounts for 
uncertainty due to time change. ASD decisions can then be made by considering time-dependent variation in 
conditional mode response propensities and between-mode correlations in response propensities. The approach 
is demonstrated using a case study: the 2014-2017 Dutch Health Survey. We evaluate the sensitivity of ASD 
performance to 1) the budget level and 2) the length of applicable historic time-series data. We find there is only 
a moderate dependence on the budget level and the dependence on historic data is moderated by the amount of 
seasonality during the year. 

 
Key Words: Adaptive survey designs; Bayesian approach; Optimization; Response propensity model; Time series 

analysis. 

 
 

1. Introduction 
 

Adaptive survey designs (ASDs, Wagner, 2008 and Schouten, Peytchev and Wagner, 2017) have 

gradually become a viable choice in contemporary surveys; a single survey protocol is no longer offered to 

all individuals or subgroups but it is tailored to efficiently attain individual’s responses based on known 

population characteristics and characteristics observed during fieldwork. This shift was accelerated by 

persistent declines in response rates, limited budgets, a larger variety of data sources, the emergence of all 

kinds of mobile devices, and the gradual migration to mixed-mode surveys. These developments imply more 

urgency and more options in design. 

A key element in ASD is the optimization strategy, i.e., the set of decision rules. Such strategies rely on 

input on response propensities and other survey design parameters. The main approaches to optimization 

include case prioritization (Peytchev, Riley, Rosen, Murphy and Lindblad, 2010; Wagner, 2013 and Wagner 

and Hubbard, 2013), trial and error, and mathematical and statistical optimization (van Berkel, van der Doef 

and Schouten, 2020; Calinescu, Bhulai and Schouten, 2013 and Schouten, Calinescu and Luiten, 2013); see 

Schouten et al. (2017) for the advantages and disadvantages of each approach. However, in these 

contributions the inaccuracy in response propensities estimated from historic data was most often ignored. 

In mathematical programming, objectives can be parameterized as functions of response propensities acting 

as one of the main inputs to optimization. Error would be introduced in making decisions when true response 

propensities change over time and these changes are not accounted for in estimation. As a result, inaccuracy 
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renders any ASD as suboptimal, or even worse, makes it ineffective. Placing ASD optimization in a 

Bayesian context is natural to address this issue, yet the relevant survey methodology research is still in its 

infancy. Recently, Ma (2021) developed methodology to efficiently optimize a stratification by holding out 

for accurate estimates of response propensities in a Bayesian manner, given the most recent historic data. 

Time changes in response propensities and inaccurate estimates from historic data endanger the 

robustness of ASD optimization; see Schouten et al. (2017) and Chun, Heeringa and Schouten (2018) for 

more discussion. Recently, ASD research started to focus on developing response propensity models and 

improving prediction accuracy; Schouten, Mushkudiani, Shlomo, Durrant, Lundquist and Wagner (2018) 

pioneered Bayesian updating methods to combat this bias by statistically leveraging accumulated survey 

data and historic data generated from past implementations of the same survey. Being the most informative, 

prior beliefs gathered from past survey data can enhance current data for prediction purposes. Clearly, 

translating external data sources to prior beliefs is a requisite for the development of response propensity 

models. To do so, using a literature review (West, Wagner, Coffey and Elliott, 2023) and eliciting expert 

knowledge (Coffey, West, Wagner and Elliott, 2020 and Wu, Schouten, Meijers and Schouten, 2022) are 

recent approaches to source prior information. Survey researchers treat the matter of historic data timeliness 

incompletely and consider response propensities at different survey phases overall, whereas some facts, 

such as consistently reduced response rates over years, indicate that accurate estimates of response 

propensities are dependent on time, and response propensities in sequential designs are likely to correlate. 

The most closely related work by Wu, Boonstra, Moerbeek and Schouten (2023) explored deconstructing 

time changes in response propensities at multiple levels to study the influence of the length of applicable 

historic survey data on response propensity prediction accuracy. There, only the Computer-Assisted Web 

Interviewing (CAWI) data collection phase in the Dutch Health Survey (GEZO) was considered, and not 

the Computer-Assisted Personal Interviewing (CAPI) phase that applies to the CAWI non-respondents. In 

the present study, we generalize the model development for response propensity prediction to multiple 

phases of data collection, and in particular to the case of both CAWI and CAPI mode data collection phases 

of GEZO. This allows, e.g., to evaluate conditional prediction accuracy of CAPI response propensities given 

the CAWI response realization in a certain period. As in Wu et al. (2023), we adopt a Bayesian approach 

that allows full uncertainty quantification of response propensities and derived quantities. The second 

extension of this paper relative to Wu et al. (2023) is the analysis of ASD performance under various 

external constraints, taking into account the uncertainty of response propensity predictions. 

Taken together, this paper aims to make two contributions to sequential mixed-mode (MM) designs: 

predicting each survey mode response propensity as accurately as possible and making adaptive decisions 

in as optimally as possible. To fulfil this ambition by leveraging historic time-series data in the evaluation, 

we raise three research questions: 

 How can time-series models be constructed to improve response propensity prediction accuracy 

in a sequential mixed-mode design? 

 How sensitive is ASD performance to the specified budget level? 

 How does ASD performance depend on the length of applicable historic data? 
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In response to the first question, we extend the binomial multilevel time-series models for a single mode 

proposed by Wu et al. (2023) to multinomial multilevel time-series models for multiple modes, and illustrate 

by means of an application to the GEZO survey, for which we use data from the period 2014-2017. This 

extension also considers the incorporation of between-mode correlation parameters in modeling the 

response propensities of CAWI and CAPI. 

Concerning the second and third questions, a strategy that accommodates uncertainty about input to 

optimization when optimizing probabilistic allocations is in great demand. The survey design performance 

is monitored by evaluating representation of relevant background characteristics linked through admi-

nistrative data. The representation is operationalized through the coefficient of variation (CV) of response 

propensities (Schouten, Cobben and Bethlehem, 2009). We benchmark the ASD performance against the 

performance of CAWI-only and nonadaptive designs to ensure that the determined allocations can improve 

the ASD performance. To determine the sensitivity of ASD performance, we conduct two experiments. In 

the first experiment, we select one quarter of the year and gradually decrease the budget level. This 

experiment enables us to explore the sensitivity of the ASD performance to budget constraints. In the second 

experiment, the budget level is fixed, and the time series window of historic data moves forward to the next 

new data collection quarter. The historic data is first used to set a prior. Next, with incoming new quarters, 

the prior is repeatedly updated to a posterior that serves as prior to the upcoming quarter. We evaluate how 

the prior changes and if and how this affects allocations of sample units. 

The outline of this paper is as follows: we begin by constructing the time-series model for sequential 

mixed-mode designs in Section 2. In Section 3, we describe the optimization problem. We introduce the 

case study in Section 4 and address the research questions. In the last section, we discuss the advantages 

and disadvantages of our method and conclude with some thoughts on future research. 

 
2. Methods 
 

In this section, a multivariate time series model is developed for response propensities in sequential 

mixed-mode designs. We extend the multi-level time series model suggested by Wu et al. (2023) by 

introducing conditional response propensities of follow-up modes.  

 
2.1 Modeling response propensities in sequential mixed-mode designs 
 

The time series model of Wu et al. (2023) generates precise estimates of response propensities for survey 

designs with a sole mode, or for the first mode of mixed-mode surveys during fieldwork. Here, the objective 

evolves into making reliable predictions for each mode of mixed-mode surveys to broaden the model’s 

appeal. Notably, discrete-valued time series data, including the size of a sample and the number of 

respondents to each mode, are considered from a multinomial distribution, while Wu et al. (2023) 

considered a binomial distribution for data. 
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The response propensity (RP) is the theoretical propensity of a sampled subject being a responder in a 

specific interview mode given a set of known characteristics. These characteristics may include paradata 

collected in a particular phase or mode of the survey. This subject can be either an individual or a well-

defined group of persons. Of interest, a group is made by cross-classifying several auxiliary variables that 

are regarded as strong predictors of survey variables. Within a group, units have homogeneous demographic 

attributes, such as age. Such a set of groups can vary with time or design change (see Schouten et al., 2017 

for more discussion on stratification), but here we assume stratification is constant and specified before 

fitting the model. 

To model mode-level RPs, in this section, we suppress the subscripts indicating a specific group in the 

propensity parameter and indicating a specific time point, but the next section must specify this subscript to 

decompose a time series to some fixed or random effects at the stratum, time, and/or mode level. 

Assume that a mixed-mode survey is provided with 1M   modes of data collection. We add an thM  

“mode” corresponding to nonresponse, i.e. the category that represents no response to the 1M   modes. Let 

a random sample of size n  be known before data collection starts, and let jr  denote the observed number 

of respondents in the thj  mode, where {1, , }.j M   Consider a multinomial distribution in M  modes 

with response propensity j  for the thj  mode, where [0,1].j   M  is the nonresponse propensity; 

however, it is no longer explicitly modeled later. 

Vector 1( , , )Mr r r  follows a multinomial distribution with sample size n  and response propensity 

1( , , ),ρ M  …  i.e., the joint distribution of r  is a multivariate generalization of a binomial distribution, 
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Linderman, Johnson and Adams (2015) used a stick-breaking transformation to reformulate the 

multinomial distribution as a product of binomial distributions, where the constructed parameters are 

dependent. This offered a chance to rewrite the m -dimensional (2.1) recursively in terms of 1M   

binomials. In the stick-breaking representation, the propensity vector ρ  serves as a stick that is recursively 

split into two pieces to create binomial variable 1 1( ,  ,   ).ρ M       To provide a derivation, let the thj  

mode response variable jr  follow a binomial density with parameters jn  and ,j  i.e., bin ( | , ),j j jr n   

where jn  and j  represent the remaining size of the sample and the fraction of the remaining probability 

approached by the thj  mode, 
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where {2, , }.j M   When 1,j   parameter 1 {1, , } jj M
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 and parameter 1.j   Using (2.3), 

we have 
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Note that jr  sums to n  over j  and 1 1j j jn n r    for any {2,  , }.j M   This means that pairs of terms 
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  will cancel in the product of (2.4) over j  leading to the same format as the multinomial 

exponential term in (2.1), 
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The normalization constants follow the same reasoning. Combined with exponential terms in (2.5), (2.1) 

can be rewritten as 
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We use the stick-breaking representation of the multinomial model for practical reasons: for this 

representation, there is a simple and efficient Gibbs sampler for the multinomial (multilevel) model. As 

explained in Linderman et al. (2015), it uses the same Polya-Gamma data augmentation method (Polson, 

Scott and Windle, 2013) that was used for the binomial models in Wu et al. (2023), and the stick-breaking 

representation allows sampling the model coefficients for all 1M   modeled categories in a block, thereby 

improving the convergence of the Gibbs sampler. This representation also has a drawback: the definition of 

j  makes interpretation of the underlying model coefficients more difficult, particularly the interpretation 

of correlation coefficients in the models detailed in Section 2.2. 

Section 2.2 employs a structural time-series model to decompose an observed time series into some 

underlying time-related components. 

 
2.2 Multinomial multilevel time series model 
 

To measure the dependence of response propensities among the modes, we extend the models of Wu 

et al. (2023) by introducing a new hierarchical parameter indicative of correlation coefficients. Such 

dependence spread over time-series components of interest is similar to those adopted by Wu et al. (2023); 

it is suggested to revisit that paper for more details on each component’s definition and for technical details. 

To describe each model component at the most detailed level, let the dependent propensity parameter 

vector of the sequential modes be associated with a specific ASD stratum and time point, i.e., , 
g tρ  

, ,{ | {1, , 1}},  …g t j j M  where the thj  entry denotes the propensity parameter of the thj  mode in ASD 

stratum g  at time ,t  as defined in (2.3). The numbers of ASD strata, time points and survey modes are ,G  

,T  and 1,M   respectively. Note that in this paper, we use the term ASD stratum to indicate a population 

group that may receive a different treatment. This is not to be confused with sample strata that receive 

different inclusion probabilities. We omit the reference to ASD in ASD stratum in most of the following.  
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In this paper, we assume that the choice of ASD strata has already been made and variable selection 

itself is not part of the modeling strategy. Strata will be based on auxiliary information that is predictive of 

the survey variables of interest and/or survey nonresponse. However, when the amount of auxiliary 

information is large, a variable selection strategy should be integrated into the model fitting and ASD 

optimization strategy. We return to this issue in the discussion. 

We let , , , ,logit ( ).g t j g t j    A logit link function is used to convert the constrained scale of a probability 

to the unconstrained scale of a linear predictor, i.e. a linear combination of model components. We denote 

the linear predictor by , , , ,logit ( ) .g t j g t j    Therefore, the multinomial likelihood function in (2.1) can be 

rewritten by substituting the inverse transformation for , , ,g t j  

 
, ,

, ,

1

1

.mult ( | , )
1

j
g t j

g t j

r
M

j

e
n

e









 
    
r ρ  (2.7) 

The multilevel models considered for modeling the linear predictor , ,g t j  take the general form of 

additive decomposition, which refers to a function of the sum of time-series components. Thus, 

 , , , , , , , , ,g t j j xj g s t t j g j g t j g t jx s u v z e            (2.8) 

where the first three and the last four terms are modeled as fixed effects and random effects, respectively. 

The first regression fixed effects j  are mode-specific intercepts, measuring the main effect on , , .g t j  

The second fixed effects xj  are mode-specific regression coefficients associated with p -vector covariate 

,gx  corresponding to specific demographic characteristics associated with stratum .g  The third fixed effects 

s  are season-specific regression coefficients associated with the  q -vector season indicator variable .ts  See 

the definition of strata and seasons in Appendix A. Currently, all strata share common seasonal and mode 

effects. In a broader sense, these fixed effects can be stratum-specific. In the present application throughout 

this paper, gx  and ts  are binary vectors corresponding to categorical variables, but also ordinal or numerical 

and even time-varying variables can be taken into account, if needed. 

Each random effect term in (2.8) implicitly allows for correlation between survey modes. Refer to Wu 

et al. (2023) for a description of the random effect components. As stressed, these terms are now crossed 

with the mode, i.e., separate variance parameters for each mode and correlation parameters among the modes 

are introduced. The global time trend ,u  random intercept for strata ,vg  and stratum-specific trend gz  

conform to this rule. White noise random effects , ,g t je  are also crossed with mode, but we use a single 

common variance parameter for all modes and no correlation. 

We adopt a Bayesian approach to estimate the model in (2.8) and to obtain reliable predictions of the 

response propensities at the mode, stratum and time levels. As noted, the priors are the same for coefficients 

corresponding to different modes. For notational convenience, we suppress subscripts ,g  t  and j  in each 

model component term. Fixed effects   and   are assigned weakly informative priors normally distributed 

with zero mean and diagonal variance matrix, where the standard error takes a relatively large value of 10. 
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Each random effects vector is assumed to follow a multivariate normal prior with mean 0  and covariance 

matrix defined as the Kronecker product of two covariance matrices A  and .V  Here, V  is a fully 

parameterized covariance matrix, which is assigned a scaled-inverse Wishart prior (Gelman and Hill, 2007; 

O’Malley and Zaslavsky, 2008), and A  is a fixed matrix, which may be a simple diagonal matrix for 

unstructured effects or a structured matrix corresponding to random walks over time. More technical details 

about the prior specification and the estimation strategy, including the Gibbs sampler and the required full 

conditional distributions, can be found in Boonstra and van den Brakel (2019) and Wu et al. (2023). 

A more parsimonious model can be obtained by omitting the mode-oriented interaction and replacing 

the fully parameterized covariance matrix V  by a diagonal matrix, if there is little interest in the between-

mode effects on propensity predictions. This model is called the no-correlation model and it provides a base 

model against which to evaluate the performance of the full correlation model. 

Model estimation is carried out using R package mcmcsae (Boonstra, 2022). Convergence of the Markov 

Chain Monte Carlo (MCMC) simulation results is assessed using trace plots and the potential scale reduction 

factor or R-hat diagnostic (Gelman and Rubin, 1992). These diagnostics show that the Gibbs sampler is 

converging fast, both for models including and excluding correlations between modes. To a large extent this 

is due to sampling all fixed and random effects in a single block, which is possible by virtue of the stick-

breaking representation of the multinomial distribution in combination with Polya-Gamma data 

augmentation, as mentioned previously. 

 

2.3 Extensions to more general complex sampling designs 
 

The model laid out in Section 2.2 supports stratified random sampling survey designs, but no other 

complex sampling features. For the GEZO application that we focus on this is justifiable. Even though the 

GEZO uses a two-stage design with municipalities being the first-stage sampling units, the resulting 

clustering effects are very minor because most municipalities are selected. Furthermore, first and second 

stage inclusion probabilities are such that the overall inclusion probabilities are equal for all persons. The 

stratification used in this paper is chosen such that the response probabilities are reasonably homogeneous 

within strata. 

We now briefly describe how our method can be extended to support surveys with more general complex 

sampling designs. If sampling probabilities are unequal, one may in some cases still define a stratification 

such that the sampling probabilities are (approximately) equal within strata. If this is not possible, an 

analysis based on a unit-level model would be more appropriate. The multinomial model at the stratum-

level then becomes a categorical or Multinoulli model at the person-level, i.e. the special case of the 

multinomial distribution with 1in   for each person .i  Note that the derivations regarding the stick-

breaking representation in Section 2.2 are still valid in this case. Essentially, stratum subscripts g  in (2.8) 

would become person subscripts .i  
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Unit-level covariates that explain variation in both sampling and response probabilities should be 

included in the model to mitigate bias as far as possible. In particular, the inclusion probabilities themselves 

or the underlying variables that they depend on are valuable covariates. It can also help to model the 

dependence on inclusion probabilities in a flexible way, see e.g. Chen, Elliott and Little (2010). A 

stratification can still be defined specifically for the purpose of ASD such that the response probabilities are 

relatively homogeneous within strata. Such a stratification does not need to coincide with a possible 

stratification used for sampling. The latter can be handled in a unit-level model by including the stratum 

indicators in the model. Similarly, for a clustered design the unit-level model can account for cluster effects 

by including cluster indicators. However, since typically only a subsample of clusters is included in the 

sample, and the number of observations per observed cluster may be small, the corresponding cluster 

coefficients should be modelled as random effects (Scott and Smith, 1969). Finally, we note that the 

described model extensions to support more complex sampling designs can be handled using the same Gibbs 

sampler framework that we use for the GEZO application. In particular, the same data augmentation 

approach can be used for the categorical/Multinoulli family, as it is a special case of the multinomial 

distribution. The only difference is that one may need to incorporate more covariates with corresponding 

fixed effects, as well as additional random effects for clusters, possibly at multiple stages. Such unit-level 

models can be fit in the same way e.g. using R package mcmcsae, although computation times will increase 

due to the larger unit-level data size and model size. 

 
3. Optimizing mode allocation under the Bayesian multilevel time 

series model 
 

This section explores an allocation problem accounting for such uncertainty to grasp the timeliness and 

implementation of ASDs. Section 3.1 outlines the main ingredients for the construction and operation of 

this problem in a Bayesian framework. A strategy is proposed in Section 3.2 to assess the gain of adaptive 

allocations against nonadaptive allocations concerning nonresponse bias risk reduction by monitoring a 

measure of bias risk. 

 
3.1 Main ingredients 
 

Generally, mathematical optimization involves the selection of the “best available” values of some 

objective function relative to a number of constraints by choosing input values from an allowed set. 

Establishing optimization models entails three major elements: decision variables to optimize the goal, 

objectives to be minimized or maximized, and constraints on the decision variables. Because of optimization 

on the Bayesian setting, we emphasize that all mentioned statistical parameters are considered to be random 

variables with values that change over time. Consequently, objective functions and constraint functions are 
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also random variables. In the following, the main ingredients are first introduced for a non-Bayesian setting 

and are then developed for the Bayesian setting. 

Decision variables are symbolic representations of an intervention decided by the decision maker. They 

represent unknown parts of an objective function that can be manipulated and may take on any possible 

value within an allowed set if specified. In this paper, an intervention is supposed to allocate interview 

modes to strata when preceding modes fail to obtain their data. Therefore, decision variables refer to 

allocation probabilities that indicate how likely nonrespondents are to be approached via a follow-up mode. 

Allocation probability , [0,1]g ts   makes a decision on the size of follow-up candidates in stratum g  at time 

point ,t  where , 0g ts   implies that data collection for stratum g  stops, and , 1g ts   means that all stratum 

g  nonrespondents in the preceding modes are allocated to the upcoming mode. 

The objective function defines the criterion to evaluate candidate values of the decision variables. Apart 

from the decision variables, it depends only on observed and estimated quantities. Our optimization goal is 

to minimize the expected risk of nonresponse bias via optimal allocation. Since nonresponse cannot be 

observed directly, this paper considers a proxy indicator of nonresponse bias that is a function of response 

propensities. We employ the CV of response propensities (Schouten et al., 2009). The true population CV 

bounds the absolute standardized bias of respondent means. However, the CV estimated on a specified set 

of auxiliary variables will observe only a piece of that overall bias. While there are alternative indicators, 

see Moore, Durrant and Smith (2018) and Nishimura, Wagner and Elliott (2016), it is, most of all, the 

available auxiliary information that plays a decisive role. In multi-purpose surveys, availability may be less 

of an issue as one may focus on general representation and any improvement will be useful. In surveys with 

only a few key statistics, availability of relevant auxiliary variables is key.  

The CV is the weighted standard deviation divided by the weighted response rate 

 
 

2

, ,

CV( , ) .
g t g t tg

t

d
s t

 







 (3.1) 

Weight ,g td  is the sample proportion of the stratum g  size at time t  against the overall size at time ,t  

that is, , , , .g t g t g tg
d n n   This notation implicitly assumes that the sampling design leads to equal 

inclusion weights, but if not, the design weights should also be incorporated. This addition is straightforward 

but makes the notation intractable. Mixed response propensity ,g t  denotes the overall propensity over 

modes, which is the sum of the marginal response propensity of the starting mode and the joint response 

propensities of mode 2j   supposing that stratum g  did not respond to the last 1j   modes, (Here, we 

implicitly assume that all nonrespondents in a mode are eligible for follow-up. In practice, some types of 

nonresponse, such as due to physical or mental illness, may not be eligible.) 

 , , ,1 , , , ,
{2, , 1} 1

(1 ).g t g t g t j g t k
j m i j

   
   

   
…

 (3.2) 
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The individual (conditional) propensities , ,g t j  for any mode j  are estimated by multinomial models in 

Section 2. (3.2) assumes that all nonrespondents to the preceding modes will be recruited by mode j  for a 

nonadaptive survey; however, this can be modified to an adaptive survey by reducing joint propensity to 

decision variable , , [0,1],g t js   so the updated equation becomes 

 , , ,1 , , , , , ,
{2,.., 1} 1

(1 ).g t g t g t j g t j g t k
j m i j

s   
   

     (3.3) 

Clearly, (3.3) is equivalent to (3.2) when all , , 1.g t js   

The denominators of (3.1), called the weighted response rates over strata, indicate the estimated level of 

unknown propensities, which are defined as the weighted sum of mixed propensities of (3.2) and (3.3). We 

call CV nonadaptive when all , , 1g t js   and adaptive when at least one , , 1.g t js   

We use one single indicator motivated from multi-purpose surveys, i.e. having a large and diverse range 

of target survey variables. However, in surveys with one or a few target survey variables, more focused 

indicators may be employed. A good example is indicator 1H  of Särndal and Lundström (2010). Doing so, 

would change the use of historic survey data and also include associations to the target survey variable(s). 

Constraints are functional inequalities or equations that represent logical restrictions on what values of 

decision variables are allowed. For example, constraints might ensure a thorough search of feasible solutions 

from a finite solution space. In the survey design context, a constraint can be a limit placed either on the 

survey quality, such as solutions making the overall response rate greater than 0.5, or on the survey cost, 

such as the overall cost of interviewers reaching nonrespondents being lower than a specified amount. In 

this paper, we focus on cost constraints regarding the workload of approaching nonresponse candidates by 

means of a follow-up mode. In service level agreements with survey sponsors a maximal chance of a budget 

overrun is often specified, say at 10%. This budget overrun proportion is denoted by .  If the budget is 

strictly limited, then 0.   Let the specified budget level be .h  Now the cost constraint is  

  , , , , ,( ( )) ,g t g t g t g t g tg g
p s n r h n r       (3.4) 

where p  is the probability of the adaptive workload exceeding the non-adaptive workload. When the values 

of ,g ts  satisfy constraint (3.4), the corresponding solution of the decision variable is called acceptable; 

otherwise, the solution will contradict the rule. It is natural to specify lower and upper bounds on decision 

variable ,{ | , },s g ts g t   which are referred to as box constraints, 

 0 1. s  (3.5) 

Therefore, the optimization problem in a sample allocation application for the non-Bayesian setting is 

formulated to detect a vector s  that minimizes objective (3.1) subject to constraints (3.4) and (3.5) given 

parameters ( , ).n r  As stated above, (3.1) and the workload in (3.4) are random variables in the Bayesian 

approach, so we take expectations of the posterior distributions.  
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Given that no explicit expression exists for the posterior distributions, we estimate them empirically. We 

use the Gibbs sampler replicates of the posterior distributions and per replicate compute the CV and the 

workloads. We obtain 
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where  CV( , )Ê s t  is the estimated posterior expectation at time ,t   
,

k

g t  is the thk  iterated estimate from 

the posterior predictive function of , ,g t  and subscript k  runs over MCMC draws. The probability of a 

budget overrun is estimated empirically by the frequency that the number of times the adaptive design 

required budget exceeds the specified budget 
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( ) ( )
, , , , ,( ) ( )k k

g t g t g t g t g tg g
s n r h n r   

1  is an indicator function that takes a value of one when the inequality in its 

subscript is met for the thk  iteration and is zero otherwise. Therefore, Bayesian optimization aims to 

minimize objective (3.6) subject to constraints (3.5) and (3.7). 

Benchmark: In the Bayesian optimization problem, we set a benchmark to evaluate ASD performance from 

two viewpoints: improving quality and saving money. Specifically, promoting sample representativeness 

by recruitment can improve data collection quality, while distributing cost-intensive resources to where they 

are most needed can save money. This goal can be achieved, for example, by switching from a single mode 

to mixed but optimally reallocated modes or switching from full mixed modes to partial mixed modes. By 

letting decision variables 0s  or 1,s   the optimization problem proposed above can settle those 

reallocations. To do so, the performance of the single-mode design and the full mixed-mode design are 

standards of and compared with the ASD performance. 

 
3.2 Static ASD optimization 
 

In analogy to adaptive treatment regimes, we call ASDs static when they are based solely on information 

available in registry and frame data before the start of data collection, and dynamic when they are based 

(also) on paradata (data collected during data collection). Dynamic ASDs reflect the dynamic nature of the 

optimization since optimization is performed at each data collection phase, i.e., after each mode is 

completed. 

For dynamic ASDs in the current context, decisions on assigning interviewers to strata are made 

dependent on intermediate survey results from the preceding modes. The correlation between the response 

propensities for the non-interviewer mode and the response propensities for the interviewer mode leads to 

an intermediate update of the prior distributions for the latter. Theoretically, the evaluation can identify the 

priorities of refusers in strata to be interviewed and inform the interviewer workload. In reality, there may 
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be insufficient time to compute reallocated interviewers’ workload in time because of geographical 

clustering. Additionally, reallocation requires complex logistics in case management; we leave this point to 

the discussion section. 

Therefore, in this paper, we focus on the static ASD setting, i.e. the decision to perform a follow-up is 

set at the start of data collection. In this paper, we restrict ourselves to one such intervention, but the 

methodology would allow for multiple interventions, say after various numbers of calls or visits.  

In Section 3.3, we construct the strategy to account for uncertainty in making decisions and to specify 

the optimization routine to determine the optimal allocations for the Bayesian optimization problem in 

Section 3.1. 

 
3.3 The optimization strategy 
 

To solve the formulated optimization problem in Section 3.1, we propose a two-step strategy at time ,t  

1. Construct the posterior distribution of the response numbers , .g tr  Let historic time series data 

sets up to time 1t   be data used for model training, and let data sets at time t  be test data for 

prediction. All model coefficients and hyperparameters in (2.8) can be estimated by the size of a 

sample 1: 1 , 1: 1{ | }t g t g  n n  and the response numbers in all modes 1: 1 , 1: 1,{ | , }.r rt g t j g j    

Under the estimated model, predictions can be obtained on dependent propensities 

, ,{ | , }t g t j g j ρ   and ,{ | , },r rt g tj g j   given data ,{ | }.nt g tn g   

2. Determine optimal allocations. Specify budget level h  and overrun level .  Set multiple starting 

vectors of stratum allocations ,s  each vector viewed as an initial state and each having a finite 

number of well-defined successive states. For any stratum ,g  assume K  iterations of estimates 

of , , ,{ | }g t g t mr j r  and  , , , |g t g t j j ρ   generated from the posteriors in 1. These posterior 

estimates and given parameters h  and   are separately substituted into (3.6) and (3.7) to 

compute the posterior expectation  CV( , )Ê s t  and the posterior probability of workload excess. 

To detect the optima, starting from each initial state, such a computation proceeds through its 

successive states, produces output, and eventually terminates at the final state. Discard constraint-

violated states and their output, and preserve constraint-met states and their output. Within these 

results, sum the minimum of  CV( , )Ê s t  and its corresponding allocations optima. 
 

Solving this mathematical program is a computationally intensive task. Therefore, the methods in step 1 

are implemented in R using the mcmcsae package (Boonstra, 2022), while the methods in step 2 are 

implemented in R using the auglag (Augmented Lagrangian Minimization Algorithm) function of the 

Alabama package (Varadhan, 2022) for constrained nonlinear optimization. 

 
3.4 Performance evaluation 
 

This section introduces an evaluation criterion to assess the prediction accuracy. The criterion can shed 

light on the gain in nonresponse risk reduction from different models or from different survey designs. This 
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gain is quantified by the root mean square error (RMSE) of the posterior distribution of a parameter ,  e.g., 

response propensity or CV, relative to the “true”, with the latter estimated via observations. 

We consider performance over rolling windows of three months. This choice is motivated by the three-

month fieldwork duration of the application in this paper, but can be changed to any length. In time window 

{ , 1, 2 | },q t t t t     the RMSE of the thg  stratum is then defined as 

      2 2RMSE , , SD ,q B q q     (3.8) 

where the first term is called the bias term, represented as the quadratic difference between the posterior 

mean of parameter   and the observed ,  

 2
, CV( )) ,(

qg q qg
B q d E s q  CV 

2
( , )qs q  (3.9) 

and the second term is the posterior variance of CV, which is a quadratic form of the standard deviation 

(SD), 

 2
,SD V .( ) ar CV ( , )

qg q qg
dq s q   (3.10) 

Weight , , ,g q g q g q
g

d n n   is the ratio of the stratum g  size to the sample size in window .q  The posterior 

distributions q  of CV and allocation qs  are derived from the computing strategy in Section 3.3. 

These criteria depend strongly on sample size sampling variation, especially for surveys with small 

sample sizes. Empirical data subject to sampling variation are used to evaluate the performance. While 

surveys with large sample sizes provide rich information and thus their performance can be evaluated 

precisely, for small surveys, a contradiction to time change becomes acute, i.e., they take longer to make a 

precise evaluation. Noisy criteria performance makes it more difficult to draw a sound conclusion about 

putting the adaptation into practice. 

 
4. The Dutch Health Survey case study 
 

This section explores and exploits the application of multinomial time-series models in Section 2 and 

the optimization approach in a Bayesian framework in Section 3 to the Dutch Health Survey (GEZO for 

short). Section 4.1 briefly introduces the background of GEZO. We illustrate how time changes in sequential 

propensities can be modeled, how the performance of optimal allocations depends on the budget level, and 

how optimal decisions depend on the length of applicable the historic data separately in Sections 4.2-4.4. 

 
4.1 The Dutch Health Survey 
 

The GEZO survey is conducted annually by Statistics Netherlands, providing a thorough overview of 

developments in medical contacts, lifestyle, health, and preventative behavior of the Dutch population, 
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including all individuals living in private households. A self-weighting two-stage sampling design is 

employed, which first draws a sample from municipalities and next from persons who live in the selected 

municipalities. The survey changed to a mixed-mode design after 2014. The observation method involves 

online and face-to-face interviews. First, CAWI is used to request the participation of sample units from the 

population. Next, nonrespondents are recruited to participate in a CAPI. As of 2018, however, adaptation is 

implemented to stabilize the interviewers’ workload. Only a portion of CAWI nonrespondents is 

reapproached for CAPI to reduce survey costs and improve the representativeness. Higher response rates in 

CAWI sample units lead to a smaller chance they are reapproached. 

In this paper, we focus on a time series of data collected from 2014 to 2017, involving 48 months. Note 

that data collected early in 2017 were “abnormal” because of technical issues with the web server, resulting 

in an interruption in data collection. This comes with practical reasons: Statistics Netherlands has 

implemented static ASDs since 2018, and the adaptation may waste the potential value of historic data used 

to improve prediction accuracy (Wu et al., 2023). Additionally, sample units are stratified into 13 disjoint 

strata by two auxiliary variables from the administrative frame or registers: age and ethnicity. See the 

stratification in Appendix A. Note that this stratification is fixed throughout this paper, and our time-series 

strata are different from the ASD strata (Van Berkel et al., 2020). The set of available auxiliary variables 

prior to the start of fieldwork is much larger. It includes several demographics such as gender, country of 

birth, household composition, socio-economics such as registered personal and household income, 

educational level, type of occupation, dwelling-related and area-related characteristics such as type of 

dwelling, house value, urbanization. Research into efficient and effective selection of strata is an important 

next step. 

 
4.2 How can a time-series model be constructed under a sequential 

mixed-mode design? 
 

This section elaborates the approach to build multilevel time-series models. We observe two potentially 

influential decisions. The first decision is to include a seasonal component. Adding a season will likely 

improve accuracy, but comes at a cost. Including a season implies that a longer series of historic data is 

needed; we must observe at least two years of data to evaluate a seasonal component, but preferably more. 

The second decision is the inclusion of explicit associations/correlations between parameters in the model. 

Again accuracy is likely higher, but more data are needed. There are three levels at which we can further 

differentiate the decisions: stratum, time and mode. We can thus make seasonal component parameters and 

correlations dependent on mode and stratum, and even time. We explore four scenarios: seasonal component 

present or absent times correlation present or absent. 

Our objective is to find the most favorable of these four scenarios. Since there are many possible models, 

in analogy to Wu et al. (2023), we adopt a stepwise strategy to go from simple models to more advanced 

model. In evaluating performance, we consider two information criteria, Deviance Information Criterion 

(DIC, see Spiegelhalter, Best, Carlin and van der Linde, 2002) and Watanabe-Akaike Information Criterion 
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(WAIC, see Watanabe, 2010 and 2013). By providing a reasonable trade-off between model fit and model 

complexity, these measures are expected to select appropriate models for the prediction task of interest. 

They can be interpreted as approximations to leave-one-out cross-validation measures, and are relatively 

easy and cheap to compute from the MCMC simulation output (Vehtari, Gelman and Gabry, 2017). In 

building the models, we can choose from various random effects: white noise, a global time trend, random 

intercepts for each stratum and stratum-specific time trends. In addition, we can do this with or without 

season and have mode-independent or mode-dependent model parameters. We employ the following steps: 

1. Baseline model: Set up two baseline models, one without seasonal components and one with 

seasonal components. The two models have fixed mode effects and fixed effects of mode-specific 

auxiliary variables .  The difference between the two models is whether seasonality   is 

included. 

2. Basic trend: Add a single random effect, i.e., {global time trend },tu  {random intercepts for strata 

},gv  or {white noise },gte  to the models in 1. Each random effect is correlated with modes or 

made independent of modes. Examine whether the no-season or season-inclusive model in 1 is 

enhanced by one of the three random effects. 

3. Some stratum-dependence: Add a combination of two random effects, i.e., {global time trend ,tu  

random intercepts for strata }gv  or {random intercepts for strata ,gv  stratum-specific time trend 

},gtz  to the models in 1. Each random effect is correlated with modes or independent of modes. 

Examine whether the updated models outperform the models in 2. 

4. Moderate stratum-dependence: Add a combination of three random effects, i.e., , , },{ g tt gv eu  or 

, , },{ g tt gv zu  to the models in 1. Each random effect is correlated with modes or independent of 

modes. Examine whether the updated models outperform the models in 3. 

5. Full stratum-dependence: Add all random effects to the models in 1. Each random effect is 

correlated with modes or independent of modes. Examine whether the complete combination 

makes the model performance best. 
 

Table 4.1 presents the results of the five steps. As seen in each row of Table 4.1, the models with and 

without seasonality are evenly matched at fitting and predicting. The information criterion (IC) results of 

the two baseline models (Model 1) show that the with-season model performs slightly better than the no-

season model. This advantage continues with the addition of some random effects (see Models 1, 3 and 6), 

as the inclusion of seasonality   yields lower ICs. On the other hand, the with-season models have slightly 

worse performance as can be seen in Models 2, 4, 7, 8, and 9. Notably, the results of Model 5 show mixed 

results. The DIC results favor modeling seasonal effects in accurate propensity predictions, but WAIC 

cannot conform to this. 

Concerning the balance between model complexity and model fitness, the mode-independent models 

perform barely as well as the mode-correlated models, even though they slightly outperform (Model 5 for 

the no-season model and M6). 
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Table 4.1 

ICs and effective number when evaluating the model fit and complexity.  
 

Model Fixed effect Random effect 
DIC DICp  WAIC WAICp  

IND COR IND COR IND COR IND COR 

1 
  

- 
6,808 18 6,817 28 

,   6,800 25 6,813 38 

2 
  

tu  
6,504 6,504 67 67 6,509 6,509 72 72 

,   6,506 6,505 70 70 6,510 6,510 74 74 

3 
  

gv  
6,775 6,774 26 26 6,786 6,785 36 36 

,   6,768 6,767 32 32 6,781 6,780 46 45 

4 
  

gte  
6,602 6,601 322 321 6,479 6,479 200 200 

,   6,609 6,608 322 321 6,488 6,487 201 200 

5 
  

,t gu v  
6,488 6,490 147 146 6,472 6,475 131 130 

,   6,474 6,472 77 77 6,477 6,476 80 81 

6 
,   

,g gtv z  
6,494 6,495 143 144 6,481 6,482 130 129 

,   6,488 6,490 147 146 6,472 6,475 131 130 

7 
  

, ,t g gtu v e  
6,449 6,448 195 194 6,398 6,396 143 142 

,   6,453 6,452 191 191 6,404 6,402 142 142 

8 
  

, ,t g gtu v z  
6,396 6,395 109 108 6,381 6,380 94 94 

,   6,398 6,397 112 111 6,382 6,381 96 95 

9 
  

, , ,t g gt gtu v z e  
6,398 6,398 137 137 6,371 6,371 110 110 

,   6,400 6,397 132 134 6,375 6,372 108 108 
Note: The time series of 2014 to 2017 is fit to a mode-independent model (“IND”) and a mode-correlated model (“COR”). Each model is 

simplified using the fixed-effect components only and then accommodating the correlation over time or between modes by taking several 
random effects into account. 

 DIC = Deviance Information Criterion; 
 WAIC = Widely Applicable Information Criterion. 

 

With random effects considered, the mixed models become better because they cause a decrease in ICs, 

in contrast to the models including fixed effects only (Model 1). Comparing Model 2-4 to Model 1 entails 

either the no-season or with-season model is improved by introducing a single random effect, where global 

time trend tu  induces the greatest decrease in ICs, followed by white noise gte  and a random intercept for 

strata. Such improvement persists in ICs when applying the combinations of two random effects, as 

indicated by the comparisons of Model 5 to Model 2 and Model 3, and Model 6 to Model 3. Apparently, 

Model 5 has the most significant decrease in ICs thus far. Models 7 and 8 show that the models can be 

enhanced further with the addition of white noise gte  and stratum-specific time trend gtz  to Model 5, and 

Model 8 makes ICs decrease more than does Model 7. Including white noise gte  is of value to improved 

performance, as it adds little in lowering the WAIC of Model 9 despite the scarce contribution made to DIC. 

As Model 9 shows, the mode-correlated and mode-independent models (COR and IND columns, 

respectively) perform similarly in terms of ICs when seasonality is overlooked. however, for the with-season 

models, modeling correlations (the COR column) come first in IC scores relative to the IND column. 

However, it is difficult to conclude that the with-season model has an absolute advantage over the no-season 

model in terms of model fitness and complexity. To identify whether seasonal effects play a vital role in 

adaptive allocations, we consider both the no-season and with-season models (marked in red) in Section 4.4. 
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4.3 How sensitive is ASD performance to the specified budget level? 
 

This research question is concerned with how, given a budget level, we adapt allocations for CAWI 

nonresponses across strata to lower the risk of nonresponse the most. It also raises the question of whether 

such a reduction can be sustained across different budget levels. 

We answer this question by first minimizing (3.6) subject to (3.5) and (3.7) for the next data collection 

quarter when the budget level is specific, then by comparing the optimum (3.5) to the realized CV under the 

same budget level, and finally by comparing the optimum (3.5) under different budget levels. We focus on 

the next quarter because in the static case, the number of CAWI respondents is unknown until data are 

collected and because the sufficient sample of a quarter can ensure the prediction precision. Referring to the 

optimization strategy in Section 3.3, the evaluation procedure in quarter q  is 

1. Let budget level h  begin at 100% and then successively decrease in steps of 10%, i.e., h {1, 

0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}. 

2. Identify the forthcoming quarter q  and set data in q  as the test data set. 

3. Set time-series data up to quarter 1q   as the training data set for estimating the selected models. 

The models are made of the components in Model 9 that are viewed as the “best” representation. 

4. Use the sample size in q  to simulate CAWI responses. For each stratum and each month within 

,q  3,000 draws are generated from posterior predictive distributions. 

5. Based on the simulated model in step 3, individual posterior predictions of CAWI and conditional 

CAPI are generated separately 3,000 times for each stratum and each month in .q  

6. Substitute the specified budget level h  and the CAWI responses simulated in step 4 into cost 

constraint (3.7). 

7. Compute mixed propensities by substituting level h  and individual predictions in step 5 into 

(3.3). 

8. Initialize three starting solutions of allocations probabilities, s {0, 0.5, 1}, each of which applies 

to 13 strata simultaneously. 

9. Start from each initial point in step 8 to find the optimal solutions for each stratum by solver 

auglag based on steps 6 and 7. 

10. Link the identified solutions to the actual sample for computing posterior CV predictions and CV 

realizations. 

11. Conduct comparison by repeating steps 2-10 for each budget level in step 1. 
 

0s   indicates no CAPI follow-up, s  0.5 means half of CAWI nonresponses are assigned to CAPI, 

and 1s   represents full CAPI follow-up. To distinguish different mode strategies and ease notation, the 

CAWI-only, nonadaptive, and adaptive designs are denoted w, w-Ap, and w-Np throughout. 

In Figure 4.1 the posterior CV predictions of 2017 Q1 are summarized for each budget level; see 

Table B.1 in Appendix B for the bias-adjusted CV results. We benchmark the w-Ap performance as a 

function of budget level h  against the performance of w and w-Np. For brevity, CVs for the CAWI-only, 

nonadaptive, and adaptive are simplified to CV(w), CV(w-Np) and CV(w-Ap). 
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Figure 4.1 Comparison of coefficients of variation (CVs) of model-based response propensity predictions to 
bias-adjusted CV observations in 2017 Q1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The CV estimates are made separately for CAWI-only (“w”), nonadaptive (“w-Np”) and adaptive (“w-Ap”). The posterior CV predictions 

are summarized by the 95% credible region, while the observations are marked by scatter points (“x”). 

 
Comparison of CV(w-Np) to CV(w) indicates that recruiting CAWI-nonresponses via CAPI can 

decrease nonresponse, as the 95% credible region (CI) of posterior CV(w-Np) is much narrower than that 

of CV(w), and the 97.5% quantile of posterior CV(w-Np) is far below the 2.5% quantile of CV(w). When 

h  100%, a further decrease in the overall variation can be achieved by the optimized allocations of the 

adaptive survey. Posterior predictions and observations of CV(w-Ap) deviate from 0.1 and move toward 0 

relative to the 2.5% quantile of CV(w-Np), yet the broader CI for the adaptive approach indicates that 

prediction accuracy is compromised moderately. Because CIs scarcely alter when the budget is cut from 

90% to 50%, the uncertainty reduction associated with CV(w-Ap) is unlikely to increase by more than 

100%. This implies that in the interval of levels 100% to 50%, the low budget performs as well on the 

estimated nonresponse risk as does the high budget. The upper limits of CIs appear to approach and even 

run beyond the observed CVs; for instance, at the 50% level, the observation overlaps with the posterior 

mean. 

The nonresponse risk rises with continued shrinkage of the budget since the estimates of CV(w-Ap) 

increase and point to an increased risk of nonresponse bias. For budget levels smaller than 50%, the 

allocation scheme identified puts more uncertainty on the posterior estimates of overall variation. In 

addition, the lower limits move toward and even far beyond 0.1 when the level is 20% or 10%, for which 

the solver ends up at a false local “optimum” due to the violated convergence criteria. For the 10% level, 

the allocation scheme is especially of less interest and loses its edge, as shown by exactly the same 
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CV(w-Ap) as CV(w). To determine which budget level is preferred most, we adopt a criterion, i.e., the 

relative cost defined as the overall cost of the adaptive size for CAPI relative to the nonadaptive size 

constrained by the budget level. See Table B.3 for the results of the relative cost under different levels in 

Appendix B. 

Optimized reallocations make adaptation performance consistent across relatively large budget levels 

(100%-50%). Additionally, adaptation, although it loses precision slightly, wins nevertheless at the smaller 

estimated nonresponse risk compared to the w and w-Np designs (red and green error bars). Up to a 40% 

budget level, performance reverses and moves in the opposite direction, implying that the nonresponse risk 

grows sharply. This overall behavior is expected to be relatively robust to reasonable variations in model 

choice, as both budget extremes leave no freedom in ASD allocation to compensate for differences in 

response propensities. 

 
4.4 How does the performance of adaptive designs depend on the available 

historic data? 
 

This question is a matter of examining how the accumulating historic time series influences the adaptive 

design performance, that is, the nonresponse risk measured by CV and the bias-variance balance measured 

by RMSE. To answer this question, we explore the performance of w, w-Np, and w-Ap designs at the 

calendar quarter level. Additionally, we benchmark the adaptive performance against the performance of w 

and w-Np. 

We compare and evaluate the models with/without the inclusion of seasonality and budget levels of 50% 

and 30%. Section 4.2 hints that seasonality is an ignorable factor since the models with and without this 

score have similar fitness and complexity. Section 4.3 implies that in a specific time window, budget level 

50% promotes ASD performance most cost-effectively, and the ASD loses its absolute advantage for 

smaller values. The performance’s sensitivity to the time-series length is less clear if the models consider 

seasonality and/or the budget level is less than 50%, so it is premature to skip them in the analysis. By 

crossing the two conditions, comparisons can be made simultaneously in the four scenarios of the models: 

(1) with the inclusion of seasonality and level 50%, (2) with the inclusion of seasonality and level 30%, (3) 

without the inclusion of seasonality and level 50%, and (4) without the inclusion of seasonality and level 

30%. 

To explore the sensitivity to the historic time-series length, the analysis is performed on a rolling basis 

by adding one month at a time. Recall that the initial historic time-series length should be at least one year 

for the models without the inclusion of seasonality (scenarios 3 and 4) but at least two years for the models 

with the inclusion of seasonality (scenarios 1 and 2). For each, the training process ends in 2017 Q3 because 

one quarter should be left for prediction. 

In Figure 4.2, the uncertainty about the estimated CVs that is assessed by the 95% credible region, and 

the posterior means together, are compared to the CV observations over quarters and between different 

designs. In the w and w-Np designs, the observed CVs fall within the intervals or are very close to the 
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intervals’ limits in most quarters, with the exception of CV(w) at 17 Q3. The ASD results in panels A1, A2, 

and B2 support this finding. Additionally, observations far outside of the CIs appear in 15 Q2 of Panel B2 

and 17 Q1 of Panels A2 and B2. The exception implies that in corresponding quarters, it is less convinced 

of the evaluated adaptive performance duplicating the performance in practice. 

 
Figure 4.2 Under a given budget level, the posterior coefficient of variation (CV) for the adaptive, nonadaptive, 

and CAWI-only against the observations over quarters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: 95% credible regions with posterior expectations are summarized for CAWI-only (w), nonadaptive (w-p), and adaptive (w-Ap). Observations 

are denoted by the black cross “x” points. Panels “A” are plotted for with-season models, and panels “B” are plotted for no-season models. 
Panels “A1” and “B1” correspond to budget level 50%, while panels “A2” and “B2” correspond to budget level 30%. The quarter on the x-
axis denotes the present quarter for prediction purposes. 

 

As mentioned before in Section 4.3, the performance for adaptive designs under level 50% is consistently 

superior to the performance under level 30% across quarters, as shown by comparing A1 to A2 or B1 to B2. 

At 50%, the estimated CV(w-Ap) is more precise because of the narrower credible regions, which can be 

seen implicitly. Moreover, we can observe the absolute advantage of adaptive designs in outperforming 
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nonadaptive designs since the upper limits of CV(w-Ap) deviate substantially from the lower limits of 

CV(w-Np), but at 30%, they are competitive, for example, 17Q1 and 17Q2 (see panels A2 and B2). 

As historic data accumulate, it is conjectured that the models can be optimized further, the CV prediction 

accuracy can show a consistent increase, and the resulting performance can be improved. Clearly, this is the 

case in panel B1 until 16Q4, but from that point onwards, there appears to be no room for improvement in 

performance, and the posterior estimates of CV (w-Ap) stabilizes at approximately 0.1. The results for 

panels A1 and B1 are similar, so that it must be concluded that modeling seasonality contributes little to 

prediction accuracy. 

Jumping to conclusions on the ASD performance’s robustness is dogmatic for two reasons. First, some 

strata may benefit more than others. Their individual CV estimates may be less biased and vary toward the 

seasonality-inclusive option despite little difference in the overall variation. Second, the sample sizes in 

some strata are quite small. In early data collection phases, they may have volatile behavior in the error-

variation balance. The historic time-series length determined based on those results is not a guarantee of 

robustness. 

Therefore, we evaluate individual strata performance measured according to the criteria in Section 3.4. 

As above, we apply the sliding time window approach moving forward on a time series. To illustrate, this 

is used in nonadaptive designs. With an application to ASDs, allocations must be reoptimized for the 

upcoming time window using the strategy in Section 3.3. 

The time window slides as the width is increased to include the next upcoming new time period. In 

quarter q , we can evaluate the prediction performance for each stratum by substituting individual posterior 

response propensity estimates and individual realizations into (3.8)-(3.10), that is, RMSE ( , ),g q  ( , )B g q  

and SD( , ).g q  Since this analysis is iterated on a rolling basis, a sufficiently long time series allows for 

thorough comprehension of how each stratum prediction performance changes with time. 

Figure 4.3 shows that when comparing the no-season models (red curves) and with-season model (black 

curves), the introduction of seasonality is unlikely to be a trigger for an effective reduction in bias and 

variance. This is solidly true for almost all quarters, with the exception of the quarter involving months 

2017-01 to 2017-03 in some strata (such as stratum 8) for the bias and RMSE estimates. As observed in 

panels a and b, the estimated variation in response propensity decreases smoothly overall, in sharp contrast 

to the estimated level of response propensity having volatile behavior. The volatility differs by strata. The 

estimated bias results of some strata (strata 1-8) fluctuate approximately 0.05 across quarters until the 

quarter starting in 2017-01. After that point, they experience a transient increase caused by the technical 

issue at that time (Wu et al., 2023 for more discussion and a possible remedy). When the training data are 

extended to include “normal” data, the biases can quickly decrease to 0.05. Note that stratum 8 acts in the 

opposite manner. In contrast, strata 9-13, which have relatively small sample sizes, obtain relatively more 

biased response propensity expectation estimates in most quarters. 
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Figure 4.3 One-step forward moving averages of estimated bias (panel a), standard deviation (panel b), and 
root mean square error (panel c) of the stratum level response propensity.  

 
Model without seasonality [black line], Model with seasonality [red line]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: The “black” curve represents to the no-season model, while the “red” curve refers to the with-season model. Both models include the 
correlations between CAWI and CAPI regarding propensity predictions. The horizontal axis represents the time point at which an ASD 
decision is made. 

 

Ultimately, the analysis results suggest that when modeling a short time series, the seasonal effects, when 

they are assumed to be the same for different modes, can be less important to the improvement of ASD 
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performance. With more data available for training, the ASD performance can be consistently improved 

until a time point, implying that a stopping rule of data collection may be implemented and an effort-based 

strategy for strata of small sample sizes may be adopted. 

 
5. Discussion 
 

Given the survey budget, ASD seeks the optimal match between respondent behavior and design 

features, i.e., a set of decision rules, which can be determined through optimization approaches (see 

Schouten et al., 2017 for pros and cons of various approaches). Serving as the main input for ASD 

optimization, accurate estimates of survey design parameters, such as response propensities, are required 

for reliable strategies. Strictly speaking, inaccuracy jeopardizes ASD performance and design due to the 

suboptimal and ineffective decisions made in the optimization approach. Adverse impacts are apparent when 

response propensities change gradually over time. 

In this paper, we discussed a methodology to evaluate the impact of temporal factors (e.g., seasonality) 

on the accuracy of sequential response propensity predictions in a mixed-mode survey with replication, and 

investigated the manner and timeliness of applying the optimal allocation schemes to population strata. We 

introduced a Bayesian multinomial time-series model for sequential response propensities and an 

optimization model for ASDs. The propensity model had a general form that described multiple time-related 

and strata-related factors, and accounted for the dependence of the current mode’s response propensities on 

the preceding modes’ response behaviors. The optimization model, on the other hand, enabled the inclusion 

of uncertainty in the follow-up workload, and described the way to allocate reviewers to each stratum for 

the largest decrease in nonresponse risk. Most cross-sectional mixed-mode or unique-mode surveys 

conducted over many years can fit into this framework. Furthermore, we constructed an analysis for the 

GEZO survey to examine the highest performance of the propensity model. Owing to diverse model 

compositions, information criteria measuring the fitness and complexity of the propensity model were 

adopted to compare the performance of different models. We were thus able to meet the first objective of 

this paper to select and construct the “favorite” time-series model (Model 9 having lowest information 

criteria scores) that contributed most to prediction accuracy for a sequential mixed-mode survey. 

The second and third objectives were to examine the sensitivity of ASD performance to, respectively, 

the specified budget level and the amount of historic data that were included. In the evaluation, ASD 

performance had to be reoptimized when the budget level and/or the length of applicable historic data time 

series were updated. Then, we benchmarked ASD performance against CAWI-only and nonadaptive design 

performance. This analysis is essentially a comparison of the reduction in the nonresponse risk if a fraction 

of CAWI nonresponses (with no follow-up at all and full follow-up as special cases) is assigned to 

interviewers. To make this comparable for a range of scenarios, we utilized the properties of the posterior 

distributions, that is, the credible region and expectation. The evaluation examined, in a specific time 

window, the improvement in performance under different budget levels. Additionally, the evaluation 
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examined, for a specific budget level, the improvement over rolling time windows. The evaluation showed 

that ASD performance was quite solid for budget levels greater than 50%, but was inferior to budget levels 

less than 50%. Additionally, the evaluation showed that without taking seasonality into account, ASD 

performance was obviously enhanced in the early stage of accumulating data. After that, this trend slowed 

and even stopped despite increasing, performing almost the same as the with-season model, and 

consequently hinted at seasonality being of little use to further improvement in prediction accuracy and 

ASD performance. 

Our study has limitations that ask for further research and replication in other mixed-mode surveys. 

Ignoring mode-specific seasonal effects was our first simplification. This eased the complexity of the 

model specification but led to seemingly offset seasonal effects on propensity predictions. However, we 

believe that one can conveniently accommodate seasonal effects specific to each model to the adjusted 

model if seasonality is supposed to be a strong predictor for propensity predictions.  

To ensure prediction accuracy and reliability, we considered only two candidate data collection strategies 

(web only and web followed by face-to-face) as the second simplification. The number of CAPI visits to 

sample units may be further tailored, and the optimization may include the actual number of visits. Response 

propensities after each visit can be modeled and estimated simultaneously, and the predictions of a follow-

up mode could be assumed correlated only with its nearest predecessor. Such an application is easy, but it 

entails careful checking of the predictions’ reliability. 

The third limitation, was that our propensity model was sensitive to structural design changes (see Wu 

et al., 2023 for more discussion) As a result, in the case study of this paper, we noted a temporary 

misspecification in the prior distributions of response propensities. In an effort to characterize unexpected 

change, it is of importance to pinpoint the parameters (and strata) that have been affected. Robustness can 

then be improved by extra hierarchical model parameters. We leave this extension to further research. 

Our last limitation was that in our multi-level time series models we assumed that ASD strata were 

specified beforehand. We did not integrate a variable selection step into the model fitting and optimization. 

When the number of auxiliary variables is large, there is a trade-off between the learning time of the 

Bayesian analysis of response propensities and the utility of the optimization, This is an important topic for 

further research. 

The inclusion of paradata and other time-varying covariates in the multi-level time series models would 

be another relevant extension. This would allow optimization in a dynamic setting, i.e. during fieldwork. In 

a face-to-face interviewer setting, such a dynamic approach is not operationally straightforward. Interviewer 

workloads become known only at a point in time close to fieldwork and at set time points, often monthly. 

To a lesser extent, this would be true for telephone follow-up. A practical solution, applied by Statistics 

Netherlands, is to add a random subsampling of nonrespondents. The subsampling probabilities depend on 

pre-specified and fixed workloads in interviewer regions. Going even a step further and allowing a dynamic 

design to intervene during face-to-face follow-up may be considered as well. In order to leave some freedom 

to interviewers, this may be implemented as one or more pre-specified tie points where sample units are 
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stopped or not. Abstracting further to general (sequential) data collection phases, it would be worthwhile to 

extend the methodology of this paper. Such an extension has three statistical challenges. The first is the 

inclusion of new incoming auxiliary data, e.g. paradata, in the model and optimization. If and how to include 

will be a trade-off between efficacy and efficiency. The second is that much more emphasis needs to be put 

on the right specification of covariances of response propensities of different data collection phases. 

Misspecifications proliferate in subsequent phases. The third is that optimization must be performed during 

data collection, demanding for some parsimony in ambition. 

 
Appendix A 
 
Table A.1 

Auxiliary variables form 13 strata and season is considered as an influential factor to predict response 

propensities. 
 

Stratum Age (years) Ethnic 

1 0 – 17 Western 
2 18 – 24 Western 
3 25 – 34 Western 
4 35 – 54 Western 
5 55 – 64 Western 
6 65 – 74 Western 
7 75+ Western 
8 0 – 17 Non-western 
9 18 – 24 Non-western 

10 25 – 34 Non-western 
11 35 – 54 Non-western 
12 55 – 64 Non-western 
13 65+ Non-western 

 
Appendix B 
 
Table B.1 

The bias-adjusted (adj) and unadjusted (unadj) CV observations and the standard errors (se) under bias 

adjustment in 2017 Q1 under different budget levels. 
 

 W w-Np w-Ap 

 unadj adj se unadj adj se unadj adj se 

0%* 0.305 0.294 0.023 - - - - - - 
100% - - - 0.156 0.149 0.013 0.102 0.072 0.021 
90% - - - - - - 0.093 0.084 0.021 
80% - - - - - - 0.104 0.074 0.020 
70% - - - - - - 0.092 0.078 0.021 
60% - - - - - - 0.093 0.084 0.021 
50% - - - - - - 0.106 0.052 0.020 
40% - - - - - - 0.114 0.072 0.021 
30% - - - - - - 0.136 0.115 0.022 
20% - - - - - - 0.259 0.237 0.022 
10% - - - - - - 0.305 0.294 0.023 

*No budget indicates only the CAWI mode is used. “-“ means no results. w: CAWI-only, w-Ap: nonadaptive, w-Np: adaptive designs. 
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Table B.2 

The bias-adjusted (adj) and unadjusted (unadj) CV observations and the standard errors (se) of bias adjustment 

under the 100% budget level in each quarter. 
 

Year 
Quarter  

w w-Np w-Ap 

unadj adj se unadj adj se unadj adj se 

2016 

Q1    - - - - - - 
Q2 - - -       

Q3 - - - - - - 0.093 0.084 0.021 
Q4 - - - - - - 0.104 0.074 0.020 

2017 

Q1 - - - - - - 0.092 0.078 0.021 
Q2 - - - - - - 0.093 0.084 0.021 
Q3 - - - - - - 0.106 0.052 0.020 
Q4 - - - - - - 0.114 0.072 0.021 

Note: w: CAWI-only, w-Ap: nonadaptive, w-Np: adaptive designs. 

 
Table B.3 

The relative cost (c) of 2017 Q1 under different budget levels for adaptive surveys.  
 

 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 
c 0.425 0.473 0.532 0.608 0.709 0.851 0.983 1.311 1.966 0.977 
C TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE 
Note: The allocations in each case are determined by the optimization solver “auglag” starting with initial point 0 set to 13 strata. If the 

convergence (C) is TRUE, the local optimum can be found, and the corresponding allocations are returned; otherwise, the process results 
in a false local “optimum”. 
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Bayesian predictive inference of a finite population mean 
without specifying the relation between the study  

variable and the covariates 

Ashley Lockwood and Balgobin Nandram1 

Abstract 

While we avoid specifying the parametric relationship between the study variable and covariates, we illustrate 
the advantage of including a spatial component to better account for the covariates in our models to make 
Bayesian predictive inference. We treat each unique covariate combination as an individual stratum, then we use 
small area estimation techniques to make inference about the finite population mean of the continuous response 
variable. The two spatial models used are the conditional autoregressive and simple conditional autoregressive 
models. We include the spatial effects by creating the adjacency matrix via the Mahalanobis distance between 
covariates. We also show how to incorporate survey weights into the spatial models when dealing with probability 
survey data. We compare the results of two non-spatial models including the Scott-Smith model and the Battese, 
Harter, and Fuller model to the spatial models. We illustrate the comparison between the aforementioned models 
with an application using BMI data from eight counties in California. Our goal is to have neighboring strata yield 
similar predictions, and to increase the difference between strata that are not neighbors. Ultimately, using the 
spatial models shows less global pooling compared to the non-spatial models, which was the desired outcome. 

 
Key Words: Conditional autoregressive model; Hierarchical Bayesian model; Simple conditional autoregressive model; 

Spatial modeling. 

 
 

1. Introduction 
 

In this paper, when making inference about the finite population mean, we refrain from assuming a 

relationship between the response variable and the covariates. We avoid making the strong assumptions of 

regression models, and therefore increase the number of situations our models can be applied to. The 

methods we present avoid defining this relationship by considering each unique combination of the 

covariates in the population as an individual stratum. We accommodate the covariates by using the spatial 

model instead of a regression model. Then, we use small area estimation techniques to make inference about 

each stratum of the population based on its underlying covariates. Finally, we can understand the overall 

population by pooling predictions of the strata together (Rao and Molina, 2015). 

We present two versions of spatial models, a conditional autoregressive (CAR) model and a simple 

conditional autoregressive (SCAR) model (Chung and Datta, 2022). For the spatial models, we include the 

spatial effects by creating the adjacency matrix via the Mahalanobis distance between the covariates for 

each stratum. We use these spatial models to create a neighborhood relationship between similar strata to 

allow for less global pooling to the overall sample mean. By allowing strata to have neighbors, we expect 

neighborhoods to pool together without remote strata pooling together. Using a spatial model versus a non-

spatial model should provide posterior predictions with a larger variation between predicted stratum means. 
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We also present two non-spatial models for comparison, a form of the Scott-Smith model (Scott and 

Smith, 1969) and a form of the Battese, Harter, and Fuller (BHF) model (Battese, Harter and Fuller, 1988). 

The BHF model is a more general version of the Scott-Smith model that includes covariates in the model, 

whereas the Scott-Smith model does not. We use both non-spatial models as a baseline for comparison to 

see how including a spatial relationship in the models impacts the results. Appendix A contains the full 

technical details of the Scott-Smith model, and Appendix B contains the technical details of the BHF model. 

Furthermore, Datta and Ghosh (1991) expand upon the research conducted by Battese, Harter and Fuller 

(1988), offering a comprehensive analysis of the nested error regression hierarchical Bayesian model, with 

a particular focus on small area estimation. This work significantly advances the generalization of 

computational formulas for deriving Bayesian predictors and their associated standard errors. However, it’s 

notable that the approach in Datta and Ghosh (1991) continues to utilize mixed linear models, which 

explicitly establish the relationship between covariates and the response variable. In contrast, our 

methodology in this paper intentionally avoids such explicit relationship definitions, resulting in significant 

methodological divergence. 

There are many traditional regression models that make inference about a characteristic of a population, 

including logistic regression, general linear models, general multivariate normal models, and classification 

and regression tree (CART). See Lindley and Smith (1972), Ghosh, Natarajan, Stroud and Carlin (1998), 

Albert and Chib (1993), Box and Tiao (1973), and Chipman, George and McCulloch (1998) for detail about 

each model. While these models have been widely used throughout history, the strong distribution 

assumptions made to properly use these models limits the types of data and situations available for 

application. 

There also exists other models without regression coefficients that answer a similar question, including 

Dirichlet processes, Polya urn scheme, and Bayesian additive regression trees (BART). See Blackwell and 

MacQueen (1973), Antoniak (1974), Yin and Nandram (2020), Teh, Jordan, Beal and Blei (2006) and 

Chipman, George and McCulloch (2010) for information about these alternative models. Dirichlet processes 

and Polya urn schemes are popular in Bayesian modeling, however these complicated computations can 

lead to poor mixing in the Markov chain Monte Carlo (MCMC) algorithm. BART is a newer approach, but 

this method violates traditional Bayesian logic by double use of the data. The data are used in the likelihood 

of the BART model, and then again in a data-informed prior for two hyperparameters (Hill, Linero and 

Murray, 2020). We aim to improve the computation of models without regression coefficients while 

maintaining the coherence of the Bayesian paradigm. 

For the remainder of the paper, we discuss the methodology of the two spatial models as well as an 

extension of including survey weights into the models in Section 2. Then in Section 3, an application using 

BMI data with each of the models is given, followed by a conclusion in Section 4. Appendix A contains 

technical details for the Scott-Smith model, and shows how to include survey weights in this model. 

Similarly, Appendix B contains technical details for the BHF model and shows how to include the survey 

weights. 
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2. Methodology 
 

In this section, we show two spatial models and how we include survey weights in the spatial models. 

First, in Section 2.1 we present the two spatial models with the CAR model in Section 2.1.1 and the SCAR 

model in Section 2.1.2. Then, Section 2.2 illustrates how the survey weights can be included in the spatial 

models presented in Section 2.1. The methodologies for the Scott-Smith model and the BHF model can be 

found in Appendix A and Appendix B, respectively. 

In all four models we observe a continuous response variable ijy  for sampling unit = 1, , ,ij n…  

belonging to stratum =1, , ,i …   and these responses are grouped together based on their covariate values. 

Each possible combination of covariates is taken into consideration, and each unique combination is 

considered to be a stratum. Therefore, each y i  has a unique corresponding covariate combination denoted 

,xi  where yi  is the aggregated vector of responses of length in  for each stratum. The covariate matrix 

 =X xi
  has dimension p  where p  is the number of covariates in the data. The matrix X  does not 

include an intercept column, and xi  corresponds to the unique rows of .X  We make inference about the 

finite population mean, 
=1

= ,iN

i ij ij
Y y N  based on the observed values of .y i  Denote the sampling fraction 

as = ,i i if n N  where in  represents the sample size and iN  represents the population size for a given 

stratum. The iN  in our application are unknown and we discuss later how to estimate them using inverse 

probability weighting. Whenever feasible, utilizing the actual population sizes, ,iN  is optimal and 

preferred. When dealing with an exceptionally high number of strata, the estimations of iN  may become 

increasingly susceptible to noise. 

 
2.1 Spatial models 
 

For the spatial models, we include the spatial effects by creating the symmetric adjacency matrix, W  of 

size ,   via the Mahalanobis distance between ix  and ix  for =1, , ,i …   = 1, , ,i …   and .i i  The 

Mahalanobis distance is defined as: 

    1= ,ii i i i id 
  

 x x S x x  (2.1) 

where S  is the covariance matrix of ,X  and = 0.iid  We define W  by letting = 1iiw   if 0iid d   and = 0iiw   

if 0>iid d  with zeroes on the diagonal (i.e., = 0).iiw  A grid search is conducted to determine the value 0d  

that yields a W  matrix that maximizes Moran’s ,I  which is defined as: 

 
  

 
2

..

= ,
ii i ii i

ii

w y y y y
I

w y y

 
 



 



 (2.2) 

where 
1

= in

i ij ij
y y n

  is the response variable; 
=1

= ii
y y


  is the overall sample mean response; iiw   

corresponds to the elements of ;W  and .. = .iii i
w w   

In Section 2.1.1 we describe the conditional autoregressive (CAR) model and in Section 2.1.2 we state 

the difference between this model and the simple conditional autoregressive (SCAR) model. 
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2.1.1 CAR model 
 

The Bayesian hierarchical CAR model is: 
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μ
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… … 

∼

∼

∼

 (2.3) 

where   in this case represents the total number of possible covariate combinations which are considered 

to be the individual strata. We discretize any continuous variables so there is a finite number of possible 

covariate combinations. Then, we store the continuous responses, ,y i  such that there are in  responses for 

each stratum =1, , .i …   Here R  is a diagonal    precision matrix defined as  
=1

= diag i i
w R


 where 

=1
= in

i ijj
w w   is the sum of the thi  row of .W  Also, 1  is the minimum eigenvalue of 1R W  and   is the 

maximum eigenvalue of 1 ,R W  and since 
=1

= 0iii
w


 this results in 1 < 0 <   (Chung and Datta, 2022). 

Here,  R W  is guaranteed to be positive definite as long as   is in the range 
1

1 1 .  


 To obtain 

samples from the joint posterior density of this model, we can integrate out ,μ  ,  and 2 ,  and then we 

only need to draw   and   using a griddy Gibbs sampler (Ritter and Tanner, 1992). 

We can vectorize the continuous response variable, ,ijy  to be y  with dimension 1n  where 
=1

= ii
n n


 

such that: 

  2 2
( 1) | , Normal , ,n n nA  y μ μ∼ I  (2.4) 

where n nI  is the identity matrix and A  has dimension n   and can be defined as 

 

0 0

0 0
= ,

0 0

A

 
 
 
 
 
 

1

2

1

1

1





  

 

 (2.5) 

and 11  through 1  are vectors of ones with lengths corresponding to the number of observations in that 

stratum. Therefore, 11  is a vector of ones with length 1,n  21  is a vector of ones with length 2 ,n  and so on 

through .1  The purpose of writing the model in this way is so we can use the lemma from Section 2 in 

Lindley and Smith (1972) to obtain the posterior distribution of μ  which we draw samples of μ  from: 

 

     

   

1

1

1

2
1

1 1
| , Normal diag , , ,

1
diag , , .

μ y R W y R W 1

R W

n n A
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…
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∼

 (2.6) 
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Let  2= , , ,     for simplicity of notation. 

Another way of writing this spatial model to make it simpler to integrate out μ  would be: 
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 (2.7) 

Now, if we integrate out μ  from this model we are left with the posterior density: 
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where 
2

1
( )2

( 1)= .
ni

ij ij

i

y y

i ns 





 From this density, we can see that   follows a normal distribution: 
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where ˆ =  1Σy 1 Σ1  and    
1

111 1
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…  We can use this fact to integrate out 

,  so we have, 
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From this density, we can find the inverse-gamma distribution,  

    2 2

=1

1 ˆ ˆ| , , InvGam , ( 1) 2 .
2

i i
i

n
n s    

   
     

  
y 1 y Σ 1 y


∼  (2.11) 

Finally, after integrating out 2  we have the nonstandard joint posterior density, 

        
1

2
1/2 1/21 2

=1

ˆ ˆ, | det ( 1) .y Σ 1 y Σ 1 y 1 Σ1

n

i i
i

n s    

 

   
       

 



 (2.12) 

Using the griddy Gibbs sampler, we can draw samples of   and   from (2.12) (Ritter and Tanner, 

1992). We use the same conditional posterior density to draw both parameters using a grid method, however 
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the grids of   and   differ since their ranges of support are not equivalent. This method mixes well and 

converges quickly. Note that the griddy Gibbs sampler converges to an approximation of the posterior 

distribution of interest, rather than its exact form. Then, continuing in reverse order we can input our samples 

of   and   to directly obtain samples of 2  from (2.11), next   from (2.9), and finally μ  from (2.6). 

Obtaining samples of 2 , ,  and μ  is straight-forward since they all have known distributions. Based on 

our samples of ,μ 2  and the observed values of ,y i  we make inference for the finite population mean ,iY  

using the model:  

 
2ind

2| , , Normal (1 ) , (1 ) .i i i i i i i i

i

Y f y f f
N


  

 
   

 
y ∼  (2.13) 

We examine the performance of this model in Section 3.1 with an application using BMI data. 

 
2.1.2 SCAR model 
 

Here we describe the simple conditional autoregressive (SCAR) model and state the differences between 

this model and the previously discussed CAR model. The main computational difference between the two 

models is that in the CAR model the matrix R  is used in the variance of the prior on ,μ  and the SCAR 

model replaces R  with the identity matrix, ,I  hence simplifying the model. Therefore, the Bayesian 

hierarchical SCAR model is defined by (2.3) with .=R I  

Aside from the small computational changes mentioned, the distributions and methods we use to obtain 

a sample from the posterior density and the method we use to make inference about the finite population 

mean, ,iY  is the same as described in Section 2.1.1. We simply substitute R  for the matrix I  and use the 

updated values of 1  and   accordingly. We illustrate the performance of this model in Section 3.1 with 

an application using BMI data. 

In the SCAR model, the precision matrix is set to be the identity matrix, .I  While the diagonal elements 

of the precision matrix are all equal, the diagonal elements of the inverse may not be all equal thus allowing 

for heteroscedasticity of random effects. In the CAR model, diagonal entries of the precision matrix, ,R  

are the number of neighbors corresponding to each stratum. Therefore, the matrix R  weights each row by 

the number of neighbors it has, and acts as a normalizing matrix. Both the SCAR and CAR models assume 

that i  depends only on neighboring strata means and not on remote strata (Chung and Datta, 2022). Let 

= ,Q R W  then i  and j  for i j  are conditionally independent, conditional on all k  for ,k i j   

whenever = 0.ijQ  Note that in the CAR and SCAR models, it is important that   and   are not too small, 

because we want to emphasize the spatial structure in order to accommodate the covariates. 

 
2.2 Including survey weights 
 

In this section, we show how to include survey weights in the two spatial models we are advocating for. 

Here we use the original survey weights, denoted ijv  for = 1, , ,ij n…  and =1, ,i …  to calculate the effective 

sample size and the adjusted weights .ija  First, we calculate the effective sample size, ˆ :n  
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The effective sample size, ˆ,n  illustrates how severely the variance is increased by the unequal weighting 

(Nandram and Rao, 2021). Then, we calculate the adjusted weights, ,ija  which are used to eliminate the 

bias present in the original survey weights:  
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effective sample size. 

These adjusted weights ija  are able to be used in a model when the data do not have outliers present. 

However, in the BMI example in Section 3 our data do have outliers, so we use Winsorization which is an 

effective method to deal with outliers by trimming the survey weights (Yang, Nandram and Choi, 2023). 

Outliers here are defined as observed survey weights greater than 0 3=v Q  1.5  3 1 ,Q Q  where 1Q  is the 

first quartile and 3Q  is the third quartile. Let *v  denote weights after trimming,  
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These adjusted and trimmed weights ija  are used in both the CAR and SCAR model. 

 
2.2.1 Including survey weights in CAR model 
 

The CAR model with adjusted weights can be expressed by replacing the response variance in the first 

row of (2.3) from 2  to 
2

,
ija


  with ija  from (2.17). We use the same logic for obtaining a sample from this 

model with the adjusted weights as we used in Section 2.1.1. The difference is in how we make population 

predictions, by including the survey weights we now need to use surrogate sampling techniques. We obtain 

population predictions by: 

 
2
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μ … ∼  (2.18) 



472 Lockwood and Nandram: Bayesian predictive inference of a finite population mean without specifying the relation between… 

 

 
Statistics Canada, Catalogue No. 12-001-X 

where 
=1

ˆ = in

i ijj
N v  represents the Horvitz-Thompson estimator of population size for each stratum 

=1, , .i …   We no longer need to include the sample means, ,iy  or the sampling fraction, ,if  in this 

population prediction. 

Previously when making population predictions, we combined both the sampled part and non-sampled 

part of the population to obtain a sample of .iY  However, now that we are utilizing the survey weights from 

the probability sample we are able to use surrogate sampling techniques and no longer need to include the 

sampled part. The adjusted and trimmed survey weights, ,a  are used to simulate an unbiased sample from 

the population. With the adjusted and trimmed weights included in the model we must sample the entire 

population using surrogate sampling techniques, because the survey weights of both the sample and the 

nonsample are biased (Nandram, 2007; Nandram and Rao, 2021). Then, when we make population 

predictions in (2.18) we use the unadjusted survey weights for prediction since these weights accurately 

represent the entire population. We examine the performance of this CAR model with the inclusion of survey 

weights in Section 3.1 with an application using BMI data. 

 
2.2.2 Including survey weights in SCAR model 
 

Similarly, the SCAR model with adjusted weights can be expressed by replacing the response variance 

in the first row of (2.3) from 2  to 
2

,
ija


  with ija  from (2.17), and letting .=R I  

We use the same logic for obtaining a sample from this model with the adjusted weights as we used in 

Section 2.1.1. Similar to the CAR model with survey weights included we now need to use surrogate 

sampling techniques in the SCAR model with survey weights to make population predictions. We use (2.18) 

to make our population predictions in the SCAR model with survey weights included. We examine the 

performance of this SCAR model with the inclusion of survey weights in Section 3.1 with an application 

using BMI data. 

 
3. Application using BMI data 
 

When interested in the health of a population, the the BMI levels of individuals may be an important 

indicator. We illustrate our various non-spatial and spatial models using a probability sample of BMI data 

with 1,867 individuals from eight counties in California recorded in the Third National Health and Nutrition 

Examination Survey (NHANES III), (Nandram and Choi, 2005). The survey weights sum to 12,232,099, 

which means our sample accounts for 0.015% of the population. Examining the original survey weights, the 

effective sample size from (2.14) is 498, significantly lower than the observed sample size. Since the survey 

weights are right-skewed with a few large outliers, we apply Winsorization to trim the weights. This 

adjustment yields a rescaled effective sample size of 1,300 from (2.17), which is closer to the observed 

sample size. The adjusted and trimmed survey weights in (2.17) are more evenly distributed, and these are 

the weights utilized in this application. 
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These data have four variables we are interested in including age, race, sex, and a continuous measure 

of BMI in 
2kg/m .  The values for race are “white” or “non-white”, and the values for sex are “male” or 

“female”. The age variable is a continuous variable included in the data, and age ranges from 20 years old 

to 90 years old. We bin the age variable into groups of two years, therefore the bins are 20-21 years old, 22-

23 years old, and so on, in order to have a finite number of possible covariate combinations. This idea of 

binning variables is commonly used in practice, as it lessens the need to rely on exact accuracy of the data 

and allows for inference to be made about a broader age group. To fully encompass all potential covariate 

combinations present in the population when employing this model, we advise to bin all continuous 

covariates. In this BMI example, where the continuous age variables has inherent lower and upper bounds, 

these bounds will persist in the population. However, if such bounds do not naturally emerge in the data, 

they should be enforced through the use of bins to prevent groups in the population being unaccounted for 

in the sample data. The value for the continuous BMI response variable ranges from 15.8 
2kg/m  to 58.4 

2kg/m .  

After aggregating over all possible age, race, and sex combinations there are 144 strata each with its own 

unique set of covariate values. However, in our sample of BMI data we have 12 strata with no observations 

and we assume these are structural zeroes in the data. This means that we assume these 12 groups of 

individuals do not exist in our population. Therefore, the total number of strata, ,  in this case represents 

the total number of possible covariate combinations available in our sample and = 132  after removing the 

12 structural zeroes from the data. If we want to avoid making this assumption, we can mitigate the structural 

zeroes by using coarser groups of the covariates. Without making coarser groups, it would be necessary to 

have the known population total, ,iN  for each stratum we are including in the model. In this case, we would 

not need to rely on the survey weights to estimate iN  using the Horvitz-Thompson estimator of population 

size for each stratum =1, , .i …   

When expanding the number of covariates utilized in the model, the sparse nature of the adjacency 

matrix, ,W  facilitates the management of larger sets of covariates. If needed, coarser groups of the 

covariates can also be employed to decrease the number of covariate combinations and thereby mitigate 

computational costs. Furthermore, rather than solely focusing on maximizing Moran’s I  during the 

construction of the adjacency matrix, we have the option to prioritize achieving greater sparsity in the 

matrix. 

In Section 3.1 we illustrate and compare the results between the two spatial and two non-spatial models, 

with results both including and excluding survey weights. Then in Section 3.2, we show how including the 

spatial component in our models reduced the amount of global pooling, compared to the non-spatial models. 

 
3.1 BMI application model comparisons 
 

Before sampling from either of the spatial models, we first create the symmetric adjacency matrix, W  

of size 132 132,  using the Mahalanobis distance described in (2.1). To prevent the inclusion of an ordinal 

categorical covariate in the Mahalanobis distance calculation, we utilize the mean value of each age bin for 



474 Lockwood and Nandram: Bayesian predictive inference of a finite population mean without specifying the relation between… 

 

 
Statistics Canada, Catalogue No. 12-001-X 

the age covariate. Recall that we define W  by letting = 1iiw   if 0iid d   and = 0iiw   if 0>iid d  with zeroes 

on the diagonal (i.e., = 0),iiw  where 0d  is the value yielding the W  matrix that maximizes Moran’s I  

from (2.2). After conducting a grid search to determine the optimal value of 0 ,d  we attained the maximum 

value of Moran’s ,I  reaching =I 0.212 when setting 0 =d mean ( ) 38ijd  0.157. In general, we found 

decreasing 0d  increases Moran’s I  up to a certain point. In our case, if we continue to decrease 0d  to be 

less than 0.157, we will not see any increase in Moran’s .I  However, if we increase 0d  to be greater than 

0.157 then Moran’s I  will decrease. 

Now that we have ,W  we can proceed drawing samples from the CAR and SCAR models described in 

Section 2.1. Sampling from these models is extremely similar as they both begin using the griddy Gibbs 

sampler to obtain samples of   and   simultaneously (Ritter and Tanner, 1992). For the CAR model the 

grid interval for   is: (-1.94, 1) and for the SCAR model the grid interval for   is: (-0.390, 0.169). The 

grid intervals for   in these models differ since the range of   is based on the eigenvalues of 1R W  for 

the CAR model and the eigenvalues of W  for the SCAR model. The grid interval from the CAR model is 

better in the sense that it brings   closer to unity. We also present the results with the survey weights 

included in the CAR and SCAR models. 

We ran 10,000 iterations of the sampler, then dropped the first 1,000 sampled values and chose every 

9th sampled value to end with a final sample size of 1,000 for both parameters. In both the CAR and SCAR 

models, the griddy Gibbs sampler shows good performance as evident by the trace plots, auto-correlations, 

Geweke test of stationarity, and the effective sample sizes. For   and   the P-values for the Geweke test 

are 0.237 and 0.286, respectively, in the CAR model and 0.938 and 0.833, respectively, in the SCAR model, 

meaning both parameters pass stationarity requirements in each model. As seen in Table 3.1 in the CAR 

model excluding survey weights, the posterior means for   and   are 0.188 and 0.937, respectively, and 

in the SCAR model excluding survey weights, the posterior means for   and   are 0.044 and 0.165, 

respectively. Since it is important that   and   are not too small considering we want to emphasize the 

spatial structure that accommodates the covariates, then we prefer the CAR model which has larger values 

of both   and .  In the CAR model,   is close to unity which is a good sign that our spatial component 

will have more of an impact in the model compared to the much lower   value in the SCAR model. As   

and   decrease, our posterior standard error of the population predictions will also decrease. 

In Table 3.2, we observe that Y  in the SCAR model has a slightly lower posterior standard error 

compared to the CAR model, and this is due to the lower values of   and   in the SCAR model shown in 

Table 3.1. After successfully running the griddy Gibbs sampler to obtain values for   and ,  we continue 

to sample the remaining parameters 
2, ,  and μ  directly from their known posterior densities for both 

the CAR and SCAR models. Each model contains 136 total parameters that we then use to predict the BMI 

of the population using (2.13). The method for obtaining samples from the CAR and SCAR models with 

weights included is the same as described in the models with weights excluded, and the griddy Gibbs 

sampler has a very similar good performance (Ritter and Tanner, 1992). Making population predictions is 

different in the CAR and SCAR models when we include the survey weights, as shown in (2.18). 
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Table 3.1 

Posterior estimates of   and .  
  

 PM PSE CV 95% HPDI
Models excluding survey weights 

  (CAR) 0.188 0.045 0.244 (0.108, 0.289)

  (CAR) 0.937 0.050 0.054 (0.848, 1.000)

  (SCAR) 0.044 0.013 0.292 (0.021, 0.069)

  (SCAR) 0.165 0.004 0.026 (0.159, 0.169)

Models including survey weights 

  (CAR) 0.185 0.048 0.262 (0.098, 0.282)

  (CAR) 0.940 0.052 0.055 (0.851, 1.000)

  (SCAR) 0.042 0.013 0.316 (0.018, 0.068)

  (SCAR) 0.166 0.004 0.023 (0.159, 0.169)

Notes : PM = posterior mean; PSE = posterior standard error; CV = coefficient of variation; HPDI = highest posterior density interval; 
CAR = conditional autoregressive; SCAR = simple conditional autoregressive. 

 
Table 3.2 

BMI population prediction model comparison. 
  

  Predicted Y SE of Y CV of Y 95% HPDI of Y DIC

Models excluding survey weights 

CAR  27.402 0.091 0.003 (27.233, 27.584) -73.2
SCAR  27.418 0.088 0.003 (27.237, 27.579) -70.5
Scott-Smith  27.375 0.129 0.005 (27.117, 27.634) -61.0
BHF  27.347 0.132 0.005 (27.109, 27.608) -61.4

Models including survey weights 

CAR  27.070 0.100 0.004 (26.879, 27.263) -119.9
SCAR  27.090 0.100 0.004 (26.898, 27.268) -113.0
Scott-Smith  27.380 0.147 0.005 (27.070, 27.656) -55.5
BHF  27.294 0.161 0.006 (27.007, 27.614) -60.4

Notes : SE = standard error; CV = coefficient of variation; HPDI = highest posterior density interval; DIC = Deviance Information Criterion; 
CAR = conditional autoregressive; SCAR = simple conditional autoregressive; BHF = Battese, Harter and Fuller. 

 

A sample from the Scott-Smith model (presented in Appendix A) can be obtained directly without the 

need for any MCMC algorithm. Once we sample   using the grid method, then we can draw samples of 
2 , ,  and μ  in order from their known conditional posterior densities. Since there are 132 strata, our 

model contains , 1 132, , , …  resulting in 135 total parameters sampled in this model. A sample size of 1,000 

was used to predict each parameter of the Scott-Smith model. Once these parameters are obtained we are 

able to make predictions for the BMI of the population using (A.9). 

Similar to the Scott-Smith model, a sample from the BHF model (presented in Appendix B) can also be 

obtained without the need for an MCMC sampler. For this model, we sample   using the grid method, then 

we can draw samples of 
2 , ,β  and ν  in order from their known conditional posterior densities. This is the 

only model containing covariates directly in the model, so we have 0 3, , …  where 0  represents the 

intercept’s coefficient. Therefore, there are 138 total parameters that once sampled we are able to predict 

the BMI of the population using (B.12). A sample size of 1,000 was used to predict each parameter of the 

BHF model. The Scott-Smith and BHF models with weights included are fitted by sampling from the same 

posterior density as in the case of the models excluding weights. Only the population predictions are 

different. The population predictions can be made using (A.11) and (B.14) for the Scott-Smith and BHF 
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models with weights included, respectively. The Scott-Smith and BHF models are used as a baseline to 

compare to the performance of the spatial model. 

Table 3.2 contains the results of the population prediction of BMI for all four models, both excluding 

and including survey weights. In our application the response variable is BMI, therefore Y  represents the 

overall mean of BMI for the population of the eight counties in California. The results from the two non-

spatial models, the Scott-Smith and the BHF models, are very similar in all four measures of the posterior 

mean, posterior standard error (SE), coefficient of variation (CV), and highest posterior density interval 

(HPDI). The two spatial models, CAR and SCAR, also perform similar to each other. The CAR and SCAR 

models resulted in a slightly higher prediction of the posterior finite population mean BMI of the population. 

Both the CAR and SCAR models outperform the non-spatial models in terms of DIC, with the CAR model 

showing the lowest DIC value, closely followed by the SCAR model. The spatial models also have a smaller 

posterior standard error and CV which yields a tighter HPDI compared to the non-spatial models. Since 

strata are gaining strength from neighboring strata in the spatial models, we see the posterior standard errors 

decrease while the posterior means are more tailored to each neighborhood. Strata with a very small sample 

size are no longer relying on solely their limited number of observations in the spatial models, since they 

are now included in neighborhoods that collectively have a larger number of observations. In the models 

without the spatial component, predictions for strata are more general leading to more vague predictions 

centered around the overall sample mean with larger posterior standard error. 

Table 3.2 also contains the results of the population prediction of BMI when the adjusted and trimmed 

survey weights are included in the models. From the table we can see that the overall population prediction 

for the finite population mean BMI is similar to that of the models without weights. However, the posterior 

standard error and the CV increase in the models with the weights compared to the models without weights. 

Having larger standard error in turn also leads to the models with survey weights having wider HPDIs. By 

including the adjusted and trimmed survey weights in the model, we do expect the posterior standard error 

to increase since including the weights decreases the sample size to the effective sample size. Naturally, 

with a smaller sample size the posterior standard error will be larger. The DIC for both spatial models is 

significantly lower when adjusted and trimmed weights are included, indicating a preference for the spatial 

models with survey weights. 

Table 3.3 contains the results of the population prediction of BMI for all four models split by the eight 

counties included in our BMI survey data. The models were not fit to each county, rather the results were 

simply separated by county. The results for each county are similar to the overall results described from 

Table 3.2, however since the sample sizes are reduced when we group by county then the posterior standard 

errors will increase due to this smaller sample size. All of the counties have roughly the same sample size, 

except for County 3 which has an exceptionally large sample size of 795 observations, which accounts for 

about 43% of the total BMI data sample size. The remainder of the counties each have sample sizes ranging 

from 125 to 176 observations. The comparatively large sample size of County 3 yields smaller posterior 

standard errors compared to the other counties. 
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Table 3.3 

County level BMI population prediction model comparison. 
 

   Predicted Y  SE of Y  CV of Y  95% HPDI of Y

County 1 

CAR   27.242  0.101  0.004  (27.061, 27.457)

SCAR   27.232  0.097  0.004  (27.044, 27.414)

Scott-Smith   27.194  0.149  0.005  (26.913, 27.481)

BHF   27.198  0.151  0.006  (26.891, 27.480)

County 2 

CAR   27.549  0.112  0.004  (27.308, 27.759)

SCAR   27.554  0.112  0.004  (27.336, 27.768)

Scott-Smith   27.491  0.178  0.006  (27.154, 27.852)

BHF   27.487  0.174  0.006  (27.138, 27.801)

County 3 

CAR   27.460  0.094  0.003  (27.268, 27.635)

SCAR   27.470  0.093  0.003  (27.292, 27.656)

Scott-Smith   27.424  0.140  0.005  (27.142, 27.701)

BHF   27.389  0.140  0.005  (27.100, 27.646)

County 4 

CAR   27.446  0.139  0.005  (27.178, 27.700)

SCAR   27.467  0.144  0.005  (27.164, 27.729)

Scott-Smith   27.462  0.212  0.008  (27.029, 27.842)

BHF   27.428  0.219  0.008  (27.008, 27.829)

County 5 

CAR   27.557  0.123  0.004  (27.310, 27.794)

SCAR   27.563  0.124  0.004  (27.329, 27.801)

Scott-Smith   27.551  0.188  0.007  (27.188, 27.939)

BHF   27.497  0.194  0.007  (27.125, 27.899)

County 6 

CAR   27.481  0.129  0.005  (27.236, 27.725)

SCAR   27.502  0.131  0.005  (27.260, 27.781)

Scott-Smith   27.408  0.205  0.007  (26.984, 27.766)

BHF   27.366  0.206  0.008  (26.967, 27.753)

County 7 

CAR   27.083  0.114  0.004  (26.856, 27.287)

SCAR   27.109  0.110  0.004  (26.892, 27.322)

Scott-Smith   27.113  0.163  0.006  (26.827, 27.450)

BHF   27.087  0.166  0.006  (26.769, 27.405)

County 8 

CAR   27.218  0.120  0.004  (26.983, 27.445)

SCAR   27.273  0.113  0.004  (27.050, 27.490)

Scott-Smith   27.205  0.163  0.006  (26.895, 27.503)

BHF   27.184  0.170  0.006  (26.885, 27.581)

Notes : SE = standard error; CV = coefficient of variation; HPDI = highest posterior density interval; CAR = conditional autoregressive; 
SCAR = simple conditional autoregressive; BHF = Battese, Harter and Fuller. 

 
Table 3.4 contains the results of the population prediction of BMI for all four models with survey weights 

included split by the eight counties included in our BMI survey data. Again, the models were not fit to each 

county, and instead the results were simply separated by county. The results for each county are similar to 

the overall results described from Table 3.2. In Table 3.4, the sample sizes are being reduced by the 

inclusion of survey weights, in addition to the sample sizes being split by county. The posterior standard 
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errors continue to increase due to both factors reducing the sample sizes. Recall that all of the counties have 

roughly the same sample size, except for County 3 which has an exceptionally large sample size. This large 

sample size of County 3 yields the smallest posterior standard errors compared to the other counties. 

 
Table 3.4 

Including survey weights in county level BMI population prediction. 
 

   Predicted Y  SE of Y  CV of Y  95% HPDI of Y

County 1 

CAR   27.158  0.114  0.004  (26.949, 27.411)

SCAR   27.185  0.111  0.004  (26.970, 27.401)

Scott-Smith   27.347  0.169  0.006  (27.011, 27.666)

BHF   27.202  0.175  0.006  (26.888, 27.575)

County 2 

CAR   26.945  0.125  0.005  (26.709, 27.202)

SCAR   27.021  0.117  0.004  (26.806, 27.259)

Scott-Smith   27.275  0.164  0.006  (26.950, 27.575)

BHF   27.416  0.200  0.007  (27.048, 27.814)

County 3 

CAR   27.196  0.102  0.004  (26.999, 27.383)

SCAR   27.199  0.104  0.004  (27.014, 27.417)

Scott-Smith   27.362  0.145  0.005  (27.070, 27.631)

BHF   27.329  0.171  0.006  (26.987, 27.634)

County 4 

CAR   26.983  0.122  0.005  (26.749, 27.229)

SCAR   26.990  0.123  0.005  (26.734, 27.206)

Scott-Smith   27.268  0.165  0.006  (26.979, 27.607)

BHF   27.352  0.253  0.009  (26.852, 27.816)

County 5 

CAR   27.162  0.118  0.004  (26.932, 27.391)

SCAR   27.171  0.117  0.004  (26.943, 27.400)

Scott-Smith   27.284  0.174  0.006  (26.953, 27.633)

BHF   27.393  0.224  0.008  (26.967, 27.859)

County 6 

CAR   27.142  0.115  0.004  (26.924, 27.379)

SCAR   27.135  0.118  0.004  (26.887, 27.344)

Scott-Smith   27.320  0.179  0.007  (26.972, 27.659)

BHF   27.298  0.233  0.009  (26.871, 27.761)

County 7 

CAR   26.935  0.121  0.004  (26.706, 27.180)

SCAR   26.923  0.120  0.004  (26.694, 27.158)

Scott-Smith   27.107  0.174  0.006  (26.794, 27.477)

BHF   27.085  0.194  0.007  (26.725, 27.459)

County 8 

CAR   26.840  0.127  0.005  (26.590, 27.090)

SCAR   26.903  0.126  0.005  (26.669, 27.150)

Scott-Smith   27.054  0.171  0.006  (26.742, 27.403)

BHF   27.156  0.198  0.007  (26.774, 27.585)

Notes : SE = standard error; CV = coefficient of variation; HPDI = highest posterior density interval; CAR = conditional autoregressive; 
SCAR = simple conditional autoregressive; BHF = Battese, Harter and Fuller. 
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3.2 Reduction in global pooling via spatial modeling 
 

Our main goal is to make inference about the finite population mean without directly including the 

covariates in our models, which we have shown. A reason we chose to introduce a spatial component in our 

models is to have the posterior means of the individual strata result in less global pooling. We do not want 

the posterior mean of each individual stratum to simply approach the overall population posterior mean. 

Instead we would rather have strata with similar covariate attributes (i.e. neighbors in the W  matrix) borrow 

strength from each other to have stratum posterior means gravitate towards the neighborhood posterior 

mean. Therefore, we study the μ  from the Scott-Smith model and the CAR model to show that by including 

the spatial component, as seen in the CAR model, we are able to increase the variability of the posterior 

predictions for .μ  Since the results from the Scott-Smith model and the BHF model are similar we only use 

the Scott-Smith model in this comparison. In general, we wish to avoid using covariates in our models (as 

seen in the BHF model) when possible and the similar results from the Scott-Smith and BHF models are 

evidence that including the covariates in the model did not improve the prediction results. Similarly, since 

the CAR and SCAR models yield similar results and the SCAR model is a simpler version of the CAR 

model, then we proceed making this comparison using the CAR model. 

We are analyzing the μ  from each model, which means we have a sample from the posterior density of 

i  for each =1, , .i …   There are three main indications that illustrate how including the spatial component 

in the CAR model reduces global pooling when compared to the Scott-Smith model. First, the estimates of 

1 132, , …  from the CAR model have a standard deviation of 1.237, compared to the estimates from the 

Scott-Smith model which have a standard deviation of 0.967. From this we can already see increased 

variation in the μ  estimates in the CAR model, and this increased variation is a sign that less global pooling 

occurs in the CAR model as μ  contains more disperse values. Second, by looking at Figure 3.1 which 

contains the two kernel density curves for μ  from each model, we are able to see that μ  from the CAR 

model has a lower peak and heavier tails compared to the Scott-Smith model. The values of μ  in the CAR 

model are not converging to the overall population mean as aggressively as the Scott-Smith model. 

Thirdly, we look at the shrinkage parameters in the posterior mean of μ  from each model. Recall that 

the posterior mean of i  for the Scott-Smith model in (A.3) is:  (1 )i i iy     where =i  

  1 1i in n    for =1 , .i …   We can rewrite the posterior mean of μ  in the CAR model in (2.6) as: 

 ( )y 1  I  where  

 

11 112 2 2 2
12

1 1

= diag , , diag , , .
1

R W
n n n n

    
 



 


     
              

… …  

When the shrinkage parameters from the Scott-Smith model, (1 ),i  are greater than the sum of the row 

values of the shrinkage parameters from the CAR model, ( ),I  then the non-spatial Scott-Smith model 

tends more towards the global pooling parameter, ,  instead of maintaining the characteristics of the 

individual strata. This is exactly what we see in Figure 3.2. 
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Figure 3.1 Comparing posterior distribution of .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note : CAR = conditional autoregressive. 

 
 

 
Figure 3.2 Comparing shrinkage parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note : CAR = conditional autoregressive. 

 
Figure 3.2 shows that the Scott-Smith model puts significantly more weight on the global pooling 

parameter, ,  compared to the CAR model. This maintains our objective that the CAR model would result 

in less global pooling overall by including the neighborhood relationships. It is also important to point out 

that all of the shrinkage parameter values for both the Scott-Smith and the CAR models are in the range 

[0,1].  
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4. Conclusion 
 

Our main goal in introducing the spatial component of these models is to accommodate the covariates 

without using a regression model. In doing so, we also reduce the severity of global pooling and instead 

allow for neighbors with similar attributes to have predictions closer together. We have shown in our 

comparison of the μ  in the CAR and Scott-Smith models that including this spatial relationship of the strata 

does indeed limit the global pooling. This point was made by looking at the shrinkage parameters, the 

posterior densities, and the posterior variation of μ  from both models. The CAR and SCAR models both 

work well as small area estimation models that will reduce global pooling effects without defining the 

relationship between the response and the covariates. However, since it is important that   and   are not 

too small in order to emphasize the spatial structure that accommodates the covariates, then we prefer the 

CAR model which has larger values of both   and .  

In the CAR model,   is close to unity which is a good sign that our spatial component will have more 

of an impact in the model compared to the much lower   value in the SCAR model. As   and   decrease, 

our posterior standard error of the population predictions will also decrease. We also presented how to use 

these spatial models we are advocating for with and without survey weights, and how to make population 

predictions in both cases. Ultimately, we are not interested in defining a relationship between the response 

variable y  and X  by having β  in the model, as is the case in the BHF model. We avoid making strong 

assumptions about this relationship, and we maximize the number of potential applications our models can 

be applied to. 

Future work includes continuing to work on this type of problem by adapting the models to cover the 

situation with a binary response variable instead of a continuous response variable. While the binary case is 

more computationally intense, it has a lot of useful applications. For an example related to the BMI 

application, we may be more interested in the proportion of individuals in the population who are obese (i.e. 

BMI 30),  instead of predicting the overall BMI of the finite population. There are cases where knowing 

the proportion of a characteristic possessed by a population is more informative than knowing the average 

value of that characteristic in the population. 

 
Appendix A 
 

Scott-Smith model 
 

In Appendix A we discuss the technical details of the Scott-Smith model (Scott and Smith, 1969). The 

adapted Scott-Smith model we use can be written as:  

 

 

 

2 2

2 2 2 2

2

| , Normal , ,

1
| , , Normal , , , , , < < , 0 < < 1, > 0,

1

= 1, , , =1, , .

ij i i

i

i

y

j n i

   


            

 

 
   

 

… … 

∼

∼  (A.1) 
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Although the covariates are not present in the model, the responses are still grouped together using the 

covariate values, so each y i  has the same unique covariate combination for each stratum =1, .i …  

Nandram, Toto and Choi (2011) has shown that   is a common intra-class correlation. Here i  follows a 

normal distribution: 

  2 2| , , , Normal (1 ) , (1 ) (1 )yi i i i iy            ∼  (A.2) 

where   = 1 1i i in n     for =1 , .i …   

The conditional posterior density of   is: 

 
2

2

=1

| , , Normal , .
(1 )

y
ii

y
 

  
 

 
 
  


∼  (A.3) 

Note that  

         =1 =1
= 1 1 1 1i i i i ii i

y n n y n n     
 

  

is well defined for all 0 1   and 2.l   

The conditional posterior density of 2  is:  

  
22 2

=1 =1

1 1
| , InvGamma , ( 1) 2 .

2
y i i i i

i i

n
n s y y


  



     
         

 
 

∼  (A.4) 

Finally, once we integrate out 2  we are left with the nonstandard posterior density, 
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 (A.5) 

This proves that the joint posterior density is proper, and this also shows how we can obtain a sample 

from the joint posterior density by sampling from  4 | y   first and then continuing to draw samples from 

their known distributions in reverse order (Nandram, Toto and Choi, 2011). Therefore, we begin by drawing 

samples of   from (A.5) using the grid method. Next, we use the sample of   we obtained to draw a 

sample of 2  directly from (A.4). Then we use the samples of   and 2  to draw a sample of   from its 

standard distribution (A.3). Finally, we use the samples of ,
2,  and   to draw a sample of i  for 

=1, ,i …   from (A.2). Based on our samples from the posterior density and the observed values of ,y i  we 

make inference for the finite population mean ,iY  using the model:  

 
2ind

| Normal (1 ) , (1 ) .yi i i i i i i

i

Y f y f f
N




 
   

 
∼  (A.6) 

The results of this model are presented in Section 3.1 with an application using BMI data. 
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Including survey weights in Scott-Smith model 
 

We also can include survey weights in the Scott-Smith model, and we use the same adjusted and trimmed 

survey weights described in Section 2.2. The Scott-Smith model with weights can be expressed by replacing 

the response variance in the first row of (A.1) from 2  to 
2

,
ija


  with ija  from (2.17). 

We use the same logic for obtaining a sample from this model with the adjusted weights as we used 

above in the model without weights. Making population predictions differs, because we obtain population 

predictions by: 

 
2

2| , Normal , =1, , ,
ˆ

μi i

i

Y i
N


 

 
 
 

… ∼  (A.7) 

where 
=1

ˆ = in

i ijj
N v  represents the Horvitz-Thompson estimator of population size for each stratum 

=1, , .i …   

 
Appendix B 
 

BHF model 
 

In Appendix B we discuss the technical details of the Battese, Harter, and Fuller (BHF) model (Battese, 

Harter and Fuller, 1988). This non-spatial model introduces covariates and includes the random effects for 

each stratum. The BHF model is the only model used in this paper that specifies the relationship between 

the response and the covariates. In general, we want to avoid defining this relationship between yi  and .xi  

The BHF model is:  
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  … …R

∼

∼  (B.1) 

Letting = ((1 ) ) ,i i in n      then i  follows a Normal distribution: 

  
2ind

2
i

(1 )
| , , , Normal , .

(1 )
β y x β i

i i iy
 

   


 
 

 
∼  (B.2) 

The conditional posterior density of β  is: 

  2 2ˆ ˆ| , , Normal , .β y β Σ  ∼  (B.3) 

where 

  
=1

ˆ ˆ= 1β Σ xi i i i
i

n y 


    and     
1

=1

ˆ = 1 .Σ x xi i i i
i
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 (B.4) 
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Note that β̂  and 1Σ̂  are well defined for all   provided the design matrix  =X xi
  is full rank, where xi

  

correspond to the rows of .X  

The conditional posterior density of 2  is:  

 
     

2 2

i=1 =1
2

ˆ1
| , InvGamma ,

2 2

x β
y

in

i i i ij ii j
n y y y

n p


 

         
 
 

 


∼  (B.5) 

with 
=1

= .ii
n n


 Therefore, after integrating out 2  we are finally left with the nonstandard posterior 

density of :  
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 (B.6) 

We are now able to directly obtain a sample from the joint posterior density by beginning with using the 

grid method to sample .  Then sampling 2 , ,β  and ν  is straight forward since each of these parameters 

has a standard form. Based on our samples from the posterior density and the observed values of ,y i  we 

make inference for the finite population mean ,iY  using the model:  

  
2ind

| Normal (1 ) , (1 ) .y x βi i i i i i i i

i

Y f y f f
N




 
    

 
∼  (B.7) 

We explore the performance of this model in Section 3.1 with an application using BMI data. 

 
Including survey weights in BHF model 
 

We also can include survey weights in the BHF model using the same adjusted and trimmed survey 

weights described in Section 2.2. The BHF model with weights can be expressed by replacing the response 

variance in the first row of (B.1) from 2  to 
2

,
ija


  with ija  from (2.17). 

We use the same logic for obtaining a sample from this model with the adjusted weights as we used 

above in the model without weights. Making population predictions differs, because we obtain population 

predictions by: 

 
2

2| , , , Normal , =1, , ,
ˆ

x β x βi i i i i

i

Y i
N


  

 
  

 
… ∼  (B.8) 

where 
=1

ˆ = in

i ijj
N v  represents the Horvitz-Thompson estimator of population size for each stratum 

=1, , .i …   
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Recursive Neyman algorithm for optimum sample allocation 
under box constraints on sample sizes in strata 

Jacek Wesołowski, Robert Wieczorkowski and Wojciech Wójciak1 

Abstract 

The optimum sample allocation in stratified sampling is one of the basic issues of survey methodology. It is a 
procedure of dividing the overall sample size into strata sample sizes in such a way that for given sampling 
designs in strata the variance of the stratified π estimator of the population total (or mean) for a given study 
variable assumes its minimum. In this work, we consider the optimum allocation of a sample, under lower and 
upper bounds imposed jointly on sample sizes in strata. We are concerned with the variance function of some 
generic form that, in particular, covers the case of the simple random sampling without replacement in strata. The 
goal of this paper is twofold. First, we establish (using the Karush-Kuhn-Tucker conditions) a generic form of 
the optimal solution, the so-called optimality conditions. Second, based on the established optimality conditions, 
we derive an efficient recursive algorithm, named RNABOX, which solves the allocation problem under study. 
The RNABOX can be viewed as a generalization of the classical recursive Neyman allocation algorithm, a popular 
tool for optimum allocation when only upper bounds are imposed on sample strata-sizes. We implement 
RNABOX in R as a part of our package stratallo which is available from the Comprehensive R Archive 
Network (CRAN) repository.  

 
Key Words: Neyman allocation; Optimum allocation under box constraints; Optimum sample allocation; Recursive 

Neyman algorithm; Stratified sampling. 

 
 

1. Introduction 
 

Let us consider a finite population U  of size .N  Suppose the parameter of interest is the population 

total t  of a variable y  in ,U  i.e. = ,kk U
t y

  where ky  denotes the value of y  for population element 

.k U  To estimate ,t  we consider the stratified sampling with the   estimator. Under this well-known 

sampling technique, population U  is stratified, i.e. = ,hh
U U

∪ H
 where ,,hU hH  called strata, are 

disjoint and non-empty, and H  denotes a finite set of strata labels. The size of stratum hU  is denoted 

,hN hH  and clearly = .hh
N N

 H
 Probability samples h hs U  of size ,,h hn N h H  are selected 

independently from each stratum according to chosen sampling designs which are often of the same type 

across strata. The resulting total sample is of size = .hh
n n N


 H

 It is well known that the stratified   

estimator t̂  of t  and its variance are expressed in terms of the first and second order inclusion probabilities 

(see, e.g. Särndal, Swensson and Wretman, 1992, Result 3.7.1, page 102). In particular, for several 

important sampling designs  

  
2

ˆVar = ,h

h

A

n
h

t B



H

 (1.1) 
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where > 0,hA B  do not depend on .,hn hH  Among the most basic and common sampling designs that 

give rise to the variance of the form (1.1) is the simple random sampling without replacement in strata 

(abbreviated STSI). In this case, the stratified   estimator of t  assumes the form  

 ˆ = ,h

h

h

N

kn
h k s

t y
 
 
H

 (1.2) 

which yields in (1.1): = ,h h hA N S  where hS  denotes stratum standard deviation of study variable ,y  ,hH  

and 2= h hh
B N S

 H
 (see, e.g. Särndal et al., 1992, Result 3.7.2, page 103). 

The classical problem of optimum sample allocation is formulated as the determination of the allocation 

vector  = ,hn hn H  that minimizes the variance (1.1), subject to = ,hh
n n

 H
 for a given n N  (see, 

e.g. Särndal et al., 1992, Section 3.7.3, page 104). In this paper, we are interested in the classical optimum 

sample allocation problem with additional two-sided constraints imposed on sample sizes in strata. We 

phrase this problem in the language of mathematical optimization as Problem 1.1. 
 

Problem 1.1. Given a finite set H  and numbers > 0, , , ,h h hA m M n  such that 0 < < ,h h hm M N h H  

and ,h hh h
m n M

 
  H H

 

 
2

| |=( , )
minimize h

h
h

A

x
x h

h 



x HH
H

R
 (1.3) 

                                                                       subject to     =h
h

x n


H

 (1.4) 

                                                                                            , .h h hm x M h  H  (1.5) 

To emphasize the fact that the optimal solution to Problem 1.1 may not be an integer one, we denote the 

optimization variable by ,x  not by .n  The assumptions about ,, , ,h hn m M hH  ensure that Problem 1.1 is 

feasible. 

The upper bounds imposed on ,,hx hH  are natural since for instance the solution with >h hx N  for 

some hH  is impossible. The lower bounds are necessary e.g. for estimation of population strata variances 
2 .,hS hH  They also appear when one treats strata as domains and assigns upper bounds for variances of 

estimators of totals in domains. Such approach was considered e.g. in Choudhry, Rao and Hidiroglou (2012), 

where apart of the upper bounds constraints ,,h hx N h H  the additional constraints   2 21 1 ,
h h h h hx N N S R   

,hH  where ,,hR hH  are given constants, have been imposed. Obviously, the latter system of in-

equalities can be rewritten as lower bounds constraints of the form 
2 2

2 .= ,h h

h h h

N S

h h R N S
x m h


 H  The solution 

given in Choudhry et al. (2012) was obtained by the procedure based on the Newton-Raphson algorithm, a 

general-purpose root-finding numerical method. See also a related paper by Wright, Noble and Bailer 

(2007), where the optimum allocation problem under the constraint of the equal precision for estimation of 

the strata means was considered. 

It is convenient to introduce the following definition for feasible solutions of Problem 1.1. 
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Definition 1.1. Any vector  = ,hx hx H  satisfying (1.4) and (1.5) will be called an allocation. 

An allocation  = ,hx hx H  is called a vertex one if and only if  

 
,

=
, ,

h

h

h

m h
x

M h






L

U
  

where , L U H  are such that =L U H  and = . L U  

An allocation which is not a vertex one will be called a regular allocation. 

The solution to Problem 1.1 will be called the optimum allocation.  
 

Note that an optimum allocation may be of a vertex or of a regular form. The name vertex allocation 

refers to the fact that in this case x  is a vertex of the hyper-rectangle  , .h h hm M H  We note that 

Problem 1.1 becomes trivial if = hh
n m

 H
 or = .hh

n M
 H

 In the former case, the solution is 

 * ,= ,hm hx H  and in the latter  * .= ,hM hx H  These two are boundary cases of the vertex allocation. 

In real surveys with many strata, a vertex optimum allocation rather would not be expected. Nevertheless, 

for completeness we also consider such a case in Theorem 3.1, which describes the form of the optimum 

allocation vector. We also note that a regular optimum allocation  * ,h h hm Mx H  if and only if it is the 

classical Tschuprow-Neyman allocation  

 * = ,h

vv

n
A h

A


 
 

 
 

x
H

H   

(see Neyman, 1934; Tschuprow, 1923). 

The rest of this paper is structured as follows. Section 2 presents motivations for this research as well as 

a brief review of the literature. In Section 3, we identify Problem 1.1 as a convex optimization problem and 

then use the Karush-Kuhn-Tucker conditions to establish necessary and sufficient conditions for a solution 

to optimization Problem 1.1. These conditions, called the optimality conditions, are presented in Theorem 3.1. 

In Section 4, based on these optimality conditions, we introduce a new algorithm, RNABOX, and prove that 

it solves Problem 1.1 (see Theorem 4.1). The name RNABOX refers to the fact that this algorithm generalizes 

the recursive Neyman algorithm, denoted here RNA. The RNA is a well-established allocation procedure, 

commonly used in everyday survey practice. It finds a solution to the allocation Problem 2.1 (see below), 

which is a relaxed version of Problem 1.1. In Section 5, we discuss numerical experiments related to 

computational efficiency of the RNABOX algorithm and the fixed-point iteration algorithm from Münnich, 

Sachs and Wagner (2012). A concise summary of the results is given in Section 6, where we also briefly 

comment on some of the key aspects of rounding of non-integer optimum allocations. Auxiliary remarks 

and lemmas as well as proofs of both theorems are placed in the Appendix. 

Finally, let us note that the implementation of RNABOX algorithm is available through our R package 

stratallo (Wójciak, 2023b), which is published in CRAN repository (R Core Team, 2023). 
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2. Motivation and literature review 
 

An abundant body of literature is devoted to the problem of optimum sample allocation, going back to 

classical solution of Tschuprow (1923) and Neyman (1934), dedicated to STSI sampling without taking 

inequality constraints (1.5) into account. In spite of this fact, a thorough analysis of the literature shows that 

Problem 1.1 has not been completely understood yet and it suffers from the lack of fully satisfactory 

algorithms. 

Below, we briefly review existing methods for solving Problem 1.1, including methods that provide 

integer-valued solutions. 

 

2.1 Not-necessarily integer-valued allocation 
 

An approximate solution to Problem 1.1 can be achieved through generic methods of non-linear 

programming (NLP) (see, e.g. the monograph Valliant, Dever and Kreuter, 2018, and references therein). 

These methods have been involved in the problem of optimum sample allocation since solving the allocation 

problem is equivalent to finding the extreme (namely, stationary points) of a certain objective function over 

a feasible set. Knowing the (approximate) extreme of the objective function, one can determine 

(approximate, yet typically sufficiently accurate) sizes of samples allocated to individual strata. 

In a similar yet different approach adopted e.g. in Münnich et al. (2012), Problem 1.1 is transformed into 

root-finding or fixed-point-finding problems (of some properly defined function) to which the solution is 

obtained by general-purpose algorithms like e.g. bisection or regula falsi. 

Algorithms used in both these approaches would in principle have infinitely many steps, and are stopped 

by an arbitrary decision, typically related to the precision of the iterates. There are two main weaknesses 

associated with this way of operating: failure of the method to converge or slow convergence towards the 

optimal solution for some poor starting points. In other words, performance of these algorithms may strongly 

depend on an initial choice of a starting point, and such a choice is almost always somewhat hazardous. As 

an example consider the fixed-point iteration algorithm (FPIA), of Münnich et al. (2012). For a population 

with 4 strata, such that 1 2 3 4= 380, =140, = 230, =A A A A 1,360, bounds =10,hm = 50,hM  1, 2, 3, 4 ,h  

total sample size = 80,n  and for starting point 0 = 695.64 (chosen in the way suggested in that paper), the 

FPIA does not convergence due to oscillations around the optimal solution. Another drawback of the 

algorithms of this type is their sensitivity to finite precision arithmetic issues that can arise in case when the 

stopping criterion is not expressed directly in terms of the allocation vector iterates (which is often the case). 

Contrary to that, in the recursive algorithms (we are concerned with), the optimal solution is always 

found by recursive search of feasible candidates for the optimum allocation among subsets of .H  Hence, 

they stop always at the exact solution and after finitely many iterations (not exceeding the number of strata 

+ 1, as we will see for the case of RNABOX in the proof of Theorem 4.1). An important example of such an 

algorithm, is the recursive Neyman algorithm, RNA, dedicated for Problem 2.1, a relaxed version of 

Problem 1.1. 
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Problem 2.1. Given a finite set H  and numbers > 0, , > 0,h hA M n  such that 0 < ,h hM N h H  and 

,hh
n M


 H

 

 

2

| |=( , )
minimize

=

, .

  subject to

h

h
h

A

x
x h

h

h
h

h h

x n

x M h

 




 




x HH

H

H

H

R

  

 

Although RNA is popular among practitioners, a formal proof of the fact that it gives the optimal solution 

to Problem 2.1 has been given only recently in Wesołowski, Wieczorkowski and Wójciak (2022). For other 

recursive approaches to Problem 2.1, see also e.g. Stenger and Gabler (2005), Kadane (2005). 

To the best of our knowledge, the only non-integer recursive optimum allocation algorithm described in 

the literature that is intended to solve Problem 1.1 is the noptcond procedure proposed by Gabler, Ganninger 

and Münnich (2012). In contrary to RNABOX, this method in particular performs strata sorting. 

Unfortunately, the allocation computed by noptcond may not yield the minimum of the objective function 

(1.3). This fact can be illustrated with a short numerical example given in Table 2.1, which follows Wójciak 

(2019, Example 3.9).  

 

Table 2.1 

Two allocations for a population with two strata: Non-optimum noptcondx  and the optimum *x .  
 

h  hA  hm  hM  noptcondx  *x  

1 2,000 30 50 30 50 
2 3,000 40 200 130 110 

total sample size =160.n   

 
2.2 Integer-valued allocation 
 

Integer-valued algorithms dedicated to Problem 1.1 are proposed in Friedrich, Münnich, de Vries and 

Wagner (2015), Wright (2017, 2020). The multivariate version of the optimum sample allocation problem 

under box constraints in which ,= ,hm m hH  for a given constant ,m  is considered in the paper of 

de Moura Brito, do Nascimento Silva, Silva Semaan and Maculan (2015). The proposed procedure that 

solves that problem, uses binary integer programming algorithm and can be applied to the univariate case. 

See also Brito, Silva and Veiga (2017) for the R-implementation of this approach. 

Integer-valued allocation methods proposed in these papers are precise (not approximate) and 

theoretically sound. However, they are relatively slow, when compared with not-necessarily integer-valued 

algorithms. For instance, at least for one-sided constraints, the integer-valued algorithm capacity scaling of 

Friedrich et al. (2015) may be thousands of times slower than the RNA (see Wesołowski et al., 2022, 

Section 4). This seems to be a major drawback of these methods as the differences in variances of estimators 

based on integer-rounded non-integer optimum allocation and integer optimum allocation are negligible as 

explained in Section 6. The computational efficiency is of particular significance when the number of strata 
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is large, see, e.g. application to the German census in Burgard and Münnich (2012), and it becomes even 

more pronounced in iterative solutions to stratification problems, when the number of iterations may count 

in millions (see, e.g. Khan, Nand and Ahmad, 2008; Baillargeon and Rivest, 2011; Barcaroli, 2014; Gunning 

and Horgan, 2004; Lednicki and Wieczorkowski, 2003). 

Having all that said, the search for a new, universal, theoretically sound and computationally effective 

recursive algorithms of optimum sample allocation under two-sided constraints on the sample strata-sizes, 

is crucial both for theory and practice of survey sampling. 

 
3. Optimality conditions 
 

In this section we establish optimality conditions, that is, a general form of the solution to Problem 1.1. 

As it will be seen in Section 4, these optimality conditions are crucial for the construction of RNABOX 

algorithm. 

Before we establish necessary and sufficient optimality conditions for a solution to optimization 

Problem 1.1, we first define a set function ,s  which considerably simplifies notation and calculations. 
 

Definition 3.1. Let , , > 0, , ,h h hn A m M hH H  be as in Problem 1.1 and let , L U H  be such that 

.= ,  L U L U H⊊  The set function s  is defined as  

  
\( )

, = .
h hh h

hh

n m M
s

A
 

 

  


L U

H L U

L U  (3.1) 

 

Below, we will introduce the ( , )x L U  vector for disjoint ., L U H  It appears that the solution of the 

Problem 1.1 is necessarily of the form (3.2) with sets L  and U  defined implicitly through systems of 

equations/inequalities established in Theorem 3.1. 
 

Definition 3.2. Let , , > 0, , ,h h hn A m M hH H  be as in Problem 1.1, and let , L U H  be such that 

= . L U  We define the vector  ( , ) ( , )= ,hx hx L U L U H  as follows  

 

   

( , )

,

= ,

, , \ .

h

h h

h

m h

x M h

A s h





  

L U

L

U

L U H L U

 (3.2) 

 

The following Theorem 3.1 characterizes the form of the optimal solution to Problem 1.1 and therefore 

is one of the key results of this paper. 
 

Theorem 3.1 (Optimality conditions). The optimization Problem 1.1 has a unique optimal solution. Point 
* | |

x HR  is a solution to optimization Problem 1.1 if and only if 
* ( *, *)= ,x x L U

 with disjoint 
* *, ,L U H  

such that one of the following two cases holds: 
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CASE I: * *L U H⊊  and  

 
  
  

* * *

* * *

= : , ,

= : , .

h

h

h

h

m

A

M

A

h s

h s

 

 

L H L U

U H L U
 (3.3) 

CASE II: * * =L U H  and  

                                                          
**

,max minh h

h h

M m

A A
hh 


LU

         if  *  U   and  * ,L  (3.4) 

                                                          
* *

= .h h
h h

m M n
 

 
L U

 (3.5) 

 

Remark 3.1. The optimum allocation *x  is a regular one in CASE I and a vertex one in CASE II.  
 

The proof of Theorem 3.1 is given in Appendix A. Note that Theorem 3.1 describes the general form of 

the optimum allocation up to specification of take-min and take-max strata sets *L  and *.U  The question 

how to identify sets *L  and *U  that determine the optimal solution * ( *, *)=x x L U  is the subject of Section 4. 

 
4. Recursive Neyman algorithm under box constraints 
 
4.1 The RNABOX algorithm 
 

In this section we introduce an algorithm solving Problem 1.1. In view of Theorem 3.1 its essential task 

is to split the set of all strata labels H  into three subsets of take-min  * ,L  take-max  * ,U  and take-

Neyman   * *\ .H L U  We call this new algorithm RNABOX since it generalizes existing algorithm RNA 

in the sense that RNABOX solves optimum allocation problem with simultaneous lower and upper bounds, 

while the RNA is dedicated for the problem with upper bounds only, i.e. for Problem 2.1. Moreover, 

RNABOX uses RNA in one of its interim steps. We first recall RNA algorithm and then present RNABOX. 

For more information on RNA, see Wesołowski et al. (2022, Section 2) or Särndal et al. (1992, 

Remark 12.7.1, page 466). 

 
Algorithm RNA 

Input:    , , , .h hh h
A M n

 H H
H  

Require: > 0, > 0, , 0 < .h h hh
A M h n M


  H
H  

Step 1: Set = .U  

Step 2: Determine   = \ : , ,h hh A s M  U H U U  where set function s  is defined in (3.1). 

Step 3: If = ,U  go to step 4. Otherwise, update   U U U  and go to step 2. 

Step 4: Return  * *= ,hx hx H  with 
 

*
,

=
, , \ .

h

h
h

M h
x

A s h




 

U

U H U
 

    



494 Wesołowski et al.: Recursive Neyman algorithm for optimum sample allocation under box constraints on sample sizes in strata 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Algorithm RNABOX 

Input:      , , , , .h h hh h h
A m M n

  H H H
H  

Require: > 0, 0 < < , , .h h h h hh h
A m M h m n M

 
   H H
H  

Step 1: Set = .L  

Step 2: Run RNA    , , ,h hh h
A M n

 
  H H
H  to obtain  **, .hx hH  

 Let  **= : = .h hh x MU H  

Step 3: Determine  **= \ : .h hh x m L H U  

Step 4: If =L  go to step 5. Otherwise, update ,, \hh
n n m


   


L

H H L    L L L  and go 

to step 2. 

Step 5: Return  * *= ,hx h x L H  with 
*

**

,
=

, .

h

h

h

m h
x

x h






L

H
 

 
We note that in real life applications numbers  h h

A
H

 are typically unknown and therefore their 

estimates  ˆh
h

A
H

 are used instead in the input of the algorithms. 

Theorem 4.1 is the main theoretical result of this paper and its proof is given in Appendix B. 
 

Theorem 4.1. The RNABOX algorithm provides the optimal solution to Problem 1.1.  

 
4.2 An example of performance of RNABOX 
 

We demonstrate the operational behaviour of RNABOX algorithm for an artificial population with 10 

strata and for total sample size =n 5,110, as shown in Table 4.1. 

 
Table 4.1 

An example of RNABOX performance for a population with 10 strata and total sample size =n 5,110. 
 

h  hA  hm  hM  1 1/L U  2 2/L U  3 3/L U  4 4/L U  5 5/L U  6 6/L U  
*x  

1 2,700 750 900           750 

2 2,000 450 500 ■           450 

3 4,200 250 300 ■  ■  ■  ■  ■   261.08 

4 4,400 350 400 ■  ■  ■      350 

5 3,200 150 200 ■  ■  ■  ■  ■   198.92 

6 6,000 550 600 ■  ■  ■       550 

7 8,400 650 700 ■  ■  ■      650 

8 1,900 50 100 ■  ■  ■  ■  ■  ■  100 

9 5,400 850 900 ■  ■         850 

10 2,000 950 1,000            950 

SUM 5,000 5,600 0/8 1/7 3/6 4/3 5/3 7/1    5,110 
Notes: Columns / ,r rL U  =1, , 6,r …  represent the content of sets ,L U  respectively, in the 

thr  iteration of the RNABOX (between step 3 and 
step 4): symbols   or ■  indicate that the stratum with label h  is in rL  or ,rU  respectively. 

 
For this example, RNABOX stops after 6 iterations with take-min strata set  * = 1, 2, 4, 6, 7, 9,10 ,L  

take-max strata set  * = 8U  and take-Neyman strata set    * *\ = 3, 5H L U  (see column 6 6/ ).L U  The 
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optimum allocation is a regular one and it is given in column *x  of Table 4.1. The corresponding value of 

the objective function (1.3) is 441,591.5. The details of interim allocations of strata to sets ,L U  at each of 

6 iterations of the algorithm are given in columns 1 1 6 6/ / .L U L U  

 
4.3 Possible modifications and improvements 
 

Alternatives for RNA in step 2 
 

The RNABOX algorithm uses RNA in its step 2. However, it is not hard to see that any algorithm dedicated 

to Problem 2.1 (like for instance SGA by Stenger and Gabler, 2005 or COMA by Wesołowski et al., 2022) 

could be used instead. We chose RNA as it allows to keep RNABOX free of any strata sorting. 
 

A twin version of RNABOX 
 

Let us observe that the order in which L  and U  are computed in the algorithm could be interchanged. Such 

a change, implies that the RNA used in step 2 of the RNABOX, should be replaced by its twin version, the 

LRNA, that solves optimum allocation problem under one-sided lower bounds. The LRNA is described in 

details in Wójciak (2023a). 

 
Algorithm LRNA 

Input:    , , , .h hh h
A m n

 H H
H  

Require: > 0, > 0, , .h h hh
A m h n m


  H
H  

Step 1: Set = .L  

Step 2: Determine   = \ : , ,h hh A s m  L H L L  where set function s  is defined in (3.1). 

Step 3: If = ,L  go to step 4. Otherwise, update   L L L  and go to step 2. 

Step 4: Return  * *= ,hx hx H  with 
 

*
,

=
, , \ .

h

h
h

m h
x

A s h




 

L

L H L
 

 
Taking into account the observation above, step 2 and step 3 of RNABOX would read:  

Step 2: Run LRNA    , , ,h hh h
A m n

 
  H H
H  to obtain  **, .hx hH  

Let  **= : = .h hh x mL H  

Step 3: Determine  **= \ : .h hh x M U H L  

The remaining steps should be adjusted accordingly. 

 

Using prior information in RNA at step 2 
 

In view of Lemma B.2, using the notation introduced in Appendix B.1, in step 2 of RNABOX, for 
* 2r   

we have  

  ** *
1= \ : = , = 2, , .r r h h rh x M r r  …U H L U   
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This suggests that the domain of discourse for rU  could be shrunk from \ rH L  to 1 \ ,r r U H L  i.e.  

  ** *
1= : = , = 2, , .r r h hh x M r r …U U  (4.1) 

Given the above observation and the fact that from the implementation point of view set rU  is determined 

internally by RNA, it is tempting to consider modification of RNA such that it makes use of the domain of 

discourse 1rU  for set .rU  This domain could be specified as an additional input parameter, say ,J H  

and then step 2 of RNA algorithm would read:  

Step 2: Determine   = \ : , .h hh A s M  U J U U  

From RNABOX perspective, this new input parameter of RNA should be set to =J H  for the first iteration, 

and then 1= rJ U  for subsequent iterations *= 2, , 2r r …  (if any). 

 
5. Numerical results 
 

In simulations, using R Statistical Software (R Core Team, 2023) and microbenchmark R package 

(Mersmann, 2021), we compared the computational efficiency of RNABOX algorithm with the efficiency of 

the FPIA of Münnich et al. (2012). The latter one is known to be an efficient algorithm dedicated to 

Problem 1.1 and therefore we used it as a benchmark. The comparison was not intended to verify theoretical 

computational complexity, but was rather concerned with quantitative results regarding computational 

efficiency for the specific implementations of both algorithms. 

To compare the performance of the algorithms we used the STSI sampling for several artificially created 

populations. Here, we chose to report on simulation for two such populations with 691 and 703 strata, results 

of which are representative for the remaining ones. These two populations were constructed by iteratively 

binding K  sets of numbers, where K  equals 100 (for the first population) and 200 (for the second 

population). Each set, labelled by = 1, , ,i K…  contains 10,000 random numbers generated independently 

from log-normal distribution with parameters = 0  and  = log 1 .i   For every set = 1, , ,i K…  strata 

boundaries were determined by the geometric stratification method of Gunning and Horgan (2004) with 

parameter 10 being the number of strata and targeted coefficient of variation equal to 0.05. This stratification 

method is implemented in the R package stratification, developed by Rivest and Baillargeon (2022) 

and described in Baillargeon and Rivest (2011). For more details, see the R code with the experiments, 

which is placed in our GitHub repository (see Wieczorkowski, Wesołowski and Wójciak, 2023). 

Results of these simulations are illustrated in Figure 5.1. From Figure 5.1 we see that, while for majority 

of the cases the FPIA is slightly faster than RNABOX, the running times of both of these algorithms are 

generally comparable. The gain in the execution time of the FPIA results from the fact that it typically runs 

through a smaller number of sets ,, L U H  than RNABOX in order to find the optimal *L  and *.U  

Although this approach usually gives correct results (as in the simulations reported in this section), it may 

happen that the FPIA misses the optimal sets 
* *,L U H⊊  and therefore it may not end up with the correct 

optimum allocation. Such a rare case was illustrated with a numerical example given in Section 2.1. As a 



Survey Methodology, December 2024 497 

 

 
Statistics Canada, Catalogue No. 12-001-X 

side note we point out that the FPIA is not well-defined when the optimum allocation is of a vertex type, i.e. 

when * * = .L U H  

 

Figure 5.1 Running times of FPIA and RNABOX for two artificial populations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Top graphs show the empirical median of execution times (calculated from 100 repetitions) for different total sample sizes. Numbers in 

brackets are the numbers of iterations of a given algorithm. In the case of RNABOX, it is a vector with number of iterations of the RNA 
(see step 2 of RNABOX) for each iteration of RNABOX. Thus, the length of this vector is equal to the number of iterations of RNABOX. 
Counts of take-min, take-Neyman, and take-max strata are shown on bottom graphs. 

 
6. Concluding comments 
 

In this paper we considered Problem 1.1 of optimum sample allocation under box constraints. The main 

result of this work is the mathematically precise formulation of necessary and sufficient conditions for the 

solution to Problem 1.1, given in Theorem 3.1, as well as the development of the new recursive algorithm, 

termed RNABOX, that solves Problem 1.1. The optimality conditions are fundamental to analysis of the 

optimization problem. They constitute trustworthy underlay for development of effective algorithms and 

can be used as a baseline for any future search of new algorithms solving Problem 1.1. Essential properties 

of RNABOX algorithm, that distinguish it from other existing algorithms and approaches to the Problem 1.1, 

are: 

1. Universality: RNABOX provides optimal solution to every instance of feasible Problem 1.1 

(including the case of a vertex optimum allocation).  

2. No initialization issues: RNABOX does not require any initializations, pre-tests or whatsoever 

that could have an impact on the final results of the algorithm. This, in turn, takes places e.g. in 

case of NLP methods.  

3. No sorting: RNABOX does not perform any ordering of strata.  

4. Computational efficiency: RNABOX running time is comparable to that of FPIA (which is 

probably the fastest previously known optimum allocation algorithm for the problem considered).  
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5. Directness: RNABOX computes important quantities (including RNA internals) via formulas that 

are expressed directly in terms of the allocation vector ( , )x L U  (see Definition 3.2). This reduces 

the risk of finite precision arithmetic issues, comparing to the algorithms that base their key 

operations on some interim variables on which the optimum allocation depends, as is the case of 

e.g. the NLP-based method.  

6. Recursive nature: RNABOX repeatedly applies allocation step 2 and step 3 to step-wise reduced 

set of strata, i.e. “smaller” versions of the same problem. This translates to clarity of the routines 

and a natural way of thinking about the allocation problem.  

7. Generalization: RNABOX, from the perspective of its construction, is a generalization of the 

popular RNA algorithm that solves Problem 2.1 of optimum sample allocation under one-sided 

bounds on sample strata sizes.  

 

Finally, we would like to note that Problem 1.1 considered in this paper is not an integer-valued 

allocation problem, while the sample sizes in strata should be of course natural numbers. On the other hand, 

the integer-valued optimum allocation algorithms are relatively slow and hence might be inefficient in some 

applications, as already noted in Section 2. If the speed of an algorithm is of concern and non-necessarily 

integer-valued allocation algorithm is chosen (e.g. RNABOX), the natural remedy is to round the non-integer 

optimum allocation provided by that algorithm. Altogether, such procedure is still much faster than integer-

valued allocation algorithms. However, a simple rounding of the non-integer solution does not, in general, 

yield the minimum of the objective function, and may even lead to an infeasible solution, as noted in 

Friedrich et al. (2015, Section 1, page 3). Since infeasibility can in fact arise only from violating constraint 

(1.4), it can be easily avoided by using a rounding method of Cont and Heidari (2014) that preserves the 

integer sum of positive numbers. Moreover, all numerical experiments that we carried out, show that the 

values of the objective function obtained for non-integer optimum allocation before and after rounding and 

for the integer optimum allocation are practically indistinguishable. For example, for the two populations 

used in Section 5, the ratios intV V  [0.999759, 1], while round int =1V V  (up to 6 decimal places), for 

different total sample sizes = 0.1 , , 0.9 .n N N…  Here, ,V intV  and roundV  denote variances (1.1) computed for 

non-integer optimum allocations, integer optimum allocations, and for rounded non-integer optimum 

allocations (with the rounding method of Cont and Heidari, 2014), respectively. 

The above observations suggest that fast, not-necessarily integer-valued allocation algorithms, with 

properly rounded results, may be a good and reasonable alternative to slower integer algorithms when speed 

of an algorithm is crucial. 
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Appendix 
 

A. Proof of Theorem 3.1 
 

Remark A.1. Problem 1.1 is a convex optimization problem as its objective function | |: ,f  HR R  

 
2

( ) = ,h

h

A

x
h

f

x
H

 (A.1) 

and inequality constraint functions | | | |: , ,:m M
h hg g  H HR R R R  

 ( ) = , ,m
h h hg m x h x H  (A.2) 

 ( ) = , ,M
h h hg x M h x H  (A.3) 

are convex functions, whilst the equality constraint function | | ,:w  HR R  

 ( ) = h
h

w x n


x
H

  

is affine. More specifically, Problem 1.1 is a convex optimization problem of a particular type in which 

inequality constraint functions (A.2)-(A.3) are affine. See Appendix D for the definition of the convex 

optimization problem.  

 

Proof of Theorem 3.1. We first prove that Problem 1.1 has a unique solution. The optimization Problem 1.1 

is feasible since requirements ,< ,h hm M hH  and h hh h
m n M

 
  H H

 ensure that the feasible set 
| |:= { : (1.4) (1.5)F  x HR  are all satisfied} is non-empty. The objective function (1.3) attains its minimum 

on F  since it is a continuous function and F  is closed and bounded. Finally, uniqueness of the solution is 

due to strict convexity of the objective function on .F  

As explained in Remark A.1, Problem 1.1 is a convex optimization problem in which the inequality 

constraint functions , ,m M
h hg g hH  are affine. The optimal solution for such a problem can be identified 

through the Karush-Kuhn-Tucker (KKT) conditions, in which case they are not only necessary but also 

sufficient; for further references, see Appendix D. 

The gradients of the objective function (A.1) and constraint functions (A.2)-(A.3) are as follows:  

  2

2( ) = , , ( ) = 1, ( ) = ( ) = 1 , ,h

h

A m M
hh hx

f h w g g h       x x x xH H   

where, 1  is a vector with all entries 1 and 1h  is a vector with all entries 0 except the entry with the label ,h  

which is 1. Hence, the KKT conditions (D.2) for Problem 1.1 assume the form  
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2

2
*

= 0,h

h

A m M
h h

x
       ,hH  (A.4) 

                                                                               * = 0,h
h

x n



H

  (A.5) 

                                                                               * ,h h hm x M   ,hH  (A.6) 

                                                                           * = 0,m
h h hm x   ,hH  (A.7) 

                                                                          * = 0,M
h h hx M   .hH (A.8) 

To prove Theorem 3.1, it suffices to show that for * ( *, *)=x x L U  with * *,L U  satisfying conditions of CASE I 

or CASE II, there exist R  and , ,, 0m M
h h h   H  such that (A.4)-(A.8) hold. It should also be noted 

that the requirement ,< ,h hm M hH  guarantees that *L  and *U  defined in (3.3) and (3.4) are disjoint. 

Therefore, ( *, *)x L U  is well-defined according to Definition 3.2. 
 

CASE I: Take * ( *, *)=x x L U  with *L  and *U  as in (3.3). Then, (A.5) is clearly met after referring to 

(3.2) and (3.1), while (A.6) follows directly from (3.2) and (3.3), since (3.3) for  * *\h H L U  

specifically implies  * *< , < .h h hm A s ML U  Take 
 2

1

*, *
=

s


L U
 and  

                

2 2

2 2

* *

* *

, ,
= =

0, \ , 0, \ .

h h

h h

A A

m Mm M
h h

h h

h h

 
 

     
 

   

L U

H L H U
 (A.9) 

Note that (3.3) along with requirement hh
n m


 H

 (the latter needed if * = )U  ensure 

 * *, > 0,s L U  whilst (3.3) alone implies , ., 0m M
h h h   H  After referring to (3.2), it is a matter 

of simple algebra to verify (A.4), (A.7) and (A.8) for , , ,m M
h h h   H  defined above.  

CASE II: Take * ( *, *)=x x L U  with 
* *,L U  satisfying (3.4) and (3.5). Then, condition (A.5) becomes 

(3.5), while (A.6) is trivially met due to (3.2). Assume that *  L  and *  U  (for empty *L  

or 
*,U  (A.4), (A.7) and (A.8) are trivially met). Take an arbitrary > 0s  such that  

                
**

, .max minh h

h h

M m

A A
hh

s


 
  


LU

 (A.10) 

Note that (3.4) ensures that the interval above is well-defined. Let 2
1=
s




 and , ,m M
h h h  H  be 

as in (A.9). Note that (A.10) ensures that , 0m M
h h    for all .hH  Then it is easy to check, 

similarly as in CASE I, that (A.4), (A.7) and (A.8) are satisfied.  

 

B. Auxiliary lemmas and proof of Theorem 4.1 
 

B.1 Notation 
 

Throughout the Appendix B, by , , ,r r r
U L L  we denote sets , , U L L  respectively, as they are in the r th 

iteration of RNABOX algorithm after step 3 and before step 4. The iteration index r  takes on values from 
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set  *1, , ,r…  where * 1r   indicates the final iteration of the algorithm. Under this notation, we have 

1 =L  and in general, for subsequent iterations, if any  * ,i.e. if 2r   we get  

 
1

*
1 1

=1

= = , = 2, , .
r

r r r i
i

r r


    …∪L L L L  (B.1) 

As RNABOX iterates, objects denoted by symbols n  and H  are being modified. However, in this 

Appendix B, whenever we refer to n  and ,H  they always denote the unmodified total sample size and the 

set of strata labels as in the input of RNABOX. In particular, this is also related to set function s  (defined in 

(3.1)) which depends on n  and .H  

For convenient notation, for any A H  and any set of real numbers ,,hz hA  we denote  

 = .h
h

z z

A
A

  

 

B.2 Auxiliary remarks and lemmas 
 

We start with a lemma describing important monotonicity properties of function .s  

Lemma B.1. Let  A B H  and . C D H  

1. If B D H⊊  and = , B D  then  

        \ \ \ \, , , .s s s A A m M    B A D C B A D CA C B D A C  (B.2) 

2. If ,A D H⊊ = , A D ,B C H⊊ = , B C  then  

        \ \ \ \, , , .s s s A A m M    B A D C B A D CA D B C A D  (B.3) 

 

Proof. Clearly, for any ,, ,    R R R ,> 0, > 0    we have  

 .
    

 
    

 
  

 
 (B.4) 

To prove (B.2), take  

 
\ \

\ \

= =

= = .

n m M m M

A A A A

 

 

  

 

B D B A D C

H B D B A D C

  

Then,     ,= , , = ,s s 
  


B D A C  and hence (B.2) holds as an immediate consequence of (B.4).  

Similarly for (B.3), take  

 
\ \

\ \

= =

= = ,

n m M m M

A A A A

 

 

  

 

B C B A D C

H B C B A D C
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and note that \ \= = = > 0A A A A A A A A A A A A A             H B C B A D C H B C B A D C H A D  due to 

the assumptions made for ,, , ,A D B C  and .> 0,hA hH  Then,  ,= ,s
 B C    ,= ,s 

 

 A D  and hence 

(B.3) holds as an immediate consequence of (B.4). 

The remark below describes some relations between sets rL  and *, =1, , 1,r r r …U  appearing in 

RNABOX algorithm. These relations are particularly important for understanding computations involving 

the set function s  (recall, that it is defined only for such two disjoint sets, the union of which is a proper 

subset of .)H  
 

Remark B.1. For * 1,r   

 *= , =1, , ,r r r r  …L U  (B.5) 

and for * 2,r   

 *, =1, , 1.r r r r …L U H⊊  (B.6) 

Moreover, let *x  be as in step 5 of RNABOX algorithm. Then, for * 1,r   

 *
* *r r  xL U H⊊  is a regular allocation, (B.7) 

and  

 *
* * =r r  xL U H  is a vertex allocation. (B.8) 

 

Proof. From the definition of set U  in step 2 of RNABOX, for * 1,r   

 *\ , =1, , ,r r r r …U H L  (B.9) 

which proves (B.5). Following (B.1), for * 2,r   

 
1

*

=1

= , = 2, , ,
r

r i
i

r r


 …∪L L H  (B.10) 

where the inclusion is due to definition of set L  in step 3 of RNABOX, i.e.  \r r r L H L U  for 
*=1, , .r r…  Inclusions (B.9), (B.10) with 1 =L  imply  

 
*, =1, , 1.r r r r  …L U H  (B.11) 

Given that 
* 2,r   step 4 of the algorithm ensures that set  \r r r L H L U  is non-empty for =1, ,r …  

* 1,r   which implies .r r L U H  This fact combined with (B.11) gives (B.6). Equivalences (B.7) and 

(B.8) hold trivially after referring to Definition 1.1 of regular and vertex allocations.  
 

The following two remarks summarize some important facts arising from step 2 of RNABOX algorithm. 

These facts will serve as starting points for most of the proofs presented in this section. 
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Remark B.2. In each iteration * ,=1, , 1r r …  of RNABOX algorithm, a vector  **, \h rx hH L  obtained 

in step 2, has the elements of the form  

 
   

**
, \

=
, < , \ ,

h r r

h
h r r h r r

M h
x

A s M h

 


 

U H L

L U H L U
 (B.12) 

where the set function s  is defined in (3.1). Equation (B.12) is a direct consequence of Theorem C.1. 
 

Remark B.3. Remark B.2 together with Theorem C.1, for * 2r   yield  

    *= \ : , , =1, , 1,r r h r r hh A s M r r  …U H L L U  (B.13) 

whilst for * 1,r   

   * * * *= \ : , ,r r h r r hh A s M U H L L U  (B.14) 

if and only if *x  (computed at step 5 of RNABOX algorithm) is: a regular allocation or a vertex allocation 

with * .=rL H  

Moreover, for * 1,r   

      *= \ : , , = 1, , .r r r h r r hh A s m r r   …L H L U L U  (B.15) 

 

Note that in Remark B.3, function s  is well-defined due to Remark B.1. The need to limit the scope of 

(B.14) to regular allocations only, is dictated by the fact that in the case of a vertex allocation we have 

* * =r rL U H  (see (B.8)) and therefore  * *,r rs L U  is not well-defined. 
 

Lemma B.2 and Lemma B.3 reveal certain monotonicity properties of sequence  
*

=1

r

r r
U  and sequence 

  
*

=1
,,

r

r r r
s L U  respectively. These properties will play a crucial role in proving Theorem 4.1. 

 

Lemma B.2. Sequence  
*

=1

r

r r
U  is non-increasing, that is, for 

* 2,r   

 *
1, = 1, , 1.r r r r …U U  (B.16) 

 

Proof. Let * 2r   and *=1, , 1.r r …  Then, by (B.6), .r rL U H⊊  Following (B.13), the domain of 

discourse for rU  is ,\ rH L  and in fact it is   1,\ = \r r r H L L H L  since r r U L  as ensured by step 3 of 

RNABOX. That is, both rU  and 1rU  have essentially the same domain of discourse, which is 1\ .rH L  

Given this fact and the form of the set-builder predicate in (B.13)-(B.14) as well as equality * *= \r rU H L  

for the case when *x  is a vertex allocation (for which (B.14) does not apply), we conclude that only one of 

the following two distinct cases is possible: 1r rU U  or 1.r rU U⊊  

The proof is by contradiction, that is, assume that (B.16) does not hold. Therefore, in view of the above 

observation, there exists  *1, , 1r r …  such that 1.r rU U⊊  Then,  
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    1 \ \ ,r r r r  U U H L U⊊  (B.17) 

and hence, due to (B.12),  

   1, < , \ .h r r h r rA s M h L U U U  (B.18) 

On the other hand, from (B.15),  

  , , .h r r h rA s m h  L U L  (B.19) 

Summing sidewise: (B.18) over 1 ,\r rh U U  (B.19) over ,rh L  and then all together, we get  

    
1 1\ \, < .

r r r rr r
r rs A A m M

 
  U U U UL L

L U  (B.20) 

Vector *x  is a regular allocation: In this case, following Remark B.1, we see that inequality (B.20) is the 

right-hand side of equivalence (B.2) with  

   1= = ,r r r r    A L L L L B H⊊  (B.21) 

 1= = .r r C U U D H⊊ ⊊  (B.22) 

Then, following Lemma B.1, inequality (B.20) is equivalent to  

    1 1, > , .r r r rs s  L U L U  (B.23) 

Combining  

  1 1 1, , ,h

h

M

r r rAs h   L U U  (B.24) 

(it follows from (B.13)-(B.14)) with inequalities (B.23) and (B.18), we get the contradiction  

    1 1 1> , > , , \ .h h

h h

M M

r r r r r rA As s h   L U L U U U  (B.25) 

Therefore, (B.16) holds true, given that * * .r rL U H⊊  
 

Vector *x  is a vertex allocation: Since 1 1r r L U H⊊  for * ,=1, , 2r r …  the proof of (B.16) for such r  

is identical to the proof for the case of regular allocation. Hence, we only need to show that (B.16) 

holds for *= 1.r r   For this purpose, we will exploit inequality (B.20), which in view of Definition 3.1 

of set function ,s  assumes the following form for * ,= 1r r   

  * 1 * 1

* * 1 * * 1* 1 * 1* 1 * 1
\ \< .r r

r r r rr rr r

n m M

A A A A m M 

    

 

   
L U

H L U U U U UL L
 (B.26) 

Since 
* 1 * 1 * * 1* 1

\ ,=
r r r rr

A A A A
  
 H L U U UL

 for * * ,=r rL U H  inequality (B.26) simplifies to  

 
* 1 * * 1 * 1 * ** 1

\< = = ,
r r r r r rr

n m m M M m M n
  

    L U U U L UL
 (B.27) 
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which is a contradiction. Note that the last equality follows from step 2 of the RNABOX after referring 

to (C.3) and using the fact that * *= \r rU H L  for a vertex allocation. Therefore, (B.16) holds true also 

for * * .=r rL U H  
 

Lemma B.3. Let * 3.r   Then  

     *
1 1, , , = 1, , 2.r r r rs s r r  …L U L U  (B.28) 

Moreover, if *x  (computed at step 5 of RNABOX algorithm) is a regular allocation and * 2,r   then  

    * 1 * 1 * *, , .r r r rs s  L U L U  (B.29) 

 

Proof. We first prove (B.28). Let * 3r   and *=1, , 2.r r …  Following Lemma B.2 and using (B.13),  

   1, , \ .h r r h r rA s M h  L U U U  (B.30) 

On the other hand, from (B.15),  

  , , .h r r h rA s m h  L U L  (B.31) 

Multiplying both sides of inequality (B.30) by 1,  summing it sidewise over 1\r rh U U  and then adding 

it to (B.31), which is previously summed sidewise over ,rh L  we get  

    
1 1\ \, .

r r r rr r
r rs A A m M

 
   U U U UL L

L U  (B.32) 

Relation (B.32) is the second inequality in (B.3) with  

   1= = = ,r r r r A L L L L B H⊊ ⊊  (B.33) 

 1= = .r r C U U D H⊊  (B.34) 

Based on Remark B.1, we see that ,A D H⊊ = , A D  and ,B C H⊊ = , B C  and thus the first 

inequality in (B.3) follows, that is  

    1 1, , .r r r rs s  L U L U  (B.35) 

Hence (B.28) is proved. 

If *x  is a regular allocation, in view of Remark B.1, the same reasoning leading to inequality (B.35) 

clearly remains valid for 
* *= 1, 2.r r r   

 
B.3 Proof of Theorem 4.1 
 

To prove Theorem 4.1, we have to show that: 

(I) the algorithm terminates in a finite number of iterations, i.e. 
* ,<r   
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(II) the solution computed at *r  is optimal.  
 

The proof of part (I) is relatively straightforward. In every iteration * *=1, , 1, ,2r r r …  the set of 

strata labels H  is reduced by subtracting .r
L  Therefore, * ,| | 1<r   H  where * = | | 1r H  if and only 

if *= 1, = 1, , 1.r r r  …L  In words, the algorithm stops after at most | | 1H  iterations. 

In order to prove part (II), following Theorem 3.1 and Remark 3.1, it suffices to show that when *x  

(computed at step 5 of RNABOX algorithm) is a regular allocation, for all ,hH  

  * * *, ,h

h

m

r r r Ah s  L L U  (B.36) 

  * * *, ,h

h

M

r r r Ah s  U L U  (B.37) 

and when *x  is a vertex allocation  

                                                          
**

,max minh h

h h
rr

M m

A A
hh 


LU

         when  *r U   and  * ,r L  (B.38) 

                                                          
* *

= .
r r

m M nL U   (B.39) 

 

Vector *x  is a regular allocation: Note that Remark B.1, implies that  ,r rs L U  is well-defined. We start 

with equivalence (B.36).  

Necessity: For * ,=1r  we have * =r L  and hence, the right-hand side of equivalence (B.36) is trivially 

met. Let * 2,r   and 
* 1

* =1
= .

r

r rr
h


 ∪L L  Thus, rh L  for some  *1, , 1r r …  and then, due to 

(B.15), we have  , .h

h

m

r r As L U  Consequently, (B.28) with (B.29) yield  * *, .h

h

m

r r As L U  

Sufficiency: Since * = ,r L  (B.15) implies  

      *
* * * *\ : , = , 1.h

h

m

r r r r Ah s r    H L U L U  (B.40) 

On the other hand, (B.14) along with ,< ,h hm M hH  yield  

  * * *, > , ,h h

h h

M m

r r rA As h L U U  (B.41) 

and hence, (B.40) reads  

    *
* * *\ : , = , 1.h

h

m

r r r Ah s r   H L L U  (B.42) 

 

The proof of necessity in (B.37) is immediate in view of (B.14), whilst sufficiency follows by 

contradiction. Indeed, let * 1.r   Assume that the right-hand side of equivalence (B.37) holds and 

*.rh  U  Then, in view of Remark B.1, either  * *\ r rh H L U  and then from (B.12)  

  * *, < ,h

h

M

r r As L U  (B.43) 
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a contradiction, or *rhL  and then from (B.36), in view of ,< ,h hm M hH  

  * *, < ,h h

h h

m M

r r A As L U  (B.44) 

a contradiction. 
 

Vector *x  is a vertex allocation: For * ,=1r  the only possibility is that * *= , = .r r U H L  Then, (B.38) is 

clearly met, while (B.39) follows from step 2 of the RNABOX after referring to (C.3). Let * 2.r   Then, 

by (B.13) we have  

  * 1 * 1 * 1 *, , ,h

h

M

r r r rAs h    L U U U  (B.45) 

where the set inclusion is due to Lemma B.2. On the other hand, from (B.15), we get  

  * 1 * 1 * 1 * 1 *, , = ,h

h

m

r r r r rAs h      L U L L L  (B.46) 

where the fact that the above inequality is met for * 1rh L  follows from (B.28). By comparing (B.45) 

and (B.46) we clearly see that (B.38) is satisfied. Lastly, equation (B.39) is fulfilled due to  

 
* *1 * 1

= = ,
r rr

n m m n m M


    … L UL L
 (B.47) 

where the first equality follows from (B.1) while the second one follows from step 2 of the RNABOX 

after referring to (C.3) and using the fact that * *= \r rU H L  for a vertex allocation.  

 
C. Optimality conditions for Problem 2.1 
 

The following Theorem C.1 provides necessary and sufficient conditions for the optimal solution to 

Problem 2.1. It was originally given as Theorem 1.1 in Wesołowski et al. (2022) and it is crucial for the 

proof of Theorem 4.1. Here, we will quote it in a slightly expanded form so that it also covers the case of 
* .=U H  As usual, the set function s  is defined as in Definition 3.1. The algorithm that solves Problem 2.1 

is RNA and it is given in Section 4 of this paper. 
 

Theorem C.1. The optimization Problem 2.1 has a unique optimal solution. Point  * * | |= ,hx h  x HH R  

is a solution to optimization Problem 2.1 if and only if *x  has entries of the form  

 
 

*

*

* *

,
=

, , \ ,

h

h

h

M h
x

A s h

 


 

U

U H U
 (C.1) 

with * ,U H  such that one of the following two cases holds: 
 

CASE I: 
*U H⊊  and  

   * *= : , .h hh A s M  U H U  (C.2) 
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CASE II: * =U H  and  

 = .h
h

n M


H

 (C.3) 

 
D. Convex optimization scheme and the KKT conditions 
 

A convex optimization problem is an optimization problem in which the objective function is a convex 

function and the feasible set is a convex set. In standard form it is written as  

 

minimize ( )

subject to ( ) = 0, = 1, ,

( ) 0, = 1, , ,
i

j

f

w i k

g j





x

x

x

x

…

… 

D

 (D.1) 

where x  is the optimization variable, ,,p p  D R N  the objective function : p
ff  D R R  and 

inequality constraint functions : , =1, , ,
j

p
j gg j  … D R R  are convex, whilst equality constraint 

functions : , = 1, , ,
i

p
i ww i k  …D R R  are affine. Here, 

=1 =1
=

i j

k

f w gi j
 



∩ ∩D D D D  denotes a common 

domain of all the functions. Point x D  is called feasible if it satisfies all of the constraints, otherwise the 

point is called infeasible. An optimization problem is called feasible if there exists x D  that is feasible, 

otherwise the problem is called infeasible. 

In the context of the optimum allocation Problem 1.1 discussed in this paper, we are interested in a 

particular type of the convex problem, i.e. (D.1) in which all inequality constraint functions , = 1, , ,jg j …   

are affine. It is well known, see, e.g. the monograph Boyd and Vandenberghe (2004), that the solution for 

such an optimization problem can be identified through the set of equations and inequalities known as the 

Karush-Kuhn-Tucker (KKT) conditions, which in this case are not only necessary but also sufficient.  
 

Theorem D.1 (KKT conditions for convex optimization problem with affine inequality constraints). A point 
* , ,p p   x D R  is a solution to the convex optimization problem (D.1) in which functions ,jg  

= 1, , ,j …   are affine if and only if there exist numbers ,i R =1, , ,i k…  and 0,j  = 1, , ,j …   called 

KKT multipliers, such that  

 

     

 
 
 

* * *

=1 =1

*

*

*

=

= 0, = 1, ,

0, =1, ,

= 0, = 1, , .

k

i i j j
i j

i

j

j j

f w g

w i k

g j

g j

 



    



 x x x 0

x

x

x



…

… 

… 

 (D.2) 
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Abstract 

This paper investigates whether survey data quality fluctuates over the day. After laying out the argument 
theoretically, panel data from the Survey of Unemployed Workers in New Jersey are analyzed. Several indirect 
indicators of response error are investigated, including item nonresponse, interview completion time, rounding, 
and measures of the quality of time diary data. The evidence that we assemble for a time of day of interview 
effect is weak or nonexistent. Item nonresponse and the probability that interview completion time is among the 
5% shortest appear to increase in the evening, but a more thorough assessment requires instrumental variables. 
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1. Introduction 
 

That surveys are an essential tool for empirical research seems as indisputable as seems that measurement 

error can compromise the quality of survey data. Among the tenets which appear to underlie the 

measurement error literature is the principle that the survey respondent must perform a series of cognitive 

operations before answering a question (e.g., Tourangeau, Rips and Rasinski, 2000, Chapter 1). Each of 

those operations can be quite complex, involving a great deal of cognitive work (Krosnick, 1999). Extensive 

research (summarized among others by Schmidt, Collette, Cajochen and Peigneux, 2007) has shown that 

human performance on a wide range of cognitive tasks fluctuates over the day. Yet, the impact that these 

fluctuations may have on the quality of survey data remains largely ignored. 

This paper attempts to identify problematic times of day for survey data quality by exploiting high-

frequency longitudinal microdata from the Survey of Unemployed Workers in New Jersey (SUWNJ). The 

SUWNJ interviewed online every week for up to 24 weeks some 6,000 workers who were unemployed at 

the beginning of the survey in October 2009. Although SUWNJ respondents selected themselves to answer 

the survey at their most convenient times, the availability of repeated observations on each respondent 

makes it possible to remove the many unobserved factors that remained constant over the relatively short 

survey period of the SUWNJ (as compared with other large-scale longitudinal surveys). 

The paper is organized as follows. Section 2 provides background and context to this research. Section 3 

describes the data, the construction of the main variables, and the selection of the sample. Section 4 

discusses the methodology. The results are presented in Section 5. Section 6 summarizes the findings and 

suggests directions for future research. 
 

mailto:jorgegc@unizar.es
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2. Background and context 
 

2.1 Background 
 

Psychologists and survey methodologists have characterized a series of cognitive steps in answering 

survey questions. Tourangeau et al. (2000, page 8) distinguish four steps (comprehension of the question, 

retrieval of relevant information, use of that information to make required judgments, and selection and 

reporting of an answer), and provide an illustrative list of mental processes that may be involved in the 

answering process. Attention and memory are part of that list, both of which have been shown to fluctuate 

over the day. 

The search for time of day fluctuations in human cognitive performance has increasingly been based on 

the so-called two-process model of sleep-wake regulation (Blatter and Cajochen, 2007; Schmidt et al., 

2007). This model postulates that the influence of time of day on cognitive performance is mediated by 

sleepiness, which in turn is determined by the interacting influences of two propensities. The homeostatic 

propensity for sleep continuously accumulates during time spent awake and continuously decreases during 

sleep. The nearly 24-hr (or circadian) oscillatory wake propensity balances the accumulated homeostatic 

sleep drive during wakefulness. 

The circadian wake propensity, which is the result of an internal clock that is synchronized by signals 

created by the Earth’s rotation (light, temperature, etc.) (Roenneberg, Kuehnle, Juda, Kantermann, 

Allebrandt, Gordijn and Merrow, 2007), reaches its maximum in the evening and its minimum in the early 

morning. So, for a person who usually sleeps from 23:00 to 07:00, cognitive performance would be at a 

lower level during nighttime and early morning, a better level occurs around noon, there is a decrease after 

lunch (e.g., Bes, Jobert and Schulz, 2009), and higher levels occur during afternoon and evening hours 

(Valdez, 2019). Yet, this time course can be modulated by the kind of task and inter-individual differences 

in task performance (Blatter and Cajochen, 2007). 

The phase of the circadian wake propensity and that of the signals differ across individuals, creating a 

relationship between internal and external time called phase of entrainment. People who differ in the phase 

of entrainment are referred to as different chronotypes. The alignment between chronotype and time of day 

enhances a number of cognitive functions, giving rise to the so-called synchrony effect (e.g., Hasher, 

Goldstein and May, 2005; Hornik and Tal, 2010; Salehinejad, Wischnewski, Ghanavati, Mosayebi-Samani, 

Kuo and Nitsche, 2021; Guarana, Stevenson, Gish, Ryu and Crawley, 2022). Thus, if people responded to 

surveys during hours aligned with their chronotype (as the evidence in Fordsham, Moss, Krumholtz, 

Roggina, Robinson and Litman, 2019 suggests), the effect of the time of day would be positively moderated 

by the sorting of respondents into optimal times. 

 

2.2 Context 
 

A careful and comprehensive performance of each of the four steps in the survey answering process can 

require a substantial amount of mental effort. Hence, according to Krosnick’s (1991) satisficing theory, 
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survey respondents may simply provide a satisfactory answer, the likelihood of which decreases with 

respondent ability. This insight promoted studies investigating the link between cognitive ability and data 

quality, the former understood as a stable or slowly changing trait. See, e.g., Kaminska, McCutcheon and 

Billiet (2010), Kroh, Lüdtke, Düzel and Winter (2016), Gideon, Helppie-McFall and Hsu (2017), Olson, 

Smyth and Ganshert (2019), Truebner (2021), Angrisani and Couper (2022), Bais, Schouten and Toepoel 

(2022), and Phillips and Stenger (2022). As predicted by Krosnick (1991), cognitive ability and satisficing 

appear generally as inversely related. 

Time of day fluctuations in cognitive performance may be another aspect of respondent ability related 

to satisficing. However, this potential link has been little studied. Ziniel (2008, Chapter 4) investigates 

whether the proportion of “don’t knows” provided by respondents to the Health and Retirement Study is 

sensitive to the time of day, reaching a negative conclusion. Binder (2022) recruited participants from 

Amazon Mechanical Turk (MTurk) to examine whether inflation expectations and responses to questions 

with objectively correct answers differ depending on the time of day, finding little differences. On the other 

hand, a survey carried out on suppliers competing for public contracts in Ireland (Flynn, 2018) reveals that 

the time of day respondents started the survey predicts survey completeness. 

A limitation of these previous studies is that respondents selected themselves to answer the survey at 

their most convenient times. Hence, and as recognized by Ziniel (2008, Chapter 4), inter-individual 

differences in cognitive ability or chronotype may interfere with potential time of day fluctuations in 

cognitive performance. To be sure that factors like these do not interfere with the time of day, Dickinson 

and McElroy (2010) randomize the survey response window, finding that the time of day (as represented 

by a binary variable equal to unity for response times from 1:00 to 5:00 a.m. and zero for response times 

from noon to 7:00 p.m.) has no effect on iterative reasoning. 

Identifying problematic times of day for survey data quality is relevant first of all for survey practice, as 

further measures to reduce the extent of measurement error could be implemented. For example, the e-

mailing of invitations/reminders for completing surveys or even the collection of data could be programmed 

at times of day that were best suited for the increases of data quality. However, forcing respondents to 

complete surveys at particular times of day could raise nonresponse error (e.g., Weeks, Kulka and Pierson, 

1987; Durrant, D’Arrigo and Steele, 2011), so under the total survey error framework (e.g., Lyberg and 

Stukel, 2017) it would be necessary to study the tradeoff between measurement error and nonresponse error. 

Besides the papers that we have already mentioned, our work is related to other strands of literature. 

Some studies have investigated the characteristics and behaviors of online survey participants as a function 

of the time of day of participation (e.g., Arechar, Kraft-Todd and Rand, 2017; Casey, Chandler, Levine, 

Proctor and Strolovitch, 2017; Binder, 2022). Although certain respondent characteristics may be associated 

with data quality, we focus on data quality and develop effects net of unobserved individual factors and 

optimal times of participation. The time-of-day fluctuations in cognitive performance have been blamed for 

the across-the-day variation in a wide spectrum of economic decisions and abilities; see, e.g., Carrell, 

Maghakian and West (2011), Dickinson and McElroy (2017), Williams and Shapiro (2018), Collinson, 
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Mathmann and Chylinski (2020), Dickinson, Chaudhuri and Greenaway‑McGrevy (2020), and Guarana 

et al. (2022). But whether survey data quality is modulated by the time of day remains largely ignored. Last, 

but not least, by exploiting start and end times of each interview, we relate to the literature using paradata 

to investigate measurement error (reviewed by Yan and Olson, 2013). 

 
3. Data, measures, and sample selection 
 

3.1 SUWNJ 
 

The data for this study are taken from the SUWNJ, a longitudinal Internet-based survey of unemployed 

workers conducted by the Princeton University Survey Research Center between October 2009 and 

April 2010. Here, we describe the main features of this survey, referring to Krueger and Mueller (2010, 

2011) for the survey questionnaire, the data set, and a more complete description of the SUWNJ. The Stata 

code needed to proceed from the raw data to the results is available from the author upon request. 

 

3.1.1 Sampling and invitation 
 

The individuals sampled were selected from the universe of unemployment insurance (UI) benefit 

recipients in the state of New Jersey as of September 28, 2009. During 2009 and 2010, New Jersey’s 

unemployment rate closely mirrored the U.S. average, although its population of UI recipients was more 

female, older, and more educated than in the wider U.S. The sample was selected through stratified random 

sampling with strata defined by initial duration of unemployment and availability of an e-mail address. 

Those unemployed 60 weeks or longer and those with an e-mail address were oversampled. 

The selected individuals were invited to participate in the survey for 12 consecutive weeks, although the 

long-term unemployed were invited to participate in an extended study for an additional 12 weeks. The 

initial invitation was sent by e-mail or (to those without e-mail address) physical letter. The e-mail (letter) 

contained a link to the online questionnaire. Individuals contacted by letter were required to enter a valid e-

mail address in order for them to receive e-mail invitations for the follow-up weekly interviews. If a 

respondent did not have an e-mail address, he/she could nevertheless participate in the weekly interviews 

by logging into the same access web page. According to the October 2009 Current Population Survey, 15% 

of New Jersey’s unemployed workers lived in households where no one used the Internet, but no further 

arrangements were made to secure the participation of Internet non-users. The invitation e-mails (sent in the 

morning) asked individuals to complete the survey within two days and even if they had already found a 

job. 

 

3.1.2 Participation and weighting 
 

The AAPOR (2023) RR6 response rate for the first interview was 9.7% (6,025 persons). These 

respondents completed an average of 4.1 follow-up interviews out of a maximum of 11 (excluding the 

longer-term follow-up), responding to 24,638 (37.2%) of the potential follow-up interviews. Only 302 



Survey Methodology, December 2024 517 

 

 
Statistics Canada, Catalogue No. 12-001-X 

individuals completed 12 interviews, so 95.0% attrited from the initial study. The RR6 response rate for the 

first interview of the extended study was larger, 56.8% (1,148 persons). These respondents completed an 

average of 6.4 follow-up interviews out of a maximum of 11, responding to 7,390 (58.5%) of the potential 

follow-up interviews. 115 individuals completed 12 interviews, so 90.0% attrited from the extended study. 

All this yields 39,201 interviews. 

The low response rates created noticeable differences between the universe of New Jersey UI recipients 

and the respondents. Krueger and Mueller (2011) created inverse propensity weights based on 

administrative data from the UI system. The weights labeled “current week weights” adjust for differential 

sampling probabilities and response rates over the 12 weeks of the survey (or 24 weeks, for those who 

participated in the extended study). The regressors utilized to create “current week weights” were strata 

indicator variables and time-invariant demographics. 

 

3.1.3 Survey instrument 
 

The SUWNJ questionnaire consists of two parts: an entry survey, administered in the first week, with 

demographic, income, and wealth questions, and a weekly survey, administered in the first and each 

subsequent week, with questions related to life satisfaction, food expenditure, job search activities, and time 

use. The time use information is for the day previous to the interview, and is collected by means of a self-

completed time diary from 07:00 to 23:00 and two questions asking wake-up and going-to-bed times. To 

complete the diary, respondents could select up to 2 activities for each hour from a pre-designated list of 21 

activities. 

After initiating an interview, respondents could move back and forth through the questionnaire, as well 

as stop the interview and return to it later. Although completion via phone browser was possible, the 

questionnaire was not optimized to be taken on a mobile device. The data set includes the date and time 

(recorded to the second) that each interview was initiated and completed, plus the end time of the time-use 

section (the third of the five sections of the weekly survey). 

 

3.2 Measures 
 

3.2.1 Time of day 
 

Times are local times of New Jersey, measured continuously from midnight and expressed in hours (e.g., 

9.5 for 09:30). The time of day of interview (denoted )D  is approximated by the mid-time between the start 

and end times of the interview. In a robustness check, it will be approximated by randomly selected points 

within the start and end times of the interview (Ahn, Peng, Park and Jeon, 2012). 

 

3.2.2 Chronotype 
 

Roenneberg et al. (2007) use the Munich ChronoType Questionnaire to assess chronotype, measured as 

the half-way point between sleep-onset and sleep-end (or mid-sleep) on free days corrected for oversleep 

(MSFsc). A proxy measure for chronotype can be constructed along those lines using the SUWNJ time-use 
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information. Sleep duration is estimated as the time between going to bed and wake up, and its half-way 

point is averaged over free days. For individuals who sleep longer on free days than on workdays, the 

difference between sleep duration on free days and its weekly average (assuming a 5-day workweek) is 

subtracted from the mid-sleep on free days. The resulting measure is denoted e
scMSF .  Sleep timing and sleep 

duration are essentially independent traits (Roenneberg et al., 2007). The correlation between e
scMSF  and 

average sleep duration is 0.06 (although statistically different from zero at 5% level). Figure 3.1 shows the 

distribution of e
scMSF  in the sample. 

 

Figure 3.1 Chronotype e

sc(MSF ).  

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Data quality 
 

We analyze four sets of measures of data quality (Juster, 1986; Malhotra, 2008; Fricker and Tourangeau, 

2010): i) the percent item nonresponse, ii) measures of the quality of time-diary data (the number and variety 

of activities and the number of hours not coded in the diary), iii) time to complete the interview, and iv) 

rounded values of mood at home, food expenditure at home, and expenditure on eating out. The SUWNJ 

questionnaire seems to contain insufficient items to investigate response errors caused by social desirability 

or extreme, midpoint, or nondifferentiated responding (see, e.g., Baumgartner and Steenkamp, 2001; Chang 

and Krosnick, 2009). The data file contains completed interviews, which precludes analyzing survey 

breakoff (e.g., Peytchev, 2009). 

We define the percent item nonresponse (PINR) as the percentage of missing values for questions 

administered to all respondents at a certain interview. This excludes follow-up questions plus questions that 

can be postponed to the next time the person is interviewed. 

To count the number and variety of activities recorded in the time diary, we follow the convention that 

if an activity intervenes in the middle of some other activity (e.g., shopping on the way home from a job 

interview), the number of activities increases by two units and the variety of activities by one unit (Juster, 

1986). We present results for the number of activities (denoted NumAct), as those for the variety follow the 
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same patterns. If no activity is recorded in an hour, the hour is considered not coded. The variable counting 

the number of hours not coded is denoted HMissing. Juster (1986) notices that only weekday (Monday–

Thursday) diaries suffer significant quality deterioration to the extent that they involve more than 24-hour 

recall, a finding that will be helpful for interpreting some of our results. 

The relationship between interview completion time and data quality in Internet-based surveys is 

complex, as both short and long completion times may be a symptom of respondent inattention (Malhotra, 

2008; Read, Wolters and Berinsky, 2021). Hence, besides a continuous measure of completion time 

(denoted IvDur), we analyze dummy variables for the 5% lowest and 5% highest completion times, denoted 

PIVDUR5L and PIVDUR5H respectively. These dummies are created by calculating the corresponding percentiles 

separately for first and subsequent interviews after removing outliers (see Section 3.3). 

Information on mood at home is collected with the question: “Now we would like to know how you feel 

and what mood you are in when you are at home. When you are at home, what percentage of the time are 

you: in a bad mood, a little low or irritable, in a mildly pleasant mood, in a very good mood?” Respondents 

are asked to indicate the percentage of time that they experienced each mood category. We created dummy 

variables indicating respondents for whom all four reported percentages are multiples of 50 (leading to 

answers of 0, 50, or 100), 25, or 10. The three binary variables are denoted PMOOD50, PMOOD25, and PMOOD10, 

respectively. 

Two questions gather information on expenditure on food: “In the last 7 days, how much did you and 

anyone else in your family spend on food that you use at home? Please include food bought with food 

stamps”, and “In the last 7 days, how much did you and anyone else in your family spend on eating out?” 

We created dummy variables indicating respondents for whom a certain expenditure is multiple of 100 or 

50, denoted PFOODAH100, PFOODAH50, PEATING-OUT100, and PEATING-OUT50. Zero expenditure could be reflecting 

rounding, a corner solution, or infrequency of purchase. We present results assuming that zero expenditure 

reflects rounding, and analyze their robustness to assuming that zero expenditure does not reflect rounding. 

 

3.3 Sample selection 
 

The distribution of interview completion time is heavily right-skewed, with median (mean) completion 

time of 13.2 (144.3) minutes for first interviews and 11.8 (75.6) minutes for subsequent interviews. To avoid 

introducing much error into our measure of ,D  interviews with completion time greater than 60 minutes 

are discarded, representing 5.7 and 4.4% of first and subsequent interviews. Moreover, we discarded first 

or subsequent interviews with completion times below the corresponding 1st percentile (4.8 and 3.6 minutes, 

respectively). Based on our own reading time, this lower bound discards interviews in which the respondent 

cannot have read the questionnaire. (Including these interviews leaves the conclusions unchanged.) 

We also discarded interviews presenting missing or inconsistent data in some variable used in this study. 

Here, an issue requires some discussion. Going-to-bed time was reported using three drop-down menus of 

hour, minute, and AM/PM period. The AM/PM menu was set by default to PM, and Figure 3.2 suggests 

that this may have induced error. While going to bed between 11:00 and 11:59 a.m. is reported in 0.04% of 
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interviews, 6.6% report going to bed between 12:00 and 12:59 p.m. We probed the time diary for an 

inconsistent going-to-bed time when this was between 12:00 and 02:59 p.m. When an inconsistency was 

found, the interview was discarded. A total of 2,578 interviews were discarded for this reason. When 

assessing robustness, we shall include them in the sample assuming that the AM period applies, and a 

dummy indicating those cases (denoted PPM-AM) will be analyzed for time of day of interview effects. 

 

Figure 3.2 Going-to-bed time. 

 

 

 

 

 

 

 

 

 

 

 

Finally, the last interview of a person who completed 25 interviews is discarded because it is not clear 

whether he ended up attriting. All this leaves us with 5,531 persons and a total of 33,000 interviews. 

Figure 3.3 provides a histogram of the number of interviews contributed by each person. The mean (median) 

number of interviews is 6.0 (4). Table 3.1 provides descriptive statistics for the main variables used in this 

study. 

 

Figure 3.3 Number of interviews contributed to the sample. 
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Table 3.1 

Descriptive statistics. 
 

 Observations Mean Standard deviation Min Max 

PINR
a 33,000 2.64 6.58 0 60.87 

NumAct 33,000 16.77 7.14 1 32 
HMissing 33,000 0.53 2.14 0 15 
IvDur (minutes) 33,000 13.95 8.19 3.57 59.95 
PIVDUR5L

a 33,000 4.99    
PIVDUR5H

a 33,000 4.99    
PMOOD10

a 32,877 50.40    
PMOOD25

a 32,877 15.84    
PMOOD50

a 32,877 10.79    
PFOODAH50

a 31,949 51.64    
PFOODAH100

a 31,949 30.63    
PEATING-OUT50

a 29,084 45.74    
PEATING-OUT100

a 29,084 34.67    
Time of day of interview 33,000 12.94 4.80 (3.89) [3.45] 0 23.99 

e
scMSF  5,531 3.56 1.65 0 23.99 

Day of interview 33,000     
Mondayb  8.56    
Tuesdayb  23.39    
Wednesdayb  16.18    
Thursdayb  14.51    
Fridayb  17.93    
Saturdayb  12.76    
Sundayb  6.67    
Workedb 33,000 14.00    
Sleep duration (hours) 33,000 8.35 2.10 0.50 23.58 
No. of previous interviews 33,000 5.34 5.00 0 23 
Weeks between 2t   and 1t   33,000 1.43 1.40 0 16 

Notes: The data pertain to 5,531 individuals. The sample variation of time of day of interview is made up of “within” (or time series) variation 
(shown in parentheses) and “between” (cross-section) variation (shown in brackets). Worked and Sleep duration are for the diary day. 
a: Binary indicator for the outcome given in the name’s subscript scaled as a percentage. b: Binary indicator scaled as a percentage. 

 
4. Methods 
 

4.1 Baseline specification 
 

As respondents select themselves to answer surveys at their most convenient times, it is unlikely that a 

simple comparison of data quality outcomes by time of day of interview can identify a causal effect. The 

availability of repeated observations on each SUWNJ respondent allows us to control for unobserved time-

constant factors such as cognitive ability or chronotype. Measurement error (as defined in Biemer, Groves, 

Lyberg, Mathiowetz and Sudman, 2004, page xvii) also arises from the method of data collection and the 

questionnaire, but since these features are fixed across interviews, they cannot interfere with our estimates. 

The following unobserved effects panel data model (Wooldridge, 2010, Chapter 10) is estimated: 

   x βit it it i ity D c u     (4.1) 

where ity  denotes some data quality measure for individual i   1, 2, ,i N …  at interview number t  

 1, 2, , ,it T …  itD  is a scalar function of time of day of interview, xit  is a vector of interview-variant 

observable controls, β  is a vector of unknown parameters, ic  is an unobserved individual effect arbitrarily 

correlated with itD  and ,xit  and itu  is an idiosyncratic error term. 
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Besides an intercept, and following Binder (2022) and Juster (1986), included in xit  are dummy variables 

for day of week of interview and a dummy for whether the respondent worked on the diary day (this 

information is not available for the day of interview). Cumulative insufficient sleep (e.g., Lowe, Safati, and 

Hall, 2017) and synchrony effects could also affect .ity  Hence, sleep duration on the diary day and the 

interaction between e
scMSF  and single-hour dummies for itD  are included in .xit  The single-hour dummies 

are constructed by rounding itD  to the nearest integer hour, producing 24 dummies to be interacted with 
e
scMSF .  Yet, one dummy is excluded because of collinearity with .ic  The median e

scMSF  is subtracted from 
e
scMSF  so  itD  represents the median chronotype. 

Panel conditioning effects can operate in a longitudinal survey, which may entail positive or negative 

consequences for data quality (e.g., Bach, 2021). Respondents may gain a better understanding of the 

meaning of the questions with repeated administration of the questionnaire, increasing the reliability of their 

responses (Kroh, Winter and Schupp, 2016). On the other hand, respondents may learn to falsely respond 

some questions to skip follow-up questions, lowering the quality of the data (e.g., Davis, 2011). To account 

for panel conditioning effects, a complete set of dummy variables for the number of previous interviews is 

included in xit . This number can be 0, 1, 2, …, 23, producing 24 dummies. Yet, one dummy is excluded 

because of collinearity with the intercept. 

Let ( )z θ x βit it itD   with dim( ).θK   Under the strict exogeneity assumption 1 2( , , ,z zit i iE u …  

, ) 0,z
iiT ic  θ  can be estimated by ordinary least squares (OLS) of 

 , 2, 3, , ,z θit it it iy e t T     …  (4.2) 

where , 1,it it i ty y y    , 1,z z zit it i t    and , 1.it it i te u u    The ite  are assumed to be independently 

distributed across individuals but no restrictions are placed on the form of the autocovariances for a given 

individual. Heteroskedasticity and serial correlation consistent standard errors are obtained from the 

following variance matrix estimator (Wooldridge, 2010, pages 172 and 318): 

  
1 1

1 1 1

ˆˆ ˆ ˆV θ Z Z Z e e Z Z Z
N N N

i i i i i i i i
i i i

 

  

     
              

     
    (4.3) 

where Z i  is the  1iT K   matrix obtained by stacking z it  from 2, 3, , it T …  and êi  is the  1 1iT    

vector of OLS residuals ˆ ,ite 2, 3, , .it T …  Alternatively, a working correlation matrix for modeling within-

individual correlations can be specified, and the resulting model can be estimated by population-averaged 

methods, called feasible generalized least squares (FGLS) estimators in econometrics. We provide the 

results of two FGLS estimators in a separate supplement (González Chapela, 2024). They reveal essentially 

the same patterns reported here. 

To assess the strict exogeneity of  : 1, , ,it iD t T …  itD  will be added to equation (4.2) and then its 

statistical significance tested using the Wald test (Wooldridge, 2010, page 325). 
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4.2 Model types and model selection 
 

Our objective is to arrive at a reasonable, parsimonious representation of  .itD  Hence, an information 

criterion is employed to select a model for  itD  out of three linear-in-parameters model types: piecewise 

constant functions (specifically, those of Arechar et al., 2017; Binder, 2022; Durrant et al., 2011; Flynn, 

2018; Valdez, 2019 and Weeks et al., 1987), a polynomial of degree three, and the cosinor model 

      1 2sin 2 24 cos 2 24 ,it it itD D D         (4.4) 

where 1  and 2  are unknown parameters. 

The cosinor model is a type of Fourier series representation in which sines and cosines are used to 

approximate complex mathematical waveforms (Brown and Czeisler, 1992; Cornelissen, 2014). Given the 

waveform character of the homeostatic and circadian propensities for sleep, cosinor may provide an 

appropriate representation of  .itD  The cosinor model has 1 peak and 1 trough separated by 12 hours and 

equal in amplitude and width, the locations of which are determined by 1  and 2.  Twice the amplitude of 

the cosinor wave, or 2 2
1 22 ,    provides a measure of the extent of predictable change within the day. 

The degree three polynomial is less restrictive than cosinor because the peak and the trough may not be 

separated by 12 hours and the amplitude and width of the peak may differ from those of the trough. On the 

other hand, a polynomial may not be periodic, i.e. its values may not repeat themselves every 24 hours. To 

ensure periodicity, the restriction    0 24   is imposed, yielding 

       
2 2

1 21 24 1 24 .it it it it itD D D D D       (4.5) 

To select among models, Schwarz’s (1978) Bayesian information criterion 

 
  

  
1

1

ln 1
BIC lnSSR

1

N

ii

N

ii

K T

T






 






 (4.6) 

is used, where SSR denotes a model’s sum of squared residuals. BIC is preferred to other popular criteria 

when some modelling alternatives are nested (Nishii, 1988). The specification of xit  is kept the same 

throughout the selection process. Schwarz (1978) establishes the validity of BIC for independent and 

identically distributed observations. To guard against possible biases created by correlated ,ite  the BIC 

values were recalculated using N  in place of  
1

1
N

ii
T


  (StataCorp, 2019, page 104), producing the 

same selection of models. 

 
4.3 Attrition 
 

If attrition is driven by unobserved factors that do not change over the survey period, then removing ic  

would correct for attrition bias. Nevertheless, one might still be concerned about attrition as a consequence 

of unobserved interview-variant factors. We use a variant of the procedure proposed by Wooldridge (2010, 
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page 837) to test and correct for attrition bias, though we note that this procedure does not correct for 

individuals selected to participate in the SUWNJ who never responded. As the data for each individual are 

organized by interview number, attrition is an absorbing state. 

Let its  denote the interview completion indicator, with 1its   if individual i  completed the t  interview 

and 0its   if i  abandoned the survey right after the 1t   interview. The completion equation for interview 

t  conditional on , 1 1i ts    is 

  1 0 , 2, 3, , ,w δit it it is v t T    …  (4.7) 

where 1[ ]  is the indicator function, w it  is a set of variables that are observed whether or not the individual 

attrited, δ  is a vector of unknown parameters, and itv  is a standard normal error term assumed independent 

of  , 1, , 1 .z wit it i ts    Nonrandom attrition occurs when itv  and ite  are correlated. 

Assuming that ite  is independent of  ,z wit it  and that  , 1E , 1 ,it it i t t ite v s v   t  being an unknown 

parameter, the unknown parameters of equation (4.1) can be estimated by OLS of 

 2 24
ˆ ˆ2 24 , 2, 3, , .z θit it t it t it it iy d d t T           … …  (4.8) 

In this expression, 2 , , 24t td d…  are interview dummies so that 1tdj   if t j  and 0tdj   if ,t j  

     ˆ ˆ ˆ ˆ ,w δ w δ w δit it it it      where     and     denote the pdf and cdf of the standard normal 

distribution, is the estimated inverse Mills ratio, and it  is an error term. 

An estimator of δ  is available from pooled probit estimation of the interview completion equation: 

    , 1P 1 , 1 , 2, 3, , .w w δit it i t it is s t T     …  (4.9) 

We use pooled probit because δ  is assumed to be constant across interviews. If δ  was allowed to change 

(as in Wooldridge’s original formulation), a probit would be estimated for each .t  However, this approach 

is problematic because in many occasions the variables included in w it  perfectly predict one of the 

outcomes. The vector w it  comprises single-hour dummies for , 1,i tD  , 1,x i t  and the number of weeks passed 

between 2t   and 1.t   (For 2,t   we count the number of weeks between the week when the initial 

invitations to participate in the survey were sent and the week of the first interview.) 

Attrition bias can be tested by a joint test of 0H : 0, 2,t t    in equation (4.8). If 0H  is rejected, 

standard errors are corrected for the presence of estimated parameters in ˆit  drawing upon Arellano and 

Meghir (1992). 

 
4.4 Weighting 
 

Since the regressors utilized to create “current week weights” are absorbed in ,ic  model (4.1) includes 

all the design variables and thus the sampling design can be considered ignorable (Pfeffermann, 1993). 

Hence, the main analysis is conducted without sampling weights. However, reporting weighted estimates is 

useful as a misspecification check, as the failure to model heterogenous effects can generate significant 
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contrasts between weighted and unweighted estimates (e.g., Solon, Haider and Wooldridge, 2015). Hence, 

equation (4.2) will be re-estimated by weighted least squares (WLS). 

 
4.5 Multiple inference 
 

Nearly all of our groupings of data quality measures contain more than one measure. Consequently, 

significant effects may emerge by chance for some measure even if no effect on the grouping exists. To 

control for this, Bonferroni corrections are performed and significance is declared at level 0.05 ,M  M  

being the number of measures in the grouping. 

 
5. Results 
 
5.1 Model selection 
 

Table 5.1 lists the best-fitting models of  .itD  The cosinor model is the preferred option for analyzing 

most of the data quality measures. However, Binder’s (2022) piecewise constant function (indicators for 

06:00 to 11:59, 12:00 to 18:59, and 19:00 to 05:59) is the best fitting alternative for the number of hours not 

coded in the diary (HMissing), the probability of reporting all mood at home categories in multiples of 50 

(PMOOD50), and the probability of reporting expenditure on eating out in multiples of 50 (PEATING-OUT50). The 

degree three polynomial is favored for the probability of being among the 5% highest completion times 

(PIVDUR5H) and the probability of reporting expenditure on eating out in multiples of 100 (PEATING-OUT100). For 

the probability of reporting all mood at home categories in multiples of 25 (PMOOD25), Durrant et al.’s (2011) 

piecewise constant function (indicators for 00:00 to 11:59, 12:00 to 16:59, and 17:00 to 23:59) is preferred. 

 
Table 5.1 

Model selected for ( ).itD  
 

Dependent variable Model BIC value 

PINR Cosinor 13.259 
NumAct Cosinor 13.585 
HMissing Piecewise constant (Binder, 2022) 11.081 
IvDur Cosinor 14.327 
PIVDUR5L Cosinor 16.476 
PIVDUR5H Degree 3 polynomial 16.716 
PMOOD10 Cosinor 18.031 
PMOOD25 Piecewise constant (Durrant et al., 2011) 17.063 
PMOOD50 Piecewise constant (Binder, 2022) 16.670 
PFOODAH50 Cosinor 18.096 
PFOODAH100 Cosinor 18.018 
PEATING-OUT50 Piecewise constant (Binder, 2022) 17.956 
PEATING-OUT100 Degree 3 polynomial 17.759 
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5.2 Baseline results 
 

The results of estimating equation (4.2) with the functional forms listed in Table 5.1 are presented in 

Tables 5.2 and 5.3. Table 5.2 shows the results for the percent item nonresponse (PINR), the time-diary 

measures, and interview completion time. Table 5.3 gathers the results for the indicators of rounding. The 

bottom rows of both tables list the p -values for the tests of significance of  itD  and strict exogeneity of 

 : 1, , .it iD t T …  

A statistically significant  itD  is detected in some of the regressions, which suggests the existence of 

some effects on data quality of .itD  In a p -value sense, the strongest evidence is found in the regressions 

for the number of activities (NumAct) and the probability of being among the 5% lowest completion times 

(PIVDUR5L). The null of no effect is also rejected at 5% in the regressions for PINR and PEATING-OUT100. No 

statistically significant effect is detected in the remaining cases. 

In the case of PEATING-OUT100, the rejection of the null does not hold if zero expenditure (reported in 28% 

of the interviews) is assumed not to reflect rounding ( p -value 0.55). In addition, the effect on PEATING-OUT100 

does not survive a Bonferroni correction for two simultaneous tests in the group of measures assessing 

expenditure on eating out, which would require p -value <  0.025. 

 

Table 5.2 

Time of day of interview effects on data quality. 
 

 
(1) 

PINR 

(2) 

NumAct 

(3) 

HMissing 

(4) 

IvDur (min) 

(5) 

PIVDUR5L 

(6) 

PIVDUR5H 

Explanatory variables Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

12:00–18:59     0.049 0.029       
19:00–05:59     0.048 0.039       

2(1 ( /24) )it itD D            -0.169 0.238 
2 (1 /24)it itD D            0.039 0.024 

sin ( 2 /24)itD   -0.147* 0.070 0.259* 0.087   -0.020 0.135 -0.405 0.361   
cos( 2 /24)itD   0.040 0.064 -0.191* 0.086   -0.282* 0.138 0.814* 0.373   
Tuesday -0.190 0.108 1.480* 0.137 -0.103* 0.039 0.733* 0.192 -0.251 0.491 1.013 0.624 
Wednesday -0.157 0.118 1.207* 0.150 -0.079 0.041 0.430* 0.204 -0.960 0.547 -0.046 0.656 
Thursday 0.015 0.131 1.233* 0.159 -0.048 0.043 0.653* 0.226 -0.380 0.573 1.146 0.762 
Friday -0.008 0.118 1.132* 0.152 -0.075 0.042 0.272 0.206 0.188 0.505 -0.138 0.656 
Saturday 0.012 0.124 0.755* 0.153 -0.027 0.041 0.387 0.246 0.514 0.605 0.140 0.781 
Sunday 0.289* 0.140 0.054 0.171 0.001 0.045 -0.380 0.242 0.151 0.660 -0.882 0.759 
Worked 0.408* 0.137 -1.711* 0.158 -0.120* 0.037 -0.174 0.173 1.378* 0.609 0.623 0.555 
Sleep duration -0.024 0.018 -0.080* 0.025 -0.016* 0.007 -0.131* 0.028 0.400* 0.089 -0.178 0.095 
Significance of ( )itD  [0.04] [0.00] [0.22] [0.10] [0.01] [0.14] 
Strict exogeneity of { }itD  [0.01] [0.73] [0.10] [0.03] [0.03] [0.79] 
Observations 25,184 25,184 25,184 25,184 25,184 25,184 

Notes: Estimations are conducted using first differencing, and include complete sets of first-differenced dummies for number of previous 
interviews and first-differenced single-hour dummies for itD  interacted with 

e
scMSF .  The dependent variables whose name start with P 

are binary indicators for the outcome given in the name’s subscript scaled as a percentage. Standard errors take account of heteroskedasticity 
and clustering at individual level. Probability values are in brackets. *: Significant at 5%. 

 

The estimated effects on PINR, NumAct, and PIVDUR5L, calculated by zeroing out all the controls and 

varying ,itD  are depicted in Figure 5.1. The three graphs tell a rather consistent story: The quality of the 

data peaks in the early morning and is worst in the evening. The estimated change within the day is 0.30 
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percentage points (pps) for PINR, 0.64 activities for NumAct, and 1.82 pps for PIVDUR5L, representing 11, 4, 

and 36% of the corresponding mean. 

 
Table 5.3 

Time of day of interview effects on data quality. 
 

 
(1) 

PMOOD10 

(2) 

PMOOD25 

(3) 

PMOOD50 

(4) 

PFOODAH50 

(5) 

PFOODAH100 

(6) 

PEATING-OUT50 

(7) 

PEATING-OUT100 

Explanatory variables Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

12:00–18:59     -0.109 0.500     -1.594 1.108   
19:00–05:59     -0.023 0.675     -1.740 1.446   
12:00–16:59   0.589 0.589           
17:00–23:59   -0.502 0.733           

2(1 ( /24) )it itD D              0.839 0.449 
2 (1 /24)it itD D              -0.032 0.045 

sin ( 2 /24)itD   -0.714 0.828     -0.277 0.898 -0.280 0.822     
cos( 2 /24)itD   0.820 0.820     -1.598 0.837 -0.883 0.799     
Tuesday -0.531 1.210 0.176 0.770 -0.706 0.662 -1.212 1.276 0.833 1.239 -0.501 1.378 0.273 1.267 
Wednesday -1.326 1.361 -0.768 0.842 -1.661* 0.722 -1.028 1.433 0.720 1.389 1.332 1.552 3.122* 1.417 
Thursday -0.220 1.358 0.374 0.867 -0.873 0.737 -1.294 1.413 -0.873 1.388 0.669 1.575 1.909 1.416 
Friday -0.444 1.277 0.243 0.826 -0.455 0.663 -1.570 1.374 0.163 1.338 1.603 1.485 2.055 1.353 
Saturday -0.162 1.394 1.094 0.885 -0.068 0.721 -0.116 1.476 0.282 1.447 0.380 1.554 0.971 1.424 
Sunday -0.907 1.544 -0.408 0.920 -1.711* 0.776 -3.351* 1.569 -2.001 1.539 0.264 1.692 2.627 1.529 
Worked -2.307* 1.103 0.721 0.678 -0.160 0.573 -1.491 1.272 -2.048 1.238 -2.277 1.360 -0.664 1.201 
Sleep duration 0.215 0.182 0.223 0.117 0.166 0.097 -0.378 0.194 -0.326 0.192 0.193 0.216 0.244 0.196 
Significance of ( )itD  [0.28] [0.28] [0.97] [0.16] [0.54] [0.30] [0.04] 
Strict exogeneity of { }itD  [0.87] [0.91] [0.42] [0.25] [0.55] [0.27] [0.55] 
Observations 25,083 25,083 25,083 23,957 23,957 20,874 20,874 

Notes: See notes to Table 5.2. 

 
The number of activities might be lower when the diary is completed in the evening due to the longer 

period of recall. To disentangle the effect of itD  from that of the recall period, the sample is split into 

weekday (Monday–Thursday) and weekend (Friday–Sunday) diaries. The results of re-estimating the 

equation for NumAct in each of the two subsamples of diaries are presented in Table 5.4. (Remember that 

the day indicated in the tables is the interview day.)  itD  becomes insignificant in the subsample of 

weekend diaries, although this conclusion is partly driven by the imprecision of the estimates. Moreover, 

the extent of change within a weekend day comes out much smaller than within a weekday: 0.43 vs. 1.01 

activities, representing 2.7 and 5.9% of the corresponding mean. Thus, a large extent of the daily rhythm of 

NumAct is driven by the period of recall. 

As for the effects of the controls, the number of activities is higher in Monday–Thursday diaries, and 

interviews appear to be longer on Tuesdays, Wednesdays, and Thursdays. Working and sleeping longer on 

the diary day have contradictory effects on the quality of time-diary data, as they tend to reduce both the 

number of activities and the number of hours not coded. These effects are probably reflecting that working 

and sleeping longer reduce the time available for other activities, and the reduction of activities facilitates 

their recalling. Working on the diary day increases the likelihood that the interview is among the 5% shortest 

by 1.4 pps (or 28%).  
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Figure 5.1 Time of day of interview effects on data quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5.4 

Time of day of interview effects on NumAct, by diary day. 
 

 
(1) 

Monday–Thursday diaries 

(2) 

Friday–Sunday diaries 

Explanatory variables Coef S.E. Coef S.E. 

sin ( 2 /24)itD   0.476* 0.110 0.213 0.218 
cos( 2 /24)itD   -0.171 0.112 -0.028 0.209 
Monday   Ref. 
Tuesday 0.236 0.165   
Wednesday 0.099 0.172   
Thursday 0.088 0.165   
Friday Ref.   
Saturday   0.238 0.263 
Sunday   -0.415 0.304 
Worked -1.626* 0.213 -1.374* 0.345 
Sleep duration -0.093* 0.030 -0.021 0.057 
Significance of ( )itD  [0.00] [0.59] 
Observations 14,904 3,073 

Notes: Estimations are conducted using first differencing, and include complete sets of first-differenced dummies for number of previous 
interviews and first-differenced single-hour dummies for itD  interacted with 

e
scMSF .  Standard errors take account of heteroskedasticity 

and clustering at individual level. Probability values are in brackets. *: Significant at 5%. 
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5.3 Supplementary analyses 
 

5.3.1 Strict exogeneity 
 

We have been assuming that the variation in itD  within respondents is strictly exogenous. This 

assumption would be questioned if, for example, respondents rush through the survey or become distracted 

at times of day when the opportunity cost of completing the interview is highest. The p -value for the test 

of strict exogeneity of  : 1, ,it iD t T …  is shown in the next-to-last row of Tables 5.2 and 5.3. At 5% level, 

exogeneity is questioned in the regressions for PINR, completion time (IvDur), and PIVDUR5L. Since the within 

(or fixed effects) estimator tends to be more robust to the violation of strict exogeneity, we re-estimated 

equation (4.1) with the OLS estimator from the regression 

       x x βit i it i it i it iy y D D u u         (5.1) 

where 1

1
,iT

i i itt
y T y


     1

1
,iT

i i itt
D T D 


   and so on. The null hypothesis  0H : 0itD   is rejected 

in the regression for PINR ( p -value 0.01), but not rejected in the regressions for IvDur and PIVDUR5L ( p -

value 0.39 in both cases). Note, however, that both the first-difference and the within estimators may be 

biased when strict exogeneity fails. 

 

5.3.2 Robustness 
 

The estimates change little when sleep duration is excluded from ,xit  or when itD  is approximated by 

the end time of the time-use section of the questionnaire or by randomly selected points within the start and 

end times of the interview (results not shown). When the 2,578 interviews presenting inconsistent going-to-

bed time are included in the sample, the preferred model for  itD  changes in some cases (Table A.1 in 

the Appendix). A statistically significant  itD  is detected in the regressions for PINR, NumAct, HMissing, 

and IvDur, whereas  itD  becomes insignificant in the regression for PIVDUR5L (Tables A.2 and A.3 in the 

appendix). When an effect is detected, it suggests that data quality peaks in the early morning. 

 

5.3.3 Attrition 
 

Table 5.5 presents probit estimation output for the decision to complete an interview. It shows selected 

δ  coefficients plus average marginal effects (AMEs) calculated by averaging marginal effects across 

observations. Completing the 1t   interview on Tuesday–Saturday increases the probability of completing 

the t  interview. Working on the diary day increases that probability by 1.8 pps, whereas one more hour of 

sleep reduces it by 0.6 pps. The number of weeks passed between 2t   and 1t   is a strong predictor for 

completing the t  interview, whose likelihood reduces by 3.0 pps with every week passed. None of the 

single-hour dummies for , 1i tD   attains significance at 5% (not shown). 

After correcting for nonrandom attrition, the cosinor model becomes the preferred option for analyzing 

PMOOD50, while Binder’s (2022) piecewise constant function comes out as the best fitting alternative for the 

probability of reporting expenditure on food at home in multiples of 100 (PFOODAH100). The null hypothesis 

of no attrition bias is questioned in the regressions for IvDur, PIVDUR5L, and PFOODAH100. However, the 
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attrition-corrected estimates (reported in Tables A.4 and A.5 in the appendix) reveal essentially the same 

patterns as the non-attrition-corrected ones. The correction for nonrandom attrition makes less dubious the 

assumption of strict exogeneity of  itD  in the regressions for IvDur and PIVDUR5L ( p -value 0.12 in both 

cases). 

 
Table 5.5 

Probit for interview completion. 
 

 Dependent variable: , 2its t   

Explanatory variables ( 1)t   Coef. S.E. AME S.E. 

Tuesday 0.154* 0.034 0.034* 0.008 
Wednesday 0.175* 0.038 0.039* 0.008 
Thursday 0.184* 0.038 0.040* 0.008 
Friday 0.215* 0.037 0.047* 0.008 
Saturday 0.174* 0.039 0.038* 0.009 
Sunday 0.058 0.042 0.014 0.010 
Worked 0.089* 0.028 0.018* 0.005 
Sleep duration -0.027* 0.004 -0.006* 0.001 
Weeks between 2t   and 1t   -0.145* 0.006 -0.030* 0.001 
Intercept 1.121* 0.105   
R-squared 0.070 
Observations 32,779 
Mean of its  0.859 

Notes: Observations for the last interview are excluded because individuals did certainly not continue in the survey. Includes single-hour dummies 
for , 1i tD  , dummies for number of previous interviews, and e

scMSF  interacted with single-hour dummies for , 1.i tD   Standard errors take 
account of heteroskedasticity and clustering at individual level. R-squared equals one minus the ratio of the log likelihood of the fitted 
function to the log likelihood of a function with only an intercept. *: Significant at 5%. 

 
5.3.4 Weights 
 

Tables 5.6 and 5.7 present the WLS estimates. A statistically significant  itD  is not detected in most 

of the regressions shown. While in some cases (e.g., the regression for NumAct), the WLS estimated 

coefficients are smaller than the OLS ones, in most cases the inference is driven by the larger standard 

errors. A statistically significant  itD  is detected in the regression for PIVDUR5H ( p -value 0.03), but this 

effect does not survive a Bonferroni correction for simultaneous tests in the group of measures assessing 

completion time. The null of no effect is also rejected at 5% in the regressions for PEATING-OUT50 and 

PEATING-OUT100 ( p -value 0.01 in both cases), but in both cases the rejection of the null does not hold if zero 

expenditure is assumed not to reflect rounding ( p -values 0.43 and 0.35 respectively). 

 

5.3.5 Subpopulations 
 

Finally, we split the sample by educational attainment (at most some college vs. college diploma) to 

investigate time of day of interview effects with certain types of individuals. Although cognitive abilities 

are important predictors of educational attainment, we do not expect to find big differences between 

demographic groups as our estimates are net of synchrony and cognitive ability effects. Indeed, although 

the best-fitting model of  itD  changes for most of the dependent variables in both subpopulations, the 

main conclusions are preserved (results not shown). 
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Table 5.6 

Time of day of interview effects on data quality. Weighted estimates. 
 

 
(1) 

PINR 

(2) 

NumAct 

(3) 

HMissing 

(4) 

IvDur (min) 

(5) 

PIVDUR5L 

(6) 

PIVDUR5H 

Explanatory variables Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

12:00–18:59     0.224 0.124       
19:00–05:59     0.063 0.113       

2(1 ( /24) )it itD D            -0.993* 0.474 
2 (1 /24)it itD D            0.153* 0.058 

sin ( 2 /24)itD   -0.298 0.249 0.061 0.207   -0.581* 0.295 0.363 0.662   
cos( 2 /24)itD   0.133 0.139 -0.111 0.157   -0.314 0.293 0.082 1.023   
Tuesday -0.241 0.242 1.222* 0.260 -0.133 0.093 1.341* 0.374 -0.299 1.306 1.439 1.417 
Wednesday -0.124 0.334 1.248* 0.359 -0.185 0.138 1.028* 0.438 0.077 2.241 0.812 1.507 
Thursday 0.483 0.331 0.881* 0.312 0.020 0.098 1.025* 0.409 0.543 1.653 1.879 1.619 
Friday 0.512 0.336 0.703* 0.291 0.104 0.127 0.621 0.431 1.067 1.422 0.262 1.533 
Saturday 0.354 0.291 -0.009 0.411 0.038 0.128 -0.243 0.483 1.911 2.031 -1.101 1.531 
Sunday -0.034 0.358 0.109 0.339 -0.075 0.130 -0.959* 0.485 0.381 1.556 -3.991* 1.663 
Worked 0.200 0.250 -2.582* 0.260 -0.158 0.084 -0.706* 0.320 3.005* 1.494 -1.619 1.025 
Sleep duration -0.057 0.043 -0.077 0.046 -0.030 0.017 -0.097 0.062 0.656* 0.209 0.040 0.276 
Significance of ( )itD  [0.38] [0.69] [0.14] [0.14] [0.84] [0.03] 
Strict exogeneity of { }itD  [0.26] [0.92] [0.36] [0.02] [0.25] [0.23] 
Observations 25,184 25,184 25,184 25,184 25,184 25,184 

Notes: Estimations are conducted using first differencing, and include complete sets of first-differenced dummies for number of previous 
interviews and first-differenced single-hour dummies for itD  interacted with e

scMSF .  The dependent variables whose name start with P 
are binary indicators for the outcome given in the name’s subscript scaled as a percentage. Standard errors take account of heteroskedasticity 
and clustering at individual level. Probability values are in brackets. *: Significant at 5%. 

 

 

 

Table 5.7 

Time of day of interview effects on data quality. Weighted estimates. 
 

 
(1) 

PMOOD10 

(2) 

PMOOD25 

(3) 

PMOOD50 

(4) 

PFOODAH50 

(5) 

PFOODAH100 

(6) 

PEATING-OUT50 

(7) 

PEATING-OUT100 

Explanatory variables Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

12:00–18:59     -1.514 1.575     -1.255 2.295   
19:00–05:59     0.127 1.500     -8.426* 3.040   
12:00–16:59   -1.515 1.582           
17:00–23:59   -3.035* 1.436           

2(1 ( /24) )it itD D              1.074 0.889 
2 (1 /24)it itD D              0.037 0.096 

sin ( 2 /24)itD   -1.143 1.758     -2.348 2.000 -2.029 2.399     
cos( 2 /24)itD   0.236 2.192     -4.367 2.250 -4.183 2.698     
Tuesday 4.451 2.827 0.293 1.508 -0.836 1.199 2.645 2.530 3.310 2.620 -5.478 2.900 -2.843 2.732 
Wednesday 1.520 2.894 -0.776 1.728 -0.807 1.502 1.089 3.120 0.796 3.130 -0.336 3.387 3.425 3.026 
Thursday 5.568 3.929 0.631 1.738 -0.993 1.292 3.577 2.871 2.227 3.014 0.251 4.177 1.842 3.670 
Friday 7.726* 3.824 -0.968 1.819 -1.234 1.152 2.891 3.447 3.313 3.682 4.003 3.041 2.739 2.822 
Saturday 3.580 3.349 0.399 1.659 -0.234 1.321 3.190 3.127 3.793 3.692 -0.065 3.192 1.163 3.009 
Sunday 5.240 3.578 -0.992 1.842 -2.572 1.450 2.211 3.327 0.165 3.645 -1.928 3.554 0.044 3.236 
Worked -3.964 2.072 0.514 1.111 -1.931* 0.918 -0.547 2.809 -0.775 2.856 -3.397 2.839 -2.032 2.383 
Sleep duration 0.282 0.361 0.174 0.219 0.149 0.178 -0.855* 0.368 -0.576 0.440 0.330 0.441 0.280 0.432 
Significance of ( )itD  [0.77] [0.11] [0.35] [0.09] [0.28] [0.01] [0.01] 
Strict exogeneity of { }itD  [0.60] [0.68] [0.97] [0.13] [0.34] [0.41] [0.92] 
Observations 25,083 25,083 25,083 23,957 23,957 20,874 20,874 

Notes: See notes to Table 5.6. 
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6. Summary and discussion 
 

The analysis of high-frequency longitudinal microdata from the SUWNJ reveals no evidence of a time 

of day of interview effect on the quality of time-diary data (beyond the effect exerted by the length of the 

recall period), or on the tendency to report rounded values of subjective probabilities or food expenditure. 

As regards the period of recall, we found that self-completing a yesterday diary in the evening reduces the 

number of activities reported, whereas the amount of time not coded suffers no meaningful daily fluctuation. 

Thus, it appears that some activities are underreported and the duration of others is overestimated, 

introducing error in the measurement of the use of time. All these findings have been developed accounting 

for inter-individual differences in cognitive ability and synchrony effects, which may explain why they 

persist across education groups. They also appear to be robust to a range of alternative specifications 

assessing the impact of nonrandom attrition, unmodeled heterogenous effects, and different measures of 

time of day of interview. Although there is some evidence to indicate that item nonresponse and the 

probability that interview completion time is among the 5% shortest increase when the survey is completed 

in the evening, a more thorough assessment requires instrumental variables. 

Our most reliable results support the conclusion of previous research that survey data quality is 

insensitive to the time of day of interview (Ziniel, 2008; Dickinson and McElroy, 2010; Binder, 2022), but 

disagree with those of Flynn (2018), who found that respondents who start a survey in the evening answer 

significantly more questions than those who start it in the morning/afternoon. Yet, Flynn’s (2018) sample 

is made up of firm representatives, and completing a survey outside of regular office hours might benefit 

from reduced time pressures. As the unemployed (as compared to the employed) do not have to adhere to 

the limitations of work hours, their time of day of interview can be more evenly spread over the 24 hours, 

facilitating the identification of effects around the clock. It is also worth noting that, in contrast to MTurk 

samples (e.g., Binder, 2022), interviews appear to be longer on Thursdays (plus Tuesdays and Wednesdays), 

and that the number of activities reported is higher in Monday–Thursday diaries as in Juster (1986). 

Overall, therefore, it appears that beyond the effect exerted by the length of the recall period, inducing 

respondents to complete surveys at specific times of the day might have limited impacts on measurement 

error. Thus, survey practitioners should not worry much about the consequences for measurement error of 

seeking to interview subjects at times of the day they are most likely to be contactable. 

All that said, we recognize some limitations of this study. As regards the question of whether we uncover 

causal effects for the population being studied, it must be noted that we lack data on the situational context 

in which the interviews were completed (e.g., where the respondent was and what he/she was doing), and 

as argued by Bison and Zhao (2023) the temporal and situational contexts might be correlated. However, it 

is difficult to suggest instrumental variables sufficiently correlated with time of day of interview but 

uncorrelated with idiosyncratic errors, as most variables in the SUWNJ refer to days other than the interview 

day. Also, although the percentage of SUWNJ interviews completed from a mobile device must have been 

low (Callegaro, 2010, for example, reports that among all respondents who attempted to complete an online 

customer satisfaction survey conducted in North America in June 2010, 2.6% did so from a mobile device), 
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if completing an interview from a mobile device affects the quality of the data (as the evidence reviewed in 

Toninelli and Revilla, 2020 suggests) and depends on the time of day, our results might contain bias. As 

regards the predictive value of our findings in a different context, it must be noted that the results obtained 

for the unemployed might not be representative for broader populations if, for example, the activities 

conducted before completing the survey interact with sleepiness/fatigue. 

In addition, insufficient data prevented us from investigating the existence of time of day of interview 

effects on alternative measures of data quality, such as survey breakoff and response errors caused by social 

desirability or extreme, midpoint, or nondifferentiated responding. As regards the effects of the length of 

the recall period, it seems worth investigating whether the administration of a yesterday diary by an 

interviewer (who could foster respondents’ attention and motivation), or the “own words” reporting of 

activities by respondents (which avoids the process of mapping the answer onto the appropriate response 

option), could improve the quality of time-diary data. 
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Appendix 
 
Table A.1 

Model selected for ( ).itD  Including observations with inconsistent going-to-bed time. 
 

Dependent variable Model BIC value 

PINR Piecewise constant (Binder, 2022) 13.405 
NumAct Cosinor 13.731 
HMissing Piecewise constant (Binder, 2022) 11.271 
IvDur Piecewise constant (Binder, 2022) 14.460 
PIVDUR5L Cosinor 16.590 
PIVDUR5H Degree 3 polynomial 16.849 
PMOOD10 Piecewise constant (Binder, 2022) 18.162 
PMOOD25 Piecewise constant (Durrant et al., 2011) 17.211 
PMOOD50 Cosinor 16.820 
PFOODAH50 Degree 3 polynomial 18.226 
PFOODAH100 Piecewise constant (Binder, 2022) 18.145 
PEATING-OUT50 Piecewise constant (Binder, 2022) 18.080 
PEATING-OUT100 Degree 3 polynomial 17.887 
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Table A.2 

Time of day of interview effects on data quality. Including observations with inconsistent going-to-bed time. 
 

 
(1) 

PINR 

(2) 

NumAct 

(3) 

HMissing 

(4) 

IvDur (min) 

(5) 

PIVDUR5L 

(6) 

PIVDUR5H 

(7) 

PPM-AM 

Explanatory variables Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

12:00–18:59 0.203* 0.073   0.070* 0.027 -0.368* 0.140       
19:00–05:59 0.221* 0.101   0.054 0.036 -0.461* 0.189       

2(1 ( /24) )it itD D            -0.106 0.219   
2 (1 /24)it itD D            0.027 0.022   

sin ( 2 /24)itD     0.264* 0.084     -0.099 0.355   0.611 0.499 
cos( 2 /24)itD     -0.184* 0.080     0.427 0.333   -1.069* 0.495 
Tuesday -0.177 0.101 1.420* 0.131 -0.086* 0.037 0.772* 0.184 -0.160 0.447 1.114 0.602 -2.738* 0.696 
Wednesday -0.145 0.109 1.180* 0.141 -0.056 0.039 0.434* 0.196 -0.672 0.502 0.075 0.635 -2.417* 0.763 
Thursday 0.024 0.121 1.247* 0.150 -0.011 0.041 0.780* 0.213 -0.469 0.519 1.255 0.724 -1.503 0.788 
Friday -0.009 0.113 1.091* 0.145 -0.057 0.042 0.355 0.196 0.095 0.476 0.241 0.626 -2.161* 0.748 
Saturday 0.072 0.121 0.755* 0.147 -0.002 0.041 0.507* 0.233 0.838 0.561 0.482 0.755 -1.156 0.815 
Sunday 0.270* 0.136 -0.025 0.163 0.029 0.046 -0.283 0.228 -0.199 0.613 -0.538 0.728 -0.759 0.879 
Worked 0.369* 0.129 -1.687* 0.152 -0.123* 0.035 -0.206 0.164 1.401* 0.565 0.454 0.531 -2.210* 0.659 
Sleep duration -0.028 0.018 -0.056* 0.023 -0.015* 0.007 -0.105* 0.026 0.361* 0.082 -0.131 0.090 -1.803* 0.124 
Significance of ( )itD  [0.01] [0.00] [0.03] [0.01] [0.35] [0.30] [0.02] 
Strict exogeneity of { }itD  [0.02] [0.61] [0.17] [0.57] [0.01] [0.64] [0.65] 
Observations 28,576 28,576 28,576 28,576 28,576 28,576 28,576 

Notes: Estimations are conducted using first differencing, and include complete sets of first-differenced dummies for number of previous interviews 
and first-differenced single-hour dummies for itD  interacted with e

scMSF .  The dependent variables whose name start with P are binary 
indicators for the outcome given in the name’s subscript scaled as a percentage. Standard errors take account of heteroskedasticity and 
clustering at individual level. Probability values are in brackets. *: Significant at 5%. 

A 

 

 

Table A.3 

Time of day of interview effects on data quality. Including observations with inconsistent going-to-bed time. 
 

 
(1) 

PMOOD10 

(2) 

PMOOD25 

(3) 

PMOOD50 

(4) 

PFOODAH50 

(5) 

PFOODAH100 

(6) 

PEATING-OUT50 

(7) 

PEATING-OUT100 

Explanatory variables Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

12:00–18:59 1.065 0.895       -0.600 0.911 -1.238 1.043   
19:00–05:59 2.380* 1.197       -0.187 1.204 -0.950 1.373   
12:00–16:59   0.525 0.573           
17:00–23:59   0.206 0.686           

2(1 ( /24) )it itD D        0.283 0.451     0.578 0.411 
2 (1 /24)it itD D        0.022 0.047     -0.022 0.041 

sin ( 2 /24)itD       0.111 0.440         
cos( 2 /24)itD       0.511 0.374         
Tuesday 0.208 1.142 -0.282 0.723 -0.864 0.619 -0.697 1.205 0.729 1.168 -0.468 1.312 0.398 1.194 
Wednesday -0.735 1.277 -0.951 0.791 -1.703* 0.672 -0.453 1.363 0.947 1.320 1.463 1.471 3.295* 1.339 
Thursday -0.176 1.270 0.191 0.814 -0.966 0.692 -1.183 1.351 -1.337 1.305 -0.120 1.473 1.251 1.322 
Friday 0.034 1.207 -0.163 0.782 -0.636 0.623 -1.346 1.313 0.104 1.266 1.540 1.405 2.252 1.279 
Saturday 0.078 1.300 0.353 0.840 -0.369 0.677 -0.448 1.392 -0.298 1.352 0.382 1.471 1.028 1.342 
Sunday -0.489 1.440 -0.529 0.876 -1.590* 0.727 -2.606 1.462 -1.390 1.451 0.611 1.607 2.820 1.441 
Worked -2.167* 1.067 0.377 0.659 -0.363 0.542 -1.344 1.200 -2.024 1.162 -2.238 1.277 -0.372 1.147 
Sleep duration 0.152 0.171 0.200 0.110 0.115 0.095 -0.401* 0.179 -0.336 0.178 0.139 0.204 0.190 0.187 
Significance of ( )itD  [0.13] [0.65] [0.39] [0.10] [0.79] [0.49] [0.17] 
Strict exogeneity of { }itD  [0.64] [0.99] [0.79] [0.25] [0.25] [0.42] [0.93] 
Observations 28,461 28,461 28,461 27,187 27,187 23,612 23,612 

Notes: See notes to Table A.2. 
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Table A.4 

Time of day of interview effects on data quality. Attrition-corrected estimates. 
 

 
(1) 

PINR 

(2) 

NumAct 

(3) 

HMissing 

(4) 

IvDur (min) 

(5) 

PIVDUR5L 

(6) 

PIVDUR5H 

Explanatory variables Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

12:00–18:59     0.048 0.029       
19:00–05:59     0.046 0.039       

2(1 ( /24) )it itD D            -0.157 0.238 
2 (1 /24)it itD D            0.038 0.024 

sin ( 2 /24)itD   -0.143* 0.070 0.256* 0.087   0.026 0.135 -0.457 0.364   
cos( 2 /24)itD   0.041 0.064 -0.191* 0.086   -0.293* 0.138 0.827* 0.374   
Tuesday -0.175 0.113 1.475* 0.142 -0.096* 0.040 0.944* 0.202 -0.505 0.501 1.100 0.658 
Wednesday -0.147 0.121 1.209* 0.154 -0.074 0.043 0.645* 0.211 -1.195* 0.559 0.048 0.680 
Thursday 0.033 0.136 1.231* 0.163 -0.040 0.044 0.858* 0.231 -0.681 0.576 1.243 0.774 
Friday 0.003 0.123 1.130* 0.155 -0.070 0.044 0.470* 0.212 -0.052 0.512 -0.055 0.673 
Saturday 0.023 0.127 0.755* 0.155 -0.022 0.042 0.542* 0.249 0.319 0.610 0.187 0.795 
Sunday 0.289* 0.140 0.058 0.172 0.003 0.045 -0.336 0.242 0.121 0.661 -0.896 0.762 
Worked 0.414* 0.137 -1.720* 0.158 -0.118* 0.037 -0.117 0.174 1.282* 0.608 0.717 0.556 
Sleep duration -0.025 0.018 -0.079* 0.025 -0.016* 0.007 -0.142* 0.028 0.416* 0.088 -0.188* 0.095 
Attrition bias [0.91] [0.20] [0.29] [0.00] [0.01] [0.38] 
Significance of ( )itD  [0.04] [0.00] [0.24] [0.07] [0.01] [0.16] 
Strict exogeneity of { }itD  [0.00] [0.54] [0.08] [0.12] [0.12] [0.95] 
Observations 25,184 25,184 25,184 25,184 25,184 25,184 

Notes: Estimations are conducted using first differencing, and include a complete set of first-differenced dummies for number of previous 
interviews, first-differenced single-hour dummies for itD  interacted with e

scMSF ,  and the inverse Mills ratio interacted with dummies for 
interview number. The dependent variables whose name start with P are binary indicators for the outcome given in the name’s subscript 
scaled as a percentage. Standard errors take account of heteroskedasticity and clustering at individual level and correct for generated 
regressors. Probability values are in brackets. *: Significant at 5%. 

 

 

Table A.5 

Time of day of interview effects on data quality. Attrition-corrected estimates. 
 

 
(1) 

PMOOD10 

(2) 

PMOOD25 

(3) 

PMOOD50 

(4) 

PFOODAH50 

(5) 

PFOODAH100 

(6) 

PEATING-OUT50 

(7) 

PEATING-OUT100 

Explanatory variables Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

12:00–18:59         -1.027 0.994 -1.642 1.113   
19:00–05:59         -1.107 1.281 -1.824 1.446   
12:00–16:59   0.621 0.589           
17:00–23:59   -0.467 0.734           

2(1 ( /24) )it itD D              0.836 0.448 
2 (1 /24)it itD D              -0.031 0.045 

sin ( 2 /24)itD   -0.741 0.831   -0.039 0.458 -0.316 0.899       
cos( 2 /24)itD   0.827 0.820   0.084 0.400 -1.588 0.836       
Tuesday -0.758 1.250 0.140 0.803 -0.844 0.685 -1.400 1.328 0.792 1.290 -0.348 1.429 0.201 1.304 
Wednesday -1.539 1.394 -0.823 0.874 -1.789* 0.744 -1.175 1.486 0.745 1.443 1.505 1.609 3.053* 1.459 
Thursday -0.437 1.387 0.324 0.888 -1.011 0.749 -1.447 1.445 -0.919 1.429 0.822 1.620 1.867 1.451 
Friday -0.621 1.305 0.183 0.850 -0.570 0.679 -1.740 1.416 0.180 1.379 1.759 1.534 2.022 1.389 
Saturday -0.342 1.409 1.065 0.903 -0.162 0.733 -0.280 1.501 0.240 1.475 0.494 1.589 0.907 1.446 
Sunday -0.976 1.544 -0.396 0.926 -1.741* 0.779 -3.374* 1.575 -2.103 1.543 0.286 1.702 2.611 1.533 
Worked -2.281* 1.106 0.653 0.684 -0.214 0.576 -1.511 1.277 -1.992 1.241 -2.132 1.369 -0.491 1.203 
Sleep duration 0.221 0.184 0.232* 0.117 0.176 0.097 -0.366 0.195 -0.333 0.193 0.176 0.216 0.247 0.195 
Attrition bias [0.79] [0.30] [0.26] [0.67] [0.04] [0.96] [0.08] 
Significance of ( )itD  [0.27] [0.28] [0.97] [0.16] [0.54] [0.28] [0.04] 
Strict exogeneity of { }itD  [0.85] [0.98] [0.68] [0.25] [0.61] [0.33] [0.50] 
Observations 25,083 25,083 25,083 23,957 23,957 20,874 20,874 

Notes: See notes to Table A.4. 
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Exploring a skewness conjecture: Expanding Cochran’s rule 
to a proportion estimated from a complex sample 

Phillip S. Kott and Burton Levine1 

Abstract 

Cochran’s rule states that a standard (Wald) two-sided 95% confidence interval around a sample mean drawn 
from a population with positive skewness is reasonable when the sample size is greater than 25 times the square 
of the skewness coefficient of the population. We investigate whether a variant of this crude rule applies for a 
proportion estimated from a stratified simple random sample. 

 
Key Words: Effective sample size; Skewness coefficient; Suppression rule; Third central moment. 

 
 

1. Introduction 
 

In his celebrated survey-statistics textbook William Cochran (1977) suggests that the standard (Wald) 

two-sided 95% confidence interval for an estimated population proportion p  (having a property) based on 

a simple random sample works reasonably well when the absolute value of the estimate’s (Fisher) skewness 

coefficient is less than 0.2. In particular, Cochran suggested that the true population proportion P  will fall 

within the standard confidence interval at least 94% of the time over repeated samples although the fraction 

of misses on either side of the interval need not be equal. 

Cochran’s rule for simple random sampling, given that name (as far as we can tell) by Sugden, Smith 

and Jones (2000), is that the sample size n  should exceed 2
125G ,  where 1G  is the skewness coefficient of 

the distribution from which the sample is drawn. We are using the definition of the coefficient of skewness 

Cochran used, which can be found in Evans, Hastings and Peacock (2000, page 15): the ratio of the third 

central moment of the distribution in the numerator and the second central moment of the distribution raised 

to the 3 2  power in the denominator.  

The skewness coefficient of the sample proportion p  is then 1 2
1G ( ) Gp n  ignoring finite-population 

correction, so the rule translates to G( )p  0.2. Cochran’s crude rule (Cochran called his original sugges-

tion “crude”) applies to any sample mean with a positive skewness. Here mostly we limit discussion to an 

estimated proportion p  having a positive skewness. Note that the estimated proportion 1 p  is symmetric 

to p  and has a negative skewness. Consequently, we conjecture that the standard two-sided confidence 

interval is reasonable when G( )p  0.2 for any nearly (design) unbiased estimated proportion p  computed 

from a complex sample. We investigate this conjecture empirically for unbiased estimates based on virtual 

stratified simple random samples in Section 3. In Section 4, we offer a discussion of the practical repercuss-

sions of our conjecture realizing that operationally G( )p  will need to be replaced by an estimate. We 

provide some statistical background from probability-sampling theory (often called “design-based sampling 

theory”) in the next section.  
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2. Some background 
 

For a stratified simple random sample, let 1, ,h H …  denote strata; 1hn   the sample size in stratum 

;h  hN  the population size of stratum 
1

; ;
H

hh
h n n


  and 

1
.

H

hh
N N


  Let hP  the population proportion 

in stratum ,h  and hp  the sample proportion in stratum .h  

The following equations are all well-known. The population proportion P  is equal to 
1

,h
H N

hNh
P P


  

while 
1

 h
H N

hNh
p p


  is its estimator. Assuming, as we will from now on, that N  is so large that finite-

population correction can be ignored, the variance of p  is 

 
2

1

1
Var ( ) ,

( )H
h h h

h h

N P P
p

N n

 
  

 
  (2.1) 

and an unbiased estimator for this variance is  

 
2

1

1
var ( )  .

(

1

)H
h h h

h h

N p p
p

N n

 
  

 
  (2.2) 

The third-central moment of p  is 

 
3

3 2
1

1 (1 2 )
( )  ,

( )H
h h h h

h h

N P P P
M p

N n

  
  

 
  (2.3) 

and an unbiased estimator for this parameter when all the 2hn   is  

 
3

3
1

1 (1 2 )
( ) .

(

( )

1) ( 2)

H
h h h h

h h h

N p p p
m p

N n n

  
  

  
  (2.4) 

The skewness coefficient of p  is  

  
3 2

3G( ) ( ) Var( ) ,p M p p  (2.5) 

and a nearly unbiased estimator of this parameter (if it exists) is 

  
3 2

3g( ) ( ) var( ) .p m p p  (2.6) 

The following popular ad-hoc measure of skewness avoids measuring the third-central moment of :p  

 
 

 
1 2

1 2

1 2

(1 2 ) ( ) (1 2 )
G*( ) Var ( ) ,

(1 )(1 )

P n P
p p

P PP P

 
 


 (2.7) 

where 
(1 )

Var( )  P P

pn    is the effective sample size of the sampling design and estimator. 

A nearly unbiased estimator for G*( )p  is  

 
 

 
1 2

1 2

1 2
,

(1 2 ) ( *) (1 2 )
g*( ) var ( )

(1 )(1 )

p n p
p p

p pp p

 
 


 (2.8) 
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where (1 )
var( )*  p p

pn   is the estimated effective sample size of the sampling design and estimator. Unlike g( ),p  

g*( )p  can be computed when one or more 2,hn   which is often the case in practice. 

Under simple random sampling and large ,n  *,n n n   so that G*( ) G ( ),p p  and g*( ) g ( ).p p  

 
3. Some simulated experiments 
 

Under simple random sampling, a sample size of approximately 180 is needed for the G( )p  to be less 

than 0.2 when the target P  is 0.1. The simulated experiments in this section were designed with this in 

mind.  

Our goal was to evaluate two-sided 95% confidence intervals for different estimates based on stratified 

samples of 180 units. We considered three-stratum sampling designs with 60 sampling units in each and 90-

stratum sampling designs with two sampling units in each. We considered the possibility that either the 

relative population sizes in every stratum was the same or that half the population was represented by a third 

of the sampling units, the latter in two different ways (as will be explained). Finally, we considered a 

homoscedastic (equal unit variance) survey-variable-assignment method where each population unit had the 

same probability of having the binary survey value 1 (rather than 0) and that that probability varied across 

the 20 numerical values 0.01, 0.02, …, 0.19, 0.20. We also considered a heteroscedastic assignment method 

where a third of the population had no chance of having a binary survey value 1, a third had the same chance 

of having survey value 1 as in the homoscedastic assignment method, and a third had double the chance of 

having survey value 1 as in the homoscedastic method.  

Rather than simulating 180 sampled units drawn separately for 20 estimates in each of 12 different 

scenarios (2 variable-assignment methods  2 sets of strata formations  3 sets of relative population sizes) 

100,000 times, we did the equivalent to ease the computational burden. We drew 100,000 ur-samples (i.e., 

original or primitive “samples”). Each ur-sample contained 180 ordered ur-sampling units. Within each of 

the 12 scenarios, every ur-sampling unit was assigned to 20 separate survey values  and thus 20 virtual 

sampling units. We call what was found about the 20 estimated confidence intervals in each scenario the 

result of a “simulated experiment” because we didn’t really draw samples in each scenario. Nevertheless, 

we refer to each of the 100,000 selections of an 180-unit ur-sample and its repercussions as a “simulation”. 

The details of what we did follow. Each ur-sampling unit j  was associated with an independent random 

draw jd  from the uniform distribution on the half-closed, half-open interval [0, 1) (i.e., 0 is included in the 

interval, but 1 is not). Letting vP  take on the 20 values 0.01, 0.02, …, 0.19, 0.20, each ur-sampling unit j  

had 20 binary survey variables assigned to it in one of two ways. In the homoscedastic variable-assignment 

method 1jvy   when j vd P  and 0 otherwise. In the heteroscedastic variable-assignment method, 1jvy   

when j v jd P a  and 0 otherwise, where 0ja   when 61,j   1ja   when 60 121,j   and 2ja   when 

120.j   

The ordered ur-sampling units j  were assigned to strata in the following manner. In the three-strata 

assignment method, the ur-sampling unit was assigned to stratum 1 when j  61; the unit was assigned to 

stratum 2 when 60 j  121; and the unit was assigned to stratum 3 when j  120. In the 90-strata method 
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when j  1 or 2 the unit was assigned to stratum 1; when j  3 or 4, the unit was assigned to stratum 2, 

and so forth. 

Finally, the strata have been assigned relative population sizes (i.e, )h hf N N  in three different ways. 

For the three-strata assignment method, the three ways were 1 2 3 1 3;f f f    1 1 2,f   2 3 1 4;f f   

and 1 2 1 4,f f   3 1 2.f   For the 90-strata assignment method, the three ways were 1 90hf   for all 

;h  1 60hf   for 1h   to 30, 1 120hf   otherwise; and 1 120hf   for 1h   to 60, 1 60hf   otherwise. 

For many of the 12 scenarios, the estimators’ target proportion P  (defined in Section 2) was the same 

as vP  (the straight average of the survey values in the virtual sample). The exceptions occurred with the 

heteroscedastic variable-assignment method when the stratum shares (i.e., relative population sizes) were 

not all equal. When the virtual sampling units in either the lowest stratum ( 1)h   under the three-strata 

assignment method or in the 30 lowest strata ( 1, , 30)h  …  under the 90-strata assignment method ac-

counted for half the estimates, (3 4) .vP P  When the samples in either the highest stratum ( 3)h   or 30 

highest strata ( 61, , 90)h  …  accounted for half the estimates, (5 4) .vP P  

Note that vP  (not )P  appears on the x-axis in the six graphs in Figures 3.1, 3.2, and 3.3. These graphs 

display the average coverages across 100,000 simulations of the traditional two-sided 95% confidence 

intervals under the scenarios described above for vP  set at 0.01, 0.02., …, and 0.20. 

The confidence intervals were computed using the traditional model-free probability-sampling estimates 

of Var ( )p  ignoring finite-population correction described in Section 2. That the data used in the experi-

ments were generated from a model does not undermine the usefulness of model-free methods of inference 

(especially when the model generating the data is unknown, which was not the case here). 

We are interested in the relationship between the coverages of the traditional two-sided 95% confidence 

intervals and the values of G( )p  which (like G*( )),p  always decrease as vP  increases at least within the 

range we investigated, that is, for vP  0.2 (not shown). 

Vertical lines appear at the first value of vP  for which G( )p  is less than 0.2. Such lines also appear for 

G*( )p  (the two lines are identical when the survey variables are homoscedastic and the stratum shares are 

equal). The vertical lines allow us to assess the strong version of our conjecture, namely that coverages to 

the right of the G( )p  or G*( )p  line should always be at least 94%. This version fails for both G( )p  and 

G*( ),p  but a weaker crude version replacing “always” with “usually” does not.  

Although the virtual samples and the estimated p  are the same when the variable assignment and relative 

stratum shares are the same, the coverages are not because the estimated variances var ( )p  (in equation 

(2.2)), unlike the actual variances Var ( )p  (in equation (2.1)), differ between the three-strata and 90-strata 

assignment methods. That is why there the red and blue lines differ in each of the six graphs displayed in 

the three figures, while the G ( )p  and G*( )p  lines (from equations (2.5) and (2.7), which are functions of 

the sample, Var ( ),p  3M ( )p  (from equation (2.3)), and ,P  are the same for both strata assignment method. 

This allowed us to show the results of 12 scenarios in six graphs. 

For these six graphs, we used the standard 95% confidence intervals produced by SAS’s PROC 

SURVEYMEANS (2020); that is, 0.05CI ( ) ( ) var ( ),d P p t d p   where 0.95 ( )t d  1.9754 for the three-stratum 
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assignment ( 180 30 150d     being the nominal degrees of freedom of var ( ))p  and 0.95 ( )t d  1.9872 for 

the 90-stratum assignment ( 180 90 90).d     As noted above, the p  are the same for both strata-

assignment methods, but the var ( )p  are not. The jaggedness of coverages has been noted in pervious 

empirical work (e.g., Brown, Cai and Dasgupta (2001) and Dean and Pagano (2015)) and is attributed to the 

discrete nature of the determination of coverage (the interval either covers P  or it does not). It is a bit 

surprising that the 90-strata (red) lines appear less jagged than the 3-strata (blue) ones even though the latter 

have more degrees of freedom. An investigation into why that is the case must wait for another time.  

 
Figure 3.1 Coverages when all stratum shares (fh) are equal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: G(G*) is first less than 0.2 at its vertical line, decreasing further as Pv increases.  
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Figure 3.2 Coverages when first third of strata have half the shares. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: G(G*) is first less than 0.2 at its vertical line, decreasing further as Pv increases. 
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Figure 3.3 Coverages when last third of the strata have half the share. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: G(G*) is first less than 0.2 at its vertical line, decreasing further as Pv increases. 
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A little thought reveals why the bottom graphs on Figures 3.1 and 3.2 coincide exactly, while the top 

graphs on Figures 3.2 and 3.3 are nearly identical (it is only the finite nature of the simulations that causes 

them to differ slightly). 

 
4. A discussion 
 

The use of a standard two-sided 95% confidence interval for an estimated proportion relies on the 

estimate being asymptotically normal. Among other things, the skewness coefficient of a normally dis-

tributed estimator is 0. An estimated proportion based on a finite sample has a non-zero skewness 

coefficient. The skewness coefficient tends to decrease as the size of the sample on which the estimates is 

based increases. We developed our version of Cochran’s rule to be able to determine when the size of a 

complex sample is large enough for the reasonable use of a standard two-sided 95% confidence interval.  

Our crude version of Cochran’s rule, namely that the standard two-sided 95% confidence interval for an 

estimated proportion p  based on a complex sample is reasonable when the absolute value of its skewness 

coefficient G( )p  is less than 0.2, often cannot be used directly because G( )p  is unknown. As it happens, 

its unbiased estimator g( )p  tends to have a slight upward bias due to the random nature of its denominator 

(in equation (2.6)) when G( )p  itself is positive. Consequently, it appears (from our limited simulation 

experiments) usually safe to replace the crude rule:  
 

the standard two-sided 95% confidence interval for an estimated proportion p  (based on a complex 

sample) is reasonable when the absolute value of its skewness coefficient G( )p  is less than 0.2,  
 

with the more operational rule: 
 

The standard two-sided 95% confidence interval for an estimated proportion p  is reasonable when 

the absolute value of its estimated skewness coefficient g( )p  is less than 0.2,  
 

or even  
 

The standard two-sided 95% confidence interval for an estimated proportion p  is reasonable when 

the absolute value of the alternative estimated skewness coefficient g*( )p  is less than 0.2 when g( )p  

cannot be computed.  
 

These operational versions of Cochran’s rule for a proportion estimated from a complex sample are even 

more likely to be reasonable when the standard two-sided 95% confidence interval for p  is expressed as 

60CI ( ) 2 var ( ),P p p   and var ( )p  has at least 60 nominal degrees of freedom. 

60CI ( ) 2 var ( )P p p   is the version of the standard two-sided 95% confidence interval for P  that 

many sophisticated users internally calculate when provided only an estimated proportion p  and its 

estimated standard error var ( ).p  That suggests the following suppression rule for an estimated proportion: 
 



Survey Methodology, December 2024 551 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Suppress p  when the absolute value of its estimated skewness coefficient g( )p  or its alternative 

estimated skewness coefficient g*( )p  is greater than 0.2, 
 

because it is at that point that the widely used confidence interval 60CI ( ) 2 var ( )P p p   may no longer 

be reasonable. 

Although we have not looked at clustered sampling per se, the 90-strata experiments can be viewed as 

representing a two (or more) stage sample design with perfect correlation within each of the 180 primary 

sampling units (PSUs); that is, every element in each PSU has the same survey value (0 or 1) as every other 

element in the PSU. Dean and Pagano (2015) and their supplementary material (available from the authors) 

show that for a particular version of a two-stage sample (30 PSUs selected using probability proportional to 

size sampling and seven elements drawn with equal probability from within each PSU) the standard two-

sided 95% interval does a poorer job covering a small P  as the correlation within the PSUs increase (their 

analysis stopped when the intracluster correlation reached a high of 0.5). Even the “exact” Clopper-Pearson 

interval covered poorly when the intracluster correlations were high and P  was small.  
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