Forecasting GDP growth using artificial neural networks / by Greg Tkacz and Sarah Hu.  : FB3-2/99-3E

In this paper, the authors wish to determine whether the forecasting performance of such variables can be improved using neural network models. The main findings are that, at the 1-quarter forecasting horizon, neural networks yield no significant forecast improvements. At the 4-quarter horizon, however, the improved forecast accuracy is statistically significant. The root mean squared forecast errors of the best neural network models are about 15 to 19 per cent lower than their linear model counterparts. The improved forecast accuracy may be capturing more fundamental non-linearities between financial variables and real output growth at the longer horizon.--Abstract

Lien permanent pour cette publication :
publications.gc.ca/pub?id=9.614702&sl=1

Renseignements sur la publication
Ministère/Organisme Bank of Canada.
Titre Forecasting GDP growth using artificial neural networks / by Greg Tkacz and Sarah Hu.
Titre de la série Working paper1192-543499-3
Type de publication Série - Voir l'enregistrement principal
Langue [Anglais]
Format Papier
Autres formats offerts Électronique-[Anglais]
Note(s) "In this paper, the authors wish to determine whether the forecasting performance of such variables can be improved using neural network models. The main findings are that, at the 1-quarter forecasting horizon, neural networks yield no significant forecast improvements. At the 4-quarter horizon, however, the improved forecast accuracy is statistically significant. The root mean squared forecast errors of the best neural network models are about 15 to 19 per cent lower than their linear model counterparts. The improved forecast accuracy may be capturing more fundamental non-linearities between financial variables and real output growth at the longer horizon."--Abstract.
Résumés en français
Information sur la publication Ottawa - Ontario : Bank of Canada 1999.
Reliure Softcover
Description 24p. : graphs, references, tables ; 28 cm.
ISBN 0-662-27537-3
ISSN 1192-5434
Numéro de catalogue
  • FB3-2/99-3E
Numéro de catalogue du ministère 99-3
Descripteurs Gross national product
Forecasting
Models
Demander des formats alternatifs
Pour demander une publication dans un format alternatif, remplissez le formulaire électronique des publications du gouvernement du Canada. Utilisez le champ du formulaire «question ou commentaire» pour spécifier la publication demandée.
Date de modification :