000 01688nam  2200313za 4500
0019.806105
003CaOODSP
00520221107135820
007cr |||||||||||
008150406s2000    onc     ob   f000 0 eng d
040 |aCaOODSP|beng
041 |aeng|bfre
043 |an-cn---
0861 |aFs70-1/2000-120E-PDF
1001 |aEvans, Geoffrey T.|d1948-
24510|aLocal estimation of probability distribution and how it depends on covariates |h[electronic resource] / |cGeoffrey T. Evans.
260 |aOttawa : |bFisheries and Oceans Canada, |c2000.
300 |a11 p. : |bfig., graphs.
4901 |aCanadian Stock Assessment Secretariat research document, |x1480-4883 ; |v2000/120
504 |aIncludes bibliographic references.
520 |aThe kernel smoothing method for obtaining a locally weighted estimate of mean value is extended to produce a locally weighted estimate of the whole probability distribution function. This has several advantages in analysing data sets where there exists no trusted theory. For example, it automatically provides the basis for performing Monte Carlo simulations. Examples of applications to several areas of fisheries science are provided.
69207|2gccst|aFisheries resources
69207|2gccst|aBiomass
69207|2gccst|aModelling
69207|2gccst|aFisheries management
7101 |aCanada. |bDepartment of Fisheries and Oceans.
7102 |aCanada.|bCanadian Stock Assessment Secretariat.
830#0|aCanadian Stock Assessment Secretariat research document,|x1480-4883 ; |v2000/120|w(CaOODSP)9.507740
85640|qPDF|s143 KB|uhttps://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs70-1-2000-120-eng.pdf