State correlation and forecasting : a Bayesian approach using unobserved components models / by Luis Uzeda. : FB3-5/2018-14E-PDF

“Implications for signal extraction from specifying unobserved components (UC) models with correlated or orthogonal innovations have been well investigated. In contrast, the forecasting implications of specifying UC models with different state correlation structures are less well understood. This paper attempts to address this gap in light of the recent resurgence of studies adopting UC models for forecasting purposes. Four correlation structures for errors are entertained: orthogonal, correlated, perfectly correlated innovations, and a new approach that combines features from two contrasting cases, namely, orthogonal and perfectly correlated innovations. Parameter space restrictions associated with different correlation structures and their connection with forecasting are discussed within a Bayesian framework. As perfectly correlated innovations reduce the covariance matrix rank, a Markov Chain Monte Carlo sampler, which builds upon properties of Toeplitz matrices and recent advances in precision-based algorithms, is developed. Our results for several measures of U.S. inflation indicate that the correlation structure between state variables has important implications for forecasting performance as well as estimates of trend inflation"--Abstract, p. ii.

Lien permanent pour cette publication :
publications.gc.ca/pub?id=9.853861&sl=1

Renseignements sur la publication
Ministère/Organisme Bank of Canada.
Titre State correlation and forecasting : a Bayesian approach using unobserved components models / by Luis Uzeda.
Titre de la série Bank of Canada staff working paper, 1701-9397 ; 2018-14
Type de publication Série - Voir l'enregistrement principal
Langue [Anglais]
Format Électronique
Document électronique
Note(s) "March 2018."
Includes bibliographical references.
Includes abstract in French.
Information sur la publication [Ottawa] : Bank of Canada, 2018.
Auteur / Contributeur Uzeda, Luis.
Description ii, 54 p. : col. charts.
Numéro de catalogue
  • FB3-5/2018-14E-PDF
Descripteurs Inflation
Forecasting
Econometrics
Bayesian statistical decision theory
Demander des formats alternatifs
Pour demander une publication dans un format alternatif, remplissez le formulaire électronique des publications du gouvernement du Canada. Utilisez le champ du formulaire «question ou commentaire» pour spécifier la publication demandée.
Date de modification :