000 02172cam  2200373zi 4500
0019.875695
003CaOODSP
00520221107164524
006m     o  d f      
007cr |||||||||||
008190628t20182018quca   fobt  f000 0 eng d
040 |aCaOODSP|beng|erda|cCaOODSP
043 |an-cn---
0861 |aD68-11/007-2018E-PDF
1001 |aPotvin, G., |eauthor.
24510|aActive turbulent imaging simulation on weak specular targets / |cGuy Potvin.
264 1|aQuebec (Quebec) : |bDRDC, Valcartier Research Centre, |cFebruary 2018.
264 4|c©2018
300 |a1 online resource (7 pages, 2 unnumbered pages) : |billustrations (mostly black and white).
336 |atext|btxt|2rdacontent
337 |acomputer|bc|2rdamedia
338 |aonline resource|bcr|2rdacarrier
4901 |aExternal Literature (N) ; |vDRDC-RDDC-2018-N007
500 |aTitle from cover.
500 |a"Can unclassified."
500 |a"February 2018."
500 |a"Date of Publication from Ext Publisher: February 2018."
500 |aOriginally produced for : 8th International Symposium on Optronics In Defence and Security, OPTRO2018, 6–8 February 2018, Paris, France.
504 |aIncludes bibliographical references (page 7).
5203 |a"We define the Bidirectional Reflectivity Distribution Function (BRDF) in terms of Wigner functions so as to make its radiometric aspect compatible with the wave aspect of coherent propagation through atmospheric turbulence. We then adapt this definition in order to make it compatible with the DRDC turbulent imaging simulator for active imaging on weakly specular surfaces. This is done by defining a coherence length associated with the surface which expresses how specular it is. We demonstrate our model on a few targets and comment on its range of applicability"--Abstract, p. 1.
693 4|aImaging simulation
7101 |aCanada. |bDefence R&D Canada. |bValcartier Research Centre.
830#0|aExternal literature (N) (Defence R&D Canada)|vDRDC-RDDC-2018-N007.|w(CaOODSP)9.858173
85640|qPDF|s944 KB|uhttps://publications.gc.ca/collections/collection_2019/rddc-drdc/D68-11-007-2018-eng.pdf