000 02167cam  2200361zi 4500
0019.893800
003CaOODSP
00520221107173542
006m     o  d f      
007cr cn|||||||||
008201120t20202020oncd    ob   f000 0 eng d
040 |aCaOODSP|beng|erda|cCaOODSP
0861 |aM103-3/59-2020E-PDF
1001 |aGhoddousi-Fard, Reza, |eauthor.
24513|aAn investigation on the GNSS ionospheric mapping-functions uncertainties using NeQuick model / |cR. Ghoddousi-Fard.
264 1|aOttawa, Ontario : |bGeomatics Canada, |c2020.
264 4|c©2020
300 |a1 online resource (11 pages) : |bgraphs.
336 |atext|btxt|2rdacontent
337 |acomputer|bc|2rdamedia
338 |aonline resource|bcr|2rdacarrier
4901 |aOpen file ; |v59
504 |aIncludes bibliographical references (pages 10-11).
5203 |a"Commonly used two-dimensional ionospheric models for GNSS positioning applications, including Total Electron Content (TEC) maps, require a mapping function (obliquity factor) which is used for conversion between vertical and slant TEC at ionospheric pierce points. In this paper, NeQuick, a three-dimensional semi-empirical model, is used to simulate the level of uncertainties that one may expect from more simplified approaches. In order to evaluate the performance of mapping functions on GNSS vertical TEC estimation, coinciding pierce points from mixed stations and receivers from stations over North America are analyzed. A fit to the NeQuick derived mapping function values resulted in an empirical mapping function which performed slightly better than commonly used mapping functions during the studied periods and locations"--Abstract, page 1.
650 0|aGlobal Positioning System.
650 0|aIonosphere|xResearch.
650 6|aGPS.
650 6|aIonosphère|xRecherche.
7102 |aGeomatics Canada, |eissuing body.
830#0|aOpen file (Geomatics Canada)|v59.|w(CaOODSP)9.821474
85640|qPDF|s1.39 MB|uhttps://publications.gc.ca/collections/collection_2020/rncan-nrcan/m103-3/M103-3-59-2020-eng.pdf
8564 |qHTML|sN/A|uhttps://doi.org/10.4095/326084